PERSPECTIVES ON SCIENCE EDUCATION

A LEADERSHIP SEMINAR
PERSPECTIVES ON SCIENCE EDUCATION

A LEADERSHIP SEMINAR

RODGER W. BYBEE
STEPHEN L. PRUITT

NSTApresst
National Science Teachers Association
Arlington, Virginia

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316306
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permissions
Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA’s rights and permissions policies.

Cataloging-in-Publication Data for this book are available from the Library of Congress.
ISBN: 978-1-941316-30-6
# CONTENTS

## ACKNOWLEDGMENTS

vi

## PREFACE

ix

### SECTION I

## PERSPECTIVES ON SCIENCE EDUCATION: INTRODUCTIONS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducing the Seminar</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Personal Introductions</td>
<td>17</td>
</tr>
</tbody>
</table>

### SECTION II

## SCIENCE EDUCATION IN AMERICA: HISTORICAL PERSPECTIVES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Science Education in America: Different Models of Programs and Practices</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Sputnik and Science Education: An Era of Major Reform</td>
<td>47</td>
</tr>
</tbody>
</table>

### SECTION III

## THE PURPOSES AND GOALS OF SCIENCE EDUCATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The Purposes of Education</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Goals of Science Education</td>
<td>73</td>
</tr>
</tbody>
</table>

### SECTION IV

## NATIONAL STANDARDS: POLICIES FOR SCIENCE EDUCATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>National Standards and Science Education: Historical Perspectives</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>Next Generation Science Standards</td>
<td>105</td>
</tr>
</tbody>
</table>

### SECTION V

## STATE STANDARDS AND DISTRICT LEADERSHIP: POLICIES AND POLITICS IN SCIENCE EDUCATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>State Standards: Contemporary Perspective</td>
<td>123</td>
</tr>
<tr>
<td>10</td>
<td>District Leadership</td>
<td>137</td>
</tr>
</tbody>
</table>

### SECTION VI

## CURRICULUM PROGRAMS FOR SCIENCE EDUCATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Reforms of the Science Curriculum</td>
<td>153</td>
</tr>
<tr>
<td>12</td>
<td>Design and Development of Curriculum Programs</td>
<td>165</td>
</tr>
</tbody>
</table>
## SECTION VII
### CLASSROOM PRACTICES FOR SCIENCE TEACHING
- **CHAPTER 13:** Science Teaching: Art or Science? ................................................................. 189
- **CHAPTER 14:** Teaching Science and the Science of Teaching ........................................... 201

## SECTION VIII
### PROFESSIONAL DEVELOPMENT FOR TEACHERS OF SCIENCE
- **CHAPTER 15:** Professional Development and Science Education ..................................... 227
- **CHAPTER 16:** Contemporary Standards and Professional Development ............................ 243

## SECTION IX
### ASSESSMENT AND ACCOUNTABILITY IN SCIENCE EDUCATION
- **CHAPTER 17:** Classroom, State, and National Assessments ............................................. 259
- **CHAPTER 18:** International Assessments of Science ......................................................... 277

## SECTION X
### REFORMS, POLICIES, AND POLITICS IN SCIENCE EDUCATION
- **CHAPTER 19:** Education Reform ..................................................................................... 299
- **CHAPTER 20:** Standards-Based Reform .......................................................................... 315

## SECTION XI
### LEADERSHIP AND EDUCATION
- **CHAPTER 21:** Perspectives on Leadership .................................................................... 333
- **CHAPTER 22:** Leadership and Power .............................................................................. 343

## SECTION XII
### LEADERSHIP IN CONTEMPORARY SCIENCE EDUCATION
- **CHAPTER 23:** Leadership in Science Education ................................................................. 355
- **CHAPTER 24:** The Seminar’s Conclusion and Your Beginning .......................................... 371

### APPENDIX A: HISTORICAL PERSPECTIVES, 1635–1965 ................................................. 379

### INDEX ................................................................................................................................. 391
ACKNOWLEDGMENTS

Our gratitude extends to the many individuals with whom we have interacted and from whom we have learned about the various realms of science education. To our teachers, college faculty in both science and education, and professional colleagues, we extend our appreciation for your many and varied contributions to our perspectives on science education. We also have held positions of leadership, and in all of these situations, numerous individuals have made decisions and supported our opportunities to lead. Finally, we have had thousands of conversations in classes and meetings and at conferences that have informed our professional knowledge and abilities. We thank all of the individuals who shared their views with us.

Rodger: I would like to thank Janet Carlson, Stanford University, for her insights and recommendations, especially about curriculum and instruction. Ann Rivet, Teachers College, Columbia University, offered her syllabus and personal insights about an introductory course on science education. Kathy Stiles, WestEd, provided ideas and support on professional development, including the book she wrote with Susan Mundry, Nancy Love, Peter Hewson, and the late Susan Loucks-Horsley. Edys Quellmalz and her colleagues at WestEd included me as an advisor on several assessment projects. Jim Short, now at Carnegie Corporation of New York and formerly at the American Museum of Natural History, provided me with several opportunities to advise on his projects and numerous discussions, all of which enriched my understanding of professional development, curriculum, and teaching. Dr. Robert Pletka, Superintendent, Fullerton California School District, and Corey Bess, Assistant Principal, both provided insights about administrative leadership at the district and school levels.

Stephen: My first acknowledgement has to be to my co-author and very good friend, Rodger Bybee. He has probably forgotten more than I will ever learn, and he has been a great friend and mentor throughout the development of the Next Generation Science Standards (NGSS) and this book. I have had an opportunity to meet so many great people through my work with NGSS and am thankful for them all. However, it was Rodger who kept me sane, reminded me of history, allowed me to vent, and pushed me intellectually at every turn to do something special for the students of our country. I am honored to be his friend.

My second acknowledgement is to my two children, Samuel and Abby. It is for you I work hard to make education better for future generations. You both inspire me.
ACKNOWLEDGMENTS

Finally, and most important, my greatest acknowledgment is to my wife, Cecelia. She has made my life a dream. She has believed in me far more than I believed in myself. She pushed me to do great things for our kids, the kids of the country, and now the kids of Kentucky. I am not being sentimental when I say I owe all my success to her. She saw abilities in me I never did. She pushed me to use them, and as a result I have had a special career. Thank you for your love, support, and encouragement.

Both of us acknowledge colleagues at ACHIEVE. Your understanding and permission to use NGSS-related material is deeply appreciated. We also thank Claire Reinburg at NSTA for her continual encouragement of this project, and Wendy Rubin, our editor at NSTA, for the improvements she has made in our book.

The manuscript for this book was reviewed by Harold Pratt, Peter McLaren, and Cary Sneider. We attended to your comments and suggestions. The book is improved because of your reviews. Thank you.

Rodger’s wife Kathryn carefully reviewed, read, and edited the entire book. She identified spelling and grammatical errors and provided insightful recommendations and resources from a district science coordinator’s view. This book is much improved due to her time, effort, and understanding of American science education. We deeply appreciate and fully acknowledge her contributions to this book.

Once again, Byllee Simon assisted with her thorough support. She found errors, did research, and asked insightful questions about various features of the book. Our debt to Byllee is deep, and we thank her for all she did.

Finally, we recognize our families for their understanding and support. They know only too well what it takes to write a book.

Rodger W. Bybee
Stephen L. Pruitt
Depending on the policy, report, or event, one can claim that science education reform has been on the national agenda for days, months, years, decades, or even centuries. Today’s media regularly report on the poor achievement of American students on national and international assessments. From January 2001 until December 2015, educators heard about issues associated with the No Child Left Behind Act (NCLB); now there are new challenges posed by the Every Student Succeeds Act (ESSA). Business leaders look to science education to prepare a 21st-century workforce. Finally, there are continuous references throughout this book to health, environment, climate, and other issues that require significant levels of scientific literacy for all citizens.

Whether the means for improvement resides with curriculum materials, teachers’ professional education, assessments, or assorted other initiatives, responsibility for improvement ultimately rests with the science education community. This community includes classroom teachers, science coordinators, district administrators, state science supervisors, college and university researchers, curriculum developers, science assessment specialists, administrators of national organizations, and federal agencies.

Looking at the science education community, there is a clear and—we think—compelling need to develop a new generation of leaders who understand science education and are willing to confront the challenges of reform. This book is our response to those ready to face the challenges and provide leadership for education reform.

The general idea for this book originated about a decade ago. F. James Rutherford and Rodger Bybee had a series of discussions about the need for a new generation of leaders in science education. The discussions included many of the themes in this book, such as the goals of science education, standards, and assessments. These conversations were rich in content, drew on professional experiences, and capitalized on different perspectives. However, like many such discussions, they were not fully developed and the ideas never evolved into a book.

The notion of a book on contemporary perspectives and leadership re-emerged with an invitation to both of us to make a presentation at the 2014 National Science Teachers Association (NSTA) national conference. We decided to engage in a dialogue about science education standards through the years.
PREFACE

While the Next Generation Science Standards (NGSS) were the primary focus of that presentation, we thought it important to identify earlier reforms of science education. Such a discussion naturally centered on aims and goals, standards and benchmarks, curriculum and instruction, assessment and accountability, and teacher education and professional development. These, after all, are topics at the core of science education and central concerns of the science education community in general and science teachers in particular.

This book is not about the need to reform science education. Others have made that argument and undoubtedly will continue making it in the future. This book is about science education and what one needs to know, value, and be able to do as a leader initiating and sustaining reform. The book serves as an introduction to purposes, policies, programs, and practices that science education leaders should understand and be able to apply. Beyond an introduction to science education, we have presented some of the contemporary challenges and controversies that leaders will face: Is the purpose of science education to prepare scientists and engineers, a 21st-century workforce, or scientifically literate citizens? What is the role of federal, state, and local governments in setting standards for science education? To what degree should the curriculum include science-related social issues? What are the roles of politics and policies in science education?

We conceived the book as a seminar, one that begins with an introduction to themes that unify the presentations—perspectives, challenges, standards, and leadership. This introduction is followed by personal introductions. These brief autobiographies present our backgrounds and experiences in science education.

The book (and seminar) continues with a brief history of science education and a close look at the Sputnik era. These two sections of the book set the stage for the central topics of the purposes and goals of science education, national standards, state standards and district leadership, curriculum programs, classroom practices, professional development, and assessment and accountability. These are followed by reform, policies, politics, and two concluding sections on leadership.

Throughout the book, we use an informal, conversational style, as we would in an actual seminar. Most sections of the book include suggested readings that have historical or contemporary significance, personal perspectives, our common perspectives and leadership opportunities, and issues and questions for discussion.

Who is the audience for this book? This book is for those individuals already in leadership positions at national, state, district, and school levels; those enrolled in courses on curriculum and instruction; those participating in professional development; and those teachers of science who want to broaden and deepen their understanding of the foundations and dynamics of science education. Some individuals know much of what we present in the following chapters. They also are probably the ones who are teaching courses or arranging continued professional development. We hope our insights and discussions serve as the basis for continuing discussions. There are others who just want to understand more about their profession. This book is for all of you.

As mentioned, we conceptualized and developed this book as though we were presenting a seminar. Both of us have a broad set of experiences that range from teaching in science classrooms
to formulating and implementing national and international policies and programs. We have careers that include the successes and failures of leadership. In a seminar, we would have the place to present our own scholarly work and that of others, the chance to express our perspectives on issues, and opportunities to challenge the participants with questions, situations, and issues.

Ultimately, science education leaders have to make decisions and set directions based on their positions and opportunities. In our careers, we have done just that. This book is not so much about answers; it is more about questions. It is not about persuading you of the need to reform; it is more about developing your understanding of science education and recognizing the challenges and opportunities of leadership. We present some of the perennial issues to structure the conversations so ideas are exchanged and individuals develop the understanding and abilities to lead. To the best of our knowledge, values, skills, and experiences, we try to begin professional conversations that will contribute to a deeper understanding of science education in general and your leadership in particular.
Standards are specific policy statements and action plans based on the purposes of science education. Policies are concrete translations of the purpose and apply to specific components such as teacher education, K–12 curricula, and assessments.

National standards have become useful maps that provide purpose and direction in American education by answering questions about what students should know and be able to do after 13 years of school. At the same time, discussions of national standards and the implied reforms have raised questions about the purposes of education, the standards’ impact on equity and excellence, who decides the content students should learn, and how society knows if students have learned the content and abilities the standards describe.

National standards identify the purposes and goals for education and—based on those aims—describe clear, consistent, and challenging learning outcomes. Who could be critical of this? After all, common sense and reasonable judgment suggest that educational quality and teaching are better if goals are clear and teachers’ knowledge and skills, instructional materials, and assessments are all coherent.

The first generation of standards, the National Science Education Standards (NSES; NRC 1996), influenced state and district standards until the Next Generation Science Standards (NGSS; NGSS Lead States 2013) were released. Table IV.1 summarizes the states that have adopted NGSS and those that have been influenced by A Framework for K–12 Science Education (NRC 2012) and the NGSS (NGSS Lead States 2013) in the development of their standards.

REFERENCES


SUGGESTED READINGS
American Association for the Advancement of Science (AAAS). 1993. Benchmarks for science literacy. New York: Oxford Press. A product of Project 2061, these were the initial standards for American science education.


Table IV.1. States That Have Adopted and Adapted the NGSS

<table>
<thead>
<tr>
<th>States That Have Adopted the NGSS</th>
<th>States That Have Adapted the Framework and NGSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas</td>
<td>Alabama</td>
</tr>
<tr>
<td>California</td>
<td>Georgia</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Idaho</td>
</tr>
<tr>
<td>Delaware</td>
<td>Indiana</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Missouri</td>
</tr>
<tr>
<td>Illinois</td>
<td>Montana</td>
</tr>
<tr>
<td>Iowa</td>
<td>Oklahoma</td>
</tr>
<tr>
<td>Kansas</td>
<td>South Carolina</td>
</tr>
<tr>
<td>Kentucky</td>
<td>South Dakota</td>
</tr>
<tr>
<td>Maryland</td>
<td>Utah</td>
</tr>
<tr>
<td>Michigan</td>
<td>West Virginia</td>
</tr>
<tr>
<td>Nevada</td>
<td>Wyoming</td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>States With Standards in Development or Not Formally Adopted</th>
<th>States That Have Not Revised Their Science Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td>Alaska</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Arizona</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Florida</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Maine</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Mississippi</td>
</tr>
<tr>
<td>New Mexico</td>
<td>North Carolina</td>
</tr>
<tr>
<td>New York</td>
<td>Ohio</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Texas</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Wisconsin</td>
</tr>
<tr>
<td>Tennessee</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td></td>
</tr>
</tbody>
</table>

Note: Updated September 23, 2016.
CHAPTER 7

NATIONAL STANDARDS AND SCIENCE EDUCATION

HISTORICAL PERSPECTIVES

This chapter provides background on the idea of standards, the context for contemporary national standards, and perspectives on the National Science Education Standards (NSES). Chapter 8 is an introduction to the Next Generation Science Standards (NGSS).

NATIONAL STANDARDS ARE A NEW IDEA—RIGHT?

National standards may seem like something new in American education, but they are not. As you have seen, American education has a long history of committees, reports, and groups defining content and required courses that amount to standards. If the basic idea of standards is to provide clear and consistent statements of what students should know and be able to do, then standards, even if they were not called standards, have been a part of American education since Harvard established admission requirements in 1643, followed by Yale (1745) and Columbia (1778). With time, the admission requirements broadened from, for example, reading classical Latin (Harvard) to include the rules of arithmetic (Columbia; Ravitch 1995).

In 1892, the National Education Association (NEA) established the Committee of Ten, a panel of experts charged with making recommendations to improve the nation’s high school curricula. As a national panel, the Committee of Ten had no precedent to make recommendations to thousands of school districts. The report was relatively effective, primarily due to the stature of the panel members as national leaders. The report recommended physical science (physics, astronomy, and chemistry), “natural history” (biology, which included botany, zoology, and physiology), and geography (physical geography, geology, and meteorology).
The standards described in these reports were clearly directed toward college preparation. Because of this orientation, many educators objected to the standards. As a result, the NEA established a Commission on the Reorganization of Secondary Education (CRSE), whose 1918 report (standards) was distinctly different from prior college preparatory standards. The committee included academic subjects and industrial arts, household arts, vocational guidance, agriculture, and other areas not generally considered academic. This committee report identified seven cardinal principles as the main objectives of education. Those principles included health, citizenship, worthy use of leisure, and ethical character. The individual academic subjects needed to be shown as making contributions to achieving these objectives. The emphasis was clearly on utility (What was useful for the student?) and social efficiency (How could school programs serve the needs of society?). In this justification of courses, in terms of educational objectives, geography was part of social studies (Ravitch 1995).

With the CRSE example, we point out the two different purposes of education, one with knowledge of academic disciplines and the second with a liberal arts orientation. The Committee of Ten example stressed an education primarily for college-bound students. In contrast, the CRSE underscored the purpose of social efficiency, an education for non-college-bound students. The CRSE report resulted in vocational and general tracks for some students and academic and college tracks for others. The contemporary perspective of college and career preparation is a possible resolution of the conflicting purposes expressed by the two committees and their respective national “standards.”

Tests and Textbooks as Standards
We cannot leave this discussion of implied or suggested national standards without mentioning tests and texts. To be specific, we are referring to standardized tests and commercial textbooks. In the early decades of the 20th century, standardized achievement tests were introduced, as were college entrance examinations (Ravitch 1995). Both types of tests served as implicit academic standards for states and school districts. The American College Testing (ACT) and Scholastic Aptitude Test (SAT) examinations serve similar purposes today.

Textbooks, such as those used in science, also serve as de facto national standards in education. An estimated 75% (or more) of instructional time in classrooms is structured by textbook programs (Woodward, Elliott, and Nagel 1988). Although the report on this is several decades old, we have little reason to suggest significantly different percentages; however, this could change as states set new frameworks and adoption requirements based on contemporary national standards.

So, the term national standards may be a new addition to American education, but the idea of clarifying purposes and describing the content for curricula and assessments is by no means new. We continue with contemporary national standards for science education, beginning with their origins.

The Origins of Contemporary National Standards
In 1983, the landmark report A Nation at Risk (NCEE 1983) stimulated concerns and reforms among states. The report warned that the American education system was far behind its international competitors and that there were eminent threats to the country’s economic future. The report recommended
high expectations in academic subjects including science and a nationwide system of assessments. In time, it became clear that 50 states and thousands of school districts working independently could not meet the challenges and reduce the risks America faced. There was a need for national leadership.

On September 27 and 28, 1989, President George H. W. Bush gathered the country’s governors in Charlottesville, Virginia, to discuss a single issue—education. This historic meeting resulted in the proposed America 2000 legislation (1991), which called for voluntary national standards. Congress did not pass the legislation. However, the idea of national goals and standards had risen to prominence. In 1989, the National Council of Teachers of Mathematics (NCTM) published *Curriculum and Evaluation Standards for School Mathematics*.

Given the increasing corporate attention to total quality management based on raising performance to meet higher standards of quality, it is not surprising that the National Educational Goals Panel (NEGP) found the idea of standards in different subjects and performance-based assessments attractive. When the National Council on Education Standards and Testing (NCEST) reported on the merits and feasibility of national standards and assessments, the NCTM standards had already provided the proof that NCEST needed—the mathematics standards. The standards set focus and direction, not a national curriculum; they were national, not federal; they were voluntary, not mandatory; and they were dynamic, not static.

**NATIONAL SCIENCE EDUCATION STANDARDS: THE FIRST GENERATION**

As you can see, support for national standards in science formalized in 1989, when the nation’s governors and President George H. W. Bush established six national education goals, which were adopted by Congress and later expanded to a total of eight goals. In 1994, Congress enacted Goals 2000: Educate America Act and formed the National Education Goals Panel (NEGP) to support and monitor progress toward the goals. (See Table 7.1 [p. 94] for historical highlights of the NSES.)

**Developing National Standards for Science**

In science, two important publications preceded initial work on national standards. In 1989, the American Association for the Advancement of Science (AAAS), through its Project 2061 led by F. James Rutherford, published *Science for All Americans* (Rutherford and Ahlgren 1989). This publication defined science literacy for all high school graduates and provided the foundation for *Benchmarks for Science Literacy* (AAAS 1993), which had a significant influence on the development of national standards for science. Three years later, the National Science Teachers Association (NSTA), through its Scope, Sequence, and Coordination Project, published *The Content Core* (1992).

In 1991, the National Research Council (NRC) was formally asked by Dr. Bonnie Brunkhorst, then president of NSTA, to assume a leading role in developing national standards for science education. The NRC was encouraged by leaders of several other science and science education associations,
the U.S. Department of Education, the National Science Foundation (NSF), and the NEGP. The effort—funded by the U.S. Department of Education, NSF, and the National Aeronautics and Space Administration (NASA)—was led by the National Committee on Science Education Standards and Assessment (NCSESA), advised by the chair’s advisory committee that consisted of representatives from major science education organizations, and carried out by three working groups (i.e., content, teaching, and assessment) composed of science teachers, educators, scientists, and others involved in science education.

Preparations for work on the intellectual substance of the standards began in the fall of 1991. NRC staff were assigned to produce summaries of the proposed standards, based on the work of NSTA’s Scope, Sequence, and Coordination; AAAS Project 2061; and other projects, as well as state science frameworks and science standards from other countries.

One early decision was to develop standards for content, teaching, and assessment all displayed in mutually re-enforcing ways. Another decision committed the working group chairs to function as a team throughout the project. A third decision was to take the critique and consensus process seriously, issuing frequent updates on the project and materials suitable for intense critique by teachers, subject matter experts, and others. Discussion and working papers were released in October 1992, December 1992, and February 1993. The first draft of content, teaching, assessment, professional development of teachers of science programs, and system standards appeared late in 1993.

Early drafts of the NRC standards were subsequently reviewed by groups of experts and large numbers of educators across the country. More than 40,000 copies of a complete draft were distributed in December 1994 to approximately 18,000 individuals and 250 groups for review. The comments and recommendations received from these reviewers were used to prepare the final document, which was formally released in December 1995 as the *National Science Education Standards* (NRC 1996).

**National Science Education Standards: An Overview**

In early 1996, the NRC consolidated its education activities into the Center for Science, Mathematics, and Engineering Education (CSMEE). CSMEE took on support for the new *National Science Education Standards* as an important priority, and Rodger Bybee was hired as the executive director. The first initiative of CSMEE was the preparation of an introduction to *NSES* (NRC 1997).

The *NSES* defined the science content that all students should know and the practices they should be able to do and provided guidelines for assessing the degree to which students have learned that content. The *NSES* detailed the teaching strategies, professional development, and support necessary to deliver high-quality science education to all students. The *NSES* also described policies needed to bring coordination, consistency, and coherence to science education programs. You can see from this summary that the *NSES* were a comprehensive set of standards for science education. Specifically, the *NSES* included standards for science content, teaching, assessment, professional development, school science programs, and the education system’s support of *NSES*.

In *NSES*, the content standards included the following:

- Unifying concepts and processes
• Science as inquiry
• Physical science
• Life science
• Earth and space science
• Science and technology
• Science in personal and social perspectives
• History and nature of science

The first category of the content standards, unifying concepts and processes, identified powerful ideas that are basic to science disciplines. These standards included both conceptual and procedural content (e.g., systems, order, and organization; evidence, models, and explanation). The other content categories included knowledge and abilities in inquiry, which ground students’ learning of subject matter in physical, life, and Earth and space sciences. Science and technology standards introduced the similarities and differences between the natural and designed worlds and questions and problems. The personal and social perspectives standards introduced students to science in life situations and helped them develop decision-making skills. The history and nature of science standards helped students see science as a human experience that is both ongoing and ever-changing (NRC 1996).

**Benchmarks and Standards**

The *Benchmarks for Science Literacy* (AAAS 1993) were also statements of standards and caused some confusion within the science education community. Which should be used, the *Benchmarks* or *NSES*? There were differences. For example, the *Benchmarks* included components for different grade levels and included more content in social and behavioral sciences and mathematics. The *NSES* gave greater emphasis to inquiry both as science content and as a teaching strategy. Finally, as mentioned above, the *NSES* addressed a broader range of standards. There was, however, an estimated 90% consistency of content between the *Benchmarks* and *NSES*. Use of either document by states or local school districts would improve science education.

Finally, the *NSES* content clarified scientific literacy. Here is an answer to the question, “What is scientific literacy?” Scientific literacy is the knowledge and understanding of scientific concepts and processes required for personal decision making, participation in civic and cultural affairs, and economic productivity. People who are scientifically literate can ask, find, or determine answers to questions about everyday experiences. They are able to describe, explain, and predict natural phenomena.

Scientific literacy has different degrees and forms; it expands and deepens over a lifetime, not just during the years in school. The *NSES* outline a broad base of knowledge and skills for a lifetime of continued development in scientific literacy for every citizen and provide a foundation for those aspiring to scientific careers (NRC 1996).
### Table 7.1. National Science Education Standards: Historical Highlights

<table>
<thead>
<tr>
<th>Year</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td><em>A Nation at Risk</em> is released by NCEE.</td>
</tr>
<tr>
<td>1989</td>
<td><em>Curriculum and Evaluation Standards for School Mathematics</em> is released by NCTM.</td>
</tr>
<tr>
<td></td>
<td>National Governors Association releases national educations goals.</td>
</tr>
<tr>
<td></td>
<td>President George H. W. Bush forms the NEGP.</td>
</tr>
<tr>
<td></td>
<td><em>Science for All Americans</em> is released by AAAS.</td>
</tr>
<tr>
<td>1991</td>
<td>NSTA’s president and executive director request the NRC coordinate development of national standards for science education.</td>
</tr>
<tr>
<td>1992</td>
<td>The NRC establishes the National Committee on Science Education Standards and Assessment (NCSESA).</td>
</tr>
<tr>
<td>1993</td>
<td>The first meeting of NCSESA takes place.</td>
</tr>
<tr>
<td></td>
<td><em>Benchmarks for Science Literacy</em> are released by AAAS-Project 2061.</td>
</tr>
<tr>
<td>1994</td>
<td>The first complete draft of standards for science education are developed and released.</td>
</tr>
<tr>
<td></td>
<td>Professional organizations, focus groups, and the NRC report review teams evaluate the first draft of standards.</td>
</tr>
<tr>
<td>1996</td>
<td>The second draft of the standards is released, and 40,000 copies are distributed for review.</td>
</tr>
<tr>
<td>1996–2013</td>
<td>The <em>National Science Education Standards</em> are released (NRC 1996).</td>
</tr>
<tr>
<td></td>
<td>The NSES continue to influence components of the science education system until 2013, when the <em>Next Generation Science Standards</em> are released.</td>
</tr>
</tbody>
</table>
nationwide Standards Eyed Anew.” This headline appeared in the December 7, 2005, issue of Education Week. The story highlighted the diversity of demands by states and the resurgence of national standards. The article (Bybee 2006) quoted Diane Ravitch: “Americans must recognize that we need national standards, national tests, and a national curriculum” (p. 1). This article appeared 10 years, almost to the day, after the release of the National Science Education Standards (NSES). The article and quote expressed views generally consistent with my own. The United States needs national standards for science education and for technology and mathematics as well. National standards provide the means for improving student achievement while maintaining the authority for states and local school districts to determine their science programs. In principle, this is possible. In practice, it is far from reality. But that is not a reason to reject national standards. Indeed, quite the opposite is the case. We should embrace the national standards for science education. Although originally written in 2006, I think these ideas still hold in 2016.

It is worth noting several things about standards at the beginning of this essay. National, state, and local standards are primarily a reflection of values and priorities of those individuals, organizations, and agencies responsible for developing the standards. They are not research reviews or based on research. Questions about the influence of the NSES on education are important for research, albeit they are very complex issues to investigate. Second, the NSES provide policies for curriculum, instruction, assessment, and professional development. They must be interpreted by those responsible for designing and implementing programs, facilitating changes in instructional practices, and instituting new assessments and accountability measures. Finally, any significant influences of national standards on the education system will take time, likely more than a decade; a reasonable estimate would be two decades. The time it takes for national standards to influence the system is the reason the headline captured my attention and influenced my comments about the standards for science education.

This essay describes my reflections and opinions based on more than a decade’s experience with the NSES. My work on the NSES began in 1992 as a member (and later chair) of the Content Working Group. In 1995, I became executive director of the Center for Science, Mathematics, and Engineering Education (CSMEE) at the National Academies, where my work completing and disseminating the Standards continued until 1999, when I returned to Biological Sciences Curriculum Study (BSCS). At BSCS, we used the NSES as the content and pedagogical foundation for curriculum materials and
professional development. So, my experiences with the NSES have been quite varied and include the perspectives of policy, program, and practice. This essay does not include a discussion of the project that produced the NSES, but Angelo Collins has provided an excellent history (Collins 1995). Also worth noting is the October 1997 issue of *School Science and Mathematics*, a theme issue for which my colleague Joan Ferrini-Mundy and I served as guest editors. With this as context, I continue with my reflections on the 1996 *National Science Education Standards*.

**WHY ARE NATIONAL STANDARDS IMPORTANT?**

The power of national standards lies in their potential capacity to change the fundamental components of the education system at a scale that makes a difference. Very few things have the capacity to change curriculum, instruction, assessment, and the professional education of science teachers. National standards must be on the short list of things with such power. The changes also are systemwide and thus at a significant scale. To the degree that various agencies, organizations, institutions, and districts embrace the standards, there is potential to bring increased coherence and national unity among state frameworks, criteria for adoption of instructional materials, and other resources for science education.

**How Do the Standards Change Components of the Education System?**

Early in my work on the standards, I realized there were several ways they may affect the system. The importance of teaching biological evolution provides excellent examples for this discussion. First, including content such as biological evolution in standards in turn affects the content in state and local standards. A review by *Education Week* (November 9, 2005) found that a majority of states (39) included some description of biological evolution and 35 states described natural selection. In short, national standards influence the priorities for content in state and local standards.

My second point centers on feedback within the systems. Using the NSES as the basis for their review, *Education Week* provided insights about which states did not mention evolution—Florida, Illinois, Kentucky, and Oklahoma. It also indicated the significant variation in the presentation of evolution among other states. The latter was a major finding in the review.

The NSES also can be used to define the limits of acceptable content. This is my third point. When Kansas again planned to adopt state standards that would promote non-scientific alternatives to evolution and liberally borrowed from the NSES and the National Science Teachers Association’s (NSTA) *Pathways to Science Standards* (2005), both organizations denied Kansas the right to incorporate any of their material into its new standards (*Science* 2005).

Briefly, the NSES indicate what should be included in state standards, school science programs, textbooks, and assessments. The standards provide the basis for feedback about content of other standards and programs. Finally, they can be used as defense against efforts to include non-scientific content. These are three important ways the NSES influence the science education system. This was true for the 1996 standards and is still true today.
Contrast the potential influence of standards on the instructional core and education system with the possibility of improving student achievement at national levels using other contemporary education ideas and priorities, such as vouchers, charter schools, and site-based management. To be very clear, I am not opposed to such ideas; they may embrace important goals and result in some improvement of student achievement. But they do not necessarily result in fundamental changes at the place where students and teachers meet. Furthermore, the changes are usually local and thus at a scale that lacks significance. They may represent high political priorities, but they have low value when viewed nationally.

What About Equity?
There is a second feature of the standards that demonstrates their importance: They present policies for all students. By their very nature, national standards are policies that embrace equity. When the NSES answered the question, “What should all students know and be able to do?” the standards became clear statements of equity. In the decade since the release of the NSES, I have had many individuals ask if we really meant all. The answer is yes. Of course, there are exceptions that prove the rule; severely developmentally disabled students would be an example. But the standards are still clear statements of equity. While developing the NSES, we were quite clear about the fact that many aspects of the education system would need to change to accommodate the changes the standards implied. The need for changes such as the reallocation of resources to increase achievement of those students most in need was clearly understood by those most closely associated with the NSES.

Have the NSES changed the fundamental components system-wide and achieved equity? No. But you will notice that I indicated they had the potential to do so, not that they actually did do so. I would note for readers that this nation has not achieved equal justice for all, but we hold this as an important goal, one that we do not plan to change simply because it has not been achieved.

How Have National Standards Influenced Science Education?
Using national standards places emphasis on outputs of the education system. The NSES clearly define the goals for 13 years of science education and assume the various inputs to the system will change to accommodate the goals. For example, textbooks, tests, teaching, and technologies would change to achieve the stated goals. Ultimately, we could assume that national standards would influence student achievement. Of course, educational change does not work as planned. The rubber of education innovation always meets the road of reality.

While directing the Center for Science, Mathematics, and Engineering Education at the National Academies, I initiated a report intended for researchers interested in answering questions about national standards, Investigating the Influence of Standards: A Framework for Research in Mathematics, Science, and Technology Education (NRC 2002), directed by Dr. Iris Weiss. Although the goal of standards is student achievement, the influence of national standards is proximate and often compromised by countervailing forces and conditions in the education system. The NRC committee identified three primary channels of influence: curriculum, teacher development, and assessment.
and accountability. This said, the channels of influence are complex and interactive; significant time is needed for national standards to influence components of the system. The standards may be altered or ignored at the interface of system components such as the design of instructional materials, development of state standards, requirements for teacher certification, and national, state, and local assessments. Several questions from the NRC report (2002) present the basis for the following discussion.

**How Have the NSES Been Received and Interpreted?**

The answer should not surprise any reader—it depends. Release of the NSES signaled change, and this by its nature resulted in resistance from some individuals and groups. Interestingly, the resistance primarily was about the idea of standards, not the actual content of the standards. On the other hand, I think it is safe to say that the standards have been positively received within the science education community. Science educators recognized the importance and potential value of the standards on the education system. Unfortunately, at the national level, policy makers did not embrace the NSES. I attribute this to politics and the need for a Republican Congress to set new policies and reject many aspects of the prior Democratic administrations. The NSES and *Before It’s Too Late: A Report to the Nation from the National Commission on Mathematics and Science Teaching for the 21st Century* (U.S. Department of Education 2000) suffered this fate.

Textbook publishers did not receive the NSES well. We held a meeting for publishers at the National Academy to introduce and review the standards and help publishers interpret the various features for their textbooks and programs. The reception of the NSES by the representatives of major publishing houses was cold and largely dismissive. When I asked several individuals about their responses, I was told they were very upset because they had an excellent gauge of the current market for school science programs. Their “gauge” was well calibrated because they had influenced the market using a variety of strategies. The NSES, however, would cause the school district priorities to change, and publishers would need to change marketing strategies and publish new programs. Depending on whether you have economic or educational priorities, the publishers’ views were seen as good or bad. Of course, I had a positive view of changes based on the NSES. I still do.

Interpretations of the NSES have varied. Initially, individuals had to make sense of the NSES in terms of background, potential use, and priorities. For example, some interpreted national standards in terms of the *Benchmarks for Science Literacy* (AAAS 1993), which had been released earlier. Other interpretations included equating standards on scientific inquiry with the traditional processes of science, equating the NSES with a curriculum framework, and confusing the statements of the NSES with other aspects of the narrative. Although the NSES included discussions of their use and function, it seemed that many individuals did not read the discussions. For example, the NSES state:

*The content standards are not a science curriculum. Curriculum is the way content is delivered: It includes the structure, organization, balance, and presentation of the content in the classroom.*
The content standards are not science lessons, classes, courses of study, or school science programs. The components of the science content described can be organized with a variety of emphases and perspectives into many different curricula. The organizational schemes of the content standards are not intended to be used as curricula; instead, the scope, sequence, and coordination of concepts, processes, and topics are left to those who design and implement curricula in science programs. (NRC 1996, pp. 22–23)

Still, the NSES were interpreted as a curriculum framework. Even now, a decade later, one hears that the NSES, for example, recommend an integrated approach to science curriculum or a particular scope and sequence for curricula. I will state again that the NSES do not represent a science curriculum. They present science content and abilities that all students should learn or develop, respectively. How curriculum developers, states, and local school districts organize the content can and should vary.

What Actions Have Been Taken in Response to the NSES?
The first point is that numerous and varied actions have been taken. States have used NSES as a basis for science standards, so the influences and actions are wide, but the variations in state standards are significant. The State of State Science Standards, a report from the Thomas B. Fordham Institute (Finn and Gross 2005), bears witness to the variation. I suspect the variation is even greater among the standards developed at the district level. Requests for proposals (RFPs) from federal agencies such as the National Science Foundation (NSF), the National Institutes of Health (NIH), and the National Aeronautics and Space Administration (NASA) have required alignment of proposed projects with the NSES. A review of journal citations reveals recognition of the NSES in articles that range from policy to practice.

BSCS, for example, paid very close attention to the NSES when designing new NSF-supported programs, such as BSCS Biology: A Human Approach and BSCS Science: An Inquiry Approach, and the revision of the elementary program TRACKS. Content from the NSES has been central to our professional development programs and research. Other developers—such as Lawrence Hall of Science (LHS), Education Development Center (EDC), and Technical Education Research Center (TERC)—used the NSES in the development of new programs.

A close review of national and international assessment frameworks for NAEP (2009), PISA (2006), and TIMSS (2003) also reveals the influence of the NSES. The actions have been national and even international and have bridged policies to practices.

ISSUES, INSIGHTS, AND IDEAS CONCERNING THE STANDARDS
During more than a decade of involvement with the NSES, I have read, heard, and seen many things, some of which are worthy of comment. Following are some of those issues.
Why Do We Have Both NSES and Benchmarks?

From the beginning of the work on NSES, we heard this question and associated questions, such as, “What are the differences between NSES and Benchmarks?” and “Which document should be used?” To the lead question, I have to answer that it is probably a function of timing and politics. Certainly, *Science for All Americans* (AAAS 1989) set the stage for national standards. The publication of *Benchmarks for Science Literacy* (AAAS 1993) presented the major ideas from *Science for All Americans* as practical outcomes for the science education community. From the beginning of my work on the NSES, I paid very close attention to the Benchmarks. Although many had questions and complained about the two documents, for some time I thought that this situation had the positive benefit of facilitating review, thought, and discussion about the fundamentals of science education and the importance, role, and function of pivotal documents such as *Science for All Americans*, the Benchmarks, and the NSES. I still believe this.

The NSES and Benchmarks are comparable sets of policies. In 1995, Project 2061 completed an analysis of the two documents and concluded there was a “consensus on content.” There is an estimated 90% agreement on content associated with the traditional disciplines of life, Earth, and physical sciences. The congruence should not surprise anyone (Rutherford 1996). Indeed, we acknowledged the Benchmarks in the introduction to the NSES (NRC 1996, p. 15). When asked which document I recommend, my response has been “either”: Pick either the NSES or Benchmarks and use it consistently. Consistency is the operational term here. I, for obvious reasons, prefer the NSES but have supported use of the Benchmarks (Bybee 1997).

There Is a Persistent Confusion of Policy, Program, and Practice

The NSES is a policy document. It is not a school science program or instructional materials. It is not a document to be used in actual classroom practice or science teaching. Confusion about the purpose and function of the NSES centers on a fundamental lack of understanding and misconceptions about standards in general. Primary audiences for the NSES included state coordinators, curriculum developers, preservice and in-service teacher educators, and those responsible for assessments and accountability. These individuals, by nature of their jobs, have the responsibility of translating the policies of NSES to programs of curriculum, instruction, assessment, and teacher education and facilitating the effective implementation of those programs in classrooms. One challenge associated with the translation of policies to programs and eventually to classroom practices is understanding the time involved in developing and implementing new instructional materials and assessments (i.e., programs) and then providing professional development that results in changes in classroom teaching practices. One has to ask how long it takes to develop and implement standards-based curricula, instructional strategies, teacher professional development, and assessments. Furthermore, one might wonder how soon after those changes have been implemented we can reasonably expect changes in teacher practices and student achievement. Based on my experience at BSCS with curriculum development, my answer to questions such as these is that one can expect achievement changes
between three and six years after funding for new curriculum programs and between seven and ten years after new instructional practices have been adopted (Bybee 1997). A 2002 headline in *Education Week*—“Science Standards Have Yet to Seep Into Class”—should not have surprised anyone. Yet, the media characterized the situation as a failure of the *NSES*. This is the kind of report to which I have become quite sensitive. The *NSES* should not be deemed a failure to change instructional practice because they must be translated into materials, assessments, and professional development. These processes take time and money. Indeed, the report on which this article was based did have a more positive, albeit preliminary, evaluation. This *Education Week* article was based on the release of an NRC report (2003) called *What Is the Influence of the National Science Education Standards?* This report commissioned authors to review more than 200 studies related to the *NSES*. The authors reported on the following areas: curriculum, teacher professional development, assessment and accountability, and student learning. Although most authors reported that research was inconclusive, it did tend to support the positive influence of the *NSES*. Given the short time between release of the *Standards* and the report, I would consider the results somewhere between very good and excellent.

**Shouldn’t the NSES Include Contemporary Issues and Specific Courses?**

Personally, my position on contemporary issues, particularly those related to the environment, is that science education programs should address such issues. But standards are not and should not reflect personal biases that conflict with federal policy, such as the Constitution’s Tenth Amendment (that is, states’ rights). Through all of our work on the *NSES*, we had to avoid anything that would suggest, or even hint at, a national curriculum or set of policies that would reduce the states’ rights to select content. Why, for example, did we not provide grade-level-specific standards instead of standards for the grade-level ranges of K–4, 5–8, and 9–12? Why didn’t we indicate that Earth and space science should be a ninth-grade course, thus assuring a place in school programs? Why didn’t we include specific problems such as global warming or other contemporary issues? The answer centers on the potential for any of these to reduce the potential influence of the *NSES* due to the politically controversial nature of these positions. The potential controversy has two components: the issue of an organization such as the National Academies suggesting a national curriculum and the social-political acceptance of topics such as global warming and stem-cell research, among others. We did respond appropriately to some issues by including standards for science in personal and social perspectives. We included concepts in the *NSES* that lend themselves to understanding environmental issues, the nature of science, and the relationships among science, technology, and society. However, these standards have, for the most part, been ignored. In these standards, for example, we introduced fundamental conceptual understandings of population growth, natural resources, and environmental quality. Educationally, these can be defended on the basis that they are fundamental to many contemporary environmental issues; they present the conceptual basis for understanding topics such as climate change. Students should understand scientific concepts fundamental to an array of science-related issues they may confront now and in the future.
Scientific Inquiry Includes Both Content and Teaching Strategies.
A decade later, confusion continues about what is meant by scientific inquiry. For some, scientific inquiry is the same as skills, and for others, scientific inquiry is associated with a variety of teaching strategies. In efforts to criticize the theme of scientific inquiry as expressed in the NSES, Chester E. Finn Jr., recently stated, “Science education in America is under assault with ‘discovery learning’ attacking on one flank and the Discovery Institute on the other. That’s the core finding of the first comprehensive review of state science standards since 2000” (Finn and Gross 2005). This statement is in a report from the Thomas B. Fordham Institute, a conservative Washington, DC, think tank. Finn later stated that “‘discovery learning’ is getting more weight than it can support in science. This is largely due to states’ over-eager, over-simplified, and misguided application of some pedagogical advice enshrined in the so-called ‘national standards’” (p. 10). To show what it is like to take a reasonable idea and reduce it to the ridiculous, I cite the final conclusion of Finn’s discussion. He stated, “American students run a grave risk of being expected to replicate for themselves the work of Newton, Einstein, Watson, and Crick. That’s both absurd and dysfunctional” (p. 10). Inflated rhetoric such as this from one person may appeal to colleagues with similar views, but it does not diminish the potential of national standards, either the Benchmarks or NSES, especially since it is politically motivated, is not grounded in an accurate view of the presentation of science as inquiry in the content standards, and fails to recognize that the majority of instructional materials and teaching strategies currently in schools can only be characterized as old-fashioned traditional instruction for which we have evidence of their lack of effectiveness. The evidence for my statements can be found in reports on the status of science education including curriculum, textbooks, and teaching strategies by Horizon Research, Inc., on the one hand, and the results from NAEP, TIMSS, and PISA on the other hand. I do not think America is under assault with discovery learning attacking on one flank; there is little or no evidence for this. It well may be under attack by the Discovery Institute. There is ample evidence for this!

The NSES Can Resolve the Paradox of International Comparisons and States’ Rights.
For some time, I have been intrigued by the paradox of our education system and the role of national standards. International assessments such as TIMSS and PISA present a situation where we view results as one nation. We ask, “How does the United States compare to other countries?” Yet, we maintain the right of each state to set its own standards and assessments. To magnify the situation, each of 14,000 school districts makes decisions on what science to teach, when to teach it, and how to teach it. This is a situation designed for incoherence. What is the role of national standards in the paradox of results for one nation versus 15,000 school districts? The NSES can facilitate increased coherence by establishing agreement on fundamental concepts that all students should learn while maintaining the freedom of states and school districts to select instructional materials, implement
assessments, and provide professional development. It is not a perfect system, but one that may resolve the paradox.

I concluded the 2006 editorial on national standards with an answer to these questions: “Should the standards be revised? If so, how?” My answer was yes, and I described changes that should be made to the 1996 standards.

Note: In late 2005, Dr. Norman Lederman, then editor of School Science and Mathematics, asked me to prepare a guest editorial in which I reviewed my experiences developing and implementing the National Science Education Standards (1996) and reflected on the importance of standards for science education. That editorial was published in February 2006, a decade after the standards were released. The editorial is included here with minor editorial changes to describe my reflections after two decades and experience working on A Framework for K–12 Science Education (NRC 2012) and the Next Generation Science Standards (NGSS Lead States 2013).

CONCLUDING REFLECTIONS ON THE 1996 AND 2013 NATIONAL STANDARDS

For almost two decades, the 1996 standards had a positive influence on fundamental components of the science education system. The same can be said for the 2013 standards, even after the brief period since their release. Yes, both standards have caused debates, agitated critics, and resulted in political issues for states and districts. That said, both sets of national standards have maintained the integrity of science, the aims of science education, and the highest aspirations of the United States. Given the complexity of our education system, one could hardly ask for, or expect, more from national standards for science education.

REFERENCES


CHAPTER 7


CHAPTER 8

NEXT GENERATION SCIENCE STANDARDS

CONTEMPORARY PERSPECTIVE

This chapter introduces contemporary standards that are having an effect on science education at the national, state, and local levels.

The Foundation for the NGSS

The Next Generation Science Standards (NGSS; NGSS Lead States 2013) began with the development of A Framework for K–12 Science Education (NRC 2012). However, we must go back even further. In 2009, the Carnegie Corporation of New York and the Institute for Advanced Study established a commission that released a report, The Opportunity Equation, that recommended development of a common set of standards for science education (Carnegie Corporation 2009). The following introduction is adapted from the Framework.

The Framework is based on a body of research on teaching and learning in science, as well as on nearly two decades of efforts to define foundational knowledge and skills for K–12 science and engineering education. From this work, the Framework committee concluded that K–12 science and engineering education should focus on a limited number of disciplinary core ideas and crosscutting concepts, be designed so that students continually build on and revise their knowledge and abilities over multiple years, and support the integration of their knowledge and abilities with the practices needed to engage in scientific inquiry and engineering design (NRC 2012).

The committee recommends that science education in grades K–12 be built around three major dimensions (see Figure 8.1, p. 107):

- Scientific and engineering practices
- Crosscutting concepts that unify the study of science and engineering through their common application across fields
CHAPTER 8

- Core ideas in four disciplinary areas: physical sciences; life sciences; Earth and space sciences; and engineering, technology, and the applications of science

All three dimensions must be integrated into standards, curriculum, instruction, and assessment. Engineering and technology are featured alongside the natural sciences (physical sciences, life sciences, and Earth and space sciences) for two critical reasons: to reflect the importance of understanding the human-built world and to recognize the value of better integrating the teaching and learning of science, engineering, and technology.

The broad set of content in the Framework guided development of new standards that, in turn, will guide reforms of curriculum, instruction, assessment, and professional development for educators. A coherent and consistent approach throughout grades K–12 is key to realizing the vision for science and engineering education embodied in the Framework—that students, over multiple years of school, actively engage in science and engineering practices and apply crosscutting concepts to deepen their understanding of each field’s disciplinary core ideas.

Before publication, a draft of the Framework was sent out for review. The Council of State Science Supervisors (CSSS) played an important role in this review by organizing focus groups and providing feedback to the National Research Council (NRC).

The Framework represented the first step in a process that informed state-level decisions and provided a research-grounded basis for improving science teaching and learning across the country. The Framework guided standards developers, curriculum designers, assessment developers, state and district science administrators, professionals responsible for science teacher education, and science educators working in informal settings.

The NRC Framework provides guidance for the development of standards. The following list summarizes key points from the NRC recommendations. Standards for K–12 science education should

- set rigorous goals for all students;
- be scientifically accurate;
- be limited in number;
- emphasize all three dimensions;
- include performance expectations that integrate all three dimensions;
- be informed by research on learning and teaching;
- meet the diverse needs of students and states;
- have a coherent progression across grades and within grades;
- be explicit about resources, time, and teacher expertise;
- align with the Common Core State Standards; and
- account for diversity and equity (NRC 2012, pp. 297–307).
Figure 8.1. The Three Dimensions of the Framework

1. **Scientific and Engineering Practices**
   1. Asking questions (for science) and defining problems (for engineering)
   2. Developing and using models
   3. Planning and carrying out investigations
   4. Analyzing and interpreting data
   5. Using mathematics and computational thinking
   6. Constructing explanations (for science) and designing solutions (for engineering)
   7. Engaging in argument from evidence
   8. Obtaining, evaluating, and communicating information

2. **Crosscutting Concepts**
   1. Patterns
   2. Cause and effect: Mechanism and explanation
   3. Scale, proportion, and quantity
   4. Systems and system models
   5. Energy and matter: Flows, cycles, and conservation
   6. Structure and function
   7. Stability and change

3. **Disciplinary Core Ideas**

   **Physical Sciences**
   - PS1: Matter and its interactions
   - PS2: Motion and stability: Forces and interactions
   - PS3: Energy
   - PS4: Waves and their applications in technologies for information transfer

   **Life Sciences**
   - LS1: From molecules to organisms: Structures and processes
   - LS2: Ecosystems: Interactions, energy, and dynamics
   - LS3: Heredity: Inheritance and variation of traits
   - LS4: Biological evolution: Unity and diversity

   **Earth and Space Sciences**
   - ESS1: Earth’s place in the universe
   - ESS2: Earth’s systems
   - ESS3: Earth and human activity

   **Engineering, Technology, and Applications of Science**
   - ETS1: Engineering design
   - ETS2: Links among engineering, technology, science, and society
**Development of the NGSS**

Development of the NGSS began after the NRC released *A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas* (2012). The report identified the key content and practices all students should learn by the time they graduate from high school. The Framework served as a vision for K–12 science education and the foundation for new science education standards. The prior national standards were released in the mid-1990s and influenced science education for nearly two decades.

As the Framework’s subtitle suggests, science and engineering practices, crosscutting concepts, and core ideas from the physical, life, and Earth and space sciences were defined. Figure 8.1 summarizes the three content dimensions from the Framework. These dimensions became the basis for the NGSS.

This figure presents the content of the NGSS. The core ideas for science disciplines are similar to prior standards (see, for example, the *National Science Educations Standards* [NRC 1996]) that have influenced most state standards. The crosscutting concepts are updated statements of several unifying themes from prior standards, and the science and engineering practices also are elaborated statements of prior science practices and scientific inquiry.

The NGSS were developed using the following foundational ideas. The science standards

- present standards as performance expectations;
- describe policies for school programs and classroom practices, not a curriculum;
- clarify equity and excellence;
- integrate engineering with science; and
- define college and career readiness.

The genesis and support for both the Framework and NGSS came from the Carnegie Corporation of New York and was based on the report *The Opportunity Equation: Transforming Mathematics and Science Education for Citizenship and the Global Economy* (Carnegie Corporation 2009). It is important to note that development of neither the Framework nor the NGSS received financial support from the federal government.

Achieve, Inc., an independent, bipartisan, nonprofit education organization, managed the development of the NGSS. Leadership for the NGSS initiative came from 26 states. The NGSS were released in April 2013 after several years of development and thorough review by the scientific and education communities, as well as by key stakeholders and the public (see NGSS Lead States 2013, Volume 2, Appendix B).

**Innovations in NGSS**

Although there are similarities between the NGSS and the prior standards, such as the *National Science Education Standards* (*NSES*; NRC 1996), there also are significant differences. Those differences present innovations that must be accommodated by corresponding changes in instructional materials, assessments, and teachers’ knowledge and skills.
The following innovations established in the NGSS are hallmarks of current thinking on how students learn science and set a vision for science education. These innovations will not only cause a shift in state standards but also must influence and refocus state assessments, the development of comprehensive school science programs, and the preparation and professional development of K–12 teachers.

**Innovation 1: The NGSS reflect three dimensions of science and their interconnectedness.** In the NGSS, science is presented as three distinct dimensions, each of which describes equally important learning outcomes: science and engineering practices, crosscutting concepts, and disciplinary core ideas. The NGSS provide for connections among all three dimensions. Students gain an understanding of what is known about the natural world and how that body of scientific knowledge came to be known. Students develop the skills and abilities expressed by the practices and how they are applied to gain a better understanding of the phenomena of the natural and designed worlds.

**Innovation 2: The NGSS incorporate engineering and the nature of science as practices or crosscutting concepts.** The NGSS includes engineering design and the nature of science as significant innovations. The unique aspects of engineering (e.g., identification of and designing solutions for problems), as well as aspects essential to science (e.g., designing investigations and developing evidence-based explanations), are incorporated within practices and crosscutting concepts. In addition, unique aspects of the nature of science (e.g., scientific investigations use a variety of methods; scientific knowledge is based on empirical evidence; science is a way of knowing; and science is a human endeavor) also are included as practices and crosscutting concepts.

**Innovation 3: The NGSS describe performance expectations in which students study natural phenomena.** The NGSS provides clear expectations for students studying natural phenomena as the basis of what they should learn (i.e., what they should know and be able to do) at the end of a grade or grade band. Past standards provided the isolated content and inquiry abilities but did not provide for the full integration of the science practices with the content.

**Innovation 4: The NGSS present coherent learning progressions for K–12 science instruction that are structured into science and engineering concepts and practices.** The NGSS provide for sustained opportunities from elementary through high school for students to engage in and develop a deeper understanding of the three dimensions of science. Students require a coherent learning progression or story line to fully understand the content of science. These coherent learning progressions must be built both within the grade level and across grade levels. Through the building of the cohesive story line, students have multiple opportunities to revisit and expand their understanding of the science and engineering practices, disciplinary core ideas, and crosscutting concepts by twelfth grade.

**Innovation 5: The NGSS make connections to Common Core State Standards for English language arts and mathematics.** The NGSS not only provide for coherence in science teaching and learning but also unite science with the basics—Common Core State Standards for English language arts and mathematics. The skills of Common Core subjects, both linguistic and mathematical, are applied and enhanced in the science classroom and ensure coordinated learning in all content areas.
This meaningful and substantive overlapping of skills and knowledge affords all students equitable access to the learning standards.

Table 8.1 summarizes the five innovations in a “from/to” form and locates a component of the education system where the innovations will be implemented.

**SCIENCE EDUCATION GOALS FOR THE 21ST CENTURY: THE NEXT GENERATION SCIENCE STANDARDS**

The NGSS define the essential science concepts and practices for contemporary reform of science education. This is especially true for those states that have adopted the NGSS and is also relevant for states and school districts that may not have adopted the NGSS but use standards based on A Framework for K–12 Science Education. We think it is reasonable to review the goals for science education discussed in Chapter 6 (see Bybee and DeBoer 1993) and assess the degree to which the NGSS as policies accommodate the five goals. We are clear that neither the Framework nor the NGSS are the curriculum materials. They do, however, indicate priorities and emphasis for the goals and, by extension, for school science programs.

**Scientific Knowledge**

In the NGSS, scientific knowledge has a primary emphasis in disciplinary core ideas (DCIs) and crosscutting concepts (CCCs). While nature of science and engineering design are included, they do not have an equivalent level of emphasis.

**Scientific Methods**

Science and engineering practices (SEPs) represent the goal of learning scientific methods in NGSS. The eight practices contribute a thorough list of abilities and knowledge necessary to achieve this goal. The detail and emphasis for “signature” practices (e.g., developing and using models, constructing explanations, engaging in argument from evidence) are significant dimensions with added value for the scientific method’s goal in the NGSS. Additionally, the fact that the practices are integral to the statements of standards—the performance expectations—increases the probability that these strategies will be included as teaching strategies and learning outcomes in school programs.

**Social Issues**

One fundamental purpose of science education is to provide students with knowledge about and the abilities to act on various issues they may confront as individuals and citizens. The NGSS recognize this goal through the general emphasis on disciplinary core ideas, crosscutting concepts, and science and engineering practices. Compared to the National Science Education Standards (NSES), the 1996 standards, there is reduced emphasis on science in personal and social perspectives in the NGSS. In
the NGSS, the Earth science standards present content emphasizing societal issues such as climate change.

**Personal Development**

Similar to what we just noted in the prior statement, the Framework and NGSS have the general aim of addressing the personal development of students; however, this is not a goal with particular emphasis.

**Career Awareness**

The NGSS were reviewed for the effect on college and career readiness and certainly passed muster. The various practices, connections to Common Core literacy and math goals, and primary emphasis on scientific knowledge and application of that knowledge all address this goal of science education.

The NGSS present a reasonable and fair emphasis on the five goals of science education, with societal issues and personal development as exceptions. The content standards form a thorough set of outcomes representing physical, life, and Earth and space sciences. The practices are an excellent contemporary statement for the historical goal of scientific methods.

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Reform of System Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single concepts in science disciplines</td>
<td>Integration of three dimensions (science and engineering practices, disciplinary core ideas, crosscutting concepts)</td>
<td>Instructional approach</td>
</tr>
<tr>
<td>Engineering/nature of science as supplemental</td>
<td>Engineering and nature of science incorporated as practices or crosscutting concepts</td>
<td>Lessons, units, and programs</td>
</tr>
<tr>
<td>Standards as description of content</td>
<td>Standards as performance expectations and basis for studying natural phenomena and design problems</td>
<td>Context for student experiences and basis for assessments</td>
</tr>
<tr>
<td>Grade level or course emphasis</td>
<td>K-12 learning progressions</td>
<td>School science program—the curriculum</td>
</tr>
<tr>
<td>Few connections to other disciplines</td>
<td>Explicit connections to Common Core State Standards for ELA and math</td>
<td>Within the sequence of lessons</td>
</tr>
</tbody>
</table>
Similarly to Rodger, I am including an edited version of an article I have done for the National Science Teachers Association (NSTA) journals, which was published in June 2015.

The Next Generation Science Standards (NGSS; NGSS Lead States 2013) were released several years ago. Work tied to the NGSS, their adoption, and their implementation continues to move forward around the country. I am most frequently asked about the pace of adoption by states, the implementation of the standards, and how the NGSS will be assessed. In this personal perspective, I discuss where we are at the time of this publication and what I have learned during the process so far. As we implement the NGSS, it is important to remember that education is a journey, not a destination.

WHERE ARE WE NOW?

As of September 2016, 17 states and the District of Columbia—encompassing approximately 40% of the nation’s public school population—have adopted the NGSS. Other states and districts continue to consider adoption. Additionally, a growing number of districts in non-adopting states are embracing the NGSS as the best way to move scientific literacy forward. Many of these are large districts that see the need to significantly change how they approach science education, regardless of the state-level politics. As a result, the NGSS are significantly influencing science education throughout the country. The excitement around the NGSS that I see at the NSTA national conferences is palpable.

From the beginning, adoption needed to proceed at a pace befitting each state, occurring if and when it made sense. Each adopting state, even those that were not lead states due to their undertaking of long review and public comment periods, can lay claim to owning the NGSS. As such, they can and should choose their own timing. A host of issues face states beyond adopting and implementing new science standards. These issues include developing timelines for adopting instructional materials, revising science standards statutes, and building the will within a state’s education community to make the changes called for in A Framework for K–12 Science Education (NRC 2012) and the NGSS.
Any teacher will tell you that adopting and implementing the NGSS cannot be done without a way to assess the outcomes. Given the political climate around assessments, the conversation can be harrowing. As a key first step, the NGSS adopter states are committed to building classroom capacity. The focus has been, and must continue to be, on classrooms first rather than on building a test. The more we focus on educators and how to make the NGSS real in classrooms before developing an assessment, the better. Assessments that support classroom practice will come as we learn more from classroom experience. The NGSS and the Framework were developed to identify a more effective way to engage students in science. To do this, instruction must change, the planning of instruction must change, and the expectations of what happens in science classrooms must change. The type of change called for in the NGSS will not happen just because there is a new test. In fact, the change is significant enough that we should learn from the classroom first before a statewide, large-scale assessment is developed and administered.

It’s time to move from valuing what we measure to measuring what we value. In Kentucky, for instance, the state department of education hired a “thought partner” before awarding assessment contracts to ensure that any new assessment fully evaluates the NGSS. California is using a similar structure with two different groups as they consider new science assessments. So, I am encouraged with the direction and pace of implementation. A thoughtful and deliberate approach has always made the most sense. It is tough to have the courage to be patient, but it is a necessity—not for the adults, but for the students.

WHAT HAVE WE LEARNED?

We have learned much in the first two years of the NGSS. Implementation, as expected, is far more complicated than was development of the standards themselves. The way the NGSS outline how students show proficiency makes sense, so teachers are embracing it. That does not mean everyone is an expert, at least not on the NGSS and not right away. Research from various places, including The Cambridge Handbook of Expertise and Expert Performance (Ericsson et al. 2006), shows that it takes many hours of practice before expert thinking is acquired. As such, teachers will need hours of thinking about NGSS and instructional strategies to become experts. Teachers are among the brightest and most innovative individuals on the planet, in my opinion, which does not equate to them being perfect at instruction right off the bat. As research about expert thinking points out, the move from novice to expert will require practicing all the elements of the NGSS with reflection and feedback and practicing quality science instruction through this new lens that allows them to develop a conceptual model of their own instruction. Finally, just like the NGSS require students to operate at the nexus of the three dimensions, Ericsson’s research found that experts recognize knowledge is only meaningful if it is integrated with practice. That is to say, teachers could quote the three dimensions, use the language, and even quote the performance expectations from the NGSS, but all of that is irrelevant if they never put it into practice. The reaction to the NGSS has been incredible, but that alone does not translate into an automatic change in our science education system. It does mean, however, that
change is in the air, and we must learn more to do better for our students. At the 2015 NSTA national conference, I shared the top ten lessons I learned in 2014 as I worked with teachers, administrators, and stakeholders on the NGSS. I share these because it is important to note that we all continue to learn and should do so. Here are the ten lessons, in no particular order.

**Three-dimensional learning is hard. We do not help teachers or students by pretending it's not.**

If anyone claims to know everything about the three-dimensional learning embodied in the NGSS, be skeptical. This is hard. But, like other professions that deal with hard changes, we will surmount these challenges, too. Learning how to create a three-dimensional culture in our classrooms takes time and effort. Why is this so difficult? First, I believe it is hard because the three dimensions in and of themselves are not new. The scientific and engineering practices involve a more expansive view of scientific processes but have similarities to inquiry. The disciplinary core ideas are similar to content standards. There are fewer but, with the possible exception of waves and their applications being an actual core idea and not a subsection, they are not new. The crosscutting concepts are similar to unifying themes from the 1990s standards documents. As such, some educators rationalize that they already incorporate these components. A good friend and excellent science leader, Sean Elkins, identified what I refer to as the Elkins Principle. He says, “There is an inversely proportional relationship between the number of times a person says, ‘I already do that’ and the number of times they actually do.” Creating a culture of three-dimensional learning is hard because we were not taught to use the practices to gain deeper understanding of core ideas and apply to new or unique phenomena by understanding the crosscutting concepts. I think an error we made early was talking about the three dimensions, not focusing on three-dimensional learning itself. For the NGSS to be successful and for us to make a difference in students’ lives, we have to give teachers room to get comfortable with three-dimensional learning. For this to happen, one must acknowledge this process is hard and realize that that is okay. No other profession backs down from a hard procedure if it is good for their patients, clients, or products, and neither should educators.

**Eliminating the black box is tough.**

A black box is created when current science learning is predicated on future science learning. This means that when you say to your students, “You will not understand this until next year,” you create a mystery rather than understanding. The NGSS provide an opportunity to look at science instruction coherently by connecting the different disciplines to better understand a phenomenon, removing the black box. Understanding the role of photosynthesis in the cycling of matter, for example, means you must understand a little about physical sciences in terms of matter and Earth science in terms of distribution of matter. I believe this to be one of the biggest issues facing science education. It has forced us, due to our siloing of concepts, to push memorization on students. This leaves students with a disconnected view of science and the world around them. In particular, it leaves students with a “Why does this matter to me?” attitude. To be clear, I am not pushing for integrated science across K–12; I am simply saying we must take full advantage of what the disciplinary core ideas afford us. If we do this, we no longer have to discuss “high-energy phosphorus bonds” in adenosine triphosphate (ATP) because students would understand that bond is the first to break and release its energy due to its position in relation to the larger...
molecules, the forces holding the bond, and the stability of energy. This is a more difficult concept to grasp, but it is a far better learning experience than memorizing that one phosphorus bond has more energy than the others.

**Rather than teaching topics, educators should help students understand phenomena.** Teaching science is about helping students understand the world around them, both natural and designed. Teaching topics such as gas laws, volcanoes, and photosynthesis without connecting them to core ideas that help students explain the world provides no reason for students to learn or retain that information. Gas laws describe part of the structure and properties of matter. The deeper understandings of gas laws are found in the NGSS, but they are couched in explaining the bigger picture of the structure of matter. The understanding needed for gas laws is spread throughout the years and across three core ideas in high school physical science. Understanding forces, energy, distribution of energy, and interactions of particles are far more powerful in explaining the world than simply calculating Charles’ law.

**Simply reading the NGSS does not lead to NGSS expertise.** We have a history in the United States that when new standards are developed, we construct professional development designed to “teach” the new standards to teachers. This simply does not work. In our work with the Educators Evaluating the Quality of Instructional Products (EQuIP) rubric, we have seen that professional development that dwells only on the NGSS does not help educators see the innovations required in the NGSS. A key feature of quality NGSS professional development is putting teachers into a position to really see how the NGSS are different from their existing standards and practices. So, having educators engage in EQuIP, curriculum design, task design, or even an intense discussion about standards that preceded the NGSS stimulates greater understanding. Since the NGSS are developed based on learning progressions, professional development should also push educators to think outside their grade band and discipline when considering the NGSS. This involves looking not only at the core ideas but also at the practices and crosscutting concepts.

**If you can eat it, it’s probably not a model.** Understanding the science and engineering practices takes time. There are “models” in elementary classrooms across the country; I imagine about 80% are edible. Models that students will construct and use for the NGSS classroom are quite different. Students will need to use models to explain, use evidence, or predict phenomena. Most “edible” models do not allow for that experience. There are a few components of the scientific and engineering practices that need to be understood before students can use them effectively. First, one must understand the practices are what students do; they are not teaching strategies. Students should be able, for example, to identify the components of a model, articulate the relationship of those components, and explain or predict future phenomena based on the model. The same can be said of all the practices. (For more information, see the appendix of the evidence statement at www.nextgenscience.org/ngss-high-school-evidence-statements.)

**Crosscutting concepts are still the third dimension.** The NGSS have three dimensions: scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. The crosscutting concepts dimension is still the most difficult one to implement but also is incredibly powerful. This
dimension helps students connect what they learn to the world around them in a meaningful way. The crosscutting concepts are implicit to many of us who have studied the sciences. What we know is that if the concepts are implicit in our instruction, they will be hidden from students. This dimension is challenging, but clear instruction about how crosscutting concepts fit with the other dimensions will change science education.

**Phenomena are underplayed and underappreciated.** The Framework and the NGSS are very focused on phenomena. We need to bring the wonder back to science classrooms, which can be done through studies of phenomena. We have found that this is tough to do because of our conditioning, but doing so is essential to making science real to students. Phenomena are observable actions or events that naturally happen in a student’s life. Phenomena can look different for different ages of students, but teaching phenomena is a key feature if we are to help students pursue, or even be interested in, the world in which they live. Common phenomena can be condensation on the side of a pitcher of ice water, flags waving in the wind, rainbows, weather, or even someone having “brain freeze” after eating ice cream too quickly. Engaging students in instruction about phenomena gives them a reason to learn the content, perpetuates curiosity, and helps them retain that knowledge for years to come.

**Bundling is not easy.** Bundling performance expectations in the study of phenomena is critical to painting a coherent science picture for students. The idea of bundling is not as easy as it sounds. Bundling involves assembling a set of performance expectations that represent the understanding students need to address an essential question or explain a phenomena. There is no single correct way to bundle; rather, it must make sense to the teacher. So, pick a phenomenon and look at all of the standards to find a way to better explain the world. Discuss your thoughts with colleagues. Bundling will only get easier with discussion and practice. Many teachers start with the disciplinary core ideas as the driving force behind bundling, and this is an acceptable way to go about the process. One could also use crosscutting concepts as the driving force. The key is to remember that performance expectations should be understood deeply so teachers will recognize how they can be arranged and bundled to leverage the concept most needed to explain or answer questions.

**Communicate, communicate, communicate, and then communicate some more.** The NGSS represent a lot of what we want science classrooms to be, but they also depart from how most of our parents were taught. We must make every attempt to be clear about purposes, development processes, and how the NGSS will better prepare our students for the world. Teachers are a significant voice in a community; as such, they must be given time to understand the vision of the NGSS.

**Leadership makes the difference.** Educators, and specifically teachers, make the difference in classrooms. It is time we realize that our profession also makes a difference in society. Teachers are leading the way to our future. What we see in states and districts that are effectively implementing the NGSS is that teachers and administrators are assuming greater leadership roles. Yes, there is more to learn, and, yes, it is not easy, but the early implementers have shown us that quality leaders make the difference.
As was mentioned earlier, achieving expertise (thinking like an expert) takes many hours. Teachers should, as engineers do, give ourselves time to learn and room to grow. We will not get it right the first time, and that is okay. We will get better at NGSS instruction, but we must first acknowledge that it will take time and we will have varying degrees of initial success. The NGSS represent a great opportunity for students and science education. To me, they also represent a great opportunity for teachers to teach science the way we know we should and to be real leaders as we prepare our students for the future.

As one final thought for this essay, I want to speak to the standards as a sitting commissioner of education. Implementation is hard. In fact, I have come to say often that no great education initiative ever died in the vision phase; it dies in implementation. We have much work ahead of us. I have seen it at the national and state levels. Every time we think we have NGSS down, it moves away again, showing us bigger and better things we can do in our science classes. I am reminded of an Advanced Placement chemistry student who once told me that my class was like trying to catch a lizard: Every time you think you have it, you realize you just grabbed the tail and it broke off in your hand while the lizard escaped. Working with the NGSS can feel that way. I know in my state we continue to work to try to “catch it,” but it keeps us moving. I know this—education is an ever-changing organism that will not stop being that way. As teachers and, more important, as leaders, we cannot let what is hard get in the way of what is right. I have many things on my plate as a commissioner, but first and foremost I must ensure our students get a first-rate education. I also need to remember, however, that it takes time, effort, and support of all of the people who touch science education. So, implementation is tough; leaders have to be tougher.

**OUR COMMON PERSPECTIVE AND LEADERSHIP OPPORTUNITIES**

Not surprisingly, our perspective centers on the NGSS. As states and districts adopt or adapt the Framework for NGSS, the need for leadership is clear. Our perspective is based not only on experience with the development and implementation of national standards but also, it is important to note, on their use as the basis for state standards and translation to curricula, instruction, assessments, and professional development.

**Adopting, or even adapting, national standards for states and school districts will involve politics.** Our experiences have borne witness to the reality of politics as an integral part of the process of adopting standards for science education. The leadership opportunities must include informing the decision makers about the new standards and addressing any potential problems. Those in leadership positions must be ready because, in time, the politics will emerge.

**Implementing new standards requires change.** By their very nature, new standards do not represent the status quo. So, the majority of teachers, for example, are not already implementing the innovations. Leaders should be prepared with examples of what the standards look like for curriculum, instruction, and assessments.
CHAPTER 8

Reform based on new standards is complex and takes time. Leaders are encouraged to provide time, make plans, and proceed slowly. Extended professional development for teachers is required. This requirement is not a “one and done” workshop.

Pay attention to the concerns of teachers. The ultimate step in implementing new standards involves teachers changing their curriculum, instruction, and assessments. They reasonably will express concerns about the process and will require concrete responses to their concerns. This is both a challenge and an opportunity for leaders.

ISSUES AND QUESTIONS FOR DISCUSSION

1. What do you perceive as the appropriate statements for, and functions of, national standards in the contemporary reform of science education?

2. What does implementation of standards mean in various settings (state frameworks, teacher education, curriculum, classrooms)? What do you think is “acceptable”—wholesale but superficial consistency? Deep consistency with a few ideas? People mention the concept of “fidelity” to standards. What does this mean?

3. Is there a paradox in that standards documents are umbrella-like, general, and non-prescriptive, yet we need to be able to measure and describe levels of implementation as these levels relate to teaching and student achievement?

4. People generally seem to acknowledge that there are many ways of implementing or interpreting standards and “successful implementation” can look quite different in different places. How would you identify successful implementation of national standards for science education?

5. We propose that you explore the idea of models for standards-based reform—model programs, model practices, and model instructional units. In the context of standards-based reform, what are models for? Helping people envision “reformed” practice in some way? So they can imitate it? So they can make choices for themselves? Is it possible, in providing models, to offer them as rich examples, with enough contextual description to provide choices for individuals, schools, and so on? What problems might arise from thinking about “exemplary models”?

REFERENCES


Index

Page numbers printed in boldface type indicate tables or figures.

AAAS. See American Association for the Advancement of Science
Academic achievement, measurement of, 228, 268, 269. See also Assessments
Accountability, 23, 257, 261, 275
Achieve, Inc., 20–21, 108, 141
Achievement, academic, 228, 268, 269. See also Assessments
Achieving Scientific Literacy (Bybee), 19, 66
Adler, Mortimer, 63
Adult learning and student learning, overlap in, 237–238
African Americans, 270, 367
Agriculture, in science education model, 34–35, 43
Ahlgren, Andrew, 10, 158, 167
Aims of science education. See Goals; Purposes
Algerts, Bruce, 357, 358
American Association for the Advancement of Science (AAAS), 6, 8, 10, 37, 43, 80, 91, 100
American College Testing (ACT), 90
Application of knowledge in real-world situations, PISA focus on, 281, 284, 285
Assessments, 259–275. See also Testing
accountability, connecting assessment to, 261
classroom instruction and assessments, 261
ESSA requirements, 42, 43
evaluating learners phase, BSCS 5E Model, 214, 218
feedback, 96, 178, 208, 260
Finnish focus on learning over accountability in, 289, 291
formative assessments, 228, 260, 261, 262
grand challenges for, 256
initial evaluation, 259–260
international, 277–293
national level, 265–270
NCLB Act’s impact on, 42
NGSS
addressing assessment to comply with, 252, 359
assessment of NGSS, 112–117
linking to assessments, 261–265
system of assessments, 271–275
overview, 23, 256–257
as part of professional development, 251
review curriculum materials in light of new standards, 251
role in instructional decisions, 208
summary, 293
summative assessments, 150, 166, 180, 217, 251–252, 259–261, 261, 263–264, 271, 326
and theory of instruction, 202
Atkin, J. M., 154–155
Ausubel, David, 190
Backward design, 179, 208, 231, 252
Bailey, Liberty Hyde, 34–35, 156
Ball, Deborah, 234–235
Bang, Eunjin, 246, 247
Basic Principles of Curriculum and Instruction (Tyler), 166–167
Beauchamp, Wilbur, 37
Beberman, Max, 47
Becoming a Better Elementary Science Teacher (Sund and Bybee), 19
Beliefs
impact of standards on, 248
as inputs in professional design process, 231–232
Bell, Terrell, 316
Benchmarks for Science Literacy
lack of state adoption, 273
limitations of, 307
NSES versus, 93, 98, 100
release of, 10, 80, 91, 158
state-level standards using, 41, 141
Bennis, Warren, 344
Berliner, David, 206
Biological Sciences Curriculum Study (BSCS), 17, 18, 19, 40, 47, 50, 51, 95, 99, 100, 157, 176, 177, 180, 228, 251, 321, 359, 390. See also BSCS 5E Instructional Model
Biology, student literacy in, 42
Black, Paul, 154–155
Body of knowledge, 73–74, 202, 203
Brandwein, Paul, 202–203
Brophy, Jere, 208
Brown v. Board of Education, 49
Bruner, Jerome, 39, 157, 158, 202, 203, 256
BSCS 5E Instructional Model, 212–219
alignment of science and engineering practices with, 218
curriculum materials design, 215, 215
elaboration of scientific concepts and abilities, 214, 218
engaging learners, 212–213, 218
evaluating learners, 214, 218
explanation phase, 213, 218
exploration phase, 213, 218
instructional sequence in professional development, 252
integration of three dimensions of NGSS, 217, 218, 218–219
research support for, 214–215
The BSCS 5E Instructional Model: Creating Teachable Moments (Bybee), 19
Burns, James MacGregor, 12, 334–336
Bush, George H. W., 9, 91, 94, 297, 317, 318
Business organizations, input into science education reform, 358
Bybee, Rodger
answering teachers on reforms, 324–328
on BSCS 5E Model, 212–219
career sketch, 17–19
conclusions on leadership, 377–278
CSMEE role, 92, 95
on curriculum development, 177–180
on Finnish education, 286–291
leadership recommendations for science education, 357–363, 363–364
on need for another Sputnik-era incentive, 52–53
paradoxes of leadership, recognizing and resolving, 338–341
on professional development standards, 248–253
research perspectives on, 204–210, 205, 209, 211
scientific method in, 195–196
Climate change, 101, 126, 146, 180, 319
Cognitive development theory, 40, 157, 158, 190
Cognitive level of question, 207
Cohen, David, 234–235
Cohen, I. Bernard, 66
Coherence in education system
as challenge for U.S. decentralized system, 291
in classroom practice, 197, 198
in curriculum design and development, 172
in Finnish education, 287
learning progression in three-dimensional teaching, 244
in professional development organization, 227, 228
College education
NEA standards for, 89–90
object study, 155
science curriculum in preparing for, 36–37, 63, 68, 75
Colonial period, education in, 31–33, 380
Combs, Arthur, 208–209
Comenius, John Amos, 35

Center for Science, Mathematics, and Engineering Education (CSMEE), 18, 92
Central Association of Science and Mathematics Teachers Report of the Committee on a Four-Year High School Science Course, 36

Challenges
assessments, 256, 271–275
classroom practices, 186, 192
curriculum programs, 151, 166–176
disciplinary core ideas, 240, 243, 244
district leadership, 137–139, 144–146
grand challenges concept, origin of, 357
leadership in science education, 356–357
political, 143, 145–146
professional development, 224, 243–246, 247
in science education, 3, 6–8, 8
for states, 144–146, 272–274, 307
Change the Equation study, 366, 367
Citizenship, science education as supporting, 65, 68, 74, 362
Classroom contexts and professional development, 238–240
Classroom practices. See also Teaching and assessments, 260, 261, 262
challenges of, 186, 192
cohere in education system, 197, 198
as focus for effective reform, 303
introduction, 23, 186
and professional development, 227, 245, 248
research perspectives on, 204–210, 205, 209, 211
scientific method in, 195–196
Climate change, 101, 126, 146, 180, 319
Cognitive development theory, 40, 157, 158, 190
Cognitive level of question, 207
Cohen, David, 234–235
Cohen, I. Bernard, 66
Coherence in education system
as challenge for U.S. decentralized system, 291
in classroom practice, 197, 198
in curriculum design and development, 172
in Finnish education, 287
learning progression in three-dimensional teaching, 244
in professional development organization, 227, 228

College education
NEA standards for, 89–90
object study, 155
science curriculum in preparing for, 36–37, 63, 68, 75
Colonial period, education in, 31–33, 380
Combs, Arthur, 208–209
Comenius, John Amos, 35

The Cardinal Principles of Secondary Education, 36–37, 90, 156–157
Career awareness, 75, 77–78, 111, 154
The Case for STEM Education (Bybee), 19
Commission on the Reorganization of Secondary Education (CRSE), 36–37, 90, 156
Committee of Ten (NEA), 36, 89–90, 155, 303
Common Core State Standards (CCSS), 109–110, 131–132, 262–264, 308, 309, 322
Communication
importance of translating standards, 372–373
in NGSS implementation, 116
politics and education reform, 312
in standards-based reform, 138, 138–139
Community, empowerment as developing sense of, 344
Competitive power, 344
Conant, James Bryant, 66
Concord Consortium, 51
Constructivist model of science teaching, 190–191, 212
The Content Core, 91
Content decisions, instructional decision making, 206
Content knowledge. See also Disciplinary core ideas
curricular knowledge, 206
in curriculum reform, 68, 153–154, 155
NAEP approach, 266
and A Nation at Risk goals, 316, 317
pedagogical content knowledge, 206, 229
as professional education element, 239
research perspectives on classroom practices, 204, 205, 205
science subject matter, 205
Content model, 35
Content standards, definition, 9
Context. See also Student context
as basis for effective leadership in reform, 337–338
as input in professional design process, 232, 234, 235
Pruitt on professional development, 238–240
vision and, 349–350
Cooperative learning in BSCS 5E Model, 212
Core teaching practices, 205. See also Common Core State Standards; Instructional core
Council of Chief State School Officers (CCSSO), 131, 274, 275
Council of State Science Supervisors (CSSS), 106, 131, 132
Counts, George, 37, 61–62
Craig, Gerald S., 35–36
Creationism, 180, 360–361
Cremin, Lawrence, 62–63, 299, 344–345
Critical and scientific thinking in global society, 365–366
Cronin, Thomas, 338
Cross, Christopher, 299
Cross-curricular competencies, PISA’s measurement of, 281
Crosscutting concepts (CCCs) and assessment, 263, 264, 272
as Framework dimension, 74, 75, 105, 106, 107, 108, 243, 263
implementing, 115–116
importance in professional development, 239–240
introduction, 74
in performance expectations, 267
and science and engineering practices, 145
Curricular knowledge, research perspectives, 206
Curriculum. See also Classroom practices
Brandwein’s theory, 203
college education as focus of science, 36–37, 63, 68, 75
definition, 150, 177–178
design and development, 165–181
activities and learning outcomes, 172
aligning with new standards, 326, 328
basic principles, 166–167, 168
BSCS 5E Instructional Model, 215, 215
challenges, 166–176
coherence, 172
how students learn science, 167–170
integrating NGSS into assessment, 263
leadership responsibilities, 179–180, 359
learning progressions, 173
as method for professional development, 228
national perspective, 161–162
opportunities to learn, 173–174
principles, 178–179
questions and considerations, 165–167, 170–172, 171
social forces, 167, 176, 181
state-level review, 160–161
systems perspective, 177–178
teacher’s role, 159–162, 171, 180
developmentally appropriate, 126, 179
as distinct from instruction, 203
as distinct from standards, 373
emphases, 75–76
equity for students, 97, 133, 173–174
Finnish reform insights, 289, 290–291
grand challenges, 151
models for state standards and NGSS, 322
overview, 22–23, 150–151, 151
teacher perspective on complying with NGSS, 325
INDEX

and theory of instruction, 202
TIMSS vs. PISA, 281, 282, 284, 285
Vision I and Vision II, 68–69
Curriculum and Evaluation Standards for School Mathematics, 10, 91, 94
Cyber-enabled environments in professional development classes, 245

Dare the Schools Build a New Social Order? (Counts), 37, 61–62
DeBoer, George, 29, 68, 73
Delphi methodology, 204
Democracy and Education (Dewey), 61
Depression, economic, as driving curriculum reform, 33, 37, 39, 299–300, 386
Design and systems, TEL area, 268, 269
Designing Professional Development for Teachers of Science and Mathematics (Loucks-Horsley), 228–229, 233
Designs for Science Literacy, 167
Developing Assessment for Next Generation Science Standards, 262–263
Dewey, John, 38, 43, 48, 61
Diagnostic assessment, 259–260, 261
Disciplinary core ideas (DCIs) and assessment in line with NGSS, 263, 264 and BSCS 5E Model, 213
bundling performance expectations, 116 challenge to implement in student learning, 240, 243, 244
cohere in curriculum development, 160 and content standards, 114
as Framework dimension, 73, 105, 106, 107, 109, 243
introduction, 74
in professional development, 228, 244
Discussion, power of in professional development, 235, 240
Dissemination in standards-based reform, 138, 138–139. See also Communication
Districts building capacity for NGSS-based reform in, 323–324
Elements in creating, 122
international comparisons and, 102
leadership in, 137–146, 138, 140, 142
as locus for improving professional development, 245
NSES and variations in, 99
policies and politics affecting, 22, 117
Donovan, Suzanne, 186
Earth Science Curriculum Project (ESCP), 17

Ecological approach to education, and paideia concept, 62–63
Educating Americans for the 21st Century, 158
Educational goals, PISA analysis, 284–285
Educational Leadership (Hurd), 66
Education and American Civilization (Counts), 62
Education Development Center (EDC), 51
Education for All American Youth: A Further Look, 48
Education reform. See Reform Education Week, 95, 96, 101
Eisenhower, Dwight D., 49
Eisenkraft, Arthur, 216
Elaboration phase, BSCS 5E Model, 214, 215, 218
Elementary and Secondary Education Act (ESEA) (1965), 134, 366
Elementary science, historical perspective, 33–36, 47
Elmore, Richard, 175, 322, 363
Employment needs. See also Career awareness and challenges for science education, 358
and importance of STEM skills, 367–368
Empowerment of others, 343–345
Engaged time, student learning, 207
Engaging learners, 212–213, 215, 218, 244
Engineering, TEL definition, 267
Engineering practices. See Science and engineering practices
Engineering standards, paradigm shift in, 82. See also STEM
English Language Arts (ELA), 41, 80, 109, 131, 137, 249, 251, 262–264, 271, 293, 322, 336
Enjoyment in work, empowerment as developing, 344
Equal opportunity and science education, 366–367
EQuIP (Educators Evaluating the Quality of Instructional Products), 115, 162, 235, 240
Equity for students, curriculum programs, 97, 133, 173–174
Evaluating learners phase, BSCS 5E Model, 214, 215, 217, 218
Evaluation of assessments, 259–260
in professional development design, 231 of reform during Sputnik era, 50–51
in standards-based reform, 138, 139
Every Student Succeeds Act (ESSA) (2015) assessment requirements, 42, 43
decentralized education structure in, 291
education goals before, 61
and Finnish education analysis, 286
as improvement in teacher valuation, 271
as policy document, 5
state’s rights, 134
Evidence-centered design (ECD), 265

Evolution, 96, 145–146, 180, 319, 360–361

Experience and Education (Dewey), 38, 61

Experiences with phenomena, emphasis in NGSS, 249

Explanation phase, BSCS 5E Model, 213, 215, 217, 218

Exploitative power, 343

Exploration phase, BSCS 5E Model, 213, 215, 218

Faubus, Orval, 49

Feedback
- corrective feedback vs. grades, 208
- curriculum design and development, 178
  on national standards, 96
- quality of formative assessment, 260

Financial support
- curriculum design and development, 49, 176
  lacking of for new materials, 161–162
- for NGSS, 108
- sourcing for NGSS-based reforms, 321
- Sputnik-era reform, 49, 50

Finn, Chester E., Jr., 102

Finnish Education and PISA, 286–291

5E Model. See BSCS 5E Instructional Model

Formative assessment, 228, 260, 261, 262

4Ps (purposes, policies, programs, and practices).
  See also specific p’s by name
- answering teachers’ questions, 324
- difficulties with reforming, 305
- dimensions of, 304
  establishing, 301–302
- overview, 4–6

A Framework for K–12 Science Education. See also
Next Generation Science Standards
- and assessment, 262, 272, 273
  as basis for NGSS, 105–106, 108, 175, 307–308, 310
- Bybee’s contribution to, 19
  dimensions, 105–106, 107, 109, 114
  goals represented in, 78
  and need for professional development, 248
  practical shortcomings of, 204
  release, 10
  states adopting, 86, 87, 130
  and state standards, 141
  as vision informing standards, 231

Friedman, Thomas, 52–53

Froebel, Friedrich, 35

Funding. See Financial support

Gee, Gordon, 19

General Education in a Free Society, 62, 387

General Education in Science (Watson and Cohen), 66

“A General Theory of Instruction” (Brandwein), 202–203

The Genius of American Education (Cremin), 344–345

“Getting to Scale With Good Educational Practice” (Elmore), 363

Global warming. See Climate change


Goals of public education, historical perspective, 64

Goals of science education, 73–83. See also Purposes
  career awareness, 75
  connection to standards, 76–79, 77, 78
  curriculum development, 176
  curriculum emphases, 75–76
  introduction, 60, 73
  personal development, 35, 40, 74–75
  in professional development design, 231
  scientific knowledge, 73–74
  scientific methods, 38–39, 40, 74
  societal issues, 74
  state standards defining, 124
  summary, 82–83

“Goals Related to the Social Aspects of Science,” 67

Goodlad, John, 64

Grade level and teachers’ scientific knowledge, 249

Grades, avoiding overuse of, 208

Grand challenges concept, origin of, 357

Grouping decisions, instructional decision making, 207

Handbook of Research on Science Education (Bybee), 68–69

Harris, William T., 34

Hewson, Peter, 246, 247

Hiebert, James, 146

Hierarchy of needs, 335, 344

High school. See Secondary education

Hispanics, NAEP science results, 270

Historical perspectives. See also Sputnik era
  Colonial period, 31–33
  curriculum program reform, 153–158, 181
  elementary school models, 33–36, 47
  introduction, 22, 26
  junior high schools, 47, 384
  A Nation at Risk, 245, 316–321, 355
  NCLB Act, 41–43
  politics and standards development, 316–319, 320–321
  purposes, 30, 61–64, 89–90
  questions central to, 29–30
  on reform, 299–301
  religion in, 32–33
secondary school models, 36–40
standard-setting highlights, 94
teachers, 190–191
timeline on education in U.S., 379–390
A History of Ideas in Science Education: (DeBoer), 29, 73
Howe, E. G., 34
How People Learn: Brain, Mind, Experience, and School, 167, 192
How People Learn: Bridging Research and Practice, 167, 168–170, 192
How People Learn (Bransford, Brown, and Cocking), 3, 214
How Students Learn: Science in the Classroom, 167, 192
Hurd, Paul DeHart, 39, 67
Hutner, Todd, 244

“Ideating a Core Set of Science Practices” (Kloser), 204
Implementation
challenge for DCIs, 240, 243, 244
curriculum reform, 100–101
in professional development design, 231
in standards-based reform, 138, 139, 145, 328
state standards, 322–324
Improving Student Learning in Mathematics and Science, 137–138
Industrial society, historical perspective, 36–40
Information and communication technology, TEL area, 268, 269
Information technology advances, and STEM education, 52
Innovations
encouraging while sustaining tradition, 339–340
with NGSS, 108–110, 111, 195–198, 244, 249, 262
scaling to effectively improve student learning, 362–363
strategies for district level, 137–139, 138, 140, 145
transitioning into curriculum, 326
Inquiry. See Practices
Inquiry and the National Science Education Standards, 239
Instructed learning, 203
Instructional core
diagram of, 364
focusing on for education reform, 322
focus of state standards and NGSS, 322, 323
principles for reform based on, 363
in professional development, 250–251
translating to curriculum and classroom, 327–328
Instructional decision making, 206–208, 263
instructional decisions, 207–208
post-instructional decisions, 208
pre-instructional decisions, 206–207
Instructional materials. See Curriculum
Instructional strategies for classroom practices, 204
Instruction in Science (Beauchamp), 37
Integrated instructional units, 194, 194
Integrative power, 344
International Association for the Evaluation of Educational Achievement (IEA), 278, 282
International comparisons
assessments, 277–293
fairness question, 282, 284
PISA and Finnish education, 286–291
TIMSS 2015, 278, 279–280, 281, 282, 284, 285
NSES, 102–103
Interpretation, in standards-based reform, 138, 139
Investigating the Influence of Standards, 11, 97, 126–127
Jackman, Wilbur, 34
Jackson, Philip, 189
Jennings, Jack, 299
Job expectations, PISA analysis, 285
Junior high schools, historical perspective, 47, 384, 386
Kennedy, John F., 49, 52, 158
Keppel, Frances, 49
Kloser, Matthew, 204
Knowledge and beliefs, as inputs in professional design process, 231–232
Knowledge-based economy, and Finnish education system, 290
Knowledge model of education, historical perspective, 38, 39, 40
Kuhn, Thomas, 81
Leaders: The Strategies for Taking Charge (Bennis and Nanus), 344
Leadership (Burns), 12, 334–336
Leadership in education, 333–351, 354–368
curriculum design and development, 179–180, 181
defining, 12, 333, 333–337
district level, 137–146
ideal characteristics of, 346–351, 377–378
in national standards reform, 91

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316306
in NGSS implementation, 116, 117–118, 319, 321, 355
overview, 22, 23, 332
paradoxes of, 338–341
power and, 334, 343–351
in science education, 354–368
contemporary challenges, 356–357
contemporary leadership, 355–356
courage, value of, 348–349, 377–378
critical and scientific thinking in global society, 365–366
curriculum material development, 359
emphasizing personal and social perspectives, 362
focus on understanding the nature of science, 360–361
goals, 82–83
improving student learning at significant scales, 362–363
instructional core diagram of, 364
and national standards, 372–376
opportunity to succeed for every student, 366–368
overview, 12–14, 354
principles for reform based on instructional core, 363
professional development for teachers, 360
state level, 133, 134, 144–146
traits of good leaders, 347–349
vision and planning, 337–338, 341, 356
Learning, in purpose of theory of instruction, 202–203
Learning outcome, activities in alignment with, 172
Learning progressions, 173, 245, 262
Learning Science and the Science of Learning, 167
Life adjustment education, 48
Lincoln, Abraham, 340, 347–348, 349, 377
Literacy. See also Scientific literacy
definition in PISA analysis, 281
importance of STEM, 366
and three-dimensional teaching, 244
Local level. See also Districts
authority in education reform, 321
fulfilling national agenda while incorporating local mandates, 340
instructional program development, 288
leading in responding to, 356
translating NGSS at, 327
Locke, John, 33
Loucks-Horsley, Susan, vii, 239
Luft, Julie, 246, 247
Man: A Course of Study (MACOS) program, 51
Manipulative power, 343–344
Maslow, Abraham, 335
Mathematics education, 47, 50–51, 244, 249, 262–264. See also STEM
May, Rollo, 343–344
McLaughlin, Milbrey, 175
McMannon, T. J., 64
Measures of achievement. See Assessments
Metacognition, 171, 193
Moral leadership, 335–336
NAEP. See National Assessment of Educational Progress
NAEP Framework, 266
Nanus, Burt, 344
NARST (National Association for Research in Science Teaching), 38
National Assessment Governing Board (NAGB), 265–266, 267, 268
National Assessment of Educational Progress (NAEP)
on performance standards, 10
science content, 266, 267
science expectations, 266–267
science practices, 266, 267
National Center for Education Statistics (NCES), 265
National Commission on Excellence in Education (NCEE), 9, 63, 90, 158, 316
National Committee on Science Education Standards and Assessment (NCSESA), 91
National Council on Education Standards and Testing (NCEST), 91
National Defense Education Act (NDEA) (1958), 49
National Education Association (NEA), 36–37, 89–90, 155, 156–157
National Education Goals Panel (NEGP), 91
National Governors Association (NGA), 131
National level. See also National standards assessments, 265–270
NAEP, 265–267, 267
TEL, 267, 268–269, 270, 270
National Research Council (NRC), 3, 19, 91–92, 306–307. See also A Framework for K–12 Science Education
National Science Education Standards (NSES), 91–103
avoidance of political issues, 318–319
Benchmarks for Science Literacy versus, 93, 98, 100
Bybee’s reflections on, 95–103
criticism, 100–101
developing, 91–93
goals represented in, 77
historical highlights, 94
INDEX

importance, 96–99
international comparisons, 102–103
lack of three-dimensional approach, 273
policy, program, and practice confusion, 100–101
release of, 10, 18, 80, 92, 158
role of, 9, 86
scientific inquiry, 102
scientific literacy, 66
state-level standards challenge, 41, 141–142, 142, 308
and state’s rights, 101, 102–103
National Science Foundation (NSF), 49, 176, 300, 319
National Science Resources Center (NSRC), 51
National Science Teachers Association (NSTA), ix, 10, 18, 39, 80, 91, 92, 94, 96, 112, 114, 132, 139, 161, 167, 197, 234, 319
National standards, 89–103. See also specific standards by name
addressing scientific literacy, 69
curriculum development perspective, 161–162
equity for all students, 97, 133
first-generation, 91–94
historical overview, 89–91, 94
leadership and science education, 372–376
long-term positive influence, 174
overview, 86
policies affecting, 22
purpose of, 315
reform driving, 26
National Survey of Secondary Education, 37, 38
A Nation at Risk, 9, 63, 90, 158, 245, 316–321, 355, 365
Nation’s Report Card. See National Assessment of Educational Progress
Nature of science, increasing students’ understanding of, 360–361
The Nature Study Idea (Bailey), 34–35, 156
Nature study model, 33, 34–35, 43, 155–156
Next Generation Science Standards (NGSS), 105–118. See also A Framework for K–12 Science Education
assessments, 261–265, 271–275
career awareness, 111
compared to NAGB science content, 267
contemporary perspective, 105–110
current statistics, 112–113
in curriculum design and development, 173–176, 322, 359
development of, 108, 129
foundation of, 105–107
as framework for new science teaching reality, 248
guiding principles of, 306
and improving science teaching and student learning, 250
innovations, 108–110, 111, 195–198, 244, 249, 262
instructional core focus, 322, 323
integration with BSCS 5E Instructional Model, 217, 218, 218–219
lessons learned, 113–117
overview, 204
on performance standards, 10, 81–82
as policy document, 5
and politics, 129–132, 306–312
and professional development, 235–236, 238, 240, 243–244, 323
public education on basis for reforms, 324
reform driven by, 42
release of, 158, 161
scientific knowledge, 74, 110, 154
scientific methods, 110, 154
social issues, 110–111
state adoption or adaptation, 86, 87, 112, 141, 292, 323–324
summary, 117–118
teacher perspective on, 325
translating for classroom instruction, 252
Nielson, Natalie, 245
No Child Left Behind Act (NCLB) (2001), 41–43, 61, 271, 307
Nutrient power, 344
Object study, in curriculum reform, 154–155, 156
Object teaching, 33
Olson, Steve, 239
On task vs. off task, student learning, 207
The Opportunity Equation, 105, 108
Opportunity to succeed for every student, 366–368
Paideia concept, 62–63
The Paideia Proposal: An Educational Manifesto (Adler), 63
Paradoxes of leadership, recognizing and resolving, 338–341
achieving goals and enduring criticism, 340
assuming responsibilities of leadership, 340–341
encouraging innovation and sustaining tradition, 339–340
fulfilling national agenda and incorporating local mandates, 340
having direction and retaining flexibility, 339
initiating change and maintaining continuity, 339

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316306
thinking abstractly and acting concretely,
338–339, 356
Parker, Francis, 34
Pathways to Science Standards, 96
Pedagogical content knowledge (PCK), 206, 229
Perceptual psychology, 208–210
Performance-based assessment, 262
Performance expectations, 116, 266–267, 267
Performance standards, 9–10, 109, 116
Personal development
as aim and goal of science education, 35, 40, 74–75
goals and standards, 77–78
NGSS on, 111
NSES including, 101
teaching science to deal with life situations, 362
Personal dimension of student/teacher relationship, 210, 211
Perspectives. See also 4Ps
in choosing education models, 43
historical. See Historical perspectives
introduction, 22–23
NGSS, 117–118
research. See Research perspectives
in science education, 3–6, 7, 68–69
and state and district challenges, 144–146
Pestalozzi, Johann, 33, 35
Phenomena, NGSS focus on natural, 115, 116, 196, 249
Piaget, Jean, 40, 157, 158, 190
Plan
leader’s responsibility for, 13–14, 337–338, 341, 356
thinking abstractly and acting concretely,
338–339, 356
Policies. See also Standards
coordinating with practices, 302–303
definition, 86, 302
difficulties with reforming, 305
dimensions of, 304
and districts, 22, 117
introduction, 5, 7, 22
NSES as, 100
reforms as primarily focused on, 303
solubility between politics and, 312
stakeholders, 139, 140
and state standards, 123–126, 132–134
translating, 142–143, 325–326
Political Education (Cross), 299
Politics, 299, 306–312
affecting state and district standards, 22, 117
all standards applying to all students, 312
as challenge to science education leadership, 356
communications focus, 312
engaging all stakeholders, 139, 140, 311–312
getting the science right, 307–308
historical standards development, 316–319, 320–321
impacting NSES, 98
influence on education reform timeline,
296–298
introduction, 23
NGSS development, 129–132, 319
and public explanation for education reforms, 324
solubility between policy and, 312
state and district challenges, 143, 145–146
state initiative, 308–311
transparency, 311
Porter, Andrew, 208
Power and Innocence (May), 343–344
Power and leadership, 334, 343–351
courage, 348–349, 377–378
empowerment of others, 343–345
humble and honorable, yet strong, 350–351
perseverance and relationships, 349
strength and presence, 347–348
summary, 351
theory in context, 349–350
The Process of Education (Jackson), 189
Practices. See also Classroom practices; A Framework for K–12 Science Education
coordinating with policies, 302–303
definition, 302
difficulties with reforming, 305
dimensions of, 304
introduction, 5–6, 7
in NAEP framework thinking and reasoning, 268
organization, 30
stakeholders, 139, 140
Presidents, Congress, and the Public Schools (Jennings), 299
Problem situation approach, and BSCS 5E Model, 215
Problem solving, in PISA analysis, 281, 284
The Process of Education (Bruner), 39, 157, 158
Professional development, 227–241, 243–253
alignment with standards, 235–236
Bybee’s leadership recommendations, 360
challenges, 243–246, 247
classroom and student contexts, 238–240
design of programs, 228–229, 230, 231–233
focusing on needs of teachers, 236–237
grand challenges, 224
grounding in research, 237–238
incorporating NGSS into, 359
as key to classroom standards implementation, 325–326
overview, 224–225
quality imperative, 240–241
realities of reform in, 248–253
research perspectives, 227–228
state standards and NGSS support for, 323
summary, 253
for teachers, 23, 51, 118, 197
teachers’ recognition of importance, 225
Professional development program (PDP), selecting, 246, 247
Professional learning communities (PLCs), 228, 234, 323
A Program for Science Teaching, 299–300
Programs
definition, 302
difficulties with reforming, 305
dimensions of, 304
introduction, 5, 7
organization, 30
and professional development, 248
stakeholders, 139, 140
Progressive education, 61–62, 156–157, 386
Project 2061, 10, 91, 100
Pruitt, Stephen
on assessment and NGSS, 271–275
career sketch, 20–21
conclusions on leadership challenges, 372–376
on curriculum development and the teacher, 159–162
on leadership as choice and need, 346–351
leadership recommendations for science education, 365–368
on NCLB, 41–43
on need for standards, 79–82, 365–368
on NGSS and instructional innovation, 195–198
on NGSS implementation, 112–117
NGSS leadership role of, 141
on politics and policies, 129–134, 306–312
on professional development, 234–241
Public education. See also Science education
on basis for reforms, 324
change and continuity, 144
goals, 64
international comparisons, 102
meaning of, 64
and paideia concept, 62–63
system composition, 9
U.S. colonial period, 31–33
Public Education (Cremin), 62–63
The Public Purpose of Education and Schooling (Goodlad and McMannon), 64
Purposes. See also Goals
citizenship and, 65
difficulties with reforming, 305
dimensions of, 304
establishing, 301–302
historical perspectives, 30, 61–64, 89–90
introduction, 4–5, 7, 22, 60
purpose, defined, 301–302
scientific literacy and, 4–5, 6, 66–69, 67
Quality imperative, 235–241, 275
Questioning, and instructional decisions, 207
Ravitch, Diane, 95
Reform, 299–312
contributing partners, 51
curriculum, 153–162
economic depression driving, 33, 37, 39
historical perspective, 153–158, 181
learners and learning, 153–154
nature study, 155–156
object study, 154–155, 156
progressive education, 156–157
social awareness effects, 49–50, 63, 69
social forces, 153, 154, 155, 156, 158
Sputnik era, 39, 47, 157–158
state standards as basis for, 125–126
subject matter, 68, 153–154, 155
time needed to implement, 100–101
as driving state and national standards, 26
economic depression as driving, 33, 37, 39, 299–300, 386
Finnish insights for U.S., 289–290
framework for, 137–140, 138, 140
historical perspective, 299–301
introduction, 23
leadership in, 336–337
politics and, 296–298, 306–312
and professional development, 237, 249–253
from purpose to practice, 301–306, 304–305
standards-based. See Standards-based education reform
state and district challenges, 144–146
Reforming Science Education (Bybee), 19
Reiser, Brian, 244–245
Reorganization of Science in Secondary Schools (Caldwell), 37
“Research on Goals for the Science Curriculum” (Bybee and DeBoer), 73
“Research on Instructional Strategies for Teaching Science.” 204
Research perspectives
- basing NGSS in research, 306–307
- on classroom practices, 204–210, 205, 209, 211
- professional development, 237–238, 246
Responsibility, as aspect of empowering others, 344
Revision, in standards-based reform, 138, 139
Rising Above the Gathering Storm, 52, 365
Roberts, Douglas, 68–69
Rousseau, Jean-Jacques, 33, 35
Rowe, Mary Budd, 208
Russell, Bertrand, 343
Rutherford, F. James, 18, 91, 158, 167, 172
Sampson, Victor, 244
Scaling student learning to make difference, 362–363
Scholastic Aptitude Test (SAT), 90
School Science and Mathematics, 96
School systems, understanding power relationships in, 343
Schwab, Joseph, 177
Schweingruber, Heidi, 245
Science, Evolution, and Creationism, 360
Science and engineering practices (SEPs)
- aligning with BSCS 5E Model, 218
- and assessment in line with NGSS, 262, 263
- career awareness, 75
- challenges of adopting, 115
- and crosscutting concepts, 145
- as Framework dimension, 107
- and instructional decision making, 207
- NAEP performance expectations, 267
- as NGSS dimension, 106, 108, 110, 243
- opportunities in, 173
- in professional development, 244
- and scientific methods, 110
- translating into instructional strategies, 176
“Science as Subject Matter and as Method” (Dewey), 38
Science Curriculum Improvement Study (SCIS), 17, 212, 216
Science education, 29–43. See also STEM education
- challenges in, 3, 6–8, 8. See also Challenges
- connections with math and ELA, 249
- curriculum. See Curriculum
- “golden age” of, 47
- history. See Historical perspectives
- national standards influencing, 96–98
- NGSS lessons learned, 114–117
- perspective on, 22–23. See also Perspectives
- questions to ask in developing, 29–30, 166
- and science as common rather than elite
- knowledge base, 312
- stakeholders, 51, 80–81
- standards for. See Standards
Science in American Schools, 300
Science for All Americans (Rutherford and Ahlgren), 13, 66, 91, 100, 158, 167, 356
Science Framework for the 2009 National Assessment of Educational Progress, 266
Science in General Education, 300
“Science Literacy” (Hurd), 66
Science of teaching, 201. See also Theory of instruction
Science scores, international comparison (TIMSS), 278, 279–280, 281
Science Teachers’ Learning, 245–246
“Science-Technology-Society,” 67
Scientific accuracy, in state standards, 126
Scientific community, 80–81, 307–308, 316
Scientific inquiry
- NSES controversy, 102
- performance expectations, 267
- as professional education element, 239
- as reform influence, 307
- as science education goal, 74
- state standards, 125, 145
Scientific knowledge
- as aim of science education, 33, 34, 37–38, 39, 73–74
- content. See Content knowledge
- crosscutting concepts. See Crosscutting concepts
- disciplinary core ideas. See Disciplinary core ideas
- goals and standards, 77–78
- grade-level differences in teachers’, 249
- NGSS on, 110
- science and engineering. See Science and engineering practices
Scientific literacy. See also Benchmarks for Science Literacy
- AAAS on, 43
- achieving, 4–5, 6
- biology, 42
- defining, 66–69, 67
- technology and engineering, 267, 268–269, 270, 270
Scientific methods
- as aim of science education, 38–39, 40, 74
- in classroom practice, 195–196
- goals and standards, 77–78
- NGSS on, 110, 154
Secondary education, 33, 36–40, 89–90, 317
Shulman, Lee, 204
Sizer, Theodore, 64
Social forces and goals. See also Politics
curriculum design and development, 167, 176, 181
curriculum reform effects, 49–50, 63, 69, 153, 154, 155, 156, 158
economic depression, 33, 37, 39, 299–300, 386
and education goals and standards, 74, 77–78
education reform’s role in, 299–300, 317, 320–321, 324, 355, 358
and leadership recommendations, 362
NGSS on, 110–111
NSES inclusion of, 101
and science education as contributor to citizenship, 65, 68, 74, 362
science education’s role in promoting, 35
and standards implementation recommendations, 326, 328
and understanding of nature of science, 360–361
Sputnik era, 47–56
and current education gap, 365–366
as driving curriculum reform, 39, 47, 157–158
education before, 48–50
evaluation of reform during, 50–51
need for another, 52–53
summary, 54–56
Stakeholders
in science education, 51, 80–81
in standards-based reform, 139, 140, 311–312
Standards
advantages of, 315
as basis for equal educational opportunity, 367–368
as basis of reform, 137–140, 138, 140
connected to goals, 76–79, 77, 78
definition, 86
importance of effective leadership in implementing, 356
national level. See National standards overview, 9–11, 11, 22
and professional development, 225, 231, 235–236, 243–253
Pruitt on need for, 79–82, 365–368
research base, 146
state level. See State standards
understanding intent of to manage change, 374
Standards-based education reform, 315–329
challenge of applying to specific contexts, 250, 324–328
curricular reform, 158, 180, 181
dimensions of, various, 138–139, 138
historical perspective, 158, 320–321
as long-term process, 145
A Nation at Risk, 9, 63, 90, 158, 245, 316–321, 355
NGSS. See Next Generation Science Standards
NSES. See National Science Education Standards
stakeholders in, 140
strategic framework, 138
summary, 329
Standards for Technological Literacy, 10
The State of State Science Standards, 99, 146
States
adoption issues with NGSS, 319
building capacity for NGSS-based reform in, 323–324
leading in responding to state requirements, 356
and negative perception of assessment, 271
participation in NGSS development, 306–312
relying on to embrace education reforms at national level, 290
three-dimensional assessment challenges for, 272–274
State standards, 123–134
adapted from Framework, 249
addressing scientific literacy, 69
challenge of multiple national guidance environment, 307
content origin, 95
curriculum development review, 160–161
and district leadership, 141–143, 142
elements in creating, 122
equity for all students, 133
implementation strategies, 137–139, 138, 140, 145
influence on education system, 123–124, 126–127, 128
leadership challenges, 144–146
and NGSS, 86, 87, 112, 141, 292, 322–324
No Child Left Behind Act, 41–43
NSES’s lack of consideration for, 319
as policy, 123–126
politics and policies affecting, 22, 117, 129–134, 308–311
and professional development, 249–250
reform as driving, 26
state’s rights to choose, 101, 102–103
variations in, and NSES, 99
STEM (science, technology, engineering, and mathematics) education
achievement gap in, 365–366
The Case for STEM Education (Bybee), 19
history, 40
NCLB legislation, 42, 43
reforms needed in, 52–53
shortcomings in, 367
Strategies, as inputs in professional design process, 233, 235
Student context
college-bound students. See College education
equity in curriculum, 97, 133, 173–174
perception of students and curricular reform, 153–154
perceptions of ideal science teacher, 210, 211
in professional development, 238–240, 249
science learning process, 167–170, 171, 192–194, 194
Student learning
academic achievement, measurement of, 228, 268, 269
changing students’ conceptions, 190–191
and curricular reform, 153–154
factors determining, 207
how students learn science, 192–194, 194
improvement at significant scales, 362–363
opportunities for, 173
overlap with adult learning, 237–238
in professional development design, 229, 231, 235
Subject matter. See Content knowledge
Summative assessment, 252, 260–261, 261, 262
Sund, Robert B., 17
Supervisor-subordinate relationships, 334
Systematic Science Teaching, 34
Systems perspective, 177–178, 341
Teacher-dependent programs, 345
Teacher education, 5, 18, 51, 106, 286, 318
Teacher-proof programs, 344–345
Teachers, 189–198. See also Professional development
BSCS 5E Model perspectives for, 212
challenge of three-dimensional learning for, 243
changes needed in, 197–198
cognitive development theory, 190
constructivism, 190–191
curriculum development, 159–162, 171, 180
eempowerment of, 208, 344–345
and environment for learning, 186
focusing on needs of, 236–237
historical perspective, 190–191
how students learn science, 192–194, 194
importance of understanding student learning, 244–245
instructional decision making, 206–208
instructional innovations, 195–198
integrated instructional units, 194, 194
introduction, 189
as leaders, 346, 351, 375–376
in NGSS implementation, 113–117
nutrient power in, 344
relationships and teachers’ perceptions, 208–210
reluctance to change, 117, 144
role in standards-based science teaching, 244
selectivity in providing quality teaching, 288
singular contexts for classroom practices, 249
social status as indicator of quality education, 288, 291
students’ perceptions of ideal science teacher, 210, 211
using textbooks, 159–160, 195–196
Teaching. See also Classroom practices; Theory of instruction
BSCS 5E Model. See BSCS 5E Instructional Model
curriculum. See Curriculum
focusing standards-based reform, 324–328
good fundamentals, 209
instructional core. See Instructional core
instructional decision making, 206–208
research on good, 208–210, 211
Testing. See also Assessments
explaining changes to, 143
lack of congruence with three-dimensional learning, 272–273
need for reduction in, 291
role of, 90
teaching to, 126, 261
Textbooks
cautions in choosing, 159, 161
equity in design, 174
need for NGSS-compliant, 359
publisher reaction to NSES, 98
as standards, 90
teachers using, 159–160, 195–196
Theory Into Action ... in Science Curriculum Development, 39
Theory of instruction, 201–219
BSCS 5E Model, 212–219
ccontent knowledge and science teaching, 204, 205
curricular knowledge, 206

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316306
good teaching fundamentals, 209
historical perspectives, 201–203
instructional decision making, 206–208
instructional strategies, 204
pedagogical content knowledge, 206
prescriptive and normative nature of, 202
relationships and teachers’ perceptions, 208–210
research on good teaching, 208
science subject matter, 205
students’ perceptions of ideal science teacher, 210, 211
summary, 219
The State of the Presidency (Cronin), 338
Thompson, Charles, 248
Three-dimensional learning, 237, 239–240, 243, 249, 262–264, 323. See also Next Generation Science Standards
TIMSS (Trends in International Mathematics and Science Study) 2015, 278, 279–280, 281, 282
Toward a Theory of Instruction (Bruner), 202
Trainer of Teacher Trainers (TTT Project), 18
Transformational leadership, 334–336
Vygotsky, L. S., 190, 197
Washington, George, 347, 349
Watson, Fletcher, 66
What Is the Influence of the National Science Education Standards?, 101
“What Is Unified Science Education?,” 67
What Schools Are for (Goodlad), 64
Wheeler, Gerry, 18
Wilson, Suzanne, 245
Windschitl, Mark, 301
The World Is Flat (Friedman), 52–53
World War II, education changes during, 300, 386
Zacharias, Jerrold, 47
Zeuli, John, 248

Unifying themes. See Crosscutting concepts
U.S. Department of Education, 131

Violence, Values, and Justice in the Schools (Bybee and Gee), 19
Vision and context, 349–350
Vision and planning
as leadership responsibility, 12–13, 337–338, 341, 356
thinking abstractly and acting concretely, 338–339, 356
Vygotsky, L. S., 190, 197

Washington, George, 347, 349
Watson, Fletcher, 66
What Is the Influence of the National Science Education Standards?, 101
“What Is Unified Science Education?,” 67
What Schools Are for (Goodlad), 64
Wheeler, Gerry, 18
Wilson, Suzanne, 245
Windschitl, Mark, 301
The World Is Flat (Friedman), 52–53
World War II, education changes during, 300, 386

Zacharias, Jerrold, 47
Zeuli, John, 248
“This book is not about the need to reform science education. Others have made that argument and undoubtedly will continue making it in the future. This book is about science education and what one needs to know, value, and be able to do as a leader.”
—From the preface

Like a memorable seminar, this book delivers what the title promises: perspectives on education from leaders in education. Writing in a conversational style, authors Rodger Bybee and Stephen Pruitt ponder central concerns of the science education community in general and science teachers in particular:

- Is the purpose of science education to prepare future scientists and engineers—or scientifically literate citizens?
- What is the role of federal, state, and local governments in setting standards for science education?
- Should curriculum include science-related social issues?
- What are the roles of politics and policies in science education?
- Is it actually possible to teach the science practices?

Bybee and Pruitt not only reach leaders at the national, state, district, and school levels but also address those enrolled in courses on curriculum and instruction, participants in professional development, and science teachers who want to enrich their understanding of the foundations and dynamics of science education. No matter where you are in the leadership ranks, Perspectives on Science Education can spur professional conversations that contribute to a deeper understanding of science education and strengthen your desire and ability to lead.