Picture-Perfect STEM

Lessons, 3–5

Using Children’s Books to Inspire STEM Learning
Picture-Perfect STEM Lessons, 3–5
Using Children’s Books to Inspire STEM Learning

by Emily Morgan and Karen Ansberry

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681403311
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS
Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA’s rights and permissions policies.

ISBN: 978-1-68140-331-1
e-ISBN: 978-1-68140-332-8
Contents

Preface ... ix
Acknowledgments .. xiii
About the Authors .. xv
Safety Practices for Science Activities ... xvii

1 Why Use Picture Books to Teach STEM? ... 1

2 Reading Aloud .. 9

3 BSCS 5E Instructional Model .. 17

4 Connecting to the Standards ... 25

5 Science and Engineering Practices .. 47

6 The Inventor's Secret ... 61
 Rosie Revere, Engineer and *The Inventor's Secret: What Thomas Edison Told*
 Henry Ford

7 Mesmerized .. 79
 Mesmerized: How Ben Franklin Solved a Mystery That Baffled All of France and
 Let's Think About the Power of Advertising

8 Wind It Up .. 99
 Clink and Making Machines With Springs
Light It Up! How Things Work: Lightbulbs and Orion and the Dark

Burn Burn: Michael Faraday's Candle and National Geographic Kids: Wildfires

From Edison to the iPod Timeless Thomas: How Thomas Edison Changed Our Lives and iPod and Electronics Visionary Tony Fadell

Better Together An Ambush of Tigers: A Wild Gathering of Collective Nouns and Animals That Live in Groups

Spider Science Next Time You See a Spiderweb and Nefertiti, the Spidernaut: The Jumping Spider Who Learned to Hunt in Space

Bionic Animals Winter's Tail: How One Little Dolphin Learned to Swim Again and Biomedical Engineering and Human Body Systems

From Seed to Tree If You Hold a Seed and Next Time You See a Maple Seed

Hurricane! Two Bobbies: A True Story of Hurricane Katrina, Friendship, and Survival and Building Dikes and Levees
Solving the Puzzle Under the Sea: Marie Tharp Maps the Ocean Floor and How Mountains Are Made

Boy, Were We Wrong About the Solar System! and Space Exploration

Star Stuff: Carl Sagan and the Mysteries of the Cosmos and Jump Into Science: Stars

One Plastic Bag: Isatou Ceesay and the Recycling Women of The Gambia and Recycling Crafts (Craft Attack!)

Appendix: Alignment With the Next Generation Science Standards

Index
Preface

Third-grade students listen as their teacher reads *Clink*, the humorous and heartwarming story of a lovable, worn-out, music-playing, toast-making house robot who sits discarded in the Robot Shoppe. Clink nearly gives up on finding a home—until the day he spies a boy who just might have the right one for him …

The shopkeeper handed Clink to the boy. “He’s very old, and he’s missing parts.”

The boy’s eyes lit up. “He’s perfect!”

“I’m perfect?” thought Clink. It had been a very long time since anybody had thought he was perfect. Clink smiled. PLINK! POP!

The boy ducked. “I’ll take him!” he said.

The third graders delight in this heartfelt tale of yearning to belong and to be accepted for who you are. It not only engages students on an emotional level but also provides a unique transition to a discussion of toys—how they work and how they are designed. After the read-aloud, the class explores wind-up toy robots. Students observe their robots’ patterns of motion, graph the distance they travel, and predict their future motion. Then, they take the toys apart to see how they work. Through a nonfiction read-aloud they learn about the technology required to design and manufacture springs and how springs inside wind-up toys store energy that is released when the spring unwinds. Students discover that a surprising amount of science and engineering is packed inside a small wind-up toy! Next, students build their own wind-up spool cars and modify, test, and evaluate their designs. This activity addresses the engineering core idea that different solutions need to be tested to determine which solution best solves the problem, given the criteria and constraints. Students apply what they have learned by writing an instruction manual that explains how the wind-up car works, demonstrating their understanding of the physical science core idea of forces and motion. Finally, they reflect on what they have learned through a STEM at Home assignment. With a parent or adult helper, they watch a video called *Scientist Profile: Toyologist*, which is about an engineer who designs toys. Then, they draw a patent illustration for a wind-up toy of their own design. Through this engaging, hands-on lesson found in Chapter 8, “Wind It Up,” students learn about the interdependence of science, technology, engineering, and mathematics in the toy-making industry—all within the context of a delightful, fictional story.

What Is Picture-Perfect STEM?

The Picture-Perfect Science program was developed to help K–5 teachers integrate science and reading in an engaging, kid-friendly way. Since the debut of the first book in the *Picture-Perfect Science Lessons* series in 2005, elementary teachers across the country have been using the lessons to integrate science and literacy. This new series of Picture-Perfect books, *Picture-Perfect STEM Lessons: Using Children’s Books to Inspire STEM Learning*, follows the same philosophy and lesson format as the original books but adds an additional emphasis on the intersection of science, technology, engineering, and mathematics in the real world. *Picture-Perfect STEM Lessons, 3–5* contains 15 lessons for students in grade three through grade five, with embedded reading comprehension strategies to help
them learn to read and read to learn while engaged in STEM activities. To help you set up a learning environment consistent with the principles of *A Framework for K–12 Science Education* (Framework; NRC 2012), the lessons are written in an easy-to-follow format of constructivist learning—the Biological Science Curriculum Study (BSCS) 5E Instructional Model (Bybee 1997, used with permission from BSCS; see Chapter 3 for more information). This learning cycle model allows students to construct their own understanding of scientific concepts as they cycle through the following phases: engage, explore, explain, elaborate, and evaluate. Although *Picture-Perfect STEM Lessons* is primarily a book for teaching STEM concepts, reading comprehension strategies and the *Common Core State Standards for English Language Arts* (NGAC and CCSSO 2010) are embedded in each lesson. These essential strategies can be modeled while keeping the focus of the lessons on STEM.

Use This Book Within Your Curriculum

We wrote *Picture-Perfect STEM Lessons* to supplement, not replace, your school’s existing science or STEM program. Although each lesson stands alone as a carefully planned learning cycle based on clearly defined objectives, the lessons are intended to be integrated into a complete curriculum in which concepts can be more fully developed. The lessons are not designed to be taught sequentially. We want you to use *Picture-Perfect STEM Lessons* where appropriate within your school’s current STEM program to support, enrich, and extend it. We also want you to adapt the lessons to fit your school’s curriculum, your students’ needs, and your own teaching style.

Special Features of This Book

Ready-to-Use Lessons With Assessments

Each lesson contains engagement activities, hands-on explorations, student pages, suggestions for student and teacher explanations, elaboration activities, assessment suggestions, opportunities for STEM education at home, and annotated bibliographies of more books to read on the topic. Assessments include poster sessions, writing assignments, design challenges, demonstrations, presentations, and multiple-choice and extended-response questions.

Background for Teachers

This section provides easy-to-understand background information for teachers to review before facilitating the lesson. Some information in the background section goes beyond the assessment boundary for students, but it is provided to give teachers a deeper understanding of the content presented in the lesson.

Time Needed

The information in this section helps you pace each lesson. We estimate a primary class period to be about 30–45 min.

Reading-Comprehension Strategies

Reading-comprehension strategies based on the book *Strategies That Work* (Harvey and Goudvis 2007) and specific activities to enhance comprehension are embedded throughout the lessons and clearly marked with an icon. Chapter 2 describes how to model these strategies while reading aloud to students.

Standards-Based Objectives

All lesson objectives are aligned to the *Framework* (NRC 2012) and are clearly identified at the beginning of each lesson. An alignment with the *Next Generation Science Standards* (NGSS Lead States 2013) is included in the appendix (p. 365). The lessons also incorporate the *Common Core State Standards for English Language Arts and Mathematics* (NGAC and CCSSO 2010). In a box titled “Connecting to the Common Core,” you will find the Common Core subject the activity addresses as well as the grade level and standard number. You will see that writing assignments are specifically labeled with an icon: ■.
STEM at Home

Each lesson also provides an extension activity that is intended to be done with a parent or other adult helper at home. Students write about what they learned about each topic and share their favorite part of the lesson. Then, together with their adult helper, they complete an activity to apply and extend the learning. If students are unable to complete the extension at home, the activities in this section also work well as in-class extensions.

Ideas for Further Exploration

A “For Further Exploration” box is provided at the end of each lesson to help you encourage your students to use the science and engineering practices in a more student-directed format. This box lists questions and challenges related to the lesson that students may select to research, investigate, or innovate. Students may also use the questions as examples to help them generate their own questions. After selecting one of the questions in the box or formulating their own questions, students can make predictions, design investigations to test their predictions, collect evidence, devise explanations, design solutions, examine related resources, and communicate their findings.

References

Children’s Book Cited

Editor’s Note

Picture-Perfect STEM Lessons, 3–5 builds on the texts of 30 children’s picture books to teach STEM. Some of these books feature objects that have been anthropomorphized, such as a robot who longs for a friend. Although we recognize that many scientists and educators believe that personification, teleology, animism, and anthropomorphism promote misconceptions among young children, others believe that removing these elements would leave children’s literature severely underpopulated. Furthermore, backers of these techniques not only see little harm in their use but also argue that they facilitate learning. Because *Picture-Perfect STEM Lessons, 3–5* specifically and carefully supports science and engineering practices, we, like our authors, feel the question remains open.
We would like to dedicate this book to the memory of Dr. Robert Yearout, who gave us the opportunity to present our first teacher workshop at the “Sharing What Works” Conference in Columbus, Ohio, in 2000. Dr. Yearout’s leadership of the High Achievement in Math and Science Consortium, which we were both fortunate to be a part of for many years, provided us with opportunities and encouragement to grow as educators and advocates of science and math education. His selfless leadership style and utmost respect for the teaching profession continue to inspire us today.

We appreciate the care and attention to detail given to this project by Rachel Ledbetter, Wendy Rubin, and Claire Reinburg at NSTA Press.

And these thank-yous as well:

• To Linda Olliver for her “Picture-Perfect” illustrations
• To Tom Uhlman for his photography
• To Kim Stilwell for facilitating workshops to give us time to write and for sharing Picture-Perfect Science Lessons with teachers across the country
• To the staff and students of Blue Springs School District, Heritage Elementary, Indian Hill Elementary, and Mason City Schools for field-testing lessons and providing “photo ops”
• To Libby Beck and Nancy Smith for contributing photographs
• To Ken Roy for his thorough safety review
• To Ted Willard for answering all of our Next Generation Science Standards (NGSS) questions and creating his helpful NGSS guides
• To Bill Robertson, Debbie Rupp, and Rand Harrington for sharing their content knowledge
• To TeachEngineering for granting permission to use a modified version of its activity, “Protecting Our Cities With Levees” in Chapter 16, “Hurricane”
• To Terri Collins, educational outreach coordinator and senior lecturer at Kennesaw State University, for contributing STEM activity ideas to this book and sharing Picture-Perfect Science with teachers
• To Dr. Joyce Poole, co-founder and co-director of ElephantVoices, for her research on elephant behavior
• To Derrick Campana, director of orthotics at Animal Ortho Care, LLC, for his help with Chapter 14, “Bionic Animals”
• To Kevin Rusnak, senior historian at the Air Force Research Laboratory, for reviewing Chapter 18, “Space Exploration”
• To Faye Harp, Lori Vanover, and the teachers at Heritage Elementary School for their help and inspiration for Chapter 20, “From Trash to Treasure”
• To Sienna Weinstein, a master’s degree student in conservation biology in the Department of Environmental Studies at Antioch University New
England for reviewing the “Better Together” lesson

- To Jeff Morgan, a chemical engineer in the R&D product development department at Procter & Gamble, and Karl Vanderbeek, associate creative director in the industrial design department at Kaleidoscope Product Design and Innovation, for sharing their design process expertise

The contributions of the following reviewers are also gratefully acknowledged:

- Kevin Anderson
- Deborah Hanuscin
- Eileen LaTorre
- Brandy Whitney
About the Authors

Emily Morgan is a former elementary science lab teacher for Mason City Schools in Mason, Ohio, and seventh-grade science teacher at Northridge Local Schools in Dayton, Ohio. She served as a science consultant for the Hamilton County Educational Service Center and science leader for the High AIMS Consortium. She has a bachelor of science in elementary education from Wright State University and a master of science in education from the University of Dayton. She is also the author of the Next Time You See picture book series from NSTA Press. Emily lives in West Chester, Ohio, with her husband, son, and an assortment of animals.

Karen Ansberry is a former elementary science curriculum leader and fifth- and sixth-grade teacher at Mason City Schools in Mason, Ohio. She has a bachelor of science in biology from Xavier University and a master of arts in teaching from Miami University. Karen lives in historic Lebanon, Ohio, with her husband, two sons, two daughters, and two dogs.

Emily and Karen enjoy facilitating teacher workshops at elementary schools, universities, and professional conferences across the country. This is Emily and Karen's fourth book in the Picture-Perfect Science Lessons series. For more information on this series and teacher workshops, visit www.pictureperfectscience.com.
Safety Practices for Science Activities

With hands-on, process- and inquiry-based science activities, the teaching and learning of science today can be both effective and exciting. The challenge to securing this success needs to be met by addressing potential safety issues relative to engineering controls (ventilation, eye wash station, etc.), administrative procedures and safety operating procedures, and use of appropriate personal protective equipment (indirectly vented chemicals splash goggles meeting ANSI Z87.1 standard, chemical resistant aprons and gloves, etc.). Teachers can make it safer for students and themselves by adopting, implementing, and enforcing legal safety standards and better professional safety practices in the science classroom and laboratory. Throughout this book, safety notes are provided for science activities and need to be adopted and enforced in efforts to provide for a safer learning and teaching experience. Teachers should also review and follow local policies and protocols used in their school district and/or school (e.g., employer OSHA Hazard Communication Safety Plan and Board of Education safety policies).

Additional applicable standard operating procedures can be found in the National Science Teachers Association’s “Safety in the Science Classroom, Laboratory, or Field Sites” (www.nsta.org/docs/SafetyInTheScienceClassroomLabAndField.pdf). Students should be required to review the document or one similar to it for elementary-level students under the direction of the teacher. It is important to also include safety information about working at home for the “STEM at Home” activities. Both the student and the parent or guardian should then sign the document acknowledging procedures that must be followed for a safer working and learning experience in the classroom, laboratory, or field. The Council of State Science Supervisors also has a safety resource for elementary science activities titled “Science and Safety: It’s Elementary!” Teachers can consult this document at www.css-science.org/downloads/scisaf_cal.pdf.

Please note that the safety precautions of each activity are based, in part, on use of the recommended materials and instructions, legal safety standards, and better professional practices. Selection of alternative materials or procedures for these activities may jeopardize the level of safety and therefore is at the user’s own risk.
The Inventor’s Secret

Description
Two books that emphasize the power of perseverance are paired, engaging students in a challenge to design a toy car using everyday materials. Students are introduced to the design process and use it to improve their car design.

Suggested Grade Levels: 3–5

<table>
<thead>
<tr>
<th>LESSON OBJECTIVES Connecting to the Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and Engineering Practices</td>
</tr>
<tr>
<td>Planning and Carrying Out Investigations</td>
</tr>
<tr>
<td>Constructing Explanations and Designing</td>
</tr>
<tr>
<td>Solutions</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Featured Picture Books

TITLE: Rosie Revere, Engineer
AUTHOR: Andrea Beaty
ILLUSTRATOR: David Roberts
PUBLISHER:Abrams Books for Young Readers
YEAR: 2013
GENRE: Story
SUMMARY: Young Rosie dreams of being an engineer. Alone in her room at night, she constructs great inventions from odds and ends. Afraid of failure, Rosie hides her creations under her bed until a fateful visit from her great-great-aunt Rose, who shows her that a first flop isn't something to fear—it's something to celebrate.

TITLE: The Inventor’s Secret: What Thomas Edison Told Henry Ford
AUTHOR: Suzanne Slade
ILLUSTRATOR: Jennifer Black Reinhardt
PUBLISHER: Charlesbridge
YEAR: 2015
GENRE: Narrative Information
SUMMARY: This delightful book about Henry Ford’s quest to make an affordable car also portrays the friendship between him and Thomas Edison, including the fateful moment when Ford learned Edison’s secret to inventing—keep at it!
Time Needed

This lesson will take several class periods. Suggested scheduling is as follows:

Day 1: Engage with Rosie Revere, Engineer Read-Aloud and Explore with Balloon Car Challenge, Part 1, and PBS Design Squad Global Video

Day 2: Explore with Balloon Car Challenge, Part 2

Day 3: Explain with The Inventor’s Secret Read-Aloud and The Design Process and Elaborate with Edison Quotes

Day 4: Evaluate with Balloon Car Challenge, Part 3

Materials

For Build and Test a Balloon Car (per class)

You will need a variety of materials that can be used for different parts of the balloon cars. Organize the materials into five bins labeled *power source, body, wheels, axles,* and *materials for attaching.* The materials needed for each bin are as follows:

- **Power source**
 - Straws
 - Balloons, all the same size
 - Tape
 - Rubber bands

- **Body**
 - Empty water bottle
 - Clean, empty juice box or other small box
 - Disposable cup
 - Cardboard

- **Wheels**
 - Plastic bottle caps
 - Candy mints (with hole in the middle)
 - CDs
 - Cardboard

- **Axles**
 - Straws
 - Wooden skewers
 - Chopsticks
 - Cotton swabs

- **Materials for attaching**
 - Tape
 - Foam

SAFETY

- Before using balloons in the classroom, be sure that no one is allergic to latex.
- Have students wear safety glasses or goggles during this activity.
- Remind students not to eat any food used in this activity.
- Wash hands with soap and water after completing this activity.
Chapter 6

• Modeling clay
• Glue
• Pieces of dry sponge

For Build and Test a Balloon Car (per group of 3–4 students)
• Air pump for blowing up balloons
• Metersticks or tape measures

Additional class materials
• The Design Process poster (enlarged version of p. 74; full-color version available on the Extras page at www.nsta.org/PicturePerfectSTEM3-5)
• Edison Quotes (1 set cut into strips)

Student Pages
• Balloon Car Design Challenge
• Redesign, Build, Test & Evaluate
• Prototype Display Card
• STEM at Home

Background for Teachers

Thomas Edison and Henry Ford are two of the most famous inventors in history. Edison’s inventions are too numerous to list here (2,332 patents worldwide), but many of them have changed the way we live. His most famous inventions were the phonograph, kinetoscope, dictaphone, and, of course, the incandescent light bulb. Although Ford did not invent the automobile, he is credited with developing the first car that most working people could afford, the Model T. His introduction of the Model T revolutionized transportation, and the moving assembly line he designed to manufacture the Model T transformed American industry.

Edison was Ford’s hero. Sixteen years Edison’s junior, a young and ambitious Henry Ford admired Edison’s imagination and seemingly limitless talent for inventing new technologies. As Ford struggled with designing an affordable, gas-powered car, Edison was inventing at an incredible pace. In 1896, Ford had the chance to meet Edison at a convention in New York. After seeing Ford’s designs, Edison banged his fist on the table and told Ford to “Keep at it!” Ford later said of the fortuitous meeting, “That bang on the table was worth worlds to me! No man up to then had given me any encouragement … and out of the clear blue sky the greatest inventive genius of the world had given me a complete approval.” (p. 40 of The Inventor’s Secret) Ford went on to experience great success with his Model T and Ford Motor Company.

Edison and Ford eventually became good friends. They even went on camping trips together and discussed their ideas. Ford eventually built a house right next door to Edison’s winter home in Fort Meyers, Florida. The two friends installed a gate between the two houses so that they could visit each other. The gate was later nicknamed the friendship gate.

The story of The Inventor’s Secret is used to engage students in a design challenge that supports the “Keep at it!” theme as they build toy cars out of everyday materials. This lesson features a version of the
design process used by inventors and engineers. Several versions of this process exist, but they all have the same basic components. The version used by the PBS Kids television show Design Squad Global emphasizes the iterative component of the design process: to keep building, testing, evaluating, and redesigning until you are satisfied with the solution (in other words, “Keep at it!”). See the “Websites” section for more information about Design Squad Global. Both of the picture books featured in this lesson highlight the Build, Test & Evaluate, Redesign Cycle in this model.

A Framework for K–12 Science Education represents the cycle in ETS1.C: Optimizing the Design Solution (NRC 2012). This engineering design disciplinary core idea states that, by the end of grade 5, students should understand that “different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints” (NRC 2012, p. 209). The lesson in this chapter also addresses the practices of planning and carrying out investigations and constructing explanations and designing solutions, as well as the crosscutting concept of structure and function.

Note: The balloon car design challenge introduced in the explore phase of this lesson was chosen because Henry Ford designed automobiles. However, this lesson could be used to frame other design challenges.

Engage

Rosie Revere, Engineer Read-Aloud

Connecting to the Common Core
Reading: Literature

Key Ideas and Details: 3.3, 4.3

Questioning

Show students the cover of Rosie Revere, Engineer. Introduce the author, Andrea Beaty, and the illustrator, David Roberts. Students may recognize this author–illustrator team from the book Iggy Peck, Architect or Ada Twist, Scientist. Open the book so students can see the picture on the front and back covers. Ask

- What do you think this book is about?

As you read, stop periodically to ask the following questions:

- Page 7—Why do you think Rosie hides her inventions? (Answers will vary.)
- Page 13—Why did she hide her inventions? (She was laughed at when they didn’t work. She was embarrassed.)
- Page 32 (show the illustration of the flying cheese-copter on the copyright page)—Was Rosie’s invention ultimately a success? (yes) Why? (It flew!)

After reading, ask

- What happened that encouraged Rosie to not be ashamed of her invention attempts? (Her great-great-aunt Rose visited her and told her that it was the perfect first try.)
- How is Rosie an engineer? (Students should recognize that Rosie takes things apart, builds things to solve problems, and tests her inventions. All of these are things that engineers do.)
What would you say is the moral of the story? (Never give up. True failure comes only if you quit.)

Connecting to the Common Core
Reading: Literature
Key Ideas and Details: 3.2, 4.2, 5.2

After reading, students may be interested in viewing a 6 min. video that features the author of the book discussing what inspired her to write the book and how science and art are related (see “Websites” section).

Next, open the book to pages 6–7, which show Rosie’s attic. Ask

Where does Rosie get all of the materials she uses to create new gadgets and gizmos? (They should recognize from the illustrations that Rosie gets her parts from machines, appliances, and discarded toys.)

explore

Balloon Car Challenge, Part 1: Identify Problem, Brainstorm, and Design

Tell students that, as did Rosie, they are going to make a vehicle out of some everyday materials. Give students the Balloon Car Design Challenge student page and present the problem, or design challenge, to students.

Identify Problem

Explain that inventors and engineers always have desired features or outcomes in mind when designing solutions to problems or design challenges, whether those solutions are projects, products, systems, or technologies. These desired features and outcomes are known as criteria. The criteria for this design challenge are as follows:

- Must be powered by a balloon
- Must travel at least 30 cm on one full balloon of air

Explain that inventors and engineers also have to work within constraints when designing solutions. Constraints are typically limits on time, materials, and money. The constraints for the Balloon Car Design Challenge are as follows:

- Materials: You may use only materials provided by or approved by your teacher.
- Time: You must build your balloon car within the time limit set by your teacher.

Brainstorm

Show students the materials they can use. Have them brainstorm how they could assemble the materials to make a car. Be sure to explain that there is no perfect design or one “right” way of making the car. Different solutions can be made to solve the same problem. The best designs meet the criteria within the given constraints. Stimulate creative thinking by asking questions such as the following:

- What are the choices to use for the axles?
- What do you think would work best for the wheels?
- How could you attach the wheels to the axles?
- What could you use to make the body of the car?
- How could you attach the balloon to the car?

PBS Design Squad Global Video

After students have brainstormed several ideas, show them the “4-Wheel Balloon Car” video from the PBS Show Design Squad Global for more ideas (see “Websites” section). This website also features step-by-step instructions for making the cars.

Design

Have students sketch their balloon car idea. Next, have them write how they will test their car to see if it meets the criteria. When students have completed the student page, sign off at the teacher checkpoint. Tell students that they will be able to build and test their car during the next class period.
Remind students of the criteria and constraints defined in the challenge. Show them where to find their supplies. Set a realistic time limit appropriate for the age of your students. Tell students that they may test their cars during that time, but they will need to stop as soon as they hear the timer or hear you say, “Stop!” Give students updates on the time they have remaining as they build and test. When time is up, have students stop and put their cars aside. Tell them that they will have a chance to revise their original designs during another class period. Then, ask

? Did your car meet the criteria (powered by a balloon, travels in a straight line, and moves at least 30 cm on one full balloon of air)?

? Did you stay within the constraints of the challenge (built with approved materials and built within the time limit)?

? What is something that didn’t work?

? What is something that worked well?

? What ideas do you have for improving your car?

? Did you ever feel like giving up?

? What would you say is the “secret” to inventing or engineering?

Explain

The Inventor’s Secret Read-Aloud

Questioning

Tell students that you have a book that might help them with their car design process. Show students the cover of *The Inventor’s Secret*, and introduce the author and illustrator. Share the subtitle, *What Thomas Edison Told Henry Ford*, and ask

? Who was Thomas Edison? (Answers will vary, but students will likely know Edison invented the light bulb.)

? Who was Henry Ford? (Answers will vary, but students will likely associate Ford with cars.)

? Did Thomas Edison and Henry Ford know each other? (Answers will vary.)

? What do you think the “inventor’s secret” might be? (Answers will vary.)

Connecting to the Common Core

Reading: Informational Text

Key Ideas and Details: 3.1, 4.1, 5.1

Determining Importance

Tell students that, as you read, you would like them to listen for the “inventor’s secret” and signal (raise their hands) when they hear it.
Questioning

Read the book aloud, stopping to ask the following questions (you may want to write the questions on sticky notes and place them within the book as reminders for you before reading):

? Page 8—Who was older, Thomas Edison or Henry Ford? (Edison) By how much? (16 years)

? Page 9—What did young Thomas and young Henry have in common? (They both wondered how things work, they built things, and sometimes they got into trouble for building things.)

? Page 24—What criteria (desired features or outcomes) did Henry Ford want his car to meet? (To run on gas, to be easy to drive, to be big enough for families, and to be affordable)

? Page 25—How do you think Henry Ford was feeling at this point in the story? (discouraged, jealous, frustrated) What makes you think that? (The book says he “couldn’t stand it any longer,” and he looks discouraged in the illustrations.)

? Page 29—Why do you think Thomas Edison banged his fist on the table? (to emphasize his point that Ford should “Keep at it!”)

? Page 37—Why did Henry Ford have so many different Models—Model A, Model C, Model F, Model K, and so on? (Each one failed to meet Henry Ford’s criteria for success, so he kept improving on them. He used the alphabet for the order of his revised prototypes.)

? Page 37—Which model was the one that finally met the criteria? (the Model T)

? Page 39—So what is the inventor’s secret? (“Keep at it!”)

Tell students that this story is based on true events. Read the quote from Henry Ford on page 40:

“That bang on the table was worth worlds to me! No man up to then had given me any encouragement…and out of a clear sky the greatest inventive genius in the world have given me complete approval.” —Henry Ford after meeting Thomas Edison

Ask

? Why do you think that moment was so important to Henry Ford? (He was feeling discouraged and needed encouragement to carry on his work. Thomas Edison was someone he admired.)

Read the information on pages 40–41 about Edison and Ford’s friendship, and read the author’s and illustrator’s notes, which give the reader insight on their purpose and background.

The Design Process

Explain to students that inventors and engineers (like Thomas Edison and Henry Ford) use the Design Process when approaching a problem. There are several versions of the design process, but they all have the same basic ideas. Make a poster-sized version of The Design Process (see p. 74), which features the model used on the PBS show *Design Squad Global*. Using the poster and Table 6.1 (p. 68) as a guide, discuss each step of the process and what it means. Then, ask students to find evidence in the text that shows how Ford used each step of the design process while working on his car. Refer to the book when giving examples (page numbers are listed).

Ask

? What part of the design process do you think was highlighted in this book? (the Build, Test & Evaluate, Redesign Cycle)

? What evidence in the text makes you think so? (The author spends a lot of time writing about Ford’s different attempts, tests, and redesigns.)

Explain that the Build, Test & Evaluate, Redesign Cycle can go on and on for a long time. **Ask**

? How long after Edison and Ford’s meeting (depicted in the book) do you think it was before Ford introduced the Model T? (Students can use the time line in the back of the book to find the dates of these two events. The meeting
was in 1896, and the Model T was released in 1908. That is 12 years!

In those 12 years, do you think Henry Ford had moments when he felt like giving up? (yes)

Making Connections: Text to Text

Think back to *Rosie Revere, Engineer*. Where was the Build, Test & Evaluate, Redesign Cycle evident in the story? (She built the cheese-cop- ter, she tested it, it crashed, she thought it was a failure, she worked the rest of the day redesigning it, and finally it flew.)

Do you think other inventors and engineers ever feel like giving up? (yes)

Edison Quotes

Many would consider Edison the greatest inventor (or engineer) of all time. His words inspired Ford not to give up, and his words have also encouraged many others as well. People all over the world have long been inspired by Edison’s ingenuity, work ethic, appreciation of his team, and, of course, perseverance.

Form student groups of three or four and give each group a strip of paper with one of the following quotes from Edison:
• Genius is 1% inspiration and 99% perspiration.
• I have not failed. I have just found 10,000 ways that do not work.
• Our greatest weakness lies in giving up. The most certain way to succeed is to try just one more time.
• Just because something doesn’t do what you planned it to do, doesn’t mean it’s useless.
• I never did a day’s work in my life. It was all fun.
• I have friends in overalls that I would not swap for the favor of the kings of the world.
• To invent, you need a good imagination and a pile of junk.
• If we did all the things we were capable of, we would literally astound ourselves.

Ask each group to read their quote, look up any words they don’t know, discuss the meaning with their group members, and consider what the quote tells us about Edison as a person and an inventor. Then, have each group share their Edison quote and interpretation with the rest of the class. After everyone is done sharing, ask

? What do these quotes tell us about Thomas Edison? (He didn’t give up, he did not let failure make him quit, he loved the work he did, he valued his team, etc.)

? What does your group’s quote tell you about being an inventor or engineer? (Answers will vary.)

Making Connections: Text to Text

Connecting to the Common Core
Reading: Informational Text
Integration of Knowledge and Ideas: 3.9, 4.9, 5.9

Next, ask

? What do the two books we read in this lesson, Rosie Revere, Engineer and The Inventor’s Secret, have in common? (They both have the same message: Don’t give up.)

? How are the two books different? (Rosie Revere, Engineer is fiction and The Inventor’s Secret is nonfiction.)

Refer to the part of the story where Rosie feels discouraged because her flying machine didn’t work (pp. 18–21), but her great-great-aunt Rose tells her, “Your brilliant first flop was a raging success! Come on, let’s get busy and on to the next!” Explain that an important part of engineering is dealing with failures and learning from them. Then, read the last line of page 27, “Life might have its failures, but this was not it. The only true failure can come if you quit.” Explain that engineers often try many designs before they find one that works best and that to be a good engineer you must persevere through failed attempts. Failures give engineers a chance to go back and improve on their original idea until they solve the problem.

evaluate

Balloon Car Challenge, Part 3: Redesign, Build, Test & Evaluate, and Share Solution

Tell students that you would like them to apply the design process they learned about in the explain phase of this lesson to their balloon car design challenge. Refer to the poster, point out each step, and ask students how they have addressed each step so far. Here are the answers:

• Identify Problem: The problem was provided for us—design a balloon car.
• Brainstorm: We brainstormed as a class and watched a video for more ideas.
• Design: We sketched our ideas.
• Build: We built our cars with the supplies.
• Test & Evaluate: We tested them to see if they met the criteria in the design challenge.

Tell students that now it is time to complete the remaining steps of the process—Redesign and Share Solution. Ask

? Did your first car meet the criteria for success presented in the design challenge?
Finally, when students are satisfied with their designs, have them share their balloon car prototype with the class by demonstrating how it works and then displaying it. Create display cards by copying the Display Card student page on cardstock. Have students fill out the information on the card (name, model letter, distance traveled, criteria met and constraints taken into account checked off) and fold it in half to create a table tent to put next to their models.

STEM at Home

Have students complete the “I learned that …” and “My favorite part of the lesson was …” portions of the STEM at Home student page as a reflection on their learning. They may choose to do the following at-home activity with an adult helper and share their results with the class. If students do not have access to the internet or these materials at home, you may choose to have them complete this activity at school.

“At home, we can watch a short video on the Design Squad Global website from PBS Kids.”

Visit http://pbskids.org/designsquad/video and choose a design challenge video to watch.

“After we watch the video, we can discuss these questions:

1. What problem was the design squad trying to solve?
2. What parts of the design process did you observe in the video?
3. Which idea do you think would work best?”
For Further Exploration

This section is provided to help you encourage your students to use the science and engineering practices in a more student-directed format. This box lists questions and challenges related to the lesson that students may select to research, investigate, or innovate. Students may also use the questions as examples to help them generate their own questions. After selecting one of the questions in the box or formulating their own questions, students can individually or collaboratively make predictions, design investigations or surveys to test their predictions, collect evidence, devise explanations, design solutions, or examine related resources. They can communicate their findings through a science notebook, at a poster session or gallery walk, or by producing a media project.

Research

Have students brainstorm researchable questions:

? How many patents does Thomas Edison have? What are some of his lesser known inventions?
? How did Henry Ford’s assembly line change American industry?
? What kinds of engineers are involved in car design?

Investigate

Have students brainstorm testable questions to be solved through science or math:

? Which balloon car in your class goes the farthest?
? Which balloon car in your class goes the fastest?
? What do your classmates think the best invention of all time is? Take a survey! Graph the results, then analyze your graph. What can you conclude?

Innovate

Have students brainstorm problems to be solved through engineering:

? Can you design a way to mass produce your best model car?
? Can you invent something to solve an everyday problem?
? Can you design a reminder (poster, bookmark, etc.) for your classmates to “Keep at it!” when they get discouraged with a task or challenge?
Reference

Websites
Design Squad Global
http://pbskids.org/designsquad

Design Squad Global “4-Wheel Balloon Car” (video)
http://pbskids.org/designsquad/build/4-wheel-balloon-car

Rosie Revere, Engineer: Engineering and Discovery With Author Andrea Beaty (video)
www.youtube.com/watch?v=EymQZsv9Me8

More Books to Read
Summary: This clever book shows modern-day devices that had their beginnings in Edison’s lab. Colorful, and at times humorous, illustrations depict Edison and his team of employees working in the lab, while the opposite side of each page shows present-day versions of his inventions. End matter includes a time line of Edison’s most famous inventions and short bios of some of his employees.

Summary: This “storyography” depicts Thomas Edison’s life from his humble beginnings as a farmer’s son selling newspapers on trains and reading through public libraries shelf by shelf, to his inventing career, to eventually his becoming a world-renowned legend.

Summary: This book gives readers an up-close look at the life and work of Thomas Edison and is illustrated with historical and contemporary photographs.

Summary: This book gives readers an up-close look at the life and work of Henry Ford and is illustrated with both historical and contemporary photographs.

Summary: Simple text and whimsical illustrations depict the life of Thomas Edison from his childhood antics to the inventions that changed the world.

Summary: One day, a little girl decides she is going to make the most magnificent thing! She knows just how it will look. She knows just how it will work. But making the most magnificent thing is harder than she thinks.
Balloon Car Design Challenge

Problem: Design a balloon-powered car.

Criteria (desired features or outcomes):
1. Must be powered by a balloon
2. Must travel in a straight line
3. Must travel at least 30 cm on one full balloon of air

Constraints (limits on available resources and time):
1. Materials: You may use only materials provided by or approved by your teacher.
2. Time: You must build your balloon car within the time limit set by your teacher.

Sketch your ideas.

How will you test your design? __

__

__

Teacher Checkpoint: □
Edison Quotes

<table>
<thead>
<tr>
<th>Quote</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genius is 1% inspiration and 99% perspiration.</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>I have not failed. I have just found 10,000 ways that do not work.</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>Our greatest weakness lies in giving up. The most certain way to</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>succeed is to try just one more time.</td>
<td></td>
</tr>
<tr>
<td>Just because something doesn’t do what you planned it to do, doesn’t</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>mean it’s useless.</td>
<td></td>
</tr>
<tr>
<td>I never did a day’s work in my life. It was all fun.</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>I have friends in overalls that I would not swap for the favor of</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>the kings of the world.</td>
<td></td>
</tr>
<tr>
<td>To invent, you need a good imagination and a pile of junk.</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>If we did all the things we were capable of, we would literally</td>
<td>Thomas Edison</td>
</tr>
<tr>
<td>astound ourselves.</td>
<td></td>
</tr>
</tbody>
</table>
Redesign, Build, Test & Evaluate

Use the Redesign, Build, Test & Evaluate Cycle to improve your car. Record each change you make in the table below and then record the distance each model travels and any observations about its motion.

<table>
<thead>
<tr>
<th>Model</th>
<th>Change to Design (Example: Changed the wheels to a different material)</th>
<th>Distance Traveled (cm)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No change, original design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prototype Display Card

Engineer ________________________________

Model _______________ Distance Traveled _____________________

Criteria Met (✔)

☐ Powered by a balloon

☐ Moves in a straight line

☐ Travels a distance of at least 30 cm on one full balloon of air

Within Constraints (✔)

☐ Materials: Built with only approved materials

☐ Time: Built within the time limit
Dear ___________________,

At school, we have been learning about the design process.

I learned that: ___

__

My favorite part of the lesson was: _________________________________

__

__

At home, we can watch a short video on the Design Squad Global website from PBS Kids.

Visit http://pbskids.org/designsquad/video and choose a Design Challenge Video to watch.

After we watch the video, we can discuss these questions:

What problem was the design squad trying to solve?

__

__

What parts of the design process did you observe in the video?

__

__

Which idea do you think would work best? ________________

__

__
Index

Page numbers printed in **boldface type** indicate tables, figures, or illustrations.

A
acquired traits, 205, 208, 209–210, 210, 218
advertising. See “Mesmerized” lesson
A Framework for K–12 Science Education
Common Core State Standards for English Language Arts (CCSS ELA), 25, 27, 29, 30–36
Common Core State Standards for Mathematics (CCSS Mathematics), 25, 27, 37–45
crosscutting concepts, 25–27, 26
disciplinary core ideas, 27, 28
and Next Generation Science Standards (NGSS), 25–27, 26
See also science and engineering practices
“A Green Way to Fight Fires” video, 147
Alva Award, 168
amplification, 165
analog technology, 163, 167
An Ambush of Tigers, 179, 180, 182–183, 189
Animals That Live in Groups, 179, 180, 186, 188
anticipation guide about, 13
 How Mountains Are Made read-aloud, 296–297
Jump Into Science: Stars, 338–339
arguments, 312
ash, 140
atoms, 139
B
Barretta, Gene, 161
Beaty, Andrea, 61, 64
Beginning Reading and Writing, 2
Berann, Heinrich, 292
“Better Together” lesson, 51, 179–202, 371
background for, 180–182
BSCS 5E Model for, 182–189
 elaborate, 187–188
 engage, 182–183
 evaluate, 189, 189
 explain, 184–187, 184
 explore, 183–184, 184
Common Core connections, 164–170
description of, 179
Framework connections, 179
further exploration suggestions, 170–171
materials for, 180
objectives of, 179
performance expectations, 371
picture books for, 179
student pages for, 180, 193–202
time needed for, 180
websites and suggested reading resources, 191–192
Biological Sciences Curriculum Study (BSCS) 5E Model, 5, 17–23
as constructivist cycle of learning, 17, 17, 19
 elaborate, 18, 18, 20, 21
 engage, 17, 18, 20, 21
 evaluate, 19, 19, 20, 21
 explain, 18, 18, 20, 21
 explore, 18, 18, 20, 21
 and Next Generation Science Standards (NGSS), 22
 phases of, 17–19
 student roles, 19, 21
 teacher roles, 19, 20
and using picture books for STEM education, 22–23
See also specific lessons
biomedical engineering, 225, 226
Biomedical Engineering and Human Body Systems, 223, 224, 232–233, 234
“Bionic Animals” lesson, 52, 223–244, 373
 background for, 225–226
 BSCS 5E Model for, 226–235
 elaborate, 232–234
 engage, 226–227, 228
 evaluate, 234–235, 235
 explain, 230–232, 231
 explore, 227–230, 230
Common Core connections, 226–235
description of, 223
Framework connections, 223
further exploration suggestions, 236–237
materials for, 224–225, 224, 225
objectives of, 223
performance expectations, 373
picture books for, 223
safety precautions for, 224
student pages for, 225, 238–244
time needed for, 224
websites and suggested reading resources, 237
blind taste test, 83–84, 83, 84
blind tests, 83, 87
boiling of water, 139
Boy, Were We Wrong About the Solar System, 307, 308, 310–311, 312
brainstorming, Balloon Car Design Challenge, 65
breached levees, 265–266, 266, 269–270
Bruno, Iacopo, 79, 81
Building Dikes and Levees, 263, 264, 269–270
bulls, 180, 185, 197
Burleigh, Robert, 289, 293
Burn: Michael Faraday’s Candle, 137, 138, 140, 142, 144
“Burn” lesson, 26, 137–160, 369
background for, 139–141
BSCS 5E Model for, 142–148
elaborate, 145–147
engage, 142, 142
evaluate, 147–148
explore, 142–143, 143
Common Core connections, 142–148
description of, 137
Framework connections, 137
further exploration suggestions, 148–149
materials for, 138
objectives of, 137
performance expectations, 369
picture books for, 137
safety precautions for, 138, 142–143, 150
student pages for, 138
time needed for, 138
websites and suggested reading resources, 149
Bybee, Rodger, 22

C
calls, 183
calves, 180, 197
capillary action, 140, 144, 153
card sequencing about, 13
Music Player Info Cards, 166–167
card sort about, 13
Boy, Were We Wrong About the Solar System read-aloud, 311–312
Carroll, Kevin, 225, 226, 228, 232, 233, 234
Cassels, Jean, 263, 267
Ceesay, Isatou, 349, 350
chemical changes to matter, 139–140, 145, 153
chlorophyll, 246, 251
chloroplasts, 246, 251
chunking about, 14
Biomedical Engineering and Human Body Systems read-aloud, 232
Let’s Think About the Power of Advertising read-aloud, 85
civil engineer, 270, 271, 272, 284
claims, 81, 92
clocks, 180, 197
Clint, ix, 4, 99, 100, 102, 107
clock springs, 101

close strategy about, 14
How Things Work: Lightbulbs read-aloud, 120–121
coil springs, 101
Colon, Rainé, 289, 293
combustion, 140, 145, 147
See also “Burn” lesson
Common Core State Standards for English Language Arts (CCSS ELA), 9–10, 25, 27, 29, 30–36
Common Core State Standards for Mathematics (CCSS Mathematics), 25, 27, 37–45
compact fluorescent lamp (CFL), 117–118, 117, 121–124
compounds, 139
condensation, 139
conservation of matter, 140–141, 141, 145
costs, 65, 230, 231, 270, 353
consumers, 81, 92
Contact, 355
controlled variables, 81, 92–93
conversion of energy, 119, 125
Cosmos television show, 333, 335, 337, 340
criteria, 65, 97, 230, 231, 270, 352
D
Deep Space Network (DSN), 335
defensive circles, 181, 197
degradation, 167
designing
Balloon Car Design Challenge, 65–66
See also “Bionic Animals” lesson; “From Edison to the iPod” lesson
Design Process, 64, 64, 67–68, 68, 74
See also “The Inventor’s Secret” lesson
Design Squad Global video, 64, 65, 67
determining importance about, 13
“Elephant Behavior” video, 183
If You Hold a Seed read-aloud, 248
“Kratt’s Creatures” video, 186, 187
Next Time You See a Maple Seed read-aloud, 249–250
structures and functions T-chart, 227, 228
The Inventor’s Secret read-aloud, 66
Timeless Thomas read-aloud, 164
Wildlife Tracking Technology, 188
digital technology, 163–164, 167
dikes, 269–270
DiPucchio, Kelly, 99, 102
DNA, 204–205
Don’t Be Fooled article, 86, 92–94
dual-purpose information books, 6
Index

Dugan, Christine, 307, 312

E
Edison, Thomas, 63, 66–67, 68–69, 117, 161, 163, 166, 168
electricity. See “Light It Up!” lesson
electrodes, 117
elephants. See “Better Together” lesson
energy
and changes in states of matter, 139
conversion/transformation of, 119, 125
energy-efficient lightbulbs, 117–119, 118, 119
engineer, 270, 271
ethograms, 179, 181, 184
ethologists, 181
evaporation of water, 139
evidence, 81, 92, 312
exobiology, 335
experimental variables, 81, 92–93

F
Fadell, Tony, 161, 168, 169
fair tests, 81, 86–87, 92–93
family groups, 197
Faraday, Michael, 137, 140, 142, 144
Federal Trade Commission, 81, 93
Federal Trade Commission (FTC), 118–119
filaments, 117
fire lines, 141
fire triangles, 141, 146, 156
5E Instructional Model. See Biological Sciences Curriculum Study (BSCS) 5E Model
“Food Ad Tricks” video, 85–86, 89
food stylists, 85
Ford, Henry, 63–64, 66–67
Franklin, Ben, 79, 81, 82, 83
freezing of water, 139
friendship gate, 63
“From Edison to the iPod” lesson, 51, 161–178, 370
background for, 163–164
BSCS 5E Model for, 164–170
elaborate, 168–169
engage, 164, 164
evaluate, 169–170, 169
explain, 165–167, 166, 167
explore, 164–165, 165, 166, 166
Common Core connections, 164–170
description of, 161
Framework connections, 161
further exploration suggestions, 170–171
materials for, 162
objectives of, 161
performance expectations, 370
picture books for, 161
student pages for, 162, 172–178
time needed for, 162
websites and suggested reading resources, 171

“From Seed to Tree” lesson, 22, 245–261, 374
background for, 246–247
BSCS 5E Model for, 248–252
elaborate, 251–252, 252
engage, 248, 248
evaluate, 252
explain, 249–251, 251
explore, 249, 249
Common Core connections, 248–252
description of, 245
Framework connections, 245
further exploration suggestions, 253
materials for, 246
objectives of, 245
performance expectations, 374
picture books for, 245
student pages for, 246, 255–261
time needed for, 246
websites and suggested reading resources, 254

“From Trash to Treasure” lesson, 6, 53, 347–363, 379
background for, 349
BSCS 5E Model for, 350–355
elaborate, 352–354, 353
engage, 350
evaluate, 354
explain, 351–352
explore, 350–351, 351
Common Core connections, 350–355
description of, 347
Framework connections, 347
further exploration suggestions, 355–356
materials for, 348
objectives of, 347
performance expectations, 379
picture books for, 347
safety precautions for, 348
student pages for, 348, 357–363
time needed for, 348
websites and suggested reading resources, 356
fuel, 140, 153
Furgang, Kathy, 137, 145

G
gallery walks, 54, 54
gas states of matter, 139
genes, 204–205, 207, 208
genetics, 205, 208
geologist, 270, 271, 284
gestures, 183
glucose, 246
Goodall, Jane, 183
Google Earth, 297–298, 298
Gorongosa National Park, 183, 184

H
Hale, James Graham, 289, 296
Hatkoff, Craig, 223
Hatkoff, Isabella, 223
Hatkoff, Juliana, 223
heatsinks, 118
Heezen, Bruce, 289, 291–292, 293–294

Picture-Perfect STEM Lessons, 3–5

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681403311
Index

herds, 180, 197
Hooke, Robert, 101
horns, 163, 165, 166
How Mountains Are Made, 289, 290, 296–297
How Things Work: Lightbulbs, 115, 116, 120, 121, 129
“Hurricane!” lesson, 263–287, 375
background for, 265–267, 265, 266
BSCS 5E Model for, 267–272 elaborate, 270–272, 271
engage, 267
evaluate, 272
explain, 268–270
explore, 267–268, 268
Common Core connections, 267–272
description of, 263
Framework connections, 263
further exploration suggestions, 273
materials for, 264–265
objectives of, 263
performance expectations, 375
picture books for, 263
safety precautions for, 270
student pages for, 265, 275–287
time needed for, 264
websites and suggested reading resources, 273–274
hydrocarbons, 140
hydrologist, 270, 271, 284
hypotheses and the scientific method, 82, 83

I
identifying problems, Balloon Car Design Challenge, 65
If You Hold a Seed, 22, 245, 246, 248
incandescent lightbulb, 117, 117, 121–124
inferences, 143, 184
inferring about, 13
An Ambush of Tigers read-aloud, 182–183
Animals That Live in Groups read-aloud, 186
Clink read-aloud, 102
Neferiti, the Spidernaut read-aloud, 211
Star Stuff read-aloud, 336
inherited traits, 205, 207, 208, 209–210, 210, 218
innovate (further exploration)
“Better Together” lesson, 191
biomedical engineering, 237
“Burn” lesson, 149
design process, 71
“From Edison to the iPod” lesson, 171
hurricanes and levees, 273
lightbulbs, 127
mountains, 300
plant growth, 253
product testing, 89
recycling, 356
“Space Exploration” lesson, 317
“Spider Science” lesson, 214
wind-up toys, 108
instinctive behavior, 205
International Space Station (ISS), 205, 206–207, 245, 247
interval sampling, 181, 185
investigate (further exploration)
“Better Together” lesson, 190
biomedical engineering, 236
“Burn” lesson, 148–149
design process, 71
“From Edison to the iPod” lesson, 171
hurricanes and levees, 273
lightbulbs, 127
mountains, 300
plant growth, 253
product testing, 89
recycling, 355
“Space Exploration” lesson, 317
“Spider Science” lesson, 214
wind-up toys, 108
iPod and Electronics Visionary Tony Fadell, 161, 162, 168, 169
J
Jago (illustrator), 179, 182
Jump Into Science: Stars, 23, 333, 334, 337, 338
K
Kudlinski, Kathleen V., 307, 310–311
L
Larson, Kirby, 263, 267
law of conservation of matter, 141, 154
L’Engle, Madeleine, 11
Let’s Think About the Power of Advertising, 79, 80, 84–85, 86
levees, 265–266, 266, 269–270, 277, 277
light-emitting diode (LED), 118, 118, 119, 121–124
“Light It Up!” lesson, 19, 54, 115–136, 368
background for, 117–119
BSCS 5E Model for, 119–126 elaborate, 124–125, 125, 126
engage, 119
evaluate, 126
explain, 120–121, 122–124, 122, 123
explore, 121–122, 121
Common Core connections, 119–126
description of, 115
Framework connections, 115
further exploration suggestions, 127
materials for, 116–117
objectives of, 115
performance expectations, 368
picture books for, 115
safety precautions for, 116, 125
student pages for, 117, 129–136
time needed for, 116
websites and suggested reading resources, 128
light-year, 335
liquid states of matter, 139
locomotion, 226, 229–230
looking for patterns, *How Mountains Are Made* read-aloud, 297
lumens, 122

M
MacKay, Elly, 245, 248
making connections
about, 12
blind taste test, 83–84
Interactive Article: Plastic, 351–352
looking at ads, 84, 88
Mesmerized read-aloud, 82
Next Time You See a Spiderweb read-aloud, 206
One Plastic Bag read-aloud, 350
Recycling Crafts read-aloud, 352
Rosie Revere, Engineer read-aloud, 68, 69
Solving the Puzzle Under the Sea read-aloud, 293
Space Exploration read-aloud, 312
Star Stuff read-aloud, 336–338
structures and functions
T-chart, 227, 228
The Inventor’s Secret read-aloud, 69
Timeless Thomas read-aloud, 164–165
“Wild About Animals” video, 228, 232
Winter’s Tail read-aloud, 226–227
Making Machines With Springs, 4, 99, 100, 104–105
maple seeds. See “From Seed to Tree” lesson
matriarchs, 180–181, 185, 197
matter
burning of, 140
changes to, 139–140, 153
conservation of, 140–141,
141, 154
defined, 139
Mattern, Joanne, 115, 119
Mesmer, Franz, 79, 81, 82
Mesmerized, 79, 80, 81–82, 83, 87
“Mesmerized” lesson, 52, 79–98, 366
background for, 81
BSCS 5E Model for, 81–88
elaborate, 86–87
engage, 81–82
evaluate, 87–88, 88
explain, 84–86, 84
explore, 83–84, 83, 84
Common Core connections, 81–88
description of, 79
Framework connections, 79
further exploration suggestions, 89
materials for, 80
objectives of, 79
performance expectations, 366
picture books for, 79
safety precautions for, 80
student pages for, 80, 90–98
time needed for, 80
websites and suggested reading resources, 89
microgravity, 210
Milano, Mariel, 47
Mohammed, Amr, 205, 210–212
molecules, 139, 153
Morgan, Emily, 203, 206, 211, 245, 249
Mozambique, 183
Myers, Matthew, 99, 102
mystery objects, 119

N
narrative information books, 6
NASA (National Aeronautics and Space Administration), 205, 251, 260, 309–310, 312, 313, 332, 335
National Geographic Kids:
Wildfires, 137, 138, 145–147, 156–157
National Oceanic and Atmospheric Administration (NOAA), 275, 276
natural hazards. See “Hurricane!” lesson
Nefertiti, the Spidernaut, 203, 204, 210–212
Nethery, Mary, 263, 267
new vocabulary list
about, 14
Building Dikes and Levees read-aloud, 269–270, 281
Next Generation Science Standards (NGSS)
and A Framework for K–12 Science Education, 25–27, 26
and BSCS 5E Model, 22
lesson performance expectations, 365–379
Next Time You See a Maple Seed, 245, 246, 249–250, 256
Next Time You See a Spiderweb, 203, 204, 206, 208–209, 211
nonfiction features
about, 15
Building Dikes and Levees read-aloud, 269
Recycling Crafts read-aloud, 352
non-narrative information books, 6
observations, 143
observations and the scientific method, 82, 83
ocean floor. See “Solving the Puzzle Under the Sea” lesson
One Plastic Bag, 6, 347, 348, 350, 352, 355, 358, 363
orb web video, 207
Orion and the Dark, 115, 116, 124
Ortiz Catalan, Max, 233, 234
overtopped levees, 265–266, 266
269–270
P
pairs read
Don’t Be Fooled article, 86
Index

Plants in Space, 251–252
The Chemistry of a Candle article, 145
The Social Lives of Elephants, 187
Pattison, Darcy, 137, 142, 203, 210, 211
Paul, Miranda, 347, 350
Pets Evacuation and Transportation Standards (PETS) Act, 266
phosphor, 118
photosynthesis, 246, 250–252
physical changes to matter, 139–140, 145, 152–153
picture books and STEM instruction, 1–2
picture walk about, 14
Biomedical Engineering and Human Body Systems read-aloud, 233
Planetary Society, 335
plant growth. See “From Seed to Tree” lesson
plant pillows, 251, 260
plastics. See “From Trash to Treasure” lesson
Poole, Bob, 183
Poole, Joyce, 181, 183, 184
predators, 197
prescribed burns, 141, 145
product claim tests, 81, 92
product comparison tests, 81, 92
products, 141
product testing. See “Mesmerized” lesson
profiles, 295–296
prosthetic limbs, 225, 233–234
See also “Bionic Animals” lesson
prototype, 70

Q
questioning about, 12
animal locomotion videos, 229–230
Animal Prosthesis Design Challenge, 227–228

Biomedical Engineering and Human Body Systems read-aloud, 232
Birthday Candles, Part 1, 144–145
Elephant Behavior Graph, 185–186
Let’s Think About the Power of Advertising read-aloud, 84–85
Mesmerized read-aloud, 81–82
Nefertiti, the Spiderman read-aloud, 212
Next Time You See a Spiderweb read-aloud, 208–209
Orion and the Dark read-aloud, 124
Rosie Revere, Engineer read-aloud, 64–65
Solar System app, 310
Solving the Puzzle Under the Sea read-aloud, 293–294
Space Exploration read-aloud, 312–313
The Chemistry of a Candle article, 145
The Inventor’s Secret read-aloud, 66–67
“The Known Universe” video, 309
The Social Lives of Elephants, 187
Two Bobbies read-aloud, 267
“Wild About Animals” video, 228, 232
Wildfires read-aloud, 146–147
Winter’s Tail read-aloud, 230–231

R
range, species range, 182
reactants, 141
reactions, chemical, 139, 153
reading aloud, 9–15
comprehension enhancement tools, 13–15
picture books and comprehension enhancement, 15
reading comprehension strategies, 11–13
reasons for, 9–10
tips for, 10–11
Recycling Crafts, 347, 348, 352
recycling. See “From Trash to Treasure” lesson
Reinhardt, Jennifer Black, 61
reproducibility, 81, 86–87, 92
rereading about, 14
How Things Work: Lightbulbs, 122–124
Jump Into Science: Stars, 339–340
Next Time You See a Maple Seed read-aloud, 250
research (further exploration)
“Better Together” lesson, 190
biomedical engineering, 236
“Burn” lesson, 148
design process, 71
“From Edison to the iPod” lesson, 170
hurricanes and levees, 273
lightbulbs, 127
mountains, 300
plant growth, 253
product testing, 89
recycling, 355
“Space Exploration” lesson, 316
“Spider Science” lesson, 213–214
wind-up toys, 107
Roberts, David, 61, 64
Rocco, John, 307, 310–311
Rockliff, Mara, 79, 81
Rosenthal, Betsy R., 179, 182
Rosie Revere, Engineer, 5, 61, 62, 64, 68, 69, 72
Rs of recycling, 349
rubber bands, 101, 104, 105–106

S
safety precautions
“Bionic Animals” lesson, 224
“Burn” lesson, 138, 142–143, 150
Index

“From Trash to Treasure” lesson, 348
“Hurricane!” lesson, 270
“Light It Up!” lesson, 116, 125
“Mesmerized” lesson, 80
“Solving the Puzzle Under the Sea” lesson, 22, 290
“Spider Science” lesson, 204
“Star Stuff” lesson, 334
“The Inventor's Secret” lesson, 62
“Wind It Up” lesson, 100, 103

Saffir-Simpson Hurricane Wind Scale, 265, 265
Sagan, Carl, 333, 335, 336, 337, 340
samara (maple seed), 248, 249
satellite transmitters, 182

science and engineering practices in the 3–5 classroom, 48, 49–50, 51
and A Framework for K–12 Science Education, 25, 47–48
differences between, 51, 52, 52 engineering design process, 52–53, 53
and NGSS, 48, 52–53, 53
student-directed Further Exploration, 53–55, 56–58
scientific method, 82, 83
seafloor spreading, 292
Sedlak, Peggy, 349
seismicity, 298
Sisson, Stephanie Roth, 333, 336
Sjonger, Rebecca, 223, 232

sketch to stretch, Derby the Bionic Dog, 234–235
sky Jell-O, 146
Slade, Suzanne, 61
social behavior in animals, 180–181
See also “Better Together” lesson

Solar System app, 308, 309–310, 310
solid states of matter, 139
Solving the Puzzle Under the Sea, 22, 289, 290, 292, 293, 295–296
“Solving the Puzzle Under the Sea” lesson, 22, 51, 289–306, 376
background for, 291–292
BSCS 5E Model for, 292–299
elaborate, 297–298, 298
engage, 292–294
evaluate, 298–299
explain, 296–297, 297
explore, 294–296, 295, 296
Common Core connections, 292–299
description of, 289
Framework connections, 289
further exploration suggestions, 299–300
materials for, 290–291, 291
objectives of, 289
performance expectations, 376
picture books for, 289
safety precautions for, 290
student pages for, 291, 301–306
time needed for, 290
websites and suggested reading resources, 300
sonar devices, 291
soot, 140
sounding box, 291, 295
soundings, 291, 295
Space Exploration, 6, 307, 308, 312–313, 315
“Space Exploration” lesson, 6, 307–332, 377
background for, 308–309
BSCS 5E Model for, 309–316
elaborate, 312–315, 313
engage, 309
evaluate, 315–316
explain, 310–312, 311
explore, 309–310, 310
Common Core connections, 309–316
description of, 307
Framework connections, 307
further exploration suggestions, 316–317
materials for, 308
objectives of, 307
performance expectations, 377
picture books for, 307
student pages for, 308, 318–332
time needed for, 308
websites and suggested reading resources, 317
species range, 182
spiderlings video, 207–208
“Spider Science” lesson, 26, 52, 203–221, 372
background for, 204–206
BSCS 5E Model for, 206–213
elaborate, 210–212
engage, 206
evaluate, 212–213, 212
explain, 207–210, 210
explore, 206–207, 207, 209, 209
Common Core connections, 206–213
description of, 203
Framework connections, 203
further exploration suggestions, 213–214
materials for, 204
objectives of, 203
performance expectations, 372
picture books for, 203
safety precautions for, 204
student pages for, 204, 216–221
time needed for, 204
websites and suggested reading resources, 214–215
spring steel, 101
Star Stuff, 333, 334, 336–337
“Star Stuff” lesson, 22–23, 333–346, 378
background for, 335
BSCS 5E Model for, 336–341
elaborate, 339–340
engage, 336–337
evaluate, 340, 340
explain, 338–339
explore, 337–338, 337, 338

Common Core connections, 336–341
description of, 333
Framework connections, 333
further exploration suggestions, 341–342
materials for, 334
objectives of, 333
performance expectations, 378
picture books for, 333
safety precautions for, 334
student pages for, 334, 343–346
time needed for, 334
websites and suggested reading resources, 342

STEM at Home
“Better Together” lesson, 189–190, 202
“Bionic Animals” lesson, 235, 236, 244
“Burn” lesson, 148, 160
“From Edison to the iPod” lesson, 170, 178
“From Seed to Tree” lesson, 252, 261
“From Trash to Treasure” lesson, 354–355, 363
“Hurricane!” lesson, 272, 287
“Light It Up!” lesson, 126, 136
“Mesmerized” lesson, 88, 98
“Solving the Puzzle Under the Sea” lesson, 299, 306
“Space Exploration” lesson, 316, 332
“Spider Science” lesson, 213, 221
“Star Stuff” lesson, 340–341, 346
“The Inventor’s Secret” lesson, 5–6, 48, 51, 61–78, 163, 365

“Wind It Up” lesson, 107, 113

STEM instruction
context for concepts, 3–4
and correction of science misconceptions, 4
depth of coverage in picture books, 4
described, 2–3
disciplines, 3
and picture book genres, 5–7
selection of picture books for, 4–5
using picture books for, 1–7
stop and try it about, 15
Candle Observations, 142–143
capillary action demonstration, 144–145
Making Machines With Springs read-aloud, 104–105
storybooks, 5–6
Strategies That Work, 11
support for test results and the scientific method, 82, 83
synthesizing about, 13
Comparing the Design Process, 232
Comparing Maps, 298–299
Fadell’s TED Talk, 169
“Giving the World a Helping Hand” video, 234
Hurricane Katrina Investigation Journal, 268–269
Interactive Article: Plastic, 352
Making Machines With Springs read-aloud, 105
Next Time You See a Spiderweb read-aloud, 209
Spool Car Racer Instruction Manual, 11–13, 106–107
Wildfires read-aloud, 147–148

transformative processes, 292
TED Talks, 169
tentative nature of science, 312
tests and the scientific method, 82, 83
Tharp, Marie, 289, 291–292, 293–294, 296, 299
“The Gambia, 349, 350
The Inventor’s Secret, 61
“Hurricane!” lesson, 272, 287
“Light It Up!” lesson, 126, 136
“The Known Universe” video, 309
three-dimensional (3-D) printing, 223, 225, 226, 234
Timeless Thomas, 161, 162, 164, 165
Tisman, Valeria, 203, 210
Tjernagel, Kelsi Turner, 179, 186
Tomecek, Steve, 333, 338
“Toyologist” video, 107, 113
traits, 204
transformation of energy, 119, 125

Translating the NGSS for Classroom Instruction, 22

Copyright © 2017 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781681403311
trash. See “From Trash to Treasure” lesson

trunk (elephant), 198

turn and talk about, 15

An Ambush of Tigers read-aloud, 183

Animals That Live in Groups read-aloud, 186

Biomedical Engineering and Human Body Systems read-aloud, 232–233

“Food Ad Tricks” video, 85–86

“How to Map the Ocean Floor” video, 294

“Kratt’s Creatures” video, 187

Let’s Think About the Power of Advertising read-aloud, 85

lightbulbs, 119

Making Machines With Springs read-aloud, 104, 105

photosynthesis video, 250–251

Star Stuff read-aloud, 336

Wildfires read-aloud, 145–146

Wildlife Tracking Technology, 188

Two Bobbies, 263, 264, 267

undersea mountains. See “Solving the Puzzle Under the Sea” lesson

upcycling, 349, 352, 353

V

vaporization, 140, 153

variables, 81, 92–93

visionary person, 168

visualizing about, 12

Burn read-aloud, 142

iPod and Electronics Visionary Tony Fadell read-aloud, 168

Voyager 1 and Voyager 2 spacecraft, 335

W

water vapor, 139

watts, 122

wildfires described, 141

National Geographic Kids: Wildfires, 137, 138, 145–147, 156–157

Willis, Peter, 137, 142

“Wind It Up” lesson, ix, 4, 26, 99–113, 367

background for, 101

BSCS 5E Model for, 102–107

elaborate, 105–106, 106

engage, 102

evaluate, 106–107

explain, 104–105, 105

explore, 102–104, 102, 103, 104

Common Core connections, 102–107

description of, 99

Framework connections, 99

further exploration suggestions, 107–108

materials for, 100

objectives of, 99

performance expectations, 367

picture books for, 99

safety precautions for, 100, 103

student pages for, 101, 109–113

time needed for, 100

websites and suggested reading resources, 108

“Wind Up Racer” video, 105–106, 108

wind-up tub toys, 224–225, 224, 225

writing

Animals in Space Research Proposal, 212–213

Better Together Booklet and Scoring Rubric, 189

Evaluate Your Design, 272

Nightlight Instruction Manual, 126

Y

Yarlett, Emma, 115, 124

Yates, David, 223

Yellow Brick Roads, 9

Yoshikawa, Sachiko, 333, 338

Z

Zoehfeld, Kathleen Weidner, 289, 296

Zunon, Elizabeth, 347, 350
Picture-Perfect STEM Lessons, 3–5
Using Children’s Books to Inspire STEM Learning

“Teachers in our district have been fans of Picture-Perfect Science for years, and it’s made a huge impact on how they fit science into their school day. We are so excited to do more of the same with these Picture-Perfect STEM books!”
—Chris Gibler, elementary instructional coach, Blue Springs School District in Missouri

“This lively mix of picture books and engaging, standards-based STEM content will be a powerful tool to inspire STEM learning.”
—Andrea Beaty, author of Ada Twist, Scientist; Rosie Revere, Engineer; and Iggy Peck, Architect

For teachers who are eager to integrate STEM into their school day, Picture-Perfect STEM Lessons is an exciting development. This book's 15 kid-friendly lessons convey how science, technology, engineering, and mathematics intersect in the real world. They embed reading-comprehension strategies that integrate science and English language arts through high-quality fiction and nonfiction picture books for grades 3–5. You’ll help your students engage in STEM activities while they learn to read and read to learn.

This volume of Picture-Perfect STEM Lessons for the upper-elementary grades uses a remarkable variety of books to teach STEM concepts. For example, you can pique students’ interest with The Inventor’s Secret; An Ambush of Tigers; and Boy, Were We Wrong About the Solar System! Then, through the accompanying lessons, you can teach ways to plan and carry out investigations, analyze and interpret data, and construct explanations and design solutions. Along the way, your students will invent toy cars, learn how scientists use technology to track individual animals within larger groups, figure out how to reduce plastic pollution, and tackle other real-world projects.

Along with these new lessons come the easy-to-use features that have made Picture-Perfect Science a bestselling series for more than a dozen years:
- Fiction and nonfiction pairs
- Background reading, materials lists, student pages, and assessments for each lesson
- Connections to science standards and the Common Core State Standards for both English language arts and mathematics

Picture-Perfect STEM Lessons is a powerful tool for guiding instruction. You’ll love how effective this book is, and your students will love learning about STEM.

Grades 3–5
NSTA press
National Science Teachers Association