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viiPROBLEM-BASED LEARNING IN THE PHYSICAL SCIENCE CLASSROOM, K–12

PREFACE

In science education, there are numerous strategies designed to promote learners’ ability 
to apply science understanding to authentic situations and build connections between 
concepts (Bybee, Powell, and Trowbridge 2008). Problem-based learning (PBL; Delisle 

1997; Gijbels et al. 2005; Torp and Sage 2002) is one of these strategies. PBL originated as 
a teaching model in medical schools (Barrows 1986; Schmidt 1983) and is relevant for a 
wide variety of subjects. Science education, in particular, lends itself to the PBL structure 
because of the many authentic problems that reflect concepts included in state science 
standards and the Next Generation Science Standards (NGSS; NGSS Lead States 2013).

The Problem-Based Learning Framework
PBL is a teaching strategy built on a constructivist epistemology (Savery and Duffy 1995) 
that presents learners with authentic and rich, but incompletely defined, scenarios. These 
“problems” represent science as it appears in the real world, giving learners a reason to 
collaborate with others to analyze the problem, ask questions, pose hypotheses, identify 
information needed to solve the problem, and find information through literature searches 
and scientific investigations. The analysis process leads the learners to co-construct a pro-
posed solution (Torp and Sage 2002).

One strength of the PBL framework is that learners are active drivers of the learning 
process and can develop a deeper understanding of the concepts related to the problem 
starting from many different levels of prior understanding. PBL is an effective strategy for 
both novices and advanced learners. PBL is also flexible enough to be useful in nearly any 
science context. 

One challenge for teachers and educational planners, though, is that implementing PBL 
for the classroom requires advance planning. An effective problem should be authentic, 
and the challenges presented in the problems need to be both structured and ill-defined to 
allow genuine and productive exploration by students. Meyer (2010) suggested that these 
problems help students learn to be “patient problem solvers.“ For most instructors, getting 
started with PBL in the science classroom is easiest with existing problems. However, there 
are very few tested PBL problems available in print or on the internet. Valuable resources 
exist that describe in general what PBL is, how to develop lessons, and how PBL can help 
students, but curriculum resources are much harder to find.

In this book, we present a discussion of the PBL structure and its application for the 
K–12 science classroom. We also share a collection of PBL problems developed as part of 
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PREFACE

the PBL Project for Teachers (PBL Project), a National Science Foundation–funded profes-
sional development program that used the PBL framework to help teachers develop a 
deeper understanding of science concepts in eight different content strands (McConnell 
et al. 2008; McConnell, Parker, and Eberhardt 2013). Each content strand had a group of 
participants and facilitators who focused on specific concepts within one of the science 
disciplines, such as genetics, weather, or forces and motion. The problems presented in 
this book were developed by content experts who facilitated the workshops and revised 
the problems over the course of four iterations of the workshops. Through our work to test 
and revise the problems, we have developed a structure for the written problem that we 
feel will help educators implement the plans in classrooms.

Because the problems have been tested with teachers, we have published research 
describing the effectiveness of the problems in influencing teachers’ science content knowl-
edge (McConnell, Parker, and Eberhardt 2013). The research revealed that individuals with 
very little familiarity with science concepts can learn new ideas using the PBL structure 
and that the same problem can also help experienced science learners with a high degree 
of prior knowledge refine their understanding and learn to better explain the mechanisms 
for scientific phenomena. 

Alignment With the Next Generation Science Standards
To ensure that the problems presented here are useful to science teachers, we have included 
information aligning the objectives and learning outcomes for each problem with the NGSS 
(NGSS Lead States 2013). The NGSS present performance expectations for science educa-
tion that describe three intertwined dimensions of science learning: science and engineer-
ing practices (SEPs), disciplinary core ideas (DCIs), and crosscutting concepts (CCs). The 
NGSS emphasize learning outcomes in which students integrate the SEPs, DCIs, and CCs 
in a seamless way, resulting in flexible and widely applicable understanding.

The learning targets for the PBL problems included in this book were originally written 
with attention to the science concepts—what the NGSS calls disciplinary core ideas. The 
aim of the PBL Project was to enhance teachers’ knowledge of these core ideas. But implicit 
in the design of the PBL process is the need for learners to use the practices of science and 
make connections between concepts that reflect the CCs listed in the standards. PBL prob-
lems align well with the NGSS because these real-world situations present problems in a 
similar framework: SEPs, DCIs, and CCs are natural parts of the problems. We describe the 
alignment of the PBL problems with the NGSS in more detail in Chapter 2. As states begin 
to adopt these standards or adapt them into state standards, Chapter 2 should help teach-
ers and teacher educators fit the problems within their local curricula.
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PREFACE

Intended Audiences and Organization of the Book
As mentioned earlier, the PBL problems in this book have been shown to be effective learn-
ing tools for learners with differing levels of prior knowledge. Some teachers who par-
ticipated in the PBL Project used problems from the workshops in their K–12 classrooms, 
and facilitators with the project have also incorporated problems from this collection into 
university courses. 

Chapter 2 discusses the alignment of the PBL problems and analytical framework with 
the NGSS. Chapter 3 describes strategies for facilitating the PBL lessons. In Chapter 4, we 
share tips for the classroom teacher on grouping students, managing information, and 
assessing student learning during the PBL process. 

Chapters 5–8 present the problems we have designed and tested. Each chapter includes 
problems from one content strand (describing motion, forces and motion, engineering 
energy transformations, or engineering electricity and magnetism), alignment with the 
NGSS, the assessment questions we used to evaluate learning, model responses to the 
assessments, and resources for the teacher and students that help provide relevant infor-
mation about the science concept and problem. To help you locate the problems that are 
most appropriate for your classroom, we have included a catalog of problems (see p. xi); 
the catalog is in tabular format and will let you scan the list of problems by content topic, 
keywords and concepts, and grade bands for which the problems were written.

We hope that this collection of problems will serve as a model for educators who want to 
design and develop problems of their own. For instance, some problems in this book, such 
as Rescue Force (Chapter 6) and Rube Goldberg Machine (Chapter 7), use materials that 
may not be available or procedures that may not be possible in some classroom settings. A 
teacher with a different set of available materials should modify the problems and activity 
guides to match the context of his or her classroom. In these cases, we encourage teachers 
to modify and adapt problems to fit contexts familiar to their own students. Chapter 9 dis-
cusses features of an effective problem that can help guide the efforts of teachers wishing 
to create their own PBL lessons.

This book is the third volume in a series. The first volume presented life science prob-
lems, and the second volume offered problems specifically written for teaching Earth and 
space science. This volume features physical science problems. The fourth volume will 
contain tips and examples for planners of teacher professional development programs. As 
you modify and implement lessons from these books, you can begin to develop your own 
problems that meet the needs of your students. 

Safe and Ethical Practices in the Science Classroom
With hands-on, process- and inquiry-based laboratory or field activities, the teaching and 
learning of science today can be both effective and exciting. Successful science teaching 
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needs to address potential safety issues. Throughout this book, safety precautions are 
described for investigations and need to be adopted and enforced in efforts to provide for 
a safer learning and teaching experience. 

Additional applicable standard operating procedures can be found in the National Sci-
ence Teacher Association’s Safety in the Science Classroom, Laboratory, or Field Sites docu-
ment (www.nsta.org/docs/SafetyInTheScienceClassroomLabAndField.pdf). 

Disclaimer: The safety precautions of each activity are based in part on use of the recom-
mended materials and instructions, legal safety standards, and better professional prac-
tices. Selection of alternative materials or procedures for these activities may jeopardize 
the level of safety and therefore is at the user’s own risk.
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CHAPTER 5: GET MOVING

1. Get Me Out of Here 70 Distance, direction, motion • • •

2A. Fastest Beetle 82 Distance, position, speed •

2B.  Fastest Human 91 Distance, position, instantaneous and average 
speed or velocity

• •

3. Constantly Moving 101 Distance, position, time, speed, velocity • • •

4. Good Driver 109 Distance, position, time, speed, velocity, 
acceleration

• • •

CHAPTER 6: FORCES AND MOTION 

1. Asteroid Field 130 Force, acceleration, direction, speed, velocity, 
Newton’s first and second laws of motion

• • •

2. Cartoon Cliff Escape 141 Force, acceleration, velocity, speed, direction, 
gravity, vertical motion

• •

3. Rescue Force 149 Force, acceleration, direction, mass • •
CHAPTER 7: ENGINEERING ENERGY TRANSFORMATIONS

1. An Energetic Ride 164 Conservation of energy, kinetic energy, potential 
energy, energy transfers and transformations

• •

2. Rube Goldberg Machine 176 Energy conservation, kinetic energy, potential 
energy

• • •

3. �Keep It Warm,  
Keep It Chill

189 Thermal energy, energy transfer, insulation, 
conduction

• •

CHAPTER 8: ENGINEERING ELECTRICITY AND MAGNETISM 

1. A Light in the Dark 205 Electrical circuits, batteries, light bulbs, electricity • • •

2. Wiring a Cabin 218 Electrical circuits, electricity, batteries, light bulbs, 
fuses, switches

• • •

3. Cool It 229 Electricity, magnetism, electric current, electric 
magnet, electric motor, polarity

• • •
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3

FACILITATING PROBLEM-BASED 
LEARNING

The experience of being the teacher in a science classroom during a problem-based 
learning (PBL) activity is a bit different from what you might experience for other 
types of lessons. In some learning activities, your role is that of content expert or 

presenter of information. The students might be involved in recording information, listen-
ing, or perhaps applying new ideas. Alternatively, students might be carrying out some 
kind of science investigation as you direct and guide with questions. These roles are cer-
tainly appropriate, but PBL requires something different.

In PBL, the teacher definitely steps away from the lead role and instead becomes a facili-
tator. Educators use this term a lot in teaching, but for our model of PBL, we believe this 
role is accentuated. The facilitator’s role is to supply minimal information but to provide 
resources and ask questions to guide the process. The students become more active par-
ticipants in the discussion and even take the lead in identifying next steps and issues that 
need to be explored and evaluating their own ideas. 

These new roles take practice—for both teacher and students. Students need to take risks 
in sharing and defending their ideas using information and evidence. Your role requires 
skillful questioning to guide without leading and, just as important, the ability to say noth-
ing and let students explore their own ideas to find their misconceptions. In this chapter, 
we will use a vignette format to provide examples of what you might see in a classroom in 
which PBL is being taught, with a focus on how the teacher can guide discussions during 
the lesson. We will also share tips and strategies for successful facilitation of a PBL lesson; 
additional tips are provided in Chapter 4, “Using Problems in K–12 Classrooms.” Some of 
what we share in this chapter is the result of our research on effective facilitation of PBL 
(Zhang et al. 2010), and some is based on our personal experience and teaching styles.

Remember, as you implement the lessons you select from this book, you may find that 
you need to practice your role as a PBL facilitator, and it takes time and practice to learn 
how to respond to students’ ideas on the fly.

Moves to Make as You Go Along: Stage-Specific Advice
Facilitating PBL problems feels very different from traditional teaching and may require 
some strategies that are not part of your normal routine. Throughout this chapter, we 
will offer some “moves” you can plan to make. These are deliberate tactics to help your 
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CHAPTER 3

students think and talk about the problem they are analyzing, and the tips help you move 
into facilitator mode. It can be hard to remember that your role has shifted. You need to 
hold in some of your expertise and let your students struggle a bit with the challenges of 
solving a real problem. It is hard to do this, because you want to help them, but in the long 
run, stepping into the role of facilitator will help your students gain confidence and skills 
they need to think critically. And that’s an important goal!

Still, there may be times when you need to share your knowledge of the concept. This 
may mean giving some examples of phenomena that demonstrate a process or explaining 
how certain ideas are connected. You also may need to ask questions to informally assess 
students’ understanding or clarify what a student means by a comment or question. These 
moves are important in facilitating students’ analysis of a PBL problem and in helping stu-
dents make sense of the information they are finding. Part of the art of facilitation is learn-
ing when to use your content knowledge and when to hold back and let students explore 
an idea. For the beginning facilitator, we recommend patience. If in doubt, let students 
work for a bit, and then share your expertise.

Explaining Discussion Guidelines
Because you and your students may be experiencing PBL for the first time, it is important 
to set some guidelines for a PBL lesson. Discussion about real-world problems may reveal 
some strong opinions, some misconceptions, and some differences in beliefs and values 
that may be difficult for younger learners to understand. Before you start a PBL lesson, at 
least until your students learn to operate in this new type of lesson, setting some guidelines 
will help you manage the discussion and keep the conversation on task and respectful.

In the first section of the following vignette, Ms. Sampson shows the class a list of 
guidelines for discussing PBL problems. These guidelines are useful in creating a climate 
in which participants are able to share ideas, pose questions, and propose hypotheses. 
They may also help create a culture of open discussion in your classroom. Throughout the 
vignette in this chapter, we have tried to indicate how the science and engineering prac-
tices (SEPs) and the crosscutting concepts (CCs) from the Next Generation Science Standards 
(NGSS; NGSS Lead States 2013) appear in this lesson. See Chapter 2, “Alignment With 
Standards,” for a complete list of the SEPs and CCs.

Helping Students Function in a Self-Directed Classroom
This recap of discussion guidelines is important to help students start to manage their 
own learning. Although the PBL framework introduced in Chapter 1 is a good founda-
tion for critical thinking, students may not have experience using a structured process for 
solving problems. In essence, we are making the metacognition needed to support learn-
ing more explicit (Bandura 1986; Dinsmore, Alexander, and Loughlin 2008) in a process 
that will help students develop the type of self-directed learning abilities we hope all our  
students can achieve. 
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Facilitating Problem-Based Learning

Ms. Sampson’s Science Classroom:  
Discussion Guidelines

Ms. Sampson has been planning since the summer to try a new lesson idea. Today she’s 
starting a PBL activity that she thinks will take about three days for her seventh-grade science 
class to complete. The topic is gravitational forces in her “Forces and Motion” unit, and 
today’s activity follows some lab activities about velocity and the effects of forces on a toy car 
rolling across the table, as well as a reading from the textbook about gravity. 

Ms. Sampson: Class, today we’re going to begin a project in which each team will try to 
understand the motion of falling objects. This will be a chance to make a plan and test what 
affects how objects fall. We are going to use problem-based learning to look at this topic, so 
we need to set some discussion guidelines.

She projects a slide with the guidelines and discusses the list (see Box 3.1).

Box 3.1. Guidelines for Discussion

1.	 Open thinking is required—everyone contributes!

2.	 If you disagree, speak up! Silence is agreement.

3.	 Everyone speaks to the group—no side conversations.

4.	 There are no wrong ideas in a brainstorm—respect all ideas.

5.	 A scribe will record the group’s thinking. 

6.	 The facilitator/teacher will ask questions to clarify and keep the  
process going.

7.	 Support claims with evidence or a verifiable source.

The guidelines are important in helping students develop the habits of scientific dis-
course. A conversation in a scientific context is different from a conversation with friends 
about sports, music, politics, books, or other topics. So to help our students learn to func-
tion in a scientific community, or even just be able to understand the process behind sci-
entific claims they might read about in an online news source, they need to know how we 
share and develop ideas in science. 

Copyright © 2018 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316214



20 NATIONAL SCIENCE TEACHERS ASSOCIATION

CHAPTER 3

TECHNOLOGY TIP

SMART boards (interactive whiteboards) 
and similar technology are a good 
option for recording group discussions! 
They allow you to record a “page” of 
notes, move to a new page, and return 
to previous notes when needed.

At the same time, the guidelines are a reminder to you, as the facilitator, about your 
role in the discussion. As the facilitator, one of the most difficult tasks is avoiding the urge 
to give “right answers” to your students. But it is important for you to set an example by 
respecting new ideas or ideas you are uncertain about. Your role, especially at the begin-
ning of a PBL problem, is to ask questions to clarify, to solicit responses from students who 
may be hesitant to share ideas, and to be the “referee” when the class rejects one student’s 
ideas before any evidence has been discussed. 

Recording Information
In the guidelines that Ms. Sampson shares, she mentions a “scribe.” It is important to have 
a durable record of the ideas students generate. The written copy of the ideas students 
generate is also important as a “map” that students and the teacher can follow to see the 
development of their understanding. In a sense, posting the ideas as a list makes the learn-
ing “visible.” The facilitator will use this list to make choices about guiding questions, 
information search strategies, and activities that can support the type of learning each 
particular class needs.

In some cases, you may wish to have a student 
serve as the scribe, but this may pull that student 
out of the conversation. It is difficult to create or 
share his or her own ideas when the student is 
busy writing others’ ideas on the board, and your 
students probably will not be able to juggle those 
tasks. In our experience, it is best if you, the facili-
tator, can record students’ statements, questions, 
and hypotheses on large sheets of paper, on the 
board, or projected on the screen so all students 
can see the lists (see Figure 3.1). 

You can create areas in your recording space for each of the three categories of ideas in 
the PBL framework (“What do we know?” “What do we need to know?” and “Hypoth-
eses”), but we suggest you use large pieces of paper taped to the board or the wall. This 
will let you add pages as the students’ list of ideas grows. You can make notations or cross 
off statements and hypotheses as the students find new information, but it is important 
to have those items to look back at during the process of working through the problem. 
Students can see how their understanding develops, question why they think an idea is 
true, and connect the evidence with their new understandings. The large pieces of paper 
or electronic files will also allow you to move back and forth between different sections, if 
you teach the subject more than once per day.
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Figure 3.1. Recording 
Learners’ Ideas in the  

PBL Framework

Launching the Problem
Once you have established discussion guidelines and pro-
cedures, it is time to launch the problem. For this stage, you 
can have students arranged whatever way works best for 
you, such as divided into small groups, seated on the floor 
in a circle, or seated at desks. 

In Chapters 5–8, each PBL problem begins with an overview 
that describes the key concepts of the problem and aligns the 
problem with the three dimensions of the NGSS (NGSS Lead 
States 2013). This alignment includes a table describing the 
SEPs, disciplinary core ideas, and CCs addressed in the les-
son. Keywords and a context for the problem are also offered 
to help you identify the problems that are most appropriate 
for your curriculum.

Following the overview and alignment page, each prob-
lem includes the text for the story arranged in two parts. 
Page 1 is the part of the story you will use to launch the 
activity. Some stories are short and can be printed on a half 
sheet of paper. In some cases, you might project the story on 
the screen, but we find that it is helpful to give each student 
or group a hard copy so that students can refer to it as they work through the analytical 
framework. You may choose to print one copy per student or let pairs or small groups read 
from the same page. 

Start by handing out the copies of Page 1, and ask your students to read the story quietly. 
You might need to make accommodations for English language learners or special needs 
students. Once everyone has had time to read through the story, ask one person to read 
the story aloud. This may seem redundant, but it is actually a very important step. Our 
research has shown that groups that read both silently and aloud at the start of the story 
generate a significantly higher number of ideas, questions, and hypotheses than groups 
that only read the story silently. We posit that in the first reading, students are working 
to comprehend the story, and in the second reading, they begin forming their own ideas 
in their minds. The time to process the story and think quietly seems to be important in 
supporting the discussion in the group as they move forward. The vignette sections that 
follow provide examples of how this process looks in the classroom setting.
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Ms. Sampson’s Science Classroom: The Launch

Ms. Sampson: OK, class, today’s PBL is called Cartoon Cliff Escape. Here is Page 1. Please 
read this story quietly. I’ll give you about two minutes.

She hands out Page 1 of the Cartoon Cliff Escape problem. (See Chapter 6, p. 142, to read 
the story.) As her class reads, she tapes three large pieces of paper to the board, labels them 
“What do we know?” “What do we need to know?” and “Hypotheses,” and gets her colored 
markers ready. After two minutes, she asks for a volunteer to read the story. David volunteers, 
stands, and reads the story aloud.

Ms. Sampson: Thanks for volunteering, David. Now that you’ve heard the story, let’s look at 
our three categories on the board. What do we know about the story right now? 

The class is quiet for a minute, but she notices the students look as though they are thinking.

Andrea: We are supposed to figure out the way to fall into the water at the slowest speed 
and the highest speed.

Ms. Sampson writes Andrea’s comment on the “What do we know?” paper.

Ms. Sampson: OK, good. What else do we know?

Jamal: In the cartoon, three characters went off the cliff. One just ran off the edge, one 
jumped up, and the other pushed down off the cliff. But I think we have to know how high they 
were before we answer this problem.

Ms. Sampson: OK, “How high is the cliff?” goes under “What do we need to know?”

Marcus: The last part of story said something about jumping up counteracts gravity.

Mai: Yeah, but do we really know that? I’m not sure jumping up really does that. I think we 
need to find out more about that.

Ms. Sampson adds Mai’s comment to the “What do we need to know?” list.

David: Will gravity act on them the same way if they jump up? That doesn’t sound like a very 
good idea to me. But I’m not sure how to describe how gravity works in this case.

Ms. Sampson: David, should I add something about gravity to the “What do we need to 
know?” page? Good question!

David: Yeah, I think we need to find out how gravity works.
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Carmela: The challenge says we need to test our answers. That goes under “What we know.”

Ms. Sampson: I can put that under “What we know.”

Carmela: Yeah, that’s a good place for that.

Ms. Sampson: Great! OK, let’s keep going. What else do we know?

The class continues the discussion by suggesting experiments they want to conduct.

Moves to Make: “Unpacking Ideas”
During a discussion in the three-column framework described earlier, students are likely 
to bring up terms and concepts that need to be “unpacked.” Unpacking is a term commonly 
used in education and business conversations, but it is not always clear what unpacking an 
idea entails. In essence, students are using one of the SEPs as they analyze and interpret the 
information they are given (SEP 4: Analyzing and Interpreting Data). Students also use this 
stage to define the problem (SEP 1: Asking Questions and Defining Problems).

Let’s focus on an example from the preceding vignette section. David brings up an idea 
to include in the “What do we know?” column:

David: Will gravity act on them the same way if they jump up? That doesn’t 
sound like a very good idea to me. But I’m not sure how to describe how 
gravity works in this case.

Ms. Sampson: David, should I add something about gravity to the “What do 
we need to know?” page? Good question!

The concept of gravity is certainly important to the problem about falling from the cliff. 
But it is likely that not all the students in the class are familiar with it or know how it will 
influence this challenge. Ms. Sampson steers this comment to the “What do we need to 
know?” list and moves on. 

It may be easy to imagine a discussion of gravity later in the lesson, but another useful 
strategy would be to “unpack” the concept right away. This can be done with questions 
that draw on what the students know about it already. These questions could be asked 
during the initial discussion, or they could wait until the class starts to explore the “What 
do we need to know?” list in more detail. But there are a couple of different ways to handle 
the discussion unpacking the concept.

Let’s compare a “teacher as expert” approach with a “teacher as facilitator” approach 
(see Table 3.1, p. 24). In the “expert” role, the teacher shares what she knows, and the 
students become passive recipients. In the “facilitator” example, Ms. Sampson pulls 
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information from the students, and the students’ role shifts to either experts or problem 
solvers who recognize the need to find information. In the latter example, the students are 
active learners and consumers of ideas, a role we want students to master.

Table 3.1. Comparison of “Teacher as Expert” Approach With “Teacher 
as Facilitator” Approach

TEACHER AS EXPERT TEACHER AS FACILITATOR

David: Will gravity act on them the same way 
if they jump up? That doesn’t sound like a 
very good idea to me. But I’m not sure how 
to describe how gravity works in this case.

Ms. Sampson: Gravity is important here. 
There will be no measurable difference in 
the way that gravity acts on the characters. 
The force of gravity will still accelerate the 
characters at 9.8 m/s2 no matter what height 
they come from.

Denise: But if the one that jumps falls from 
higher up, will he be moving faster by the 
time he hits? He is accelerating for a longer 
time.

Ms. Sampson: Yes, he will, because he is 
accelerating for a longer time.

Mai: What about Rambles? He runs off the 
cliff horizontally. Won’t that slow down his 
fall?

Ms. Sampson: That would add another 
direction to his motion, but gravity will still 
pull Rambles down at the same rate.

David: Will gravity act on them the same way 
if they jump up? That doesn’t sound like a 
very good idea to me. But I’m not sure how 
to describe how gravity works in this case.

Ms. Sampson: David, should I add something 
about gravity to the “What do we need to 
know?” page? Good question! Does anyone 
else have more information about that?

Andrea: Well, that section we read in the 
book yesterday said that gravity on Earth is 
always the same amount. Let me find that 
number. … Here it is! 9.8 m/s2.

Denise: That m/s2 thing is confusing. Is that 
how fast something falls?

Ms. Sampson: OK, does anyone remember 
what that number describes?

Steven: That’s the acceleration. A falling 
object speeds up at that rate as it falls.

Marcus: Yeah, so I think that means if Randy 
jumps up, he will be higher up and will 
accelerate a little longer. He should move 
faster. Maybe he will reach the ground 
faster … I think.

Denise: That doesn’t make sense to me. If 
he jumps up, he has to travel up for a while. 
That would make it take longer, wouldn’t it?

Mai: I think we should try it out. Can we do 
an experiment before we answer this?

Ms. Sampson: That’s a great idea. You can 
certainly do an experiment. 

Rosa: Yeah, it even says we are supposed to 
test it. I want to see what happens to the 
one that runs off horizontally. I think that 
will make it fall more slowly.

Copyright © 2018 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316214



25PROBLEM-BASED LEARNING IN THE PHYSICAL SCIENCE CLASSROOM, K–12

Facilitating Problem-Based Learning

In the facilitator example, the students get much of the same information, but they have 
either reasoned or remembered the information on their own and in their own words. 
The students have begun to develop some independence in learning and are practicing 
the skills used by proficient problem solvers. Independent learners can do more than just 
recall and repeat ideas. They synthesize ideas from information they are given or collect 
themselves (SEP 4: Analyzing and Interpreting Data). To demonstrate deep understand-
ing, students should be able to synthesize information by connecting ideas in the context 
of a real problem instead of repeating disconnected facts. In the expert example, Ms. Samp-
son is explaining how gravity affects the cartoon characters, but we cannot tell whether 
students are building their own understanding of the concept and the problem.

Generating Hypotheses
As students work through the analytical discussion of Page 1, they are likely to state ideas 
that reach beyond “What do we know?” and “What do we need to know?” In the next sec-
tion of the vignette, watch for the comment that suggests an inference. Sometimes these are 
subtle, but as the facilitator, you can point out the step the student has made and suggest 
adding this new idea to the list of “Hypotheses.”

As a facilitator, you will need to pay attention to the questions students ask during the 
discussion. One common pattern is that learners will present an idea as a question when 
they have some uncertainty about the statement. A student may suggest a question to add 
to the “What do we need to know?” list, but the question is actually a tentatively worded 
hypothesis. Let’s look at an example of this.

Ms. Sampson’s Science Classroom:  
Generating Hypotheses

Ms. Sampson: OK, class, you’ve covered a lot of ideas, so let’s keep working. Any other 
things we need to learn about or ideas about this problem we should add?

Angie: I have a “need to know” thing. I want to know if the one that pushes down off the cliff 
is in the air for a shorter time. If he is, I think he will be going slower when he hits the water, but 
I’m not sure.

Ms. Sampson: Good question, Angie, but I think I hear a hypothesis in that statement. You’re 
asking if an object that is thrown down hits the water sooner, but can we reword your question 
to make it a hypothesis?

Angie: I’m not sure if I’m right, though. I’m not sure this is a good hypothesis.
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Ms. Sampson: But that’s OK, Angie! Remember, a hypothesis is a proposed answer to a 
question that can be tested, and if the evidence eventually shows that it’s not correct, that’s all 
right! So do you want to try to build a hypothesis from your question?

Angie: I guess so. I’m not sure how to start it, though. “I think that if we throw a ball down …” 
Is that the way to start it?

Carlos: Shouldn’t we use the same kinds of words we use in other labs? “If, then, and 
because?”

Ms. Sampson: That’s what you learned to use when we’re going to change a variable and 
see what the result is, Carlos. Since we are changing a variable, that makes sense.

Angie: OK, I think it should be “If we throw a ball down instead of dropping it, it won’t be 
going as fast when it hits the ground.”

Joseph: It needs a “because” statement.

Ms. Sampson: Yes, what would be the “because” part?

Angie: “Because … because it got to the water quicker and gravity had less time to pull on it.”

Ms. Sampson: Good! That’s our first hypothesis. Can anyone tell me more about what’s 
going on with the forces in this example?

Jason: Wait a minute. Why are you talking about a ball? This is about a cartoon, isn’t it? 
Where did the ball come from?

Angie: We have to test this, so I thought throwing a ball would be a way to set up an 
experiment. 

Andrea: OK, so if you throw the ball down, gravity won’t affect the ball as much?

David: No, that’s not what happens. I don’t think that’s right.

Ms. Sampson: Remember, we’re making hypotheses. We need evidence before we can 
reject a hypothesis, so I think we need to include it on the “Hypotheses” page.

Carlos: I have a different hypothesis. I think the ball thrown down will still hit the ground going 
faster than the one we drop. 

Ms. Sampson: You need to put it in hypothesis form, too!

Carlos: How about this? “I believe the ball that’s thrown down will be going faster when it hits 
the ground, because throwing gets it going downward.”
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In this example, a student initiated the first hypothesis, but it began as a “What do we 
need to know?” question. Note the way that Ms. Sampson directed the discussion toward 
the “Hypotheses” column in the analytical discussion and pointed out that Angie’s ques-
tion seemed to include a hypothesis. This is a very common pattern in the discussion of 
Page 1 with most problems, and you need to watch and listen for those types of questions. 
One cue is to look for a “because” statement in the question. For instance, if Denise said, 
“I want to know if a ball you throw upward falls slower, because a golf ball you hit seems 
to hang in the air and looks like it falls slowly,” this suggests a hypothesis. The “because” 
indicates a connection between cause and effect (CC 2: Cause and Effect: Mechanism 
and Explanation) or a rationale for a possible solution to the problem (SEP 6: Construct-
ing Explanations and Designing Solutions). The teacher could easily leave the question 
worded as it is, but it helps to move it to the “Hypotheses” column. Students can then 
“test” the hypothesis as they do information searches later in the lesson.

The strategy Ms. Sampson used was to point out the purpose of a hypothesis and men-
tion that the question asked sounded like a testable question. She then asked students to 
rephrase the question rather than doing the rephrasing herself. This puts more control 
over the process in the hands of the students so they must practice this skill. Ms. Sampson 
is truly taking the role of facilitator by steering students with questions and letting the 
students generate the final version of the hypothesis. This facilitating includes reassuring 
Angie that it was okay to hypothesize and later find that the hypothesis is not supported. 
You’ve probably seen students’ reluctance to be wrong about a hypothesis, and PBL helps 
them get over that fear.

It helped that Ms. Sampson’s class had learned a deliberate pattern for writing hypoth-
eses in other classes. If you have been working on SEP 3 (Planning and Carrying Out Inves-
tigations), your students will likely have begun learning this skill as well. In your class, 
part of the scaffolding is meant to help them learn to ask questions, write hypotheses, build 
data tables, and write explanations. PBL gives you yet another context in which students 
can use those same practices, so you have the flexibility to insert your particular format for 
structuring these elements of the science process.

Angie’s hypothesis took quite a bit of scaffolding. Students contributed bits and pieces 
and made connections with the class “standard” for hypothesis writing. It was not an 
automatic process at first. This is typical of students who are still learning to think like 
scientists. Carlos was able to phrase his hypothesis in the appropriate format much more 
quickly because he was part of the process of working out that format during the discus-
sion about Angie’s hypothesis. This is also a common event. Students very quickly adopt 
the structure when the class works through the process out loud and can see the hypoth-
esis on the list as a reference for later discussion.

If no students come up with hypotheses on their own, you will need to help students 
think about making some predictions or proposed solutions. As the list of “What do we 
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know?” and “What do we need to know?” items grows, a facilitator can ask something like 
“So, what do you think is the answer to the challenge at this point?” This is usually enough 
to get the ball rolling with the first hypothesis.

Our experience suggests that once the first hypothesis emerges, other students become 
more comfortable suggesting possible solutions or hypotheses. In other cases, students 
may need a prompt from the facilitator. You can elicit hypotheses by asking, “So, what 
do you think is the answer to the challenge?” or “Do you have any hypotheses about a 
solution?” If students are really having trouble framing an initial hypothesis, you can ask 
if they think there is a relationship between any of the things listed under “What do we 
know?” Defining relationships is often the beginning of a hypothesis. Such initial hypoth-
eses may not be complete answers to the challenge, but they start the ball rolling.	

Introducing Page 2
As your students work through the PBL analytical framework and the information on 
Page  1, there will be a moment when they start to run out of new ideas to put in the 
three categories of the framework. They will exhaust the “What do we know?” ideas and 
address most of the learning issues on the “What do we need to know?” page. The list of 
hypotheses might be short, but the generation of these ideas will slow down. When that 
happens, your job as the facilitator is to transition into Page 2. 

Page 2 continues the Page 1 story and adds new information that will help students 
work toward a solution to the challenge statement at the end of Page 1. Introducing Page 2 
should work very much the way introducing Page 1 did; students will read Page 2 quietly, 
then a student will read it aloud. Once that happens, the class can repeat the analytical 
process, adding new ideas to the same three categories of the PBL framework.

One major difference in the way to handle information relates to the new content on 
Page 2. You may find that “What do we need to know?” items on your list will be answered 
with the Page 2 story, or that the hypotheses generated in the first discussion will be rejected 
based on the new information. You can certainly add new questions and hypotheses as 
well as “What do we know?” statements, but we strongly recommend that you keep the 
first set of ideas on the board and visible to students. As you answer items in the “need to 
know” list, cross them out but leave them on the list. Some facilitators keep a list of “sum-
marized knowledge” under each question to connect the “need to know” items with the 
new information they use to answer the questions. When you learn enough to eliminate 
a hypothesis, don’t delete or erase it, but cross it out. Having those ideas visible is helpful 
when students look at the path they have taken from their initial ideas to the final solution 
for the problem. Processing their own ideas this way gives students a way to know why 
the solution works, not just that this is the right answer. It also builds a habit for students 
to show their thinking and their work. You might even find that when students begin to 
adopt the PBL skills as habits, they apply them in other subjects as well!
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Ms. Sampson’s Science Classroom:  
Introducing Page 2

Jason: OK, I see that gravity is one of the forces, but when we drop the ball in different ways, 
we have to figure that in. We need to know what those forces are doing.

Ms. Sampson: So do you want to put that under “What do we need to know?”

Jason: Yeah, I think so.

Ms. Sampson: OK, got it. What else can we add to our lists?

(long pause)

Andrea: Don’t we need to know how far the animals fall? 

Jamal: We already have something about how high the cliff is under Need to Know.

Ms. Sampson: Yes, I think we have that covered. Any other ideas? Or new hypotheses?

(long pause)

Ms. Sampson: OK, then it sounds as if you’re ready for more information, right?

Multiple students: Yeah! We need more information.

Ms. Sampson: All right then, here’s Page 2. Let’s do what we did with Page 1. Read the story 
to yourself, and then we’ll read it out loud.

She hands out Page 2, the class reads it quietly, and then Devin reads Page 2 aloud. 

Ms. Sampson: OK, good. Let’s take a look at these videos. 

The classes watches the videos, and then the teacher continues the discussion. 

Ms. Sampson: Now let’s add new pages for “What do we know?” “What do we need to 
know?” and “Hypotheses.” We need to talk about each of these pages again with the new 
information we have. So … what do we know NOW?

Will: In the videos, you can kind of see the balls speed up as they are dropped. 

Rose: Yeah, but we need a way to measure how fast they are going or the time it takes. We 
have to be able to compare the different balls. They don’t all drop from the same height. And 
how do we know how heavy each ball is?
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Marcus: We don’t know that for sure. I think that should go under “What do we need to 
know?” Put “How heavy are the balls in the videos?”

Rose: We can’t find that out, can we? What if we just put “Does the weight of a ball matter?” 
Then we can test it ourselves and know what the balls weigh.

Ms. Sampson: Testing it sounds like a good idea! Let’s put that under “What do we need to 
know?”

Vince: Yeah, and we can try different heights. And maybe try different types of balls. Some of 
the balls in the videos were tennis balls. But the ones we have in gym class are old and don’t 
bounce very well.

David: Yeah, they’re pretty bad! Have you ever seen those pumps you can use to restore a 
tennis ball? My dad has one, and it really works. Maybe we need to test to see if that changes 
how bouncy other balls are.

Ms. Sampson struggles to let the conversation work its course—the students are getting off 
track and starting to talk about issues that are not important to the problem. But she adds 
Vince’s hypothesis about different types of balls to the list.

Alyssa: But wait, we don’t care what kind of ball we use. We’re looking at how the ball is 
dropped or tossed. As long as we keep the type of ball the same, it doesn’t matter. You’re 
talking about testing a different variable now. 

Anthony: But we need to keep the ideas for now and figure out which ones to test later.

Mai: I agree with Alyssa. Let’s think about the main question, but I think we need to start 
experimenting right now. I think we need to test some hypotheses. I still want to test the 
downward throw. Maybe it will fall the same, but I think it will be moving slower when it hits, 
and that’s what the challenge asks about.

Ms. Sampson: That’s an interesting idea, Mai. If you think it’s important, do you want to 
make that a hypothesis?

Mai: Well … I think the hypothesis should have something about gravity always acting the 
same and how long the ball is in the air, so it hits slower. 

Ms. Sampson: Do you think your hypothesis is like Angie’s? 

Mai: Umm … I guess it is!
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David: And I want to add a hypothesis, too. I think if we throw the balls down, they will fall at 
a higher speed because they started at a higher speed when gravity pulled on them. … Oh, I 
think that’s the same as what we already have.

Ms. Sampson: I’ll put your wording up too, David.

Devin: Does that mean we cross out that old hypothesis?

Ms. Sampson: Well, have we found evidence to rule any of these out?

Angie: No, not yet. But can we start doing some experiments to test them now?

Moves to Make: What If Students “Go Down the Wrong Path”?
In this section of the vignette, we see Ms. Sampson guiding the class through the analysis 
phase of Page 2. Students listed the new ideas they got from Page 2, raising questions about 
ideas they didn’t understand and offering new hypotheses. But we also see an example 
of students “going down the wrong path.” Some conversations take off on tangents, like 
the comments about tennis balls. Others may follow incorrect hypotheses that the teacher 
knows are going to lead to a dead end.

As the teacher, you will encounter those moments when you want to comment to pre-
vent the class from following a “wrong” hypothesis. You should already know what some 
viable solutions to the problem are, and you simply want to help your students find the 
right answers. But it is important not to interject comments that stop students’ exploration 
of incorrect ideas. A hypothesis that is later rejected is a powerful learning experience and 
is likely to lead to enduring understanding. So you need to let students explore those ideas, 
even when your instincts tell you to steer them in a new direction. Teachers likely will 
want to correct the inaccurate ideas right away, but the PBL framework emphasizes letting 
students find evidence that leads them to eliminate ideas on their own.

Note how Ms. Sampson handled this above. She included Vince’s hypothesis about test-
ing different kinds of balls on the list. You should avoid eliminating hypotheses for your 
class. Let students decide when the evidence means an idea should be rejected. That’s a 
difficult thing for teachers to do, and it may take some practice, but it is important! When 
students get off track or propose hypotheses you know are not correct, be assured that 
these things are normal in the PBL process. Each of the authors has experienced this, and 
we have felt the same internal conflict between providing content knowledge and letting 
students learn or discover for themselves. We’ve all learned to be patient, let the students 
drive the discussion, and wait for the learners to see all the information before we simply 
give answers.
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In the previous case, when class discussion started to drift, Mai and David helped keep 
the process on track by introducing a new way to word a hypothesis. Including the dif-
ferent wordings will allow students to focus on the ideas instead of a particular wording 
when they compare hypotheses with evidence and information they collect. Eventually, 
the students will have all the tools they need to decide which hypothesis is most viable. 
If Mai and David had not pulled the conversation back to the main point, Ms. Sampson 
could have done this by asking students how their present discussion topic related to the 
challenge. 

There are also other good strategies for redirecting the discussion. One suggestion is to 
establish a practice in which you, the teacher, are free to participate as a learner. This gives 
you permission to ask the same type of questions students should be asking. In this co-
learner role, you can model critical thinking and questioning while using your comments 
to keep students on task and on track.

Here are some questions or statements, or “steering tools,” that you can use to keep 
your class discussion on track:

•• “So, how does that apply to the challenge for this problem?”

•• “Maybe we should restate the question we are trying to answer.”

•• “Do we have a source that can verify that idea?”

•• “What kind of evidence do we need to support that?”

•• “How does this information from Page 2 relate to Page 1?”

•• “That sounds like a ‘need to know’ issue.”

Researching and Investigating
Once your students have completed the discussion of Page 1 and Page 2, you should have 
an extensive list of items under each of the three categories in the PBL framework: “What 
do we know?” “What do we need to know?” and “Hypotheses.” On some of the lists, 
you may have crossed out questions you’ve answered or hypotheses you’ve ruled out 
as new information becomes available. The information that is left should point to learn-
ing issues and predictions that have potential as solutions to the challenge presented on 
Page 1. Remember, the goal is to propose solutions to the challenge, so the research and 
investigation should focus on this goal.

The next step in the process of facilitation is to help the class develop a plan for gather-
ing information or conducting an investigation that will answer the “What do we need to 
know?” questions that are still unresolved. In this phase of the PBL process, you are faced 
with some choices that will determine what the next part of the lesson will include. Would 
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an inquiry-based lab or hands-on investigation help students understand the concepts that 
underlie the problem? Will students use a computer lab or classroom computers to search 
for information on the internet? Are there text resources that can help them answer the 
questions? Should you provide a limited set of readings to ensure that students find pro-
ductive information? All of these may be appropriate choices!

Investigations
In some problems, there may be a hands-on activity, such as a model that students can 
build, that would help illustrate a concept. For instance, in the “Engineering Energy Trans-
formations” chapter (Chapter 7), the Keep It Warm, Keep It Chill problem is an ideal situa-
tion in which to do tests with various containers to test their insulating qualities with both 
hot and cold materials. This allows students to experience a real-world phenomenon and 
use data as one type of evidence in constructing their final solutions.

You may also have your students conduct inquiry-based investigations to learn or rein-
force specific concepts. Motion problems such as the Constantly Moving problem (see 
Chapter 5, p. 101) may give you the opportunity to insert your favorite demonstration, 
model, or simulation of a skateboard or ball rolling on a surface. Problems from Chapter 8, 
“Engineering Electricity and Magnetism,” provide a context for doing a project with differ-
ent types of circuits and maybe even different types of energy sources. 

One of your roles as the teacher is to plan for these investigations. You may have activi-
ties in your textbook resources that would be appropriate, or you may find or create new 
lab activities to meet your needs. In Chapters 5–8, we have provided some lab activities 
that fit with specific concepts, including instructions to help you plan and implement these 
activities. 

An important component of any activity is safety. Students and teachers need to learn 
how to properly analyze hazards, assess risks, and take actions to minimize risks. Safety 
issues to be considered include the use of sharp objects, the use and disposal of chemicals, 
and the presence of fire hazards. You are responsible for precautions such as having stu-
dents wear safety goggles or glasses, providing disposal containers for sharps and chemi-
cals, and ensuring that students know where fire extinguishers, eye washes, and chemical 
showers are located.

Information Searches
Other problems are best addressed by helping students search relevant resources for 
answers to the learning issues they have identified. For teachers who need to integrate 
literacy standards into science teaching, the skills of finding and evaluating information 
from multiple sources are clearly featured in this part of the PBL process.

Sources for answering the learning issues your students have identified may include web 
searches, their science texts, books in the school’s library, or magazines and newspapers. 
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Although our first thoughts seem to turn toward technology as the go-to source, there are 
many text-based tools that are certainly appropriate. You can decide which are best suited 
for the context in which you are teaching based on access, convenience, or the fit for the 
topic at hand.

The search for information also offers multiple choices for scheduling. Perhaps you will 
have students work on this the same day they analyze Page 1 and Page 2, or you may need 
to plan this phase for the next day or as homework. The number of days you spend on this 
task also depends on your specific needs. 

Ms. Sampson’s Science Classroom:  
Finding Information and Experimenting

Ms. Sampson: All right, class, you’ve created a good list of ideas, hypotheses, and things we 
“need to know.” Now we need to plan some experiments. We know we will be dropping balls 
in sand and measuring crater size. Let’s look at the “What do we need to know?” list. Are there 
specific ideas that groups will offer to find out more about?

The students talk softly with their groups about what they want to research.

Jamal: Our group wants to compare how hard the ball hits the floor if you throw the ball 
down versus if you toss the ball up. But I think we need to look up some numbers about the 
force of gravity. Can we do that?

Ms. Sampson puts Jamal’s name next to “Toss Down vs. Toss Up.” You got it, Jamal! Your 
group can get started. When you find the information about the force of gravity, please write 
it on the whiteboard. We all should see that information.

Mai: And we want to test the dropping the ball from different heights. 

Ms. Sampson: OK, your group can do that experiment.

Denise: I’m not sure how to measure the speed of the ball when it hits. Can we look up some 
experiments for measuring the time it takes other things to drop? We want to see how others 
have done that.

Ms. Sampson: OK, Denise, that’s a good topic to look at.

Rose: We want to try the motion sensors we have in the cabinet. Maybe we can figure out a 
way to test how fast the balls are moving when they hit the ground, like Jason said.
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Ms. Sampson: Good idea! If you’ll volunteer, you can do that. All right then, folks! You need 
to get started. In the time we have left today, you should plan your experimental procedures, 
and we’ll continue working on this tomorrow. 

Angie: Can we look stuff up at home tonight, too? 

Ms. Sampson: Sure! But make sure you write down what sources you find and bring it 
with you tomorrow. Remember, when we’re done, each group is responsible for describing its 
experimental design. Be organized!

Teacher-Selected Sources
For some classes, “searching” for information may require more assistance from the 
teacher. In these cases, you might pick a limited collection of resources and provide these 
resources to groups when they are ready to find answers to their learning issues. Perhaps 
the problem is complex enough that you want to steer students to specific resources such 
as the videos on Page 2 of the problem. Maybe the information they need is not easily 
accessible to your students, either because very little is published online about the topic or 
because your school filters access to the necessary sites. Even the age or technology skills 
of your students may suggest that you should preselect the sources.

One strategy for doing this is to create sets of articles or websites that address specific 
topics. You can either give each group of students all of the sets or distribute each set to a 
different group. The latter option forces students to read and analyze the texts and share 
what they find with other groups. This type of communication is common among practic-
ing scientists and addresses skills that students need to develop across the curriculum.

To help you select problems for which preselected sets of sources are useful, we strongly 
recommend that you work through each problem in advance. Think of the types of “need 
to know” issues you expect students to identify, and try searching for those concepts. If 
you can’t find them easily, your students may also struggle to locate sources. Many of the 
problems in Chapters 5–8 include a Page 3 with links to websites and references to other 
materials that are relevant to the science concepts. 

Sharing and Resolving the Problem
When your students have completed the investigation or information search, the next 
phase includes sharing what they found. If each group has selected specific learning issues 
to research, this sharing is critical to the challenge presented to the class. No one group is 
likely to find all the information it needs to solve the problem or build a complete solution 
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to the challenge. But if students share information, the class can co-construct some solu-
tions, much as project teams do in the workplace. This phase of the PBL process gives stu-
dents a chance to hone their skills with SEPs 6–8: Constructing Explanations (for science) 
and Designing Solutions (for engineering); Engaging in Argument From Evidence; and 
Obtaining, Evaluating, and Communicating Information.

The class sharing session should still focus on the three pages of analysis they created 
during the discussion of Page 1 and Page 2, especially the “What do we need to know?” 
and “Hypotheses” pages. The information search should address specific “need to know” 
items, and students’ findings should help in the evaluation and adjustment of some of the 
hypotheses as they apply what they have learned to the challenge presented in the story. 
Post the three pages on the board or on a wall for all to see, and take a minute to recap what 
the class has done so far.

Each group should be asked to share. Although some students may be reluctant to speak 
in front of the class, building their comfort with such a task is an important learning goal. 
We find that when the presentation is informal, the task is less threatening. One way to 
promote sharing is to ask a student in each group to share one thing he or she learned. This 
leaves room for others in the group to share their ideas. Sharing their findings also helps 
students learn to pay attention to evidence and reliable sources. 

As groups present what they found, it may also help to have other students take notes 
or record concepts in a journal or science notebook. They should also be encouraged to ask 
questions that help clarify ideas. Let your class know that the goal is not to stump or quiz 
each other, but to help the entire class understand the information.

If your class or specific groups did an investigation, this is a good time to have the 
class look at the procedures and results and talk about what the evidence means. If you 
have a standard procedure for presenting scientific explanations from an investigation, 
this is a perfect time to apply that structure. For instance, you can establish a procedure in 
which students share observations and data, identify patterns in the data, and suggest an 
explanation for the patterns. In the case of developing a solution for a problem, another 
approach is to describe the proposed solution, explain why it will work, and explain how 
evidence supports the ideas. If you have a structure you use for this in your current lab 
activities, you can use the same structure with your PBL lessons.

When all the information has been presented, you have options on how to construct 
solutions. One way to come to a final answer to the problem or challenge is to discuss the 
problem as a group. The focus on this should be the hypotheses created by the class. When 
a group wants to support a specific hypothesis, you can ask for a rationale: What evidence 
makes you think this is a good hypothesis? Other students should also be allowed to make 
counterclaims about a hypothesis or to present ideas that would refute the hypothesis or 
solution. This discussion can be a rich assessment of students’ learning and ideas because 
it forces students to reveal the connections they make between concepts as they apply 

Copyright © 2018 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions. 
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316214



37PROBLEM-BASED LEARNING IN THE PHYSICAL SCIENCE CLASSROOM, K–12

Facilitating Problem-Based Learning

them to an authentic problem. Recording their ideas may be helpful if you wish to assess 
these connections, or you may choose to have a checklist so you can keep track of evidence 
of new learning. 

In some of the classrooms in which we have observed teachers using PBL lessons, we 
have also seen another approach. Some teachers elect to have the students in each group 
talk about the evidence they have found and create their own solution to the problem. This 
works best if each group was responsible for looking up more than one concept from the 
“What do we need to know?” list. It is helpful to set a time limit for this discussion, and 
you may want to have a structure for the group’s response as described earlier in this sec-
tion. You may also have a handout with general questions for the group to answer. This 
can include what hypothesis the group was investigating, what “need to know” issue it 
explored, what evidence it collected through research or experimentation, and how the evi-
dence leads to a solution. The group then presents its ideas to the class, and other groups 
are encouraged to ask questions or explain what they see as problems in the solution.

In both of these scenarios, the next step is to ask for a solution to the challenge at the 
end of Page 1. This is the ultimate goal of the activity, so make sure you pay attention to 
the challenge. Students might present more than one solution. That’s okay! In the real 
world, there may be multiple ways to solve a problem, and we want students to under-
stand that. But when more than one solution is presented, you can ask the class to discuss 
the strengths and weaknesses of each solution, ask students to vote on which one they 
prefer, or ask each student to write a short response or exit ticket with a prompt such as the 
following: “Which solution do you think is the most useful? Explain why you chose this 
solution over the others.” (See the “Assessing Learning” and “Responding to Assessment 
Data” sections later in this chapter for more information on exit tickets.)

Ms. Sampson’s Science Classroom:  
Sharing and Building Solutions

Ms. Sampson: Today we’re going to share the information you found about the Cartoon Cliff 
Escape problem we’ve been working on. As you present, remember that you need to describe 
how you got the data you used, any sources you found, and the results you want to share with 
the class. We’ll use that information to see what we can cross out on the “need to know” list 
and how your information fits with our “Hypotheses” list. I need each group to share what it 
found. Jamal, I’d like your group to start, if you don’t mind.
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Jamal: OK. We looked up the force of gravity, and it’s 9.8 m/s2, just like we talked about on 
the first day. We read that a ball tossed up should hit the ground at the same speed as the ball 
that’s tossed down. That didn’t make sense to us. Then we did our experiment—and the data 
were kind of weird. First, we had a lot of trouble figuring out if we were tossing the balls up the 
same way we were tossing down. We each took turns holding the ball and swatting it up or 
down. The balls we batted up always took a little longer to hit the floor than the ones we batted 
down. But when we used the motion detector to measure the velocity near the floor, there was 
a fair amount of variation, but it looked like each person’s tossed-up and tossed-down balls had 
about the same speed. 

Rose: We had trouble with the motion sensors because they have to be aimed just right. But 
we found another way to find the velocities. There’s an app we used on the tablets that lets us 
take a video and find the times by analyzing the video. Then we figured out the ball’s speed in 
the video over the last meter.

Anthony: What? That’s totally cool! Did it work better than the motion sensor?

Rose: Definitely! Our numbers were really consistent. It’s kind of like what they do on Myth 
Busters.

Ms. Sampson: It’s the same idea, Rose. But what did you find out when you tested the 
dropped and the tossed balls? Didn’t I see your group doing the same tests as Jamal’s group?

Rose: Yeah, we did. And we found the same weird thing. The balls are going about the same 
speed whether we toss them up or down. 

Mai: Whoa, that’s not what I expected! Our results were kind of unexpected, too. We found 
that the ball took the same time to drop if it was dropped or if it was pushed sideways. We 
decided that since, either way, the ball had to fall the same distance from the table to the floor, 
and they both took the same amount of time, both had the same speed. Here is our data table. 

Mai put the data on the document camera to show the class.

Ms. Sampson: OK, let’s put both sets of data on the board. Did anyone else get data about 
this?

Jason: Yeah, we tested dropping, horizontally tossing, and tossing upward. Our numbers 
for the dropped and horizontally tossed balls are almost as close as Mai’s, but we tested with 
stopwatches. We thought the horizontal toss would take longer, but those trials were almost 
the same as for the dropped ball. It didn’t make sense at first, so we did some research. There 
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are some physics demonstrations that show that a bullet fired horizontally drops at the same 
rate as an object dropped straight down. It just travels horizontally at the same time it is falling. 
One website we saw said that gravity works in one direction, while the force of shooting the 
bullet acts in a different direction. We’re pretty sure the same is happening with the balls. The 
trials when we tossed the balls up took longer than the others, but you could tell from size of the 
crater the ball makes in the sand that the balls are hitting the floor harder. We don’t understand 
why, though.

Ms. Sampson: OK, that’s a pretty strong pattern then. And your data match some sources 
you found online. Do you want me to add this to the board?

Andrea: Yeah, but then we want to share some other data. We tested the force when the ball 
hit the floor. I think we have some ideas to share.

Ms. Sampson: Sure, use the document camera.

Andrea: OK, we found a couple of ways to measure the force. One of them uses a “force 
table.” That’s a sensor that measures the force. We wanted to try that, but we don’t have one. 
So we used the crater size method. The more force, the bigger the hole.

David: Wait a second. That doesn’t sound like it would work. Wouldn’t the sand just move 
back into the hole? And how can you measure that?

Andrea: Well, there’s a website that suggests how to do it. Debbie, can you put that site on 
Ms. Sampson’s computer so we can show how we did it? 

Debbie found the website on the teacher’s computer.

Andrea: See. You leave the ball in the sand, and it really seems to work!

Ms. Sampson: OK, that’s one way we have learned to design experiments—borrow ideas 
from other sources. So, what did you find out?

Andrea: Well, first, we found that if you toss the ball up, it hits with more force. We thought 
that made sense. It’s falling from higher, and if it’s accelerating all the way down, it should be 
moving faster. We found a site that gave a formula that the change in velocity is equal to a × t. 

Ms. Sampson: Good! Take a look at this formula, class. It’s telling us that the change in 
velocity will be more if the acceleration, a, is more or the time, t, is more. In this case, a is 
always the same. It’s the acceleration due to gravity. But as you found, the balls are falling over 
a longer period of time, so they end up going faster.
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Andrea: It was a lot harder to test the horizontal throw, though. It’s really hard to hit the box of 
sand every time. We only hit the sand twice, and since the ball is moving horizontally, it kind of 
splatters sand all over. It’s hard to tell where to measure the depth.

Rose: Hmmm … I wonder if there’s a better way to test that? 

Ms. Sampson: If we have time, maybe we can test that again.

Marcus: Yeah, I have some ideas. But we need to work out our design first.

Ms. Sampson: OK, I understand that. Hey, Denise and Steven, did you do some tests, too?

Denise: Yeah, we did. Hey, guys, come up and help me show the trials we tested, then we 
can show our data.

Each group showed the results of its experiments and discussed its methods. Once all the 
groups were done, Ms. Sampson redirected the discussion to the original problem.

Ms. Sampson: OK, I think we’ve gone over these data pretty thoroughly. Now, it’s time 
for your teams to start thinking about how your evidence relates to the Cartoon Cliff Escape 
problem. You have the rest of the class to talk about it, and you can share ideas outside of 
class. By tomorrow, I want each group to write its solution to the problem.

Moves to Make: Correcting Misconceptions or Nonscientific Solutions
When your students are constructing and selecting solutions, they are considering infor-
mation their class has shared, but they also are influenced by prior knowledge. Sometimes 
this prior knowledge is not accurate, and it is likely to be durable and difficult to change. 
These ideas can lead to solutions at the end of the analysis process that are not practical, fail 
to really solve the problem, create other problems, or omit concepts you have identified as 
an important learning goal. Resources such as Keeley and Harrington’s (2010, 2014) publi-
cations can help teachers anticipate the types of inaccurate or incomplete understandings 
that may emerge during the PBL analysis process.

So what should you do when that happens? Our first suggestion is to assume the role of 
a classmate by asking questions you know will force the class to think about an important 
concept or piece of evidence. In the problem described in the vignettes, many students 
intuitively believed that the ball tossed horizontally would take longer to reach the ground. 
When skillfully used, asking questions can help students notice the problems with their 
claims. One of the most effective approaches is to have students compare a problematic 
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claim with information they have listed under the “What do we know?” column of the 
analysis charts.

One strategy that can be effective is to ask questions such as “Do any of the ‘what 
we know’ statements contradict these findings?” In the vignette, Jason’s group couldn’t 
explain its results. Andrea’s group had found the answer, but if the whole class had been 
stuck, having students examine the “what we know” list would have been helpful. Because 
the students had done research on gravity, they had a “What do we know?” item about 
gravity acting on an object in the same way regardless of horizontal movement, which 
may force the students to question their claims and conclusions. By asking students to use 
information from the sources they found, you can help them develop connections between 
evidence and concepts and among concepts (SEP 8: Obtaining, Evaluating, and Commu-
nicating Information). This is a critical practice in our world of abundant information. 
Students will be exposed throughout their lives to many claims and proposals in the news, 
at work, through advertising, and in legislative bills that need critical analysis against 
the available evidence. This also helps address at least two of the “Essential Features of 
Classroom Inquiry” listed in the supplement to the National Science Education Standards 
(National Research Council 1996, 2000), by asking students to give priority to evidence as 
they form and evaluate explanations.

Another approach would be to ask students to list the strengths and weaknesses of 
each source of information. As in the strategy above, this places students in the role of 
evaluators and requires comparison of evidence and conclusions of their classmates. This 
also models the type of analysis used in the workplace for problems related to science and 
engineering, as well as many other contexts. Remember, the phase of the PBL process in 
which students generate solutions highlights both synthesis and critical thinking, so hav-
ing students engage in these types of thinking is important. 

But what if this doesn’t do away with a misconception? Or what if the class didn’t grasp 
a key concept that makes a big difference in the problem? Scientifically incorrect ideas can 
be durable and may get in the way of students’ assimilation of new ideas. Some of the 
peripheral information may draw students’ attention as they create solutions. Thus, you 
need to be prepared to correct ideas and guide the development of solutions during this 
final part of the PBL lesson. 

When your students just aren’t applying concepts accurately, you now have a chance 
to explain ideas. There are times when your students need you to be the expert. Although 
we suggest you be patient with students’ thinking processes, you may have to step in and 
present information that students need. If necessary, you can lecture, lead a discussion, 
show a simulation or an image, or introduce some type of activity to help guide the learn-
ing. A good example of this is illustrated in the vignette when Ms. Sampson explained 
the connection between acceleration time and the change in velocity. The formula was 
beyond what her students needed to know, but it applied directly to their questions, so 
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she used her expertise to make it accessible to the students. There are many other ways 
to explain concepts using models, examples, and diagrams (Keeley and Harrington 2010, 
2014; Schwarz, Passmore and Reiser 2017).

Assessing Learning
When implementing a PBL lesson, you should respond to the learning needs of your stu-
dents as they emerge. Flexibility is key, but to be flexible, you need information about what 
students are thinking. Assessment is an important part of the facilitation process. As you 
lead a class through PBL problems, you should be planning to assess and to use the infor-
mation from your assessments to adjust your teaching.

The PBL process as we have described it provides for continuous assessment. The pro-
cess of analysis using the PBL framework allows you to hear and see what students are 
thinking as they talk about their ideas and record information, questions, and hypotheses 
under the three columns of the analytical structure. Each comment from a student gives 
you insight into their understanding. 

But be aware that what you hear in a group discussion may not reveal what every indi-
vidual is thinking. In a whole-class discussion, you see a “group think” picture of what 
students know. There may be bits of information from a handful of students that seem to 
make sense when the entire group shares ideas, but you need to know what each student 
understands. It is helpful to have strategies that let you assess individual students rather 
than the entire group of students.

The need for individual assessments is even more pronounced if the activity takes more 
than one class period. As we developed our model in the PBL Project for Teachers, our 
facilitators found it helpful to implement informal assessment strategies such as exit tick-
ets. These are brief prompts asked before the end of a class period for which students write 
a short response. These prompts may focus on one idea the students learned, one idea they 
found confusing, or one question they have based on what happened in class. You might 
also ask students or groups to give a written summary of the information they found dur-
ing their research, their choice of the best hypothesis so far, or a drawing of the concept 
they are exploring.

Another form of assessment is the transfer task. Transfer of knowledge refers to the ability 
of students to apply knowledge of the concept in new contexts. For instance, students may 
know that a ball falls at the same rate whether dropped or thrown horizontally, but we 
also want them to understand how gravity acts on other moving objects such as airplanes 
and rockets. The importance of transferring knowledge to new situations is supported 
by Schwartz, Chase, and Bransford (2012), who suggested that a deep understanding of 
a concept must be accompanied by transfer. To help you perform this type of assessment, 
the problems in Chapters 5–8 include transfer tasks. The transfer tasks accompany specific 
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problems, but they can also inform the choices you make about the next activities to include 
in a unit. Application questions are also offered as examples of summative assessments for 
the unit.

In Chapters 5–8, we also present open-response questions that we have developed and 
tested for each content strand. There are two types of these questions (general and appli-
cation) to address the concepts and standards included for the problems in the content 
strand. We discuss more about the role of these assessments in Chapter 4, as well as options 
for when to use the assessments and how to interpret responses.

Responding to Assessment Data
Assessment of learning is important, but you also need to consider how you can use the 
assessments to respond to students’ needs. We’ve introduced a couple of assessment strat-
egies that can help you select your next moves as a facilitator in the PBL lesson. But it may 
help to share some examples. These examples include exit tickets and group summaries of 
solutions to PBL problems.

Exit Tickets
Exit tickets (Cornelius 2013) are a simple and quick way to collect information about your 
students’ understanding and issues that need to be resolved. An exit ticket can ask one of 
several different kinds of questions, including “What’s one thing you’ve learned?” “What 
about today’s topic are you still confused about?” or “What’s one question you have about 
today’s lesson?” Each student then writes a short response and turns it in to you at the end 
of class. The next step is for you to read through the tickets to see if there are important 
issues that need to be handled in the next day’s class.

The following vignette section provides an example of how this might work in Ms. 
Sampson’s class.
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Ms. Sampson’s Science Classroom: Exit Tickets

Ms. Sampson asked her class to write exit tickets after Page 2, using the prompt “What’s one 
question you have about the Cartoon Cliff Escape problem?”

Ms. Sampson: OK, I looked over the exit tickets you wrote yesterday, and I think we need 
to add something to the “need to know” list. Several of you wrote that you want to know if air 
resistance will change the time it takes objects to drop or their impact speed, depending on 
their size. Can we add that to our list?”

The class agrees, so this is added to a list of topics to be researched. Another possible result 
might be …

Ms. Sampson: Your exit tickets tell me that there may be some questions about forces 
working on the ball you threw horizontally. Let’s talk more about that.

She explained that any moving object may be influenced by forces acting in different 
directions. She set up a demonstration on a lab table using a table tennis ball. She had one 
student blow on it gently with a straw to show its motion. The force of blowing on it pushed 
the ball in a straight line. In a second trial, the first student blew on the ball, then a second 
student blew on it from a 90-degree angle. The ball changed direction but was still moving 
toward the far end of the table. Ms. Sampson explained that each force was independent and 
had pushed in a straight line. To make the ball stop moving toward the end of the table, a 
force would have to push back in the opposite direction from the first force.

Group Summaries
In the PBL Project for Teachers, we found that an entire class may agree on a solution, but 
some individuals may have a different level of understanding of the concept. One strategy 
we tested, group summaries, proved to be useful. 

In this assessment, students in each group are asked to write a summary of their group’s 
proposed solution. The summary should include a description of the solution they think 
best solves the problem or answers the challenge, along with a rationale that explains what 
evidence they used to construct their solution (SEPs 6, 7, 8). In the process of discuss-
ing and writing this summary, group members are able to solidify their understanding. 
When groups are asked to complete a summary, individual scores on content tests are 
often higher than if the summaries are not used.

The following vignette section offers an example of how this assessment might be 
implemented in Ms. Sampson’s lesson.
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Ms. Sampson’s Science Classroom:  
Group Summary of Solutions

After the students thought about the Cartoon Cliff Escape problem and their experimental 
results, Ms. Sampson asked each group to write and turn in a summary of the plan they had 
developed with an explanation of how the plan worked. In these summaries, she noticed an 
issue that needed to be explained. Some of her students wrote that the ball that was tossed 
up had more velocity because a stronger force was acting on that ball.

Ms. Sampson: All right, I saw in your solutions that many of you wrote that the ball tossed 
upward has more force acting on it, so it is moving faster when it hits the ground. So I have 
a question for you. Which spaceship would move faster in outer space: one when you give 
a one-second burst of thrust with the rocket or one with same amount of force but the thruster 
firing for a four-second burst? 

The students looked confused at first, so she asked them to view an online computer 
simulation that let them experiment with the movement of a spaceship in which they could 
control the thruster and see the velocity. She gave groups time to try out several scenarios and 
take some notes.

Ms. Sampson: So what did you find out about the movement of the spaceships?

Sarah: Our ship keeps accelerating if you leave the thruster on for a longer time.

Carlos: Yeah, and a short burst pushes the rocket, and it keeps going the same speed after 
that. If you keep firing the thruster, the velocity graph keeps going up.

Mai: We got the same thing, but I’m not sure I see what this has to do with the balls.

Ms. Sampson: OK, those are some good observations. So let’s talk about the forces on the 
balls.

Jason: Well, gravity is pulling on the balls. It’s that 9.8 m/s2 thing. That’s the rate of 
acceleration.

Angie: Oh, I think I get it now. When you toss the ball up, gravity is pulling it down for a 
longer time. It’s like a thruster left on a little longer. So it will end up moving faster. It’s not the 
force that’s bigger. It’s the amount of time the force is pulling it down.

Ms. Sampson: That’s a great comparison! Keep in mind that the force of gravity is the same 
for all the balls—the force is constant. Now let’s see how that might change your answers a bit.
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Summary
Facilitating PBL requires a slightly different set of skills than direct teaching does, and it 
requires practice. Your role as the facilitator means you need to be prepared for several 
possible paths students may take. Your role also shifts from provider of information to 
a guide who needs to skillfully ask questions that allow students to reveal their own 
thinking, resolve their own misconceptions, and base their own ideas on evidence rather 
than an “expert” source. This questioning also requires you to moderate disagreements 
and keep students on task, so facilitating PBL lessons will feel very different from other 
lesson formats.

You will also need to anticipate what kinds of information, models, and explanations 
you should be ready to offer your classes. If you teach multiple sections of the same class, 
each may have different needs, so you will find yourself selecting different responses. 
Assessment is a key factor; you need to know what your students are thinking!

Box 3.2 presents some tips to remember as you facilitate your PBL lessons.
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Box 3.2. Dos and Don’ts of PBL Facilitation

Do …

•• Use open-ended prompting questions.

•• Count to 10 or 20 before making suggestions or asking questions.

•• Allow learners to self-correct without intervening.

•• Be patient and let learners make mistakes. Powerful learning occurs from 
mistake making. Remember that mistakes are okay.

•• Help learners discover how to correct mistakes by clarifying wording, seeking 
evidence, or checking for discrepancies between ideas and evidence.

Don’t …

•• Take the problem away from the learners by being too directive.

•• Send messages that they are thinking the “wrong” way.

•• Give learners information because you’re afraid they won’t find it.

•• Intervene the moment you think learners are off track. 

•• Rush learners, especially in the beginning.

•• Be afraid to say, “That sounds like a learning issue to me” instead of telling 
them the answer.

•• Rephrase learners’ ideas to make them more accurate.

Source: Adapted from Lambros 2002.
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Page 3: Resources, 211
Parallel and Series Flashlight Circuits, 214
performance expectations, 205
problem context, 212
problem overview, 206
problem solution, 213–214
safety, 209–210
Saltwater Circuit, 216
science and engineering practices, 205
solution summary, 252
Spelunkers, 207
teacher guide, 212–215
transfer tasks, 216–217

List of ideas, 62–63
Literature, 69, 128, 129, 162, 163

M
Mathematics, 69, 128, 129, 162, 163, 203, 203
McTighe, J., 239
Medicine, 2
Metacognition, 2, 18
Meyer, D., vii, 5
Michigan Grade Level Content Expectations, 11
Michigan State University College of Human 

Medicine, 4
Mistake making, 47
Model responses, writing, 244
Modification of existing lessons, 252–253
Motion, 67–129

common misconceptions, 69
common problems in understanding, 69
describing, 67–68
interdisciplinary connections, 68, 69

Ms. Sampson’s Science Classroom
discussion guidelines, 19
Exit Tickets, 44
Finding Information and Experimenting, 

34–35
generating hypotheses, 25–26
Group Summary of Solutions, 45

launch, 22–23
Page 2, 29–31
Sharing and Building Solutions, 37–40

N
National

Research Council, 41
Science Foundation, viii, 3
Science Teacher Association’s Safety in the 

Science Classroom Laboratory, or Field 
Sites, x

National Science Education Standards (National 
Research Council), 41

Next Generation Science Standards (NGSS), viii, 6, 
11, 12, 13, 14, 18, 21, 67, 127, 161, 201

aligning your own lesson with, 239
alignment with, 11–16

O
Objectives, writing, 239

P
PBL

Lesson Talk-Through, 252, 256
Lesson Template, 255
Project for Teachers, 3, 4, 5, 11, 14, 42, 44, 49, 

53, 54, 55, 63, 64, 65, 240
Performance expectations, 6, 13–14, 70, 82, 91, 101, 

109, 130, 141, 149, 164, 176, 189, 205, 218, 229
Piloting a problem, 252
Planning, advance, vii
Practices. See Science and engineering practices 

(SEPs)
Presentations. See Sharing session
Printing the story, 21
Problem, 5

Assessment, 5, 9
catalog of, xi, 12
Hypotheses, 6, 7, 20, 28, 32, 62
ill-structured, 5
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launching, 21–25
modifying, 51
modifying and designing your own, 239–254
open-ended, 5
Overview and Alignment with the NGSS, 5, 

6, 21
Page 1: The Story, 5, 6, 7, 21, 28–32
Page 1: The Story, writing your own, 244–246
Page 2: More Information, 5, 7
Page 2: More Information, writing your own, 

246–247
Page 3: Resources and Investigations, 5, 7–8, 

32–35, 50–51
piloting, 252
sharing and resolving, 35–37
solution summaries, writing, 244
structure of, 5–9
Teacher Guide, 5, 8–9
using in K-12 classrooms, 49–66
What do we know?, 6, 7, 15, 20, 25, 27–28, 32, 

62
What do we need to know?, 6, 7, 7, 20, 25, 27, 

28, 32, 36, 54, 62
“Problem-Based Learning” (Hmelo-Silver), 3
Problem-based learning (PBL)

disciplines, 2–3
framework, 4, 4–5
historical background, 2
reasons for, 1–2

Problems as Possibilities: Problem-Based Learning for 
K–16 Education (Torp and Sage), 4, 5

Process of PBL, 4, 4–5
Professional learning communities (PLCs), 252

Q
Questions

application, 43, 56–58
application, writing, 242–243
asking, 40
general, 43, 56–58

general, writing, 242
implementing, 58
open-ended or prompting, 47
open-response, 56

R
Reading aloud the story, 21
Recording information, 20, 21
Rescue Force problem, 149–158

activity guide, 156
Adding Vectors, 155
application question, 158
assessment, 157–158
crosscutting concepts, 149
disciplinary core ideas, 149
Glacial Crevasse, 150
keywords and concepts, 149
NGSS alignment, 149
Osprey Holding a Fish, 158
Page 1: The Story, 150–151
Page 2: More Information, 152–153
Page 3: Resources, 154
performance expectations, 149
problem context, 155
problem overview, 149
problem solution, 155
Refrigerator Moving Suggestions, 157
Rescue Force Setup, 151
Rescue Simulation, 153
Rescue Solution, 155
safety, 152
science and engineering practices, 149
teacher guide, 155–156
transfer task, 157–158

Research, small-group, 7
Researching and investigating, 5, 7–8, 32–35, 

50–51. See also Sources
hands-on, 33
information searches, 33–34
inquiry-based, 33
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investigations, 33
investigations as teachable moments, 51
need to know issues, 50
reporting research findings, 63
safety, 33

“Resisting Overzealous Transfer: Coordinating 
Previously Successful Routines With Needs 
for New Learning” (Schwartz, Chase, and 
Bransford), 49

Resources
and Investigations, 5, 7–8
links, 250
packet of information, 250
search engines, 250
writing your own, 249–251
for writing your own problems, 253

“Rethinking Transfer: A Simple Proposal With 
Multiple Implications” (Bransford and 
Schwartz), 2

Roth, K., 64
Rube Goldberg Machine problem, 176–188

activity guide, 184
application questions, 187–188
assessment, 185–188
Bicyclist, 187
crosscutting concepts, 177
disciplinary core ideas, 176–177
keywords and concepts, 177
NGSS alignment, 176
Page 1: The Story, 178
Page 2: More Information, 179
Page 3: Resources, 180–181
performance expectations, 176
problem context, 182
problem overview, 177
problem solution, 182–183
Rube Goldberg Cartoon, 178
Rube Goldberg Example, 188
Rube Goldberg Machine, 179
Rube Goldberg Machine Components, 180

safety, 181
science and engineering practices, 176
Simple Machine Using Elastic Potential 

Energy, 185
Student-Made Rube Goldberg Machine, 183
teacher guide, 182–184
transfer tasks, 185–187

S
Safety, x, 33, 144

precautions, 8
Sage, S., 4, 5
Scaffolding, 27
Schwartz

C. V., 48
D. L., 2

Science and engineering practices (SEPs), viii, 6, 
12, 12, 12–13, 13, 18, 21, 23, 87

Analyzing and Interpreting Data, 13, 23, 67, 
127, 205, 214, 218, 229

Asking Questions and Defining Problems, 
13, 23, 67, 70, 82, 91, 101, 109, 127, 130, 141, 
149, 161, 164, 176, 189, 201, 205, 218, 229

Constructing Explanations and Designing 
Solutions, 13, 27, 36, 70, 82, 109, 130, 141, 
149, 161, 164, 174, 175, 176, 183, 185, 187, 
188, 189, 197, 198, 201, 205, 218, 225, 229

Developing and Using Models, 13, 59, 70, 78, 
109, 130, 141, 149, 199, 205, 218, 229

Engaging in Argument From Evidence, 13, 36, 
91, 96, 99, 101, 161, 189, 197, 198

Obtaining, Evaluating, and Communicating 
Information, 13, 41, 161, 164, 176, 189

Planning and Carrying Out Investigations, 13, 
27, 67, 70, 78, 82, 91, 98, 101, 106, 107, 127, 
130, 141, 149, 161, 164, 176, 189, 214

Using Mathematics and Computational 
Thinking, 13, 91, 96, 99

Scribe, 20
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Seamless Assessment in Science (Abell and 
Volkman), 63

Search engines, 250
Self-correction, 47
Self-direction, 18–20
Sharing session, 35–37. See also Discussion

comfort level, 36
SMART boards, 20, 62, 63
Social studies, 203, 203
Solutions

flexibility, 252
summaries, writing, 244
writing, 251–252

Solutions, constructing, 36–37
asking questions, 40–41
evidence, 41
misconceptions, 40–42
multiple, 37
nonscientific, 40–42
strengths and weaknesses of information, 41
writing, 60

Sources, 33–34
copies of, 251
credentials of author, 250
of inspiration for own story, 240–241
school-accessible, 251
teacher-selected, 35
tips for locating, 251
URL checking, 251

Standards, meeting with your own story, 241
Statements, inaccurate, by students, 15–16
Steering tools, 32
Story, The. See Problem
Summaries of big ideas, 64

T
Teachable moments, 51
Teacher

as expert, 23–25, 24
as facilitator, 17–18, 23–25, 24, 25, 46

as learner, 32
Teacher Guide, 5, 8–9

Activity Guide, 8–9
model responses, 8
Problem Context, 8

TED: Math Class Needs a Makeover (Meyer), vii, 5
Time for PBL, 51–54

end of unit, 52
Timing for PBL, 51

concept-building, 52, 53
summary, 53

Topic for a story, selecting, 239–241
Torp, L., 4, 5
Transfer tasks, 9

writing, 243

U
Uncovering Student Ideas in Physical Science (Keeley 

and Harrington), 40
Understanding by Design (Wiggins and McTighe), 

239
Unpacking ideas, 23–24

V
Volkmann, M. J., 63

W
“What Science Teaching Looks Like: An 

International Perspective” (Roth and Garnier), 
64

Wiggins, G. P., 239
Wiring a Cabin problem, 218–228

activity guide, 225
Appliance Fuses, 221
application question, 228
assessment, 226–228
Cabin Floor Plan, 220
Cabin Wiring, 224
crosscutting concepts, 218
disciplinary core ideas, 218
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keywords and concepts, 218
NGSS alignment, 218
Page 1: The Story, 220
Page 2: More Information, 221
Page 3: Resources, 222–223
performance expectations, 218
Possible Light String Circuits, 228
problem context, 224
problem overview, 219
problem solution, 224–225
safety, 223
science and engineering practices, 218
Single and Two-Way Switches, 222
teacher guide, 224–225
Toaster Circuit, 227
Toaster Heating Element, 227
transfer tasks, 226–227
Two Options for Two-Bulb Circuits, 226

Writing your own problem, 239–254

application questions, 242–243
assessments, 241–244
feedback, 247, 248
general questions, 242
inspiration for authentic context, 240–241
investigations, integrating, 248–249
model responses, 244
modifying existing, 252–253
Page 1, 244–246
Page 2, 246–247, 248
problem solution summaries, 244
resources, 249–251
resources for writing, 253
solution, 251–252
standards, 241
tips, 247–248, 248
topic, 239–240
transfer tasks, 243
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