Science Learning in the Early Years

Activities for PreK-2
Science Learning in the Early Years

ACTIVITIES FOR PreK-2
Science Learning in the Early Years

ACTIVITIES FOR PreK–2

PEGGY ASHBROOK
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction by Karen Worth</td>
<td>xi</td>
</tr>
<tr>
<td>A Word About Safety</td>
<td>xiii</td>
</tr>
<tr>
<td>Part I. Teaching Science and Engineering in Early Childhood Settings</td>
<td></td>
</tr>
<tr>
<td>Chapter 1 Science Inquiry and the Use of The Early Years Column to Support Science and Engineering Learning</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 Assessment</td>
<td>40</td>
</tr>
<tr>
<td>Part II. Introduction to the Topics of The Early Years Column Entries</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 Nature of Science and Science Process Skills</td>
<td>51</td>
</tr>
<tr>
<td>Chapter 4 Objects in Motion</td>
<td>54</td>
</tr>
<tr>
<td>Chapter 5 What Are Things Made of?</td>
<td>57</td>
</tr>
<tr>
<td>Chapter 6 Mixing and Making a Change: Chemical Science</td>
<td>59</td>
</tr>
<tr>
<td>Chapter 7 Exploring Our Senses</td>
<td>62</td>
</tr>
<tr>
<td>Chapter 8 Learning About Plants and Animals: Biological Science</td>
<td>64</td>
</tr>
<tr>
<td>Chapter 9 Water Play</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 10 Weather</td>
<td>69</td>
</tr>
<tr>
<td>Chapter 11 Designing and Building to Solve a Problem: Engineering</td>
<td>72</td>
</tr>
<tr>
<td>Chapter 12 Technology</td>
<td>75</td>
</tr>
</tbody>
</table>
Part III. *The Early Years Column and Companion Blog*

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 13</td>
<td>Introduction to The Early Years Column and Companion Blog</td>
<td>81</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>What Can Young Children Do as Scientists?</td>
<td>82</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>The Matter of Melting</td>
<td>88</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Feet First</td>
<td>93</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Roll With It</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Young Questioners</td>
<td>105</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Learning Measurement</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Rocks Tell a Story</td>
<td>117</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>Birds in Winter</td>
<td>124</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>The Sun’s Energy</td>
<td>130</td>
</tr>
<tr>
<td>Chapter 23</td>
<td>Collards and Caterpillars</td>
<td>135</td>
</tr>
<tr>
<td>Chapter 24</td>
<td>Water Works</td>
<td>141</td>
</tr>
<tr>
<td>Chapter 25</td>
<td>Counting a Culture of Mealworms</td>
<td>147</td>
</tr>
<tr>
<td>Chapter 26</td>
<td>Observing With Magnifiers</td>
<td>154</td>
</tr>
<tr>
<td>Chapter 27</td>
<td>Objects in Motion</td>
<td>160</td>
</tr>
<tr>
<td>Chapter 28</td>
<td>An Invertebrate Garden</td>
<td>165</td>
</tr>
<tr>
<td>Chapter 29</td>
<td>Air Is Not Nothing</td>
<td>171</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Chapter 48</td>
<td>Drawing Movement</td>
<td>282</td>
</tr>
<tr>
<td>Chapter 49</td>
<td>Please Touch Museum</td>
<td>289</td>
</tr>
<tr>
<td>Chapter 50</td>
<td>The Wonders of Weather</td>
<td>295</td>
</tr>
<tr>
<td>Chapter 51</td>
<td>“Life” Science</td>
<td>305</td>
</tr>
<tr>
<td>Chapter 52</td>
<td>Water Leaves “Footprints”</td>
<td>311</td>
</tr>
<tr>
<td>Chapter 53</td>
<td>The STEM of Inquiry</td>
<td>316</td>
</tr>
<tr>
<td>Chapter 54</td>
<td>Are They Getting It?</td>
<td>322</td>
</tr>
<tr>
<td>Chapter 55</td>
<td>Now We’re Cooking</td>
<td>328</td>
</tr>
<tr>
<td>Chapter 56</td>
<td>Inviting Parents to School</td>
<td>335</td>
</tr>
<tr>
<td>Chapter 57</td>
<td>The Nature of Science in Early Childhood</td>
<td>340</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>Additional Resources for Science Inquiry and Engineering Design</td>
<td>345</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>National Science Teachers Association Early Childhood Science Education Position Statement</td>
<td>347</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>353</td>
</tr>
</tbody>
</table>
Acknowledgments

The children who so joyfully explored science concepts with me must be thanked first. The programs that sought to include science and engineering education in their curriculum, and the parents who support such programs, made this work possible.

The Early Years columns written for Science and Children owe their clarity to the excellent editors who supported my growth as a writer: Linda Froschauer, Valynda Mayes, Stephanie Morrow, Stefanie Simmons, and Monica Zerry. Their understanding of science and engineering concepts and education practices, combined with their wordsmith genius and gentle tutoring, make the work worthy to publish as a book. Copyeditor Pat Freedman’s patient corrections of style and grammar, checking and cross-checking details, and keen sense of order brought clarity to the book. Her cheerful requests made the revising enjoyable. However, any errors or omissions are mine.

I owe much of my understanding to colleagues in early childhood education who taught me to honor children’s capabilities by going beyond “an activity”: Karen Worth, Ingrid Chalufour, Cindy Hoisington, and Jeff Winokur at Education Development Center, Inc., and those at the University of Northern Iowa Regents’ Center: Beth Van Meeteren, Rosemary Geiken, Sonia Yoshizawa, and Betty Zan.

The colleagues who provided feedback when I turned to them for expertise improved the work: Ken Roy, Marie Faust Evitt, Katina Kearney, and Whitney White.

Thank you to the educators who provided the lists of resources for the original “Teacher’s Picks”: Fred Arnold, Charlene K. Dindo, Marie Faust Evitt, Yvonne Fogelman, Sarah Glassco, Mary Ann Hoffman, Sarah Pounders, Juliana Texley, and Nancy Tooker.

Thank you to NSTA Press editors Claire Reinburg and Wendy Rubin, and Donna Yudkin, Book Acquisitions Coordinator, for publishing resources for early childhood educators. Thank you to the NSTA Press reviewers and other readers—I appreciate your thoughtful comments because they helped me refine the ideas and reduce confusing statements.

I have benefited from the knowledge and support of the communities of colleagues in the National Association for the Education of Young Children Early Childhood Science Interest Forum and the National Science Teachers Association Early Childhood Community Forum—thank you!

I am grateful to my husband, Darryl François, for our shared interest in science and for his support of my writing.
Introduction

The past few years have seen an increase in understanding about the importance of providing young children with the opportunity to explore their world and confront challenging concepts in science, engineering, and technology. This has led to an increasing number of resources for teachers of young children, but few of these resources are designed to support teachers both practically and theoretically—to provide them with both classroom ideas and an understanding of how to use them effectively. Science Learning in the Early Years: Activities for PreK–2 does just that. Thus, it is a pleasure to write this introduction.

Through her work with the National Science Teachers Association and the National Association for the Education of Young Children, Peggy Ashbrook has been a driving force in bringing an understanding of the importance of high-quality science and engineering teaching and learning in the early years not only to the early childhood community but also to the science education community writ large. She has also been a tireless writer. Her column, The Early Years, in the journal Science and Children; the column’s companion blog, Early Years; and the book Science Is Simple (Ashbrook 2003) provide a wide range of ideas for bringing these subjects into the classroom, helping teachers, parents, and other caregivers see what children engaged in science and engineering really look like and how these subjects fit into the life of a classroom or other child-care setting.

This book brings together in one place many entries from Peggy’s column and comments and ideas from her blog. Peggy sets the context for these activities in Part I and returns to it throughout the book. Herein lies one of the strengths of the book. In Part I she makes clear that the work she has done has a direct link to standards and frameworks. She explains that these experiences have the capacity to build a foundation for children’s later understanding of the core ideas, crosscutting concepts, and science and engineering practices outlined in the Next Generation Science Standards (NGSS Lead States 2013). But she also makes clear that for the youngest children, science and engineering experiences should be expansive, and not limited to the specific performance expectations for kindergarten and elementary grades. They should be play-based delightful experiences that enhance and maintain children’s natural curiosity and abilities. She also is careful to suggest how science and engineering can support other goals, objectives, and standards, whether they
concern overall cognitive development, the development of literacy and numeracy skills, social and emotional competence, or physical development.

A teacher herself, Peggy addresses this book to teachers and others who work with young children. Critical to the tone and content is the fact that she writes from her own years of experience in the classroom and a deep practical as well as theoretical understanding of teaching and learning science and engineering and of young children and their teachers. As you read the column entries and related blog posts in Part III, you feel you are talking with a fellow practitioner. She’s been there and done these things and has learned and wants to share. And the blog posts add another important perspective—that we all have something to contribute and that it is through conversation and collaboration that we learn.

But this is not just another book of activities to do week after week; in its structure it is a resource to use to put together an interesting range of activities to enrich a teacher’s carefully planned focus on a limited number of concepts. And this is another of its strengths. Peggy reminds the reader that science and engineering learning is not about isolated fun activities but rather is about exploration, investigation, and reflection over time focused on foundational concepts and the use of science and engineering practices. It is exciting, it is challenging, and it is fun to engage teachers and children alike. Peggy makes a careful distinction between learning facts and bits of information and constructing an understanding of basic concepts. She insists over and over that effective inquiry-based science and engineering teaching and learning can only happen when learning is focused on important ideas and children are given the opportunity to explore ideas in depth and follow interesting questions guided by a well-prepared and curious adult. Thus, she says in Chapter 1 that this book is a guide to activities that should be part of a larger science inquiry, “just as a side dish is part of a meal that itself is part of a day’s nutrition.” And she reminds readers that these activities are not stand-alone science or engineering curricula but rather are small steps in a journey of science inquiry.

This is a book that adults working with children in many different settings will want to keep on hand and return to as a resource and guide for planning and implementing rich science and engineering experiences for children.

Karen Worth
Instructor
Department of Elementary and Special Education
Wheelock College

References
A Word About Safety

Young children repurpose materials in ways that early childhood educators may not foresee. For example, instead of feeling the texture of salt in a cup while preparing to make playdough, children may unexpectedly blow into the cup, sending salt grains into their eyes. By reading about safe practices described in the Safety First column in Science and Children (Roy 2012–2015—see list of column entries at the end of this section), we can learn from the experiences of others. We can educate ourselves about how to protect children from accidents, thus allowing for a safer teaching and learning experience.

Find the online Safety Data Sheets (SDS) for common classroom materials, such as paint, and familiarize yourself with needed precautions. For example, when using tempera paints under “normal conditions” I do not require children to use safety goggles based on SDS information. However, when we test the paint’s ability to splash while making a painting in the style of Jackson Pollock, I have the children protect their eyes with indirectly vented chemical-splash goggles.

In addition to the safety precautions we use on a daily basis, such as covering outlets and removing choking hazards for children who put objects in their mouths, we need to protect children from hazards they cannot foresee, such as germs on unwashed hands.

Each column entry in this book has alerts (signaled by the word CAUTION) for safer practices. These safer practices should be used in addition to your own judgment and licensing safety requirements based on legal safety standards and better
professional practices. Before any activity or investigation is done, always review important safety information with students and volunteers.

Disclaimer: The safety precautions of each activity are based in part on use of the recommended materials and instructions, legal safety standards, and better professional practices. Selection of alternative materials or procedures for these activities may jeopardize the level of safety and therefore is at the user’s own risk.

Kenneth Roy’s Safety First column entries in Science and Children (in reverse chronological order):

- “Houston, We Have Liftoff!” 52 (3): 76–77, November 2014.
Part I.

Teaching Science and Engineering in Early Childhood Settings
Chapter 20

Rocks Tell a Story

BEFORE YOU BEGIN THIS ACTIVITY:

Remember that each activity is not a stand-alone science or engineering curriculum. Activities are small steps in a journey of science inquiry, as discussed in Chapter 1. Your students will learn more about this concept and about the nature of science if you use this activity as part of an ongoing exploration of a question, a concept, or a topic being investigated by your class. Ask yourself, “What should come before this and what should come after?” Refer to Table 1.1 (pp. 15–39) to find other activities from The Early Years column that address the same concepts.

Sedimentary rocks, formed by an accumulation of sediments (tiny pieces of rocks or minerals) in a water environment, tell a story that many students may be familiar with. They may have visited areas where water or wind carried sediments and deposited them in rivers, lakes, oceans, or dunes. The rocks are often visually or texturally interesting and may have the added attraction of containing fossils.

We can understand the stories rocks tell more easily if we have experience with the materials that make up a rock. Here are a few suggestions on how to experience these rock materials:

- With permission, if needed, dig clay or sand from the ground to bring back to the classroom. Examine it, and wash a cupful in water on a tray to see what else is in the sample—perhaps “dirt,” organic matter from plants, small pebbles, and shells.

This column entry was originally published in Science and Children in December 2006.
• Take a field trip to a beach on an ocean, lake, or river to see sediments accumulate.

• Add a small amount of sand or clay to standard paints for painting pictures on paper.

• Pour water into a tub of sand to see how it can move sand. **CAUTION:** When finished, do not dispose of the sand in the sink drain.

• Mix sand and clay with water in jars to shake and watch the sediment settle. Make one jar with ¼ cup sand, one with ¼ cup clay, and one with 2 tablespoons of each, and seal tightly with hot glue inside the lids and tape outside. Ask questions before shaking: What do you think will happen if we mix the sand or clay with water? How long will it take the sand to mix into the water, and how long will it take the clay? What will happen when you stop shaking? What did you find out?

When the clay and sand that the children have been working with dry out, the children will notice that they no longer stick together. The sand is once again individual grains and the clay, although it’s hard to see particles, feels “dusty” and is easily broken. **CAUTION:** Keep wet paper towels nearby to clean up dry clay dust rather than sweeping it up, to avoid airborne dust (Ray 2014).

As part of the exploration of earth materials, students can record their ideas about why clay and sand feel different and how they hold together when wet and when dry. Direct exploration of clay and sand builds students’ understanding of their properties. Describing and classifying materials by their observable properties is part of the grade 2 performance expectation 2-PS1-1 in the *Next Generation Science Standards* (NGSS), and experiences with clay and sand can help students understand Earth events, which is another grade 2 performance expectation (2-ESS1-1) in the NGSS (NGSS Lead States 2013).

In the following activity it is very important to always use the term *pretend rock* so children do not get the idea that rocks are human made. Rocks are formed through natural processes. Many descriptions of rock formation for young children say that the rock formed when sediment was buried under tons of more sediment and dirt until it turned into solid rock, omitting the role of cementing materials. Sediments are cemented together when water carrying dissolved minerals seeps into the spaces between the particles and the minerals precipitate out from the water in the spaces, cementing the grains together. In the Pretend Rocks activity, plaster of paris will be added to the sediments in the cup to act as the cement.

Variation seen in sedimentary rocks comes from many differences, including color of parent material, source of parent material, particle shape, particle size, and
the environment in which the sediment was deposited. You can offer various sediments in this activity to produce a variety of pretend rocks.

References

Activity: Pretend Rocks

Objective
To notice the range in grain size in sedimentary rocks and think about how such rocks are formed

Materials
- Samples of various sedimentary rocks, including sandstone and shale, made of different-size particles (Rock can be purchased through local stone dealers or scientific supply companies or collected locally.)
- Magnifier
- Rock identification book for general audience
- Sand
- Ceramic (pottery) clay formulated for safe use by children (see “Resources” section)
- Spoons to serve the sand and clay
- Paper towels
- One 5–8 oz. paper cup and craft stick for each child
- Plaster of paris
- Disposable containers to mix plaster
- Water
- Pebbles, dirt, and small shells (optional)
Procedure

1. As the collected rocks are brought in, a discussion about where rocks come from develops. Ask if anyone has ever seen a rock being made, to learn the students’ ideas. Encourage the children to look closely at the rocks and compare them with each other in color, size, shape, texture, and weight. Have them use a magnifier to see the grain size. What size are the pieces that make up these rocks? Can you see them or feel them? Are any of these rocks the same? Note that a rock can be many sizes and have different names—such as sand, pebble, stone, and boulder—and still be rock.

2. Compare the actual rocks with those pictured in a rock identification book. The “match” that young children make is usually based on color and shape rather than other distinguishing properties or origin. At this age they are beginning to understand the use of an identification book, not the complexities of rock composition, so no corrections are needed.

3. Tell the students that now they are going to feel the raw materials that make sandstones and shales. Have the students feel soft, damp clay and damp sand, keeping the materials separate. Accentuate the difference in textures by using clay that does not contain grit so its texture is very smooth. Where have you seen clay or sand? How are these two materials alike or different? What size are the pieces that make up the clay and sand?

4. Ask for ideas on how to make a “pretend rock.” Then tell the children that you have a recipe to try. Give each child a small paper cup to fill about half-full with damp sand or very wet clay. You might also provide pebbles, dirt, or shells to be added. Make one pretend rock of just clay and one of just sand so the children can later compare these types of pretend rocks. Have the children stir their chosen material(s) using a craft stick (it doesn’t accidentally flip sand the way a spoon does).

5. Using a finger, test to see if the mixture “is a rock yet.” Tell the children that a “cementing” material must be added, then add a heaping teaspoon of mixed plaster of paris. CAUTION: Only adults should mix and add the plaster of paris; follow the package instructions, and do not wash the remainder down the sink. Have the children stir their mixture thoroughly and describe it.

6. Review the process for sedimentary rocks formed by an accumulation of sediment: Rock formation is happening all the time, not in schools or factories but in nature. It takes a long time for the sand grains and clay minerals to pile up in the same place and become buried as more sediment is deposited on top, and
for water to carry dissolved minerals into the sand and clay minerals to become the glue that holds the pieces together. By tomorrow—a much shorter time—our pretend rock materials will be cemented and become hard.

7. After 24 hours, have the students peel off the paper cup to reveal the pretend sedimentary rock. Doing this as a group will allow the children to compare rocks and talk about how their rocks are made of different-size particles.

As a follow-up to the activity, make a snack “rock” with a variety of cereal particle sizes, including the puffed rice cereal in the original Rice Krispies Treats recipe (www.ricekrispies.com/recipes/the-original-treats). The melted marshmallows are the cement!

Resources

Gyllenhaal, E. 2001–2002. Neighborhood rocks. www.saltthesandbox.org/rocks/index.htm. (This website has lots of ideas for finding rocks in cities and suburbs and for collecting, identifying, and playing with these finds.)

Teacher’s Picks

Publications

A Gift From the Sea by Kate Banks, illustrated by George Hallensleben (Farrar, Straus and Giroux, 2001).

12 Eric Gyllenhaal, a geologist and museum educator and evaluator, developed the three resources on Earth science and collections; they are useful for parents and teachers of young children.

13 These suggestions were provided by Marie Faust Evitt, a preschool teacher and author of the book *Thinking BIG, Learning BIG: Connecting Science, Math, Literacy, and Language in Early Childhood* (Gryphon House, 2009). The book’s website has a useful “Links/ Resources” tab: http://thinkingbiglearningbig.com.
The sumptuous illustrations and lyrical text describe the journey a rock takes from a volcano through the Ice Age and early civilization to the bottom of the ocean and finally to the beach where a boy finds it. Though the text is simple, you can use it with older children to help them speculate about the history of rocks they find.

Rocks in His Head by Carol Otis Hurst, illustrated by James Stevenson (Greenwillow Books, 2001).

Understated humor punctuates this true story about the author’s father, whose passion for rock collecting as a boy eventually leads him to become curator of mineralogy at a science museum. Learning about this natural-born scientist researching, labeling, and displaying his beloved rocks will inspire students to follow their dreams.

This rich description of one of the natural wonders of the world reads as a story. Facts about the canyon’s record of geologic time are interwoven with information about the animals, plants, and people who live in it today.

The Sun, the Wind, and the Rain by Lisa Westberg Peters, illustrated by Ted Rand (Henry Holt, 1988)

This beautifully illustrated book provides an excellent introduction to geologic processes by comparing the creation and evolution of mountains with a sand hill that a girl builds at the beach. Children can readily see the connection between their own experiences with sand and the weathering of the natural landscape.

Websites

Geology of National Parks, 3D and Photographic Tours; Geology of the National Parks: Virtual Tours

From rock formations at Bryce Canyon National Park to the stones used to build our nation’s capital in Washington, D.C., these U.S. Geological Survey websites present the outstanding geology of many different parks.
Images of Clay
www.clays.org/EDUCATIONAL%20RESOURCES/ERimages.html

This website, a joint initiative of the Clay Minerals Society and The Clay Minerals Group, provides a look at highly magnified photos of different clay minerals that will help children understand that clay, like sand, is made of particles.

Related Early Years Blog Posts
The following information is from “Rocks: Collecting and Classifying,” published June 13, 2009:

Walking along a creek is one place to find rocks that have been moved there by natural forces, not by humans. (Be sure to wash hands afterward.) You don’t have to know what type of rock it is to appreciate that it is smooth and pinkish, or has sparkles, or has holes in it.

Label even the most nondescript rock with the location and date collected, and that single rock becomes the beginning of a scientific rock collection. A high school Earth science teacher might be willing to view the collection and help with scientific names.

Additional related blog post:
Index

Page numbers in boldface type refer to figures or tables; those followed by “n” refer to footnotes.

A
A Drive in the Country, 163
A Drop of Water, 248
A Drop of Water: A Book of Science and Wonder, 248
A Flower Grows, 207
A Framework for K–12 Science Education, 2, 5, 10, 40, 42, 75
connections of The Early Years column entries to, 15–39
A Gift From the Sea, 121–122
A House Is a House for Me, 158
A Mealworm’s Life, 151
A Rainbow All Around Me, 133
A Sense of Place/Schoolyard as Model activity, 18, 38, 261–265
before you begin, 261–262
blog posts related to, 265
materials for, 263
objective of, 263
procedure for, 263–264
Teacher’s Picks for, 264–265
A Year in the City, 206
Aardema, Verna, 109
ABC/Ed: A Car Trip Alphabet, 163
Adding Up the Rain/Measuring Up activity, 32, 34, 37, 196–201
before you begin, 196–197
blog posts related to, 200–201
materials for, 197
objective of, 197
procedure for, 198–199
teacher preparation for, 198
Teacher’s Picks for, 199–200
Adler, David, 114, 320
Air Is Not Nothing/Moving Air activity, 21, 23, 25, 33, 171–176
before you begin, 171–172
blog posts related to, 175–176
materials for, 173
objective of, 172
procedure for, 173–174
Teacher’s Picks for, 174–175
All About Birds website, 128
All the Colors of the Rainbow, 134
All the Water in the World, 247
Aloian, Molly, 206
Alphabeep: A Zipping, Zooming ABC, 163
Amazing Materials, 293, 326
An Invertebrate Garden/Attracting Invertebrates activity, 28, 31, 165–170
before you begin, 165–166
blog posts related to, 170
materials for, 167
objective of, 167
procedure for, 167–168
Teacher’s Picks for, 169–170
And Everyone Shouted, “Pull!”, 287
Animal Diversity Web, 98
Animals, learning about, 64–66
An Invertebrate Garden/Attracting Invertebrates activity, 165–170
Birds in Winter/Bird Shapes activity, 124–129
Collards and Caterpillars/What Do Caterpillars Eat? activity, 135–140
Counting a Culture of Mealworms/Beetle Roundup activity, 147–153
The Early Years column entries related to, 30–31
Feet First/ Footprint Fun activity, 93–98
Anthony, Joseph, 309
AppLit. Appalachian Animal Tales: Variants of “The Three Little Pigs” website, 293
Are They Getting It?/Materials Have Properties activity, 24, 36, 322–327
before you begin, 322–323
blog posts related to, 327
materials for, 324
objectives of, 324
procedure for, 324–325
Teacher’s Picks for, 326–327
Are We There Yet, Daddy?, 163
Arnold, Fred, 169
Around the Pond: Who’s Been Here?, 343
Ashbrook, Peggy, xi–xii
Ashburn, Boni, 293
Assessment, 40–42
Are They Getting It?/Materials Have Properties activity, 42, 44–48
documentation of, 41
measuring Learning/ Temperature Changes activity, 255–260
methods for, 41
purposes of, 40
tools for, 41, 42, 44–48
Association for Constructivist Teaching, 11
B
Backyard Detective: Critters, 280
Baker, Jeannie, 264
The Ball Bounced, 163
Banks, Kate, 121
Bark, George, 269
Barner, Bob, 169
Barrett, Judi, 327
Barrett, Katharine D., 181
Benchmarks for Science Literacy, 10
Berkes, Marianne, 193
Bird Academy: All About Feathers website, 159
Birds in Winter/Bird Shapes activity, 30, 124–129
before you begin, 124–125
blog posts related to, 128–129
extension of, 127
materials for, 125
objective of, 125
procedure for, 126–127
teacher preparation for, 126
Teacher’s Picks for, 127–128
BirdWatching website, 128
Bishop, Nic, 97, 280
Blog posts related to activities, xi, xii, 3, 5, 81. See also specific activities
Blow Away Soon, 175
Blumenthal, Deborah, 91
Booster Seat Flyer website, 164
Botany on Your Plate, 181
Boxes for Każe, 206
Brenner, Barbara, 98
Bridges Are to Cross, 321
Bring on Spring/Planting Peas and Observing Growth activity, 28, 177–183
before you begin, 177–178
blog posts related to, 182
materials for, 179
objective of, 179
procedure for, 179–181
Teacher’s Picks for, 181–182
Brown, Margaret Wise, 194
Brown Cow Green Grass Yellow Mellow Sun, 130
Brubaker, Kimberly, 286
Index

Brubaker Bradley, Kimberly, 163, 235
Bubble Festival: Presenting Bubble Activities in a Learning Station Format website, 236
Bugs! Bugs! Bugs!, 169
Building Structures with Young Children, 287
before you begin, 220–221
blog posts related to, 224–225
materials for, 222
objective of, 222
procedure for, 222–223
Teacher’s Picks for, 224
Bunting, Eve, 138–139
Burton, Jane, 236
Butler, M. Christina, 187
Butte mer, Helen, 241
Buzzz, Buzzz! Mosquitoes in Your Backyard, 27
C
Can You See the Wind?, 175
Capacity and Length, 114
Caps for Sale, 218
Car Seat Types website, 164
Chadde, Joan, 320
Chalufour, Ingrid, 247, 287
Change It! Solids, Liquids, Gases and You, 326
Changing State website, 92
Chard, Sylvia, 3
Chemical sciences
The Early Years column topics related to, 15–39
Inviting Parents to School/Making Lemonade From Scratch activity, 335–339
mixing and making a change, 59–61
Now We’re Cooking/Ice Cream Science activity, 328–334
Circle Time/Teach and Tell activity, 20, 276–281
before you begin, 276–277
blog posts related to, 281
materials for, 278
objective of, 277
procedure for, 278–279
teacher preparation for, 278
Teacher’s Picks for, 280–281
Clark-Chiarelli, Nancy, 247
Classify Insects: Zoom in on True Bugs website, 110
Cloudy with a Chance of Meatballs, 327
Cobb, Vicki, 103, 287, 326
Collards and Caterpillars/What Do Caterpillars Eat? activity, 28, 30, 32, 35–140
before you begin, 135–136
blog posts related to, 140
materials for, 136–137
objective of, 136
procedure for, 137–138
Teacher’s Picks for, 138–140
Collards website, 139
Come On, Rain!, 199
Compestine, Ying Chang, 333
Comstock, Anna Botsford, 169
Conceptual learning, xii, 4, 5, 41, 347
Cook-a-doodle-doo!, 333
Cooking
Inviting Parents to School/Making Lemonade From Scratch activity, 335–339
Now We’re Cooking/Ice Cream Science activity, 328–334
Cooper, Elisha, 334
Coulombe, Deborah, 86
Count Us in website, 115
Counting a Culture of Mealworms/Beetle Roundup activity, 30, 147–153
before you begin, 147–148
blog posts related to, 153
e example of beetle count log sheet for, 152
extension of, 150
materials for, 149
objective of, 148
procedure for, 149–150
Teacher’s Picks for, 151–153
Counting Is for the Birds, 127
Crab Moon, 275
Crosscutting concepts, 10
Cubes, Cones, Cylinders, and Spheres, 235, 287
D
Dahl, Michael, 163, 286
Dancing on the Sand: A Story of an Atlantic Blue Crab, 86
The Dark, Dark Night, 187
Data collection and analysis, 11, 12
Sharing Research Results/Playdough Guidebook activity, 249–254
Davila, Claudia, 287
The Dead Bird, 308
DeBarbieri, Lili, 314
DeCosta, Imelda, 264
Demarest, Chris L., 218
dePaola, Tomie, 254
Designing and building to solve a problem, 72–73. See also Engineering
Building With Sand/How High Can You Build With Sand? activity, 220–225
The Early Years column entries related to, 34–36
The STEM of Inquiry/Heavy Lifting activity, 316–321
Developing Observation Skills/Making and Observing Bubbles activity, 24, 32, 232–236
before you begin, 232–233
blog posts related to, 236
materials for, 233–234
objective of, 233
procedure for, 234–235
Teacher’s Picks for, 235–236
Developmentally appropriate teaching, 40–41
Digital media, 75–76
Disciplinary core ideas, 10
Diverse science learners, 11
Dodds, Dayle Ann, 163, 287
Does Light Go Through It?/Playing With Light activity, 23, 27, 37, 184–189
before you begin, 184–185
blog posts related to, 186–189
extension of, 187
materials for, 186
objective of, 186
procedure for, 186–187
Teacher’s Picks for, 187–188
Dog Breath: The Horrible Trouble With Hally Tosis, 212
Doing a Fair Test: Variables for Beginners website, 241
Dorros, Arthur, 175
Down the Road, 265
drawing Movement/Just Draw It—Ramps activity, 22, 35, 282–288
before you begin, 282–283
blog posts related to, 288
examples of children’s drawings for, 285
materials for, 284
objective of, 283
procedure for, 284–285
teacher preparation for, 284
Teacher’s Picks for, 286–287
dSOKids Listen by Instrument website, 194
dual-language learners, 11, 292
E
Early Years blog posts related to activities, xi, xii, 3, 5, 81. See also specific activities
The Early Years column entries, xi, 2, 3–4, 5, 81. See also specific activities in chronological order, 15–39
Earth and space sciences
Adding Up the Rain/Measuring Up activity, 196–201
Air Is Not Nothing/Moving Air activity, 171–176
The Early Years column topics related to, 15–39
Measuring Learning/ Temperature Changes activity, 255–260
Rocks Tell a Story/Pretend Rocks activity, 117–123
Seeing the Moon/Crater Making activity, 271–275
The Sun’s Energy/Making Sun Prints activity, 130–134
Water Leaves “Footprints”?/Sand Movers activity, 311–315
weather, 69–70
The Wonders of Weather/Observing Weather activity, 295–304
Edom, Helen, 145
Ehliert, Lois, 139, 145, 207
Eliza and the Dragonfly, 320
Energy
The Sun’s Energy/Making Sun Prints activity, 130–134
Water Works/How Can We Move Water? activity, 141–146
Engineering, 2, 3, 5, 11, 12, 40, 62. See also Science and engineering practices

National Science Teachers Association

Copyright © 2016 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316337
Index

Building With Sand/How High Can You Build With Sand? activity, 220–225
designing and building to solve a problem, 72–73
resources for, 345–346
The STEM of Inquiry/Heavy Lifting activity, 316–321
Engineering is Elementary program, 317
Engineering the ABC's: How Engineers Shape Our World, 320
Erosion, 315
Els, Marie Hall, 300
Evans, Howard Ensign, 169
Evans, Lezlie, 199
Everyone Is a Scientist, 85
Evans, Lezlie, 199
Everyone Is a Scientist, 199
Evans, Howard Ensign, 169
Evans, Lezlie, 199
Evans, Lezlie, 199
Ets, Marie Hall, 300
312
Eugenia, 300
Evelyn, 300
Ever Simply, 300
Ever Simply, 300
Evert, Al, 103
Eye protection, xiii
Falwell, Cathryn, 332
F
Falwell, Cathryn, 332
Family Engineering, 320
Feel the Wind, 175
Feet First/footprint Fun activity, 26, 30, 93–98
before you begin, 93–95
blog posts related to, 98
materials for, 95
objective of, 95
procedures for, 96–97
Teacher's Picks for, 97–98
Feiffer, Jules, 269
Feldmann, Roseann, 103
Finnon, Kevin D., 343
Firefighters A to Z, 218
First Book of Sushi, 327
Fleming, Candace, 206
Flower Garden, 139
Fogelman, Y., 138n, 145n
Force and motion
Drawing Movement/Just Draw It—Ramps activity, 282–288
The Early Years column entries related to, 21–22
Objects in Motion/Crash Dumper Fun! activity, 160–164
Roll With It/Wheel Work activity, 99–104
Water Works/How Can We Move Water? activity, 141–146
Forces Make Things Move, 163, 286
Forest Explorer: A Life-Size Field Guide, 97
Fowler, Allan, 134, 145, 175, 213, 281
Fox, Mem, 269, 309
The Fred Rogers Company: Dealing With Death website
French, Vivian, 181, 333
From Bulb to Glass, 300
From Caterpillar to Butterfly, 169
From Cow to Ice Cream, 334
From Sand to Glass, 224
G
Galfano, 321
Gandini, Lella, 3
Gardening wizardry for Kids, 181
Gennarelli, Cindy, 248
Geology of National Parks, 3D and Photographic Tours website, 122
Geology of the National Parks: Virtual Tours website, 122
George, Lindsay Barrett, 343
Gibbons, Gail, 334
Gilberto and the Wind, 300
Glass, 293
Glassco, Sarah, 97n
Goggles, xiii
Grand Canyon: A Trail Through Time, 122
Grollman, Earl A., 309
Grossman, Sharon, 188
Guess Whose Shadow?, 188
Gyllenhaal, Eric, 121n
H
Handbook of Nature Study, 169
Hancock, Martin, 158
Hansucin, Deborah L., 344
The Happy Day, 213
Harrington, Rand, 286
Harvest of the Month website, 182
Hathorn, Libby, 145
Have You Ever Seen a Stork Build a Log Cabin?, 320
Head Start Early Learning Outcomes Framework, 11, 289, 312
Hear That?/Make a Kazoo activity, 21, 27, 190–195
before you begin, 190–191
blog posts related to, 194–195
materials for, 192
objective of, 191
procedure for, 192–193
Teacher's Picks for, 193–194
Heil, David, 320
Heiligman, Deborah, 169
Helper Hats/Will It Protect Me From the Water? activity, 31, 32, 35, 214–219
before you begin, 214–215
blog posts related to, 218–219
extension of, 217
materials for, 216
objective of, 215
procedure for, 216–217
sample student responses in, 217
Henderson, Ann L., 253
Henderson, Kathy, 206
The Herb Society of America website, 213
Hesse, Karen, 199
Hewitt, Sally, 293, 326
Himmelstein, John, 151
Hoban, Tana, 188, 235, 287
Hoberman, Mary Ann, 158
Hoffman, Mary Ann, 199n
Hogue, Lynn, 91
Hoisington, Cynthia, 247, 264, 320
Hollenbeck, Kathleen M., 86
Holm, Sharon Lane, 218
Honey Cookies, 333
Hooper, Meredith, 333
Horowitz, Ruth, 275
Hot and Cold, 259
How Big Is a Foot?, 114
How Big Is a Foot? website, 115
How Do Dinosaurs Eat Their Food?, 326
How Do We Tell the Children? A Step-by-Step Guide for Helping Children and Teens Cope When Someone Dies, 309
How Tall, How Short, How Far Away, 114, 320
How the Ladies Stopped the Wind, 174
How the Robin Got Its Red Breast: A Legend of the Sechelt People, 128
Hovland, Naomi, 163
Hunter, Debra, 248
Hurst, Carol Otis, 122
Hutchins, Pat, 218, 270
Hutzler, Neil, 320
I
I Fall Down, 103, 287
I Get Wet, 326
I Had a Favorite Dress, 293
Ice Cream, 334
Ice Cream: The Full Scoop, 334
Ice Palace, 91
The Icky Bug Counting Book, 109
Images of Clay website, 122–123
In a Nutshell, 309
In the Garden: Who’s Been Here?, 343
In the Snow: Who’s Been Here?, 343
In the Woods: Who’s Been Here?, 343
Inclined Planes and Wedges, 103
The Indoor Noisy Book, 194
Inferences and observations, 51–53
Developing Observation Skills/Making and Observing Bubbles activity, 232–236
The Nature of Science in Early Childhood/Observations and Inferences activity, 340–344
Inquiry, scientific, xii
assessment of learning for, 40–42, 44–48
being a beginner in the process of, 12–13
characteristics of, 12
compared with doing a science activity, 5–10
definition of, 3
Developing Observation Skills/Making and Observing Bubbles activity, 232–236
Inquiry at Play/A Scientist Visits activity, 226–231
The Nature of Science in Early Childhood/Observations and Inferences activity, 340–344
Ongoing Inquiry/Properties of Water activity, 243–248
planning for, 10–12
resources for, 345–346
Sharing Research Results/Playdough Guidebook, 249–254
The STEM of Inquiry/Heavy Lifting activity, 316–321
using activities in process of, 2–4, 15–39
Inquiry at Play/A Scientist Visits activity, 16, 226–231
Copyright © 2016 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316337
Index

6, 10, 40, 338, 347–351
The Nature and Science of Bubbles, 236
Nature of science (NOS), 4–5, 51–53, 82
The Early Years column entries related to, 15–20
Inquiry at Play/A Scientist Visits activity, 226–231
The Nature of Science in Early Childhood/Observations and Inferences activity, 340–344
What Can Young Children Do as Scientists? activity, 82–87
Young Questioners activity, 105–110
The Nature of Science in Early Childhood/Observations and Inferences activity, 20, 340–344
before you begin, 340–341
blog posts related to, 344
materials for, 341
objective of, 341
procedure for, 341–342
teacher preparation for, 341
Teacher’s Picks for, 343–344
Neuman, Susan B., 280
Next Generation Science Standards (NGSS), xi, 2, 3, 5, 10
Appendix G, 161, 197
Appendix H, 4–5, 15–20, 36, 37, 197, 341
connections of The Early Years column entries to, 15–39, 81
(See also specific activities)
Next Time You See the Moon, 275
Novak, Patty O’Brien, 320
Now We’re Cooking/Ice Cream Science activity, 26, 328–334
Move It! Motion, Forces and You, 287
Mr. Rogers’ Parenting Book: Helping to Understand Your Young Child, 309
Mudworks: Creative Clay, Dough and Modeling Experiences, 253
Murphy, Patricia J., 287
Murphy, Stuart J., 224
My First Garden: Teacher’s Guide, website, 182
Myller, Rolf, 114
N
National Association for the Education of Young Children (NAEYC), 11, 13, 40
position statement on developmentally appropriate practice, 40–41
National Association of Early Childhood Specialists in State Departments of Education, 40
National Council of Teachers of Mathematics, 112
National Geographic Education Encyclopedia: Erosion website, 315
National Oceanic and Atmospheric Administration (NOAA) photo library website, 86
National Science Education Standards, 2, 3, 10
National Science Teachers Association (NSTA), 81. See also Science and Children
position statement on early childhood science education,
Childhood/Observations and Inferences activity, 340–344
Observing With Magnifiers/Exploring Magnifiers activity, 154–159
The Wonders of Weather/Observing Weather activity, 295–304
Observing With Magnifiers/Exploring Magnifiers activity, 16, 23, 26, 154–159
before you begin, 154–155
blog posts related to, 159
materials for, 156
objectives of, 156
procedure for, 156–157
Teacher’s Picks for, 158–159
Olen, Becky, 315
Oliver’s Fruit Salad, 333
Oliver’s Vegetables, 181–182, 333
On the Same Day in March: A Tour of the World’s Weather, 260
One Small Place in a Tree, 98
Ongoing Inquiry/Properties of Water activity, 22, 34, 33, 38, 243–248
before you begin, 243–244
blog posts related to, 248
extension of, 246
materials for, 245
objective of, 245
procedure for, 245–246
Teacher’s Picks for, 247–248
Oxlade, Chris, 293, 338
P
Pallotta, Jerry, 109
Pancakes for Breakfast, 254
Park Rogers, Meredith A., 344
Path to Math: Measurement With Young Children website, 115
Paysnich, R., 42
Pearce, 237–238
Pearson, Debora, 163
Peep and the Big Wide World website, 145
Performance expectations, xi, 10, 17–39.
See also specific activities
Pet Bugs, 98
Peters, Lisa Westberg, 122
Physical sciences
Air Is Not Nothing/Moving Air activity, 171–176
Are They Getting It?/Materials Have Properties activity, 322–327
Developing Observation Skills/Making and Observing Bubbles activity, 232–236
Does Light Go Through It?/Playing With Light activity, 184–189
Drawing Movement/Just Draw It—Ramps activity, 282–288
The Early Years column topics related to, 15–39
The Matter of Melting/Melt Away! activity, 88–92
mixing and making a change, 59–61
objects in motion, 54–56
O
Objects in motion, 54–56
Drawing Movement/Just Draw It—Ramps activity, 282–288
The Early Years column entries related to, 21–22
Objects in Motion/Crash Dummy Fun! activity, 160–164
Roll With It!/Wheel Work activity, 99–104
Objects in Motion/Crash Dummy Fun! activity, 21, 35, 160–164
before you begin, 160–161
blog posts related to, 164
materials for, 161
objective of, 161
procedure for, 162–163
Teacher’s Picks for, 163–164
Observation skills
Developing Observation Skills/Making and Observing Bubbles activity, 232–236
The Nature of Science in Early Childhood/Observations and Inferences activity, 340–344
Observing With Magnifiers/Exploring Magnifiers activity, 154–159
The Wonders of Weather/Observing Weather activity, 295–304
Observing With Magnifiers/Exploring Magnifiers activity, 16, 23, 26, 154–159
before you begin, 154–155
blog posts related to, 159
materials for, 156
objectives of, 156
procedure for, 156–157
Teacher’s Picks for, 158–159

Science Learning in the Early Years: ACTIVITIES FOR PREK-2

Copyright © 2016 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316337
Index

Objects in Motion/ Crash Dummy Fun! activity, 160–164
Please Touch Museum/Materials Museum activity, 289–294
Roll With It!/ Wheel Work activity, 99–104
The STEM of Inquiry/ Heavy Lifting activity, 316–321
Water Works/ How Can We Move Water? activity, 141–146
what are things made of?, 57–58
The Piggy in the Puddle, 254
Pilkey, Dav, 212
Pinkney, Sandra L., 133
Pipe, Jim, 103
Planning for science inquiry, 10–12
Planning a Rainbow, 128
Planning Before Winter/ Some Like It Cold activity, 29, 202–207
before you begin, 202–203
blog posts related to, 207
materials for, 204
objectives of, 203
procedure for, 204–205
teacher preparation for, 204
Teacher’s Picks for, 206–207
Plants, learning about, 64–66
Bring on Spring/ Planting Peas and Observing Growth activity, 177–183
Collards and Caterpillars/ What Do Caterpillars Eat? activity, 135–140
The Early Years column entries related to, 28–29
Investigable Questions/ How Much Is Enough? activity, 237–242
“Life” Science/ A Plant’s Life activity, 305–310
Planting Before Winter/ Some Like It Cold activity, 202–207
Playing With Shadows website, 188
Please Touch Museum/ Materials Museum activity, 20, 24, 27, 29, 38, 289–294
before you begin, 289–290
blog posts related to, 294
materials for, 291
objective of, 291
procedure for, 291–292
teacher preparation for, 291
Teacher’s Picks for, 293
Pluckrose, Henry, 114
Poisonous website, 182
Popt! A Book About Bubbles, 235
Position statement of NSTA on early childhood science education, 6, 10, 40, 338, 347–351
Pounders, Sarah, 181n
Prager, Ellen, 224
Pretend Soup and Other Real Recipes: A Cookbook for Preschoolers and Up, 253
Project 2061, 10
Project Approach, 3
Pulleys, 103
Pumpkin Pumpkin, 139
Push and Pull, 287
Q
Q?ruus: Insects, Centipedes, Millipedes, Spiders and Relatives website, 151
Questioning. See also Inquiry, scientific
Investigable Questions/ How Much Is Enough? activity, 237–242
Young Questioners activity, 105–110
R
Rain, 193, 199
Rain Song, 199
The Rainbow and You, 133
Rainbow Crow, 128
Rainbow Stew, 332
Reading Stories and Making Predictions/ “What Might Happen If…?” activity, 19, 266–270
before you begin, 266–267
blog posts related to, 270
extension of, 269
material for, 268
objective of, 268
procedure for, 268–269
teacher preparation for, 268
Teacher’s Picks for, 269–270
Reggio Emilia approach, 3
Resources, 345–346. See also specific activities
Rinehart, Susie Caldwell, 320
Ring, Susan, 230
Robbins, Ken, 207
Robertson, William, 188, 326
Robinson, Fay, 145, 200
Rocks in His Head, 122
Rocks Tell a Story/ Pretend Rocks activity, 23, 25, 117–123
before you begin, 117–119
blog posts related to, 123
materials for, 119
objective of, 119
procedure for, 120–121
Teacher’s Picks for, 121–123
Rogers, Fred, 309
Roll, Slope, and Slide: A Book About Ramps, 286
Roll With It!/ Wheel Work activity, 21, 34, 36, 99–101
before you begin, 99–100
blog posts related to, 104
materials for, 101
objective of, 101
procedure for, 101–102
Teacher’s Picks for, 103
Rosen, Michael J., 163
Roskos, Kathleen, 280
Rotner, Shelley, 293
Royston, Angela, 259
S
Sableski, Nancy, 264
before you begin, 208–209
blog posts related to, 213
materials for, 210
objective of, 210
procedure for, 210–211
sample tally chart for smell
guessing game, 212
teacher preparation for, 210
Teacher’s Picks for, 212–213
Safety Data Sheets (SDS), xiii
Safety practices, xiii–xiv, 3
Sand, 224
Sand Castle, 224
Sand Dune Daisy: A Pocket Mouse Tale, 314
Sand to Glass, 224
Sanger, Amy Wilson, 327
Sarquis, Jerry L., 91
Sarquis, Mickey, 91
Schaefer, Daniel, 309
Schertle, Alice, 265
School Garden Wizard website, 182
Schwarz, Trudi, 247
SCI4KIDS Cool Careers website, 230
Science and Children
“A Walk in the Woods” in, 264
The Early Years column in, xi, 2, 3–4, 5, 15–39, 81
“Gimme an ‘E’! Seven Strategies for Supporting the ‘E’ in Young Children’s STEM Learning” in, 320
“Inference or Observation?” in, 343
“Inquiry on Board!” in, 241
Meet the Mealworms in, 151
“Perspectives: Learning to Observe and Infer” in, 344
Safety First column in, xiii, xiv
“Science 101: What is the Difference Between Solids and Liquids?” in, 326
“Science 101: Why Are There So Many Different Models of Light?” in, 188
“Science Shorts: Observation Versus Inference” in, 344
“Talk Strategies: How to Promote Oral Language Development Through Science” in, 280
“When a Hypothesis Is NOT An Educated Guess” in, 269
Science and engineering learning, xi–xii, 1–13. See also Inquiry, scientific
assessment of, 40–42, 44–48
being a beginner in the process of inquiry, 12–13
for diverse science learners, 11
engineering in early childhood, 5
nature of science, 4–5
planning science inquiry, 10–12
resources for, 345–346
safety practices for, xiii–xiv
using activities in the process of inquiry, 2–4, 15–39
Science and engineering practices, xi, xii, 2, 51–52, 75. See also Science process skills; specific activities
Adding Up the Rain/ Measuring Up activity, 196–201
Circle Time/ Teach and Tell activity, 276–281
Counting a Culture of Mealworms/ Beetle Roundup activity, 30, 147–153

Copyright © 2016 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316337
Index

Developing Observation Skills/Making and Observing Bubbles activity, 232–236
Drawing Movement/Just Draw It—Ramps activity, 282–288
Inquiry at Play/A Scientist Visits activity, 226–231
Investigable Questions/How Much Is Enough? activity, 237–242
Learning Measurement/Measuring Hands activity, 111–116
Observing With Magnifiers/Exploring Magnifiers activity, 154–159
Ongoing Inquiry/Properties of Water activity, 243–248
A Sense of Place/Schoolyard as Model activity, 261–265
Sharing Research Results/Playdough Guidebook, 249–254
Young Questioners activity, 105–110

Science Is Simple, xi

Science Online: Nature of Science

Science process skills, 51–53. See also Science and engineering practices

The Early Years column entries related to, 15–20

Science With Water, 145

Scientists at Work, 230

Screws, 103

Seascape video website, 86

The Seaside Naturalist, 86

Sechelt Nation, 128

Seeing the Moon/Crater Making activity, 19, 22, 271–275
before you begin, 271–272
blog posts related to, 275
extension of, 275
materials for, 273
objective of, 273
procedure for, 274
teacher preparation for, 274
Teacher’s Picks for, 275

Senses, exploring, 62–63

Developing Observation Skills/Making and Observing Bubbles activity, 232–236

Does Light Go Through It?/Playing With Light activity, 184–189

The Early Years column entries related to, 26–28

Hear That?/Make a Kazoo activity, 190–195

Please Touch Museum/Materials Museum activity, 289–294

Senses at the Seashore, 293

Seven Blind Mice, 343

Shadows and Reflections, 188

Shanahan, Therese B., 280

Sharing Research Results/Playdough Guidebook, 18, 24, 25, 27, 38, 249–254
before you begin, 249–250
blog posts related to, 254

eXample of playdough data chart, 253

materials for, 251

objective of, 251

procedure for, 251–252
teacher preparation for, 251

Teacher’s Picks for, 253–254

Shea, Lauren M., 280

Siddals, Mary McKenna, 300

Singer, Marilyn, 260

Slobodkina, Esphyr, 218

Smelling Things, 213

Snowballs, 145

The Snowy Day, 92, 300

Snyder, Inez, 224, 334

Sophie, 309

Sound Activities website, 194

Soup Day, 333

Spier, Peter, 193, 199

Staller, Teena, 151

Standards, xi, 2, 4, 10, 12. See also Next Generation Science Standards

Steineman, Joanna, 158

STEM education, 72, 73. See also Engineering; Mathematics skills; Technology

The STEM of Inquiry/Heavy Lifting activity, 36, 316–321
before you begin, 316–317
blog posts related to, 321
materials for, 318
objective of, 318
procedure for, 318–319
Teacher’s Picks for, 320–321

Stevens, Janet, 182, 333

Stevens, Susan, 333

Stille, Darlene, 259

The Story of Noodles, 333

Sturges, Philomena, 321

Suddenly!, 270

The Sun, the Wind, and the Rain, 122

Sunflower House, 138–139

The Sunny Day, 299

The Sun’s Energy/Making Sun Prints activity, 26, 28, 33, 130–134
before you begin, 130–131
blog posts related to, 134 extension of, 133
materials for, 131
objective of, 131
procedure for, 132–133
teacher preparation for, 132

Teacher’s Picks for, 133–134

Super Sand Castle Saturday, 224

Swinburne, Stephen R., 186

T

Taback, Simms, 293

Tafari, Nancy, 163

Taking Science to School, 1

Talking About Death: A Dialogue Between Parent and Child, 309

Taylor, Kim, 236

Tea Cakes for Tosh, 332

Teaching Young Children, 248

Technology, 72, 75–76; xi. See also Engineering
digital media, 75–76

The Early Years column entries related to, 36–39

use of tools, 76

Temperature: Heating Up and Cooling Down, 259

Texley, Julia, 103n

Thinking BIG, Learning BIG: Connecting Science, Math, Literacy, and Language in Early Childhood, 121n, 133n, 153, 174n, 199n, 259, 273

Tires, Spokes, and Sprockets: A Book About Wheels and Axles, 163

Titherington, Jeanne, 139

Tucker, Nancy, 158

Tops and Bottoms, 182

Treasures of American History: American Hats website, 218

Trumbauer, Lisa, 85

Two Eyes, a Nose and a Mouth, 212

U

The Ugly Vegetables, 333

Uncovering Student Ideas in Physical Science, Vol. 1, 286

University of California Museum of Paleontology’s Understanding Science website, 5, 51, 340

U.S. Department of Agriculture, 148, 177, 180

V

Van Laan, Nancy, 128

Vanilla Ice Cream Without the Machine website, 334

Vieira, Linda, 122

Vocabulary development, 11. See also specific activities

W

Walker, Sally M., 103

Walters, Virginia, 163

Watch a Glacier Melt website, 92

Water, 247

The Water Cycle—USGS Water Science School website, 200

Water Leaves “Footprints”/Sand Movers activity, 33, 311–315
before you begin, 311–312
blog posts related to, 315
materials for, 313
objectives of, 313
procedure for, 313–314
Teacher’s Picks for, 314–315

Water play, 6–9, 67–68

The Early Years column entries related to, 31–33

Ongoing Inquiry/Properties of Water activity, 243–248

Water Leaves “Footprints”/Sand Movers activity, 33, 311–315

Water Works/How Can We Move Water? activity, 141–146

Wet Sand activity, 6–9

Water Works/How Can We Move Water? activity, 21, 31, 35, 37, 141–146
before you begin, 141–142
blog posts related to, 146 extension of, 144

Copyright © 2016 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
TO PURCHASE THIS BOOK, please visit www.nsta.org/store/product_detail.aspx?id=10.2505/9781941316337
Index

materials for, 143
objectives of, 142
procedure for, 143–144
Teacher’s Picks for, 145
Weather, 69–70
Adding Up the Rain/Measuring Up activity, 196–201
Air Is Not Nothing/Moving Air activity, 171–176
The Early Years column entries related to, 33–34
Measuring Learning/Temperature Changes activity, 255–260
Planting Before Winter/Some Like It Cold activity, 202–207
The Wonders of Weather/Observing Weather activity, 295–304
The Weather Dude website, 200
Weather Wiz Kids website, 175
Wet Sand activity, 6–9
What are things made of?, 57–58. See also Matter
The Early Years column entries related to, 23–24
What Are Those Squiggly Lines? Using Light to Learn About the Universe website, 134
What Can I Smell?, 212
What Can Young Children Do as Scientists? activity, 15, 36, 82–87
before you begin, 82–83
blog posts related to, 86–87
extension of, 84–85
materials for, 83–84
objective of, 83
procedure for, 84
Teacher’s Picks for, 85–86
What Does a Wheel Do?, 103
What Is a Scientist?, 82, 83
What’s That Bug? website, 170
Wheel Away!, 163, 287
Wheels and Axles, 103
When a Pet Dies, 309
When This Box is Full, 206
Where Do Puddles Go?, 145, 200
Where’s Waldo?, 158
Who Eats What? Food Chains and Food Webs, 139
Who Likes the Wind, 299
Why Mosquitoes Buzz in People’s Ears: A West African Tale, 109
Wick, Walter, 248
Williams, Karen Lynn, 321
The Wind Blow, 218, 270
Wind website, 175
Window, 264
Winokur, Jeff, 5, 247, 320
The Wonder Thing, 145
The Wonders of Weather/Observing Weather activity, 34, 39, 295–304
before you begin, 295–296
blog posts related to, 300
examples of curriculum areas and activities connected to, 296–297
extension of, 299
materials for, 297–298
objective of, 297
procedure for, 298–299
rainfall gauge recording template, 303
tally chart for counting weekly or monthly occurrences of weather events, 304
teacher preparation for, 298
Teacher’s Picks for, 299–300
temperature recording template, 302
weather symbol strips for documentation, 301
Woodward, Linda, 91
Work, 103
Worms, Shadows, and Whirlpools: Science in the Early Childhood Classroom, 188
Worth, Karen, 188, 287
Writing skills, 11, 13. See also specific activities
Y
Yee, Brenda, 224
Yolen, Jane, 326
Young, Ed, 343
Young Children
“Blocks: Great Learning Tools From Infancy Through the Primary Grades” in, 286
“Grief: Helping Young Children Cope” in, 309
“Let’s Get Messy! Exploring Sensory and Art Activities With Infants and Toddlers” in, 247
“Promoting Children’s Science Inquiry and Learning Through Water Investigations” in, 247
“Real Life Calls for Real Books: Literature to Help Children Cope With Family Stressors” in, 309
“Teachers on Teaching: What Happens When a Child Plays at the Sensory Table” in, 248
Young Questioners activity, 15, 105–110
before you begin, 105–106
blog posts related to, 110
materials for, 107
objectives of, 107
procedure for, 107–108
Teacher’s Picks for, 109–110
Young Scientist Series, 42
Z
Zemlicka, Shannon, 224
Zoehfeld, Kathleen Weidner, 91, 326
Zoe’s Hats: A Book of Colors and Patterns, 218
This book is for all preschool and elementary teachers who wish they had a mentor who understood inquiry, young children, and the need for truly engaging science activities. For nearly three decades, teacher, columnist, and blogger Peggy Ashbrook has promoted the importance of high-quality experiences for children in prekindergarten through second grade. This collection of her writing for NSTA's elementary journal, Science and Children, is the next best thing to having her as your own personal guide to the challenges and fun of working with the youngest scientists.

Science Learning in the Early Years offers both classroom ideas and an understanding of how to use them effectively. The book is uniquely helpful because it recognizes that you're a generalist teaching all areas of the curriculum. Ashbrook emphasizes important science concepts in 40-plus activities that are clearly presented and developmentally appropriate, connect to the Next Generation Science Standards, and highlight safety concerns. Perhaps most important, Ashbrook shows how to group individual activities into an ongoing science unit so students can develop science inquiry skills over time.

Ashbrook the writer will inspire you even as Ashbrook the science teacher helps you develop a carefully planned course on appropriate concepts that are just right for your students.