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Chapter 1

members of the society we call scientists. We will explore this in more depth when we look 
at the nature of science in Chapter 3.

From Words to Listening for Conceptual Understanding
One of the most important watchwords for teaching for conceptual understanding will be 
listening. A student’s alternative conceptions are very important, and teachers need to be 
able to understand what the student is thinking. Alternative conceptions, no matter how 
naive or seemingly incorrect, are the foundations for building new and more complete con-
ceptions. They provide us with a place to start teaching and with the information necessary 
to plan next steps.

Because of this, one of the most important best practices that has come to the forefront is 
diagnostic and formative assessment for the purpose of understanding student thinking and 
making decisions based on where students are conceptually in their understanding. One 
of the authors of this book (Page Keeley) specializes in science diagnostic and formative 
assessment. As a nation, we have been so extremely invested in summative testing since 
the advent of No Child Left Behind (NCLB) that some educators have often referred to it as 
No Child Left Untested. We agree that it is necessary and important to test for achievement 
and accountability, but it is evident that unless teachers know where their children are in 
their current conceptual development, they cannot plan for helping their students make 
changes in thinking as they design and facilitate instruction. This requires listening and 
responding to children when they think out loud. In order for us to hear them out loud, we 
have to give them a chance to tell us about their thinking and explain their ideas. We will 
address the topic of diagnostic and formative assessment and “science talk” in more detail 
when we get to Chapters 8 and 9 in this book. 

One important researcher who addresses the issue of listening to children is Bonnie 
Shapiro from the University of Calgary. In her book What Children Bring to Light, she exam-
ines a fifth-grade classroom and the real responses of children to a vigorously taught series 
of lessons about how we see. In her research, she found that in her sample of six children, 
all but one did not believe what the teacher said, even though they successfully passed the 
unit by filling out their worksheets and completing their tests. The teacher never knew it 
because he didn’t listen or probe the children’s thinking. We’ll examine Shapiro’s research 
more fully in Chapter 4.

Often, when children and adults talk to each other, there is a problem of incommen-
surability. This term means, simply, that two people in a conversation are not speaking 
the same “language.” Thomas Kuhn referred to this problem when he described a similar 
problem in the history of science (1996). Not only are teacher and student using different 
language, but also they are operating in different paradigms or rules about how the world 
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is seen and studied. The students notice different things and focus on different questions 
than do adults. The teacher must be the one to try to overcome this incommensurability. 

Two philosophers, Paul Thagard and Jing Zhu (2003), point out that there can be differ-
ent emotional valences (i.e., weights or connotations) to incommensurability in conceptual 
understanding. They state that the concepts baby and ice cream have positive valences for most 
people, while the concepts death and disease have negative valences. People in the media, who 
are adept at “spin”—using language that makes their clients appear as positive as possible—
have long been aware of this. Thagard and Zhu note that in order for conceptual change to 
occur, especially in emotionally charged areas of thought, each of the communicants would 
have to change their valence on the issues from negative to positive. They give as an example 
a Darwinian evolutionist and a creationist trying to reach a common ground. In order for 
each to achieve commensurability, each would have to change their emotional valence, and 
this may be very difficult, even impossible (look at our own ideologically charged political 
system). But it is important for teachers to be sensitive to the emotional impacts that the 
curriculum might be presenting to the children and be aware of the language they can use to 
change emotionally-based concepts to more evidence-based concepts. 

Teachers often feel committed to changing a “wrong” idea as quickly as possible by 
whatever means they have at their disposal. Instead, since you are cast in the role of 
teacher-researchers we suggest that this is the time to listen as carefully as possible and to 
question the student(s) to find out as much as possible about where the ideas originated 
and how deeply the student(s) are committed to the idea to explain certain phenomena. 
Make them see how interested you are in how they think, and you will encourage them 
to consider their own thinking, and engage in what is known as metacognition (thinking 
about their thinking). The conversation does not have to be one-on-one. Instead, we sug-
gest that students talk to each other and the teacher out loud, bringing students’ thoughts 
to the front so all students can hear. Teachers have found that when they concentrate on 
the conceptual history of the group, the groups itself remains interested, even when the 
conversations may involve only a few members. 

Intentional Conceptual Change and a Community of Learners
This leads us to consider the recent pedagogical theory on intentional conceptual change. If 
we believe that both scientists and science learners gain knowledge in a community and 
that that knowledge is defined as a community consensus, it leads toward a belief that the 
teacher and the students are most effective when there is an intent to learn or change on the 
part of the learner and the community of students are goal-oriented toward understanding 
a new idea. When there is peer support and encouragement for learning, there is an atmo-
sphere more conducive to conceptual change and understanding (Sinatra and Pintrich 
2003). This may certainly lead us to building a community of learners as recommended by 
Bransford, Brown, and Cocking (2000). Hennesey suggests that metacognition (thinking 
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about one’s own thinking) is a primary ingredient in the working of a community of learn-
ers, stating that students have to be aware of how they came to their own knowledge claims 
before they can discuss them with others (2003). These knowledge claims raise the question 
of how to create the community of learners (including the teacher as learner) and conduct 
a class where the community is motivated toward solving a common question or problem. 
However, as Vasniadou points out, making an assumption that students will intentionally 
create strategies for developing intentional learning might be rather optimistic (2003). 

We all know students can develop strategies for completing simple school-type tasks. 
It takes more effort to create the kind of atmosphere and curriculum that “grabs” the stu-
dents and entices them into wanting to develop an inclusive community, intent on solving 
a common problem. One of the authors of this book (Dick Konicek-Moran) has published a 
series through NSTA Press called Everyday Science Mysteries. These mystery stories describe 
a common problem that can be used to motivate and capture the interest of all students in 
the class. The series provides open-ended stories that require metacognition and inquiry to 
find the best solution to the problem. 

The following personal author vignette describes how a community of learners helped 
each other solve a common problem:

Author Vignette
I once worked in a fifth-grade classroom in New England where the 
students had shown a great deal of interest in the apparent daily motion 
of the Sun. This came about through the reading of the story, “Where are 
the Acorns?” This story is about a squirrel that buries acorns using the 
Sun’s effect on tree shadows during the Fall to predict where the acorns 
will be during the winter season (Konicek-Moran 2008). 

  Since the shadows change in the story, the students organized their 
own curriculum to find out as much as they could about the apparent 
movement of the Sun on a daily basis as well as seasonally. They 
predicted that the Sun would cast no shadow at midday (a common naive 
conception). They had already decided, through experimentation and 
discussion that midday was not necessarily noon but could be defined as 
a point halfway between sunrise and sunset. The children needed to find 
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the midday point for a given day. They chose to use the tables in The Old 
Farmer’s Almanac. Mathematically, this is not as easy a task as it might 
appear. We found that there were at least five different methods invented 
by the class of 30 students. 

  The students shared their methods with each other and found that 
they had all come to the same answer, although their methods were 
very different. Some students spent a great deal of time and many 
calculations while others took very little time. Those who found their 
answer very quickly typically used a 24-hour clock method while the 
others struggled with trying to work with a 12-hour clock. A very 
thoughtful discussion arose, as each student tried to defend his or her 
method to the others. Some had never thought of time in a 24-hour 
paradigm before and resisted the acceptance of the 24-hour model. The 
argument and discourse went on for some time, but finally the class 
came to a consensus about a method that was the most expedient and 
efficient. The beauty of the experience to the teacher and me was how 
the students’ interest reached a level of discussion that left us almost 
completely out of the picture. They were thinking about each other’s 
ideas and their own and comparing the efficacy of the methods used. In 
other words they were thinking about their thinking, comparing, making 
decisions, and deepening their understanding of the concept of time as 
it related to a problem they wanted to solve. I hasten to say that it works 
with adults too. 

—Dick Konicek-Moran
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As we all know, the ways in which schools sometimes operate make the time-consuming 
option described in the vignette above difficult to implement. Lisa Schneier sums the prob-
lem up succinctly in the following quotation: 

The fact remains that schools are structured to bring students to fixed points of knowledge 
in a certain length of time. Teachers and students are accountable to elaborate structures 
of assessments that are wielding more and more power. These assessments carry with 
them assumptions about learning and knowledge that exert a constant narrowing force on 
the work of schools. Often the decision as it confronts teachers is whether to short-circuit 
substantive work that is happening in their classrooms in order to prepare students for 
these tests. How to balance these forces against the deeper knowledge that we want for 
students is a continuing question for me. (quoted in Duckworth 2001, p. 194)

We have faith that since we are now poised on the cusp of a new era in teaching for con-
ceptual understanding with the release and implementation of the Next Generation Science 
Standards, teachers can focus on fewer topics each year and teach for deeper understand-
ing. With different means to assess student learning and the application of that learning, 
including continuous formative assessment, we can build a bridge from learner’s initial 
theories about the way the natural world works and how science is practiced to where they 
need to be to understand scientific concepts and practices.

And now, in Chapter 2, we move to the history of science, to see how we may learn from 
the past so we can move forward in the present to prepare our students for a future that 
depends on a conceptual understanding of science and scientific practices. 

Questions for Personal Reflection or Group Discussion

1.	 Examine your own teaching practice. What percentage of an entire school year 
do you think you actually teach for conceptual understanding in science versus 
“covering the curriculum?” What initial change(s) could you make to shift that 
percentage more toward conceptual understanding? 

2.	 The term habits of practice describes teaching practices that have become so routine 
that we don’t bother to question them. Can you think of a habit of practice that 
interferes with teaching for conceptual understanding? What can you or others 
do to change that habit of practice?

3.	 Dick Konicek-Moran’s NSTA Press series Everyday Science Mysteries and Page 
Keeley’s Uncovering Student Ideas series are popular resources for uncovering 
what students (and teachers) really think related to scientific concepts. Think of 
a story or probe you may have used from one of their books that uncovered a 
lack of conceptual understanding. What surprised you about your students’ (or 



23Teaching for Conceptual Understanding in Science

Teaching Science for Conceptual Understanding: An Overview

teachers’) ideas? How did this chapter help you better understand why some 
students or teachers harbor ideas that are not consistent with scientific knowl-
edge or ways of thinking?

4.	 Keep track of everyday or “sloppy use” of science terms for a designated time 
period as you find them in the media, in conversations with others, or even in 
your curriculum. Make a list and consider what could be done to change the way 
these terms are used in the public and school vernacular. 

5.	 List some examples of concepts that you once may have thought you understood 
but later found you lacked clarity and depth of understanding.

6.	 Look at the list of crosscutting concepts on page 16. Review these concepts by 
reading pages 83–101 in A Framework for K–12 Science Education (NRC 2012) or 
online at www.nap.edu/openbook.php?record_id=13165&page=83. Identify examples 
of ways these concepts can be included in the curricular units you teach.

7.	 Change is more effective when learners experience it together, whether it is stu-
dents learning a concept or teachers learning about teaching. How would you go 
about setting up a climate for intentional conceptual change within a community 
of learners at your school or organization?

8.	 React to Lisa Schneier’s comments on page 22 regarding balancing time against 
deeper knowledge. How do you think the Next Generation Science Standards or 
your own set of state standards will fare against this issue of time for teaching 
versus depth of understanding?

9.	 Choose one “golden line” from this chapter (a sentence that really speaks to 
or resonates with you). Write this on a sentence strip and share it with others. 
Describe why you chose it.

10.	 What was the biggest “takeaway” from this chapter for you? What will you do or 
think about differently as a result?

Extending Your Learning With NSTA Resources

1.	 Read and discuss this article, which shows how elementary children connect 
newly learned material to their existing knowledge: Kang, N., and C. Howren. 
2004. Teaching for conceptual understanding. Science and Children 41 (9): 29–32.

2.	 Read and discuss this article, which explains how to create and use an interactive 
word wall: Jackson, J., and P. Narvaez. 2013. Interactive word walls. Science and 
Children 51 (1): 42–49.

3.	 Read and discuss this article, which describes how thought and language are intri-
cately related: Varelas, M., C. Pappas, A. Barry, and A. O’Neill. 2001. Examining 
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language to capture scientific understandings: The case of the water cycle. Science 
and Children 38 (7): 26–29.

4.	 Read and discuss this article, which describes the crosscutting concepts: Duschl, R. 
2012. The second dimension: Crosscutting concepts. Science and Children 49 (6): 10–14.

5.	 Read and discuss this article about use of the words theory and hypothesis: 
McLaughlin, J. 2006. A gentle reminder that a hypothesis is never proven correct, 
nor is a theory ever proven true. Journal of College Science Teaching 36 (1): 60–62.

6.	 Read and discuss this article about how word choice affects students’ understand-
ing of the nature of science: Schwartz, R. 2007. What’s in a word? How word 
choice can develop (mis)conceptions about the nature of science. Science Scope 31 
(2): 42–47.

7.	 Read and discuss this NSTA Press book about building data literacy: Bowen, M., 
and A. Bartley. 2013. The basics of data literacy: Helping your students (and you!) make 
sense of data. Arlington, VA: NSTA Press.

8.	 Read and discuss Chapter 3 “Foundational Knowledge and Conceptual Change” 
in Michaels, S., A. Shouse, and H. Schweingruber. 2008. Ready, set, SCIENCE! Wash-
ington, DC: National Academies Press.

9.	 The authors’ NSTA Press series Everyday Science Mysteries (Konicek-Moran) and 
Uncovering Student Ideas in Science (Keeley) contain a wealth of information on 
children’s alternative conceptions and strategies for eliciting children’s ideas. 
Read and discuss sections from these books. You can learn more about these books 
and download sample chapters at the NSTA Science Store: www.nsta.org/store 

10.	 Watch the NSTA archived NGSS webinar on developing and using models: http://
learningcenter.nsta.org/products/symposia_seminars/NGSS/webseminar6.aspx 

11.	 View videos of authors Dick Konicek-Moran and Page Keeley discussing the 
importance of understanding children’s ideas: www.nsta.org/publications/press/
interviews.aspx 
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