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How Did This Book Come to Be?
We have pondered over the topics covered in this book for years, presented 
workshops together, and talked for hours about how conceptual understanding 
can be achieved. Page had already acquired her passion for improving conceptual 
understanding using formative assessment tools. She has written many books as 
part of the Uncovering Student Ideas in Science series (Keeley, 2005–2013) and Science 
Formative Assessment (Keeley 2008, 2014). While at the University of Massachusetts in 
Amherst, Dick spent years studying and researching children’s alternative concep-
tions in science, spending months working with Rosalind Driver, John Leach, Phil 
Scott, and other researchers at Leeds University in Great Britain, and then published 
his Everyday Science Mysteries series that contained, among other things, his collected 
thoughts about teaching for inquiry and conceptual understanding.

Our Approach to This Book
Since we realized that our work had so much in common, we decided to try to put our 
thoughts and ideas gleaned from these experiences, research findings, and practices, 
into a book that would focus on this important topic. This book is a compilation of 
combined research findings, practices, and our personal experiences. It is woven 
into a conversational form of research notes, anecdotes, and vignettes showing how 
the principles of science might lead to better understandings. Although we have 
connected our writing to A Framework for K–12 Science Education (NRC 2012) and the 
Next Generation Science Standards (NGSS; NGSS Lead States 2013), this book is not 
meant to be a how-to manual for implementing the NGSS or other programs. There 
are and will continue to be ample numbers of publications written with those goals 
in mind. This book is, rather, a compendium, focusing on the major goal of science 
education for the 21st century and beyond—teaching for conceptual understanding. 
It is designed to be used with any set of national, state, or local science standards.

Overview of the Book
There are 10 chapters in this book plus an appendix. In Chapter 1 we will address 
conceptual understanding: what it is and why it is important for teachers. Chapters 2 
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and 3 will focus on the history and nature of science and their importance to anyone 
teaching for conceptual understanding. Chapter 4 will present the current view of 
the nature of children’s thinking, and Chapter 5 will look back at our attempts at 
making science teaching more meaningful through the use of the research findings 
available. Chapter 6 will examine A Framework for K–12 Science Education’s learn-
ing practices of science and engineering (although our focus is primarily science) 
and their role in teaching science through the learning strands, while Chapter 7 is 
devoted to describing instructional models. Chapter 8 asks the question, what are 
some instructional strategies that support conceptual understanding? Chapter 9 will 
focus on connecting instruction, assessment, and learning.  And finally, Chapter 10 
will address learning in informal environments. In the Appendix is a case study of 
a lesson on balancing using the principles and ideas espoused in this book and in A 
Framework for K–12 Science Education. We include reflection questions at the end of 
each chapter for those readers who would like to extend their reading or thinking 
through book studies, professional learning groups, or science education courses as 
well as suggestions for resources available through NSTA that can be used to extend 
your learning.

Audience and Uses for the Book
This book is written for practicing teachers, administrators, professional develop-
ers, and instructors of teachers, and future teachers themselves. This may seem 
like an all-inclusive broad audience, and that is intentional. Different parts of this 
book will appeal to different audiences. While you may read the book cover to 
cover, you may also choose to focus on specific chapters that best fit your purpose 
for using this book.

Acknowledgments
We wish to thank the reviewers of our manuscript draft for their helpful sugges-
tions and the staff of NSTA Press for their assistance and confidence in our ability to 
generate a book of this nature. To say that we are grateful to the teachers at all levels 
and the students of all ages who provided input is a gross understatement. This 
book is possible because of the extraordinary teachers and students we have had 
the privilege to work with. Of course, we acknowledge the patience and help of our 
spouses without whom we could not have produced this opus. 
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You may note that in various places 
throughout the book, we will include 
some personal vignettes from our profes-
sional and personal lives that have rel-
evance to the chapter. These will appear 
in a shaded box. We hope you find these 
anecdotes enjoyable and informative. 

Thanks for coming along on this 
journey with us.

—Dick and Page
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It has been more than four decades since David Ausubel made his famous and oft-quoted 
statement that the most important single factor in learning is what the student knows. He 
suggested that we find this out and teach the student accordingly (Ausubel 1963). And so, 
we have been trying for over four decades to find out what “accordingly” means. We have 
certainly made great progress in finding out what students bring to the classroom. Some 
will agree that it was the film A Private Universe (Schneps and Sadler 1987) that began the 
ACM (Alternative Concept Movement) of the 1980s and 1990s, resulting in a deluge of 
research about student alternative conceptions in science and mathematics. It also resulted 
in such books as the Uncovering Student Ideas in Science series and other attempts at famil-
iarizing teachers with diagnostic and formative assessment, which helps us to focus on the 
ideas students bring to our classrooms and make informed instructional decisions. So we 
are now fairly competent in having the tools for finding out what our students know, but 
educators have found many different ways to bring about what has been commonly called 
“conceptual change.” 

This is what this book is about. How do we move our students from their present, 
limited knowledge of certain scientific concepts toward an understanding closer to what 
scientists now believe and that local, state, and national standards expect? Secondly, what 
does current research tell us about moving students toward deeper understanding of both 
science as a process and a set of practices and science as a knowledge base?

As Jean Piaget said in Genetic Epistemology, “Knowledge … is a system of transforma-
tions that become progressively adequate” (1968). By this we believe that he meant that 
knowledge in the broadest social community as well as in the personal realm is built over 
time and is subject to change until it becomes “adequate,” at least for the time being. We 
have to realize that new theories are constantly being developed that help us interpret new 
data that is being collected every moment.   

Philosophers have argued about knowledge for centuries and, as philosophers are wont 
to do, continue to argue about this concept ad infinitum. After all, that’s their job. That’s 
what philosophers do. Epistemology (a form of philosophy) asks three basic questions: 

• What is knowledge?

• How do we come to know?

• How do we know what we know? 

Introduction
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Introduction

Sound familiar? We teachers ask these and other questions of our students and our-
selves day in and day out. What are we teaching? Are the standards the last word in 
scientific knowledge? Where did the core ideas in the standards come from? How do 
we know what our students and we really know? Does it matter to us, as teachers, 
what students think? Where does the “knowledge” that they bring to our classrooms 
come from? Are their beliefs useful to us in our attempts to bring them closer to that 
which science deems the best explanations at this time? Do these ideas have value 
for future learning? Is it our role to try to change their ideas to match those of the 
standards to which students and teachers are held accountable? Is it really possible 
to try to switch their ideas for new ideas?

But we are getting ahead of ourselves. These questions dominate science educa-
tion today, and we want to discuss them with you and acquaint you with some ideas 
that might help us to answer them.

Many philosophers and educators believe that we actively develop our own 
ways of trying to understand the universe in which we live. In other words, humans 
throughout history and well into the future, develop strategies to interpret the world 
so that it makes sense. We do not discover “truths” about our world; we develop 
explanations, test them for their ability to help us predict the behavior of the uni-
verse, and change them according to their ability to serve us. These ideas change 
over time, and each time they change, we come closer and closer to ideas that are 
more “adequate” than the last ones. Scientists in every field of endeavor are in a 
process of evolving ideas so they become more and more powerful in helping us to 
understand how our world works. We do this individually and socially. We do it as 
educators. We do it in science. We do it in economics. We do this in all of the major 
areas of thought and study. We put new theories out for public scrutiny and ask the 
societies of scientists, economists, historians, and others to evaluate them and see if 
they are acceptable and better in explaining our world than the older theories. Over 
time, if the new theories prove more powerful and useful, they replace the old ideas 
and thus, the disciplines evolve and knowledge grows. 

Do we ever find “truth”? Perhaps the best answer is “yes and no.” At this time, 
the ideas of an Earth that is a globe has been verified by modern technology that 
has given us a view from space that prior scientists who believed this were not 
privileged to have. However, we know that even though humans have walked upon 
the Moon, the data gathered there are still under scrutiny, and theories about the 
Moon, its origin, and its relation to the Earth are still being debated among societies 
of scientists called astronomers and geologists. 

We posit that the same process goes on in life and in particular in schools, where 
children come to us with their own conceptions about what makes the world work. 
They do not appear before us with blank minds but with minds full of ideas that 
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they have developed over their growing years that help them to understand, in their 
own way, what makes the world tick. Up to that point, their ideas were sufficient and 
allowed them to function, but then in school they are introduced to ideas that may 
be different from those they held before. 

And thus, the problem is generated. These prior concepts are usually sound 
enough for the children to be comfortable with them; but we know that broader 
ideas—often those that seem, to the ordinary person, to fly in the face of all they 
know (what science educators call counterintuitive)—are more useful and powerful. 
Students’ ideas are also thoroughly ingrained and persistent. How in children, just 
as in society in general, do these ideas change and become more useful? Let’s look 
at the research, the history of science, the thinking, and the dreams that are leading 
us toward a better way to help children learn science and be active participants in 
science along with us who teach it. 
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Chapter 1
Teaching Science for Conceptual 
Understanding: An Overview

What Do We Mean by Teaching for Conceptual Understanding?
A primary goal of science education is teaching for conceptual understanding. But what does 
this mean in an environment where scores on standardized tests are equated with student 
achievement in learning science? Do passing scores on standardized tests indicate students 
deeply understand science? Does filling students’ heads with “mile-wide, inch-deep” 
information so they will be prepared for testing support conceptual understanding? Even 
when not faced with the pressures of testing, do our instructional routines get in the way of 
teaching for conceptual understanding? We argue that teaching for conceptual understand-
ing can and should exist alongside the pressures of testing, “covering the curriculum,” and 
instructional routines, if we change our beliefs about teaching and learning. But first we need 
to examine what conceptual understanding means.

 Conceptual understanding is very much like making a cake from scratch without a 
recipe versus making a cake from a packaged mix. With the packaged mix, one does not 
have to think about the types and combination of ingredients or the steps involved. You 
make and bake the cake by following the directions on the box without really understand-
ing what goes into making a cake. However, in making the cake from scratch, one must 
understand the types of ingredients that go into a cake and cause-and-effect relationships 
among them. For example, someone who understands baking knows that baking soda 
and baking powder are essential ingredients, understands the effect each has on the cake, 
how much to add of each, and when and how they should be added to the mixture in 
order to ensure batter uniformity. In other words, making the cake from scratch involves 
conceptual understanding rather than simply following a recipe. 

Let’s begin with the term understanding. One of the impediments to teaching for under-
standing lies in the way science instruction is sometimes delivered through direct instruc-
tion involving the passing on of information from the teacher to the student through 
techniques such as lecture, which involve little or no student interaction with the content. 
There is the story of the teacher who, upon seeing that most of the students had failed a test 
given at the end of a unit, responded, “I taught it, they just didn’t learn it.” The difference 
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here, of course, is in the distinction between teaching and learning. Teaching does not 
automatically produce understanding. An important aspect of teaching is communication, 
yet “teaching as telling,” even when combined with diagrams, computer simulations, and 
demonstrations, ignores how the student is making sense of the information if instruction 
is primarily focused on presenting information. A teacher can utter words and sentences, 
write symbols and equations on the board, use PowerPoint slides, and perform virtual or 
live demonstrations without effectively communicating ideas or concepts. In 1968, Robert 
Mager wrote, “If telling were teaching, we’d all be so smart we could hardly stand it” (p. 7). 

Reading science textbooks, defining vocabulary, filling out worksheets, and answering 
low-level questions at the end of the chapter are also forms of passive instruction. These 
activities often involve pulling information from text with minimal intellectual engage-
ment. The student may be able to reproduce the words or symbols she receives without 
understanding the meaning behind them or the power of using them to argue or predict 
and delve deeper into the ideas involved. People who are very good at memorizing facts 
and definitions often engage in what may be called literal understanding. Do you recall 
students who did well in school because they had eidetic or photographic memories? They 
could tell you what was on any page in the textbook or reproduce any graph or picture 
at a moment’s notice exactly as it appeared in the book. Usually, because of the nature of 
testing, they scored very well. Yet, these students might not have been able to understand 
basic concepts that provide explanatory evidence for ideas about phenomena.

Take the concept of evaporation as an 
example. A student who is taught the 
water cycle may be able to recite word for 
word the definitions of evaporation, conden-
sation, and precipitation. Furthermore, the 
student may be able to reproduce in detail 
a drawing of the water cycle, including 
a long arrow that points from a body of 
water to a cloud, labeled evaporation. On a 
standardized test, the student can answer 
a multiple-choice item correctly by 
matching the water cycle processes with 
the correct arrow on a diagram. All of this 
knowledge retrieved from memory may 
pass for understanding. However, when 
presented with an everyday phenom-
enon, such as the one in Figure 1.1, many 
students do not understand conceptually 
that when water evaporates, it goes into 

Figure 1.1. “Wet Jeans” Probe

Source: Keeley, Eberle, and Farrin 2005.
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the air around us in a form we cannot see called water vapor (Keeley, Eberle, and Farrin 
2005). They rely on their memorization of the term evaporation and the details of a water 
cycle diagram showing long arrows labeled evaporation to select distracter D: “It moved 
up to the clouds.” The student lacks the conceptual understanding of what happens after 
water evaporates. This student may also have difficulty explaining why there is dew on 
the grass in the morning or why water forms on the outside of a cold drink on a hot sum-
mer day. The student may use the words evaporation and condensation, yet not understand 
where the water went or where it came from to explain a familiar phenomenon. 

A typical routine in science classrooms is 
to assign a reading from a textbook or other 
source and have students answer a set of 
questions based on the reading. The text 
becomes the “deliverer” of information. Take 
for example, the passage, The Chemovation of 
Marfolamine in Figure 1.2.

Now answer the following questions based 
on the passage:

1. What is marfolamine?

2. Where was marfolamine discovered?

3. How is marfolamine chemovated?

4. Why is marfolamine important to us?

Were you able to answer all four of the questions correctly, including the essential question 
in #4? Then you must know a lot about marfolamine! But do you understand anything 
about marfolamine? No, all you did was look for word clues in the text and parrot back the 
information. You did not need to intellectually interact with any of the concepts or ideas 
in the text. You did not share any of your own thinking about marfolamine. Probably you 
didn’t need to think at all! While this is an exaggeration of a familiar instructional scenario, 
it is also typical of what some students do when asked to answer questions based on read-
ing science text, especially text that is heavily laden with scientific terminology.

Lectures and recalling information from text are not the only instructional routines that 
fail to develop conceptual understanding. Picture the teacher who does a demonstration to 
show how the Moon’s orbit around the Earth is synchronous with its rotation. The teacher 
provides the information about the Moon’s orbit and rotation and then demonstrates it in 
front of the class using a lamp to represent the Sun, a tennis ball to represent Earth, and 
a Ping-Pong ball to represent the Moon. The students watch as the teacher demonstrates 
and explains the motion. But what if, instead, the teacher starts by asking students an 

Figure 1.2. The Chemovation of 
Marfolamine

Marfolamine is a gadabolic cupertance 
essential for our jamination. Marfolamine was 
discovered in a zackadago. It was chemovated 
from the zackadago by ligitizing the pogites 
and then bollyswaggering it. Marfolamine will 
eventually micronate our gladivones so that we 
can homitote our tonsipows more demicly.
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interesting question such as the one 
in Figure 1.3, listens carefully to their 
ideas, and then plans instruction that 
involves the students creating and 
using a model to figure out the best 
answer to the question? Clearly this 
example, which gives students an 
opportunity to think through different 
ideas and interact with a model used to 
explain the phenomenon, is more likely 
to result in conceptual understanding.

Teaching for conceptual understand-
ing is a complex endeavor that science 
teachers have strived for throughout 
their careers. David Perkins, a well-
known cognitive scientist at Harvard 
University, has been examining teaching 
for understanding for decades. He says 
that while teaching for understanding 
is not terribly hard, it is not terribly 
easy, either. He describes teaching for 
understanding as an intricate classroom 
choreography that involves six priori-
ties for teachers who wish to teach for 
conceptual understanding (Perkins 
1993):

1. Make learning a long-term, thinking-centered process.

2. Provide for rich, ongoing assessment.

3. Support learning with powerful representations.

4. Pay heed to developmental factors.

5. Induct students into the discipline.

6. Teach for transfer.

These teaching priorities identified two decades ago apply to current science teaching. 
In addition, recent research on learning in science is helping us understand even more 
what it means to teach for conceptual understanding in science. We will dive into past and 
present research and efforts to support teaching for conceptual understanding in science 

Figure 1.3. “How Long Is a Day on the 
Moon?” Probe

Source: Keeley and Sneider 2012.
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throughout this book, but first we need to define what we mean by a concept and explore 
factors that affect how we teach and learn science concepts.

What Do We Mean by Concept?
The word concept has as many different meanings to science educators as the word inquiry. 
In this book, we equate it with a general idea that has been accepted by a given community. 
A. L. Pines defines a concept as “packages of meaning [that] capture regularities [similari-
ties and differences], patterns or relationships among objects [and] events” (1985, p. 108). 
Joseph Novak, known for his research on concept mapping, similarly defines a concept as 
a perceived regularity in events or objects, or records of events or objects, designated by 
a label. The label for most concepts is a word, but it could be a symbol, such as % (Novak 
and Cañas 2006).

To give an example, table is a concept. Once a person has the concept of table, any 
object that fits a general description or has common attributes can be called a table. It 
may have three legs, be round or square or rectangular, or sit on the floor as in a Japanese 
restaurant. It may be made of many substances. But if we have internalized the concept of 
table, we know one when we see it. The same would be true of the concept dog. Whether 
it is a St. Bernard or a Chihuahua, we know a dog when we see one. Before a child is 
familiar with the superordinate concept of dog, she may call any furry four-legged animal 
a dog. But once she has internalized the characteristics of “doggyness” she recognizes 
one, regardless of breed. 

A concept is an abstraction. Tables did not come into this world labeled as such. In fact, 
depending on where you live in this world, a table is called by many names, depending on 
which language you use. However, whatever the language, whatever the name, the con-
cept of table remains the same in all cultures. The concepts of table or dog are constructions 
of the human mind. A concept is basically a tool constructed for the purpose of organizing 
observations and used for the prediction of actions and classification. 

In science, we use fundamental building blocks of thought that have depth and call 
them concepts. Words, such as energy, force, evaporation, respiration, heat, erosion, and accelera-
tion, are labels for concepts. They are abstractions developed in the minds of people who 
tried to understand what was happening in their world. Concepts may also consist of 
more than one word or a short phrase such as conservation of energy, balanced and unbalanced 
forces, food chain, or closed system. Concepts imply meaning behind natural phenomena such 
as phases of the Moon, transfer of energy, condensation, or cell division. When we use a 
concept, there is usually some understanding of what is associated with it. For example, 
condensation is the concept. It conjures up an image of water drops formed on an object. 
The concept becomes an idea when we try to explain or define it. For example, the concept 
of condensation becomes an idea when we associate water vapor in the air reappearing as a 
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liquid when it comes in contact with a cool object. It becomes a definition when we define 
condensation as the conversion of water in its gaseous form to a liquid. Concepts are the 
building blocks of ideas and definitions. Another way to distinguish concepts from other 
ways to express one’s thinking is to imagine that a teacher asks a student what is in her 
backpack. The student replies, “my school books, some supplies, and snacks.” These are 
concepts that imply meaning of the kinds of things the student has in her backpack rather 
than saying, “my biology textbook, my social studies book, my math book, two notebooks, 
pencils, pens, assignment pad, a granola bar, a bag of chips, and an apple.” Behind all 
concepts in science are data, a history of observation and testing, and a general agreement 
of scientists within any given domain. 

When students have an understanding of a concept, they can (a) think with it, (b) use it 
in areas other than that in which they learned it, (c) state it in their own words, (d) find a 
metaphor or an analogy for it, or (e) build a mental or physical model of it. In other words, 
the students have made the concept their own. This is what we call conceptual understanding.

Learning to Speak and Understand a New Language 
Words and symbols are important. Language is the way of communicating science con-
cepts, but the language of science is not always the language of everyday life. Language 
can affect how we think about concepts in science. Often, a word or symbol has a special 
meaning to a scientist, different from the way a nonscientist may use the word. A scien-
tist knows what is meant when someone says, ”Close the door—you’re letting the cold 
in, ” even though she or he understands that in thermodynamics, that there is no such 
thing as “cold” and that heat always moves from warmer to colder areas. The scientist 
has conceptual understanding that overrides the incorrect terminology. The same is true 
of “sunrise” or “sunset” which is really the illusion of the apparent motion of the Sun in 
the sky. Someone with a conceptual understanding of the phenomena understands that 
it is the Earth’s rotation that is responsible for this visual effect. Some concepts used in 
the science classroom are counterintuitive to students’ ideas. For example, the definition 
in physics of acceleration can mean slowing down as well as speeding up (or changing 
direction). This does not make sense to students based on their everyday encounters with 
the word acceleration, which to them means going faster. After all, don’t you make the car 
go faster by pushing down on the “accelerator”?

Many of us live or work in areas with increasingly diverse populations. For example, 
the authors of this book both live in Florida for part of the year. This often means that 
people who speak a language different from our first preference surround us. If the trend 
continues, a majority of the residents that make up our neighborhoods may speak Spanish. 
To communicate effectively, we may need to learn Spanish and to become bilingual. It 
takes perseverance and a desire to think in a new language, rather than merely translate 
word for word. Instead we must learn dialog, cadence, colloquialisms, a new vocabulary, 
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and most importantly, culture. Phrases cannot be taken literally when translated from one 
language to another. For example, someone might say “So long” meaning “goodbye,” 
which makes no sense, if you think about it literally. Speaking science is very much the 
same but can pose even more problems. 

Speaking science has an added difficulty for students. One problem is that in colloquial 
language a scientific word may have a different meaning altogether, which affects our 
understanding of the concept underlying the word. For example, you might hear someone 
say, “Oh, that’s just a theory,” meaning that it is just a guess or unproven idea, when in 
science theory means a well-supported explanation of phenomena, widely accepted by the 
scientific community. People who recognize both the scientific concept of a theory and 
the way the word is used in our everyday language can accommodate the two meanings, 
but this is not the case with students new to the language of science. As science teachers, 
we need to be aware of the differences in meanings between our students’ daily use of 
certain words and the scientific meaning of these same words. Another problem is that 
the language of science is tied directly into the practices and rules of science and therefore 
is tied to experience within the discipline. Students need to experience the practices of 
science in order to understand conceptually the language that is used. 

Many teachers use the technique of “word walls.” This technique is often used in class-
rooms with English as a Second Language (ESL) students, but it is an effective way to 
introduce vocabulary in context to all students—and if arranged in an interactive way, it is 
also a way to organize concepts into instructional plans so science is not treated as vocabu-
lary but rather vocabulary is introduced for the purpose of communicating scientific ideas. 

 Traditional word walls have objects or pictures of objects and their names posted on 
the wall to help students become familiar with new words that represent a concept. The 
interactive word wall is an organic, growing wall that is planned by the teacher but devel-
oped with the help of the students. The class adds ideas and objects to the wall with the 
help of the teacher, and as the unit grows toward completion, the wall grows to include the 
newest concepts and the objects and ideas that go with it. The word wall is used to develop 
understanding, as students organize words for deeper conceptual meaning. Conceptual 
teaching strategies such as word walls will be explored further in Chapter 8.

Although vocabulary is important for science learners, we must remember that words 
are not science. Zoologists do not study words but use words to communicate their study 
of animals with others who share the same vocabulary. Vocabulary needs to be introduced 
to students in the midst of their engagement with objects. Since we advocate hands-on, 
minds-on science activities, the time to introduce vocabulary is either during the activ-
ity or during the discussion afterward. For example, when learning about the motion of 
pendulums, the word amplitude would be introduced while the students are investigating 



8 National Science Teachers Association

Chapter 1

whether the pendulum’s motion is changed when the pendulum is allowed to travel 
through a smaller or larger arc. 

Science as a discipline has words and symbols that have specific meanings. Think of 
scientific fields that deal with symbolic structures like genome sequencing. Math, too, 
uses symbols to express ideas and concepts. Understanding the nature of science pres-
ents challenges in the way we use language and symbols. Let’s take a look at some of the 
most important words and phrases that often have a popular double entendre when used 
to describe the nature of science. Please note that the descriptions provided below are a 
simplified view of the nature of science. Philosophers and linguists might argue about each 
of these points, but for the purpose of helping you, the teacher, understand the language of 
the nature of science in the context of K–12 education, we hope these points and descrip-
tions will suffice.

Theory 
As we mentioned above, in everyday speak, this word may mean a hunch, an opinion, or a 
guess. In science, it means an idea that has been tested over time, found to be consistent with 
data, and is an exemplar of stability and usefulness in making predictions. A theory explains 
why phenomena happen. You may hear people say, “I have a theory that the Chicago Cubs 
will win the World Series next year.” This is usually based on a belief system grounded in a 
preference steeped in loyalty (and sometimes fruitless hope). Unfortunately for Cubs fans, 
there are few data that will support this “theory.” You may also hear someone dismiss the 
theory of biological evolution as “just a theory.” You can be assured that this person has a lack 
of conceptual understanding about how a theory in science is tested, rooted in evidence, and 
thus held in the utmost respect by the scientific community as being accurate and useful. We 
see evidence of biological evolution happening every day. Bacteria evolve into drug-resistant 
strains and animals and plants adapt to changing environmental conditions over time. The 
theory of natural selection attempts to explain how this happens, and it does this quite suc-
cessfully. Figure 1.4 is an example of a formative assessment probe used to elicit students’ 
(and teachers’) conceptual understanding of a scientific theory. The best answers are A, D, G, 
and I. The distracters (incorrect answer choices) reveal common misunderstandings people 
have about the word theory as it applies to science.

Hypothesis 
A hypothesis in science is often an “if … then” statement in response to a scientific question 
that provides a tentative explanation that leads an investigation and can be used to pro-
vide more information to either strengthen a theory or develop a new one. A hypothesis is 
a strongly developed prediction, based on prior observation or scientific knowledge that if 
something is done, an expected result will occur. It is constructed with a great deal of plan-
ning and a reliance on past evidence. Some educators use the term educated guess to describe 
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a hypothesis. This is another example 
of the misuse of language. There is no 
guesswork involved in developing 
hypotheses and using language in that 
way incorrectly portrays the concept of 
a hypothesis.

In science, a hypothesis is never 
a “sure thing” and scientists do not 
“prove” hypotheses. Students who 
complete an investigation and claim 
that their results prove their hypoth-
esis should be encouraged to say 
their results support their hypothesis. 
Scientists learn from hypotheses that 
are shown to be wrong as well as those 
that provide expected results. Science 
teachers are often guilty of asking 
children to hypothesize something 
that cannot be more than just a wild 
guess or unsubstantiated prediction. 
Students should learn that a hypoth-
esis should be acceptable only if there 
is preliminary evidence through prior 
observation or background knowledge 
to back up the hypothesis.

Figure 1.4. “Is It a Theory?” Probe 

Source: Keeley, Eberle, and Dorsey 2008.
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Author Vignette
I recently worked with a group of middle school teachers, using the 
formative assessment probe “What Is a Hypothesis?” to uncover their 
ideas about the word hypothesis (Keeley, Eberle, and Dorsey 2008). Using 
the card sort technique, the answer choices were printed on a set of 
cards and teachers sorted them into statements that describe a scientific 
hypothesis and statements that do not describe a scientific hypothesis. 

The best answer choices are A, B, G, K, L, and M. Almost all of the 
teachers selected C and I as statements that describe a scientific 
hypothesis. As we debriefed and discussed, the teachers were adamant 
that C and I accurately described a scientific hypothesis. One teacher even 
took the group over to her classroom to point out The Scientific Method 
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bulletin board she had in her classroom made up of purchased placards 
that depicted stages of the scientific method, including the one shown 
below that implies a hypothesis is an educated guess:

Furthermore, I noticed another placard titled, “Analyze/Make a 
Conclusion,” in which the last bulleted suggestion was, “If the results 
prove your hypothesis to be correct, perform the experiment again 
to see if you get the same results.” No wonder some teachers hold 
these misunderstandings! We discussed the need to be aware of these 
misrepresentations of the nature of science when purchasing and 
displaying materials such as these that further perpetuate students’ 
misuse of words such as prove (a better choice is support) or educated 
guess when referring to hypotheses.

—Page Keeley
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Data 
Data is the plural form of datum. Data are a collection of observations or measurements taken 
from the natural world by means of experiments or the observation of information that 
shows a consistent pattern. One of the most consistent errors (even in the public media) is 
to fail to differentiate between the singular and the plural forms of this word. Data are and 
a datum is. Data do not come with an inherent structure. According to Ready, Set, SCIENCE! 
structure must be imposed on data. By this the authors mean that data can be processed in 
many ways but they must be organized and reorganized to answer questions. Using data 
correctly is one of the most important lessons students can learn in science (NRC 2007). 

Evidence 
This term is used to describe a body of data or a base that shows consistent correlations 
or patterns that become the basis for a scientific claim. Observations and experience lead to 
claims. A claim in our everyday language can be an opinion or belief. Scientific claims are 
always based on scientific evidence and educators should make this clear to students who 
are making claims. In other words, a reasonable response to a child who makes a claim 
would be, “What is the scientific evidence that supports your claim?” 

For example, I notice in the morning that my car is covered in water droplets. I could 
make a claim that it has rained, but it really is not a scientific claim until I have searched for 
other evidence. Has anyone watered the area with a hose overnight? Has relative humidity 
had anything to do with the water droplets? Is there water on anything else but the car? 
Could the water come from dew? I must take into consideration many more factors before 
I can make a scientific claim. Whenever a student makes a claim in a classroom, the teacher 
must ask for evidence supporting it. After time, claims made will become more carefully 
considered, and claims backed by scientific evidence will become common practice.

Experiment 
There is a tendency for people to refer to any activity involving science that occurs in a class-
room as an experiment. This is an overgeneralization. All experiments are investigations, but 
not all investigations are experiments. Experimentation is a process in which variables are 
identified and conditions are carefully controlled in order to test hypotheses. Think of all of 
the things that must be done before an experiment can be designed and carried out: Students 
first develop a true hypothesis that is based on sufficient evidence and claims. The experi-
mental hypothesis will most likely have an “if … then” statement and will be set up with 
all available variables controlled so that the data collected can lead to a definitive answer. 
For example: “If I change the length of the pendulum then the period of the pendulum will 
change.” To test this idea, one must keep the mass and shape of the bob the same, and use the 
same angle of release. The only thing changed is the length of the string.
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Featured one morning on the Weather Channel was a physical model made at the 
Massachusetts Institute of Technology (MIT) that showed how the air currents of different 
temperatures were affected by the rotation of the Earth. Unfortunately, in their exuberance 
about how the model explained what they were showing on their maps, the hosts of the 
show called the demonstration an experiment. Here we are again being treated to the kind 
of everyday—but for our purposes—sloppy language usage that permeates our society 
and helps to confuse the meaning of science concepts. One of our prime targets in correct-
ing the language of science should probably be the national media.

Learning the Language of Science Education
Even the terminology we use as science educators to describe conceptual understand-
ing may be unfamiliar language to some teachers. The following are a few of the 
important words used to describe conceptual teaching and learning that we will use 
throughout this book:

Alternative Conceptions 
Basically, alternative conceptions are mental models conceived by individuals to try to explain 
natural phenomena: “The Moon phases are caused by shadows.” “Density is caused by 
how tightly packed the molecules in matter are.” “When water appears on the outside of 
a glass in warm, humid weather, the glass is leaking. “Cold creeps into a house if there are 
leaks in the structure.” “Metal objects are always cooler than wooden objects, even when 
they are in the same room for a long time.” These are all examples of alternative concep-
tions or, as some would call them, misconceptions. They are incomplete theories that people 
have developed to try to understand their world. By “incomplete,” we mean that they are 
not fully thought out and have limited use. Misstating the number of chromosomes in the 
human cell (which happened in textbooks in the 1950s) is not an alternative conception; 
it is merely misinformation. For a statement to be an alternative conception, it must be a 
theory that is used to explain a phenomenon, and is usually self-discovered by a person 
trying to explain that phenomenon. 

Example: A person who has heard the term population density will probably first apply 
the idea of tightly packed individuals to scientific ideas of density. If she does not realize 
that atoms have different masses and that packing does not cause the difference in mass 
in objects of the same size, she will have a completely erroneous conception of molecular 
mass and density. Holding on to this alternative conception will make it very difficult to 
think of density in the accepted scientific paradigm. Children (and adults) are perfectly 
capable of holding on to several theories at the same time without seeing them as contra-
dictory. As science teachers, we have an obligation to try to see the world through a child’s 
eyes, to listen to their conceptions and use them to introduce the child to other ways of 
viewing the world. 
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Conceptual Change 
Throughout history, ideas have been debated, and every so often old ideas are either put 
aside or modified in order to match current observations, data, or the need to explain phe-
nomena in a more useful and simpler way. As we will discover in Chapter 2, sometimes 
change has happened smoothly and other times, a revolution in thinking has occurred 
(Kuhn 1996). In many cases, the older ideas do not “go quietly into this good night” (apolo-
gies to poet Dylan Thomas!). Those of us who have used a theory or concept with success 
are loathe to giving it up to a new idea unless we are convinced that the newer idea is 
better in every way and explains phenomena more cogently. Einstein’s theories of special 
and general relativity took years to be a dominant paradigm in physics.

In order to participate in conceptual change, we must be convinced that another expla-
nation that uses the concept is more useful. The same is true of children who enter our 
classrooms with concepts they have used, possibly for years, with great success. Why 
would they want to change them unless they were seen to be no longer useful? Children’s 
naive conceptions are built individually but are strongly affected by social and cultural 
conditions. They are not fully developed, but they work for the children and form a coher-
ent framework for explaining the world. 

For example, imagine a middle school child observing the Moon’s phases changing each 
night. She cannot ignore the phenomenon, and therefore forms her own theory to explain 
it. The child has had previous experiences interacting with objects through play and other 
activities where she observes when an object blocks light from the Sun, a dark shadow 
is cast on the ground by the object. Part of the area around the object is in light, part is in 
shadow. The child uses this experience to develop a personal theory for the phases of the 
Moon by explaining that the Earth blocks part of the sunlight shining on the Moon and 
casts a shadow on that part of it.

Shapiro says it best in her book What Children Bring to Light. “When we teach science, 
we are asking learners to accept something more than scientifically verified ideas. We are 
asking them to accept initiation into a particular way of seeing and explaining the world 
and to step around their own meanings and personal understandings of phenomena into 
a world of publicly accepted ideas” (1994, xiii).

This is not always easy, as we know from experience. We will discuss this aspect of 
teaching further in subsequent chapters.

Paradigm 
In Thomas Kuhn’s landmark book, The Structure of Scientific Revolutions, he says 
“[Paradigms are] examples of actual scientific practice—examples of which include law, 
theory, application and instrumentation together—provide models from which spring 
particular coherent traditions of scientific research” (1996, p. 10). Some examples of 
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paradigms in science are: Ptolemaic astronomy, Copernican astronomy, and Newtonian 
corpuscular optics. 

If you are a scientist, your research is influenced by and committed to a particular 
paradigm, and you follow certain rules and practices in your research dictated by that 
paradigm. For example, a dominant paradigm of Western science in the middle ages was 
that Earth was the center of the universe and that celestial bodies such as the Sun moved 
around the Earth. Can you imagine being a disciple of the new Copernican paradigm in, 
say, the 1540s that stated that the Sun, not the Earth, was the center of the universe, and 
deciding to do research in this “heretical” idea? Its influence would have probably made 
you work in secret for fear that the Roman Catholic Church of that time would excom-
municate you or worse. Today, Copernicus’s heliocentric theory is regarded by the Roman 
Catholic Church and scholars as one of the great revolutions in science. 

Kuhn goes on to theorize that the history of science is rife with what he termed “paradigm 
shifts,” during which time new paradigms influenced groups of converts and changed the 
whole nature of scientific thought (1996). In the same way, it may take a “revolution” in 
thinking to shift the paradigm that forms the basis for a person’s alternative conception. 
(Carey 2009). We’ll examine paradigms in depth in Chapter 2.

Author Vignette
I remember when I was in graduate school, one of the required readings 
in our seminar class was Kuhn’s The Structure of Scientific Revolutions. 
I initially found it to be rather wordy and challenging. I had to read a 
chapter several times, through sheer drudgery, in order to understand 
it. My first reaction was negative—why read such a dense, philosophical 
book if not to help me fall asleep with ease? Why can’t we read 
something more modern and applicable to science teaching? How 
is this going to help me be a better science educator? After a couple 
chapters—and the first discussion we had in class, artfully facilitated by 
our professor—I became enthralled and enamored by this book. The 
term paradigm, which I had encountered in the popular lexicon, had new 
meaning for me, as did revolution and the term normal science. I was 
particularly interested in how Kuhn described the process of how one 
paradigm can replace another. Through our seminar discussions, my view 
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Crosscutting Concepts 
One of the major concerns in learning any subject is that of organizing our thinking around 
major topics for easier retrieval and transfer of learning to the many related areas of a 
domain of knowledge. One of the secrets to internalizing knowledge is seeing its relation-
ship to a larger, more encompassing set of ideas. Relationships among ideas give them 
credibility and help us all to group big ideas into larger, more comprehensive groups. If we 
can see that periodic motion can be used with the pattern of the planets and moons in our 
solar system and the motion of a pendulum or a reproductive cycle, we can see how they fit 
together. After all, science is all about finding patterns and using those patterns to explain 
the behavior of our natural world. A Framework for Science Education (NRC 2012) and the 
Next Generation Science Standards (NGSS Lead States 2013) identify the crosscutting concepts 
all students should master by the time they finish grade 12: 

• Patterns
• Cause and effect: Mechanism and explanation
• Scale, proportion, and quantity
• Systems and system models
• Energy and matter: Flows, cycles, and conservation
• Structure and function
• Stability and change

of the nature of science was reshaped—I experienced my own paradigm 
shift as my assumptions about the scientific enterprise and words I used 
to describe it were challenged! Three years ago, I had to smile when my 
son gave me a copy of the book at Christmas. He had read it in one of his 
graduate courses and thought I would enjoy it (little did he know that I 
had to read it in one of my courses decades before). Today, this book sits 
on my shelf as one of the most important contributions to understanding 
the history and nature of science. As a science educator, I frequently see 
Kuhn’s landmark book cited in the education literature on the nature of 
science. Perhaps it is one of the best and most authentic descriptions 
(albeit wordy and dense) of the nature of science that every science 
educator should read.

—Page Keeley
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If our students were to be familiar with these crosscutting concepts and be able to orga-
nize their learning in these groupings, transfer of knowledge and retrieval of information 
would become much more efficient. 

Models 
The authors of Ready, Set, SCIENCE! define models as things that make our thinking visible 
(Michaels, Shouse, and Schweingruber 2008). When some people hear the word model, they 
think of a physical representation that is built to look like the real thing. But models are more 
than just physical replicas. For example, mental models are those we hold in our minds to try 
to explain the phenomena we see daily. They are personal models. For example, some young 
students have a mental model of the Earth, which allows them to understand why they seem 
to be on level ground although they may believe that the Earth is a sphere. Their model either 
has them in the center of the globe on a flat surface or standing on a flat part of the Earth within 
the round Earth. Early scientists like Ptolemy had a mental model that eventually became a 
conceptual model for his peers that specified Earth was the center of the planetary system. 
This conceptual model remained for many years because it corresponded to their observations 
that the Sun appeared to move across the sky and was consistent with the views of the Roman 
Catholic Church at that time. It took centuries before scientists such as Copernicus and Galileo 
had the courage to oppose the dominant model of that time and create their own mental mod-
els that showed that the Sun was the center of the planetary system. 

Models can be mathematical, physical, conceptual, or computer generated. Models are 
often developed to try to approximate the real thing in a form that can be manipulated and 
studied in cases when a real situation cannot. Models also help students clarify and explain 
their ideas. The common classroom activity that involves building a replica of a cell out of 
food items or representing parts of an atom using cereal contributes to students’ understand-
ing of models as replicas made out of “stuff.” While these may be representations that are 
not much different from 2-dimensional drawings, students seldom use them to explain their 
ideas or manipulate them to make predictions. In essence, they often fall more in the realm of 
arts-and-crafts projects than scientific models. Having a conceptual understanding of what a 
model is and is not is just as important as developing and using models in science.

We hope that looking at these examples of words we use to describe science and the 
understanding of science will be helpful to you as you think about designing instruction for 
conceptual understanding. We must realize that we are asking students to “step around” 
their own mental models and accept those ideas that are now considered the publicly 
accepted ideas (Shapiro 1994). They must also be aware that there may be “revolutions” 
in thinking and that paradigm shifts may occur in science during their lifetimes. This does 
not make science look weak, but helps us to see that scientific knowledge evolves. It is the 
nature of the discipline and its strongest attribute. Scientific knowledge is not dogma but 
a continuously changing set of ideas that are undergoing never-ending scrutiny by the 
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members of the society we call scientists. We will explore this in more depth when we look 
at the nature of science in Chapter 3.

From Words to Listening for Conceptual Understanding
One of the most important watchwords for teaching for conceptual understanding will be 
listening. A student’s alternative conceptions are very important, and teachers need to be 
able to understand what the student is thinking. Alternative conceptions, no matter how 
naive or seemingly incorrect, are the foundations for building new and more complete con-
ceptions. They provide us with a place to start teaching and with the information necessary 
to plan next steps.

Because of this, one of the most important best practices that has come to the forefront is 
diagnostic and formative assessment for the purpose of understanding student thinking and 
making decisions based on where students are conceptually in their understanding. One 
of the authors of this book (Page Keeley) specializes in science diagnostic and formative 
assessment. As a nation, we have been so extremely invested in summative testing since 
the advent of No Child Left Behind (NCLB) that some educators have often referred to it as 
No Child Left Untested. We agree that it is necessary and important to test for achievement 
and accountability, but it is evident that unless teachers know where their children are in 
their current conceptual development, they cannot plan for helping their students make 
changes in thinking as they design and facilitate instruction. This requires listening and 
responding to children when they think out loud. In order for us to hear them out loud, we 
have to give them a chance to tell us about their thinking and explain their ideas. We will 
address the topic of diagnostic and formative assessment and “science talk” in more detail 
when we get to Chapters 8 and 9 in this book. 

One important researcher who addresses the issue of listening to children is Bonnie 
Shapiro from the University of Calgary. In her book What Children Bring to Light, she exam-
ines a fifth-grade classroom and the real responses of children to a vigorously taught series 
of lessons about how we see. In her research, she found that in her sample of six children, 
all but one did not believe what the teacher said, even though they successfully passed the 
unit by filling out their worksheets and completing their tests. The teacher never knew it 
because he didn’t listen or probe the children’s thinking. We’ll examine Shapiro’s research 
more fully in Chapter 4.

Often, when children and adults talk to each other, there is a problem of incommen-
surability. This term means, simply, that two people in a conversation are not speaking 
the same “language.” Thomas Kuhn referred to this problem when he described a similar 
problem in the history of science (1996). Not only are teacher and student using different 
language, but also they are operating in different paradigms or rules about how the world 
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is seen and studied. The students notice different things and focus on different questions 
than do adults. The teacher must be the one to try to overcome this incommensurability. 

Two philosophers, Paul Thagard and Jing Zhu (2003), point out that there can be differ-
ent emotional valences (i.e., weights or connotations) to incommensurability in conceptual 
understanding. They state that the concepts baby and ice cream have positive valences for most 
people, while the concepts death and disease have negative valences. People in the media, who 
are adept at “spin”—using language that makes their clients appear as positive as possible—
have long been aware of this. Thagard and Zhu note that in order for conceptual change to 
occur, especially in emotionally charged areas of thought, each of the communicants would 
have to change their valence on the issues from negative to positive. They give as an example 
a Darwinian evolutionist and a creationist trying to reach a common ground. In order for 
each to achieve commensurability, each would have to change their emotional valence, and 
this may be very difficult, even impossible (look at our own ideologically charged political 
system). But it is important for teachers to be sensitive to the emotional impacts that the 
curriculum might be presenting to the children and be aware of the language they can use to 
change emotionally-based concepts to more evidence-based concepts. 

Teachers often feel committed to changing a “wrong” idea as quickly as possible by 
whatever means they have at their disposal. Instead, since you are cast in the role of 
teacher-researchers we suggest that this is the time to listen as carefully as possible and to 
question the student(s) to find out as much as possible about where the ideas originated 
and how deeply the student(s) are committed to the idea to explain certain phenomena. 
Make them see how interested you are in how they think, and you will encourage them 
to consider their own thinking, and engage in what is known as metacognition (thinking 
about their thinking). The conversation does not have to be one-on-one. Instead, we sug-
gest that students talk to each other and the teacher out loud, bringing students’ thoughts 
to the front so all students can hear. Teachers have found that when they concentrate on 
the conceptual history of the group, the groups itself remains interested, even when the 
conversations may involve only a few members. 

Intentional Conceptual Change and a Community of Learners
This leads us to consider the recent pedagogical theory on intentional conceptual change. If 
we believe that both scientists and science learners gain knowledge in a community and 
that that knowledge is defined as a community consensus, it leads toward a belief that the 
teacher and the students are most effective when there is an intent to learn or change on the 
part of the learner and the community of students are goal-oriented toward understanding 
a new idea. When there is peer support and encouragement for learning, there is an atmo-
sphere more conducive to conceptual change and understanding (Sinatra and Pintrich 
2003). This may certainly lead us to building a community of learners as recommended by 
Bransford, Brown, and Cocking (2000). Hennesey suggests that metacognition (thinking 
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about one’s own thinking) is a primary ingredient in the working of a community of learn-
ers, stating that students have to be aware of how they came to their own knowledge claims 
before they can discuss them with others (2003). These knowledge claims raise the question 
of how to create the community of learners (including the teacher as learner) and conduct 
a class where the community is motivated toward solving a common question or problem. 
However, as Vasniadou points out, making an assumption that students will intentionally 
create strategies for developing intentional learning might be rather optimistic (2003). 

We all know students can develop strategies for completing simple school-type tasks. 
It takes more effort to create the kind of atmosphere and curriculum that “grabs” the stu-
dents and entices them into wanting to develop an inclusive community, intent on solving 
a common problem. One of the authors of this book (Dick Konicek-Moran) has published a 
series through NSTA Press called Everyday Science Mysteries. These mystery stories describe 
a common problem that can be used to motivate and capture the interest of all students in 
the class. The series provides open-ended stories that require metacognition and inquiry to 
find the best solution to the problem. 

The following personal author vignette describes how a community of learners helped 
each other solve a common problem:

Author Vignette
I once worked in a fifth-grade classroom in New England where the 
students had shown a great deal of interest in the apparent daily motion 
of the Sun. This came about through the reading of the story, “Where are 
the Acorns?” This story is about a squirrel that buries acorns using the 
Sun’s effect on tree shadows during the Fall to predict where the acorns 
will be during the winter season (Konicek-Moran 2008). 

 Since the shadows change in the story, the students organized their 
own curriculum to find out as much as they could about the apparent 
movement of the Sun on a daily basis as well as seasonally. They 
predicted that the Sun would cast no shadow at midday (a common naive 
conception). They had already decided, through experimentation and 
discussion that midday was not necessarily noon but could be defined as 
a point halfway between sunrise and sunset. The children needed to find 
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the midday point for a given day. They chose to use the tables in The Old 
Farmer’s Almanac. Mathematically, this is not as easy a task as it might 
appear. We found that there were at least five different methods invented 
by the class of 30 students. 

 The students shared their methods with each other and found that 
they had all come to the same answer, although their methods were 
very different. Some students spent a great deal of time and many 
calculations while others took very little time. Those who found their 
answer very quickly typically used a 24-hour clock method while the 
others struggled with trying to work with a 12-hour clock. A very 
thoughtful discussion arose, as each student tried to defend his or her 
method to the others. Some had never thought of time in a 24-hour 
paradigm before and resisted the acceptance of the 24-hour model. The 
argument and discourse went on for some time, but finally the class 
came to a consensus about a method that was the most expedient and 
efficient. The beauty of the experience to the teacher and me was how 
the students’ interest reached a level of discussion that left us almost 
completely out of the picture. They were thinking about each other’s 
ideas and their own and comparing the efficacy of the methods used. In 
other words they were thinking about their thinking, comparing, making 
decisions, and deepening their understanding of the concept of time as 
it related to a problem they wanted to solve. I hasten to say that it works 
with adults too. 

—Dick Konicek-Moran
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As we all know, the ways in which schools sometimes operate make the time-consuming 
option described in the vignette above difficult to implement. Lisa Schneier sums the prob-
lem up succinctly in the following quotation: 

The fact remains that schools are structured to bring students to fixed points of knowledge 
in a certain length of time. Teachers and students are accountable to elaborate structures 
of assessments that are wielding more and more power. These assessments carry with 
them assumptions about learning and knowledge that exert a constant narrowing force on 
the work of schools. Often the decision as it confronts teachers is whether to short-circuit 
substantive work that is happening in their classrooms in order to prepare students for 
these tests. How to balance these forces against the deeper knowledge that we want for 
students is a continuing question for me. (quoted in Duckworth 2001, p. 194)

We have faith that since we are now poised on the cusp of a new era in teaching for con-
ceptual understanding with the release and implementation of the Next Generation Science 
Standards, teachers can focus on fewer topics each year and teach for deeper understand-
ing. With different means to assess student learning and the application of that learning, 
including continuous formative assessment, we can build a bridge from learner’s initial 
theories about the way the natural world works and how science is practiced to where they 
need to be to understand scientific concepts and practices.

And now, in Chapter 2, we move to the history of science, to see how we may learn from 
the past so we can move forward in the present to prepare our students for a future that 
depends on a conceptual understanding of science and scientific practices. 

Questions for Personal Reflection or Group Discussion

1. Examine your own teaching practice. What percentage of an entire school year 
do you think you actually teach for conceptual understanding in science versus 
“covering the curriculum?” What initial change(s) could you make to shift that 
percentage more toward conceptual understanding? 

2. The term habits of practice describes teaching practices that have become so routine 
that we don’t bother to question them. Can you think of a habit of practice that 
interferes with teaching for conceptual understanding? What can you or others 
do to change that habit of practice?

3. Dick Konicek-Moran’s NSTA Press series Everyday Science Mysteries and Page 
Keeley’s Uncovering Student Ideas series are popular resources for uncovering 
what students (and teachers) really think related to scientific concepts. Think of 
a story or probe you may have used from one of their books that uncovered a 
lack of conceptual understanding. What surprised you about your students’ (or 
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teachers’) ideas? How did this chapter help you better understand why some 
students or teachers harbor ideas that are not consistent with scientific knowl-
edge or ways of thinking?

4. Keep track of everyday or “sloppy use” of science terms for a designated time 
period as you find them in the media, in conversations with others, or even in 
your curriculum. Make a list and consider what could be done to change the way 
these terms are used in the public and school vernacular. 

5. List some examples of concepts that you once may have thought you understood 
but later found you lacked clarity and depth of understanding.

6. Look at the list of crosscutting concepts on page 16. Review these concepts by 
reading pages 83–101 in A Framework for K–12 Science Education (NRC 2012) or 
online at www.nap.edu/openbook.php?record_id=13165&page=83. Identify examples 
of ways these concepts can be included in the curricular units you teach.

7. Change is more effective when learners experience it together, whether it is stu-
dents learning a concept or teachers learning about teaching. How would you go 
about setting up a climate for intentional conceptual change within a community 
of learners at your school or organization?

8. React to Lisa Schneier’s comments on page 22 regarding balancing time against 
deeper knowledge. How do you think the Next Generation Science Standards or 
your own set of state standards will fare against this issue of time for teaching 
versus depth of understanding?

9. Choose one “golden line” from this chapter (a sentence that really speaks to 
or resonates with you). Write this on a sentence strip and share it with others. 
Describe why you chose it.

10. What was the biggest “takeaway” from this chapter for you? What will you do or 
think about differently as a result?

Extending Your Learning With NSTA Resources

1. Read and discuss this article, which shows how elementary children connect 
newly learned material to their existing knowledge: Kang, N., and C. Howren. 
2004. Teaching for conceptual understanding. Science and Children 41 (9): 29–32.

2. Read and discuss this article, which explains how to create and use an interactive 
word wall: Jackson, J., and P. Narvaez. 2013. Interactive word walls. Science and 
Children 51 (1): 42–49.

3. Read and discuss this article, which describes how thought and language are intri-
cately related: Varelas, M., C. Pappas, A. Barry, and A. O’Neill. 2001. Examining 
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language to capture scientific understandings: The case of the water cycle. Science 
and Children 38 (7): 26–29.

4. Read and discuss this article, which describes the crosscutting concepts: Duschl, R. 
2012. The second dimension: Crosscutting concepts. Science and Children 49 (6): 10–14.

5. Read and discuss this article about use of the words theory and hypothesis: 
McLaughlin, J. 2006. A gentle reminder that a hypothesis is never proven correct, 
nor is a theory ever proven true. Journal of College Science Teaching 36 (1): 60–62.

6. Read and discuss this article about how word choice affects students’ understand-
ing of the nature of science: Schwartz, R. 2007. What’s in a word? How word 
choice can develop (mis)conceptions about the nature of science. Science Scope 31 
(2): 42–47.

7. Read and discuss this NSTA Press book about building data literacy: Bowen, M., 
and A. Bartley. 2013. The basics of data literacy: Helping your students (and you!) make 
sense of data. Arlington, VA: NSTA Press.

8. Read and discuss Chapter 3 “Foundational Knowledge and Conceptual Change” 
in Michaels, S., A. Shouse, and H. Schweingruber. 2008. Ready, set, SCIENCE! Wash-
ington, DC: National Academies Press.

9. The authors’ NSTA Press series Everyday Science Mysteries (Konicek-Moran) and 
Uncovering Student Ideas in Science (Keeley) contain a wealth of information on 
children’s alternative conceptions and strategies for eliciting children’s ideas. 
Read and discuss sections from these books. You can learn more about these books 
and download sample chapters at the NSTA Science Store: www.nsta.org/store 

10. Watch the NSTA archived NGSS webinar on developing and using models: http://
learningcenter.nsta.org/products/symposia_seminars/NGSS/webseminar6.aspx 

11. View videos of authors Dick Konicek-Moran and Page Keeley discussing the 
importance of understanding children’s ideas: www.nsta.org/publications/press/
interviews.aspx 
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