INTRODUCING TEACHERS + ADMINISTRATORS TO THE NGSS

A PROFESSIONAL DEVELOPMENT FACILITATOR’S GUIDE

Eric Brunsell
Deb M. Kneser
Kevin J. Niemi
INTRODUCING TEACHERS + ADMINISTRATORS TO THE NGSS

A PROFESSIONAL DEVELOPMENT FACILITATOR’S GUIDE
INTRODUCING
TEACHERS + ADMINISTRATORS
TO THE
NGSS
A PROFESSIONAL DEVELOPMENT FACILITATOR’S GUIDE

Eric Brunsell
Deb M. Kneser
Kevin J. Niemi

NSTApress
National Science Teachers Association
Arlington, Virginia

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
CONTENTS

Introductory Materials

- About the Authors ix
- Contributors xi
- A Letter From David L. Evans, NSTA Executive Director xiii

Technical Sections

1. Introduction 1

2. Facilitating Professional Development Using This Book 3

3. Sticking Points 15

4. Tips for Administrators 19

5. Introducing the NGSS 23

 - **Activity 1** Examining the Standards 24
 - **Activity 2** NGSS Vocabulary 28
 - **Activity 3** The Structure of NGSS 32
 - **Activity 4** NGSS Conceptual Shifts With Chad Janowski 36

 - **Activity 5** Integrating the Three Dimensions 44
 - **Activity 6** Science Inquiry and the Practices of Science and Engineering 50

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
CONTENTS

ACTIVITY 7 Engineering Design and the Practices of Science and Engineering With Reynee Kachur 58

ACTIVITY 8 Science and Engineering Practices Self-Assessment 66

ACTIVITY 9 Exploring Crosscutting Concepts With Emily Miller 81

ACTIVITY 10 Integrating the Nature of Science 85

7 Supporting Science Learning for All Students 89

ACTIVITY 11 All Standards, All Students: Integrating Content, Practices, and Crosscutting Concepts 90

ACTIVITY 12 All Standards, All Students and Universal Design for Learning With Stacey N. Skoning 96

ACTIVITY 13 All Standards, All Students: A Strategy Matrix With Stacey N. Skoning 103

8 Fostering Discussion About Curricular Decisions 109

ACTIVITY 14 Visioning and Values 110

ACTIVITY 15 Course Mapping at the Elementary Level 112

ACTIVITY 16 Plus, Minus, Delta (Grades 6–12) 119

ACTIVITY 17 Course Mapping for Middle and High School 122

ACTIVITY 18 Essential Questions and Crosscutting Concepts 140
<table>
<thead>
<tr>
<th>Activity 19</th>
<th>Developing Performance Assessments</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 20</td>
<td>From Standards to Units</td>
<td>153</td>
</tr>
</tbody>
</table>

9 Connecting NGSS and the Common Core State Standards 167

<table>
<thead>
<tr>
<th>Activity 21</th>
<th>NGSS and the CCSS Mathematics</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Amy Parrott</td>
<td></td>
</tr>
<tr>
<td>Activity 22</td>
<td>Connecting NGSS and CCSS ELA</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>With Mark Bazata</td>
<td></td>
</tr>
<tr>
<td>Activity 23</td>
<td>NGSS and CCSS ELA: Connecting Through the Practices</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>With Mark Bazata</td>
<td></td>
</tr>
<tr>
<td>Activity 24</td>
<td>NGSS and CCSS ELA: Disciplinary Literacy</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>With Mark Bazata</td>
<td></td>
</tr>
</tbody>
</table>

References 197

Appendix 1: Resources 201

Appendix 2: Model Activity (K–5) 203

Appendix 3: Model Activity (6–12) 209

Appendix 4: Model Activity for the Nature of Science 224

Appendix 5: Model Science and Math Activity (K–5) 230

Appendix 6: Model Science and Math Activity (6–12) 237

Index 245
ABOUT THE AUTHORS

ERIC BRUNSELL is an associate professor of science education in the Department of Curriculum and Instruction and coordinator of the Center for Excellence in Teaching and Learning at the University of Wisconsin-Oshkosh in Oshkosh, Wisconsin. Eric earned his EdD in Curriculum and Instruction with an emphasis in Science Education from Montana State University. He is a former high school science teacher and has served as NSTA District 12 Director. Eric has provided professional development sessions and presentations throughout the United States and internationally.

DEB M. KNESER is an assistant professor in the School of Education and the chair of the Institute of Professional Development at Marian University, Fond du Lac, Wisconsin. Deb earned her Ph.D. in curriculum leadership from Marian University. She was previously with the Cooperative Educational Service Agency 6 in Oshkosh, Wisconsin, serving as an educational consultant in curriculum, assessment, and instruction. Deb is a former elementary classroom teacher with a National Board Certification. Deb has extensive experience with providing professional development sessions and presentations on topics ranging from curriculum mapping to teacher effectiveness.

KEVIN J. NIEMI is director of the outreach group in the Institute for Biology Education at the University of Wisconsin-Madison. Kevin received his Ph.D. in plant physiology from the University of Minnesota, taught in the biology department at Grinnell College, and served as the first education coordinator for Olbrich Botanical Gardens in Madison, Wisconsin. Kevin has provided professional development sessions and presentations in science education in Wisconsin and Thailand.
The following educators contributed to the development of many activities in this book. We would like to thank them for their help, and we consider them coauthors of the activities they assisted with (indicated in the table of contents).

Mark Bazata
Instructional support teacher, high school, Oshkosh Area School District, Oshkosh, Wisconsin

Reynée Kachur
Department of Biology and Microbiology, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin

Emily Miller
NGSS Writing Team
Elementary bilingual resource teacher, Madison Metropolitan School District, Madison, Wisconsin

Chad Janowski
Chair, Science Department, high school, Shawano School District, Shawano, Wisconsin

Amy Parrott
Mathematics Department, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin

Stacey N. Skoning
Chair, Department of Special Education, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin
Pick up a newspaper and you’ll see stories related to legalizing marijuana, internet privacy concerns, the gluten-free diet, and hydraulic fracturing (or “fracking”). Strike that. Who reads an actual paper anymore? Now we get our news reports in the palms of our hands with pocket-sized devices that also enable us to call friends, get weather and traffic reports, take pictures, listen to music, turn off the lights at home, and so on.

Every day, we make decisions that require a fairly high level of scientific literacy. Should I buy antibacterial soap? Should I vaccinate my children? Should I buy organic fruits and vegetables? Everywhere you turn, you see further evidence that we live in an increasingly technological world, a world supported by jobs and industries we couldn’t imagine even two decades ago. App developer? Bitcoin?

We need to prepare our children not just to live but to thrive in a world we can’t foresee. They all need high-quality science instruction. They need to understand how to think and behave like scientists and engineers. The Next Generation Science Standards (NGSS) outline an approach to science education that helps students understand important concepts within the context of real-world skills and applications, that helps them draw connections between and among science, engineering, math, and English language arts (ELA). These standards are based on decades of sound research, as summarized in A Framework for K–12 Science Education.

NSTA was a partner in the development of the NGSS and is committed to helping administrators and teachers better understand and implement the standards in their schools and classrooms. The shift in instruction and thinking can be overwhelming. NSTA encourages a thoughtful approach to implementation— with collaboration with colleagues being key—and NSTA offers an ever-growing collection of resources to help educators every step of the way.

Start by visiting the NGSS@NSTA Hub at www.nsta.org/ngss, the gateway to the full spectrum of NSTA’s NGSS-related products and services. Here you’ll find a user-friendly presentation of the NGSS performance expectations with related practices, crosscutting concepts, and core ideas. View the full standard page or isolate specific performance expectations with their corresponding dimensions. In addition, you’ll find resources
vetted by a group of NSTA curators and tagged to particular performance expectations. Other tools include streamlined charts of the dimensions, as well as of the relationships among science, math, and ELA practices. These resources are particularly useful when leading a team of teachers through a training workshop.

The NGSS@NSTA Hub will continue to evolve, as we add functionality and new content. However, it will always be NSTA’s central spot for information and resources around the standards, including the latest news on adoption and assessment. And it’s where we’ll showcase upcoming events and opportunities such as special conference sessions and professional development institutes, virtual conferences, and online short courses.

In addition, administrators will appreciate NSTA’s NGSS publications—especially The NSTA Reader’s Guide to A Framework for K–12 Science Education and The NSTA Reader’s Guide to the Next Generation Science Standards. Taken together, these slim and practical volumes will help you introduce teams of teachers to the three dimensions and new standards, then help you coach them through the planning and implementation phases. Both books are available in print or digital formats. In addition to this book, another valuable publication is Rodger Bybee’s Translating the NGSS for Classroom Instruction, which helps bridge the gap between standards and practice, and the elementary-level Science for the Next Generation (Banko et al.), which approaches the new standards via the popular and effective 5E Model.

In addition, browse the NSTA Learning Center for NSTA’s full collection of journal articles, including several special series on the NGSS, as these pieces provide excellent foundations for working group discussions.

NSTA has also developed an archive of free web seminars covering each of the science and engineering practices, disciplinary core ideas, and crosscutting concepts in detail. Share these with colleagues, and encourage your teachers to gain familiarity and confidence with the idea of using the practices to teach the content. Future web seminars will delve into grade-specific standards.

During this extraordinary time in science education, the challenges and stakes are great, but so are the opportunities. NSTA’s goal continues to be to support excellent and innovative science instruction for all students. To achieve that goal, we are committed to helping science teachers and administrators by developing the tools you need to successfully understand and implement the Next Generation Science Standards.

David L. Evans
NSTA Executive Director
INTRODUCING THE NGSS

“Facts are not science—as the dictionary is not literature.”
—Martin H. Fischer (1944)

Knowledge of science and engineering is important for all. An opening statement in A Framework for K–12 Science Education (Framework; NRC 2012) explains,

By the end of the 12th grade, students should have gained sufficient knowledge of the practices, crosscutting concepts, and core ideas of science and engineering to engage in public discussions on science-related issues, to be critical consumers of scientific information related to their everyday lives, and to continue to learn about science throughout their lives. They should come to appreciate that science and the current scientific understanding of the world are the result of many hundreds of years of creative human endeavor. It is especially important to note that the above goals are for all students, not just those who pursue careers in science, engineering, or technology or those who continue on to higher education. (p. 9)

In the 15 years since the National Research Council and the American Association for the Advancement of Science released the National Science Education Standards, there have been many changes in the world of science. In addition, there has been extensive research released on how students learn science. These pieces have been a driving force behind the writing of the Framework and the Next Generation Science Standards (NGSS; NGSS Lead States 2013).

The activities in this chapter provide an introduction to the NGSS. Activities 2, 3, and 4 represent three different ways to introduce the terminology and structure of the standards to educators. We do not intend that you do all three of these activities with the same group of teachers. Instead, choose the activity that best fits your presentation style.
ACTIVITY 1
Educators explore the progressions of NGSS to begin understanding the structure of NGSS.

ACTIVITY 2
Educators participate in a lecture and then discuss the development and structure of NGSS to begin developing a working knowledge of NGSS.

ACTIVITY 3
Educators use inquiry to develop their working definitions of NGSS vocabulary and the structure of NGSS.

ACTIVITY 4
Educators examine six conceptual shifts in NGSS that demonstrate how NGSS is different from previous standards documents.

ACTIVITY 1
Examining the Standards

Approximate Length
30–40 minutes

Objectives
During this activity, participants will
• explore one strand of the standards from early elementary through high school,
• describe how the standards’ expectations progress as the grade level increases, and
• summarize their discussions on chart paper.

Vocabulary
• progressions
• NGSS standards page
• performance expectations
• foundation boxes

Evidence of Learning
• Group summary on chart paper
• Graphic organizer “Examining the Standards”

At a Glance
In this activity, participants explore one strand (organized by either topic or disciplinary core idea) of the standards from early elementary
Introducing the NGSS

through high school. This activity works well for helping educators get a general feel for the NGSS and develop an understanding that the content in the standards builds developmentally over the course of a student’s education.

When we design professional development, we try to use a learning cycle approach whenever possible. This often means that we use an “ABC” or “activity before content” format to give participants the chance to engage and explore concepts before we explicitly introduce the content of the session. When time permits, we follow the introduction of content with an opportunity for participants to apply that content. We have found that this activity works well for introducing NGSS before we dig in to the development and structure of the standards. Participants only need a limited understanding of how to read an NGSS standards page. This is not a stand-alone activity. It should be followed by an activity that introduces the purpose and structure of NGSS (e.g., Activity 2, 3, or 4 in this book).

Facilitator’s Notes

Since this is an exploration activity, do not focus on providing a comprehensive overview of the NGSS or how to read a standards page. Participants quickly notice that the content at each grade level builds on the previous level and introduces increased complexity without being redundant. Most participants are excited by the clarity of the verbs used in the performance expectations (the science and engineering practices) and note that students are expected to be able to “do things with the content they are learning.”

Materials

- Copies of the handout “Examining the Standards” (p. 27)
- Chart paper and markers (per group of three to four)
- Standards progression (per group of three to four). Identify one set of related standards that includes standards in grades K–2, 3–5, 6–8, and 9–12. For example, we have used a “waves progression” (organization by topic) that included the following pages: 1. Waves: Light and Sound; 4. Waves: Waves and Information; MS. Waves and Electromagnetic Radiation; HS. Waves and Electromagnetic Radiation.

Procedure

Set-up: Participants should be organized into small groups prior to starting this activity. If possible, place participants in mixed grade-level groups.

Introduction (5 minutes): After giving participants a copy of the handout and standards progression, provide a very brief introduction to reading an NGSS standards page. Explain that both the standards page title and performance expectation code (e.g., 1-PS4-1) identify the grade level. Also state that the foundation boxes in the middle of the page provide more depth as to what students should know and be able to do at each grade level. You do not need to provide a comprehensive overview of the standards page at this time.

Group Work (20 minutes): Charge the participants to explore the standards that you have given them. They should pay particular attention to how expectations progress as the grade
level increases. Participants should complete the organizer on the handout. With five minutes remaining in this stage, instruct participants to summarize their discussions on a chart paper. The summary should include questions that they have about the standards. At the end of this stage, each group should post their summary so that it is visible for the entire group.

Debrief (5–10 minutes): Ask a few of the groups to present their summary to the whole group. Foster cross talk between groups by asking participants to describe differences between their summary and previous presentations.

Wrap-up (5 minutes): Conduct a gallery walk by giving participants a chance to look at the group posters. Participants should place a check next to questions on the summaries that resonate with them.

Next Steps

If this is your participants’ initial exposure to NGSS, consider following this activity with Activity 2, 3, or 4 to introduce the background and structure of the standards. You should also make note of the questions on the group summary posters. Many of these questions can be answered by using the activities in this book. However, to answer questions related to state or district policy, you will need additional resources.
ACTIVITY 1

Examining the Standards

Examine a *progression* of standards from NGSS. As you examine it, think about the questions below. It may be useful to compare the NGSS to your existing standards.

<table>
<thead>
<tr>
<th>How does the content build over grade levels?</th>
<th>How are higher-order thinking skills integrated into these standards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is it clear what students are expected to know and be able to do?</td>
<td>What excites you about these standards?</td>
</tr>
<tr>
<td></td>
<td>What concerns or “wonderings” do you have about these standards?</td>
</tr>
</tbody>
</table>
ACTIVITY 2

NGSS Vocabulary

Approximate Length
45 minutes

Objectives
During this activity, participants will
• learn the structure of NGSS,
• read a standards page, and
• explore the standards for their grade level or grade band.

Vocabulary
• Next Generation Science Standards (NGSS)
• Common Core State Standards (CCSS)
• A Framework for K–12 Science Education
• science and engineering practices
• crosscutting concepts
• disciplinary core ideas
• performance expectations
• assessment boundaries
• clarification statements
• foundation boxes
• connection boxes

Evidence of Learning
• Lists of generated questions

At a Glance
This activity is a straightforward presentation about the development and structure of the NGSS. The presentation ends by providing an overview of a standards page. “NGSS Vocabulary” is one of three introductory presentations included in this book.

Facilitator’s Notes
The following narrative provides the background information needed for this activity. Facilitators should feel free to determine the best way to present this information. For example, you might present it as a PowerPoint presentation, a lecture, or a jigsaw reading.

Then and Now
Much has happened since the National Science Education Standards (NSES) were released by the National Research Council in 1996. Putting the previous standards in context can be helpful for understanding why new standards are needed.

Science and Technology
When the NSES were released, “soccer mom” was the word of the year, and “dot” (as in dot-com) was selected as the most useful word of the year. We had to worry about rewinding VHS tapes before returning them to the rental store and had trouble jogging without our compact disc players skipping. Hitachi released a camcorder that could take both still and moving digital pictures. For $2,000, your camera could store 20 minutes of video or 3,000 pictures, with a stunning 0.3 megapixel resolution. Shortly after the NSES were released, the first personal digital music player hit the market: The $400 MPMAN by SaeHan
Introducing the NGSS

Science Education

We have also learned a lot about teaching and learning in science. The journals *Science Education*, the *Journal of Research in Science Teaching*, and the *International Journal of Science Education* alone have published more than 2,500 peer-reviewed research articles. Achieve Inc. has published the *International Science Standards Benchmarking Report* and the National Research Council (NRC) has published multiple reports on effective science education, including the following:

- *How Students Learn History, Science, and Mathematics in the Classroom*
- *America’s Lab Report*
- *Taking Science to School*
- *Ready, Set, Science!*
- *Successful STEM Schools*

Perhaps it is time to update our standards.

Development

This activity is not intended to go in depth about the development process for the NGSS. However, it may be important to provide a few highlights of the process.

The NGSS are not part of the CCSS initiative. CCSS should only be used to refer to the CCSS, in English language arts (ELA) and mathematics. The CCSS ELA does include an appendix of literacy standards for science and technical fields. These standards guide disciplinary literacy standards for science teachers in grades 6–12 but do not include science content standards.

The development of NGSS included a partnership between the National Science Teachers Association, the National Research Center, the American Association for the Advancement of Science, and Achieve Inc. NGSS is not an initiative of the U.S. Department of Education or any other federal agency. The Carnegie Foundation funded the development.

The first step of the development process culminated in the publication of the *Framework* by NRC. The *Framework* was the guiding document for the NGSS writing team, which was managed by Achieve Inc. This writing team was composed of classroom teachers, scientists, and science education researchers. The development process included a comprehensive review process with teams from multiple states and several public review periods.

For more information on the review process, visit the NGSS website at www.nextgenscience.org/development-overview.

Framework

The NRC’s *Framework* provides a vision for what science should look like in the United States. The *Framework* defined the following three dimensions: science and engineering practices, crosscutting concepts, and disciplinary core ideas.

Science and Engineering Practices

The *Framework* identified eight science and engineering practices. These are intentionally called practices (instead of skills) to acknowledge that in
order to engage in the process of science and engineering, students need to have specific knowledge. The eight science and engineering practices build developmentally from kindergarten all the way through high school. The practices are as follows: asking questions and defining problems; developing and using models; planning and carrying out investigations; analyzing and interpreting data; using mathematics and computational thinking; constructing explanations and designing solutions; engaging in arguments from evidence; and obtaining, evaluating, and communicating information. It is important to note that the final three practices are very well aligned and complementary to the CCSS for English Language Arts and Literacy in History/Social Studies, Science, and Technical Subjects.

Crosscutting Concepts

The Framework identifies seven crosscutting concepts. Crosscutting concepts are the concepts or ideas that stretch across all disciplines of science. The benefit of focusing on crosscutting concepts is that it helps provide students with an organizational structure for understanding the world. The crosscutting concepts build from kindergarten through twelfth grade and include patterns; cause and effect; scale, proportions, and quantity; systems and system models; energy and matter in systems; structure and function; and finally, stability and change in systems.

Disciplinary Core Ideas and Component Ideas

The Framework outlines a series of 13 disciplinary core ideas. These core ideas are foundational to science. There are four core ideas each in physical science and life science. There are three core ideas in the Earth and space sciences and two engineering core ideas. Component ideas provide additional detail for each core idea.

One of the goals of the Framework was to identify a coherent scope and sequence of a few ideas that are central to science and build on them throughout a student’s K–12 education career.

Performance Expectations

The standards are written as learning progressions that integrate disciplinary core ideas, science and engineering practices, and crosscutting concepts. Performance expectations serve as guidelines for assessment, not instructional tasks or curriculum mandates. Many performance expectations also include assessment boundaries and clarification statements to further define appropriate depth at that grade level or grade band.

Reading a Standards Page

An initial look at a standards page from NGSS can be quite overwhelming. However, as educators gain comfort with NGSS, they can begin to see how the different pieces of a page work together. A cluster of performance expectations related to a specific topic or core idea sits at the top of the page. The three foundations boxes are found directly beneath the performance expectations. These three foundations boxes contain statements, many directly from the Framework, that further define student learning expectations for each of the three dimensions. A series of connections boxes can be found at the bottom of the page. Connections boxes illustrate how the performance expectations on that page are related to other performance expectations within NGSS and provide connections to the CCSS. These connections are included as a starting point to determine how mathematics and literacy concepts...
and skills can be integrated or reinforced during science instruction.

Materials
- Each participant should have access to at least one standards page. You should decide in advance if you will be using the NGSS organized by topics or by disciplinary core ideas.

Procedure

Introduction (5–10 minutes): Begin this activity by activating prior knowledge. Ask participants to reflect on the question, “What is the purpose of curriculum standards?” Provide an opportunity for participants to briefly discuss this question in small groups. End the introduction by doing a round robin, in which each group suggests one idea related to the question.

Presentation (20 minutes): Use the Facilitator’s Notes to provide participants with an overview of the development and structure of the NGSS.

Explore (10 minutes): During this step, participants should be given time to explore the standards for their own grade level or band. As they explore the standards, encourage them to generate and record questions.

Debrief (10 minutes): Close this activity with a question and answer session. You may be able to address some of these questions directly; other questions may be answered by using activities in this book. Finally, some questions that are asked may be specific to state or district policy decisions. If you do not know how to answer these questions, make sure that you do not speculate.
ACTIVITY 3
The Structure of NGSS

Approximate Length
55 minutes

Objectives
During this activity, participants will
• define the different structural parts of NGSS,
• learn the structure of NGSS,
• read a standards page, and
• explore the standards for their grade level or grade band.

Vocabulary
• Next Generation Science Standards (NGSS)
• Common Core State Standards (CCSS)
• A Framework for K–12 Science Education
• science and engineering practices
• crosscutting concepts
• disciplinary core ideas
• performance expectations
• assessment boundaries
• clarification statements
• foundation boxes
• connections boxes

Evidence of Learning
• Graphic organizer describing the components of NGSS, “The Structure of NGSS”
• List of generated questions

At a Glance
This is one of three activities in this book that can be used to introduce educators to the structure of the NGSS. Instead of providing the structure through a lecture (as in Activity 2), participants use one of the introductory sections of NGSS to determine their own definitions for important elements of the NGSS structure (performance expectations, disciplinary core ideas, foundation boxes, connections boxes).

Facilitator’s Notes
See the Facilitator’s Notes on pages 28–31 in Activity 2 for the background information necessary to facilitate this activity.

Materials
• Each participant should have a copy of the “NGSS Structure” document from the front matter of the NGSS. (This document can be found at www.nextgenscience.org/next-generation-science-standards.)
• Copies of the handout “The Structure of NGSS” (p. 35)
• Access to at least one NGSS standards page

Procedure
Before beginning this activity you should be comfortable with the background information
on the development and structure of NGSS provided in the Facilitator’s Notes of Activity 2 (pp. 28–31).

Set-up: If you are going to use small groups, create them prior to beginning this activity. This activity works best if you put participants into pairs or groups of three. Groups can be either mixed or grade-level teams.

Introduction (5–10 minutes):
Begin this exercise by activating prior knowledge. Ask participants to reflect on the question, “What is the purpose of curriculum standards?” Provide an opportunity for participants to briefly discuss this question in small groups. End the introduction by doing a round robin during which each group suggests one idea related to the question. (Note: This introduction is the same as that in Activity 2, p. 31).

Group Work (20 minutes):
Place participants into pairs or small groups and distribute materials. Explain to the participants that they will be using the “NGSS Structure” section of the NGSS to define concepts that are important to understanding the standards. Optional: You may want to begin this activity by providing context from the Facilitator’s Notes in Activity 2 (pp. 28–31). Participants should use the next 15 minutes to read the “NGSS Structure” document and come to a consensus on how to answer the questions in the handout.

Report Out (10 minutes): Ask groups to report out how they have answered the questions on the handout. Stimulate cross talk between groups by encouraging them to share how their answers are similar and different from each other. Clarify definitions for performance expectations, disciplinary core ideas, the components of the foundations boxes, and the connections boxes as needed. Display Figure 5.1 as a summary of the NGSS structure.

FIGURE 5.1
Model presentation figure

<table>
<thead>
<tr>
<th>THE STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
</tr>
<tr>
<td>Performance expectations describe what students should know and be able to do at the end of instruction. Performance expectations guide summative and formative assessment.</td>
</tr>
</tbody>
</table>

The foundation boxes provide the context for performance expectations.

<table>
<thead>
<tr>
<th>Science and engineering practices</th>
<th>Disciplinary core ideas</th>
<th>Crosscutting concepts</th>
</tr>
</thead>
</table>

The connection boxes provide guidance for connecting the standard to others in NGSS or the CCSS.

Note: Disciplinary Core Ideas form the main concepts that are essential to the major science disciplines. These 39 ideas are drawn from A Framework for K–12 Science Education and span kindergarten through grade 12.
Explore (10 minutes): During this step, participants should be given time to explore the standards for their grade level or band. As they explore the standards, encourage participants to generate and record questions.

Debrief (10 minutes): Close this activity with a question and answer session. You may be able to address some of these questions directly; other questions may be answered by using activities in this book. Finally, some questions that are asked may be specific to state or district policy decisions. If you do not know how to answer these questions, make sure you do not speculate.
ACTIVITY 3

The Structure of NGSS

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How would you describe an NGSS performance expectation to a colleague?</td>
<td></td>
</tr>
<tr>
<td>What is a disciplinary core idea?</td>
<td></td>
</tr>
<tr>
<td>What is the purpose of the foundation boxes?</td>
<td></td>
</tr>
<tr>
<td>What are the connections boxes?</td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY 4

NGSS Conceptual Shifts

With Chad Janowski

Approximate Length

55 minutes

Objectives

During this activity, participants will

• come to understand the rationale for the conceptual shifts in NGSS,
• reflect on how these shifts benefit student learning, and
• reflect on how these shifts positively impact their instructional planning.

Vocabulary

• conceptual shift
• three dimensions
• progressions
• Next Generation Science Standards (NGSS)
• Common Core State Standards (CCSS)
• A Framework for K–12 Science Education
• science and engineering practices
• crosscutting concepts
• disciplinary core ideas
• performance expectations

• assessment boundaries
• clarification statements
• foundation boxes
• connections boxes

Evidence of Learning

• Responses to handout “Conceptual Shifts in the NGSS”

At a Glance

This is one of three activities that can be used to introduce the development and structure of the NGSS to educators. This activity focuses on the six conceptual shifts that demonstrate how NGSS is different from previous standards documents. This activity serves three purposes:

• To provide a rationale for the importance of the conceptual shifts
• To give teachers a chance to discuss the impact of the conceptual shifts
• To illustrate how these shifts are reflected on a standards page as a way to help participants learn how to read the NGSS

Facilitator’s Notes

Educators and education researchers have learned a lot about designing effective standards since the release of the National Science Education Standards more than 15 years ago. As a result, the NGSS writing team made a series of six conceptual shifts. Understanding those shifts, and how they are reflected in the structure of the standards, is important to understanding the vision of the Framework and the standards.
Introducing the NGSS

The first and fifth conceptual shifts reflect how science and engineering are done in the real world by integrating content, practices, and crosscutting concepts while raising the profile of engineering in science education. The National Research Council’s America’s Lab Report (2005) is a synthesis of research related to the efficacy of science laboratory activities. One major finding was that integrated learning experiences increase student understanding and transfer of that understanding to different situations. We also know that context and the integration of content, practices, and crosscutting concepts supports the learning of students from nondominant groups and helps English language learners develop language skills (see Chapter 7).

From work in neuroscience, we also know that experiential learning that stimulates multiple senses in students, such as hands-on science activities, is not only the most engaging but also the most likely to be stored as long-term memories. … The best-remembered information is learned through multiple and varied exposures followed by authentic use of the knowledge. (Willis 2006, p. 6)

These two shifts will positively impact how students experience and learn science in our classrooms.

The third and fourth shifts focus on the need for coherency and a focus on depth of understanding of core ideas. One common criticism of U.S. science education is that we try to cover large amounts of content without providing time to develop an understanding of concepts; we give our students fat textbooks and race to cover them during the school year. Phil Sadler and colleagues (Tai, Sadler, and Mintzes 2006) found that high school students who study a topic in depth for one month are much more successful during introductory university science courses when compared with students in courses characterized by covering many more topics.

Wiggins and McTighe (2011) also point to research that shows that deeper understanding is important. They say

research on expertise suggests that superficial coverage of many topics in the domain may be a poor way to help students develop the competencies that will prepare them for future learning and work. Curricula that emphasize breadth of knowledge may prevent effective organization of knowledge because not enough time is provided to learn anything in depth. Curricula that are ‘a mile wide and an inch deep’ risk developing disconnected rather than connected knowledge. (p. 5)

The first and sixth shifts are related to the use of performance expectations and the inclusion of connections to the CCSS. Performance expectations highlight the importance of integrating the dimensions and call for an emphasis on performance assessments. Wiggins and McTighe (2011) state,

Many assessments measure only recently taught knowledge and never ask for authentic performance (conditional knowledge and skills)—whether students know when, where, and why to use what they have learned in the past. This approach leads to surprisingly poor test results, because students do not recognize prior learning in unfamiliar-looking test questions—especially when the test has no context clues and hints (as occurs when teachers immediately quiz students on recent material). (p. 5)

Additionally, strong connections to the CCSS will help teachers of science better align instruction with what we know about disciplinary...
literacy and how to reinforce mathematical concepts and skills.

Materials

- Copies of the handout “Conceptual Shifts in NGSS” (pp. 39–42)
- Each participant will also need access to the NGSS

Procedure

Before beginning this activity, review the background information provided in the Activity 2 Facilitator’s Notes (pp. 28–31) and read NGSS Appendix A, “Conceptual Shifts in the Next Generation Science Standards.”

Introduction (5–10 minutes): Begin this activity by activating prior knowledge. Ask participants to reflect on the question, “What is the purpose of curriculum standards?” Provide an opportunity for participants to briefly discuss this question in small groups. End the introduction by doing a round robin in which each group suggests one idea related to the question. *(Note: This introduction is the same as in Activity 2.)*

Presentation (35 minutes): You may want to begin by using the Activity 2 Facilitator’s Notes to provide context for why the NGSS are important. Provide each participant with the handout “Conceptual Shifts in the NGSS.”

Use the Facilitator’s Notes from this activity to provide participants with background on the conceptual shifts and structure of NGSS. In this activity, we clustered the conceptual shifts into three pairs. After you discuss each pair, pause to give participants time to answer the associated question. You may want to use a Think-Pair-Share strategy at this point. After the question has been answered, you can continue the presentation by showing participants how the conceptual shift is reflected in the NGSS structure and on an NGSS standards page.

Explore (10 minutes): During this step, participants should be given time to explore the standards for their grade level or band. As they explore the standards, encourage participants to generate and record questions.

Debrief (10 minutes): Close this activity with a question and answer session. You may be able to address some of these questions directly; other questions may be answered by using activities in this book. Finally, some questions that are asked may be specific to state or district policy decisions. If you do not know how to answer these questions, make sure you do not speculate.
ACTIVITY 4

Conceptual Shifts in the NGSS

Pair 1

Shift 1: The NGSS reflect how science is done in the real world by intertwining three dimensions: scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. Scientists ask and answer questions to further our understanding of the world around us. Engineers define problems and design solutions to solve problems. The intent of NGSS is to weave the three dimensions together to reflect the work of scientists and engineers. For example, students are expected to use scientific and engineering practices and apply crosscutting concepts to develop an understanding of disciplinary core ideas. This is a conceptual shift from most state and district standards, which separate these dimensions in curriculum, instruction, and assessment. Curriculum often initially focuses on the science process skills of inquiry without emphasizing science content. To prepare students for the competitive global economy, we must equip them with the skills and information to develop a sense of contextual understanding of scientific knowledge: how scientists acquire it, how engineers apply it, and how it is connected through crosscutting concepts. These understandings can be achieved by interlocking the three dimensions. Therefore, each NGSS performance expectation integrates scientific and engineering practices to understand disciplinary core ideas and connect ideas across disciplines by applying crosscutting concepts.

Shift 5: The NGSS integrate science, technology, and engineering throughout grades K–12. The NGSS integrate applications of science, technology, and engineering into the disciplinary core ideas along with life, Earth, space, and physical science. This conceptual shift also raises engineering design to the same level
as scientific inquiry. This requires the development of curriculum, instruction, and assessments—as well as teacher preparation—to integrate engineering and technology into the structure of science education. Science and engineering are needed to address challenges we face in our ever-changing world, such as an adequate food supply, clean water, renewable energy, and disease control. Hopefully, students will be motivated to pursue careers rooted in science, technology, engineering, and mathematics as a result of early opportunities to apply their scientific knowledge to develop solutions to similar challenges. Integrating science, technology, and engineering into curriculum and instruction empowers students to apply what they learn to their everyday lives beginning in kindergarten, throughout their academic careers, and beyond.

How will these shifts benefit student learning in your classroom?

Pair 2

Shift 3: The NGSS build coherently from grades K through 12. The NGSS concentrate on a limited number of essential disciplinary core ideas that build student understanding progressively from grades K through 12. The conceptual shift is the movement away from learning disjointed and isolated facts and toward opportunities to learn more complex ideas as students progress through grade levels and bands. The disciplinary core ideas identified in NGSS form a coherent progression of knowledge leading to more complexity of student understanding by the end of high school. The goal is to help students achieve scientific literacy by focusing on fundamental content that builds as they progress. The NGSS progressions are based on the assumption that students have learned previous content and can build on their understandings. Therefore, it is critical that students master the content designated for each grade level or band. The omission of any content in a grade level or band can negatively impact student understanding of increasingly more complex core ideas as students advance through grades K–12.
Shift 4: The NGSS focus on deeper understanding of content and applications of content. The NGSS focus on disciplinary core ideas rather than the myriad of facts associated with each core idea. Although the facts support the core ideas, they should not be the focus of curriculum, instruction, and assessment. The conceptual shift places more emphasis on the core ideas and less on facts to provide an organizational structure that delivers the scaffolding students need when acquiring new knowledge. Research indicates experts understand core principles and theoretical constructs of their field and use them to make sense of new information or to apply their understandings to solve problems. Novices hold disconnected and even contradictory pieces of knowledge as isolated facts and have difficulty organizing and integrating the pieces. Therefore, the intent of the NGSS is to engage students in scientific and engineering practices to gain a deeper understanding of disciplinary core ideas and connect those ideas with crosscutting concepts to help them develop from novices into experts.

How will these shifts benefit student learning in your district?

Pair 3

Shift 2: The NGSS are student performance expectations. Student performance expectations clarify what students should know and be able to do at the end of a grade level or band. This conceptual shift recognizes the NGSS are not curriculum, instruction, or assessment; the NGSS are student performance expectations that elucidate the intent of assessments. The NGSS will guide curriculum developers as they develop coherent instructional programs designed to ensure students attain the performance expectations. The three dimensions are integrated in each performance expectation and are intended to enhance instruction and curriculum, not limit it. The scientific and engineering practices and crosscutting concepts should be used throughout the curriculum and instruction so students have many opportunities to become proficient at using the practices to deepen their understanding.
of disciplinary core concepts by connecting them with crosscutting concepts. Backward curriculum design will be required to analyze each performance expectation and develop an instructional sequence that will help students achieve the outcomes delineated in the NGSS.

Shift 6: The NGSS correlate to the CCSS in English language arts (ELA) and mathematics. The NGSS are the vehicle for mastering the CCSS in ELA and mathematics. Science and engineering provide a content area for applying ELA and mathematics skills. The conceptual shift is away from viewing ELA and mathematics as content areas to the perception that they are skills to be practiced and mastered in the science and engineering curriculum. A synergy is created when ELA, mathematics, science, and engineering standards reinforce the acquisition of the skills and knowledge in all of these areas of the school curriculum.

How will these shifts positively impact your instructional planning?
INDEX

Page numbers printed in boldface type refer to tables or figures.

A
A Framework for K–12 Science
 Education, xiii, 1, 2, 23, 29, 66
 supporting science learning for all students, 89
 three dimensions of, 29–30, 43
 crossing concepts, 30, 81–84, 140
 disciplinary core ideas, 30
 integration of, 37, 39, 43, 44–49,
 90–95
 science and engineering practices,
 29–30, 50–51, 66
Accountability systems, 2, 16
Achieve, Inc., 29
Achievement gap, 89
Active learning, 5, 7
Activities for professional development, 2,
 6–8. See also specific activities
 becoming familiar with, 7
 sample uses of, 6
 selection of, 6
 summaries of, 8–13
Activity before content (ABC) format, 25
Administrators and NGSS
 implementation, 19–21
 building a library of resources, 20
 continuity of focus, 20–21
 embracing collaboration, 21
 importance of leadership, 21
 making relevance clear, 20
 providing time for teachers to grow
 and learn, 20
 support in district or school, 19
 view of professional development as
 a process, 19–20
 visibility and participation in process, 20
Advanced Placement courses, 18
All standards, all students: a strategy
 matrix (Activity 13), 103–107
 activity at a glance, 103
 evidence of learning for, 103
 facilitator’s notes for, 103
 handout for, 104, 105–107
 length of, 103
 materials for, 104
 next steps after, 104
 objectives of, 103
 procedure for, 104
 summary of, 11
 vocabulary for, 103
All standards, all students: integrating
 content, practices, and
 crossing concepts (Activity 11), 90–95
 activity at a glance, 90–91
 evidence of learning for, 90
 facilitator’s notes for, 91
 handouts for, 91, 94–95
 length of, 90
 materials for, 91
 next steps after, 93
 objectives of, 90
 procedure for, 92–93
 summary of, 10
 vocabulary for, 90
All standards, all students and Universal
 Design for Learning (Activity 12),
 96–102
 activity at a glance, 96
 evidence of learning for, 96
 facilitator’s notes for, 96
 handouts for, 97, 99–102
 length of, 96
 materials for, 97
 next steps after, 98
 objectives of, 96
 procedure for, 97
 summary of, 11
 vocabulary for, 96
American Association for the
 Advancement of Science, 23, 29
America’s Lab Report, 29, 37
Annotated Unit Planner Template,
 159–161
Antarctic penguin communities: model
 activity (6–12), 46, 209–223
Argumentation
 Modeling, Evidence, Explanations,
 and Argumentation, 69
Using Evidence to Support an
 Argument, 188
Assessments, 4, 13, 16, 37. See also
 Performance expectations
 developing performance assessments
 (Activity 19), 145–152
 science and engineering practices
 self-assessment (Activity 8),
 9, 66–80
B
Basic Elements of a Unit Planner, 155
Berra, Yogi, 109
Big ideas, 4, 12, 47, 82, 83, 93. See also
 Crossing concepts
 Brainstorming Topics and Crosscutting
 Concepts, 116
Bransford, J. D., 140
Brown, A. L., 140
Bybee, Rodger, xiv

C
Cheeks, 193
Climate Change from Pole to Pole:
 Biological Investigations, 46
Cocking, R. R., 140
Coherent instruction, 30, 37, 40, 41, 109,
 112, 169, 172, 173
Collaboration, 21
Common Core State Standards in
 English language arts (CCSS ELA), 1–2, 13, 15, 29,
 37–38, 42, 89, 167
connecting NGSS and CCSS ELA
 (Activity 22), 181–184
NGSS and CCSS ELA: connecting
 through the practices
 (Activity 23), 185–188
NGSS and CCSS ELA: disciplinary
 literacy (Activity 24), 189–196
Common Core State Standards
 in mathematics (CCSS Mathematics),
 1–2, 13, 15, 29,
 37–38, 42, 89, 167
conceptual shifts in, 169
model activity connections in, 170–172
NGSS and the CCSS Mathematics
 (Activity 21), 168–180
reading of, 170, 170
standards for math practice, 169–170
Communication, 3
Completed Unit Planner Template,
 162–164
Conceptual shifts, 9, 36–42
Conceptual Shifts in the NGSS, 39–42
Connecting NGSS and CCSS ELA
 (Activity 22), 181–184
 activity at a glance, 181
 evidence of learning for, 181
 facilitator’s notes for, 181–182
 handout for, 182, 184
 length of, 181
 materials for, 182
 next steps after, 182–183
 objectives of, 181
 procedure for, 182
 summary of, 13
 vocabulary for, 181
Connecting NGSS and CCSS ELA
 Feedback, 196
Connecting NGSS and CCSS
 Mathematics Feedback, 180
Connections boxes, 30, 33
Course mapping at the elementary level
 (Activity 15), 112–118
 activity at a glance, 112

INTRODUCING TEACHERS + ADMINISTRATORS TO THE NGSS
A PROFESSIONAL DEVELOPMENT FACILITATOR’S GUIDE

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Index

evidence of learning for, 112
facilitator’s notes for, 112–113
handouts for, 113, 115–118
length of, 112
next step after, 114
objectives of, 112
procedure for, 113
summary of, 11
vocabulary for, 112
Course Mapping Feedback, 139
Course mapping for middle and high school (Activity 17), 122–139
activity at a glance, 122
evidence of learning for, 122
facilitator’s notes for, 122–123
handout for, 124, 139
length of, 122
materials for, 123–124
next steps after, 124
objectives of, 122
procedure for, 124
summary of, 12
vocabulary for, 122
Crosscutting concepts, xiii–xiv, 2, 4, 12, 30, 43, 109, 112
Brainstorming Topics and Crosscutting Concepts, 116
essential questions and, 140–144
exploring, 10, 81–84
importance of teaching, 82–83
Integrating Crosscutting Concepts, 48
integration of, 44–48
Topics and Crosscutting Concepts, 115
Curricular decisions, 2, 4
for advanced courses, 17–18
alignment with NGSS, 17
course mapping at the elementary level (Activity 15), 112–118
course mapping for middle and high school (Activity 17), 122–139
developing performance assessments (Activity 19), 145–152
essential questions and crosscutting concepts (Activity 18), 140–144
fostering discussion about, 109
importance of depth over breadth, 17, 37, 41
plus, minus, delta (grades 6–12) (Activity 16), 119–121
from standards to units (Activity 20), 153–165
visioning and values (Activity 14), 110–111
Curriculum Mapping Feedback, 117

D
Developing performance assessments (Activity 19), 145–152
activity at a glance, 145
evidence of learning for, 145
facilitator’s notes for, 145–146
handouts for, 146, 148–152
length of, 145
materials for, 146
next steps after, 147
objectives of, 145
procedure for, 146–147
summary of, 13
vocabulary for, 145
Disciplinary core idea cards, 123–124
Disciplinary core ideas, xiii–xiv, 2, 4, 30, 37, 41, 43, 109, 112
integration of, 44–49
in the NGSS final release, 125–138
science and engineering practices and, 66
Disciplinary literacy and Science, 192
Disciplinary Literacy and Science, 192
Diverse student populations, 89–91
English language learners, 37, 82, 83, 104
Erickson, H. L., 140
Essential Questions: Opening Doors to Student Understanding, 140
Essential questions and crosscutting concepts (Activity 18), 140–144
activity at a glance, 140
evidence of learning for, 140
facilitator’s notes for, 140–141
handout for, 141, 143–144
length of, 140
materials for, 141
next steps after, 142
objectives of, 140
procedure for, 141–142
summary of, 12
vocabulary for, 140
Evidence-based argumentation
Modeling, Evidence, Explanations, and Argumentation, 69
Using Evidence to Support an Argument, 188
Examining the Standards, 27
Examining the standards (Activity 1), 24–27
activity at a glance, 24–25
evidence of learning for, 24
facilitator’s notes for, 25
handout for, 25, 27
Engineering design and the practices of science and engineering (Activity 7), 58–65
activity at a glance, 58
evidence of learning for, 58
facilitator’s notes for, 58–59
handouts for, 59–60, 62–65
length of, 58
materials for, 59–60, 60
model activities for, 60
next steps after, 61
objectives of, 58
procedure for, 61
summary of, 9
vocabulary for, 58
English language arts (ELA)
connections, xiii, xiv, 2, 15, 16, 30–31, 37–38, 42, 167
connecting NGSS and CCSS ELA (Activity 22), 181–184
NGSS and CCSS ELA: connecting through the practices (Activity 23), 185–188
NGSS and CCSS ELA: disciplinary literacy, 189–196
English language learners, 37, 82, 83, 104
Examining the Standards, 27
Examining the standards (Activity 1), 24–27
activity at a glance, 24–25
evidence of learning for, 24
facilitator’s notes for, 25
handout for, 25, 27

E
Educators Evaluating the Quality of Instructional Products (EQuIP)
Rubric, 17
Elementary and Secondary Education Act, 16
Engineering design, 2, 9, 17, 39, 44, 66
components of, 58–59
vs. science investigations, 64
videos of, 60
work of engineers in the three spheres, 60, 65

length of, 24
materials for, 25
next steps after, 26
objectives of, 24
procedure for, 25–26
summary of, 8
vocabulary for, 24
Example Performance Assessment Tasks, 148–149
Exploring crosscutting concepts (Activity 9), 81–84
evidence of learning for, 81
facilitator’s notes for, 81–83
length of, 81
materials for, 83
next steps after, 84
objectives of, 81
procedure for, 83
summary of, 10
vocabulary for, 81
Exploring the practices and crosscutting concepts, 43–44
equivalent activity at a glance, 81
exploring crosscutting concepts (Activity 9), 10, 81–84
integrating the nature of science (Activity 10), 10, 85–88
integrating the three dimensions (Activity 5), 9, 44–49
science and engineering practices self-assessment (Activity 8), 9, 66–80
science inquiry and the practices of science and engineering (Activity 6), 9, 50–57
F
Features of Performance Assessment Tasks, 150
Feedback on Unit Planning, 165
Fischer, Martin H., 23
5E Instructional Model, xiv
Fogarty, R., 5
Forces and motion: model activity (K–5), 46, 203–208
Foundation boxes, 30, 33
From standards to units (Activity 20), 153–165
activity at a glance, 153
evidence of learning for, 153
facilitator’s notes for, 153–154
handouts for, 154, 155–165
length of, 153
materials for, 154
next steps after, 154
objectives for, 153
procedure for, 154
summary of, 13
vocabulary for, 153
G
Guskey, T. R., 19
H
Handouts
Brainstorming Topics and Crosscutting Concepts, 116
Conceptual Shifts in the NGSS, 39–42
Course Mapping Feedback, 139
Curriculum Mapping Feedback, 117
Disciplinary Core Ideas in the NGSS Final Release, 125–138
Examining the Standards, 27
Example Performance Assessment Tasks, 148–149
Features of Performance Assessment Tasks, 150
Inquiry Frayer Model, 54
Integrating Crosscutting Concepts, 48
Integrating the Science and Engineering Practices, 49
Integrating the Three Dimensions, 94
Jigsaw Summary, 95
Modeling, Evidence, Explanations, and Argumentation, 69
The Nature of Science, 88
NGSS Mapping, Grades K–5, 118
Science and Engineering Practices Self-Assessments 3–5, 72–74
Science and Engineering Practices Self-Assessments 6–8, 75–77
Science and Engineering Practices Self-Assessments K–2, 70–71
Science Investigations Versus Engineering Design, 64
The Spheres of Science and Engineering Activity, 55–56, 62–63
Strategy Matrix, 105–107
The Structure of NGSS, 35
Topics and Crosscutting Concepts, 115
Turning Performance Expectations Into Performance Tasks/Assessments (Blank), 151
Turning Performance Expectations Into Performance Tasks/Assessments (Scripted), 152
UDL Strategy Matrix, 102
Universal Design for Learning Essay, 99–101
What Do We Teach?, 121
What Do We Want to Learn? Essential Questions, 143–144
The Work of Engineers in the Three Spheres, 65
The Work of Scientists in the Three Spheres, 57
Heat exchange in air, water, and soil: model science and math activity (6–12), 237–244
How People Learn: Brain, Mind, Experience, and School, 140
How Students Learn History, Science, and Mathematics in the Classroom, 29
Hunzicker, J., 5–6
I
Implementation of NGSS assessment of, 4, 13, 16 curricular decisions for, 4, 17–18 pedagogical development for, 4–5 professional development activities for, 2, 3–8, 8–13 (See also specific activities) responsibility for, 16–17 sticking points for, 15–18 timelines for, 16, 19–20 tips for administrators, 19–21 Inquiring Scientists, Inquiring Readers, 46
Inquiry Frayer Model, 54
Integrating Crosscutting Concepts, 48
Integrating the nature of science (Activity 10), 85–88 activity at a glance, 85
facilitator’s notes for, 85–86, 86
handout for, 86, 88
length of, 85
materials for, 86
model activity for, 86, 224–229, 225–229
next steps after, 87
objectives of, 85
procedure for, 86–87
summary of, 10
Index

vocabulary for, 85
Integrating the Science and Engineering Practices, 49
Integrating the Three Dimensions, 94
Integrating the three dimensions (Activity 5), 44–49. See also All standards, all students; integrating content, practices, and crosscutting concepts (Activity 11)
activity at a glance, 45
evidence of learning for, 45
facilitator’s notes for, 45
handouts for, 45, 48–49
length of, 44
materials for, 45–46
model activities for, 46
grades 6–12, 209–223, 210–213
grades K–5, 203–208, 205, 206
next steps after, 47
objectives of, 44
procedure for, 46–47
summary of, 9
vocabulary for, 44
International Journal of Science Education, 29
International Science Standards Benchmarking Report, 29
Introducing the NGSS
examining the standards (Activity 1), 8, 24–27
NGSS conceptual shifts (Activity 4), 9, 36–40
NGSS vocabulary (Activity 2), 8, 28–31
structure of NGSS (Activity 3), 8, 32–35
J
Jigsaw groups, 10, 90–93, 97, 104, 210, 228
Jigsaw Summary, 95
Journal of Research in Science Teaching, 29
L
Leadership, 21
M
Magnet properties: model science and math activity (K–5), 230–235
Mathematics connections, xiii, xiv, 2, 15, 30–31, 37–38, 42, 167
model science and math activity (6–12): heat exchange in air, water, and soil, 237–244
model science and math activity (K–5): properties of magnets, 230–235
NGSS and the CCSS Mathematics (Activity 21), 168–180
McTighe, J., 37, 140–141
The Method of Eratosthenes, 194
Model activity (6–12): Antarctic penguin communities, 46, 209–223
activity at a glance, 209
introduction to, 209
materials for, 211
modifications of, 213–214
overview of, 210–211
performance rubric for assessment of, 213, 213
prior knowledge for, 211
procedure for, 211–213, 212
student pages for, 216–223
warming climate, waning sea ice, 209–210, 210, 211
Model activity (K–5): forces and motion, 46, 203–208
explore phase of, 204–208
changing direction, 204–205, 205
changing force I, 205–208, 206
materials for, 204
scientific background information for, 203–204
Model activity for the nature of science, 86, 224–229, 225–229
Model science and math activity (6–12): heat exchange in air, water, and soil, 237–244
connecting to standards, 237–238
materials for, 237
objectives of, 238
overview of, 237
procedures for, 238–241
processes/skills for, 237
recommended for, 237
safety considerations for, 238
sample rubric for, 240
time required for, 237
Model science and math activity (K–5): properties of magnets, 230–235
activity sheet for, 235–236
assessment of, 241
crosscutting concepts (Activity 36), 36–42
connecting with Common Core State Standards, 15, 29, 42, 167–196

N
National Research Council (NRC), 23, 28, 29, 37
National Science Education Standards (NSES), 4, 23, 28, 36
National Science Teachers Association (NSTA)
NGSS-related products and services, xiii–xiv, 20
role in development of NGSS, xiii, 29
2013 NSTA National Conference on Science Education, 1
Nature of science, 10, 85–88
The Nature of Science, 88
Newton, Isaac, 224
Next Generation Science Standards (NGSS), xiii, 1–2
Appendix A (Conceptual Shifts in the NGSS), 17, 38, 39
Appendix D (All Standards, All Students), 2, 10, 47, 89, 90–92, 96–97, 103–105
Appendix E (DCI Progressions Matrix), 46
Appendix F (Science and Engineering Practices Matrix), 46, 52, 59, 60, 67
Appendix G (Crosscutting Concepts Matrix), 46, 81, 82, 83
Appendix H (Nature of Science Matrix), 85, 86, 87, 88, 164
Appendix I (Engineering Design), 58, 59
Appendix K (Model Course Mapping in Middle and High School), 122, 123, 124
Appendix L (Connections to the Common Core State Standards for Mathematics), 167, 172, 173, 202
Appendix M, 167, 181
assessments and, 4, 13, 16
crosscutting shifts in, 9, 36–42
connecting with Common Core State Standards, 15, 29, 42, 167–196
Index

Science and engineering practices, xiii–xiv, 2, 4, 9, 10, 29–30, 109, 112, current use and development of new strategies for, 17
disciplinary core ideas and, 66
ingineering design and, 9, 58–65
Integrating the Science and Engineering Practices, 49
integration of, 39–40, 43, 44–47, 49
science inquiry and (Activity 6), 9, 40, 50–57
work of scientists in the three spheres, 51, 57
Science and engineering practices self-assessment (Activity 8), 66–80
activity at a glance, 66
evidence of learning for, 66
facilitator’s notes for, 66
handouts for, 67, 69–80
length of, 66
materials for, 67
next steps after, 68
objectives of, 66
procedure for, 67–68
summary of, 9
vocabulary for, 66
Science and Engineering Practices Self-Assessments 3–5, 72–74
Science and Engineering Practices Self-Assessments 6–8, 75–77
Science and Engineering Practices Self-Assessments K–2, 70–71
Science Education, 29
Science for the Next Generation, xiv
Science inquiry, 2, 4, 44, 45, 47, 66, 230–231, 237–238
evaluating inquiry activity for classroom use, 56, 59, 63
Science inquiry and the practices of science and engineering (Activity 6), 50–57
activity at a glance, 50
evidence of learning for, 50
facilitator’s notes for, 50–52
handouts for, 52, 54–57
length of, 50
materials for, 52
objectives of, 50
procedures for, 52–53
summary of, 9
vocabulary for, 50
Science Investigations Versus Engineering Design, 64
Science learning for all students, 89–90
all standards, all students: a strategy matrix (Activity 13), 11, 103–107
all standards, all students: integrating content, practices, and crosscutting concepts (Activity 11), 10, 90–95
all standards, all students and
Universal Design for Learning (Activity 12), 11, 96–102
English language learners, 37, 82, 83, 104
nondominant groups, 11, 37, 47, 82, 89, 90, 91–95, 103–107
Science Texts, 195
Scientific literacy, xiii, 40, 43, 122, 186
Smarter Balance assessment consortia, 16
Spheres of Science and Engineering Activity, 50, 52, 55–56, 58, 59, 61, 62–63
The Spheres of Science and Engineering Activity, 55–56, 62–63
Sticking points for NGSS implementation, 15–18
Strategy Matrix, 105–107
The Structure of NGSS, 35
Structure of NGSS (Activity 3), 32–35
activity at a glance, 32
evidence of learning for, 32
facilitator’s notes for, 32
handout for, 32, 35
length of, 32
materials for, 32
model presentation figure for, 33
objectives of, 32
procedure for, 32–34
summary of, 8
vocabulary for, 32
Successful STEM Schools, 29
Taking Science to School, 29
Teacher certification, 16
Teacher evaluations, 2, 16
Teaching strategies for nondominant groups, 11, 37, 47, 82, 89, 90, 91–95, 103–107. See also
Science learning for all students
Timelines for NGSS implementation, 16, 19–20
Topics and Crosscutting Concepts, 115
Translating the NGSS for Classroom Instruction, xiv
Turning Performance Expectations Into Performance Tasks/Assessments (Blank), 151
Turning Performance Expectations Into Performance Tasks/Assessments (Scripted), 152
Tyson, Neil deGrasse, 43
UDL Strategy Matrix, 102
Unit Planner Template (Blank), 156–158
Unit planning, 13, 153–165
Universal Design for Learning (UDL), 11, 90, 91, 93, 96–102, 103, 104
Universal Design for Learning Essay, 99–101
Using Evidence to Support an Argument, 188
Using the NGSS Connections Boxes for CCSS Mathematics, 179
Visioning and values (Activity 14), 110–111
activity at a glance, 110
evidence of learning for, 110
facilitator’s notes for, 111
length of, 110
materials for, 111
next steps after, 111
objectives of, 110
procedure for, 111
summary of, 11
vocabulary for, 110
Vocabulary of NGSS, 8, 28–31
Web seminars, xiv
What Do We Teach?, 121
What Do We Want to Learn? Essential Questions, 143–144
Wiggins, G., 37, 140–141
Willard, Ted, 18
The Work of Engineers in the Three Spheres, 60, 65
The Work of Scientists in the Three Spheres, 51, 57
"Realizing the vision of A Framework for K–12 Science Education and the NGSS will require professional development of an unprecedented scale. Our hope is that this collection of activities will be helpful as you lead educators through the implementation process."

—from the introduction to Introducing Teachers and Administrators to the NGSS

If you’re charged with helping educators achieve the vision of the new science standards, this is the professional development resource you need. This book is chock-full of activities and useful advice for guiding teachers and administrators as they put the standards into practice in the classroom.

Written by three experts in professional development for science teachers, Introducing Teachers and Administrators to the NGSS

• introduces the vocabulary, structure, and conceptual shifts of the NGSS;

• explores the three dimensions of the Framework—science and engineering practices, crosscutting concepts, and disciplinary core ideas—and how they are integrated in the NGSS;

• provides classroom case studies of instructional approaches for students challenged by traditional science teaching;

• covers curricular decisions involving course mapping, designing essential questions and performance assessments, and using the NGSS to plan units of instruction;

• examines the connections between the NGSS and the Common Core State Standards; and

• offers advice for getting past common professional development sticking points and finding further resources.

Given the widespread changes in today’s education landscape, teachers and administrators may feel overwhelmed by the prospect of putting the new standards into practice. If you are a science specialist, curriculum coordinator, or instructional coach who provides professional development, you will find this collection immensely helpful for heading off “initiative fatigue,” whether in an individual school or throughout a district.