Models and Approaches to STEM Professional Development

Brenda S. Wojnowski and Celestine H. Pea, Editors
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Any opinions, findings, and conclusions or recommendations expressed in this book are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Permissions
Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA’s rights and permissions policies.

Library of Congress Cataloging-in-Publication Data
2013037231

Cataloging-in-Publication Data for the e-book are also available from the Library of Congress.
CONTENTS

Foreword ...vii
Patricia M. Shane

About the Editors ..ix

Part I: Overview

Chapter 1
Introduction to Models and Approaches to STEM Professional Development
Celestine H. Pea and Brenda S. Wojnowski ... 3

Chapter 2
Professional Development: A Historical Summary of Practices and Research
Celestine H. Pea and Brenda S. Wojnowski ... 9

Chapter 3
The Importance of Viable Models in the Construction of Professional Development
Joseph Krajcik ... 33

Chapter 4
Major STEM Reforms Informing Professional Development
Richard A. Duschl .. 45

Part II: State and District Models and Approaches

Chapter 5
Using Constructivist Principles in Professional Development for STEM Educators: What the Masters Have Helped Us Learn
Karen Charles ... 61

Chapter 6
Ohio’s 30 Years of Mathematics and Science Education Reform: Practices, Politics, and Policies
Jane Butler Kahle and Sarah Beth Woodruff ... 79
Chapter 7
Improving and Sustaining Inquiry-Based Teaching and Learning in
South Carolina Middle School Science Programs
 Jeff C. Marshall, Michael J. Padilla, and Robert M. Horton................... 103

Chapter 8
K20: Improving Science Across Oklahoma
 Jean Cate, Linda Atkinson, and Janis Slater... 121

Chapter 9
The iQUEST Professional Development Model
 Katherine Hayden, Youwen Ouyang, and Nancy Taylor.......................... 137

Chapter 10
The Boston Science Initiative: Focus on Science
 Sidney Smith and Marilyn Decker.. 151

Chapter 11
Seattle Public Schools’ Professional Development Model: Preparing
Elementary Teachers for Science Instruction
 Elaine Woo... 165

Chapter 12
New York City STEM Professional Development Partnership Model
 Nancy (Anne) Degnan... 181

Part III: Studying Models and Approaches to STEM Professional
Development in a Professional Learning Community Setting

Chapter 13
Creating and Sustaining Professional Learning Communities
 Jane B. Huffman .. 205

Contributors .. 211

Index .. 213
This volume arrives at a most propitious time for those involved in science education in the United States. As a nation, we are entering a time of significant transition as we prepare to digest, assimilate, and enact the changes inherent in achieving the goals of the Next Generation Science Standards (NGSS). These changes allow for a focus on the core ideas in science and engineering as well as their practices and the crosscutting concepts that are common to both dimensions. Integral to the process of change is the need to be removed from the comfort zone of our current practices. Thus, no matter how great the recognition of the need for change, the process remains arduous and stressful—even for the most passionate proponents.

Models and Approaches to STEM Professional Development provides direction to managing the changes entailed in adoption of the new standards. It takes a meaningful look at the history of professional development in science education, discusses challenges of the new standards and related research on learning, highlights critical aspects of successful programs, and provides forward-facing insights into the needed professional development surrounding the NGSS.

The case for the importance of science, technology, engineering, and mathematics (STEM) reforms and their relevance to professional development is clearly delineated by the authors. Considerable attention is given to creating new ways of listening to and monitoring students’ scientific reasoning and thinking as well as the importance of professional development designed to enact science reforms. Concomitantly, careful blending of what is new, especially A Framework for K–12 Science Education and the NGSS, with the successes of existing science professional development programs are strengths of this volume. As George Santayana so eloquently said, “Those who cannot remember the past are condemned to repeat it.” Because the advent of new standards doesn’t mean ignoring successes of the past, wise implementers will embrace those programs that have been successful and build upon them as they embark on new endeavors.

Because it emphasizes the strengths of existing models, this book does an excellent job of sharing the advantages of nine successful science professional development programs across the country. Some are local programs while others are statewide or regional, but they have elements in common such as grassroots efforts, involvement of the players in developing a program, in-depth professional development over time, and formative evaluation to guide ongoing program revision. Further, insights into the sustainability of the programs are detailed. These are all programmatic elements that need to be considered as we embark on the next stage of science education reform in the United States.
Leaders from across the country have come together in this volume to share their cumulative wisdom about lessons learned. The book demonstrates how new wheels do not have to be invented to enact the NGSS and clearly lays out considerations and methodologies for building on current science education wheels while incorporating new research about how students learn. These themes are deftly developed and articulate the appropriate pathways to achieving the goals of the new science standards. The lessons learned from successful programs are provided along with specific examples of what made them thrive. In addition, considerable attention is given to developing new ways of listening to and monitoring students’ scientific reasoning and thinking. In sum, this volume combines the best of what we have learned since the advent of science reform in order to prepare us for the transition to the recently released NGSS.
About the Editors

Brenda S. Wojnowski

Brenda Shumate Wojnowski, EdD, is president of a Dallas-based education consulting firm geared toward nonprofit and university clients. She is a past president of the National Science Education Leadership Association (NSELA) and a past chair of the National Science Teachers Association (NSTA) Alliance of Affiliates. Dr. Wojnowski edits the NSELA journal, Science Educator, and chaired the 2010 NSTA STEM (science, technology, engineering, and mathematics) task force. She has been engaged in university- and foundation-based programs for over 25 years, with prior experience in public schools. During her career, she has served as senior program officer for a nonprofit foundation and president of a museum-based nonprofit. Dr. Wojnowski has held a variety of university positions, including teaching graduate-level courses in educational leadership and researching and supporting STEM areas. An award-winning K–12 teacher, she has taught at the middle and secondary levels and has served as a high school curriculum administrator. She holds a doctorate in curriculum and teaching with postdoctoral work in educational administration, a master of arts in middle grades education, an undergraduate degree in biology with a minor in secondary education, and teaching and supervision licensures in eight areas. She has presented numerous workshops and invited talks as well as having served in a senior level capacity on many grants and contracts from public agencies and private foundations. Dr. Wojnowski has numerous publications to her credit. Her research interests are in STEM areas, school reform, and the mentoring of beginning teachers.

Celestine H. Pea

Celestine (Celeste) H. Pea, PhD, is a program director in the Division of Research on Learning (DRL), Education and Human Resource Directorate, National Science Foundation. In DRL, Dr. Pea works primarily with the Research on Education and Learning program, for which she manages a portfolio of awards that conduct interdisciplinary research about STEM in current and emerging contexts. She also works with the Innovative Technology Experiences for Students and Teachers program, the Faculty Early Career Development (CAREER) Program, the Albert Einstein Distinguished Educator Program, outreach to minority institutions and entities, and oversees program-level evaluation contracts for research and K–12 education. Dr. Pea’s areas of interest include research on professional development, teacher education, teacher beliefs about science teaching, stereotype and identification of threats, and student achievement. Dr. Pea has been involved on the national level with many different organizations, including the National Association for Research in Science Teaching where she serves on the research committee; the National Research Council; the National Association of Biology Teachers; the American Physical Society; and the National Science Teachers Association. She has served as an
adjunct professor at George Mason University. She has coauthored several articles in science, has contributed chapters to national and international publications, and has several articles under review. Before coming to the National Science Foundation, Dr. Pea was the science coordinator for a Louisiana statewide reform initiative and a middle school science teacher for East Baton Rouge Parish Schools. She holds the following degrees: bachelor of science, masters of science in biology, and a PhD in science education leadership.

Any opinions, findings, conclusions or recommendations expressed in this chapter are those of the authors and do not necessarily reflect the views of the National Science Foundation in any way.
Chapter 3

The Importance of Viable Models in the Construction of Professional Development

Joseph Krajcik

We live in an exciting time in science and science education. Over the last 10 years, many amazing new scientific breakthroughs have occurred that impact our daily lives: genomics, nanoscience, and the use of digital technologies for communications, to name just a few. These breakthroughs give us more control over serious illnesses and allow us to communicate globally through pictures, voice, and text in real time using handheld technologies and to travel the globe within a day. While amazing and useful, these scientific breakthroughs give rise to many technical, ethical, and moral problems such as global warming, pollution of waterways and the air, decrease and loss of species, and a dwindling supply of energy and other resources. Hence, the children of today will grow up in a world in which they will need to apply scientific concepts, communicate ideas, make sound decisions based on evidence, and collaborate with others to solve these problems and prevent them from escalating.

In the past 15 years, learning and cognitive scientists have made tremendous advances in our understanding about how students learn science and how science should be taught to help prepare students for the rapidly changing world. These ideas have been well documented in several publications by the National Research Council (NRC), such as How Students Learn: History, Mathematics, and Science in the Classroom (Bransford and Donovan 2005), Knowing What Students Know (Pelligrino, Chudowsky, and Glaser 2001), Taking Science to School (Duschl, Schweingruber, and Shouse 2007), Ready, Set, Science! (Michaels, Shouse, and Schweingruber 2008), America’s Lab Report (Singer, Hilton, and Schweingruber 2005), Successful K–12 STEM Education: Identifying Effective Approaches in Science Technology, Engineering, and Mathematics (NRC 2011) and A Framework for K–12 Science Education (Framework; NRC 2012). The findings reported in these publications clearly show that to be productive 21st-century global citizens, learners need to develop integrated understanding of big ideas of science by applying and using big ideas to explain phenomena and solve problems important to them. By “integrated understanding” I mean that ideas are linked together in a weblink fashion that allows learners to access information for problem solving and decision making (Fortus and Krajcik 2011).
The Framework provides a coherent picture of the major scientific and engineering ideas and practices that all learners need to understand in order to live productive lives as citizens in this century and, if desired, to pursue further study of science and engineering. The Framework makes use of four key ideas: (1) a limited number of big ideas of science, (2) an ongoing developmental process, (3) the integration or coupling of core ideas and scientific practices, and (4) crosscutting elements.

The Framework laid the foundation for the Next Generation Science Standards (NGSS; NGSS Lead States 2013), in which we find the blending of core ideas with scientific practices and crosscutting concepts that is central to the NGSS. With these breakthroughs in science education, the implications are clear for what inservice and preservice teachers must do to be prepared to teach new scientific ideas using sound pedagogical methods to support students. Taken collectively, the country needs to develop and institute a nationwide approach aimed at preparing top-notch K–12 science teachers before they enter the teaching profession and an equally effective program for providing high-quality professional development to practicing teachers, regardless of the route taken.

How can we use the Framework and the NGSS to inform teaching and learning and its concomitant professional development? These publications will likely serve as the core that education stakeholders at all levels will rally around to establish such an educational infrastructure. The documents clearly demonstrate that what we teach needs to change because of what we know. Rather than focusing on multiple ideas, the Framework recommends that teachers help students develop understanding of the core ideas of science because these will help learners form a foundation for lifelong learning.

As an example of this process and its implications, one of the core ideas in physical science in the Framework is Energy, and one of the crosscutting concepts is Energy and Matter. All teachers from kindergarten through high school will need to present a coherent vision of energy. Previously, the concept of energy was relegated to physical science courses. As such, students had a hard time seeing the similarities of the energy discussed in chemistry and biology with the transformation of kinetic energy to gravitational energy in physics class. Within our own teaching, we create a schism, whereas, energy is in reality a crosscutting concept essential to all of the disciplines. As the Framework stresses, the idea of energy is essential in examining the systems of life science, Earth and space science, chemical systems, and engineering contexts. The idea of energy needs to be taught not just in physics or physical science, but across the grade levels and integrated into all of the science, technology, engineering, and mathematics (STEM) subjects.

Energy is difficult to define, yet we can track energy as it transfers across various systems. Since many teachers have never been taught to teach energy in this powerful way, this approach will need to be embedded into professional development at all levels. Elementary teachers will need to be able to introduce the idea of energy in ways that middle and high school science teachers can build on to further help students develop deeper and more powerful ideas of energy that can be used to explain phenomena and solve problems.
What model of professional development can we use that will help teachers at the elementary level develop an understanding of energy while also providing the tools to support elementary students beginning to form an understanding of energy? How do we support middle school teachers in developing a deep and integrated understanding of energy across the grades and the various disciplines and to link the ideas together within and across the grade levels?

With respect to how we teach science, many classrooms in the United States still resemble classrooms of the early 1900s, with outdated equipment and pedagogical strategies that fail to promote learning for most students. John Dewey bemoaned, in 1910, that education focuses too much on facts and not on how knowledge is generated. We heard a similar cry from Schwab in the 1960s and again from Bruce Alberts in 2009. Although we have seen some changes, learning science is still too much like learning a language and not enough about explaining how the world works. Teaching in which ideas build upon each other is in many ways a foreign idea to science teachers. Although it is a hallmark of teaching and learning because it ties to the importance of connecting to prior knowledge, linking conceptual ideas across time is a challenging pedagogical practice that is seldom observed in the teaching of science. Yet, it can have a powerful influence on student learning (Roseman, Linn, and Koppal 2008).

Today we know much about how to engage students in constructing, revising, and communicating models and in building and communicating explanations from evidence. Students need to engage in model construction and revision as well as in the building and communication of explanations based on new evidence in order to explain phenomena (NRC 2011; Krajcik and Merritt 2012; McNeill and Krajcik 2011). For the science education community, beyond providing a newer student-centered approach to professional development, another major challenge lies in our nation’s large urban cities and rural areas in which classrooms are increasingly filled with underrepresented populations from a variety of cultures (e.g., Hispanics, African Americans, Asians). As a nation, we face the tremendous challenge of how to provide quality science education to diverse learners whose culture and ways of knowing may vary significantly from those of their teachers, necessitating professional development that includes ways to address the cultural and linguistic issues inherent to such classrooms (Moje et al. 2001). The question then becomes how do we support teachers in learning and enacting these important scientific practices?

The Problem

Although the Framework and the NGSS are critical steps in upgrading science education in the United States, their impact will be limited by the degree to which K–12 teachers implement the NGSS with fidelity. Unfortunately, past experience with adapting standards suggests that implementing the NGSS as intended by their developers may be compromised because of the ways local school districts interpret the standards (Spillane and Callahan 2002). For example, we can expect the terms “learning progressions” and “scientific
practices” may take on a wide range of meanings as they are introduced to teachers and school personnel. Many of these interpretations will diverge from the Framework committee’s intentions. Teachers also have a tendency to judge their activities as aligned to standards even when “diverging widely” from that which was intended (Penuel et al. 2009, p. 28). For instance, many teachers felt they were doing inquiry in the classroom when students did a hands-on activity, but hands-on does not necessarily equate to doing inquiry. Moreover, the Framework and the NGSS will not be sufficient resources for helping teachers learn about and enact the standards. Teachers will need professional development in how to interpret and implement the next generation of standards in their teaching, and until new teaching materials are developed, teachers will need to know how to blend the ideas in the NGSS with their current learning materials.

How do we prepare teachers of science, particularly those who graduated in the past, with new scientific ideas and new understandings of how to teach? Unfortunately, many science teachers in our schools have not continued in their professional growth. There are many reasons for teachers not taking part in professional development in our country, including lack of national and state policies that provide both financial backing and time for this commitment. Yet, taking part in professional growth opportunities to learn new science ideas and new methods on how to teach children is critical. The infrastructure for professional development in science education has changed significantly since the first generation of science standards. Given the limited time available for face-to-face professional development and the increasing budget constraints for carrying out professional development, what viable models can be used to support teachers in enacting and understanding essential features of the next generation of science standards? What innovative curriculum and new teaching ideas have emerged in the field? How do we support teachers in developing the pedagogical content knowledge they need to help learners? As a nation, we need to build cost-effective, scalable, accessible professional development models that can support teachers in understanding innovations such as the vision painted in the Framework and the NGSS.

How important is professional development? Forty years ago, when I was in my late teens and early twenties, I was a good car mechanic. I felt competent to open the hood or crawl under most cars to fix them. I even put a new clutch (not a simple procedure) into my Volkswagen bug. But today, I can’t even find the batteries in most cars. Although cars today look superficially like they did in 1970 and still mostly run on internal combustion engines, the internal workings of most new cars are based on updated computer technologies. I never kept up my education as a car mechanic, and with changes in the design and running of cars, my knowledge is old and outdated. Although I could probably still change the spark plugs in a 1968 Volkswagen bug, that knowledge is no longer useful for today’s cars. Today I would have no clue about what to do if my car stalled except to make a phone call. The same thing is true of teaching. Just as you would not want me working on your 2012 Volkswagon because I no longer have that knowledge or skill, many teachers do not have the knowledge and teaching skills for teaching in today’s classrooms. They did not keep up with their
professional development. What we teach and how we teach has changed. While classrooms superficially look the same, what we do in them needs to be very different.

The NRC in Taking Science to School: Learning and Teaching Science in Grades K–8 (Duschl, Schweingruber, and Shouse 2007) argues that well-designed professional development opportunities for teachers can produce the desired changes in classroom practices and contribute to improvements in student learning. But to do so we need viable models of professional development that we know work. Kubitskey and Fishman (2007) support the statement made by the NRC and propose a model of how professional development can influence student outcomes. They believe professional development activities can influence teacher buy-in to an innovation and to the teacher knowledge and confidence needed for the innovation to occur. These components are critical to the practices that teachers use in the classroom and that, in turn, will influence student learning. What is also critical is that we learn more about what type of professional development activities are most promising.

Unfortunately, although we have gained knowledge of what can work, the field lacks knowledge in how to scale and support the use of these new ideas. Typically, professional development institutes do not allow time to provide teachers with the background necessary to teach new ideas. Often ideas are presented superficially and the rationale behind the idea and the importance of using the ideas with fidelity is not stressed. Too often, professional development focuses on presenting the innovations to teachers without engaging them in the process. As such, many science teachers often adapt their use of innovation based on their prior knowledge of teaching and learning, which causes the new methods to resemble traditional classroom practices.

Building Professional Development Models From What Is Known

Professional development that supports teachers’ learning has been shown to be a key factor in improving the quality of schools (e.g., Borko and Putnam 1995) and student learning (Desimone et al. 2005; Heller et al. 2012). Previous research indicates that professional development for science teachers needs to have several key features, including clearly specified learning goals that focus on instruction and student outcomes and highly interactive sessions that engage teachers in a community that supports their learning (Darling-Hammond 1997). Professional development must also provide opportunities for collective meaning making and focus on authentic problems from the teachers’ perspective. Moreover, we know professional development needs to be sustained over a long period. Such professional development can lead to desired changes in teacher knowledge and practice (Penuel et al. 2007).

Lee and Krajcik (2012) suggest a viable model to develop teacher knowledge and teaching skills through a combination of effective professional development and educative materials embedded in the curriculum (Davis and Krajcik 2005; Remillard 2005). Educative materials build supports into teaching materials that allow teachers to enact the innovation as intended.
Yet, what goes into these professional development models? What features of professional development should be focused on? Moreover, we need evidence to support these models.

A Model Supported by Research

Here I discuss a viable model of professional development that stems from the work of Joan Heller and colleagues (Heller et al. 2012). Heller and colleagues used a randomized experimental design, implemented in six states with over 270 elementary teachers and 7,000 students in order to compare three related but systematically varied teacher professional development interventions (Teaching Cases, Looking at Student Work, and Metacognitive Analysis) along with a no-treatment control group. The three interventions contained similar science content components but differed in the ways they incorporated analysis of learner thinking and of teaching. Another critical aspect of their design involved facilitators not involved in the design of the interventions to deliver the professional development sessions. This design made it possible to measure effects of the unique feature of each intervention on teacher and student outcomes. The findings indicate that each intervention improved teachers’ and students’ scores on selected-response science tests significantly and substantially beyond those of control students, and the effects lasted until a year later. Student achievement also improved significantly for English language learners in both the study year and follow-up, with the intervention effects not differing based on sex, race, or ethnicity. However, the research team did see important differences resulting from the various interventions. Only the Teaching Cases and Looking at Student Work interventions improved the accuracy and completeness of students’ written justifications of test answers on follow-up assessments, and only Teaching Cases had sustained effects on teachers’ written justifications. Although the content component that was common across the three interventions showed powerful effects on teachers’ and students’ ability to select correct test answers, the ability to explain why answers were correct only improved when the professional development incorporated analysis of student conceptual understandings and implications for instruction.

These findings are important for several reasons: First, they show that professional development that integrates content learning with analysis of student learning and implications for instruction can impact student learning. Second, the study demonstrated that high-quality professional development of moderate duration can be delivered by facilitators not involved in the development of the interventions and can have considerable and lasting impact on the teaching and learning of elementary science. In addition to the impact, points one and two are important because they illustrate that other professional development models need to incorporate and test these components. Third, the effects of the interventions were stronger for teachers’ students in the follow-up year, suggesting that teachers need to have several iterations before students in their classrooms experience the full impact of the professional development. Often in measuring professional development, we take one-shot approaches that don’t allow teachers opportunities to develop their understanding further, and we do not measure impact across years. Fourth, only a
few studies have shown a causal link between the professional development intervention and student outcomes. The study by Heller and colleagues provides an excellent example for others in the field to replicate at different grade levels and for different content. As such, their model provides an excellent example of an effectiveness study in the cycle of development and research.

A Professional Development Model to Support Enactment of Innovative Curriculum

Using learning goals–driven design (Krajcik, McNeill, and Resier 2008), we developed a middle school science curriculum for grades 6–8 with curriculum coherence as a central design principle (Shwartz et al. 2008). *Investigating and Questioning Our World Through Science and Technology* (IQWST; Krajcik et al. 2011) is a project-based curriculum comprising biology, chemistry, physics, and Earth science units that focuses on building big ideas across time, using scientific practices and engaging students in explaining phenomena. Because IQWST stresses the development of big ideas blended with scientific practices across time, it matches closely the ideas in the *Framework*. This brings challenges not only in introducing teachers to a new curriculum but also to engaging teachers in learning core ideas blended with scientific practices. How do you design a weeklong professional development institute to support teachers in enacting a yearlong, project-based curriculum in which ideas build on each other?

Our model focused on engaging teachers in pedagogy and practices common to all units during a one-week summer institute in order to provide teachers with generalizable knowledge for teaching a full year of IQWST (Krajcik et al. 2008). We learned early on that it is important to collaborate with teachers in designing professional development experiences and to engage teachers in the doing of science during these experiences (Krajcik et al. 1994). The summer institute was followed by a two-day, unit-specific professional development preceding the teaching of each new IQWST unit to reinforce the generalizable ideas in the new context. A key aspect of our work involved teachers in experiencing the materials through model teaching and reflection.

The generalizable knowledge we intended teachers to come away with included

- contextualizing learning using a driving question and a driving question board to frame each unit, and providing a series of investigable questions that motivate students with a need to know;
- scaffolding specific scientific practices such as creating and testing scientific models and constructing scientific explanations as important approaches to classroom inquiry;
- reinforcing classroom learning by providing students with age-appropriate, expository text written to support a range of learners as they read about science in and out of the classroom and engage in multiple ways of expressing their understanding;
• focusing on helping students develop a deep understanding of each unit’s learning goals through a coherent instructional sequence and showing teachers how to link ideas within units using the driving questions and driving question boards; and

• fostering a collaborative classroom culture by focusing on specific types of interactive classroom discussions.

Assessment of teacher artifacts created during the workshop indicated that teachers recognized and appropriately described key features of IQWST and that they began to realize the challenges of implementing the materials in their own classrooms. The artifacts also revealed that the teachers constructed evidence-based scientific models by experiencing phenomena and engaging in lessons on how to construct evidenced-based models. Analysis of workshop records further indicated that teachers engaged in alternate classroom discourse patterns described by the facilitators and used in IQWST materials. Teachers were also able to identify key IQWST features, explain their importance, and describe their associated challenges in enactment. During the workshop, teachers discussed challenges to implementing IQWST, such as facilitating discussions, differentiating instruction, and engaging students to develop evidence-based classroom models over a series of lessons.

The findings from this study suggest that, given the limited time teachers are able to dedicate to professional development experiences, focusing on generalizable pedagogical components of reform-based materials—those that are not specific to units but that apply across units and could be used in other situations as they are tied to what is known about student learning—may be an important way to shape teacher practice. Our work also illustrates that engaging teachers through modeling teaching and engaging with materials is essential to learning. However, this research is at the design, develop, and test phase of the cycle. Although we have some evidence that focusing on generalizable principles can support teachers, we need to take this research to the next phase of the cycle.

Uses of Technology

Given the current state of limited time and resources juxtaposed against the number of teachers that need professional development, technological advances in using synchronous and nonsynchronous communication become invaluable in improving the knowledge and skills of teaching. One of the greatest advantages of using a technological delivery method is that one can impact a large number of teachers at any given time. With the cost of tablet computers lowering to affordable price levels and connectivity speeds increasing, high-quality professional development could be delivered on an as-needed basis through interactive online sources. Under this condition, educators can watch videos of experienced teachers enacting lessons, see how to perform investigations, watch how to support student-to-student dialogue, and learn about challenges students face in learning the ideas. Although online interactive materials are expensive to develop, many institutions of higher education, educational nonprofit organizations, and educational technological-based firms are actively meeting the challenge. It is only through multiple avenues for
meeting the demands for effective professional development that we will see results in subsequent classroom practices and student achievement.

A New Professional Development Model Under Study

To support teachers in enacting the NGSS, my colleagues and I are developing, testing, and revising a model for professional development for the Framework and the NGSS on the basis of what we know about effective professional development. The iterative professional development model is intended to support teachers in

- developing understanding of what is meant by core ideas, scientific practices, and crosscutting concepts.
- developing understanding of how to blend core ideas with scientific practices and crosscutting concepts to develop learning performances or learning goals. This is the same process that will be used to create the next generation of standards.
- modifying existing instructional materials by identifying core ideas, scientific practices, and crosscutting concepts.
- developing learning tasks and assessment measures that will meet learning performances or learning goals.

Although we have implemented this model once with some degree of effectiveness, on the basis of responses from teachers, we know we are only at the beginning stages of our logic model for research and development.

Concluding Comment

With the release of the Framework and the NGSS, we have the opportunity to improve the teaching and learning of science and to help move our nation forward by providing all students with the depth of understanding of big ideas, scientific and engineering practices, and crosscutting elements needed to be productive citizens and leaders in the 21st century. However, extensive professional development based on viable models supported by careful research is needed in order for teachers to implement the vision outlined in the Framework and the NGSS with fidelity in science classrooms.

Several features of such professional development discussed in this chapter include

- engaging teachers in analyzing student work,
- engaging teachers in learning generalizable features of new curriculum materials, and
- building teachers’ understanding over time.
References

Careers in STEM fields, 4–5, 7, 19, 21, 123, 137
Carnegie Foundation of New York, 26
Cate, J., 121–135, 212
Cavazos, L. M., 20
Center for Environmental Research and Conservation (CERC) professional development program (New York City), 181–200
 acquisition of nine key skills in, 196, 197
 adaptation of undergraduate field ecology course for, 184–185
 current model for, 192, 193
 evaluation of, 195
 evolution of, 183–184, 184
 field activities in, 195–196
 goal of, 181–182
 incorporation of standards in, 195
 internal policy perspective of, 181
 lessons learned from, 185–197
 Integrated Project Week, 188
 principal leadership and support, 185–186
 student-centered learning goals, 188–191
 transition point 1: in MS 88, 186–191, 187
 transition point 2, 191–192
 transition point 3: TREES project, 192–197
 middle school integrated core curriculum as focus of, 185
 original model for, 182, 182–183
 reflections for the future, 197–199
 advancing student performance, 198
 assessment linked to testing, 197–198
 measuring student achievement, 199
 using standardized testing, 198–199
Center for Excellence in Science and Mathematics Education, 155
Center for Research on Evaluation, Standards, and Student Testing (CRESST), 174
Charles, K., 61–75, 211
ChildrenFirst Initiative (New York City), 181, 186, 191
Christman, J. B., 209
Civil Rights Act of 1965, 9, 11
Clune, W. H., 99
Coble, C. R., 17
Cognitive dimensions of learning, 46, 47
Cognitively guided instruction (CGI), 12
Collaborative Lesson Study (CLS) process, in iQUEST program, 138, 142–146
 collaborative debrief phase of, 144
 evaluation of, 145–146, 147
 planning day for, 142–143
 rationale for, 142
 team-teach rotations for, 143–144
Collaborative school culture, 15
Colleaguelship among teachers, 17
Collins, J., 170
Columbia University, 181, 182, 184, 190, 191, 197, 200
Common Core State Standards, 75, 132, 148, 195
Communication
 among teachers, 18, 66
 assessing students’ effectiveness for, 188
 developing students’ abilities for, 53, 90
 of education reform ideas to political leaders, 98
 of explanations from evidence, 35, 51, 52, 56
 leadership and, 134
 of mathematical ideas, 93
 of scientific ideas and models, 45, 48, 52, 53, 144
 social interactions of, 47
 social networking, 15, 137, 145
 technologies for, 33, 40, 181–182, 183
 videoconferencing, 137, 141
 virtual, with teachers, 145
 of vision for reform, 88
Communities of instructional practice, 209–210
Computer-Using Educators, 147
Conant, F. R., 16
Concerns-Based Adoption Model (CBAM), 10, 67–75
 Levels of Use dimension of, 67–68, 69
 reflections for the future, 74–75
 Technical Assistance Academy, 68–71
 format of, 69
 goal of, 68
 lessons learned from, 71–74, 72, 74
 resources for, 69
 sessions of, 70, 70–71
Constructivist principles in professional development, 5, 18, 19, 61–75
 challenge for, 62
 Concerns-Based Adoption Model, 10, 67–74
 implications of, 66–67
 literature on, 62, 67
 model for, 61–66
 background of, 62–63
 constructivist instructional practices, 63–64
 overview of constructivist thought, 63
 professional development strategies, 64–65
 teaching for transmittal, 63
 theory of adult learning, 65–66
 vs. passive learning, 62
 rationale for, 61
 reflections for the future, 74–75
Contact hours for professional development, 18, 21, 22, 25
Contact hours for professional development activities, 18, 21, 22, 25
Cook, C., 17
Corcoran, T. B., 17, 20
Core ideas of science, vii, 34, 39, 41, 45, 53–54, 55, 148, 195
Core strategy of professional development models, 3–4
 Critical-thinking skills, 61, 63, 111, 116, 126, 132
 Crosscutting concepts, vii, 34, 41, 45, 50, 53–54, 55, 56, 148, 187, 195
Crowe, E., 22
Cuban, L., 16
Culturally diverse students, 12, 20, 35
Culturally relevant teaching, 19, 25, 35
Curriculum
 for Boston Science Initiative, 155, 155, 156
development of, 17
 innovative, professional development model to
 support enactment of, 39–40
 inquiry-based and technology-infused, 19–20
 standards-based, 45
Curriculum-instruction-assessment models, 45, 54
D
Darling-Hammond, L., 65
Decker, M., 151–164, 212
Degnan, N. (A.), 181–200, 212
Demana, F., 81
Design strategy of professional development models, 4–6
Desimone, L. M., 129
Dewey, J., 35, 64
Differentiated instruction, 18, 191
Disciplinary core ideas, vii, 34, 39, 41, 45, 53, 54, 55, 148, 195
Discipline, culture of, 170
Discipline-specific professional development, 14–15
Discovery project (Ohio), 79, 81–86
 background of, 81–82
 Bridging the Gap as follow-up to, 86–87, 100
 building on, 87–88
 evaluations of, 84
 funding for, 81, 87, 90, 99
 implications for next phase of reform, 88–89
 to improve teaching practice and student learning, 82–83
 online professional development (iDiscovery)
 program of, 87–88
 outreach and awareness of, 82
 policy changes influenced by, 90
 professional development program of, 83–84
 redesigns and scaling-up of, 84–86
Distance education, 20
Diversity of students, 17, 20, 22, 35
 achievement gaps and, 3, 4, 11, 19, 86, 197
 Ohio’s Bridging the Gap project, 86–87
Diversity of teaching population, 22–24, 23
Duckworth, E., 66
Duke, D. L., 65
Duschk, R. A., 45–56, 211
Dwight D. Eisenhower Professional Development Program, 11
E
Earley, P., 24
Early Mathematics Placement Test (EMPT) (Ohio), 80–81
Earth Institute at Columbia University, 181
EcoHealth Alliance, 181
Education Development Center, 155
Eisenhower Consortium, 61, 69, 70, 71
Eisenhower Professional Development Program, 11, 21
Electronic Quality of Inquiry Protocol (EQUIP) (South Carolina), 105, 107, 110–111, 112
Elementary and Secondary Education Act (ESEA) of
 1965, 9, 11, 13, 21
Elementary and Secondary Education Act of 2001, 174
Energy
 crosscutting concepts for matter and, 54, 55
 teaching concept of, 34–35
English language arts, 5, 81, 151, 153, 156, 163, 198, 199
English language learners, 12, 38, 191
Epistemic perspective of learning, 49, 50, 50
Evaluation of professional development programs, 17, 22
 Boston Science Initiative, 159–160
 CERC (New York City), 195
 Discovery project (Ohio), 84
 K20 Center (Oklahoma), 126–127
 MSP program (Ohio), 94
 Seattle Public School’s model, 170
Everyday Assessment in the Science Classroom, 49
Explanations based on evidence, 35, 56
F
Facilitating Systemic Change in Science and Mathematics Education: A Toolkit for Professional Developers, 69
Fargo, J. D., 20
Feedback
 from principals regarding professional development efforts, 186, 195
 to students, 45, 46, 53, 54, 55, 173, 188
 to teachers, 18, 71, 111, 113, 146, 166
 from teachers regarding professional development courses, 169, 175
Feldman, A., 19
Ferran, M., 141
Fields, E. T., 24
Fine, C., 17
Fishman, B., 25, 37
5E Instructional Model
 Collaborative Lesson Study and, 142–144, 147
 4E x 2 Instructional Model and, 107, 109
Focus on Science. See Boston Science Initiative
Fosnot, C. T., 64, 66
4E x 2 Instructional Model (South Carolina), 105, 108, 108–109
Full Option Science System (FOSS), 124–125, 129, 155, 156
Fullan, M., 16, 17
Fulwiler, B. R., 174
Funding, 3, 11, 13, 13, 25, 67
Furtak, E. M., 24
G
Global positioning systems (GPS), 142, 145, 197
INDEX

Goal 2000: Educate America Act of 1994, 16
Goertz, M., 17
Good to Great and the Social Sectors: A Monograph to Accompany Good to Great, 170
Google Earth, 15, 138, 142
Grants, 3, 13, 25. See also Funding
 Local Systemic Change, 165, 169, 170, 171
 from NSF, 79, 81, 87, 99, 151, 158, 165, 192
Grimberg, B. I., 25
Gummer, E., 25
Guskey, T. R., 17, 19

H
Hall, G. E., 10, 67
Hanuscin, D. L., 20
Harrison, C., 64
Hayden, K., 137–149, 212
Heller, J., 38
Herold, B., 25
High-stakes testing, 14, 49, 163
Highly effective teachers and principals, 6, 7, 11, 14, 18, 21, 25, 26, 159
History of professional development, 9–26
 early years, 9–12
 1960s, 9–10
 1970s, 10
 1980s, 10–12
 new era for improvement, 17–25
 into the 2000s, 17–19
 deeper, more far-reaching research, 22–25, 23
 more research linked to practice and culture, 19–21
 2010 to present, 21–22
 new perspective, 12–17
 arrival of science standards, 15–16
 growing research base, 16–17
 1990s, 12–14
 onset of technology, 14–15
 policy support, 9
 promising future, 25–26
 summary of, 26
Hord, S. M., 67
Horizon Research Institute, 84
Horton, R. M., 103–117, 212
How People Learn: Brain, Mind, Experience, and School, 126
How Students Learn: History, Mathematics, and Science in the Classroom, 33
Huffman, J. B., 205–210, 212

I
iDiscovery program (Ohio), 87–88
IMPACT New England, 155
Improving Teacher Quality (ITQ) program, 90.91
Inclusive classroom, 24
Ingersoll, R. M., 24
Initial Use classes, 170–172
Innovative Learning Institute (Oklahoma), 126
Innovative Technology Experiences for Students and Teachers (ITEST), 137, 192, 193
Inquiry, scientific, 19–20, 24, 45
 assessment of, 51, 55, 56
 essential features of, 51, 55, 56
 evidence-explanation framework for, 51–52
 vs. hands-on activities, 36
 scientific practices and, 55
Inquiry and the National Science Education Standards, 51
Inquiry in Motion (IIM) (South Carolina), 103–117
 alignment of lessons with NGSS, 110
 Lesson Quality Checklist Rubric for, 113, 115
 lessons learned from, 112–116
 classroom observations, 112
 exemplars, 113
 focus groups, 113
 student achievement, 104, 113–116
 survey, 112–113
 professional development institutes (PDIs), 104–107
 logic models for, 106
 PDI-1, 105
 PDI-2, 107
 rationale for, 103–104
 reflections for the future, 116–117
 assessment, 117
 discourse, 117
 lesson plans, 117
 structure of, 104
 support structures for, 107–111
 EQUIP, 105, 110–111
 4E x 2 Instructional Model, 105, 108, 108–109
 reinforcement of, 107
 WebTool (including exemplars), 109–110
Institute for Advanced Study, 26
Institute for Systems Biology, 168
Instruction-assisted development, 46, 52, 55
Instructional sequences, 40, 49, 53, 54, 56
Integrated Project Week (IPW) (New York City), 188
 “Intellective identity,” 47
International Society for Technology in Education, 147
Inverness Research Associates, 169, 173
Investigating and Questioning Our World Through Science and Technology (IQWST), 39–40
Investigations for Quality Understanding and Engagement for Students and Teachers (iQuest) professional development program (California), 5, 137–149
 design principles of, 137
 essential elements of, 148–149
 funding for, 137
 leadership of, 138, 139, 148, 149
 lessons learned from, 145–148
 assessing project impact, 145–146, 147
 dissemination into districts, 146–148
 use in implementation of NGSS, 148

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
model of, 138–145
 Collaborative Lesson Study, 138, 142–144
 interaction with scientists, 140–141
 summer academies, 139–142, 140, 141
 support, mentoring, and workshops, 145
 rationale for, 137–138
 reflections for the future, 148–149
 strategy of, 138
 teacher participation in, 138–139
 team approach of, 138
 university–school partnerships for, 138

Japanese Lesson Study, 24, 109
 Johnson, C. C., 20
 Julyan, C., 66

K
 K20 Center for Educational and Community Renewal professional development model (Oklahoma), 5, 121–135
 background and context of, 122–123
 creation of professional learning communities by, 121
 goals of, 121
 IDEALS for democratic education in, 121, 121
 lessons learned from, 129–133
 administration and district support, 130
 collaboration supporting change process, 130–131
 collaborative leadership, 131–132
 leadership, 129–130
 school–university partnership, 132
 shared vision, 131
 technology integration, 133
 materials provided to schools by, 124, 126
 overview of, 122
 Phase 1 Technology Leadership program of, 123, 124, 128
 professional learning communities in, 121
 reflections for the future, 134–135
 school–university partnerships for, 123, 124, 128, 132
 science professional development institute approach of, 124–127
 annual Innovative Learning Institute, 126
 evaluation of, 126–127
 school selection for, 124
 schoolwide implementation examples, 127–129
 sessions and schedule for, 125–126
 ten practices of high-achieving schools in, 121, 122
 Kahle, J. B., 20, 79–100, 211
 Key elements of professional development, 37
 Killion, J., 64
 Kit-based science, 52
 community partners' help with preparation of, 168
 FOSS kits, 124–125, 129, 155

L
 Lamont Doherty Earth Observatory, 192
 Lawrence Hall of Science, 124
 Le Chatelier's principle, 63
 Leadership, 18
 of Boston Science Initiative, 153, 156
 building science department leadership capacity, 153–155, 154
 teacher leaders and building for sustainability, 156–159
 highly effective teachers and principals, 21
 of iQUEST program, 138, 139, 148, 149
 in Oklahoma's K20 Center model, 123, 124, 128, 129–130
 preparation for, in South Carolina's Inquiry in Motion program, 107
 of professional learning communities, 206
 train-the-trainer model and, 14
 Leadership Assistance for Science Education Reform (LASER), 155
 Washington State, 165, 168
 Learning
 adult, 65–66
 constructivist model of, 63
 redesign of environments for, 53
 three-part model of, 46–49, 55
 assessment systems based on, 49–53
 cognitive perspective, 46, 47
 epistemic perspective, 49, 50, 50
 sociocultural perspective, 47–49, 48, 50
 Learning Cycle, 109
 Learning Forward, 16
 Learning goals, 24, 37, 39, 40, 41, 46, 49, 54, 140, 143, 178, 188
 Learning performances, 41, 45–46, 47, 48, 50, 53–54
 Learning progressions, 24, 35, 45, 52–53, 54, 126
 Lee, O., 20, 37
 LeFever, K., 17
 Legislation
 Civil Rights Act of 1965, 9, 11
 Elementary and Secondary Education Act (ESEA) of 1965, 9, 11, 13, 21
 Goal 2000: Educate America Act of 1994, 16
 National Defense Education Act of 1958, 9
No Child Left Behind Act of 2001, 90, 91, 174, 181
Leitzel, J., 81
Lieberman, A., 17
Living by Chemistry, 156
Local Systemic Change (LSC) grants, 165, 169, 170, 171
Lord, B., 17
Loucks, S., 10
Loucks-Horsley, S., 62
Mathematics and Science Partnership (MSP)
in Boston, 158–159
in Ohio, 79, 90–99
background of, 90–91
evaluations of, 94
funding for, 90, 91, 94, 96
to improve teacher professional development, 91–93
Improving Teacher Quality program and, 90, 91
lessons learned from, 97–99
phase 1: realizing federal and state objectives, 94–96
phase 2: scaling back to scale up, 96
phase 3: improving capacity for systemic reform, 96–97
professional development model of, 94–97
in Seattle, 165
McDermott, L., 83
McLaughlin, M. W., 16, 65
Measures of Academic Progress (MAP) tests, 111, 112, 113–114
Meiring, S., 80
Mentoring, 18
in iQUEST model, 145, 148, 149
Merck Institute Science Education Instructional Team Retreat, 155
Metz, K., 20
Miami University of Ohio, 81, 82, 83, 84, 86, 87
Miles, M., 16
Minority students, 11, 35. See also Diversity of students
Models for construction of professional development, 33–41
building models from what is known, 37–41
model supported by research, 37–38
model to support enactment of innovative curriculum, 39–40
new model under study, 41
uses of technology, 40–41
importance of, 35–36
Murphy, C., 16
National Academy for Curriculum Leadership, 155
National Assessment of Educational Progress (NAEP), 3, 103
Trial Urban District Assessment, 163
National Center for Education Statistics (NCES), 4, 16
National Council of Teachers of Mathematics (NCTM), 80
National Defense Education Act of 1958, 9
National Middle Schools Association (NMSA), 184
National Professional Development Institute for Science Writing, 174
National Research Council (NRC), 5, 15, 33, 37, 45, 56, 182
National Science Board, 4
National Science Education Standards (NSES), 15, 16, 182, 192, 195
National Science Foundation (NSF)
grants/funding from, 79, 81, 87, 99, 151, 158, 165, 192
Innovative Technology Experiences for Students and Teachers program, 137, 192, 193
National Science Resources Center, 155, 168
National Science Teachers Association, ix, 147, 155
Networking technologies in schools, 14
New York Botanical Garden, 181, 192
New York City Department of Education, 181, 192, 193
New York City professional development partnership model, 5–6, 181–200
acquisition of nine key skills in, 196, 197
adaptation of undergraduate field ecology course in, 184–185
current model, 192, 193
evaluation of, 195
evolution of, 183–184, 184
field activities in, 195–196
incorporation of standards in, 195
lessons learned from, 185–197
Integrated Project Week, 188
principal leadership and support, 185–186
student-centered learning goals, 188–191
transition point 1: in MS 88, 186–191, 187
transition point 2, 191–192
transition point 3: TREES project, 192–197
middle school integrated core curriculum as focus of, 185
original model, 182, 182–183
rationale for, 181–182
reflections for the future, 197–199
advancing student performance, 198
assessment linked to testing, 197–198
measuring student achievement, 199
using standardized testing, 198–199
New York State Department of Education, 198
Newmann, F. N., 17
Next Generation Science Standards (NGSS), vii, viii, 21, 22, 26, 34, 45, 46, 62
modifying instructional materials for alignment with, 41, 110
professional development for implementation of, 36, 41, 56
CERC program (New York City), 195
iQUEST model, 148
varying interpretations of, 35–36
No Child Left Behind Act of 2001, 90, 91, 174, 181
Northwest Evaluation Association (NWEA), 111, 113–114, 116

O
O'Day, J., 17
Ohio Board of Regents (OBR), 79, 81, 82, 87, 90, 91
Ohio Council of Teachers of Mathematics, 80
Ohio Department of Education (ODE), 79, 80, 81, 82, 90, 91–93, 94, 96–97, 99
Ohio State University (OSU), 79, 80, 81, 83, 87
Ohio's science and mathematics reform, 5, 79–100
Discovery project, 79, 81–86
background of, 81–82
Bridging the Gap as follow-up to, 86–87, 100
building on, 87–88
evaluations of, 84
funding for, 81, 87, 90, 99
implications for next phase of reform, 88–89
to improve teaching practice and student learning, 82–83
online professional development (iDiscovery) program of, 87–88
outreach and awareness of, 82
policy changes influenced by, 90
professional development program of, 83–84
redesigns and scaling-up of, 84–86
early statewide efforts in mathematics, 80–81
Mathematics and Science Partnership (MSP) Program, 79, 90–99
background of, 90–91
evaluations of, 94
funding for, 90, 91, 94, 96
to improve teacher professional development, 91–93
Improving Teacher Quality program and, 90, 91
lessons learned from, 97–99
professional development model of, 94–97
rationale for, 80–81
reflections for the future, 99–100

Pea, C. H., ix–x, 3–7, 9–26, 205, 211
PhET Interactive Simulations, use in iQUEST program, 139–140, 140, 141
Physics by Inquiry, 83
Physics First Symposium (Massachusetts), 155
Pielet, J., 63–64
Podcasts, 15
Policy support, 9, 11, 16
Popplet, 140
Porritt, V., 24
Porter, A., 21
Preservice teachers, 20, 34, 83
Presidential Awards for Excellence in Mathematics and Science Teaching, 159

100Kin10, 25, 26
Online professional development courses, 14–15, 40
vs. face-to-face approaches, 15, 25
iDiscovery (Ohio), 87–88
iQUEST, 137–149
K20 Center (Oklahoma), 125
in New York City model, 196
WebTool (South Carolina), 109–110
Ouyang, Y., 137–149, 212

P
Padilla, M. J., 103–117
Parke, H. M., 17
Partnerships, 13
of Boston Science Initiative, 156, 157
New York City model for, 5–6, 181–200
school–university partnerships
for iQUEST program, 138
for Oklahoma's K20 Center program, 123, 124, 128, 132
with Seattle Public Schools, 168–169
Pea, C. H., ix–x, 3–7, 9–26, 205, 211
PhET Interactive Simulations, use in iQUEST program, 139–140, 140, 141
Physics by Inquiry, 83
Physics First Symposium (Massachusetts), 155
Plaget, J., 63–64
Podcasts, 15
Policy support, 9, 11, 16
Popplet, 140
Porritt, V., 24
Porter, A., 21
Preservice teachers, 20, 34, 83
Presidential Awards for Excellence in Mathematics and Science Teaching, 159
President's Council of Advisors on Science and Technology, 5

Problem-based learning, 186, 188, 198–200

Problem representation, effective, 46, 47

Problem solving, 13, 33, 34, 46, 62, 63, 64, 69, 80, 81, 86, 87, 90, 93, 126, 132, 195, 208

Proceduralized knowledge, 46, 47

Professional (learning) communities (PLCs), 66
creation and sustaining of, 6, 205–210

collaborative teaching, learning, and application, 206–207

lessons for practitioners, 208–209

professional and personal efficacy and commitment, 207–208

shared values, vision, and leadership, 206

history of, 15, 16, 17, 18

in iQUEST model, 137, 142, 145

in New York City's CERC model, 183, 193

in Oklahoma's K20 Center program, 5, 121, 124, 130, 132, 133
technology in creation of, 133

iDiscovery project, 88

Professional development for STEM educators, vii
Boston Science Initiative model for, 5, 151–164
colleagueship and, 17

common elements of models for, vii, 6

Concerns-Based Adoption Model for, 10, 67–75
contact hours and duration of, 18, 21, 22, 25
cultural relevance of, 19
curriculum development and, 17
demonstrating effectiveness of, 24
design strategy of models for, 4–6
discipline-specific, 14–15
effective strategies for, 65

elements associated with effectiveness of, 19, 129

funding for, 3, 11, 13, 15, 25, 67
goals of, 4–5

history of, 9–26, 64

identifying core strategy of models for, 3–4

impact on student achievement, 20, 24–25, 26, 37, 103, 160–161

for implementation of NGSS, 36

implementation of research on, 7

importance of viable models in construction of, 33–41
to improve inquiry-based teaching and learning in South Carolina middle schools, 5, 103–117

introduction to models and approaches for, 3–7

iQuest model for, 5, 137–149

iterative model for, 41

key elements of, 37

learning goals for, 37, 39

logic model for change and improvement, 6

major STEM reforms informing, 45–56

New York City partnership model for, 5–6, 181–200

Ohio's statewide model for, 5, 79–100

Oklahoma's K20 Center model for, 5, 121–135

opportunities for, 14, 18, 21

promoting coherence in, 18

reasons teachers do not participate in, 36

relative to preservice and inservice teachers, 20

relative to students with learning disabilities, 24

resources for, 7

role of evaluation in, 17, 22

role of professional learning communities in, 6

school change and, 17

school leadership and, 17

Seattle Public School's model for, 5, 165–178

student-centered, 14, 16, 17, 35

sustainability of programs for, vii

systemic reform theory of, 12–13

to teach Investigating and Questioning Our World Through Science and Technology curriculum, 39–40

teacher-driven, 11

teachers' rating of effectiveness of, 12

technology as tool for, 14–15, 18–19, 20, 40–41

train-the-trainer models for, 14, 75, 155

training developers of, 61

using constructivist principles in, 5, 18, 19, 61–75

voluntary vs. required, 14

Professional development institutes (PDIs) of Oklahoma's K20 Center, 124–127

annual Innovative Learning Institute, 126

evaluation of, 126–127

school selection for, 124

schoolwide implementation examples of, 127–129

sessions and schedule for, 125–126

of South Carolina's Inquiry in Motion program, 104–107, 106

Project-based learning, 39, 184, 184, 186, 188, 191, 192, 196

Public displays of competence, 48

R
Race/ethnicity. See Diversity

Rasmussen, C., 17

Reading, 39, 122, 128–129, 130, 131–132, 134

Reading Recovery, 82, 83

Ready, Set, Science! (RSS), 33, 45, 46, 47, 55–56

four strands of science proficiency in, 55–56

Reasoning skills, vii, viii, 48, 49, 52, 53, 55, 90

Recruitment and training of STEM teachers, 25–26

Redesign of learning environments, 53

Reform efforts, vii, 4

ChildrenFirst Initiative (New York City), 181, 186, 191

history of professional development relative to, 9–26

major STEM reforms informing professional development, 45–56

in Ohio, 5, 79–100

100Kin10 approach to, 25–26

rationale for, 45–46

Regents High School Exams (New York), 197
Research
professional development model supported by, 37–38
Research on professional development, 4
in 1990s, 16–17
deep and more far-reaching, 22–25, 23
linked to practice and culture, 19–21
teacher participation in, 19
Rosebery, A. S., 16
Roth, K. J., 24

S
San Diego County Office of Education, 137
San Diego Zoo Safari Park, 141
Santayana, George, vii
Scaffolding, 39, 117, 139, 143, 172–173, 174
Schneider, R. M., 20
Schools and Universities Statewide Teaching Approaches to Inquiry (SUSTAIN) (Ohio), 87
Schwartz, M. S., 20
Science and Engineering Indicators, 4
Science and Technology for Children, 156
Science for All Americans, 15
Science K–10 Grade Level Expectations: A New Level of Specificity (Washington), 174
Science writing, 38, 39, 71, 172–174, 175, 176, 178, 188
Scientific and engineering practices, vii, 34, 35–36, 39, 41, 45, 47, 49, 50, 50–55, 52
Scientific literacy, 15, 20, 21, 54, 93, 123, 126, 165, 167, 168
Scientific reasoning and thinking, vii, viii, 48, 49, 52, 53, 55, 90
Scientific tools, engagement with and application of, 48
Seattle Public School’s professional development model for elementary science teachers, 5, 165–178

collaboration with community partners and scientists for, 168–169
continuity of highly qualified staff in, 169
defining professional development system in, 170–171
discipline in, 170
feedback loop for teacher input in, 169
funding for, 165
Initial Use classes of, 170–172
laying the foundation for, 167–168
lessons learned from, 176–178, 177, 178
mission statement for, 165
ongoing professional development participation in, 169
outside evaluation of, 170
rationale for, 165–167
reflections for the future, 178
science content courses in, 175
science writing in, 172–174
stakeholders’ vision for, 168
state science standards and State Assessment Prep classes in, 174–175
support infrastructure for, 165–167, 166
taking time to develop program components of, 170
teacher-classroom impact loop for, 167
use of current data, research, and best practices in, 170
Seattle Works, 168
SEE-U program, 192, 196–197, 198
Self-assessment, 48, 49, 191
Self-regulatory skills, 46, 47, 48
Shane, P. M., vii–viii, 211
Shymansky, J. A., 20
Skype, 15
Slater, J., 121–135, 212
Smith, C., 50
Smith, M., 17
Smith, S., 151–164, 212
Smithsonian Science Education Center, 168
Social networking, 15, 137, 145
Sociocultural perspective of learning, 47–49, 48, 50
South Carolina’s Inquiry in Motion (IIM) program, 5, 103–117
alignment of lessons with NGSS, 110
Lesson Quality Checklist Rubric for, 113, 115
lessons learned from, 112–116
classroom observations, 112
exemplars, 113
focus groups, 113
student achievement, 104, 113–116, 115
survey, 112–113
professional development institutes (PDIs), 104–107
logic models for, 106
PDI-1, 105
PDI-2, 107
rationale for, 103–104
reflections for the future, 116–117
assessment, 117
discourse, 117
lesson plans, 117
structure of, 104
support structures for, 107–111
EQUIP, 105, 110–111, 116
reinforcement of, 107
WebTool (including exemplars), 109–110, 116
Space exploration programs, 11
Sparks, D., 62
Special education teachers, 24
Stakeholders in science education, 19, 25–26, 168
Standards for science education, vii–viii, 15–16, 53, 61
curriculum based on, 45
National Science Education Standards, 15, 16, 182, 192, 195
Next Generation Science Standards, vii, viii, 21, 22, 26, 34
modifying instructional materials for alignment with, 41, 110
professional development for implementation of, 36, 41, 56, 148.195
varying interpretations of, 35–36
in Washington State, 174–175
Statewide Systemic Initiative (SSI) projects in Ohio, 79, 82, 85, 87, 88, 99. See also Discovery project
Steigelbauer, S., 16
Storytelling, digital, 15
Structured, principled knowledge, 46, 47
Student achievement, 11, 16, 19
gaps in, 3, 4, 11, 19, 86–87, 104
impact of professional development programs on, 20, 24–25, 26, 37, 104
Boston Science Initiative, 160–163, 161, 162
Seattle Public Schools program, 176–178, 177, 178
South Carolina’s Inquiry in Motion, 113–116
measuring in CERC program (New York City), 199
in middle school science, 103
Student-centered professional development, 14, 16, 17, 35
Student-centered teaching and learning, 115, 124, 132, 139, 185, 188
Students
adaptive instruction for, 45–46, 55
differentiated instruction for, 18, 191
diversity of, 17, 20, 22, 35
English language learners, 12, 38, 191
interest in careers in STEM fields, 4–5, 7, 19, 21, 123, 137
with learning disabilities, 24
selection of careers in STEM fields, 4–5, 7, 19, 21
underestimating science abilities of, 45
Successful K–12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics, 33
Supovitz, J. A., 19, 209
Systemic reform theory, 12–13
T
Taking Science To School, 33, 37, 45, 50, 50, 53
Taylor, N., 137–149, 212
Teaching Cases, Looking at Student Work, 38
Teaching for transmittal, 63
Technical Assistance Academy for Mathematics and Science Services, 61, 62–63, 67, 68–71
format of, 69
goal of, 68
lessons learned from, 71–74
data analysis and results, 71
moving through Levels of Use, 73–74, 74
participants’ insights on constructivist approach, 71–73, 72
revisions for the future, 74–75
resources for, 69
sessions of, 70, 70–71
Technology
curriculum units on, 19
equipment provided to schools by Oklahoma’s K20 Center, 124, 126, 133
global positioning systems, 142, 145, 197
iQUEST program to promote student interest in, 137–149
K20 Center’s Phase 1 Technology Leadership program, 123, 124, 128
as tool for professional development, 14–15, 18–19, 40–41
distance education, 20
vs. face-to-face approaches, 15, 25
iDiscovery (Ohio), 87–88
key elements of, 133
Technology, Research, Ecology Exchange for Students project (TREES), 192–197
Third International Mathematics and Science Study, 16
Train-the-trainer models, 14, 75, 155
Turnbull, B. J., 62
Turner, H. M., 19
21st-century workforce skills, 137, 138
U
Understanding by Design, 196
United Federation of Teachers, 191
United Way’s Day of Caring, 168
University of California, Berkeley, 124
University of California, Los Angeles, 174
University of Oklahoma, 121, 122
U.S. Department of Education, 26, 123
Usher, A., 22
V
Videoconferencing, 137, 141
Vygotsky, L., 47
W
Waits, B., 80
Warren, B., 16
Washington State K–12 Science Learning Standards, 174
Webinars, digital, 15
WebTool (South Carolina), 109–110
Weiman, C., 139
Weiss, I., 84
Wildlife Conservation Society, 181, 192
Wilson, K., 81
Winters, V. A., 24
Wojnowski, B. S., ix, 3–7, 9–26, 205, 211
Woo, E., 165–179, 212
Woodland Park Zoo (Seattle), 169
Woodruff, S. B., 79–100, 211
Writing in science, 38, 39, 171, 172–174, 175, 176, 178, 188
Writing in Science: How to Scaffold Instruction to Support Learning, 174
Writing in Science in Action: Strategies, Tools, and Classroom Video, 174
Y
Yin, R., 17
“This book highlights professional development models and approaches used by several states and districts to significantly improve teaching and learning in one or more areas of STEM education, with significant emphasis on science and, to a lesser degree, mathematics education. The overarching goal for each model or approach included in the book is to develop teachers’ and students’ knowledge and skills, and, ultimately, to improve student achievement in STEM education.”

—The editors of Models and Approaches to STEM Professional Development

The arrival of the Next Generation Science Standards (NGSS) makes this a great time to kick-start your professional development program for training proficient teachers—and this ambitious book is the perfect source of inspiration to help you do so.

As the editors say, the book’s emphasis is on creating highly effective teachers capable of improving student achievement in STEM education; its focus is on large-scale, long-term, research-based models that underlie reform efforts in cities, districts, and states across the nation. The book opens with expert views on the history of professional development in science education, the challenges of the new standards, and related research on learning. Then, the book’s core highlights critical aspects of several successful programs and provides forward-looking insights into STEM-based professional development.

Models and Approaches is a vital resource for state, district, and school leaders as well as classroom teachers. It will help you to both analyze what you do now and implement fresh strategies for making your STEM professional development more effective at all levels.