Chart 1. Science Process/Knowledge and Developmental Stages

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Science Processes</th>
<th>Developmental Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9–12</td>
<td>A OBSERVING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aa Seeing</td>
<td>Sensory Motor</td>
</tr>
<tr>
<td></td>
<td>Ab Feeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ac Hearing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ad Smelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ae Tasting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Af Using Several Senses</td>
<td></td>
</tr>
<tr>
<td>6–9</td>
<td>B COMMUNICATING</td>
<td>Preconceptual</td>
</tr>
<tr>
<td></td>
<td>Ba Describing, Speaking, Sounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bb Formulating Operational Definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bc Recording, Tabling, Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bd Researching the Literature, Reading, Referencing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Be Picturing, Drawing, Illustrating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bf Graphing</td>
<td></td>
</tr>
<tr>
<td>3–6</td>
<td>C COMPARING</td>
<td>Intuitive</td>
</tr>
<tr>
<td></td>
<td>Ca Making General Comparisons or Comparisons From Different Perspectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cb Estimating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cc Making Numerical Comparisons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd Measuring Lengths, Angles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce Measuring Temperatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cf Weighing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cg Measuring Areas, Volumes, Pressures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch Making Time Comparisons, Measuring Rates</td>
<td></td>
</tr>
<tr>
<td>K–3</td>
<td>D ORGANIZING</td>
<td>Concrete Operational</td>
</tr>
<tr>
<td></td>
<td>Da Seriating, Sequencing, Ordering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db Sorting, Matching, Grouping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dc Classifying</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ea Identifying a Problem, Formulating Questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eb Hypothesizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ec Controlling and Manipulating Variables, Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F INFERRING</td>
<td>Formal Operational</td>
</tr>
<tr>
<td></td>
<td>Fa Generalizing, Synthesizing, Evaluating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fb Using Indicators, Predicting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fc Using Explanatory Models, Theorizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G APPLYING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ga Using Knowledge or Instruments, Identifying Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gb Inventing, Creating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gc Constructing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gd Growing, Raising</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ge Collecting</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Table of Contents

Preface.. ix
The Need to Improve Science Instruction... ix
This Sourcebook and National Science Standards.. x
Safety... xi

How to Use This Sourcebook.. xiii

Features of This Sourcebook... xix

Acknowledgments.. xxxiii

References.. xxxv

Entry Section

<table>
<thead>
<tr>
<th>100–199 Inorganic Matter</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Solids</td>
<td>2</td>
</tr>
<tr>
<td>111 Characteristics</td>
<td>2</td>
</tr>
<tr>
<td>112 Interactions</td>
<td>14</td>
</tr>
<tr>
<td>120 Liquids</td>
<td>17</td>
</tr>
<tr>
<td>121 Characteristics</td>
<td>17</td>
</tr>
<tr>
<td>122 Interactions</td>
<td>25</td>
</tr>
<tr>
<td>130 Gases</td>
<td>46</td>
</tr>
<tr>
<td>131 Characteristics</td>
<td>46</td>
</tr>
<tr>
<td>132 Interactions</td>
<td>55</td>
</tr>
<tr>
<td>140 Earth Science</td>
<td>65</td>
</tr>
<tr>
<td>141 Characteristics</td>
<td>65</td>
</tr>
<tr>
<td>142 Interactions</td>
<td>77</td>
</tr>
<tr>
<td>143 Theory</td>
<td>88</td>
</tr>
<tr>
<td>150 Oceans</td>
<td>91</td>
</tr>
<tr>
<td>151 Characteristics</td>
<td>91</td>
</tr>
<tr>
<td>152 Interactions</td>
<td>100</td>
</tr>
<tr>
<td>153 Theory</td>
<td>107</td>
</tr>
<tr>
<td>154 Applications</td>
<td>108</td>
</tr>
<tr>
<td>160 Weather</td>
<td>111</td>
</tr>
<tr>
<td>161 Characteristics</td>
<td>111</td>
</tr>
<tr>
<td>162 Interactions</td>
<td>118</td>
</tr>
<tr>
<td>163 Theory</td>
<td>133</td>
</tr>
<tr>
<td>164 Applications</td>
<td>142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200–299 Organic Matter</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 Zoology</td>
<td>148</td>
</tr>
<tr>
<td>211 Characteristics</td>
<td>148</td>
</tr>
<tr>
<td>212 Interactions</td>
<td>162</td>
</tr>
<tr>
<td>220 Botany</td>
<td>166</td>
</tr>
<tr>
<td>221 Characteristics</td>
<td>166</td>
</tr>
<tr>
<td>222 Interactions</td>
<td>176</td>
</tr>
<tr>
<td>230 Other Organisms</td>
<td>186</td>
</tr>
<tr>
<td>231 Characteristics</td>
<td>186</td>
</tr>
<tr>
<td>232 Interactions</td>
<td>193</td>
</tr>
<tr>
<td>240 Ecology</td>
<td>197</td>
</tr>
<tr>
<td>241 Characteristics</td>
<td>197</td>
</tr>
<tr>
<td>242 Interactions</td>
<td>202</td>
</tr>
<tr>
<td>243 Theory</td>
<td>211</td>
</tr>
<tr>
<td>244 Applications</td>
<td>214</td>
</tr>
</tbody>
</table>

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Table of Contents

300–399 Energy

<table>
<thead>
<tr>
<th>310 Motion</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>311 Characteristics</td>
<td>220</td>
</tr>
<tr>
<td>312 Interactions</td>
<td>227</td>
</tr>
<tr>
<td>313 Theory</td>
<td>234</td>
</tr>
<tr>
<td>314 Applications</td>
<td>239</td>
</tr>
<tr>
<td>340 Heat</td>
<td>293</td>
</tr>
<tr>
<td>341 Characteristics</td>
<td>293</td>
</tr>
<tr>
<td>342 Interactions</td>
<td>296</td>
</tr>
<tr>
<td>343 Theory</td>
<td>316</td>
</tr>
<tr>
<td>344 Applications</td>
<td>318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>320 Sound</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>321 Characteristics</td>
<td>240</td>
</tr>
<tr>
<td>322 Interactions</td>
<td>244</td>
</tr>
<tr>
<td>323 Theory</td>
<td>258</td>
</tr>
<tr>
<td>324 Applications</td>
<td>263</td>
</tr>
<tr>
<td>350 Electricity</td>
<td>319</td>
</tr>
<tr>
<td>351 Characteristics</td>
<td>319</td>
</tr>
<tr>
<td>352 Interactions</td>
<td>321</td>
</tr>
<tr>
<td>353 Theory</td>
<td>337</td>
</tr>
<tr>
<td>354 Applications</td>
<td>341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>330 Light</th>
<th>268</th>
</tr>
</thead>
<tbody>
<tr>
<td>331 Characteristics</td>
<td>268</td>
</tr>
<tr>
<td>332 Interactions</td>
<td>273</td>
</tr>
<tr>
<td>333 Theory</td>
<td>285</td>
</tr>
<tr>
<td>334 Applications</td>
<td>290</td>
</tr>
<tr>
<td>360 Magnetism</td>
<td>345</td>
</tr>
<tr>
<td>361 Characteristics</td>
<td>345</td>
</tr>
<tr>
<td>362 Interactions</td>
<td>347</td>
</tr>
<tr>
<td>363 Theory</td>
<td>359</td>
</tr>
<tr>
<td>364 Applications</td>
<td>360</td>
</tr>
</tbody>
</table>

400–499 Inference Models

<table>
<thead>
<tr>
<th>410 Atoms and Molecules</th>
<th>364</th>
</tr>
</thead>
<tbody>
<tr>
<td>411 Characteristics</td>
<td>364</td>
</tr>
<tr>
<td>412 Interactions</td>
<td>369</td>
</tr>
<tr>
<td>413 Theory</td>
<td>370</td>
</tr>
<tr>
<td>420 Astronomy</td>
<td>377</td>
</tr>
<tr>
<td>421 Characteristics</td>
<td>377</td>
</tr>
<tr>
<td>422 Interactions</td>
<td>393</td>
</tr>
<tr>
<td>423 Theory</td>
<td>399</td>
</tr>
</tbody>
</table>

500–599 Technology and Engineering

<table>
<thead>
<tr>
<th>510 Machines</th>
<th>404</th>
</tr>
</thead>
<tbody>
<tr>
<td>511 Simple Machines</td>
<td>404</td>
</tr>
<tr>
<td>512 Complex Machines</td>
<td>424</td>
</tr>
<tr>
<td>520 Communications</td>
<td>427</td>
</tr>
<tr>
<td>521 Simple Devices</td>
<td>427</td>
</tr>
<tr>
<td>522 Complex Devices</td>
<td>430</td>
</tr>
<tr>
<td>530 Transportation</td>
<td>435</td>
</tr>
<tr>
<td>531 Simple Vehicles</td>
<td>435</td>
</tr>
<tr>
<td>532 Complex Vehicles</td>
<td>436</td>
</tr>
</tbody>
</table>
Table of Contents

600–699 Instructional Apparatus, Materials, and Systems .. 447

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>610 Safety Precautions</td>
<td>448</td>
</tr>
<tr>
<td>611 Guidelines</td>
<td>448</td>
</tr>
<tr>
<td>620 General Equipment</td>
<td>451</td>
</tr>
<tr>
<td>621 Heat Sources</td>
<td>451</td>
</tr>
<tr>
<td>622 Support Stands</td>
<td>451</td>
</tr>
<tr>
<td>623 Glassware</td>
<td>452</td>
</tr>
<tr>
<td>630 Measuring Systems and Instruments</td>
<td>453</td>
</tr>
<tr>
<td>631 Measuring Systems</td>
<td>453</td>
</tr>
<tr>
<td>632 Measuring Instruments</td>
<td>459</td>
</tr>
<tr>
<td>640 Plant and Animal Containers</td>
<td></td>
</tr>
<tr>
<td>641 Planters</td>
<td>465</td>
</tr>
<tr>
<td>642 Vivariums</td>
<td>472</td>
</tr>
<tr>
<td>650 Equipment for Collecting</td>
<td>474</td>
</tr>
<tr>
<td>651 Collections</td>
<td>474</td>
</tr>
</tbody>
</table>

Index Guide ... 477

Index .. 507
Preface

As a human endeavor, science is a quest for knowledge about the world in which we live. We observe and describe objects; we act upon them to see what happens; we take notes of what takes place. We organize our observations, test what we think we know, and then reorganize our observations. We make inferences about what we cannot determine directly, and some of us apply what we have learned to construct new objects or invent new combinations of ideas.

“Doing” science is not significantly different from normal human behavior. For example, very young children observe the objects of their environment by looking at them, touching them, tasting them, smelling them, and manipulating them. Similarly, the scientist places a space probe on the surface of a distant planet and turns on the TV eye to see what it can see. A mechanical hand touches the surface and explores its composition. Sensors “smell” the atmosphere. With each of these sensory actions, the child and the scientist gather knowledge about our world.

It is important for teachers to realize that science is not solely the accumulation of information over the centuries, but rather it is the simultaneous relationship between the information and the ways by which it is obtained. Science is, at once, the processes by which we gather and think about information and the knowledge that results from such actions.

The Need to Improve Science Instruction

In April 1983, one of the more important educational reform publications of the last century, *A Nation at Risk*, was released (National Commission on Excellence in Education). It warned that if our educational enterprise continues to develop a citizenry that is illiterate in the areas of mathematics, science, and technology, our nation would lose its influential position among other nations and become a second-rate power in the 21st century.

It was not long before several efforts were initiated to bring about change in science education. Project 2061 under the guidance of the American Association for the Advancement of Science (AAAS) made recommendations for basic learning goals in *Science for All Americans* (1989) and *Benchmarks for Science Literacy* (1993). The *National Science Education Standards* (1996), developed under the auspices of the National Research Council (NRC), outlined the minimal expectations for science programs in schools and described important aspects for curriculum change. Both efforts involved collaboration among scientists, mathematicians, engineers, psychologists, and educators to outline the knowledge and inquiry skills K–12 students needed to understand.
and apply to become scientifically literate citizens. Although the documents provided a fundamental set of outcomes for students and educators, they did not, and still do not, prescribe a curriculum. It is expected that states and local districts use the standards as guidelines for planning and implementing science instruction through all grade levels.

The documents emphasize that it is not sufficient to just read about science or demonstrate and lecture in a show-and-tell manner. Rather, they emphasize that learning the essence of the enterprise (the modes of inquiry and the procedures for gathering, organizing, and analyzing data in intellectually honest ways) is more important than memorizing facts. This sourcebook was created because science should be memorable, not memorizable.

This Sourcebook and National Science Standards

The content in this sourcebook was selected to build upon and extend the science standards outlined in the AAAS and NSES documents. All the activities contribute to those standards that can best be learned through direct and indirect observations of natural phenomena. Because the major standards are broad and inclusive, this book restates them in teachable terms that combine the content to be learned with ways by which students can explore and inquire. Since many textbook and kit-centered science programs do not provide engaging activities for all the science standards, the activities in this book can fill gaps in programs and extend and enrich experiences where programs have minimal or shallow activities.

This sourcebook is a thesaurus. It enables the user to quickly locate numerous experiences related to particular scientific standards and thinking processes. Users will be pleased by the many fresh ideas for teaching. The book can make instruction valid, powerful, and enjoyable.

It is important to know that this sourcebook is not a science program, and it is not a methods book. You will not learn from this book how to teach science. As a storehouse of ideas, it will not tell you how to work through activities in a prescribed way. How you instruct depends upon your own training and philosophy about learning. Each activity can be taught didactically or by an inquiry technique. Because this is not a methods book, the activities are intentionally brief. Creative and well-prepared individuals will use the suggestions as springboards for their own ideas and will adapt the activities in many ways to meet the goals of their curriculum and the needs of students.

This book is also not a source of scientific knowledge and not intended to supply all the factual background and explanations for science concepts. However, the entries do supply the generalizations inherent in each activity, and each contributes to a standard and contains sufficient information pertaining to the instructional conditions that enable the teacher to prepare and introduce the activity to students.

Remember: The main purpose for this book is to enable you to easily find hands-on experiences that directly engage students with phenomena in our world.
Safety

With hands-on, process, and inquiry-based activities, today’s teaching and learning of science can be both effective and exciting. The challenge of securing this success needs to be met by addressing potential safety issues. Teachers can reinforce safety for students and themselves by adopting, implementing, and enforcing legal standards and best professional practices in the science classroom, laboratory, and out in the field. In this sourcebook, *610 Safety Precautions* (p. 448) includes both recommended basic safety practices and resources for activities. It is designed to help teachers and students become aware of relevant standards and practices that will help make activities safer. Doing science makes the learning come alive; doing science safer makes it a successful experience.

For additional safety regulations and best professional practices, go to:

NSTA: Safety in the Science Classroom:
www.nsta.org/pdfs/SafetyInTheScienceClassroom.pdf

NSTA Safety Portal:
www.nsta.org/portals/safety.aspx
How to Use This Sourcebook

It is easy to use this sourcebook. Look up a topic in the Index Guide, note the entry, or activity number for that topic, and then use that number to find one or more activities in the Entry section.

Let us try an example. Suppose your students have found some rocks that interest them and they bring them to class. You might want to do some activities with rocks to extend their interest.

If you look up the word *Rocks* in the Index Guide, you will see the following:

Rocks
breakdown of, 141.18
characteristics of, 141.01–12
classification of, 141.22–24
collecting, 651.03
definition of, operational, 141.10
identification of
color sorting key, 141.14–15
hardness sorting key, 141.22
size sorting key, 141.23
magma, 141.01–04
minerals in, 141.13–15
plant growth, effect of, 142.28
porosity of, 142.27
in soil formation, 141.16–18
temperature change, effect of, 142.26–27
tests for
cleavage, 141.11b
hardness, 141.10
streak, 141.11a
types of
igneous, 141.01–04
metamorphic, 141.08–09
sedimentary, 141.05–07

From the listing under *Rocks*, you can see that you have a lot of choices. Pick the one that best fits the interest of the students and the resources you have available.

Suppose you decide it would be best for your students to learn something about how rocks can be identified. Note that, in the Index Guide, a set of numbers
accompanies the topic identification of: color sorting key, 141.14, 141.15; hardness sorting key, 141.22; and size sorting key, 141.23. These numbers mean that in section 141 of this sourcebook, there are several activities related to learning about the identification of rocks.

Suppose you decide to look up hardness sorting key, 141.22 in the Entry section of this book. The activity numbers are printed at the top of each page for the activities on that page—much in the way that a dictionary and an encyclopedia list entries at the top of their pages. When you look up the identification of rocks, 141.22 in the Entry section, you will find a page that looks like the following:

Inorganic Matter / Earth Science

Generalization IV. Rocks can be organized by their physical characteristics.

Contributing Idea A. Rocks can be seriated.

Seriating rocks by hardness. Rocks vary in hardness and can be ordered from soft to hard. Table 141.22 is a commonly used hardness key. Students can set up their own hardness scale using the rocks they find by seeing if one will scratch another. (A rock that scratches another rock is harder than that rock.) They can then order their rocks by relative hardness.

Seriating rocks by size. Have students bring to school rocks of different sizes. Line up all the collected rocks in a row from smallest to largest. Table 141.23 shows standard categories for the various

Table 141.22. Hardness Sorting Key—Rocks

<table>
<thead>
<tr>
<th>Hardness Scale (Soft to Hard)</th>
<th>Hardness Test</th>
<th>Rock Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scratches easily with a fingernail</td>
<td>talc</td>
</tr>
<tr>
<td>2</td>
<td>Scratches with a fingernail</td>
<td>gypsum</td>
</tr>
<tr>
<td>3</td>
<td>Scratches with a pin or copper penny</td>
<td>calcite</td>
</tr>
<tr>
<td>4</td>
<td>Scratches easily with a knife</td>
<td>fluorite</td>
</tr>
<tr>
<td>5</td>
<td>Scratches with a knife</td>
<td>apatite</td>
</tr>
<tr>
<td>6</td>
<td>Knife will not scratch rock and rock will not scratch glass.</td>
<td>feldspar</td>
</tr>
<tr>
<td>7</td>
<td>Scratches glass easily</td>
<td>quartz</td>
</tr>
<tr>
<td>8</td>
<td>Scratches quartz easily</td>
<td>topaz</td>
</tr>
<tr>
<td>9</td>
<td>Scratches topaz easily</td>
<td>corundum</td>
</tr>
<tr>
<td>10</td>
<td>Scratches all other rocks</td>
<td>diamond</td>
</tr>
</tbody>
</table>
This is one of several pages that list activities related to the identification of rocks. If you skim across the pages in this section, you can choose one or more of the other activities in which to engage your students.

Here is another example. Suppose you are looking for an activity that would help students understand the science content standard that expresses that water washes away topsoil.

If you look up in the Index Guide the word *erosion*, you will find several possible subtopics listed.

Erosion
- glacial, 142.24–25
- plant, 141.18, 142.28
- prevention of, 242.02
- temperature, 141.08b, 142.26–27
- water, 142.17–23
- wave, 142.23, 152.16–17
- wind, 142.05–06

The most suitable reference to your idea might be subtopic *water* 142.17–23. Look up the numerical reference in the Entry section, and you will find many activities, one or several of which are applicable to your particular situation and goal.

Observing how rain carries away soil.

Fill several flower pots or cans with loose soil until the soil is just level with the edges. Place some small stones or bottle caps on the surface of the soils and set the containers outside or in a sink. Water them with a watering can to represent rain, gradually increasing the flow. When finished, let students notice how the unprotected soil is splashed away, leaving columns of soil under the stones. After a rain, have students look for the same effect in an unplanted area.
When you locate a numerical reference, you will see that the scientific content is clearly stated as Contributing Idea. In the erosion example, you will find Contributing Idea C: Water carries and deposits materials. When you look at the subsequent activities 142.18–22, you will find many more ideas concerning erosion by water.

Thus the activities listed for Contributing Idea C relate to the common content that water washes away topsoil. Yet each activity is different in terms of possible experiences for students. Students may observe how rain carries away soil (entry 142.17), collect samples of waterborne materials (entry 142.18), observe how water-carried materials are deposited (entry 142.19), and so forth. Note that the activities are generally sequenced from simple to complex or from directly experienced to abstract. Such sequencing will help you identify the most appropriate activity for your students.

Also note that if you glance over the total structure of this section, other contributing ideas will provide you with additional related activities that might be useful. The other ideas may suggest preliminary experiences that you might not have thought about. Or they might suggest branching experiences for further exploration.

There is another aspect of this book that you will find useful. You probably noticed the letters beneath the activity numbers. These letters indicate the major problem-solving and thinking processes that are part of the activity. The letters are a simple code that is outlined inside the cover of this book. For example, the letter A indicates the various sensory observations students will make during the activity:

Aa = looking and seeing
Ab = touching and feeling
Ac = hearing and listening
Ad = smelling
Ae = tasting (within safety guidelines)
Af = multisensory, using several senses

When you use the chart of thinking processes, you will find that each corresponds to the thinking process that researchers have found are the ways by which humans naturally think when given a chance.

The letter codes are easy to remember and use. The sequence of the letters corresponds to developmental stages. The ability to observe begins early in our lives and continues as other abilities are added over time. Inferring (i.e., the thinking about things that are remote in time and space) begins with adolescence and takes many more years to fully develop.

Let us now examine how the thinking processes are a part of an activity. In the erosion example that you looked at earlier, you can see that below the activity numbers, the letter code tells you the major thinking students will do during each activity.
142.17 Aa	Students will observe erosion.
142.18 Ca and Ge	Students will collect and compare samples.
142.19 Ec	Students will test variables.

Contributing Idea C. Water carries and deposits materials.

Observing how rain carries away soil.
Fill several flower pots or cans with loose soil until the soil is just level with the edges. Place some small stones or bottle caps on the surface of the soils and set the containers outside or in a sink. Water them with a watering can to represent rain, gradually increasing the flow. When finished, let students notice how the unprotected soil is splashed away, leaving columns of soil under the stones. After a rain, have students look for the same effect in an unplanted area.

Using this sourcebook is easy! Now enjoy enabling your students to learn science concepts through interesting hands-on experiences.
Features of This Sourcebook

This sourcebook is a thesaurus. In contrast to a dictionary or encyclopedia, which format content alphabetically, a thesaurus is a reference work that arranges its content according to conceptual similarities. Its purpose is to enable readers to find specific ideas and to see how the ideas relate to other ideas.

As a thesaurus of science concepts, this book provides easy access to science activities that teach science concepts that correspond to national standards. And it does much more because of the way the science content is organized.

Organization: Science Content
The Entry section of this book comprises a number of interlocking science content groupings organized by numerical code system. Entries are arranged in broad science categories to match the Standards. These are subdivided into topics, subtopics, and specific activities, all related to the content being taught.

Broad Science Content Categories
Six broad content categories are used to provide a framework for the Entry section—the main body of this book. Each of the content categories is coded by numerals in a decimal system.

100–199: Inorganic Matter
Matter, one of the two great divisions studied by scientists, includes all the materials that occupy space in the world around us. The scientist subdivides the materials into two kinds: inorganic and organic. Inorganic matter is the subdivision that comprises all nonliving materials (e.g., the rocks and minerals above and below the surface of the Earth). This content category includes such directly observable aspects as the physical and chemical properties of matter and the changes in the states of matter (i.e., solid, liquid, gas).

200–299: Organic Matter
The other subdivision of matter studied by scientists is organic matter. Organic matter is found in all living materials (e.g., the various forms of plants and animals). This content category contains entries that pertain to the directly observable physical and
chemical properties of living organisms, their growth and response to environmental conditions, and the interrelationships among them.

300–399: Energy
Energy is the second great division studied by scientists. Energy means the ability to do work. This content category includes entries that pertain to the various forms of energy such as light, sound, and heat.

400–499: Inference Models
In scientific terms, a model is a theory that describes or explains a phenomenon that cannot be directly observed (e.g., atomic structures, the solar system). This fourth category contains entries that serve to explain phenomena and pertain to ideas derived through indirect means.

500–599: Technology and Engineering
Technology is the blend of science and invention that aims to increase productivity by rearranging the environment and producing goods. As such, technology is sometimes called applied science or engineering. This category contains entries pertaining to inventions (e.g., simple machines) developed from the application of scientific principles that, in turn, can be used to further understand basic scientific laws and principles.

600–699: Instructional Apparatus, Materials, and Systems
This sixth category contains entries dealing with the preparation of various materials useful in teaching science that have wide application throughout the content categories. This category includes such topics as techniques for cutting and bending of glass to making certain apparatus and construction plans for the construction of measuring devices (e.g., balance and spring scales).

The content numbering system is presented in the Table of Contents.
100 ← Inorganic Matter
200 ← Organic Matter
300 ← Energy
400 ← Inference Models
500 ← Technology and Engineering
600 ← Instructional Apparatus, Materials, and Systems
Topics

Each of the six broad science categories is divided into specialized topics. For example, the category **100 Inorganic Matter** is subdivided into six topics that are coded by the second numeral in the series of three numerals.

<table>
<thead>
<tr>
<th>100 Inorganic Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Solids</td>
</tr>
<tr>
<td>120 Liquids</td>
</tr>
<tr>
<td>130 Gases</td>
</tr>
<tr>
<td>140 Earth Science</td>
</tr>
<tr>
<td>150 Oceans</td>
</tr>
<tr>
<td>160 Weather</td>
</tr>
</tbody>
</table>

Subtopics

Within the topical categories, scientific knowledge is subdivided into four subtopics.

1. **Characteristics:** This subtopic contains knowledge that relates to the characteristics or attributes of objects (e.g., size, shape, color, texture, and so on). Generally, this knowledge is descriptive of physical properties of objects.
2. **Interactions:** This second subtopic contains interactive knowledge. Such knowledge describes causes and effects between and among objects.
3. **Theory:** The third subtopic contains knowledge that is speculative (e.g., theories and explanations for observed phenomena).
4. **Applications:** The final subtopic contains activities that are applications of knowledge.

These subtopics are identified by the third numeral in the series of three:

<table>
<thead>
<tr>
<th>300 Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>340 Heat</td>
</tr>
<tr>
<td>341 Characteristics</td>
</tr>
<tr>
<td>342 Interactions</td>
</tr>
<tr>
<td>343 Theory</td>
</tr>
<tr>
<td>344 Applications</td>
</tr>
</tbody>
</table>

Knowledge of Characteristics

When we observe, compare, or organize our observations and then describe the results, we make statements such as “insects have three body parts and six legs,” “sea water is salty,” and “leaves are green.” Observing, comparing, and organizing processes always produce information that is largely organizational in character. Objects are described for specific attributes that define them as members of a particular class or function: Fish have fins (class), birds have feathers (class), the flower is the part of the plant where seeds develop (function), and machines are devices that make work easier (function).
Knowledge of Interactions and Relationships
When we observe, compare, or organize objects to determine relationships between and among them, or when we determine the cause and effect of phenomena, we produce knowledge that is largely relational in character: Whales are mammals because they have internal skeletons, hair on their skin, glands that produce milk, and because they bear their young alive (relational); fungi live off animals, dead organic matter, and other plants (relational); adding heat to solids causes them to expand (interactive); and the direction of an object’s motion is a straight line unless the object is acted on by other forces (interactive).

Inferential, or Theoretical Knowledge
Inferring is a thinking process that allows us to conceptualize ideas that are not directly observable. This process often leads to explanatory or predictive statements about objects or phenomena: All matter is composed of tiny particles in constant motion (inference); the Earth and other planets revolve around the Sun (inference); cross pollination of particular plants will produce particular results (prediction); and given the rate of water flow from the pipe, we calculate a loss of 4,000 gallons by 7 a.m. (predictive).

Applied Knowledge
Inventing, problem solving, and determining probabilities are ways of using knowledge that leads to further knowledge. To a great extent, usage and invention-technology principles are representative of the knowledge statements obtained from applying knowledge. Some examples are the following: Instruments that are run by heat energy can be built to do work (invention-technology), the electromagnet is an instrument that can be used in the operation of many electrical systems (invention-technology), the principles of sound can be incorporated into instruments to produce music (usage), and selective breeding of plants and animals that have desirable characteristics can cause these characteristics to occur more frequently in offspring (usage).

Applied ideas can also be organizational ideas: The scientist can develop taxonomy, or blueprint based upon a logical rationale, concerning the relationships among the objects or ideas comprising the taxonomy, while at the same time realizing that the arrangement is tentative. That is, the arrangement is one of many possible arrangements that may be changed based upon fresh insights.

Specific Activities
Specific activities are listed for each of the subtopics of knowledge. For example, the Earth Science topic 142 Interactions includes activities that are listed sequentially and enumerated as decimals:

100 Inorganic Matter
140 Earth Science
Organization: Thinking Processes
An additional feature to the structure of this sourcebook is the identification of the thinking processes by which we derive knowledge. These processes are part of the nature of inquiry and are listed on the chart inside the cover of this book.

The thinking processes have been carefully selected to be appropriate to all fields of science, and they have been sequentially ordered to be compatible with developmental learning theory. In this book, each subsequent process in the listing is built upon and inclusive of the previous process. Thus each process is enhanced and continually used in more advanced and complex ways. Chart 1 inside the front cover of this book shows how the processes correspond with the developmental stages of students. This arrangement matches the suggested order of content outlined as Benchmarks for Science Literacy in Project 2061 and as documented in the National Science Education Standards.

The organization for the thinking processes uses a letter code system. Capital letters represent broad superordinate thinking-process categories. The first four categories tend to encompass process activities that are most appropriate for young students (preschool through grade three), while the latter three categories tend to be most appropriate for older students (grade four and above). The broad categories of thinking processes are the following:

A ← Observing
B ← Communicating
C ← Comparing
D ← Organizing
E ← Relating
F ← Inferring
G ← Applying

Lowercase letters are used to represent more specific types of thinking related to the broad categories of processes:

A Observing
 Aa ← Seeing
 Ab ← Feeling
Ae ← Hearing
Ad ← Smelling
Af ← Using Several Senses

Each activity in the Entry section is accompanied by the coded capital and lowercase letters indicating, respectively, the general thinking process and the specific thinking expected in the activity. For example, the letter code Ec indicates that the main purpose of the activity involves relating (E) and specifically requires the student to control and manipulate variables (c). Naturally, other science thinking processes and actions are required in any given activity. This code simply indicates the processes of greatest emphasis in an activity.

Every activity relates thinking processes to scientific knowledge. The arrangement of the processes suggests the best age levels at which to introduce particular scientific knowledge so that it can be learned in a meaningful way.

The following examples provide another view of the content and process structure of this sourcebook. The following section shows several pages from the Entry section. The topic for the examples is 350 Electricity. Pages xxiv–xxvii show the content structure for the topic without the activities. From this you can see the logic to the Generalizations and Contributing Ideas that correspond to standards related to Electricity. Pages xxvii–xxxi show the content structure again but with the thinking processes added. These labels indicate what the activity is about. From this, you can see the relationship between how humans come to know something and the content that is derived from that experience.

Example 1
Content Organization Without Activities
Topic: Electricity

350 Electricity

351 Characteristics

Generalization: Electricity has identifiable characteristics.

Contributing Idea A: Electrical energy can be stationary (static electricity).

Contributing Idea B: Electrical energy can move (current electricity).

352 Interactions
Generalization I: Electricity is a form of energy produced by different sources.

Contribution Idea A: Chemical reactions can be a source of electricity (electrochemical propagation).

Contribution Idea B: Motion can be a source of electricity (mechanical propagation).

Generalization II: Current electricity produces a magnetic field.

Contribution Idea A: An electric current carried by a wire produces a magnetic field around it.

Contribution Idea B: A compass is an instrument that can be used to detect magnetic fields.

Generalization III: Current electricity moves when there is a complete circuit.

Contribution Idea A: Current electricity can be detected.

Contribution Idea B: A circuit is a continuous path through which electricity can move.

Contribution Idea C: Current electricity takes the shortest and easiest circuit back to the place where it started.

Contribution Idea D: Switches are used to open and close circuits.

Generalization IV: Current electricity travels through some materials better than others.

Contribution Idea A: Some materials allow electricity to pass through them easily (conductors); other materials tend to block the movement of electricity (insulators).

Contribution Idea B: Thinner wires have more resistance than thicker wires of the same material; longer wires have more resistance than shorter wires of the same material.

Contribution Idea C: Some metals have more resistance to electricity than others.

Contribution Idea D: Overloading a circuit with too many resistors can overheat the wires.
Generalization V: Current electricity can be controlled.

Contributing Idea A: Series circuits channel all the electricity through a single pathway; parallel circuits channel all the electricity through a main pathway and branching pathways.

Contributing Idea B: Electric cells can be arranged to produce different voltages.

Contributing Idea C: Switches can be used to control circuits and voltages easily and safely.

353 Theory

Generalization I: According to theory, all matter is made up of atoms that contain tiny particles of electricity.

Contributing Idea A: Atomic particles can be accumulated into electrical charges.

Contributing Idea B: Unlike electric charges attract; like electric charges repel.

Contributing Idea C: Models can be used to explain the movement of electrons.

Generalization II: Electrical energy can produce electromagnetic radiation.

Contributing Idea A: Electrical energy can produce heat and light.

Contributing Idea B: Electrical energy can produce radio waves.

354 Applications

Generalization I: A magnetic field is generated around a wire carrying electricity; the strength of the magnetic field can be increased or decreased several ways.

Contributing Idea A: The electromagnet is an instrument used in the operation of many electrical systems.

Contributing Idea B: Electric circuit breakers and door chimes can operate using electromagnets.

Generalization II: Many household appliances use highly resistant wires to produce heat and to control electric currents.
Contributing Idea: Highly resistant metal wires are commonly used to produce heat in such appliances as electric irons, toasters, and heaters.

The following example provides more detail about the features of this book. The example repeats a portion of the previous example but adds the descriptors for each of the content statements.

Example 2
Content–Process Organization
Topic: Electricity

350 Electricity

351 Characteristics

Generalization: Electricity has identifiable characteristics.

Contributing Idea A: Electrical energy can be stationary (static electricity).

01 Seeing, feeling, and hearing evidence of electrical charges
02 Observing that rubbing charges some materials
03 Determining what materials can produce electrical charges
04 Determining that not all electrical charges are alike

Contributing Idea B: Electrical energy can move (current electricity).

05 Generating a direct current
06 Generating an alternating current

352 Interactions

Generalization I: Electricity is a form of energy produced by different sources.

Contributing Idea A: Chemical reactions can be a source of electricity (electrochemical propagation).

01 Making an electric cell
02 Producing electricity from a “wet” cell
03 Producing electricity from a “dry” cell
Contributing Idea B: Motion can be a source of electricity (mechanical propagation).

07 Producing electricity by rubbing objects
08 Producing electricity by moving a magnetic field

Generalization II: Current electricity produces a magnetic field.

Contributing Idea A: An electric current carried by a wire produces a magnetic field around it.

09 Observing that an electric current produces a magnetic field
10 Comparing magnetic and electric fields
11 Testing the effect of magnetic and electric fields on different materials

Contributing Idea B: A compass is an instrument that can be used to detect magnetic fields.

12 Detecting the magnetic field produced by an electric current

Generalization III: Current electricity moves when there is a complete circuit.

Contributing Idea A: Current electricity can be detected.

13 Detecting electric currents
14 Using a radio to detect electric currents
15 Building a galvanometer

Contributing Idea B: A circuit is a continuous path through which electricity can move.

16 Arranging a circuit to light a bulb
17 Making a holder for D-cell battery and preparing wires for use in a circuit
18 Making a holder for a small (flashlight) bulb
19 Exploring electric circuits
20 Making a circuit tester
21 Locating hidden circuits

Contributing Idea C: Current electricity takes the shortest and easiest circuit back to the place where it started.

22 Observing a short circuit
23 Observing a grounded circuit

Contributing Idea D: Switches are used to open and close circuits.

24 Making a switch

Generalization IV: Current electricity travels through some materials better than others.

Contributing Idea A: Some materials allow electricity to pass through them easily (conductors); other materials tend to block the movement of electricity (insulators).

25 Identifying conductors and insulators

Contributing Idea B: Thinner wires have more resistance than thicker wires of the same material; longer wires have more resistance than shorter wires of the same material.

26 Examining the influence of size factors on the conductivity of wires
27 Making a rheostat

Contributing Idea C: Some metals have more resistance to electricity than others.

28 Examining resistance in metals
29 Using resistances in metals to make a model lightbulb

Contributing Idea D: Overloading a circuit with too many resistors can overheat the wires.

30 Making a fuse
30 Using fuses

Generalization V: Current electricity can be controlled.

Contributing Idea A: Series circuits channel all the electricity through a single pathway; parallel circuits channel all the electricity through a main pathway and branching pathways.

31 Comparing series and parallel circuits
32 Testing one electric cell and several bulbs
Contributing Idea B: Electric cells can be arranged to produce different voltages.

34 Testing several electric cells and one bulb
35 Testing several electric cells and several bulbs

Contributing Idea C: Switches can be used to control circuits and voltages easily and safely.

36 Turning an appliance on and off from two or more switches
37 Making a reversible switch
38 Making a dimmer switch
39 Listing safety precautions for use of electricity

353 Theory

Generalization I: According to theory, all matter is made up of atoms that contain tiny particles of electricity.

Contributing Idea A: Atomic particles can be accumulated into electrical charges.

01 Using drawings to explain the electrical components of atoms

Contributing Idea B: Unlike electric charges attract; like electric charges repel.

02 Building an electroscope

Contributing Idea C: Models can be used to explain the movement of electrons.

03 Using a marble model to explain the movement of electrons through materials
04 Using a water-hose model to explain the movement of electrons

Generalization II: Electrical energy can produce electromagnetic radiation.

Contributing Idea A: Electrical energy can produce heat and light.

05 Producing heat and light from electricity

Contributing Idea B: Electrical energy can produce radio waves.

06 Producing radio waves from electricity
Applications

Generalization I: A magnetic field is generated around a wire carrying electricity; the strength of the magnetic field can be increased or decreased several ways.

Contributing Idea A: The electromagnet is an instrument used in the operation of many electrical systems.

01 Studying the presence of a magnetic field produced by an electric current
02 Making an electromagnet

Contributing Idea B: Electric circuit breakers and door chimes can operate using electromagnets.

03 Building a simple circuit breaker
04 Building a simple electric bell

Generalization II: Many household appliances use highly resistant wires to produce heat and to control electric currents.

Contributing Idea: Highly resistant metal wires are commonly used to produce heat in such appliances as electric irons, toasters, and heaters.

05 Observing the application of the idea that a greater electrical resistance results in a greater production of heat

It is hoped that these features will be useful to researchers, curriculum developers, and others interested in not only the relationships among scientific knowledge but also how that knowledge can be learned.
Acknowledgments

In various ways, many friends and colleagues have contributed throughout the years to the gradual collection and classification of appropriate activities in this sourcebook. Countless teachers and classroom students have added to the collection by suggesting activities, testing activities, and providing refinements. A very loud thank you goes to those scores of individuals who contributed directly and indirectly in so many different ways.

Mathematicians have contributed to the metric measures in the activities in this book. Following their advice, some activities purposely do not give precise conversions to metric measures due to the intent of the activity. For example, sometimes the metric measure is rounded to an easily measured unit. Sometimes the ratios of sequential units are more important than precise equivalents. Another example: If an activity requires the measurement of 5 in., 10 in., and 15 in., the suggested metric measurements might be 10 cm, 20 cm, and 30 cm, because the second unit must be twice the first and the third unit must be three times the first. In addition, many industrial conversions are not yet clear. Although liter containers can substitute well for quart containers, gallon equivalents are not established among different industries. Thus a 10-gallon aquarium remains so until an industrial decision is made on an equivalent size. Finally, some of the activities have no metric equivalents because they would make the activities awkward and confusing. This is especially apparent for graphs and certain tables. Hopefully, all activities will eventually be presented in the metric system. Until then, this book tries to help the reader toward this end as much as possible.

Much appreciation also goes to the specialists who submitted activities and kept information scientifically accurate and classroom related. To the following science educators, thanks for years of fruitful professional interactions: Carl Berger, dean of education, University of Michigan; Jane Bowyer, dean of education, Mills College, California; Diane Conradson, professor of science education, California State University at San Jose; Lawrence Hovey, professor emeritus of science education, Texas Tech University; Professor Roger Johnson, University of Minnesota; Bill Leonard, professor emeritus of science education, Clemson University; Vince Mahoney, professor emeritus of science education, Iowa Wesleyan; Richard Merrill, director emeritus of science education, Mt. Diablo Unified School District, California.

And thanks to the following scientists who read portions of the manuscript, contributed current scientific knowledge, and corrected for accuracy: Stuart Bowyer, professor of astronomy, University of California at Berkeley; Gordon Chan, professor of marine ecology, College of Marin, California; Joseph Hancock Jr., professor of
plant pathology and environmental studies, University of California at Berkeley; Alan Friedman, director of astronomy, Lawrence Hall of Science, Berkeley, California; Robert Karplus, professor of physics, University of California at Berkeley; Richard White, professor of electrical engineering and computer sciences, University of California at Berkeley; Robert Stebbins, professor of zoology, University of California at Berkeley; Bonnie S. Wood, professor of biology, University of Maine at Presque Isle; Christine Anne Royce, associate professor of education, Shippensburg University; Eula Ewing Monroe, mathematics educator, Department of Teacher Education, Brigham Young University.
References

160 Weather

161 Characteristics

Generalization I. Temperatures on Earth vary from time to time and place to place.

Contributing Idea A. The thermometer is an instrument used to measure temperatures.

Making a liquid thermometer. Put a length of glass tubing (approximately 1 ft. or 30 cm long) through a one-hole stopper using a twisting, rotary motion. Fill a bottle or flask to the top with water and add a drop of red ink to make the water more visible. Force the stopper into the bottle so that the water rises into the tube approximately 3 in. (10 cm). Mark the position of the water, then let a student warm the bottle with his or her hands. Students will note that the colored water rises in the tube. Now cool the bottle with an ice cube or a sponge soaked in cold water and note that the water level drops. To calibrate this instrument, place the bottle into a deep bowl filled with ice cubes. When the liquid in the tube stops descending, tie a string or slip a rubber band around the tube to mark the level of the liquid. Next, place the bottle in a pan of water and heat it. Boil the water in the pan until the level of the colored liquid stops rising. Mark the level with another piece of string or rubber band. The two marks represent the high and low points. A card divided into tenths and hundredths can be placed behind the tube for a scale. This instrument works similarly to commercial liquid thermometers; the liquid expands when heated, contracts when cooled. Commercial liquid thermometers use alcohol or mercury instead of water, since these liquids respond uniformly to temperature changes and do not freeze at temperatures below 32°F (0°C). Other types of thermometers can be compared to this one.

Measuring and graphing air temperatures. Attach a thermometer outside a classroom window. Be sure it is shielded from direct sunlight. (A thermometer will show a higher temperature than the air if it is placed in sunlight.) Have students record the temperature twice each day by checking it at the same time each morning and each afternoon. A record can be kept on a table similar to Table 161.02. The information can be graphed (see Graph 161.02, p. 112) to represent the general directions of temperature change throughout the week. Several interesting variations of this activity can be explored: One student can record the temperature every hour for one day to see how the temperature changes; a

<table>
<thead>
<tr>
<th>Week of _____________________________</th>
<th>Morning</th>
<th>Afternoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>41°F (5°C)</td>
<td>48°F (9°C)</td>
</tr>
<tr>
<td>Tuesday</td>
<td>32°F (0°C)</td>
<td>45°F (7°C)</td>
</tr>
<tr>
<td>Wednesday</td>
<td>43°F (6°C)</td>
<td>50°F (10°C)</td>
</tr>
<tr>
<td>Thursday</td>
<td>45°F (7°C)</td>
<td>59°F (15°C)</td>
</tr>
<tr>
<td>Friday</td>
<td>48°F (9°C)</td>
<td>68°F (20°C)</td>
</tr>
</tbody>
</table>
A group of students can keep records for several months to note temperature changes during the year—weekly or monthly averages can also be computed; individuals or groups can study contrasting temperatures in (a) sun and shade, (b) moving wind and calm air, (c) surface soil and subsoil, (d) shallow water and deep water, (e) shallow snow and deep snow, and so on.

Measuring the temperature of air at different altitudes. Record the temperature of a thermometer outdoors, then tie the thermometer to a large kite. Let students sail the kite as high as they can. In about 30 minutes, pull the kite in as quickly as possible and record the temperature. Compare the two temperatures.

Contributing Idea B. The Sun’s radiant energy is converted to heat energy when it reaches the Earth.

Observing that the Sun is a source of heat energy. Put equal amounts of ice in two glasses. Place one in the shade and one in the sunlight. Let students observe in which glass the ice melts more quickly. They will realize that the deciding factor is the heat from the Sun.

Measuring the conversion of solar energy to heat energy. Obtain two small identical flasks and coat one with candle soot or cover it with aluminum foil to prevent sunlight from entering. Insert thermometers into one-hole stoppers, and place them into the flasks. Set the flasks in a place that is shaded from direct sunlight until they become cool, and then record the thermometer readings. Next, set both flasks in the direct rays of sunlight, and record the thermometer readings every minute until the same reading appears at least three times in a row for each thermometer. The results can be plotted on a graph. Students will readily realize that the Sun’s radiant energy easily enters the uncovered flask and is converted into heat energy that is measured by the thermometer. The experimental flask remains cool because the radiant energy could not enter. You can make an analogy to the radiant energy that penetrates the Earth’s atmosphere, strikes the Earth, and is converted into heat energy. As a supplementary activity, let students repeat the above procedure after covering the experimental flask with various materials such as colored cellophanes or paint or by filling it with various solid or liquid substances such as soil or water.

Generalization II. Air pressures vary from time to time and place to place.
Contributing Idea A. The barometer is an instrument used to measure air pressure.

Making an air pressure indicator (barometer). Remove the cork from a small thermos bottle and drill a hole through the cork just large enough to insert a plastic straw or glass tube. Seal the cork in the thermos by dripping candle wax on all connections, and then mount the thermos upside down on a stand so that the end of the tube is approximately ¼ in. (1 cm) from the base. Wrap the thermos in some insulating material, and fit a cardboard box snugly around it. The insulation will help to keep the instrument from acting more like a thermometer than a barometer. Now have students color some mineral oil with food coloring. Set a cup of mineral oil beneath the tube on a day that the air pressure is low (listen to weather forecasts; the low should be below 29.90 in. or 76 cm). Have students observe that whenever the air pressure rises, the mineral oil is pushed up the tube. A scale can be placed behind the tube to note changes (see Figure 161.06). Barometers will work indoors as well as outdoors since the air pressures are about the same.

Measuring and recording the pressure of air. Use a commercial or homemade barometer to keep twice-daily records of changes in air pressure. Note what weather changes take place outdoors with each recording on a table similar to Table 161.07 (p. 114). Some weather predictions can be made if wind direction and wind speed information are also obtained.

Contributing Idea B. The movement of air affects air pressures.

Observing that low pressure areas can be created when air flows swiftly. There are several activities that will help students realize that air pressure can be reduced by rapidly moving air.

a. Place a table tennis ball in a funnel, hold it stem downward, and blow up through the stem. Students will be surprised to find that they cannot blow the ball out of the funnel. Next, turn the funnel stem upward while holding the ball inside with one hand. While blowing, release the ball. (The ball should not fall as long as the student is blowing.) Students

Figure 161.06
can realize that the quickly moving air over the ball creates a low pressure area behind it, and the normal air pressure is enough to hold the ball in place. Explain that when air moves rapidly across the surface of the Earth, low pressure areas result in a similar way.

b. Put a pin through the center of a 3 in. (8 cm) square of cardboard. Insert the pin into the hole of a spool of thread, and hold the cardboard beneath and flat against the spool. Blow through the spool and remove the hand holding the cardboard. (The card is held in place due to the decreased pressure above the card; the normal air pressure is sufficient to hold the card to the spool.)

Generalization III. Water on Earth evaporates into the atmosphere as moisture.

Contributing Idea A. The hygrometer is an instrument used to measure the relative amount of water in the air (humidity).

Making a humidity indicator (hygrometer). There are two basic ways to build an instrument that can measure the amount of moisture in the air.

a. Open two paper clips partway (Figure 161.09a) and press them approximately ½ in. (1 cm) apart into a block of soft wood about halfway down one side (Figure 161.09b). The block of wood should be approximately 10 in. (25 cm) high and sturdy enough so that it will not tip over easily. Glue a fine wire or piece of straw into the eye of a needle (Figure 161.09c), then set the needle on the two paper clips so that the straw or wire sticks out past the edge of the block (Figure 161.09d). Wash a long strand of hair in hot soapy water to remove the natural oils. When dry, tie the hair to a pin placed at the top of the block (Figure 161.09e). Wrap the free end once around the needle in a counterclockwise loop (Figure 161.09f), and then tie a

Table 161.07. Measuring Air Pressure

<table>
<thead>
<tr>
<th>Week of</th>
<th>a.m.</th>
<th>p.m.</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>rising</td>
<td>falling</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
paper clip onto the end of the hair so that it pulls tightly around the needle. Make a measuring scale on a card and mount it on the side of the block (Figure 161.09g). Set the straw so that it is at the center of the card. The scale can be calibrated by draping the hygrometer with a cloth soaked in very hot water. Hair stretches when wet and contracts when dry. This action is at an exact rate and is proportional to the amount of water in the air. The humidity under the cloth will cause the hair to stretch and the pointer to rise. When it stops rising, the humidity will be very close to 100%. This position can be marked on the card. Other positions can be calibrated by comparing this hygrometer with a commercial one.

b. Mount two identical thermometers on a milk carton or side by side on a board. Cut the tips from a clean white cotton shoestring and slip the loose fibers of one end over the bulb of one thermometer. Tie it in place with a piece of thread, then place the other end into a small container of water. In operation, the two thermometers will produce two different readings. The wet bulb thermometer will give a reading based upon the evaporation of the water from the shoestring. Evaporation has a cooling effect; the reading will
Table 161.09. Relative Humidity Table

| Difference Between Dry Bulb and Wet Bulb Temperatures in Degrees Fahrenheit |
10	56	34	13																				
15	78	56	34	13																			
20	82	64	46	29	11																		
25	87	74	62	49	37	25	13	1															
30	89	78	67	56	46	36	26	16	6														
35	91	81	72	63	54	45	36	27	19	10	2												
40	92	83	75	68	60	52	45	37	29	22	15	7											
45	93	86	78	71	64	57	51	44	38	31	25	18	6										
50	93	87	80	74	67	61	55	49	43	38	32	27	16	5									
55	94	88	82	76	70	65	59	54	49	43	38	33	23	14	5								
60	94	89	83	78	73	68	63	58	53	48	43	39	30	21	13	5							
65	95	90	85	80	75	70	66	61	56	52	48	44	35	27	20	12	5						
70	95	90	86	81	77	72	68	64	59	55	51	48	40	33	25	19	12	6					
75	96	91	86	82	78	74	70	66	62	58	54	51	44	37	30	24	18	12	7	1			
80	96	91	87	83	79	75	72	68	64	61	57	54	47	41	35	29	23	18	12	7	3		
90	96	92	89	85	81	78	74	71	68	65	61	58	52	47	41	36	31	26	22	17	13	9	5
100	96	93	89	86	83	80	77	73	70	68	65	62	56	51	46	41	37	33	28	24	21	17	13
be lower than that of the dry bulb thermometer. The rate of evaporation depends upon the amount of water already in the air. When there is a great deal of water in the air, the evaporation is slowed down; thus the temperature reading is higher and closer to that of the dry bulb thermometer. By comparing the readings of the two thermometers, students can determine the relative humidity of the air. Generally a difference in temperature of 15°F (9°C) or more is considered to be an indication of low humidity while a difference of less than 15°F (9°C) indicates high humidity. Table 161.09 can be used to determine the relative humidity more precisely. For example, if the dry bulb thermometer reading is 65°F and the wet bulb thermometer reading is 56°F, the difference in temperature would be 9°F. By reading down the left-hand side of Table 161.09 to 65°F and across the top of 9°F, the intersection of the two columns is at 56. The numeral in the intersection indicates that the relative humidity is 56%.

Measuring and recording the amount of moisture in the air. Have students use hygrometers to measure the amount of moisture in the air. Have them use Table 161.10 to keep a weekly record of their measurements.

Contributing Idea B. Water evaporates.

Observing that water evaporates. Have students observe saucers filled with water over a period of several days. Discuss what happens to the water.

Measuring the amount of water that evaporates from soil. Fill a flower pot with soil and pour some water into the soil until it begins to drip from the bottom. Weigh the pot, and then do not water

<table>
<thead>
<tr>
<th>Table 161.10. Measuring Humidity (Wet and Dry Bulb Hygrometer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of</td>
</tr>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td>Thursday</td>
</tr>
<tr>
<td>Friday</td>
</tr>
</tbody>
</table>
it again for a week. After a week, weigh the pot again. Students can compare the before and after weights and infer what caused the difference.

Experimenting to see how different factors affect evaporation. Challenge students to design tests to find out how each of the following factors affects the rate at which water evaporates: temperature, movement of the air, amount of liquid exposed to the air, type of liquid, amount of moisture in the air (humidity). If needed, help students prepare at least two conditions for each test so that results can be compared (e.g., to test the effect of air movement, place some liquid in front of an electric fan and an equal amount in another place where the temperature and humidity are the same, but where there is no wind).

162 **Interactions**

Generalization I. As land and water are warmed by the Sun, the air above them is heated, becomes lighter, and rises; cooler air, being heavier, moves to replace the warm air.

Contributing Idea A. The wind vane and the nephoscope are instruments used to determine wind direction.

Making a wind direction indicator

wind vane. There are several kinds of instruments that can be made to indicate wind direction.

a. Cut a notch approximately 1 in. (2.5 cm) deep in each end of a 1 ft. (30 cm) long piece of wood. Cut a small arrow head and a large tail piece from aluminum pie plates. Insert them into the slits, and nail them into place (Figure 162.01a). Find the point along the stick where it balances, then drill a hole at that spot just large enough for a small test tube or medicine dropper tubing to fit through. The medicine dropper tubing can be prepared by holding it by the rubber bulb, placing the tip of the dropper into a flame, and rotating it slowly until the opening is completely closed and rounded (Figure 162.01b). When the glass is cool, remove the rubber and insert the tubing through the wood. You might need to use some friction tape to keep the wood from slipping off the tubing (Figure 162.01c). Now bend a coat hanger to form a bracket (Figure 162.01d), and mount the wind vane on a post or fence where winds blowing from many directions will strike it (Figure 162.01e). Be sure students note that the arrow points in the direction from which the wind comes. Tell them that winds are named for the direction from which they come (e.g., a north wind comes
from the north, and the arrow will point north). Students can use a compass to determine from which direction the winds come.

b. The wind sock is another instrument that is used at airports as a wind direction indicator. It can be made by bending a section of light wire into a circle and attaching some thin cloth to it. It can then be attached to a stick with strings and placed outdoors where the wind will blow freely into it. (See Figure 162.01f.)

Making a cloud direction indicator (nephoscope). The lower part of a moving air mass is usually obstructed and influenced by trees, houses, and other objects; thus, wind vanes (usually near the ground) do not always indicate the true direction of the moving air. To observe movement higher in the atmosphere, have students glue a round mirror to a piece of cardboard, and mark the points of the compass around the mirror. Paste a small paper circle about the size of a dime in the center of the mirror. Set the cardboard on a level spot outdoors with the N pointing north (a compass can be used to orient the mirror). Have students look down into the
mirror. When they see a cloud passing over the dime-sized circle, have them follow it with their eyes until it reaches the edge of the mirror. At that point they will see a wind direction indicated on the cardboard. This is the direction toward which the wind is blowing. You might remind them that winds are named for the direction from which they come.

Recording wind directions. Use a commercial or homemade wind vane or nephoscope and record the wind direction twice a day at the same times each day as shown in Table 162.03. Note if there seems to be any relationship between the direction of the wind and the kind of weather that follows.

Contributing Idea B. The anemometer is an instrument used to measure wind speed.

Making a wind speed indicator (anemometer). There are two basic kinds of instrument designs used to measure the speed of winds.

- **a.** The first design requires the student to turn the instrument into the wind. To make such an instrument, clean a milk carton and remove both ends. Thumbtack it to a block of wood to hold it steady. Cut an H in the middle section of the top side and open the flaps (Figure 162.04a). Push a cork to the center of a long knitting needle; then push the needle through the flaps (Figure 162.04b). Mount a small needle vertically into the cork to serve as a pointer. Cut a square piece of cardboard so that it fits inside the carton. Attach a second, smaller needle to it with tape or glue and stick the needle into the bottom of the cork (Figure 162.04c). Students may have to adjust the cork, knitting needle, or the card so that the card swings smoothly within the box. When the wind is blowing, point the indicator into the wind so that it blows through the box. The wind will push against the square card, tilting the cork and moving the needle pointer. The distance the needle tilts indicates how fast the wind flows through the carton. A card can be attached to the carton to make a gauge. When attached, draw a line on it parallel to the needle when it is straight up (Figure 162.04d). The gauge can be calibrated using the Beaufort scale (see entry 162.06).

<table>
<thead>
<tr>
<th>Table 162.03. Recording Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of _____________________________</td>
</tr>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td>Thursday</td>
</tr>
<tr>
<td>Friday</td>
</tr>
</tbody>
</table>

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
b. A second type of anemometer rotates as the wind strikes it. To make this type, attach two 1½ in. (4 cm) square sticks, 18 in. (½ m) long (Figure 162.04e, p. 122). After the sticks have been nailed together (leaving room for a hole in the middle), drill through their centers so that a small test tube or medicine dropper will fit snugly into their holes (see entry 162.01a, for the preparation of a medicine dropper) (Figure 162.04f, p. 122). Attach four paper cups, halved rubber balls, tin cans, or other cupped objects to the ends of the sticks (Figure 162.04g, p. 122). The instrument can be mounted on a coat hanger (Figure 162.04h, p. 122) or a hole can be drilled into a block of wood, a pencil placed in the hole, and the instrument set over the pencil (Figure 162.04i, p. 122). Paint one of the cups so that students can easily count the number of times it goes around in one minute. The instrument can be calibrated by comparing the number of turns with observations on the Beaufort scale (see entry 162.06). Another way to calibrate the instrument is to hold it out the window of a moving car on a calm day. This is done by sitting next to the front right window while the driver drives the car at a steady 5 miles (kilometers) per hour. The number of turns is counted for one minute. (This should be done several times and an average taken.) Repeat for 10 mph (kph), 15 mph (kph), etc. The information can be graphed (see Graph 162.04, p. 122). When the instrument is
mounted on the school grounds, the speed can be determined by counting the number of turns in one minute.

Measuring and recording the speed of wind. Students can keep a daily record of wind speed on a table similar to Table 162.05. Measurements should be made at the same time each day, and students should note whether the sky is sunny, cloudy, rainy, and so on. Have them study their table after several weeks to see if there is any relationship between the speed and direction of the wind and the kind of weather that follows.

<table>
<thead>
<tr>
<th>Week of</th>
<th>a.m.</th>
<th>p.m.</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimating wind speed without an anemometer. The speed of the wind can be estimated without complex instruments simply by using the Beaufort scale (see Table 162.06). The scale allows students to estimate fairly accurately the speed of wind by observing the motions of leaves on trees, chimney smoke, etc.

Contribution Idea C. Air is heated primarily by contact with the ground.

Measuring the temperature of air near the ground. On a windless day, have students find a place in direct sunlight and drive a 6 ft. (2 m) stake into the ground.

On the shadow side of the stake, let them place one thermometer on the ground so that the bulb is in direct contact with the ground. Place a second thermometer on the stake near the ground and directly above the first thermometer. Attach a third thermometer at least 5 ft. (1.5 m) above the second. Be sure that each thermometer is on the shadow side so that it is not in the direct rays of the Sun. At 10-minute intervals, check the readings on the thermometers. Students will find that the temperatures are higher nearer the ground. Explain that when cold air moves near the warm land or water, it becomes warmer and begins to rise.

<table>
<thead>
<tr>
<th>Scale Number</th>
<th>Observation</th>
<th>Name of Wind</th>
<th>Miles Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Smoke goes straight up</td>
<td>Calm</td>
<td>Less than 1</td>
</tr>
<tr>
<td>1</td>
<td>Direction shown by smoke but not by wind vanes</td>
<td>Light Air</td>
<td>1–3</td>
</tr>
<tr>
<td>2</td>
<td>Wind vane moves; leaves rustle</td>
<td>Light Breeze</td>
<td>4–7</td>
</tr>
<tr>
<td>3</td>
<td>Flag flutters; leaves move constantly</td>
<td>Gentle Breeze</td>
<td>8–12</td>
</tr>
<tr>
<td>4</td>
<td>Raises dirt, paper; flags flap</td>
<td>Moderate Breeze</td>
<td>13–18</td>
</tr>
<tr>
<td>5</td>
<td>Small trees sway; flags ripple</td>
<td>Fresh Breeze</td>
<td>19–24</td>
</tr>
<tr>
<td>6</td>
<td>Large branches move; flags beat</td>
<td>Strong Breeze</td>
<td>25–31</td>
</tr>
<tr>
<td>7</td>
<td>Whole trees sway; flags are extended</td>
<td>Moderate Gale</td>
<td>32–31</td>
</tr>
<tr>
<td>8</td>
<td>Twigs break off; hard to walk against</td>
<td>Fresh Gale</td>
<td>39–46</td>
</tr>
<tr>
<td>9</td>
<td>Slight damage to buildings</td>
<td>Strong Gale</td>
<td>47–54</td>
</tr>
<tr>
<td>10</td>
<td>Trees uprooted; windows break</td>
<td>Full Gale</td>
<td>55–63</td>
</tr>
<tr>
<td>11</td>
<td>Widespread damage to buildings</td>
<td>Violent Storm</td>
<td>64–75</td>
</tr>
<tr>
<td>12</td>
<td>General destruction</td>
<td>Hurricane</td>
<td>Over 75</td>
</tr>
</tbody>
</table>
As the air rises, it becomes cooler and heavier, and then moves down toward the land and water again.

Contributing Idea D. Winds are caused by unequal heating of the Earth’s surface.

Comparing the absorption and release of heat by soil and water. Fill one coffee can with dry soil and another with water. Let each remain in the classroom overnight so that they will be equal in temperature. Students can then put thermometers to the same depth in each and place both cans outdoors in the sunlight. After two hours, check the temperatures to see which is warmer and which is cooler. (The water should be cooler.) Have students share experiences they have had walking barefoot from hot pavement or land to a puddle or from a sandy beach to the water. They should deduce that soil heats up more rapidly than water. If they next set a can of soil and a can of water of equal temperatures in a refrigerator and check the temperatures every 10 minutes, they will find that the soil cools more quickly than the water. Such data can be easily graphed. Explain that soil or water temperatures influence the air above them. That is, land areas generally warm more rapidly during the day than water areas; thus the air above the land tends to be heated and rise while the cooler, heavier air over the water areas pushes inland to replace it. At night the land areas generally cool more quickly, thus the exchange of air is reversed.

Detecting warm and cool air currents. Small wind currents in the classroom can be detected using simple wind current detectors. The detector in Figure 162.09 can be made by folding a square piece of paper up on the solid lines and down on the dotted lines, then attaching a thread to the center. If held by the thread over a radiator or lightbulb, the device will move and indicate the direction of the current. If temperature readings are taken in different places in the room (e.g., at the ceiling and the floor; at the bottom and top of an open window), students will see that the movement corresponds to the exchange of warm and cool air. Explain that warm air weighs less than cold air, exerts less pressure—thus creating an area of low pressure. The heavier cold air creates an area of high pressure and pushes the warm air upward.
Generalization II. Water on Earth evaporates into the atmosphere as moisture.

Contributing Idea A. Temperature change affects evaporation.

Testing to see if an increase in temperature affects evaporation. Pour ½ c. (100 ml) of water into each of two identical shallow pans. Place one in a warm location and the other in a cool place away from any breeze. Compare the time required for the water to evaporate from each pan. Students can make some judgment about the relationship of heat to evaporation. The test can be repeated and speeded up by placing the experimental pan over a heat source such as a hot plate or radiator. Similarly, two cloths of the same size and same material can be substituted for the pans. Soak each thoroughly in water. Set one in a cool location and one in a warm location. An analogy can be made to clothes on a line on a sunny day and on a cloudy day. In each of the above tests, be sure that the heat factor is the only influence.

Testing to see if a great reduction in temperature affects evaporation. Thoroughly wet a cloth on a sunny day when the temperature outside is below freezing. Suspend the cloth and observe it every half hour until it is frozen stiff. After several hours, bring the cloth indoors and let students examine it. They will find that the cloth is dry. The time required for the frozen water to leave the cloth will depend upon the relative humidity of the air, the wind, and the temperature. (Note: The water in the cloth actually sublimes from a solid state to a gaseous state.)

Contributing Idea B. Moving air affects evaporation.

Testing to see if moving air affects evaporation. If you have access to a chalkboard or one in the classroom, wet two identical areas of a chalkboard and fan one with a piece of cardboard or an electric fan. Students will realize that the moving air was the influencing factor in making one area dry faster. Similarly, they can thoroughly wet two cloths of the same size and material, and hang one outdoors in a windy location and the other in a sheltered spot. If students touch the cloths periodically, they will find that the water evaporates from the cloth in the wind more quickly. Let them discuss how clothes dry on windy days. Caution: Follow safety guidelines when using the electric fan.

Testing to see if moving moist air affects temperature. Have students use thermometers to find the temperature of moving air (outside when the wind is blowing or in front of an electric fan). Hang some wet straw, newspaper, or cloth strips in the breeze. Leave a little space between the strips so the air can pass between them. Use thermometers to find out what happens to the temperature of the air after...
it passes through the wet material. An analogy can be made to air conditioners and how they work.

Contributing Idea C. Surface area affects evaporation.

Testing to see if surface area affects evaporation. Pour 1 c. of water into a wide, shallow dish and another cup into a tall, narrow jar. Place both in direct sunlight. Students will see that the one with the wide mouth evaporates faster than the other. Discuss the differences in evaporation from small puddles and large lakes.

Generalization III. Moisture in the atmosphere can condense into various forms that return to the Earth.

Contributing Idea A. The rain gauge is an instrument used to measure rainfall.

Making a rainfall indicator (rain gauge). Any open container with straight sides can be used to measure amounts of rainfall. When the rain is collected, simply have students stick a ruler into the container to see how deep the water is. If the water is 1 in. (3 cm) deep, then 1 in. (3 cm) of rain has fallen. Since most rainfall is less than an inch, a true rain gauge is designed to catch a relatively wide area of rainfall and to funnel it into a narrow area so that it will be deeper and can be measured more easily. (Note: Measurements must be taken very soon after a rainfall or evaporation will give inaccurate readings.) Attach a test tube beside a strip of paper on a block of wood. Fill a widemouthed, straight-sided jar with 1 in. (3 cm) of water. Pour this water into the test tube and mark the height on the strip of paper. Repeat this procedure using ¾ in., ½ in., and ¼ in. (or 2.5 cm, 2 cm, 1.5 cm, 1 cm, and 0.5 cm) of water. Now the jar can be placed outdoors in the open. When rain is collected in the jar, pour it into the test tube to measure how much rain fell.

Measuring and recording rainfall. Use a rain gauge in conjunction with a wind vane. Information can be recorded on Table 162.16. A graph of the data (Graph 162.16) will reveal how much rain falls in your area in a month and which winds bring rain.

Contributing Idea B. Water condenses.

<table>
<thead>
<tr>
<th>Date</th>
<th>Direction of Wind During Rainfall</th>
<th>Amount of Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observing condensation. Have students observe the condensation of water on glasses of ice water. Let them discuss where the droplets come from. Let them also describe personal experiences that are examples of condensation (e.g., moisture on a mirror in bathroom, moisture on windows inside a closed automobile).

Contributing Idea C. Temperature change affects condensation.

Observing condensation by cooling through contact. On a very cold day, have students go outside and notice how the moisture from their breath can be seen when it comes in contact with the cold air. Similarly, have them exhale across an ice cube tray or into an open freezer compartment and observe the condensation in the air. They will realize that this phenomenon takes place when moist air comes in contact with cooler air or a cooler surface.

Observing condensation by cooling through rising. Boil some water in a pot, beaker, or tea kettle on a hot plate. When it is boiling, let students describe what they see. Caution: Be careful of the steam. Students will see clouds of moisture forming as the heated moist air rises into the cooler air of the room. Encourage them to imagine how warm moist air near the Earth may rise and cool in the
atmosphere in a similar way. (Note: Rising air cools at the rate of 1°F every 300 ft. in the atmosphere.)

Observing condensation by cooling through expansion. Pour a cup of hot water into a transparent widemouthed gallon (4 L) jar. Put a plastic bag inside the jar and fold its edge over the rim, fastening it tightly with rubber bands. Have one student hold the jar firmly on the table, and let another pull upward on the bag quickly. Have them describe what they see inside the jar. (When the bag is pulled upward, the pressure inside the jar is reduced and the warm moist air inside expands. It cools with expansion and a cloud forms inside. When the bag is released, the cloud disappears.) This activity can be repeated several times. The cloud is best seen when the light source is behind the viewer. Students should be able to generalize that clouds can form in a similar way.

Contributing Idea D. Dew and frost are formed by the condensation of water vapor on the surface of the Earth.

Observing how dew is formed. Remove the label from a tin can, and half-fill it with water. Place a thermometer in the water, and record the temperature. Add chips of ice, stir, and record the temperature again when droplets form on the outside of the can. Tell students that the temperature reading when the droplets form is called the dew point for the temperature of the air in the room. Explain that water droplets or dew on blades of grass or flowers in the morning is formed in a similar way, and the temperature at which it forms is the *dew point*. Let students repeat this activity in different locations and on different days to compare dew points. If other observations are recorded (e.g., room temperature, humidity), factors influencing dew point will be discovered. After several tests, ask students what conclusion they would make if the temperature of the room and the dew point were within a few degrees of each other. (There would be a very high relative humidity.)
Observing how frost is formed. Remove the labels from two tin cans and half-fill one can with water, chips of ice, and a handful of salt to make it very cold. Half-fill the second can with water only. Use two thermometers to record the temperature of each can, and then stir the contents of both rapidly. Students can observe the outside of the cans. Tell them that the formation they observe on the first can is called frost. Explain the parallel formation of early morning frost on the ground. They can then compare the two temperature readings and realize that when the surface of an object (e.g., the ground) is below the freezing temperature of water, the water vapor in the air condenses on the surface as frost.

Contribution Idea E. Fog is formed by the condensation of water vapor near the surface of the Earth.

Observing how fog is formed. Fog is the condensation of moisture in the atmosphere near the surface of the Earth. For any of the following experiences, help students realize that real fog is formed in an analogous way through the rapid cooling and condensation of water vapor in the air near the Earth’s surface.

a. Heat some water in a container until it boils, and then fill a beaker slowly to prevent it from breaking. Next, empty all but 1 in. (3 cm) of water from the bottle and hold it so the light source (e.g., window, electric light) comes from behind the viewers. Now, set the bottle on a tray of ice cubes, and let students describe and discuss what happens inside. They will realize that in a similar way fog forms at night when the Earth cools rapidly (represented by the ice tray) and the air next to it cools in turn and comes in contact with the warmer moist air above.

b. Take a large fruit juice can, put some ice in it, and add a handful of salt to make it very cold. Set a smaller can on the ice so that the tops of both cans are even. Pack more ice and salt into the space between the two cans and let a student exhale into the smaller one. The class will see fog form and remain in the smaller can. Point out the parallel to real fog that clings in valleys when the ground is cooled.

Contribution Idea F. Clouds are formed by the condensation of water vapor in the atmosphere.

Observing how clouds are formed. Clouds are condensations of moisture in the atmosphere. For any of the following experiences, help students realize that real clouds are formed similarly through the cooling and condensation brought about by the expansion of rising air.
a. Pour 1 c. (200 ml) of warm water into a transparent widemouthed gallon (4 L) jar. Hold a lighted match in the jar, blow it out, and let it remain briefly. Now place a plastic bag inside the jar, turn its edge down over the rim of the jar, and fasten it securely with rubber bands. Have a student hold the jar firmly on the table, and let another quickly pull upward on the plastic bag. They will see a cloud form inside; when the bag is released, it will disappear. The cloud forms for several reasons: (1) the air in the jar contains invisible water vapor; (2) the air pressure inside the jar is reduced; (3) there are many small particles from the match in the air. As the air inside the jar expands, it cools, and the water vapor condenses as liquid around the smoke particles form the minute droplets that make up the cloud. Students can test to see if a cloud can be made: (1) without putting water in the jar; (2) with cold water instead of warm water; (3) with water but without smoke, and so on.

b. Obtain two identical widemouthed jars. Line half the inside of each with soft, black cloth. Add glue to hold the cloths in place, and then soak the cloths with water. Cover each jar with a square of glass and set them upright, one in a pan of cold water, the other in a pan of very hot water. Leave the jars for 15 minutes. Remove them from the pans and set the cold jar upside down over the warm jar leaving the glass squares over the openings (see Figure 162.25). Hold a flashlight to shine down through both jars, and then carefully remove the glass squares. A cloud will form as the warm moist air rises and comes in contact with the cooler air above. Students can experiment by repeating the activity and reversing the positions of the jars. Tiny tissue paper streamers can be placed inside the jars to indicate the direction the air flows. If possible, observe cloud formations outdoors, and let students judge the relationship of hot and cold air masses based upon their experimental models.

Identifying cloud types. Have students keep records for a week of the kinds of clouds that they see. Help them recognize some of the common types.

a. Cirrus, cumulus, and stratus are the basic types of clouds. Cirrus are very high in the atmosphere. They generally look feathery and are composed of tiny ice crystals. They are usually a sign of clear weather. Cumulus clouds are
lower than cirrus clouds, and airplanes often fly above them. They look like white puffs in the sky and usually indicate fair weather. Stratus clouds are much lower and foglike. They form gray layers across the sky.

b. *Nimbus* describes basic clouds containing a great amount of water. They are usually very low in the sky and look thick and black. They generally bring rain, snow, sleet, or hail.

c. *Alto* is a prefix meaning “high.” It is used to describe high forms of basic clouds.

Students can study events that bring about the formation of each type of cloud. They might group cloud types on the basis of the events (clouds that usually follow in sequence with an approaching cold front: altocumulus, cumulonimbus, stratus, stratocumulus; clouds that usually follow in sequence with an approaching warm front: cirrus, cirrostratus, altostratus, nimbostratus, stratus).

Contributing Idea G. When the moisture in clouds continues to condense, it may fall as rain or snow.

Observing how rain is formed. After students have seen how clouds can be formed, have them hold the flat bottom of an ice cube tray slightly tilted but close to steam escaping from a boiling teakettle. **Caution:** The steam is very hot. Be sure they observe how the water droplets collect, enlarge, and drip off the edge of the tray because of their increasing weight. It should be noted that although the formation of rain is not fully understood, scientists believe that droplets form upon minute particles in the air and continue to increase in size as water vapor cools. Students can try this activity again using two ice cube trays—one empty and one filled with ice cubes. Explain that as the moist air rises (from the teakettle), it cools rapidly against the filled tray and less rapidly against the empty tray. Take care to hold the trays at equal distances from the spout of the teakettle and record the time taken for drops of “rain” to fall
Measuring the size of raindrops. On a rainy day, pour some flour through a sifter into a pie pan until it is ½ in. (1 cm) deep. Cover the pan with a large plate and take it outdoors. Hold it in the rain, uncover it, and let the rain fall into the flour for three seconds. Cover the pan with the plate and return indoors. When the pan is uncovered again, students will see wet round lumps where the raindrops fell. Let the lumps dry for about three hours, and then use the sifter to separate the lumps from the flour. Measure the lumps with a ruler or seriate them by size to learn something about the relative size of raindrops. (Note: The lumps are slightly larger than the actual raindrops.) If records are kept (Table 162.28), the sizes of raindrops can be compared during different parts of a storm or between different storms. Another way to measure the size of raindrops is to prepare hoop screens by stretching pieces of discarded nylon stockings over embroidery hoops. When each screen is stretched tightly, staple or tack it in place, then trim away the excess stocking. On a rainy day, press the screens into a large pan with some sprinkled powdered sugar. Tap off any excess sugar, cover the screens, take them outdoors, and hold them horizontally in the rain. When ready, uncover the screens and allow raindrops to fall on them for a timed period (e.g., 30 seconds). Cover the screens again and bring them into the classroom. If the screens are held up against a dark background, students will see darkened spots where each drop removed the sugar as it fell through the screen. Diameters can be compared with a ruler. Samples taken from different locales or at different times during the rainfall can also be compared.

Observing how snow is formed. Obtain some dry ice. Caution: Do not touch dry ice with bare hands. Keep it in a closed container when not in use. Prepare a cloud as in entry 162.24b, and then chip a few small pieces from the dry ice, and

<table>
<thead>
<tr>
<th>Table 162.28. Seriating Raindrops by Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Small Drops</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Number of drops in 3 seconds at the beginning of the storm.</td>
</tr>
<tr>
<td>Number of drops in 3 seconds in the middle of the storm.</td>
</tr>
<tr>
<td>Number of drops in 3 seconds near the end of the storm.</td>
</tr>
</tbody>
</table>

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
drop them into the cloud. Hold a flashlight into the small can and exhale gently into the cloud at two-minute intervals. Have students describe what happens. Explain that snow is formed directly from water vapor to ice crystals in a similar way (no liquid state between the two), and that the crystals may fall to the ground as snowflakes. You might explain that if rain freezes when it contacts an object or the ground, the result is called sleet, and when frozen particles in the air have additional layers of water frozen to them before they fall to the ground, the result is called hail.

Observing how obstacles affect snow-drifts. On a snowy day, prop some cardboard sheets upright on old snow. Set the sheets so they face in different directions. When it stops snowing, students can examine the distribution of the snow around each sheet. They will be able to describe where the drifting takes place. On the basis of their observations, ask them how they would place a snow fence if they wanted to keep snow from a walkway.

Measuring snowfall. Although snowfall depth is reported on newscasts and is important to skiers, the snowfall measurement by weather bureaus has more meaning when the water content of the snow is determined. To do this, remove the top and bottom from a straight-sided can and push the can straight down into the snow until its rim is even with the Earth’s surface. Let one student reach under the can and cut the snow even with the bottom edge with a piece of cardboard. Remove the cylinder of snow and dump it into a second can of the same size but that has only one end removed. Melt the snow slowly to avoid too much loss of water by evaporation. Measure the depth of the water that remains. Compare the depth of the water to the depth of the snow that produced it. Since snows are different, students can try this activity with dry, light, fluffy, and packed snows. They will find that some snows are drier than others (the ratio of water to snow depth is less). They can seriate or rank the snows by the amount of water each produces; and if temperature measurements are taken during snowfalls, a relationship between temperature, the type of snow that is formed, and the water content will be discovered.

163 Theory

Generalization I. Many factors act together in complex ways to keep the forces that control weather constantly out of balance.

Contributing Idea A. The tilt of the Earth affects the balance of temperatures.

Making a model to show how solar energy strikes the Earth’s surface. On lined paper, have students trace and cut out a large circle. Have them print *North*
Pole on the top of the circle and **South Pole** on the bottom. Draw a heavy horizontal line through the middle of the circle to represent the equator. Place two sheets of lined paper on a flat surface, and mark an S in the center between the two sheets to represent the placement of the Sun. Tell students that the lines on the paper represent rays of solar energy, some of which become converted into heat. Place the cut-out Earth on the left-hand lined sheet so that the North Pole is at the top and the lines on the circle match those on the sheet. Ask students which part of the Earth receives the most radiation from the Sun when in this position, then move the North Pole to the right as if the Earth were tilted toward the Sun (the Earth tilts 23½°), and ask which part of the Earth now receives the most radiation from the Sun. They will see that more rays strike the northern regions than the southern. (Arrow heads can be added to the parallel lines to emphasize how the rays strike the Earth.) Next, move the Earth so that it travels around the Sun to the other side (place it on the right-hand sheet of lined paper). Be sure the Earth remains in the same tilted position. Again ask which areas on the Earth receive more and less solar energy. Students will see that the polar regions alternate in receiving more or less solar energy due to the tilt of the Earth and realize the angle of the Sun’s rays cause the changing seasons. In winter (in the Northern Hemisphere) the Sun is low in the sky. In the summer it is more directly overhead.

Contributing Idea B. The curved surface of the Earth affects the balance of temperatures.

Using a model to observe the effect of solar energy upon a curved surface. Shine a flashlight through a cardboard tube (to keep the rays from spreading outward). Aim the tube horizontally at the equator of a globe, and let students describe the spot of light that is projected. Move the flashlight gradually toward the North Pole while holding the tube horizontally. (Note: The parallel lines in entry 163.01 can be used to supplement this experience.) Students can describe the spot of light that is now projected. (It is larger because the rays strike the surface at more and more of a slant as the light is moved toward the pole.) They can make the analogy to the radiant energy reaching the Earth from the Sun. Now attach several small thermometers to the globe. Place a lamp 8 in. (20 cm) from the globe so that the thermometer on the equator is in the center of the lighted half of the globe. After three minutes, compare the thermometer readings. Students will find that the temperature readings decrease toward the poles.

Comparing temperature differences of soils receiving direct and slanted solar energy. Fill identical cardboard boxes or milk cartons with equal amounts of soil
or sand. Insert thermometers into each box to equal depths. Set both boxes in the sunlight, but prop one so that the Sun’s rays strike it directly. Record temperature readings every 10 or 15 minutes. Results can be graphed. Students will see that the temperature rises more quickly and higher where the Sun’s rays strike the soil directly. Analogies can be made to various places on Earth.

Contributing Idea C. Some materials absorb more heat energy than others.

Comparing differences in heat energy absorbed by differently colored materials. Obtain two dowel sticks of the same diameter and length. Sharpen one end of each so that it can be driven or pressed into packed snow. Paint one stick black and the other white. On a sunny day, when there is a good snow cover, press the two sticks upright into the snow to the same depth, and check them every few hours while observing the snow around each. Students will observe that the snow area around the black stick melted more than the snow area around the white stick. Have them look for everyday examples of the same phenomenon (e.g., the area around tree trunks, weeds, and posts sticking through the snow and around various objects that people drop onto the snow). Students can also cut several identical squares from different colors of construction paper. On a sunny day, place the papers on a clean snow surface and observe every hour to see which shows the least effect from exposure to the Sun.

Measuring the heat energy absorbed by differently colored materials. Fill two glasses with equal volumes of water. Wrap a sheet of white paper around one glass and a black sheet around the other. Set identical thermometers in each, and place the glasses in direct sunlight. Have students take temperature readings every 10 minutes. The data can be graphed. Students will find that the water in the glass wrapped in black paper warms more quickly. Next, let them try papers of various colors and compare the results. They may wish to discuss the advantages and disadvantages of wearing certain color clothes at different times of the year.

Contributing Idea D. The atmosphere affects temperatures by shielding the Earth from solar radiation and by trapping heat energy that is reradiated from the Earth’s surface.

Using a model to observe that solar energy can be shielded from a surface. Hold a thermometer directly beneath a lighted bulb at a distance of 8 in. (20 cm) for three minutes. Record the temperature, then let the thermometer return to room temperature. Next, repeat this procedure after inserting a sheet of paper between the bulb and the thermometer. After three
Inorganic Matter / Weather

Inorganic Matter / Weather

Using a model to observe that heat can be trapped in the atmosphere. Fill a plastic bag with soil, and place a small thermometer on top of the soil. Tie the bag securely. Place another thermometer on an identical type of soil outside the bag. Leave both in the bright sunlight and record the temperature every 10 minutes for an hour. Compare the readings of the two thermometers. The data can be graphed. Ask why one reading is higher than the other. (Although both received the same amount of solar energy, the energy absorbed by the soil in the bag heated the air confined in the bag. The trapped air, in turn, kept the soil warm.) Similarly, the students can fill two pans with equal quantities of soil or sand and set them in a warm place for several hours. Let them insert thermometers, each one-half inch (1 cm) beneath the surface of the soil or sand in each pan. Place both pans outdoors and away from any buildings on a sunless, windless day. Place a cloth or canvas covering a few in. over one of the pans and take temperature readings of the soil every 10 minutes for an hour. The data may be graphed. The students should see that the uncovered pan cools more rapidly, as heat energy strikes the canvas over the covered pan and reflects some back, retaining some of the heat.

Contributing Idea E. Air moves because of unbalanced temperatures.

Observing that warm air rises and cooler air moves in to replace it. Make a tube of lightweight cardboard, and fit it loosely around an uncovered lightbulb (Figure 163.08a). If you have access to chalk and chalkboard erasers, rub chalk or erase chalk to create dusty erasers.
Turn the bulb on and darken the room. Have one student clap together two dusty chalkboard erasers near the bottom of the tube (Figure 163.08b), and let others observe what happens. (The chalk dust will rise through the tube and out the top.) Ask what happens to the air that is warmed. (It rises.) Ask what happens to the air over warm parts of the Earth. (Warm air creates a low pressure area.)

Next, hold the tube under a tray of ice cubes, shine a flashlight at the bottom of the cubes, and hold a smoking piece of clothesline rope or string near the top. Ask what happens to the air as it is cooled. (It falls.) Ask what happens to the air over cold parts of the Earth. (Cooler air forms a high pressure area and replaces warmer air as the warmer air rises.)

Making a model tornado. Find a cardboard box that is at least 1 ft. (30 cm) high and just slightly larger than a square-shaped hot plate. Cut the bottom from the box so that it can be set over the hot plate. Next, cut out large openings on two adjacent sides of the box, cover them with heavy clear plastic, and paint the inside of the box black. Next, cut a 4 in. (10 cm) hole in the top and insert a 3 ft. (1 m) long cardboard chimney. Be sure to tape the chimney securely and seal it with melted wax so that no air can leak into the box.

Now, cut ½ in. (2 cm) slots in the four corners, starting 1 in. (3 cm) from the top and extending to within 1 in (3 cm) from the bottom. Place on the hot plate a shallow square tray of water that is about the same size as the hot plate. Place the hot plate on the tray. Cover them with the box. Shine a flashlight through one window, and let the class observe (Figure 163.09). They will see the formation of a vortex, like a miniature tornado,
above the boiling water. (A real tornado is formed similarly due to convection currents.)

Observing that high pressure areas move into low pressure areas. Air generally moves from a high pressure area to a low pressure area; thus, winds blow from high to low. There are several activities that help students realize this.

a. Students can hold two sheets of typing paper approximately 3 in. (10 cm) apart and blow between them. As long as the students blows, the sheets of paper will be forced together. (The rapidly moving air current between the papers creates a low pressure area as the greater surrounding pressure outside forces the papers together.)

b. Students can attach threads to two table tennis balls with cellophane tape or drops of glue. Suspend the balls about an inch apart and, using a soda straw, blow between them. Students will realize that as the stream of air passes between them, a low pressure area results as indicated by the balls being pushed together. Tell them that weather forecasters call low-pressure areas *lows* and high-pressure areas *highs.* If possible, show weather maps, indicate the high and low symbols, and discuss what they mean in terms of moving air masses.

Using a model to observe how winds are affected by the rotation of the Earth. Spin a globe in a counterclockwise direction (west to east) as viewed from above the North Pole. Let one student try to draw a straight line on the spinning globe by pressing lightly on it with a piece of chalk or wax pencil. The line drawn should extend from about 35°N latitude to the equator (Figure 163.11a). When the globe stops spinning, students can observe the line that was made. Tell them that the line could represent a wind blowing from the north. Explain that such winds are twisted to their right (west) as was the drawn line. Because winds from the north constantly come in contact with the Earth’s surface, whose speed of rotation is greater than the winds’ speed, the wind currents lag behind, causing them to turn a little from their straight course. Students will realize that the Earth’s rotation influences all winds in the Northern Hemisphere to shift to their right (i.e., north winds become easterly and south winds become westerly) (Figure 163.11b). Explain that winds that push toward a low pressure area are also twisted to the right, creating a counterclockwise swirl of air, while winds pushing out from a high pressure area are all twisted to their right, creating a clockwise spiral of air (Figure 163.11c). This can be demonstrated three-dimensionally by cutting
a rubber ball in half and painting rings around the outside of each half. Place one cup of the ball open-side down on a map at a place where a high pressure area might be indicated. Place the other cup open-side up where a low might be. Explain that the cups represent the pressure areas, and then trace with a pencil how the air will spiral up one cup and spiral downward into the other.

Generalization II. According to theory, the air above the Earth can be thought of as masses that are separated by zones of rapidly changing conditions.

Contributing Idea. Air masses transport complete sets of weather conditions that change as the air masses move over the Earth's surface.

Using models to demonstrate weather fronts. An aquarium can be structured to show what generally takes place when differently heated air masses come in contact. To do this, use plastic-model cement or contact cement to glue plastic rib binders, such as the type used by students to hold report papers together, along the bottom and sides of the aquarium (Figure 163.12a). Be sure the ribs are glued securely to form a watertight guide for a glass partition. Now make a parti-
cool water. Explain to students that the red water represents a warm air mass and the blue represents a cool air mass (Figure 163.12b). Such air masses are like huge invisible flat bubbles—often over 10 miles high and hundreds of miles across. Now remove the partition and let students describe what they see. Tell them that the dividing line between the masses is called a front. When a cold mass (blue water) moves against a warm mass there is a cold front. Students will see that the warm mass is forced upward over the cold mass (Figure 163.12c).

Let them predict what warm moist air would do under such circumstances. Generally a sequence of cloud types progress along the front bringing a sequence of weather events (Figure 163.12d). (1) A general haziness, light fog, or fairly low clouds appear due to the chilling of the warmer moist air near the ground. Near the ground the air is warmer than it will be as the cold front progresses. (2) Somewhat higher thunderclouds (cumulonimbus) appear due to the rapid rising and cooling of the warm moist air over the cold mass front. Heavy rains fall and on the ground strong winds blow. (3) Diminishing numbers of cumulus clouds can be seen high in the sky. On the ground, the wind is calmer and the air is cooler or cold. Some variations take place in this sequence, depending upon the degree of difference in temperatures between the cold and warm masses. If the difference is slight, the stormy portion is less violent—possibly just changing from mild to light rains and to slightly cooler temperatures. In the winter, the cold front may bring snow or sleet instead of rain.

When a warm mass (red water) moves against a cold mass there
is a warm front. In the same demonstration students can imagine (Figure 163.12e) how the warm mass can advance over the cold mass and bring a sequence of weather events (Figure 163.12f):

1. Feathery bands or rows of cirrus clouds appear approximately 8 miles (13 km) up where the air is so cold that water vapor freezes. The clouds are made up of ice crystals due to the warm mass being chilled by the cold mass.
2. Thin sheets of altostratus clouds appear at a lower altitude.
3. Nimbostratus clouds appear and steady rains fall. The clouds seem to come lower and lower as the front progresses, and may touch the ground as fog. (4) The sky clears and the air is warmer and damp. Many variables can affect this general sequence. Students should note that when a cold front advances, the progression of clouds increases in altitude. They decrease in altitude when a warm front progresses. By knowing what type of air mass is approaching and how fast, the meteorologist can generally predict the type of weather and when it will arrive.

b. Occluded Fronts. Insert the glass partition after finishing the previous activity. Stir one side, and then remove the partition (Figure 163.12g). Explain that the three colors of water now represent three different air masses: warm, cold, and colder (Figure 163.12h) Students will see the air mass of the intermediate
temperature forcing its way between the warmer and colder layers to form three distinct layers. Tell them that this relationship forms an occluded front. In a sequence of events, this triple-mass system passes high above the ground, the clouds move downward (e.g., cumulus, stratus, nimbostratus), then back up again (e.g., nimbostratus, altostratus, cirrus). The lowest clouds are almost always some distance above the ground. The weather changes from clear and cool to stormy, to clear and cool again (Figure 163.12i).

Let students use the aquarium to see what would happen if no salt was used in the beginning or if the two compartments contained water of the same temperature. They might find the temperature differences among the three layers in an occluded front. Other liquids, such as white syrup or glycerin, might be tried to slow down the changes that take place.

164 Applications

Generalization. Changes in weather can be predicted.

Contributing Idea A. Weather is the temporary condition of temperature, wind, and moisture of the atmosphere in a given place at a given time.

Using instruments to predict changes in weather. Many factors such as temperature, wind, air pressure, and moisture make up what is called weather. The following are a few very general suggestions for obtaining information and making predictions from some of the factors.

a. **Wind.** Students can use a wind vane to find patterns of wind direction and the subsequent changes in weather (see entry 162.01). For example, on the west coast of the United States, winds from the south, southwest, west, and northwest usually bring rain because they blow from the ocean; winds from the northwest, north, northeast, and east usually bring fair and cooler weather because they come from cooler land areas; winds from the east, southeast, and south usually bring fair and warmer weather because they come from warmer land areas; winds coming from the west, northwest, or north usually bring fair and cooler weather.
because they come from cooler land farther north or from dryer land farther west; winds from the northeast, east, southeast, and south usually bring rain because they blow from the ocean. Students might also use an anemometer to determine how long it takes for certain types of weather to move into their locale (see entries 162.04, 162.05).

b. Air Pressure. Until weather satellite photos became available, the barometer was the major instrument to forecast changes in the weather days in advance. Students can use a barometer to identify patterns between readings and subsequent weather changes (see entries 161.06, 161.07). Students will find that a rising barometer usually means the approach of a high pressure air mass that generally brings increasingly cool, heavy air and better weather. A falling barometer usually means the approach of a low pressure air mass that generally brings increasingly warm, light air, and stormy weather.

c. Moisture. Students can use a hygrometer to measure the amount of water (humidity) found in the air (see entries 161.09, 161.10). In general they will find that the humidity of the air increases before a rain and decreases afterward. In terms of approaching weather fronts, the humidity will usually change as shown in Table 164.01.

Preparation of a weather station. Several instruments are important in a weather station: thermometer, barometer, anemometer, hygrometer, rain gauge. Such instruments should be placed outdoors in a protected and shaded location for best results. The instruments may be sheltered in an open box; or a station can be built (Figure 164.02). This station can house

Table 164.01. Relating Humidity to Weather Changes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Before Front</th>
<th>During Front</th>
<th>After Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm Front</td>
<td>Increasing</td>
<td>very moist</td>
<td>slight decrease</td>
</tr>
<tr>
<td>Cold Front</td>
<td>Steady</td>
<td>very moist</td>
<td>rapid decrease</td>
</tr>
</tbody>
</table>

![Figure 164.02](Figure_164.02.png)
both the instruments and several visual aids to provide easy access as well as protection. If the central panel is constructed of ½ in. (1 cm) hardware screening, various weather instruments can be mounted to it. The opening will allow the air to circulate around the instruments. The two panels on either side can be used as bulletin boards and data recording boards. One board might hold a map of the local area or the United States, covered with acetate so that students can sketch weather fronts on it with grease pencils. It might also hold pictures of cloud types, relative humidity tables, or wind speed scales. The other board might hold data sheets, tables, charts, and graphs that the students prepare. Data tables should be kept current by recording instrument readings twice a day at the same hours.

Recording data and predicting weather changes. There is a great variety of forms that can be used to record data. The selection depends upon what information is sought. A few examples are given here in hope that they will stimulate other ideas (e.g., each activity can be altered by substituting an hygrometer or barometer for the wind vane). All of these data sheets may be similarly prepared using the metric and Celsius systems.

a. *Determining the relationship of wind direction to weather.* Make or obtain a wind vane. Using the instrument, keep a record for a month on a table similar to Table 164.03a. On a daily basis, mark the wind direction and the type of weather observed by using symbols. Next, label the mark with the day of the month (e.g., on the third day the wind was from the northeast, and the sky was cloudy; on the tenth day the wind was from the northeast, and it rained). When completed, students will have a graph representing one month of data. Let them decide what winds brought what weather into their locale. Using the knowledge gained from the patterns, they will be able to make
more rational predictions in subsequent months.

b. *Determining the relationship of wind direction to temperature.* Make or obtain thermometers and wind vanes. A graph similar to Graph 164.03a can be used to compare wind direction and temperature simultaneously. Students can thus determine that winds from particular directions generally bring certain temperatures.

c. *Determining the relationship of wind direction to rainfall.* Use a rain gauge and wind vane to gather data for a table like Table 164.03b. Amount of rainfall can be recorded in tenths of in. in relation to wind direction. At the end of one month, students can determine which direction brought the most rain.

d. *Comprehensive weather table.* Using all the instruments important to a weather station, students can take readings twice daily and record them on a table like Table 164.03c.

From the data, predictions can be made as to what weather to expect. The predictions can be compared with those made by weather forecasters. From such data, students will realize that

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Temperature</th>
<th>Barometer Reading (air pressure)</th>
<th>Hygrometer Reading (humidity)</th>
<th>Air Direction</th>
<th>Air Speed</th>
<th>Rainfall</th>
<th>Types of Clouds</th>
<th>Weather Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
today’s weather was brought on by something that took place earlier and that today’s weather, in turn, will be an influence upon the future weather. Students can also discuss the importance of predicting weather (e.g., hurricane warnings, frost warnings).

Contributing Idea B. Climate is the long range condition of temperature, wind, and moisture of the atmosphere in a given place over a long period of time.

Determining local climate. Students can keep monthly graphs of weather conditions in their locale. Averages may be kept on a table like Table 164.04. After several months, students can make some judgments about trends in the weather conditions. Have students recall what the weather was like during the same periods of time in previous years to see if they can determine some pattern. Explain that similar weather conditions over long periods of time are called climate. If graphs of data are kept for subsequent classes, in a few years students will have much data to help them determine climatic conditions for their area.

Determining climates in other parts of the world. Find maps showing the principal climatic conditions found in various countries of the world. Students can infer what factors may cause the conditions (e.g., they can use their knowledge of wind systems and precipitation to explain the climate of certain geographic regions). Have students also infer how the conditions might affect people (e.g., in terms of where they can live or how they must adjust their clothing and shelters to live in certain areas; where they can grow certain food crops).

Table 164.04. Collecting Monthly Averages of Weather Factors

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Temperature</th>
<th>Average Humidity</th>
<th>Average Rainfall</th>
<th>Average Snowfall</th>
<th>Sunny Days</th>
<th>Cloudy Days</th>
<th>Windy Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How many times “high”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How many times “low”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of days it rained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of days it snowed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Absorption
of heat, 163.04–05
of light, 331.12, 332.33–34
of liquids, 122.34–35, 632.06e
of sound, 321.10, 322.25–26
Acceleration (see also Deceleration)
definition of, operational, 312.11–12
influence on mass, 312.22
Action/reaction
applications of
in aircraft, 531.03, 512.16–21
in everyday use, 313.10
in seacraft, 314.02, 531.02
measurement of, 313.08–09
Ailerons on aircraft, 532.13
Air (see also Air pressure; Wind)
characteristics of, 131.05–07, 162.07
currents
detection of, 132.17–18
heat influence, 342.36–39
pressure influence, 163.08–11
measurement of
movement, 162.04–05, 09
pressure, 163.08–11
temperature, 162.07–09
weight, 131.17
Air barometer
construction and use of, 132.15
Air conditioner, 162.13
Aircraft
airplane
directional movements of, 532.09–15
parts of, 532.02–17, 532.20
jets/rockets, 532.18–21
parachutes, 532.22–23
space vehicles, 532.24–26
wind tunnel for testing, 532.01
Air pressure
changes in, 132.11–12
definition of, operational, 132.06
effect upon
aircraft, 532.04–06
ears, 132.06
weather, 161.08, 161.13
measurement
at altitudes, 132.07–08
by barometers, 132.13–15, 161.06–07
Algae
characteristics of, 231.19
classification of, 151.23
culturing, 231.18
measurement of growth, 231.02
observations of, 151.10
reproduction of, 232.01
Alligators, 211.37
Alternating current (electricity), 351.06
Altimeter
construction and use of, 132.07
Altitude
pressure differences, 132.07–08
temperature differences, 161.03
Amoeba
observations of, 231.12
Amphibians
characteristics of, 211.31–36
definition of, operational, 211.30
Amplitude
of sound waves, 323.07
Anemometer
construction and use of, 162.04–05
Angular diameter
measurement technique, 421.16–18
ANIMALS, 210 (see Zoology; see also names of specific animals)
Anthers in flowers, 242.12
Ants, 211.23
Apple, 221.24
Applied force in machines
definition of, operational, 511.03–04
in gears, 511.37–38
in levers, 511.10, 511.13, 511.16
in pulleys, 511.24, 511.30–34
in wheels and axles, 511.19
Aquariums
construction of, 241.01, 642.01
Arthropods, 211.12–14
Ash tree, 221.19
ASTRONOMY, 420
characteristics of the universe, 421.01–21
classification of objects, 421.22–23
eclipses, 422.13–18
measurement in
distances, 421.12–13, 421.19–20
sizes, 421.14–19, 421.22
moon, 421.14, 422.03–04, 422.13–18
Index Guide

Index Guide

motions, 422.01–18
planets, 421.09, 421.22–23
solar system, 423.01–04
stars, 421.02–11, 422.05–06
sun, 421.07–09, 422.01–02, 422.16–18
telescope, 421.01
time/seasons, 422.07–12
Atmosphere (see also Weather)
as a shield from solar radiation, 163.06
as a trap for heat energy, 163.07
ATOMS, 410
characteristics of, 363.01–04, 411.01–13
chemical symbols for, 411.08
classification of, 411.12–13
definition of, theoretical, 353.01, 411.05
electrical charges in, 353.01–02, 413.04–05
evidence of, 411.01–04
models of, 353.01, 411.06, 413.01–06
motion in, 412.01–04
and radiation, 413.06
Attraction/repulsion
electrical charges, 353.01–02
magnetic fields, 361.04, 362.10–13
Axles and wheels
definition of, operational, 511.19
examples of, 511.20
mechanical advantages of, 511.21–22

Bacteria
fermentation/putrefaction by, 232.04
in foods, 232.04
Baking soda
in test for electrical conductivity, 352.25
in test for presence of a carbonate, 111.09
Balance scales
construction and use of, 511.11, 632.05–06
Ball bearings in machines
construction of, 511.08–09
Bar graphs
techniques for, 631.02
Barium
test for, 411.10
Barometer
construction and use of
air, 132.15
liquid, 132.15, 161.06–07
Basalt, 141.03–04
Battery
collection and use of, 352.01–05
definition of, operational, 352.06
Beaks of birds (see Bills of birds)
Beaufort wind speed scale, 162.06
Beetles, 211.23
Bell, electric
collection and use of, 354.04
Bell, musical percussion instrument
collection of, 324.02c
Benedict’s solution
as an indicator for simple sugars, 111.09
Berzelius, Jöns, 411.12
Beta particles
observations of, 413.06
Big Dipper
location of, 421.03, 421.05
Bills of birds
adaptations of, 242.20
Binoculars, 332.19, 332.21
Birch tree, 221.15, 221.19
Birds
adaptations of, 211.07, 242.20
care of, 211.45
characteristics of, 211.44
feeders for, 211.46
Block and tackle
definition of, operational, 511.32
mechanical advantages of, 511.33
Blueprint paper
prints of magnetic fields, 361.03d
prints of plant parts, 332.10
Boiling
boiling point, effect of solutions upon, 122.44
graphing technique for, 631.02c
Boron
test for, 411.10
BOTANY, 220
adaptations of, 242.01–18
aquarium habitats, 241.01, 642.01
characteristics of, 221.01–07, 243.01,
243.03–04
classification of, 221.14, 221.20, 221.22–26
collecting, 651.02
dissection of, 221.13
and erosion, 141.18, 142.28, 242.02
fossils, 243.06
germination, 221.03, 222.01–16, 641.02
growth of, 221.03–06, 631.02b–02c

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Index Guide

in mud samples, 151.20–21
natural selection of, 243.03
in ocean samples, 151.22–23
outdoor gardening, 641.04
parts of
cotyledons, 221.14
flowers, 221.21–22, 242.11–16
leaves, 221.20, 242.10
roots, 221.14, 242.01–06
stems, 221.15–19, 242.07–09
pollination of, 242.11–16
reproduction of, 221.01–02, 242.11–16
responses to environmental conditions,
 141.21, 221.05–07, 221.17–31, 332.11
safety precautions in handling, 611.06
soil containers for, 641.01
soilless containers for, 641.01
spores, 221.08–09
terrarium habitats, 241.02, 642.02
theory of evolution, 243.01, 243.03–04
types with seeds, 221.01, 221.03, 221.12, 221.26, 222.01, 242.17–18
types without seeds
 ferns, 221.10–11
 fungi, 221.08–09
 mosses, 221.10–11
 mushrooms, 221.08–09
use of, 244.01–04
Bread making, 231.17–22
Brown, Robert, 412.01
Brownian movement
 observations of, 412.01
Budding of yeast cells, 232.02
Buds of plants
 arrangements on stems, 221.20
Building (see Models, making; Science equipment)
Buoyancy
 characteristics of, 122.18–21
 definition of, operational, 122.17
 of ice, 151.06
 ocean vs. freshwater, 151.05–06
Burning
 heat, as a source of, 342.08
 kindling point, 342.09–10
 light, as a source of, 332.04–05
Butterflies, 211.23
Butterwort, 242.10b
Calcium
 test for, 411.10
 spectrum analysis of, 421.11
Camera, pinhole
 construction and use of, 334.01, 421.07–08
Canary, 242.20b
Candles
 graphing burning times of, 631.02
Capillary action
 characteristics of, 122.35
 definition of, operational, 122.34
 in soils, 641.03c
Carbon
 in compounds, 411.11, 413.07–10
 model of, atomic, 411.06a
Carbonate
 test for, 111.09
Carbon dioxide
 applications of, 131.19–21, 132.10
 collecting, 131.11
 measurement of, 131.18–20
 model of, molecular, 413.07c–10c
 production of, 131.10
 yeast, as an action of, 232.07–08
Carrots, 221.23
Catfish, 242.19
Cedar waxwings, 211.46
Cell division, 232.01
Celsius, Anders, 341.06
Celsius/centigrade temperature scale, 341.06, 631.04
Changes of state
 of gases, 121.01–03, 131.01–04
 of liquids, 111.01–03, 121.01–03, 131.03
 model of, theoretical, 343.03
 phases, 342.21–29
 of solids, 111.01–03, 131.04
Chemical symbols
 for elements, 411.08
Cherry tree, 221.15
Chickadees, 211.46
Chimes, musical percussion instrument
 construction of, 324.02d
Chlorine
 model of, atomic, 411.06b
Circuit, electrical
 breaker, 354.03
 characteristics of, 352.16–24
Index Guide

definition of, operational, 352.16
definition of, theoretical, 353.01
grounded, 352.23
in parallel/series arrangements, 352.32–33
short, 352.22
tester for, 352.20
Circumferentor
construction and use of, 421.17
Classifying
animals, 211.07, 211.49–50
atoms, 411.12–13
birds, 242.20
color sorting key, 141.14–15
elements, 411.13
flower pattern key, 221.22
hardness sorting key, 141.22
leaf pattern key, 221.20
light, 331.13–15
liquids, 121.21–24, 122.06–07, 122.26–28, 122.42, 151.16–19
magnets, 362.26
materials
by kindling points, 342.09
by magnetic properties, 361.04–05, 362.13
by sounds they make, 321.10, 322.26
by transmission of light, 331.16, 332.09, 332.30
microorganisms, 231.21
mineral sorting key, 141.13–15
motions, 311.14–16
mud samples, contents of, 151.20–21
objects in the universe, 421.22–24
ocean samples, contents of, 151.19, 151.22–23
pollen, 242.15
raindrops by size, 162.28
rocks, 141.10–12, 141.22–24
root pattern key, 221.14
sand, 152.17
seeds, 221.23–26, 222.04
size sorting key, 141.23
soils, 141.17
solids, 111.02, 111.11, 111.19–23
sounds, 321.10–15
Classroom equipment (see Measuring instruments; Science equipment)
Climate
local, 164.04

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Compounds
 definition of, operational, 411.11
 definition of, theoretical, 411.06b
 models of, theoretical, 411.06, 413.07

Compression
 of sound waves, 323.03
 strength of solids, 111.23a

Computer, 522.05–07

Concave lens (see also Lenses)
 definition of, operational, 332.18
 refraction by, 332.24

Condensation (see also Evaporation)
 change of state, 131.01, 131.03–04
 definition of, operational, 121.03, 131.01
 definition of, theoretical, 412.03
 forms of
 clouds, 163.20, 163.25–26
 dew, 163.21–22
 fog, 162.24
 frost, 162.23
 rain, 162.15–16, 162.27–28
 snow, 162.29–31
 heat energy effect upon, 162.18–20, 342.27
 observations of, 162.17–20, 342.26–27
 in water cycle, 152.18

Conduction
 of electricity
 definition of, operational, 352.25
 materials, characteristics of, 352.26–29
 tester for, 352.20
 of heat
 definition of, operational, 342.32
 in gases, 342.35
 in liquids, 342.34
 in solids, 111.15, 342.33, 342.46

Conglomerate, 141.07

Constellations
 maps of, 421.05
 projection of, 421.06

Constructing (see Measurement instruments; Science equipment)

Contraction (see also Expansion)
 definition of, operational, 342.13
 definition of, theoretical, 343.02–03, 412.04
 of gases, 131.20–21, 132.09, 342.19–20
 of liquids, 142.27, 342.18, 342.22
 measurement of, 131.21, 342.14–15, 342.18
 observations of, 342.16–17, 342.19–20
 of solids, 111.14, 141.18b, 142.26, 342.13–17

Convection currents
 definition of, operational, 342.39
 in gases, 163.09, 342.36–39
 in liquids, 152.01–07, 342.40

Convection, heat, 342.36–40

Convex lens (see also Lenses)
 definition of, operational, 332.18
 focal point of, 332.24
 measurement of power, 332.22
 refraction of, 332.20–23

Copernicus, Nicolaus, 423.03

Copper
 test for, 411.10

Corn, 221.13

Crabs, 211.13

Cranes
 construction and use of, 511.22

Crayfish, 211.14–15

Creepers, 211.46

Crickets, 211.23, 212.10

Crocodiles, 211.37

Crustaceans, 211.13

Crystal set (radio)
 construction and use of, 522.04

Crystals
 characteristics of, 111.10
 cooling rate, effect upon, 141.04
 growing, 122.46–47
 in rocks, 141.04, 141.11b
 snowflake, 162.29

Currents, air (see Weather)

Currents, electrical
 alternating, 351.06
 direct, 351.05

Currents, water (see Oceans)
 Dandelion, 242.18c
 Daphnia, 211.16–17
 Darwin, Charles, 243.01–07
 Day and night
 model of, 422.11
temperature difference, 163.06
Decay, 141.19–20
Deceleration (see also Acceleration)
definition of, operational, 312.11
factors that influence, 311.12
Decibels, sound, 321.11
Density of liquids, 122.07, 122.20–21
Deposition
chemical, 142.29
sedimentary rocks, in formation of, 141.05
shoreline, 152.15
water, 142.18–20
wind, 142.02–04
Desalination, ocean water, 154.03–04
Dew, 162.21–22
Dew point, 162.22
Diatoms, 151.10
Diffraction
definition of, operational, 331.06
definition of, theoretical, 333.06
spectroscope, 331.07
in spectrum analysis, 331.05, 411.10, 421.11
Diffraction grating
astronomy, use in, 412.11
Diffusion
definition of, operational, 132.16
in gases, 131.09, 343.01, 421.01
heat, influence of, 412.01–02, 412.04
in liquids, 412.01
Direct current (electricity), 351.05
Displacement (water), 122.22–24
Dissolving, 112.01–03, 121.09
Diving bell
construction of, 154.01
Drawing/picturing
contour maps, 152.03
convection currents
air, 342.36, 342.38, 342.40
water, 152.01–02
Earth’s magnetic lines of force, 362.03
electric circuits, 352.21
germination of seeds, 222.05
maps of volcanic activity, 152.04
models of atomic particles, 413.01
phases of the Moon, 422.13
surface tension, characteristics of, 121.12–13
Drive belts
construction and use of, 511.35
Drums, musical percussion instruments
construction of, 324.02a
Dry cell
construction of, 352.04, 352.06
definition of, operational, 352.03
Duck, 242.20d, 242.20h
Eagle, 242.20g
Earth
axis, tilt of, 163.01, 422.12
curved surface of, 163.02–03
interior, model of, 143.02, 363.04
magnetic lines of force around, 362.01–04
revolution of, 423.04
rotation of, 422.10–11
surface formation of, 143.01
Earthquakes
definition of, theoretical, 143.04
plate tectonics, 153.02, 153.04
seismograph, 143.05, 332.29
sensing, 143.05
water waves caused by, 152.10
Earthworms
care of, 211.11
collecting, 211.10
respiration of, 242.22
responses to environmental conditions,
212.03, 212.06, 212.09–10, 332.12
training, 244.07
EARTH SCIENCE, 140
Earth formation, models of, 143.01–08,
153.01–04
erosion/deposition
by chemicals, 142.29
by heat, 142.26
by plants, 142.28
by water, 142.07–28
by wind, 142.01–06
minerals, 141.13–15
rocks, 141.01–12, 141.22–24
soils, 141.16–21
Earwigs, 211.23
Easter lily, 242.11
Echoes
definition of, operational, 321.09, 322.24
definition of, theoretical, 323.04
Eclipses
definition of, theoretical, 422.16
lunar/solar, models of, 422.16–17
observations of, 421.07, 422.07, 422.18

ECOLOGY, 240
adaptations
of animals, 242.01–02
of plants, 242.02–18
environmental habitats, 241.01–02
extinction of species, 243.06–07
natural selection, 243.01–05
plants and animals, use of, 244.01–09

Edison, Thomas, 352.29

Effort (see also Force)
in machines, 511.03–04

Electrical equipment
battery, 352.01–06
battery holder, 352.17
bell, 354.04
bulb, 352.29
bulb holder, 352.18
electromagnet, 354.02
electroscope, 353.02
fuse, 352.30–31, 354.03
galvanometer, 352.15
motor, 364.02
radio, 522.04
rheostat, 352.27
switches, 352.27
telegraph, 522.01
telephone, 522.02–03

ELECTRICITY, 350
applications of (see also Electrical equipment)
heat, production of, 342.11–12, 353.05,
 354.05
light, production of, 332.06, 353.05
magnetism, production of, 354.01–04,
 362.07–08, 362.19
radio waves, production of, 353.06
characteristics of, 351.01–06
charges, 351.02–04, 413.04–05
circuits
 breaks in, 352.22–24
 completion of, 352.16–21
 detection of, 352.13–15
 grounded, 352.23
 series/parallel arrangements, 352.32–33
 short, 352.22
conductivity/insulation
 definition of, operational, 352.25
materials, characteristics of, 352.26–29
tester for, 352.20
test of, 352.32–39
current
 alternating, 351.06
detecting, 352.13–15, 352.20
direct, 351.05
 and magnetism, 352.09–12, 354.02,
 364.01–02
models of, theoretical
electrical charges, 351.04, 353.01,
 413.04–05
electron, 353.01, 353.03–04
proton, 353.01
resistance to, 352.26–29, 354.05
safety precautions in handling, 352.23,
 352.39, 611.03
sources of
 chemical, 352.01–06
 mechanical, 352.07–08
static
 charges, 351.03–04
detecting, 351.01–02
voltage of, 352.34–35

Electroconductivity of water, 151.09
Electrodes, 352.01
Electrolyte, 352.01
Electromagnet
 construction and use of, 354.02
Electromagnetic spectrum
 chart of, 333.12
 components of, 333.13–15
Electronic devices, 522.05
Electrons
 charge of, 413.04–05
definition of, theoretical, 353.01
models of, theoretical, 353.03–04
movement of, 413.03

Electroscope
 construction and use of, 353.02

Elements
 characteristics of, 411.07–10
 chemical symbols for, 411.08
definition of, theoretical, 411.07
metallic, identification of, 411.10
number of, 411.06a
periodic table of, 411.13

ENERGY, 300
Index Guide

electrical, 351.01–354.05
heat, 341.01–344.02
light, 331.01–334.05
magnetic, 361.01–364.05
motion, 311.01–314.02
sound, 321.01–324.06

ENGINEERING, 500 (see Technology)

Environmental conditions
aquarium, 241.01, 642.01
animals, effect upon, 212.03–13, 242.19–26, 243.02, 243.05, 244.06–07
microorganisms, effect upon, 231.06–07
plants, effect upon, 221.07, 221.17–31, 242.01–18, 243.01, 243.03–04
terrariums, 221.11, 241.02, 642.02

EQUIPMENT, 650 (see Measuring instruments; Science equipment)

Erosion
glacial, 142.24–25
plant, 141.18, 142.28
prevention of, 242.02
temperature, 141.08b, 142.26–27
water, 142.17–23
wave, 142.23, 152.16–17
wind, 142.05–06

Estimating
absorption rates, 142.12
speed of sound/speed of light, 322.19
techniques for, 631.01, 632.06b
tide changes, 152.11
wind speed, 162.06
yeast growth, 231.02c

Evaporation (see also Condensation)
change of state, 131.02–04, 161.11
definition of, operational, 121.01, 131.02
definition of, theoretical, 412.03
factors that influence, 161.13, 162.10–14, 342.24
from soil, 161.12
humidity indicator (hygrometer), 161.09–10
measurement of rate, 121.02, 342.25, 631.02c, 632.06d
observations of, 342.23
solids from liquids, separation of, 122.52

Evolution (see also Contraction)
definition of, operational, 342.13
definition of, theoretical, 343.04–05, 412.04

Experimenting
controlling and manipulating variables that affect
animal behaviors, 212.01–13, 332.12, 342.31
decay, 141.20
electricity, 351.03–04, 352.08, 352.11, 352.20–21, 352.25–26, 352.29–30
evaporation/condensation, 161.13, 162.10–14
expansion/contraction, 142.26–27
heat, 1161.05, 342.39, 342.48, 342.50, 532.25–26
light, 331.12, 332.03, 332.08, 332.20, 332.32–33, 333.26–30
magnetism, 362.06, 362.09
microorganism growth, 231.05–09, 231.16, 232.05–09
motion, 311.06–07, 311.12, 312.14, 313.06
ocean waves and currents, 151.13–14, 152.06, 152.08
plant growth, 141.21, 221.05–07, 222.08–18, 222.24, 222.32, 242.09, 243.04, 332.11, 342.30
pollination, 242.11
respiration, 242.22–26
solubility, 111.11
sounds, 321.04–10, 322.08, 322.10, 322.26
surface tension, 121.13, 121.18
water deposition, 142.19–20
wind deposition, 142.03

Fahrenheit, Gabriel, 341.06
Fahrenheit temperature scale, 631.04
Farsightedness, 332.19
Fault line
definition of, theoretical, 143.03
eruption, model of, 143.07
Feeling/touching, using the sense of touch
buoyancy, 122.17–18
characteristics of
gases, 131.06, 131.08, 132.05
liquids, 121.04–05, 121.23, 122.04, 122.17–18, 122.32
solids, 111.05, 111.15, 111.20, 111.22
counter force, 511.03–04
directional movements of aircraft, 532.09
deposition, 141.06
electrical charges, 351.01
evaporation, 131.02
feely box, 111.05
force, 312.01–02, 511.01–04
friction, 312.13, 511.05
gravity, 312.04
heat/temperature, 341.01, 342.01–12, 342.32, 342.41–42
liquids, pollution of, 112.03
magnetic fields, 361.02
mass, 312.09
mechanical advantages, 511.10, 511.13, 511.16, 511.19, 511.22–23, 511.27, 511.30, 511.40, 511.45
moving air, 132.19
moving water, 122.32
pressure on parachute, 532.22
safety precautions in handling electricity, 352.39, 611.03
handling glassware, 611.04
handling hot objects, 611.02
soil, compaction of, 141.16
sound vibrations, 322.01–02, 323.01
weight of air, 132.05
water, 122.04

Feet of birds
adaptations of, 242.20
Fehling’s solution as an indicator for simple sugars, 111.09
Fermentation
by bacteria, 232.04
by yeast, 232.07
Ferns, 221.02, 221.10–11
Filter
for ocean water, 151.03
for surface water, 122.49–51
Filter paper, 122.51
Fire extinguishers
construction and use of, 131.19, 132.10
First-class lever (see also Levers)
definition of, operational, 511.10
examples of, 511.12
mechanical advantages of, 511.11
Fish
adaptations of, 242.19
care of, 211.29, 241.01, 642.01
characteristics of, 211.28
respiration of, 242.24
responses to environmental conditions, 212.05, 212.11–12
training, 244.08
Fixed pulley (see Single-fixed pulley)
Flame test
metallic elements, identification of, 411.10
spectroscope, use with, 421.11
Flashlight
preparation for thin beam, 332.31
Flight (see Aircraft)
Floating/sinking, 122.17–24
Flowers
arrangement on stems, 221.21
classification key, 221.22
collecting and preserving, 651.02c
pollination of, 242.13–16
reproduction of, 242.11–12
responses to environmental conditions, 222.24
use of, 244.02–03
Fluorescent tubes
safety precautions in handling, 332.06
Flute, musical wind instrument
construction of, 324.06a
Fly (insect), 211.23, 332.12
Focal point, 332.24
Focus, 332.23–24, 342.03
Fog, 162.24
Food
bacteria on, 232.04
mold on, 232.05
Food chain, 151.10
Foot-candle, 332.05
Foot-pound, 512.01–02
Force
action/reaction, 313.08–10
of air, 132.19–20
applied, 511.03
centrifugal/centripetal, 312.17–19
characteristics of, 511.01
counter force, 511.03–04
definition of, operational, 312.01, 511.01–03
effort, 511.03–04
friction, 312.13–16, 511.05–09
gravity, 312.04–05
inertia, 313.01–03
in machines, 511.01–04
magnetism, 312.06
momentum, 313.04–27
and motion, 312.01–03, 331.16
Forced vibrations (sound waves), 322.20
Fossils
of animal tracks, 243.06
models of, 151.15
plant, 24306
in sedimentary rocks, 141.06
Frames of reference, 311.13
Freezing
change of state, 11.01, 11.03
definition of, operational, 11.01, 342.22
definition of, theoretical, 343.03
factors that influence, 122.42–43, 342.22
Frequency (sound vibrations)
definition of, operational, 322.04, 322.09
definition of, theoretical, 323.06
scale, 321.12
wave model, 33.04
Friction
definition of, operational, 312.13, 511.05–06
to generate electricity, 413.04
in machines, 511.05–09
motion, effect upon, 312.13–14
reduction of, 312.15–16, 511.07–09
surfaces, influence of, 312.14
Frogs
collecting and care of, 2111.35–36
eggs, 211.33–34
hibernation of, 212.13
respiration of, 242.25
Fronts, weather (see Weather)
Frost, 162.23
Frosting/subliming, 342.28–29
Fuels
heat, in the production of, 342.08
kindling point of, 342.09–10
light, in the production of, 332.04–05
Fulcrum, 511.10
Fungi
life functions of, 232.05, 232.06–07
mold, 231.13–14
mushrooms, 211.08–09
reproduction of, 232.02–03
responses to environmental conditions, 232.09
yeast, 231.15–16
Fuses
applications of, 352.31, 354.03
definition of, operational, 352.20
Galaxy, 421.21
Galvanometer
construction and use of, 352.05–06, 352.15
Gardening techniques, 641.04
Garter snake, 211.38
GASES, 130
changes of state
evaporation/condensation, 121.01–03,
131.02–03, 342.28–29
frosting/subliming, 131.04, 342.28–29
characteristics of, 131.05–21
definition of, operational, 131.02–03
definition of, theoretical, 343.03, 412.04
diffusion of, 131.09, 343.01
heat energy effect upon
changes of state, 342.23–29
contraction/expansion, 132.09, 342.19–20
convection currents, 132.16–18, 342.36–39
measurement of
pressure, 132.05–15
volume, 132.01–02, 132.04
weight, 131.17–18, 132.03–06
in ocean water, 151.01
penetration by magnetic fields, 362.22
production and identification of
carbon dioxide, 131.10–12
oxygen, 131.13–14
transmission of
heat through, 342.35
light through, 332.31
sound through, 322.13–17, 323.08
Gears
compared to levers, 511.37–38
definition of, operational, 511.36
mechanical advantages of, 511.38–39
GENERAL EQUIPMENT, 620
Geological periods
evidence of, 141.06, 151.15
Mesozoic era, 153.01
GEOLOGY, 140
Earth formation, models of, 143.01–08, 153.01–04
erosion/deposition
by chemicals, 142.29
by heat, 142.26
by plants, 142.28
by water, 142.07–28
by wind, 142.01–06
minerals, 141.13–15
rocks, 141.01–12, 141.22–24
soils, 141.16–21
Geotropism, 22.17–19
Geranium, 221.22, 222.22
Germination
environmental conditions’ effect upon, 22.08–16
observations of, 221.08–16
ratios of, 221.02–03
table of wait-time for, 641.02
Glaciers
erosion by, 142.24–25
icebergs from, 151.06
Glassware, construction techniques
bending tubing, 623.02
cutting tubing, 623.01
making containers, 632.03
safety in handling, 611.04
Gneiss, 141.08
Goldfish, 242.19
Graduated cylinders
construction and use of, 632.03
Graphing techniques
bar graphs
definition of, operational, 631.02b
examples of, 222.06, 332.09
curved-line graphs
definition of, operational, 631.02c
examples of, 211.05, 221.05, 222.24, 631.02a
histograms
definition of, operational, 631.02a
examples of, 121.17, 221.17, 221.24, 222.03, 631.02
straight-line graphs
definition of, operational, 632.02c
examples of, 121.02, 311.07, 311.10–11, 342.06, 342.25, 362.26–27, 631.02b
Grasses, 221.20
Grasshoppers, 211.23, 212.10
Gravity
motion, as a source of, 312.05
plant growth, effect upon, 222.17–19
sensing, 312.04
tides, as a source of, 152.12–13
Greenhouses
construction and use of, 641.02f
Growth
of animals, 211.04–05
measurements of, 211.05
of microorganisms, 231.02–06
rings of trees, 221.18–19
Guinea pigs, 211.48
Guitars, musical string instruments
construction of, 324.04b
Guppies, 211.02
Hail, 162.29
Hamster, 211.05, 211.48
Hard water, 122.39–41
Harpichord, musical string instrument
construction of, 324.04c
Hawk, 242.20c, 242.20g
Hearing, using the sense of hearing
characteristics of
liquids, 121.25
solids, 111.04, 111.06, 111.16
communication messages, 521.01–05, 522.01–03
echoes, 321.09, 322.24
electricity, 351.01, 352.14
moving water, 122.25–26
sounds, 321.01–15, 322.07, 323.11–16, 522.02
sounds through materials, 322.11–15, 323.01, 323.08
HEAT, 340
applications of, 344.01–02
behavior of
absorption, 161.05, 163.04–05, 342.51
reflection, 342.50
refraction, 342.49
changes of state, effect upon
gases, 131.02–04, 132.16–18, 342.19–20, 342.28–29
liquids, 121.01–03, 342.18, 342.23–27
Index Guide

solids, 111.14, 342.13–17, 342.21–22, 342.28–29
characteristics of, 341.01–10, 342.49–50
control of, 342.47–51
definition of, operational, 341.09–10
definition of, theoretical, 343.01–05
expansion/contraction, effect upon
gases, 131.20–21, 132.09, 162.20, 342.19–20
liquids, 121.11, 142.27, 342.18, 342.22
solids, 111.14, 141.18b, 142.26, 342.13–17
as an indicator, 111.09
insulation for, 342.47–48
kindling point, 342.09–10
magnetism, effect upon, 362.21, 363.03
models of, 343.01–05
movement of
by conduction, 111.15, 342.32–35, 342.46
by convection, 342.36–40
by radiation, 342.41–45
organisms, effect upon
animals, 212.10–13, 342.31
plants, 222.29–30, 342.30
safety precautions in handling, 611.02
source of
chemical, 342.08–10
for classrooms, 621.01, 622.02
electrical, 342.11–12, 353.05
motion, 342.04–07
Sun, 342.01–03
temperature comparison, 343.04–05
Heating sources (classroom)
materials, 621.01, 622.02
safety precautions in handling, 611.02
Heliocentric theory, 423.01–02
Helium
model of, atomic, 413.02b
Hibernation, frog, 212.13
Hognosed snake, 211.38
Horse chestnut, 221.15
Humidity
indicator (hygrometer) for, 161.09
measurement of, 161.10
scale, 161.09
Humus, 141.16
Hurricanes, 152.19
Huygens, Christian, 333.02
Hydrogen
in compounds, 411.11, 413.07
model of, atomic, 413.02a
Hydrogen peroxide
as a source of oxygen, 131.13
Hydrometer
construction and use of, 122.08–09
Hygrometer
construction and use of, 161.0–10
Ice, 111.03, 342.47
Iceberg, 151.06
Igneous rocks
characteristics of, 141.01–04
crystal formations in, 141.04
definition of, operational, 141.03
model of source, 141.02
Impurities
removal from water, 122.49–52, 151.03
Incandescent light, 332.02
Inclined plane
definition of, operational, 511.40
examples of, 511.41
mechanical advantages of, 511.43
screws, 511.46–47
wedges, 511.43–45
Indicators
for gases, 131.10–14
for liquids, 121.07, 121.24
for solids, 111.09, 141.08e, 141.12, 411.10
Inertia
definition of, operational, 313.02–03
motion, effect upon, 312.19, 313.02–03
INFERENCES, 400
atoms, 411.01–413.08
astronomy, 421.01–423.04
Inferring (see also Predicting)
extistence of
air, 131.05
atoms, 411.01–03, 411.05, 412.02–03
functions of plant parts, 221.12–18, 221.25, 242.02, 242.06, 242.11, 242.14
principles of
how clouds, dew, fog, frost, rain, and snow are formed, 162.19–29
solubility, 122.38
relationship between
expansion/contraction and gas pressure, 132.09

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
mass and momentum, 313.05
Infrared energy, 333.14
Inheritance
 physical characteristics in animals, 211.03–07
INORGANIC MATTER, 100
 gases, 131.01–132.20
 geology, 141.01–143.07
 liquids, 121.01–122.52
 weather, 161.01–164.05
 oceans, 151.01–154.04
 solids, 111.01–112.05
Insects
 care of, 211.24
 collecting, 211.23
 respiration of, 242.23
 responses to environmental conditions, 212.05, 342.31
INSTRUCTIONAL APPARATUS, MATERIALS, AND SYSTEMS, 600
Insulation
 from electricity
 definition of, operational, 352.25
 materials, characteristics of, 352.26–29
 tester for, 352.20
 from heat
 definition of, operational, 352.25
 materials, characteristics of, 352.26–29
 tester for, 352.20
 in space vehicles, 332.25–26
 testing materials, 342.47–48
Internodes, 221.15
Invisible ink, 521.04
Iodine
 as an indicator for starch, 111.09
 safety precautions in handling, 111.09
Iron
 as an indicator for oxygen, 131.14b
Jays, 211.26
Jets/rockets, 313.10, 531.03, 532.18–21
Kindling point
 definition of, operational, 342.09
 measurement of, 342.10
Ladybug, 211.13
Lateral bud, 221.15
Lava, 141.02
Leaves
 classification key, 221.20
 collecting and preserving, 651.02b
 as insect traps, 242.10
 responses to environmental conditions, 222.22–24, 222.29–30
Leeuwenhoek, Anton, 231.08
Lenses (see also Concave lenses; Convex lenses)
 applications of
 binoculars, 332.19, 332.21
 microscopes, 231.08, 332.19, 332.21
 telescopes, 332.19, 332.21, 421.01
 characteristics of, 332.18
 focal points of, 332.24
 focus, 332.23–24
 magnification by, 332.20–22
 to produce high temperatures, 342.03
Lenticels, 221.15
Levers
 compared to
 gears, 511.37–38
 pulleys, 511.24
 types of
 first-class, 511.10–12
 second-class, 511.13–15
 third-class, 511.16–18
LIGHT, 330
 applications of
 pinhole camera, 334.01
 projector, 334.02–03, 334.05
 behavior of
 absorption, 331.12, 332.33–34
 diffraction, 331.05–07
 reflection, 331.11–12, 332.27–32
 refraction, 151.07, 331.08–10, 332.16–26
 characteristics of, 331.01–16
 control of, 332.18–34
 definition of, theoretical, 331.01–11
 intensity, 331.14, 332.05, 332.07–08
 and lenses
 focus of, 332.23–24
 magnification of, 332.20–22
 optical instruments, 332.18–32
 materials, effect upon
 blueprint paper, 332.10, 361.03d
 fading colors, 332.09–10
 measurement of
 intensity, 332.05
 speed, 322.18–19, 333.11, 421.20
 organisms, effect upon
 animals, 212.09, 332.12
microorganisms, 231.06
plants, 222.21–24, 332.11
sources of
chemical, 332.04–05
electrical, 332.06–08, 353.05
heat, 332.02–03
Moon, 331.15
Sun, 332.01
transmission of
through liquids, 151.07–08, 331.31
through solids, 331.11–17, 332.13–15

Lightning, 322.19, 333.11, 351.01, 353.06
Light-year, 421.20
Limestone, 141.07, 142.07, 142.27
Limewater
as an indicator for carbon dioxide, 232.06

LIQUIDS, 120 (see also Oceans; Water)
changes of state
evaporation/condensation, 121.01–03, 131.02–03, 342.23–27
melting/freezing, 111.01, 111.03, 122.42–43, 342.21–22
characteristics of
buoyancy, 122.17–21
capillary action, 122.34–35
density, 122.07, 122.20–21
specific gravity, 122.07
surface tension, 121.12–20, 121.22
viscosity, 122.27–28
definition of, operational, 121.01–03
definition of, theoretical, 343.03, 412.04
floating/sinking, 122.21–24
heat energy effect upon
changes of state, 111.01, 111.03, 121.01–03
contraction/expansion, 121.11, 342.18
convection currents, 342.40
measurement of
pressure, 122.11–16
volume, 122.01–03, 122.21
weight, 122.04–06, 122.11, 122.21
penetration by magnetic fields, 362.25
siphoning technique, 122.30
solubility, 122.36–43
transmission of
heat through, 342.34
light through, 331.11–12, 331.16, 332.14, 332.31
sound through, 111.16, 322.12

Lithium
test for, 411.10

Litmus paper
as an indicator for acids and bases, 121.07, 121.24

Lizards, 211.40–41

Load, 511.10

Lobsters, 211.13

Lodestone, 362.05

Longitudinal waves
compared to transverse waves, 323.05
compression/rarefaction, 323.03
measurement for frequencies, 323.06
models of
for light, 333.04
for sound, 232.03–04

Lunar eclipse, 422.16–18

MACHINES, 510
complex, 512.01–04
force/counter force in, 511.01–04
friction and efficiency of, 511.05–09
simple
ball bearings, 511.08–09
block and tackles, 511.33
drive belts, 511.35
gears, 511.36–39
inclined planes, 511.40–47
levers, 511.10–18
pulleys, 511.23–35
screws, 511.46–47
wedges, 511.43–45
wheels and axles, 511.19–22

Magma
characteristics of, 143.06
definition of, operational, 141.01
in Earth formations, 143.01
model of flow, 141.02

Magnetic equipment
compass, 362.15–17
electromagnet, 354.02
lines of force indicator, 362.01–03

Magnetic fields
applications of
in appliances, 364.02–05
in electrical systems, 354.01–02
electricity, as a source of, 364.01
motion, as a source of, 312.06
attraction/repulsion, 361.04, 362.09, 362.11–12
characteristics of, 362.09–13
definition of, operational, 361.01–02
definition of, theoretical, 363.01–04
detection of, 362.15–17
Earth, model of, 362.03–04
materials, effect on, 361.04–05, 362.13
measurement of
penetration through materials, 362.22–25, 362.27
strength, 362.26–28
patterns of, 361.01, 361.03
MAGNETISM, 360 (see also Magnetic equipment; Magnetic fields, Magnets)
aplications of, 364.01–05
characteristics of, 361.01–05
magnetizing objects, 111.17, 362.18–21
models of, theoretical, 363.01–04
and polarity, 362.09–12, 362.16
sources of
the Earth, 362.01–06
electricity, 352.01, 354.01, 362.07–08
Magnetizing objects, 111.17, 362.18–21
Magnets
characteristics of, 363.01
making, 111.17, 362.18–21
permanent, 362.20
polarity of, 362.10–12, 362.16
temporary, 362.14, 362.20–21
Magnification, 332.20–22 (see also Lenses)
Mammals
adaptations of, 211.07
care of (small), 211.48
characteristics of, 211.47
growth of, 211.05
training, 244.09
Manometer
construction and use of, 122.13–16
Maple tree, 222.31
Maracas, musical percussion instruments
construction of, 324.02g
Marble, 141.08, 142.07
Marimbas, musical percussion instruments, construction of, 324.02b
Mass
acceleration/deceleration, effect upon, 312.11–12
definition of, operational, 312.09
measurement of, 312.10
momentum, effect upon, 313.04–05
size, relationship to, 312.09
weight, relationship to, 122.05
Matter (see Inorganic matter; Organic matter)
Meadowlark, 212.20b
Measuring instruments
altimeter (altitude pressure indicator), 132.07
anemometer (wind speed indicator), 162.04
barometer (air pressure indicator), 132.14–15, 161.06
circumferentor (size indicator), 421.17
clinometer (steepness of slope indicator), 142.15
clocks, 422.07–09, 632.08–09
compaction gauge, soil, 142.11
hydrometer (specific gravity indicator), 122.08
hygrometer (humidity indicator), 161.09
liquid capacity containers, 122.02, 632.03
manometer (liquid pressure indicator), 122.13–14
overflow container, 122.23
rain gauge, 162.15
range finder, 632.02
scales, 632.04–05
Secchi disk (water cloudiness indicator), 151.17
sextant, 632.01
tensiometer (surface tension indicator), 121.17
thermometer, 161.01, 341.05, 341.07–08, 632.07
MEASURING SYSTEMS AND INSTRUMENTS, 630
Measuring techniques
for absorption, 142.12, 632.06e
for action/reaction, 312.08–09, 532.19
for angles of reflection, 332.32
for boiling/freezing, 122.42–44
for buoyancy, 122.19, 122.21
calibrating
anemometers, 162.04
graduated cylinders, 632.02
spring scales, 632.04
thermometer, 341.06
compaction of soil, 142.11
condensation, 162.22
density, 122.07
diameters of Sun and Moon, 421.08,
 421.14–18
distances
 short, 142.03, 311.03, 311.15, 632.01–02
 vast, 421.12–13
electroconductivity, 151.09
erosion, 142.21–22
estimating
 distance from lightning, 322.19
 from samples, 231.02c, 631.01, 632.06b
 wind speed, 162.06
evaporation, 161.02, 632.06d
expansion/contraction in
 gases, 131.21
 liquids, 342.18
 solids, 342.14–15
flow of liquids, 122.28, 122.31, 142.14
graphing (see Graphing techniques)
growth
 animals, 211.05
 microorganisms, 231.02
 plants, 221.03, 221.06–07
humidity, 161.09–10
magnetism, 362.24, 362.26, 362.28
magnification, 332.22
mechanical advantage
 block and tackles, 511.33
 gears, 511.36–39
 inclined planes, 511.42
 levers, 511.11, 511.14, 511.17
 pulleys, 511.31
 screws, 511.46
 wedges, 511.43–45
 wheels and axles, 511.21
motion
 and heat, 342.06–07
 and mass, 312.10
 periodic, 311.07
 rotary, 311.09
 time/distance, 311.03
parallax, 421.13
pressure of
 gases, 132.06–08, 132.14–15, 161.06–07
 liquids, 122.13–16
quantity, 221.24, 222.03
rainfall, 162.15–16
rates, 311.10, 311.12, 311.14, 342.25
sampling, 231.02c, 631.01, 632.06b
slopes, 142.15–16
snowfall, 162.31
specific gravity, 122.08–09
surface tension, 121.17–18, 121.22
temperature of
 air, 161.01–03, 161.05, 162.07, 341.03–04,
 343.05
 liquids, 152.04, 342.24
 solids, 111.02, 163.03–05
 stars, 421.10
tensile strength, 111.23b
time, 222.04, 311.03, 311.10, 311.12, 311.14,
 422.07–09, 632.08–09
triangulation, 421.12
turbidity, 151.16–18
units of measure
 creative, 122.02–03, 631.03
 foot-candle, 332.05
 foot-pound, 512.01–02
 metric/standard, 631.03
 temperature, 341.03
 work, 512.02
volume of
 gases, 131.21, 132.02, 132.04, 142.08
 liquids, 122.01–03, 122.22–24, 142.09,
 151.04, 162.28, 222.09, 632.03
 solids, 111.13, 122.19, 122.21–22, 122.24,
 151.05, 163.06a
Mechanical advantage
 of block and tackles, 511.33
 of gears, 511.38
 of inclined planes, 511.42
 of levers, 511.11, 511.14, 511.17
 of pulleys, 511.28, 511.31, 511.34
 of screws, 511.46
 of wedges, 511.45
Melting
 change of state, 11.02–03, 342.22
 definition of, operational, 111.01
 definition of, theoretical, 343.03
Melting point, 111.02–03
Mendelev, Demitri, 411.13
Metamorphic rocks
 characteristics of, 141.08
Index Guide

definition of, operational, 141.08
model of formation, 141.09
Metamorphosis, 342.31
METEOROLOGY, 160 (see Weather)
Metric system
 - Celsius/centigrade scale, 341.06
 - conversion tables, 631.04
 - standardization techniques, 341.03, 631.03
MICROORGANISMS, 230
 - characteristics of, 231.01–08, 231.13, 231.15, 231.19, 231.24–26
 - budding of yeast, 232.03
 - in food chain, 151.10
 - growth of, 231.02–06
 - life functions of, 232.04–07
 - reproduction of, 231.01–14
 - responses to environmental conditions, 231.03–08
 - spores, 232.02
 - types of
 - algae, 232.01
 - bacteria, 232.04
 - fungi, 231.18–22, 232.06
 - molds, 231.18–19, 232.02, 232.05, 232.06, 232.09
 - paramecium, 232.01
 - protozoa, 231.11–13, 232.01, 232.08
 - yeasts, 231.20–22, 232.03, 232.06
Microscope (see also Lenses)
 - parts of, 231.09
 - preparation of slides, 231.10
 - use of, 231.09, 231.13, 231.15, 231.19–20, 231.34
Mildew, 221.08
Milky Way, 421.21
Mimosa, 222.27, 222.29–30
Minerals
 - characteristics of, 141.13–15
 - color sorting keys, 141.14–15
 - definition of, operational, 141.13
 - identification of, 141.15
Mirrors, 332.27–28
Models, making
 - aircraft parts, function of, 532.10–14
 - atomic structures, 353.03–04, 362.02–03, 412.04, 413.01–05
 - ball bearings, 511.09
 - chemical disposition, 142.29
city water system, 122.29
clothes dryers, 314.01
continental drift, 153.01–02
crystals in rocks, formation of, 141.04
Earth’s magnetic fields, 362.04
eclipses, 422.16–17
electric motors, 364.02
fire extinguishers, 132.10
fossils in sedimentary rocks, 151.15, 243.06
glaciers, erosion of land by, 142.24–25
heat, effects on Earth’s atmosphere by, 163.06–07
light, particle theory of, 333.01–02
light, wave theory of, 333.03–09
metamorphic rocks, formation of, 141.09
molecular structures, 411.06, 413.07–08
Moon phases, 422.14–15
ocean tides, 152.12–14
ocean waves, caused by earthquakes, 152.10
pollination process, 342.14
raindrops, erosion of the land by, 142.21
rainwater, dissolving of materials by, 151.02
rocks, effect of temperature changes upon, 141.18, 142.26–27
salt, recovery from water of, 154.03
sediments, deposition of, 141.06–07, 142.02, 152.15
solar energy, relationship to Earth’s surface, 163.01–02
solar system, 421.09–10, 421.19, 423.01–04
sound waves, 322.22, 323.02, 323.09
steam turbines, 344.02
tornadoes, 163.09
water currents, cause of, 152.01–05, 152.07
water cycle, 152.18
water flow, 142.13–14
water spout, 152.20
water wheel, 122.52
waves, erosion of shorelines, 142.23, 152.16
weather fronts, 163.12
volcanic eruptions, 141.02, 143.03–04
Molds
 - characteristics of, 231.19, 231.25
 - culturing, 231.18
 - in foods, 232.05
 - life functions of, 232.06
 - measurement of growth, 231.02, 231.06
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>reproduction of</td>
<td>232.02</td>
</tr>
<tr>
<td>responses to environmental conditions</td>
<td>232.09</td>
</tr>
<tr>
<td>spores of</td>
<td>232.02</td>
</tr>
<tr>
<td>Molecules</td>
<td></td>
</tr>
<tr>
<td>chemical symbols for</td>
<td>411.08</td>
</tr>
<tr>
<td>definition of, theoretical</td>
<td>343.01, 411.06</td>
</tr>
<tr>
<td>heat, effect upon</td>
<td>343.01</td>
</tr>
<tr>
<td>models of</td>
<td>343.02–03, 413.07–08</td>
</tr>
<tr>
<td>in transmission of sound</td>
<td>323.08–09</td>
</tr>
<tr>
<td>Mollusks</td>
<td>211.25</td>
</tr>
<tr>
<td>Momentum</td>
<td></td>
</tr>
<tr>
<td>definition of, operational</td>
<td>313.04, 313.06</td>
</tr>
<tr>
<td>relationship to mass</td>
<td>313.05–06</td>
</tr>
<tr>
<td>transference of</td>
<td>131.07</td>
</tr>
<tr>
<td>Moon</td>
<td></td>
</tr>
<tr>
<td>definition of, operational</td>
<td>421.13</td>
</tr>
<tr>
<td>distance to</td>
<td>421.13</td>
</tr>
<tr>
<td>eclipse of</td>
<td>422.16–18</td>
</tr>
<tr>
<td>motion of</td>
<td>422.03–04, 422.15</td>
</tr>
<tr>
<td>phases of</td>
<td>422.13–14</td>
</tr>
<tr>
<td>size of</td>
<td>421.15–15, 421.18–19</td>
</tr>
<tr>
<td>tides, effect upon</td>
<td>152.12–14</td>
</tr>
<tr>
<td>Moon flower</td>
<td>222.28</td>
</tr>
<tr>
<td>Morning glory</td>
<td>222.28</td>
</tr>
<tr>
<td>Morse, Samuel</td>
<td>522.01</td>
</tr>
<tr>
<td>Mosquitos</td>
<td>332.12</td>
</tr>
<tr>
<td>Mosses, 221.10–11</td>
<td></td>
</tr>
<tr>
<td>Moths, 211.23</td>
<td></td>
</tr>
<tr>
<td>MOTION, 310</td>
<td></td>
</tr>
<tr>
<td>action/reaction, 313.08–10</td>
<td></td>
</tr>
<tr>
<td>applications of</td>
<td></td>
</tr>
<tr>
<td>electricity, production of</td>
<td>352.07–08</td>
</tr>
<tr>
<td>heat, production of</td>
<td>342.04–07, 343.01–05</td>
</tr>
<tr>
<td>in vehicles</td>
<td>531.02–03</td>
</tr>
<tr>
<td>characteristics of</td>
<td>311.01–16</td>
</tr>
<tr>
<td>control of</td>
<td>312.15–16, 312.19, 313.01–10</td>
</tr>
<tr>
<td>definition of, operational</td>
<td>311.01</td>
</tr>
<tr>
<td>definition of, theoretical</td>
<td>311.13, 313.01–10</td>
</tr>
<tr>
<td>factors that affect</td>
<td></td>
</tr>
<tr>
<td>forces, 312.01–03</td>
<td></td>
</tr>
<tr>
<td>friction, 312.13–16</td>
<td></td>
</tr>
<tr>
<td>gravity, 312.04–05</td>
<td></td>
</tr>
<tr>
<td>inertia, 312.19, 313.01–03</td>
<td></td>
</tr>
<tr>
<td>magnetism, 312.06</td>
<td></td>
</tr>
<tr>
<td>mass, 312.09–12</td>
<td></td>
</tr>
<tr>
<td>measurement of</td>
<td>311.03, 311.10–12, 311.14–15</td>
</tr>
<tr>
<td>momentum, 313.04–07</td>
<td></td>
</tr>
<tr>
<td>Newton’s laws of</td>
<td>313.01–10</td>
</tr>
<tr>
<td>sources of</td>
<td>311.16, 312.01–08</td>
</tr>
<tr>
<td>types of</td>
<td></td>
</tr>
<tr>
<td>circular, 312.17–19</td>
<td></td>
</tr>
<tr>
<td>periodic, 311.06–07</td>
<td></td>
</tr>
<tr>
<td>rolling, 312.16</td>
<td></td>
</tr>
<tr>
<td>rotary, 311.08–09</td>
<td></td>
</tr>
<tr>
<td>sliding, 312.16</td>
<td></td>
</tr>
<tr>
<td>straight-line, 311.04–05</td>
<td></td>
</tr>
<tr>
<td>uniform, 311.10–11</td>
<td></td>
</tr>
<tr>
<td>Motion pictures</td>
<td></td>
</tr>
<tr>
<td>making, 334.02–05</td>
<td></td>
</tr>
<tr>
<td>Mountain formation, 153.04</td>
<td></td>
</tr>
<tr>
<td>Mouse, 211.05</td>
<td></td>
</tr>
<tr>
<td>Movable pulley (see Single-movable pulley)</td>
<td></td>
</tr>
<tr>
<td>Mud sampler</td>
<td></td>
</tr>
<tr>
<td>construction and use of</td>
<td>151.21</td>
</tr>
<tr>
<td>Mud sorter</td>
<td></td>
</tr>
<tr>
<td>construction and use of</td>
<td>151.20</td>
</tr>
<tr>
<td>Mushrooms, 221.08–09</td>
<td></td>
</tr>
<tr>
<td>Musical instruments</td>
<td></td>
</tr>
<tr>
<td>percussion, 324.01–02</td>
<td></td>
</tr>
<tr>
<td>sounding board, 321.05</td>
<td></td>
</tr>
<tr>
<td>string, 324.03–04</td>
<td></td>
</tr>
<tr>
<td>wind, 324.05–06</td>
<td></td>
</tr>
<tr>
<td>Nearsightedness</td>
<td>332.19</td>
</tr>
<tr>
<td>Nephoscope</td>
<td></td>
</tr>
<tr>
<td>construction and use of</td>
<td>162.02</td>
</tr>
<tr>
<td>Newton, Sir Isaac</td>
<td>312.05, 333.01</td>
</tr>
<tr>
<td>Newton’s Laws</td>
<td>313.01–10</td>
</tr>
<tr>
<td>Newts, 211.30</td>
<td></td>
</tr>
<tr>
<td>Night and day</td>
<td></td>
</tr>
<tr>
<td>model of, 422.11</td>
<td></td>
</tr>
<tr>
<td>temperature difference, 163.06</td>
<td></td>
</tr>
<tr>
<td>Nodes, 221.15</td>
<td></td>
</tr>
<tr>
<td>North Pole, 362.05, 362.10</td>
<td></td>
</tr>
<tr>
<td>North star</td>
<td></td>
</tr>
<tr>
<td>location of, 422.05</td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td></td>
</tr>
<tr>
<td>of atoms, 353.01, 413.03</td>
<td></td>
</tr>
<tr>
<td>in protozoa, 231.13</td>
<td></td>
</tr>
<tr>
<td>in yeast, 232.02</td>
<td></td>
</tr>
<tr>
<td>Oats, 221.13</td>
<td></td>
</tr>
<tr>
<td>Observing (see individual senses: Seeing, Hearing, etc.)</td>
<td></td>
</tr>
<tr>
<td>Obsidian, 141.03–04</td>
<td></td>
</tr>
</tbody>
</table>
OCEANS, 150 (see also Liquids; Water)
 applications/exploration of oceans
 diving bell, 154.01
 recovery of dissolved materials, 151.03,
 154.03–04
 sampling, 151.20–23
 submarine, 154.02
 characteristics of ocean water
 buoyancy, 151.05–06
 conduction of electricity, 151.09
 dissolved materials, 151.01–03
 organisms, 151.10, 151.22–23
 pressure, 151.05
 transmission of solar radiation through,
 151.07–08
 waves, 151.11–14
 continental drift, 153.01–04
 currents
 heat, effect of, 152.01–04, 342.40
 salinity, effect of, 152.07
 wind, effect of, 152.05–06, 152.08–09
 measurements of ocean water
 pressure, 151.04
 temperature, 152.01–04
 turbidity, 152.16–18
 ocean water, simulation of, 151.04, 241.01
 shorelines
 deposition along, 152.15
 erosion of, 152.16–17
 sediments, 151.20–21
 tides, 152.11–14
 weather/climate, ocean’s effect upon
 storms, 152.18–20
 water cycle, 152.18

Opaque objects, 332.15

Optical instruments (see also Lenses)
 binoculars, 322.19, 322.21
 lenses, 332.18–26
 microscope, 231.09, 332.19, 332.21
 mirrors, 332.27–32
 telescope, 332.19, 332.21, 421.01

ORGANIC MATTER, 200
 animals, 211.01–212.13
 botany, 221.01–222.31
 ecology, 241.1–244.09
 other organisms, 231.01–232.09
 plants, 221.01–222.31
 zoology, 211.01–212.13

Organisms (see Animals; Botany;
 Microorganisms; Plants; Zoology)
 Ovary, in plants, 242.12
 Overflow container, 122.23
 Owl, 242.20c
 Oxygen
 in compounds, 411.11, 413.07
 production of, 131.13
 test for, 131.14
 Parachutes, 532.22–23
 Parallax effect
 measurement techniques, 421.13
 Paramecia, 231.11, 231.13, 232.01
 Pasteur, Louis, 232.04
 Peanuts, 221.13
 Peas, 221.13, 221.23–24
 Pelican, 242.20h
 Pendulum clock
 construction and use of, 632.09
 Penumbra, 422.17
 Periodic motion, 311.06–07
 Periodic table of elements, 411.13
 Petiole, 222.21
 Phase transformations, 342.21–29, 343.03
 Phonograph, 322.21
 Phototropism, 222.21
 Pillow bug, 211.18
 Pinecones, 242.18d
 Pinhole camera
 construction and use of, 344.01, 421.07–08
 Pistil, 242.12–13
 Pitch (sound)
 definition of, operational, 322.09
 factors that influence, 321.06–07, 322.10,
 323.06
 scale, 321.12
 Pitcher plant, 242.10c
 Pivot point, 511.10–18
 Planck, Max, 333.10
 Plane, inclined (see Inclined plane)
 Planets
 characteristics of, 421.22–23
 definition of, operational, 421.0
 diameters of, 421.19
 distances from Sun, 421.09, 421.19, 421.23
 motion of, 423.02
 revolution periods of, 423.04
sizes of, 421.09, 421.19, 421.22–23
solar system, model of, 423.03–04
temperatures of, 421.23
Plankton, 151.10
PLANT AND ANIMAL CONTAINERS, 640
Plants (see Botany)
Plate tectonics, 153.01–04
Poinsettia, 242.18c
Poles, magnetic
attraction/repulsion, 362.10–13, 362.16
definition of, operational, 362.10
definition of, theoretical, 363.01–03
on Earth, 362.16
Pollen, 242.14–15
Pollination, 221.22, 242.11–16
Pollution
air, 112.04–05, 142.04
detection of, 112.01–05
land, 141.19
water, 112.01–03, 122.48–52, 151.17–18
Poplar tree, 222.31
Poppy, 221.22, 242.18
Porosity
definition of, operational, 142.07
of rocks, 141.03d, 142.27
of soils, 142.08–12
Positive/negative electrical charges
model of, 413.04
Potassium
test for, 411.10
Precipitation
measurement of, 162.15
Predicting
behaviors of animals, 212.05–13
behaviors of microorganisms, 231.01–07, 232.03–12
inheritance characteristics of animals, 211.03–08
mechanical advantages, 511.11, 511.14, 511.17, 511.21, 511.31, 511.33–34, 511.39, 511.42, 512.03
momentum, transfer of, 313.07
plant parts by arrangements, 221.20
sizes of projected images, 333.02
sound transmissions, 323.08
weather, 161.07, 162.03, 162.05, 164.01, 164.03–05
Pressure (see Air pressure; Water pressure)

Prism, 331.09
Propellers on airplanes, 532.16–17
Prothallia, 221.01–02
Protons
charge of, 413.04–05
definition of, theoretical, 353.01
models of, 353.03–04
movement of, 413.03
Protozoa
characteristics of, 231.12
collecting, 231.10
culturing, 231.11
reproduction of, 232.01
responses to environmental conditions, 232.09
Ptolemy, Claudium, 423.03
Pulleys
compared to levers, 511.24
in complex machines, 512.04
definition of, operational, 511.23
and drive belts, 511.35
examples of, 511.25
making, 511.26
types of
block and tackle, 511.32–33
single-fixed, 511.27–29
single-movable, 511.30–31
Pumice, 141.03d, 142.27
Putrefaction, by bacteria, 232.04
Quality, characteristic of sound, 321.08
Quartzite, 141.08
Rabbits, 211.48
Radiant energy
heat, 333.14, 342.41–45, 342.49
light, 333.10–12
radio, 333.15
source of, 161.04–05
ultraviolet, 333.13
Radiation, heat, 342.41–45
Radio, crystal set
construction of, 522.04
Radioactivity
detection of, 413.06
Radio waves
definition of, theoretical, 333.15
detection of, 333.15
production of, 353.06
Radium, 413.06
Rain
content of, 151.02, 162.27
erosion by, 142.17–18, 142.21–22
measurements of, 162.15–16, 162.28
Rain gauge
construction and use of, 162.15
Rainbows, 331.09
Raindrop
formation of, 162.27
measurement of, 162.28
Rainfall
measurement of, 162.15–16
raindrops, formation of, 162.27–28
Rangefinder
construction and use of, 632.01
Rarefaction/compression
of sound waves, 323.03
Rats, 211.48
Rattles, musical percussion instrument
construction of, 324.02g
Recording data (see Tabling data)
Redwood, 221.19
Reflection
heat, 342.50, 532.26
light, 331.11–12, 332.27–32, 333.07
sound, 321.09, 322.24
Refracting telescope
construction of, 421.01
Refraction
definition of, operational, 332.16
density of medium, effect upon, 332.17
heat, 342.49
through lenses, 332.18–26
light, 151.07, 331.08–10, 332.16–26
measurement of, 332.24
spectrum observations of, 331.08–10
through water, 151.07
Relative humidity table, 161.09
Relativity of positions, 311.13
Reproduction
animal, 211.01–02, 212.01–02
microorganism, 231.01–14, 232.01–03
plant, 221.01–02, 242.11–16
Reptiles, 211.37–43
Repulsion/attraction
electrical charges, 353.01–02
magnetic fields, 361.04, 362.10–13
Resistance (see also Insulation)
electrical, 352.28, 354.05
heat, 342.47–48
Resonance, 322.22
Respiration
in amphibians, 242.25
characteristic in animals, 211.08
exercise, effect of, 211.08
in fish, 242.24
in insects, 242.23
in people, 242.26
in worms, 242.22
Revolution
Earth, 422.12
planetary, 423.04
Rheostat
construction and use of, 352.27
Rhizoids, 221.10
Ringnecked snake, 211.38
Ripple tank
construction and use of, 333.08
Robins, 211.46, 242.20f
Rockets/jets, 313.10, 531.03, 532.18–21
Rocks
breakdown of, 141.18
characteristics of, 141.01–12
classification of, 141.22–24
collecting, 651.03
definition of, operational, 141.10
identification of
color sorting key, 141.14–15
hardness sorting key, 141.22
size sorting key, 141.23
magma, 141.01–04
minerals in, 141.13–15
plant growth, effect of, 142.28
porosity of, 142.27
in soil formation, 141.16–18
temperature change, effect of, 142.26–27
tests for
cleavage, 141.11b
hardness, 141.10
streak, 141.11a
types of
igneous, 141.01–04
metamorphic, 141.08–09
sedimentary, 141.05–07
Roots
classification key, 221.14
conduction tubes in, 242.05
function of, 242.01–06
growth of, 222.06
responses to environmental conditions,
 222.17–19, 222.22, 222.25
use of, 244.01
Rotary motion, 311.08–09
Rotation
 Earth, 422.11
 Moon, 422.15

SAFETY PRECAUTIONS, 610
 classroom science, 611.01
 handling
 animals, 611.05
 fluorescent tubes, 332.06
 plants, 611.06
 observing the Sun, 421.07–08
 using
 alcohol, 111.12
 electricity, 611.03
 glassware, 611.04
 heat, 611.02
 iodine, 111.09
Salamanders, 211.31–32
Salinity
 ocean currents, as a source of, 152.07
Salt
 flame test for, 411.10
 model of, molecular, 411.06b
Sampling techniques, 231.02c, 631.01, 632.06b
Sand, 152.17
Sand dunes, 142.03
Sand fleas, 211.13
Sandstone, 141.07, 142.07, 142.27
Saturation, 122.37
Saxophone, musical wind instrument
 construction of, 324.06c
Scales (see Balance of scales)
Scaling
 distances
 by parallax, 421.13
 plants from Sun, 421.09
 by triangulation, 421.12
 sizes
 by angular diameter, 421.16–18
Schist, 141.08
Science equipment (see also Measuring instruments)
 classroom safety, 611.01–06
 cloud chamber, 413.06
 filters, 122.49–52
 glassware, 623.01–02
 heat sources, 621.01
 refracting telescope, 421.01
 ripple tank, 333.08
 seismograph, 143.05, 332.29
 spectroscope, 331.07, 421.11
 support stands, 622.01–02
 wind tunnel, 532.01–03
Scotch broom, 242.18a
Screws
 definition of, operational, 511.46
 examples of, 511.47
 friction in using, 511.06
Seasons
 planets, effect upon, 222.31
 Sun/Earth relationship, 422.01–02, 422.10–12
 and weather, 162.01
Secchi disk
 construction and use of, 151.16–17
Second-class lever
 definition of, operational, 511.13
 examples of, 511.15
 mechanical advantages of, 511.14
Sedimentary rocks
 characteristics of, 141.07
 definition of, operational, 141.06–07
 fossils in, 141.06, 151.15
 model of deposition, 141.05
Sediments
 buildup of land forms, 142.20
 definition of, operational, 142.20
 deposition of, 142.18–19, 152.15
 mud sampling, 151.20–21
Seed crystal, 122.47
Seedless plants, 221.08–11
Seeds
 absorption of water by, 222.09
 characteristics of, 221.12–13
 classification of, 221.23–26, 222.14
 collecting, 651.02a
dicotyledon, 221.13
 dispersion of, 221.26, 242.17–18
 germination of, 221.03, 222.01–16, 641.02
micropyle, 221.12
monocotyledon, 221.13
planning techniques, 641.02d
Seeing, using the sense of sight
acceleration/deceleration, 311.12, 312.11–12
action/reaction, 313.08–10
atoms, evidence of, 411.03
battery, composition of a, 352.05
capillary action, 122.34
changes of state, 342.21
capillary action, 122.34
characteristics of
airplane parts, 532.02–07, 532.16, 532.18
animals, 211.01–02, 211.09, 211.12–13, 211.23, 211.25–26, 211.28, 211.30, 211.37, 211.44, 211.47, 212.03–13, 242.22–26
electricity, 351.01–06
gases, 131.07, 131.15–16, 132.11–12
heat, 341.02–03, 342.33–34, 342.37–41, 342.49
igneous rocks, 141.03
lenses, 332.18, 332.20–21
light, 331.01–06, 331.08, 331.10–12
liquids, 121.04, 121.14–16, 121.19, 121.23, 122.27
magma, 141.01
magnetism, 352.09, 352.12, 354.01, 361.01, 361.03, 362.01–04, 362.07, 362.10, 362.22
metamorphic rocks, 141.08
microorganisms, 231.12, 231.14, 231.19
minerals, 141.14–15
motion, 311.04–05, 311.08, 312.17–19, 313.01–03, 313.07
plants, 221.12, 221.14–15
sedimentary rocks, 141.07
simple machines, 511.32, 511.36, 511.43–44, 511.46
snowdrifts, 162.30
soil, 141.16–17, 142.07
solids, 111.01, 111.03–04, 111.10, 111.12, 111.14, 111.19, 111.21, 332.13–15
condensation, 121.03, 131.01, 162.17–29, 342.26–27
contraction, 131.20, 132.09
convection currents, 152.01–03, 152.09, 162.09, 163.08, 163.10
crystal growing, 122.45
decay, 141.19
deposition, 141.06, 142.29, 152.15
diffusion of gases, 132.16
dissolving materials, 112.01–02, 121.09, 122.36
erosion, 142.06, 142.17, 152.16–17
evaporation, 121.01, 131.02, 161.11, 342.23
expansion, 131.20, 132.09, 342.13, 342.16–17, 342.19–20
melting/freezing, 342.22
minerals in rocks, 141.13
North star, 421.03
ocean water, contents of, 151.01, 151.10
plant parts, 221.20–22, 242.01–05, 242.08, 242.10, 242.12, 242.18
radioactivity, evidence of, 413.06
reflections, 332.27–28, 332.31
safety precautions in, 421.07–08, 611.01e
sound vibrations, 323.01
stars, motions of, 422.02, 422.06
subliming/frosting, 342.28–29
Sun, 421.07
surface currents in water, 152.05–06
surface, effect upon motion, 312.14
tree rings, 221.18
water waves, 151.11, 152.08–10
through water, 151.08
wind, 132.18, 142.01
Seismograph
construction of, 143.05, 332.29
Senses (see individual senses; Seeing, Hearing, etc.)
Sextant
construction and use of, 421.04, 632.01
North star, location of, 421.04
Shale, 141.07
Shorelines
continental drift theory, 153.02
tides, effect of, 152.11
waves, effect of, 142.23, 152.15–17
Short circuit, 352.22
Shrimp, 211.13
Simple machines (see Machines)
Single-fixed pulley (see also Pulleys)
definition of, operational, 511.27
examples of, 511.23
use of, 511.28, 511.32
Single-movable pulley (see also Pulleys)
Sinking/ floating, 122.17–24
Siphoning techniques, 122.30
Slate, 141.08
Sleet, 162.29
Smelling, using the sense of smell
 atoms, evidence of, 4141.03, 412.02
 characteristics of
 gases, 131.07, 131.09
 liquids, 121.04, 121.23, 122.49
 solids, 111.04, 111.07
 liquids, pollution of, 112.03, 122.48
 scent trails, 212.07
Snails, 211.26–27, 212.04–05, 212.08, 212.11
Snakes, 211.38–39
Snowdrifts, 162.30
Snowfall, 162.29–31
Sodium
 flame test for, 411.10, 421.11
 model of, molecular compound (salt), 411.06b
Soft water, 122.41
Soil containers (for plants), 641.02–03
Soilless containers (for plants), 641.01
Soils
 characteristics of, 141.16–17
 compaction of, 142.10–11
 composition of, 141.10–11
 contribution to plant growth, 141.21, 221.05
 definition of, operational, 141.16
 erosion by rain, 142.17–18, 142.21–22
 formation of, 141.18–20
 porosity of, 142.07, 12
Soils, planting
 in gardens, 641.04b
 germination, influence on, 222.14
 in terrariums, 641.02c
Solar eclipse, 421.07, 422.07, 422.16–17
Solar energy
 Earth, effect upon, 163.01–03
 heat, conversion to, 161.05
Solar system
 composition of, 421.02, 421.07–09
 definition of, theoretical, 421.02
 distances between objects, 421.19
 models of, 423.01–04
 observations of, 421.07
 scaling, distances and sizes, 421.09,
 421.14–19
SOLIDS, 110
 changes of state
 frosting/subliming, 131.04, 342.28–29
 melting/freezing, 111.01, 111.03, 122.42–43, 342.21–24
 characteristics of, operational, 111.04–23
 crystals, 111.10, 122.46–47
 definition of, operational, 111.04–18
 definition of, theoretical, 343.03, 412.04
 floating/sinking, 111.12, 122.21–24
 heat energy effect upon
 changes of state, 111.01–03, 342.21–23, 342.28–29
 contraction/expansion, 342.13–17
 light energy effect upon, 332.09–10
 magnetic properties of, 111.17–18
 measurement of
 compression strength, 111.23a
 penetration by magnetic fields, 362.23–24
 size and weight, 111.13
 volume, 122.23
 pollution of
 air by, 112.04–05
 water by, 112.01–03
 solubility of, 111.11, 112.01–03, 121.09
 transmission of
 electricity through, 352.38
 heat through, 342.32–33, 342.46
 light through, 331.11–17
 sound through, 111.16, 322.11, 521.07
Solubility
 making crystals, 122.46–47
 temperature, effect of, 122.44
 of solids, 111.11, 122.36–41
Solutions
 characteristics of, 122.36–43
 electroconductivity, effect upon, 151.09
 freezing/boiling, effect upon, 122.42–43
 making crystals, 122.46–47
 ocean water, 151.01
Solvents, 122.38
SOUND, 320
 absorption of, 321.10, 322.25–26
 amplitudes, 323.07
 applications of
 telegraph, 521.06, 522.01
telephone, 521.07, 522.02–03
characteristics of, 321.01–10
classifying, 321.11–15
control of, 322.22–24
decibels, 321.11

definition of, operational, 321.01–10
definition of, theoretical, 323.01–09
echoes, 321.09, 322.24, 323.04

effects, 322.06
frequency, 322.04, 322.09, 323.06

longitudinal waves, 323.01–07
loudness, 322.07

musical instruments, 324.01–06
pitch, 321.03–05, 321.11–12, 322.09–10
quality, 321.08
radio waves, 333.15
reflection of, 321.09
sensing, 322.01–04
sources of, 322.01–06, 324.01, 324.03, 324.05

speed of, 322.15–19, 333.10–11

thunder, 322.19

transmission through
gases, 322.13–14, 322.23
liquids, 322.12
model of, 323.09
solids, 111.16, 322.11, 521.07
types of, 321.01–02
vibrations, 322.20–22
volume, 321.03–05, 321.11, 322.07–08

Sounding board, 321.05
South pole, 362.10
Sowbugs, 211.13, 211.18–19

Sparrows, 211.46

Specific gravity

definition of, operational, 122.07
measurement of, 122.08–09

Spectroscope

construction and use of, 331.07, 421.11

Spectrum

analysis of, 421.11
electromagnetic, 333.12–15

Speed

changes in, 311.12
definition of, operational, 311.03
uniform, 311.10–11, 311.14
Spiders, 211.21–22, 332.12
Spores

definition of, operational, 232.02
growth from, 221.02, 221.04
in molds, 231.14
on mushrooms, 221.08–09
prints from, 221.09

Spring scale

collection and use of, 632.04
Stalactites/stalagmites, 142.29b
Stamens, 242.11–14
Starch

test for, 111.09
Star maps, 421.05
Stars

definition of, operational, 421.02
composition of, 421.11
constellations, 421.05–06
distances between, 421.20
motion of, 422.05–06
North Star, 421.03–04
Static electricity, 351.01–04
Steam turbine, 344.02

Stems

characteristics of, 221.15–19
conduction tubes in, 242.08
function of, 242.07–09
growth of, 222.06
responses to environmental conditions,
222.17–19, 222.21, 222.26
uses of, 244.04

Stigma, 242.12–13

Stipules, 221.20
Storms, 152.19

Straight-line motion, 311.04–05
String telephone

collection and use of, 521.07

Strontium

test for, 411.10

Subliming/frosting, 131.04, 162.11, 342.28–29
Submarine

construction of, 152.02
Sugar

as a compound, 411.11, 413.07
model of, molecular, 413.07e
test for simple, 111.09
Sun

definition of, operational, 421.02
distance to, 421.09, 421.19
heat energy, as a source of, 161.04–05,
342.01–03
light energy, as a source of, 332.01, 342.01–03
motion of, 422.01–02, 422.08–09
observation of, 421.07
safety precautions in observing, 421.07–08
size of, 421.08, 421.19
Sun clock
construction and use of, 422.09
Sundew plant, 242.10a
Sundials
construction and use of, 421.07–08
Support stands
construction and use of, 622.01–02
Surf, 152.10
Surface tension
characteristics of, 121.13–16
definition of, operational, 121.12
measurement of, 121.17–18, 121.22
reduction of, 121.19–20
Swallow, 242.20f
Swan, 242.20d
Sweetpea, 222.28
Swells, 152.10
Switches, electric
arrangements, 352.36–38
dimmer, 352.38
reversible, 353.37
Sympathetic vibrations, 322.22
Tabling data
descriptive
air, impurities in, 112.04
animals, 311.02
elements, 411.10
friction and surfaces, 312.14
magnetic properties, 362.12, 362.14
marine organisms, location of, 151.22
materials that dissolve, 121.09
meals, heat held by, 341.10
motion, 311.02
solids, 111.09
sounds, pitch of, 322.10
numerical
air pressures, 161.07
block and tackle, 511.33
boiling water and solutions, 631.02b
burning candles, 631.02a
electricity, 352.04, 352.11, 352.25
evaporation, 342.25
friction and motion, 312.14
gears, 511.39
heat produced by motion, 342.06
humidity, 161.10, 164.01
inclined planes, 511.42
levers, 511.11, 511.14, 511.17
magnets, strength of, 362.26
mass and motion, 312.09, 313.06
momentum, 313.04
plant growth, 631.02
pulleys, 511.31, 511.34
raindrops, sizes of, 162.28
temperatures, 163.03, 343.05
water pressure, 122.11, 122.14
weather conditions, 164.03, 164.05
wheels and axles, 511.21
wind, 162.03, 162.05
Tadpoles, 211.33–34
Tambourines, musical percussion instruments
construction of, 342.02f
Tasting, using the sense of taste
atoms, evidence of, 411.03
characteristics of
liquids, 121.06, 121.23
solids, 111.04, 111.08
electricity, 352.13
flowers, edible, 244.02
rainwater, 151.02
roots, edible, 244.01
safety precautions in, 121.06, 121.23
TECHNOLOGY AND ENGINEERING, 500
communications, 521.01–522.04
electric devices, 522.05
machines, 511.01–512.04
transportation, 531.01–532.26
Telegraph
key, 521.06
system, 522.01
Telephone
receiver, 522.02
string, 521.07
system, 522.03
Telescope
lenses, applications of, 332.19, 332.21
refracting, construction of, 421.01
Temperature
Celsius/centigrade scale, 341.06, 631.04
definition of, operational, 341.09

effect of
altitude upon, 161.03
Earth’s axis upon, 163.01
Earth’s curved surface upon, 163.02–03

effect upon
air movement, 163.08–11
animals, 212.10–13
condensation, 162.18–20
evaporation, 162.10–11
microorganisms, 231.07, 232.09–14
plants, 222.10–11, 222.29–31
rocks, 141.18b, 142.26–27
solubility, 122.44
feeling, 341.01
heat, compared to, 341.09–10, 343.04–05
measurement of
atmosphere, 161.02–03, 163.06–07
planets, 421.23
stars, 421.10
Sun as a source of, 161.04–05
thermometers, 161.01, 341.05–08

Tensile strength, 111.23b

Tensiometer
construction and use of, 121.17

Terminal bud, 221.15

Termites, 211.23

Terrariums, preparation of
desert environment, 241.02c
for ferns and mosses, 221.11
swamp environment, 241.02b
woodland environment, 241.02a

Testing
air pressures, 132.08
aircraft parts, 532.03, 532.08, 532.15, 532.20
to amplify and mute sounds, 322.21, 322.26
for colors animals can see, 243.04
for compass markings, 362.11–12, 362.14, 362.16
for electrical charges, 413.05
electric circuit arrangements, 352.16, 352.19–21, 352.25–26, 352.29–30, 352.32–35
objects for effect
by electric fields, 352.11
by heat, 142.26–27, 342.30–31, 412.04
by light, 333.09–12
optical equipment, 332.06
parachute designs, 532.23

for the presence of
carbonates, 111.09
carbon dioxide, 131.12
metallic elements, 411.10
oxygen, 131.14
starch, 111.09
simple sugars, 111.09
pulley arrangements, 511.34
for root functions, 242.04, 242.06
soap powders, 122.41
soil compaction, 142.10
for stem functions, 242.09
trained animals, 244.07–09
types of food to attract birds, 211.46
water pressures, 122.13–14

Test tube stands
construction and use of, 622.01c

Thermometer
air, 341.07
copper-wire, 341.08
liquid, 161.01, 341.05–06, 632.07
use of, 341.02–04

Third-class lever (see also Levers)
definition of, operational, 511.10–16
examples of, 511.18
mechanical advantages of, 511.17

Thistle, 242.18c

Thunder, 322.19, 351.01

Tidal basin, 152.14

Tidal wave, 152.10

Tides
definition of, operational, 152.11
source of, 152.12–14

Time
measurement of, 422.07–09, 632.08–09

Tines, musical percussion instruments
collection of, 324.02e
Toads, 211.33–36

Tobacco seeds, 221.23

Tornado
model of, 152.19, 163.09

Tortoise, 211.42–43

Touching (see Feeling)

Translucent objects, 332.14

Transmission
light, 221.11–12, 331.16, 332.14, 332.31
sound, 111.16, 322.23

Transparent objects, 332.13
Transplanting techniques, 641.04f

TRANSPORTATION, 530
- complex vehicles
 - air, 532.01–21
 - space, 532.24–26
- simple vehicles
 - air, 531.03
 - land, 531.01
 - water, 531.02

Transverse waves
- compared to longitudinal waves, 323.05
- definition of, theoretical, 333.03–04
- model of, 333.03–04
- in water, 333.05

Tree rings, 221.18–19

Triangulation
- measurement technique for distances, 421.12

Trombone, musical wind instrument
- construction of, 324.06b

Tsunami, 152.10

Tulip, 242.11

Turbidity, 151.16–19

Turbine, steam
- model of, 344.02

Turtles, 211.42–43

Twining plants, 222.19, 222.28

Typhoon (see Waterspout)

Ultraviolet energy, 333.13

Umbra, 422.17

Units of measure (see Measuring techniques)

Universe
- composition of, 421.02–09, 421.11
- distances between and sizes of objects in,
 - 421.12–13, 421.19–21
- viewing of, 421.01

Uranium, 413.02b

Vapor trails (atomic particles)
- observations of, 413.06

Vehicles
- air, 531.03, 532.02–21
- land, 531.01
- space, 532.24–26
- water, 531.01–02

Vibrations
- earthquake, 143.04
- sound, 322.20–22

Vinegar
- as an indicator for a carbonate, 111.09,
 - 141.08e, 141.12
- to produce carbon dioxide, 121.10–11

Violins, musical string instruments
- construction of, 324.04a

Viscosity, 122.27–28

Vivarium (see Aquariums; Terrariums)

Volcanoes
- in Earth formations, 143.01, 143.06
- fault line eruption, 143.07
- model of, 141.02
- locations, 153.04

Voltage, 352.34–35

Volume
- matter
 - displacement, 111.12
 - measurement of, 122.01–06, 122.21,
 - 122.23, 132.01–02, 132.04
- sound
 - characteristics of, 321.03–05, 322.07–08
 - scale, 321.11

Wasps, 211.23

Water (see also Liquids; Oceans)
- absorption of, 122.34–35, 631.02c, 632.06e
- applications of force, 344.01–02
- as an indicator, 111.09
- in aquariums, 641.02e
- buoyancy, 151.05–06
- capillary action of, 122.34–35
- currents in, 152.01–09
- definition of, theoretical, 413.07a
- deposition in, 142.18–20, 152.15
- electroconductivity of, 151.09
- erosion by, 142.17–25, 152.16–17
- evaporation/condensation of, 161.09–12
- flow of, 142.13–25
- fresh, 151.04
- germination, effect upon, 222.08–09
- glacier, 142.24–25
- measuring flow of, 142.14, 142.16
- microorganism growth, effect upon, 231.02
- ocean, 151.01–23
- plant growth, effect upon, 221.06, 222.20
- pollution of, 112.01–03, 122.48–52,
 - 151.17–18
- pressure of, 122.11–14, 151.04
rocks, effect upon, 141.18a, 142.26–27, 142.29
in soils, 142.07–12
in terrariums, 641.02e
transparency of, 151.07–08, 151.16–19
waterborne materials, 142.17–20
waves, 151.11–14, 152.08–10
Water barometer
construction and use of, 632.08
Water clock, 632.08
Water cycle, 152.18
Water sampler
construction and use of, 151.19
Waterspout
model of, 152.20
Waterwheel
construction and use of, 122.34–35, 512.04
Wave theory
amplitude, 323.07
frequency, 323.06
light, 333.01–15
longitudinal wave, 323.01–07
sound, 323.01–09
transverse wave, 333.05
Waves, water
caracteristics of, 151.12, 152.08
determining velocity, 151.12
earthquakes, as a source of, 152.10
relationship to depth, 151.13
shoreline erosion, 142.23, 151.11, 151.14
wind, as a source of, 152.10
WEATHER, 160
characteristics of, 161.01–13
measurement of factors
air pressure, 161.06–08
humidity, 161.09–13
temperature, 161.01–05, 162.07
wind, 162.01–06
measuring instruments for
anemometer, 162.04
barometer, 132.14–15, 161.06–07
hygrometer, 161.09
nephoscope, 162.02
rain gauge, 162.15
thermometer, 161.01, 341.05–08, 632.07
wind vane, 162.01
predictions of weather and climate, 164.01–05
water cycle
model of, 152.18, 163.01–12
temperature, effect of, 162.07–09
water, effect of, 162.10–31
wind, effect of, 162.01–06
Wedges
definition of, operational, 511.43
examples of, 511.44
mechanical advantages of, 511.45
Weighing (see Measuring techniques)
Wet cell
construction and use of, 352.01–02
Wheels
with drive belts, 511.35
friction in, 511.05–07
as pulleys, 511.23–24
and rotary motion, 311.08–09
Wheels and axles
in complex machines, 512.04
cranks, 511.22
definition of, operational, 511.19
examples of, 511.20
mechanical advantages of, 511.21–22
pulley, compared to, 511.24
Willow, 221.16
Wilson, Charles, 413.06
Wind (see also Air)
air movement indicator, 162.09, 342.38
applications of, 132.19–20
Beaufort wind scale, 162.06
cloud direction indicator, 163.02–03
definition of, operational, 132.17
deposition by, 142.02–04
Earth’s rotation, effect of, 163.11
erosion by, 142.04–06
ocean currents, as a source of, 152.05–06
rocks, effect upon, 152.16–17
shorelines, effect upon, 156.16–17
temperature/pressure, effect of, 163.08–11
tornado, 163.09
windborne materials, 142.01–04
windsock, 162.01
wind speed indicator, 162.04–05
wind vane, 162.01, 162.03
Wind tunnel
construction and use of, 532.01, 532.03
testing aircraft in, 532.10–12
Wings (on aircraft), 532.10–12
Witch hazel fruit, 242.18b
Woodpecker, 242.20a. 242.20e
Work
definition of, operational, 512.01
machines to do, 512.03–04
measurement of, 512.02
by moving water, 122.32–33
Worms, 211.09–11

Xylophones, musical percussion instruments
construction of, 324.02b

Yeast
bud of cells, 232.03
fermentation, 232.08
life functions, 232.07
measurement of growth, 232.02d
reproduction of, 232.03

Zither, musical string instrument
construction of, 324.04d
ZOOLOGY, 210 (see also names of specific animals)
adaptations of, 242.19–26
aquarium habitats, 24.01, 642.01
characteristics of, 211.01–50, 342.02–03
classification of, 211.13–19
collecting, 651.01
coloration of, 243.02–05
endangered species, 243.07
fossils, 243.06
growth of, 211.04–05
in mud samples, 151.20–21
natural selection of, 243.01–02
needs of, 211.06–08
in ocean samples, 151.22–23
reproduction of, 211.01–03, 212.01
responses to environmental conditions, 212.03–13, 332.12, 342.31
safety precautions in handling, 611.05
terrarium habitats, 241.02, 642.02
theory of evolution, 243.02, 243.04–07
tracks of, 243.02–07
training, 244.06–09
types with backbones
amphibians, 211.30–36
birds, 211.44–46, 242.20
fish, 211.28–29, 242.19, 244.08
mammals, 211.47–48
reptiles, 211.37–43

types without backbones
arthropods, 211.12–24
crustaceans, 211.13–19
insects, 211.23–24
mollusks, 211.25–27
worms, segmented, 211.09–11, 244.07
Index

Page numbers printed in **boldface** type refer to figures and tables.

A

A Nation at Risk, ix

Absorption
- of heat, 135, 315, 315
- of light, 272, 284, 284
- of sound, 242, 257–258
- of water
 - by plant roots, 202–203, 203
 - by soil and rocks, 79–82, 80–81

Acceleration, 230, 230

Acids, 25

Action and reaction
- building a model action/reaction engine, 444, 444
- caused by steam pressure, 443
- measuring reaction to an action, 443
- motion caused by, 238, 239, 239
- opposing forces of, 237–238, 238
- pulling, 237–238, 404
- pushing, 238, 404

Adaptations for survival, 202–211
 - of animals, 208–211
 - of plants, 202–207

Air. *See also* Gases
- air masses above Earth, 139–142, 139–142
- conduction of heat by, 308
- detecting solids in, 15–16, 15–16
- expansion and contraction of, 301–302
- feeling characteristics of, 48
- inferring presence of, 47, 47
- light reflected by particles in, 283
- movement of, 62–64 (*See also* Wind)
 - air pressure and, 113–114, 138
 - devices for detection of, 62–64, 63
 - effect on evaporation, 125
- force due to, 64
- hurricanes, 106
- lift of aircraft wings due to, 438
- temperature and, 64, 124, 124, 125–126, 136–138, 137
- tornadoes, 106, 137, 137–138
- using to do work, 64
- observing physical characteristics of, 47–48
- relative humidity of, 114–118

Air barometer, making and using, 62, 62, 113, 113, 113, 143

Air pollution, 15–16, 16

Air pressure, 56–62, 113–114
 - air movement and, 113–114, 138
 - in all directions, 58–59, 59
 - effect of expansion and contraction on, 59
 - measurement of, 61–62, 113
 - altimeter for, 57–58, 58
 - barometer for, 62, 62, 113, 113, 113, 143
 - upon a surface, 57
 - water barometer for, 61, 61
 - for weather prediction, 143
 - observing effects of changes in, 60–61

Air thermometer, making and using, 294–295, 295

Aircraft, 437–445
 - building a simple vehicle, 435–436, 436
 - controlling directional movements of, 440, 440–442
 - ailerons, 441, 441–442
 - effect of movable parts of aircraft on flight, 442
 - elevators, 442
 - fin, 440–441, 441
 - rudder, 441, 441
 - stabilizers, 440, 440
 - driven by reaction engines, 443–444

hygrometer for measurement of, 114–117, 115–117, 143
 - for weather prediction, 143
- temperature of
 - air currents and, 64, 124, 124
 - conversion of solar energy to heat energy, 112
 - measuring and graphing, 111–112, 111–112
 - near the ground, 123–124
 - relationship of wind direction to, 145, 145
 - travel of sounds through, 253–254
 - estimating distance of a flash of lightening, 255
 - measuring speed of, 254–255
 - speed of light compared to speed of, 255
- volume of, 55, 55
 - in relation to burning times, 55–56, 56
- weight of, 53, 56–57
- weight of object suspended in water vs., 92

The Everyday Science Sourcebook, Revised 2nd Edition

Copyright © 2012 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Index

building a model action/reaction engine, 444, 444
stabilization of jets and rockets, 443–444
parachute for safe descent from, 444–445
propellers for, 442–443, 443
wings of, 437–438
air movement causing lift of, 438
shapes of, 437, 437–438

Algae, 151
on aquarium walls, 155, 157, 186, 192, 199, 200
culturing of, 192
growth of, 186
in ocean water, 94, 100
physical characteristics of, 192
reproduction of, 193

Alkalinity, 25

Alligators, 201

Alpha Centauri, 390

Alternating current, 321

Altimeter, making and using, 57–58, 58

Altitude
air temperature and, 112
of the North Star, 378, 378

American Association for the Advancement of Science (AAAS), ix, x

Amphibians, 156–157, 157
respiration in, 210–211
response to sound, 163

Anemometer, making and using, 120–122, 121–122

Angles of reflection, 283, 283–284

Angular diameter of an object, 388, 388
to calculate diameter of the Moon, 389
circumferentor for measurement of, 388–389, 389

Animals, 148–165
adaptations for survival, 208–211
advertising coloration of, 213–214
in aquariums, 148, 150, 154–159, 198, 199, 200, 208, 201, 216, 472
attraction to particular flower colors, 213
breathing by, 149, 208–211
amphibians, 210–211
earthworms, 208, 210
fish, 210
insects, 210
people, 211
caring for (See Housing and caring for animals)
characteristics of, 148–162
amphibians, 156–157, 157
animals without backbones, 149–150
arthropods, 150–154
birds, 159–161
classification by, 162
fish, 155–156
inheritance of, 148
mammals, 161
mollusks, 155
reptiles, 158–159

collecting and preserving, 474
domesticated, 215
effect of light on, 276
extinct and endangered species, 214
food and eating habits of, 149
physical characteristics related to, 208, 209
fossils of, 214
growth of, 148–149
hibernation of, 165
interactions of, 162
reproduction, 148, 162
response to gravity, 164
response to light, 164, 164
response to smell, 163–164
response to sound, 163
response to temperature changes, 164–165
response to touch, 162–163
lenses in eyes of, 279
making impressions of tracks of, 214
natural selection of, 211–214
advertising coloration, 213–214
camouflage characteristics, 212
pollination by, 206–207, 212–213
safety precautions for study of, 449–450
seriating characteristics of, 161–162
in terrariums, 153, 155–159, 162, 165, 210, 162, 201–202
training of, 215–217, 216
Annual rings in woody stems, 172–173
Apatite, 72
Applied science, xx
Aquariums, 46, 53, 93, 100, 182
algae on walls of, 155, 157, 186, 192, 199, 200
animals in, 148, 150, 154–159, 198, 199, 200, 472
building, 197–200, 472
containers for, 197
equipment for, 200
 aerating pumps, 151
 heaters, 100, 101
plants in, 155, 156, 199–200, 472
problems with, 200
sand in, 9, 197–198
water in, 198–199

comparing and sorting floating objects by weight and volume in, 34
comparing weight of other liquids to, 26–27
to demonstrate water cycle, 106, 106
to demonstrate weather fronts, 139, 142
evaporation of, 17
hearing sounds through, 252
light penetration through, 92
measuring pressure of, 31–32
measuring transparency of, 96
observing flow of, 37
observing waves in, 94–95, 103, 286–287
refraction of light through, 278
“seeing” air in, 47–48
temperature of, 101, 198, 199, 295–296
travel of radio waves through, 290

Arachnids, 150, 152–153
Arthropods, 150–154
 arachnids, 150, 152–153
 characteristics of, 150–151
 crustaceans, 151–152
 insects, 153–154, 154
Aspergillus elegans, 186
Asteroids, 378, 393
Astronomy, 377–401
 apparent motion of the Moon, 393–394
 apparent motion of the Sun, 393
 apparent movement of stars, 394, 394–395
calculating diameter of the Moon, 387
 angular diameter, 389
calculating distance to objects by triangulation, 385–386, 386
 characteristics of, 377–393
 constructing a spectroscope to determine composition of stars, 385
 constructing a telescope, 377, 377
 defining a light-year, 390
defining types of objects in the universe, 377–378
determining difference between real size and apparent size, 387–388
determining temperatures of stars, 384
distances between planets and Sun, 383–384, 384
eclipses, 398–399, 399
 interactions of, 393–399
 locating the North Star, 378
 instruments to determine its altitude, 378, 378
making a constellation projector, 383
making and using a circumferentor, 388–389, 389
making and using a sundial, 395, 395–396
measuring angular diameter of an object, 388, 388
measuring size of the Sun, 383, 383
model to compare sizes and distances between objects in solar system, 389–390, 391
Moon phases, 397–398
observing the Sun, 383
orienting a model of the Earth to the Sun, 396
seriating planets by size, 390
 seriating planets by temperatures, 392, 392
 star maps to locate constellations, 379, 379–382
 theory of, 399–401
 different models of the solar system, 400
 heliocentric theory of the solar system, 399–400, 400
 Sun-centered model of the solar system, 400–401, 401
 using a model to depict day and night, 396
 using a model to depict seasonal changes, 396
 using parallax effect to calculate distance to objects, 386–387
Atmosphere
 condensation in, 126–133
 heat trapping in, 136
 solar radiation shielded from Earth’s surface by, 135–136
Atomic weights, 368
Atoms, 364–376
 atomic particles in Earth produce electricity and magnetism, 360, 360
 characteristics of, 364–369
 classification of, 368–369
 definition of, 365
electrical components of, 337–338, 338
formation of molecules by, 365
 compounds, 365, 366, 366, 368
 elements, 365–368, 366–367
helium, 372, 372
hydrogen, 371–372, 372
inferring existence of, 364–365
interactions of, 369–370
magnetic properties within, 359, 359
movement of, 369
 effect of heat on, 369–370
number of kinds of, 366
seriating characteristics of, 368
theory of, 370–376
 atomic models, 371, 371–373, 372
 constructing and using a cloud chamber, 374, 374
 molecular models, 374–376, 375–376
Axles and wheels, 411–412, 411–413
 characteristics of, 411–412, 411–412
 determining numerical patterns using, 412–413
 finding examples of, 412

B
Bacteria, 186, 194
 growth of, 187
Balance scale, making and using, 461, 461–463
Ball bearing, making a model, 406
Bar graphs, 454, 454
Barometer
 air, 62, 62, 113, 113, 143
 water, 61, 61
Basalt, 65–66
Bases, 25
Battery, making, 323–324, 324
Bearings to reduce friction, 406
 making a model ball bearing, 406
Beaufort scale of wind speed, 123, 123
Bees, attraction to particular flower colors, 213
Bells, 264, 264
 building an electric bell, 343–344, 344
Benchmarks for Science Literacy, ix, xxiii
Bending glass tubing, 452
Benedict’s solution, 7
Berzelius, Jöns, 368
Big Dipper, 394
Binary system for computers, 432
Bird feeders, 160, 160–161
Birds, 159–161
 advertising coloration of, 213
 physical characteristics related to food of, 208, 209
Block and tackle, 416–418, 417
 determining numerical patterns using, 417, 417–418
Blueprint paper, 275
Botany, 166–185. See also Plants
Bread making, 192, 195
Bread mold, 191
Breathing, 149, 208–211. See also Respiration
Brown, Robert, 369
Budding of yeasts, 193–194, 194
Buoyancy, 32–35, 33
 of ocean water vs. freshwater, 92
Burning
 fuels produced by, 298
 kindling points for, 298–299
 as source of heat, 298–299
 as source of light, 274
Butterworts, 205
Calcite, 72, 76
Cameras, 290–291, 291
Camouflage characteristics, 211–212
 of animals, 212
 of plants, 211–212
Candles
 candlelight compared to sunlight, 274
 heat produced by burning of, 298
Capillarity of liquids, 39, 39–40
Carbon dioxide
 collection of, 49, 49–50
 dry ice as solid form of, 49, 50 (See also Dry ice)
 molecular model of, 375, 375
 production of, 48–49
 by microorganisms, 195
 using to extinguish a fire, 59–60, 60
 testing for presence of, 50
 weight of, 53–54, 53–54
Carbon molecule, 365–366, 366
Cats, 148, 161, 215
Caves, stalactites and stalagmites in, 88
Celsius scale, 294
Centripetal force, 234
Chalcopyrite, 72, 72
Chemical propagation, 298
Chemical reactions as source of electricity, 321–324
 examining a “dry” cell, 323, 323
 making a battery, 323–324, 324
 making an electric cell, 321–322
 producing electricity from a “dry” cell, 322, 322
 producing electricity from a “wet” cell, 322, 322
 testing materials to make “dry” cells, 323
Chemical symbols for elements, 366–367
Chimes, 264
Circuit breaker, building, 343, 343
Circuit tester, making and using, 329, 329, 331
Circuits. See Electric circuits
Circumferentor, making and using, 388–389, 389
Clams, 155
Classroom safety, xi, 448–450
Climate, 146, 146. See also Weather
 ocean effects on, 106–107
Clinometer, making and using, 83, 83
Clocks
 pendulum, 464, 464
 water, 464
Clothes dryer, 239
Cloud chamber, constructing and using, 374, 374
Cloud direction indicator, making and using, 118–120, 120
Cloudiness indicator for water, making and using, 97, 97–98
Clouds, 129–131
 alto, 130
 cirrus, 129–130
 cumulus, 129–130
 formation of, 129–130
 nimbus, 130, 131
 stratus, 129–130
 thunderclouds, 140
 weather fronts and, 140–142
Coding and decoding written messages, 429, 429
Cold/cooling
 air movement due to, 64
 animals’ responses to, 164, 165
 hibernation, 165
 breaking of rocks by, 86
 condensation and, 127–128, 304–305
 contraction of materials when cooled, 299–302
 gases, 54, 59, 301–302
 liquids, 19, 301
 solids, 11, 299–301, 300
 effect on seed germination, 179–180
 evaporation and, 125, 303
 plant responses to, 184–185
 sensitivity of microorganisms to, 187–188
Cold fronts, 139–141, 140–141
Collection(s), 474–475
 of animals, 474
 crayfish, 151
 daphnia, 151
 earthworms, 150
 frogs and toads, 156–157
 lizards, 158
 protozoa, 189–190
 salamanders, 156
 snails, 155
 snakes, 158
 sow bugs, 152
 spiders, 152
 turtles and tortoises, 159
 of plants, 474–475
 ferns and mosses, 168–169
 flowers, 475
 leaves, 3, 474–475
 from ocean water, 99
 seeds, 205, 474
 of rocks, 3, 475
 seriating, 12
Colors
 absorption of heat energy by differently colored materials, 135
 absorption of light by colored materials, 284
 advertising characteristics
 of animals, 213–214
 of plants, 212–213
 advertising coloration of animals, 213–214
 animal attraction to particular flower colors, 213
 camouflage characteristics
 of animals, 212
 of plants, 211–212
 to estimate temperatures of stars, 384
 flame test to determine color characteristics of some elements, 367, 367–368
heat radiation and, 312–313
influence on plant growth, 183
of light
 combining to make white light, 271
 electromagnetic spectrum, 288–289, 289
 in neon lighting tubes, 274
 separating white light into colors, 269–270
 seriating by, 272
 transmission, reflection, and absorption of, 271–272
 of rocks, 70–71
 seasonal color changes of leaves, 185
 testing effect of light on colored materials, 275
Comets, 378
Communications, 427–434
 complex devices for, 430–434
 computers, 432–434
 model telegraph system, 430–431, 431
 radio, 432
 telephone system, 431, 431–432
simple devices for, 427–430
 to code and decode written messages, 429, 429
 flags, 427
 heliograph, 429–430, 430
 light, 427
 telegraph key, 428, 428
 telephone, 428
 whistles, 427–428, 428
 writing invisible messages, 427
 without language, 427
Compact fluorescent lights (CFLs), 275
Compass, making and using, 326, 352–354, 353
Compounds, 365, 366, 366, 368
Compression, 259
Computers, 432–434
 how a simple binary system works in, 432
 uses of, 432–434
Concave lens, 278–279
 refraction of light by, 280
Condensation, 17, 46, 304–305
 in atmosphere, 126–133
 clouds formed by, 129–131, 131
 dew formed by, 128
 fog formed by, 129
 frost formed by, 129, 303
rainfall due to, 126–127, 126–127, 131–132, 132
 temperature changes affecting, 127–128
 observation of, 304–305
 temperature changes affecting, 127–128, 303, 305
Conduction of electricity, 331–334
 fuses and, 334, 334
 influence of wire size on, 332–333, 332–333
 making a rheostat, 333
 by ocean water vs. freshwater, 93, 93
 resistance in metals and, 333, 333
 testing, 331–332, 332
Conduction of heat, 306–308
 by gases (air), 308
 by liquids, 307
 poor conductors make good heat insulators, 313–314, 314
 by solids, 11, 306–307
Conglomerate, 67–68
Constellations
 Big Dipper, 394
 making a constellation projector, 383
 using a star maps to locate, 379, 379–382
Continental drift theory, 107–108
Contraction of materials when cooled, 299–302
 gases, 54, 301–302
 effect on pressure, 59
 liquids, 19, 301
 solids, 11, 299–301, 300
Copper-wire thermometer, making and using, 295, 295
Corundum, 76
Crans, 413, 413
Crayfish, 151
Cross-pollination, 206
Crustaceans, 151–152
Crystals
 in igneous rocks, 66
 iodine, 305
 made from solutions, 42–43, 42–43
 shapes of, 7, 8–10
 solubility of, 40
Cubic crystalline shape, 8, 10
Current detector, 325
Cutting glass tubing, 452
Daphnia, 151
Darwin’s theory, 211, 214
Day and night, model of, 396
Decay of organic matter, 74–75, 75
Deceleration, 230
Decoding written messages, 429, 429
Density of liquids, 26
 buoyancy related to, 33–34
Developmental learning theory, xxiii
Dew formation and dew points, 128
Dextrose molecule, 375–376, 376
Diamond, 76
Diatoms, 94
Dicotyledons, 170, 170
Diffraction of light, 269–270
 making a spectroscope for, 270
 separating white light into colors, 269
 water wave model of, 287
Diffusion of gases, 62
Dimmer switch, making, 336, 336
Dinosaurs, 214
Direct current, 321
Distance
 calculating distance to objects by
 triangulation, 385–386, 386
 constructing instruments for measurement of,
 459–460
 range finder, 459–460
 sextant, 459, 459
 effect on volume of sound, 248–249
 estimating distance of a flash of lightening, 255
 light-years to measure distance to stars, 390
 model to compare sizes and distances between
 objects in the solar system, 389–390, 391
 model to represent distances between planets
 and the Sun, 383–384, 384
 relationship of light intensity to, 275
 seriating motions by distances traveled, 226
 and time, as characteristics of motion, 220
 using parallax effect to calculate distance to
 objects, 386–387
Diving bells, 108–109
Dogs, 148, 161, 215
Drive belts, 418–419
Drums, 263
Dry ice, 46–47, 49, 50, 53, 132
 in construction of cloud chamber, 374
in construction of model action/reaction
 engine, 444, 444
in construction of wind tunnel, 436, 437
germinating seeds in, 180, 305
subliming of, 305
Earth
 air masses above, 139–142, 139–142
 atmospheric shielding from solar radiation,
 135–136
 Earth-centered theory of the solar system,
 399–400, 400
 effect of Earth’s tilt on balance of
 temperatures, 133–135
 magnetic field of, 347–348, 347–348, 360, 360
 magnetic poles of, 348, 360
 model to compare sizes and distances between
 objects in the solar system, 389–390, 391
 Moon revolving around, 378
 Moon’s orbit around, 398
 orienting a model of the Earth to the Sun, 396
 revolution period of, 401
 temperature and distance from Sun, 392
Earth science, 65–90
 characteristics of, 65–77
 composition of Earth’s interior, 88–89, 89
 erosion, xv–xvii
 glacial, 86
 water, 84–85, 85
 wind, 79
 formation of Earth’s surface, 88
 glaciers, 85–86
 interactions of, 77–88
 with plants, 74, 87
 with temperature changes, 86–87
 with water, 73, 79–88
 with wind, 77–79
 pressure and heat sources in Earth, 69–70
 fault lines and earthquakes due to, 89–90,
 90
 magma and volcanoes formed by, 65, 90
rocks (See also Rocks)
 igneous, 65–66
 metamorphic, 68–69
 minerals in, 71–72, 72
 physical characteristics of, 70–71, 76–77,
 76–77
Index

sedimentary, 67–68
soils, 72–76
stalactites and stalagmites in caves, 88
theory of, 88–90
Earthquakes, 89–90
continental drift and, 107, 108
ocean waves produced by, 103, 103–104
seismograph for measurement of, 89–90, 90, 282
Earthworms, 149–150, 150
respiration in, 208, 210
response to smell, 163
response to touch, 162–163
training of, 215–217, 216
Eating habits of animals, 149
physical characteristics related to foods, 208, 209
Echoes, 260
Eclipses, 395, 398–399, 399
Ecology, 197–217. See also Animals; Plants
applications related to, 214–217
domestication and training of animals, 215–217
uses of plants, 214–215
building a terrarium, 201–202, 472–473
building an aquarium, 197–200, 472
characteristics of, 197–202
interactions of, 202–211
animal adaptations for survival, 208–211
plant adaptations for survival, 202–207
theory of evolution, 211–214
extinct and endangered species, 214
natural selection, 211–214
Egg drop contest, 444–445
Eggs, 162
amphibian, 156
arthropod, 151
bird, 159
crustacean, 150
fish, 155
frog and toad, 156–157, 157
hatching of, 162
insect, 153
mollusk, 155
reptile, 158
Electric bell, building, 343–344, 344
Electric circuits, 327–335
arranging a circuit to light a bulb, 327
building a circuit breaker, 343, 343
conductors and insulators for, 331–332, 332
exploration of, 329
fuses for, 334, 334
grounded, 330–331, 331
influence of size on conductivity of wires, 332–333, 332–333
locating hidden circuits, 329–330, 330
making a circuit tester, 329, 329
making a holder for a D-cell battery and preparing wires for use in, 327–328, 328
making a holder for a flashlight bulb, 328–329, 329
making a rheostat, 333
parallel, 334–335
resistance and heat production, 344
resistance in metals, 333, 333
series, 334–335
short, 330
switches for opening and closing of, 330, 330, 335–336
making a dimmer switch, 336, 336
making a reversible switch, 335, 335
Electric current, 321
building a galvanometer, 326–327, 327
conductors and insulators for, 331–333, 332–333
detection of, 326–327
generating a direct current, 321
generating an alternating current, 321
magnetic field produced by, 325–326, 325–326, 325–342, 342
moving through a circuit, 327–331 (See also Electric circuits)
Electrical propagation, 299
Electricity, xxiv–xxx, 319–344
applications related to, 341–344
building a circuit breaker, 343, 343
building an electric bell, 343–344, 344
electrical resistance and heat production, 344
magnetic field produced by electric current, 341–342, 342
making and testing an electromagnet, 342–343, 342–343
characteristics of, 319–321
chemical reactions as source of, 321–324
examining a “dry” cell, 323, 323
making a battery, 323–324, 324
making an electric cell, 321–322
producing electricity from a “dry” cell, 322, 322
producing electricity from a “wet” cell, 322, 322
testing materials to make “dry” cells, 323
conduction of, 331–334
fuses and, 334, 334
influence of wire size on, 332–333, 332–333
making a rheostat, 333
by ocean water vs. freshwater, 93, 93
resistance in metals and, 333, 333
testing, 331–332, 332

determining that not all electrical charges are alike, 320–321
determining what materials can produce electrical charges, 320
electrical charges of atoms, 372–374
interactions of, 321–337
making a magnet using, 355, 355
motion as source of, 324–325
observing that rubbing charges some materials, 319–320
producing by using a magnet, 324–325, 360–361
safety precautions for use of, 337, 449
seeing, feeling, and hearing evidence of electrical charges, 319
as source of heat, 299, 340, 344
as source of light, 274–275, 340
as source of magnetism, 325, 325, 341–342, 342, 349–350, 350
static, 319–320
time of, 337–341
building an electroscope, 338–339, 339
electrical components of atoms, 337–338, 338
models to explain movement of electrons, 339–340
producing heat and light from electricity, 340, 340
producing radio waves from electricity, 341, 341
use of ground fault interrupter (GFI) circuits, 100–102, 103
voltage produced by electric cells, 335–336
switches to control circuits and, 336–337
Electro-chemical propagation, 321–324
Electromagnet, making and testing, 342–343, 342–343
Electromagnetic spectrum, 288–290
infrared energy as part of, 289–290, 290
light energy as part of, 288–289, 289
ultraviolet energy as part of, 289
Electronic devices, 432
models to explain movement of, 339–340
Electroscope, building and using, 338–339, 339
Elements, 365–368
characteristics and uses of, 367
definition of, 366
learning chemical symbols for, 366–367
metallic, flame test for identification of, 367, 367–368
number of, 366, 368
periodic table of, 370
Endangered species, 214
Energy, xx, xxi, 220–362
electricity, 319–344
heat, 293–318
light, 268–292
magnetism, 345–362
motion, 220–239
sound, 240–267
Engineering. See Technology and engineering
Equipment, 451–452
glassware, 452
heat sources, 451
support stands, 451, 451–452
Erosion, xv–xvii
glacial, 86
water, 84–85, 85
wind, 79
Estimating, 453
Ethyl alcohol molecule, 375, 375
Evaporation, 17, 46, 117–118
factors affecting, 118, 125–126
air movement, 125–126
surface area, 126
temperature changes, 125, 303–304, 304
graphing rates for different liquids, 303–304, 304
measuring cooling effect of, 303
observation of, 303
of ocean water, 106
salt deposits on Earth’s surface due to, 88
separating materials from water by, 45
from soil, 117–118
Evolution
Darwin’s theory of, 211, 214
extinct and endangered species, 214
natural selection, 211–214
Expansion of materials when heated, 299–302, 316
 gases, 54, 301–302
 effect on pressure, 59
 liquids, 19, 301
 breaking of rocks by freezing water, 86–87
 solids, 11, 299–301
 breakage due to, 301
 making adjustments for, 301
 measurement of, 300, 300
 wires, 300
Extinct species, 214
Eyeglasses, 279

F
Fahrenheit scale, 294
Fault lines and earthquakes, 89–90, 90
Feely Box, 12, 13
Fehling’s solution, 7
Feldspar, 71, 72, 76
Fermentation of yeast, 195
Ferns, 166, 167, 168–169
Fertilizers, 167
Fire extinguisher, 59–60, 60
First-class levers, 407–408
 characteristics of, 407, 407
 determining numerical patterns using, 407–408, 408
 finding examples of, 408
Fish, 155–156
 in aquariums, 155–156, 198, 199, 200, 208, 210, 216
 feeding habits of, 208
 respiration in, 210
 response to sound, 163
 response to temperature changes, 165
 training of, 216
Flags, communicating with, 427
Flies, 276
“Flip” movies, 292
Floating
 buoyancy, 32–35, 33
 of ocean water vs. freshwater, 92
 ice, 92
Flowers/flowering plants, 174, 174
 animal attraction to particular flower colors, 213
 collecting and preserving, 475
 edible flowers, 215
 parts of flowers, 205
 pollination of, 205–207, 212–213
 researching information about use of, 215
 responses to light, 182–183
Fluorescent lights, 275
Fluorite, 72, 76
Flutes, 267
Fog formation, 129
Foods, 194–195
 for animals, 149 (See also specific animals)
 physical characteristics related to, 208, 209
 growth of mold on, 194–195
Force(s)
of action and reaction, 237–238, 238
 building a model action/reaction engine, 444, 444
 caused by steam pressure, 443
 measuring reaction to an action, 443
 motion caused by, 238, 239, 239
 pulling, 237–238, 404
 pushing, 238, 404
 applied, 404
 centripetal, 234
 characteristics of, 404
 counter, 404
 feeling, 404
 of moving water, 38–39, 38–39
 work as product of, 424–425
Forced vibrations, 255–256
Fossils, 214
 in ocean sediments, 95–96
Freezing, 2, 41–42, 302–303
 removing dissolved materials from ocean water by, 91
Friction
 effect on machines, 404–406
 reduced by bearings, 406
 reduced by lubrication, 405–406
feeling, 404–405
finding evidence of, 405
impedance of motion by, 230–232, 231
comparing rolling and sliding motion, 232
reducing friction, 232
testing effects of different surfaces, 231–232
Frogs, 156–157, 157, 201
hibernation of, 165
respiration in, 210–211
Frost formation, 129, 303
Fungi, 168, 186, 191–192
culturing of, 191
molds, 186, 191, 192–196, 193
yeasts, 186, 187, 191–195, 194
Fuses, 334, 334

G
Galena, 72
Galvanometer, building and using, 326–327, 327
Gases, 46–64
atomic particles making up, 370
characteristics of, 46–54
conduction of heat by, 308
detecting diffusion of, 62
expansion and contraction of, 54, 301–302
effect on pressure, 59
indicators for identification of, 48–52
carbon dioxide, 48–50, 49
oxygen, 50–52
interactions of, 55–64
movement of, 62–64
detecting gas diffusion, 62
devices for detection of, 62–64, 63
force of, 64
temperature and, 64
using to do work, 64
observing convection currents in, 310, 310–311
in ocean water, 91
pressure exerted by, 56–62 (See also Air pressure)
in all directions, 58–59, 59
altimeter for measurement of, 57–58, 58
effect of expansion and contraction on, 59
measuring air pressure upon a surface, 57
measuring changes in air pressure, 61–62, 61–62
observing effects of changes in, 60–61
using to extinguish a fire, 59–60, 60
sensory identification of, 47–48
feeling characteristics of air, 48
inferring presence of air, 47, 47
observing physical characteristics of air, 47–48
smell, 48
shape of, 52
space occupied by, 52–53, 55, 55
transformation of solids to, 305
travel of sounds through, 253–254
volume of, 55, 55
air volumes in relation to burning times, 55–56, 56
comparing gases by weight and, 56
weight of, 53–54, 56
air, 53
carbon dioxide, 53–54, 53–54
comparing gases by, 56
Gears, 419–421
characteristics of, 419, 419
compared to a lever, 419, 419
comparing interactions of two gears to two levers, 420
determining numerical patterns using, 420–421, 420–421
Germination of seeds, 166, 167–181
drawing pictures of, 178, 178
growth rate of germinating seed, 178
light and, 180
percentage or ratio of, 176–177, 177
planting depth and, 180–181
seed position in soil and, 181
soaking seeds to speed process of, 467–468
soil and, 180
strength of germinating seed, 179
temperature effects on, 179–180, 305
time required for, 177–178, 468, 468
water for, 179
Glaciers, 85–86
Glassware, 452
bending glass tubing, 452
cutting glass tubing, 452
safety precautions for use of, 449
Gneiss, 68–69
Goldfish, 155
Graduated cylinder, making, 460
Granite, 65–66
Graphing, 453–456
 bar graphs, 454, 454
 histograms, 454, 454
 line graphs, 454–456, 455
Gravity
 animals’ responses to, 164
 effects on plant growth, 181–182
 feeling force of, 228
 motion produced by, 228
Ground fault interrupter (GFI) circuits, 100–102, 103
Growth
 of animals, 148–149
 of microorganisms, 186–187
 of plants, 166–167
Guinea pigs, 161
Guitars, 265–266, 266
Guppies, 148, 155
Gypsum, 76
H
Hamsters, 148, 149, 161
Hard water, 41
Harpsichords, 266
Heat, 293–318
 absorption of, 135, 315, 315
 animals’ responses to, 165
 applications related to, 318
 heated water can move objects, 318, 318
 making a model steam turbine, 318, 318
 breaking of rocks by, 86
 burning as source of, 298–299
 characteristics of, 293–296
 condensation and, 127–128, 303, 305
 conduction of, 306–308
 by gases (air), 308
 by liquids, 307
 poor conductors make good heat insulators, 313–314, 314
 by solids, 11, 306–307
 convection of, 308–311
 cooler air falls and pushes heated air upward, 308–309
 locating air currents, 309, 309
 locations of heated and cooler air in classroom, 308
 observing convection currents in gases, 310, 310–311
 observing convection currents in liquids, 311
 conversion of solar energy to heat energy, 112
 differences between temperature and, 295–296, 317
 effect on insect metamorphosis, 306
 effect on motion of atomic particles, 369–370
 effect on movement of molecules, 316
 effect on seed germination, 179–180
 effect on solubility, 42
 electricity as source of, 299, 340, 344
 evaporation and, 125, 303–304, 304
 expansion of materials when heated, 299–302, 316
 gases, 54, 59, 301–302
 liquids, 19, 301
 solids, 11, 299–301, 300
 gas movement due to, 62–64, 63
 heat trapping in atmosphere, 136
 as indicator for solids, 6
 interactions of, 296–315
 measuring heat held by metals, 296, 296
 motion as source of, 297–298, 298
 phase transformations due to addition or removal of, 2, 41–42, 302–303
 plant responses to, 184
 radiant, 291, 311–313
 focusing and reflection of, 314–315
 reflection of, 315, 315
 safety precautions for use of, 448
 sensitivity of microorganisms to, 187–188
 as source of light, 273–274
 as source of ocean currents, 100–102
 sources in the Earth, 69–70
 Sun as source of, 296–297
 theory of, 316–317
Heat sources, 451
Heat stands, construction of, 452
Heliocentric theory of solar system, 399–400, 400
Heliograph, building and using, 429–430, 430
Helium atom, 372, 372
Hematite, 72
Hexagonal crystalline shape, 9, 10
Hibernation, 165
Histograms, 454, 454
Horn-type instruments, 267
Hornblend, 72
Housing and caring for animals
Index

birds, 159–160

crayfish, 151
daphnia, 151
earthworms, 150, 150
fish, 156
frogs and toads, 157
insects, 153–154, 154
lizards, 158–159
salamanders, 156
small mammals, 161
snails, 155
snakes, 158
sow bugs, 152
spiders, 152–153
turtles and tortoises, 159

Humidity, 114–118
hygrometer for measurement of, 114–117, 115–117, 143
in weather prediction, 143

Humus, 73

Hurricanes, 106

Hydrogen atom, 371–372, 372
Hydrogen peroxide molecule, 375, 375
Hydrometer, making and using, 27–28, 28
Hygrometer, making and using, 114–117, 115–117, 143

I

Ice
dry, 46–47, 49, 50, 53, 132
in construction of cloud chamber, 374
in construction of model action/reaction engine, 444, 444
in construction of wind tunnel, 436, 437
germinating seeds in, 180, 305
subliming of, 305
melting and freezing of, 2, 302–303

Igneous rocks, 65–66

Incandescence, 273

Incandescent light bulbs, 275

Inclined planes, 421–424
characteristics of, 421
determining numerical patterns using, 422
finding examples of, 421–422
screws, 424
wedges, 422–424

Inertia, 233–235
in an object in motion, 235
controlling inertial tendency of an object to travel in a straight line, 233–234
observing presence of, 234, 234–235

Inference models, xx, 364–401
astronomy, 377–401
atoms and molecules, 364–376

Infrared radiation, 289–290, 290

Inheritance of physical characteristics, 148

Inorganic matter, xix, xxi, 1–146
Earth science, 65–90
gases, 46–64
liquids, 17–45
oceans, 91–109
solids, 2–16
weather, 111–146

Inquiry-based teaching, ix, x

Insects, 150, 153–154, 154
metamorphosis of, 306
respiration in, 210
response to sound, 163
trapped by plants, 204–205

Insulation
by poor heat conductors, 313–314, 314
qualities of dark and light surfaces, 315, 315
for space vehicles, 445

International Code, 427, 430

Invertebrates, 149–150

“Invisible ink,” 427

Iodine
forming crystals of, 305
as indicator for solids, 6

Iron, as indicator for presence of oxygen, 51–52

J

Jupiter, 393
moons revolving around, 378
revolution period of, 401
scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392

K

Kindling points, 298–299

L

Leaves
collection of, 3, 474–475
locations and patterns on stems, 173, 173–174
making molds of, 214
responses to light, 182–183
seasonal color changes of, 185
trapping of insects by, 204–205
Lenses, 278–281
in animals’ eyes, 279
concave, 278–279
 refraction of light by, 280
convex, 278–280
 locating focal point of, 280
 refraction of light and magnification by,
 279–280
observing shapes of, 278–279
testing of, 280–281, 281
uses of, 279
Levers, 407–411
 compared to gears, 419, 419
 compared with pulleys, 414
 comparing interactions of two gears to two
 levers, 420
 first-class, 407–408, 407–408
 second-class, 409, 409–410
 third-class, 410, 410–411
Light, 268–292
absorption of, 272, 284, 284
animals’ responses to, 164, 164
applications related to, 290–292
 cameras, 290–291, 291
 projectors, 291–292
burning as source of, 274
categorizing luminous and nonluminous
 sources of, 272–273
characteristics of, 268–273
classifying materials by transmission of, 273
colors of
 combining to make white light, 271
 in neon lighting tubes, 274
 separating white light into colors, 269–270
 seriating by, 272
 transmission, reflection, and absorption of,
 271–272
communicating with, 427
 building and using a heliograph for, 429–
 430, 430
diffraction and refraction of, 269–271,
 277–278
 making a prism, 271
making a spectroscope, 270
observing diffraction, 269–270
observing refraction, 270–271, 277–278
refraction by lenses in optical instruments,
 278–281, 281
water wave model of diffraction, 287
effect on animals, 276
effect on plants, 182–183, 276
 seed germination, 180
electricity as source of, 274–275, 340
heating as source of, 273–274
intensity of
 factors influencing, 275
 foot-candle as measure of, 274
 relationship to distance, 275
 seriating by, 272
interactions of, 273–284
penetration through ocean water, 92
produced by stars, 377
reflection of, 281–284
 by different surfaces, 282, 282
 making a seismograph using, 282
 measuring angles of, 283, 283–284
 in a mirror, 282
 by particles in gases and liquids, 283
 by planets, 377
 signaling by, 282
 water wave model of, 287
sensitivity of microorganisms to, 187
seriating characteristics of, 272
speed of, 276, 288
 compared to speed of sound, 255
Sun as source of, 273
testing effect of light on colored materials,
 275
theory of, 285–290
 particle theory, 285
 wave-particle theory, 288–290, 289–290
 wave theory, 285–288, 287 (See also
 Waves: light)
travel in a straight line, 268
travel in all directions from a source, 268
travel through a narrow opening, 268–269,
 269
travel through different materials, 276–277
opaque materials, 277
translucent materials, 276–277
transparent materials, 276
using blueprint paper, 275
Light-year, 390
Lightening, estimating distance of a flash of, 255
Limestone, 67–68
Limonite, 72
Limpets, 155
Line graphs, 454–456, 455
Liquid thermometer
 calibration of, 294
 making and using, 111, 294
Liquids, 2, 17–45. See also Water
 atomic particles making up, 370
 buoyancy of, 32–35, 33
 capillarity of, 39, 39–40
 characteristics of, 17–25
 classifying characteristics of, 24–25
 acidity or alkalinity, 25
 by sight, smell, and taste, 24–25
 condensation of, 17, 46, 126–133, 304–305
 conduction of heat by, 307
 density of, 26
 evaporation of, 17, 46, 117–118, 303–304, 304
 expansion and contraction of, 19, 301
 freezing of, 2, 41–42, 302–303
 identifying materials that dissolve in, 18–19
 indicators for identification of, 18
 interactions of, 25–45
 making a graduated cylinder for measurement of, 460
 measuring heat produced by motion in, 298
 moving/falling, 35–36, 36
 flowing from higher to lower levels, 37, 37–38
 using force to do work, 38–39, 38–39
 viscosity of, 36–37, 37
 observing convection currents in, 311
 penetration of magnetic fields through, 357–358
 pollution of, 43–45, 44–45
 pressure exerted by, 29–32, 29–32
 manometer for measurement of, 30–31, 31
 sensory identification of, 17–18
 sight, 17–18
 taste, 18
 touch, 18
 seriating characteristics of, 24
 shape of, 18
 solutions, 40–45
 space occupied by, 19, 25–26
 specific gravity of, 26–28
 hydrometer for measurement of, 27–28, 28
 surface tension of, 19–24, 20–22
 travel of sounds through, 252–253
 using heat to break liquids into particles that are too small to be seen, 369–370
 volume of, 25–26
 weight of, 19, 26–27
Lithium atom, 372
Litmus paper, 18
Lizards, 158–159
Lodestones, 348–349
Lubrication, to reduce friction, 405–406
Lunar eclipse, 398–399

M
Machines, 404–426
 complex, 424–426
 components of, 425
 defining work, 424–425
 making a water-powered machine that will do work, 425–426, 425–426
 measuring work, 425
 simple, 404–424
 cranks, 413, 413
 drive belts, 418–419
 effect of friction on, 404–406
 first-class levers, 407–408, 407–408
 force and, 404
 gears, 419–421, 419–421
 inclined planes, 421–424
 pulleys, 413–418, 414–418
 second-class levers, 409, 409–410
 third-class levers, 410, 410–411
 wheels and axles, 411–412, 411–413
Magma, 65, 90
Magnetism, 345–362
 applications related to, 360–362
 magnetic fields in electrical appliances, 362
 magnetic fields in toys and tools, 361–362, 362
 making a model to represent the motion within an electric motor, 361, 361
 producing electricity using a magnet, 324–325, 360–361
Index

artificial magnets, 349
characteristics of, 345–346
classifying materials by their ability to be magnetized, 346
comparing permanent and temporary magnets, 355
compass for detection of magnetic fields, 326, 352–354, 353
differentiating among magnetic, magnetized, and nonmagnetic objects, 352
Earth as source of, 347–348, 347–348, 360
feeling magnetic fields, 345
inducing magnetic fields in some materials, 352
interactions between magnetic fields, 350
interactions of, 347–359
magnetic fields compared with electric fields, 325
magnetic fields produced by electric current, 325, 325, 341–342, 342, 349–350, 350
making a magnet using another magnet, 354
making a magnet using electricity, 355, 355
making permanent pictures of magnetic fields, 345–346
measuring strength of magnetic fields, 358, 358–359
motion produced by, 228
natural magnets, 348–349
observing magnetic fields, 345
penetration of magnetic fields through various materials, 357, 357
liquids, 357–358
polarity of magnets, 350–351, 351
of solids, 12
sorting objects by how they are affected by, 346
testing effects of magnetic and electric fields on different materials, 325–326, 326
theory of, 359–360
Earth’s magnetic interior, 360, 360
magnetic properties within atoms, 359, 359
observing a model of magnetic domains, 359–360
travel of magnetic fields through space, 356–357, 356–357

Mammals, small, 161
training of, 216–217
Manometer, making and using, 30–31, 31
Maracas, 264
Marble, 68–69
Marimbas, 263
Mars, 393
moons revolving around, 378
revolution period of, 401
scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392
Mass
effect on motion, 229, 229–230
acceleration, 230, 230
independent of size, 229
momentum related to speed and, 235–237, 236, 237
Measuring instruments, making and using, 459–464
for distance, 459–460
range finder, 459–460
sextant, 459, 459
for liquid capacity: graduated cylinder, 460
for temperature: thermometer, 463, 463
for time, 464
pendulum clock, 464, 464
water clock, 464
for weight, 460–463
balance scale, 461, 461–463
spring scale, 460–461, 461
Measuring systems, 453–458
creation of, 456
depicting measurements pictorially, 453–456
estimating, 453
graphing, 453–456
metric system, 456, 457
metric → U.S. conversion table, 458
Mechanical propagation, 297, 324–325
Melting, 2, 302–303
Melting point, 2
Mendeleev, Demitri, 369
Mercury, 389
revolution period of, 401
scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392
Mercury-vapor lights, 275
Metals
measuring heat held by, 296, 296
resistance to electricity in, 333

to make a model light bulb, 333, 333

Metamorphic rocks, 68–69

Metamorphosis, effect of heat on, 306

Meteors, 378

Metric system, 456, 457

→ U.S. conversion table, 458

Mica, 71, 72

Mice, 148, 161

Microorganisms, 186–196

algae, 94, 100, 151, 155, 157, 186, 192, 193, 199, 200

characteristics of, 186–193

classification of, 193

fungi, 186, 191–192

growth of, 186–187

food and water for, 187

on foods, 194–195

temperature effects on, 195–196

interactions of, 193–196

bacterial growth on foods, 194

carbon dioxide production, 195

mold growth on foods, 194–195

reproduction, 186, 193–194, 193–194

microscope for viewing of, 188, 188–189

preparing microscopic slides, 189, 189

protozoa, 189–191, 190

sensitivity to light, 187

sensitivity to temperature changes, 187–188

seriating characteristics of, 192–193

Microscope, 188–189

parts of, 188, 188–189

preparing microscopic slides, 189, 189

Minerals

in rocks, 71–72, 72

stalactites and stalagmites due to deposition of, 88

streak test for identification of, 72

Mirrors, 282

Molds, 191

classification of, 193

growth of, 186

on foods, 194–195

moisture effects on, 187

temperature effects on, 196

penicillin, 191

reproduction of, 193, 193

seriating characteristics of, 192–193

Molecules

carbon, 365–366, 366

carbon dioxide, 375, 375

compounds, 365, 366, 366, 368

constructing models of, 374–376, 375–376

definition of, 365

dextrose, 375–376, 376

elements, 365–368, 366–367

ethyl alcohol, 375, 375

growth of, 316

hydrogen peroxide, 375, 375

motion of

expansion and contraction of materials

heat effects on, 316

sound transmission by, 261–262, 261–262

spaces between, 376

water, 375, 375

Mollusks, 155

Momentum, 235–237, 236

definition of, 235–236

relationship between mass and, 236, 237

relationship between speed and, 236–237, 237

transfer from one object to another, 237

Monoclinic crystalline shape, 9, 10

Monocotyledons, 170, 170

Moon

apparent motion of, 393–394

calculating diameter of, 387

angular diameter, 389

eclipse of, 398–399

model to compare sizes and distances between

Sun, planets and, 389–390, 391

orbit around Earth, 398

phases of, 397–398

tides produced by, 104, 104–105

using parallax effect to calculate distance to, 387

Moons revolving around planets, 377–378

Morse, Samuel, 431

Morse Code, 427, 430

Mosquitoes, 210, 276

Mosses, 168–169

Motion(s), 220–239

applications related to, 239

clothes dryer, 239

using forces of action and reaction to move

objects, 239, 239

of atomic particles, 369
effect of heat on, 369–370
characteristics of, 220–226
circular, 232–234
controlling some effects of, 233–234
observing effects of, 232–233
tendency of objects to break away from, 233, 233
classification of, 226
definition of, 220
direction of, 220–222
periodic motion, 221–222, 222
rotary motion, 222
straight-line motion, 220–221
distance and time as characteristics of, 220
effect of mass on, 229, 229–230
acceleration, 230, 230
independent of size, 229
forces causing, 226–229
gravity, 228
magnetism, 228
mechanical activity, 229
muscular activity, 228–229
heat produced by, 297–298, 298
heated water can move objects, 229, 229–230
impedance by friction, 230–232, 231
comparing rolling and sliding motions, 232
reducing friction, 232
testing effects of different surfaces, 231, 231–232
interactions of, 227–234
of molecules
heat effects on, 316
sound transmission by, 261–262, 261–262
observing from different positions, 225–226
seriating characteristics of, 226
as source of electricity, 324–325
speed of, 220, 223–225
defining uniform motion, 224–225, 224–225
graphing uniform rates of motion, 223, 223–224
increasing and decreasing rates of, 225, 225
seriating motion by rates of, 226
tory of, 234–238
inertia, 234, 233–235
momentum, 235–237, 236, 237
opposing forces of action and reaction, 237–238, 238
Mountain formation, 69, 88–90
Movies
“flip,” 292
making on film, 292
projectors for, 291–292
Mud samples of ocean sediments, 99, 99
Muscular activity, motion produced by, 228–229
Mushrooms, 168
spore prints of, 168
Musical instruments, 263–267
percussion, 263–264, 264
stringed, 264–266, 265–266
wind, 266–267
Musical tines, 264
Mussels, 155

N
National Research Council, ix
National Science Education Standards, ix, x, xxiii
Natural resources in ocean water, 109
Natural selection, 211–214
Neon lighting tubes, 274
Neptune
moons revolving around, 378
revolution period of, 401
scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392
Newton’s theory
of inertia, 234
of momentum, 235
of opposing forces of action and reaction, 237
of particle model of light, 285
Newts, 156, 201
Night sky, star maps of, 379, 379–382
North Pole, 133–134, 349
North Star (Polaris), 390, 394
instruments to determine altitude of, 378, 378
locating, 378

O
Obsidian, 65–66
Occluded fronts, 141–142, 141–142
Oceans and ocean water, 91–109
applications related to, 108–109
diving bells, 108–109
natural resources, 109
submarines, 109, 109
Index

buoyancy of, 92
characteristics of, 91–100
classifying ocean sediments, 98–99
 mud samples for, 99, 99
 sorting screens for, 98–99
dissolved materials in, 91
effect on depth perception, 93
effects on climate and weather, 106–107
electroconductivity of, 93, 93
extracting pure water from, 109, 109
fossils in ocean sediments, 95–96
interactions of, 100–107
light penetration through, 92–93
living organisms in, 93–94
 identification and classification of, 99–100
 pressure exerted by, 91–92
 recovering salt from, 109
 seriating characteristics of, 96–98
 cloudiness indicator, 97, 97–98
 Secchi disk to measure transparency, 96, 96–97
water sampler, 98, 98
sources of currents in, 100–102
 heat, 100–102
 salinity, 102, 102
 wind, 102
time of: continental drift, 107–108
tides in, 104, 104–105
waves on surface of, 94–95
 measuring characteristics of, 94
 observation of, 103
 observing action of, 85, 85, 94
 produced by earthquakes, 103, 103–104
 produced by wind, 103
 water depth and, 94–95
Opaque materials, 277
Optical instruments, 278–282
 reflection of light by mirrors in, 282
 refraction of light by lenses of, 278–281, 281
Organic matter, xix–xx, 147–217
 botany, 166–185
decay of, 74–75, 75
ecology, 197–217
 other organisms, 186–196
 in soils, 72–73
 zoology, 148–165
Orthorhombic crystalline shape, 8, 10
Outdoor planting areas, 469–472, 470
choice of seeds for, 471
location of, 470
planning of, 469–470, 470
soil for, 470–471
transplanting in, 471–472
watering of, 471
weeding of, 471
Outdoor sundial, making and using, 395, 395–396
Oxygen
 animals’ need for, 149
 amphibians, 210–211
 earthworms, 208, 210
 fish, 210
 insects, 210
 people, 211
 production of, 50–51
 testing for presence of, 51–52
P
Parachutes, 444–445
Parallax effect to calculate distance to objects, 386–387
Particle theory of light, 285
Pasteur, Louis, 194
Pendulum, 221–222, 222
 pendulum clock, making, 464, 464
Penicillin mold, 191
Percussion instruments, 263–264, 264
Periodic motion, 221–222, 222
Periodic table of the elements, 370
Pets in classroom, 148–149. See also Animals
Phase transformations, 2, 41–42, 302–303. See also States of matter
Phototropism, 182–183
Pinhole camera, making and using, 290–291, 291
Pitch, 241, 243, 243, 250–251
 comparing differences in, 250, 250
 frequency and, 250, 260
 testing factors that influence, 250–251, 251
Pitcher plant, 205
Planarian, 186
Planck, Max, 288
Planets, 377–378
 difference from stars, 377
 Earth-centered model of the solar system to explain movement of, 400, 400
inner and outer, 393
Index

model to compare sizes and distances from Sun, 389–390, 391
model to represent distances between Sun, 383–384, 384
moons revolving around, 377–378
revolution periods of, 401, 401
seriating by size of, 390
seriating by temperatures, 392, 392

Plankton, 94, 99, 186
Plants, 166–185
adaptations for survival, 202–207
advertising characteristics of, 212–213
in aquariums, 155, 156, 199–200, 472
breaking down of rocks by, 74, 87
characteristics of, 166–176
collecting and preserving, 474–475
constructing containers for, 465–472, 466–469
large soil containers, 469, 469
small soil containers, 466–469
decay of, in soil formation, 74–75
flowering, 174, 174
animal attraction to particular flower colors, 213
collecting and preserving flowers, 475
edible flowers, 215
parts of flowers, 205
pollination of, 205–207, 212–213
researching information about use of, 215
responses to light, 182–183

fossils of, 214
fungi, 168, 186, 191–192
growth of, 166–167
colors influencing, 183
fertilizers for, 167
measuring rate of, 178, 178
from seeds, 166, 176
soil nutrients for, 75, 75–76, 167
from spores, 166, 167
water for, 167
interactions of, 176–185

leaves of

collection of, 3, 474–475
locations and patterns on stems, 173, 173–174
making molds of, 214
responses to light, 182–183
seasonal color changes of, 185

trapping of insects by, 204–205
microscopic, 186
natural selection of, 211–214
advertising characteristics, 212–213
camouflage characteristics, 211–212
preparing outdoor planting areas for, 469–472, 470
reproduction of, 166
pollination, 205–207, 212–213
response to environmental conditions, 181–185
gravity, 181–182
heat and cold, 184–185
light, 180, 182–183, 276
root growth in presence of water, 182
seasonal changes, 185
touch, 183–184, 184

roots of
absorption of water and dissolved substances by, 202–203, 203
anchoring power of, 202
edible, 214
effect of gravity on, 181
growth in the presence of water, 182
location on stems, 170–171, 171
prop root systems, 202
safety precautions for study of, 450
seedless, 168–169
ferns and mosses, 168–169
fungi/mushrooms, 168
seeds of, 166, 169–170, 176
classification of, 175–176
collecting, 207, 474–475
external parts of, 169
germination of, 166, 176–181

histogram of numbers of seeds in pods, 175, 175
internal parts of, 170, 170
methods of dispersion of, 176, 207
seriating characteristics of, 174–175
sensitivity to environmental factors, 167–168
seriating characteristics of, 174–175

stems of, 171, 171–172, 203
annual rings in woody stems, 172–173
arrangements of flowers on, 174, 174
comparing grains in woody stems, 173
effect of gravity on, 181
external characteristics of, 171–172, 171–172
internal characteristics of, 172–173
leaf locations and patterns on, 173, 173–174
location of root growth on, 170–171, 171
researching how people use, 215
response to light, 182–183
in terrariums, 168, 169, 201–202, 169
that live in water
algae, 94, 100, 151, 155, 157, 186, 192, 193, 199, 200
building aquariums for, 197–200
choice of, 199–200
ocean water, 94, 99–100, 100
twining, 181–182, 184
uses by people, 214–215
yeasts, 186, 191–192, 193–195, 194
Pluto, 379
Polaris (North Star), 390, 394
instruments to determine altitude of, 378, 378
locating, 378
Polarity of magnets, 350–351, 351
Pollination, 205–207, 212–213
Pollution
air, 15–16, 16
water, 15, 43–45, 44–45
Porosity of soil and rocks, 79–82, 80–81
Pressure
exerted by gases, 56–62 (See also Air pressure)
exerted by liquids, 29–32, 29–32
manometer for measurement of, 30–31, 31
ocean water vs. fresh water, 91–92
melting of glaciers by, 86
sources in the Earth, 69–70
fault lines and earthquakes due to, 89–90, 90
volcanoes formed by, 65, 90
Prism, making and using, 271
Project 2061, ix, xxiii
Projectors, 291–292
Propagation
chemical, 298
electrical, 299
electro-chemical, 321–324
mechanical, 297, 324–325
Protozoa, 186
Protozoa, 189–191
collection of, 189–190
culturing of, 190
growth of, 186
temperature effects on, 196
physical characteristics of, 190, 190–191
reproduction of, 193
sensitivity to temperature changes, 187–188
Protractor, determining altitude of the North Star with, 378, 378
Pulleys, 413–418
characteristics of, 413
compared with levers, 414
finding examples of, 414
making a simple pulley, 414, 414
simple block and tackle, 416–418, 417
single fixed, 414–415, 415
single movable, 415–416, 416
testing pulley systems, 418, 418
Pulling, 237–238, 238, 404
Pumice, 65–66
Pushing, 238, 238, 404
Pyrite, 72, 72
Q Quartz, 71, 72, 76, 86
Quartzite, 68–69
R Rabbits, 161
Radio, building and using, 432
Radio waves
produced from electricity, 341, 341
travel through water, 290
Rain gauge, making and using, 126
Rainbow, 270
Rainfall
erosion due to, 84–85, 85
how rain is formed, 131–132
materials carried and deposited by, 83–84
materials dissolved in Earth by, 91
measurement of, 126–127
rain gauge for, 126
relationship of wind direction to, 126–127, 145, 145
seriating raindrops by size, 132, 132
Range finder, constructing, 459–460
Rarefaction, constructing, 459–460
Rats, 161, 217
Index

Rattles, 264

Reflection
 of heat, 314–315, 315
 by different surfaces, 282, 282
 making a seismograph using, 282
 measuring angles of, 283, 283–284
 in a mirror, 282
 by particles in gases and liquids, 283
 by planets, 377
 signaling by, 282
 water wave model of, 287
 of sound, 241–242, 257

Refraction of light, 270–271, 277–278
 combine a spectrum of colors to make white light, 271
 by lenses, 278–281, 281
 making a prism for, 271
 as rays move from denser to less dense medium, 278

Relative humidity, 114–118
 hygrometer for measurement of, 114–117, 115–117, 114–117
 in weather prediction, 143

Reproduction
 of animals, 148, 162
 of microorganisms, 186, 193–194, 193–194
 of plants, 166
 pollination, 205–207

Reptiles, 158–159

Respiration in animals, 149, 208–211
 amphibians, 210–211
 earthworms, 208, 210
 fish, 210
 insects, 210
 people, 211

Reversible switch, making, 335, 335

Rheostat, making and using, 333

Rhizoids, 169

Rhombohedral crystalline shape, 8, 10

Rhythm, 240

Ripple tank, making and using, 287, 287–288

Rocks, xiii–xv, 65–77
 breaking down of
 into soil, 72–74 (See also Soil(s))
 by water, 73, 86–87
 collecting, 3, 475
 effects of temperature changes on, 86
 igneous (“fire”), 65–66
 indicators for identification of, 71
 lodestones, 348–349
 metamorphic, 68–70
 minerals in, 71–72, 72
 physical characteristics of, 70–71, 76–77
 color, 70–71
 composition, 71
 hardness, 70, 76, 76
 organizing by, 76–77
 size, 70, 76–77, 77
 weight, 70
 porosity of, 79
 sedimentary, 67–68
 seriating characteristics of, 76–77, 76–77
 sorting and classification of, 77

Roots of plants
 absorption of water and dissolved substances
 by, 202–203, 203
 anchoring power of, 202
 edible, 214
 effect of gravity on, 181
 growth in the presence of water, 182
 location on stems, 170–171, 171
 prop root systems, 202

Rotary motion, 222

Rubbing objects
 electrical charging caused by, 319–320, 324, 337
 to produce heat, 297

S

Safety precautions, xi, 448–450
 ground fault interrupter (GFI) circuits, 100–102, 103
 warning against looking directly at Sun, 270, 377, 383

Salamanders, 156, 201

Salinity, as source of ocean currents, 102, 102

Salt
 deposits on Earth’s surface, 87
 recovering from ocean water, 109

Saltwater, 91. See also Oceans and ocean water

Sand
 in aquariums, 9, 197–198
 measuring heat produced by motion in, 297–298, 298
 minerals in, 72, 72
seashore, 105–106
Sandstone, 67–68, 72, 73
Saturation, 40
Saturn
 moons revolving around, 378
 revolution period of, 401
 scaling diameter and distance from Sun, 391
 temperature and distance from Sun, 392
Saxophones, 267
Schist, 68–69
Science for All Americans, ix
Scientific literacy, ix–x
Screws, 424
Seasonal changes, 396–397
 leaf colors, 185
Secchi disk, making and using, 96, 96–97
Second-class levers, 409–410
 characteristics of, 409, 409
 determining numerical patterns using, 409, 409
 finding examples of, 409–410
Sedimentary rocks, 66–67
Seeds, 166, 169–170
 classification of, 175–176
 by methods of dispersion, 176, 207
 collection of, 207, 474
 dicotyledons, 170, 170
 external parts of, 169
 germination of, 166, 176–181
 drawing pictures of, 178, 178
 growth rate of germinating seed, 178
 light and, 180
 percentage or ratio of, 176–177, 177
 planting depth and, 180–181
 seed position in soil and, 181
 soaking seeds to speed process of, 467–468
 soil and, 180
 strength of germinating seed, 179
 temperature effects on, 179–180, 305
 time required for, 177–178, 468, 468
 water for, 179
 internal parts of, 170, 170
 monocotyledons, 170, 170
 numbers of seeds in pods, 175, 175
 for outdoor planting areas, 471
 for planters, 467–468
 planting of, 468
 seriating characteristics of, 174–175
 watering of, 468–469
Seismograph, making and using, 89–90, 90, 282
Self-pollination, 206
Serpentine, 72
Sextant, constructing, 459, 459
Shadows, 395–396
Shale, 67–68
610 Safety Precautions, xi
Slate, 68–69
Slope, clinometer for measurement of, 83, 83
Smell (odors), 48
 animals’ responses to, 163–164
 classifying liquids by, 24–25
 human detection of, 163–164
 identification of gases by, 48
 identification of solids by, 4
Snails, 155
 in aquariums, 199
 response to gravity, 164
 response to sound, 163
 response to touch, 163
 responses to heat, 165
Snakes, 158, 201
Snowfall, 132–133
Soft water, 41
Soil(s), 72–74
 amounts of airspace in, 79–80, 80
 breaking down of rocks into, 73–74
 carried and deposited by water, 83–84
 erosion due to, 84–85, 85
 decay of organic materials in formation of, 74–75, 75
 effect on seed germination, 180
 nonorganic and organic components of, 72–73
 nutrients for plant growth in, 75, 75–76, 167
 observing wind movement across, 77
 for outdoor planting areas, 470–471
 for planters, 467
 porosity of, 79–82, 80–81
 position of seed in, 181
 roots holding plants in, 202
 temperature differences of soils receiving
direct and slanted solar energy, 134–135
 testing compaction of, 81, 81
 water absorption by, 80–82
 water evaporation from, 117–118
Soil containers for plants, preparing, 466–469
 large containers, 469, 469
 small containers, 466–469
Solar eclipse, 395, 398–399
Solar radiation. See Sun
Solar system, 378. See also Astronomy
different theoretical models of, 400
heliocentric theory of, 399–400, 400
model to compare sizes and distances between
objects in, 389–390, 391
Sun-centered model of, 400–401, 401
Solids, 2–16
atomic particles making up, 370
characteristics of, 2–14
classifying characteristics of, 12
 by sight, 12
tests for, 13–14, 13–14
 by touch, 12, 13
conduction of heat by, 11, 306–307
expansion and contraction of, 11, 299–301
 breakage due to, 301
 making adjustments for, 301
 measurement of, 300, 300
 wires, 300
identification by shape, 7
crystals, 7, 8–10
indicators for identification of, 5–7, 6
interactions of, 14–16
dissolving in water, 14–15
polluting air, 15–16, 15–16
polluting water, 15
magnetizing of, 12
measuring heat produced by motion in, 297–
298, 298
measuring size and weight of, 9, 11
in ocean water, 91
sensory identification of, 2–5
 hearing, 4
 seeing, 2–3
 smelling, 4
tasting, 4–5
touch, 3, 3
seriating by physical characteristics of, 12
solubility of, 5–6, 7, 14–15
space occupied by, 9
as state of matter, 2
travel of sounds through, 11, 251–252, 252
using heat to break materials into particles
 that are too small to be seen, 369
Solubility, 7
Solutions, 40–45
 freezing and boiling temperatures of, 41–42
 making crystals from, 42–43, 42–43
 ocean water, 91
Solvents, 40–41
Sorting screens for ocean sediments, making and
 using, 98–99
Sound(s), 240–267
 absorption of, 242, 257–258
 applications related to, 263–267
 percussion instruments, 263–264, 264
 stringed instruments, 264–266, 265–266
 wind instruments, 266–267
 causing objects to vibrate, 255–256
 forced vibrations, 255–256
 sympathetic vibrations, 256, 256
 characteristics of, 240–244
 classification of, 244, 245
 communicating nonverbally with, 427–428
 controlling direction of, 256–257, 257
 creating sound effects, 248
 grouping of, 244
 hearing through a telephone receiver, 431
 hearing through air, 253–254
 hearing through solid materials, 11, 251–252,
 252
 hearing through water, 252–253
 household, 240
 interactions of, 244–258
 outdoor, 240
 pitch of, 241, 243, 243, 250–251
 comparing differences in, 250, 250
 frequency and, 250, 260
 testing factors that influence, 250–251, 251
 producing different types of, 248
 reflection of, 241–242, 257
 rhythm of, 240
 seriating characteristics of, 242–243, 242–243
 speed of, 254–255
 compared to speed of light, 255
 estimating distance of a flash of lightening,
 255
 measuring speed in air, 254–255
 through different materials, 254
 theory of, 258–262
 transmission by motion of molecules, 261–
 262, 261–262
variations in quality of, 241
vibrations causing, 244–251
feeling, 246
making visible, 246, 246, 258–259, 259
sensing, 244–246, 258
wavelike patterns of, 246–248, 258–262
(See also Waves: sound)
effect of distance on, 248–249
testing factors that influence, 249, 249–250

South Pole, 134

Sow bugs, 150, 152

Space science. See Astronomy
Space vehicles, 445, 445–446
 insulating and reflective materials for
 protection of, 445–446
 making a model of an orbiting vehicle, 445, 445
Specific gravity, 26–28
 comparing liquids by, 28–29
 hydrometer for measurement of, 27, 27–28
 Speed
 of flowing water, 82
 of light, 276, 276–288
 compared to speed of sound, 255
 of moving object, 220, 223–225
 defining uniform motion, 224–225, 224–225
 graphing uniform rates of motion, 223, 223–224
 increasing and decreasing rates of, 225, 225
 momentum related to mass and, 235–237, 236, 237
 seriating motions by rate of, 226
 of sound, 254–255
 compared to speed of light, 255
 estimating distance of a flash of lightening, 255
 measuring speed in air, 254–255
 through different materials, 254
 of wind, 120–123, 121–123

Spiders, 150, 152–153, 276
Spore prints, 168
Spores
 fern, 166, 167
 mold, 191, 193, 193
 mushroom, 168
Spring scale, making, 460–461, 461

Stalactites and stalagmites, 88

Standards for science education, ix–x

Stars
 Alpha Centauri, 390
 apparent movement of, 394, 394–395
 constructing a spectroscope to determine
 composition of, 385
 determining temperatures of, 384
 difference from planets, 377
 light-years to measure distance to, 390
 making a constellation projector, 383
 North Star (Polaris), 390, 394
 instruments to determine altitude of, 378, 378
 locating, 378
 star maps to locate constellations, 379, 379–382
 States of matter, 302
 liquids, 17–45
 model to explain changes of, 316–317
 observing changes of, 2, 17, 46–47
 phase transformations due to addition or
 removal of heat, 302–303
 solids, 2–16
 Steam pressure, action and reaction caused by, 43
 Steam turbine, making a model, 318, 318
 Stems of plants, 171, 171–172, 203
 annual rings in woody stems, 172–173
 arrangements of flowers on, 174, 174
 comparing grains in woody stems, 173
 effect of gravity on, 181
 external characteristics of, 171–172, 171–172
 internal characteristics of, 172–173
 leaf locations and patterns on, 173, 173–174
 location of root growth on, 170–171, 171
 researching how people use, 215
 response to light, 182–183
 Stethoscope, 257
 Straight-line motion, 220–221
 Streak test to identify minerals, 72
 Stringed instruments, 264–266, 265–266
 Subliming, 303, 305
 Submarines, 109, 109
 Sun
 apparent motion of, 393
 atmospheric shielding of Earth’s surface from
 solar radiation, 135–136
conversion of solar energy to heat energy, 112
eclipse of, 395, 398–399
effect of solar energy upon a curved surface, 134
how solar energy strikes Earth’s surface, 133–134
measuring size of, 383, 383
model to compare sizes and distances between planets, Moon and, 389–390, 391
model to represent distances between planets and, 383–384, 384
observing, 383
orienting a model of the Earth to, 396
revolution of planets around, 377
as source of heat, 296–297
comparing differences in temperatures from the Sun, 297
focusing and reflection of radiant heat energy, 314–315
focusing Sun’s rays to produce high temperatures, 297
as source of light, 273
comparing candlelight to sunlight, 274
making an using a sundial, 395, 395–396
making and using a Sun clock, 396, 396
Sun-centered model of the solar system, 400–401, 401
warning against looking directly at, 270, 377, 383
Sun clock, making and using, 396, 396
Sunburn, 296
Sundew plant, 205
Sundial, making and using, 395, 395–396
Support stands, construction of, 451–452, 451–452
Surface tension of liquids, 19–24, 20–22
Sympathetic vibrations, 256, 256

T
Tadpoles, 156–157
Talc, 72, 76
Tambourines, 264
Technology and engineering, xx, 404–434
communications, 427–434
machines, 404–426
transportation, 435–446
Telegraph
building and using a model system, 430–431, 431
building and using a simple telegraph key, 428, 428
Telephone
building and using a model system, 431, 431–432
hearing sounds through a telephone receiver, 431
simple, making and using, 428
Telescope, constructing and using, 377, 377
Temperature(s)
of air
conversion of solar energy to heat energy, 112
at different altitudes, 112
measurement and graphing of, 111–112, 111–112
relationship of wind direction to, 145, 145
differences between heat and, 295–296, 317, 317
effect of Earth’s tilt on balance of, 133–135
effect of moving moist air on, 125–126
effect on insect metamorphosis, 306
effect on seed germination, 179–180, 305
freezing and boiling temperatures of solutions, 41–42
insulating and reflective materials to protect space vehicles from, 445–446
measurement of, 293–295
air thermometer for, 294–295, 295
copper-wire thermometer for, 295, 295
liquid thermometer for, 111, 294
making thermometer for, 460
standardization of, 293
seriating planets by, 392, 392
of stars, 384
from the Sun, 297
of water
in aquarium, 101, 198, 199, 295–296
water currents and layers of water, 101
water weight and, 100
Temperature changes
animals’ responses to, 164–165
hibernation, 165
breaking down of rocks by, 73–74, 86
effect on air movement, 64, 124, 124, 125–126, 136–138, 137
effect on condensation, 127–128, 303, 305
effect on evaporation, 125, 303–304, 304
effect on growth of microorganisms, 195–196
effects on growth of yeast, 192
expansion and contraction of materials due to,
299–302, 316
gases, 54, 59, 301–302
liquids, 19, 301
solids, 11, 299–301, 300
sensitivity of microorganisms to, 187–188
Tensiometer, making and using, 20–21, 20–22
Terrariums
animals in, 153, 155–159, 162, 165, 210, 201–202
building, 201–202, 472–473
desert environment, 201–202
heat source in, 165
plants in, 168, 169, 201–202
swamp environment, 201
woodland environment, 201
Test-tube stands, construction of, 452, 452
Tetragonal crystalline shape, 8, 10
Thermometers
Celsius, 294
Fahrenheit, 294
making and using, 460
air thermometer, 294–295, 295
copper-wire thermometer, 295, 295
liquid thermometer, 111, 294
measuring temperatures with, 293–294
observing how temperatures affect, 293
Third-class levers, 410–411
characteristics of, 410, 410
determining numerical patterns using, 410
Tidal basin, 105
Tides, 104–105
determining changes in water levels at
shoreslines, 104
produced by the Moon, 104, 104–105
Time
and distance, as characteristics of motion, 220
making and using a sundial, 395, 395–396
making instruments for measurement of, 464
pendulum clock, 464, 464
water clock, 464
required for seed germination, 177–178
Toads, 156–157, 157, 201
Topaz, 76
Tornadoes, 106, 137, 137–138
Tortoises, 158, 159
Touch
animals’ responses to, 162–163
classifying solids by, 12, 13
identification of liquids by, 18
identification of solids by, 3, 3
plants’ responses to, 183–184, 184
Translucent materials, 276–277
Transparent materials, 276
travel of radiant heat through, 312
Transportation, 435–446
complex vehicles, 436–446
aircraft, 437–445, 437, 439–441, 443–444
space vehicles, 445, 445–446
simple vehicles, 435–436
building a vehicle to travel in air, 435–436, 436
building a vehicle to travel on land, 435, 435
building a vehicle to travel on water, 435, 435
Triclinic crystalline shape, 9, 10
Trombones, 267
Tsunami, 104
Tuning fork, 247, 247–248, 255, 256, 256
Turtles, 158, 159, 201

U
Ultraviolet radiation, 289
Uniform motion, 223–225
defining, 224–225, 224–225
graphing, 223, 223–224
Universe. See also Astronomy
constructing a telescope to view objects in,
377, 377
defining types of objects in, 377–378
making a constellation projector, 383
seriating objects in, 390–393, 392
solar system, 378
different theoretical models of, 400
heliocentric theory of, 399–400, 400
model to compare sizes and distances
between objects in, 389–390, 391
Sun-centered model of, 400–401, 401
star maps to locate constellations, 379,
379–382
Uranus
moons revolving around, 378
revolution period of, 401
Index

scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392

V
Vehicles. See Transportation
Venus, 389
 revolution period of, 401
scaling diameter and distance from Sun, 391
temperature and distance from Sun, 392
Venus flytrap, 205

Vibrations
causing sound, 244–251
 changing vibrations into wave pictures, 247, 247
feeling, 246
making vibrations visible, 246, 246, 258–259, 259
seismograph for detection of, 89–90, 90, 282
sensing, 244–246, 258
wavelike patterns of, 246, 246–248, 247, 258–262
forced, 255–256
sympathetic, 256, 256

Violins, 265, 265
Viscosity of liquids, 36–37, 37
Vivariums, 472. See also Aquariums; Terrariums
Volcanoes, 65, 90, 108
Voltage produced by electric cells, 335–336
switches to control circuits and, 336–337

Volume
 of gases, 55, 55
 air volumes in relation to burning times, 55–56, 56
 comparing gases by weight and, 56
 of liquids, 25–26
 effect of distance on, 248–249
 testing factors that influence, 249, 249–250
von Leeuwenhoek, Anton, 189

W
Warm fronts, 139–141, 140–141
Water. See also Liquids
 absorption of
 by plant roots, 202–203, 203
 by soil and rocks, 79–82, 80–81
 breaking down of rocks by, 73, 86–87
 building a vehicle to travel on, 435, 435
 buoyancy of, 32–35, 33
 ocean water vs. freshwater, 92
 changes in materials on Earth’s surface by, 87–88
 condensation of, 17, 46, 126–133, 304–305
 detecting solids in, 15
 effect on mold growth, 187
 evaporation of, 17, 45, 46, 117–118, 303–304, 304
 extracting pure water from ocean water, 109, 109
 flowing, 82–86
 erosion due to, 84–85, 85
 from high to lower places on Earth’s surface, 82–83
 materials carried and deposited by, 83–84
 measuring speed of, 82
 wave action along a shoreline, 85, 85
 freezing of, 2, 41–42, 302–303
 breaking of rocks by, 86–87
 hard, 41
 light reflected by particles in, 283
 living organisms in
 amphibians, 156–157, 157
 crustaceans, 151
 fish, 155–156
 insects, 154
 mollusks, 155
 in ocean water, 93–94, 99–100
 protozoa, 189–191, 190
 materials that dissolve in, 40
 solids, 5–6, 7, 14–15
 measuring transparency of, 96–97
 molecular model of, 375, 375
 in nimbus clouds, 131
 in oceans, 91–109 (See also Oceans and ocean water)
 for plant growth, 167
 in outdoor planting areas, 471
 in planters, 468–469
 root growth in the presence of water, 182
 seed germination, 179
 removing impurities from, 44–45, 44–45
 soft, 41
 sounds traveling through, 252–253
 surface tension of, 20–21, 23
 temperature of
 in aquarium, 101, 198, 199, 295–296
feeling and describing, 293
water currents and layers of water, 101
water weight and, 100
weighing objects in, 33, 33
weight of, 26–27
temperature and, 100
weight of object suspended in air vs., 92
Water barometer, making and using, 61, 61
Water clock, making, 464
Water cycle model, 106, 106
Water filters, 44, 44–45
Water pollution, 15, 43–45, 44–45
Water-powered machine that will do work, making, 425–426, 425–426
Water pressure, 29–32, 29–32
manometer for measurement of, 30–31, 31
Water sampler, making and using, 98, 98
Waterspout, 107
Waterwheel, 38–39, 38–39
Wave-particle theory of light, 288–290, 288–290
infrared energy as part of electromagnetic spectrum, 289–290, 290
light energy as part of electromagnetic spectrum, 288–289, 289
research on, 288
speed of light, 288
ultraviolet energy as part of electromagnetic spectrum, 289
travel in transverse waves, 285–286
observing in water, 286–287
water wave model, 286–288
discrepancies in, 288
to explain diffraction, 287
to explain reflection, 287
making and using a ripple tank, 287, 287–288
Waves: radio
produced from electricity, 341, 341
travel through water, 290
Waves: sound, 246–248, 258–262
amplitude of, 261, 261
changing sound vibrations into wave pictures, 247, 247
comparing longitudinal and transverse waves in a coil, 260, 260
frequency of, 250, 260
making sound vibrations visible, 246, 246, 258–259, 259
producing longitudinal waves of various amplitudes, 261, 261
producing longitudinal waves of various frequencies, 260
transmission by motion of molecules, 261–262, 261–262
using spring model to explain echoes, 260
using spring model to represent vibrations as longitudinal waves, 259, 259–260
Waves on surface of water, 94–95
measuring characteristics of, 94
observation of, 103
observing action of, 85, 85, 94
produced by earthquakes, 103, 103–104
produced by wind, 103
water depth and, 94–95
Weather, 111–146
air pressure, 112–114, 113, 113, 143
air movement and, 113–114, 138
measurement of, 113, 113–114
air temperature
air currents and, 64, 124, 124
conversion of solar energy to heat energy, 112
measuring and graphing, 111–112, 111–112
near the ground, 123–124
relationship of wind direction to, 145, 145
applications related to, 142–146
climate, 146, 146
predicting weather changes, 142–146
characteristics of, 111–118
condensation in atmosphere, 126–133
clouds, 129–132
dew, 128
fog, 129
frost, 129, 303
observation of, 127
snowfall, 132–133
temperature changes affecting, 127–128
interactions of, 118–133
air temperature near the ground, 123–124
conditions affecting evaporation, 125–126, 303–304, 304
return to Earth of condensation in atmosphere, 126–133
wind caused by unequal heating of Earth’s surface, 124, 124
wind direction, 118–120, 119–120
wind speed, 120–123, 121–123
ocean effects on, 106, 106–107
relative humidity, 114–117, 115–117, 143, 114–118
hygrometer for measurement of, 114–117, 115–117, 143
theory of, 133–142
air pressure and air movement, 138
atmospheric shielding of Earth’s surface from solar radiation, 135–136
differences in heat energy absorption by differently colored materials, 135
effect of Earth’s rotation on winds, 138–139
effect of Earth’s tilt on balance of temperatures, 133–135
heat trapping in atmosphere, 136
temperature effects on air movement, 64, 124, 124, 125–126, 136–138, 137
weather fronts and air masses above Earth, 139–142, 139–142
Weather prediction, 142–146
air pressure, 143
data collection and recording for, 144–145, 144–146
preparing a weather station for, 143, 143–144
wind patterns, 142–143
Weather station, 143, 143–144
Wedges, 422–424
characteristics of, 422
sensing advantage of, 423–424
varieties of, 422–423
Weeding of outdoor planting areas, 471
Weight(s)
atomic, 368
constructing instruments for measurement of, 460–463
balance scale, 461, 461–463
spring scale, 460–461, 461
of gases, 53–54, 56
air, 53
carbon dioxide, 53–54, 53–54
comparing gases by, 56
of liquids, 19, 26–27
ocean water vs. fresh water, 91–92
making instruments for measurement of, 460–463
of object suspended in air vs. water, 92
of rocks, 70
of solids, 9.11
weighing objects in water, 33, 33
Wheels and axles, 411–413
characteristics of, 411–412, 411–412
determining numerical patterns using, 412–413
finding examples of, 412
Whistles, signaling with, 427–428, 428
Wind. See also Air, movement of
breaking down of rocks by, 73
direction of, 118–120, 119–120
relationship to rainfall, 126–127, 145, 145
relationship to temperature, 145, 145
relationship to weather, 144, 144–145
effect of Earth’s rotation on, 138–139, 139
effect on evaporation, 125
hurricanes, 106
materials carried and deposited by, 77–78
land surfaces carved and eroded by, 79
measuring speed of, 120–123
anemometer for, 120–122, 121–122
Beaufort scale of, 123, 123
observing movement across soil, 77
ocean currents produced by, 102
ocean waves produced by, 103
role in pollination, 206–207
tornados, 106, 137, 137–138
weather changes and patterns of, 142–143
Wind instruments, 266–267
Wind sock, making and using, 119, 119
Wind tunnel, building and using, 436, 436–437
Wind vane, 142
making and using, 118–119, 119
Wires
copper-wire thermometer, 295, 295
examining resistance to electricity in, 333
expansion when heated, 300
glowing, as light source, 273–274
influence of wire size on electrical conductivity, 332–333, 332–333
making a holder for a D-cell battery and preparing wires for use in a circuit, 327–328, 328
overheating due to overloading a circuit with too many resistors, 334, 334

Work, 424–425
- complex machines to do, 425–426
- definition of, 424–425
- measurement of, 425

Worms
- camouflage characteristics of, 212
- respiration in, 208, 210
- response to light, 164, 276
- response to smell, 163
- response to touch, 162–163
- responses to cold, 164
- segmented, 149–150, 150
- training of, 215–217, 216

Written messages
- devices for coding and decoding, 429, 429
- in “invisible ink,” 427

X
- Xylophones, 263, 264

Y
- Yeast(s), 186, 191–192
 - for bread making, 192, 195
 - budding of, 193–194, 194
 - culture of, 187
 - culturing of, 191–192
 - fermentation of, 195
 - growth of, 186
 - effect of temperature changes on, 192
 - food for, 187

Z
- Zither, 266
- Zoology, 148–165. See also Animals
Think of this unique reference book as Inspiration Central for elementary and middle school science teachers. Fully updated with content selected to build on national standards, this new edition is full of hundreds of entries that can spark your thinking the next time you need to fill a gap in your curriculum, add a fresh element to your textbook lessons, or extend and enrich hands-on activities.

The Everyday Science Sourcebook is structured like an easy-to-use thesaurus. Just look up a topic in the Index Guide, note the reference number, and then use that number to find a wealth of related activities in the Entry section. For example, looking up meteorology can lead you to notes on the Earth’s temperature. From there, you’ll see entries on how students can make a liquid thermometer, graph air temperatures, and measure the conversion of solar energy to heat energy.

Six broad content categories provide the framework for the main body of this book:

- Inorganic matter
- Organic matter
- Energy
- Inference models
- Technology and engineering
- Instructional apparatus, materials, and systems

The Everyday Science Sourcebook deserves a prominent spot on your bookshelf. Refer to it daily as a springboard for ideas that make science memorable.

“This sourcebook was created because science should be memorable, not memorizable.”

—from the Introduction to The Everyday Science Sourcebook, Revised 2nd Edition