


Science the "Varite" Way

Science the "Varite" Way

Edited by Jodi Wheeler-Toppen

Claire Reinburg, Director Jennifer Horak, Managing Editor Andrew Cooke, Senior Editor Wendy Rubin, Associate Editor Agnes Bannigan, Associate Editor Amy America, Book Acquisitions Coordinator

Science and Children

Linda Froschauer, Editor Valynda Mayes, Managing Editor Stephanie Andersen, Associate Editor

SCIENCE SCOPE

Inez Luftig, Editor Kenneth L. Roberts, Managing Editor

ART AND DESIGN

Will Thomas Jr., Director, Interior Design Linda Olliver, Cover

PRINTING AND PRODUCTION

Catherine Lorrain, Director Nguyet Tran, Assistant Production Manager

NATIONAL SCIENCE TEACHERS ASSOCIATION

Francis Q. Eberle, PhD, Executive Director David Beacom, Publisher 1840 Wilson Blvd., Arlington, VA 22201 www.nsta.org/store For customer service inquiries, please call 800-277-5300.

Copyright © 2011 by the National Science Teachers Association. All rights reserved. Printed in the United States of America.

14 13 12 11 4 3 2 1

14 13 12 11 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Science the "write" way / edited by Jodi Wheeler-Toppen.

p. cm.

 $Includes\ bibliographical\ references\ and\ index.$

ISBN 978-1-936137-40-4 (print) -- ISBN 978-1-936959-97-6 (e-book) 1. Science--Study and teaching (Elementary)

- 2. Science--Study and teaching (Middle school) 3. Technical writing--Study and teaching (Elementary) 4. Technical writing--Study and teaching (Middle school) 5. Diaries--Authorship--Study and teaching (Elementary) 6. Diaries--Authorship--Study and teaching (Middle school) 7. Language arts--Correlation with content subjects.
- I. Wheeler-Toppen, Jodi.

LB1585.S395 2011 507.1'2--dc23

2011030758

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

Contents

Introduction	on	ix
Part 1: V Why Writir	Writing and Learning in Science	
Chapter 1	On Writing in Science	1
Chapter 2	Science the "Write" Way: Nonfiction Writing Activities Help Students Learn Science By Valarie L. Akerson and Terrell A. Young	5
Chapter 3	Unlocking Reading Comprehension With Key Science Inquiry Skills	11
Chapter 4	14 Writing Strategies	17
Chapter 5	This Isn't English Class! Using Writing as an Assessment Tool in Science By Michael Rockow	25
Building B	asic Skills	
Chapter 6	Making Thinking Visible: A Method to Encourage Science Writing in Upper Elementary Grades	31
Chapter 7	Writing to Learn By Brian Hand, Vaughan Prain, and Keith Vance	41
Chapter 8	Helping Students Write About Science Without Plagiarizing	45
Chapter 9	Learning to Write and Writing to Learn in Science: Refutational Texts and Analytical Rubrics	49
Chapter 10	Peanut Butter and Jelly Science	57
Chapter 11	Write It, Do It	59
Chapter 12	Comments on Students' Writing	63
Writing Wi	th English Language Learners	
Chapter 13	From Speaking to Writing in the Structured English Immersion Science Classroom By Conrado Laborin Gómez and Margarita Jimenez-Silva	69
Chapter 14	Integrated Assessments for ELL: Students—and Teachers—Benefit From Incorporating Writing and Drawing in Science	75

Chapter 15	What Writing Represents What Scientists Actually Do?	81
Chapter 16	Writing Through Inquiry	85
Chapter 17	Getting Students to Become Successful, Independent Investigators By Jeffrey D. Thomas	91
Chapter 18	Kinesthetic Writing, of Sorts	
Chapter 19	Multigenre Lab Reports: Connecting Literacy and Science By Leonora Rochwerger, Shelley Stagg Peterson, and Theresa Calovini	
Chapter 20	Lab Report Blues	111
	lassroom-Tested Lessons oss the Genres	
Chapter 21	The Nature of Haiku: Students Use Haiku to Learn About the Natural World and Improve Their Observational Skills	115
Chapter 22	Keeping Science Current	123
Chapter 23	Extra! Extra! Learn All About It	127
Chapter 24	Science Newsletters	135
Chapter 25	Scientific Journals: A Creative Assessment Tool	139
Chapter 26	A Natural Integration: Student-Created Field Guides Seamlessly Combine Science and Writing	145
Chapter 27	Nature Detectives: First Graders Study Yearlong Changes in Nature and Create a School Yard Field Guide	153
Chapter 28	Students as Authors: Illustrated Science Information Books Created During Integrated Units Are Windows Into Student Understanding By Maria Varelas, Christine C. Pappas, Sofia Kokkino, and Ibett Ortiz	161
Chapter 29	Mystery Box Writing	167

Content-Specific Activities

	· · · · - -		
	Chapter 30	Nature's Advice Book: Third-Grade Students Examine Their Knowledge of Life Science by Considering the Lessons Learned From Nature	173
	Chapter 31	Ecosystem Journalism: Allow Your Students to Display Their Understanding of Life Science Concepts by Creating an Imaginative Newspaper	177
	Chapter 32	Linking Science and Writing With Two Bad Ants: A Trade Book Inspires Two Teachers to Connect Their Curricula in a Creative Way By Ingrid Hekman Fournier and Leslie Dryer Edison	183
	Chapter 33	Partners in Crime: Integrating Forensic Science and Writing	189
	Chapter 34	A Reason to Write	193
	Chapter 35	A Key to Science: A Simple Writing Technique Helps Students Communicate Understanding of Important Science Concepts By Jo Ann Yockey	197
	Chapter 36	Taking a Look at the Moon By Craig R. Leager	205
	Chapter 37	Creative Writing and the Water Cycle	211
	Chapter 38	Volcano Résumés	215
	Chapter 39	Reading and Writing Nonfiction With Children: Using Biographies to Learn About Science and Scientists	219
Part 3: Approaches to Science Journals and Logs			
	Chapter 40	Journals of Discovery: Incorporating Art and Creative Writing Into Science Journal Leads to Meaningful Reflections on Learning for Both Students and Teachers By Cathy Livingston	
	Chapter 41	Science Interactive Notebooks in the Classroom	233
	Chapter 42	Using Science Journals to Encourage All Students to Write	239
	Chapter 43	Learning Logs: Writing to Learn, Reading to Assess	247

Chapter 44	Using Web Logs in the Science Classroom	.253
Chapter 45	Interactive Reflective Logs: Opening Science Notebooks to Peer and Teacher Feedback	.259
Chapter 46	A Laboratory of Words: Using Science Notebook Entries as Preassessment Creates Opportunities to Adapt Teaching By Jeanne Clidas	.265
Chapter 47	The Art of Reviewing Science Journals: Questions to Consider When Planning and Assessing Students' Journal Entries	.271
Chapter 48	The P.O.E.T.R.Y. of Science: A Flexible Tool for Assessing Elementary Student Science Journals By Jennifer C. Mesa, Michelle L. Klosterman, and Linda L. Cronin-Jones	.277
Index		285

Introduction

As I write this introduction, I am struck by how much this task resembles what we want our students to accomplish when we ask them to write in science class. I sit surrounded by piles of *Science Scope, Science and Children*, and research journal articles, as well as pages of scrawled, handwritten notes. Already I have collected, sorted, organized, and reorganized my ideas. As I type them, I will clarify them even further. In short, I am learning as I write.

Why Writing?

There are many reasons to have our students write, but the one that is most powerful for me is simple: Writing helps students learn. While writing, students manipulate and organize their ideas (Langer and Applebee 1987). As they try to explain the concepts they are learning, they may discover gaps in their knowledge (Glynn and Muth 1994). When they use analogies to describe how something new is like something they already know, they link new knowledge to prior knowledge, strengthening both (Rivard 1994). In translating between everyday language and scientific language, they clarify their ideas (Prain 2006). In my classes, I have students write because writing can be a powerful tool for learning.

There are other good reasons to have students put pen to paper (or fingers to keyboard). First, writing is an essential part of the practice of science (Norris and Phillips 2003). Scientists record their findings and interpretations, allowing other scientists to examine their work. This record allows scientists to piece together small ideas, eventually building large theories. Scientists themselves use writing to organize their thoughts and find meaning in their work, reflecting on their own and in communication with peers.

Students' written work also provides a window to their thoughts. Not sure if your students really "get" the molecular nature of matter? Have them write a book that explains the concept to young children (see "Students as Authors," p. 159). You'll spot misconceptions you would never pick up during class discussion. Assessing writing doesn't have to be time consuming. I often have students respond to a question in writing, then quickly scan the answers and sort them into piles based on levels of understanding. This approach lets me know what points need to be addressed and which, if any, students need one-on-one clarification. However, beware of mistaking students' use of science terminology for understanding science material. As Abell points out in "On Writing in Science" (p. 1) students are skilled at throwing around science words to hide their confusion.

Building Basic Skills

You don't have to be trained as an English teacher to integrate writing into your curriculum. However, you may need to practice with students the aspects of their writing that are most important in a science classroom. They may need help learning to put ideas into their own words instead of plagiarizing, or they may require instruction on being specific enough for their readers to understand what they've written. Such skills help students think more deeply

about science and enable them to communicate clearly—worthwhile ways to spend class time. Tools for these tasks and more can be found in the second section of this book, "Building Basic Skills."

Writing With English Language Learners

Writing can be an especially important part of the science curriculum for English language learners. Writing not only helps them process the science they are learning, but also gives them needed practice using their new language. Science teachers must ease English language learners into the writing process by integrating it with verbal discussions and drawings to allow ELL students to fully express their thoughts. See the section "Writing With English Language Learners" for more guidance.

The "Write" Way?

What kind of writing should you have your students do? The short answer is that it depends on your goals for the activity. Some teachers want students to replicate reports similar to those found in scientific journals. To generate such lab reports, students need explicit guidance regarding what is expected and how well they are moving toward proficiency (see "Lab Report Blues," p. 111). Learning to write traditional lab reports introduces students to the structure of the formal literature of science. However, the actual practice of science involves many genres of writing, including e-mails, lab notebooks, presentation or seminar notes, and personal writing that helps scientists understand their own research (Yore, Hand, and Prain 2002). In addition, some worry that using formal lab reports as the primary form of writing in science class obscures the underlying thinking involved in developing scientific ideas (Wallace, Hand, and Prain 2004). Resources for both traditional and nontraditional lab reports can be found in the section "Writing in and About Lab Work."

If your goal is to stimulate learning for your students, there are several things to consider (Langer and Applebee 1987). First, think about whether you want students to work on organizing a large breadth of knowledge or if you want them to gain an in-depth view of a smaller subject. They are most likely to learn the ideas directly used in their writing. Second, the more information is manipulated, the better it is understood and remembered. Assignments that help students make new connections include tasks that ask them to reword a text, "translate" an idea into another way of writing, and elaborate and make comparisons (Boscolo and Mason 2001). Finally, keep in mind that if students write about familiar content and they already understand the relationships between the ideas, writing is unlikely to produce new learning.

There are many types of writing that can meet these goals. In part 2 of this book, "Classrooom-Tested Lessons," you'll find examples of different genres of writing that work well in classrooms as well as content-specific activities that you can use right away. You'll notice that these activities require the kinds of thinking described above.

A word on the value of giving students a chance to write for authentic audiences:

Preparing a text for a real person or group, rather than just pretending to do so, is a powerful motivator (Wallace, Hand, and Prain 2004). Students can write for younger children at their school, for visitors to a museum or nature center, for a local newspaper or PTA newsletter, or even for their classmates. For a richer learning experience, students can receive feedback from that targeted group and revise accordingly. Several activities in this book provide suggestions for activities that involve authentic audiences.

Journals and Logs

Many teachers like to have their students collect their thinking and writing in learning logs or journals. When journals are used well, they become an essential part of science class, as integral as the teacher or textbook. Students value their journals because they hold a personal record of learning and ideas. Journals may be primarily focused on investigations, or they may involve reflection on all sources of learning in the science classroom. There are a variety of ways to organize and assess science journals and logs; several systems are described in "Approaches to Science Journals and Logs."

The goal of this book is to provide practical guidance for integrating writing into your classroom. Some articles describe general techniques you can use in any class. Others outline writing activities tailored to a specific topic. Even if you don't teach these topics, you can use such articles as springboards for additional ideas. Whatever science you teach, you'll find strategies and lessons to get you started.

References

Boscolo, P., and L. Mason. 2001. Writing to learn, writing to transfer. In *Writing as a learning tool,* ed. P. Tynjala, L. Mason, and K. Lonka, 83–104. Amsterdam: Kluwer Press.

Glynn, S., and D. Muth. 1994. Reading and writing to learn science: Achieving scientific literacy. *Journal of Research in Science Teaching*, 31 (9): 1057–1073.

Langer, J., and A. Applebee. 1987. *How writing shapes thinking: A study of teaching and learning (Tech. Rep. No. 22)*. Urbana, IL: National Council of Teachers of English.

Norris, S., and L.Phillips. 2003. How literacy in its fundamental sense is central to scientific literacy. *Science Education*, 87 (2): 224–241.

Prain, V. 2006. Learning from writing in secondary science: Some theoretical and practical implications. *International Journal of Science Education*, 28: 179–201.

Rivard, L. 1994. A review of writing to learn in science: Implications for practice and research. *Journal of Research in Science Teaching*, 31 (9): 969–983.

Wallace, C., B. Hand, and V. Prain. 2004. *Writing and learning in the science classroom*. Boston: Kluwer Academic Publishers.

Yore, L., B. Hand, and V. Prain. 2002. Scientists as writers. Science Education, 86 (5): 672–692.

Chapter 4

14 Writing Strategies

By Thomas Turner and Amy Broemmel

n 1905, a young scientist named Albert Einstein published a three-page paper presenting his theory of relativity. That brief paper was a major step in revolutionizing how physicists throughout the world thought, and it changed the way the world in general thought about science (Penrose 2005). That a relatively small piece of writing could be so important certainly illustrates the significance of writing to science. Good scientists record what they do—their results, procedures and operations, observations, and hypotheses, as well as their problems and questions.

Scientists need to develop their writing skills for a number of reasons:

- Writing down their ideas and describing what they do and find gives scientists, and those who read and depend on their work, a more accurate record from which to attempt to replicate results.
- Written accounts of what scientists observe that are recorded at the time of their observations help scientists remember more accurately and completely.
- Written summaries of scientific work allow scientists to synthesize bodies of work and look at them holistically so that they or other scientists can extend and develop ideas further.
- Written notes about their work allow scientists to reflect on and mentally process what they have observed.
- Written presentations of their work allow scientists to share and publicize their findings, get credit for their work, and, as a result, claim the benefits of their successes.
- Written descriptions of planned work enable scientists to obtain funding to continue their often-expensive work.
- Written summaries of their ideas allow scientists to share the importance of their work with nonscientists.

Why We Need to Teach Writing in Science Classes

Any science teacher who wants his or her students to be engaged in real science is going to engage them in real science writing. Students do not intuitively know how to do such writing, and instruction in scientific writing is not likely to occur in other school subjects. This writing instruction can serve two purposes: It can increase science understanding and engage students in activities that are useful in the assessment process in science itself. Montgomery (2005, p. 28) points out that student writing provides the teacher with "a tangible demonstration of learning and gives students the opportunity to connect their personal experiences to the content." Montgomery goes on to say that well-crafted, thoughtfully planned writing assignments require the student to do a "deep analysis of subject material."

Well-designed science writing assignments essentially have three critical attributes:

- 1. They provide authentic purposes for writing.
- 2. They motivate students to want to write and "do" science.
- 3. They help students plan and structure both their writing and their science activities.

These attributes are inextricably and symbiotically related. They combine to make the writing assignment comprehensible, authentically important, and feasible. Matsumura and his colleagues (2002) found that the cognitive challenge of the writing assignment had a significant effect on the quality of students' final drafts. That is, when students felt that assignments were cognitively challenging and satisfying to complete, they worked more effectively in producing a finished writing product. Writing experiences should help students feel good about their own writing.

Writing in science should begin with clear, imaginative writing purposes and stimuli that are then scaffolded in such a way that students are able to find an organizational structure for their writing. Writing fluency is often enhanced and supported by experiences like brainstorming or free writing.

Writing Assignments That Work in Science Classes

Writing in The American Scientist, Gopen and Swan (1990, p. 550) assert, "The fundamental purpose of scientific discourse is not the mere presentation of information and thought, but rather its actual communication." Of course, much of the public and many scientists would question this idea because they often think that scientific concepts, data, and analysis are extremely complex, difficult, and abstract. However, like Gopen and Swan, we would argue that what matters most in scientific writing is that a majority of the reading audience accurately perceives what the science writer has in mind, and that when science writing improves, it is a sign that the thinking is better. In the interest of promoting such thinking, we would like to offer 14 examples of different kinds of writing assignments that can provide legitimate, purposeful writing practice while promoting solid science learning and review.

Writing Hypothetical Letters

Often scientists share their observations and questions, as well as their differences of opinion, by letter or, in today's world, by blogs and e-mail messages. A very simple, yet effective example of a scientific exchange can be seen in the children's book, Dear Mr. Blueberry, by Simon James. In this book, James tells a story through an exchange of letters between a little girl named Emily and her teacher, Mr. Blueberry. Read the book aloud and talk about how Emily seeks help, information, and even opinion but is strongly true to her own observations. Students can work collaboratively to create their own hypothetical exchange of letters between themselves and a scientist or teacher. An important lesson of this poignantly sweet book is that a person should believe in the power of evidence even when it contradicts authority. A second lesson is that it is possible to contradict without being disrespectful to authority. In their letters, students can share observations about some theme or topic. If possible, the return letters by the "authorities" or "scientists" can come from older children or parents with science backgrounds. This activity can also be accomplished electronically in collaboration with university students studying to be science teachers.

2. Process Steps Analysis

After observing and/or taking part in a demonstration of a scientific process, the class could discuss what they saw. After talking the observations through, they can analyze and document the sequential steps that they would need to completely replicate the demonstration. In some cases, where it is safe and feasible, students might even have the opportunity to recreate the demonstration following their own written steps.

Identifying Critical Attributes

Small groups of students are asked to look at something. This can be an object of any kind or even a plant or an animal. Each group has a different object. They are given the opportunity to make a thorough examination, and identify its critical attributes. Critical attributes are those observable qualities that make the object, plant, or animal unique, allowing it to be distinguished from all others. The groups can then compile a list of what they believe to be the critical attributes of what they have seen. The lists are shared with the whole class, and students attempt to match the correct item with the critical attribute list. If accurate matching is not possible, students are encouraged to revisit and revise their lists.

4. Collaborative Writing of Scientific Stories

The teacher begins by reading (or having the students read) a science-related trade book. Fiction books, such as How Groundhog's Garden Grew (Cherry 2003), and nonfiction books, such as One Tiny Turtle (Davies 2001), can be used effectively for this activity. After students have become familiar with the story, the teacher starts a discussion focusing on the scientific content or process described in the book. Once the teacher is satisfied that students understand the science of the book, he or she has the class sit in a circle on the floor. Three clipboards with paper are given to students positioned at equal intervals around the circle. Each student holding a clipboard is asked to think about the science described in the book and then write one sentence that describes the first event in the book. They then pass the clipboards to the right. Students are instructed that when they receive a clipboard, they need to read what

has been written up to that point on the paper and then write an additional sentence describing the next event in the scientific process described in the story. Each paper will, in the end, contain a complete retelling of the story in the sequence it occurred. (Three papers are used to provide a means of keeping students actively engaged and to document student understanding of various parts of the content and process.)

5. Chain of Evidence

Because most students have watched many television shows dealing with forensic evidence in criminal investigations, those observation experiences can be used as the basis for writing activities. First the teacher identifies a crime for the team to investigate. Appropriate possibilities include robberies, kidnappings, acts of vandalism, or simple crimes that happen around the school every day. (Avoid scenarios involving violent or graphic crimes.) Begin with a brainstorming session. Have the class create a detailed summary of the chain of evidence leading to the arrest and trial of a suspect in their invented crime. Encourage them to use rich details with leading questions, such as the following: What kind of evidence are we looking for? Where are we likely to find evidence? How do we distinguish evidence related to the crime from what we would normally expect within the crime scene? What are some different ways of reconstructing the crime based on the evidence? What are some possibilities indicated by the evidence?

As an alternative to providing students with only the hypothetical crime, the teacher can also provide a list of "suspects" with a brief introduction to each. Students might then choose a "guilty" suspect and create a well-reasoned written explanation of fictional clues and evidence that could lead to the suspect's arrest. Students then have to learn the difference between being reasonably sure that someone is guilty and having sufficient evidence to bring them to trial, then having enough evidence to convict. Students can assume the roles of judge and jury in response to one another's assembly of evidence, ultimately deciding if the written chain of evidence is sufficient to lead to a trial and subsequent conviction.

6. Accident Report

In this activity, the teacher creates an accident scene by either using photos or actually staging an accident. Examples of cases might include a lunchroom mishap such as spilled trays; a playground incident such as a fall from a piece of equipment, someone being hit by a ball, or a collision between two running students; or a classroom situation such as stacks of papers falling on the floor and getting mixed together. After examining the accident scene and gathering evidence, the investigators are asked to write reports based on their observations. In very small groups, students then read one another's reports, noting inconsistencies or missing details.

7. Label Analysis

The teacher first organizes students into groups and then provides each group with an empty package or label for some product. The products can be foods, medicines, household cleansers, or anything else with a label that lists the ingredients. Each group then writes a description of what they know about the product based on the list of ingredients—in other words, what the contents list tells you and what it doesn't tell you. For example, if something advertised as

a juice product has little or no actual fruit juice in it, what does that mean? What does the label tell you about nutrition? What are the risks and benefits of using the product?

8. Technical Directions

The teacher begins by giving students toys or models that require some assembly. Students are then asked to take the role of the marketing staff at the product's manufacturing company. Students must first practice assembling the toy or model, carefully noting the quickest, most efficient steps for assembly. Then they are responsible for writing the directions that will be included on the package. Finally, students attempt to assemble other groups' toys or models using the new directions.

9. Scientific Directions

The teacher organizes the class into small groups and assigns each group a familiar location within a short distance from the school. Each group then discusses the best route to the assigned place and writes directions for getting there using landmarks based on scientific observations taken along the route. For example, the directions could include descriptions of plants, geological formations, or environmental cues. As a follow-up, have students see if they can navigate to a spot using others' directions.

10. Scientific Reporting

After a discussion of the essentials of accurately reporting scientific observations, students are organized into groups. Each group is given a video recording of a scientific experiment and asked to create a detailed list of observations that someone could use to recreate the experiment. The group is allowed to view the video as many times as they like to ensure that their observation list is accurate and complete. (See Resources for recommended video collections.)

11. Proposal Writing

The basic function of a proposal is to describe and pitch to others ideas for projects, papers, and research studies. Proposal writing is an essential activity for many scientists and the skills needed to write proposals should be developed as early as possible. Instead of simply assigning projects and research reports, teachers can provide general parameters for the intended assignment (e.g., research related to rock formation or a project depicting a food chain). Proposal writing activities can begin with a simple brainstorming session for project ideas. The fundamental question is, What do we want to do? After helping generate a list of ideas, the teacher can then lead students through the process of selecting and refining a single idea from the list. The next step is to create a proposal outline. The teacher may choose to have a set of specifications or even provide a simple outline such as the following:

- Title (A proposal...)
- Abstract or summary
- An introduction giving background and explaining the situation
- A statement of the project problem to be solved
- Some suggestion or suggestions about solutions to the problem

- Some explanation of how you will solve the problem
- An outline describing the proposed project outcome
- Step-by-step description of your research methods
- Conclusions

After the outline is created, assign a different group to write a draft for each part. Finally, piece together the proposal, editing each part so that it is consistent with the rest. The combined class effort can then serve as a model for small groups or individual students to develop their own proposals.

12. Pourquois Story Writing

Pourquois stories are fictional explanations of natural phenomena. They are usually based on definitive descriptions of the phenomena themselves. One example is "How the Elephant Got His Long Trunk." A series of logical plot actions are described, connecting the main characters in the story to the creation of the phenomenon. Provide students with a list of natural phenomena and have them create their own pourquois stories for one of these. Stress the importance of including scientific facts in explanations. Examples of appropriate subjects include why magnets attract, why we have tornadoes, why snakes shed their skin, why hens cackle and roosters crow, why owls hoot, how squirrels got their bushy tails, and why volcanoes erupt.

13. Preparing Descriptive Research Through Web Quests

Web quests are designed to be structured inquiry activities in which information is drawn from the internet. Web quests focus the learners' time on using information rather than looking for it and emphasize thinking at the levels of analysis, synthesis, and evaluation. Essentially, students are directed to a sequenced series of specific websites to solve a structured inquiry problem. A number of websites provide examples of Web quests (see Internet Resources). An example of a teacher-created web quest might ask students to determine which simple machines would be most effective in performing a particular multistep task. The web quest would be designed to lead students to a series of websites that present verbal and/or pictorial information about simple machines. Students would use the information to develop a written solution to the problem. Teachers can also train students to develop their own web quests as an alternative means of demonstrating understanding of particular scientific content or processes.

14. News Clip Observations

The teacher shows a short news film clip without sound. The clip may show a natural disasters the effect of weather, destruction brought about by human effort, or another science-related concept. Students then write descriptions of the event based on their observations. After students have completed their descriptions, replay the film clip with sound and ask students to compare the accompanying news commentary to what they wrote.

Final Note

A science class is not complete unless it helps students learn to think like scientists, and writing is an essential part of such thinking. The 14 writing experiences described here for integrating meaningful, interesting writing into science are not intended to be followed to the letter. Rather, they are all adaptable ideas. Neither are they intended to replace traditional science instruction. However, if we want our students to think like scientists, then it is only logical that we should ask them to observe, document, and write like scientists, as well. We believe that these and other thoughtfully structured writing activities can be integrated into science classrooms in a way that addresses curriculum, provides alternative, authentic means of assessing student understanding, and motivates students to become actively involved in the learning process.

References

Cherry, L. 2003. How groundhog's garden grew. New York: Blue Sky Press.

Davies, N. 2001. One tiny turtle. Cambridge, MA: Candlewick Press.

Gopen, G. D., and J. A. Swan. 1990. The science of scientific writing. The American Scientist 78 (November-December): 550-558.

James, S. 1991. Dear Mr. Blueberry. New York: Margaret K. McElderry Books

Matsumura, L. C., G. G. Patthey-Chavez, R. Valdes, and H. Garnier. 2002. Teacher feedback, writing assignment quality, and third-grade students' revision in lower- and higher-achieving urban schools. *Elementary School Journal* 103 (1): 3–25.

Montgomery, M. 2005. Authentic science writing. Principal Leadership: High School Education 5 (6): 28-31.

Penrose, R. 2005. Einstein's miraculous year: Five papers that changed the face of physics. Princeton, NJ: Princeton University Press.

Internet Resources

WebQuest.org

www.webquest.org

Teachnology

www.teach-nology.com/teachers/lesson_plans/computing/web_quests/science

Science Web Quests

www.can-do.com/uci/k12-lessons.html

Index

Aeronautical engineering, 131	CLASP. See Children's Literacy and Science
Age appropriateness, 273	Project
Amplified assessment, 264	Class discussion, 61
Analytical rubrics, 49–55	Class inquiry questions, 92
Analyzing science journals, 228–229	Class question, constructing, 92
Anonymous peer-editing lab, 112	Collaborative writing, 19–20
Ant investigation worksheet, 185	Communication
Assessment rubrics, 179	concepts regarding, 82–83
Assessment tools, books as, 162–164	as science inquiry skill, 14
Assessments	Community involvement, forensic science,
amplified, 264	190–191
journals, 142–143, 244–245	Concepts, communication of, 202
notebooks, 235–236	Conducting experiments, 95–96
P.O.E.T.R.Y. tool, 278	Connecting knowledge, 32
prior knowledge, 265–266	Consequences, consideration of, 222
science journals, 244–245	Content accuracy, 53
science notebooks, 235–236	CORE Model of Instruction, 31–35
Attitudes, scientific, 222	Creative writing, 211–214
	Critical attributes, identifying, 19
Background knowledge, assessing, science	Critical thinking, 47–48
notebooks for, 268	Current events science journal, 124
Biography, 219–225	Current science, 123–125
Biological engineering, 131	Curricula connections, 183–187
Blogs, 253–258	Custom ABC books, 7
assessment, 258	
student permission slip, 255	Data charting, 47, 155–156
with student postings, 256	sample, 155
for teachers, 255	Directions, 57–61
Books	student, 57–61
as assessment tools, 162-164	sample, 60
brainstorming, 173	Discussion webs, 47–48
Brainstorming, 92, 173	sample, 48
	Draft, 53
Chain of evidence, 20	final, 53
Chapter from student-authored book,	Dramatic writing, lesson, 57-58
sample, 6	Drawing, 75–80
Chart, data, sample, 155	
Chemical engineering, 131	e-mails to scientists, 7–8
Children's Literacy and Science Project, 271	Ecosystem journalism, 177–181
Civil engineering, 131	student newspaper, 177–181

Editing, peer, 111–113 Educational web logs for teachers, 255	benefits of, 116 children writing, 117–119
Electrical engineering, 131	extensions, 120
Elementary grades, 31–39	student perspectives, 119–120
Engineering careers, 131	Home web logs, with student postings, 256
English immersion, 69–74	Hypothesizing, 95
English language learners, 75–80 drawing, 75–80	Hypothetical letters, 19
Entry in journal, sample, 157	Identifying critical attributes, 19
Environmental engineering, 131	Illustrated information books, 161–166
Essays, 139-141, 175	Imaginative writing, 29–30
Evaluation form, 224	Immersion in English, 69–74
Experiment procedures, 95	Inference charts, observations, contrasted, 6
Explaining, as science inquiry skill, 14	Inquiry assignments, 130
Exploration, 205–209	Inquiry skills, 14
Extensions, 98	Insights, 38
	Interactive notebooks, 233–237
Feedback, 2, 242–243	rubrics, 236
Field guides, 145–151, 153–160	strategy, 208
page, 148, 158	Interactive reflective logs, 259-264
sample, 148, 158	amplified assessment, 264
rubrics, 150	creating, 259–261
sample, 150	interactive nature of, 263-264
Final draft, 53	reflective thinkers, 264
First grade, 153–160	sample, 262–263
Flipbook, 101	Interactive science notebooks, 208, 233-237
construction, 102	Interpreting data, as science inquiry skill, 14
text example, 103	Inverted-pyramid writing, 131
Focus statements, 34	Investigation, 85-89, 91-99
Forensic science, 189–192	IRLs. See Interactive reflective logs
community involvement, 190–191	
mock case, 191–192	Journal entries, 157 sample, 157
Generalizations, 251	Journal prompts, student responses, 5
Genetic engineering, 131	Journal rubrics, 230, 244
Graphic organizers, 33	Journal scale rubrics, 230
Graphs, 96	Journal writing, 70
evaluation of, 97	Journaling rubric scale, 230
GRASP strategy, 46–47	Journalism, student newspaper, 177–181
Guiding journal entries, 240–241	Journals, 5-6, 139-143, 227-231, 239-245
Guiding science journal entries, 240-241	analyzing, 228–229
	assessment, 142–143, 244–245
Haiku writing, 115–121	before/after reflections, 229–230
assignments, 119	defining, 239

essays, 139–141	Linear strings, 33
feedback, 242–243	Listing variables for experiment, 93
guiding journal entries, 240–241	Logic, respect for, 222
letters, 141–142	Logistics, journals, 240
logistics, 240	Logs, reflective, interactive, 259–264
makeover, 228	amplified assessment, 264
motivation, 241–242	creating, 259–261
notebooks, contrasted, 277	interactive nature of, 263–264
notebooks contrasted, 277	reflective thinkers, 264
poetry, 142	Longer projects, strategy for, 202
reviewing, 271–275	
age-appropriate responses, 273	Maps, 154
Children's Literacy and Science Project,	Measures of success, 37
271	Mechanical engineering, 131
conceptualizing science, 272	Misconceptions, identifying, 272
decision making, 274	Mock case, forensic science, 191–192
instructional structuring, 272–273	Mode continuum phases, 70
interpretation, 274	experimenting, 70
misconceptions, identifying, 272	journal writing, 70–71
view selection, 273–274	learning key vocabulary, 70–71
student analysts, 230–231	teacher-guided reporting, and, 70–71
students with special needs, 243	Motivation, 241–242
value of, 239–240	Multigenre lab reports, 105–109
Justifications, 251	assessing success, 108–109
	demonstrating learning, 107–108
K-W-L chart, 159	hands-on activity, 105–106
Key-word process, 203	rubrics, 107
Kinesthetic writing, 101–103	Mystery box writing, 167–172
,g,	Mystery plant identification worksheet, 147
Lab report rubrics, 107, 113	, 5, p.a
Lab reports, 105–109	National Science Education standards, 116
assessing success, 108–109	Nature detectives, assignments for, 155
demonstrating learning, 107–108	Nature of science, 221
hands-on activity, 105–106	News clips, 22
Label analysis, 20–21	Newsletters, 135–137
Learning logs, 247–252	student, sample, 136
applications, 251	Newspaper task sheet, 129
explanation, 251	Newspapers, 127–133, 177–181
generalizations, 251	content ideas, 131
justifications, 251	Nonfiction, 5–9, 219–225
reflection, 248–249	Notebook entries, 76
rubrics, 249–251	Notebook rubrics, 236
Letters, 141–142	Notebooks, 76, 233–237, 265–269, 277
Letters to authors, 28	assessing, 235–236

assessing background knowledge, 268	student, sample, 159
becoming records, 269	Reflective logs, 259–264
interactive, 233–237	amplified assessment, 264
journal, contrasted, 277	creating, 259–261
journals, contrasted, 277	interactive, sample, 262–263
prior knowledge assessment, 265–266	interactive nature of, 263–264
quick writes, 266–269	reflective thinkers, 264
as records, 269	Reflective thinkers, 264
science journals, contrasted, 277	Refutational-text grading rubric, 53
writing prompts, 268	Refutational texts, 50
	Refutational writing prompt, 51
Observational skills, 14, 115–121	Related variables sets, 94
Observations, inference charts, contrasted, 6	Reporting on accidents, 20
Organizing information, 32–33	Reports, 8
Outlines, 53	Research, 63–65
	via web, 22
Peer editing, 111–113	Reviewing, as science inquiry skill, 14
Persuasive writing, 26	Reviewing journals, 271–275
Plagiarizing, 45–48	age-appropriate responses, 273
Planning, as science inquiry skill, 14	Children's Literacy and Science Project
Pluto project, 27	271
Poetry, 142	conceptualizing science, 272
P.O.E.T.R.Y. assessment tool, 277–283	decision making, 274
acronym explanation, 278	instructional structuring, 272–273
scoring rubric, 279	interpretation, 274
Pop-up biography, 222–224	misconceptions, identifying, 272
Prairie resources, 179	view selection, 273–274
Prediction, as science inquiry skill, 14	Role playing, 26–28
Prelab investigation, 92	Rough drafts, 53
Prior knowledge assessment, 265–266	Rubrics, 37, 98, 159
Process steps analysis, 19	analytical, 49–55
Prompts	science writing, 49–55
sample, 36	assessment, 179
writing, 5, 34, 36, 51–52, 268	field guide, sample, 150
Proposal writing, 21–22	interactive notebook, 236
Publishing student newspaper, 179	journals, 230, 244
rubiisiiing student newspaper, 179	-
Questioning as science inquiry skill 14	lab reports, 98, 113
Questioning, as science inquiry skill, 14	learning log, 249–251
Quick writes, 266–269	multigenre lab report, 107
Deticuele for esigned uniting 1 102 106	P.O.E.T.R.Y. scoring, 279
Rationale for science writing, 1, 193–196	refutational-text grading, 53
Reading comprehension, 11–16	sample field guide, 150
Records, science notebooks as, 269	science interactive notebook, 236
Reflection, 33–35, 248–249	

Safety procedures, 96	assessing, 235–236
Sample chapter, student-authored book, 6	becoming records, 269
Sample data chart, 155	interactive, 233–237
Sample discussion web, 48	journal, contrasted, 277
Sample field guide page, 148, 158	journals, contrasted, 277
Sample field guide rubrics, 150	prior knowledge assessment, 265–266
Sample interactive reflective log, 262–263	quick writes, 266–269
Sample journal entry, 157	as records, 269
Sample prompt, corresponding writing,	science journal, contrasted, 277
graphic organizer, 36	science journals, contrasted, 277
Sample science journal entry, 157	writing prompts, 268
Sample student directions, 60	Science wheel, writing in, 41, 43
Sample student newsletter, 136	Science writing
Sample student reflection, 159	analytical rubrics, 49–55
Sample writing technique, 197–203	as assessment tool, 25-30
Scavenger hunts, 154	biographies, 219–225
Science careers, 131	blogs, 253-258
Science-cognition-literacy framework, 11–16	creative writing, 211–214
Science interactive notebooks, 234, 236	current science, 123–125
rubric, 236	curricula connection, 183–187
Science journals, 5-6, 139-143, 227-231,	dramatic writing, 57–58
239–245	drawing, 75–80
defining, 239, 277–278	ecosystem journalism, 177–181
entry, sample, 157	editing by peers, 111–113
logistics, 240	English language learners, 75–80
makeover, 228	field guides, 145–151, 153–160
prompts, student responses, 5	first grade, 153–160
reviewing, 271–275	forensic science, 189–192
age-appropriate responses, 273	haiku, 115–121
Children's Literacy and Science Project,	illustrated information books, 161–166
271	interactive reflective logs, 259-264
conceptualizing science, 272	interactive science notebooks, 233–237
decision making, 274	investigation, 85–89, 91–99
instructional structuring, 272–273	journals, 139–143, 227–231, 239–245
interpretation, 274	kinesthetic writing, 101–103
misconceptions, identifying, 272	lab reports, 105–109
view selection, 273–274	learning logs, 247–252
rubric, 244	learning tool, 41–44
rubric scale, 230	multigenre lab reports, 105–109
science notebook, contrasted, 277	mystery box writing, 167–172
writing, 70	newsletters, 135–137
Science newspaper task sheet, 129	newspapers, 127-133, 177-181
Science notebooks, 76, 233–237, 265–269,	nonfiction, 5–9, 219–225
277	peer editing, 111–113

plagiarizing, 45–48	Student maps, 154
P.O.E.T.R.Y. assessment tool, 277–283	Student newsletters, 135–137
reading comprehension, 11–16	sample, 136
reasons to write, 193–196	Student newspapers, 127–133, 177–181
refutational texts, 49–55	Student permission slip, web log use, 255
reviewing journals, 271–275	Student reflection, 159
sample writing technique, 197–203	Student research paper, key-word process, 203
science inquiry skills, 11–16	Student surveys, 64–65
science notebook, 265–269	Students with special needs, 243
scientist's view, 81–83	Success, measures of, 37
strategies for, 17–23	Supporting details, 34
structured English immersion science,	Supports in science writing, 1–2
69–74	
student-authored books, 6	Task organization, 42
student directions, 57-61	Task sheet, genetics assignment, 43
student writing, 63–67	Teachers' insights, 38
third grade, 173–175	Technical directions, 21
trade books, 183–187	Techniques, 197–203
upper elementary grades, 31–39	Testable problems, 94
web logs, 253–258	Thinkers, reflective, 264
Scientific attitudes, 222	Third grade, 173–175
Scientific directions, 21	Trade books, 183–187
Scientific reporting, 21	
Scientist's view, 81–83	Upper elementary grades, 31–39
SCL framework. See Science-cognition-	
literacy	Value of science journals, 239–240
SEI. See Structured English immersion	Variables sets, relation of, 94
Servers, web logs, 255	Verification, 222
Solar cooker lab, 92–97	
Sources, integrating, 47	Water cycle, 211–214
Special needs, students with, 243	Web discussion, 47–48
Story writing, 22	sample, 48
Strategies for writing, 17–23	Web logs, 253–258
Streamlining, 66–67	assessment, 258
Structured English immersion, 69-74	servers, 255
Student-authored books, 6-7	student permission slip, 255
Student-centered labs, 91–92	for teachers, 255
Student directions, 57–61	Web quest research, 22
sample, 60	Web research, 22
Student journals, 139–143	Wheel, science, writing in, 41, 43
assessment, 142–143	Writing
essays, 139–141	analytical rubrics, 49–55
letters, 141–142	as assessment tool, 25-30
poetry, 142	biographies, 219–225

blogs, 253-258 creative writing, 211-214 current science, 123-125 curricula connection, 183–187 dramatic writing, 57-58

drawing, 75-80

ecosystem journalism, 177–181 editing by peers, 111–113 English language learners, 75–80

field guides, 145–151, 153–160 first grade, 153-160

forensic science, 189-192

haiku, 115-121

illustrated information books, 161–166 interactive reflective logs, 259-264

interactive science notebooks, 233-237

investigation, 85-89, 91-99

journals, 139–143, 227–231, 239–245

kinesthetic writing, 101-103

lab reports, 105-109 learning logs, 247-252 learning tool, 41-44

multigenre lab reports, 105–109

mystery box writing, 167–172

newsletters, 135-137

newspapers, 127-133, 177-181

nonfiction, 5-9, 219-225 peer editing, 111-113 plagiarizing, 45-48

P.O.E.T.R.Y. assessment tool, 277–283

reading comprehension, 11-16

reasons to write, 193-196 refutational texts, 49-55

reviewing journals, 271–275

sample writing technique, 197-203

science inquiry skills, 11-16 science notebook, 265-269

scientist's view, 81-83

strategies for, 17-23

structured English immersion science,

69-74

student-authored books, 6 student directions, 57-61 student writing, 63-67 third grade, 173-175

trade books, 183-187

upper elementary grades, 31-39

web logs, 253-258

Writing center activities, 170

Writing prompts, 5, 34, 36, 51-52, 268 Writing technique, sample, 197-203

Xanga, use of, 253

Xboxes, 253

Zoology, 131

Zoom-ins, 146, 149