Project Earth Science: Astronomy
Revised 2nd Edition
NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

PERMISSIONS

Book purchasers may photocopy, print, or e-mail up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers may reproduce forms, sample documents, and single NSTA book chapters needed for classroom or noncommercial, professional-development use only. E-book buyers may download files to multiple personal devices but are prohibited from posting the files to third-party servers or websites, or from passing files to non-buyers. For additional permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA’s rights and permissions policies.

Featuring SciLinks—a new way of connecting text and the Internet. Up-to-the minute online content, classroom ideas, and other materials are just a click away. For more information go to www.scilinks.org/Faq.aspx.
Table of Contents

Acknowledgments..vii

Introduction

Additions and Changes to Revised 2nd Edition...ix
About *Project Earth Science: Astronomy* ...ix
Creating Scientific Knowledge ..x
Getting Ready for Classroom Instruction ..xi
Key Concepts ..xii
Project Earth Science: Astronomy and
the *National Science Education Standards* ...xii
Safety in the Classroom Practices ..xiv
Standards Organizational Matrix ..xvi
Activities at a Glance Matrix ...xviii

Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1</td>
<td>Measuring the Moon Indirectly</td>
<td>1</td>
</tr>
<tr>
<td>Activity 2</td>
<td>Light Year as Distance</td>
<td>11</td>
</tr>
<tr>
<td>Activity 3</td>
<td>Solar System Scale</td>
<td>21</td>
</tr>
<tr>
<td>Activity 4</td>
<td>The Speed of Light</td>
<td>31</td>
</tr>
<tr>
<td>Activity 5</td>
<td>How Far to the Star? The Parallax Effect</td>
<td>39</td>
</tr>
<tr>
<td>Activity 6</td>
<td>The Formation of the Solar System</td>
<td>51</td>
</tr>
<tr>
<td>Activity 7</td>
<td>Habitable Zone: How Distance and Temperature Are Related</td>
<td>61</td>
</tr>
<tr>
<td>Activity 8</td>
<td>The Greenhouse Effect</td>
<td>71</td>
</tr>
<tr>
<td>Activity 9</td>
<td>Creature Feature: Comparing Earth to Mars and Venus</td>
<td>83</td>
</tr>
</tbody>
</table>
Activity 10 Reasons for the Seasons ... 93
Activity 11 Phases of the Moon ... 105

Readings

Introduction ... 117

Reading 1 Angular Diameters ... 121
Reading 2 What Is a Light Year? ... 125
Reading 3 Hubble Space Telescope ... 127
Reading 4 Scale Measurements ... 129
Reading 5 The Goldilocks Effect: Earth Is Just Right 131
Reading 6 The Parallax Effect ... 133
Reading 7 Earth as a System ... 135
Reading 8 Global Warming ... 137
Reading 9 The Water Cycle .. 145
Reading 10 The Greenhouse Effect ... 151
Reading 11 The Coming Climate Crisis? .. 153
Reading 12 Reasons for the Seasons ... 155
Reading 13 Phases of the Moon ... 159

Resources .. 163
About the Authors .. 169
Index ... 171
Acknowledgments

Many people contributed to this revision of *Project Earth Science: Astronomy*, as others did to previous editions. This volume began as a collection of Activities and Readings for Project Earth Science (PES), a professional development program for middle school teachers, funded by the National Science Foundation. The Project Earth Science team consisted of middle school teacher leaders, college professors and scientists, and innovators in educational research. The Activities were written and adapted by this team, and have undergone many revisions as a result of using them in the classroom, and feedback provided by other teachers through in-service training.

The principal investigators on the original project were Iris R. Weiss, Diana Montgomery, Paul B. Hounshell, and Paul D. Fullagar. The teacher leaders were Kevin Barnard, Kathy Bobay, Pam Bookout, Betty Dean, Lynanne (Missy) Gabriel, Flo Gullickson, Michele Heath, Cameron Holbrook, Linda Hollingsworth, Geoff Holt, Kim Kelly, Laura Kolb, Karen Kozel, Kim Taylor, Dana White, Tammy Williams, and Lowell Zeigler. Significant contributions were made to the original publication by Kevin Barnard, Missy Gabriel, and Geoff Holt. The original manuscript was reviewed for scientific accuracy by Wayne Christiansen, professor of astronomy at the University of North Carolina at Chapel Hill. We would like to thank all who contributed to the previous editions of *Project Earth Science: Astronomy*. P. Sean Smith was author of the first edition, and part of the PES team.

This edition benefited greatly by the invaluable contributions made by our talented reviewers for their suggestions and feedback, including Gary Sampson, Elaine Lewis, and Paul D. Fullagar. We also thank Adrianna Edwards and Ron Edwards of Focus Strategic Communications Inc., Oakville, Ontario, Canada, for their considerable efforts in preparing this volume for publication.

We would also like to thank the rest of the Focus team: Nancy Szostak, designer and formatter; Sarah Waterfield and Carolyn Tripp, illustrators; and Linda Szostak, copyeditor and proofreader.

Project Earth Science: Astronomy, Revised 2nd Edition, is published by NSTA Press. We thank everyone at NSTA who helped with this volume, and especially appreciate the efforts of the publisher, David Beacom. NSTA safety columnist, author, and consultant Ken Roy reviewed the entire manuscript for safety compliance. NSTA Press managing editor Jennifer Horak and project editor Mark Farrell led NSTA's in-house team for the revised second edition.
Additions and Changes to Revised 2nd Edition

Activities and Readings have been rewritten to improve clarity and scientific currency, and to suggest additional teaching and learning strategies. The Resources section at the back of this book is almost entirely new. At the beginning of each Activity, there now is a Planner to quickly provide information about that Activity. Material specifically for students, and material specifically for teachers, is more clearly delineated. There are new sections for students within Activities titled What Can I Do? and Fast Fact. Additional new sections included for teachers are How Do We Know This?, Safety Alerts!, Connections, Differentiated Learning, and Assessment.

Within each Activity, there is a section for teachers titled Preconceptions containing a series of questions designed to help draw students into a discussion of the subject. These discussions should reveal students’ preconceptions. A preconception is an opinion or view that a student might have prior to studying a particular topic. These opinions may not be accurate because the student does not have the correct information or does not understand that information. Asking students about their preconceptions at the outset of a new instructional topic can provide useful information about what students already know and what misinformation needs to be corrected for them to have a good understanding of the topic.

About Project Earth Science: Astronomy

Project Earth Science: Astronomy is based on the concept of the uniqueness of Earth among all the planets in the solar system. Concepts and Activities were chosen that elaborate on this theme. This volume focuses on planetary astronomy and aims to give students a sense of viewing Earth from some point beyond the solar system. By placing Earth in the context of the solar system and viewing it as “just another planet,” it is hoped that students will begin to grasp the unique aspects of the planet. Chief among these aspects is that Earth is the only planet in the solar system capable of sustaining life.

This book is divided into three sections: Activities, Readings, and Resources. The Activities in this volume are designed to be hands-on. In collecting and developing these Activities, we tried to use materials that are either readily available in the classroom or inexpensive to purchase.

Each Activity has a student section and a teacher guide. The student section has background information that briefly explains the concepts behind the Activity in non-technical terms. Following this is the procedure for the Activity and a set of questions to guide students as they draw conclusions.

The teacher versions of the Activities, titled Teachers’ Guide to Activity X, contain a more detailed version of the background information given to students, and a summary of the important points that students should understand after completing the Activity.

Project Earth Science: Astronomy, Revised 2nd Edition

Copyright © 2011 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
You will find the approximate time to allow for each Activity in the section titled Time Management. The Preparation and Procedure section describes the setup for the Activity and gives sources of materials. Extended Learning gives ideas for challenging students to extend their study of the topic. Use these ideas within the class period allotted for the Activity if time and enthusiasm allow. Interdisciplinary Study includes ideas for relating the concepts in the Activity to other science topics and to other disciplines such as language arts and social studies. The final section of the teachers’ guide provides answers to the questions in the student section of the Activity, and discussions on Assessment.

The Activities are followed by a section of Readings for the teacher. One or more of these Readings are referred to in the guide to each Activity. The Readings provide both background information on the concepts underlying the Activities as well as supplementary information to enhance classroom discussions.

A guide to astronomy resources for students and teachers follows on page 163. Though not exhaustive, the guide should give teachers the means to explore this fascinating subject.

Creating Scientific Knowledge

Everyone has wondered if there is life elsewhere in the universe. Could those distant, tiny points of light seen in the night sky have orbiting planets that might also have intelligent life forms? What is it about planet Earth that makes life possible? Do any other planets in our solar system have the same or similar conditions? Do they have water or oxygen? Where are the other planets located in relation to Earth and the Sun?

Ever since the dawn of the space age in 1957, space exploration has advanced our knowledge of the neighboring planets that share our Sun. Robot spacecraft have flown past each of the planets, and orbited Mercury, Venus, Mars, Jupiter, and Saturn. Robotic spacecraft have landed on Venus and Mars. For the first time, we can compare their geological and meteorological conditions with those of Earth. As scientists accumulate this new data, it also reveals how life, as we know it, is unique to Earth.

The space program has given us a snapshot of our own blue and white planet as photographed by journeying spaceships. Imagine what you would see if you could look at Earth from a point above the entire solar system. What would Earth look like, and how big would it be compared to the other planets? Does it spin and revolve like the others? Do the other planets have a moon like Earth’s? Is the solar system crowded?

To answer these questions, we must first know where Earth is in relation to all the other planets. The Sun is at the center of the solar system with fast-orbiting Mercury in the first planet position. Venus is next, followed by Earth and Mars as you move out from the Sun. Moving still farther away are the giant planets—Jupiter, Saturn, Uranus, and Neptune.

Only when Earth is placed in the context of the solar system and considered as just another planet do its unique features come to light. NASA’s Earth Science Program studies Earth as one global system. This is the perspective NASA has taken in studying every other planet. Now it is turning its attention back to our planet. Some of Earth’s unique aspects have already been discovered using this approach. As NASA wrote, “If Earth were much smaller, it could not retain an atmosphere. If it were much closer to or much further from the Sun, the oceans would boil or freeze. If its orbit and axis of rotation did not fluctuate, the cyclical variations in climate that have spurred evolution would not exist.”
Getting Ready for Classroom Instruction

The Activities in this volume are designed to be hands-on. In developing them, we tried to use materials that are either readily available in the classroom or inexpensive to purchase. Note that many of the Activities also could be done as demonstrations.

Each Activity has two sections: a Student section and a Teachers’ Guide. Each Student section begins with Background information to explain briefly, in nontechnical terms, what the Activity is about; the Objective states what students will learn. Then there is Vocabulary, which includes important astronomical terms students should know. This is followed by a list of the Materials needed and an estimate of the amount of Time that the Activity will take. Following this introduction is a step-by-step Procedure outline and a set of Questions and Conclusions to facilitate student understanding, encourage constructive thinking, and advance the drawing of scientific conclusions.

Each Student section concludes with additional activities for students in What Can I Do?

The Teachers’ Guide contains What Is Happening?, a more thorough version of the background information given to students. The How Do We Know This? section explains techniques or research methods astronomers currently use to generate knowledge related to the Activity. This is followed by possible student Preconceptions, which can be used to initiate classroom discussions. Next comes a summary of What Students Need to Understand. Then Time Management discusses the estimated amount of time the Activity will take. Preparation and Procedure describes the setup for the Activity. Extended Learning challenges students to extend their study of each topic. Interdisciplinary Study relates the science in each Activity to other disciplines, such as language arts, history, and social sciences. Connections links astronomy to a similar process or concept in geology, meteorology, or physical oceanography. The final portion of each Teachers’ Guide includes possibilities for Differentiated Learning, Answers to Student Questions, and suggestions for Assessment.

Although the scientific method often has been presented as a “cookbook” recipe—state the problem, gather information, form a hypothesis, perform experiments, record and analyze data, and state conclusions—students should be made aware that the scientific method provides an approach to understanding the world around us, an approach that is rarely so straightforward. For instance, many factors can influence experimental outcomes, measurement precision, and the reliability of results. Such variables must be taken into consideration throughout the course of an investigation.

As students work through the Activities in this volume, make them aware that experimental outcomes can vary and that repetition of trials is important for developing an accurate picture of concepts they are studying. By repeating experimental procedures, students can learn to distinguish between significant and insignificant variations in outcomes. Regardless of how carefully they conduct an experiment, they can never entirely eliminate error. As a matter of course, students should be encouraged to look for ways to eliminate sources of error. However, they also must be made aware of the inherent variation possible in all experimentation.

Finally, controlling variables is important in maintaining the integrity of an experiment. Misleading results and incorrect conclusions often can be traced to experimentation where important variables were not rigorously
controlled. Teachers should encourage students to identify experimental controls and consider the relationships between the variables under study and the factors held under control.

Key Concepts

The Activities in this volume are organized under three broad astronomical concepts:

Key Concept I: Earth’s position in the solar system
Key Concept II: Earth’s unique properties
Key Concept III: Earth’s characteristic phases and seasons

First, students investigate techniques that are used to measure distances and sizes of the magnitude found in the solar system. Using the information gained from these methods, students then place Earth in the solar system in relation to the rest of the planets. Second, students perform activities that stress the uniqueness of Earth. This section focuses on comparisons of Earth to other planets, particularly Venus and Mars. In the third section of the book, students are confronted with two areas of planetary astronomy about which many people have preconceptions: the reason for the phases of the Moon and the explanation of Earth’s seasons.

We suggest organizing Project Earth Science Activities around these key concepts. To facilitate this approach, the conceptual outline for Astronomy is presented below, with the numbers of the Activities that pertain to each concept.

I. While Earth’s position relative to the Sun and other planets is always changing, its distance from the Sun is almost constant. To understand many features of Earth that make it unique and habitable, we need to know where Earth is in relation to the Sun and other planets. Several tools are available to learn where Earth is in the solar system. (Activities 1, 2, 3, 4, and 5)

II. Earth’s position in the solar system is responsible for its unique properties. Among these properties is the fact that Earth is the only planet in the solar system that sustains life. (Activities 6, 7, 8, and 9)

III. Many preconceptions exist about Earth and its characteristics. Looking at Earth as “just another planet” can help correct these preconceptions. (Activities 10 and 11)

Project Earth Science: Astronomy and the National Science Education Standards

Effective science teaching within the middle-level age cluster integrates the two broadest groupings of scientific activity identified by the National Science Education Standards:

1. Developing skills and abilities necessary to perform scientific inquiry,
2. Developing an understanding of the implications and applications of scientific inquiry.

Within the context of these two broad groupings, the Standards identify specific categories of classroom activities that will encourage and enable students to integrate skills and abilities with understanding.

To facilitate this integration, a Standards organizational matrix for Project Earth Science: Astronomy appears in the front matter on pages xvi–xvii. The categories listed along the x-axis of the matrix, also listed below, correspond to the categories of performing and understanding scientific activity identified as appropriate by the Standards.

Subject and Content. Specifies the topic covered by an Activity.
Scientific Inquiry. Identifies the “process of science” (i.e., scientific reasoning, critical thinking, conducting investigations, formulating hypotheses) employed by an Activity.
Unifying Concepts. Links an Activity’s specific subject topic with “the big picture” of scientific ideas (i.e., how data collection techniques inform interpretation and analysis).

Technology. Establishes a connection between the natural and designed worlds.

Personal/Social Perspectives. Locates the specific astronomy topic covered by an Activity within a framework that relates directly to students’ lives.

Historical Context. Portrays scientific endeavor as an ongoing human enterprise by linking an Activity’s topic with the evolution of its underlying principle.
The teaching and learning of science today through hands-on, process, and inquiry-based activities make classroom and laboratory experiences effective. Addressing potential safety issues is critical to securing this success. Although total safety cannot be guaranteed, teachers can make science safer by adopting, implementing, and enforcing legal standards and best professional practices in the science classroom and laboratory. Safety in the Classroom Practices includes both basic safety practices and resources specific to the Project Earth Science series. It is designed to help teachers and students become aware of relevant standards and practices that will help make activities safer.

1. When working with glassware, meter sticks, wires, projectiles, or other solid hazards, students use appropriate personal protective equipment (PPE), including safety glasses or goggles, gloves, and aprons.

2. When working with hazardous liquids, indirectly vented chemical splash goggles, gloves, and aprons must be used.

3. Always review Material Safety Data Sheets (MSDSs) with students relative to safety precautions when working with hazardous chemicals.

4. Be careful to wipe up any spilled water on the floor quickly—slip and fall hazard.

5. Be careful when working with the hot plate and hot water—skin can be burned. Have students notify you immediately if someone is splashed with boiling water.

6. Be careful when working with a hot lamp—skin can be burned. Have students notify you immediately if someone is burned.

7. When working with lamps, keep away from water or other liquids—electrical shock hazard.

8. Handle glass thermometers with care so as not to drop or break them—broken glass is a sharp hazard.

9. Know the source of dirt used in an Activity and make sure the source is pesticide- and fungicide-free.

10. Use caution when working with sharp items such as scissors and floral or electrical wires, as they can cut or puncture skin.

11. Wash hands with soap and water upon completing the lab.

12. Use caution when working with pointed objects such as compasses or stakes—impalement hazards.

13. Make sure all trip and fall hazards are removed from the floor prior to darkening the room for an Activity.

14. Keep extension cords off the floor—trip and fall hazards.

15. Make sure that students never look directly at the Sun without appropriate eye protection—major eye hazard.

16. Never eat food or beverage that has been either brought into the lab or used in the lab—potential hazardous chemical contamination.

17. Make sure to abide by school and school district rules on using candy as a reward.

18. When heating liquids, use only heat-resistant glassware (Pyrex- or Kimax-type equipment). Remember that glass labware is never to be placed directly on heating surfaces. Hot containers are potential hazards.

19. When heating liquids on electrical equipment such as hot plates, use ground-fault-protected circuits (GFI).

20. Always remind students of heat and burn hazards when working with heat sources such as hot plates, heating water, and more.
21. Select only markers with low volatile organic compounds (VOC). Some students may be allergic to VOC vapors.

22. Use only asbestos-free vermiculite. Vermiculite containing asbestos will expose students and teacher to this health hazard.

23. Teachers should always model appropriate techniques before requiring students to cut, puncture, or dissect.

For additional safety regulations and best professional practices, go to

NSTA: Safety in the Science Classroom:
www.nsta.org/pdfs/SafetyInTheScienceClassroom.pdf

NSTA Safety Portal:
www.nsta.org/portals/safety.aspx
Standards Organizational Matrix

<table>
<thead>
<tr>
<th>Activity</th>
<th>Subject Matter and Content</th>
<th>Scientific Inquiry</th>
<th>Unifying Concepts and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1 Measuring the Moon</td>
<td>Indirect measurement of solar system objects</td>
<td>Understanding how to measure large distances</td>
<td>Use of mathematics in astronomy</td>
</tr>
<tr>
<td>Indirectly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 2 Light Year as Distance</td>
<td>Concept of light year as a unit of distance</td>
<td>Expressing large distances in astronomy</td>
<td>Measurement of large distances</td>
</tr>
<tr>
<td>Activity 3 Solar System Scale</td>
<td>A scale model of size and distance in the solar system</td>
<td>Determining scale in the solar system</td>
<td>Measurements and models</td>
</tr>
<tr>
<td>Activity 4 The Speed of Light</td>
<td>Light has a finite speed</td>
<td>Understanding the consequences of light having a finite speed</td>
<td>Effect of finite speed of light on observation of distant objects</td>
</tr>
<tr>
<td>Activity 5 How Far to the Star?</td>
<td>Parallax (indirect measurement)</td>
<td>Measuring large distances using parallax</td>
<td>Relationship between explanation and evidence</td>
</tr>
<tr>
<td>Activity 6 The Formation of the</td>
<td>Solar nebula theory</td>
<td>Modeling accretion</td>
<td>Evidence and models</td>
</tr>
<tr>
<td>Solar System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 7 Habitable Zone</td>
<td>Distance and light</td>
<td>Investigating conditions necessary for life on a planet</td>
<td>Interactions among variable conditions within a system</td>
</tr>
<tr>
<td>Activity 8 The Greenhouse Effect</td>
<td>Nature and behavior of light</td>
<td>Modeling the heat-trapping effect of greenhouse gases</td>
<td>Relationship between explanation and evidence</td>
</tr>
<tr>
<td>Activity 9 Creature Feature</td>
<td>Compare Earth to Mars and Venus</td>
<td>Comparing possible life conditions on Venus and Mars to Earth</td>
<td>Relationship of life forms to physical environment</td>
</tr>
<tr>
<td>Activity 10 Reasons for the</td>
<td>Earth’s seasons</td>
<td>Investigating the causes of Earth’s seasons</td>
<td>Relationship of Earth’s orbit and tilt of axis</td>
</tr>
<tr>
<td>Seasons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 11 Phases of the Moon</td>
<td>Moon’s phases</td>
<td>Modeling the causes of the Moon’s phases</td>
<td>Effects of the Moon’s orbit around Earth and solar illumination</td>
</tr>
<tr>
<td>Technology of measuring devices</td>
<td>Personal/Social Perspectives</td>
<td>Historical Context</td>
<td>Key Concept</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Technology of measuring devices</td>
<td></td>
<td>Cross-staffs used by ancient peoples for navigation</td>
<td>I</td>
</tr>
<tr>
<td>Communicating over large distances</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Finite speed of light and all forms of electromagnetic radiation</td>
<td>The challenges of observing distant objects</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Technology of measuring devices</td>
<td></td>
<td>Parallax predicted by ancient Greeks</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examining theories of solar system formation</td>
<td>II</td>
</tr>
<tr>
<td>Measuring temperatures and distances</td>
<td>Evaluating the conditions for life as we know it</td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Climate change</td>
<td>II</td>
</tr>
<tr>
<td>Technology to measure environmental conditions</td>
<td>Adaptation to extreme environments</td>
<td></td>
<td>II</td>
</tr>
<tr>
<td>Use of photocell and multimeter</td>
<td></td>
<td></td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Evaluating preconceptions about Moon phases</td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>Activity</td>
<td>Pages</td>
<td>Subject and Content</td>
<td>Objective</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Activity 1 Measuring the Moon</td>
<td>1–9</td>
<td>Indirect measurement of solar system</td>
<td>Learn how angular diameter can be used to measure the true</td>
</tr>
<tr>
<td></td>
<td></td>
<td>objects</td>
<td>diameter of the Moon.</td>
</tr>
<tr>
<td>Activity 2 Light Year as</td>
<td>11–18</td>
<td>Concept of light year as a unit of</td>
<td>Develop an understanding of the concept of a unit known as</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td>distance</td>
<td>the “light year.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 3 Solar System Scale</td>
<td>21–29</td>
<td>A scale model of size and distance in</td>
<td>Build a scale model of the solar system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the solar system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 4 The Speed of Light</td>
<td>31–36</td>
<td>Light has a finite speed</td>
<td>Understand the consequences of light having a finite speed.</td>
</tr>
<tr>
<td>Activity 5 How Far to the</td>
<td>39–48</td>
<td>Parallax (indirect measurement)</td>
<td>Investigate the factors affecting parallax.</td>
</tr>
<tr>
<td>Star?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity 6 The Formation of</td>
<td>51–58</td>
<td>Solar nebula theory</td>
<td>Observe a model of how the solar system would have</td>
</tr>
<tr>
<td>the Solar System</td>
<td></td>
<td></td>
<td>originated according to the solar nebula theory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Vocabulary</td>
<td>Key Concepts</td>
<td>Margin Features</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>50 minutes or less</td>
<td>Indirect measurement, Angular diameter, Similar triangles</td>
<td>I</td>
<td>Safety Alert!, Fast Fact, What Can I Do?, Connections</td>
</tr>
<tr>
<td>50 minutes or less</td>
<td>Light year</td>
<td>I</td>
<td>Fast Fact, What Can I Do?, Connections</td>
</tr>
<tr>
<td>More than 50 minutes but less than 100 minutes</td>
<td>Scale model, Scaling factor</td>
<td>I</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections</td>
</tr>
<tr>
<td>Less than 50 minutes</td>
<td>Radio wave, Speed of light, Speed of sound</td>
<td>I</td>
<td>What Can I Do?, Fast Fact, Safety Alert!, Connections</td>
</tr>
<tr>
<td>50 minutes</td>
<td>Direct measurement, Indirect measurement, Parallax effect, Baseline</td>
<td>I</td>
<td>Fast Fact, Safety Alert!</td>
</tr>
<tr>
<td>Less than 50 minutes</td>
<td>Solar nebula theory, Nebula, Protostar, Protosun</td>
<td>II</td>
<td>Safety Alert!, Fast Fact, Connections</td>
</tr>
<tr>
<td>Activity</td>
<td>Pages</td>
<td>Subject and Content</td>
<td>Objective</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Activity 7</td>
<td>61–68</td>
<td>Distance and light</td>
<td>Investigate the relationship between distance from a light source and temperature, and apply this relationship to understand why life in the solar system has been found only on Earth.</td>
</tr>
<tr>
<td>Activity 8</td>
<td>71–80</td>
<td>Nature and behavior of light</td>
<td>Observe and investigate a model of how light and the atmosphere interact to make Earth suitable for life.</td>
</tr>
<tr>
<td>Activity 9</td>
<td>83–90</td>
<td>Compare Earth to Mars and Venus</td>
<td>Consider some of the characteristics of Venus and Mars that make the planets uninhabitable for life as we know it.</td>
</tr>
<tr>
<td>Activity 10</td>
<td>93–103</td>
<td>Earth’s seasons</td>
<td>Understand why Earth has seasons.</td>
</tr>
<tr>
<td>Activity 11</td>
<td>105–116</td>
<td>Moon’s phases</td>
<td>Understand the cause of the Moon’s phases.</td>
</tr>
<tr>
<td>Time</td>
<td>Vocabulary</td>
<td>Key Concepts</td>
<td>Margin Features</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>50 minutes or less</td>
<td>Habitable zone</td>
<td>II</td>
<td>Fast Fact, Safety Alert!, Connections, Resources</td>
</tr>
<tr>
<td>50 minutes</td>
<td>Greenhouse effect, Radiant heat, Infrared light</td>
<td>II</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resource</td>
</tr>
<tr>
<td>50 minutes</td>
<td></td>
<td>II</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resources</td>
</tr>
<tr>
<td>50 minutes</td>
<td></td>
<td>II</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resources</td>
</tr>
<tr>
<td>50 minutes</td>
<td>Orbit, Ellipse, Axis, Rotation axis</td>
<td>III</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resources</td>
</tr>
<tr>
<td>100 minutes (50 minutes per part)</td>
<td>Phases of the Moon</td>
<td>III</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resources</td>
</tr>
</tbody>
</table>
Activity 8 Planner

Activity 8 Summary

Students measure the temperature in two soil-filled cups sitting in the Sun for about 50 minutes. One cup is uncovered; the other has a clear plastic cover. Students then graph and compare the data from the two cups.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Subject and Content</th>
<th>Objective</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Greenhouse Effect</td>
<td>Nature and behavior of light</td>
<td>Observe and investigate a model of how light and the atmosphere interact to make Earth suitable for life.</td>
<td>The class will need: one large bag of potting soil, one box of plastic wrap, graph paper for each student, safety glasses or goggles for each student. Each group of students will need: two large disposable plastic cups, dirt to fill each cup (use commercial potting soil free of pesticide or fungicide), something to prop up thermometers (e.g., a sightly smaller cup or stack of books), one rubber band, two Celsius thermometers (nonmercury), hole punch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Vocabulary</th>
<th>Key Concept</th>
<th>Margin Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 minutes</td>
<td>Greenhouse effect, Radiant heat, Infrared light</td>
<td>II: Earth's unique properties</td>
<td>Fast Fact, Safety Alert!, What Can I Do?, Connections, Resource</td>
</tr>
</tbody>
</table>

Scientific Inquiry | Unifying Concepts and Processes | Personal/Social Perspectives |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling the heat-trapping effect of greenhouse gases</td>
<td>Relationship between explanation and evidence</td>
<td>Climate change</td>
</tr>
</tbody>
</table>
The Greenhouse Effect

Background

Greenhouses are made almost completely of glass for two reasons. First, glass allows the maximum amount of sunlight into the building. Plants need the sunlight for photosynthesis. Second, glass prevents heat produced in the greenhouse from escaping. Clear plastic can also serve these same two functions. When materials like glass and plastic let sunlight, but not heat, pass through them, this is known as the greenhouse effect, which is a form of solar heating. How does the greenhouse effect work?

Visible light is only one form of light. Radiant heat is infrared light, another form. When visible light (sunlight) passes through the glass of a greenhouse, it strikes the objects in the building and its energy is absorbed. These objects begin to heat up. As they heat up, they give off radiant heat—Infrared light. While visible light can pass through the glass of the greenhouse, the infrared light cannot. This means that the heat given off by objects in the greenhouse is trapped in the building. Therefore, even on cold, sunny days, the building can stay warm.

Some gases are like the glass of a greenhouse in that they trap heat. Several of these gases, including carbon dioxide (CO₂), water vapor (H₂O), nitrous oxide (N₂O), and methane (CH₄), are present in Earth’s atmosphere. The amounts of these gases are increasing daily because of human activities such as driving cars and burning fuel, and because of natural processes such as decomposition in swamps, where methane is released.

Objective

Observe and investigate a model of how light and the atmosphere interact to make Earth suitable for life.

Vocabulary

Greenhouse effect: A planet’s atmospheric layers act like the glass of a greenhouse, permitting sunlight to pass through and strike a planet’s surface but reducing the escape of heat (infrared light) radiated from that surface. As a result, the atmosphere warms up.

Radiant heat: Infrared light.

Infrared light: Heat or a form of electromagnetic radiation (light), which has a wavelength ranging from 1 µm to 1 mm. The wavelength of visible light is between 100 and 1,000 times shorter than infrared.

Fast Fact

Cattle are efficient producers of methane, a greenhouse gas. The average cow produces about 81,000 L of methane per year. That’s about the amount of methane that seven Toyota Priuses produce. Here’s the clincher: In midsummer 2009, there were slightly more than 100 million head of cattle in the United States. That’s a lot of methane.
Activity 8

Materials

The class will need
- one large bag of potting soil
- one box of plastic wrap
- graph paper for each student
- safety glasses or goggles for each student

Each group of students will need
- two large disposable plastic cups
- dirt to fill each cup (use commercial potting soil free of pesticide or fungicide)
- something to prop up thermometers (e.g., a slightly smaller cup or stack of books)
- one rubber band
- two Celsius thermometers (nonmercury)
- hole punch

Time

50 minutes

SAFETY ALERT

1. Safety glasses or goggles are required for this Activity.
2. Handle glass thermometers with care so as not to drop or break them by applying too much force—broken glass is a sharp hazard.
3. Wash hands with soap and water upon completing the lab.

Procedure

1. Put on eye protection.

2. About 2 cm from the top of each plastic cup, use the hole punch to make a hole big enough for you to insert a thermometer.

3. Fill each cup with dirt until the dirt is about 2.5 cm below the hole you made.

4. Insert a thermometer through each hole so that the bulb is about 2.5 cm above the dirt and centered near the middle of the cup (see Figure 8.1). Caution: Do not force the thermometer through the hole. If it will not go, punch a bigger hole.

5. Turn the thermometer so that you can read it.

6. Cover one cup with plastic wrap, and leave the other cup uncovered. Secure the plastic wrap on the cup with a rubber band. The final arrangement should look like Figure 8.1.

7. On a sunny day, take the two cups outside at the beginning of the class period, and place them where they will not be disturbed. Stabilize the thermometers so they will not move.

8. Record the initial temperature on each thermometer in BLM 8.1.

9. Record temperatures every 5 min. for 30 min. During the first 5 min., write a prediction of what you think will happen to the temperatures of the two cups and give a reason for your prediction. Do this in the space below the data table in BLM 8.1.

Figure 8.1

Thermometers measure temperature in the cups, the right one covered with plastic wrap.
10. Make a graph for the temperatures in each cup on a sheet of graph paper (BLM 8.2). Graph the temperatures on the vertical scale and the elapsed time on the horizontal scale. Designate each line as representing either the covered or the uncovered cup.

Questions and Conclusions

1. This Activity is a model of what happens on Earth. What do the dirt and plastic wrap represent in this model?
2. What did you predict would happen?
3. Do your graphs support your prediction?
4. How does what you observed in each cup compare with your prediction? If the two are different, how can you account for this?
5. Describe how you think Earth would be with a thicker atmosphere, and explain your reasoning.
6. What would Earth be like without an atmosphere? Explain your reasoning.

What Can I Do?

You can be thrifty about your energy use. You can shorten your showers, use only the lights you really need, unplug chargers when they are idle, and turn off a computer at the power strip. Why? Almost half of the electricity Americans use comes from burning coal (49.65% in 2005). When coal burns, it combines with oxygen to make carbon dioxide. When you use less electricity, you reduce the generation of greenhouse gases.
Data Table

<table>
<thead>
<tr>
<th>Time (min.)</th>
<th>Temperature of Covered Cup (°C)</th>
<th>Temperature of Uncovered Cup (°C)</th>
<th>Other Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Difference in Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Greenhouse Effect

What Is Happening?

The term greenhouse effect refers to the fact that visible light can pass through glass uninhibited, but infrared light (heat) essentially cannot. The term was coined because this effect is most evident in greenhouses. The phenomenon is a consequence of the nature and behavior of light.

Light takes the form of X-rays, gamma rays, ultraviolet light, infrared light, radio waves, and microwaves—not just visible light. As objects in a greenhouse absorb light, they heat up and give off infrared light. While visible light can pass through the glass of the greenhouse, the infrared light cannot and it is reflected back in. So, the heat given off by objects in the greenhouse stays in the greenhouse.

Some gases in Earth’s atmosphere, notably carbon dioxide (CO$_2$), water vapor (H$_2$O), and methane (CH$_4$), act like the glass in a greenhouse. Sunlight passes through the atmosphere, strikes the ground, and the ground begins to heat up. The ground then gives off infrared light, which CO$_2$, H$_2$O, and CH$_4$ partially block from escaping the atmosphere. There has always been a natural and beneficial greenhouse effect operating on Earth due primarily to naturally occurring CO$_2$ and H$_2$O. Burning fossil fuels, especially since the Industrial Revolution, has increased the concentration of CO$_2$ in Earth’s atmosphere. Estimates for concentration in 1750 were 275 to 285 parts per million (ppm). Measured concentrations in 2005 were 370 ppm. Measurements at the top of Mauna Loa since 1958 show a steady upward trend modulated by seasonal cycles of biological productivity. Global deforestation has compounded the problem by reducing flora that use CO$_2$ for photosynthesis. As the quantities of these gases grow in the atmosphere, they will prevent more and more of the heat from escaping—which may be causing the temperature of Earth to rise.

For more information on climate change, visit the Intergovernmental Panel on Climate Change (IPCC) at www.ipcc.ch/.

How Do We Know This?

How do we know which gases are in a planet’s atmosphere?

Astronomers study the light coming from a planet to determine which gases are in its atmosphere. This is called spectroscopy. By spreading out the light reflecting off a planet’s atmosphere, or the light passing through a planet’s atmosphere, astronomers can study its rainbow of colors, or spectrum. Each gas absorbs specific colors. So, by looking at which colors are missing, or dim, in a planet’s spectrum, astronomers can determine which gases are present. This method is even being used for learning about the atmospheres of planets orbiting other stars!
Preconceptions
Ask students what they know about greenhouses, especially about how they stay warm. Because greenhouses are warmed by infrared radiation, you might also ask them what they know about infrared radiation.

What Students Need to Understand
• Light comes in many forms, not just the visible form that we can see.
• The passage or transmittance of the infrared light (heat) is inhibited by certain things, including glass, CO₂, H₂O, and CH₄.
• CO₂, H₂O, and CH₄ only partially inhibit the passage of heat. Higher concentrations trap more heat.

Time Management
This Activity should take about 50 minutes. You may want to give students assignments to complete between temperature readings. You can save time by having students set up their cups the day before the Activity. It is important to remember that the success of this Activity depends on having a sunny—but not necessarily warm—day.

Preparation and Procedure
Place all the materials in a central location so that students can obtain them easily. Keep track of the weather report and pick a sunny day for the Activity.

Reading 8: Global Warming shows how scientists have come to understand that humans are artificially increasing the amounts of greenhouse gases in the atmosphere, causing the global temperature to rise. Also refer to Reading 10: The Greenhouse Effect, and Reading 11: The Coming Climate Crisis?

Extended Learning
Students may want to see what happens if the cups are left out all day long. Do the temperatures continue to rise? If not, why not? How does this relate to Earth?

This is an excellent place for students to investigate what happens on other planets with regard to the greenhouse effect. Venus and Mars are especially good to research. Students will almost certainly want to know what will happen if the greenhouse effect increases dramatically on Earth. Venus provides a model of what might occur.

Students also can experiment with the effect of the color of the soil on temperature rise. They might want to compare differences between white sand and brown soil on the temperature rise in their greenhouse cups.

SAFETY ALERT
1. Safety glasses or goggles are required for this Activity.
2. Handle glass thermometers with care so as not to drop or break them by applying too much force—broken glass is a sharp hazard.
3. Wash hands with soap and water upon completing the lab.
Finally, students may want to look into current research on the greenhouse effect, and global climate change. This can be a controversial topic in popular media; however, there is a strong consensus among scientists that global surface temperatures have increased in recent decades, and that this is caused mostly by human actions. Have students investigate the human activities that have led to an increase in carbon dioxide in the atmosphere.

Interdisciplinary Study

The oceans play a major role in moderating the amount of carbon dioxide in the atmosphere. The gas dissolves in the ocean and eventually becomes a part of some shells and ocean sediments. Students can investigate research that is being done on the role of the ocean in carbon dioxide regulation.

The greenhouse effect and global climate change are societal as well as environmental problems. Solutions based on environmental concerns alone are incomplete. Industrialized societies depend heavily on burning fossil fuels, the chief source of carbon dioxide in the atmosphere. Solutions to these problems must take into account societal and technological factors as well as environmental ones. What would be the impact on the United States and other industrialized countries of shifting away from fossil fuels? What technology would be required to do this? Are there other possible solutions besides alternative energy sources?

Differentiated Learning

Ask students in pre-algebra or algebra classes to confirm their graphing with a graphing calculator, and to extrapolate 10 or 15 min. more than their longest measurement.

Answers to Student Questions

1. The dirt represents the surface of Earth. The plastic wrap represents Earth’s atmosphere.

2. Predictions may vary slightly. Pay careful attention to what students predict—it will provide clues for what preconceptions exist in your class and give you guidance about whether to extend this Activity.

3. Students should see a graphical representation of the answer to question 2.

4. The temperature in both cups should have increased, but at different rates. As the dirt in each cup gives off heat, the temperature of each increases. In the covered cup, however, the heat does not escape, so the temperature rises more rapidly.

5. Answers will vary.
6. Answers will vary. Have students applied their experimental results logically to their knowledge about Earth’s atmosphere?

Assessment

- While students are doing their experiments, ask them about their procedures and results. Do they believe their results? Do the measurements surprise them or do they seem to make sense? Why? Why not? Would they like to do the experiment differently? If so, how and why?
- For formal summative assessment, you could ask students to graph data or to interpret a graph, you could ask them to write a lab report, or you could grade the answers to the questions.
A
- accretion theory, 51, 56
- active sonar, 17
- Activity Planner, xxii, 10, 20, 30, 38, 50, 60, 70, 82, 92, 104
- Activity Summary, xxii, 10, 20, 38, 50, 60, 70, 82, 92, 104
- Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), 148
- Advanced Microwave Sounding Unit (AMSU), 148–149
- Alpha Centauri, 22, 28
- Andromeda Galaxy, 27
- angular diameter, xxii, 1, 2, 3, 5, 6, 7, 8, 117, 121–123, 129, 133
- definition, 1
- Angular Diameter Data Table (BLM 1.1), 4
- Angular Diameter of the Moon Is 1/2° (Figures 1.1, 1.4, R1.1), 1, 5, 121
- Angular Diameters (Reading 1), 121–123
- angular measurement, 1–9, 39
- Answers to Student Questions, 9, 17–18, 28, 36, 47–48, 57–58, 68, 79–80, 89, 103, 115
- Apollo 8, 7, 105
- Archimedes, 3
- Aristarchus of Samos, 3
- Assessment, 9, 18, 28, 36, 48, 58, 68, 80, 90, 103, 116
- Asteroid Belt, 28
- astronomical unit (AU), 21
- atmosphere and temperature, 67
- atmospheric gases, 77
- Atmospheric Infrared Sounder (AIRS), 148–149
- axis, definition, 94
- axis of Moon, 8
- axis of rotation, Earth, 94, 95, 97, 98, 99, 100, 101, 103, 109, 156, 157

B
- baseline, 45, 46, 47, 134
- definition, 39
- Bessel, Friedrich, 42
- blue moon, 114

C
- carbon dioxide (CO2), 27, 71, 72, 77, 78, 79, 84, 129, 131, 135, 138, 140, 141, 148, 151, 152, 153
- Ceres, 28
- climate change, 27, 77, 78, 79, 103, 118, 137–143, 119, 153–154
- Clouds and Earth’s Radiant Energy System (CERES), 148
- clouds, giant molecular, 51
- CloudSat, 149–150
- coming Climate Crisis? The (Reading 11), 153–154
- Comparing Earth to Mars and Venus (Activity 9), 83–90
- condensation, 146, 148
- congruent angles, 3, 8
- Connections, xxii, 8, 10, 17, 20, 27, 30, 35, 36, 50, 57, 60, 68, 70, 79, 82, 89, 92, 102, 103, 104, 115
- conversions factors, 17, 122
- Copernicus, Nicolaus, 21, 129
- Creature Feature (Activity 9), 82–90
- crescent, waxing and waning (moon), 110, 115
- cross-staff, xxii, 2, 3, 9
- cross-staff demonstrations (Figures 1.2, 1.3), 2

D
- diameter. See angular diameter.
- diameter, true, 5, 7
- Differentiated Learning, 8, 17, 27–28, 36, 57, 68, 79, 89, 102, 115
- direct measurement, definition, 39
- Discovery, space shuttle, 127
- Distance and Temperature Activity Data Table (BLM 7.1), 64
- distance and temperature activity setup (Figure 7.1), 62
- distance and temperature related, 60–68
- distance, light year, 10–18, 118, 125–126
- Distance Walked Data Table (BLM 2.1), 13
- Distant Sun, A (poem), 17, 27
- droughts, 147–148

E
- Earth as a System (Reading 7), 135
- Earth axis, tilt (Figures 10.3, 10.5, R12.3), 94, 98, 157
- Earth compared to Mars and Venus, 82–90, 131
- Earth’s axis of rotation, 94, 95, 97, 98, 99, 100, 101, 103, 109, 156, 157
- Earth’s Characteristic Phases and Seasons (Key Concept III), 92, 97, 104, 109
- Earth’s orbit around Sun (Figures 10.1, 10.2, 10.3, 10.8, R12.1, R12.2, R12.3), 93, 94, 95, 100, 153, 156, 157
- Earth’s Position in the Solar System (Key Concept I), xxii, 5, 10, 15, 20, 25, 30, 33, 38, 45
- Earth’s Unique Properties (Key Concept II), 50, 55, 60, 65, 70, 77, 82, 87
- echolocation, 25
- eclipse, lunar, 113, 114
- Edison, Thomas, 61
- Einstein, Albert, 31
- electromagnetic radiation, 31, 35
- ellipse, definition, 93
- European Space Agency, 45
- evaporation, 145–147, 148
- exoplanets, 52, 55, 125
- Extended Learning, 7–8, 17, 27, 35, 47, 57, 67, 78–79, 88–89, 102, 113–114

F
- Fast Fact, xxii, 3, 10, 11, 20, 21, 25, 30, 33, 38, 42, 50, 52, 60, 61, 63, 70, 71, 82, 83, 84, 92, 94, 104, 105
- Ferguson, Lydia (poet), 17, 27
- finite speed, 31, 33, 34
- Formation of the Solar System, The (Activity 6), 50–58
- Foucault, Léon, 15
- freshwater, 145
- full Moon, 110, 115

G
- Gaia mission, 45
- galaxy, spiral, 27
- gamma rays, 77
- gas giants (planets), 65, 67
geoengineering, 153
giant molecular clouds (GMC), 51
gibbous, waxing and waning (Moon), 110, 115
glaciation, 68, 102, 135, 138, 139, 140, 142, 145
glacier terms, 102
global warming, 27, 77, 78, 79, 103, 118, 137–143, 119, 153–154
Global Warming (Reading 8), 137–143
Goddard Institute for Space Studies (GISS) (NASA), 139
Goddard Space Flight Center, 153
Goldilocks Effect, The: Earth is Just Right (Reading 5), 131–132
Google Earth, 89
Gravity Recovery and Climate Experiment (GRACE), 149
greenhouse effect, 27, 67, 84, 89, 118, 129, 132, 137, 138, 140, 141, 151–152
definition, 71
Greenhouse Effect Data Table (BLM 8.1), 74
Greenhouse Effect Temperature/Time Graph (BLM 8.2), 75
Greenhouse Effect, The (Activity 8), 70–80
Greenhouse Effect, The (Reading 10), 151–152
groundwater, 145, 146

H

habitable conditions, 65, 83, 84, 87, 88, 89, 117, 125, 131–132
Habitable Zone (Activity 7), 60–68
Habitable Zone (HZ) (Figure R5.1), 132
habitable zone, definition, 61
heat, latent, 145
Herschel, William (1738–1822), 83
Hipparcos (High Precision Parallax Collecting Satellite), 45
Historical Context, xxii, 20, 38, 50
How Distance and Temperature Are Related (Activity 7), 61–68
How Do We Know This?, 5, 15, 25, 33, 45, 55, 65, 77, 87, 97, 109
How Far to the Star? (Activity 5), 38–48
Hubble Space Telescope (Reading 3), 127
Hubble Telescope, 16, 34, 35, 46, 117, 126, 127
Hughes, Langston (poet), 102, 114
Humidity Sounder for Brazil (HSB), 149
hydrologic (water) cycle, 145, 147, 148

I

ice ages, 68, 102, 103, 137, 141
ice caps, 83, 89, 135, 138, 142–143, 145, 149, 152, 153, 154
Ice, Cloud, and Land Elevation Satellite (ICESat), 149
indirect measurement, xxii, 1, 2, 39, 45, 46, 118, 129, 133–134
definition, 1, 39
Industrial Revolution, 77, 135
infrared light, 35, 77, 78, 137, 152
definition, 71
intensity of light, 65, 66
Interdisciplinary Study, 8, 17, 27, 35–36, 67, 79, 89, 102, 114–115
interferometry, 33
Intergovernmental Panel on Climate Change (IPCC), 77, 135, 137, 138, 141, 142, 143
iron oxide, 84, 131

J

Jet Propulsion Laboratory (JPL), NASA, 87, 90
Jewels (poem), 27
Jupiter, 21, 26, 34, 65

K

Kepler's laws of planet motion, 57
Key Concept, xxii, 5, 10, 15, 20, 25, 30, 33, 38, 45, 50, 55, 60, 65, 70, 77, 82, 87, 92, 97, 104, 109
laser measurement, 5, 33
latent heat, 145
L'Engle, Madeleine (author), 36
LIDAR (Light Detection and Ranging), 17
life science, 89
lunar eclipse, 113, 114
lunar terminator, 107

M

Madden-Julian Oscillation, 148
magnetic braking, 56
Margin Features, xxii, 10, 20, 30, 38, 50, 60, 70, 82, 92, 104
Mars, 34, 36, 61, 63, 65, 78, 82–90, 131
Materials, xxii, 2, 5, 10, 12, 15, 20, 22, 25, 30, 32, 33, 38, 40, 45, 50, 52, 55, 60, 62, 65, 70, 72, 77, 82, 84, 87, 92, 95, 97, 104, 106, 109
Mauna Loa (volcano), 77
measurement, 1–9, 10–18, 39–40, 45, 65, 67, 117, 118, 123–126, 129, 133
direct, 39, 45, 133
distance, light year, 10–18, 118, 125–126, 129
indirect, xxii, 1–9
scale, 20, 117, 129, 133
Measuring the Distance to a Star Using the Parallax Angle (Figure R6.2), 134
Measuring the Moon Indirectly (Activity 1), xxii, 1–9
Mercury, 22, 25, 34, 63, 84, 131, 151
Messages (poem), 36
meteorology and computer models, 27
methane (CH4), 71, 72, 77, 78, 131, 138, 141
Miami Tribe of Oklahoma (Native Americans), 114
microfossils, 87
microwaves, 25, 31, 77
Milankovitch cycles, 68, 103
Milky Way galaxy, 27, 132
model of the solar system, scale, 20–29, 30, 32, 34, 50, 129
Moderate Resolution Imaging Spectroradiometer (MODIS), 148–149
Moleyns, Frederick de, 61
Monterey Bay Aquarium, 115, 116
Moon and tides, 115
Moon, measuring, xxii, 1–9
Moon Mocker (Figure 11.6), 114
Moon orbit, eccentric, 8
Moon orbiting Earth diagrams (Figures 11.1, 11.2, 11.3, 11.4, 11.5), 106, 107, 110, 111
Moon phases, 104–116, 119, 159–161
Moon (poem), 114
Moon shape, 139
Mount Pinatubo volcano (1991), 139, 140, 141
time travel, 36
transit method to detect exoplanets, 55
transpiration, 146, 148
triangulation, 8
trillion (number), 11, 12
true diameter, 5, 7, 122

U
ultraviolet light, 35
Unifying Concepts and Processes, xxii, 10, 20, 30, 38, 50, 60, 70, 82, 92, 104
Uranus, 65, 83

V
Venus, 22, 34, 61, 63, 65, 78, 82–90, 113, 129, 151
vermiculite in a bucket, sketch (BLM 6.1), 53
Viking spacecraft, 83
Vocabulary, xxii, 1, 3, 10, 11, 20, 21, 30, 31, 38, 39, 50, 51, 60, 61, 70, 71, 92, 93, 94, 104, 105

W
waning crescent and gibbous moons, 110, 115
Water Cycle, The (Reading 9), 145–150
water vapor (H2O), 71, 77, 78, 84, 87, 88, 89, 118, 131, 138, 145–150
wavelengths, 31, 33
waxing crescent and gibbous moons, 110, 115
Weizsacker, Carl Friedrich von, 55
What Can I Do?, xxii, 3, 10, 12, 20, 22, 30, 32, 70, 73, 82, 85, 92, 96, 104, 107
What Is a Light Year? (Reading 2), 125–126
What Students Need to Understand, 7, 16, 26, 34, 46, 56, 66, 78, 88, 101, 111–112
Windows to the Universe website, 89, 90, 115
Winter in the Northern Hemisphere (Figures 10.7, R12.5), 99, 157
Winter Moon (poem), 102, 114
Wrinkle in Time, A (novel), 36
X
X-ray, 31, 77