The FRUGAL Science Teacher

STRATEGIES AND ACTIVITIES
CONTENTS

Preface, by Linda Froschauer ... ix

PART 1. STUDENT-CREATED CONSTRUCTIONS

Chapter 1. Roller Coasters ... 3
 edited by William C. Ritz
Chapter 2. Taking Flight With an Inquiry Approach 7
 by Kathryn Silvis
Chapter 3. String Racers ... 11
 by Bruce Yeany
Chapter 4. Paper Towers: Building Students' Understanding of Technological Design ... 21
 by James Minogue and Todd Guentensberger

PART 2. TEACHER-CREATED CONSTRUCTIONS AND REPURPOSED MATERIALS

Chapter 5. Discovery Bottles: A Unique, Inexpensive Science Tool for the K–2 Classroom ... 27
 by Sandy Watson
Chapter 6. Materials Repurposed: Find a Wealth of Free Resources at Your Local Recycling Center 33
 by Orvil L. White and J. Scott Townsend
Chapter 7. Frugal Equipment Substitutions: A Quick Guide 37
 by Erin Peters
PART 3. TEACHING STRATEGIES THAT MAXIMIZE THE SCIENCE BUDGET

Projects
Chapter 8. Creative Projects Stimulate Classroom Learning ... 41
 by Staci Wilson

Games
Chapter 9. A Geometric Scavenger Hunt ... 45
 by Julie Smart and Jeff Marshall
Chapter 10. Making Connections Fun ... 49
 by Arlene Marturano
Chapter 11. Take the Eco-Challenge ... 51
 by Gregory R. MacKinnon and Colin MacKenzie
Chapter 12. Ecosystem Jenga ... 55
 by Natalie Umplett, Tierney Brosius, Ramesh Laungani, Joe Rousseau, and Diandra L. Leslie-Pelecky

Cartoons
Chapter 13. Cartooning Your Way to Student Motivation ... 59
 by Derek Sallis, Audrey C. Rule, and Ethan Jennings

Newsletters
Chapter 14. Science Newsletters ... 65
 by Melissa Nail

Stations
Chapter 15. The Station Approach: How to Teach With Limited Resources 69
 by Denise Jaques Jones

Current Events
Chapter 16. Examining Current Events in Science, Mathematics, and Technology 75
 by John Eichinger

PART 4. INSTRUCTIONAL LESSONS THAT MAXIMIZE THE SCIENCE BUDGET

Chapter 17. Sun-Savvy Students: Free Teaching Resources From EPA’s SunWise Program ... 81
 by Luke Hall-Jordan
Chapter 18. Layered Liquids ... 85
 by John Eichinger
 by Sarah J Carrier and Annie B. Thomas
Chapter 20. Growth Potential ... 95
 by Dana M. Barry
Chapter 21. Precipitation Matters ... 99
 by Thomas McDuffie
Chapter 22. Bubble Shapes ... 105
 by Kathleen Damonte
Chapter 23. Helicopter Seeds and Hypotheses . . . That’s Funny! 107
 by Leslie Wampler and Christopher Dobson
Chapter 24. The Egg: In the Lab and Across Cultures ... 111
 by Judith J. Paolucci
Chapter 25. An Outdoor Learning Center .. 115
 by the Natural Resources Conservation Services, USDA, and NSTA
Chapter 26. Be a Friend to Trees ... 119
by Karen Ansberry and Emily Morgan

Chapter 27. Spiderweb Collecting .. 129
edited by William C. Ritz

Chapter 28. A Garden of Learning ... 133
by Tasha Kirby

Chapter 29. Sand: Up Close and Amazing ... 137
by Thomas E. McDuffie

PART 5. FUNDS AND MATERIALS

Chapter 30. You Can Get What You Want: Tried-and-True Tips for Securing Funds and Resources From
the Community ... 145
by Yvonne Delgado

Chapter 31. Need Money? Get a Grant! Tips on Writing Grants for Classroom Materials and Larger Items . . 149
by Linda Bryson

Chapter 32. Science on a Shoestring: Stock Your Shelves With Free and Inexpensive Science Materials . . 153
by Sandy Watson

Chapter 33. Got Stuff? ... 157
by Antonio M. Niro

Index ... 161
Preface

by Linda Froschauer

frugal (froo’gal) adj. Practicing or marked by economy, as in the expenditure of money or the use of material resources. See synonym at sparing. 2. Costing little; inexpensive.

—The American Heritage Dictionary

Frugality practically defines how we as teachers approach provisioning our classrooms. (I half expected to see a picture of a science teacher next to the entry!) We cleverly create learning opportunities with limited resources and have amazing aptitudes for stretching shrinking funds and doing more with limited resources. Still, we find ourselves augmenting school and district funds with our own dollars, digging into our own pockets to purchase equipment and other essentials. A quick web search suggests that K–12 teachers spend between $475 and $1,500—per year—on classroom materials. And we do this willingly because we know it makes a difference in our students’ learning.

In an issue of *Science Scope* devoted to limited classroom resources, editor Inez Liftig expressed concern about giving tacit approval to the expectations that teachers should spend their own money to outfit their classrooms: “I wanted to be very sure that we did not send the wrong message about whether or not science teachers should spend their own money to support instruction. . . . Parents and school districts should not expect teachers to pay for equipment and supplies from personal funds, and we should not have to choose between doing them at all” (Liftig 2007, p. 6). I share her concern, but my intent here is not to lecture or opine. Rather, I hope this volume provides a valuable reference at a time when we all need to be resourceful.

To collect all of the articles, books, websites, and organizations that can help you save money is an impossible feat. Not only is there a tremendous quantity of available resources, but the information also changes rapidly and is best pursued through internet searches. Therefore, you will not see lists of websites, grants, and “free” opportunities in this book. Rather, you will find a collection of inspiring articles and book chapters that will provide you and your students with valuable, standards-based learning opportunities that can also serve as springboards to additional investigations. The authors detail untapped resources for materials, reimagined uses for items you already have at home or school, inexpensive workarounds to costly classroom projects, and creative activities that require only free or inexpensive materials.

In addition, many articles and chapters include suggestions for further reading that may expand on the ideas discussed, apply a similar learning tool in a different way, or revise a particular activity for use with different grade ranges. These additional resources are available through the NSTA Science Store (**www.nsta.org/store**), for free or little cost.
A WORD ABOUT ORGANIZATION

This book comprises five categories, or overarching strategies, for thinking about how to conduct science investigations without spending a great deal of money—either your own funds or those acquired through your district budget.

Student-Created Constructions

When students build their own equipment or create their own models, they have a greater connection to the overall experience, thus enhancing learning. An amazing number of investigations can be developed with a single piece of paper, throwaway items, or dollar-store finds. You already may be familiar with more traditional student constructions, such as paper airplanes, and the lessons they convey. Think how much more students could learn from building roller coasters or paper towers.

Teacher-Created Constructions and Repurposed Materials

Science teachers are great savers of materials. We check out sale bins in stores and rinse out used containers. We collect soda bottles, aluminum cans, shoe boxes, scraps of wood, odd lots of rubber bands, old CDs . . . anything that may possibly be useful in our classrooms. This section suggests ways to put those materials to good use in two general categories: repurposing materials that we have collected and building equipment for student use from free or inexpensive components.

Teaching Strategies That Maximize the Science Budget

There are many ways to reorganize our instructional approaches that enable quality learning to occur at reduced cost. The articles in this section provide suggestions on how to engage students through a variety of strategies. Although the strategies are explained within the context of a specific content area, they can serve as creative inspiration as you consider how to adjust lessons in any content area. Creating project materials, playing games, drawing cartoons, developing class newsletters, using learning stations, and tapping into current events all require minimal financial investments but provide enriched experiences for students. Many of these ideas also integrate other subject areas to provide broader curriculum impact.

Instructional Lessons That Maximize the Science Budget

The fourth section offers a collection of life science, Earth science, and physical science and chemistry investigations. They are specific to a given content area but utilize materials that may stimulate ideas for innovative activities with any subject matter. You can use them as they are or modify them to fit your curriculum. Several articles highlight the use of outdoor spaces around your school site that are ideal for scientific investigations.

Funds and Materials

Even after implementing the ideas in this book, you may still have classroom needs that prove too costly to be fulfilled through your budget (or pocket). This section presents suggestions for how to acquire those additional funds.

ADDITIONAL RESOURCES FROM NSTA

In this volume, I have culled some of the most useful NSTA print resources for maximizing your classroom dollars. However, NSTA also provides a variety of free electronic resources that are available for members and nonmembers alike to improve both teaching and learning.

e-Publications

Individual articles from Science and Children, Science Scope, and The Science Teacher, as well as chapters from NSTA Press books, are available in electronic format from NSTA’s online Science Store (www.nsta.org/store). Many of these—at least two articles per journal issue and one chapter per book—are free to everyone. (The balance of articles is free to NSTA members and available for a small fee to nonmembers.)

Teachers and administrators can also keep up with what’s happening in the world of science education by signing up for free weekly and monthly e-mail newsletters (http://www.nsta.org/publications/enewsletters.aspx). NSTA Express delivers the latest news and information about science education, including legislative updates, weekly. Every month Science Class offers teachers theme-based content in the grade band of their choosing—elementary, middle level, or high school. News articles, journal articles from the NSTA archives, and appropriate book content support each theme. Scientific Principals, also monthly, provides a science toolbox full of new ideas and practical applications for elementary school principals.

Learning Center

Anyone—teachers, student teachers, principals, or parents—can open a free account at the NSTA Learning Center, a repository of electronic materials to help enhance both content and pedagogical knowledge. By
creating a personal library, users can easily access, sort, and even share a variety of resources:

Science Objects are two-hour online, interactive, inquiry-based content modules that help teachers better understand the science content they teach. New objects are continually added, but the wide-ranging list of topics includes forces and motion, the universe, the solar system, energy, coral ecosystems, plate tectonics, the rock cycle, the ocean's effect on weather and climate, and science safety.

SciGuides are online resources that help teachers integrate the web into their classroom instruction. Each guide consists of approximately 100 standards-aligned, web-accessible resources, accompanying lesson plans, teacher vignettes that describe the lessons, and more. Although most SciGuides must be purchased, there is always one available at no charge.

SciPacks combine the content of three to five Science Objects with access to a content expert, a pedagogical component to help teachers understand common student misconceptions, and the chance to pass a final assessment and receive a certificate. Yearlong SciPack subscriptions must also be purchased, but one SciPack is always available for free.

Anyone may participate in a live, 90-minute web seminar for no-cost professional development experiences. Participants interact with renowned experts, NSTA Press authors, scientists, engineers, and other education specialists. Seminar archives are also available on the NSTA website and can be accessed at any time.

Particularly popular web seminars are also offered in smaller pieces as podcasts that can be downloaded and listened to on the go. These 2- to 60-minute portable segments include mini-tutorials on specific content and ideas for classroom activities.

Grants and Awards

NSTA cosponsors the prestigious Toyota Tapestry Grants for Teachers (www.nsta.org/pd/tapestry), offering funds to K–12 science teachers for innovative projects that enhance science education in the school or school district. Fifty large grants and at least 20 mini-grants—totaling $550,000—are awarded each year. NSTA also supports nearly 20 other teacher award programs, many of which recognize and fund outstanding classroom programs (www.nsta.org/about/awards.aspx).

You may not save hundreds of dollars a year by following the recommendations found in this book. You will, however, find creative ways to keep expenses down and stretch your funds while building student understanding. And perhaps you will be inspired to invent your own low-cost constructions, develop even more inexpensive student activities, find additional uses for everyday items, or uncover a wealth of new resources for obtaining classroom materials.

Reference

Chapter 6
Materials Repurposed
Find a Wealth of Free Resources at Your Local Recycling Center
by Orvil L. White and J. Scott Townsend

Few teachers find themselves with the support to purchase all the materials they ideally need to supply their classrooms. Buying one or two simple, ready-made items can put a serious strain on anyone’s budget. However, materials for science in the classroom need not be prefabricated or expensive. By looking at the function and purpose of any piece of equipment, a creative teacher can find a suitable replacement for many premade science materials, sometimes from the most unlikely places. This is not to say we advocate the potentially hazardous practice known in some circles as “Dumpster diving,” but with proper caution and common sense—like partnering with your county’s local recycling center—you can find some terrific, serviceable materials among what others have deemed “trash.”

Our local recycling center offered a community outreach program called “Materials for the Arts,” in which public and homeschool teachers in the county had access to a wealth of materials salvaged from or donated to the recycling center. The center dedicated two rooms at the facility to the program, which stored objects such as clean, sanitized containers of all sizes, including plastic and glass bottles, coffee cans, potato chip cans, baby food jars, and cereal boxes and oatmeal containers; as well as cardboard tubes, carpet squares, compact discs, plastic trays, corkboard, bubble wrap, and other things. All of the materials were required to be completely cleaned with, depending on the material, either antibacterial soap or Lysol spray, before being accepted for donation. Use salvaged materials only if they have been thoroughly sanitized.

If there is no such program in your area, you might consider starting one at your school. Local recycling centers are often looking for outreach opportunities. When we conducted a presentation at our state science teachers’ conference a few years ago, several outreach personnel from various state recycling centers approached us for ideas about how they could perform the same outreach services to teachers and the community.

Sometimes we visited the recycling center with specific material needs in mind. Other times, though, we simply explored the rooms to see what ideas were sparked by the materials at hand. Of course, not every item at the recycling center can be repurposed into a useful tool for the science classroom, but here we share a few of our favorites.

TIMER

Teachers can make a classroom timer from two plastic drink bottles with caps and an old 35mm film canister with the bottom removed. Glue the bottle tops
together inside the film canister with the tops touching. Trim off the excess canister with kitchen shears, and using an electric drill with a 3/16 bit, drill a small hole through both caps. Place approximately 800 g (for a five-minute timer) of sand, salt, or sugar into one bottle and screw the cap in place. Next, invert the second bottle and screw it into its cap. Test it out and adjust the amount of material as necessary for the time desired. This timer can now be used in a variety of ways, including as a guided-inquiry activity model for students to create other timers of various durations. The timer itself can be used to time speakers, give ‘time remaining’ for a quiz or other assessment, and allow students to better understand the ways in which time has been historically measured.

Using different models of timers, students can investigate questions such as the following: Is there a difference in using sand, sugar, or salt? How does the size (diameter) of the hole in the caps affect the rate at which the materials flow? How does the particle size affect the time it takes for the grains to go through the opening? If using a material other than sand, does the flow rate change over time, and if so, is it faster or slower? Upper elementary or middle school students could also create a graph to show the relationship between mass (in grams) of granular material versus the amount of time it takes for the material to completely travel through the container. This would ultimately allow students to predict how much material they would need to insert for resulting amounts of time in the timer.

SEDIMENT TUBES

Any plastic tube or bottle can be used to show the sedimentation of materials through a water column. We used plastic tubes made from a fluorescent light bulb cover, a plastic sheath you can buy to cover the bulb, which we cut to size using kitchen shears. The covers are available at most home center outlets. Pour sand or soil into the bottle and fill with water. Know the source of the soil to avoid contaminants. Make sure children wash hands thoroughly after handling soil. Shake and allow the material to settle. The students can observe the soil settling into layers based on the density of the materials contained in the soil.

The sediment tube allows students to model and observe the process of deposition of materials in the natural environment. This process is the prelude to the formation of sedimentary rocks in the Earth’s crust. The process of deposition of materials can be used to show how, over geologic time, rocks with differing colors of strata are formed. Students can also use this method to separate different soils into parts according to grain size and, by measuring the thickness of the layers, calculate percentage of each part—thereby adding a link to mathematics standards. Also, sediment contamination of streams and rivers is an issue in environmental science that can be better visualized and understood once the students can see how soil breaks down and is deposited when mixed with moving water.

DEMONSTRATING CIRCULATION

Recycled materials can also be repurposed for a teacher demonstration exploring air circulation behavior. Remove the bottoms of two 2 L plastic bottles and connect them with a plastic tube, actually a fluorescent light bulb cover that was cut to size with kitchen shears. Place a small candle under one bottle and hold a lighted stick of incense over the other (see Figure 1). Do this as a teacher demonstration only. Use a tea candle and keep matches out of reach of children. The heated air should rise from the top of the bottle and produce a low-pressure area, drawing the air from the higher-pressure area of the other bottle. This will cause the smoke to spread through the opening, flow across, and rise with the heated air out of the top, demonstrating the process of air flow in weather systems.

The demonstration models the movement of air in the environment. Air that has been warmed rises, and cold or cooler air moves in to take the place of the warm air. When used as part of a unit on weather, this demonstration enables students to see a process that is generally unobservable and helps explain the shifting wind patterns they can feel. It is useful in exploring sea, land, mountain, and valley breezes, as well as the displacement of warm air when a cold front moves across the landscape. Additionally, this is a good model...
of how other fluids react when heated. Ocean currents and the movement in a pot of boiling water are other concepts linked to thermal circulation.

GRADUATED CYLINDER AND SCOOPS

You can make a graduated cylinder by measuring a known volume of water into an old plastic bottle, with the label and bottom removed, and marking the measurement with a permanent marker. A clear 1 L water bottle works best for larger volumes, and any smaller straight-sided bottle will work with lesser amounts.

Cutting the bottom of a 1 L bottle will create a scoop that is easy both to use and to pour material from. Scoops can also be made from old salad-dressing bottles cut along the bottom and side. The caps should be glued in place to prevent accidental spills.

FUNNEL AND CUP

A simple funnel can be made by cutting the top off a 2 L bottle and inverting it so the small opening is at the bottom. Aside from their usual use, funnels can be used as part of an inquiry challenging students to design the 'most effective' water filtration device. Give students a choice of materials (e.g., coffee filters, paper towels, sand, activated charcoal, shelf liner [the puffy, nonslip type], gravel, cotton balls, sponges, and so on) to design a three-layered water filter within the plastic funnel to remove a small scoop of potting soil from a water sample. Follow all safety rules when working with soil. Know the source of the soil to avoid contaminants and wash hands thoroughly with soap and water after working with soil. The goal for the student groups is to design a filtration system that will result in "clear" water being produced in a timely manner. This activity can be used as a stand-alone inquiry or as part of a larger unit on soils/Earth materials, water quality, or mixtures and solutions and the separation of their component parts.

MYSTERY BOXES

Mystery boxes are a favorite tool for teachers to introduce the meaning of observation and inference and various aspects of the nature of science. Often they are made by purchasing small cardboard boxes from the local jewelry store and placing common classroom or household items in them so students can shake and listen as they try to conclude what is hidden inside. Our local recycling center had a large supply of small cardboard boxes that had once contained hand soap—voilà! We found an ample supply of free mystery boxes! Mystery boxes work well as beginning-of-the-year activities. Using the box, students should first make observations—things they hear or feel. Then they can make an inference—based on the observations, what do you think the object is? Is there any way to know for sure without opening the box? How is this like what a scientist does? This process can help students begin to understand something of the nature of science and what it means to be a scientist.

HOVERCRAFT

Our local recycling center always carries a steady supply of CDs and closable water-bottle tops of different varieties—these materials can be used to make inexpensive hovercrafts. Teachers should build the hovercrafts before presenting them to students for exploration. Using a hot glue gun, teachers glue the base of a water-bottle top that has been cleaned with rubbing alcohol to the center of an old CD (we use the type of spout that pulls up to open and pushes down to close because balloons fit easily over these spouts). When the glue is dry, it is ready for use.

To operate the hovercraft, students place an inflated balloon over the closed water-bottle top. When the student pulls up on the bottle top, air from the balloon begins rushing out, causing the craft to move.

We've used these models to introduce such concepts as Newton's laws of motion, friction, and force. For example, before the top is pulled up (and opened), we have the students try pushing their devices across the tables. They note how far each device travels without the air rushing through the top and under the CD. We then have the students pull open the top and try the same process. They quickly observe how much farther the device travels when a force—in this case a push—is applied. We then give the students the option to add washers or other weights to see what happens to the distance the hovercraft travels when the same
amount of force (once again a push) is applied. This exploration leads easily to discussion about Newton's laws of motion.

Connecting to the Standards

This article relates to the following National Science Education Standards (NRC 1996).

Teaching Standards

Standard A: Teachers of science plan an inquiry-based science program for their students.

Standard B: Teachers of science guide and facilitate learning.

Standard D: Teachers of science design and manage learning environments that provide students with the time, space, and resources needed for learning science.

To extend learning beyond exploration with the simple hovercraft, we often challenge students to find ways to make the hovercraft travel without the students pushing it, or we challenge the students to design a hovercraft that will travel farthest when set in front of a fan in the hallway.

These are just a few of the recyclable items we have adapted for use in our classrooms. We encourage our fellow teachers to visit their local recycling centers to see what types of reusable science teaching treasures they may find. After all, the only thing better than an effective science teaching tool is a FREE science teaching tool!

Reference

This article first appeared in the Summer 2008 issue of Science and Children.
Index

Page numbers in boldface type refer to tables or figures.

Acid, calcium carbonate, reaction of. 112
Airplane lesson. 7–10
 elaborate. 10
 engagement. 7–8
 evaluation. 10
 explanation. 8–10
 exploration. 8
 group data sheet. 9
Analyzing process. 75
Bases. acids and. 113
Best Buy teach awards. 151
Black walnut, wildlife food. 117
Blueberry, wildlife food. 117
Bubble shapes. 105–106
Bulgaria, symbolic significance of egg. 112
Calcium carbonate, acid, reaction of. 112
California buckeye, wildlife food. 117
California poppy, wildlife food. 117
Cards for eco-challenge. 53
Cartooning. 59–64
 activity instruction sheet. 63
 earth science cartoon analysis. 60–61
 engaging students through. 59–60
 original cartoons. 61–63
 sharing. 63–64
 textual reading. 60
Chemistry equipment
 substitutions. 38
Christians, symbolic significance of egg. 112
Circulation. 34–35
Classification. 97–93
Coded stations. 72
Colors of bubble. 105
Construction techniques. 11–20
Cosmos, wildlife food. 117
Crabapple, wildlife food. 117
Creative projects. 41–44
 assessment. 43
 initiation. 42–43
 materials. 43
 oral presentations. scoring. 43
 project instructions. 42
 project presentations. 43
 types of projects. 41–42
Cultural significance of eggs. 112
Current events. 75–78
 activity objectives. 76
 activity sheet. 78
 discussion questions. 77
 main activity. 76–77
 materials required. 76
 processes. 75
 analyzing. 75
 communicating. 75
 describing. 75
 inferring. 75
 inquiring. 75
 safety. 76
 sample rubric. 77
 time required. 75
Demonstration balance.
 substitution. 37
Denaturing protein, eggs. 112
Density. 85–90
 activity objectives. 86
 activity sheet. 89–90
 assessment. 88
 background information. 86
 discussion questions. 87–88
 main activity procedures. 86–87
 materials. 85–86
 processes/skills. 85
 safety. 86
 sample rubric. 87
 time required. 85
Describing process. 75
 Desert bailey. wildlife food. 117
 Desert hackberry. wildlife food. 117
 Desert willow. wildlife food. 117
 Design. 11–20
 technological. 21–23
 building paper towers. 21–23
 challenge. 22
 constraints. 22
 design loop. 23
 materials. 22
 procedures. 22
 representative images of student towers. 23
 sample redesigned towers. 23
 Design loops. 23
 Dogwood. wildlife food. 117
 Donations. 145–147
 Early Christians, symbolic significance of egg. 112
 Earth science cartoon analysis. 60–61
 Ecological challenge. 51–53
 Ecosystem Jenga. 55–58
 activity benefits. 58
 activity worksheet. 57
 extensions. 58
 in-class discussion. 56–58
 Jenga, block-balancing game. 55
 preparation. 55–56
 Egg, symbolic significance of. 112
 Egypt, symbolic significance of egg. 112
 Electrical wire, substitution. 38
 Enviro-buck, sample. 53
 Environmental Protection Agency. SunWise program. 81–84
 action steps. 82
 sample activity. 82–83
 student exploration. 83
 SunWise traveler. 82
 teacher background. 82–83
 tool kit. 81–82
 website. 81
 EPA. See Environmental Protection Agency
 Equipment substitutions. 37–38
 chemistry equipment. 38
 demonstration balance. 37
 electrical wire. 38
 Formica sheets. 37
 garden edging. 38
 inclined planes. 38
ink for fingerprinting, 38
phenolphthalein, 38
physics equipment, 38
pipettes, 38
pulley, 38
spot plate, 38
spring scale, 38
tape measure, 37
‘throw away’ items, 37

Exploration of nature using geometry, 46

Flowers, wildlife food, 117
Formica sheets, substitution, 37
France, symbolic significance of egg, 112

Free resources, 33–36
circulation, 34–35
funnel, 35
graduated cylinder, scoops, 35
hovercraft, 35–36
mystery boxes, 35
sediment tubes, 34
timer, 33–34

Free science materials, 153–155
Friction, 11–20
Fun, as aspect of learning experience, 49–50
Funds, materials and, 143–159
donations, 145–147
free science materials, 153–155
funds, securing, 145–147
grants, 149–151
inexpensive science materials, 153–155
resources from community, 145–147
scavenger hunt, 157–159

Funnels, 35

Game board, ecological challenge, 51
Garden edging, substitution, 38
Geometric scavenger hunt, 45–48
animal kingdom linkage, 47
assessment, 47–48
engaging students, 45–46
geometry, exploring nature using, 46

Geometry, 4–5
Graduated cylinders, scoops, 35
Grants, 149–151
application, 150

Best Buy teach awards, 151
date, 150
grant resources, 151
Internet, 149–150
investigation locals, 150–151
NSTA grant resources, 151
school data, 150
storage, 150
Target field trip grants, 151
Verizon foundation, 151

Gravity, 3–5
Greece, symbolic significance of egg, 112
Group data sheet, airplane lesson paper, 9
Growth potential, 95–97

Helicopter seeds, 107–110
Hovercraft, 35–36
Humor, use of, 107–110
Hypothesis testing, 107–110

Impatiens, wildlife food, 117
Inclined planes, substitution, 38

Inertia, 11–20
Inexpensive science materials, 153–155
Inferring process, 75

Ink for fingerprinting, substitution, 38

Inquiring process, 75

Instructional lessons maximizing science budget, 79–142
bubble shapes, 105–106
density, 85–90
egg, 111–113
EPA SunWise program, 81–84
food, trees as sources of, 119–128
growth potential, 95–97
humor, 107
native plant garden, 133–135
outdoor learning center, 115–118
oxygen, trees as sources of, 119–128
polycrylate animals, 95–97
precipitation, 99–100
properties, classification, 97–93
sand, 137–142
shelter, trees as sources of, 119–128

Spiderweb collecting, 129–131
trees as sources of food, shelter, and oxygen, 119–128

Jenga, ecosystem, 55–58
activity benefits, 58
activity worksheet, 57
block-balancing game, 55
extensions, 58
in-class discussion, 56–58
preparation, 55–56

Job assignments, in station approach, 72

Kinetic energy, 11–20

Lilac, wildlife food, 117

Magnetism, 27–31, 28
assessment, 28
discussion, 28
exploration, 27–28
materials, 27
objective, 27

sink/float, 30–31
assessment, 31
discussion, 30–31
exploration, 30
materials, 30
objective, 30

static electricity, 29
assessment, 29
discussion, 29
exploration, 29
materials, 29
objective, 29

worksheet, 29–30

Maple, wildlife food, 117
Maple trees, double samaras, 107
Marigold, wildlife food, 117
Mystery boxes, 35

Native plant garden, 133–135
assessments, 135
building garden, 134–135
designing, 134
ethnobotanical uses, 134
native plant learning, 135
raised-bed garden, 133

Newsletter, 66
Newsletters, 65–67
Newton’s second law, 11–20
Newton’s third law, 11–20
Index

Oak, wildlife food, 117
Ocotillo, wildlife food, 117
OLC. See Outdoor learning center
Oral presentations, scoring, 43
Original cartoons, 61–63
Orthodox Christians, symbolic significance of egg, 112
Osmosis, 113
Outdoor learning center, 115–118
activities, 116–117
assistance, enlisting, 115–116
creating garden, 116
learning description, 115
materials, 116
plants providing wildlife food, 117
subjects, 115
teacher background, 115–117
time, 115
Paper airplane lesson, 7–10
elaborate, 10
engagement, 7–8
evaluation, 10
explanation, 8–10
exploration, 8
group data sheet, 9
Paper snowflakes, 102
Paper towers, 21–23
Pfitzer juniper, wildlife food, 117
Phenolphthalein, substitution, 38
Phlox, wildlife food, 117
Physics equipment, substitutions, 38
Pine, wildlife food, 117
Pipeettes substitution, 38
Plants providing wildlife food, 117
Polyacrylate animals, 95–97
Popping of bubbles, 105–106
Potential energy, 11–20
Precipitation, 99–100
Products made from trees, 119–128
Professional volunteers, 146–147
Properties, classification and,
97–93
Protein, denaturing, eggs, 112
Pulley substitution, 38
Question cards for eco-challenge, 53
Quiet work area, 70
Rain, 99–100
Raindrops, 100–101
Raised-bed garden, 133, 133–135
assessments, 135
building garden, 134–135
designing, 134
ethnobotanical uses, 134
native plant learning, 135
Recorder, 72
Recycling center resources, 33–36
circulation, 34–35
funnel, 35
graduated cylinder, scoops, 35
hovercraft, 35–36
mystery boxes, 35
sediment tubes, 34
timer, 33–34
Repurposed materials, 25–38
equipment substitutions, 37–38
magnetism, 27–31
recycling center resources, 33–36
Request letter, scavenger hunt, 158
Rotation pattern, in station
approach, 70
Rules during station work, 71
Safety issues, 76
Sample student newsletter, 66
Sand, 137–142
Scavenger hunt, 157–159
geometric, 45–48
animal kingdom linkage, 47
assessment, 47–48
engaging students, 45–46
graphology, exploring nature
using, 46
request letter, 158
Science newsletters, 65–67
Scientific method, 4
Scoring oral presentations, 43
Sediment tubes, 34
Shapes of bubbles, 105–106
Shrubs, wildlife food, 117
Simple machines, 11–20
Sink/float, 30–31
assessment, 31
discussion, 30–31
exploration, 30
materials, 30
objective, 30
Snow, 99–100
Snowflake samples, 101
Social & emotional development, 4
Spatial sense, 4–5
Speed, 11–20
Spiderweb collecting, 129–131
center connection, 130
family science connection, 131
follow-up activities, 130
initiation, 129
investigation, 129
literature connection, 130
materials, 129
preserving, 129
procedure, 129–130
process skills, 129
questions, 129
Sponge activities, 72
Spot plate substitution, 38
Spring scale substitution, 38
Spruce, wildlife food, 117
Static electricity, 29
assessment, 29
discussion, 29
exploration, 29
materials, 29
objective, 29
worksheet, 29–30
Station approach, 69–74
assessing student work, 74
captain, 72
coded stations, 72
computer, 70
design, 69–70
designing activities, 73–74
handouts, 72
information person, 72
job assignments, 72
lab area, 70
managing classroom, 71–72
procedures, 71–72
production area, 70
quiet work area, 70
recorder, 72
rotation pattern, 70
rules during station work, 71
sponge activities, 72
student jobs, 72
student preparation, 71
supply person, 72
teacher-directed area, 70
Strength of eggs, 113
String racers, 11–20
additional activities, 13–14
alternate propellers, 20
balloons, 20
construction techniques, 11–20
design, 11–20
directions for assembly, 15–20
friction, 11–20
inertia, 11–20
instructional information, 11–13
kinetic energy, 11–20
Newton’s second law, 11–20
Newton’s third law, 11–20
overview, 11
postdemonstration activities, 13
potential energy, 11–20
predemonstration discussion, 12
presentation suggestions, 12–13
prior knowledge, 11–12
related concepts, processes, 11
safety, 14
simple machines, 11–20
speed, 11–20
student skills, 11
suggested materials, 13
testing of hypothesis, 11–20
trial and error, 11–20
Student-created constructions, 1–23
paper airplane lesson, 7–10
roller coasters, 3–5
string racers, 11–20
technological design, 21–23
Student towers, representative images, 23
Substitutions, 37–38
chemistry equipment, 38
demonstration balance, 37
electrical wire, 38
Formica sheets, 37
garden edging, 38
inclined planes, 38
ink for fingerprinting, 38
phenolphthalein, 38
physics equipment, 38
pipettes, 38
pulley, 38
spot plate, 38
spring scale, 38
tape measure, 37
‘throw away’ items, 37
Sumac, wildlife food, 117
SunWise program, 81–84
action steps, 82
Environmental Protection Agency, 81–84
sample activity, 82–83
student exploration, 83
SunWise traveler, 82
teacher background, 82–83
tool kit, 81–82
website, 81
Symbolic significance of egg, 112
Tape measure, substitution, 37
Target field trip grants, 151
Teacher-created constructions, 25–38
equipment substitutions, 37–38
magnetism, 27–31
recycling center resources, 33–36
Teaching strategies maximizing science budget, 39–78
cartooning, 59–64
connections, 49–50
creative projects, 41–44
eco-challenge, 51–53
ecosystem, 55–58
geometric scavenger hunt, 45–48
science newsletters, 65–67
station approach, 69–74
Technological design, 21–23
building paper towers, 21–23
challenge, 22
constraints, 22
design loop, 23
materials, 22
procedures, 22
representative images of student towers, 23
sample redesigned towers, 23
Testing of hypothesis, 11–20
‘Throw away’ items as substitutions, 37
Trees
products made from, 119–128
wildlife food, 117
Trial and error, 11–20
Trumpet vine, wildlife food, 117
Venn diagrams for children, 92
Verizon foundation, 151
Viburnum, wildlife food, 117
Virtual snowflake samples, 101
Virtual snowflakes, 102–103
Volunteers, professional, 146–147
Wildlife, plants providing food for, 117
Writing grants, 149–151
application, 150
Best Buy teach awards, 151
date, 150
grant resources from NSTA, 151
Internet, 149–150
investigation locals, 150–151
resources, 151
school data, 150
storage, 150
Target field trip grants, 151
Verizon foundation, 151
Zinnia, wildlife food, 117