Once Upon a Life Science Book

12 Interdisciplinary Activities to Create Confident Readers
Once Upon a Life Science Book

12 Interdisciplinary Activities to Create Confident Readers

Jodi Wheeler-Toppen
Table of Contents

Acknowledgments... vii

Chapter 1: Getting Started.. 1

Chapter 2: The Reading Strategies.. 9

Chapter 3: How Do You Know That? Helping Students With Claims and Evidence......................... 21

Chapter 4: A-Maze-ing Worms.. 27
 Topics: scientific method, controlling variables
 Reading Strategies: comprehension coding, reading in groups

Chapter 5: Cells R Us.. 41
 Topics: plant, animal, and bacteria cells; cell parts; prokaryotes and eukaryotes
 Reading Strategy: using context clues to find the meaning of new words

Chapter 6: Healing Powers... 53
 Topics: cell cycle, mitosis
 Reading Strategy: previewing diagrams and illustrations

Chapter 7: No Bones About It.. 61
 Topics: characteristics of arthropods, invertebrates, skeletal and muscular systems
 Reading Strategy: identifying text signals for examples and lists

Chapter 8: The Case of the Tree Hit Man.. 71
 Topics: plant structure and function (roots, stems, and leaves), vascular tissue in plants
 (xylem and phloem)
 Reading Strategy: previewing diagrams and illustrations

Chapter 9: A Gene for Drunkenness?... 81
 Topics: genetics, gene and environment interactions, human disease
 Reading Strategy: chunking
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Topics</th>
<th>Reading Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Oh! I Gotta Pee!</td>
<td>urinary system, homeostasis</td>
<td>pause, retell, and compare</td>
</tr>
<tr>
<td>11</td>
<td>A Crisis of Crabs</td>
<td>food chains and webs, biotic and abiotic factors, interconnections in ecology</td>
<td>pause, retell, and compare</td>
</tr>
<tr>
<td>12</td>
<td>The Outsiders</td>
<td>classification, tentative nature of science, protists</td>
<td>chunking</td>
</tr>
<tr>
<td>13</td>
<td>Some Like It Hot</td>
<td>adaptation, natural selection, penguins</td>
<td>identifying text signals for comparisons and contrasts</td>
</tr>
<tr>
<td>14</td>
<td>Bacteria: The Good, the Bad, and Getting Rid of the Ugly</td>
<td>bacteria structure, bacteria diversity, bacteria culturing</td>
<td>using context clues to find the meaning of new words</td>
</tr>
<tr>
<td>15</td>
<td>Hunting the Ancient Whales</td>
<td>macroevolution, evidence for evolution, characteristics of mammals</td>
<td>recognizing and reading scientific names</td>
</tr>
</tbody>
</table>

Index .. 157
About the Author .. 161
Acknowledgments

For Jon, Natalie, and Zachary

With thanks to
Tammy Moncel
Lac Courte Oreilles Ojibwe Middle School
Hayward, WI
and
Scott Parrish
William Ellis Middle School
Advance, NC
for field testing some of the activities in their classrooms.

And to the following individuals who provided expert reviews of the science content:

Aaron Wheeler
Department of Chemistry
University of Toronto

Peggy Brickman
Division of Biological Sciences
University of Georgia

Norris Armstrong
Division of Biological Sciences
University of Georgia

Lawrence J. Davenport
Department of Biology
Samford University
Acknowledgments

Darold Batzer
Department of Entomology
University of Georgia

David Goldman
National Institute on Alcohol Abuse and Alcoholism
National Institutes of Health

John Heller
Metropolitan Urology Clinic
Minneapolis, MN

Richard Lee
Skidaway Institute of Oceanography
Savannah, GA

Mark Farmer
Department of Cellular Biology
University of Georgia

Jean Pennycook
Education Division
The Penguin Science Project

Wendy Dustman
Department of Microbiology
University of Georgia

J. G. M. “Hans” Thewissen
Department of Anatomy and Neurobiology
Northeastern Ohio Universities College of Medicine
Chapter 8

The Case of the Tree Hit Man

Topics

- Plant structure and function (roots, stems, and leaves)
- Vascular tissue in plants (xylem and phloem)

NSES Content Standards
(For Grades 5–8, Life Science)

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole. (NRC 1996, p. 156)
The Case of the Tree Hit Man

Reading Strategy
Previewing diagrams and illustrations

Background
The topic of plants does not excite many middle school students. Learning about the inner workings of xylem and phloem feels far removed from any practical applications in their lives. This chapter uses a (true life!) crime scenario to frame the study of water and sugar movement in plants.

First, students will do a few basic explorations to make sure that they have an underlying understanding of water and sugar movement in plants. Although it may seem like students should know these basic ideas, many students have never observed plants closely and are confused by these topics. However, once students observe water movement in a plant, they will be ready to learn about xylem and phloem.

Materials
- 4 small plants per class, such as geraniums, bean seedlings, pansies, or young radishes
- Dried potting soil (see Teaching Note on p. 73)
- Plastic wrap or plastic bags (or other materials requested by students)
- Watering can or spray bottle
- Celery stalks, preferably with leaves attached
- Food coloring
- Plastic cups (1 per group, plus 4 per class to use as pots for the mini-experiment)
- Knives to trim the celery (Note: Some schools do not allow students to use knives. If this is the case, the teacher should prepare the celery in advance.)
- Indirectly vented chemical splash goggles, aprons, vinyl gloves

SAFETY ALERT!
- The teacher will demonstrate safe procedures for using a knife.
- Point and push knife away from your body.
- Never use excess force when working with a knife.
- Wipe up any water on the floor when using a spray bottle, as it can be a slip or fall hazard.

Student Pages
- “The Case of the Tree Hit Man”
- Plant Police Academy
- Structure and Function in Plants

Copyright © 2010 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Exploration/Pre-Reading

In this exploration, students will begin with a mini-experiment to decide if roots or leaves absorb water for plants. Then they will observe the movement of water through a celery stem and compare how water and sugar move through a plant. These explorations require several days to complete, so you will need to plan ahead.

Begin by telling students that a terrible crime has occurred. Over the next few days, they will be participating in Plant Police Academy to learn more about it. As their first task, students need to design an experiment that will show which part of the plant absorbs water. Show students the four plants for their class, and ask the class to design an experiment that would let them show whether leaves or roots absorb the water. After a little brainstorming, most classes will come up with something similar to one of the two experimental designs shown in the figure above. (Note that each picture shows only one plant in each condition; your classes will have two plants in each group.)

Give students the handout Plant Police Academy, and have them draw the class’s experimental design. Ask, “What happens to a plant when it runs out of water?” and make sure students understand that the plant will

TEACHING NOTE
If you purchase mature plants that have been well watered at the nursery, it can take up to three weeks for the plant with covered roots to wilt. You can shorten the time by using potting soil that has been thoroughly dried before planting. Place the soil on a cookie sheet and bake it at 250 degrees for two to four hours to remove the water. When you are ready to start the experiment, gently loosen the existing soil from the roots of your plants, rinse the remaining soil away with water, and then plant them in the dry soil. The plant with covered roots should then wilt in just two to four days.
wilt. They should then be able to fill in the prediction section for each experimental group.

The second activity, allowing celery to soak up colored water, may be familiar to students. This version, though, asks them to pay careful attention to where the color change takes place. The process requires at least one hour but works best when allowed to sit overnight.

Introduce the Reading. Tell students that they are now ready to read and investigate the crime. Give out the “The Case of the Tree Hit Man,” and lead students to study the diagrams as described in the reading strategy section below.

Reading Strategy: Previewing Diagrams and Illustrations

Note that this strategy was first introduced in Chapter 6. If you have not used Chapter 6 with your class, tell students that in some books that they read, the pictures are extras. In science writing, however, the pictures and diagrams often carry a lot of important information. Looking at the pictures and making predictions about what they mean before reading can help make the text easier to understand.

If you have already introduced this strategy, remind students about the importance of pictures in science text. Then tell them that they are going to practice three questions that they can use to help them preview diagrams and illustrations.

Place students into their reading groups, and direct them to look at Figure 1 (p. 76). The Leaders should describe what they see in the diagram, without worrying about whether they know the correct terms. Then the Flag Flyers should predict what the diagram illustrates. Finally, the Interpreters should come up with at least one question about the diagram that might be answered in the text. Have one group share its responses with the class.

Continue to Figure 2 (p. 77), but this time the Interpreter should describe the diagram, the Leader should make the prediction, and the Flag Flyer should come up with a question. Continue this pattern until the students have discussed each diagram. Then have them proceed to reading the text as usual.

Journal Questions

When you looked at the diagrams before reading, your group discussed three questions:
• What do you see in the diagram?
• What might the diagram be illustrating?
• What question do you think the text will answer about the diagram?

Which of these three questions was most helpful for understanding the text? Why?

Application/Post-Reading

• Graphic Organizer: Structure and Function in Plants
• Pulling It Together in Writing: Give students the following prompt: The town of Magnolia Springs has decided to prosecute the tree hit man. You are the police detective called in to explain the case to the jury. Explain how the hit man killed the tree, and include a diagram to help them understand.
• Pulling-It-Together Focus Point: Phloem cells carry food and sugars through the plant. In a tree, the cells are located in a ring just beneath the bark. The tree hit man cut through the phloem cells and, therefore, starved the base of the tree.

References

Save the Tree Committee. n.d. Inspiration Oak vital statistics (handout provided at Inspiration Oak Park).
Save the Tree Committee. n.d. Answers to frequently asked questions (handout provided at Inspiration Oak Park).
The Case of the Tree Hit Man

The assassin crept across the lawn in the dead of night. He worked quietly and efficiently. There were only a few hours until morning, and his work would need to be completed by the time the sun came up. He had been hired to kill one of Magnolia Springs’ oldest and most respected residents: a 500-year-old oak tree.

The tree, named Inspiration Oak, had been growing since before the time of Christopher Columbus. It had survived the birth of the small town and the invention of the automobile. By 1990, it stood 65 feet tall, with a trunk that was almost 30 feet in diameter.

The owner of the land had decided to chop down the tree and build a gas station. The people of Magnolia Springs loved that tree, so county officials denied the permit for a gas station and collected money to buy the land instead.

The owner’s plans were foiled, and all because of that tree? The owner got on the phone and called a hit man.

It’s not easy to kill a big tree in a hurry. Chopping it down would take time and be noisy. Neighbors would be sure to notice. Poison might work, but it would take massive amounts of poison and could take years to finish the job. But the tree hit man had a plan because he knew how trees were organized.

What the Hit Man Knew

Trees, like most plants, have three main parts: the roots, leaves, and stem. The roots hold the tree firmly in the ground so that even a strong wind will not knock it over. They grow deep into the soil and can stretch for hundreds of feet in all directions. As shown in Figure 1, the root network is as big as the trunk and the branches combined. Trees need this vast network of roots to absorb water and minerals for growth.

At the other end of a tree, you find the leaves. Leaves make food for the plant in a process called photosynthesis. The leaves get carbon dioxide from the air and water from the roots. Then they use energy from sunlight to convert the water and carbon dioxide into sugars.

The stem, or tree trunk, holds the leaves high in the air so they can get enough sunlight. The trunk also connects the roots and leaves. Inside the trunk, tubes carry water and minerals from the roots up to the

Figure 1. Tree Roots

Roots make up about half of the total size of a tree.
leaves. Another set of tubes carries sugars from the leaves to the roots.

These tubes are made of specialized plant cells that connect end to end. The cells that carry water up are called xylem. The cells that carry sugar down are called phloem. Together, the xylem and phloem are called the vascular tissue. Vascular tissue carries water and sugars throughout the roots, leaves, and stems.

In most plants, xylem and phloem are found in bundles throughout the stem. But in trees, the xylem grows in the center of the trunk and all of the phloem lie just below the bark on the outside.

Quick and Dirty Business
The hit man worked quickly to chisel into the tree. He made a perfect ring, six inches wide and six inches deep. With each cut, he removed the bark and the phloem layer. Thick, sticky liquid oozed from the wounds. Soon the tree had no way to get sugar from its leaves to its roots. It was only a matter of time until the root cells died of starvation.

In the morning, the townspeople were horrified. They brought in tree experts from around the country, who built an elaborate intensive care unit to try to reconnect the phloem tubes. But it was too late. The tree could not be saved.

No charges were ever brought in the case of the tree hit man, but the town of Magnolia Springs came together in its effort to save the tree. They went through with their plans to buy the land and build a park. It is a beautiful, quiet picnic spot that is marked with the giant stump of Inspiration Oak.

THE BIG QUESTION
How do water and food (sugars) move through a plant?
Plant Police Academy

A terrible crime has occurred. In a few days, you will learn more about it. But first, you need to come to plant police academy to find out more about plants.

Part 1: Which part of a plant absorbs water: roots or leaves? (mini-experiment)

Draw a diagram of your two experimental groups.

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>If roots absorb water, this plant will (circle one): wilt not wilt.</td>
<td>If roots absorb water, this plant will (circle one): wilt not wilt.</td>
</tr>
<tr>
<td>If leaves absorb water, this plant will (circle one): wilt not wilt.</td>
<td>If leaves absorb water, this plant will (circle one): wilt not wilt.</td>
</tr>
</tbody>
</table>

Results: Did the plant wilt? ________

Results: Did the plant wilt? ________

Claims and Evidence: Which part of the plant absorbs water? What evidence do you have from your experiment?
Part 2: Water Movement in the Stem of a Plant
Fill a cup halfway with water and add 8 to 10 drops of food coloring. Get a stalk of celery from your teacher. Cut about 2 cm from the bottom and top of the celery stalk to get rid of any dried parts. Then place the stalk in the colored water, leaf side up. Let it sit in the water for at least an hour.

a. What happened to the celery?

b. Based on these results, does water move up or down the stem of the celery plant?

c. Chop the celery stalk in half and look at the inside with a hand lens.

 Draw what you see here, and label the areas where you can see food coloring.

d. Did the water move everywhere in the celery, or just in certain places?

Part 3: How Water and Sugars Move in a Plant
Sugar is made in the leaves of a plant and then travels to all the cells of the plant. In the diagram to the right, the arrow shows the direction that sugar moves.

Draw a second arrow to show the direction that water moves in the plant.

Think about the direction of your arrows. Can food and water move in the same tubes inside the plant stem? Why or why not?

Congratulations! You have completed the Plant Police Academy. Now it is time to find out more about the Case of the Tree Hit Man.
Anatomy of a Plant

Phrase Bank
- hold the plant up to the Sun
- anchor the plant to the ground
- collect carbon dioxide and sunlight
- collect water and minerals
- make food for the plant
- transport water and sugars
Index

Page numbers in **boldface** type refer to tables or figures.

| A | “A Crisis of Crabs,” 103–111
| | application/post-reading for,
| | 106–107
| | background for, 104
| | exploration/pre-reading for,
| | 104–106
| | journal questions for, 106
| | materials for, 104
| | NSES content standards
| | addressed by, 103
| | pause, retell, and compare
| | strategy for, 106
| | safety alert for, 104
| | student pages for, 104, 108–111 |
| C | “A Gene for Drunkenness?”, 81–92
| | application/post-reading for,
| | 86
| | background for, 82
| | chunking strategy for, 84–85
| | exploration/pre-reading for,
| | 83–85
| | journal question for, 85
| | materials for, 83
| | NSES content standards
| | addressed by, 81
| | student pages for, 83, 87–90 |
| B | “A-Maze-ing Worms,” 27–40
| | application/post-reading for,
| | 31
| | background for, 28
| | comprehension coding for, 30
| | exploration/pre-reading for,
| | 29–30
| | journal questions for, 31
| | materials for, 28
| | NSES content standards
| | addressed by, 27
| | student pages for, 28, 33–40
| | Adaptation. See “Some Like It Hot”
| | Alcoholism. See “A Gene for Drunkenness?”
| | Aquatic ecosystems. See “A Crisis of Crabs”
| | Arthropods. See “No Bones About It”
| | Assessment of student learning,
| | 5–7
| | Big Question, 5–6
| | claims and evidence, 6, 24–25,
| | 25
| | graphic organizers, 6
| | Pulling It Together in Writing,
| | 6
| | self-assessment, 6, 18, 18–19
| | teaching based on, 6–7
| C | Cell cycle. See “Healing Powers”
| | “Cells R Us,” 41–52
| | application/post-reading for,
| | 45
| | background for, 42
| | exploration/pre-reading for,
| | 42–44
| | finding the meaning of new
| | words in, 44
| | journal question for, 44
| | materials for, 42
| | NSES content standards
| | addressed by, 41
| | student pages for, 42, 46–52
| B | Backings, 22, 22, 23. See also
| | Claims and evidence
| | “Bacteria: The Good, the Bad,
| | and Getting Rid of the Ugly,”
| | 135–144
| | application/post-reading for,
| | 138
| | background for, 136
| | exploration/pre-reading for,
| | 136–138
| | finding the meaning of new
| | words in, 138
| | journal questions for, 138
| | materials for, 136
| | NSES content standards
| | addressed by, 135
| | safety alert for, 136
| B | Big Question, 5–6, 13 |
| C | for “A Gene for Drunkenness?”,
| | 84–85
| | for “The Outsiders,” 115–116
| C | Claims and evidence, 6, 21–26
| | argument in the classroom, 23
| | assessment of, 24–25, 25
| | introduction of, 23–24
| | Toulmin’s model of scientific
| | argumentation, 22, 22
| C | Classification. See “The Outsiders”
| | Comprehension coding, 12
| | for “A-Maze-ing Worms,” 30
| | Concept application phase of
| | learning cycle, 3
| | Concept introduction phase of
| | learning cycle, 2–3
| | Constructivism, 3
| | Controlled experiments, 30, 37–38
| | Crabs. See “A Crisis of Crabs”
Index

| **D** | Diagrams and illustrations, previewing of, 15
for "Healing Powers," 55–56
for "The Case of the Tree Hit Man," 74
Dictionary use, 15 |
| **E** | Environment-gene interactions.
See "A Gene for Drunkenness?"
Euglena. See "The Outsiders"
Evolution. See "Hunting the Ancient Whales"
Exploration phase of learning cycle, 2, 3
for "A Crisis of Crabs," 104–106
for "A Gene for Drunkenness?", 83–85
for "A-Maze-ing Worms," 29–30
for "Bacteria: The Good, the Bad, and Getting Rid of the Ugly," 138
for "Cells R Us," 45
for "Healing Powers," 56
for "Hunting the Ancient Whales," 148
for "No Bones About It," 64
for "Oh! I Gotta Pee!", 97
for "Some Like It Hot," 127
for "The Case of the Tree Hit Man," 75
for "The Outsiders," 117
Grasshoppers. See "No Bones About It" |
| **H** | "Healing Powers," 53–60
apPLICATION/POST-READING FOR, 56
background for, 54
exploration/pre-reading for, 54–56
journal questions for, 56
material for, 54
NSES content standards addressed by, 53
previewing diagrams and illustrations for, 55–56
student pages for, 145, 150–155
"Hunting the Ancient Whales," 145–156
apPLICATION/POST-READING FOR, 148
background for, 145
exploration/pre-reading for, 146–148
journal questions for, 148
materials for, 145
NSES content standards addressed by, 145
reading scientific names for, 147–148 |
| **I** | Integration of science and reading, 2, 4
Interruption construction, 17 |
| **J** | Journal questions, 5
for "A Crisis of Crabs," 106
for "A Gene for Drunkenness?", 85
for "A-Maze-ing Worms," 31
for "Bacteria: The Good, the Bad, and Getting Rid of the Ugly," 138
for "Cells R Us," 44
for "Healing Powers," 56
for "Hunting the Ancient Whales," 148
for "No Bones About It," 64
for "Oh! I Gotta Pee!", 96
for "Some Like It Hot," 127
for "The Case of the Tree Hit Man," 74–75
for "The Outsiders," 117 |
| **L** | Learning cycle, 2–3 |
| **M** | Macroevolution. See "Hunting the Ancient Whales"
Mammal characteristics. See "Hunting the Ancient Whales"
Mealworms. See "A-Maze-ing Worms"
Mitosis. See "Healing Powers" |
| **N** | Narrative text, 10
National Science Education Standards (NSES), 2
Natural selection. See "Some Like It Hot"
"No Bones About It," 61–70
apPLICATION/POST-READING FOR, 64
background for, 62
exploration/pre-reading for, 62–64 |
Index

<table>
<thead>
<tr>
<th>think-alouds, 10–11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubrics</td>
</tr>
<tr>
<td>for assessing claims and evidence, 25</td>
</tr>
<tr>
<td>for evaluating responses to Pulling It Together in Writing, 7</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Safety alerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>for “A Crisis of Crabs,” 104</td>
</tr>
<tr>
<td>for “Bacteria: The Good, the Bad, and Getting Rid of the Ugly,” 136</td>
</tr>
<tr>
<td>for “No Bones About It,” 62, 63</td>
</tr>
<tr>
<td>for “The Case of the Tree Hit Man,” 72</td>
</tr>
<tr>
<td>for “The Outsiders,” 114</td>
</tr>
</tbody>
</table>

| Scientific argumentation, 22 |
| in the classroom, 23 |
| definition of, 22 |
| Toulmin’s model of, 22, 22 |

| Scientific names, reading of, 17 |
| for “Hunting the Ancient Whales,” 147–148 |

SciLinks

| alcoholism, 82 |
| animal adaptations, 124 |
| aquatic ecosystems, 108 |
| bacteria, 42, 135 |
| behaviors and adaptations, 129 |
| bones and muscles, 62 |
| cell cycle, 58 |
| cell structure, 46 |
| controlled experiments, 28 |
| DNA, 47 |
| food chains and food webs, 104 |
| genes and traits, 82 |
| genetic diseases, screening, counselings, 82 |
| history of evolution, 146 |
| how do ecosystems change naturally?, 105 |
| how do plant and animal cells differ?, 42 |
| Huntington disease, 82 |
| insects, 63 |
| levels of classification, 114 |
| mitosis, 54 |
| organ transplants, 97 |
| organs of excretion, 97 |
| plant growth, 73 |
| prokaryotic cells, 44 |
| urinary system, 94 |
| whales, 146 |
| what are the parts of a plant?, 73 |
| worms, 35 |

Self-assessment by students, 6, 18, 18–19

| “Some Like It Hot,” 123–134 |
| application/post-reading for, 127 |
| background for, 124 |
| exploration/pre-reading for, 125–127 |
| journal questions for, 127 |
| materials for, 124 |
| NSES content standards addressed by, 123 |
| student pages for, 124, 128–134 |
| text signals—compare and contrast for, 126–127 |

Students

| assessing learning of, 5–7, 7 |
| peer conversations about reading, 11 |
| prior knowledge and misconceptions of, 3 |
| reading skills of, 3–4, 6 |
| self-assessment by, 6, 18, 18–19 |
| views of reading, 10 |

| “The Case of the Tree Hit Man,” 71–80 |
| application/post-reading for, 75 |
| background for, 72 |
| exploration/pre-reading for, |

Text signals, 15–16, 16

| compare and contrast for “Some Like It Hot,” 126–127 |
| examples and lists for “No Bones About It,” 63–64 |
| “The Case of the Tree Hit Man,” 71–80 |
| application/post-reading for, 75 |
| background for, 72 |
| exploration/pre-reading for, |

T

| warrants, 22, 22, 23. See also Claims and evidence |
| Whales. See “Hunting the Ancient Whales” |
| What’s in the Box?, 24 |
| Who Broke Mrs. Garcia’s Bottle of Perfume?, 24, 26 |
| Writing activities. See Journal questions; Pulling It Together in Writing |

U

| Urinary system. See “Oh! I Gotta Pee!” |

V

| Vocabulary |
| finding the meaning of new words, 14, 14–15 |
| reading scientific names, 17 |
| text signals, 15–16, 16 |

W

| warrants, 22, 22, 23. See also Claims and evidence |
| Whales. See “Hunting the Ancient Whales” |
| What’s in the Box?, 24 |
| Who Broke Mrs. Garcia’s Bottle of Perfume?, 24, 26 |
| Writing activities. See Journal questions; Pulling It Together in Writing |