NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permissions
You may photocopy, print, or email up to five copies of an NSTA book chapter for personal use only; this does not include display or promotional use. Elementary, middle, and high school teachers only may reproduce a single NSTA book chapter for classroom or noncommercial, professional-development use only. For permission to photocopy or use material electronically from this NSTA Press book, please contact the Copyright Clearance Center (CCC) (www.copyright.com; 978-750-8400). Please access www.nsta.org/permissions for further information about NSTA's rights and permissions policies.

Library of Congress Cataloging-in-Publication Data
Koba, Susan, author.
pages cm
Includes bibliographical references and index.
1. Biology--Study and teaching (Secondary) I. Tweed, Anne, author. II. Title.
QH315.K58 2014
570.76--dc23
2014022577

Cataloging-in-Publication Data for the e-book are also available from the Library of Congress.
Contents

About the Authors .. vii

Chapter Contributors .. viii

Introduction ... ix

Part I: The Toolbox: A Framework, Strategies, and Connections

Chapter 1:	The Instructional Planning Framework: Addressing Conceptual Change	3
Chapter 2:	Understanding the Next Generation Science Standards and How They Link to the Instructional Planning Framework	19
Chapter 3:	Implementation of the Hard-to-Teach Instructional Planning Framework	43
Chapter 4:	Connections to the Instructional Planning Framework and Resulting Lessons	141

Part II: Toolbox Implementation: The Framework and Strategies in Practice

Chapter 5:	Matter and Energy in Organisms and Ecosystems (Cynthia Long)	171
Chapter 6:	Ecosystems: Interactions, Energy, and Dynamics: An Issue-Based Approach (Nancy Kellogg)	189
Chapter 7:	Variations of Traits (Ravit Golan Duncan and Brian J. Reiser)	229
Chapter 8:	The Role of Adaptation in Biological Evolution (Sue Whitsett)	255

Reflection and Next Steps ... 287

References ... 291

Appendix 1: Glossary of Acronyms ... 309

Appendix 2: Hints and Resources for the Design Process ... 311

Appendix 3: Planning Template for Proteins and Genes Unit .. 317

Index .. 325
About the Authors

Susan Koba, a science education consultant, works primarily with the National Science Teachers Association (NSTA) on its professional development website, The NSTA Learning Center. She retired from the Omaha Public Schools (OPS) after 30 years, having taught on the middle and high school levels for more than 20 years and then having served as a curriculum specialist and district mentor. Koba ended her service to OPS as project director and professional development coordinator for the OPS Urban Systemic Program serving 60 schools.

Koba has been named an Alice Buffett Outstanding Teacher, Outstanding Biology Teacher for Nebraska, Tandy Technology Scholar, and Access Excellence Fellow. She is also a recipient of a Christa McAuliffe Fellowship and a Presidential Award for Excellence in Mathematics and Science Teaching. She received her BS degree in biology from Doane College, an MA in biology from the University of Nebraska–Omaha, and a PhD in science education from the University of Nebraska–Lincoln.

Koba has published and presented on many topics, including school and teacher change, effective science instruction, equity in science, inquiry, and action research. She has developed curriculum at the local, state, and national levels and served as curriculum specialist for a U.S. Department of Energy Technology Innovation Challenge Grant. A past director of coordination and supervision on the NSTA Board and a past president of her state NSTA chapter, she currently serves NSTA on the Budget and Finance Committee. Other past NSTA work includes serving as the chairperson of the Professional Development Task Force, scope author for the NGSS SciPack currently in development, and the conference chairperson for the 2006 Area Conference in Omaha. She is also a past president of the National Science Education Leadership Association (NSELA) and served as NSELA’s Interim Executive Director.

Anne Tweed is the Director of STEM Learning with McREL International in Denver. Her work at McREL is research-based and includes ongoing professional development workshops in the areas of science and standards, assessment systems, effective science and math instruction, and formative assessment. Additionally, she is a co-principal investigator on an IES Formative Assessment project that supports implementation in middle level classrooms and was the co-principal investigator for the recently completed NanoTeach NSF-funded project that supported teachers as they learned about nanoscience and technology content and effective science instructional strategies to help them design and implement lessons focused on this emerging area of content.
Tweed earned an MS in botany from the University of Minnesota and a BA in biology from Colorado College. A 28-year veteran classroom biology and environmental science teacher and department coordinator, Tweed also taught AP Biology and AP Environmental Science in addition to Marine Science and off-campus programs. Tweed is a past president of the National Science Teachers Association (2004–2005). She also served at a District Director and a High School Division Director for NSTA and chaired the 1993 and 1997 NSTA Regional Conferences in Denver. Additionally, Tweed chaired the life science program planning team revising the 2009 NAEP (National Assessment of Educational Progress) Framework for Science. Tweed has been recognized for her work in education and has received the Distinguished Service Award and the Distinguished High School Science Teaching Award from NSTA, and the Outstanding Biology Teacher Award for Colorado; she is also a state Presidential Award honoree.

Anne Tweed has published many articles, authored and co-authored several books (*Designing Effective Science Instruction*, 2009, NSTA Press), and given more than 250 presentations and workshops at state, national, and international conferences. Tweed has provided numerous webinars and conference presentations on the instructional shifts and changes in lesson design resulting from the *Next Generation Science Standards*.

Chapter Contributors

Ravit Golan Duncan
Associate Professor of Science Education
Rutgers University
New Brunswick, NJ

Brian J. Reiser
Professor, Learning Sciences
Northwestern University
Evanston, IL

Nancy Kellogg
Science Education Consultant
Boulder, CO

Sue Whitsett
eCYBERMISSION Outreach Manager with NSTA
Biology Teacher (1979–2012)
Oshkosh, WI

Cynthia Long
COO & Director of Education
Ocean Classrooms
Boulder, CO
Introduction

“Biology has become the most active, the most relevant, and the most personal science, one characterized by extraordinary rigor and predictive power.”
—John A. Moore, 1993

“A pessimist sees the difficulty in every opportunity; an optimist sees the opportunity in every difficulty.”
—Winston Churchill (1874–1965)

Biology is a science in which the curriculum continuously changes. New knowledge and emerging content have an enormous impact on our lives. With each new discovery, biologists develop new questions, which lead to more new knowledge. As biology teachers, we constantly learn new content and develop not only our own understanding of biological concepts but also ways to best teach that content to our students.

In addition, we now have new standards in the Next Generation Science Standards (NGSS; NGSS Lead States 2013) and A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (Framework; NRC 2012) to inform the teaching and learning in classrooms. The NGSS, based on the Framework, bring significant conceptual shifts that must be reflected in our curriculum, instruction, and assessment. These changes, along with continually increasing content, bring new challenges to biology teachers—but these challenges bring opportunity to improve teaching and learning in our classrooms.

This book does not contain a recipe to follow as you plan and deliver lessons. Nor is it a set of predesigned lessons for use in biology classrooms. Instead, it features both an instructional framework you can use as you plan—our Instructional Planning Framework (for a visual representation of the framework, see Figure 1.1, p. 7)—and sets of strategies and resources you can select from to help your students learn. We believe that both new and veteran teachers can use the framework to develop students’ conceptual understanding of hard-to-teach biology topics.

The Next Generation Science Standards were written to emphasize a teaching approach that blends science and engineering practices with disciplinary core ideas and crosscutting concepts. This represents a significant change with implications for teacher knowledge and practices. We recognize that you, as a biology teacher, will need to reflect on your beliefs, attitudes, and instructional approaches to address the shifts
represented in the new documents. This second edition will expand on the previous edition to include the revised thinking and reflection that will be needed for you to make adjustments to your planning and teaching. We recognize that all states are in different places with their review of the Next Generation Science Standards but we hope this second edition will provide a perspective that supports your teaching of important biology ideas. Chapters 5–8 are chapters where the teaching and learning shifts are described from the perspective of contributing authors (who are educators like you). We will take this journey with you as you review your current practices and make adjustments needed to realize the vision for teaching the hard-to-teach biology concepts. One concept from the first edition is repeated to model how an existing unit can be modified to align with NGSS. The four concepts addressed by contributing authors are new to this edition.

We will begin this book by looking at what is known biologically and what is expected in the NGSS. From there we must determine what and how we should teach to develop our students’ biological literacy (essential biology concepts) and appreciation of the living world. Obviously we all want students to understand ideas such as genetic engineering, stem cell research, and evolutionary biology. But for students to learn about genetic engineering, they also must understand how molecules in the cell work and how they provide the genetic information in all living things. To understand stem cells, students have to understand the process of cell division and differentiation. To understand evolutionary biology, they have to understand the processes that produced the diversity of life on Earth. And to understand the new standards, we need to appreciate and implement the intimate relationship among the disciplinary core ideas, the crosscutting concepts, and the science and engineering practices in the NGSS. Making sure that students understand the fundamentals of biology is not a simple process, and therein lies the dilemma we all face.

Learning biology is clearly a struggle for many of our students, as evidenced by biology achievement scores across the country. In other words, if you have trouble teaching your students the basic principles of biology, you’re not alone! What might be the reasons for these difficulties? With the advent of state standards, adoption of NGSS, and high-stakes assessments, biology teachers are finding it difficult to teach in ways that worked for them in the past. A common complaint of both students and teachers is that there is so much content to cover that there is not enough time to do the investigations and activities that engage students with the ideas. Biology teachers know that laboratory experiences help students learn complex concepts (Singer, Hilton, and Schweingruber 2007), yet we get caught up in the attempt to cover so many topics and lists of vocabulary that, on average, students are only provided one laboratory investigation each week. “Science educators have decried the common practice of reading textbooks instead of doing investigations: the former is still alive and well” (Stage et al. 2013). In the classroom, we often focus on the names and labels for living organisms or steps in processes, and our students get lost in details without learning the important, essential biological principles and the scientific practices used to make sense of them.
With this book, we seek to help all biology teachers teach the hard-to-teach biology concepts that are found in the broader high school level, life science, and disciplinary core ideas. Although this book is not about providing teachers with scripted lessons, it does include much that we have learned from our own experiences and from recent research findings, as well as outlined in the NGSS. Science research that focuses on how students learn recommends certain strategies that teachers can use to help develop and implement effective instructional methods. In this book, we do not tackle all the issues in high school biology. Rather we focus on selected research that informs our Instructional Planning Framework.

We realize that teachers’ implementation of selected instructional strategies impacts the effectiveness of a strategy in the classroom. Even with research-based strategies and tools, we need to figure out ways to use them in the best way possible. For example, we know that classroom discourse helps students think about their ideas and supports sense making. But if we just ask students to discuss a question or problem without setting a time limit, establishing the groups they will work with, and determining how they will report-out to the class, then classroom discourse won’t help students make sense of the hard-to-teach biology concepts. And when planning with a focus on NGSS, teaching biological argumentation procedures that incorporate effective discourse strategies makes this a critical practice that also connects to literacy skills.

We love teaching biology, and we want to provide opportunities for you to meet the challenges posed when teaching hard-to-teach biology concepts. We were prompted to write the first edition of this book because guidance for teachers is located in so many different places; our hope was to put all of the findings together into a model that made sense to us and would support your work. Our hope in this second edition is that you are provided one way in which to interpret and implement the NGSS, while still using the best thinking from the first edition. This book presents a framework for planning, shares appropriate approaches to develop student understanding, and provides opportunities to reflect on and apply those approaches to specific concepts and topics. It is more about helping you learn how to improve your practice than it is about providing sample lessons that recommend a “best” way to provide instruction. Clearly, you must decide what works best for you and your students.

Science Education Reform and Conceptual Understanding

At that same time that our students struggle to master biology concepts, many states require students to pass high-stakes tests in order to graduate. Science reform efforts stress science understanding by all citizens; unfortunately, little impact is made on persistent achievement gaps (Chubb and Loveless 2002). However, the current cycle of science education reform that resulted in the Next Generation Science Standards (NGSS Lead States 2013) expects, among other things, meaningful science learning for all students at all
grade levels—that is, students are able to build connections among ideas, moving past recall and into more sophisticated understandings of science. To meet the standards, it is critical that all of us work to implement strategies shown as effective to build these types of student understandings.

We know that serious change takes time, often 7–10 years to move from establishing goals to changing teacher practice and curriculum materials that meet the needs of our students (Bybee 1997). One major obstacle to change is the lack of support for teachers to fully understand ways to teach hard-to-teach concepts (Flick 1997). School structures in the United States do not adequately provide professional support for us to engage in new learning to improve our teaching. We are rarely provided the time to work individually or collaboratively to inquire into our own teaching and our students’ learning (Fisher, Wandersee, and Moody 2000). So what makes current reform efforts any different from those in the past? Perhaps the standards, political influences, and the growing body of research provide an answer.

Hope for change begins with the NGSS because we now have standards that integrate a few core disciplinary ideas with crosscutting concepts and science and engineering practices. Integration of the practices, in particular, aligns with research about conceptual change since it calls for building understanding through models and explanations and requires discourse to argue, criticize, and analyze. With the review and revision process associated with the framework and NGSS documents, the teaching shifts needed to support conceptual change by students have been clearly identified. Brian Reiser identifies the following shifts as important and we will address them in the revised components of Instructional Planning Framework and the invited chapters.

- The goal of instruction needs to shift from facts to explaining phenomena.
- Inquiry is not a separate activity—all science learning should involve engaging in practices to build and use knowledge.
- Teaching involves building a coherent storyline across time.
- Students should see that they are working on answering explanatory questions and not just moving to the next topic.
- Extensive class focus needs to be devoted to argumentation and reaching consensus about science ideas.
- A positive classroom culture is necessary to support teaching and learning where students are intellectually motivated, where they actively share responsibility for learning and where they work cooperatively with their peers. (Reiser 2013)
The next ray of hope is that the political focus on science education has grown even more since the first edition of this book, as evidenced by the federal government’s growing focus on the needs in mathematics and science, which has resulted in increased funding for science education efforts in support of science, technology, engineering and mathematics (STEM) education.

What should directly impact us, as educators, is a growing body of research on teaching and learning in general (Bransford, Brown, and Cocking 1999) and science teaching and learning in particular (NRC 2005; Banilower, Cohen, Pasley, and Weiss 2010; Banilower et al. 2013; Windschitl, Thompson, Braaten, and Stroupe 2012). Also, we now have access to a considerable body of research on the understandings and skills required for meaningful learning in biology (Fisher, Wandersee, and Moody 2000; Hershey 2004), inquiry (Anderson 2007; Windschitl, Thompson, and Braaten 2008), and the nature of science (Lederman 2007). Finally, there is an increasing understanding of conceptual change (Driver 1983; Hewson 1992; Lemke 1990; Minstrell 1989; Mortimer 1995; Scott, Asoko, and Driver 1994, Mortimer and Scott 2003; NAS 1998; Tanner and Allen 2005).

But hope, by itself, is not a method. Because biology is the most common entry course for science in secondary schools, it is essential that changes in science teaching and learning begin with us, the biology teachers. It is the goal of this book to support your walk down the path to more effective teaching and learning in biology as aligned with the Next Generation Science Standards. Even if your state has not adopted the NGSS, we believe that you will find the suggestions for instructional planning and the strategies recommended helpful.

Hard-to-Teach Biology Concepts—Why Are They Hard?

Traditionally students struggle to learn some of the basic ideas taught in high school biology classes. To understand why, we must analyze not only the content itself but also the classroom conditions and learning environment. One concern cited by biology teachers is the “overstuffed” biology curriculum. Because of the sheer amount of information that is taught related to each topic, even good students find it difficult to retain what they learn (NRC 2011b). Because of an emphasis on a fact-based biology curriculum, instruction often relies on direct instruction to cover all of the material. As a result, students have limited experiences with the ideas and rarely retain what they learned past the quiz or unit test.

Certain biology topics are hard for students to learn because students aren’t given the time they need to think and process learning. We must give students multiple
opportunities to engage with biology ideas. Research suggests that students need at least four to six experiences in different contexts with a concept before they can integrate the concept and make sense of what they are learning (Marzano, Pickering, and Pollock 2001; Dean, Hubbell, Pitler, and Stone 2012).

Another reason that there are hard-to-teach (and learn) topics relates to the prior knowledge of our students. High school students are far from being blank slates; they come to us with their own ideas and explanations about biology principles. After all, everyone knows something about biology and our students have had a variety of experiences both as they have grown up outside the school setting and in previous science classrooms. Student preconceptions can be incomplete and students often hold onto them tenaciously. One classic research study was captured in the video A Private Universe: Minds of Our Own (Harvard-Smithsonian Center for Astrophysics 1995). In one segment, researchers asked Harvard graduates where the mass of a log came from. The response was water and nutrients from the soil. Students and even college graduates hadn’t learned the fundamental concept that photosynthesis requires carbon dioxide from the air to manufacture carbohydrates, which are the basis for the vast majority of a tree’s mass.

This example relates to two additional reasons why some biology topics are hard to teach: (1) many biology lessons are highly conceptual and students can’t visualize what is taking place on a microscopic level. And (2) some biology teachers are not aware of strategies that engage students with a scientific way of knowing (Banilower, Cohen, Pasley, and Weiss 2010; Lederman 2007). Such strategies include asking questions, building and using models to explain and argue, inferring from data, challenging each other’s ideas, communicating results, and synthesizing student explanations with scientific explanations.

When we consider these various impeding factors, it is no wonder that students struggle in our biology classes.

Why Aren’t Students Learning?

Science research helps us answer this question.

• Students may not learn because of their learning environments. The meta-analyses of the research in How People Learn: Brain, Mind, Experience, and School (Bransford, Brown, and Cocking 1999) and How Students Learn: Science in the Classroom (NRC 2005) report that the instructional environment must be learner-, not teacher-, centered. Students come to school with conceptions of biological phenomena from their everyday experiences and teachers need to take into account such preconceptions. Furthermore, what we teach is often too hard for students because they lack the necessary backgrounds on which the hard-to-teach topics are based.
Several studies have shown that high school students perceive science knowledge as either right or wrong (NRC 2005). Unfortunately, biology concepts are rarely this clear-cut and the body of knowledge in biology is ever-changing. Biological systems are dynamic, and long-term observations are often needed to understand and make sense of the evidence. The norm in many classrooms, however, is to come up with a correct answer, which is not reasonable or possible in biology classrooms, where we look at probabilities, changes over time, and trends. Quantitative and qualitative data can be ambiguous. This can be very uncomfortable for students who ask us, “Why don’t you just tell me the answer?” While biologists, like other scientists, give priority to evidence to justify explanations, students think that we should have the answer to biology questions and problems. Students may believe that biology is really a collection of facts because we often use direct instruction to cover the biology facts and vocabulary that may be addressed in state assessments.

Students learn best when they are able to work collaboratively with other students. With only one investigation per week in the average biology classroom, students may not receive sufficient opportunities to engage in interactive work, where, as explained in the NGSS documents, learning should be driven by questions about the phenomena and ideas.

Organization of the Book

Hard-to-Teach Biology Concepts: Designing Instruction Aligned to the NGSS is designed to support biology teachers as they plan and implement NGSS-aligned lessons that will intellectually engage students with the biology concepts that most students find challenging. To develop successful learners, teachers must identify prior student conceptions and research-identified misconceptions related to the concept being taught and then select instructional approaches to dispel those misconceptions and promote students’ conceptual understanding.

The book is made up of two parts: Part I, The Toolbox: A Framework, Strategies and Connections (Chapters 1–4), and Part II, Toolbox Implementation: The Framework and Strategies in Practice (Chapters 5–8). In Part I, we share our instructional planning framework and tools and outline the connection between our framework and the NGSS. In addition, we share a process to implement our framework and describe other connections that enhance learning by all students. Chapter 1 introduces our research-based framework to address conceptual change—the Instructional Planning Framework—and gives an overview of (1) the identification of conceptual targets and preconceptions, (2) the importance of confronting preconceptions, (3) sense-making strategies to address preconceptions, and (4) best ways in which students can demonstrate understanding. Chapter 2 outlines some of the major instructional shifts in the
NGSS and the connections of the standards to the instructional framework. It also introduces a process to use during development of instruction. Chapter 3 uses the topic Proteins and Genes to model the process outlined in Chapter 2 and discusses specific instructional approaches that teachers might use to dispel preconceptions: metacognitive approaches, standards-based approaches, and specific strategies for sense making. Chapter 4 introduces research related to formative assessment, the Common Core State Standards, STEM, and Universal Design for Learning (UDL) and then builds connections for each to the unit of study developed in Chapter 3. Though our framework can be followed in a linear manner, it is not really intended as a stepwise process. Instead, it is important for you to reflect on the framework presented in Chapter 1, adapt it for your use, and select strategies from Chapter 3 most appropriate for your own classroom.

Part II is organized to model use of our framework through its application in the analysis of four additional hard-to-teach topics not covered in the first edition of this book. The topics were carefully chosen to include those related to each of the NGSS disciplinary core ideas. Each chapter is developed based on Part I, but through the interpretation of a contributing author. Recommended resources, including technology applications and websites, will be found at the end of each chapter in Part II. The Part II chapters focus respectively on the following disciplinary core ideas:

- Chapter 5: From Molecules to Organisms: Structures and Processes
- Chapter 6: Ecosystems: Interactions, Energy, and Dynamics
- Chapter 7: Heredity: Inheritance and Variation of Traits
- Chapter 8: Biological Evolution: Unity and Diversity

The appendixes found in the NGSS enhance our understanding of our framework and its application. We will discuss several of this book’s appendixes in Chapter 4 when we address connections to NGSS.
Chapter 5

Matter and Energy in Organisms and Ecosystems

By Cynthia Long

Cellular Respiration takes place in the cell.
As a high school science teacher, research scientist, curriculum and professional developer, and current director of education, one topic that consistently rises to the top of hard-to-teach concepts is cellular respiration, and in the bigger context, matter and energy.

Students need to make the connection between the abstract or unseen and concrete events that are obvious to them. For example, they know they somehow get energy (abstract) and they know they need to eat (concrete). Somehow this “magic” happens in their bodies, but since they can’t see it, this leap from eating to energy becomes irrelevant. Helping students understand the relevancy and importance of matter and energy as it relates to human consumption and flow of matter through body systems into cells and then converted into usable energy for their everyday lives is at the heart of this chapter. With this topic, I want students to know why they are studying something called cellular respiration by connecting it to tasks they do every single day. Working with scientists, teachers, and curriculum developers throughout my career has afforded me access to different perspectives, expertise, and backgrounds. Over several years, I tried activities, refined ideas, altered the order, and so on. It was definitely iterative and not everything always worked the first time. Discussing ideas with colleagues and even the students influenced this development. All of this helped me as a teacher put together a unit of study for students that facilitated their learning and guided the development of their understanding in an authentic way. And, it ultimately helped me put together this chapter.

Phase 1: Identifying Essential Content

The study of cellular respiration in organisms is one of the most important but often difficult subjects to teach at the high school level. Concepts in biology are expansive and they all link together, so to identify the important content for this particular area of study I realized that I needed to identify the big idea that students should know. Then, I could break it down into chunks that students could grasp. These “chunks” needed to be in an order that made sense. Instead of giving students a thousand Lego pieces jumbled in a box and say, “build something,” I would give them a few intentional pieces at a time. They could use these pieces to build a solid foundation for a structure. Additional pieces would fill in gaps and expand the structure. In this way, students would follow a storyline that makes sense, use what they already know, and add to their conceptual understanding of matter and energy.

The big idea for an area of study that challenges students year after year but yet is essential to life processes is the relationship between matter and energy—how we get and use energy for life. If we put a phrase to this, it is all about cellular respiration. But to say this phrase without meaning is just another intimidating biology term. This is how I set out to design a sequence of lessons for my biology students. This area of study comes directly after students have studied photosynthesis. After the lessons
described in this chapter, students make connections between photosynthesis and cellular respiration, completing their understanding of matter and energy.

I generated a graphic to help me see connections among concepts, important questions to ask, and ideas to elucidate the big picture for energy and matter (see Figure 5.1).

Figure 5.1

The Big Picture

- Why do we need to eat?
- How can we breath, move, and play?
- What does our body need to build, heal, and grow?
- How does everything work together in our whole body system (circulatory, respiratory, digestive, and so on) to provide us with the energy we need?
- Where does the energy come from? Where does it go?
Stage I: Identify Disciplinary Core Ideas, Practices, and Crosscutting Concepts

I turned to *A Framework for K–12 Science Education* (NRC 2012) and *Next Generation Science Standards* (NGSS Lead States 2013) to provide insight into the big ideas of cellular respiration. These documents helped me identify the performance expectation (PE), or cluster of PEs, that would be the focus for this area of instruction and would give me ideas on what students who demonstrate understanding would be able to do. I also pulled in related disciplinary core ideas (DCI), science and engineering practices (SEP), and crosscutting concepts (CCC). The disciplinary core ideas that drove instruction include Organization for Matter and Energy Flow in Organisms (LS1.C) and Cycles of Matter and Energy Transfer in Ecosystems (LS2.B). The practices that encourage and support the core ideas are Developing and Using Models and Constructing Explanations. The crosscutting concepts that provide an integrating theme that also supports student understanding are System and System Models and Energy and Matter.

These dimensions from NGSS helped me get my head around the idea that students need not memorize isolated facts about cellular respiration, but instead should develop a conceptual understanding through modeling, constructing evidence-based explanations, and understanding the relationship between matter and energy in a system. Table 5.1 shows the cluster of related PEs, DCIs, SEPs, and CCCs that I chose for the area of instruction focused on matter and energy: cellular respiration.

The following paragraphs are from *A Framework for K–12 Science Education* (NRC 2012). They helped me grasp main ideas and helped me steer away from detailed facts that may confuse students and inhibit their learning and understanding the big picture. Students can get lost in the minute detail if not connected to the question “Why do I need to know this?” I wanted to provide relevancy and purpose for their learning.

By the end of grade 12. The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. The sugar molecules thus formed contain carbon, hydrogen, and oxygen; their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. For example, aerobic (in the presence of oxygen) cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles.
Table 5.1

Performance Expectations

PEs, DCIs, SEPs, and CCCs for Respiration

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
<th>Science and Engineering Practices</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1.C: Organization for Matter and Energy Flow in Organisms</td>
<td>• Developing and Using Models</td>
<td>• System and System Models</td>
</tr>
<tr>
<td>• The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. (HS-LS1-6)</td>
<td>• Constructing Explanations</td>
<td>• Energy and Matter</td>
</tr>
<tr>
<td>• As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-6),(HS-LS1-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. (HS-LS1-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-LS2-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anaerobic (without oxygen) cellular respiration follows a different and less efficient chemical pathway to provide energy in cells. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy loss to the surrounding environment. Matter and energy are conserved in each change. This is true of all biological systems, from individual cells to ecosystems. (NRC 2012, p. 148)

By the end of grade 12. Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web, and there is a limit to the number of organisms that an ecosystem can sustain.

The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil and are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved; some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. Competition among species is ultimately competition for the matter and energy needed for life.

Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged between the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (NRC 2012, p. 154)

The performance expectation and the dimensions from NGSS informed the development of a learning goal that helped me focus this area of study: Living organisms obtain and break down matter to form new compounds and release energy that can be used or stored for life processes. So, what do students need to know to reach an understanding of this learning goal? They need to know that organisms “obtain” matter and what this matter is. Most students have this knowledge—they eat every day and know by high school that all living organisms must eat, either by ingesting or absorbing food (matter). Students need to know what it means to break down matter. A study of the digestive system and enzymes help students grasp that there are proteins (enzymes) in the body that break down food into smaller molecules that can be delivered to cells in the body via the blood stream. Once this “broken down matter” gets to cells, then what?

I think students have a tough time going from the idea that they eat to get energy to the process of cellular respiration. They often understand that the digestive system plays...
a role but may not realize that many of their body systems work together in this process. But what happens to the “food” to give them energy? How and why does it break down? What is this “energy”? The jump from food being digested to memorizing the steps in cellular respiration leaves a gap in understanding. Students don’t understand the relevancy of cellular respiration. And memorizing steps doesn’t necessarily get them there.

Stage II: Deconstruct DCIs, Create a Storyline, and Align Practices and Crosscutting Concepts

I grappled with stage II for a while, trying to decide how best to describe learning targets that capture the key ideas of this area of study without overwhelming students with details that don’t necessarily contribute to their overall understanding. I used NGSS and my experience in teaching applied biology, general biology, and AP Biology (three very different levels) to arrive at the four learning targets below.

1. Matter and energy flow through different organizational levels of living systems. Living organisms consume food, which provides energy. Proteins, carbohydrates, and fats (lipids), which are large molecules (macromolecules), are food that can be converted to usable energy. These large molecules contain the elements carbon, hydrogen, and oxygen.

2. These large molecules are broken down by the digestive system into smaller molecules by mechanical processes and by enzymes. Examples of these smaller molecules are glucose (broken down from carbohydrates), amino acids (broken down from proteins), and lipids (into fatty acids and glycerol).

3. These small molecules are absorbed into the bloodstream (circulatory system) through the intestines and delivered to cells throughout the organism. These small molecules transport into cells and undergo chemical reactions. They can be building blocks for new large carbon-based molecules used for cell structure and processes or used in the process of cellular respiration.

4. Cellular respiration occurs inside cells. In cellular respiration, glucose is a common example of a molecule that goes through cellular respiration. Glucose is broken down further in a series of chemical reactions that result in the release and storage of energy. This energy is captured in a molecule called ATP. This process is used by living organisms to transfer energy released from molecules like glucose into a form of energy that is usable by living organisms. For example, the energy stored in ATP is released and used by muscles to contract.

For high-level biology courses, the following ideas will also be addressed through readings, activities, investigations, and explanations, but they are not part of the content storyline for a general life science or biology class. Resist the temptation to add facts and details into the storyline, which might divert students from the four learning targets.
• In a cell, the series of chemical reactions in cellular respiration include glycolysis (occurs in the cytoplasm), Krebs cycle (occurs in the mitochondria), and electron transport chain (occurs in the mitochondria).

• Aerobic respiration occurs in the presence of oxygen and generates a lot of ATP.
 \[\text{Glucose} + \text{Oxygen} \rightarrow \text{water} + \text{energy (ATP)} \]

• Anaerobic respiration occurs in the absence of oxygen and follows a different, less efficient pathway. This generates less ATP.
 *Glucose → lactic acid + energy (small amount of ATP) or
 *Glucose → ethanol + carbon dioxide + energy (small amount of ATP)

Essential Understanding: The flow of energy and matter through different organizational levels of living systems recombine elements in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Photosynthesis and cellular respiration provide most of the energy for life processes. Energy and matter are both conserved.

Stage III: Determine Performance Expectations and Identify Criteria to Determine Student Understanding

See Table 5.2 (p. 179) for a summary of the work I did to complete Stage III of the design process.

Stage IV: Determine Nature of Science (NOS) Connections

Students know that they need to eat and that eating gives them energy. In thinking about where students are coming from in their understanding of matter and energy, most students have the empirical evidence that supports their understanding that food gives them energy. I thought about other evidence that would support student understanding of this occurring at the cellular level. Students can collect their own evidence, make sense of it, and connect it to science concepts through an investigation in the classroom. NGSS connects the Nature of Science to this standard through the following:

Scientific Knowledge Is Open to Revision in Light of New Evidence

- Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-3)

I referred to NGSS Appendix H to glean a little more information about the Nature of Science. I focused on the matrix presented with the eight themes describing learning outcomes. For cellular respiration, a complex and abstract concept, I felt that students need to make observations and collect data that could provide evidence helping to
Table 5.2

Success Criteria and Aligned NGSS Performance Expectations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Matter and energy flow through different organizational levels of living systems. Food is consumed by living organisms. It contains proteins, carbohydrates, and fats (lipids), which are large molecules (macromolecules). These large molecules contain the elements carbon, hydrogen, and oxygen.</td>
<td>Construct a diagram (draw and write) that addresses the question, "How do you get energy to live, move, and grow?" Collect evidence to support the scientific idea about the composition and flow of matter.</td>
<td>HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.</td>
</tr>
<tr>
<td>#2: These large molecules are broken down by the digestive system into smaller molecules by mechanical processes and by enzymes. Examples of these smaller molecules are glucose (broken down from carbohydrates) and amino acids (broken down from proteins).</td>
<td>Create a diagram that describes the interactions of systems and how these systems process energy-containing large molecules (contained in food).</td>
<td>HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.</td>
</tr>
<tr>
<td>#3: These small molecules are absorbed into the bloodstream through the intestines and delivered to cells throughout the organism. These small molecules transport into cells and undergo chemical reactions. They can be building blocks for new large carbon-based molecules used for cell structure and processes or used in the process of cellular respiration.</td>
<td>Develop and use a model to explain the carbon-based molecules protein, carbohydrates, and lipids and what components make up each.</td>
<td></td>
</tr>
<tr>
<td>#4: Cellular respiration occurs inside cells. In cellular respiration, glucose is a common example of a molecule that goes through cellular respiration. Glucose is broken down further in a series of chemical reactions that result in the release and storage of energy. This energy is captured in a molecule called ATP. This process is used by living organisms to transfer energy released from molecules like glucose into a form of energy that is usable by living organisms. For example, ATP is used by muscles to contract.</td>
<td>Plan and carry out an investigation that examines yeast in the presence of sugar (sucrose) and oxygen, analyze and interpret the data, and construct an explanation about cellular respiration in this organism.</td>
<td>HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.</td>
</tr>
</tbody>
</table>
make this concept a little more concrete at the cellular level. At the high school level, students should understand that “Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.” I really wanted to focus on students looking at evidence and using evidence to support scientific ideas.

Stage V: Identify Metacognitive Goals and Strategies

Students need to identify what they already know, what gaps they have in their understanding, and what they can do to fill those gaps. That is easier to say than to actually teach. My goal is for students to recognize what they don’t know and be able (and confident enough) to ask the questions that will help guide them. Then, I’d like students to be able to identify and use the resources necessary to fill the gaps in their understanding. In other words, I’d like students to develop self-regulated learning (MERC 2011). This connects well with what they already know about energy and matter at the macro level to developing an understanding and the cellular level. Students will develop a graphic organizer (concept map, mind web, etc.) at the beginning of a lesson and then revisit during and at the end of the lesson (Refer to Instructional Tool 3.7, pp. 127–133). In this way, they will identify what they know and then add to their thinking throughout the lesson using resources and activities that fill in the gaps.

The practices in this area of study include constructing and revising an explanation based on evidence. Teaching students to be metacognitive helps them connect what they already know to evidence and science concepts and ask questions and identify resources that will help them solidify or extend their understanding.

Phase 2: Planning for Responsive Action

Stage VI: Research Student Misconceptions Common to This Topic That Are Documented in the Research Literature

It is important for me to know what students are thinking as we began to study these concepts. In order to elicit student ideas, I felt that it was important to begin by asking questions and have students discuss, in small groups, what they understand about matter and energy, why they eat, and how they get energy from food. The misconceptions that my students typically had are reflected below. These align with what current research shows about this topic. Student misconceptions around this topic include:

- Cellular respiration means the same thing as breathing.
- Cellular respiration does not occur in plants (only in animals).
- Cellular respiration can only occur in the presence of oxygen.
Food, calories, and energy are all equal. Students don’t understand the relationship among these ideas.

I believe the first three misconceptions can be addressed during class discussion, activities, and student discourse. Breathing in oxygen, a molecule that is involved in the reactions of cellular respiration, and breathing out carbon dioxide, a waste product from cellular respiration, can be examined. Plants use energy for growth and other processes. Therefore they also need the glucose they make to be transferred to a usable form of chemical energy. This concept is important to discuss within this unit of study. However, the fourth misconception is overarching and identifies what I think is the most difficult part of this area of study. I really want students to understand the relationship between what they eat and how the organic molecules in their food contain chemical energy that is transferred to an energy storage molecule (ATP). This link asks students to look at what they know about eating and connect it to the abstract, that which they cannot “see.”

Stage VII: Determine Strategies to Identify Students’ Preconceptions

For this unit of study, I find it essential to check in and know what students are thinking by eliciting their preconceptions. I identified the Drawing Out Thinking approach as one that would work for my students at the start of Lesson 1, especially in making connections between the food they eat and the energy they get. The strategy I chose to use for this is Drawing and Annotated Drawings (see Instructional Tool 3.8, pp. 134–135). In Lesson 2, students use a diagram to draw what happens to the food they eat. Prior to students working on their diagram, I will provide an anticipation guide that aligns with the resources and expectations for the lesson. This will not only allow me to know what they already understand, but will help them look for important information that will help them develop understanding that they can use for their diagram. Lessons 3, 4, and 5 all begin with probing questions, whole-class and small-group brainstorms, and discourse, asking students to make connections from previous lessons. This approach worked in my classroom because students felt safe to share their ideas and they gained understanding by listening to others. Questions get students thinking about the topic in a way that helps them make connections between big ideas. Listening to student discussions lets me know where they are in their learning, what to focus on, and making explicit connections that may have been missed (see table 5.3, p. 182).

Stage VIII: Determine Strategies to Elicit and Confront Students’ Preconceptions

Through a sequence of lessons, I wanted to create a coherent content storyline that would help students build their understanding about cellular respiration, energy, and matter.
Table 5.3

Strategies and Activities for Each Learning Target

<table>
<thead>
<tr>
<th>Storyline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Target #1 → Matter and energy flow through different organizational levels of living systems. Food is consumed by living organisms. It contains proteins, carbohydrates, and fats (lipids), which are large molecules (macromolecules). These large molecules contain the elements carbon, hydrogen, and oxygen.</td>
</tr>
<tr>
<td>Learning Target #2 → These large molecules are broken down by the digestive system into smaller molecules by mechanical processes and by enzymes. Examples of these smaller molecules are glucose (broken down from carbohydrates) and amino acids (broken down from proteins).</td>
</tr>
<tr>
<td>Learning Target #3 → These small molecules are absorbed into the bloodstream through the intestines and delivered to cells throughout the organism. These small molecules transport into cells and undergo chemical reactions. They can be building blocks for new large carbon-based molecules used for cell structure and processes or used in the process of cellular respiration.</td>
</tr>
<tr>
<td>Learning Target #4 → Cellular respiration occurs inside cells. In cellular respiration, glucose is a common example of a molecule that goes through cellular respiration. Glucose is broken down further in a series of chemical reactions that result in the release and storage of energy. This energy is captured in a molecule called ATP. This process is used by living organisms to transfer energy released from molecules like glucose into a form of energy that is usable by living organisms. For example, ATP is used by muscles to contract.</td>
</tr>
<tr>
<td>Essential Understanding The flow of energy and matter through different organizational levels of living systems recombine elements in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Photosynthesis and cellular respiration provide most of the energy for life processes. Energy and matter are both conserved.</td>
</tr>
</tbody>
</table>

In groups, answer “How do you get energy to move, live, and grow?” on chart paper with pictures, arrows, words. Generate whole-class diagram (class discussion).

Students record food and exercise in a log and identify “categories” of food and exercise.

Show pictures of carbohydrates, proteins, and lipids and students identify similarities.

Students create a diagram that shows the pathway of food to their cells, identifying breakdown and delivery of nutrients to cells.

a. Students answer questions on an “exit slip.” (What large molecules from food are broken down in your digestive system?)

b. How do the smaller molecules get to all the cells in your body?

Opening poll question, “Do all of the cells of your body need energy? Why or why not?”

Linking back to Target #2, students develop and use models to explain lipids, proteins, and carbohydrates. Jigsaw expert groups.

Show animation of an overview of cellular respiration.

Inquiry investigation of cellular respiration using yeast, glucose, and water.

Students identify what they’ve learned or understand (on green sticky notes), one thing they wonder or have a question about (on yellow sticky notes), and one thing they are still confused about (on pink sticky notes).

Revisit initial chart paper with pictures, arrows and diagrams. Add information that represents the flow of matter and energy through a system (from food to a molecule that stores chemical energy).

What is the input? Purpose (why is it there?)

How did it get there?

What happens to it?

What is the output?
I thought about activities that would help me elicit their ideas and preconceptions. Activities that I chose are outlined in Figure 5.2. The activities that I chose to help students confront possible misconceptions and help clarify and deepen their understanding draw on bringing relevance to their own lives and making them the focus of their own learning. They are active participants. I use probing questions; whole-class, small-group, and partner discourse; concept mapping; and drawing/diagramming with explanations, brainstorming, and an investigation. All of these strategies are aligned to the learning goal, or target, for the lesson and link to previous and subsequent ideas and concepts. They also focus on the student—what he/she eats, human digestive (and other related) system, cells in the larger system, and yeast as an example organism. Students will continually confront their ideas as we link together the concepts through discussion and action. These ideas are discussed in more detail in the last section, Instructions to Teachers.

Figure 5.2

Lesson Progression

<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>Lesson 2</th>
<th>Lesson 3</th>
<th>Lesson 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group brainstorm “How do you get energy to move and grow?” Students log diet and generate categories (protein, lipids, carbs).</td>
<td>Draw pathway of “food” through the body using essential vocabulary concepts.</td>
<td>Team experts create model, activity, and questionnaire to share (teams = proteins, carbs, lipids)</td>
<td>Cellular respiration in yeast; inquiry-based lab, developing connection between food and getting energy into cells.</td>
</tr>
</tbody>
</table>

Stage IX: Determine Sense-Making Strategies

Sense-making strategies will be used in each lesson. This is critical for my students to really develop their understanding. Throughout all of the lessons, students will be using their science notebooks. They will answer questions, sketch ideas and diagrams (lessons 1 and 2), plan their lab investigation, make claims, collect evidence, and write explanations (lesson 4). They will also plan their model before building it (lesson 3) and generate notes for discussion from resources including an online animation. I believe science notebooks are key to students capturing their learning and have seen students gain confidence and knowledge through their notebooks. I will directly teach some vocabulary related to cellular respiration (e.g., enzymes, ATP, glucose, oxygen, carbon dioxide, cells,
proteins, carbohydrates, lipids, and so on) and ask students to apply these terms to their understanding of the breakdown of their food into molecules that are distributed throughout the body and into cells to be broken down further. Students will communicate their ideas through pictures, words, and discussion throughout the four lessons, helping them assimilate and make sense of the concepts and connections presented. Using multiple strategies and allowing the time for students to make sense of what they are learning are critical in understanding these difficult and abstract concepts.

Stage X: Determine Responsive Actions Based on Formative Assessment Evidence
To get the most out of the formative assessment strategies I used in this area of study, I determined possible evidence that I could use to inform my instruction. What would the evidence that I collect tell me about my students? And what would I do with that knowledge? I identified ways to follow up with responsive actions that would help fill student gaps in their learning, affirm or extend their understanding. These ideas are shown in Table 5.4.

Table 5.4

<table>
<thead>
<tr>
<th>Formative Assessment</th>
<th>Lesson Target #1</th>
<th>Lesson Target #2</th>
<th>Lesson Target #3</th>
<th>Lesson Target #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>Whole-group brainstorming web diagram</td>
<td>Exit slip with two questions: 1. What large molecules from food are broken down in your digestive system? 2. How do the smaller molecules get to all the cells in your body?</td>
<td>Peer-assessed questionnaire on models (proteins, carbohydrates, lipids)</td>
<td>Sticky note news: students write an idea they’ve learned and understand (green note), one thing they wonder or one question they have (yellow note), and one concept that they still don’t understand (pink note).</td>
</tr>
<tr>
<td>Responsive Action</td>
<td>Make note of gaps and misconceptions based on student input; provide resources for next lesson that address these.</td>
<td>Categorize answers; address gaps in glass discussion at the beginning of the following class.</td>
<td>Review; Return to students for revision and corrections.</td>
<td>Review notes; Give students questions (yellow notes) to research (provide resources); Revisit pink notes.</td>
</tr>
</tbody>
</table>

In the next section, I’ve described each lesson as if I was giving instructions to a teacher (myself).
Instructions to Teachers

Lesson 1

Matter and energy flow through different organizational levels of living systems. Living organisms consume food, which provides energy. Proteins, carbohydrates, and fats (lipids), which are large molecules (macromolecules), are food that can be converted to usable energy. These large molecules contain the elements carbon, hydrogen, and oxygen.

In groups of three, ask students to gather around chart paper and draw pictures and write words in answer to the question, “How do you get energy to move, live, and grow?” Suggest using arrows and specific examples. Provide three different colored markers to each group and set the expectation that all students must contribute to this brainstorm.

After all groups have filled their chart papers, begin a diagram on the board (web, flow chart, visual representation). Ask each group to send one person to contribute to the diagram using ideas they generated in their smaller groups. Through this interactive, whole-class activity, formatively assess student preconceptions. Lead a discussion, eliciting their ideas. Students generate ideas such as eating food and the digestive system breaks down the food. Push students through questions such as, “then what happens?” and “how do you actually get the energy from the food?” “how is energy stored in food?” Accept all ideas and generate a curiosity and “need to know” as to how the energy from food is transferred into usable energy for living organisms. Identify misconceptions from student answers.

From the small-group brainstorm, diagrams, and class discussion, students should learn or remember that matter and energy flow through different levels of living systems (for example, from the Sun, to plants, to animals, to us (or from plants to us), and that the original source of energy is from the Sun). Students will have studied photosynthesis before this lesson. Verify that they know what is meant by the term food and the kinds of molecules that are considered food. And the light energy provided by the sun helps plants convert carbon dioxide and water into glucose (sugar).

Ask students to record everything that they eat and any type of exercise they do for two days in a log. Students compare their logs with a partner and identify categories of food and categories of exercises. They typically identify these categories: protein, carbohydrates, and fats (lipids) for foods. If not, help guide them to these categories and have them place the types of food they eat into these categories. For exercise, they typically come up with sports, walking or general movement. Using probing questions, ask them to think about how they get the energy to exercise. Some may identify breathing as an action that accompanies exercise (and living in general!) Ask students to remember breathing as part of the flow of energy and matter in cellular respiration (oxygen needed for aerobic respiration and carbon dioxide as a waste product).
Show pictures of the structure of a carbohydrate, a protein, and a lipid. Ask students to identify what all of these molecules (that make up foods) have in common. Students will identify carbon, hydrogen, and oxygen as elements that make up these molecules.

Lesson 2

These large molecules are broken down by the digestive system into smaller molecules by mechanical processes and by enzymes. Examples of these smaller molecules are glucose (broken down from carbohydrates), amino acids (broken down from proteins), and lipids (into fatty acids and glycerol).

Students are each given a large (11 × 17) outline of a person. They are given informational resources and work with a partner to draw the pathway of food from ingestion through digestion and excretion. Students are asked to identify where the food is broken down mechanically, where it is broken down chemically (by enzymes and acids), where it is absorbed into the bloodstream, and how it travels throughout the body. They are given a word list of essential vocabulary (pruned down to only terms that will help them understand the big ideas) to help them identify the key components of their diagram. The teacher checks in with groups as they are working and asks them to explain their diagrams. As an “exit slip,” ask students two questions:

1. What large molecules from food are broken down in your digestive system?
2. How do the smaller molecules get to all the cells in your body?

Lesson 3

These small molecules are absorbed into the bloodstream through the intestines and delivered to cells throughout the organism. These small molecules transport into cells and undergo chemical reactions. They can be building blocks for new large carbon-based molecules used for cell structure and processes or used in the process of cellular respiration.

Open up this lesson by asking the question, “Do all of the cells of your body need energy? Why or why not?” Students should already know that cells make up tissues, tissues make up organs, organs make up systems, and systems make an organism. Take this opportunity to link to this past learning.

Transition by revisiting the food logs students created. Ask again what organic molecules make up food. Then, lead into a modeling activity by asking: What are proteins? What are lipids? What are carbohydrates?

Developing and using models for understanding and explanations is a science and engineering practice in NGSS. For this activity, group students in teams of three. Each team is assigned “carbohydrate,” “protein,” and “lipid.” Provide materials such as clay, assorted craft supplies, and informational resources. Ask each team to provide a model of their assigned large molecule, identifying key components. Each team is
Lesson 4
Cellular respiration occurs inside cells. In cellular respiration, glucose is a common example of a molecule that goes through cellular respiration. Glucose is broken down further in a series of chemical reactions that result in the release and storage of energy. This energy is captured in a molecule called ATP. This process is used by living organisms to transfer energy released from molecules like glucose into a form of energy that is usable by living organisms. For example, the energy stored in ATP is released and used by muscles to contract.

Show the “big picture” at the beginning of the lesson (www.sumanasinc.com/webcontent/animations/content/cellularrespiration.html). Ask students if they know what yeast is. Lead a class discussion focused on if all living organisms (including yeast) require energy. Ask students how they could test this in yeast?

Give an overview of the yeast lab. Show students the equation $C_6H_{12}O_6 + O_2 \rightarrow 6 CO_2 + H_2O$ and ask what is meant by each component. Ask them what they think is necessary for yeast to undergo cellular respiration (fermentation can also be introduced here). Facilitate an inquiry-based approach to this lab, supporting student questions regarding the necessary components and conditions for cellular respiration. Proceed with the lab. Students discuss the lab and what they discovered in a small group. They summarize the findings of the lab, how it relates to cellular respiration, and to energy required by living organisms. Students support their explanations by engaging in argumentation using results from their lab and connections to scientific knowledge. With their findings, students present a visual representation of this process of energy transfer.

Each student is given three sticky notes (green, yellow, and pink). They write down one idea they’ve learned and understand on green, one thing they wonder or one question they have on yellow, and one concept that they still don’t understand on pink. They attach their notes to the stoplight chart on the way out of the room. Review the notes and have small-group discussions using the yellow and pink sticky notes to
guide discussions. Bring any lingering questions from small groups to the whole class, clarifying understanding.

Essential Understanding: The flow of energy and matter through different organizational levels of living systems recombine elements in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Photosynthesis and cellular respiration provide most of the energy for life processes. Energy and matter are both conserved.

For a final assessment, begin by asking students probing questions to connect photosynthesis; cellular respiration; systems; and matter, energy, and life. Ask students to revisit their initial diagram and add to it pictures, words, and arrows to convey their understanding of the flow of energy and matter through a living organism. Their final diagram should include food, large molecules (protein, carbohydrates, lipids) and their components, digestion, cellular respiration, and how “food” is converted to energy in a living organism. By engaging in the four lessons and completing the final assessments, students meet the performance expectations for these standards and gain an understanding of why they need to eat and the processes necessary to convert food (matter) into usable energy for life.

Recommended Resources

Websites

• Cellular Respiration: www.sumanasinc.com/webcontent/animations/content/cellularrespiration.html

Index

Page numbers in boldface type refer to tables, figures, or Instructional Tools.

A
A Different Kind of Classroom: Teaching with Dimensions of Learning, 313
A Field Guide to Using Visual Tools, 118, 133, 314
on argumentation, 224
Common Core State Standards and, 150
conceptual shifts in, 25
diverse learners and, 158
integrating three dimensions of, xii, 13, 16, 21, 24, 25, 150
learning progressions in, 28
A Private Universe: Minds of Our Own, xiv
Accountable talk, 110, 112
Acronyms, 309
Adaptation. See The Role of Adaptation in Biological Evolution unit
AdLit.Org website, 103, 106, 108
Alsos Digital Library for Nuclear Issues, 107
Alternative conceptions of students, 18. See also Misconceptions of students; Preconceptions of students
American Association for the Advancement of Science (AAAS), 52
Analogies, 68, 70, 121–122
Animations, 53, 70, 122, 125, 139, 165, 182, 183, 187, 188, 322
Anticipation guide, 72–73, 105
for Matter and Energy in Organisms and Ecosystems unit, 181
for Proteins and Genes unit, 73, 73, 82, 319, 324
Argumentation, xi, 14, 17, 35, 99, 111, 152–153, 159, 201, 224, 260
Assessing Science Learning: Perspectives from Research and Practice, 166
Assessing Student Understanding in Science, 2nd ed., 312
Assessment, x, 14
formative, 14, 16, 142–148 (See also Probes)
benefits of, 142
curriculum-embedded, 143, 145
definition of, 142–143
determining responsive actions based on, 78–81
for Ecosystems: Interactions, Energy, and Dynamics unit, 226
hints and resources for, 315
in Instructional Planning Framework, 3, 7, 10, 12
for Matter and Energy in Organisms and Ecosystems unit, 184, 184
on-the-fly, 143, 146
planned-for, 36–37, 143, 146
for Proteins and Genes unit, 54–55, 145–149, 321, 322, 323, 324
putting into practice, 143
strategies and rationales for, 79
for Variations of Traits unit, 253
high-stakes tests, x, xi
hints and resources for, 166, 312
preassessment for The Role of Adaptation in Biological Evolution unit, 270–271, 271
summative, 14, 16, 23, 143, 256, 270, 272, 279, 312
for Proteins and Genes unit, 54, 55
Assessment and Inquiry-Based Science Education: Issues in Policy and Practice, 312
Assessment for Learning: Putting It Into Practice, 166, 312
Assessment in Science: Practical Experiences and Education Research, 312
Atlas for Science Literacy, 311
Authentic science, 96, 110, 157, 192, 193

B
Backwards design process, 24, 54, 312
Benchmarks for Science Literacy, 211
Big ideas, 13, 14, 38, 54–55, 172, 174, 181, 186, 237
Biodiversity in ecosystems, x, 34, 190–227. See also Ecosystems: Interactions, Energy, and Dynamics unit
definition of, 194–195
misconceptions about, 195–196, 196, 211, 214–215
Biological literacy, x, 13, 268. See also Science literacy
Black, P., 92, 144, 167
Blakey, E., 61
Brainstorming webs, 68, 72, 80, 127
for Ecosystems: Interactions, Energy, and Dynamics unit, 212
formative assessments based on, 146, 147, 148, 184, 321
for Matter and Energy in Organisms and Ecosystems unit, 184
for Proteins and Genes unit, 81, 84, 86, 163, 320, 321
tinking-process maps and, 131, 132
for Variation of Traits unit, 248
Branch, G., 257
Bransford, J., 4
Braun, G., 248
Brody, M. J., 211
BSCS 5E Instructional Model, 10, 11–12, 23
Bybee, Rodger, 20, 44, 154

C
C-U-E lesson framework, 35
Calhoun, E., 142
Index

Campbell, T., 120
Careers in science, 25, 27, 107, 155, 156, 231
CCs. See Crosscutting concepts
Cellular respiration, 4, 29, 30, 172–188, 173. See also
Matter and Energy in Organisms and Ecosystems unit
Challenges in teaching biology, x–xi
Chemical Heritage Foundation, 107
Churchill, Winston, ix
Circle maps, 72, 127, 128, 132, 133
Citizen Science: 15 Lessons That Bring Biology to Life, K–12, 228
Citizen science projects, 190–191, 191, 220, 222, 228
Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement, 2nd ed., 314
Climate Change From Pole to Pole, 227
Clustering, 72, 81, 127, 128, 212, 216
Colony Collapse Disorder (CCD) in honeybees, 190–226, 222. See also Ecosystems: Interactions, Energy, and Dynamics unit
Comer, M., 154
Comic Creator, 136
ComicLife, 136
Common Core State Standards (CCSS), English Language Arts and Mathematics, xvi, 20
NGSS and, 25, 27, 35, 116, 142, 150–153
implications for Proteins and Genes unit, 153–154
research on, 150–153
Communication strategies, 67, 111, 115–118
kinesthetic, 137, 138
technology and, 118, 156, 157, 158, 161
The Comprehension Toolkit: Language and Lessons for Active Literacy, 106
Computations Science Education Reference Desk, 124
Concept cartoons, 58, 68, 75, 76, 79, 110, 111, 135–136
for Variations of Traits unit, 247, 251, 251, 252
Concept Cartoons in Science Education, 136
Concept maps, 58, 131, 132, 163
for Matter and Energy in Organisms and Ecosystems unit, 180, 183
for Variation of Traits unit, 247, 248
Conceptual change, xii–xiii, xv
addressed in A Framework for K–12 Science Education, 4
definition of, 5
Instructional Planning Framework for addressing, 3–18
process of, 5–6
Conceptual Change Model, 10, 11–12
Conceptual shifts in NGSS, 25–27
Concord Consortium resources, 90, 91, 254
Molecular Logic Project, 91, 322
Molecular Workbench, 90, 126
Content Clips, 128, 133
Content storyline, 14, 24, 27, 39, 40, 44
description of, 52
for Ecosystems: Interactions, Energy, and Dynamics unit, 190, 202, 205–206
for implementation of Instructional Planning Framework, 40
for Matter and Energy in Organisms and Ecosystems unit, 177–178
for photosynthesis, 29–31, 30
for Proteins and Genes unit, 52, 53
for The Role of Adaptation in Biological Evolution unit, 263, 264–266
for Variations of Traits unit, 238–240
Course maps, 38, 46
Creative thinking and learning, 18, 56, 62, 127, 209, 210, 313
Critical thinking and learning, 13, 18, 56, 57–58, 63, 313
Crosscutting concepts (CCs), ix, x, 24
for Ecosystems: Interactions, Energy, and Dynamics unit, 190, 197, 198–200, 202, 205–206, 220–221
and implementation of Instructional Planning Framework, 40
incorporation of, 26–27
in Instructional Planning Framework, 3, 7, 8
integrating with other dimensions of NGSS, xii, 13, 16, 21, 24, 25, 32, 150
for Matter and Energy in Organisms and Ecosystems unit, 174, 175, 179
performance expectations for, 19, 22
for Proteins and Genes unit, 47, 48, 52, 53, 317
for The Role of Adaptation in Biological Evolution unit, 258, 259, 265–266
for Variations of Traits unit, 235, 240
Curriculum maps, 21, 26, 38
Curriculum revision, ix, 20

D
Darwin’s theory of evolution, 257. See also The Role of Adaptation in Biological Evolution unit
DCIs. See Disciplinary core ideas
Dean, C. B., 122
Debrief the thinking process, 61
Demonstrating understanding, 67–68
Designing Effective Science Instruction: What Works in Science Classrooms, 35, 312
Designs for Science Literacy, 312
Developing Assessments for the Next Generation Science Standards, 230
Developing Visual Literacy in Science, K–8, 315
Diagrams, 6, 70, 123–125, 131
concept, 72, 105
cycle, 130
for Ecosystems: Interactions, Energy, and Dynamics unit, 213, 219
Frayer, 219
for Matter and Energy in Organisms and Ecosystems unit, 179, 181, 182, 183, 184, 185, 186, 188
for Proteins and Genes unit, 320, 321, 322, 324
systems, 75, 77, 79, 80, 84, 87–88, 125, 131, 132, 133, 143, 146, 149, 320, 321, 324
for Variation of Traits unit, 253
Venn, 150
Venn-Euler, 129, 130
Disciplinary core ideas (DCIs), ix, x, xi, 4, 24
curriculum mapping for, 38
for Ecosystems: Interactions, Energy, and Dynamics unit, 190, 196–197, 198–200
deconstruction of, 201–202, 203–204
and implementation of Instructional Planning Framework, 40
incorporation of, 26–27
in Instructional Planning Framework, 3, 7, 8
integrating with other dimensions of NGSS, xii, 13, 16, 21, 24, 25, 32, 150
learning progressions for, 28–32, 29
for Matter and Energy in Organisms and Ecosystems unit, 174–177, 175
deconstruction of, 177–178
performance expectations for, 19, 22
for Proteins and Genes unit, 46–48, 47, 317
deconstruction of, 49–51, 50, 51
pruning of, 50, 51–52
for The Role of Adaptation in Biological Evolution unit, 257–258, 258–259
deconstruction of, 260–263, 261–262
for Variation of Traits unit, 231, 232–233
deconstruction of, 235–238
Discourse, xi
small- and large-group, 75, 110–112, 216, 218, 219, 280
Diverse science learners, 158–165
NGSS and, 158–160
Proteins and Genes unit for, 163–165
Universal Design for Learning and, xvi, 160–162, 164
DNA. See Proteins and Genes unit; Variations of Traits unit
DNA Workshop website, 91
Dobzhansky, T., 256
Donovan, S., 4
Drawing Out Thinking (Instructional Tool 3.8), 68, 134–136, 181, 251, 314
Drawings, 68, 69, 70, 72, 74, 80, 96, 127, 131, 134–135.
See also Posters
annotated, 68, 72, 74, 75, 80, 94, 134, 181
before-during-after, 124
for Ecosystems: Interactions, Energy, and Dynamics unit, 213, 216, 219
for Matter and Energy in Organisms and Ecosystems unit, 181
for The Role of Adaptation in Biological Evolution unit, 272
“talking,” 135
technical, 97
Driver, R., 211
Drosophila Virtual Lab, 166
Duncan, Ravit, 230
Dynamic models, 68, 76, 89, 125–126, 275

E
E + S: Integrating Engineering + Science in Your Classroom, 167
ebird, 228
Ecosystems: Interactions, Energy, and Dynamics—An Issue-Based Approach unit, 189–228
alignment with NGSS, 33, 190, 192
application of Phase 1 to, 196–209
stage I: identify DCIs, SEPs, and CCs, 196–200, 198–201
stage II: deconstruct DCIs, create storyline, and align SEPs and CCs, 201–202, 203–206
stage III: determine PEs and identify criteria to determine student understanding, 202, 207–208
stage IV: determine NOS connections, 202, 209
stage V: identify metacognitive goals and strategies, 209, 210
application of Phase 2 to, 210–226
stage VI: research student misconceptions, 210–212, 213–215
stage VII: identify students’ preconceptions, 212, 216
stage VIII: elicit and confront students’ preconceptions, 216–218, 217, 219
stage IX: determine sense-making strategies, 218–226
stage X: determine responsive actions based on formative assessment, 226
content storyline for, 190, 202, 205–206
overview of: honeybees and Colony Collapse Disorder, 190–192
personal experience and student tips for implementation of, 192–194
real-world issues and resources for, 222, 226–228
relevance of topic for, 194–196, 196
teacher reflection on, 226
vs. traditional teaching approach, 32–34
Education Oasis website, 315
Engineering education, xiii, 4, 154–157. See also STEM education
in Ecosystems: Interactions, Energy, and Dynamics unit, 199–200
in NGSS, 25, 27
in Proteins and Genes unit, 157–158
resources for, 167
for students with diverse needs, 158–159
Engineering practices. See Science and engineering practices
Environmental Literacy Council, 211
Essential Questions: Opening Doors to Student Understanding, 115
Essential understandings, 8, 11, 13, 24, 28, 29, 30
Evaluate Alternatives Instructional Model, 224–225
Everyday Assessment in the Science Classroom, 312
Everyday Engineering: Putting the E in STEM Teaching and Learning, 187
Everyday Science Mysteries series, 100
Evolution and Nature of Science Institutes (ENSI/SENSI), 284
Evolutionary biology, x, 24, 89, 255–285. See also The Role of Adaptation in Biological Evolution unit
Explanation Analysis, 90, 324
Feedback to students, 4, 9, 10, 143–145
form and content of, 144
recommendations for, 144–145
FieldNotes LT, 139, 166
Fixsen, Dean, 26
Focus, Action, and Reflection (FAR) Guide, 89, 91, 92, 323, 324
Forest Watch, 228
Formative assessment, 14, 16, 142–148
benefits of, 142
curriculum-embedded, 143, 145
definition of, 142–143
determining responsive actions based on, 78–81
for Ecosystems: Interactions, Energy, and Dynamics unit, 226
hints and resources for, 315
in Instructional Planning Framework, 3, 7, 10, 12
for Matter and Energy in Organisms and Ecosystems unit, 184, 184
on-the-fly, 143, 146
planned-for, 36–37, 143, 146
for Proteins and Genes unit, 54–55, 145–149, 321, 322, 323, 324
putting into practice, 143
strategies and rationales for, 79
for Variations of Traits unit, 253
Frayer Model of vocabulary development, 103, 163, 218, 219, 276, 277
FreeMind, 128
Gallery walk, 216, 219, 248
Genetic engineering, x, 157, 215
Genetics. See Proteins and Genes unit; Variations of Traits unit
Genetics Science Learning Center, 254
Global Rivers Environmental Education Network (GREEN), 228
Glogster, 165
Google Scholar, 313
Google SketchUp, 124
Graphic organizer website, 315
Graphic organizers, 58, 60, 62, 69, 70, 79, 105
categorical, 77, 130
comparison or relational, 130
descriptive, 130
for Ecosystems: Interactions, Energy, and Dynamics unit, 218, 223
for Matter and Energy in Organisms and Ecosystems unit, 180
problem-solution, 130
process or cause-and-effect, 130
for Proteins and Genes unit, 163
resources for, 131, 315
for The Role of Adaptation in Biological Evolution unit, 275, 282, 283
sequential, 130
Speaking to Learn and, 111, 118
task-specific, 129–131
tinking-process maps and, 131, 132
Graphs, 6, 70, 96, 119–120, 123–125
for Ecosystems: Interactions, Energy, and Dynamics unit, 194, 202, 205, 207, 226, 229, 221, 223
for The Role of Adaptation in Biological Evolution unit, 282
Hard-to-teach biology concepts, ix–xvi, 4–6
Hardy-Weinberg equation, 282
Harlen, W., 143, 144
Harrison, C., 92, 167
Hazen, R. M., 194
Heredity. See Proteins and Genes unit; Variations of Traits unit
Heritage, Margaret, 14, 28, 143, 145
High-stakes tests, x, xi
Hints and resources for the design process, 311–315
Honeybees and Colony Collapse Disorder, 190–226, 191, 222. See also Ecosystems: Interactions, Energy, and Dynamics unit
How People Learn: Brain, Mind, Experience, and School, xiv, 31
How Students Learn: Science in the Classroom, xiv, 15
Hubbell, E. R., 122
Hyerle, David, 133
iLabCentral, 166
iMind Map, 128
Information Services and Technology (IST), 156–157
Informational text strategies, 67, 72, 74, 77, 80, 87, 104–106
for The Role of Adaptation in Biological Evolution unit, 275, 280, 281
Inquiry, xii, xiii, 10, 16, 27, 44
citizen science projects and, 228
concept cartoons and, 136
for Ecosystems: Interactions, Energy, and Dynamics
unit, 192, 193
guided, 100, 102
kinesthetic strategies and, 137, 138
linguistic representations of knowledge and, 69
communication, 115–116
discussion, 111, 159
questioning, 113, 114, 115
reading, 102, 104
for Matter and Energy in Organisms and Ecosystems
unit, 182, 183, 187
metacognitive approaches and, 57, 61
nature of science and, 55, 56, 269
for The Role of Adaptation in Biological Evolution
unit, 269
scientific explanations and, 75, 98, 99
for Variations of Traits unit, 247
Inspiration software, 59, 103, 115, 128, 133
Instructional approach(es), ix, xv, xvi, 8, 13
vs. instructional strategies, 66
Instructional Planning Framework, ix, xi, 3–18, 7, 287
compared with 5E Instructional Model and
Conceptual Change Model, 10, 11–12
connecting to NGSS, 17, 24–25
formative assessment and, 144
lesson design process aligned with NGSS and, 35,
36–37
Phase 1: identifying essential content, 7–8, 13–15,
18, 40–41
for Ecosystems: Interactions, Energy, and
Dynamics unit, 196–209
for Matter and Energy in Organisms and
Ecosystems unit, 172–180
for Proteins and Genes unit, 45–63
for The Role of Adaptation in Biological Evolution
unit, 257–275
for Variations of Traits unit, 232–242
Phase 2: planning for responsive action, 8–10,
15–17, 41–42
for Ecosystems: Interactions, Energy, and
Dynamics unit, 210–226
for Matter and Energy in Organisms and
Ecosystems, 180–184
for Proteins and Genes unit, 63–81
for The Role of Adaptation in Biological Evolution
unit, 276–284
for Variations of Traits unit, 243–253
reflections on use of, 287–289
research basis of, 10–17
Instructional Planning Framework implementation, 43–139,
287
design process for, 38–42, 39
hints and resources for, 311–315
for Ecosystems: Interactions, Energy, and Dynamics
unit, 189–228
Instructional Tools for, 10, 16, 44, 57–139
for Matter and Energy in Organisms and Ecosystems
unit, 171–188
overview of, 44–45
for Proteins and Genes unit, 44–92
for The Role of Adaptation in Biological Evolution
unit, 255–285
for Variations of Traits unit, 229–254
Instructional strategies, xi, xiv, 5, 16
vs. instructional approach, 66
Instructional Strategy Selection Tool (Instructional Tool 3.2),
15, 66, 67–68, 69, 72, 74, 76, 78, 90, 212, 221
Instructional Tools, 10, 16, 44, 57–139, 287
connections to NGSS, 17 (See also specific
Instructional Tools)
Drawing Out Thinking (3.8), 68, 134–136, 181, 251,
314
Instructional Strategy Selection Tool (3.2), 15, 66,
67–68, 69, 72, 74, 76, 78, 90, 212, 221
Sense-Making Approaches: Linguistic
Representations—Reading to Learn (3.4), 67, 69,
77, 102–109
Sense-Making Approaches: Linguistic
Representations—Speaking to Learn (3.5), 67,
69, 110–118
Sense-Making Approaches: Linguistic
Representations—Writing to Learn (3.3), 67, 69,
74, 93–101, 221
Sense-Making Approaches: Nonlinguistic
Representations—Kinesthetic Strategies (3.9),
68, 69, 70, 76, 137–139
Sense-Making Approaches: Nonlinguistic
Representations—Six Kinds of Models (3.6), 68,
69, 70, 89, 119–126, 253
Sense-Making Approaches: Nonlinguistic
Representations—Visual Tools (3.7), 58, 68, 70,
77, 127–133, 212, 218, 249
Three Approaches That Support Metacognition (3.1),
57–62
Invasive Species, 227
Investigating and Questioning Our World through Science
and Technology (IQWST), 230
Investigations, x, xv, 14, 16
J
Jones, John Stephen, 230
Journaling, 18, 61, 62, 93, 94, 95, 109
Journey North, 228
Joyce, B., 142
K
Kattmann, U., 66
Keeley, Page, 59, 90, 94, 95, 100
Kinesthetic activities, 69,
70, 137–139, 280, 282
Kinesthetic Strategies (Instructional Tool 3.9), 68, 69, 70,
76, 137–139
Koba, Susan, 256
Konicek-Moran, R., 100
Krajcik, J. S., 90
KWL charts, 58, 72, 105
for The Role of Adaptation in Biological Evolution unit, 272, 275, 279
for Variation of Traits unit, 248

L
LabShare, 126, 166
Lamarckian thinking, 265, 271, 276, 277, 280, 281
Language literacy, xi, 69, 72, 150–152. See also Vocabulary development
Common Core State Standards for English language arts, 25, 27, 150–151
for Proteins and Genes unit, 153–154
Reading to Learn (Instructional Tool 3.4), 67, 69, 77, 102–109
Speaking to Learn (Instructional Tool 3.5), 67, 69, 110–118
Writing to Learn (Instructional Tool 3.3), 67, 69, 74, 93–101, 221
Learning challenges for, xiv–xv, 5
cognitive, 13, 75, 124, 134
collaborative, xv, 162
critical thinking and, 13, 18, 56, 57–58, 63, 131
critical thinking and, 18, 21, 27, 192, 30
conceptual, xxxi, xxxii, 120
critical thinking and, 5–7
critical thinking and, 13, 18, 56, 119–120
for Ecosystems: Interactions, Energy, and Dynamics unit, 221, 223, 224
Fact-based, xv, 4, 16
kinesthetic, 138–139
metacognitive, 75, 120, 143 (See also Metacognitive goals and strategies)
motivation for, 5
self-regulated thinking and, 18, 41, 56, 58–61, 180, 242, 270, 275

Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations, 133
Learning goals, 10, 13–15, 17, 24, 26
for NGSS, 20–21, 23, 32
Learning loss, 67, 74, 77, 84, 93–94, 109
for Proteins and Genes unit, 146, 149, 320, 321
for Matter and Energy in Organisms and Ecosystems unit, 177, 179
for Proteins and Genes unit, 49–51, 50, 51, 53
for implementation of Instructional Planning Framework, 40
for Variation of Traits unit, 248
for Matter and Energy in Organisms and Ecosystems unit, 177, 179
for The Role of Adaptation in Biological Evolution unit, 264–266
for implementation of Instructional Planning Framework, 40
for Variation of Traits unit, 248

Learning targets, 3, 8, 13, 14, 30–31
for Ecosystems: Interactions, Energy, and Dynamics unit, 202, 203–206
criteria to determine student understanding of, 202, 207
for implementation of Instructional Planning Framework, 40
for Matter and Energy in Organisms and Ecosystems unit, 177, 179
criteria to determine student understanding of, 179
formative assessments and responsive actions for, 184
strategies and activities for, 182
for Proteins and Genes unit, 49–51, 50, 51, 53
criteria to determine student understanding of, 54–55, 318
Strategy Selection Template for, 71, 71, 80
for The Role of Adaptation in Biological Evolution unit, 264–266
criteria to determine student understanding of, 267, 267
Strategy Selection Template for, 274–275
study guide for, 272, 273
in Unit Planning Template, 36–37
for Variations of Traits unit, 235–238
criteria to determine student understanding of, 240–241

Lesson planning, 8, 17, 21, 35, 78, 160, 163, 267. See also Unit planning
Lesson Plans, Inc., 138, 139, 138, 139
Lewis, J., 66
Library of Congress, 107
Linguistic representations of knowledge, 69
Reading to Learn (Instructional Tool 3.4), 67, 69, 77, 102–109
Speaking to Learn (Instructional Tool 3.5), 67, 69, 110–118
Writing to Learn (Instructional Tool 3.3), 67, 69, 74, 93–101, 221

Math: Stop Faking It!, 120
Mathematical models, 6, 68, 70, 119–120, 153, 201
for Ecosystems: Interactions, Energy, and Dynamics unit, 221, 222, 224
Mathematics, xiii, 154–155. See also STEM education
Common Core State Standards for, 25, 27, 150–151
in Ecosystems: Interactions, Energy, and Dynamics unit, 197, 201, 202, 221, 223, 224
NGSS and standards for, 150–153
Index

in Proteins and Genes unit, 153–154
in The Role of Adaptation in Biological Evolution unit, 282–283, 284
Matter and Energy in Organisms and Ecosystems unit, 171–188
application of Phase 1 to, 172–180
 stage I: identify DCIs, SEPs, and CCs, 174–177, 175
 stage II: deconstruct DCIs, create storyline, and align SEPs and CCs, 177–178
 stage III: determine PEs and identify criteria to determine student understanding, 178, 179
 stage IV: determine NOS connections, 178–180
 stage V: identify metacognitive goals and strategies, 180
application of Phase 2 to, 180–184
 stage VI: research student misconceptions, 180–181
 stage VII: identify students’ preconceptions, 181, 182
 stage VIII: elicit and confront students’ preconceptions, 181–183, 183
 stage IX: determine sense-making strategies, 183–184
 stage X: determine responsive actions based on formative assessment, 184, 184
content storyline for, 177–178
resources for, 188
teacher instructions for, 185–188
final assessment, 188
lesson 1, 185–186
lesson 2, 186
lesson 3, 186–187
lesson 4, 187–188
McIver, M., 94
McNeill, K. L., 90
McTighe, Jay, 23, 312
Mead, L. W., 257
Meaning Making in Secondary Science Classrooms, 112
Mendeley app, 166
MendelWeb, 107, 108
Metacognitive goals and strategies, xvi, 9, 11, 13, 14, 18, 41
 for Ecosystems: Interactions, Energy, and Dynamics unit, 209, 210
 hints and resources for, 313
 for Matter and Energy in Organisms and Ecosystems unit, 180
 for Proteins and Genes unit, 55–56, 63
 for The Role of Adaptation in Biological Evolution unit, 270–272
Three Approaches That Support Metacognition (Instructional Tool 3.1), 57–62
for Variations of Traits unit, 242
Metaphors, 68, 70, 122–123, 253
Metaphors and Analogies: Power Tools for Teaching Any Subject, 122, 123
Michaels, Sarah, 254
Mind mapping, 72, 127, 128
Misconceptions of students, xiii, xv, 6. See also
Preconceptions of students
definition of, 18
identification of, 9
related to Ecosystems: Interactions, Energy, and Dynamics unit, 210–212, 213–215
about biodiversity, 195–196, 196, 211, 214–215
related to Matter and Energy in Organisms and Ecosystems unit, 179–180
related to Proteins and Genes unit, 63–66, 64–66, 319, 321, 323
related to The Role of Adaptation in Biological Evolution unit, 276, 277–278
related to Variations of Traits unit, 243–245
Model-it, 125, 133
The Modeling Toolkit, 124
Models
dynamic, 68, 76, 89, 125–126, 275
mathematical, 6, 68, 70, 119–120, 153, 201
 for Ecosystems: Interactions, Energy, and Dynamics unit, 221, 223, 224
physical, 68, 70, 120–121, 137
Six Kinds of Models (Instructional Tool 3.6), 68, 69, 70, 89, 119–126, 253
verbal
 analogies, 68, 70, 121–122
 metaphors, 68, 70, 122–123, 253
visual, 68, 70, 123–125, 134, 253
Models-Based Science Teaching, 121, 122, 123, 124
Molecular Logic Project, 91, 322
Molecular Workbench, 90, 126
Monarch Larva Monitoring Project, 228
Moore, John A., ix
N
Naïve conceptions of students, 18. See also Misconceptions of students; Preconceptions of students
Nanoscale Science: Activities for Grades 6–12, 91
Nanotechnology, 155–156
Narrative text strategies, 67, 106–108
National Association of Biology Teachers (NABT), 256, 284
National Center for Science Education (NCSE), 284
National Evolution Synthesis Center (NESCent), 284
National Research Council (NRC), 154–155, 230, 231
National Science Digital Library (NSDL), 107–108, 128, 133, 195, 277, 311, 313
National Science Education Standards (NSES), 32, 116, 194, 211
National Science Foundation, 166
National Science Teachers Association (NSTA) resources, 21, 63, 91, 100, 106, 166–167, 226, 284, 311, 314, 315
Natural selection. See The Role of Adaptation in Biological Evolution unit
Index

Nature of science (NOS) connections, xiii, 9, 13, 22, 25, 27, 32, 35
- for Ecosystems: Interactions, Energy, and Dynamics unit, 202, 209
- and implementation of Instructional Planning Framework, 40–41
- for Matter and Energy in Organisms and Ecosystems unit, 178–180
- for Proteins and Genes unit, 55
- for The Role of Adaptation in Biological Evolution unit, 269–270
- teaching about, 26
- for Variations of Traits unit, 241–242

Neilson, D., 120

Next Generation Science Standards (NGSS), ix–xii, xv–xvi, 4, 8, 19–42, 174, 230
- Appendix A of, 25
- Appendix D of, 158
- Appendix E of, 28, 29
- Appendix F of, 40
- Appendix G of, 40
- Appendix H of, 40–41, 178
- Appendix K of, 38
- Appendix L of, 153
- Appendix M of, 152

Common Core State Standards and, 25, 27, 150–153
- implications for Proteins and Genes unit, 153–154
- conceptual shifts in, 25–27
- connecting Instructional Planning Framework with, 17, 24–25
- connecting Instructional Tools with, 17
- course scope and sequence implications of, 38
diverse learners and, 158–165, 164
- foundation boxes in, 22, 23, 24, 32
- integrating three dimensions of, xii, 13, 16, 21, 24, 25, 150
- interpretation of, 32–35, 33
- learning goals for, 20–21, 23, 32
- learning progressions in, 14, 24, 26, 28–32
- lesson design process aligned with Instructional Planning Framework and, 35, 36–37
- The NSTA Reader’s Guide to design process and, 21–25, 23
- overview of, 20–21
- performance expectations for, 8, 19, 22, 23, 26, 32, 33, 34–35, 40
- purposes of, 20–21
- state adoption of, x, xiii, xx, 20
- website for, 311

Nonlinguistic representations of knowledge, 68, 69, 70
- Drawing Out Thinking (Instructional Tool 3.8), 68, 134–136, 181, 251, 314
- Kinesthetic Strategies (Instructional Tool 3.9), 68, 69, 70, 76, 137–139

Six Kinds of Models (Instructional Tool 3.6), 68, 69, 70, 89, 119–126, 253
- Visual Tools (Instructional Tool 3.7), 58, 68, 70, 77, 127–133, 212, 218, 248

NOS. See Nature of science connections

NoteStar, 61

NYU-Poly Virtual Lab, 126, 166

O
- O’Connor, Cathy, 254
- Oh, P. S., 120

Overcoming Textbook Fatigue: 21st Century Tools to Revitalize Teaching and Learning, 103

P
- Paired problem solving, 59, 114
- Passmore, C., 124
- Pellegrino, J., 4
- Performance expectations (PEs), 8, 19, 22, 23, 26, 32, 33, 34–35
- for Ecosystems: Interactions, Energy, and Dynamics unit, 202, 208
- and implementation of Instructional Planning Framework, 40
- for Matter and Energy in Organisms and Ecosystems unit, 174–176, 175, 179
- for Proteins and Genes unit, 53–54, 318
- for The Role of Adaptation in Biological Evolution unit, 267–268, 267–268
- Photosynthesis, xiv, 29, 61, 107, 130
- cellular respiration and, 172–176, 175, 182, 185, 188
- concept cartoon for, 136
- learning sequence for, 29–31, 30
- Physical models, 68, 70, 120–121, 137
- Physical movements, 68, 79, 137, 138–139, 275
- Pictures, 70, 123–125. See also Drawings
- Plitter, H., 122
- Posters, 88, 137, 153
- gallery walk of, 216, 219, 248
- interactive, 165
- Pratt, Harold, 20
- Preconceptions of students, xiv, xv–xvi, 4, 5–6, 6. See also Misconceptions of students
definition of, 17, 18
desired learning goals and, 14
eliciting and confronting of, 3, 7, 9, 11, 16, 41
- for Ecosystems: Interactions, Energy, and Dynamics unit, 216–218, 217, 219

Copyright © 2014 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.

Hints and resources for, 314–315
for Matter and Energy in Organisms and Ecosystems unit, 181–183, 183
for Proteins and Genes unit, 74, 320, 322, 323, 324
for The Role of Adaptation in Biological Evolution unit, 280–281
strategies for, 67–68, 74, 75–76
for Variations of Traits unit, 247–252
identification of, 3, 7, 9, 11, 15, 41
for Ecosystems: Interactions, Energy, and Dynamics unit, 212, 216
hints and resources for, 314
for Matter and Energy in Organisms and Ecosystems unit, 181, 182
for Proteins and Genes unit, 72–74, 73, 319, 322, 323, 324
for The Role of Adaptation in Biological Evolution unit, 279
strategies for, 67–68, 72–73
for Variations of Traits unit, 243–245
sense-making strategies for addressing, 3, 7, 9, 41–42
Probes, 16, 67, 75, 95, 111, 116. See also Formative assessment
concept maps and, 132
for Ecosystems: Interactions, Energy, and Dynamics unit, 216–218, 217, 226
formative assessment and, 143, 146, 226
for Proteins and Genes unit, 80, 81, 84, 94, 95, 320, 321, 322, 323, 324
for The Role of Adaptation in Biological Evolution unit, 275, 277, 278, 280, 281
simulations as, 125
in Uncovering Student Ideas in Science series, 59, 91, 94, 95, 100, 166, 168, 226, 314, 315
Probeware, 137, 138, 156
Project-based science, 247
Project BudBurst, 228
ProjectGLOBE, 228
Proteins and Genes unit, xvi, xx, 13, 44–92
application of Phase 1 to, 45, 45–63, 317–318
stage I: identify DCIs, SEPs, and CCs, 46–49, 47
stage II: deconstruct DCIs, create storyline, and align SEPs and CCs, 49–54, 50, 51, 53
stage III: determine PEIs and identify criteria to determine student understanding, 54–55
stage IV: determine NOS connections, 55
stage V: identify metacognitive goals and strategies, 55–63, 56–62
application of Phase 2 to, 63–81, 319–324
identifying strategies for Phase 2 planning, 66–71, 67–68, 70–71
stage VI: research student misconceptions, 63–66, 64–66
stage VII: identify students’ preconceptions, 67–68, 72–74, 73
stage VIII: elicit and confront students’ preconceptions, 74, 75–76, 81
stage IX: determine sense-making strategies, 76–78
stage X: determine responsive actions based on formative assessment evidence, 78–81, 79–80
content storyline for, 52, 53
for diverse learners, 163–165
formative assessments for, 54–55, 145–149
lessons for learning targets #1–4, 46, 81–90
learning target #1, 81–88, 82–84
learning targets #2–4, 88–90
sample cluster map, 85
planning template for, 317–324
reflection on design process for, 90
relevance of topic for, 45
resources for, 90–92
STEM education and, 157–158
Strategy Selection Template for, 71, 71, 80
Punnett squares, 243, 253
Q
Quality Questioning: Research-Based Practice to Engage Every Learner, 112, 115
Questioning by students, 35, 67, 84, 104, 113–115, 322
Questioning tree, 114, 115
Questions, Claims, and Evidence, 100
R
Reading, Writing, & Inquiry in the Science Classroom Grades 6–12, 106, 108
Reading Educator website, 103
Reading to Learn (Instructional Tool 3.4), 67, 69, 77, 102–109
Realizing the Promise of 21st-Century Education: An Owner’s Manual, 167
Reciprocal teaching, 59–60, 105, 114, 153
Reflection strategies, 67, 108–109
Reflections on use of Instructional Planning Framework, 287–289
Reiser, Brian J., 230
The Role of Adaptation in Biological Evolution unit, 255–285
application of Phase 1 to, 257–278
stage I: identify DCIs, SEPs, and CCs, 257–260, 258–259
stage II: deconstruct DCIs, create storyline, and align SEPs and CCs, 260–263, 261–266
stage III: determine PEIs and identify criteria to determine student understanding, 267–268
stage IV: determine NOS connections, 269–270
stage V: identify metacognitive goals and strategies, 270–272, 271, 273–275
application of Phase 2 to, 279–284
Index

Science education reform, xi–xiii

Science by Design: Construct a Boat, Catapult, Glove, and Greenhouse, 167

Science Formative Assessment: 75 Practical Strategies for Linking Assessment, Instruction, and Learning, 62, 91, 135, 136, 166, 315

Science Inside the Black Box: Assessment for Learning in the Science Classroom, 92, 167

Science literacy, 21, 27, 52, 69, 98, 102, 192, 230–231. See also Biological literacy

Science Literacy Map, 195

Science Matters: Achieving Science Literacy, 311

Science notebooks, 67, 77, 96–97, 124, 183, 221, 226 interactive, 118

Science Notebooks: Writing About Inquiry, 97

Science Writing Heuristic (SWH), 67, 75, 77, 100–101

Scientific explanations, xiv, 5, 8, 75, 77, 86, 155

for Ecosystems: Interactions, Energy, and Dynamics unit, 220, 221, 223

for Proteins and Genes unit, 51, 322, 324

for The Role of Adaptation in Biological Evolution unit, 269, 275

writing, 98–100

SCORE website, 315

Self-evaluation strategies, 59, 61–62, 242

Self-regulated thinking and learning, 18, 41, 56, 58–61, 180, 242, 270, 275

Sense-Making Approaches: Linguistic Representations—Reading to Learn (Instructional Tool 3.4), 67, 69, 77, 102–109

Sense-Making Approaches: Linguistic Representations—Speaking to Learn (Instructional Tool 3.5), 67, 69, 110–118

Sense-Making Approaches: Linguistic Representations—Writing to Learn (Instructional Tool 3.3), 67, 69, 74, 93–101, 221

Sense-Making Approaches: Nonlinguistic Representations—Kinesthetic Strategies (Instructional Tool 3.9), 68, 69, 70, 76, 137–139

Sense-Making Approaches: Nonlinguistic Representations—Six Kinds of Models (Instructional Tool 3.6), 68, 69, 70, 89, 119–126, 253

Sense-making strategies, 3, 7, 9, 12, 41–42, 67–68, 76–78

for Ecosystems: Interactions, Energy, and Dynamics unit, 218–226

for Matter and Energy in Organisms and Ecosystems unit, 183–184

for Proteins and Genes unit, 76–78, 320, 322, 323, 324

for The Role of Adaptation in Biological Evolution unit, 281–284

for Variations of Traits unit, 247, 247–252

SEPs. See Science and engineering practices

Six Kinds of Models (Instructional Tool 3.6), 68, 69, 70, 89, 119–126, 253

Scaffolding learning, 16

formative assessment and, 162

graphic organizers for, 77, 129

models for, 89, 123, 148

for Proteins and Genes unit, 64, 66

reading strategies for, 105, 108

for The Role of Adaptation in Biological Evolution unit, 267, 281, 284

for self-regulation, 60

for writing scientific explanations, 98, 99

Schleigh, S., 152, 224, 283–284

Schmitzer, H., 248

Science and engineering practices (SEPs), ix, x, 4, 16, 22, 24

for Ecosystems: Interactions, Energy, and Dynamics unit, 190, 192, 193, 197–199, 198–199, 201, 202, 205–206, 220–221

and implementation of Instructional Planning Framework, 40

incorporation of, 25–27

in Instructional Planning Framework, 3, 7, 8

integrating with other dimensions of NGSS, xii, 13, 16, 21, 24, 25, 32, 150

learner experiences from socio-scientific issues and, 192, 193

as learning goals, 32

for Matter and Energy in Organisms and Ecosystems unit, 174, 175, 179

nature of science connections with, 41

performance expectations for, 19, 22

for Proteins and Genes unit, 47, 48–49, 317, 52, 53

for The Role of Adaptation in Biological Evolution unit, 258–259, 260, 265–266

for Variations of Traits unit, 234–235, 240

Science by Design: Construct a Boat, Catapult, Glove, and Greenhouse, 167

Science education reform, xi–xiii
Index

Smith, S. M., 212	implications for Proteins and Genes unit, 157–158
Sneider, C., 154	resources for, 166–167
Socio-scientific issues (SSI), 192, 193	Think, Pair, Share activities, 105, 275, 281
See also Citizen science projects	Thinking. See also Metacognitive goals and strategies
Southwest Center for Education and the Natural	creative, 18, 56, 62, 127, 209, 210, 313
Environment (SCENE) website, 114, 115	critical, 13, 18, 56, 57–58, 63, 313
Speaking to Learn (Instructional Tool 3.5), 67, 69, 110–118	Lamarckian, 265, 271, 276, 277, 280, 281
State science standards, x, 4, 8, 14, 20, 28, 32, 38, 311	Thinking-process maps, 68, 75, 77, 79, 80, 131–133
STEM: Student Research Handbook, 167	Three Approaches That Support Metacognition
Stem cell research, x, 45	(Instructional Tool 3.1), 57–62
STEM education, xiii, xvi, 4, 27, 142, 154–157	Tierney, D., 248
definitions of, 154	Tips for the Science Teacher: Research-Based Strategies to
implications for Proteins and Genes unit, 157–158	Help Students Learn, 314
resources for, 166–167	"Tools for Ambitious Science Teaching" website, 112, 118,
STEM Lesson Essentials: Integrating Science, Technology,	254
Engineering, and Mathematics, 167	Transmissive writing, 98
Stone, B., 122	Trautmann, N. M., 228
Storyline. See Content storyline	Tree maps, 77, 78, 79, 80, 132, 133
Strand maps, 311, 313	Trefil, J. S., 194
Strategies That Work: Teaching Comprehension for	Tweed, Anne, 256
Understanding and Engagement, 106	2010 Kids and Family Reading Report, 152
Strategy Selection Template, 78	Two-column notes, 77, 80, 84, 87, 105, 146, 149, 320, 321, 322
for Proteins and Genes unit, 71, 71, 80	
for The Role of Adaptation in Biological Evolution,	
274–275	
Student proficiencies for science, 8	
Successful K–12 STEM Integration, 154	
Summary frames, 99	
Summative assessment, 14, 16, 23, 143, 256, 270, 272,	
279, 312	
for Proteins and Genes unit, 54, 55	
Sutherland, L. M., 90	
Systems diagrams, 75, 77, 79, 80, 84, 87–88, 125, 131,	
132, 133, 143, 146, 149, 320, 321, 324	
T	
Taking Science to school, 8, 230	
Talk Science Primer, 254	
Teachers Domain, 91	
The Teacher’s Guide to Leading Student-Centered	
Discussions, 112	
TeacherVision website, 122	
Teaching, Learning & Assessing Science 5–12, 94	
Teaching Reading in Science: A Supplement to the Second	
Edition of Teaching Reading in the Content Areas	
Teacher’s Manual, 103, 106, 109	
Teaching Reading in the Content Areas, 103, 106, 109	
Teaching Science with Interactive Notebooks, 97	
Teaching-with-Analogies Model, 122	
Teaching With the Brain in Mind, 5	
Teaching Writing in the Content Areas, 94, 97	
Technology applications, 166. See also specific Instructional	
Tools	
Variations of Traits unit, 229–254	
application of Phase 1 to, 232–242
stage I: identify DCIs, SEPs, and CCs, 232–235
stage II: deconstruct DCIs, create storyline, and align with SEPs and CCs, 235–240
stage III: determine PEs and identify criteria to determine student understanding, 240–241
stage IV: determine NOS connections, 241–242
stage V: identify metacognitive goals and strategies, 242
application of Phase 2 to, 243–253
stage VI: research student misconceptions, 243–245, 244
stage VII: identify students’ preconceptions, 245–246, 246
stages VIII and IX: elicit and address preconceptions: sense-making strategies, 247, 247–252, 251
stage X: determine responsive actions based on formative assessment, 253
content storyline for, 238–240
overview of, 231
relevance of topic for, 231–232, 253–254
resources for, 254
Vasquez, J. A., 154
Verbal models
analogies, 68, 70, 121–122
metaphors, 68, 70, 122–123, 253
Visible Thinking Creativity Routines, 62
Visible Thinking Fairness Routines, 58
Visible Thinking Truth Routines, 57
Visible Thinking website, 57, 58, 60, 62, 81, 84, 313, 320
Visual models, 68, 70, 123–125, 134, 253
Visual Tools (Instructional Tool 3.7), 58, 68, 70, 77, 127–133, 212, 218, 248
Visuwords website, 103
VocabAhead website, 103
Vocabulary development, x, xv, xxi, 27, 51–52, 54–55, 150, 160, 162
for Ecosystems: Interactions, Energy, and Dynamics unit, 202, 218, 221, 226
Frayer Model of, 103, 163, 218, 219, 276, 277
hints and resources for, 312
for Matter and Energy in Organisms and Ecosystems unit, 183, 186
for Proteins and Genes unit, 52, 163, 322
for The Role of Adaptation in Biological Evolution unit, 263, 270, 276, 277, 278, 280, 281
strategies for, 67, 102–103, 105, 115
for Variations of Traits unit, 248
VoiceThread, 60, 62, 112

W
Welcome to Nanoscience: Interdisciplinary Environmental Explorations, 167
Whiteboards, 272, 281, 283
interactive, 81, 87, 128, 133
Wiggins, Grant, 23, 312
Wilson, E. O., 190, 194
Windschitl, M., 124
Writing to Learn (Instructional Tool 3.3), 67, 69, 74, 93–101, 221
“This book does not contain a recipe to follow as you plan and deliver lessons. Nor is it a set of predesigned lessons for use in biology classrooms. Instead, it features both an instructional framework you can use as you plan and sets of research-based strategies and resources you can select from to help your students learn.”

—from the introduction to *Hard-to-Teach Biology Concepts, Revised 2nd Edition*

You know it’s tough to convey some foundational biology concepts—and it’s even tougher when you’re adjusting to the Next Generation Science Standards (NGSS). This thoroughly revised edition is designed to support you as you plan and implement NGSS-aligned lessons that will engage students with biology concepts that many find especially challenging.

The book is organized into two parts that feature an instructional framework and resources that support framework implementation. The content is suitable for both veteran teachers and newcomers to the classroom.

Part I, The Toolbox, introduces a research-based Instructional Planning Framework that helps you understand the learning needs your students bring to class, incorporate appropriate teaching strategies, and interpret the framework and teaching tools through the lens of NGSS.

Part II, Toolbox Implementation, models use of the framework with four hard-to-teach topics, all different from the ones in the book’s first edition. Contributing authors show you how the framework helps you teach four NGSS disciplinary core ideas: growth and development of organisms, ecosystems, heredity, and biological evolution.

As the contributing authors make clear, the teaching models are specific and help make student thinking visible, but they don’t presume to dictate what’s right for you. Rather, the book will open your mind to fresh, effective ways to help biology students deepen their conceptual understanding based on what works best for them and you in today’s classrooms.