Resources for Environmental Literacy

Five Teaching Modules for Middle and High School Teachers
Contents

Resources for Environmental Literacy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Introduction</td>
<td>xvii</td>
</tr>
<tr>
<td>Kathleen B. deBettencourt</td>
<td></td>
</tr>
<tr>
<td>About the Authors</td>
<td>xxv</td>
</tr>
<tr>
<td>Dedication</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

Biodiversity

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Student Learning Goals</td>
<td>9</td>
</tr>
<tr>
<td>From Benchmarks for Science Literacy</td>
<td>9</td>
</tr>
<tr>
<td>From National Science Education Standards</td>
<td>10</td>
</tr>
<tr>
<td>Background Content for Teachers</td>
<td>11</td>
</tr>
<tr>
<td>Essential Question 1:</td>
<td>11</td>
</tr>
<tr>
<td>What Is a Species?</td>
<td></td>
</tr>
<tr>
<td>Essential Question 2:</td>
<td>12</td>
</tr>
<tr>
<td>How Do Scientists Estimate the Number of Species?</td>
<td></td>
</tr>
<tr>
<td>Essential Question 3:</td>
<td>12</td>
</tr>
<tr>
<td>Why Is There Greater Diversity in the Tropics?</td>
<td></td>
</tr>
<tr>
<td>Essential Question 4:</td>
<td>13</td>
</tr>
<tr>
<td>How Are Humans and Other Organisms Dependent on Earth’s Great Biodiversity?</td>
<td></td>
</tr>
<tr>
<td>Essential Question 5:</td>
<td>14</td>
</tr>
<tr>
<td>How Is the Earth’s Biodiversity Impacted by Human Behaviors?</td>
<td></td>
</tr>
<tr>
<td>Essential Question 6:</td>
<td>15</td>
</tr>
<tr>
<td>What Are the Present Threats to Earth’s Biodiversity?</td>
<td></td>
</tr>
</tbody>
</table>
What Are the Likely Consequences? 50

Essential Question 5:
If Global Warming Is Actually Happening, What Can Be Done About It? 53

Teaching Approach 55
Activities Overview 55
Misconceptions 55
Assessing Student Learning 56
Recommended Resources 57
Books 57
Websites 57

Student Activities and Materials 59
Activity 1:
LEARN Activity 5: Atmospheric Processes—Radiation 59
Activity 2:
LEARN Activity 8: Differences Between Climate and Weather 59
Activity 3:
LEARN Activity 9: Climate Variability 60
Activity 4:
LEARN Activity 12: What Is a Greenhouse? 60
Activity 5:
LEARN Activity 13: What Factors Impact a Greenhouse? 60
Activity 6:
LEARN Activity 15: What Is the Carbon Cycle? 60

Earthquakes, Volcanoes, and Tsunamis

Acknowledgments 63

Introduction 67

Student Learning Goals 69
From *Benchmarks for Science Literacy* 69
From *National Science Education Standards* 70

Background Content for Teachers 73
Essential Question 1:
What Are the Components of the Earth’s System? 73
Essential Question 2:
Where Are Volcanoes Located, What Kinds of Eruptions Do They Have, How Are They Related to Earthquakes, and
Essential Question 3:
Where and How Often Do Earthquakes Occur,
How Is Their Magnitude Expressed, How Are They Related
to Volcanoes, and What Effect Do They
Have on the Environment? 76
Essential Question 4:
What Are Tsunamis and Lahars, and How Are They Generated? 78
Essential Question 5:
What Is the Main Idea of the Theory of Plate Tectonics, How Is
It Different From the Notion of Continental Drift, What Kinds of
Evidence Led to Its Acceptance by the Scientific Community,
and How Does It Help Explain Earthquakes and Volcanoes? 79
Essential Question 6:
What Hazards Do Volcanoes and Earthquakes Present, and
How Can the Risk Associated With Them Be Reduced? 81

Teaching Approach 85
Activity Overview 85
Supplementary Exercises 85
Misconceptions 86
Assessing Student Learning 86
Recommended Resources 86
Books 86
Websites 86

Student Activity 89
Earthquakes, Volcanoes, and Us

Student Materials 91
Case Study Instructions for Students 91
Natural Hazards Case Studies: Earthquakes 92
Natural Hazards Case Studies: Volcanic Eruptions 93
The Nature of Risk 94

Genetically Modified Crops 99
Acknowledgments 99

Introduction 103

Student Learning Goals 105
From Benchmarks for Science Literacy 105
From National Science Education Standards 106
Background Content for Teachers

<table>
<thead>
<tr>
<th>Essential Question 1:</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Is the Science Involved in the Genetic Engineering of Crops?</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Essential Question 2:</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Is Genetic Engineering Different From More Traditional Genetic Manipulations, Such as Hybridization?</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Essential Question 3:</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Steps Are Usually Involved in Genetically Modifying a Crop?</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Essential Question 4:</th>
<th>113</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Are the Known or Projected Risks and Benefits of Genetically Modifying Crops?</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Essential Question 5:</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under What Conditions, if Any, Should Crop Biotechnology Be Pursued?</td>
<td>118</td>
</tr>
</tbody>
</table>

Teaching Approach

<table>
<thead>
<tr>
<th>Activities Overview</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misconceptions</td>
<td>122</td>
</tr>
<tr>
<td>Assessing Student Learning</td>
<td>122</td>
</tr>
<tr>
<td>Recommended Resources</td>
<td>122</td>
</tr>
<tr>
<td>Books</td>
<td>122</td>
</tr>
<tr>
<td>Websites</td>
<td>123</td>
</tr>
</tbody>
</table>

Student Activities

<table>
<thead>
<tr>
<th>Activity 1:</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Proteins</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 2:</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Engineering</td>
<td>126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 3:</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are Monarchs Threatened by Bt Corn?</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity 4:</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum of Opinion</td>
<td>128</td>
</tr>
</tbody>
</table>

Student Materials

<table>
<thead>
<tr>
<th>Genetic Modification</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designing Transgenes</td>
<td>130</td>
</tr>
<tr>
<td>How Do You Make a Transgenic Plant?</td>
<td>131</td>
</tr>
<tr>
<td>Bounty or Bane—Taking a Position</td>
<td>132</td>
</tr>
<tr>
<td>The Nature of Risk</td>
<td>133</td>
</tr>
</tbody>
</table>
Radioactive Waste

Acknowledgments 143

Introduction 147

Student Learning Goals 149
 From *Benchmarks for Science Literacy* 149
 From *National Science Education Standards* 150

Background Content for Teachers 151
 Essential Question 1: What Is Radioactivity? 151
 Essential Question 2: How Long-Lived Are Radioactive Substances? 154
 Essential Question 3: What Are the Hazards Posed by Radioactivity? 154
 Essential Question 4: How Is Radioactivity Measured? 155
 Essential Question 5: Where Do Radioactive Wastes Come From? 156
 Essential Question 7: How Can Radioactive Waste Be Moved Safely to a Storage Facility, and What Are the Risks Associated With the Different Transport Options? 161

Teaching Approach 165
 Activities Overview 165
 Misconceptions 166
 Assessing Student Learning 166
 Recommended Resources 166

Student Activities 169
 Activity 1: Detecting Radiation 169
 Activity 2: Half-Life 169
 Activity 3: Making Decisions 170
Student Materials

Detecting Radiation 172
Half-Life 174
Making Decisions 176
What Should Be Done With Radioactive Waste? 180

Index 183
The primary responsibility of teachers of science is to teach science, not to inform their students on environmental issues—and certainly not to influence the stand students may take on those issues. Fostering student understanding of the scientific view of the natural world and how science goes about its work is the first order of business in the teaching of science.

Nevertheless, experienced science teachers—backed by research on learning—know that most students do better when they see how the science they are studying helps them to understand “practical” things that matter to them. Thus, it makes sense to organize science teaching contextually from time to time, that is, to treat the science content from a “real-world” perspective. Many such contexts exist, including inquiry, mathematics, health, sports, technology, history, biography, art, and other cross-cutting themes, such as scale, systems, constancy and change, and models. It is the contention of this project that the environment is another such context, and a particularly important one at that.

Environmental issues and concerns provide a particularly attractive context for teaching various scientific concepts and skills. That belief is what motivated the Environmental Literacy Council (ELC) and the National Science Teachers Association (NSTA) to join forces in developing this set of science/environment modules for teachers. From an educational perspective, science learning and environmental understanding effectively complement each other in two ways:

- The environmental context can improve science learning.
- Learning science can improve the ability of students to deal with environmental issues.

Another way of putting this is that studying science in the context of the environment is doubly productive. It shows how scientific knowledge and ways of thinking, coupled with the process of making decisions about our collective interaction with nature, can illuminate each other to the advantage of both.

Development and Design of the Modules

As can be seen in the acknowledgments section of each module, these modules are the work of a large number of individuals—science teachers, curriculum specialists, scientists, environmentalists, and evaluators. At the outset of the project, an advisory committee selected possible topics to pursue and indicated the kinds of material to be included in the modules. Three-person teams—composed of a teacher, a scientist, and a curriculum expert—were then formed to prepare module drafts. Successive drafts were reviewed by other teachers and scientists, revised accordingly, and eventually tested in classrooms.
The immediate purpose of these modules is to provide middle and high school teachers of science with useful science/environment resources. Beyond that, the work was intended to develop a model for the design of contextual modules more generally. If science teachers find these particular modules to be effective in helping them to achieve their learning goals, then other groups may become interested in creating additional science/environment contextual modules and perhaps contextual modules in other appropriate domains as well. In that light, the module design that emerged has these features:

- Contextual modules are organized to serve as professional development resources for teachers, not primarily as student materials.
- Contextual modules do, however, contain student activities. These activities are presented only as examples and therefore may be modified by teachers or replaced with other activities, as appropriate. When helpful, modules may back up the student activity examples with student materials, such as instructions or readings, which can be copied or downloaded and distributed to students.
- A contextual module must address specific learning goals. This is crucial, since good instruction usually begins with a clear picture of what “take-away” learning we want students to acquire—the understandings and ways of thinking that will remain with them long after the details of instruction have been forgotten. In the science/environment context, appropriate goals have been selected from Benchmarks for Science Literacy (American Association for the Advancement of Science 1993) and National Science Education Standards (National Research Council 1996).
- A contextual module provides background content for teachers organized with reference to a set of essential questions. The intent is to provide teachers with a solid substantive base for undertaking contextual teaching. For example, responses to the essential questions in these modules are intended to foster a thoughtful way of approaching complex science-based environmental issues without leading students to particular decisions regarding the various issues.
- A contextual module provides a suggested teaching approach. This component includes an overview of possible student activities, suggestions regarding potential student misconceptions, commentary on assessing student learning, and some recommended resources, both in print and on the internet.

The order in which such content is presented is less important than the quality and appropriateness of the content itself. In this publication, the organization used was that which turned out to be the most effective in actual use:

- Introduction (including rationale and a list of essential questions)
- Student Learning Goals
- Background Content for Teachers
- Teaching Approach
- Activities Overview
- Misconceptions
- Assessing Student Learning
- Recommended Resources
Student Activities
Student Materials

Topics and Availability of the Modules

An introduction entitled “The Environmental Context,” written by ELC’s late Executive Director, Kathleen deBettencourt, precedes the modules. The purpose of this introduction is to provide teachers with an appropriate perspective on teaching science topics in an environmental context. The modules cover the following topics:

- **Biodiversity:** This resource for middle school life science teachers deals with differing scientific explanations of the cause of great extinctions and examines many aspects of extinctions taking place today, including the influence of humans on the rate of species extinction and the possible impact of rapid species extinction.

- **Global climate change:** This resource for middle school physical science teachers is based on the premise that understanding the nature of the Earth’s energy balance and what influences that balance is necessary, though not sufficient, for making sound decisions with regard to climate change.

- **Earthquakes, volcanoes, and tsunamis:** This resource for high school Earth science teachers takes a look at earthquakes, volcanic eruptions, and tsunamis not only as hazards, but as players in the dynamic system that fashions the environment of the Earth’s surface.

- **Genetically modified crops:** This resource for high school biology teachers is based on the belief that issues surrounding the genetic engineering of crops can be a powerful learning context for teaching ideas about the nature of science, genetics, and the use of technology, allowing students to connect and apply what they are learning to real-world issues that affect their lives.

- **Radioactive waste:** This resource for high school physics teachers on issues surrounding the storage and disposal of radioactive waste is based on the belief that these issues can be a powerful learning context for teaching about radioactivity, technology, risk assessment, and trade-offs.

The essay and modules are available on both the ELC website (www.enviroliteracy.org) and in print from NSTA (www.nsta.org). These modules are, however, a work in progress; they will be periodically updated to include relevant new resources as they become available. Additional modules may be developed to explore the rich array of topics related to natural resources and the environment.

References

The argument for teaching science in the environmental context is based on the reality of the science-environment relationship and on the potential contextual teaching has for contributing to valuable student learning. At the same time, it must be recognized that such teaching involves dealing with controversial issues. These matters are discussed briefly here as background for consideration of the five science/environment modules that follow.

The Science-Environment-Education Connection

Although we cannot predict all the challenges that the next generation will face, we can be sure that issues related to natural resources and environmental quality will be among them. As we begin the 21st century, we live in a world in which science and technology have brought enormous gains in understanding the Earth’s natural systems. New tools such as computers, satellite imagery, and mass spectrometers permit us to observe, measure, and examine parts of the Earth that were previously inaccessible. Technology has also given us a better understanding of how humans have altered the Earth’s systems and the risks those alterations pose to biodiversity, to human health, and to our quality of life. We now know that there are complex interactions between natural and human systems, and that human health and ecosystem integrity are intricately linked.

As the human population grows the demands on natural resources and the load on ecosystem services will increase. The challenge we face is to meet the needs of a growing population for water, land, energy, and mineral resources in ways that minimize damage to ecosystems and living things. Intelligent use of resources depends on our understanding of Earth’s systems and our wise use of science and technology.

Issues related to the environment have risen to the top of the public agenda. Every day the public is called upon to evaluate evidence and assess risk: Is tuna contaminated with mercury? Do lead levels in drinking water pose health risks? Although some environmental problems, such as the loss of tropical forests, seem distant from our lives, the globalization of the economy means that consumer choices in developed countries may have an impact on the sustainability of natural resource management in developing countries far from our own. Many of the most intractable environmental challenges that confront us, such as global climate change, water quality, and loss of habitat, result from the cumulative impact of the actions of millions upon millions of individual choices and actions.

For these reasons, it is vitally important that students have an understanding of the linkages between natural systems and human activities. Most important, environmental issues provide students with an opportunity to understand how the science they learn in the classroom can help them grasp real-world concerns. Environ-
mental topics help students make connections between what they are learning in the classroom and problems that affect their lives; it also helps them make the connection from their local community to the global community.

Students may have the impression from textbooks that science is a body of facts that are difficult to understand and hard to remember. Presenting science in the context of a real problem to be solved allows students to see science as a process in which scientists make observations and collect and analyze data to try to make sense of a natural phenomenon. Environmental problems provide a story within which seemingly abstract concepts have immediate relevance; the importance of the carbon, nitrogen, and hydrological cycles in understanding global climate change is one example of fundamental science concepts that have immediate relevance to an issue of great public concern.

Environmental topics are not new to the science curriculum. The foundations of environmental literacy—of understanding the interrelationships between natural processes and human activities—are firmly rooted in the National Science Education Standards (National Research Council 1996), most explicitly in the standard “Science in Personal and Social Perspectives.” Fundamental concepts related to the flow of energy and matter through ecosystems, weather and climate, and the biogeochemical cycles, among others, are central to many environmental concerns and can be used to illustrate the relevance of these scientific ideas. Environmental topics also provide a vehicle for students to employ important skills, including the ability to evaluate quantitative evidence, to think critically, to solve problems, and to communicate their results. Research shows that science learning is enhanced when students can demonstrate conceptual understanding by applying it to a real-world context.

Project 2061’s Science for All Americans (American Association for the Advancement of Science 1990) clearly states the role of science literacy in preparing students to comprehend complex public issues, including those relating the environment:

Scientific habits of mind can help people in every walk of life to deal sensibly with problems that often involve evidence, quantitative considerations, logical arguments, and uncertainty; without the ability to think critically and independently, citizens are easy prey to dogmatists, flim-flam artists, and purveyors of simple solutions to complex problems. (p. xiv)

Students need to understand how scientific ideas and habits of mind help them make sense of the world. That is, in addition to being equipped with basic scientific and mathematical knowledge and the ability to gather and critically evaluate information, they must grasp how this knowledge relates to an understanding of environmental issues.

Environmental issues are useful for engaging students’ interest in science. Students are clearly interested in the environment, and the importance of scientific knowledge for dealing with these issues is clear. Students’ natural interest in and concern for the environment can provide a powerful motivation for students to study and learn the science that underpins the understanding of the environment and the interventions to improve it. The use of the environment to teach fundamental science concepts may interest some students in science who might otherwise not see its importance to their lives.

Teaching Environmental Issues

Environmental issues are particularly well suited for providing opportunities for students to learn
and exercise scientific habits of mind. Many issues related to the environment are controversial and are the subject of heated debates among groups representing a variety of interests. To understand these issues and the practicality of the various solutions proposed, students must evaluate evidence, critically assess arguments, and think about how scientific knowledge applies to a real-world problem.

There are challenges in teaching controversial topics of all kinds, particularly environmental topics. Students may have naïve notions about many concepts related to the environment and about the role of science in policy making. Scientific advice is most useful when attempting to identify, quantify, and understand risks to human health and ecosystem integrity. Scientific information can also help policy makers evaluate potential environmental costs and benefits of proposed actions and can provide information about probable outcomes. But although good scientific information is critical to addressing environmental issues, there are limits to scientific knowledge, particularly of complex systems, and other considerations are also important. Political, economic, social, and aesthetic factors are just some of the many considerations that affect choices about actions to take to solve environmental problems.

Students may not recognize the role of uncertainty in scientific understanding. They may tend to regard science as a fixed body of knowledge rather than an ongoing process for a systematic investigation of the natural world. Scientific ideas and theories are continually re-evaluated in light of new data and observations. Sometimes improvements in instrumentation for measuring or observing can reveal new data that requires reconsideration of old theories and understanding. And there are many parts of the Earth's systems that scientists are just beginning to investigate. Only in the last few decades, for example, have scientists been able to explore the deep ocean, and they have found many surprises there. Scientists never claim to have the final answer, because new data, additional research, and new theories arise to change understanding. Science, therefore, inherently includes uncertainty.

Decisions about policies related to environmental health and quality, however, often have to be made even though the scientific understanding is not complete. Scientific knowledge can inform decision making, but scientists can rarely definitively predict what consequences will occur as the result of various actions, particularly when complex environmental systems, such as the global climate, are affected by the action.

One source of confusion is that the word theory has a very different meaning in common language than it does in science. As it is often used, the word implies a lack of knowledge or a guess. “It’s just a theory” may be understood to mean that the science on the matter is not clear. In science, however, theories are widely accepted explanations of natural phenomena that are supported by many observations and experiments. A theory is strengthened as scientists gain additional information, but they are the explanations of which scientists are most sure. When students hear phenomena such as plate tectonics or climate change referred to as theories, they mistake the level of scientific understanding that is implied.

Even when scientific understanding of an issue is fairly well established, science alone is not sufficient. Economic considerations are almost always a critical factor in making decisions. For example, scientists can identify the sources of mercury in the environment and provide information about how it is transported and the probability of adverse effects on the ecosystems and human health at various levels of exposure. But to develop policies to reduce emissions of
mercury, such as those that come from electrical power plants, policy makers have to consider the economic effects on the community. Some actions might have devastating effects on local jobs and reduce the funding that is available for other important social needs, such as education or health care. Decisions are often complicated when there is a disagreement about whether there is a health risk to the population, particularly when the costs of mitigating the problem are high. Choices that may seem simple at first become more complex when all the factors are considered.

Policy makers have to weigh the costs of taking a particular course of action and the potential benefits to be gained against the alternatives. Although everyone agrees that air quality is an important good, people disagree about what costs they would be willing to bear. The quality of air in a community would be improved if a community agreed to restrict the use of automobiles or to raise the price of gasoline to high levels, but this would impose hardships on residents, and few areas have been willing to pursue this approach. The costs of this alternative, in the opinions of the residents, outweigh the benefits.

Some environmental interventions, though effective, are very expensive; for example, we could assure the safety of food if every meat and vegetable product was inspected before it was sold, but the cost of doing so would be prohibitive. Such a policy would take resources away from other important social needs, including other environmental programs. There is always a limited amount of resources in any community, and funding that is used to address one problem is not available for other needs.

Cost-benefit analyses, however, can be controversial. People often disagree about the value to place on various goods and benefits, and some benefits are hard to assess. In many communities there are disagreements about the value of preserving open undeveloped spaces versus the importance of providing affordable homes for the residents of the community. People disagree over the need to reduce traffic and air emissions as opposed to the convenience of having more roads for personal transportation. The aesthetic value of green spaces and the need to preserve biological diversity are important, but there are often disagreements about how to assign quantitative values to these considerations.

In addition, people disagree about the amount of the risk they are willing to assume. Every activity has some risk associated with it. Walking down the stairs can result in a fall; driving without a seat belt increases the possibility of injuries from an accident. Risk is the probability of harm resulting from an action or a set of circumstances. The degree of risk is expressed statistically; using statistical methods to calculate the probability of harm is called risk assessment.

Although almost every action involves some risks, some involve more potential danger than others. The amount of risk we are willing to assume is a subjective judgment. Skydiving, for example, is a high-risk activity that people voluntarily choose to do. Studies have shown that people are less afraid of risks from something that they have voluntarily chosen to do than they are of risks that are imposed on them. Also, people are more concerned about risks that impose great harm, even though there is a low probability that the event will occur, than they are of risks that are more probable but less dramatic. For example, surveys indicate that people rate a nuclear accident as a greater risk than x-rays, though experts rate the harm from x-rays as much higher a threat. People are also willing to accept risks if they perceive that the benefit
to be gained is worth the risk; the earthquake zones in Los Angeles and San Francisco and hurricane-prone beach towns along the coast are densely populated despite the risk because the residents believe the benefits outweigh the potential danger.

Risk assessment is an important component of environmental policy making. Scientists can provide information about the potential risk of detrimental health effects that a population may face at various levels of exposure to a pollutant. This information is expressed as a range of probabilities that harm might occur. Policy makers often have to make decisions about regulating the use of a substance that may have very beneficial uses and for which no alternatives are readily available based on this information and their assessment of whether the benefits derived from using the substance outweigh the potential risk. Weighing alternative actions can be difficult, particularly when there is a high level of uncertainty about the health risks.

Environmental decisions also involve trade-offs. Environmental systems are complex; they are composed of subsystems (atmosphere, biosphere, hydrosphere, and lithosphere) that interact in many ways that are not completely understood. A change that affects one system may affect other systems in ways that may not be known immediately or for even years or decades after the change has been made. This means that there are often unintended consequences. For example, to reduce the amount of pollution near manufacturing plants, many communities in the United States began to require that manufacturers build smokestacks to vent the emissions high into the air, where the winds would carry it away. The emissions of particles containing sulfur dioxide, however, are carried into atmosphere, where they react with water particles in clouds to form acid rain; winds in the atmosphere carry the acidic particles long distances in the air before they fall as rain, affecting water quality in lakes far from where the pollutants are produced. The solution to a local air quality problem therefore became a regional water quality issue.

More recently, communities in the Washington, DC, area found that there were high levels of lead in their drinking water; concentrations in some areas and schools were above the level considered safe (see www.epa.gov/dclead). Researchers investigating the problem found that the increase in lead in the water was the result of the city's decision to switch from using chlorine to using chloramines to disinfect the water; the chloramines reacted with the lead in the pipes, releasing particles into the water. The city had switched to chloramines because the U.S. Environmental Protection Agency tightened standards on using chlorine owing to concerns that chlorine by-products might be carcinogenic. Thus, the response to one potential health risk led to the exposure of a significant number of the population to another serious health problem.

There are consequences—both intended and unintended—for every action taken or not taken. Trade-offs are inevitable in environmental decision making. Every choice involves a decision not to choose the alternative policy. There are costs and benefits associated with each alternative that have to be weighed in the decision. For example, as discussed in the module on radioactive waste, the decision to transport and store nuclear waste at Yucca Mountain is a controversial one. Those who oppose the policy have pointed out the risks and costs of shipping wastes across the country; on the other hand, if the waste is not transported, it will continue to be stored in cooling ponds on the sites of nuclear reactors, many of which are near large urban populations.
Teaching Controversial Issues

Many environmental issues are controversial, and students, parents, and community members may have strong opinions about them. People may agree on the long-term goal of protecting environmental quality and human health but vigorously disagree about the best means of achieving that goal. Controversial issues can be excellent teaching tools because they engage student interest and can be used for spirited debates, and there are a number of resources that provide guidance on teaching controversial issues. Some advice that teachers have found helpful is to remember that the educator sets the tone and the ground rules for the debate. Teachers should make sure that all sides are presented and that students provide evidence to substantiate their arguments.

Environmental issues tend to be complex. Often simple solutions may be offered that appear compelling but do not take into account the legitimate interests of various groups or the trade-offs that are inherent in any choice. Once students begin to analyze the effect of any decision on the parties involved, they may begin to see the issues differently. On the other hand, students may find it discomfiting that there is not one “right” answer and that the needs and concerns of the various parties must be weighed and addressed.

Students should be cautioned to examine quantitative evidence offered in defense of an argument for or against a specific approach. It may be useful to examine common fallacies in logical reasoning to accustom students to recognize these errors as they research an issue. One of the most common errors is to confuse cause and correlation. Often data are presented that imply a relationship between two phenomena; however, it is important for students to learn how to evaluate the data to see whether there is sufficient information to indicate a relationship. Two phenomena may be positively correlated, which means a change in one is associated with a change in the other. Yet even a strong correlation does not necessarily mean that one is a cause of the other. Either one could cause the other, or they could both be related by chance. For example, there might be a correlation between ice cream sales and shark attacks. One could say that eating ice cream makes a person more susceptible to being attacked by a shark; another explanation is that more ice cream is eaten in the summer and more people in the water increases the likelihood of shark attacks. It is possible to find all kinds of statistical associations, but it is necessary to do further research to determine if the phenomena are in fact associated.

Students should become accustomed to analyzing the quality and validity of arguments. Advocates on all sides of an environmental issue may make self-interested claims. This does not mean that the claims are not valid, or that the factual evidence offered in support is not accurate, but the argument may leave out the equally valid arguments of other parties involved in the debate. It may be a useful exercise to have students investigate the arguments made by various parties and to identify and assess the evidence offered by each. Students should be encouraged to look for equally valid evidence or arguments that may be made and to think about what other information one would want to know to make a decision. Students can learn to recognize weak arguments and to critically evaluate quantitative claims.

Debates and research projects also provide opportunities for students to communicate, both orally and with graphics, their understanding of an issue. Working with teams or individually, students have to marshal their evidence, organize it, and communicate it clearly. The point
of teaching in ways that involve controversial issues is not to lead students to some supposed “right answer” but rather to give them experience in assembling arguments that take scientific knowledge and ways of thinking into account.

—Kathleen B. deBettencourt (1953-2004), Founding Executive Director of the Environmental Literacy Council

References
About the Authors

The Environmental Literacy Council is a nonprofit organization dedicated to improving the knowledge base of K–12 teachers in environment-related sciences. Its membership—drawn from the life, physical, Earth, mathematical, and social sciences of prestigious institutions—reflects the cross-disciplinary nature of environmental concerns.

The National Science Teachers Association is the oldest national association of science educators in America and the largest organization in the world committed to promoting excellence and innovation in science teaching and learning for all.

This material is based upon work supported by the National Science Foundation under Grant No. ESI-0243521. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Responsibility for the content and design rests with the Environmental Literacy Council and the National Science Teachers Association.

Disclaimer: The opinions, findings, conclusions, and recommendations expressed in Resources for Environmental Literacy are those of the Environmental Literacy Council and the National Science Teachers Association and may or may not conform to the individual viewpoints of each organization's members or staff on either current or historical events, or their impacts on the environment.
Dedication

This publication is dedicated to the memory of Kathleen B. deBettencourt. She was known for her dedication to the preservation of our environment through a better understanding of science, for being extraordinarily informed on the connections between science and responsible environmental stewardship, and as a leader in environmental education with a keen ability to collaborate effectively with others. As the founding executive director of the Environmental Literacy Council, Kathleen was innovative and tireless in advancing the Council’s goals. To those of us fortunate to have worked with her, she was both an admired colleague and dear friend.
Index

Page numbers in boldface type refer to figures. A following “t” indicates a table.

A

Access Excellence Graphics Gallery website, 132
adenine, 132
Agricultural Biotechnology and the Monarch Butterfly: Are Monarchs Threatened by Bt Corn? (Colorado State University), 128
agriculture. See also genetically modified crops
biodiversity and, 14
effect of global warming on, 53
Agrobacterium tumefaciens, 110, 134, 134–135
alleles, 108
allergies, GM crops and, 115, 127
alpha decay, 152, 152
alpha particles, 152
americium, 156
Animal and Plant Health Inspection Service (USDA), 118
animals, effect of GM crops pollen on, 116. See also monarch butterflies and Bt Corn
antibiotic resistance transfer from GM crops, 116
Arctic, climate change in feedback loop, 49
melting of sea ice, 52, 52
Argentina, GM crops in, 112
assessing student learning
on biodiversity, 20
on earthquakes and volcanoes, 86
on global climate change, 56–57
on GM crops, 122
on radioactive waste, 166
atmosphere, 41, 73
chemistry and risk assessment, 96
patterns of movement, 41
volcanic eruptions and, 81
atmospheric
chemistry and risk assessment, 140
atoms, 151
misconceptions about, 166

B

Bacillus thuringiensis (Bt). See Bt
background content for teachers
on biodiversity, 11–18
on Earth sciences, 73–83
on global climate change, 43–54
on GM crops, 107–120
on radioactive waste, 151–164
bacteria
DNA in, 108
plasmids, 110
Beefalo, 11
Benchmarks for Science Literacy
on biodiversity, 9–10, 20
on DNA, 125
on global climate change, 39–40
on GM crops, 105–106
on natural hazards, 69–70
on proteins, 125
on radioactive waste, 149–150
beta decay, 153, 153
beta particles, 152–153
biodiversity, 5–30
benefits, 29
definition, 5
GM crops and, 116, 117
threats to, 15–17, 19, 24, 27–28, 30
Biosafety Regulatory Team (Philippines), 118
biosphere, 73
Brazil, GM crops in, 112
Bt, 111
corn, 116, 122, 127–128
genes and insect pest resistance, 111, 113
Bush, George W., 161, 181
Canada, GM crops in, 112
Canola Council of Canada, 113
carbon cycle, 60
carbon dioxide (CO\textsubscript{2}) as greenhouse gas, 46, 47
increase of, 48, 50
methods for decreasing, 53–54
world emissions, 50
casks for transportation of nuclear waste, 162, 163, 164
cauliflower mosaic virus, 110, 133
Center for Biodiversity and Conservation, 15
Chernobyl 1986 accident, 157–158
reactor building, 157
China, GM crops in, 112
chlorofluorocarbons (CFCs), 56, 96, 140
chromosomes, 108
climate. See also global climate change
definition, 39, 43
effect of volcanic eruptions on, 75–76
misconceptions about, 55
study of past, 48–49
variability, 60
weather and, 59
Climate Action Network, 43
Climate Change Basics Glossary, 43
Climate Change 2001 (IPCC), 51
Climate Change 2007 (IPCC), 51
cloud chamber, constructing a, 169
clouds, 41
effect on climate change, 50
continental drift, 70, 79
terrestrial issues, xix, xx
climate change as, 37
disposition of nuclear waste as, 147
teaching, xxii–xxiii
Convention on Biological Diversity, 5
corn
Bt variety, 116
monarch butterflies and, 122, 127–128
southern corn leaf blight, 117
transgenic, 109, 127
crop selection, 109
cross pollination of GM crops and traditional crops, 115
crown gall, 110
Curie, Marie, 157, 157
curium, 156
cytosine, 132
debris flows. See lahars
decision making
and new technologies, 105, 106
and nuclear waste, 165–166, 170, 176–179
decision threshold approach to regulation of GM crops, 118–119
deforestation for palm oil, 16
deoxyribonucleic acid. See DNA
dinosaurs extinction, 19, 23, 26
DNA (deoxyribonucleic acid), 107–108, 132
learning goals on, 125
mutations, 125–126
structure of, 107
droughts as consequence of global warming, 53
dinosaurs extinction, 19, 23, 26
earthquakes, 65, 76–77
case studies, 89–90, 92
definition, 76
and environment, 73–74
learning goals, 69
prediction of, 82
risks of, 81–82
secondary effects of, 77
economy
biodiversity and stability of, 14
environmental decisions and, xix–xx
GM crops benefits, 113, 114
ecosystem changes as result of global warming, 53
Einhorn, Robert J., 182
electromagnetic (EM) radiation, 44
electrons, 151, 153
engineering and risk assessment, 95, 139
environment
GM crops and, 103, 116–117, 122, 127–128
herbicides, 111, 113
non-native species and, 16–17
pesticides, 113
and science education, xvii–xviii
tsunamis and, 78–79
Environmental Literacy Council, 91
Environmental Protection Agency, 118, 158
enzymes, 108, 132
epidemiology and risk assessment, 95, 139
Experimental Breeder Reactor, 145

F
feedback in climate change, 49–50
Arctic feedback loop, 49
Fermi, Enrico, 150
fertilizers, reduced use with GM crops, 114
fire as result of earthquakes, 77
fission, nuclear, 156
misconceptions about, 166
floods as consequence of global warming, 52
Food and Drug Administration, 118
French, Wade, 109
fusion, nuclear, misconceptions about, 166

genes, 108, 132
Agrobacterium method of insertion, 134–135
cloning, 131
designing for insertion, 133
expressed, 108
gun method of insertion, 110, 134
locating for plant traits, 132–133
marker, 119, 133
genetically modified crops, 101–140
competitor views of, 101
leading countries in growing, 112t
potential benefits of, 113–114
potential risks of, 114–118
spread of, 112–113, 115–116, 115
standards for evidence of safety, 119t
technology used to create, 110–113

genetic engineering, 103
future of transgenic technology, 135–136
gene gun method, 110, 134
hybridization compared to, 108–109
making a transgenic plant, 121–122, 126–127
science in, 107–108
student material on, 132–136
genetics and risk assessment, 96, 140
geology and risk assessment, 95, 139
goosphere, 73
global climate change, 35–60. See also climate abrupt, 39
causes of, 45–50
consequences of, 50–53
definition, 43
feedback in, 49–50, 49
global average temperature, 48
responses to, 53–54
global environmental changes, biodiversity and, 17
global warming. See global climate change
glyphosate, 111
GM crops. See genetically modified crops
Golden Rice, 119–120
greenhouse effect, 46–47, 46
enhanced, 50
misconceptions about, 56
greenhouse gases, 47
greenhouses, 46, 60
Greenpeace, 101
groundwater flows, earthquakes and, 77
guanine, 132

H
habitat loss and degradation, effect on biodiversity, 16
half-life, 154, 165, 169–170, 174–175
of transuranic elements, 156
Hawaiian volcanic eruption, 75
hazard, concept of, 89, 138
heat
global warming and heat waves, 53
physical versus electromagnetic components, 56
transfer, 40
herbicides
reduced use with GM crops, 113

Resources for Environmental Literacy: Five Teaching Modules for Middle and High School Teachers

185
resistance to, 111
high-level radioactive waste, 159–160
High School Crop Genetic Engineering website, 121–122, 130, 131
hospitals and radioactive waste, 156
human activities impact
 on biodiversity, 14–15
 on climate, 39–40, 50
 on environment, 9–10
human health
 biodiversity and, 13
 GM crops and, 103, 115, 116, 117, 127
humans
 chromosomes, 108
 dependency on biodiversity, 13–14
 impact on other species, 9
hybridization, 108–109
hydrology and risk assessment, 95, 139
hydrosphere, 73

I
infrared radiation, 45
insect-resistant plants, 111, 111
Intergovernmental Panel on Climate Change, 50–51
isotope, radioactive, 149, 150

K
Kiriyenko, Sergei V., 182

L
lahars, 81
 definition, 79
 from Mount St. Helens 1982 eruption, 78
landslides, 77
land use, GM crops and, 114
learning goals. See Benchmarks for Science Literacy; National Science Education Standards
LEARN project (UCAR), 55
ligases, 132
light. See sunlight
lithosphere, 79
lithospheric plates. See tectonic plates
Little Ice Age, 44
low-level radioactive waste, 158–159
Low-Level Radioactive Waste Policy Act (1980), 158–159
Lugo, Ariel E., 27

M
Markey, Edward J., 181
Mars, greenhouse effect on, 47
matter transfer, 40
medicine and biodiversity, 13
Meitner, Lise, 149
meteorology and risk assessment, 95, 139
methane (CH₄) as greenhouse gas, 46, 47
misconceptions
 about biodiversity, 19–20
 about earthquakes, 86
 about global climate change, 55–56
 about GM crops, 122
 about radioactivity, 166
 about volcanoes, 86
models, 40
 of climate change, 50
 of sea-level changes, 51
monarch butterflies and Bt Corn, 122, 127–128
“Monarch Butterfly Controversy, The: Scientific Interpretations of a Phenomenon” (Shelton and Sears), 128
Mount Pinatubo 1991 eruption, 81
Mount St. Helens, 65, 78
mrem, 156

N
National Center for Food and Agricultural Policy, 113
National Science Education Standards
 on biodiversity, 10
 on DNA, 125–126
 and foundations of environmental literacy, xviii
 on global climate change, 40–41
 on GM crops, 106
 on natural hazards, 70–71
 on radioactive waste, 150
National Science Foundation, 55
natural hazards. See earthquakes; tsunamis; volcanic eruptions; volcanoes
neutrino, 153
neutrons, 151, 152
misconceptions about, 166
Nevado del Ruiz volcano 1985 eruption, 81
nitrous oxide (NO₂) as greenhouse gas, 47
Novikov, Sergei G., 180–181
nuclear force
 strong, 151
weak, 152
nuclear power plants, misconceptions about, 166
nuclear reaction, 149, 150
Nuclear Waste Policy Act (1982), 161
nutritional value of GM foods, 117

oceans
 effect of melting Arctic sea ice on water circulation, 52
 influence of currents on climate, 39
 sea-level rise, 51–52, 51
 warming of, 52
organisms, interaction of, 9
overharvesting threat to biodiversity, 16
 menhaden fishing, 17
ozone as greenhouse gas, 47
ozone hole, misconceptions about, 56

P
Pacific Ocean, tsunamis in, 78
Peléan volcanic eruption, 75
pesticides, reduced use with GM crops, 113
photons, 151
Phreatic volcanic eruption, 75
physics and risk assessment, 95, 139
plasmids, bacterial, 108
 use in genetic engineering, 110
plate tectonics, theory of, 70, 79–81, 85–86, 89
Plinian volcanic eruption, 75
plutonium, 156
policy making
 global environment and, 40
 long-term earthquake forecasting and, 82
 political stability, biodiversity and, 14
pollution effect on biodiversity, 17
positrons, 152, 153
predictions
 in climate models, 50
 of earthquakes and volcanic eruptions, 82
probabilities, 150
Project 2061, xviii
promoters, 108, 133
 cauliflower mosaic virus used as, 110, 133
proteins, 107, 108, 132
 building, 121, 125–126
protons, 151, 152
 misconceptions about, 166
Putin, Vladimir V., 180

R
radiation
 acute radiation syndrome, 155
 defining, 56
 detecting, 165, 169, 172–173
doses from common activities, 155
 LEARN activity on, 59
 misconceptions about, 56, 166
 possible exposure from transportation of nuclear waste, 162
 wavelengths of different types of, 45
radiation detectors, 169
radioactive decay, 151
radioactive substances, life length of. See half-life
radioactive waste, 145–150, 156–182
 Benchmarks for Science Literacy on, 149–150
 as controversial issue, 147, 165–166, 170, 176–179
disposal of, 158–161, 177
 Experimental Breeder Reactor, 145
 global concerns about, 179
 high-level, 159–160
 low-level, 158–159
 National Science Education Standards on, 150
 origin of, 156–158
transportation, 158, 161–164, 163, 178
 Yucca Mountain Nuclear Repository, 159, 161, 177
rail transport of fuel rods in, 160
radioactivity
 definition, 151–153
 half-life, 154, 165, 169–170
 hazards of, 154–155
 measurement of, 155–156
 misconceptions about, 166
radium, 156
regulation of GM crops, 118–119
relativity, special theory of, 149
rem, 156
resources
 on biodiversity, 20–21
 on earthquakes, 86–87
 on global climate change, 57
 on GM crops, 122–123
 on radioactive waste, 166
 on volcanoes, 86–87
restriction enzymes, 132
Richter scale, 76
risk, concept of, 89
 definition, 94, 1138
 in disposal of radioactive waste, 150
 earthquakes and, 81–82
 and environmental policy making, xxi
 of new technologies, 105
 volcanoes and, 81
Roundup Ready crops, 118
Royce, Edward R., 181
Rutenberg, Jim, 180–182
Rutherford, Ernest, 149
safety standard approach to regulation of GM crops, 119
Sanger, David E., 180–182
Schumer, Charles E., 181
science as ongoing process, xix
Science for All Americans (Project 2061), xviii
scientific journal, keeping, 86, 89
sea-level rise, 51–52, 51
Sears, M. K., 128
seasons, misconceptions about, 56
seismographs, 76
Sestanovich, Stephen, 182
Shelton, A. M., 128
Simberloff, Daniel, 28
Snow, John, 95, 139
social stability, biodiversity and, 14
soil ecology alteration from GM crops, 116–117
South Africa, GM crops in, 112t
South Cascade Glacier, Washington, 35
soybeans and Bt gene, 113
specialty crops, genetic engineering and, 114
species
definition, 7, 9, 11–12
non-native, 16–17
number of, 7, 12
species extinction, 7, 10. See also biodiversity:
 threats to
 estimating rate of, 15
 through actions of humans, 15
 in the tropics, 13
spent nuclear fuel, storage of, 160–161
spiritual/cultural benefits of biodiversity, 14
spreading zones (plate boundaries), 76
 sea-floor spreading, 79
StarLink (SL) case, 115
Strombolian volcanic eruption, 75, 75
student activities
 on biodiversity, 19, 23–24
 on earthquakes and volcanoes, 89–90
 on global climate change, 59–60
 on GM crops, 125–128
 on nuclear waste, 169–170
student learning goals
 on biodiversity, 9–10
 on global climate change, 39–41
 on GM crops, 105–106
 on natural hazards, 69–71
 on radioactive waste, 149–150
student materials
 on biodiversity, 25–30
 on earthquakes, 92
 on genetic modification, 130
 on GM crops, 129–140
 on making a transgenic plant, 132–136
 on radioactive waste, 171–182
 transgene design, 131
 on transgenic crops debate, 137–140
 on volcanoes, 93
subduction zones (plate boundaries), 76
 and volcanic activity, 81
sun, 40, 41, 44
 and climate change, 50
sun flare, 44
sunlight, 40
 absorption of, 46
 properties of, 56
 wavelengths of visible, 44–45
sunspots, 44
 and climate change, 50
systems, 9, 37, 40, 69–70, 89
 connections between, 40, 70
teaching approach
on biodiversity, 19–21
on genetically modified crops, 121–123
on global climate change, 55–57
on natural hazards, 85–87
on radioactive waste, 165–167

technologies, new, decisions about, 105, 106
Technology Protection System (TPS), 112

tectonic plates, 69, 70, 73
 boundaries of, 76
 convergence types, 80
 location of, 74
volcanoes and, 74

T-GURT (Trait-specific Genetic Use Restriction Technology), 113
theories, 70, xix
thymine, 132
toxicology and risk assessment, 95, 138, 139
 in agricultural technology, 106
 in disposal of radioactive waste, 150
 in environmental decisions, xxi

trains, and transport of nuclear waste, 162
transform faults (plate boundaries), 76, 81
transgenes, 108–109
 design of, 127, 131
 simplified representation, 133
 transportation of radioactive waste. See radioactive waste
transuranic elements, 156
transuranic waste, disposal of, 159

tropics, diversity of species in the, 12–13
trucks, and transport of nuclear waste, 162

U
ultraviolet (UV) radiation, 45
uncertainty in scientific understanding, xix
United States
 electricity production, 156
 GM crops in, 112t, 113, 118
University Corporation for Atmospheric Research (UCAR), 55
University of California Berkeley Library, 91
uranium-238 decay chain, 154, 156

U.S. Department of Energy, and disposal of radioactive waste, 158
“U.S. to negotiate Russian storage of atomic waste” (Sanger and Rutenberg), 180–182

V
Venus, greenhouse effect on, 47
Vesuvian volcanic eruption, 75
volcanic eruptions. See also volcanoes
case studies, 93
 and climate change, 49–50, 75–76
earthquakes and, 76
 and environment, 73–74
 learning goals on, 69
 prediction of, 82
 risks of, 81
types, 75
volcanic mudflows. See lahars
volcanoes, 65, 74–76. See also volcanic eruptions
case studies, 89–90
Vulcanian volcanic eruption, 75

W
Ward, Peter, 27
Waste Isolation Pilot Plant (WIPP), 159, 160
waste management, 150
water cycle, 39, 40–41
 effect of global warming on, 52
water vapor (H₂O) as greenhouse gas, 46, 47
weather
 and climate, 59
 definition, 39, 43
 effect of volcanic eruptions on, 75–76
 misconceptions about, 55

Wegener, Alfred, 70
Wilson, E. O., 15
winters, warming of, as consequence of global warming, 53
World Health Organization, 119

Y
Yucca Mountain Nuclear Repository, 159, 161, 177
 rail transport of fuel rods in, 160