
2 Q U A N T O O N S

scribed as “the angle of incidence
equals the angle of reflection.” Light
traveling from a point in air to a
point in water is certainly more
complicated. In this case, the light
bends (refracts) at the boundary be-
tween the two surfaces. The
amount of bending is a property of
the water and the color of the light.
Light entering other transparent
substances, like quartz or diamond,
refract by different amounts.
Willebrord Snell in 1621 was able to
give a mathematical description of

the behavior of light, which is now
known as Snell’s law:

n1 sin q1 = n2 sin q2,

where n1 and n2 are the indices of re-
fraction. We can see that if the light
enters water (n = 1.33) from air (n =
1.00) at an angle of 30°, the angle in
water would be 22°:

n1 sin q1 = n2 sin q2,
1.00 sin 30° = 1.33 sin q2,

q2 = 22°.

Measuring the angle of refraction is
one way to tell whether that’s a dia-
mond or a piece of glass in that ring

you bought.
What fascinates many people

about the study of physics is the al-
ternative ways of explaining phe-
nomena. The great mathematician
Pierre de Fermat recognized (in
1657) that the path of light is the
path that requires the least time.1 If
you try all possible paths from the
light source A to the object B after
they hit the mirror, you’ll find that
the shortest path, and so the quick-
est, is the path through point D
(fig. 1 on the next page), where the
angle of incidence equals the angle
of reflection.

1The “extremum path.”

M
OST OF OUR READERS
know that light bouncing off
a mirror travels along a path
that can be adequately de-

“The cause is hidden but the effect is known.”
—Ovid, Metamorphoses

A snail that moves like light
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Light with its human face is having a super blast speeding in a flash through space and objects, breaking mirrors
and here and there some rules, shooting through a fishbowl—surprising the wet inhabitants—and through a
solid glass prism without getting a headache. This spectacular high-speed performance is taking place in a
cosmic circus tent where the alligator and his dog assistant are in charge of the modest flashlight source. In the
audience we see the professional science community verifying the correct course and angles of light but not
being very impressed by the seriousness of the performance. But that does not bother our lightweight space
cadet, who thinks that coming from a flashlight he is Flash Gordon himself.

—T.B.
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Light is bending the rules a bit here. (Can you see where?)
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You can demonstrate this for
yourself by drawing lots of paths
and measuring them. You can also
prove it with some simple geometry
or by using some calculus.

Fermat’s theorem is also valid for
refraction: the path light takes
when it passes from air to water
must be the path requiring the least
time. In this case least time is not
identical to least distance, since
light travels more slowly in water
that in air. The speed of light in a
substance is equal to the speed of
light in a vacuum divided by the
substance’s index of refraction n.

Proving that the path of the light
is the quickest one takes some inge-
nuity. You can draw lots of paths of
light traveling from point A in air to
point B in water (fig. 2). You can
then measure the lengths of the
lines in air and water. But Fermat’s
theorem states that the path should
take the least time, not the least
distance. We can multiply the
lengths in water by 1.33, since the

light takes longer to travel in water
by a factor of 1.33. Then add this
distance to the distance in air. The
path that minimizes this sum is the
path the light takes. And—guess
what? It’s the same path described
by Snell’s law! Those of you who
have some calculus background can
prove it mathematically.

Leaving light behind, we enter
the world of slow-moving mollusks
to find our contest problem. A snail
must get from one corner of a room
(dimensions 5 m × 10 m × 15 m) to
the diagonally opposite corner in
the least time. The snail can walk
on any of the four walls but may not
walk on the floor or ceiling. What is
the path that the snail should take?
In part B of the contest problem, for
our more advanced readers, the
snail finds that the 15 meter wall
that must be traveled is sticky—

Figure 2
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that is, the snail can only travel at
a fraction of its normal speed. If the
snail on the sticky wall travels at
1/3 of its normal speed, what is the
path that requires the least time for
the snail? Finally, in part C, for our
most advanced readers, what hap-
pens if the snail finds that the
stickiness of the first wall is not
constant but increases linearly
along one dimension of the wall? Spe-
cifically, the speed at one end of the
wall is the normal speed and the
speed at the far end of the wall is 1/3
the normal speed.  What will be the
path of least time?  You may need to
use graphical or computer techniques
to solve parts B and C.  Our best read-
ers are encouraged to see if they can
find general proofs for any room (di-
mensions l × w × h) and a stickiness
factor of s. We are not sure ourselves
if such general proofs exist.

Solution
You were asked to help a snail

find the quickest path from one cor-
ner of a room to a diagonally oppo-
site corner.

In the first case, in which all
walls were identical and the dimen-
sions of the room were 5 × 10 × 15,
there are at least three ways to solve
the problem. The first is to choose
different crossover points at the
edge between the two walls and cal-
culate the total distance that the
snail travels. This numerical
method may appear to be tedious,
but it will actually converge on the
correct solution quickly. A second
method is to call the height of the
crossover point x, write the total
distance traveled in terms of x, and
differentiate. By setting the deriva-
tive equal to zero, the minimum
distance will be revealed as the so-
lution to the equation. The third
method is the elegant solution. In
this case, the wall is opened up. The
room is now a large rectangle of di-
mensions 25 × 5. The shortest dis-
tance will be the diagonal connect-
ing the two corners of the rectangle.
If the snail starts at the lower corner
of the 15-meter wall, the crossover
point can be found by using similar
triangles. The crossover point is

Figure 1
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In the second case, one of the
walls was declared “sticky,” mean-
ing that the snail could travel at
only 1/3 of its speed on this wall.
Unlike the first case, the shortest
distance is no longer the shortest
time! Since the snail travels at dif-
ferent speeds on the two walls, the
quickest path will be the one where
the snail travels a greater distance
on the faster wall. Once again, the
straightforward but tedious solution
would be to assign the variable x to
the crossover point, write an equa-
tion that describes all paths in terms
of x, and the minimum time will be
revealed.

The more elegant solution in this
case is to realize that light always
takes the least time to travel, and that
this snail traveling on a sticky wall is
like light traveling in a slower me-
dium. We then recognize that the
solution will be Snell’s law (or, if
you’ll forgive us, “Snail’s law”). Even
with this knowledge, we are faced
with a fourth-order equation, which
we choose to solve by numerical
techniques:

n1 sin θ1 = n2 sin θ2.

Since the stickiness factor is 3, then
n1 = 3 and n2 = 1, and it follows that
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We’ll try different values of x and
see if the value of the left side of the
equation is equal to the value of the
right side.

x left side right side

1 0.1996 0.3714
2 0.3965 0.2873
1.5 0.2985 0.3304
1.7 0.3378 0.3134
1.6 0.3182 0.3219
1.63 0.3241 0.3194
1.62 0.3221 0.3202

This method can give us any accu-
racy we desire. It would certainly be

easier to plug the equations into a
spreadsheet program and have all
values given “instantly.”

The third part of the problem,
to solve for a wall whose sticki-
ness varies along one dimension,
was solved by Jason Jacobs of
Harvard University. We will leave
this problem as a tease.
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