Science for English language learners: K-12 classroom strategies / Ann Fathman and David Crowther, editors.

Library of Congress Cataloging-in-Publication Data
Science for English language learners: K-12 classroom strategies / Ann Fathman and David Crowther, editors. p. cm.
Includes bibliographical references.
PE1128.A2S323 2005
428'.0071'2--dc22
2005023038

NSTA is committed to publishing material that promotes the best in inquiry-based science education. However, conditions of actual use may vary, and the safety procedures and practices described in this book are intended to serve only as a guide. Additional precautionary measures may be required. NSTA and the authors do not warrant or represent that the procedures and practices in this book meet any safety code or standard of federal, state, or local regulations. NSTA and the authors disclaim any liability for personal injury or damage to property arising out of or relating to the use of this book, including any of the recommendations, instructions, or materials contained therein.

Permission is granted in advance for photocopying brief excerpts for one-time use in a classroom or workshop. Requests involving electronic reproduction should be directed to Permissions/NSTA Press, 1840 Wilson Blvd., Arlington, VA 22201-3000; fax 703-526-9754. Permissions requests for coursepacks, textbooks, and other commercial uses should be directed to Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923; fax 978-646-8600; www.copyright.com.
To all the students and teachers
who have shown that the worlds
of science and language complement
and enhance each other
Acknowledgments... xi
Introduction.. xiii
About the Editors.. xvi
Author Biographies... xvii

Section I

Parallels in Language and Science Teaching

Chapter 1

Teaching English Through Science and Science Through English.................................3
Ann K. Fathman, David T. Crowther
Window into the classroom .. 3
Connection between science and language development... 4
Addressing the needs of diverse students ... 4
Impact of standards on teaching ... 5
Similarities in science and language learning processes .. 5
Overlap of best practices ... 6
Importance of collaboration ... 6
Need for professional development ... 7

Chapter 2

Learners, Programs, and Teaching Practices .. 9
David T. Crowther, Joaquin S. Vilá, Ann K. Fathman
Window into the classroom .. 9
Diversity in schools ... 10
English language learners ... 11
Programs for English language learners .. 12
How a second language is learned ... 13
How science is learned .. 14
Best practices in science teaching and language teaching 16
Section II

Strategies for Planning, Teaching, Assessing, and Extending Learning

Chapter 3
Planning Science and English Instruction: One Teacher’s Experience
Ann Baumgarten, Marie Bacher
Window into the classroom ... 25
Using standards to plan instruction ... 26
Using student information to plan instruction 28
Putting all the pieces together ... 31
Conclusion ... 34

Chapter 4
Strategies for Teaching Science to English Learners 37
Deborah Maatta, Fred Dobb, Karen Ostlund
Window into the classroom .. 37
Connecting with students .. 39
Teacher talk .. 40
Student talk .. 41
Academic vocabulary .. 43
Reading skills .. 44
Writing skills ... 46
Collaborative learning ... 47
Scientific language ... 49
Process skills of inquiry ... 51
Conclusion ... 55

Chapter 5
Strategies for Assessing Science and Language Learning 61
Anne Katz, Joanne K. Olson
Window into the classroom .. 61
Using standards to assess learning ... 63
Guiding principles for assessing language learners in science 65
Applying assessment principles in the science classroom 66
Using assessment to improve learning 73
Summary ... 75
Chapter 6
Science Beyond Classroom Walls:
Fairs, Family Nights, Museums, and the Internet .. 79
John R. Cannon, Judith Sweeney Lederman, Monica Colucci, Miosotys Smith

Window into the classroom ... 79
Informal science learning experiences and resources 81
Science fairs and family science ... 83
Technology: Resources for teachers and students 86

Section III
Lessons for Science and Language Learning

Chapter 7
Designing Lessons: Inquiry Approach to Science Using the SIOP Model
Jana Echevarria, Alan Colburn

Window into the classroom ... 95
Inquiry-based instruction ... 96
The learning cycle ... 98
The SIOP Model .. 99
Merging inquiry and the SIOP .. 102
A lesson designed by a science teacher ... 103
A lesson designed by an ELL expert ... 104
Conclusion .. 106

Chapter 8
Lessons That Work: Science Lessons for English Learners 109
Ann K. Fathman, Olga Amaral

Window into the classroom ... 109
Sample lesson plan formats .. 110
Lessons for primary grades ... 111
Lessons for intermediate grades ... 119
Lessons for middle school ... 135
Lesson for high school ... 147
Effective lesson components ... 172
Conclusion .. 173
Acknowledgments

Thanks to Carolyn Kessler and Mary Ellen Quinn for their inspiration and guidance over the years in showing me the benefits of integrating language and content area teaching and to my family for their continual encouragement and support.

Ann Fathman

A special thanks to my very patient and understanding family, Tammi, Tom, Cassi, and Chris, and to the students and staff at Veterans Memorial Elementary School and my colleagues Joaquin Vilá and John Cannon for opening my eyes and accompanying me on this wonderful journey.

David Crowther
Science for English Language Learners is a resource for all teachers who work with linguistically and culturally diverse students. A collaborative effort between science and language educators, it provides a wealth of information on teaching science to English language learners (ELLs). We, as editors of the book, come from the very different, but complementary, fields of English language teaching and science education. Sharing ideas has given us the opportunity to better understand the academic needs of students, to develop new teaching strategies, and to integrate best practices for teaching from both fields. These are insights we hope to pass on to our readers.

Purpose and Audience

Science for English Language Learners is for teachers, prospective teachers, and teacher educators. Its purpose is to provide educators with a guide for teaching science to ELLs. We hope that, by using this book, educators will develop expertise in teaching science content and processes, in language development and literacy, and in inquiry-based teaching while getting practical ideas for teaching. We provide information from both fields by

- describing instructional practices in science and language,
- describing effective teaching strategies,
- providing models for lesson and curriculum development, and
- giving an overview of standards development and implementation.

Organization

The book is divided into four sections.

- In Section I, Parallels in Language and Science Teaching, chapters provide an overview of major themes, principles, and practices.
- In Section II, Strategies for Planning, Teaching, Assessing, and Extending Learning, chapters focus on practical suggestions for the classroom.
- In Section III, Lessons for Science and Language Learning, chapters contain design ideas from language and science educators and exemplar lessons from teachers.
- In Section IV, Contexts for Classroom Implementation, chapters contain an overview of science and English proficiency standards, of research and instructional practices, and ways to integrate science, language, and literacy.
The reader can begin at any part of the book. Readers looking for practical ideas for teaching and designing lessons may focus on sections II and III. Readers needing background in the fields of science and ESL (English as a second language) should read sections I and IV. The book as a whole provides information on theory and practice that should be useful to all educators.

Overview of the Chapters

The book is written by teachers, administrators, and teacher trainers of science and English. Each chapter is coauthored by science and language educators who have done extensive work in their fields and who realize the importance of interdisciplinary teaching. By pairing English and science educators as coauthors on chapters, we capitalize on the strengths from both fields and demonstrate the similarities in teaching methodologies that can be used to reach all students.

Section I: Parallels in Language and Science Teaching

Chapter 1

“Teaching English Through Science and Science Through English.” Ann Fathman and David Crowther give an overview of central themes that can guide and improve the teaching of science to English language learners.

Chapter 2

“Learners, Programs and Teaching Practices.” David Crowther, Joaquín Vilá, and Ann Fathman provide information on English language learners in our schools and the programs provided for them. They also give an overview of science and language learning principles and how these translate into best practices.

Section II: Strategies for Planning, Teaching, Assessing, and Extending Learning

Chapter 3

“Planning Science and English Instruction.” Ann Baumgarten and Marie Bacher describe how to incorporate science, language arts, and ESL standards into the classroom. They offer practical suggestions on how to plan, organize, and implement activities based upon standards, teaching and learning strategies, and student background.

Chapter 4

“Strategies for Teaching Science to English Learners.” Deborah Maatta, Fred Dobb, and Karen Ostlund discuss strategies teachers can use to help English language learners learn science while improving their speaking, listening, reading, and writing skills in English. They present ideas on how to connect with students, use collaborative learning, and develop language skills and process skills of inquiry.

Chapter 5

“Strategies for Assessing Science and Language Learning.” Anne Katz and Joanne Olson give an overview of principles for assessing language learners in science. They describe how to plan assessment, to use it in the classroom, and to provide feedback and improve learning.
Chapter 6
“Science Beyond Classroom Walls.” John Cannon, Judith Sweeney Lederman, Monica Colucci, and Miosotys Smith provide ideas on expanding learning beyond the classroom. They describe informal science learning experiences in museums, learning centers, and science centers. They discuss schoolwide experiences such as science fairs, festivals, and family science nights and then provide internet resources for science and language teachers.

Section III: Lessons for Science and Language Learning

Chapter 7
“Designing Lessons: Inquiry Approach to Science.” Using the Sheltered Instructional Operation Protocol (SIOP) Model, Jana Eschevarria and Alan Colburn discuss science inquiry, the SIOP Model, and how to blend the two for good science instruction. They finish with a conversation between a science educator and language expert who give their different perspectives on specific science lessons.

Chapter 8
“Lessons That Work: Science Lessons for English Learners.” Ann Fathman and Olga Amaral present formats for science lesson plans that incorporate inquiry and language and science objectives. Teachers from elementary, middle, and secondary levels describe successful lessons, and the benefits of these lessons for English language learners are discussed.

Section IV: Contexts for Classroom Implementation

Chapter 9
“Standards for Science and English Language Proficiency.” Margo Gottlieb and Norman Lederman describe the development of the National Science Education Standards and English language proficiency standards. They then discuss new language proficiency standards that integrate science and other content area standards with language standards and give implications for teaching.

Chapter 10
“Perspectives on Teaching and Integrating English as a Second Language and Science.” Deborah Short and Marlene Thier briefly review the evolution of ESL instruction and science education. They discuss current promising practices that integrate ESL, literacy, and science. Finally, they highlight innovative programs in U.S. schools that offer interventions that improve the science achievement of English language learners.

Appendixes
The chapters are followed by appendixes that include web references for resources, a glossary of science and language terms, and an overview of safety issues for the science classroom.
About the Editors

Ann K. Fathman _________________________

Ann K. Fathman is professor of English at Notre Dame de Namur University where she directs programs in English-as-a-second language teaching and English for international students. She received her PhD from Stanford University and BA in foreign language and science from University of California, Davis. Her professional experience includes elementary, secondary, and college teaching of ESL and science, as well as ESL and bilingual program administration and evaluation. She has taught in Europe and Asia and has been a Fulbright scholar in Slovakia. Her research in applied linguistics has focused on factors affecting second language acquisition, assessment, and heritage language preservation. She has had an interest in science and language teaching for many years, and her publications include coauthoring *Science for Language Learners*, published by Prentice Hall, *Elementary Science ESL Workbooks*, published by DC Heath, and *Teaching Science to English Learners*, published by the National Clearinghouse for Bilingual Education.

David T. Crowther _________________________

David T. Crowther is an associate professor of science education at the University of Nevada, Reno. He is an editor of *CESI Science*, which is the journal for the Council for Elementary Science International, and associate editor of the *Electronic Journal of Science Education*, which is the longest-running and first online journal of its kind. He is on the advisory board for the National Science Teachers Association’s (NSTA) *Science and Children* and was chair of the NSTA Children’s Book Council Committee. He has experience teaching at the elementary/middle level as well as biology at the high school and university levels. He has 13 years of teaching experience at the university level, nine of which have been at the University of Nebraska—Lincoln. He has published 24 articles that are both research based and practical for elementary science education and has done science education workshops and presentations in 39 states. He is the past president of CESI and a former board/council member of NSTA.
Olga Amaral chairs the Division of Teacher Education at San Diego State University, Imperial Valley Campus. She is also an associate professor in the Department of Policy Studies in Language and Cross-Cultural Development. She received her EdD from the University of Massachusetts at Amherst. She serves as the director of the California Science Project in Imperial Valley and is the principal investigator for several grants that promote greater understanding and preparation for teachers of English learners. Her research and publications emphasize the instruction of English learners in the content area. Specifically, she focuses on methodology used in classrooms with English learners. Her publications have focused on improving student achievement for English learners by linking aspects of science instruction and English language development. Through her collaboration with the Valle Imperial Project in Science (VIPS) (see Chapter 10), she has helped to develop training modules for teachers that involve such techniques as lesson study and an integration of both science and English language development (ELD) standards. She has widely disseminated information about this work both nationally and internationally.

Marie Bacher is a science resource teacher and a classroom teacher for the Santa Clara Unified School District, California. In her 15 years as an educator she has been a tutor, preschool teacher, an upper-grade multiage teacher, a science camp director, and director of environmental education. She has a masters in education with an emphasis in administration and supervision from San Jose State University. She has spent the last several years developing and implementing a hands-on science curriculum that integrates best practices in inquiry, language arts, and English language learner (ELL) strategies. She frequently does science staff development for literacy specialists, principals, environmental educators, and her fellow teacher colleagues in science inquiry. Her work focuses on strategies for English language learners in science, science notebooks, performance-based assessments, and science process skills. She started her science-teaching career in a residential outdoor science school and to this day believes the best way for everyone to learn is through hands-on experiences.
Anne Baumgarten is a science/literacy resource teacher with Santa Clara Unified School District, California. She is responsible for designing and delivering staff training on science instruction as well as reading and writing workshops for elementary school teachers. She works with Partnership for Student Success in Science/Bay Area Schools for Educational Excellence, a nine-district consortium of science teachers that provides training in science content and inquiry methodology. She supports the integration of the language arts and science through classroom mentoring in the Guided Language Acquisition by Design program. She has been in education for more than 15 years, teaching adults as well as young children. In addition she has worked as a science writer for the University of Southern California and as a writer of children’s educational television programs for Disney Animation. She has an undergraduate degree in science writing from the University of California at Santa Cruz and is currently completing an administrative credential.

John R. Cannon is associate professor of science education at the University of Nevada, Reno. His interest in classroom technologies and their applications began in 1987. He holds a PhD in Science Education from Kansas State University, an MA in classroom teaching from Central Michigan University, and a BA in Elementary Education from the University of Montana. In 1996, he launched the first totally electronic professional journal related to science education and research: the Electronic Journal of Science Education. In 2000, he researched and developed Merrill Education’s Links to Science Education Resources Website. His chapter on distance learning in science education can be found in Evaluation of Science and Technology Education at the Dawn of a New Millennium, Kluwer Publishers, 2002. His current research interests include second language acquisition strategies and their close relationship to learning elementary science.

Alan Colburn is an associate professor of science education at California State University Long Beach. He holds a PhD in Science Education from the University of Iowa, as well as other degrees from the University of Pennsylvania, University of Illinois, and Carnegie-Mellon University. He has taught high school chemistry, advanced placement chemistry, and physical science. He currently teaches undergraduate students, students and teachers pursuing teaching credentials, and graduate students. His interests include not only inquiry-based instruction, but also the nature of science. Recent research compared science teacher and clergy views on evolution, creationism, science, and religion. He has authored 27 publications and given 46 presentations. This is the ninth time his work has appeared in an NSTA publication.

Monica Colucci teaches math and science in Miami Dade School District, Florida, to grades three through five. She has 11 years
of teaching experience and has worked with diverse student populations, such as English language learners, students with disabilities, and gifted children. She received a BS in Elementary Education and a master’s degree in educational leadership from Florida International University. She is certified in the areas of English for speakers of other languages (ESOL) and gifted education. She has served as a teacher consultant for the University of Miami’s Science For All for seven years and helped develop and write the instructional units for this project, trained teachers to use the materials in their classrooms, and made presentations on this topic at professional seminars. She works closely with school administrators and teachers to develop and implement schoolwide strategies to enhance the academic performance of students, especially that of limited English-proficient students and students with disabilities.

Fred Dobb

Fred Dobb, PhD, Stanford University, has been director of the English Learner Initiative of the California Science Project (CSP) and has spent his career in language minority programs as a bilingual teacher, administrator, and staff development specialist. He has been California Department of Education director of Bilingual Education, state supervisor of International Language Programs. Before joining CSP, he was a collaborator on the California English Language Development Test. He teaches courses in linguistic and cultural diversity and second language acquisition at San Francisco State University. He is the recipient of the California Language Teachers Association President’s Award. A Fulbright scholar in Brazil, he has taught at postsecondary institutions in Puerto Rico, Nicaragua, Mexico, and Spain, and has trained science teachers from Chile and Argentina at the University of California, Davis.

Jana Echevarria

Jana Echevarria, PhD, is chair of the Department of Educational Psychology, Administration and Counseling at California State University, Long Beach, and a professor of Special Education. Her professional experience includes elementary and secondary teaching in special education, English as a second language (ESL), and bilingual programs. She has lived in Taiwan and Mexico where she taught ESL and second language acquisition courses, as well as in Spain where she conducted research on instructional programs for immigrant students. Her research and publications focus on effective instruction for English language learners, particularly those with learning disabilities. She has written numerous journal articles and book chapters, has written and produced two videotapes, and has coauthored two books: Sheltered Content Instruction: Teaching Students with Diverse Abilities and Making Content Comprehensible for English Language Learners: The SIOP Model, both published by Allyn and Bacon.

Margo Gottlieb

Margo Gottlieb is director of assessment and evaluation at the Illinois Resource Center, Des Plaines, and lead developer for...
Anne Katz has worked for more than 20 years as a researcher and evaluator with educational projects involving linguistically and culturally diverse students. She received a PhD in Second Language Education from Stanford University. As a lecturer at the School for International Training in Brattleboro, Vermont, she teaches courses in curriculum, assessment, and evaluation. She has also worked as a teacher educator in Brazil, Egypt, and Ukraine. She led the TESOL-sponsored team that developed assessment guidelines for the preK–12 ESL Standards, and her most recent publications focus on standards-based assessment systems. She currently serves on the TESOL committee revising student standards. In her work, she promotes linkages between research and the classroom to support student learning and teacher development.

Judith Sweeney Lederman is the director of Teacher Education in the Department of Mathematics and Science Education at Illinois Institute of Technology. Her experience with informal education includes her work as curator of education at the Museum of Natural History and Planetarium in Providence, Rhode Island. She regularly presents nationally and internationally on the teaching and learning of science in both formal and informal settings. In addition to numerous book chapters, she has recently published an elementary science teaching methods text and is currently writing a secondary methods text and two books on the nature of science. She has served on the boards of directors of NSTA and CESI and is president of CESI.

Norman G. Lederman is chair and professor of mathematics and science education at the Illinois Institute of Technology. He received a PhD in Science Education and has MS degrees in both biology and secondary education. Prior to his 20-plus years in science education, he was a high school teacher of biology and chemistry.
for 10 years. He is internationally known for his research and scholarship on the development of students’ and teachers’ conceptions of the nature of science and scientific inquiry. He has been author or editor of 10 books, written 15 book chapters, published more than 150 articles in professional journals, and made more than 500 presentations at professional conferences around the world. He is a former president of the National Association for Research in Science Teaching (NARST) and the Association for the Education of Teachers in Science (AETS). He has also served as director of teacher education for NSTA and has served on the boards of directors of NSTA, AETS, NARST, and the School Science and Mathematics Association.

Deborah Maatta

Deborah Maatta is a project coordinator with the District of Columbia Public Schools Office of Bilingual Education. She began teaching English as a foreign language in West Africa where she also worked as a technical trainer for the U.S. Peace Corps. She went on to teach content-based ESL at Lincoln Multicultural Middle School in the District of Columbia. She coordinated the “Hands-On Science Program,” a Title III project designed to improve science education for middle school level ESL students in the District of Columbia Public Schools. She currently manages a Title III Teachers and Personnel grant and a Refugee Children School Impact Grant. She received an MA in Education from American University.

Joanne K. Olson

Joanne K. Olson is an assistant professor in the Center for Excellence in Science and Mathematics Education at Iowa State University. She received a PhD in Science Education in 1999 from the University of Southern California. She earned a master’s degree in education in 1993 from the Claremont Graduate University and received a bachelor’s degree in liberal studies with a concentration in science from California State Polytechnic University, Pomona, in 1991. Her research interests focus on science teacher preparation and cognitive issues in the learning of science, including the role of the nature of science. She was an elementary and middle school science teacher in South Central Los Angeles before moving to Iowa. Currently, she coordinates the elementary science methods courses at Iowa State University, and co-directs the master’s of arts in teaching program in Science Education.

Karen Ostlund

Karen Ostlund is professor and director of The Center for Science Education at the University of Texas, Austin. Her many honors include the NSTA Distinguished Teaching Award and Alpha Chi Favorite Professor at Southwest Texas State University, 1996. She is a past president of CESI and has served on the NSTA board of directors. Among her many publications are Rising to the Challenge of the National Science Education Standards: The Process of Science Inquiry, Primary Grades and Grades 5–8, in two volumes (with S. Mercier), and Science Process Skills: Assessing Hands-On Student Performance. She has
authored numerous invited chapters, journal articles, and specialty publications. She has been a major contributor to several science textbook series for use at the elementary and middle levels. She has presented at more than 100 workshops across the country.

Deborah J. Short

Deborah J. Short, PhD, is director of the Language Education and Academic Development division at the Center for Applied Linguistics in Washington, DC, and co-developer of the SIOP Model for sheltered instruction. She was coprincipal investigator for a research study on the effects of sheltered instruction on English language learner achievement and directed the national English as a Second Language Standards and Assessment project for TESOL. She currently directs a study on secondary English language learners funded by the Carnegie Corporation and the Rockefeller Foundation and is a senior researcher on a U.S. Department of Education evaluation study of programs for students in grades K–3. She has extensive experience in school-based research on the integration of language and content instruction and on programs for English language learners. She regularly provides professional development to teachers around the United States and abroad. She develops curricula and instructional materials for students and has authored or coauthored numerous publications, including two ESL series, *High Point* and *Avenues*, from Hampton-Brown. She has taught English as a second or foreign language in New York, California, Virginia, and the Democratic Republic of Congo.

Miosotys S. Smith

Miosotys S. Smith was born in Cuba where she spent the first 15 years of her life, after which she immigrated with her family to the United States where she continued her education. She completed her undergraduate studies at St. Thomas of Villanova University in psychology, received her teaching certification at Florida International University, and earned a master’s degree in early childhood education from Nova Southeastern University. During her 17 years of teaching, she has taught grades prekindergarten through five, and had the opportunity to work closely with ELL students and interact with their families. She is certified in gifted education and has been teaching gifted children for the past eight years. In order to encourage parental involvement, she has developed and implemented numerous workshops for parents in the areas of reading and problem solving. She also has sponsored and led schoolwide programs and competitions such as science fairs and spelling bees, oratorical and book-writing contests, Odyssey of the Mind, and Math Bowl.

Marlene Thier

Marlene Thier is a veteran of the classroom, a science materials developer, a teacher educator, and a leader in the movement to link science and literacy education. She has made presentations on the subject at conferences from California to South Africa and has worked closely with the New York City
schools to implement a program based on her concepts. She is codeveloper and teacher education coordinator for the Science Education for Public Understanding Program (SEPUP) at the Lawrence Hall of Science on the Berkeley campus of the University of California. She is also cocreator of more than a dozen other inquiry-based science courses and modules for SEPUP. Marlene is a coordinator of SEPUP’s Elementary Science Teacher Leadership program, funded by EXXON/Mobil, which develops workshops and printed materials to help preservice and inservice educators teach science more effectively. She has worked as a coauthor on the program’s 10 guidebooks on subjects such as curriculum integration and combining math and science.

Joaquin S. Vilá, PhD, is a native of Puerto Rico where he completed his BA in English with an emphasis in linguistics and secondary English education. Upon graduation, he taught ESL in grades 7–12 in both public and private schools. He received both an MA and a PhD in Linguistics from Michigan State University. He has been involved in higher education for close to 20 years in the development, implementation, and administration of ESL teacher-preparation programs and intensive English language programs. His professional pursuits also involve development of inservice training opportunities for school personnel in the areas of reading, assessment, and content-area instruction for ESL learners. His current research interests include content-literacy development for ESL learners, ESL assessment, and professional development for school personnel. He is currently associate professor and ESOL adviser with the English Department at Salisbury University in Maryland where he is actively engaged in teaching graduate and undergraduate level courses as part of TESOL programs, supervising TESOL interns, collaborating in professional development projects, participating in TESOL/National Council for Accreditation of Teachers professional program reviews, and advising students about the rewards and challenges of a teaching profession.
Eduardo came to the United States a little more than three years ago. He spoke little English. After a brief time at an intake center, Eduardo was sent into a regular sixth-grade classroom. He immediately found friends who spoke his native language and translated for him. After all, he was smart and had attended school in his native country—he just didn’t understand English. And he had a very supportive family who encouraged him to learn and be successful.

Fortunately for Eduardo, he was in classrooms in which teachers were trained in sheltered instruction, used cooperative learning strategies and lots of hands-on instruction, accommodated different learning styles, and used assessment strategies that allowed him to demonstrate his knowledge of a subject even with his limited command of English. Over time, he became more comfortable in the welcoming environment provided by the teachers and began to understand the new language he was immersed in.

Eduardo was pulled out of his regular classroom for English instruction during his first two years. By his third year, he had learned conversational English, could read and write basic English, and had begun to understand some of the technical aspects of academic English. He began to feel confident in his learning again. As Eduardo’s confidence increased, so did his skill. He needed less and less help from his English instructor.

When Eduardo reflects upon his experience in America, he fondly remembers his science class where he worked with real wires, bulbs, and batteries as he constructed a simple circuit. He still is surprised at how this experience both fascinated him and encouraged him. He was able to construct both science knowledge and English language that described what he was learning. He remembers that when the wires were put together in the right order with the battery and light bulb, the bulb lit up and that made a “complete circuit.”
What better way to learn English than through the study of science, and what better way to learn about science than experiencing it through language and literacy in and out of the classroom. Sutman, Allen, and Shoemaker (1986) observed in *Learning English through Science* that science and language link us to knowledge of the world and beyond, to understanding people, phenomena, and processes. But this understanding is difficult to obtain in our culture without developing proficiency in the English language.

Eduardo’s experience in America described in “Window Into the Classroom” is a success story. Through his experiences in school, he was able to succeed. He developed a love for science as he learned English.

We hope this book will be a resource for all teachers who have a responsibility to teach science and wish to provide quality education to linguistically and culturally diverse students such as Eduardo. We describe instructional practices and programs, standards and goals, teaching strategies, and program and lesson design. A number of reoccurring themes emerge from these chapters that are worth noting. We list some of these major themes and the chapters where they can be found to serve as a guide to the book.

Connection Between Science and Language Development

Every science lesson is a language lesson. Inquiry-based science has been found to have many benefits for students who are developing proficiency in English. By merging language and science, teachers can help students learn both more effectively (see Chapter 4).

Engaging in hands-on experiences in science provides opportunities to engage English language learner (ELL) students, but expressing an understanding of science concepts inherently requires the use of language, and science is language intensive. ELLs face two learning tasks: they need to understand the science content in the lesson and the language associated with that content (see Chapter 5).

Research suggests that science can enhance the language development of children with limited English (see Chapter 10).

Addressing the Needs of Diverse Students

English language learners are diverse because they represent different cultures, but also different languages, educational and family backgrounds, and levels of native and English language proficiency (see Chapter 2 and Chapter 10).

In the classroom that affirms linguistic diversity, teachers encourage ELLs to expand their knowledge and skills. He had greatly enjoyed the hands-on aspect of the lesson, but was really amazed how he had naturally learned about circuits even when his English was very limited. That lesson not only began a lifetime interest in physics, but also taught him that he could learn and be successful in America, a place he now called home.
their primary language literacy skills, which affirms the value of the student, deepens student understanding of vocabulary, and strengthens literacy (see Chapter 4).

Teachers should be aware of the diverse cultures and language abilities of students when assessing what they know or have learned. Using multiple assessments, providing clear feedback, and setting achievable, yet challenging goals in science and English help students demonstrate their understanding in a variety of ways and monitor their own progress (see Chapter 5).

The goal of “learning for all students” is often compromised by cultural, societal, and language differences. The teacher’s role is to create a classroom environment wherein all students feel accepted, encouraged, and empowered to participate actively in learning (see Chapter 7).

Because students come from diverse backgrounds, it may be necessary for teachers to build the skills needed to perform inquiry-based science activities. Scaffolded inquiry can provide essential support as students construct the skills and knowledge needed to build science literacy. Students can pass through a “continuum of inquiry” (direct, guided, full) to learn skills necessary to engage in inquiry (see Chapter 4 and Chapter 7).

Lessons should provide opportunities for guided support from the teacher and help from peers so that all students can participate in activities, irrespective of their level of English proficiency (see Chapter 8).

Impact of Standards on Teaching
Implementing standards involves a dynamic interaction between content standards, language and literacy standards, and the abilities and needs of students (see Chapter 3).

Standards serve as an excellent starting point for designing units and assessments because standards can be used to organize a unit around big ideas students are to learn, not isolated facts (see Chapter 4).

Effective lessons include objectives based upon language standards that are designed to work harmoniously with the science content standards to introduce students to aspects of English language development while they study science content (see Chapter 8).

Educational reform with a focus on standards has had an impact on all teaching. “Science for all” and “science for inquiry” are at the center of science reform efforts. All students should learn how to do inquiry as well as learn the traditional science content (see Chapter 9).

ESL standards have focused attention on English language learners and show how teachers can help these students be successful in mainstream classes. Language standards are being integrated with content standards so that teachers can blend science and language with an integrated approach. Together, English language proficiency and science standards provide a platform for the vision of how ELLs can successfully access the science curriculum (see Chapter 9).

Similarities in Science and Language Learning Processes
Learning science and a language are cognitive processes that support each other. The science process skills—including observing, predicting, communicating, classifying, and analyzing—are almost the same as language
learning skills—seeking information, comparing, ordering, synthesizing, and evaluating. These skills are truly the key to integrating content instruction with language acquisition (see Chapter 3).

As a teacher helps students develop the science process skills of inquiry, language process skills or language learning strategies are simultaneously being developed (see Chapter 4).

Two fundamental characteristics of the learning process, transfer and language dependence, frame our understanding of critical issues in teaching and assessing English learners in the science classroom (see Chapter 5).

In the classroom, science and language are interdependent, in part because each is based on process skills that are mirrored in each other. Both science and English instruction focus on skills such as noting details, predicting, distinguishing fact from opinion, and linking words with precise meanings (see Chapter 10).

Overlap of Best Practices

Core curriculum principles for learning and teaching science are similar to those for language. There is overlap of best practices that recommend the use of meaningful activities encouraging hands-on, active, cooperative participation, with connections to the experiential world (see Chapter 2).

Teaching strategies that help students learn English and science simultaneously should be used. These include strategies related to connections with students, teacher talk, student talk, vocabulary, reading, and writing skill development (see Chapter 4).

Extending learning beyond the classroom and involving family and community are common goals of both science and language teaching. These can be achieved through activities such as off-campus visits, science fairs, family science nights, and the use of technology (see Chapter 6).

Inquiry-based science lessons encourage English language learners to use academic English by interacting with peers, which makes the lessons especially effective for language development. The eight components of the SIOP (sheltered instruction observation protocol) approach reflect what we know about effective science teaching and about high-quality instruction for English learners (see Chapter 7).

Good science and language instruction emphasize the teaching of process skills and learning strategies to help students access, analyze, and retain information. Clear objectives for both science and language stated in terms of what students should be able to do should be a part of all lessons. The goals are similar—getting students to think about and understand new concepts and ideas in meaningful ways (see Chapter 7).

Teachers should learn how to scaffold, not only for language, but also for scientific inquiry. Guided inquiry allows students to become engaged, use information to reason through a scientific issue, master concepts, and design their own projects. By embedding inquiry and sequencing investigations, goals for science and literacy can be attained (see Chapter 10).

Importance of Collaboration

Science and language concepts can be taught simultaneously through practices related to each field. Science and language teachers must plan and work together to serve the needs of English language learners (see Chapter 2).
Input from both science and language teachers in creating lessons can ensure that components are included that encourage science inquiry while at the same time building background, providing practice, emphasizing vocabulary, reviewing, and providing assessment for learners at all proficiency levels (see Chapter 7).

Collaboration among teachers of ELLs is key to ensuring an integrated approach. Joint time for planning is essential for teachers to develop standards-based teaching and assessment activities (see Chapter 9).

A relatively new trend is the coteaching model with which an ESL teacher spends part of the day in the regular classroom coteaching with the grade-level teacher (see Chapter 10).

Need for Professional Development

Teachers need to develop expertise in teaching science content and processes as well as in teaching language and literacy (see Chapter 2). The need for teacher expertise in English language development is immediate and widespread (see Chapter 3). With a focus on high-stakes assessment, teachers must have training in how to create a coherent plan to document students’ understanding and skills in language and science (see Chapter 5).

Current practice favors content-based program models, but preservice teacher education has not kept pace for elementary and secondary teachers. Most states do not require teacher candidates to take courses in ESL methods or sheltered instruction techniques. There is a continuing need for professional development of teachers (see Chapter 10).

Science, when done properly and within the constraints of the discipline, truly supersedes physical and political boundaries. Both science and language have global and personal applications and help students learn about the world around them. In the classroom, the worlds of science and language coincide and can enhance and extend each other as is evident in the pages of this book.

Reference

Further Reading

Bybee, R., ed. 2002. *Learning science and the science of learning*. Arlington, VA: NSTA Press. This volume of contributed chapters is based on the latest research in science education. Chapters include crosscurricular and integrated teaching strategies as well as the latest in assessment and learning in science.

Halley, M., and T. Austin. 2004. *Content-based second language teaching and learning: An interactive approach*. Boston: Allyn and Bacon. A thorough and updated examination of interactive approaches in second language instruction. The authors address practical strategies for implementing content-based language teaching and learning. Relevant activities are provided to ensure student comprehension. Each chapter includes refreshing comments from classroom teachers that add relevance to each theme addressed. Though intended primarily for ESL teachers, science instructors will find it both relevant and approachable.

Arlington, VA: NSTA Press. This is a compendium of articles and best practices from NSTA’s high school journal *The Science Teacher*. This collection provides fresh ideas on how to meet the learning needs of all students in the science classroom. The book covers three must-know areas of multicultural science education, curriculum reform, and teaching strategies in science and language and provides practical insights into how to give students an appreciation of the contributions that all cultures make to our scientific knowledge.
Index

Page numbers in **boldface** type indicate figures or tables.

A

A Case for the Constructivist Classroom 16
A High School Framework for National Science Education Standards 181
A Life Like Mine: How Children Live Around the World 146
AAAL (American Association of Applied Linguistics) 221
AAAS (American Association for the Advancement of Science) 180
Academic achievement 11 200 207
Academic language 14, 43, 43–44, 45, 172, 225
Academic writing skills 46–47, 46–48
Accelerating Academic English: A Focus on the English Learner 43
Access Brochure 186
Active cognitive involvement 16–17, 18
ADA (Americans with Disabilities Act) 230
Adapted lab report 41, 42
Affective filter 14, 225
Allen V. 4
American Association for the Advancement of Science (AAAS) 180
American Association of Applied Linguistics (AAAL) 221
Americans with Disabilities Act (ADA) 230
AMSE (Association for Multicultural Science Education) 222
APAST (Association of Presidential Awardees in Science Teaching) 222
Ask Dr. Science 89
Ask Jeeves 91
ASMC (Association of Science Materials Centers) 222
Assessment 5, 61–75, 172
 alternative formats for 64
 authentic 225
 classroom applications of 66–67
 to improve learning 73–75
integrated approach to standards-based instruction and 193–194
knowing strengths and limitations of 65
of language skills 12
matching to language proficiency of student 66
matching with instruction 66
modifications for language learners 66
as ongoing process 65 69
options for 65–66
planning for 68–73
 collecting and recording student information 69–71, 71
components for 70
 identifying learning standards 68–69
scoring criteria and data interpretation 71–72, 72
steps in 68
 use of data and reporting results 72–73
principles for 65–66
summative 66
 using multiple types of 65
 using standards in 63–65, 68, 70
Association for Multicultural Science Education (AMSE) 222
Association for Science Teacher Education (ASTE) 222
Association of Presidential Awardees in Science Teaching (APAST) 222
Association of Science Materials Centers (ASMC) 222
ASTE (Association for Science Teacher Education) 222
Atlas of Science Literacy 181
Austin, T. 17
Australasian Society for Computers in Learning in Tertiary Education 87

B

Bad Science 90
Basic interpersonal communication skills (BICS) 14
Becijos, J. 17
Ben’s Guide to US Government for Kids 88
Best practices in science and language teaching 6, 16–18
BICS (basic interpersonal communication skills) 14
Bilingual education 12, 30, 41, 79, 225
Bilingualism 225
Bill Nye the Science Guy 89
Biological Science Curriculum Study (BSCS) 99
Bizarre Stuff You Can Make in Your Kitchen 89
Blachowicz, L. Z. 43
Blueprints for Reform 181
Boston Museum of Science 82
Bottle Biology 90
Brookfield Zoo (Chicago) 81
Brooklyn Aquarium (New York City) 82
Brooks, J. 16
Brooks, M. 16
Bruner Jerome 15
BSCS (Biological Sciences Curriculum Study) 99

C
Caine G. 35
Caine R. 35
California English Language Development Test (CELDT) 29, 30
CALL (computer-assisted language learning) 88, 225
CALLA (cognitive academic language learning approach) 225
CALP (cognitive academic language proficiency) 14, 32, 33, 225
Carusella, Brian 89
CELDT (California English Language Development Test) 29, 30
Cells: grade 7 (lesson plan) 138–141
Center for Applied Linguistics 221
Center for Equity and Excellence in Education Test Database 222
Center for Research on Education Diversity and Excellence (CREDE) 212, 222
Five Standards of Effective Pedagogy 213, 222
SIOP Model 99–103, 212–213
Standards Performance Continuum tool for 213
CESI (Council for Elementary Science Education International) 222
Chemistry teaching resources 90
Chicago Botanic Gardens Urban Environmental Summer Camp 82, 82
Circulatory and digestive systems: grades 9–12 (lesson plan) 147–171
CISIP (Communication in Science Inquiry Project) (Arizona) 214–215
Classifying physical characteristics: kindergarten (lesson plan) 115–117
Classroom culture 208
Co-teaching 7
Cognitive academic language learning approach (CALLA) 225
Cognitive academic language proficiency (CALP) 14, 32, 33, 225
Colburn Alan 102
Collaborative learning 6–7, 47–49, 172
Communication in Science Inquiry Project (CISIP) (Arizona) 214–215
Communicative language teaching 201–202
Community centers, collaboration with 82
Comprehensible input 14, 100
Comprehensible output 14
Index

Computer-assisted language learning (CALL) 88, 225
Computer lab 86
Connecting with students 38–40, 40
Constructivism 15, 18, 225
 contextual 15
 inquiry and 15–16
 principles of 16
Content-based instruction 202, 225
Continuum of inquiry 52–55, 56–57
Cookbook lab activities 96, 204
Cooperative dialog writing 46
Corson, D. 44
Council for Elementary Science Education International (CESI) 222
Council of State Science Supervisors (CSSS) 223
Coxhead, A. 44
CREDE. See Center for Research on Education, Diversity and Excellence
CRESST. See National Center for Research on Evaluation and Testing 222
CSSS. See Council of State Science Supervisors 223
Cultural factors 62–63
Curriculum Materials Resource 181

D
Data table 47, 47
Demonstrations 110, 226
Designs for Science Literacy 181
Dewey, John 15
Directed inquiry 52–53, 56–57
Discovery teaching 226
Diversity in schools 4–5, 9, 10–11, 206
Dodge, Bernie 87
Dropout rates 200
Dutro, S. 32

E
Echevarria, Jana 17, 102
Educational reform 5, 201–205
 changes in English as a second language instruction 201–203
 changes in science education 203–205
Eduhound 90
EFL. See English as a foreign language 11 226
Eisenhower, President Dwight 15
ELD. See English language development
Elementary Science Study (ESS) 204
ELLs. See English language learners

English as a foreign language (EFL) 11, 226

English as a second language (ESL) 11, 12, 226
- changes in instruction for 201–203
- communicative approach to teaching of 201–202
- content-based instruction for 202, 225
- learning of 13–14 26 (See also Second-language learning)
- standards for 226

English for speakers of other languages (ESOL) 11, 12

English language development (ELD) 12, 226
- fluency levels of 26–27
- standards for 5 26–28, 27, 31–32, 32, 180, 186–193, 187, 189–192 (See also English language proficiency standards)
- teaching strategies for 27

English language learners (ELLs) 226. See also Students
- academic achievement of 11, 200, 207
- adapted lab report for 41, 42
- assessment of 5, 12, 61–75
- benefits of inquiry-based science activities for 38
- bilingual education for 12, 30, 41, 79, 225
- building on prior knowledge of 62, 172
- connecting with 38–40, 40
- developing process skills of inquiry of 51–55, 53, 54
- diversity of 4–5, 9, 10–11, 206
- educational backgrounds of 11–12
- English-only classes for 12
- fluent English proficient 29
- full participation of 5
- grade distribution of 11
- improving reading skills of 44–46
- improving writing skills of 46–47, 46–48
- involving parents of 83
- language arts performance chart for 29, 30
- language proficiency of 27, 27, 172, 227
- languages spoken by 11
- learning tasks of 4
- number of 10–11, 200–201
- primary language fluency of 28, 207
- primary language support for 12, 30, 41
- program alternatives for 12–13
- promoting scientific literacy among 208–212
- providing feedback to 73–75
- school dropout rates for 200
Index

science lessons for 109–173 (See also Lesson plans)
second-language learning by 13–14
sheltered instruction for 3, 9, 13, 202–203
SIOP Model 6, 17, 96–9, 1799–103
state distribution of 11
submersion of 13, 228
use of scientific language by 49–51, 50, 51
vocabulary-building activities for 43, 43–44, 45
welcome signs for 39, 40

background of 186–188
development and organization of 189–191, 190
goals of 186, 187
implications for teaching 192–193
for integration of language and content 188–189, 189
in science 191–192, 191–192
language domains in 190, 194
model performance indicators in 190, 195, 227
of WIDA Consortium 189, 190
English-only classes 12
ESL. See English as a second language
ESL Standards for Pre-K–12 Students 186–188, 187
ESOL (English for speakers of other languages) 11, 12
ESS (Elementary Science Study) 204
Exit criteria 226
Exploratorium (San Francisco) 81
Expository teaching 226

F
Family Science program 85–86
Feedback 73–75
spoken 73–74
written 74–75
FEP (fluent English proficiency) 29
Field Museum of Natural History (Chicago) 82
Field trips 79–83
permission slips for 232
safety on 232
Fisher, P. 43
Five Standards of Effective Pedagogy 213, 222
5E model 99
Fluent English proficiency (FEP) 29
Fort Worth Museum of Science and History 82
FOSS (Full Option Science System) 98–99
Foundation for Family Science 85
4E model 98
Franklin Institute (Philadelphia) 81, 89
Fraser, Alistair B. 90
Full inquiry 55, 56–57
Full Option Science System (FOSS) 98–99

G
Gagne, Robert 52
Genre-transforming exercises 46
Gibbons, Pauline 49
Glossary 225–228
Google 91
Greenfield 65
Guided inquiry 6, 53–55, 56–57, 97, 98, 205, 226

H
Halley, M. 17
Hands-on activities. See Inquiry-based science activities
Helping Your Child Learn Science 90–91
Herrell, A. 17
Hiel, David 85
High-frequency word lists 44
Hoffman, Forrest M. 89
Home language 226
How Stuff Works 89
Human body systems: grade 7 (lesson plan) 141–143

I
IDEA (Individuals with Disabilities Education Act) 230
Immersion 226
Indiana Web Academy 90
Individuals with Disabilities Education Act (IDEA) 230
Informal education arenas 81–83m 226
collaboration with community centers 82
Inquiry-based science activities 96–98, 172, 226–227
benefits for English language learners 38
categories of 96, 97
characteristics of 38, 96
constructivism and 15–16
continuum of 5, 52–55, 56–57
developing process skills of 51–55, 53, 54
directed inquiry 52–53, 56–57
full inquiry 55, 56–57
guided inquiry 6, 53–55, 56–57, 97, 98, 205, 226
merging SIOP Model and 102–103
results of 98
scaffolded 5, 227–228
shared experiences from 38
WebQuests for 86–87
Interdependence of students 48–49
International Reading Association (IRA) 221
Internet. See World Wide Web
IRA (International Reading Association) 221

J
Jordan, M. 17
Journeys—ELD/ELA in the Content Area: Science 123

K
K-W-L chart 45
applications of 113–114, 120–121, 131–132
Karplus, Robert 16
Kids URLs 89
Krashen, Stephen 14, 100

L
Labeling classroom equipment 40
Laboratory activities 52. See also Inquiry-based science activities
adapted lab report for 41, 42
cookbook 96, 204
open-ended 96–98
Language arts performance chart 29, 30
Language functions 51, 51, 66–67, 67
Language Links 206
Language minority 227
Language proficiency 27, 27, 172, 227
standards for (See English language proficiency standards)
Lawrence Hall of Science 99
Learning 5–6
active cognitive involvement in 16–17, 18
for all students 5
assessment of 5, 61–75
beyond the classroom 6, 79–91
cognitive skills for 26, 32
collaborative 6–7, 47–49, 172
constructivist theory of 15
cooperative 18
culture and 62
documentation of 69
feedback for improvement of 73–75
informal science experiences for 81–83
metacognition in 75
objectives for 5, 6, 68
problem-centered 16
research-based 18
role of knowledge transfer and language in 63
schema theory of 44
of science 14–16, 26
of a second language 13–14, 26
similarities in science and language learning processes 5–6, 38
styles of 3
transfer and language dependence in 6
Learning cycle 98–99, 99, 227
Learning English Through Science 4
Legislation
Americans with Disabilities Act 230
Individuals with Disabilities Education Act 230
No Child Left Behind Act 10, 180, 188, 189, 200
Lemke, J. 207, 208
LEP (limited English proficient) 10–11, 227. See also English language learners
Lesson plans 109–173
describing teaching phase of 110
design of 95–106
for inquiry-based instruction 96–98, 97
learning cycle in 98–99, 99
SIOP Model applied to 99–105
effective components of 172–173
formats for 110
objectives of 5, 6, 68, 227
samples of 111–171
building cells: grade 7 138–141
changes in weather: grade 4 130–132
classifying physical characteristics: kindergarten 115–117
human body systems: grade 7 141–143
life cycles of organisms: grade 3 119–122
Index

mixtures and solutions: grade 5 132–134
plants: kindergarten 111–114
relationships in systems of transport: circulatory and digestive systems: grades 9–12 147–171
soils: grade 2 117–119
the Sun: grades 3–5 122–126
understanding water systems: grade 8 144–146
volume and density: grade 6 135–138
wind cycle: grades 3–5 127–129
sequencing and types of activities in 110
Life cycles of organisms: grade 3 (lesson plan) 119–122
Limited English proficient (LEP) 10–11 227. See also English language learners
“Linguistically isolated” households 11

M
Mainstream classes 227
push-in model in 12
submersion in 13, 228
March, Tom 87
Material safety data sheets (MSDSs) 231
Mediating Language Learning: Teacher Interactions With ESL Students in a Content-Based Classroom 49
Metacognition 75
Metalinguistic skills 227
Mixtures and solutions: grade 5 (lesson plan) 132–134
Moran, C. 32
MSDSs (material safety data sheets) 231
Multiculturalism 4–5, 9, 10–11, 62–63
Museums 79–82

N
NARST (National Association for Research in Science Teaching) 223
National Aeronautics and Space Administration (NASA) 89
National Association for Bilingual Education 221
National Association for Research in Science Teaching (NARST) 223
National Center for Education and the Economy 210
National Center for Research on Evaluation and Testing (CRESST) 222
National Clearinghouse for English Language Acquisition 221
National Commission on Teaching and America’s Future 200
National Council of Teachers in Mathematics (NCTM) 180
National Council of Teachers of English (NCTE) 221
National Earth Science Teachers Association (NESTA) 223
National Geographic Society 90
National Institute for Occupational Safety and Health (NIOSH) 230
National Institutes of Health 82
National Literacy Panel on Language Minority Children and Youth (NLP) 222
National Marine Educators Association (NMEA) 223
National Middle Level Science Teachers’ Association (NMLSTA) 223
National Research Council (NRC) 180, 182, 184
National Science Education Leadership Association (NSELA) 223
National Science Education Standards (NSES) 63, 68, 81, 87, 101, 182–185, 204–205, 227
 adoption and support of 181–182
 for assessment 183
 vs. curriculum 184
 implications for teaching 185–186
 principles of 182, 182
 for professional development 183
 for science content 183–184, 184
 for science programs and systems 184–185
 for science teaching 183
 website for 184
National Science Foundation grant projects 213–215
 Communication in Science Inquiry Project (Arizona) 214–215
 Promoting Science Among English Language Learners (Florida) 214
 Valle Imperial Project in Science (California) 213–214
National Science Teachers Association (NSTA) 10, 50, 81, 180, 223
Native-language support 12, 30, 41, 227
NCTE (National Council of Teachers of English) 221
NCTM (National Council of Teachers in Mathematics) 180
NESTA (National Earth Science Teachers Association) 223
New Standards project 210
NIOSH (National Institute for Occupational Safety and Health) 230
NLP (National Literacy Panel on Language Minority Children and Youth) 222
NMEA (National Marine Educators Association) 223
NMLSTA (National Middle Level Science Teachers’ Association) 223
No Child Left Behind Act 10, 180, 188, 189, 200
NRC (National Research Council) 180, 182, 184
NSELA (National Science Education Leadership Association) 223
NSES. See National Science Education Standards
NSTA (National Science Teachers Association) 10, 50, 81, 180, 223
Nye, Bill 89
Index

O
Objectives for learning 5, 6, 68, 227
Occupational Safety and Health Administration (OSHA) 230
On Our Way to English 111, 112
Online Directory of ESL Resources 222
OSHA (Occupational Safety and Health Administration) 230

P
P-SELL (Promoting Science Among English Language Learners) (Florida) 214
Parental involvement 83
 in Family Science program 85–86
 in science fairs 84–85
Parental permission for field trips 232
Pathways to the Science Education Standards 182
Patterns of scientific discourse 50, 50, 207–208
Performance indicators 190, 195, 227
Performance standards 213, 227
Permission slips for field trips 232
Pestalozzi, Henrich 15
Piaget, Jean 15, 16
Planetarium 80, 81
Planning
 for assessment 68–73
 collecting and recording student information 69–71, 71
 components for 70
 identifying learning standards 68–69
 scoring criteria and data interpretation 71–72, 72
 steps in 68
 use of data and reporting results 72–73
 for instruction 25–35
 putting pieces together for 31–33, 32, 34
 using standards for 26–28, 27, 31–32
 using student information for 28–31, 30
Plants: kindergarten (lesson plan) 111–114
Primary language fluency 28, 207
Primary language support 12, 30, 41, 227
Problem-centered learning approach 16
Process skills of inquiry 51–55, 53, 54, 228
Professional development 7
Professional organizations and resources 222–223
Project 2061 180, 181
Promoting Science Among English Language Learners (P-SELL) (Florida) 214
Pull-out model 12, 227
Push-in model 12

R
Reading skills 44–46
Realia 227
Relationship maps 47, 48
Research-based practices and programs 212–215
 Center for Research on Education, Diversity and Excellence studies 212–215
 National Science Foundation grant projects 213–215
Rethinking English Language Instruction: An Architectural Approach 32
Role-playing 46
Rosebery, A. 208
Rubrics 227
Rutherford, F. James 181

S
Safety 229–233
 area inventory for 231
 disposal and storage requirements for 231
 documenting teaching of 229–230
 on field trips 232
 material safety data sheets for 231
 national regulations for 230
 related to teaching area 230
 surveying classroom for 230–231
 working within the system for assurance of 232–233
Sandia National Labs 86
SAPA (Science: A Process Approach) 52, 204
Saunders, W. 16–17
Scaffolded inquiry 5, 227–228
Scaffolding 5, 6, 172, 227
Scarcella, R. 43
Schema theory 44
School Science and Mathematics Association (SSMA) 223
Schools and Staffing Survey: 1999–2000 201
Science: A Process Approach (SAPA) 52, 204
Science and Children 50
Science and language teaching 199–215
 best practices for 6, 16–18
 changes in English as a second language instruction 201–203
 changes in science education 203–205
Index

collaboration for 6–7
constructivist approach to 15–16
four-step approach to 16–17
integration of subject matter for 18
problem-centered approach to 16
promoting scientific literacy 208–212
research-based 18
research-based practices and programs for 212–215
science teaching 205–208
specially-designed-academic-instruction-in-English strategies for 17
student-centered classrooms for 18
student input for 18
teacher flexibility for 18
Science Curriculum Improvement Study (SCIS) 204
Science Education for Students with Disabilities (SESD) 223
Science education standards 10, 28, 31, 33, 50, 63, 81, 180–186
background of 180–181
Project 2061 180 181
Scope, Sequence, and Coordination of Secondary School Science reform initiative 181–182
Science fairs 83–85, 96
Science for All Americans 180, 181
“Science for All” research project 127
Science 4Kids 88–89
Science learning 14–16, 26
Science Learning Network 90
Science literacy 181
Benchmarks for Science Literacy 63, 181, 182
promoting among English language learners 208–212
Science process skills 51–55, 53, 54, 228
Science Scope 50
Science Teacher 50
Scientific language 49–51, 205, 207–208
glossary of 225–228
language functions 51, 51, 66–67, 67
patterns of scientific discourse 50, 50, 207–208
in science trade books 50
Scientific method 228
SCIS (Science Curriculum Improvement Study) 204
Scope, Sequence, and Coordination of Secondary School Science: Relevant Research 181
Scope, Sequence, and Coordination of Secondary School Science (SS&C) reform initiative 181–182

248 National Science Teachers Association
Scott, J. 206
SCST (Society for College Science Teachers) 223
SDAIE (specially designed academic instruction in English) 17 228
Search engines for the World Wide Web 91
Second-language learning 13–14, 26
 affective filter for 14, 225
 comprehensible input for 14, 100
 conversational fluency 207
 of social vs. academic language 14
 stages of 14
Self-assessment 75
Semantic mapping 43, 43
Sentence frames 46, 47
SESD (Science Education for Students with Disabilities) 223
Sheltered English programs 3, 9, 13, 202–203, 228
Sheltered Instruction Observation Protocol (SIOP) Model 6, 17, 96–97, 99–103, 202, 212–213, 228
 applied to lesson design 103–105
 building background component of 100
 comprehensible input component of 100
 development of 99
 interaction component of 100
 lesson delivery component of 100–101
 merging inquiry and 102–103
 practice/application component of 100
 preparation component of 99–100, 101
 purpose of 99
 review/assessment component of 101
 strategies component of 100
 website for 222
Shoemaker, F. 4
Short, D. 17
Silverstein, Shel 112
SIOP. See Sheltered Instruction Observation Protocol Model
Skinner, B. F. 15
Smithsonian Institution 89
Society for College Science Teachers (SCST) 223
Sociocultural context 62–63, 228
Soils: grade 2 (lesson plan) 117–119
Specially designed academic instruction in English (SDAIE) 17, 228
Spoken feedback 73–74
SS&C (Scope, Sequence, and Coordination of Secondary School Science)
 reform initiative 181–182
SSMA (School Science and Mathematics Association) 223
Standards 179–195
 in assessment 63–65, 68, 70
 classroom applications of 194–195, 195
 definition of 68
for English language proficiency 5, 26–28, 27, 31–32, 32, 180, 186–193, 187, 189–192 (See also English language proficiency standards)
Five Standards of Effective Pedagogy 213, 222
 implications for teaching 5, 185–186, 192–193
 integrated approach to instruction and assessment based on 193–194
 lessons based on (See Lesson plans)
science education 10, 28, 31, 33, 50, 63, 81, 180–186, 204–205 (See also National Science Education Standards)
Standards Performance Continuum tool 213
Student-centered classrooms 18
Students. See also English language learners
 accountability of 48
 connecting with 38–40, 40
 developing process skills of inquiry among 51–55, 53, 54
 diversity of 4–5, 9, 10–11, 206
 language arts performance chart for 29, 30
 positive interdependence of 48–49
 promoting use of scientific language by 49–51, 50, 51
 providing feedback to 73–75
 using student information to plan instruction 28–31
 web resources for 88–89
Submersion 13 228
Sun: grades 3–5 (lesson plan) 122–126
Sutman, F. 4

T
Target language 228
Taylor, S. E. 44
Teachers
 demonstrations by 110, 226
 feedback to students from 73–75
 flexibility of 18
 lack of training for 200
 professional development of 7
 professional organizations and resources for 222–223
 web resources for 89–91
Teachers of English to Speakers of Other Languages (TESOL) 10, 10, 1 221
 English language proficiency standards of 180, 186–189, 187, 189
Teaching
 best practices for 6, 16–18
 bilingual 12, 30, 41, 79, 225
 changes in English as a second language instruction 201–203
 changes in science education 203–205
 co-teaching 7
 collaboration for 6–7
 describing teaching phase in lesson plans 110
 expository 226
 implications of standards for 5, 185–186, 192–193
 inquiry-based (See Inquiry-based science activities)
 planning for 25–35
 putting pieces together 31–33, 32, 34
 using standards 26–28, 27, 31–32
 using student information 28–31, 30
 of science 205–208
 strategies for 37–58
 adaptation of 55
 to build academic vocabulary 43, 43–44, 45
 for collaborative learning 47–49
 to connect with students 38–40, 40
 to develop process skills of inquiry 51–55, 53, 54
 to improve reading skills 44–46
 to improve writing skills 46–47, 46–48
 principles of 38
 to promote use of scientific language 49–51, 50, 51
 in SIOP Model 100
 for student talk 41–43
 for teacher talk 40–41, 42
Technology 86–91
 computer-assisted language learning 88, 225
 search engines for the World Wide Web 91
 Web resources for students 88–89
 Web resources for teachers 89–91
 WebQuest activities 86–87
TESOL (Teachers of English to Speakers of Other Languages) 10, 101
 English language proficiency standards of 180, 186–189, 187, 189
Text re-presentation 46
THC strategy 45
The Giving Tree 112
The Truth About Science 103
The Why Files 88
The Yuckiest Site on the Internet 89
Index

Total physical response (TPR) 228

U
University of Pittsburgh Learning Research and Development Center 210
U.S. Department of Education’s Office of English Language Acquisition 221–222

V
Valle Imperial Project in Science (VIPS) (California) 213–214
Virtual Frog Dissection Kit 89
Vocabulary-building activities 43, 43–44, 45, 172
Vogt, M. 17
Volume and density: grade 6 (lesson plan) 135–138
Vygotsky, L. S. 62

W
Warren, B. 208
Water systems: grade 8 (lesson plan) 144–146
Weather 131
Weather: grade 4 (lesson plan) 130–132
WebQuest activities 86–87
Welcome signs 39, 40
What’s Inside the Sun 123, 124
Wheatley, G. 16
WIDA (World-Class Instructional Design and Assessments) Consortium 189, 190
Wind cycle: grades 3–5 (lesson plan) 127–129
Word lists 44
Word sorts 43–44
Word wall 44, 45
World-Class Instructional Design and Assessments (WIDA) Consortium 189, 190
World Wide Web resources
on national organizations 221–223
on safety 233
search engines for 91
for students 88–89
for teachers 89–91
Writing skills 46–47, 46–48
Written feedback 74–75

Y
Yahooligans! The Web Guide for Kids 89