
:.i ].. , .. ,. :., , :, -. .t :t. rl

MAY/JUNE 1999 us $7.50/cAN $10.50

a\

@ Springer
v-g

Wry-*"
4 W=+F=



GALLERY O

N LEANING UP AFTER A PARTY, A YOUNG SER-
b vant tests his fine motor skills. According to the Na-
tional Ga11ery of Art, the painting "points to idleness
and the vanity of worldly constructions." Indeed, we

Otl on canvas, 32 3lB /.26 , Aadtew W

Thehouse of cards \c.17351by )ean Sim6on Chardin

know from experience that alter a period of time, things
tend to fall apart. For an examination of various physi-
cal systems for which we can quantify the stability o{
equilibrium, turn to page 4.

trlcilat OolLectLctt. aa 1999 Ilcrutl oi Ttti-sttzr, Natoral Col-lrr\-ol A1l, ltrirs/irri{to,



TU
MAY/JUNE 1999

If human eyes operated like fish eyes,
having to move the lenses back and
forth to focus an image, how bug-eyed
or socket-faced would people look
when attempting to sharply focus the
images oi objects at various distances?
Eyeball this and other challenges in this
month/s Physics Contest on page 30.

The eyes may not have it in this
month/s Kaleidoscope, but the laws of
optics ruIe. Turn to page 28 to test your
ray-tracing savlry.
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BRAINTEASERS

Jusl lol' Ihe lun ol it!

8261
Possible polygons. Does a convex polygon exist that has neither line

symmetry nor point symmetry/ but such that when it is rotated around
some point by an angle less than 180", it returns to its original position?

8265
Pressure in a bottle. An unsealed bottle sank in the ocean to a depth

of several kilometers. Does the holding capacity (storage) of the bottle
increase or decrease due to the huge hydrostatic pressure at the ocean
floor?

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 52

8263
Nontriangulation. What is the maximum number of diagonals that can

be drawn in a convex heptagon (convex 7-gon) so that no triangle is created
by these diagonals, whose vertices are also vertices of the heptagon?

8262
Taking the prize.In a mathematical Olympiad, 100 students were

offered four problems to solve. The first problem was solved by exactly
90 students, the second by exactly 80 students, the third by exactly 70,
and the fourth by exactly 60. No participant solved all four problems.
Students who solved both the third and fourth problems were awarded a
prize. How many students received aprize?

8264
Game show gambrt. A participant in a game show is offered a choice of
one of three boxes, only one of which contains aprize. After the partici-
pant chooses a box, the emcee opens one of the other two boxes and
shows that it is empty. Then the emcee asks, "Do you want to stick
with your choice, or wouid you rather pick the other box?" Naturally
one wants to maximize the odds, but will switching do it? What would
you do? Make your decision-and justify your answer!
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A small tribute to Humpty-Dumpty, Bryan Berg, and many others

by Boris Korsunsky

OWDO YOU COMBNE PLAY-
ing cards and playing physics?
Welf how about building a house
of cards, say, the tallest house of

cards in the world? The competition
would be tough. In 1995 an S3-story
"monster" was created in Boston.
That world-record house of cards was
almost 5 meters tal1!

Humans have always been fasci-
nated by the art of fine balancing.
Bryan Berg, who built the "ceiling-
scraper" card structure, became fa-
mous. So did |ohn Evans, a Brit who
balanced 56 bricks on his head. So
did Ashley Brophy of Australia, who
managed to walk almost 12 kilome-
ters in just over three hours. Oh, did
I mention that she was walking on
a tightrope? 1

What do these accomplishments
have in common? Among other
things, they all deal with the stabii-
ity of equilibrium. And this is ex-
actly the subject of this article.
Whether a particular equilibrium is
stable makes all the difference in the
world: You would not want to live
in Berg's house, and you would
think more than twice before ac-
companying Brophy on her morning

1 A11 of these facts are taken {rom
The Guinness Book of Records,
Guinness Publishing, 1996.
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walk, right? And we all know what
happens if an unstable equilibrium
is violated: A1l the king's horses and
all the king's men may not be able
tohe1p...

In most high school physics
courses/ however, the concept of sta-
bility is barely touched. Usual1y,
you solve a few problems dealing
with the generai conditions for equi-
librium, and as {ar as stability goes,
you take a cluick look at the picture
of a little ball on a hill and that same
ball in a pit, and that is it. This is un-
fortunate. There are rrrarry interest-
ing problems dealing with this con-
cept not only in mechanics but also
in gas 1aws, electricity, hydrostat-
ics-everywhere forces are involved.

I offer a few little-known prob-
lems and exercises that focus on the
stability of equilibrium in very dif-
ferent systems, rather than equilib-
rium itself. In the first problem we
analyze unstable equilibrium, and in
the others we apply the conditions
for stable equilibrium.

A Batman ll'idr
Suppose you want to balance a

baseball bat on the tip of yout fin-
ger. Why is it easier to do with the
thick end up!

To answer, we have to consider
what it takes to retain balance.
Imagine that your hand shakes a bit,
and the bat tilts from the vertical.
Naturally, you have to move your
finger to bring the bat back into
equilibrium. Why does it help to
have the thick end up?

Consider a model of this situa-
tion. If a light rod with a heavy ball
attached as shown in figure 1 is piv-
oted at the bottom, we can calculate
its angular acceleration at any given
moment. Using the common sym-
bols in Newton's second law for ro-
tation/ we have

r mslsin 0 .s0-=-=---:-=3slnH-Imll1

As we can see/ the acceleration is less
if the ball is attached closer to the top
of the rod (in other words, if the cen-
ter of mass is farther from the pivot
point). This explains why the bat {al1s

Figure 1

more slowly with the heavy end up
and you have more time to adjust the
position of the supporting finger. The
bat is more stable (or, rather, less
unstable) in this position.

Now let's take a closer look at
some "stable" systems. As we
know, ecluilibrium is stable if smal1
deviations produce a net force (or a
net torque) toward the equilibrium
position. The following examples
iliustrate this point.

A swinu danm
In figure 2, a rod of mass m is

heid vertically by an unknown
mass M hanging over a pulley as
shown. Assuming h and H are
known, find the minimum value of
M that makes the equilibrium
stabie.

To find the answer, consider the
net torque on the rod corresponding
to a small deviation, as shown in fig-
ure 3. The rod will return to the ver-
tical if the torque due to the tension
is greater than the torque due to

(D'
Figure 4

gravity. In the " ctitical" case, these
torques must be equal:

MgHsinB =ms*sina.

From the law of sines,

sin0 
_- 

sin(s + F)

hH

Or, noticing that both u and B are
sma11,

B= M- H-h'
and

M=*H-h.
2H

A swhled $lnootltis
A test tube is filled with atu. A

movable piston of mass m and
uoss-sectioa A rs inserted in the
test tube a distance I from the
sealed end. Initially, the afu pressure
on both sides of the piston is P . Then
the tube is rotated at an angular
speed a about the vertical axis as
shown in figure 4. Find the new
equilibrium distance between the
piston and the sealed end of the test
tube. Assume constant temperature
and no friction,

If the new pressure between the
piston and the sealed end is P', then
Newton's second 1aw for the piston
can be written

ma.p2x=(r _n,)e.

A1so, since PV = constant for the air
inside the tube, P'x= Pl. Combining
these equations and solving the re-Figure 2 Figure 3

OlJA[IIUllrl/fIAIURI
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sulting quadratic equation

ma2 n'--1 x'-x+l=0,
PA,

we get two answers (to make them
look better let k : 2ma2l:

x,"

Analysis shows that,lf solutions
exist, the positive root corresponds
to unstable equilibrium and the
negative root corresponds to stable
equilibrium. (Hint: consider graphs
of

Y:X
and

mr')Zx2
v =-ri;,PA

their intersection points correspond
to the roots.) In other words, both
answers are legitimate, but only the
smaller one can be observed "irrreal
hfe."2

Iile c]tan$e in cfiange
A small pafiicle of charge q and

mdss m is placed at the top point of
the inner surface of a smooth sphere
of diameter d. What minimum
charge Q must b e placed at the bot-
tom point of the sphere to keep
charge q (a) in equilibrium! (b) in
stable equilibrium?

This problem is a wonderfui illus-
tration of the difference between
stable and unstable equilibrium.
Part (al is fairly easy: the electro-
static force acting on charge q must
be greater than or equal to the force
of gravity, so, for the minimum
value of Q,

Figure 5

O

Figure 6

where k is the coefficient in
Coulomb's law.

The second part of the problem is
more interesting: We have to consider
the net force on charge q correspond-
ing to a small deviation from equilib-
rium. It is convenient to consider the
components of all forces along the
tangent to the sphere (fig. 5):

koOTsin0 = m8sin20.
1)

d-

(Again, the net {orce is zero for the
minimum value of Q). Since q is
small, one can replace sin 0 by 0, and
the answer is

n - 't m!d)
\<-:

Rq

twice the value obtained in part (a)!

Examples l, and 2 demonstrated
the use of torques; examples 3 and 4
utilized forces. FIowever, there is
another way to determine whether
an equihbrium srtLration is stable:
eners]- consrderatrons, Everr- s\ stem
:r: :he Um-'-er se ' \\-ants tr-r ici.,-el :rs
: :-:-:.,- --..--:J.-. r-l-: : ::. - :,--.

ture is that a system's equilibrium is
stable if it corresponds to a 1ocal
minimum of its potential energy.
Our last problem nicely demon-
strates this idea.

A chain roacliott
A flexible chain is attached to

two nails driven into the wall as
shown in figure 6, Suppose you puLl
the chain "downward" somewhere
near the midpoint. Does tlte center
of ntass of the chain go up or down!
Hint: Note the word somewhere.

Of course, it would not be wise to
try to locate the center of rlass ana-
lytically. In fact, the conditions of
the problern arc so vague-it is iust
impossiblc. So it may comc as a sur-
prise that a definite answer can be
given. Furthermore, it may not be
the answer that you would expect:
The center of mass goes up e\-en
though you pu11 the chain dorr-n.
Since the chain is in stable ecl,rrhb-
rium be{ore it is pulled, its center of
mass must be in the lowermo"st po-
sition to provide the lowest poten-
tial energy, so up is the only rr-ar- ior
it to move! (Of course, somc side-
ways displacement may also occur).

I have picked problems that i1lus-
trate the richness and beautr- of the
stability of equilibrium. Ii \-ou en-

loyed them, maybe you u 111 like
thinking about the follorr.ing con-
ceptual exercises:

Exercise 1. Place a tabie tennis
ball in a vertical air stream over a

nozzle. Will it stay there;
Exercise 2. A system oi electric

charges placed in emptr- space is in
equilibrium. Is it stablel

Exercise 3. A rubber balloon filied
with gas is placed deep under water
at a point where it is in equilibrium.
Is it stable?

Exercise 4. A loop of current is
placed in a uniform magnetic field.
How many eeluilibrium positions
does it have? What will happen ri
equilibrium is slight11, disturl.edi O
Bnri.Koi.rrrr.l','- - ' - -r.:.
Tl:artt -{.',.,i.::: -: :-..-',.:..'I:.-,-:
il::i.-,i ,:',- - -rr,-- . .- -- - -:ie

- -: :---:_-- 
-----_ .-t-- 

- -- 
"s

=#[''F@^)

-

kqQ
:- mo

^ - r11A

d'

-1mgd'
< 1-- |

^cl

2 A detarled discussion oi quadratic
equations in ph1-s:.cs problems can be
found in rny article ' f air anl
Squared!" Quantunt, ]lar- .[unr 

L:lv'-
Problem 5 in that article espec:a:--.
resembles this one.
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M261
Functionally continuousl The

function fl")='li _ t*xrE satisfies
the condition f(flxll: 1 + 2x. Show
that there does not exist a function
defined for all real numbers such that
ftfkll : | -Zx for all real numbers x.

M262
Subset selection. How many

ways can we choose a subset of the
set {1, 2, 3, . . ., Ii} that does not con-
tain three consecutive integers?

M263
Packing problem. Using one

straight cut, divide a 10 cm x 20 cm
rectangle into two parts so that they
can be placed in a crrcle of diameter
19.5 cm without overlapping.

M264
Draw the line. Given two points in

a plane and a straightedge whose

HOW DO YOU
FIGURE?

ChalloltUE$

length is less than the distance be-
tween them (but no compass!), con-
struct theline passingthrough the two
points.

You may want to use a special
case of Desatgues' theotem: Sup-
pose we have two triangles, ABC
and ArBrCl positioned in such a
way that AA, BBr, and CCrinter-
sect in a point. Let lines AB and
ArBrmeet at point K, lines BC and
BrC, meet at P, and CA and CrA,
at M. Then, points K, P, and M are
collinear (fig. 1).

M265
Angling for an answar. Let AA1,

BB, and CC, be the bisectors of the
interior angles o{ triangle ABC
(where 41, 81, and C, are on the
sides of the trianglel. If ZAArC
: ZACTB! find ZBCA.

Physics

P261
A moving sidewalk. The fol-

iowing design for a moving side-
walk was proposed: A person steps
from the ground to the first mov-
ing band, then goes to the next
band, which runs faster, and so on.
Let the first band move at a con-
stant yl : 2 mls. A person steps
onto it perpendicular to its mo-
tion. Taking a firm position on
this band (that is, without sliding),
the person steps onto the second
band, again perpendicular to its
motion. The maximum projected
load for such a moving band (the

number of people coming to it) is
N: 10 people/s, and the mass of an
average person is assumed to be
M: 80 kg. What is the minimum
force necessary to pull the band
horizontally at a constant speed?
What force must be applied to the
second band to move it at a con-
stant y2 = 3 m/sec? Assume the
mean number of people on each
band to be the same. (A.
Zilbermanl

P262
Underwater heat capacity. A stu-

dent submerged a heater in a beaker
of water. Every 3 minutes the stu-
dent recorded the temperature in oC

(see table, top row). Then the stu-

dent cooled the water, sank a small
piece of metal into the 1ar, and re-
peated the mea'surements (see table,
lower row). The power line had a
voltage of 35 V, the current through
the heater was 1 : 0.2 A, and the
room temperature was 7o :20"C.
Find the heat capacity of the sample.
(L. Bakanina)

P263
Tester and solm cell. A multi-

range voltmeter composed of a
sensitive microammeter and a set
of series resistances is used to
study a solar cell. When it is con-
nected to the cell using the 1-volt
scale, it reads Vt: 0.7 V, and us-

CONZNUED ON PACE 33

25.2 -10-4 27.6 )_8.7 ).9.7 )0.6 1.5 32.3 15. I

22.( 13.8 zs.0126.0 27.c 28.0 28.9 29.8 30.6

Figure 1
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A method for every student's bag of trrcks

by S. M. Voronin and A. G. Kulagin

HE METHOD OF GENERATING FI.]NCTIONS IS

a useful mathematical device that allows us to
solve various problems in such fields as number
theory, probability theory, combinatorics, and the

calculus. It often turns out that the analytical reformu-
lation obtained using this method soon yields a solution
while all other approaches to the problem yield noth-
ing. However/ we should say at once that the method
of generating functions is no magic wand that solves all
problems (see below, for instance, Fermat's problem, for
which it proves useless).

We first give, without many theoretical details,
four classic examples of problems that will show how
the method of generating functions works. Next, we
give a brief explanation of this method, and we con-
clude with a set of problems that can be solved us-
ing the method. Some of the detaiis in the solutions
call on techniques from the calculus. However, the
reader who does not follow these details can still read
most of the exposition.

Weighiru pl'oblem

In the middle of the eighteenth century, Leonhard
Euler (1701-1783) solved the following problem: what
loads canbeweighedusing l, 2,22,23,...,2*,.. . gram
weights, and in how many different ways can we do
this? We don't know how, or how quickly, Euler found
the solution, but his final reasoning is stunningly un-
usual. |udge for yourself.

Euler considered the product

alz):(l +z)(l +z2l(l +zalll+rs)... (1)

Removing all the parentheses and collecting similar
terms/ he obtained "an infinite polynomial in z":

alzl:l +Arz+A{'-A.J- A*r - "' (2)

And what are the numbers Au t& : 1, 2, . - -r; Each Ao is
the coefficient of zk, and z-i appears as the product of
certain monomials zh 1rro more thaa one monomial
from each term in (1)|. Therefore, A-* h the number of
different ways o{ representi-ng & as a s .ttt of dif{erent
numbers from the set1,2,4,8, . ..,2=....In other
words, Ao is the number of ways to rr:eigfu aft-gram load
using the given set o{ weights!

So, the original problem wall be solved ii rt-e calculate
all the numbers Ak. Of course, 'we can trX to calculate
some of them directly, especially whetr k is small You
will undoubtedly guess the correct answec all the num-
bers Ao are equal to 1. But it is not very easy to provr this
statement for all k by computation. instead Euler found
another trick. He wrote down the following identities:

(1-zl{1 +zl:1-rt,
(L - zlllL + zll :1- t,

lt-r'N,*y'\:r-*,...
Then he multiplied these equalities, elirninated com-
mon factors on both sides and obtained

ll - z)(l + zlll + z2l(l + za)(l + z8l. . . . : l,
which can be written as (1 - zl . u{z): 1. Finally:

a(z)=t ' = l+z+22 +23 +14 +"' (3)\ / l-z
(we've used the formula for the sum of a geometric pro-
gressionr). Comparing equation {3) with equation l2),we

lThis formula is valid when lzl < 1. We return to this
question later in the article.

rl
a
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c
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conclude that Ao= I for all k. In other words, it is pos-
sible to weigh every load whose weight is an integer
number of grams, using weights of 1, 2, 4, . . .,2*, .

grams/ and in a uniclue way.

Ihe Uoilem nllhe ttmhsr 0ldemmrusilions
This was the title Euler gave to the following problem:

how many different integer solutions are there to the
equation

X1+X2+' +X-=k? l4)

Here k ar-.d m are fixed natural numbers. This time the
solution comes from the consideration of another ex-
pression:

9V) = I + z + z2 + * + za + . . .l'.
Removing the parentheses/ we can write

Fk) : t + Brz + Brz2 + Buza + Boz4 + . . .

(s)

(5)

What can we say about the Bos? Each Bois the coefficient
of zk.We can see that Bois equal to the number of differ-
ent ways to choose one monomial from each factor in the
right part of equation (5) so that the sum of their powers
is k. That is, Bo is eclual to the number of solutions of
ecluation (4)! Euler's problem thus reduces to the calcu-
lation of Bo.

It is difficult to do this calculation directly. But, if we
remember the formula for the sum of an infinite geo-
metric progression, we can write

l+z+22+23...=,I l7ll-z

or Blz) = (l - zl^.Hence we can write

(L - zf- = I + Brz + Brzz + Brz2 + Boz4 + . . .

Let's take the derivative on both sides of this equality:

m(l - zl-m-r - B, + 2Brz + 3Brz2 + 484* + .' .

Letting z : 0, we obtain Bt : m.Now if we take the
second derivative and again let z : 0, we obtain
Br: m(m + lll2. Following in Euler's footsteps, we
take the kth derivative of equation (7) and 1et z : 0.
We can now see that the number of solutions of equa-
tion (4) is

Bk=
m(m+1) lm+k-t)

The c]talt$E pl'ohleln

How many different ways are there to make change
for one dollar using lQ, 5Q, 100 and 250 coins? This
question can be reformulated in a somewhat different
way: How many solutions are there for the equation

xr+Sxr+ 10x, +25x0= i00?

A more general form of this problem is as follows: how

many nonnegative integer solutions has the equation

ATX.+ A2X2+ " ' + ArFm: n, (8)

where a, are positive integers and n is a fixed natural
number?

Consider the expression

x(t+ z'- +,'u,. +,"- * ...) (e)

=l+CF+Crz2 +Coz! +Coz4 +...

Reasoning as before, we can say that {or each n, Cnis
equal to the number of solutions of equation (8). But
how canwe compute Cr? Again,we canuse theformula
for the sum of an infinite geometric progression:

l+z', +r\a'*r3at +...= I
l- zo' '

we can represent y(zl in the form

y(,) =
ll- zn,lll- zo,) ... ll_ z'",1'

but it is still unclear how to write a general formula for
Cr,. However, equation (9) is already enough to find the
answer for small n.

Ilte u'ohlom olfoun s[uars$
Is it true that every natural number can be repre-

sented in the form of the sum of the squares of four in-
tegers? If it is, then how many ways are there to do it?
In other words, how many solutions are there for the
equation

')))')xl+x;+x;+xI =m, (10)

where m is a given natural numberl
This problem is more difficult than the previous

problems we have discussed, though it reduces, as be-
fore, to the computation oi the coeiircients oi an "infi-
nite polynomial." First r,ve rtrite down the equality

6(z) = {1 + 2z + 1-' - )ze + )z16 +. . .)a
: I + Drz + D./ + Drz3 + Doz4 +..' (11)

It is not difficult to see that the number of solutions
of equation (10) is equal to D-. Taking the mth de-
rivative and letting z = 0, we get the following for-
mula for D-:

D,, = !,*,u,r,,1,-orrt: az"-

Here the symbol

d''
,--UZ

tQ)=(t+ zu, + 22", + r3'\ + ...)(t+ r+ + r2', +rt'' * ..)

nl.
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means that the expression should be evaluated for z:0.
When m is small, we can use this formula to compute
D-,but it is not easy to do this in the general case. The
original problem of number theory is reduced to an ana-
lytic one, but the latter is stili to be soived!

The great German mathematician C. G. |acobi
(1804-1851) proved a wonderful formula for 5(z). This
formula is

5(z)=1+s > 
=+m+4k L- L

Later this formula was rediscovered by the famous In-
dian mathematician Srinivasa Ramanujan 1L887 -l921l.
One can use it to show that equation (10) always has so-
lutions, and one can even use it to find the number of
solutions it has.

Explanaflions

Let's try to understand the main idea of the method
that worked so amazingly in various problems. In each
case we considered an "infinite expression" with the
letter z (an infinite product of binomials in (1), the fi-
nite powers of an in{inite sum in equations (5) and (11),

and the product of infinite sums in equation (9)). The
next move was to rewrite this expression in the form of
an "infinite polynomial in z"

alzl : | + Arz + Arz2 + Arza + Aoz4 +''' + Anzo +''',
and it turned out that the coefficients Ao ga've a clue to
the solution of this problem. In some cases we managed
to calculate the numbers Ao through various manipu-
lations of in{inite expressions. We performed arithmetic
operations with them, took derivatives, transformed
them using the formula for a geometric progression, and
so on.

It is natural to ask what the infinite expressions that
we considered are, and whether we are justified in ma-
nipulating them as we did above. The author of this
method, Leonhard Euler, didn't much trouble himself
with these questions. He worked with infinite expres-
sions as if they had been finite, and worried only about
the result. We know that many errors can arise from the
thoughtless handling of infinity.

A uery ttltilso$antemlnils
Consider two "infinite polynomials"

a(zl : | - z + z2 - zs + z4 - - . .,

Flz) =-L + z-z) + zz -24 +...

Let/s try to calculate the infinite sum

S(zl : ulz) + BQI + u(zl + $(zl + ulz) + . . .

If we arrange the terms in S(z) into pairs, starting with
the first pair, we get

Slzl =lu(zl * \kll + [a(zl * Flz)]+ . . . = 0 + 0 +' . . = 0.

But if we afiafige them in a slightly different way, we get

S(z) : a(zl + l\kl + u(zll * l\kl + u(zll + . . .

:a(z)+ 0+0+...:a(zll
And if we change the order of terms inside a(zl and$(zl,
we can arrive at still more surprising results-for in-
stance, S(zl = l7zL7 (we invite the reader to think about
how to do this).

It is now high time that we give strict definitions for
infinite expressions and find out which manipulations
with them are justified.

tonmalpotllsl' $orig$
A formal power seiles is an expression such as

alz) = ao+ arz + arz2 + . . .+ a/ + . . ., (l2l

where ararerealnumbers {the coefficients of series (12)),

and z ts just a letter lthe formal variable of the series).
Mathematicians also say that a(z) is a generating func-
tion fot the sequence of coefficientS ds, at, ., an,

One shouldn't think, however, in the general case
(which we consider here) that u(zl canbe regarded as an
ordinary function of the variable z. When we say that
ulz) is a generating function of the sequence ast a1r . . .r
a,r . . .r it means only that o(z) is shorthand for the {or-
mal expression in the right side of (12).

For those readers who are acquainted with the notion
of an ordinary power series, we stress that the formal
series ( 12) may diverge {or some values of z, or even all
nonzero values of" z.Evenin these cases/ we can say that
equation (12) is correct, because o(z) denotes the series
itself, and not its sum for a given value of z.

The outstanding German mathematician C.
Weierstrass (1815-1897), who developed the theory of
power series and proposed strict logical foundations for
it, considered only converging power series and criti-
cized Euler for his dubious tricks with "infinite pollmo-
mials." The modern algebraic theory of formal power
series, elements of which we discuss here, is quite strict,
but it is essentially closer to Euler's "rraiye" approach,
than to the strict analytic theory of Weierstrass.

One can add and multiply formal power series. Sup-
pose that in addition to the series a(z) (see equation (12))

another formal power series is given:

9lrl = bo + brz + brz2 + . . . + b,,zn + . (13)

Then we define the sum and the product of alz) and Blzl
by the following r,atrral formulas:

a(zl + BQ) : bo * bo) + fu, + br)z + la, + brlz2 + . . .

+lar+bn)2"+..., (i4)
alzl Flz) = oobo - la rbo + aob r)z

+ laobr+ arb, + arbo)22 + . . .

(these operations are similar to the addition and multi-
plication of finite polynomials). Addition and multipii-
cation of formal power series, defined in this way, pos-
sess all the standard properties of the addition and
multiplication of numbers or polynomials: the associa-
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tive, commutative/ and distributive ruIes hold. Note, by
the way, that one can consider the usual polynomials
as particular cases of formal power series-that is, as a
series whose coefficients/ except for several of the first
ones, vanish. Of course, this identification maps the
usual sum and product of polynomials into their sum
and product as formal power series.

Further, one can differentiate and integrate formal
power series. By definition:

*l"t ll= fo(r)l' = at i- uazz + 3arzz + .. . nanzn-1 + ... ,
ulzl '

I o?) =j o@)a* = aoz * ? r' * ? r' *... * 
Jr zo*1 +...

0

|ust like in the case of integers, one can subtract any
formal power series from any other series. The result
will be another formal power series. But it is not always
possible to divide formal power series, just as it is not
always possible to divide two integers. For instance, it
is prohibited to divide by "zers"-that is, by the follow-
ing formal series

0=0+ O' z+0. z2 +... +0 . zn +...
One can't also divide the "unit" series

I :1 + 0.2+0.22 +... + 0 .zn +...
by the series

z=0 + I .z +0.22 +.. .+ 0. zn +. . .

In fact, 1et's suppose that there exists a series

ulz) = ao+ arz + arz2 +'''
such that u(zl . z: 1. That is,

(ao+ arz + arzz *.' .)(0 + | .z +0.22 +. . .)
:1+0.2+0.22+...

According to formula (14), this means that ar.0 = 1,

which certainly is impossible. Similarly, one can prove
that u(zl : ao + arz + arzz +' . . is divisible by.z" if and
only if ao: at a,_t = 0.

It is easy to check that 1 is divisible by a(zl if and only
il ao* 0, and in the latter case the coeffiecients of the
resulting series are determined in a uniclue way.

As an example, let's see what happens when we di-
vide the unit series by the series 1 - z. We write

(l - z)(ao+ atz + arzz +. . .) : I + 0. z + 0. zz +. . .

Now, removing the parentheses and comparing the co-
efficients of equal powers of z, we get the system of
equalities:

l. ao= l, at- ao:0, az- at-0, . ., an- an_L:0,...,

which shows that

AO= At An: ' ' ': ll

which means that

1 
= l+ z+ z2 + z3 +...+ z' +...l-z

We've aheady used this formula above (see equation (3)

and footnote 1), although there it meant something dif-
ferent than from what it means now. Here it is correct
as an equality of formal power series (and has nothing
to do with the conditionlzl < l).

lltliltils sttlns altd pl'odtlcl$

In the beginning of this article we solved a problem
using an infinite product. Infinite sums are also very
handy (one can regard a formal power series as an infi-
nite sum of monomials). Here we're going to give the
corresponding definitions to avoid possible misunder-
standings.

Let ar(z), ur(zl, . . ., ap(z),. . . be a sequence of formal
power series (in particular, polynomials). We want to
define their infinite sum and infinite product

in the way we did it above, by removing brackets and
collecting similar terms. Flowever, such a definition
wouldn't apply in general. In fact,let's start multiply-
ing out and collecting similar terms in the "infinite
product"

(r+z).(r+z) (r+21....
Take, for instance, the coefficient at 22. We at onc,e see
that it keeps growing as we remove parentheses. There
is an essential difference between this example and the
one we considered above

(I+zl(l+z2l(l+241. ... .(1 +22*). .--,

in which all factors gradually stabilize, because the
"distant" parentheses do not contain monomials with
"small" powers of the formal variable.

So the infinite sum (15) andinfiniteproduct(L6l are
defined only if the coefficients stabilize when one re-
moves the brackets and collects like terms. They are
defined to be equal to the formal power series whose co-
efficients are obtained in this way.

If you prefer to deal with strict statements/ here's a
precise definition of " stabilization": For all natural d one
can find a natur al number N such that tor all n > N series
cr, (z) does not contain powers of z less than d.

Now it's time to conclude our brief excursion to the
theory of formal series. We suggest that that the reader
return to the examples in the beginning of the article to
veify that no dubious "tricks" were performed with in-
finite polynomials and, in fact, only who1ly iegal ma-
nipulations of formal power series were undertaken.

Genel'aling functions
A thoughtful reader who has perused the examples

in the beginning of the article probably has noticed that

{ 1s)

{ 16)
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the success of our method came from the possibility of
writing the generating function of a power series cr(z) in
convenient form. For instance, one can write the gener-
ating function of the sequence 1, 1, 1, . . . as llfi - z), sinee

; 
1 

= l+z+22 +23 +"'+z'+"' lrTlL-z

Manipulating this equality, we can obtain many for-
mulas for other generating functions. For instance, if we
multiply both sides in equation (17) bV z and take the
derivative, we get

J/ - \

+l:-l=t+2r+322 +"'*(, +t)2" +"' (tB)dz\l- z )

This means that the function (zlll - z)l' = Ill - zl2 is the
generating function for the progression 1,2,3, 4, . . .If we
once again multiply this equalityby z and differentiate
it, we obtain

l+z , -. -o

;+=t+22z+zzz2 +...+(n +t)22" +... (19)
\t- z)

We have found an explicit formula for the generating
function of the progressi.on 12 , 22 , 32 , 42, . . .

The reader who knows how to divide polynomials
car, try to obtain formula (19) in a somewhat different
way, namely by dividing the polynomial | + zby the
polynomial (l + zl3 = 1 + 3z + 322 + 23.

Let's start with the same formula(I7l again, but now
we will integrate it. We get

zlzzz

I#= lt a" + J"dx +... + Ix"dx+...0000

and

,zz2
-ln(l-z)=z+r* Z*"'

We can see that the generating function of the progres-
sion 1, ll2, I13,. . . is -1n(1 - z).

Problems
1. Prove that every positive integer has a unique bi-

nary representation. Hirt: Compare this question with
the weighing problem.

2. Prove that every positive integer number has a
unique decimal representation

Hint. Use the following relation (prove it)

(l + z + z2 +''' + zel. (l + zto + 220 +. . . + zeo)

x(1 +z1oo + z2oo +... + zeool. .. .

= I + z + z2 + zB +. . . : Ill -zl.
3. Prove that there are as many ways to represent any

positive integer in the form of a sum of different posi-

tive integers as there are to represent it in the form of a
sum of (not necessarilly different) positive odd numbers.
(For instance, for 6 there are four such representations:

6=l+5=2+4=l+2+3
and

1 +5=3+3: 1 +1 +1 +3=1+1 + 1+ 1 +1 +1.)

Hint. Prcve the formula

L-z l-23 l-zs
=(t+ r+ z2 + r' *-..) (t+ 13 + z6 + r' *...)

,(t+ r5 + r7o + r" *...)...

= (r + z)(t + ,')(+ ,')f + ,o)...

=(r- r-)(r+ r*)(r+ r'-)(r+ ro^)(r+,8*)...=r.

and use it to solve the problem.
4. Find an explicit formula for the general term of the

progression lu,) : (0, l, 5, 19, 55, . . .1, defined with the
help of the recursive relations u0 : 0, ut: l,un*t
= Sun- 5un_r.

Hlnt. Note that we can rewrite the series uo + urz
+1trz2+...intheform

522 -52+l l-Bz l-Zz
=(t+zr+2222 +2328 * )(r* Bz+Bzz2 +e323 +...).

5.Let n > Zbe a fixed integer. Consider the series

f(z)= '" + zn' +'n' + "' 
'

It(')]' = c1Z * c2zz + caz3 + "'

Show that the number of integer solutions of Fermat's
equation kr" + k2" = kr" is equal to c-, when m : ke'.

Nota; Unfortunately for the history of mathematics,
no one has found a way to calculate c- directly (a1-

though we now are sure of their values).
6. Calculate vn, the number of different ways to di-

vide a convex n-gon into triangles by nonintersecting
diagonals (for instance., vs: 5, vu:91.

Hint: Prtt vz = vz: 1 and prove the recursive formula

Vn: VZVn*l t V3Vo_2+''' + Vn_lYnr

where n > 3. Use this formula to prove that (u(z))2 - u(zl
: zt where ulzl = vrz + vrzz + voz3 + | find cx(z) and
take the derivatives. Answer:

,, _ (2n-4!'n 
fu-z)t(n-t)t'

This sequence is called the Catalan numberc. O
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lhratechop

The physics of lameshiwari

by A. Biryukov

AMESHIWARI IS A KARATE
term that means the testing of
one's psychological training and
of the skill to strike various ob-

jects with the hand. Karate came to
the western world from Okinawa,
lapan.It was developed in the six-
teenth and seventeenth centuries,
when in fear of rebellions, the govem-
ing powers conJiscated all weapons
from the people, including their ritual
and kitchen knives. It was beyond the
power of the peasants to fight the
armed-to-the-teeth Samurais with
bare hands, but they could repel a
gang of bandits using karate.

Perhaps this explains the origin of
tameshiwari, which is always inter-
esting for spectators and produces
the impression of a miracle upon the
uninitiated. Today the skill of
tameshiwari is most often shown in
demonstrations and competitions of
karate, where the targets are planks
of certain sizes made of coniferous
(soft)wood.

We consider in this article a

simple physical model of a hand hit-
ting a plank, which yields some es-
timates and advice, and evaluates
the possible limits of athletic
achievements in tameshiwari. To
find a number of parameters for this
model, we must solve several pre-

liminary problems, which are inter-
esting in themselves. F{owever, to
keep our train of thought running on
the main line, we solve these prob-
lems in the appendixes at the end o{
the article.

Let a blow be struck with a fist of
mass m arriving with speed v atthe
center of a plank of dimensions d, 1,

andhthat lies on two supports Uig.
1). The fibers o{ the wood are paral-
lel to the supports, which are sepa-
rated by approximately the length of
the plank l. One of the "secrets" of
karate says that to enhance the ef-
fectiveness of the blow, one should
apply force F to the accelerated fist
just before the moment of contact
and maintain it during the entire
collision. We consider the deforma-
tion of the plank in the reference
system shown in fig. 2. Let xo be the
displacement of the plank's center

from its ecluilibrium position. As-
sume that the breaking of the plank
(signaled by the breaking of its sur-
face) occurs at some criticalvalue xn

= Xr, when the stress o (the force ap-
plied to a unit area of the plank's
cross-section) at the plank's surface
reaches some critical value o.,
which depends on the strength of
the material.

First we find the relationship be-
tween x. and or, which is deter-
mined by the elastic properties and
geometry of the plank. The maxi-
mum bending and the maximum
stress at the surface of the plank will
take place at its center. In Appendix
1 we show that this stress is given by
the formula

Yh
u- =-'

ZR'

where R is the radius of "r*rtrr" of
the central line CC in the middle of
the plank lft1. 2l and Y is Young's
modulus for the type of wood.

Now we assume a particular
shape for the deformed plank and
take into consideration that its ends
are fixed at the points y : tll2, and
the maximum displacement from
equilibrium occurs at the center of
the plank. Note that the exact shape

of<
-Ca

=p
C
o
G)I
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spdng constant k, which is loaded by
an external force. This spring con-
stant is found in Appendix 3 to be

nzYhzd

Having determined the necessary
parameters, we return to the initial
dynamic problem of a fist hitting a

plank. The motion of the fist is de-
scribed by Newton's second law:

m{':-kx+F,
where x henceforth means the dis-
placement of the fist from the initial
contact position with the plank, and
the primes indicate differentiation
with respect to time.

To simplify, we consider the force
F, which is applied to the fist by the
arm/ to be constant. Substitutions
yield the following solution:

x = Acosot + Bs- F
rnrot + 7,

which includes two arbitrary con-
stants A and B. To find them, we
specify the initial conditions: x = 0
and x' = v at t = 0. Now we get

{
* = + (1 - cos orr) + Isin r,lr,'o)

where f = Flm has dimensions of
acceleration, and a=Jklm is the
frequency of natural oscillation of
the fist under the action of the elas-
tic force of the plank.

The next step is to find the maxi-
mum displacement x*o of the fist
for the given initial speed v and force
F. By equating the time derivative of
xto zero with the subsequent elimi-
nation of t, we get

Y=" max

To obtain the conditions of break-
ing, this displacement must be set
equal to xr, which yields the equa-
tion

connecting the properties of wood
and the geometry of the plank with
the parameters of the collision.

We solve this equation for F,

again using the parameters x, and k:

n k*, mv2
r =- 2 2x,

For the plank to break, this force
must be applied at the moment of
contact to the fist moving with ini-
tial speed v. We can see that if the
speed of the iist is large enough, the
value of F becomes negative/ so no
force is needed to break the plank
with a moving fist (in a similar way
we need not apply force to a hammer
when driving a small nail into
wood). In this case the initial speed
o{ the fist must be larger than

v=xt(JJ=

which is proportional to the square
root of the plank's thickness h. By
contrast, if the initial speed of the
fist is zero, then this formula shows
that to break the plank, the force
must be no less than

- k", hzord
' 2 31 '

which is proportional to the square
of the plank's thickness h. There-
fore, to break a thicker p1ank, it is
more practical to increase the speed
of the blow, not its force.

Now let's solve the equation that
determines the condition of the
plank's breaking relative to its
thickness fr. It yields the thickness
of the plank that can be broken for
the given parameters of the blow:

1-_
. r.l
J1

Figure 2

of the plank depends on the specific
(and quite clearly understood) confi-
tions of the interaction between the
contact surface of the fist with the
plank (in a correct blow, contact is
made with the knuckles of the
middle and index fingers). In our
calculations we will use a practical
formula based on experimental data,
which makes it possible to obtain
simple estimates.

Let's approximate the bending of
the plank by a cosine between the
points y : xllZ.In this case, the dis-
placement x of" any point along the
central line depends on its coordi-
nate y as

,(y)= 
". 

*.(T)

Appendix 2 shows that the corre-
sponding radius of curvature at the
plank's center will be

Plugging this into the formula for o
yields the stress on the surface of the
plank at its middle when the plank's
eenter is displaced by xo:

x^Yhr2
v_-----------;-.

2l'

This formula shows that break-
ing (o : or) occurs when the plank's
center is shifted by

2o-lz
^' - nzYh'

Now we model the elastic proper-
ties of the plank with a spring with a

^=(*)'+

#['.,{+i] h _ 3T.\Y-vzm(t+

solld t

- e+Pl3o?d
lf ----------------' ' 3nayzra *z

Let's obtain some estimates/ us-
ing the following experimental pa-
rameters for the wood: E : 108 N,,'ml
and o, = 5 . 106 N/-2. The standard
plank in tameshiwari has a ir-idth of
20 cm and a length oi -10 cn. \\-e as-

sume 7 = 25 cm. because tre :nds of

l0

thd

-Y'

, nzYhzvzdmI*---- 
-
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h = (r.0 crn

0
I z 4 6 8 10 r{m/s)

Figure 3
the plank (located beyond the sup-
ports) can be neglected. The mass of
the fist is assumed to be 1 kg, and
this number takes into account the
forearm as well. Figure 3 shows the
dependence of the force F on the ini-
tial speed v for various thicknesses
h of the plank. If the combination of
F and v corresponds to a point lying
above the curve for a specified value
of ft, the plank will break.

Now we can evaluate the thick-
ness of the plank that can be broken
by a man. The force developed by
the hand of a typical man is
F : 250 N. Figure 3 shows that at
v = 0 a typical man cannot break
eYen a rather thin plank with a
thickness of only 1.5 cm. To per-
form this deed, he must apply a force
of about 300 N.

The experimental value for the
maximum speed of the fist is about
10 m/s. Plugging v = 10 m/s and
F = 250 N into the formula for ft, we
get the thickness of the plank:
h = 6 cm. This value is rather large,
and perhaps only experienced karate
masters with excellent striking tech-
niclue and psychological training can
break such a thick plank. However,
inquisitive readers car. try to break a
plank with a thickness of 2 cm, be-
cause the necessary values of force
and speed can be achieved by the
average person. In this process it is
very important to follow the basic
psychological "secret" of karate:
Never doubt yourself.

Aplendil 1

Let's find the stress on the surface
of the plank. We consider two sym-
metrical cross-sections AB and A'B'
(fig.2l, which are normal to the line
CC and separated by a sma1l distance

1o along this line. Consider the ele-
merttAA'B'B. Due to its small value,
we can approximate the curves AA',
NM, and BB'by arcs with centers ly-
ing on the so-called axis of bending
O', which is perpendicular to the
page. The outer surface of the plank
between points A andA'is stretched,
while the inner surface between
points B andB'is compressed. When
bending is absent, the lengths of
curves AA' andBB' are the same and
equal to 1o (the length of the central
curve NM), which retains its length
during bending. Let R be the radius
of curvature of the line NM. Then
1o = Rcx, where cr is the central angle
subtending arc NM. When the plank
is not very thick-that is, when
h .. R, the length of curve AA' wlll
be 1, : (R + hl2la, and its elongation
due to bending will be N = \ - 10 =

haf 2. According to Hooke's 1aw, the
stress in the outer surface of the
plank is

-,N Yh
u - I 

- - 
-.lo 2R

fipeltdn Z

Let's find the radius of curvature
of the surface of a bent plank at the
middle point (y:0). Recall that if R
is the radius of curvature of any
curve at a specified point, then the
circle of radius R that passes through
this point and whose center lies on
the perpendicular to the curve at
this point coincides (according to
the definition of the radius of curva-
ture) with the curve within a small
distance of this point. When lnylll <<

1, the function x(y) becomes

Here we used the well-known
approximation cos y = 1 - ylL for
lyl << 1.

The circle of radius R and center
O' (fig.2), which passes through the
point (x6, 0) and which was consid-
ered in Appendix 1, is described by
the equation

f * (*-xo+ R)z = R2,

which can be easily solved to find
the displacement x(y):

ln

*(y)=xo -R*n./t-l+.)"V \R/

Using another approximate for-
mula, 1fi =l -ylZfor l! << l, we
get the following formula, which is
correct for ly/Rl << 1:

,(y)= *o-*.
2R

By comparing the two formulas
tor x(yl, we get the radius of curva-
ture:

F{N

1500

1250

1000

7s0

500

250

. ,.)
R=r1l-!

\ri xo

, .2xnlnj )x\y)= ", - z[;.,l ,,

Apflendix 3
Let's find the dependence of the

displacement xo of the center of a
plank resting on two supports upon
the external f.orce F, which is distrib-
uted along the central fibers and di-
rected downward. The mass of the
plank will be neglected.

Due to the assumed symmetry,
the force F is evenly distributed be-
tween the supports. We look at the
cross-section through the plank at
the plank's center (fig. 2) and con-
sider the equilibrium condition for
the left half of the plank. It is af-
fected on the right by the external
force F f 2, which is applied near the
edge and directed downward. This
force is counterbalanced by the nor-
mal force of the left support. We can
see that the sum of the torques rela-
tive to the plank's center willbe de-
termined only by the torque due to
the left support:

On the other hand, this torque
is counterbalanced by the torques
due to the tension and compres-
sion applied by the plank's right
half on its left half in the plane of
the cross-section. This torque can
be derived from the formula for o
by modifying it to calculate the

F1

4
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stress in the bulk of the plank
along the y-axis. As follows from
the derivation of this formula (Ap-
pendix 1), we must replace the dis-
placement hlZ from line NM cor-
responding to the point on the
outer surface of the plank with the
distance 6 from this line
l-hlL . 6 < hlzl.In this case the
stress in the bulk of plank will be

Y6
O=-.

R

The total torque due to the elas-
tic tension and compression forces
relative to the plank's center will
thus be equal to

hl) hr2

r= [aoa aa=!a la'aa -Yh'd .JRJ12R
-hlz -hl2

By plugging the value for the ra-
dius of curvature into this equation
and equating the right-hand terms of
the two formulas for t, we get the
relationship between the force F and

the displacement xo:

3F13.ru 
x2Yh) d.

This formula can be rewritten in
the form F = kxo, from which the
formula for the spring constant k of
the ecluivalent spring immediately
follows:

- r2Yh3'o=o#u o
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Revisiting Geometric Research on the Theory of Parallels

by N. l. Lobachevsky

I N THIS ARTTCLE, WE REPRO-

|duce the [irst part of N. L

I Lobachevskv's famous wozk Geo-
I metric Research on the Theory of
Parallels, which contains an elemen-
tary presentation of the foundations
of non-Euclidean geometry. This
work was published in Berlin in
7840 as a small book in German. It
was from this book that many Euro-
pean mathematicians got to know
Lobachevsky's ideas. For example,
the prominent Getman mathemati-
cian Carl Friedrich Gauss (1777-
1855) had two copies of this book,
one of which was probably sent to
himby Lobachevskyhimself . Later,
French and English translations were
made from the German.

The book can be naturally divided
into three parts. The first part begins
with a short list of propositions that
are independent of the par allel postu-
late. This list doesn't embrace all
such propositions; it only includes
those that are requfued later.

Five theorems that form the foun-
dation of Lobachevsky's theory of
parallels are presented in the first
pat. Two hypotheses are setforth in
this part: One of them leads to Eu-
c lidean geom etry (ordinary geometry
in Lobachevsky's terminology), and
the othu leads to a new geomety,
which Lobachevsky called imagi-

nary. In the first ytart, the concept of
the angle of parallelism ancl the cor-
responding function II(x) is intro-
dttced, ancl the dependence of the
sum of the ctngles of a tfiangle on tlte
parallel postulate is annlyzed,

In the secctnd part, concepts of tlTe

boundarl, line and surface are intro-
duced, and a theorcm is prctved stat-
ing tltat the geometty ctf tlte boundary
surfoce coincides with Euclidean
plane gectmeftv. The third part dis-
cllssc\ non-Euclidettn Lrigonomt t ry
and a deit tttion cti thebasic equation

l
trr, 1n{r)=c 'i.

In the following reTtroduction of
the first part o/ Geometric Research
on the Theory of Parallels, tt e have,
for cont,enience, divided the text
into sections, dropped some of the
pr elimin ary pr op o s itio ns m ent ione d
above tltat are not Llsed in the ftrst
part, and renamed propositions 76-
25 as tlleorems 1-10.

lntnoduction
In geometry I find certain imper-

fections that I hold to be the reason
why this science, apart from the tran-
sition to analytic methods, can as yet
make no advance from the state in
which it has come to us from Euclld.

In order to discuss some of these
imperfections, I consider the obscu-
rity in the fundamental concepts of
geometric magnitudes and in the
manner and method of representing
the measuring of these magnitudes,
and finally the momentous gap in
the theory of parallels, the filling of
which has defied all efforts of math-
ematicians so far.

So as not to fatigue my reader
with the multitude of theorems
whose proofs present no difficulties,
I prefix here only those of which a

knowledge is necessary for what fol-
1ows.

1. A straight line fits upon itself
in all positions. By this I mean that
during the rotation of the surface
containing it, a straight line does not
change its place if it goes through
two unmoving points in the surface.
In other words, i{ we tum the surface
containing it about two points of the
line, the line does not move.

2. Two straight lines cannot in-
tersect at two points.

3. A straight line sufficiently ex-
tended both ways must go beyond
all bounds, and in this way divides
a bounded plane into two parts.

4. Two straight lines perpendicu-
lar to a third never intersect, regard-
less of how far they are extended.

5. A straight iine always inter-
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sects another in going from one side
of it to the other side. In other words,
one straight line must intersect an-
other if it contains points on both
sides of the other line.

6. Vertical angles whose sides are
continuations of the other angle's
sides are ec1ual. This holds for plane
rectilinear angles (among them-'
selves) as well as for dihedral angles.

7. Two straight lines cannot in-
tersect if a third line intersects them
at the same angle.

8. In a rectilinear triangle, ec1ua1

sides lie opposite equal angles, and
equal angles lie opposite eclual sides.

9.In a rectilinear triangle alarger
side lies opposite a larger angle. In a
right triangle, the hypotenuse is larger
than either of the other sides, and the
two angles adjacent to it are acute.

10. Rectilinear triangles are con-
gruent if they have a side and two
angles equal, or two sides and the
included angle ec1ual, or two sides
and the angle opposite the larger side
eclual, or three sides equal.

11. A straight line that stands at
right angles to two other straight
lines not in the same plane with it
is perpendicular to all straight lines
drawn through the common inter-
section point in the plane of the
other two lines.

Paralhllines
The following presents the other

theorems with their explanations
and proofs.

Theorem l. All straight lines in a
plane that pass through a point can
be divided, with rcference to a given
straight line in the same plane, into
two classes-intersecting and non-
intersecting. The boundary lines
betwean these classes are called the
parallels to the given line.

From point A (fig. 1) drop a per-
pendicular AD onto hne BC, to
which we draw a perpendicular AE.
In the right angle EAD, either all
straight lines that go out from point
A will intersect DC, as for example
AF, or some of them, like the per-
pendicular AE, will not intersect
DC. In the uncertainty whether the
perpendicular AE is the only line
that does not intersect DC, we will

Figure 1

assume it may be possible that other
lines exist, for example AG, that do
not intersect DC, regardless of how
far they are extended. In passing over
from the intersecting lines, like AF,
to the nonintersecting lines, like
AG, we must come upon a line AH
parallel to DC, a boundary line on
one side of which alllines AG do not
intersect DC while on the other side
every straight line AF intersects DC.

Angle HAD between the parallel
HA and the perpendicular AD ts
called the parallel angle, which we
will here designate by n(p) if AD = p.
If n(p) is a right angle, the extension
AE' of the perpendicular AE wi1l be
parallel to the extension DB of DC.
Furthermore, we note that in regard
to the four right angles, which are
made at point A by the perpendicu-
lars AE and AD and their extensions
AE' and AD', every straight line that
passes through the point A, either it-
self or at least its extension, lies in
one of the two right angles that are
closest to BC, so that excepting the
parallel EE', all others, if they are
sufficiently extended both ways,
must intersect the Iine BC.

If n(p) < (Il})n, then on the other
side of AD, a line AK will also lie
parallel to the extension DB of the
line DC and making the same angle
DAK : II(p), so that under this as-
sumption we must also distinguish
two sides of parullelism.

All remaimng lines or their exten-
sions within the two right angles clos-
est to BC belong to the set of those
that intersect if they lie within the
angle HAK = 2il(pl between the par-
allels. On the other hand, they belong
to the set o{ nonintersecting lines if

they lie on the other sides of the par-
all.els AH arrd AK, in the opening of
the two angles EAH : (llzln *nlpl
andE'AK = lll2)rc- n(p) between the
parallels andEE', the perpendicular to
AD. On the other side of the perpen-
dicular EE', the extensions AH and
AK o{ the parallels AH andAK will
likewise be para1lel to BC. The re-
maining lines belong, if they are in
the angle KAI{, to those that inter-
sect, but iJ they are in the angles KAE
and I(AE', they belong to those that
don't intersect.

In accordance with this, for the
assumption n(p) : lll2ln, the lines
can be only intersecting or parallel,
but if we assume that n(p) < ft12)n,
then we must allow two parallels,
one on the one side and one on the
other side. In addition, we must
group the remaining lines into
nonintersecting and intersecting.

For both assumptions it serves as

the mark of parallelism that the line
becomes intersecting for the smallest
deviation toward the side where the
paral1e1 lies, so that i{ AH is parallel
to DC, every line AF intersects DC,
however small angle HAF maybe.

Theorem 2. A suaight line main-
tains the characteristic of parullel-
ism at all its points.

It is given that AB (fig.2) is paral-
leito CD andthatAC isperpendicu-
lar to CD. We will consider two
points taken at random on the line
AB and its extension beyond the per-
pendicular.

Let the point E lie on the side of
the perpendicular on which AB is
looked upon as parallei to CD. From
the point E, drop a perpendictlar EK
on CD, and draw EF in such away
that it falls within the angle BEK.

Connect the points A and F by a
straight line, whose cofftinuation
then (by theorem l) must intersect

K'C

Figure 2
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CD somewhere in G. Thus we get a
triangle ACG, into which the line
EF goes. Now since EF, from the
construction/ cannot intersect AG
or EK a second time (proposition 2),
then it must meet CD somewhere at
H (proposition 3).

Now let E'be apoint on the con-
tinuation of CD. Draw the line E'F' ,
making angle AE'F' so sma11 that
E'F' intersects AC somewhere at P.
Then, making the same angle with
AB, draw the lineAFfromA, whose
continuation will intersect CD at G
(theorem 1). Thus we get a triangle
AGC, into which the continuation
of line E'F' goes. Because this line
now cannot intersect AC a second
time and also cannot intersect AG,
since angle BAG : BE'G'(proposi-
tion 7), then it must intersect CD
somewhere at G'.

Therefore, from whatever points
E and E' the lines EF and E'F' ema-
nate, and however little they may
diverge from the hne AB, they will
always intersect CD, to which AB is
paral1eI.

Theorem 3.Twofines arc always
mutually parallel.

LetAC be aperpendicular orrCD,
to which AB isparullel (fig.3).If we
draw from C the line CE, making
any acute angle ECD with CD, and
drop the perpendicular AF from A
onto CE, we obtain a right triangle
ACF, inwhich AC, being the hypot-
enuse/ is greater than the side AF
(proposition 9).

Next we make AG = AF and slide
the figure EFAB until AF coincides
with AG, such that AB and FE take
the positions AK and GH, and such
that Z.BAK: ZFAC. Consequently,
AK must intersect the line DC some-
where at K (theorem 1), thus forming
a triangle AKC, onone side of which
the perpendicuiar GH intersects the

Iine AK at I (proposition 3), and thus
determines the distance AL of the
intersection point of the lines AB and
CE on the line AB frornpoint A.

It follows that CE will always in-
tersect AB, regardless of how small
the angle ECD rnay be. Conse-
quently, CD is parallel to AB (theo-
rem 1).

I[e sum ollhe anuhs

d a rectilinear Fiatl[lg
Theorem 4. In a rectilinear tri-

anglethe sum of thetfuee angles can-
not be graater than two ilght angles.

Suppose in the triangie ABC (fig.
4) the sum of the three angles is
equal to n + o. In the case where the
sides are not equal, choose the
smallest side BC, halve it at D, draw
the line AD fuomA through D, and
make the continuation of it, DE,
equal to AD. Then join the point E
to the point C by the straight line
EC. In the congruent triangles ADB
alad CDE, ZABD : IDCE, and
ZBAD = ZDEC (propositions 6 and

BE

AC
Figure 4
10). It follows that the sum of the
three angles in triangleACE must be
equal to fi + cn. Furthermore/ the
smallest angle BAC (proposition 9)
of triangle ABC inpassing over into
the new triangle ACE has been di-
vided into ZEAC and IAEC. Con-
tinuing this process of continually
halving the side opposite the small-
est angle, we must finally obtain a
triangle in which the sum of the
three angles is n + o, but in which
there are two angles each of which
in absolute magnitude is less than
ft12)a. However, because the third
angle now cannot be greater than II,
0, must either be zero or negative.

Theorem 5. If in any rcctilinear
triangle the sum of the three angles
is equal to two right angles, then
this is also the case for every othar
tfiangle.

,'!
^,, '\.Figure 5

If in any rectilinear triangle ABC
(fig. 5) the sum of the three angles is
n, then at least two of its angles, A
and C, must be acute. From the ver-
tex of the third angle B, we drop the
perpendicular p onto the opposite
side AC. This divides the triangle
into two right triangles, in each of
which the sum of the three angles
must also be n, since it cannot in
either be greater than n, and in their
combination not less than r.

So we obtain a right triangle with
the perpendicular sides p and c1, and
from this a cluadrilateral whose op-
posite sides are equal and whose
adjacent sides p and q are at right
angles (fig. 5).

By repetition of this quadrilateral
we can make another with sides np
and q, and finally a quadrilateral
ABCD with sides at right angles to
each other, such that AB = np,
AD = mq, DC= np, and BC : fre,
where m andn are afly whole num-
bers. Such a quadrilateral is divided
by the diagonal DB into congruent
right triangles BAD and BCD, in
each of which the sum of the three
angles is a.

The numbers m and n can be
taken su{ficiently large for the right
triangle ABC (fig.7), whose perpen-
dicular sides AB : np and BC : mq,
to enclose within itself another
given (right) triangie BDE, with the

A q q q ,q D

B

Figure 6Figure 3
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ADB
Figure 7

right angles coinciding. Drawing the
line DC, we obtain right triangles of
which every successive two have a

side in common.
The triangle ABC is formed by

the union of the two triangles ACD
and DCB, in neither of which can
the sum of the angles be greater than
n. Consecluently, the sum of the
angles must be ec1ua1 to 7r so that the
sum in the compound triangle may
be equal to n.

In the same way/ trrangle BDC
consists of the two triangles DEC
and DBE. Therefore, the sum of the
three angles in DBE must be equal
to n, andin general this must be true
for every triangle, since each can be
cut into two right triangles.

From this it follows that only two
hypotheses are allowabie: Either the
sum o{ the three angles in all recti-
linear triangles is equal to n or this
sum is less than n.

Theorem 6. Frcm a given point
we can always draw a straight line
that makes an angle as small as we
choose with a given suaight line.

From the given point A (fig. B) we
drop the perpendicular AB onto the
given line BC. We then randomly
put the point D on BC, draw the line
AD, llnake DE = AD, and draw AE.

In the right triangle ABD,let the
angle ADB: u. Then in the isosce-
les triangle ADE the angle AED
must be less than or equal to (ll})u

(proposition 8 and theorem 5). Con-
tinuing in the same manner, we fi-
nally obtain such an angle AEB that
is less than any given angle,

Theorem 7.If two peryendiculars
to the same straight line arc paral-
lelto eachothar, thenthe sum of the
three angles in a rectilinear triangle
is equal to two right angles.

Let the lines AB and CD (fig. 9)be
parallel to each other and perpen-
dicular to AC. Draw from A the
lines AE and AF to the points E and
F, which are taken on the line CD at
any distances FC > EC trom C.

Suppose that in the right triangle
ACE the sum of the three angles is
eclual to n - cx and that in triangle AEF
this sum is equal to n - B. Then in tri-
angle ACF it must equal n - cx - B,

where cx and p cannot be negative.
Further, let ZBAF = a and IAFC

: b so that cr + p = a- b. Nowbyre-
volving the line AF away from the
perpendicular AC, we can make the
angle a between AF and the parallel
AB as smal1 as we choose, and we
can also diminish the angle b. Con-
sequently, the two angles Cr and B

can have no other magnitude than
u:0 and B:0.

It follows that in all rectilinear
triangles the sum of the three angles
is either n and that the parallel arigle
n(p) = lll2lrc for every line p, or for
all triangles this sum is less than II
and n(p) < (Llz)n.

The first assumption serves as
foundation for ordinary geometry
and plane trigonometry.

The second assumption can like-
wise be admittedwithout leading to
any contradiction in the results, and
founds a new geometric science, to
which I have given the name Imagi-
nary Geomety, and which I intend
here to expound as far as the devel-
opment of the equality between the

A A A' KF C

Figure 10

sides and angles of the rectilinear
and spherical triangle.

Analysis 0ll[0 nruls 0lpal'allelism
Theorem 8. For every given angle

u there is a line p such that IIlp) : u.
Let AB and AC (fig. 10) be two

straight lines that make the acute
angle a at their point of intersection
A. Take at random a point B' on AB,
and from this point drop B' A' at right
angles to AC. Make A'A" = AA',
then construct atA" the perpendicu-
Iar A"8", and continue in this man-
ner until a perpendicular CD that no
longer intersects AB is obtained.
This must happen, because if in tri-
angle AA'B' the sum of all three
angles is eclual to 7r - a, then in tri-
angle AB'A" it equals n - 2a, in tri-
angLe AA"B" it is less than n - 2a
(theorem 5), and so forth, until it fi-
nally becomes negative and thereby
shows the impossibility of con-
structing the triangle.

It may happen that the perpen-
dicular CD is the one such that for
all points nearer to A, the perpen-
dicular to AC intersects AB. But
even if CD is not this perpendicular,
such a perpendicular must exist, as

we pass from those that intersect AB
to those that do not.

Now draw from point F aline FH
that makes with FG an acute angle
HFG on the side where point A lies.
From any point H on the line FH,
drop onto AC theperpendicular HK
whose continuation consequently
must intersect AB somewhere at B
and thus makes a triangle AKB tnto
which the continuation of FH enters
and must therefore intersect the
hypotenuse AB somewhere at M.
Since angle GF H is arbitrary and can
be taken as small as we wish, then

C

Figure 9

B

Figure B
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FG is parallelto AB andAF =p (theo-
rems 1 and 3).

We can easily see that as p de-
creases/ angle o increases, and for
p = 0, it approaches the value nlZ. As
p grows/ angle cx, decreases, and it con-
tinually approaches zero for p = *.

Since we are at liberty to choose
what angle we will understand by
the symbol ll(p) when the line p is
expressed by a negative number, we
will assume that ll(p) + ll(-p) : TE, arl
equation that holds for ail values of
p, positive as well as negative, and
for p :0.

Relailiue po$itiolt 0l pal'allel lines
Theorem 9. The farthu parullel

lines are extanded on the side of
their parallelism, the more they ap-
proach one another.

If to the line AB (fig. 11) two per-
pendiculars AC : BD are constructed
and their endpoints C and D are
joined by a straight line, then the
quadrilateral CABD wili have two
right angles at A and B and two acute
angles atC andD (theorem Tlthatare
equal to one another/ as we can eas-

ily see by imagining the quadrilateral
superimposed upon itself so that BD
falls upon AC and AC upon BD.

Next we halve AB and erect at

CFD

A

Figure 11

the midpoint E the line EF perpen-
dicular to AB. This line must also be
perpendicular to CD, since the quad-
rilaterals CAEF and FDBE fit one
another if we place one on the other
in such a way that the line EF re-
mains in the same position. There-
forc, CD cannot be parallel to AB,
but the parallel to AB for the point
C, namely CG, must incline toward
AB (theorem 1) and intersect from
the perpendicular BD a part BG
< CA. Since C is a random point in
the line CG, itfollows that CG itself
nears AB the farther it is extended.

Theorem lO. Two straight lines
that are parallel to a thitd are also

c
Figure 12

parallel to each other.
We first assume that the three

lines AB, CD, and EF (fig.12) lie in
one plane. If two of them in order,
AB and CD, are parallel to the out-
ermost one EF, then AB and CD are
parallel to each other. To prove this,
drop from any point A of the outer
line AB onto the other outer line FE
the perpendicular AE, which will
intersect the middle line CD at
some point C (proposition 3) at an
angle DCE < nf 2 on the side toward
EF, the parallel to CD (theorem 7). A
perpendicular AG drawn from the
same point A upon CD must fall
within the opening of the acute
angle ACG (proposition 9). Every
other line AH from A drawn within
the angle 84C must intersect EF,
the parallel to AB, somewhere in H,
regardless of how small the angle
BAH may be. Consequently, the
line CD in triangle AEH will inter-
sect the line AH somewhere in K,
since it is impossible for it to meet
EF.If AH emerged from point A
within the angle CAG, thenit must
intersect the continuation of CD
between the points C and G in the
triangie CAG. Therefore, AB and
CD are parallel (theorems I and 3).

If both the outer lines AB and EF
were assumed parallel to the middle
Line CD, then every line AK from
the point A drawn within the angle
BAE would intersect CD some-
where at the point K, regardless of
how small the angle BAK rnay be.
On the continuation of AK take at
random a point I and join it with C
by the line CL, which must intersect
EF somewhere in M, thus making a
triangle MCE. The continuation of
AI within the triangle MCE car'in-
tersect neither AC nor CM a second

C

Figure 13

time. Consequently, it must meet
EF somewhere in H. Therefore, AB
and EF are mutually parallel.

Now let the parallels AB and CD
(fig. 13) lie in two planes whose inter'
section line is EF. From a random
pointE onEF drop aperpendicularEA
onto one of the two parallels (for ex-
ample, upon AB), then from A, the
foot of the perpendicular EA, drop a
new perpendiculx AC onto the other
parallel CD andjoin the endpoints E
and C of the two perpendiculars by
thelineEC. The angleBAC mustbe
acute (theor em 71. Consecluently, a
perpendicul ar C C fuom C to AB rnter-
sects it at the point G on the side of
CA on which the lines A B and CD arc
considered para11el. Every line EH (n
the plane FEAB), regardless of how
1itt1e it diverges from EF, belongs
with the line EC to a plane that must
intersect the plane of the two paral-
Iels AB and CD along some line CH.
This latter line intersects AB some-
where at the very point H that is com-
mon to all three planes through
which the line EH must also pass.
Consequently, EF is parallel to AB.

In the same way/ we can show the
parallelism o{ EF and CD.

Therefore, the hypothesis that a
line EF is parallel to one of the two
other parallels, AB and CD, is the
same as considering EF as the intersec-
tion of two planes in which two par-
al)els, AB and CD,lie. Consequently,
two lines areparalTel to one another i{
they are parallel to a third line al-
though the three are not coplanar.

The last theorem can thus be ex-
pressed as follows:

Three planes intersect in lines
that arc all parallel to each other if
the parallelism of two is presup-
posed. O
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had no appetite at the time, you
surely played with these droplets in
the bow1, observing how they slowly
joined together and assumed circu-
lar shapes.

Similar observations can be made
by watching droplets of mercury
from a broken thermometer fuse
together (but please don't try this,
because mercury is extremely
toxic!) Flowever, in the case of the
mercury droplets, the experiment is
very short, because two droplets
quickly make one before you can
say "physics is fun."

What factors determine the rate
of fusion of the droplets? Before try-
ing to answer this question,

AT THE
BLACKBOARD I

Coale$Giltu dl'o[lets

by A. Varlamov

layer "live" in particular conditions.
The point is that they have neigh-
boring sibiings only on one side, in
contrast to the molecules located
within the liquid that are sur-
rounded by srmrlar molecules. At
not very sm:rll distances, the mo-
lecular interaction results in at-
traction. This mcans that ii the po-
tential energ! o{ two molecules
iclcated iar irom each other (at an
infinite distance) is taken to be
zerot tt will be negative at smaller
distances. To a first approxima-
tion, the absolure value of the po-

tential energy of a molecule can be
taken to be proportional to the
number of its closest neighbors.

We can see that the potential en-
ergy of the surface molecules is
higher than that of the internal mol-
ecules, because the latter have more
neighbors. Another factor, which
also elevates the potential energy of
the surface molecules, is the de-
crease in molecular concentration
when approaching the surface.

It goes without saying that the
molecules in a liquid are not stable.
On the corrtraryt they are involved
in constant thermal motion. As a re-
sult, some molecules leave the sur-
face, but others come back to it. If
we consider some mean extra poten-
tial energy to be associated with the
surface layer, external forces must
perform some positive work to puli a
molecule to the surface. The surplus
. of the potential energy of the

+;,,,...,. molecules located in a unit
surface area as compared to
the energy of the same
number of rnolecules in-
side the licluid is known as

the coeffrcient of surface
tension o. It is character-

ized by the work that
must lre done to in-

let's think about the
cause o{ fusion:
surface tension 'f 

.l

in liquids. In r.
1 . I 1t.Bt":-!.i!'ldoing so we 'r :t{fii#
will consider the
topic from an en- '':: 

:'":ii:,.!

ergy perspective.
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crease the surface area of the liquid
by one unit. Of course, this defini-
tion of o is ecluivalent to the com-
mon one as the force affecting a unit
length of liquid surface.

It is known that among a1l pos-
sible states of a system, the stable
one corresponds to the minimum
potential energy. In particular, the'
surface of a liquid tends to assume
a shape that minimizes the surface
energy for the given conditions.
Thus, a droplet assumes a spheri-
cal shape in conditions when grav-
ity can be neglected, because this
shape minimizes the surface area
and is therefore the most economi-
cal in terms of energy. Similarly, it
is advantageous for two or more
droplets to fuse together to make
a single drop, because the surface
of the resulting drop will be
smaller than the total surface of
the original droplets (a fun proof to
try on your own), and the surface
energy of this single drop will be
correspondingly smal1er.

Now let's return to the question
we began with: What factors deter-
mine the fusing time of two drop-
lets? This problem arose long ago.
And it was worthwhile, because the
theory of droplet fusion did not re-
sult from idle curiosity. On the con-
trary, ithadprofound practical appli-
cations, particularly in explaining
the technology of powder metal-
lurgy, where pressed metal grains
are thermally fused with substances
that have unique properties.

In 1944 the Soviet physicist Y. I.
Frenkel proposed a Yery simple
model of fusing that became a cor-
nerstone of the principles of powder
metallurgy. The main idea of
Frenkel's work will be our tool to
evaluate the fusing time of liquid
droplets. The simplest approach is
through energy considerations.

Let two identical droplets make
contact at some moment. A narrow
"neck" is formed at the contact
point (figure), which gradually grows
until fusion is completed. What hap-
pens with the energy in this process?

The total "energy deposit" of the
two-droplet system consists of the
extra energy AEr, which is equal to

Figure 1

the difference between the surface
energies of the initial and final
states, or in other words, to the dif-
ference of the energies of two indi-
vidual droplets of radius rn and of
one compound drop with radius r:

AEs = 8noro2 - 4noi '

Since the total volume of the drop-
lets does not change during fusion,

from which we get

, = ro\[2,

Thus,

LEs = 4no(2-zzu)'&

According to Frenkel, this extra
energy must be spent on the work
performed against the forces of vis-
cous friction that arise during fu-
sion. Let's evaluate this work.

We find the force of viscous fric-
tion using a formula found by the
legendary English physicist and
mathematician Sir George Gabriel
Stokes (1819-19031 for a ball of ra-
dius R moving in a viscous fluid
with velocity v:

F :5tw1Rv.

The dimensional coefficient q in
this formula (known as Stokes'law)
is called the viscosity coefficient, or
just viscosity. It characterizes the
ability of a fluid to slow the relative
motion of adjacent fluid layers. The
force of viscous friction, which is
generated during the fusion of liquid
droplets, depends only on the viscos-
ity of the liquid, the linear size of the
droplets, and the rate of fusion.
Thus, to estimate the order of mag-
nitude of these forces, we may safely
use Stokes'formula, making the {ol-
lowing substitutions. We insert ro,

the radius of the droplets, in place of
R; v will be the rate of fusion; and q
will be the viscosity of the liquid.
Thus, we get the following formula
for the force of viscous friction:

F = 6rc1rov.

Note that the displacement of the
liquid during fusion has the same or-
der of magnitude as the radius of a
droplet: Ax = ro.Therefore, the fric-
tion forces perform the work

W:FLx=6rcqro2v.

This formula shows that the
cluicker the fusion, the more energy
is needed to overcome the larger vis-
cous forces. However, the amount of
energy is limited by the ,rrto" AEs,

which determines the duration of
the droplet fusion (Frenkel fusion
time). Estimating it as v = rolr, and
assuming W : LEs, we get

ern]!=+no(2-z't')ri,
or

--ro\! 
= 

-.
o

Equipped with this formula, we
consider some examples. For water
droplets, 1o = 1 cm, o = 0.1 N/m, and
q = 10-3 kg/m . s, so the fusion time
is about 104 s. However, this time
is far greater for the more viscous
glycerin (n 

= 1 kg/(m ' s)). Therefore,
the fusion time for droplets of the
same radius can vary widely, de-
pending on the viscosity and sur-
face tension of the liquid. More-
over, in contrast to surface tension,
viscosity depends strongly on tem-
perature/ so the fusion time can
vary to a large extent even for the
same liquid. O

Quantum on surface terr.ior, ,t d
drops:

Y. Bruk, M. Zelnrkov, A.
Stasenko, "Wobbling nuclear
drops," lamary fFebruary 1997,
pp.I2-17.

Y. Bruk, A. Stasenko, "Drops for
the crops," March/April1994, pp.
10-13.

A. Mitrofanov, "Bubbles in
puddles," |uly/August 1995, pp. 4-7.
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8. Using a ray l- - .dr*rr, ltld_th: ;;*posltron ot a pomt

HE SUBJECT OF THIS KALEI-
doscope brings together many
scientists: the author of the
laws of planetary motion, the

mathematician known for his fa-
mous theorems, the creator of clas-
sical mechanics, the ingenious ex-
perimentalist who carried out very
difficult experiments to determine
the speed of light in various media,
and many other celebrities. Their
scientific interests were diverse, but
all of them tried to decide if it was
possible to trace the paths of light
beams and how to do it correctly.

The importance of this problem
becomes apparent by a
simple enumeration of
opticai devices: eye-
glasses and magnifying

glasses, microscopes and tele-
scopes/ various
film projectors

and cameras, binoculars
and video cameras/ and so

on. None of these could have
been designed without exten-
sive knowledge of how light
interacts with lenses and re-
flective surfaces.

The importance of ray
tracing extends beyond the

development of optical
devices. The models and

concepts advanced in optics fertil-
ized other scientific fields, as evi-
denced by terms such as electron
microscopet neutron mitrot, and op-
tical computer.

The following set of problems
shows both the beauty of ray dia-
grams and the logic of the optical
laws on which they are based.

Problems and questions
1. The setting Sun illuminates a

lattice fence through a gap between
the clouds. Why are there no vertical

28

rods in the shadow cast by the fence
onto a walf while the shadows of the
horizontal rods are clearly seen? Al1
rods have the same diameter.

2. Figure I shows the region of
complete visibility of a straight ob-

Figure 1

ject in a plane mirror (shaded with
straight lines) and the region ofpar-
tial visibility (shaded with curved
lines). Where is the object located?

3. Solar rays strike a
vertical screen after re-

flecting from a large
horizontal mirror. A

king from a chess game is placed on
the mirror. What is the size of its
shadow on the screen?

4. Why are the illuminating mir-
rors of microscopes usually con-
cave?

5. A piece of plate glass is placed
between a luminous point and an
eye. Draw the ray diagram and ob-
tain the image of this point.

6. The distance between an object
and its image formed by a thin lens
is 0.5F, where F is the focal length of
the lens. Is the image virtual or real?

7. A converging lens produces an
image of a source at point S'on the
principal optical axis. The locations
of the lens's center and foci are
known. Using aray dtagram, locate
the source S, i{ OF < OS'.

of light, i after refraction in the lens,
the two rays travel as shown in fig-
ure 2.

9. Figure 3 shows object AB and
its image A'B'formed by a thin lens.

Figure 3

Using aray diagram, locate the lens
and its foci.

10. The image of some rectilinear
continuous object AB consists o{
two semi-infinite parts, one real and

virtual
part B'
--+-

F

A
-+-l-

F real part

Figure 4
one virtual. Looking at figxe 4, re-
store the position of the obiect.

11. Is it possible to take a photo-
graph of an image?

12. At what location on the opti-
ca1 axis of a converging lens should
a point source be placed so that nei-
ther the source nor its image can be
seen simultaneously from any
point?

13. How are two lenses (one con-
verging, another diverging) posi-
tioned if parallel rays remain paral-
lel after passing through them?

14. Draw the image of an object in
the optical system consisting of a

converging lens and a plane mirror
located in the focal plane of the lens.
The object is set in front of the lens

/
B'

I
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ca1 lengths.
15. Why can a telescope launched

in space detect much dimmer stars
than a ground-based telescope of the
same diameter?

Microexperiment
Place two mirrors at

right angles to each
other in the corner of a
room. What does your image
look like in such a mirror? Try
to find a place in the room where
you cannot see your image.

It is interesting that . . .

. . . Even in the late Renaissance,
optical phenomena and vision were
treated as mysterious and suspicious
subjects. This may explain why
even such an outstanding optician
as Francesco Maurolico did not dare
publish his main work until 1575,
the year of his death.

. . . The first scientifically correct
ray tracingin an eye was made at the
beginning of the seventeenth
century by the great astrono-
mer |ohannes Kepler. He
developed the theory of
image construction in
optical systems and
introduced such fun-
damental notions as
the "focus" and the "optical axis."

. . . The telescope invented by
Galileo was considered a miracle,

and people came by the dozens to obiectives of modern cameras are
look through it. The salary of composed of several lenses of vari-"
Galileo was doubled after he do- ous types of glass. The design is so
nated a model of the device to 6i5.-.u 1--u intricate that computers must
the Venetian senate. ffi f be used for the calculations.

. . . A simple microscope \reffi j Purely geometrical ray tracing
made of a magnifying glass fixed ffi-- cannot account for al1 the loss of

l on a support was replaced by an Bl luminous flux during the numerous
I intricate device with a system of ff reflections on the lens surfaces.
' lenses in the seventeenth century, . . . In recent times the amount of
an invention almost simultaneous astronomicaldatahas increasedim-
with the telescope. Credit for its in- mensely, mainly due to the work of
ventionprobabiyalsobelongstothe the record-holder 10-meter mul-
Dutch. However, such a microscope tiple-mirror Keck telescope on
could not compete with a magnify- Mauna Kea, Hawaii, and also due to
ing glass until the nineteenth the orbiting Hubble telescope,
century/ when composite : , ' '' which has a mirror with a di-

objectives were in- ,jllf'fi:##il$]Hi!i,ii ameter of 2.4 meters. O
Vented. ,t'fi . ,,,-i.., 

-A. 
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l
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' ' prove the re-
fracting tele-

scope/ Isaac
Newton invented and

made a device "using a concave
metal instead of glass objective"-
that is, a concave mirror. For the in-
vention of the reflecting telescope,
Newton became a member of the
London Royal Society tn 1572.

. . . Similar to many outstanding
scientists, |ean Foucault invented
original instruments, including as-
tronomical devices. For example, to
produce reflecting telescopes, he de-
veloped aYery important method of
silver plating glass.

. . .A sharp image in the
eye of a fish is formed just

as in cameras when they

The fish do not accommodate
(varyl the curvature of the

spherical cornea as humans do, but
rather shift the cornea back and
forth with specialized muscles.

Quantum on lenses, mir-
rors, and ray tracing:
V. Dubrovsky and A. Savin,

"What harmony means//' larntaryf
February 1993, pp.32-35.

A. Eisenkraft and L. D.
Kirkpatrick, "Mirror full of water,"
fuly/August 1994, pp. 32-34.

A. Zllberrrrar;., "A little lens talk, "
May/|une 1994, pp. 35-37.

S. Semenchinsky, "Focusing on
the fleet," September/October 1993,
pp. 28-30.

A. Eisenkraft
Kirkpatrick, "The
Mirrors, " Sep-
tember/October
1992, p.25.

A. Eisenkraft and L.

age," March/April 1996, p.
36.

C. W. Bowers, "Shady
computations," Novem-
ber/December 1996, pp.
34-35.
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are adjusted for sharpness. D. Kirkpatrick, "Split im-
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a distance between one and two fo-

and L. D. '',

To improve image quality, the
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PHYSICS
CONTEST

The oyo$ haue it

by Arthur Eisenkraft and Larry D. Kirkpatrick

The history of the living world can be summarised as the elaboration of ever
more perfect eyes within a cosmos in whtch there is always something

more to be seen,

-Pierre 
Teilhard de Chardin (1881-1985)

IX OF THE 30 PHYLA OF ANI-
mals have eyes that can pro-
duce images. These mere six
dominate the animal kingdom

with over 95 percent of the popula-
tion of animals on Earth. It is no
surprise that eyes provide such a dis-
tinct advantage for survival. The
blind species have to nudge up to
another object to detect its presence.
Does this object present itself as an
obstacle, a potential food, or a poten-
tial predator? Animais with eyes
have a remote sensing apparatus
that allows them to avoid obstacles
and predators and survey the envi-
ronment for food.

The complexity of the human eye
confounded Darwin. In Oa the Ori-
gin of Species, he wrote, '"To sup-
pose that the eye, with al1its inimi-
table contrivances for adjusting the
focus to different distances, for ad-
mitting different amounts of light
and for the correction of spherical
and chrom atic aberation, could
have formed by natural selection,
seems/ I freely confess, absurd in the
highest possible degree." But
Darwin's concept of adaptation and
natural selection guided a steady
stream of biologists who have coi-
lectively depicted a series of 40
steps, each a small advantage over
the prior, which describe the evolu-

tionary trail of the eye. You can read
about this journey in Richard
Dawkins's Climbing Mount Im-
probable.

A lens can be crudely modeled as

a triangular prism atop a cube rest-
ing on an inverted prism. Three par-
allel rays of light, carefully placed,
will converge at a single point. The
design of a good lens requires us to
"smooth" the sides of the prisms and
cube so that ail rays of light, undergo-
ing refraction, will converge at a

single point-the focus (figure 1.)

Figure 1

Using these rays of light, we can
create ray diagrams-a graphical
means of determining the location
and orientation of the image of an
illuminated object (see Kaleido-
scope, page 28). One ray of light
emanating from the tip of the object
travels parallel to the principal axis,
refracts through the lens, and trav-
els through the focus. A second ray
of light leaves the object and travels
through the near focus emerging af-
ter refraction parallel to the principal
axis. A third ray travels through the
center of the lens, and if the lens is
thin, is displacednegliglbly (figure 2).

A look at similar triangles yields
two equations:

H, 
=D'Ho Do'

H, 
=D,- fHof

Combining these yields the lens
ecluation, llf = IlD.+ llDr. A more
formal proof requires us to use
Snell's law to calculate the change
in angle of the light as it enters (and

then leaves) the glass.
Assuming that light emanates

from point O and is brought to fo-
cus at point 1 inside the glass as

shown in figure 3, we can draw a
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Figure 3

radial line from the center of cur-
vature of the lens to the interface
at point A. We can assume that the
two media have indices of refrac-
tion n, and nr. Thus we have the
following equations:

nr sin0r = n2sitt02,

01 =cx*P,

0=02+Y.

Assume that all angles are small
because cx is small. We can then use
the approximation that sin 0 : 0 in
radians:

ny01 = n202,

n,(u+ 9)=nzl!-yl,
Flnz - n1)= n1a+ nzy.

The arc length is equal to the radius
multiplied by the angle subtended
(in radians). Therefore, for small
angles we have

AB
u=-'

Do'.

^AB$=-tR'

AB,- D,,

and

nt , frz _fi2-fit
DoDiR

Completing a parallel derivation
for the ray o{ light leavingnrand
refracting at a concave surface
(that is, a double convex lens-
convex from each side) into r?1/ we
emerge with the lensmaker's

equation:

We have set nl : 1 for air and nr: n
for glass. The R, is now negative
for the double convex lens. If the
lens is thick, the proof becomes a

bit more tedious and yields an
equation that includes the thick-
ness d of the lens:

The contest problems for this
month focus on different elements
in our story.

A. In the human eye, much of the
imaging is due to the cornea, since
the light must traYel from air
(a = 1.00)to the cornea ln:1.375)be-
fore reaching the 1ens. The purpose
of the lens is to change its focal
length for accommodation. Assum-
ing that the fixed image distance
(lens to retina) is 2.50 cm, calculate
the focal length of the lens/cornea
system when the object distance is
20 cm and when it is 20 m.

B. If the human eye were con-
structed of a fixed focal length lens
and moved it for accommodation (as

a fish does), what distance would the
lens have to move to accommodate
the objeet distances of 20 cm and
20m? (By the way, mollusks expand
or contract the entire eye, and birds
of prey change the curvature o{ the
cornea for accommodation.)

C. Describe what would happen
to the image of a candle if

(1) the top half of the lens were
covered,

(2) the candle were much larger
than the lens diameter.

D. A student completes a lens lab
and records the data shown in figure
4. Calculate the focal length, graph
the data with Do on the x-axis and D,
on the y-axis, and derive the lens

equation from the graph.
E. The prism from our crude lens

would disperse the light into the fa-
miliar spectrum. A lens that distorts
in this way is said to have chromatic
aberration. In the VIII International
Physics Olympiad (East Germany,
1975), students were asked to find
the conditions for a thick lens such
that the focal length would be the
same for two different wavelengths.
Please solve this problem and dis-
cuss the practical limitations of your
solution with different types of
lenses.

Please send your solutions to
Quantum, i840 Wilson Boulevard,
Arlington, YA2220L-3000 within a

month of receipt of this issue. The
best solutions will be noted in this
space.

Waru speed
Our contest probiem on super-

luminary velocities in the Novem-
ber/December issue of Quantum
was quite a hit. Art Hovey and
nine students in his honors phys-
ics class at the Amity Regional
High School in Woodridge, Con-
necticut, sent in correct solutions.
The students are Steve Boyle,
Stephanie Brelsford, Sid Govindan,
Alex Kaloyanides, Maya Roberts,
Ted Rounsaville, Samira Saleh,
Mirosla Volynskiy, and Aaron
Webber. Scott Wiley, a teacher at
Weslaw High School in Texas, also
submitted a cortect solution.

A. The experimental data ob-
tained from the photographs of the
microcluasar indicate that the ejecta
had angular velocities of 17 .6 and 9.0
milliarcseconds (mas) per day. We
can obtain the transverse velocities
knowing that v: ov and converting
units:

V=oJI
/\

= | rz.aE39 l(e.so, ro2o m)1. dry.Jt

I tas T to I.,1 

- 

ll 

- 

|

Ito' maslL3600 asl

f zn rad llt dav l[ I h -l

'L.uu lLr*]L36oo']
=3.81x10s m/s.

r =tn-,[l-!).f (R, Rr)

| =tr-,[l- t -n-l d )
f '[R, R2 n RRz)

Figure 4
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Notice that this speed is greater than
the speed of light by 27 percent. The
corresponding speed for the other
ejectum is 1.95 . 108 m/s, well below
the speed of 1ight.

B. Figure 5 shows the geometry
of the situation that can produce
such superluminary speeds. (Un-

B
t-&

Earth tA A

Figure 5

fortunately, the iabels for r, and r,
were interchanged in the figure
that accompanied the contest
problem.) An object is moving
from point A to point B with a
speed v : MlLt. The light that
leaves the object when it is located
at point A takes a time

T^

L

to reach Earth. The signal from
point B originates a time At later and
therefore arrives at Earth at

Iota=2+At'
C

Thus, the difference in the aruival.
times of the two signals on Earth is

T._I^
At6 =t6 -tA= 

-*At.

C

Because the distance to the object is
extremely large compared to Ar, the
directions to points A and B are
nearly parallel and

rA - rs = yAt cos 0.

Therefore,

/,,\
At^ = At,[ 1- I cos rl I" I c .)

= Ar(1- pcosQ).

C. The observed transverse veloc-
ity for this motion is given by

Arsin0
vi-- Ato

ArsinQ
At(l-BcosQ)

sin 6

1-BcosQ

\"..],',,1 ,'.',1,t',,, '/
IJ

I
0.8

0.6

0.,it

0.2

0 0 ls .30 45 (r0 75 90 O (')

Figure 6

or

" Bsin Qu- =1-B..uro

D. We can find the rnininrun.r
vaiue of B for which we can observe
F, > 1 by looking at

Psin$=1-0cos0'

This tells us that

lp- 
-sln Q - cosQ

Because sin 0 + cos (r 1-ras a nilri-
rlrunr ar a: nl4,[-{r,r,- I ] -, rrlr.
angleQ:-15.

E. See shadecl regrcr-r in irs 6. O

CONTINUED FROM PACE 7

ing the 10-volt scale it reads
V2= 2 6 V. What would it read using
the 100-volt scaie? It is known that un-
der constant illumination a soiar cell
is just a source of emi coupled with a

iarge series resistance. (A. Zilberman)

P264
O sclllating cit'cuit , A capacrtor in

a circuit u,rth an open srr'rtch S ,ir-<.
2J is charged to a potentral 1- . Then
the switch is closed, znl 3f1.1 .rr11q

tirne the current stops flou,ing.
What should Vo be in order to charge
the capacitor to the stead,v-state
voltage Vr, = 1 V with its polaritr
opposite to the rnitial polarrtvi As-
sume thc emf of e ach L.,arrert t,: l,c
Z = 1.5 V and tl-re .li...ies t-'f,c r.i.-.r..
1A. Kirkrnskr

P265
I:,: :..,i-<:.-.,:.i -iirJdILtalis, A

te achcr turre d ro the chalkboard and
rratched hrs students rn the reflection
,n fu. .pcctaclss. He >a\\- t\\ o irnages
oi the same student rvho sat 5 m from
hrm: one rmage was formed at a dis-
tance oi 5 m, another at 517 m. When
the teacher turned to the students, he
saw the image of the same person at
a distance of 2.5 m. Find the refractive
index of the glass of the spectacles. (V.

Belonuchkin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 49
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AGUELY AWARE OF THE
custom originated in the early
days of electricity that elec-
tric fields are stored in capaci-

tors and magnetic fields are stored
in current-carrying coils, an in-
quisitive girl named Trudy one
day placed a capacitor in a mag-
netic field. "Something new should
happen," she thought, and her intu-
ition did not disappoint her.

Trudy made a capacitor with two
long coaxial cylinders with approxi-
mately the same radii a and b, so
their difference (axial clearance)
b - a :1 was much less than either
radius, which is to sayl << a < b. She
suspended the capacitor in a vertical
magnetic field in such a way that it
could rotate about its own (also ver-
tical) axis without friction (fig. 1).

The inner cylinder had a charge +qo,
and the outer cylinder had a charge

AT THE
BLACKBOARD II

ArolatinU caHcitol'
by A. Stasenko

-e6. As a result, there was a radial
electric field E, between the capaci-
tor plates. Unfortunately, nothing
particulariy interesting occurred in
this setup.

"What can I do to instill life into
this dead junk?" the inquisitive
child thought ruefully. As usual, an
idea struck her. Trudy filled the
space between the plates with a con-
ductor, so the capacitor became
leaky and aradial current began to
flow from the inner to the outer cyl-
inder. At this point, we should recall
that every charge that moves across
the lines of magnetic force is af-
fected by the Lorentz force, which is
perpendicular to two vectors: the
velocity v of the charge and the mag-
netic field B. Therefore, this force is
tangent to the circle with a magni-
tude of

Fq = ev'B''

The indices stress the fact that all
three vectors are mutuaily perpen-
dicular.

If the concentration of moving
charges is n, then every cubic centi-
meter of the conductor between the
plates will be affected by theLorcntz
force, which can be called the vol-
ume force density

f4=nFf=flavrBr.

Since this force is tangential, the en-
tire capacitor will rotate. The rotation
of the cyiindrical conductor and the
plates attached to it will accelerate
under the total force acting on the en-

tire volume Zr,alh. This force is

fq . Znalh = r7av,B, . Znalh.

To obtain this formula, Trudy re-
called with satisfaction that it was a
prophetic thought to make a very
small clearance between the plates-
otherwise she would have had to in-
tegrate the force, and she didn't want
to waste such a powerful tool on
trifles.

Thus, the acceleration of the ca-
pacitor can be described by
Newton's second law written as
follows:

dv^
-+ = (nev,)(Znah).18,

at

The expression in the first parenthe-
ses is the current density ir: fiasvr,
the second parentheses contains the
plate's area S: Znah(rtrs almost iden-
tical for both plates, again due to the
small clearance between them). Mul-
tiplying the current density by the
cross-sectional area yields the total
electric curent 1: I,S. Thus,

d(vrm)= iBy(rdt).

In this equation the parentheses
again help us to see its physical na-
ture. On the right, the parentheses
show the change of the positive
charge on the inner plate:

dq = -Idt,
where the minus sign corresponds to
the fact that the rudial current de-
creases the positive charge. We see

Qo
c0

o:
C

_o
o
.C

c)

_o

Figure 1
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that the increase in the capacitor's
(linear) momentum dlmvr) is pro-
portional to the decrease in the
capacitor's charge. Therefore, when
the capacitor loses ail of its charge,
its (rotational) momentum will
reach the maximum value

frvo = lBreo.

In the case of rotation, physicists
do not use the terms momentum
and impulse, because the center of
mass of our capacitor doesn't move.
hrstead, physicists use the notions of
torque (force multiplied by the lever
arm a-that is, the distance from the
axis of rotation) and angular mo-
mentum (linear momentum mv

multiplied by the same distance a).

The corresponding equation for the
rotation of the capacitor in terms of
torque and angular momentum is

mvra= alBreo.

However, our inquisitive Trudy
focused on another point: Where
could the torque and anguiar mo-
mentum be taken from? Initially,
the capacitor had neither of them
and did not rotate. According to the
basic laws of nature, angular mo-
mentum cannot arise from nothing.
Only one conclusion could be made:
The electromagnetic field (charac-
terizedby E, and B") had the angular
momentum hiddeir within its intri-

cate structure, and it transferred this
momentum to the capacitor! During
discharge, the electric field de-
creased, and the angular momentum
of the electromagnetic field was
gradually transferred to initiate and
accelerate the rotation of the capaci-
tor. Finally, when the electric fieid
disappeared, the combined electro-
magnetic field no longer existed (a1-

though its magnetic component was
the same), and the capacrtor had ac-
quired the largest angular velocity.

"What a strange world we live in,"
thought the future physics giant. "It
seems that electromagnetic fields have
the mechanical attributes of torque
and momentum densitiesl What
would Sir |ames Maxwell think?" O
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AT THE

UMERICAI DATA ARE IRREL-
evant to most geometry prob-
lems encountered in school. As
a rule, these problems can be

solved for the general case using
symbolic notation, and then nu-
merical data can be substituted in
the resulting formula. However, in
some cases/ using particular numeri-
caldata allows us to obtain a simpler
solution. In this afiicle, we consider
several examples that demonstrate
how numerical data can affect the
solution of a problem.

Problem 1. Chord AB subtends a
120' arc of a circle. Point C iies on
this arc, point D lies on the chord
AB. AD = 2, BD : 1, auJ DC : r2.
Find the area of triangle ABC.

Notice that lODC : 90'. In-
deed, extencl segment CD until it
intersects the gir-e n circlc ,irg. 1 

,.

Since AD BD = CD DE rre iind
that DE = CD = .j an.'l thereiore
OD L CE. The radius of the circle
can be found from triangie AOF: it
is \ I . Now in .10'-(10 -90'triangl c
AOF, AF = l\12)AB = 312, and so
OF = r I r2 arrd AO : ,.1. Also, DF
: AD - AF = l, and so triangle ODF
is also 30'-60"-90'. Thus, ZCDA
: 30" and zCDB = 150.. Now the
area of triangles ADC and CDB
can be found from two sides and
the angle between them:

s ",,, =ltcoyAD)sin3o,= '22', )

lem in general.
We consider next a problem in

which the numerical values of the
initial data are of no importance and
are used only at the final stage of the
solution when they are substituted
in the resulting gcneral formula.

Problem 2.In a triangle ABC, AD
is the bisector of angle BAC and CF
is the bisector of angle ACB lpoint D
lies on side BC and point F, on side
AB ol the triangle). Find the ratio of
the areas of triangles ABC and AFD
i{ AB : ).1, AC = 28, and CB -- 20.

Denote the length of srdes AB,
BC, and CA b,v c, rl, and b, respec-
trveil' 1irg. 21. We employ a useful
techniclue ior working with angle
bisectors in a triangle .If BD: ni and
DC : n, we know that mkln = blc
lthis rvell-known result is ca1led the
dngle bisector theorem). So we can
find a number k such that nt : bk,
n = ck.Then m + n = bk+ ck : a, so
k = allb + cJ, and we find

., I^gP= -* ,p6
D+C

Similarly, we find

LL(

b+c

BLACKBOARD III

in Ueolnglry prohlems

by S. V. Ovchinnikov and L F. Sharygin

lllumerical data

and

t
Socr.a = 

1(CO)(O 
A) sin I 50' =

Therefore,

.1,

T

Slarc =
J

4 'lz.

We see that the numerical data in
this problem are chosen yery care-
fully. If we try to solve the problem
in the general form-that is, use ar-
ltrtrary numbers as the initial data-
the solution turns out to be ex-
tremely tedious. Even so, we invite
the reader to try to solve the prob-

\

Figure 1

AF= bc..
a+b

Now, triangles ABD arrd ABC have
a common altitude from A, so the
ratio of their areas is the ratio of
their bases. That is,Figure 2
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BD
BC b+c

!_sz _AF _ b

Sra,, AB (a+b)'

Iorr. - (a+b)(b+c)
\ a' n 1't'

Substitute the numerical values of a,

Lt, ancl c in the last forrnula to obtain

5 ,r, - ,

S, 
'AID

T'hus, thc desired ratio is 4.

The following problem can be
solved in its general form. Flo-'vevet,
the solution is much simpler if nu-
merical valiles are substituted at the
prOper mt)lnent.

Problern 3.In a triangle ABC, AB
- 3, BC = 4, AC: 5, and BD is the
bisector of angle ABC. Circles are
inscribed in triangles ABD and
tsCD, which touch BD at points M
and l/, respectively. Find the length
of segrnent MN.

Wc see from the values of the
icngth of the triangle's sides that the
triangle is a right triangle. This fact
can induce one tcr solve the problem
using rretric propcrties of right tri-
angles.

However, this problem has a
simple solution for an arbitrary tri-
angle ABC. Denote AR by c, BC by
a, ancl A C by b (fig. 3). As in problem
2, the "angle bisector" thcorem
leads to

bc ubAD= ::'-' CD- - 'a+c a+c

We introduce the unknowns x
: BM, y : MN, and z : ND. Since
tangents drawn from a point to a

circle are equal, we have the follow-
ing system o{ ecluations:

We subtract the second equation
from the first to obtain

ab bc
oy -- = J-eta+c a+c

from which we get

(d- c)(a+ c-b')

Figure 5

equation

BCz_ACz:BD2_DAz=8.
(In fact, it is a standard theorem of
advanced geometry that point C is
on the perpendicular to AC at D tf
BC2 - ACz : BDz - ADz.lts proof,
using the Pythagorean theorem, is
not difficuit.)

However, how can we guess that
CD is the altitude? This observation
is the key point to our solution, and
all other reasoning is easy. It is im-
possible to specify a universal
method for making guesses. How-
ever, an accLlrate drawing can help
us make a guess in geometry prob-
lems, whether the data are symbolic
or numerical. If the data are numeri-
cal, the drawing must be made using
these data. For example, if we make
afl aecurate drawing for the above
problem, it is not difficult to guess
that CD is the altitude.

Problem 5. In a trapezoid
ABCD, the bases AD : 39 and BC
: 26 and the legs AB : 5 ar,d CD
: 12 are given. Find the radius of
a circle that passes through points
A and B and is tangent to side CD
or its extension.

We extend sides AB and CD to
their point of intersection to form
triangle AED (fig.5). From similar
triangles BEC and AED, we get
BE: IO and CE = 24.11the drawing
is accurate enough, it is not difficult
to notice that ZAED = 90'. This fact
can be proved easily: AEz + EDZ

= AD2. Let O be the center of the
circle passing through points A and
B and tangent to ED at a point G.
Draw a perpendicular OF to AB.
Then F is the midpoint of chord AB.

l, *, *( oo 
- ,)= o,

I ' \a+c )

I (bc \
[" 

*[a+C -,-y )=,
Z+,Y

Figure 3
(u .4ut)

s^*.

Similarly,

1

L a+c

We then substitute the numerical
values for a, b, and c to obtain the
final result: MN : ll7.

Now let's consider several prob-
lems in which specially selected
numerical values make a solution
much simpler.

Problem 4. In a triangle ABC,
AB = 4, AC : ^tn, arrd BC= 5. A
point D is taken on side AB such
that AD = 1. Find the distance be-
tween the centers of the circles
circumscribed around triangles
DBC and ADC.

The solution can be found easily
if weguess thatCD isthealtitudein
triangle ABC.In this case, the cen-
ters of the circles circumscribed
around triangles DBC and ADC are
the midpoints of sides AC and BC.
Therefore, the desired distance is the
length of the midline parallel to AB,
which is 2 (fig. 4). The fact that CD
is the altitude follows from the
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n
Figure 6

It is clear that OG : EF = L2.5.
Therefore, the radius of the circle is
12.5.

In the following problems, nu-
merical data manifest themselves in
a peculiar way. At first glance, it is
not obvious how these values can
influence the solution. However, in
the process of solving the problem,
it becomes clear that the result can
be obtained only for those particuiar
values. In problems of this kind, a
Iine of attackon the problem is evi-
dent, though it is not immediately
apparent whether this line gives a
result.

Problem 6. Consider a convex
quadrilateral ABCD with unit area.
Points K, L, M,and Nare given on the
respective sides AB, BC, CD, and DA
of this quadrilateral such that

DN,DM
AD.CD 12

Thus, the sum of the areas of tri-
angles KBL and MND is !f 12, frorn
which the required area is calculated
as Lll12.

The solution rests on the equality
of the calculated ratios of areas. The
problem would be much more diffi-
cult in general.

Ptoblem T,ThreepointsA, B, and
C are connected by straight roads. A
square field abuts a segment of road
AB with side (ll2)AB. Another
square field abuts the segment of
rcad BC with side BC, and a rectan-
gular forest abuts road CA. The
length of the forest is CA, and its
width is 4 km. The area of the for-
est is 20 km2 greater than the sum
of the areas of the square fields. Find
the area of the forest.

At first sight, the data seem to be
insufficient to solve the problem.
However, let us make certain calcu-
lations. Denote by c, a, and b the
sides AB, BC, and CA oI triangle
ABC. Then, 4b = 20 + c2f4 + a2. By
the triangle inequality, b < a + c.
Express b in terms ol a arJ c, ard
substituting in this inequality, we
have:

,( ^2 \llzo*L*orl.o*r.41 4 )

This can be rewritten in the form:

Since squares cannot be negative,
we get c = 8 kmr a : Zkrn, and
b = a + c : 10 km. Thus, the area of
the forest is 40 km2.

Our line of attack is perhaps the
only possible way of solving this
problem. The fact that this way
yields an unambiguous result is a
consequence of specially selected
values of the initial data. In fact,
the three points A, B, and C turn
out to lie on a line, which makes
the given data sufficient for solv-
ing the problem.

Problem 8. Orthogonal projec-
tions of a triangle ABC onto two

Figure 7
perpendicuiar planes are equilateral
triangles with unit sides. Find the
perimeter of triangle ABC if it is
given that AB = ^li 12.

Denote the given planes by p and
q (fr1.7l. Without loss o{ generality,
we may assume that one of the ver-
tices of the triangle, let's say A, lies
on the iine of intersection of planes
p and q (denoted by R in fig. 7). Since
the prbjections of sides AB and AC
onto planes p and q are equal, points
A and C lie in the bisector plane (de-

noted by s in fig. 7) of the dihedral
angle formed by planes p arrd q.2 Let
D and E be the projections of points
B and C onto plane q. We draw a per-
pendicular BF from point B to line R,
and note that ZBFD = 45".

In further manipulations, we could
use an arbitrary value for AB, say a,
and solve the problem in its general
form. However, the use of the particu-
lar numerical value AB : 4512
makes the solution much simpler.

Indeed, we find from triangle ABD
that BD : ll2langle ADB :90, and
AB andAD are known). Stnce Z.BFD
= 45", we have FD = BD = lfL, and
ZAFD = 90o, so ZFAD = 30o in tri-
angle AFD. Now we can obtain the
following relations: AE L AF, ZCAE
: 45", ZCEA : g}o, and AC : 

^lZ.From the right trapezoid CBDE, we
have (CE - BOlz + DEz : BCz.There-
fore, BC : ,E lZ, alLd thq perimeter of
triangle ABC is 

^lS 
* "lZ.

In this problem, the rlumerical
values of the initial data consider-
ably reduced the amount of compu-
tations, yet in some cases the use of
numerical values makes calcula-
tions more complex and can even
hide a simple geometrical sense of a
problem.

2The reader is invited to prove this, for
exampie by showing that point B must
be equidistant from planes p and q.

and

AK
KB
BL1
LC 3,
CM _t

MD_,,

DNl
NA 5.

, ')ll_ +l -to-2)2 <ot) ,

frnd the area of hexagon AKLCMN.
The ratio of the areas of triangles

KBI and JBC 1fig. 6) is1

BI( BL 1

AB.BC 12

The ratio of the areas of triangles
MND andADC is also

1We use the iact tha: :r. :i-r::,t r:,1

the areas t-,f two trranll.- 1.. -t:. ..

cornmon angle rs cqual t, :.rr :-:- :
the products of the srd.- ;.1':-.,-t :
this common ang1e.
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Exercises
1. Orthogo.nal projections of a

plane cluadrilateral onto two mutu-
ally perpendicular planes are scluares

with sides of length 2. One of the fi-
agonals of the given cluadrilateral is

"[7. 
rirra the other diagonal.

2. In acute triangle ABC, AB : 15,
BC = lO, and zBAC is arccos 17f9l,'
A circle is circumscribed around tri-
angle ABC, and a chord BE is drawn
through a point D that lies on AC
and such that AD: 9. Find the area
of triangle AEC.

3. A triangle ABC with sides 5, 2,

and, ^,6, is given. A point D on side
AC is chosen such that BD:3. Find
the distance between D and the cen-
ter of the circle circumscribed
around trrangle ABC.

4. A sphere is inscribed in a regu-
1ar tetrahedron SABC with edges of
length a. A point M is chosen on the
edge SA such that AM: MS, and a

point N is chosen on the edge BC
such that zCN = NB. LineMNinter-
sects the given sphere at points P and

Q. Find the length of segment PQ.

5. In a triangle ABC with sides

AB : \b cm, BC = 4 crr^, and AC
: tr7 "^, BD is a median. Circles
are inscribed in triangles ABD and
BDC that touch BD at points M
and N, respectively. Find the
length of segment MN.

6. Two circles of radius z are
tangent to each other. In addition,
each of them is tangent externally
to a third circle of radius R at
points A and B, respectively. Find
r if AB = L2 cm and R = 8 cm.

7, An equilateral triangle ABC
with a side of length 3 is inscribed in
a circle. Point D lies on this circle,
and chord AD has a length of ^,/9.
Find the length of chords BD and
CD,

8. A triangle ABC of unit area is
given. Point P, Q, and R are chosen
on medians AK, BL, and CN, respec-
tively, such that

ADh1-
I

PK

BQ1
QL 2'

and

Find the area of triangle PQR,
9. The volume of a rectangular

parallelepiped is 150 cm3, its sur-
face area is 280 cm2, and the pe-
rimeter of its base is 40 cm. Find
the dimensions of the parallelepi-
ped.

10. A sphere of radius R is in-
scribed in a dihedral angle of 50'.
Find the radius of a sphere inscribed
in the same angle such that it is tan-
gent to the first sphere if it is known
that the line that connects the cen-
ters of both spheres forms an angle
ol45'with the edge of the dihedral
angle.

11. A triangle ABC with sides AB
: 4, BC : 3, and AC = 5 is given. A
point D is chosen on side AB such
that DB : 718.A circle is drawn
through points C, D, and B, which
intersects AC at point E. Find the
length of segment BE. O

CR5
R^/ 4
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IN THE LAB

Weighlles$ng$$ in a

mauic hox

by A Dozorov

HE STATE OF WEIGHTLESSNESS IS ATTAINED
during free fall or while flying. A satellite in an
orbit, a hurled stone/ and a jumping person experi-
ence this state. A load attached to a cord has no

weight in free flight, so it doesn't stretch the cord. One
can easily make a device that demonstrates how
weightlessness "works. "

Such a device is shown in figure 1.In the "nor-
mal" state, the bob (B) stretches the thread and the
elastic plate (EPl bends and separates the electric
contacts C1 and C2,In this stationary state, the
lamp (I) is not lit. If the device is thrown upward,
the bob becomes weightless, and it doesn't stretch
the thread. Therefore, the elastic plate straightens,
the contacts close the circuit, and the lamp turns
on. The lamp is on only when the whole setup is

weightless. Note that the condition of weightless-
ness is attained when the device moves both upward
and downward.

The tuning screw (S) can regulate the position of the
contacts so that they are slightly apart when the de-
vice is stationary. The device should be housed in a
transparent box (fig. 2).

Now for a few practical hints. The battery ('8) can
be large or sma11, but it is better to make alargebat-
tery compartment so that either a small or a large bat-
tery can be used. Because the battery must be occasion-
ally replaced with a new one, the battery compartment
should be made on the outside of the device with two
holes drilled for the connecting wires. The elastic plate
can be made of any thin elastic metal bar, even from
half of atazot blade. o

Figure 2Figure 1
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LOOKING BACK

[UIaUnEIic [Br'$unalily

by V. Kartsev

FIEN 43.YEAR-OLD DANISH
prof essor Hans Christian
Orsted sent off a thin pam-
phlet of four pages in 1820,

scientists in France, Switzerland,
England, and Russia realized that
the papers touched on both scien-
tific and universal human problems.
How were they to treat the author of
these pages, and how were they to
evaluate his toil? Who was this per-
son-a scientist, dreamer, romantic,
or just a lucky man? And what was
his profession-physics, chemistry,
pharmacology, phiiosophy, or po-
etry?

These were not simple ques-
tions. They linger even now/ so let's
go back in time more than two
centuries and visit a town called
Rudkobing on the remote Danish
islet of Langeland. Hans Christian
was the son of a poor apothecary.
Hans and his brother Anders re-
ceived their elementary education
from sundry places: a town barber
taught them German, and his wife
taught them Danish; a minister ex-
plained the rules of grammar and
familiarized the brothers with his-
tory and literature; a land surveyor
showed them how to add numbers;
and a student toid them all about
minerals.

Atthe ageof LL,Hanswas aheady
lured by science. Alas, instead of
getting a more formal education, he
worked at his father's drugstore.
There he was taken with medicine,
which for a while became his fa-
vorite subject, overshadowing

chemistry, history, and fine arts.
He decided to enter the University
of Copenhagen, but doubts tor-
mented him: What should he study?
Hans Christian began to leam every-
thing: mefi cine, physics, astronomy,
philosophy, and poetry.

Arstedled a happy life at his alma
mater. Later, he wrote that to
achieve absolute freedom, a youth
must enioy himself in the kingdom
of reason and imagination, where
struggle goes hand in hand with free-
dom of thought and phrase, and
where a defeated person is given a

chance to rise and struggle again. He
lived in a world with room for mod-
est victories, the conquest of new
knowledge, and the chance to cor-
rect previous mistakes. In 1797 he
earned a gold university medal for
his essay "The Boundaries of Prose
and Poetry." His next paper/ which
received similar praise, was on the
properties of alkalis, and his doctoral
dissertation was devoted to medi-
cine. Although his accomplish-
ments were impressive, he risked
jeopardizing his scientific career by
compromising his depth of profes-
sional skill by cultivating a variety
of interests.

Meanwhile, a new age began. In
the vortex of the French and Ameri-
can revolutions/ a new perception of
the world arose and o1d dogmas
were rejected by new morals and
reasoning. The Industrial Revolu-
tion produced an unstoppable flow
of practical innovations. The nine-
teenth century proclaimed new

ways of thought and life through
novel social and political ideas,
modern philosophy, art, and litera-
ture. Hans was enchanted by this
new world. He decided to go where
the major scientific and philosophic
problems were being solved. Alas,
Denmark was no more than a Euro-
pean province, and Arsted did not
want to spend the rest of his life
there. Fortunately, his talent, persis-
tence, and luck molded into a happy
alloy: After a brilliant defense of his
thesis, Hans was sent by the univer-
sity to study in France, Germany,
and Holland. There he attended vari-
ous lectures on such topics as how
problems of physics could be solved
with the help of poetry and mythol-
ogy. Although he enjoyed the lec-
tures of brilliant philosophers, he
did not forsake the experimental
approach to studying physical phe-
nomena.

@rsted was deeply in{luenced by
the philosophies of Georg Hegel
(17 7 O-LB3I) and Friedrich Schelling
(177 5-1854), especially Schelling's
idea on the universal connections of
all phenomena. This idea validated
his wide-ranging scientific interests:
According to the philosophy of the
time, all subjects were interdepen-
dent. @rsted became obsessed with
the idea of universal connections,
and quickly found a consonant soul
who shared his views and was
equally unfocused and romantic. It
was the German physicist |ohann
Ritter 11775-l\l0), inventor of the
storage battery, who was a dreamer
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and a fountain of mad ideas. For ex-
ample, from astrologicai consider-
ations he "deduced" that an epoch
of new discoveries in electricity
would arrive in 1819 or 1820. In-
deed, this was to happen, and it
would be spurred by Arstedhimself,
but Ritter did not live to see it.

In 1813 ZrstedpublishedA Study'
of the ldentity of Chemical and
Electrical Forces, where for the first
time in history he officially set forth
the idea of a connection between
electricity and magnetism. He
wrote/ "It should be tested whether
electricity . . . acts in some way on
a magnet." The logic was simple:
Electricity can produce light (a

spark), sound (the crack that accom-
panies a spark), and heat (in the con-
necting wire). Wasn't this an ex-
ample o{ the universal connection of
physical phenomena ? Couldn't elec-
tricity produce some magnetic effect
as well?

The idea of a connection between
electricity and magnetism, which
originated from notice-
able similarities in the at-
traction of tiny objects to
amber and of iron filings
to magnets, had been
tossed around before, and
many brilliant European
minds were captivated by
it. As early as 1747, this
idea was discussed in St.
Petersburg, Russia, by aca-
demician Eranz Aepinus
(1724-1802). The French-
man Frangois Arago ll7\5-
1853) spent many years col-
lecting mystical phenomena
about ships, treasures, and
other mysterious events in
which he tested this alleged
connection.

One day the French battle-
ship Ia Raleign appeared in Palma,
the major port of Majorca, Spain.
The ship was in such a poor state
that it could barely make it to the
moorage. When the ship's mate
came ashore/ a group of famous
French scientists (including Arago)
stepped aboard. They reahzed that
the ship had been damaged by light-
ning. Whiie the rest of the commit-

tee ruefully sighed about the burnt
masts, Arago rushed to the com-
passes and saw what he expected:
The polarity of some of the mag-
netic needles was reversed, so that
the needles pointed in opposite di-
rections.

A year later Arago examined the
wreckage of a Genoan ship that had
been ruined on the rocks of Aigerian
shores. Again Arago found that the
needles of the compasses had
changed polarity. In the pitch black
night the captain had directed the
ship northward away from danger,
or so he had thought. In reality, the
ship had rushed in the opposite di-
rection, toward the rocks.

At last Arago had iound his trea-
sure! It lay in the hold of the mer-
chant ship: a dinner set that had
traveled to North America. Light-
ning had melted the pieces, and
some of them had turned into very
strong magnets-evidence of a con-
nection between lightning and mag-
netism.

The most famous and daring ex-
periment with lightning was per-
formed by Benjamin Franklin in
America and by Michael Lomonosov
and Georg Richmann in Russia, who
discovered that lightning was just a
giant electric spark. Nowadays this
fact seems trivial, but Richmann
sacri{iced his life for this knowledge.
Arago collected much data attesting

to the connection between lightning
and magnetism. He felt that he was
nearing avety important discovery,
so he must have felt both joy and
disappointment when he heard his
longstanding problem was solved.
@rcted had found the answer.

Accidenlally ott pil'[o$E?

On February 15, 1820, Arsrcd,
now a professor at the University of
Copenhagen/ gave a lecture to his
students. As usual, the lecture was
amply illustrated by demonstra-
tions. In addition to standard chemi-
cal ecluipment, there were other de-
vices on the laboratory table: an
electrical source with wires con-
nected to its terminals, and a com-
pass. When Zrsted closed the cir-
cuit, the needle in the compass
jerked and turned. When he opened
the circuit, the needle retumed to its
initial position. This was the first
experimental proof of the connec-
tion between electrical and mag-
netic phenomena that had been

overlooked for years by many sci-
entists.

At first glance, this discovery
seems straightforw ard. Arsted
demonstrated to his students
one more piece of evidence for
the universal connection be-
tween physical phenomena.
Why is the story then viewed
with skepticism? Why were
there so many discussions about
the circumstances of this dis-
covery? Because students who
were actually at the famous lec-
ture told quite another story.
They said @rsted had intended
to demonstrate the thermal ef-
fect of electric current. To do
this, he used a wire and an elec-
tric source, and it r,l as merely
by chance that a compass sat

nearby. Moreovet, it was a student,
and not the esteemed professor, who
noted the needle's slight jerking and
rotating. Students said that Arsted
was sincerely astonished and de-
lighted. However, in his later papers,
Arsted wrote/ "Everybody who vis-
ited my lecture is witness to the fact
that I announced the result of this
experiment beforehand. Thus, the
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discovery was not
made by chance, as
professor Hilbert
would like to con-
clude from the ex-
pressions that I
used in the first de-
scription of the dis-
covery. "

Does it really matter whether
Zlrsted's discovery was accidental or
intended? And what is an ',acciden-
tal" discovery? However accidental
it may have seemed, several circum-
stances had already set the stage for
it to happen. Was it accidental that
a chemist, Zrsted, gave a lecture on
electricity? Certainly not. In
Drsted's time, electricity was a com-
paratiyely new field.l

Little was known on the nature
of electricity, and no particular
training was necessary to study it.
Therefore, many scientists and en-
gineers could conduct experiments
on electricity, including physicists,
chemists, and mechanics. The de-
vices were also very simple and
could be produced in any work-
shop. Thus, there were no "accj.den-
tal" devices on Zrsted's table and
no "impromptu" topics at his 1ec-
ture. The electric devices used at
the time were few: voltaic piles,
wires, frog legs, magnets/ and com-
passes.

English physicist Sir William
Bragg (1890-197L), the inventor of
X-ray dilfraction analysis of crystals,
said that it's no surprise brsted
made his discovery by chance. The
real miracle is that 20 years passed
between the invention of the voltaic
pile and this discovery. Dozens of
laboratories had everything needed
to demonstrate the connection be-
tween electricity and magnetism:
voltaic piles, wires, and compasses.
These objects were placed close to
each other on thousands of occa-
sions. It was inevitable that a mag-

tIn 1800 Itaiian phr-srcrst
Alessandro Volta 117-15-1Sl-, rnr-ented
the fir.t rt.lirrble and conrilrL.,u.
sollrce of electric current, tl-re r-oltarc
pi1e. It allowed expcriments on
electricity to be conducted much more
ef{iciently.

netic neeclle would be placed
in the vicinity of a wirc con-
necting the terminals of the
voltaic pi1e. Someone should
have noticed the ierk of the
needlel

Still, no less than 20 years
passed before this chain of
events really happened. An

unknown student at Zrsted's lec-
ture played the historical role by
glancing at the compass at the right
moment. Hls role may be compared
with that of the sailor who cried to
Christopher Columbus that he saw
the New World.

Was it so accidental that Arsted
was involved in this striking discov-
ery? Couldn't similar devices have
been so luckily arranged and tuned
in another laboratory? Yes. But in
this case the odds were in Arsted's
favor, because Zrsted was among a
small group of researchers looking
for connections be-
tween physical phe-
nomena.

Let/s return to the
essence of Zrsted's
discovery. The deflec-
tion of the magnetic
needle in @rsted's
spectacular demon-
stration was actually
rather smaIl. In |uly
1820 Arsted repeated
the experiment with
more powerful electric sources/ re-
sulting in a much more pronounced
effect. He found that the thicker the
wire, the stronger the needle's de-
flection.2

In addition , Zrsted observed a
paradoxical effect that was at odds
with the classical Newtonian con-
cepts of action and reaction. The
force affecting the needle was not di-
rected to the wire, but acted perpen-
dicular to itl In Zrsted's words, the
magnetic effect of electricai current
was similar to a circulatory motion
around the wire. The needle never
pointed to the wire; rather, it was di-

rlsr-r't this a prototype of an
amrleteri Norv it's clear that the
thrcl<uI rtiru iD Or't..tl', expcrirrrcrrt
lrld a .nr,rller elrttricirl le\iirancc, \o
it carriecl a stronger current.

rected tangentially to imaginary
circles around it. It looked like invis-
ible magnetic forces around the cur-
rent-carrying wire affected the
needle of the compass. This explains
why Zrsted was astonished and why
others responded with distrust and
mockery. To back himself up, his
four-page pamphlet carefully listed
his witnesses without omitting a
single detail of their scientific mer-
its.

Strictly speaking, brsted did not
provide a eofiect theoretical expla-
nation of his experiment. Flowever,
he set forth a critical idea on the
vortical nature of electromagnetic
phenomena. For a long time, the
concept of electromagnetic vortic-
ity was not shared by most scien-
tists, who believed that the forces
acting between a current-c arrying
wire and a magnetic needle were
just conventional forces of attrac-

tion and repul-
sion, similar to
Newtonian
forces of univer-
sal attraction and
Coulombian
f orces between
electrical charges.
Thus, Orsted not
only proved the
connection be-
tween electricity
and magnetism/

but he happened upon a new mys-
tery that could not be explained by
known physical concepts and laws.

lllews lraueh
Arsted's four-page pamphlet was

published on |uly 21, i820. After
this date, word spread unusually fast
for the moderate pace of nineteenth-
century science. After ohly a few
days the pamphlet appeared in
Geneva at the same time Arago was
there. A glance at the paper was
enough for him to realize that
Arsted had found a solution to the
problem which had been a headache
for him and other scientists for so
long. Reaction to Zrcted's experi-
ment was so strong that one of the
demonstration's spectators rose and
exclaimed the phrase that became
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famous: "Gentlemen, it is the revo-
lution!" Deeply astonished, Arago
returned to Paris. He rushed to the
nearest session of the French Acad-
emy, where on September 4, 1820,
he gave an oral report on Orsted's ex-
periments. The academicians asked
for a full-scale demonstration of.
0rsted's experiment. It was done at
the next session on September 22.

Andr6-Marie Ampdre (1775-
1836) paid particular attention to
Arago's report. Perhaps he felt at
that moment that it was his turn to
take the baton from Zrsted. Similar
to Arago andArsted, he had waited
for this decisive moment for 20long
years. And now, on September 4,
1820, the clock struck. Ampere re-
alizedthat he must act. It took him
only t\ ro weeks to report on his
study, in which he advanced his
own idea and supplied the experi-
mental arguments: Ali magnetic
phenomena car, be explained by
electrical ones. Thus a new science
was born, electrodynamics, which
theoretically coupled electrical and
magnetic phenomena. Forty years
later electrodynamics became an in-
tegraL part of Maxwell's electromag-

netic field theory, which remains
our reliable compass in an ocean of
electrical phenomena.

After his famous discovery, a cor-
nucopia of honors poured down on
Arsted. He became a member of
many celebrated scientific societies,
i.ncluding the Royal society of Lon-
don and the French Academy. In
Great Britain he was awarded the
Copley Medal, and in France he was
granted 3000 gold francs, a prize es-

tablished by Napoleon for the great-
est discoveries in electricitY.

Accepting all these honors,
Arstednever forgot that the new age

required modern approaches to
teaching science. He founded a soci-
ety and a literature magazine in
Denmark to promote both science
and the fine arts, he delivered lec-
tures especially for women/ and he
supported Hans Christian Andersen,
his namesake and the future author
of fairy tales. In short, Orsted be-
came a national hero.

Unfortunately, Arsted did not
long enjoy his triumph. He died on
March 9, 1851. He was buried at
night, and 200,000 people took part
in the funeral procession. Scientists,

state representatives, members of
the royal family, diplomats, stu-
dents, and ordinary people all con-
sidered his death a private loss. O
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induction," March/April 1991, pp.
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ber/October 1992, pp. 49-50.
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Faraday's law," |anuary fFebntary
1994, pp.20-23.

S. Murzin, M. Trunin, and D.
Shovkun, "Beyond the reach of
Ohm's law, " November/December
1994, pp.24-29.

|. Wylie, "Magnetic monopoly,"
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HAPPENINGS

Bulletin Board

tion or previous aviation experience
may ieam Ln-depth from aviation pro-

their instrument rating in eight
weeks. Tuition is $8,700. The
SunFlight courses include flight
fees, field trips, and flight, ground
lab, and simulator instruction.

For registration details, and a bro-
chure, call the Embry-Riddle Sum-
mer Academy at (800) 359-4550 or
(9041225-7648 or write to Embry-
Riddle Aeronautical University, Di-
vision of Continuing Education, 500
S. Clyde Morris Blvd., Daytona
Beach, EL 32114-3900. More infor-
mation can be found at the web site
www.erau.edu/dce.

ThetullmoW
Yes, this month's CyberTeaser

(8264 in this issue) was a thinly dis-
guised version of the "Monty Hall
problem," made famous by Marilyn
vos Savant i-n her "Ask Marilyn"
column in the September 9,I99O, is-
sue of Parade magazine- {We are
awarding the wi:rners who made
note of this fact with an extra Quan-
fum button andhonoring them with
an asterisk next to their names in
the winners list that follows.) We
were initially hesitant to run this
much-debated problem precisely
because of its notoriety, but we feel
that it has taken on the patina of a
classic and as such shoiild periodi-
cally be reintroduced for new gen-
erations of students to experience.

Rather than rehash the controver-
sial and colorful history of this prob-
lem, we offer some resources for fur-
ther study. Marilyn vos Savant
claims to have received upward of
10,000 letters in response to her an-
swer to the problem. The debate
became so widespread that on fuly
21, 199 l, the New York Times run a

Embry-Riddle Aeronautical Uni- fessionals about the career areas that
versitywilloperateitsSummerAcad- interest them the most: air traffic
emy at its Daytona Beach, Fiorida, control, avionics, engineering, flrght,
campus from |une 18 to August 18, ormaintenance.Thecourseincludes
offering educational programs for stu- dual one-hour flight time, classroom
dents ages 12-18 who want to leam instruction, and field trips. Tuition is
about aviation and aerospace in a fun, $500.
relaxing atmosphere. Engineering Technology Acad-

This year's courses/ some of which emy introduces the design, building,
may be taken for college credit, are and testing of aircraft-related com-
Aerospace Surnmer Camp, Aviation ponents. Hands-on activities in
Career Educati.on Specialization, En- composites, sheet metal, and weld-
gineering Technology Academy, ing will be conducted in the project
Flight Exploration, and SunFlight. 1ab during the one-week program. A
Application is required by fune 1. computer-aided drafting project is

Surnmer Academy program in- followed by demonstrations in the
clude housing at Embry-Riddle's wind tunnel and stereoiithography
new Student Village residential labs. The course includes dual one-
housing complex, on-campus meals, hour flight time, classroom instruc-
classroom instruction, and educa- tion, an observation flight, and other
tional materials. Students in some field trips. Tuition is $600.
camps will take field trips that may Flight Exploration is a one-rr eek
include the beach, water park, a introduction to fl1.ing and ilight
major theme park, air traffic control training. Students practrce ihgh t
centers, Kennedy Space Center, U.S. trrane uvers and ger acquainted rrith
Space Camp, the Museum oi Sci- horr an arralane responds to cockprt
ence and Industrl., and Patrick Air commands, Partrcrpants 1e arn horr-
Force Base. Transportarion for oif- to cornpll- rrith ar-ratron regulations
campus actrvities is provrded by and horr. to analyze weather condi-
Embry-Riddle. trons. The course includes {iight and

Aspiring astronauts and scientists ground lab instruction, flight fees,
will learn about NASA programs, fieid trips, and a iogbook to record
space shuttle operations, and the flight hours. Tuition is $1,000.
history of space flight during the Three SunFlight programs also
ior:r-rreek Aerospace Summer offer flight instruction. In the three-
Ca:rl: The course fosters a basic week SunFlight Solo Camp, the goal
un,i::.:,,:ir:r oi space and space isforallqualifiedstudents to soloby
tech::-, .. .r: ..:h classroom lec- the end of the program. Tuition is
tures ::: : ir,t: J ;:i.::akers, and S2,950. Students in the eight-week
hands- r. tr : -:- .--:. - . >l -l i0 Sunflight Private Pilot Camp earn

In t::. .-.- .:r - -.:- '-.:..t. :lcir prir-ate pilot certificate. Tu-
Educatr.:- !:.: - -. .- ---: r" -:, I r. S9 IOO Partrcipants in the
students -.'.-i- r :- : -- - - -:--:,:: I::.1:ument Camp earn
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front-page article on the subject
("Behind Monty Hall's Doors:
Puzzle, Debate and Answet," by
fohn Tierney), complete with an in-
terview with Monty Hall himself.
(For readers who may not know,
Monty Hall was the host of the long-
running TV game show ler's Make
a Deal.l

The problem exhibited great stay-
ing power, as people continued to
debate it years later. Indeed, Quan-
tum got into the act by publishing
the article "Ceneralizing Monty's
Dilemma (whether to stick with a

choice or a switch)," by |ohn P.

Georges and Timothy V. Craine, in
the March/April 1995 issue.

Quantum' s resident Mathema-
ticawondercow, Dr. Mu, a.k.a. Don
Piele, paid homage to the Monty
problem in a 1995 article in Mathe-
matica in Education and Research
5(1), available on the web at http:ll
www. telospub. com/catalog/
MATHEMATICA/MiER/VoI5 No5 i
Piele/piele51.html. An excellent
discussion of the problem is avail-
able at the Virtuai Laboratories in
Probability and Statistics athttp:f f
www.math.uah. edu/st at I rronty f
index.html, which includes an inter-
active game and simulation.

. . . And the winners are

Bruno Konder (Rio de lanero,Brazlll
Theo Koupelis* (Wausau, Wisconsin)
Anastasia Nikitina (Pasadena, Cali-
fornia)
ferold Lewandowski (Troy, New
York)
|ohn E. Beam* (Bellaire, Texas)
Xi-An ti (Middlebury, Vermont)
Christopher Franck (Redondo Beach,
Cali{ornia)
Hana Bizek (Argonne, Illinois)
Liubo Borissov (New York, New
York)
foshua Zrckq (Mountain View,
California)

Congratulations! Each of the win-
ners wiil receive a Quantum button
and a copy of the March/April issue.
Everyone who submitted a correct
answer in the time allotted was en-
tered in a drawing for a copy of Quan-
tum Quandaries, our collection of
the first I00 Quantum brainteasers.
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[Ulessauell'om alal'
by David Arns

0""" upon a weeknight dreary,
I beheld an image smeary,
Captured by a telescope that's been in space

As I sat with eyelids drooping,
A strange and unexpected grouping
O{ celestial objects caught my eye like none
I knew I had to find out more.

from days of yore,

had done before-

I didn't know what I was seeing,

But I thought, "Another being
From another galaxy, perhaps an alien'Signal Corps,'
Created this configuration
To confer some information
To a random listener. Yes, surely that is what it's forl"
Thus I let my fancy soar.

Then I stopped and gripped the table,

Forced my thoughts to be more stable,
Realizing I would need some proof, some evidence, and more.

So I called to book the Hubble-
To my surprise, I had no trouble
Getting seven hours' observation time, that day at four.
Now I'd give them proof galore!

So I made my observations,
Measurements, and calculations,
Disbelief and wonder nearly le{t me breathless on the floor.
This was proof beyond ignoring-
Sweat was from my brow outpouring-
I could see my name in scientific journals evermore!
(I'd been a no-name heretofore.)

Five weeks, and almost all was rcady,
(I'd show those stuck-up folks at SETI!)

I merely had to translate all these symbols I had grabbed before.

Already I had seen a patterr,l
The spectrogram's bright lines were scatterin'
In ways that shocked, amazed, bewildered, stunned, and shook me to the core

A message from a distant shorel

Methofically, I put together
Facts and data, heedless whether
Days were passing, pizza mould'ring, knocks and calls outside my door.

Finally, it was translated,
And I stood aghast, deflated:
The message from afar, lor which I'd launched into my eight-week chore,

Read only, "Made in Singapore."



ANSWERS,
HINTS &

SOLUTIONS
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M261
Note that flf\)) = 1 - 2x is one-to-

one. That is, it has the propert.v that
if a *b, then /(l(x,)) * /(f(r. it. Ii a func-
tion /1x) such as de.cr il.cd in the
problern existed, it rtould have to
have the same propertl,. Indeed, if
a + b, and ii-r. r = i\-{,1, then /(/(xr))
= flflxr)\, rr-hich is not true. There-
fore, iix) is one-to-one, and such a
function on the real line must be
monotonic: rhat rs, for all real num-
bers a and b, tt > b lmplies either /(x, )

> /(x,l or iqx,) < i(xr).
We u'iil show that if l(x) is mono-

tonic. rhen f1 f1x)) is monotonic in-
creasing, which is not true of the
function given in the problem. In-
deed, consider two cases:

1t ) ltx) is monotonically decreas-
ing. Then, X1 < X2 impiies flxr), flx2l
and /t/(xr)) . flflxz))i

(2) ./lx) is monotonically increas-
ing. Then, X j.. xzimplies f(xr) . flx2l
and flflx)) . flflxz)).

M262
We will solve a more general

problem. Denote by r, the number
of possible ways to select a subset
of n first natural numbers that
doesn't include three consecutive
integers. What is x, ? We can either
choose the empty set or the set {1}
( " singleton I " ): Neither of these
-- rs corltllifls three consecutive in-
ir j;r S Thererore, xt = 2. By a sirni-
-.11' *-:': -: a tllnt, rr.c find that x, = 4

),-l :- :r- - ::.-,';flUeSf,,
r. --.-- -.- .
rl ! g---

CMB
Figure 1

conditions of the problem either
contain n or do not contain n. Those
that do not contain n are subsets of
the set IL, 2, 3, . . .t n - 1), and these
are counted by xr_r.

We must add to this the number
of subsets that do contain n. These
again split into two types: those that
contain n - 1 and those that do not.
Subsets that contain n andn- 1 can-
not contain n - 2, and thus are
counted by ,r_e.It remains to count
the subsets that contain n but not
n - 1 (and satisfy the condition of the
problem), Any such subset can be
formed by choosing a subset of {1,2,
3, . . ., n -2\ and including the num-
bera as well. Thus these are counted
by xn_2, and xr: Xr_I * xn) I xr_J.

By direct computation/ we now
find that the sequence of values x, is

o

2, 4,7, 13,24, 44, gI, 149,274, 504,
andxrr:927.

M263
Consider rectangle ABCD tn

whichAB = 10 andAD:20. We can
try to make the rectangle fit into a
circle by cutting off a rectangular
slice AKMB and placing it on top of
KMCD as shown in figure 1. But
how much of a slice must we cut
off? That is, how long is AK?

Suppose AK = x, and let us try to
find x so that M, and K, lie on the
circle circumscribing rectangle
KMCD (whose center is at point O
in figure 1). Then, since equal chords
are equidistant from the center of a
circle, the distances from O to KM
and KrM, are equal. This condition
leads to the equation

20- x -5+x,

whose solution is x: 10/3.
We must still verify that the new

figure will fit into a circle of radius
19.5. That is, we need to verify the
inequality

102+(20-x12.(19.512.

Y-
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Figure 3

We substitute 10/3 forx, multiply
both sides by 9, and divide by 25 to
obtain the inequality

35 + 100 <9,,3.9ll2 or 136 < 138.89.

Note: This result can be im-
proved. It is possible to divide the
given rectangle into two pieces that
fit into a smaller circle-for ex-
ample, one of radius 19.4. But even
this small improvement is difficult.
The reader is challenged to obtain it.

M264
We can accomplish the construc-

tion by {inding a point P on segment
KM that is closer to M than the
length of our straightedge. We do
this by reproducing the figure 2a,
which demonstrated Desargues'
theorem. Figure 2b shows the con-
struction. The numbers in the fig-
ure show the order in which the line
segments are to be drawn. To draw
Iine 1, for example/ we use our short
straightedge to draw a short segment
in any direction at all from K, then
slide the straightedge along the
short segment to lengthen it, and
so on. This technique produces an
arbitrarrly long line in the given
direction. Note that lines 1 and 2
must be drawn sufficiently
" close," and that if point P is still
too far from M, the construction
can be repeated to find a point P'
on segment PM, and so on.

To prove Desargues'theorem, we
return to the problem. Figure 2b
shows a method for finding a point
P on the segment KM.The numbers
in the figure show the order of draw-

50

ing the lines. The first two lines
should be drawn such that they are
sufficientiy "close" to each other.
Here we employ the fact that arbi-
trarlly long segments can be drawn
using a short straightedge by sliding
it gradually along the segment. The
construction is justified by the
Desargues theorem just proved. If
point P is stiil too far from M, then
the construction can be repeated.

M265
Denote the angles of the given

triangle ABC lfigure 3) by 2a,2$,
and 2y. Through B, draw a line
parallel to AA, and denote by K its
points of intersection with BC.
Angle AAp : u + 2B (it is an ex-
terior angle of triangle BAA,l . It is
given that we have ZAAp
= ZACpr Flowever, lACrBris an
exterior angle of triangle BCFr
So we have

lBBrCr: /ACpr - p

=a+2$-F:o*0,
and

zKBp:zArAC:u.
Now we find

zBBtK=ZBB9-zKBp
=(2a+ 0)-o:s+B: ZBBICT

Therefore, triangles BB tC r and BKB,
are congruent (by ASA). Thus, tri-
angle CrBrK is isosceles, and

zctKBt: (u2)(180" - zcp$l
: (U2)[180'-(zu+p)]
: 90' - (cr * F) = y = ZCrCBr.

This implies that points Ct, Br, C,
and K lie on a circle. In this circle,
equal chords are subtended by in-
scribed angles CprK and C,KB,. So

these two angles must be equal, and
triangle CrBrK is equilateral. There-
fore, y: 60'and IBCA = 120'.

Physics

P261
The acceleration of a person

who stepped onto the first band in-
creased the person's momentum
from 0 to Mv, Note that a passen-

ger who moves to the second band
does not borrow any momentum
from the first band, because the
passenger leaves it perpendicular
to its motion. Thus, the force we
are looking for can be expressed
via the increase of the system's
momentum per unit time:

F, : NMv, : 1600 N.

Similarly, for the second band we
must know the increase of the
passenger's speed after arriving from
the first band: This value is half of
the previous one. Therefore,

Fr: NM(vr- vtl :800 N.

P262
The table shows that the tem-

perature doesn't depend linearly on
time. Therefore, we must take into
account the heat loss to the sur-
rounding air, which is proportional
to the temperature difference be-
tween the jar and the air. Conserva-
tion of thermal energy gives us

cLT :w\t - u(r - 4)lr,
where c is the heat capacity of the jar
with al1 its contents, 7 its tempera-
ture, t is the time, W : IV is the
power of the heater, and cr is a pro-
portionality constant.

Because this ecluation has two un-
known values, c and u, we take two
different temperatures T, and Trand
calculate

,, -( m\
^,_l Ar J,

and

k" = r4r),.2 _( 
lr ,1,

near these temperatures. Now we
have two equations

ck, =1tY - u(7, - 7o)

and

ck, =vY - o(7, - To),

from which we get

(r -rr)-(?, -rr)

ltlAY/JUllJI ISSs

c=W
k,(7, -%)-rr(I -%)'



Plugging the data from the top row
of the table into this equation, we
get the heat capacity of the 1ar with
the water only:

cr=7701fK.

Using the data from the bottom row
of the table, we get the heat capac-
ity of the jar with the metal sample:

c. = 890 I/K.

Therefore, ,h. h.r, capacit.v of the
sample rs

c=ct-c.=1l0iK.
Note that this rs a smal1 driference
of two rather large r-a1ues, Accord-
ingly, there may be a large error
(from 100 to 130}/Kl rn the ansu.er.

P263
We denote the series rc:r5rancc

for the 1O-volt and 100-vo1t scales br-
R2 = 10R1 and R., = 100R, re spec-

Figure 4

tively. If the emf of the solar cell is
% and its internal resistance is r (fig-
ue 41, we get

ffiz\/,= " R'r r+Rr I l+!'
R1

17v) - -rl1+_
10R1

@A

't- , .

1+ -

100R1

By solving these simultaneous equa-
tions, we get the answer:

left. Thus, this circuit is an oscil-
lating circuit with a constant volt-
age source that is always opposed
to the current.

Let's start our analysis of the
closed circuit from the moment
when the electric current is zero, the
voltage across the capacitor has just
assumed a maximum value Vr, and
the corresponding charge rs qn: CVn
(the upper plate is positively
charged). In the following half-cycle
the capacitor will discharge to zerot
and then it will be recharged with
the opposite polarity. The current
through diode D, performs work in
passing through the battery. After
the recharging half-cycle, the capaci-
tor will have a charge 42*1, so the
charge e, + er*t will pass through
the battery (the polarity of the ca-
pacitor changes during this process).

According to the conservation of
energy/ the decrease in the energy of
the capacitor's electric field equals
the work performed:

qZ 
-qTu -r^2C 26 - \.tn + qn-r)'L,

from which we get

Qn Qn+l .o

2C 2C

or

Vr- V*, = 28.

Thus, in a half-cycle the voltage
across the capacitor will drop by
2t = 3 \''. This process will go on
untrl the voltage becomes iess than
t = 1.5 \r at zero current. According
to the statement of the problem, the
frnal voltage is 1 V (o{ reverse polar-
lty), so the initial voltage on the ca-
pacitor can be tin volts):

Vo:4 + 6n,

wheren:0,1,2,...
However, this is not the end of

the story. This series of solutions
was obtained under the assumption
that the polarity of the capacitor
changes after every half-cycle. Still
another c,ase is possible, when in the
last half-cycle the charge drops from
4ry_1 to 41, without changing polar-
ity. In such a case the charge
4r,r_r - qrypasses through the battery,
so conservation of energy assumes
the form

^2 -2

+i-ff=(r*-,-qn)z,
from which we get

V.ri_r * VN=28.

Thus, Vr_, = 28 -V*:2 V (the up-
per plate is negative), VN_z: Vr_,
+ 2e = 5 V (the upper plate is posi-
tive), and so on. The initial voltage
in this case must be

Vo=5+5n'

where n:0, L,2, . . .

Thus, the problem has two series
of solutions:

The refractive index can be ob-
tained from the lens maker's equation:

provided we know the optical power
P of the lens and the radii'R, and R,
of its spherical surfaces. The optical
power of a lens is equal to the in-
verse of its focal length in meters.

Let's consider how the student's
images are formed when the teacher
turns to the board. One image is
formed by the rays reflected from
the proximal (that is, nearest the
eye) surface of the lens. Another
image is created by the rays that
passed through the lens forward and

l++6nrl _ Iv0 - 1-" 
15+ 6n,

where n:0, 1,2, . . .

P265

p =(n-,(+.*;), (1)

P264
Figure 5 :

the electrl
from lett to
in the dio&
in diode D

.#ii
---l/ -) 'E
tl
I LK-jl-

+ DzE'

V.=3.6Y.
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Ecluations (2) and (3)yield

1

P = -: dionters
5

exactly one problem. Consider the 70

students who solved the third prob-
lem: 10 of them didn't solve the first
problem, 20 didn't solve the second,
and 40 didn't solve the fourth. There-
fore, 70 - 40 = 30 students were
awarded aprrze.

8263
Any convex heptagon has diago-

nals of two kinds: "short" and "long"
ones. A short diagonal connects two
vertices that are one vertex apart
(such a diagonal has one vertex on
one of its sides and four vertices on
the other side). A long diagonal con-
nects two vertices that are two verti-
ces apart (such a diagonal has two ver-
tices on one of its sides and three
vertices on the other side). The total
number of diagonals is 14. Drawing
all of them, we obtain seven triangles,
each of which has two short and one
long diagonal as its sides. When we
remove a short diagonal, two tri-
angles disappear. To remove all seven
triangles, we must remove at least
four diagonals. Therefore, the greatest
number of diagonals that canbe drawn
in such a way that no triangles consist-
ing of diagonals are originated is 10.

8264
If the participant retains the origi-

nal choice, he wins only if this
choice was the right one. However,
if he chooses another box, he wins if
the original choice was wrong. In
essence/ the altemative is of one box
and the two remaining boxes.
Therefore, it is better to change the
box selected, which doubles the
chances of winning.

8265
A hint: What would occur if the

bottle was filled with glass? Having
cracked this nut, "take" the glass
out of the bottle.

(3)
11
A- r,

1_
R,,,

backward, having reflected from the
distal spherical surface

According to the statement of the
problem, the distance to one of the
images ecluals the fistance to the ob-
ject (the student): f ,: d:5 m. This is
characteristic of a flat mirror (figure
6). Thus, as a first step/ it is natural to
Iook for a solution with a lens that
has a flat proximal surface, so that

I=0.
R1

The image at the fistance f, = 517

m is formed by the optical system
lens-mirror-Iens. This system can be
replacedby a single equivalent lens. Its
optical power must be equal to the
algebraic sum of the optical powers of
allthe elements of our optical system:

p +L+p =2p +L.R2 R2

Then, according to the lens equation,

The minus sign is inserted because
the image is virtual.

When the teacher looks directly
at the student through his glasses,
he sees the student's virtual image
at the distance f u = Z.S (figure 7). In
this case the lens equation reads

and

2l
5m

As expected, we obtained a convex
mirror, which means that the real
lens is flat-concave. Piugging the
values for P, lf R, and llRrinto (1)

yields n = 1.5.
If we assume that after reflection

from the proximal surface of the lens
the image is formed at the distance of
517 m, and make the respective calcu-
lations, we get a sftange result: n = 0.75.

Prove this on yorr own. Of course, the
refractive index of glass is larger than 1,

so this answer is lwong. However, can
you imagine a situation where the sec-

ond solution could be correct?

Bl'aintea$Br$

8261
Such a polygon does exist. For

example, rotate an equilateral tri-
angle around its center by an angle
less than 60o, and consider the inter-
section of the original triangle with
its image (fig. B). When rotated about
the center of the original triangle by
120, it returns to its original posi-
tion, yet it has neither line symme-
try nor point symmetry.

8262
Ten students missed the first prob-

lem, 20 missed the second,30 missed
the third, and 40 missed the fourth.
The sum of these numbers is 10 + 20
+ 30 + 40, and the union of these four
sets contains at most this many stu-
dents. Since no student solved all four
problems (each student missed at
least one), these four sets "cover" all
the 100 contestants, which means
that no two of them overlap. That is,
each student in the contest missed

I | -',r, 2

d fr-" Rz 12)

Figure 7
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l(aleido$cope
1. See figure 9.

wall upper
view

horizontal
stick

Figure 9

2. See figure 10.

Figure 10

3. If the screen is located farther
frorn the king than h an a.1u rs the
angle of incidence oi solar rar.sl, then
the length oi the shadorv rvill be 27:
(fig. 11). If the screen is located
nearer, then the shadow wrll be
shorter.

4. In order to direct more light to
the object.

5. See figure 12.

6. The image is virtual.
7. See figure 13. The source is 1o-

cated at the point 51 if the image is
real, and at point 52 if it is virtual.

Figure 13

8. See figure 14.
9. See figure 15.
10. A variant of the ray diagram is

given in figure 16.

Figure 14

Figure 19

O][IItIT /ATSITIBS, ltIIITS

11. Yes. In this case the lens of the
camera works like the lens of the
eye.

12. The source of light must be
placed closer to the lens than twice
the focal length, otherwise regions
will exist where both the source and
its image can be observed simulta-
neously (figure 17).

13. An example is shown in figwe 18.

14. See figure 19.
15. There is no absorption of light

by the atmosphere in space. In addi-
tion, the background is much dim-
mer, and atmospheric flicker is ab-
sent. Also, exposure time is not
limited to nighttime. Thus, the fac-
tors that impede the detection of
dim stars from Earth are eliminated
or drastically moderated in space.

Microexperiment
Due to double reflection, your image

will not be "reversed" left and right. I{
the room is rectangular, you wiil see
yourself in the mirror from any point.

CONTINUED ON PAGE 57
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by David R. Martin
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COWCULATIONS

Think lulice, code

0llc8

by Dr. Mu

This spring we are planning to rebuild the shed, so we
need plenty of good, stiff four-by-fours for support
beams. The trees will be put back into service after we
rip them up, of course in an efficient way.

Let's examine our options before we power up the
ripsaw. Remember the old adage,,,Measure twice, cut
once." In computer programming, this means: Before
you rip off some brute force code, do a bit of thinking

ELCOME BACK TO CO\\'CULATIONS, THE
column devoted to pri,i,icms best solved with a
computer algorithm. Last :aLl a fierce windstorm
swept across southern \1-rsconsin and toppled a

couple of fine oak trees on thc- i;.r.:r. Both trees were in
the prime of their life, and rt seent j .r',\ asre to cut them
up for firewood. As luck would he-, c r: one oi the trees
flattened the sick-calf shed and a c'-,--:-: oi sick calves.

C
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and planning on how best to solve the problem. The
programmer's motto should be, "Think twice, code

once,"
One pian might be to design a rectangul ar arcay of

horizontal and vertical lines, 4 inches apartl that span
a20 x20 square arayl assuming the tree has a base di-
ameter of 20 inches. With this plan, we would be able

to extract 9 perfect four-by-fours as shown below on the
right:

Another plan might be to offset the first planby 2
inches vertically and horizontally. Plan 2 yields two
rows of four boards each from the center, and two rows
of two boards each, for atotalof 12 four-by-fours. That's
a 33-percent improvement over the first plan:

c0tftl14
In Cow 14 you were asked to write a program that

would animate Hula Hoops that contact each other. The
purpose of this problem was to illustrate the ease with
which complicated graphical objects can be animated
in Mathematica.Thts was intended to be fun, rather than
a chailenging programming problem. Of course, without
a tool such as Mathematica, tt would be an impossible
problem to discuss in the pages of this magazine.

We begin by drawing a blue disk centered at (1, 0) with
radius 1, (Disk[{1,0},1]), and surrounding it with a red

circle centered at (-1, 0) and radius 3, (Circle[{-1,0},31)'

This is done by wrapping the Graphics command around

each object and Showing it.

red = RGBColor[1, 0, 0],
blue = RGBColor[O, O, 11,
ShowlGraphicsl{blue, DiEk[{1, 0}, 1] }1,

Graphics [ (red, Thickness [0.01] ,
Circle[{-1, 0}, 3l }1,
AspectRatio -> Automaticl

Next, we move the center of the blue disk along the
circular path (5 y) : (cos t, sin t) as t goes from 0 to 2n

in steps oI nl5. At the same time we move the center
of the red circle along the circular path (u, v) = (cos (t + n),

sin (t + ru)). Notice that the center of the circle is 180

degrees ahead of the center of the disk at all times. This
is animated rn Mathematica as follows:

Arrimate [ {x, y} = (Cos ltl , Sin [t] ] ;
{u, v} = {Coslt + Pil , Sinlt + Pil};

ShowlGraphics [ {blue, Diek [ {x, y}, 1l } L
Graphics [{red, Thickness [0-011,

Circle[{u, v}, 3l}],

I

But wait! Hold that ripsaw! Maybe there is still a

better way to cut the boards. This suggests a problem,
which, you guessed it, is the next Challenge Outta
Wisconsin.

c0llll 18
Write a program that will find the largest number of

n x n boards that can be cut {rom a tree of diameter 20,

by making horrzontal and vertical cuts only' It is not
required to keep all the boards together as you normally
do when you cube an onion. For example, you could rip
planks horizontally, and then cut each one up individu-
ally into four-by-fours. You must be able to make all the
cuts with a rip saw-no 90-degree turns/ of course. Re-

port the largest number of four-by-fours and the largest
number of two-by-twos. If you can graphically show cut
lines, you are really cool.

Take the bottom of the tree.
Measute once, twice, or thrae.
When you think you've got it ilght'
Rip those boards with all your might.

-Dr Mu

AspectRatio -> Autonratic, Frame
FrameTicks -> None,

PlotRangre -> {{-5, 5}, {-5, 5}}1,
0, 2 PL, Pil5)l)1,

-> True,

{t,
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Once you understand this principle, it is a simple step
to add another hoop 180 degrees ahead of the last one.
|ust use the same path (x, y) as we did for the disk, but
draw the circle with a radius of 5, which is the
Circle[{x,y}, 5]. The next hoop is 180 degrees ahead of
thls one, so its center moves on the lu, v) path with a
radius of 7, which is Circle[{u,v},7]. Putting this alto-
gether into one animation in Mathematica, we have a
very skiI1fulcow.

Arrimate [ {x, y} = {Cos [t] , Sin ttl ] ;
{u, v} = {Coslt + Pil, Sinlt + pil};

StrourlGrapbics[(blue, Disk[{x, y}, 1l }],
GraBhics [ {red, ll'hicheess [0.011 ,

Circleltu, v), 3I)L
Graphics [ {bIue, Thichess f 0.01J ,

Circle[{x, y}, 5I}L
Graphics [{red, Ihichess [0.011 ,

Circle [ {u, vi, 7)}1 ,
Aspect,Ratio -> Automatj-c, Frarre

FrameTicks -> None,
Pl-ot,Range -> {{-8, 8}, {-8, 8i}1,

o, 2 Pi, Pil5ll)1,

-> True,

{t,

CONTINUED FROM PAGE 53

tlt|henlhin[s

Iall apal'l
Exercise 1. Yes, it will! (It makes a nice

physics trick.) The pressure in the stream
is lower, according to Bernoulli's ecluation,
so the outside air forces the ball to stay in
the stream. Even if you blow the ball side-
ways (gentlyll, it tends to stay over the
nozzle.

Exercise 2. No, a system of charges can
never be in stable ecluilibrium if they inter-
act vta electrostatic forces only. To prove
this, 1et us consider a positive charge. For
the equilibrium to be stable, the charge,
when slightly moved, must experience a
force directed toward the original position
of the charge. This means that the electric
field lines in the vicinity of the positive
charge must be directed toward the positive
charge, which, of course, is impossible, ac-
cording to Gauss's Iaw. Similar reasoning
applies to a negative charge.

Exercise 3. No, this equilibrium is un-
stable. Imagine that the balloon is moved
down a bit. The water pressure increases,
the volume of the balloon decreases, and
the buoyancy force decreases, so the bai-
loon begins to sink further. If, on the other
hand, the balloon is moved slightly up, it as-
cends to the surface.

Exercise 4. The loop has two equilibrium
positions: one stable and one unstable. Try
to draw them both and classifu them.

@@@@@@
@@@@@@
Hop; 1-,..,, intol-cd the exercise.

Andlinally...
Send in your solutions to COW 16 via emilrl to

clrmu@cs.uwp.edu.
By the time this column reaches you, the USA Cor-r-L-

puting Olympiad (USACOlwill havc sent its fir.r tran-r
to the Baltic Olympiad in Informatrcs, hclcl April 16-1 S

in Riga, Latvia. The team consrstcd oi sir hish school
stttdents chosen by their ranking ir-r tht irr-*r trr-o
Internet cornpetitions heltl in t1-re iall an{,1 \rilltcr 1rr- thc
USACO. The team rlentbers rrerc: Po-Shen Litl-r, 16,
from |arles Madrson \'L-morral Hrgl-r Schrtol -\laclisor-r,
Wisc.; Daniel \Vright, 1r, iront Lon{nt, rnt, Co1o.; Perc1.
Liang, 16, irom Nlountain Pointe High School, Phocnrx,
Ariz.; Reicl Barton, 15, irom Arhngton, Mass.; Kcnn
Hamrn, 1(r, from The Albany AcaCemy, Albany, N.Y.;
and fon McAlister, 17, from Langham Creek High
School, Houston, Tex. Congratulations to them all.

You can rneet thc tearn and see how they ranked at
the Baltic Olympiad by going to the USACO wcb site
at http://www.usaco.org. Click on 1999 and then the
Baltic Olympiad. You can also view the type of program-
ming problems they faced.

If you arc interested in learning morc about erny in-
ternational science or mathematics olympiad, go to
http://olympiads.win.tue.nl/. O
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Yolr.e're deci.dircg utFtlr.Ft degree you wa.rrf to work taward in college,
but en"ce 3rou'tse ea.r'rued it, do you kreorw wlcat yoti care do witFt it?
FI*e Sioa,;n Cs.rcer C*rnerstone $erdes Eets ye*s ex$Eore uari'ed
c*Greer p*tlts *pen fe f&ose uitb u.n engireeerireg, m.atbe*tatics or
p&ysieal seclercce degree. Il*e scrdes' *.ine CEI-Ram.s cr uideata,pes
offer;ffirsf-Fr*md e*reer pe,th &"*caufffs, sraf*ry da.ta, employers c.nd
Ifre&s ta tF**r*sarads *f web sites wit** apdated. resot*rces. View
prqflles w it lt h un dreds ffi *qfession*Is w trt o c *re d:idt1l dfsczss u, b at
tkey da i* ff.n €$uera.ge da.y" ds& yeu*r princip*.E ar bngk sel**ol
cee*r*setr*r to order a sef ;for" yo&r l:ibra,ry or guid*ffice ce&ter, or
*rd.er y$ur *ultr sef fedqyf
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tsexed s*t $f I CD-R*Ms - $350
Both boxed sets - $500
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toll free 87?-SCCS-INFO for a hrochure.
Vis it www.careercornerstone.org
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