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Veldzquez Painting the Infanta Margarita with the Lights and
Shadows of His Own Glory (1958) by Salvador Dali

AVE YOU EVER WONDERED WHAT IT MIGHT BE LIKE

to see the world through the eyes of an artist? Judging from
this painting, one might conclude that Dali viewed the world
through prisms and pinholes. We know that the range of pat-
terns created by the interplay of light and objects can range
from spectacular prismatic rainbows to more subdued black-
and-white designs. Dali, however, sees no distinction when
he combines the two in this portrait of Velazquez painting the

Infanta Margarita. While Margarita has been exploded into her
chromatic elements, Veldzquez is left standing beneath an
alternating overlay of shadow and light. To the trained eye,
these patterns reveal something about the true nature of the
elements involved, and maybe this was Dali’s intention. Of
course, we may be reading too much into the painting. To find
out what truths can be discerned from similarr ns of light
and dark, see “Diffraction in laser Ii
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BRAINTEASERS

Just for the fun of i

B256

Parenthetical puzzler. Place parentheses in the expression
2+:2-3+3-4+4-5+5toobtain a number greater than 39.

B257

Tripartite equality. The shaded figure shown is half of a regular hexagon.
Cut it into three congruent parts.

B258

Rectangulation. A large rectangle is divided into several smaller rect-
angles. The areas of some of them are shown. Find the area of the
rectangle labeled with the question mark.

B259

Triangulation. All sides of triangle ABC are 1 cm long. Point D lies 7 cm
from point A. Find the distances from point D to points B and C if it is
known that these distances, as expressed in centimeters, are integer
values.

B260

Load within a lode. Imagine that you descend into an extremely deep
mine with a friend. You carry a balance set at equilibrium by a 1 kg
mass. Your friend holds a spring scale from which a 1 kg mass is sus-
pended. Will the readings of these scales differ near the bottom of the
mine!

ANSWERS, HINTS & SOLUTIONS ON PAGE 53
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Gonvection and
tisplacement currents

Exploring the nature of electricity

by V. Dukov

HAT IS ELECTRIC CUR-
rent? Usually this question is
answered as follows: It is a
directed motion of electric
charges in a conductor. However,
this is true only to a certain degree.
To know the entire story, let’s recall
how this notion appeared in science.

In 1800 the Italian physicist
Alessandro Volta (1745-1827) dis-
covered a method to produce direct
current using an emf source com-
monly referred to as a galvanic cell.
There was a hypothesis at that time
that treated electricity as a massless
liquid capable of penetrating bodies
via the tiniest pores. Naturally, elec-
tric current was considered to be the
tlow of this liquid along a circuit.
Physics marched a long way before
it was established that the real mov-
ing objects inside conductors are
charged particles.

The first step in this direction
was made by Michael Faraday
(1791-1867], who showed that elec-
tric current in electrolytes is due to
the motion of ions. An ion is an
atom that has either a surplus or de-
ficiency of electric charge. There-
fore, every ion is characterized by
two values: mass and electric
charge. In electrolysis an ion trans-
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fers its charge to an electrode and
adheres to the electrode, a process
known as electroplating. Many ex-
periments made by Faraday showed
that ions of the same valence carry
the same amount of electric charge.
Many years later, this fact led
Hermann von Helmholtz (1821-
1894) to the conclusion that an el-
ementary charge existed. The fact
that this elementary charge is car-
ried by the electron was discovered
only at the end of the nineteenth
century.

Note that if Faraday had postu-
lated the existence of an elementary
charge (electron) and two conserva-
tion laws (for energy and mass), then
he could have obtained his two ba-
sic laws of electrolysis theoretically.
In reality, he discovered them after
many years of hard work.!

Imagine N ions moving in an
electrolyte. Each of them carries a

A postulate is a very efficient tool
for learning a subject (such as
geometry), but it is a dangerous
instrument for discovering the laws of
nature. Look what Bertrand Russell
(1872-1970) wrote: “The method of
postulating has many advantages.
They are the same as the advantages
of theft over honest toil.”

FLOWING CHARGES

charge of Ze, where Z is the valence
and e, is the elementary charge.
Then the mass of the ions plated on
the electrode will be

M = Nmy,, (1)

where m, is the ion’s mass. These
ions transfer the following amount

of electric charge to the electrode:
q = NZe,, (2)

Dividing equation (1) by equation (2)
yields

m
M=—1 g

Zod )
Substituting m,/Ze, with k, we get
Faraday’s first law:

M = kq.

Now we solve this equation for k
and multiply and divide the above
formula for k by the same factor,
Avogadro’s number N,:

reNamg o 1lp )
ZegNy ZegNy FZ

where | is the molar mass of the
material and F = N, e, is Faraday’s
number. Thus we obtained Faraday’s
second law. Therefore, Faraday’s laws

Art by Vasily Vlasov
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of electrolysis are underlain by the
conservation laws and the existence
of an elementary charge.

Equation (3) shows the physical
meaning of the Faraday electrochemi-
cal equivalence of a substance: The
mass of the plating depends on the
charge-to-mass ratio of the ions.
Equations (3] and (4) show that to
obtain a larger mass one must take
the substance with greater molar
mass and smaller valence.

The ratio of a body’s charge to its
mass is called the specific charge—
a very important value. Let’s illus-
trate the tremendous difference in
specific charges of elementary par-
ticles and macroscopic bodies. For a
“light” particle such as an electron,
the specific charge is

fo M =9.10" C/kg
m, 9.1.107! kg '
while for the “heavy” proton it is

Lo 2108,
my,

To appreciate the immense differ-
ence between these values, let’s cal-
culate the specific charge of an alu-
minum alloy ball 1 cm in diameter
with a density of p = 2 - 103 kg/m3.
Its mass is

m=pV=4/3nrp
4.314
3

(10—2)3 -2-10% kg

=8-107 kg.

What charge can such a ball re-
tain? It is known that intense leak-
age of electric charge from the sur-
face of a body starts at an electric
field E, = 3 - 10° V/m. The electric
field generated by a sphere of ra-
dius r that carries an electric
charge ¢ is

B=—t &
47580 1’2

The maximum charge that can be
retained on this sphere is deter-
mined by the condition E = E,.
Therefore,
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Qmax :4TCSOI2EO

2
54-3.14~8.86-10‘12(10‘2) .3.10% C
=3.10°% C

Accordingly, the maximum specific
charge of the aluminum ball is

dmax _ 3:10° C
m 8107 kg

=4.10"° C/kg.

We see that the proton’s specific
charge is larger than that of the alu-
minum ball by a factor of 103!

Imagine that we try to generate
an electric current of 1 A using the
charged aluminum balls. By defini-
tion, I = gq/t. The charge of a single
ballis q,, so ¢ = Nq,, where N is the
number of balls. Thus, the electric
current is I = Nq,/t, where

N=Lo LAds gy
q 310°C

The traffic of balls must be so dense
that 30 billion of them cross a fixed
area every second! If the balls “flow”
in a tube, the tube’s cross-sectional
area should be

2
S=Nnr? =314-30-10° -(10-2) m>
=10* m?.

By contrast, a tiny wire a fraction of
a millimeter in diameter can carry
the same current, although it be-
comes red-hot. This phenomenon is
possible because the elementary par-
ticles (electrons, for example) have a
huge value of specific charge.

What is the nature of electric cur-
rent? It is created by the motion of
charged particles—that is, the par-
ticles move, not the massless charge!
Although we write I = gt, we con-
sider g to be the sum of the charges
of the particles that have a certain
mass. Therefore, electric current
should have certain mechanical
properties. These properties were
first observed by Tolman and Stuart.
A solenoid connected to a galvanom-
eter was quickly rotated and then
abruptly stopped. The galvanometer
showed a current corresponding to

the motion of negatively charged par-
ticles in the direction of rotation.
Such experiments made it possible to
measure the specific charge of the
particles, whose inertia produced the
electric current in the decelerating
solenoid. This value coincided with
the specific charge of the electron
found by its deflection in electric and
magnetic fields.

The experiments of Tolman and
Stuart were the first to show the
existence of free electrons in metals.
Because of their weak linkage to the
crystal lattice, the electrons contin-
ued to move due to their inertia af-
ter the solenoid was abruptly
stopped, and thus a short-lived elec-
tric current was generated.

Electric current in electrolytes is
the double flow of ions moving in
opposite directions. The ions have
the same size charges but their
masses are different. For example, in
a copper sulfate solution the current
carriers are Cu*? and SO, ions. The
atomic mass of a copper ion is only
63.5, while the mass of a sulfate ion
is appreciably greater: 32.1 +4 - 16 =
96.1. This difference can be observed
in a simple experiment, which can
be carried out in a home lab.

A jar with two electrodes is filled
with a copper (II) sulfate (also known
as blue vitriol) solution, and some
small pieces of paper are sprinkled
on the liquid’s surface. Then, a di-
rect current source is applied across
the electrodes. Finally, a permanent
magnet is placed under the jar (fig.
1]. Behold—the pieces of paper begin
to rotate! This phenomenon is ex-
plained by the Lorentz force of the
magnetic field, which deflects the

A

Figure 1




ions. In turn, the deflected ions push
the water molecules, so the entire
bulk of the solution starts to rotate.
The pieces of paper on top of the so-
lution make this effect visible. The
Lorentz force deflects both the Cu*?
and SO, ions. However, the result-
ing rotation of the liquid is deter-
mined by the heavier particles—in
this case, the SO, ions—because
they more than cancel the counter-
rotation of the lighter Cu*? ions.
Changing the direction of the cur-
rent or the polarity of the magnet
causes the rotation of the solution to
change direction.

A similar effect takes place in the
case of leakage of electric charges
from a spike. The electric charge
density is known to increase drasti-
cally in the direction of a sharp
point, so a strong electric field is
generated in its vicinity. This field
ionizes the neutral molecules in the
surrounding air. If the sharp point is
positively charged, then electrons in
the air flow into the spike and posi-
tive ions move away from it. The
flow of these positive ions carries
the neutral air molecules with it—
just as the stream of ions in the elec-
trolyte moves the water molecules.
The resulting phenomenon is
known as “electric wind,” which
was demonstrated in the middle of
the eighteenth century by Benjamin
Franklin, who blew out a candle
with such a wind.

Historically, Franklin’s experi-
ment with blowing out a candle led
to the notion of convection currents.
It was considered that in parallel
with the ordinary convection (that
is, the flow of neutral particles) there
existed an electric convection, or a
stream of charged particles. Indeed,
further studies showed that electric
currents in metals, electrolytes, and
gases are flows of charged particles.
Since these particles have masses,
there is no principle difference be-
tween common convection and
electrical convection.

In 1875 Hermann von Helmholtz
wrote: “Tuse this word [convection]
in the same sense as in thermody-
namics, in order to denote the propa-
gation of electricity by the motion of

6

0] o
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charged bodies.” Helmholtz raised a
very important question: Can the
motion of charged macroscopic bod-
ies be treated as a convection cur-
rent? The answer to this question
could be obtained in an experiment
analogous to that performed by the
Danish physicist Hans Christian
Oersted, who in 1820 found that
electric current carried by a conduc-
tor deflected a nearby magnetic
needle. The needle was affected by
a force proportional to the strength
of the electric current. The direction
of this force depends on the direc-
tion of the current.

Helmholtz proposed to his pupil
Henry Roulend to carry out the fol-
lowing experiment: charge a disk,
place a magnetic needle near it, and
then spin the disk. If the rotation of
a charged disk is equivalent to a cur-
rent (in a closed circuit), then it
should generate a similar magnetic
field.

Indeed, Roulend observed deflec-
tion of the magnetic needle, but the
experiment was not easy. As we
pointed out, macroscopic bodies
cannot “transport” great charges. So
Roulend had to find the magnetic
effect of a very small current.

Thus, currents in any substance,
fluid or solid, are convective in na-
ture. Can an electric current “flow”
in a vacuum where no particles of
any kind are available? Consider an
experiment with alternating cur-
rent and a capacitor (fig. 2). When
the circuit is closed, the ammeter
shows a current. Experiments with
various capacitors and different fre-
quencies of alternating current
showed that the strength of the cur-
rent in this circuit is proportional
to the frequency of oscillation gen-
erated by the emf source and to the
capacitance. This experiment was
known as early as the nineteenth

Figure 2

century. It was explained as fol-
lows: The emf source (generator)
forces the charged particles to oscil-
late in the conducting wires, so
they “run” from one plate to an-
other, while nothing occurs be-
tween the plates (in the vacuum).
This explanation considered the
current as the mechanical motion
of the charged particles.

The outstanding English physi-
cist James Clerk Maxwell (1831-
1879) introduced a new concept.
The moving charged particles are
inherently coupled with electric and
magnetic fields. Changes in electric
current evoke changes in the fields.
Faraday discovered the phenomenon
of electromagnetic induction, which
according to Maxwell is the genera-
tion of an electric field by a varying
magnetic field. Being confident of
the symmetry of electrical phenom-
ena, Maxwell surmised that an alter-
nating electric field generates a mag-
netic field.

In the circuit (fig. 2), the electric
field changes between the
capacitor’s plates. According to
Maxwell, this process generates a
magnetic field. Since a magnetic
field can also be produced by an elec-
tric current, the process that occurs
between the capacitor’s plates can
be interpreted as a flow of a particu-
lar electric current. There are no
“ends” of the current in this circuit!
If a circuit is opened and the “gap”
is filled with a dielectric or vacuum,
the current will push its way on, but
its nature will be different.

Maxwell baptized this type of
electric motion “displacement cur-
rent.” Maxwell supposed that space,
which we consider “empty,” is in
reality filled with a material medium
of a particular kind—ether. This
ether had a cellular structure (similar
to a crystal lattice). The cells could be
deformed under the action of an elec-
tric field—that is, they could be dis-
placed just like the charged particles
in a dielectric body.

According to Maxwell, electric
current can be evoked both by con-
vection and by displacement. In the
case of convection current, its value
is proportional to the velocity of the

QUANTUM/FEATURE 1




charged particles. The displacement
current is determined by the rate of
displacement, which is naturally
proportional to the frequency of os-
cillation. The higher the capaci-
tance, the greater the volume of
ether (for a constant distance be-
tween the plates), which thus con-
tains more cells and demonstrates a
greater effect of displacement. Such
was the physical model.

In mathematical terms Maxwell
expressed his ideas as

This says that the displacement
current is proportional to the area
S at the opening of the circuit (that
is, the area of the capacitor’s plate)
and to the rate of change of the
electric field. The constant
g, = 8.8- 10712 F/m is known as the
permittivity of free space.

Assume that the emf source is a
generator that produces electric cur-
rent at the industrial frequency of
60 Hz. Thus, the voltage across the
capacitor’s plates varies as
v =V, sin ot, where V, = 120 V.
What should the area of the
capacitor’s plate be to obtain a cur-
rent of 1 A in the circuit if the dis-
tance between the platesis d = 1 m?

As we remember, E = v/d. There-
fore,

gpSmV,
IO =
d
and
Sz-IQd-ES-IO6 m? =3-10'? mm?.
€q0Vg

If the capacitor is taken away, the
current between the ends of the
wires (they have a cross-sectional
area of 1 mm?) will be only
3.10713 A If the distance between
the ends of the wires is decreased
to 1 mm, the current will increase
by 103 times and reach the value of
a few ten-billionths of an am-
pere—virtually zero. In the same
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conditions we can get a current of
1 A by increasing the frequency of
oscillation to 10'! Hz, which cor-
responds to radio frequencies.

These calculations show that the
displacement currents become im-
portant only at very high frequen-
cies of oscillation. Therefore, these
currents are completely ignored in
electrical engineering. By contrast,
just the opposite takes place in radio
engineering, where the displace-
ment current plays the major role.

We always try to imagine a physi-
cal process clearly. What is electric
current? The first association is this:
The current is the displacement of
charged particles along a conductor,
or their directed motion. Yet, this
mechanical model is only a rough
approximation of reality. So, one
should be reasonably cautious when
using such a model.

Let’s delineate the concept of
electric current. The important
thing is that moving particles have
electric charge, so they are sur-
rounded by an electromagnetic field.
This field is described by two com-
ponents, the vectors E and B. In the
case of direct current, the electrical
component E is not detected by de-
vices. Indeed, in every segment of a
current-carrying wire there is an
equal number of positive and nega-
tive charges, and their total electric
field is zero. It is only the magnetic
component B that can be detected
by devices in this case (Hans Chris-
tian Oersted was first to demon-
strate this).

By contrast, in the case of alter-
nating current both components of
the electromagnetic field manifest
themselves, and in this case induc-
tion plays a major role: Variation of
the electric component generates
the magnetic field and vice versa.
Thus, the two fields generate each
other, and this mutual generation
makes it possible for the double field
to live separately from its parent
electric current in the conductor.
Indeed, the alternating electromag-
netic field breaks away from a cur-
rent-carrying wire (called the trans-
mitting antenna) and travels in
space at the velocity of light. This

process is known as electromagnetic
radiation.

Let’s write Maxwell’s formula
again, but without the proportional-
ity factor ,S:

dE
dis & 7
dt

The derivative dE/dt represents the
rate of change of the electric field.
The quicker E changes, the greater
the displacement current. However,
changes in E generate the magnetic
field B. Therefore, the larger the dis-
placement current, the greater the
magnetic field.

Now, what takes place with the
usual convection current? The larger
the current, the greater the magnetic
field. We see the same proportional-
ity between the electric current and
the magnetic field.

Therefore, when considering
electric current of any kind, we
must keep in mind the electromag-
netic field generated by it. We must
also remember what type of current
flows in a particular case. If the cur-
rent is constant, the key role is
given to the mechanical motion of
the charged particles in a conduc-
tor—that is, to the process of con-
vection. When the current is alter-
nating, the major actor is the
electromagnetic field, and its role
increases as the frequency of elec-
tromagnetic oscillation. (@)

I

Quantum on electromagnetic
phenomena:
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THE NEW CUBISM?

Painting the digital world

Pixels become voxels when a dimension is added

by Michael H. Brill

OME FASCINATING RELATIONSHIPS CAN

be found between areas and perimeters of figures in

a plane, and also between volumes and surface ar-

eas of solid objects. The relationships are not al-
ways intuitively obvious, but can be appealing and
simple. They can be visualized in the context
of comparing the amount of paint needed to
cover two shapes that appear much like
each other.

This article introduces such relation-
ships by looking at smooth objects and
approximations to these smooth ob-
jects that are made out of a latticework
of tiny identical cubes. (Maybe other
such approximations will occur to the as-
tute reader.] The subject we are about to
discuss is perhaps not so exciting as
fractals® but though tame, it is still inter-
esting, much as the game of checkers is still
interesting even though it is not so intricate
as chess.

Painting circles and spheres

Let’s start in two dimensions by drawing a circle
on a piece of graph paper. We can imagine the graph
paper as an array of pixels (picture elements) on a dis-
play screen, and thus the graph paper is a sort of “digi-
tal world.” In figure 1, the circle is five box-widths in
radius (r = 5). Within the circle, the graph-paper squares
that lie strictly inside the circle are darkened.

We can see that the area of the circle is nr? = 257 and

ISee B. Mandelbrot, The Fractal Geometry of Nature, W.
H. Freeman, 1983.
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that the area of the darkened squares is 60. It is no sur-
prise that the area of the squares is smaller than the area
of the circle. Somewhat more subtle is the comparison
of perimeters. The perimeter of the darkened area is 32,
which is larger than the perimeter of the circle (2nr
= 10m). By the way, we can imagine a special paint for

perimeters that is analogous in two dimensions to the
paint for surface areas in three dimensions.

What happens to the areas and perimeters when
the graph paper is made finer and finer? The dark-

ened-square area clearly gets larger relative to
the area of the circle and actually approaches
that area (a behavior familiar in calculus).
But what of the perimeter? What is its
limiting value? As an aid to arriving
at an answer, consider the follow-
ing theorem.

Theorem: Given any region
on the graph paper bounded by a
smooth convex curve, no matter
how irregular its darkened-
square region may be, the perim-
eter of the darkened-square region is exactly
twice the sum of its (maximum) length and its
(maximum) width. In the case of darkened squares in

the circle, this distance is just four times its width.

Proof: Question 1. Prove this theorem. (Answer on p.
52).

This remarkable relationship does not change in the
limit as the squares get very small, in which case the
width of the dark area is just the diameter of the circle,
or 2r (in tiny-box-width units). So the perimeter of the
dark area must be 8r. Meanwhile, the perimeter of the
circle (in the same units) is 2nr. The ratio of these num-
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Figure 1 Figure 2

bers (dark-area perimeter/circle perimeter) is 8r/2nr = 4/x.
We call this number the perimeter surplus, since the
number is greater than 1. As the squares got smaller,
that ratio of areas went from 32/10x to this greater lim-
iting value. Clearly, the unfilled region in the circle be-
came less important as the squares became smaller, and
the number of zigs and zags in the perimeter became
more important.

Having gained some insight into perimeters in two
dimensions, let’s proceed to three dimensions. In this
case the “real world” is a set of objects whose surfaces
are smooth on a sufficiently small scale. The “digital
world” is a three-dimensional mosaic of tiny identical
cubes (called voxels) analogous to the square pixels we
defined earlier for two dimensions. The voxels are tiny
on any chosen scale. Each “digital-world” object X’ is
the maximal subset of these voxels that lies inside the
corresponding “real-world” object X.

We want to compare the surface area of X’ to that of
X, using the ratio of these areas—call it the area surplus.
(Clearly the area surplus depends on the shape of X and
on its orientation with respect to the edges
of the voxels, but not on the size of X.) More
picturesquely: What fraction more paint do
we need to cover X’ than to cover X?

Question 2. In particular, what is
the area surplus of a sphere?
(Answer on p. 52). Hint: Use
the example of the circle in
two dimensions, and
also that the surface
area of a sphere is
4nr?.

Figure 3

Maximum and minimum painttor the digital world

How can we find the three-dimensional shapes that
have the minimum and maximum area surplus? The an-
swer is not very difficult.

Let’s go back to two dimensions for a moment and
draw another figure on graph paper, this time a square
(fig. 2). Let the square be aligned with the rulings of the
graph paper, and let it have a width that is an integer
multiple L of a graph-paper box. (In figure 2, L = 5.) Then
the darkened area {(made of graph-paper boxes) exactly
matches the big square, and the perimeter is in each case
41 =20. The ratio between the perimeters is 1, and this
number is the same as the number L gets very large.
Therefore, the perimeter surplus is 1. We can see that
the perimeter surplus cannot be less than 1, so the
square aligned with the graph paper has the minimum
perimeter surplus.

Now draw a square turned 45° to the graph paper, as
in figure 3. In this case, the diagonals of the square are
aligned with the graph paper, and the diagonals are L’

=10 pixels long. The darkened region has perimeter 32,
which (as noted before) is four times the width of
the figure (4L, where L = 8). However, the big
square has perimeter 41’/+/2 = 20~+/2. The ra-
tio of these perimeters is (4/5)v/2 . If the size of
the big square increases indefinitely (L be-

comes large), then the darkened-area width

L becomes fractionally closer to the diagonal

L’ of the big square. In the limit, the perim-
eter of the darkened region (4 times its
width) becomes 4L’, and the perimeter of
the big square is 4L’/+/2 . The perimeter

surplus is the ratio of these numbers,
or /2. This turns out to be the maxi-
mum possible perimeter surplus.

To see the maximality of /2, con-
sider any almost-linear “side” of a two-di-

mensional object X with length s and unit-
length perpendicular vector n = (n, n,) in
pixel coordinates. The length of the corre-
sponding “side” of the pixel approximation
X’ is the sum of the projected lengths along
the two pixel-axis viewing directions from out-
side the object X’. This sum is s times the sum of the
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components 1, in the pixel coordinate directions. A
component 1. of a unit vector n is sometimes called a
“direction cosine,” because its value is the cosine of the
angle between the i-th coordinate unit vector and the
vector n. Then the sum of the direction cosines is maxi-
mized when they are equal (and thus equal to 1/+/2).
Therefore, the maximum perimeter surplus of the facet
is 2/4/2, or 4/2 . Note that this proof does not depend on
the convexity of the object that is approximated by a
square, because the argument applies to each local part
of the object’s boundary.

Now let’s go through the exercises in three dimen-
sions.

Question 3. What are the minimum and maximum
possible area surpluses? Give examples of objects that
produce these extremes.

Question 4. Generalize to (N - 1)-dimensional bound-
aries of N-dimensional objects.

After you have gone through this exercise, it should
be clear that the “digital-world” approximation to a
smooth object is somewhere between a “flat-planar
facet” approximation and a “fractal” approximation. For
a “flat-planar facet” approximation, the facets are orga-
nized each with the average inclination of the piece of
surface being approximated. As the facets get smaller on
a smooth object, the area of facet approximation be-
comes as close as you like to the area of the original
object. Thus the area surplus of the “flat-facet” approxi-
mation is 1.

On the other hand, suppose you approximate the
original surface by a fractal—a surface made out of
bumps, in which each bump has on it smaller bumps
of the same shape. In that case, the area is infinite, and
thus the area surplus is also infinite. The digital world,
tricky as it is, is not nearly so weird as the world of
fractals, which has been an object of fascination in
mathematics during the past generation or so. (@]
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SOLUTIONS
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member of the techni-
cal staff at Sarnoff
Corporation in
Princeton, New
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Physics

Gone with the wind. Measuring
wind velocity in a sandstorm using
conventional devices is difficult (and
dangerous), because such storms are
usually relatively small and con-
tinuously moving. Therefore, an
enterprising student proposed mea-
suring the wind velocity with a por-
table radar, which is possible be-
cause a sandstorm carries many
small particles that reflect radio

A

Af (Hz)

T T T T T T

5000

L L

-5000 0
Figure 1

waves at a frequency of f, = 1019 Hz.
The spectrum of the signal after re-
flection from the sandstorm is given
in fig. 1, where Af = f - f,. Find the
maximum wind velocity in the
sandstorm. (D. Kuptsov])

F257

Quicksilver plug. A small air col-
umn of height h = 76 cm is plugged
by a mercury column in a vertical

Figure 2

HOW DO YOU
FIGURE?

Ghallenges

tube of height H = 152 c¢m (fig. 2).
The atmospheric pressure is 10° Pa,
and the temperature is T, = 17°C. To
what temperature T, must the air in
the tube be heated to drive all the
mercury out of the tube? (E. Butikov,
A. Bykov, and A. Kondratiev)

P258

Mote in a capacitor. A tuned cir-
cuit consists of an induction coil and
a parallel-plate capacitor C with plate
separation d. The natural frequency
of oscillation of the circuit is (. What
will the value of the natural fre-
quency be if a point-charge g with
mass m is placed between the plates?
Neglect gravity, edge effects, and elec-
trostatic image forces. (A. Andrianov
and D. Kuptsov)

P259

Rotating dipole. An electric di-
pole is made of two particles with
the same mass m. The particles are
attached to the ends of a rigid
weightless rod of length 1. They have
electric charges +g and —¢. This di-
m, —q

m, +¢q

Figure 3

pole is rotating with an angular ve-
locity in the horizontal plane around
the vertical axis that passes through
the dipole’s center (fig. 3). At some
time, a vertical magnetic field B is
turned on. Describe the steady-
state motion of the dipole. (S.
Zdravkovich)

P260

Refraction in a ball. A narrow
beam of light passing through the
center of a glass ball of radius R is
focused at a distance 2R from its
center. Find the refractive index of
the glass. (S. Gordyunin and P.

Gorkov]|
M256

Natural powers. Find a natural
number a such that 24 is a perfect

square, 3a is a perfect cube, and 5a
is a perfect fifth power.

M257

Rooting around. Find the sum of
all the real roots of the two follow-
ing equations:

X3 +6x2+10x-15=0

and

x5+ 6x% + 10x + 23 = 0.

M258

Nested radicals. Solve the equa-
3
tion \J'Z +42-+2+x =x.

M259

Pyramid ensphered. A triangular
pyramid is given such that all plane
angles at one of the vertices are
right. It is known that a point exists
such that its distance from the given
vertex is 3, and the distances from
the other vertices are /5, /6, and
A7, respectively. Find the radius of
the sphere circumscribed around
this pyramid.

CONTINUED ON PAGE 23
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Gore dynamics

Why does a transformer need a core?

by A. Dozorov

HE SIMPLEST TRANSFORMER

(fig. 1) has two coils wound

around an iron core. The pri-

mary coil is connected to a
source of alternating voltage. A re-
sistor (the load) is connected to the
secondary coil. Both coils are
threaded by the same alternating
magnetic flux generated by the alter-
nating current of the source. An in-
duced emf

e, =-n b
1 LA

arises in the primary coil that has n,
turns. Here A® is the change in the
magnetic flux threading a turn dur-
ing period At. An emf is also gener-
ated in the secondary coil, and it

equals
)
2T A

Let’s assume that the secondary
coil is not connected to any load. In
other words, we consider the idle

secondary
coil

primary
coil

Vg sin wt

Figure 1
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running of a transformer. We also
assume that the ohmic resistance of
the primary coil is very small com-
pared to its inductive impedance.
According to Kirchhoff’s second
law, the algebraic sum of all emfs in
a closed circuit equals the sum of
the potential drops in various sec-
tions of this circuit:

Here v, is the emf of the voltage
source, 1, is the current, and R, is the
ohmic resistance of the primary coil.
Since R, is very small (R, — 0),
v,+e =0, or

v, =-e,.

When the secondary coil is dis-
connected (i, = 0), the potential drop
across its leads will be

V, = —€,.

Thus, the voltage ratio is v, /v,
= e,/e,, which in the terms of effec-
tive (root mean square) values looks
like

Vi_éy _m
v, ¢ n 1)

This equation poses the question
of why a transformer needs a core.
Really, the voltage ratio depends
only on the number of turns in each
coil. Paradoxically, the parameters
of an iron core are absent from equa-
tion (1). Can these parameters be

DOWN TO THE WIRE

chosen arbitrarily? Perhaps a trans-
former needs no core at all? Under
what conditions can this be true?

To crack this puzzle we must
look more attentively at our math-
ematical manipulations. In deriving
equation (1) we tacitly supposed that
the magnetic fluxes threading
through the primary and secondary
coils are equal. However, this as-
sumption may not be true: Some
portion of the magnetic flux gener-
ated by the primary coil may not
pass through the secondary coil,
which should degrade the efficiency,
performance, and technical quality
of the transformer.

Perhaps the main role of the core
is to decrease the scattering of the
magnetic field? However, there are
many other (and much easier} ways
to keep the magnetic field inside a
transformer. For example, one can
attach the secondary coil just above
the primary coil, or attach both of
them to a toroidal (donut-shaped)
coil. The same question arises: Why
does a transformer need a rather
heavy iron core, in which, by the
way, some energy losses are unavoid-
able, because of eddy currents and
hysteresis? In short, a core has many
deficiencies. Why do we need it, af-
ter all?

As a rule, the characteristics of
real devices are inferior to those of
the ideal devices described by math-
ematical models (particularly by
simplified ones). This is also true in

Art by Pavel Chernusky
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the case of transformers. When can
a transformer reasonably be consid-
ered an ideal one? First, let’s find a
qualitative answer. In a transformer
the electromagnetic energy passes
from the primary to the secondary
coil. In an ideal device, the energy
transferred to the load (connected to
the secondary coil] equals the energy
taken by the primary coil from the
source. We can speak here of power
instead of energy. It is also desirable
to have the maximum power, which
corresponds to the power coeffi-
cient cos ® = 1. Mathematically
these requirements are written as

Volfo1 = Vozlolr

where the index 0 corresponds to the
amplitudes of the currents and volt-
ages. This condition modifies equa-
tion (1) in the following way:

Vo, 1o, _n,
Vo, 1o, m

2)

Note that in contrast to equation
(1), equation (2] accounts for current
flowing in the transformer’s coils.
Now let’s calculate the currents Io,
and Iy, in the case when the trans-
former is running with a load. To do
this, we need the notions of induc-
tion and mutual induction.

The magnetic flux @ that threads
through the circuit of area S oriented
perpendicular to the circuit’s plane is

® - BS, (3]

where B is the magnetic field
strength. When the magnetic flux is
generated by an electric current, B is
proportional to the strength of this
current [

®o<Bec I, or ®=1LI. (4)

The proportionality coefficient L
is called the inductance of the cir-
cuit. What is this parameter deter-
mined by?

Consider a long coil with a large
number of turns (a solenoid). The
magnetic field generated by a cur-
rent-carrying wire is always propor-
tional to the strength of the current,
but it also depends on the wire con-
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figuration, the location of the point at
which the field is measured, and the
magnetic properties of the surround-
ing medium. Inside a solenoid the
magnetic field is homogeneous. We
can deduce that B = uin/l, where p is
the magnetic permeability, n is the
number of turns in the solenoid, and
1is its length. Plugging this formula
into equation (3) yields

2
<I>:BSH=MIJ1 S.

By comparing this equation with
equation (4) we get the inductance of
a solenoid:
2
LRSS (5]
I
In a similar way, the concept of
mutual induction and the correspond-
ing parameter of mutual inductance
M are introduced for two circuits. In
our case it is mutual induction of the
primary and secondary coils of the
transformer. When the secondary coil
is connected to a load, an electric cur-
rent flows in the secondary circuit.
We note its effective value as I,. Si-
multaneously, the current in the pri-
mary coil changes. Now its effective
value I, differs from the current flow-
ing in the idle transformer. The mag-
netic flux @, generated by the primary
coil and which threads through the
secondary coil is proportional to the
current [, in the primary coil:

Similarly, the magnetic flux @,
threading through the primary coil
and generated by the secondary coil
is proportional to the current I, in
the latter coil:

(DIOCIZI or q)l :MIZ

The coefficient of proportionality
M (mutual inductance) is the same
in both equations, and it can be ob-
tained in the same way as the induc-
tance of a solenoid:

M= W n, S .

] g

Expressions (5) and (6) result in

n n
M="2[1 =217 .
o 1 7, 2 (7)

Note that there is only one mag-
netic field in the transformer core,
but mathematically it can be subdi-
vided into two parts. The total mag-
netic field is almost entirely deter-
mined by the primary coil and the
voltage of the source to which it is
connected. However, it is convenient
to consider the individual compo-
nents of the magnetic fields gener-
ated by the currents I, and I,.

Let’s continue our story about a
transformer running with a load.
First, we write Kirchhoff’s second
law for the closed primary circuit,
and then we do the same for the sec-
ondary circuit. In the primary circuit
(fig. 1) the resistance is extremely low
(R, = 0), so the algebraic sum of all
emfs in this circuit is zero. One emf
in this circuit is the applied voltage
v, = V, sin ot, and the other two emfs
result from induction. One of them
is the self-induction emf e,” gener-
ated by the alternating current 1,.
Another emf (e,”) results from mu-
tual induction. It is generated by
the current i,, which produces an
alternating magnetic flux in the
primary coil. Bearing in mind equa-
tion (4), we get

Al Al
e]=-L—L=-pM—L,

At At
where

p=—L

I
and
7 Ai
ey =- A—tz .

Thus, for the primary circuit we
have:

.
V,sinot - pMEL_pA2 _ g, (g)
At At

There are two emfs in the second-
ary coil: the self-induction emf

ALy

62,=—L ﬂ_ 1

2 At D Al

and the mutual induction emf



6 7 _ Ail
2 At

For the sake of simplicity, the
secondary coil is connected to an
ohmic load with resistance R.

Therefore,
1. Al Al
M= _p=

= Ri,.
p At At D)

Solving the system of equations (8)
and (9) is the final answer to the
problem of how a transformer
works. However, these equations
are not very simple (they are called
“differential”), because they contain
the rates of changes of the unknown
values (A7, /At and A7, /At). Still, let’s
try to solve them.

Because the voltage applied to the
primary coil is a sinusoid function of
time, it is natural to suppose that
both currents in the transformer vary
according to the same sinusoid law,
although with various phases and
amplitudes. So, we seek the currents
in the form i, = A sin (ot - o) and
1, = B sin (ot - B), where A, B, o, and
B are constants. The rate of change of
the first current is given by

Aip it +At) -1 (t)
At At
sin[m(t +At) - oc] —sin(ot - o)
At

A . oAt At
=2—sin——cos| Wt —o.+— |.
At 2 2

Making At infinitesimally small, we
may use the approximate formulas

. At
Sin——

and
At
cos((ot —o+ —i—) = cos(ot — o).

Thus,
. Al
lim —L = Awcos(ot - a).
At—0 At

Similarly,

. Al
lim —2 = Bo cos(wt — B).
At—0 At

Now equations (8) and (9) become
the trigonometric equations

Vp sinot — pMAw cos(wt — o)

— MBw cos(wt —f) =0, (8a)
~L MBw cos(wt — B)
p
— MA®cos(wt — o) (9a)

= RBsin(wt - B).

Each of these equations can be
rewritten in the form

asinot + bcoswt =0, (10)

with the time-independent coeffi-
cients a and b. Equation (10) is true
for any moment of time if simulta-
neously a = 0 and b = 0. Thus, two
equations make four:

[V, — pMAwsin o. — MBwsinf =0,
pAcoso + BcosB =0,

—iMB(osinB — MAwsino = RBcosf,
D

lMB(;) cosP+ MAwcoso = RBsinp.
P

After solving this system, we get the

amplitudes of the currents in the pri-

mary and secondary circuits as well

as the phase shifts of the currents rela-

tive to the applied sinusoid voltage.
Finally we get

:A_— ,
0, le Mo
107 =B &’
2 pR
oc=arctanp—R, B=mn
Mo

Does this solution meet the re-
quirements of the ideal properties of
the transformer (equation (2))? Let’s
check it. The ratio of amplitudes of
the currents is

I _A_1 | (pRY
IO2 B p\/ Mo

The latter expression coincides with
equation (2) only if the second term
under the radical tends to zero:

R RI
—=——>50
Mo uSmn,®

(note that the turns ratio p must be
constant). Therefore, a transformer
can be considered as ideal if

1. the magnetic permeability of
the core is large;

2. the frequency of the alternating
current o is rather high;

3. the numbers of turns in both
coils are large;

4. the resistance of the secondary
coil is low;

5. the length of any coil is small—
that is, they are wound tightly.

Each of these conditions should
be read as “sufficiently small” (large,
high, low, and so on). To make a
transformer similar to the ideal one,
the most practical requirement
must be met first. It is the choice of
core, which should be made of a
material with high magnetic perme-
ability. For a vacuum, u = u,, the per-
meability of free space, while the
ferromagnetic materials are charac-
terized by p = 10,000u,. The other
way is to increase the number of
turns, but this is not practical, be-
cause it leads to a drastic increase in
the size and price of the transformer.
An increase in the frequency of the
alternating current should be very
large in comparison with the indus-
trial frequency of 60 Hz (it must be
increased by several thousand times
for the efficient performance of
coreless transformers). Such an in-
crease creates a number of huge
technical problems. However, high
frequencies are widely used in elec-
tronic devices. You may guess that
there are plenty of coreless trans-
formers that are very close to the
ideal model transformer. (@]

Quantum on electromagnetic
phenomena: »

Kaleidoscope: “Electromagnetic
induction”, March/April 1991, pp.
32-33.

]J. Wylie, “Magnetic monopoly”,
May/June 1995, pp. 4-9.

A. Stasenko, “Magnet, charges,
and planets”, May/June 1997, pp.
4245,

A. Mitrofanov, “Can you see the
magnetic field”? July/August 1997,
pp- 18-22.
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Divide and conguer!

How to master divisibility

by Ruma Falk and Eyal Oshry

OWDO YOU TELL WHETHER

a given natural number is divis-

ible by, say, 9 (that is, without

leaving a remainder)? Although
your calculator may give you an in-
stant answer, there is still a concep-
tual and mathematical challenge in
being able to predict what it will tell
you.

Many of us have encountered cri-
teria for divisibility in the course of
our school years. For example, we
know that a number is divisible by
5if it ends in O or 5, and by 2 if the
last digit is even. A number is divis-
ible by 4 if the number consisting of
the last two digits on the right is di-
visible by 4, and it is divisible by 8
if the number formed by the last
three digits is divisible by 8. The cri-
terion for divisibility by 3 and 9 is
also well-known. A number is divis-
ible by 3 (or 9) if and only if the sum
of its digits is divisible by 3 (or 9).

Predicting divisibility by 11 is
more of a puzzle. The answer is fun:
You have to calculate a “zigzag
sum” of the digits, by alternately
adding and subtracting successive
digits of the number. The number is
divisible by 11 if and only if that zig-
zag sum (whether it is positive, zero,
or negative) is an integer multiple of
11. For example, consider the num-
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ber 7,031,673. The zigzag sum
is

7-0+3-1+6-7+3=11.

Indeed, as your calculator will tell
you, 7,031,673 = 11 - 639,243.

However, simple criteria are not
available for every possible divisor.
The number 7, for example, is noto-
rious for evading an efficient crite-
rion. The apparent unrelatedness of
the diverse criteria is intriguing, and
we may rightly resent having to
memorize a list of arbitrary rules. A
general principle for establishing
divisibility by any divisor at all
would be much nicer.

In the following, we present a very
basic and general criterion for the di-
visibility of a natural number N by a
potential divisor d, and show that the
familiar criteria are special cases of it.

A general criterion for divisibility

If N is a positive integer written
in decimal notation as a sequence of

n+ 1 digitsa,a, ,...a,a,a,(and
a, #0), then
N=a]10%+a, 1021+ .
+a,10 + a,,. (1)

We wish to know whether N is di-
visible by a given (natural) number
d. Clearly, if d > N/2, it will not di-

NUMBER CRUNCHING



vide N: It will be too big.

Take any number ¢ that has the
same remainder as 10 when divided
by d. We then say that 10 and c are
congruent modulo d, and write
10 = ¢ (mod d). Obviously, if d < 10,
then ¢ = 10 - d is congruent to 10
modulo d. It was the great discovery
of Carl Friedrich Gauss, the “Prince
of Mathematics,” that these con-
gruences for the most part follow the
rules of usual arithmetic. In particu-
lar, if we replace 10 by c in any poly-
nomial expression, the new value of
the expression will be congruent to
the old one, modulo d (we will not
have changed the remainder when
we divide by d).

Let us do this for expression (1).
We obtain

N=aci+a, "1+ ..
+a,c+a,(modd]. (2)

Now the statement that N is divis-
ible by d is just the statement that
N has remainder 0 when divided by
d, and this gives us our general cri-
terion:

N is divisible by d if and only if
act+a, " l+...+ac+a,
is divisible by d—that is, when
10 = ¢ (mod d).

(In fact, relationship (2) says a bit
more. It lets us know how to compute
the remainder when N is divided by
d, without actually dividing. We will
use this information later).

Examples and exercises

Problem 1. Show that the crite-
rion for divisibility by 9 follows
from relationship (2).

Solution. Note that 10 = 1 (mod
9). Thus we can let ¢ = 1 in (2], to
find that

N=a +a, (+...+a;+d;(mod9)

Problem 2. Show that the number
8,333,557,778,844,466,686 is divis-
ible by 9.

Solution. We find that the sum of
the digits of this huge number is
108. We could check directly that
108 is divisible by 9, but we can also
apply our trick a second time. That
is, 108 is divisible by 9 if and only if
1+0+8=9isdivisible by 9, and this
is surely true.

The technique of applying a divis-
ibility criterion repeatedly is an im-
portant one.

Problem 3. Find the digit x if the
number 1473x94 has remainder 5
when divided by 9.

Solution. The number

1473x94=1+4+7+3 +x+9+4[{mod 9)
=28 + x (mod 9)
=1+ x(mod?9).

Since this must be congruent to 5
modulo 9, x can only be the digit 4.

Problem 4. Show that the crite-
rion for divisibility for 3 follows
from relationship (2). Hint: Show
that you may take c to be 1.

Problems 5-8: (There may be
more than one answer to some of
these questions. If this is the case,
find all possible answers.) Find the
missing digit x if

5. 12345x9 is divisible by 9.

6. 12345x9 is divisible by 3.

7.12345x9 is congruent to 4 mod 9.

8. 12345x9 is congruent to 2 mod 3.

Problem 9. We know that a num-
ber is even (divisible by 2) if and only
if its rightmost digit is even. How
does this (very easy) divisibility cri-
terion follow from (2)?

Problem 10. Show that the crite-
rion for divisibility by 4 follows
from (2).

Solution. Note that 10=2 (mod 4).
We let ¢ = 2 in all but one of the
terms in relationship (2):

N=g2%+q, 281+ ..
+a,10 + a, (mod 4).

(Can you see which term is treated
differently? How can we justify this
treatment?) Then we note that
2"=0(mod 4) forn > 1. So N=g,10
+ a, (mod 4), which is exactly our
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criterion for divisibility by 4.

Problem 11. Show that the crite-
rion for divisibility by 8 follows
from relationship (2).

Problem 12. State and prove a cri-
terion for divisibility by 16.

Solution. A number is divisible
by 16 if the number formed by its
last four digits is divisible by 16.

Problems 13-24. Find all possible
values for the missing digits x and y
if

13. 3578x8 is divisible by 4.

14. 3578x8 is divisible by 8.

15. 945x34 is congruent to 2 mod 8.

16. 1435x9 is congruent to 5 mod 16.

17. 23y579x is divisible by 6.

18. x003561 is divisible by 18.

19. 345xy is divisible by 24.

20. 456x7y2 is divisible by 12.

21. 45x83y is divisible by 15.

22, 3014x5y is divisible by 12.

23. 9x2x1 has remainder 3 when
divided by 12.

24. 42673xy is divisible by 60.

To discuss divisibility by 11, we
must talk about remainders of nega-
tive dividends. While our remarks
are perfectly general, we will take
the divisor 11 as an example.

We know that 47 has remainder
3 when divided by 11—that is,
47 =3 (mod 11). If we add a multiple
of 11 to 47, it is not hard to see that
the result will still be congruent to
3, modulo 11 (try it). But we can also
subtract multiples of 11 from 47
without changing this remainder.
Indeed,

47 - 11 = 36,

47 - 22 =125,

47 - 33 = 14,
and

4744 -3

are all congruent to 3 modulo 11.
Let’s continue our subtractions:

47 55 =-8,
47 —B6.= 18,
&7 — 77 = =30,

We will agree to say that the
numbers -8, 19, and -30 are also
congruent to 3, modulo 11. It turns
out that this is a very convenient
way to speak of remainders of nega-
tive numbers. Indeed, in advanced

20 MARCH/APRIL 1999

work, one defines the statement
a=b(mod 11) to say that a — b is di-
visible by 11.

And now, as mathematicians
often do, we generalize the notion
of congruence to negative num-
bers by making the above observa-
tion into a definition. That is, we
say that a = b (mod d) for any two
numbers a and b if and only if a - b
is a multiple of d.

Using this idea, we can say that
10=-1 (mod 11), since 10— (-1)=11.

Problem 25. Prove the “zigzag
sum” criterion for divisibility by 11.

Problems 26-28. Find all possible
values for the missing digits x and y
if:

26. 143x59 is divisible by 11.

27.143x59 is congruent to5mod 11.

28. 3074x8y is divisible by 33.

Problem 29. For any three digits
A, B, and C, show that the number
ABCABC is always divisible by 7.

Solution. We have

ABCABC = 10°A + 10*B + 103C
+10%A + 10B + C.

Usingd =7, c=3(since 10=3 (mod 7)),
and relationship (2), we find

ABCABC =3°A + 3B + 33C +
32A + 3B + C (mod 7).

Therefore,

ABCABC = (3% + 1)(324
+3B + C) {mod 7),

but 3% + 1 = 28 is a multiple of 7.
This proves that ABCABC is divis-
ible by 7. Alternatively, we can
note that ABCABC = ABC(1001),
and 1001 = 7x11x13. So the num-
ber ABCABC is divisible by 11 (as
can be verified by applying the zig-
zag-sum criterion) and 13 (try our
general criterion with ¢ = -3} as
well.

Generalizing the divisihilty criterion

The above criterion for divis-
ibility depends on the decimal sys-
tem: The number ¢ has to satisfy
10 = ¢ {mod d). However, we can
easily extend the criterion to any
base.

Let b denote the base of our sys-
tem of numbers. If N is written as a
sequence of digits a,a, | ... a,q,

and a_# 0) in the b-system, then
n y
N=ab*+a, b*"'+.. . +ab+a,

Clearly, if d is our potential divisor
(d < N/2), and we take any number
¢ such that b = ¢ (mod d), we obtain
the same congruence as in relation-
ship (2). Our extended general crite-
rion is now as follows:

N is divisible by d if and only if
ac+a, " l+.. . +ac+ayis
divisible by d,wherea,a, ,...aa,
are the digits of the number N,
written in a system of base b, and

b =c(mod d).

In particular, when d = b—1, we get
b=1|modd). This means that a num-
ber is always divisible by b — 1 if its
sum of digits is divisible by b — 1. Fur-
thermore, this criterion applies to any
divisor of b - 1, as in the case of the
number 3 in the decimal system.

The difficulty of testing for divis-
ibility by 7 now disappears. As
Ralph P. Boas suggests in “The
Lighter Side” of the Two-Year Col-
lege Mathematics Journal (1979,
vol. 10, p. 28): “You just express the
number in base 8 and see if the sum
of digits is divisible by 7.”

Problem 30. For which base(s) is
it true that a number is divisible by
2 if its sum of digits is even?

Solution. This is true for any odd
base (b) that is no less than 3. This
is because b=1 (mod 2), and we may
use ¢ = 1.

Problem 31. Is the number
100111, as written in the binary sys-
tem, divisible by 3?

Solution. For b =2 and d = 3, we may
take ¢ = -1, because 2 = -1 (mod 3).
Therefore, we should check the zig-
zagsum 1 -0+0-1+1-1.Thesum
is zero, so the number is divisible by
3 (the number is 39 in decimal no-
tation). (@)
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BRIGHT STUDENT OF AERO-

dynamics was daydreaming

about the upcoming semes-

ter break. He wanted dearly
to spend his vacation at home.
However, airline tickets were ex-
pensive and he had no desire to
carn the money working as a re-
tail salesman or a night-shift la-
borer.

Well, knowledge really does
mean power! Suddenly an idea
struck him. Why not construct a
glider and accelerate it on the slip-
pery ice-covered roof of his dormi-
tory? Such an acceleration could be
performed with the help of his
friends by means of a weightless
unstretchable cord threaded through
a frictionless pulley (fig. 1). Were it
also possible to disregard friction on
the roof and air resistance . . .

AT THE
BLACKBOARD |

by Albert Stasenko

Well, let the glider’s mass be M,
let the mass of each friend and the
student himself be m, and let the
force applied by the cord be F. Now
we can write Newton’s second law
for the horizontal motion of the
glider with a pilot (mass M + m) and
tor the vertical motion of the plat-
form with N friends (mass mN, the
platform being weightless):

(M+m)a, =F,,

mNa, = mNg - B

Since the cord is unstretchable,
the values of the accelerations of its
ends are equal. That is, a_=a = q,
and F_=F = F. So, these equations
can be combined to form a single
equation by canceling out F:

[M +m(N + 1)]a =mNg. (1)

@

(=]

mNg

Fig ure 1. A historic flight. Key: 1. Student of mass m.

2. Friends of total mass mN.

The meaning of this equation is
clear: Its right-hand side is the force
of gravity provided by the friends,
and the left-hand side is the mass of
the entire system M, =M + m(N + 1
(including the mass of the student
and the glider), which is accelerated
by this force.

According to equation (1), the ac-
celeration is constant, so the veloc-
ity will increase linearly with time,
and the distance covered will in-
crease as the square of the time:

v =at,
42
S=y= aE,
where
g mN .
M, <

However, the time variable ¢ is
not important in this case. It is criti-
cal that the dormitory height H and
the number of friends N are suffi-
cient to impart to the glider some
minimum velocity v_. for its suc-
cessful take-off. Therefore, it is bet-
ter to write how the velocity de-
pends on the distance traveled. This
is done by canceling t from the
above equations:

This equation looks very familiar
to us. Inserting a into it, we get:

2

M, % = (mNg)y. (3)
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min

H’ H y

Figure 2. Dependence of the glider’s velocity on the acceleration path.

Really, this is an old friend: the
conservation of the mechanical en-
ergy. It says that the kinetic energy
is acquired at the expense of the po-
tential energy of the friends due to
their descent from zero to -y, or in
other words, due to the work per-
formed by the constant force of grav-
ity Nmg along the path s = y. In ac-
cordance with our intuition, in the
absence of energy dissipation (we are
neglecting friction), the “energy”
equation (3) is equivalent to the
“force” equation (1).

Thus, within the framework of
the assumed simplifications, the
specific kinetic energy of the system
v2/2 (that is, the energy per unit
mass) is proportional to the distance
y (see fig. 2 and equation (2)).

Can we decide what critical (mini-
mum) velocity v, must be devel-
oped to successfully launch the
glider? The question is quite impor-
tant, because although the dormitory
is tall, its height is limited. Will it be
enough to launch the glider? We can
see that at this minimum velocity the
glider’s lift F ; will precisely counter-
balance its weight (M + m)g. From
dimensional analysis, it is clear that
the lift is proportional to the square of
the speed, the wing’s area S, and the
density of the air p:

2
\7%4
Ey °<759~ (4)
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This estimate differs from the
precise formula only by a dimen-
sionless proportionality coefficient
C, which depends on the glider’s
design and can’t be deduced with all
the might of dimensional analysis
(see “The Power of Dimensional
Thinking” by Y. Bruk and A.
Stasenko, in Quantum, May/June
1992, p. 34, for more details on this
method]. Another theory or addi-
tional experimental data are neces-
sary to obtain this factor, which is
known as the drag coefficient. Thus,
to launch the glider, the following
requirement must be met:

5
vy

C%Sp =(M+m)g. (5]

The horizontal line in fig. 2 marks
this minimum velocity v, .

At this point the student had an-
other brainstorm: How could the lift
exist without air resistance? Some-
thing was wrong in the previous
analysis. We must insert either the
air resistance F, into equation (1) or
its work into equation (3). It looks
like the air resistance should be de-
termined by the same physical val-
ues but taken with another propor-
tionality coefficient C,. The smaller
the air resistance for a given lift, the
more perfect the design of the air-
craft. There is a concept of the aero-
dynamic quality of an aircraft

K =C/C_, which makes it possible to
write the air resistance as

Fy v
F=-Y=-——3.
Tk Tk P

Now let’s add the work per-
formed by this force to equation (3).
Since this work varies during the ac-
celeration of the glider, this equa-
tion should be applied not to some
long distance y, but only to small in-
crements Ay of the trajectory, where
the variable force can be considered
constant:

2 2
v

- C 4
AIV%TJ=mi\’°Ay_ESp[7jAy' (6)

So now we have a differential
equation for v2/2 as a function of y.
These magic words did not confuse
the student. This equation was cer-
tainly not particularly difficult, and
he surely could solve it. However,
much can be seen even without
solving this equation.

For example, we can see that at
any instant (or at any coordinate y)
the glider’s speed with air resistance
will be less than in the ideal case of
no air resistance. Thus, the corre-
sponding curve in figure 2 will be
lower than the line ay. When the air
resistance (which is persistently ris-
ing during the acceleration of the
glider) becomes equal to the force of
gravity mNg, the glider’s speed will
not increase any more, and the glider
will move with the maximum speed
V. Substituting zero for the left-
hand side of equation (6) we get

2

\% K
max — N .
2 8T (7]

The corresponding horizontal line is
dashed in figure 2. The curve of the
dependence of the specific kinetic
energy on the distance will approach
but never reach this line. Figure 2
shows that if air resistance is taken
into account, this curve crosses the
line v2_. /2 (which corresponds to
the minimum velocity v_, | at
H .. >H, . .-However, it may never
cross this limiting line, because to
make it possible, the requirement



v2 /v . >1 must be met. Divid-
ing equation (7) by equation (5), we

get another form of this condition:

mNK
M+m

> 1

Now the student knew what to
do for a successful flight: invite
more friends (increase N, design a
lighter glider (decrease M), or make
the glider more aerodynamic (in-
crease K. He had guessed these so-
lutions from the very beginning, but
now he knew the precise answers to
the “how much” questions.

We can see another important
aspect of this equation (6) without
solving it, but rather by transform-
ing it. Let’s use the characteristic
velocity v, as a scaling factor. To
this end we divide equation (6) by

equation (7) and then by the total —

mass MO:

o] ) e

Now we see that the distance in-
crement Ay “wants” to be compared
with some characteristic value,
which must also have the dimen-
sion of length. This value awaits us
in the last brackets on the right-
hand side of the equation. Let’s de-
note it by h:

Bl
CSp

Assume the aerodynamic quality of
the glider to be K= 10, the area of its
wings to be S = 10 m?, the density of
the frosty air to be p = 1 kg/m3, and
the drag coefficient to be C = 1.
Then, h=10 m.

The parameter h is not just a hap-
hazard combination of a set of physi-
cal values. It really characterizes the
distance at which the glider’s veloc-
ity “almost” reaches its maximum,
or as physicists say, relaxes to the
steady-state value. Thus h can be
referred to as the relaxation length.

It seems we have now covered
this problem in enough detail. Still,
an inquisitive reader might want to
know the precise dependence of the

glider’s velocity on distance. Why
not? We must only solve equation
(8) with the following initial condi-
tion: The glider’s speed is zero at
y =0.

Notice that we can write

2 2
Vmax Vmax

because the increment symbol A
“annihilates” any constant value
(and even the number 1 in the last
equation). By introducing a new

variable
2
B =1- ( ki J ’
Vmax

we can rewrite equation(8) in the
form

dy
dp=-p .
This equation is a backbone of sci-
ence. It is extremely widespread. For
example, it describes the decay of
radioactive atoms (in which case y is
time and h is the half-life). It also de-
scribes the growth of microbes in a
Petri dish (h is negative in that case).
In our case the solution of this equa-
tion is

(if you don’t believe it, ask a pass-
erby).

Now the student, having mea-
sured the height of his dormitory,
could calculate how many friends
he must invite to give the glider the
necessary velocity.

Alas, after calculating all the ex-
penditures; anticipating the objec-
tions of the dormitory supervisor,
his friends, and the police; and con-
sidering the high probability of the
coming thaw (in which case friction
with the roof must be taken into
consideration), the ambitious stu-
dent decided that it would be
cheaper to buy an airline ticket after
all. Bon voyage, young inventor! [

CONTINUED FROM PAGE 13
A

C T B
Figure 4
M260

Circular inscription. A circle in-
scribed in triangle ABC touches BC at
point T, and M is the midpoint of the
altitude drawn to BC. Point P is the
second point of intersection of line
TM with the inscribed circle. Prove
that the circle that passes through
points B, C, and P touches the circle
inscribed in triangle ABC |(fig. 4).
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One’s best approach

O. T. Izhboldin and L. D. Kurlyandchik

AT THE
BLACKBOARD Il

NE QUICKLY!

learns that simple

mathematical

questions often
have complex and pro-
found answers. Several
such questions concern
representing or ap-
proximating integers as
sums of reciprocals of
natural numbers. Here
is one of them.

Problem: Take n
natural numbers such
that the sum of their re-
ciprocals is less than 1.
How large can their
sum be?

This problem was first formu-
lated by the American mathemati-
cian Kellogg. In 1915 Carmichael
presented the problem in his book
Diophantine Analysis. In 1922 the
American mathematician Kersetz
gave a solution. We will present here
another, much shorter, proof.

We creep up on the problem itself
in several steps. Step 1 introduces a
sequence that will prove to be the
hero of our story.

Step 1: The sequence ), 1,, I3, . . .
is defined by the conditions:

1,=2,1, =01y . -

The first few terms of this sequence
are 2, 3, 7, 43, 1807, 3263443, . . .
Show that for any n,

1 1 1
—+—+...+—<1L

h 15) Iy

Art by Michael Jones
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Solution: The equation that de-
termines r,_ , can be written as

I, =r,-1r,+1,

or

1 1 1 1

Tha — 1 (1’11 - 1)rn I =] I,

Therefore,

1 1 1 1 1

—+—+..+—= -

L I r, \n-1 -1
1 1

+ —_

+ L =1- . <1,
In_l rn+1_1 rn+1_]-

because r; -1 =2 -1 = 1. This is
what we wanted to prove.

The assertion
of step 1 shows
that the sequence
1/r, “creeps up
on” the number 1.
So it is a candi-
date for approxi-
mating the num-
ber 1, which is
what we are ask-
ing about in our
problem. But is it
the best candi-
date?

Step 2: Suppose
we have the sum
of the n numbers

1 1 1 1
B R A T
n L I In

We already know that this sum is
less than 1. What is the smallest
number a we can choose so that the
sum

1 1 1 1 1
—t ettt —
n n I3 L, 4a
is still less than 1?2
Solution: We must choose a=r, ;.
In fact, we've already proven this.
Indeed, suppose we had tried to
malke it even a bit smaller, by choos-
inga=r_, - 1. Then the above cal-

n+l1
culation shows that our sum

1 1 1 1 1
—h Attt

n 5] I3 In In1 —

would equal 1.



Thus, if we have already chosen

1 1 1 1
—t—t—t .+ —
1‘1 IZ 1‘3 II]

to approximate 1, and we want to
add one more term, the biggest step
that we can take toward 1 (without
actually touching the number 1) is
1/r, . But we have not yet shown
that the sequence {r} is the solution
to problem 1. Perhaps if we had
taken n different numbers, we could
have gotten closer still with one
more step.

What is this mystery sequence
that solves our problem? We now
give three criteria that this sequence
must satisfy. Later on, we will see
that (a) the sequence {r ] satisfies
these criteria, and (b) {r,} in fact
solves the problem.

Step 3: Suppose we have a se-
quence {a,} that gives our answer to
problem 1. That is, suppose a, < a,
<a,...<a,of nnatural numbers,
such that the sum

1 1 1 1
e e e, e
q ay, as ay

and such that this sum is the closest
approximation to 1 by reciprocals of
natural numbers. Let b, = 1/a, for
k=1,2,...,n-1,andletc=1-(b,
+b,+by+...+b_ ) (Thus cis the
error committed in approximating 1
with the sum

1 1 1 1
—_—t .
a, a4y dg an

Then the set {b,, b,, ... b, |, ¢} sat-
isfies the following three conditions:

(i) b +by+by+...+b, _ +c=1;

(ii) by 2b,2...2b,  2¢c20;

(iii) byby ... by < by + by o+ ...
+b _,+cfork=12,...n-1.

After we take step 3, our strategy
will be to show that ¢, the error of
approximation, cannot be less than
1/(z, - 1], and that if ¢ = 1/r, - 1),
then a, = r, for k < n as well. This
will solve our problem—well, al-
most.

But let us return to the solution to
step 3. Condition (i) is merely a re-

statement of the definition of ¢ (we
will see later why we include it here).

Most of condition (ii) is almost as
easy. We know from the definition
of the sequence {a,} that

by2b,>...2b_ >0,

and that ¢ > 0. We must prove only
that b, | > c. Since {a} is the best
approximation of 1, if we increase
the we have

1 1 1 1
s o s + =1,
Q. & Apy Ay -1
or
-t i L 1
a ay a, o £ 1
Therefore
c=t-t_ L 1
a ap_o an—l
= 1 B 1 _ 1
ayq — 1 ay_ anfl(an—l - 1)
1
S Oy
a

This proves that condition (ii) holds.
It remains to prove the set of in-
equalities that constitute condition
(iii). These follow from the equa-
tions

bk+l+b]{+2+...+C:1—b1—b2_...*bk
1N
aq a = oa aa,..a

= Nbb, ...bs,

where N is a certain natural num-
ber. Therefore, the last expression
in this equation is not less than
b,b, ... b;. This concludes the
solution to step 3.

Step 4: The set (b, b,, ..., b, ,, c]
satisfying conditions (i) through (iii),
and for which ¢ is minimal, coin-
cides with the set {1/r, 1/r,, .. .,
l/r, 4, 1z, - 1)}

We prove this proposition by start-
ing with the set {b;, b,, ..., b, c|
such that the product b;b, ... b_,c
is minimal. We then show that this
implies that ¢ is also as small as pos-
sible. Finally, we show that b. = 1/r..

Now we can prove that for any set

B, all the inequalities (iii) reduce to
equalities.

For n = 2, relationships (i)-{iii) im-
mediately imply that §, > B, > 0,
B, + B, = 1, and B, < B,. Therefore,
B, =B, =1/2. Let n > 2. Suppose that
there is at least one strict inequality
among (iii). Then, we can find i and
j such that 1 <1 <7 <n, inequalities
(iii) are strict for 1 < k < j, and such
that these inequalities reduce to
equalities for k =7 -1 and k = j (ob-
viously, we can consider the cases
k=i-1and k =jonlyfori> 1 and
j < n, respectively). Let’s prove that
we can “jiggle” the numbers B, and
B, in such a way that conditions (i}-
(iii) remain true and the product
B, ... B, decreases. Since this fact
contradicts the choice of § as the set
with the minimal product of ele-
ments, the supposition that there is
a strict inequality among (iii) will be
disproved.

Let us substitute B, for B,/ =B. + ¢
and B, for B/ =B, —¢, wheree > 0. The
product of the elements of the new
set is less than for set B, because

BiB; =B.B; —&(B, —B;) - <B,B;.

We can see that set B’ satisfies
condition (ii). The inequalities (iii)
also hold for k <i and k > j for any
€> 0. Fori<k<j, the left-hand side
of each of these inequalities in-
creases by a factor of (B, + €]/p,, and
the right-hand side decreases by «.
Therefore, since these inequalities
were strict for set B, they remain
valid for sufficiently small ¢.

Considering inequalities (i), we
see that only inequalities B, | > B,
and ;2 B, | can be violated as a re-
sult of changing the set  (or inequal-
ity B, 2 0 for j = n can be violated).
However, they are not violated for
sufficiently small ¢, because the in-
equalities in question are strict. For
example,

BinzPBy By =B;+... 4By 2B;

and for n > 2, at least one of these in-
equalities is strict, because B, < 1 and
B, >0. Similarly, B, > B, | for j <n.
Let’s sum up the results obtained.
We now know that the sequence B,
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0 1
a
Figure 1

Here are some examples of functions that do not take the minimal value on a
given interval: (a) y = 1 - {x} ({x} denotes the fractional part of x); this function
is not continuous on the interval 0 < x < 2; (b) y = 1/x for x 2 1 (the domain of

definition is unbounded); (c) y = x for 0 < x £ 1 (the domain of definition is not

closed).

.., B, satisfies the system of equa-
tions

(1=PB;+...+B,,
B1=Py+...+ By,
BIBZ =B3+"'+Bn/

Bl "'Bn—l ZBI’J'

Subtract the second equation from
the first, the third equation from the
second, and so on to obtain the fol-
lowing system of n — 1 equations:

>1—[31 = Bl/
Bl(l_B2>= BZ/
B1Bz(l—B3) = Bg/

LBlBZ B (1 - anl) =B,1-

The first equation gives B, = 1/2.
Then, we can rewrite the kth equa-
tion(2<k<n-1)as

R
BiBo--Bra  Bx

or
1 1 .5
B B B

Thus, 1/B, =2 =r,. This implies that
1/p, =1 forallk=1,..,n-1,and

+1

i=i ! +1

. anl

It remains to be proved that for
any set o = (o, . . ., o) satisfying
conditions (i)-{iii) and different from
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B, o, > B,. We have
2 > B2
(XH _(xl"'(xﬂ—lan _B].anl _BH'

(the first inequality follows from
condition (iii) for o fork =n -1, and
the second inequality follows from
the choice of B. Thus, o, 2 B,. If
o, =P, theno,...0, =B, ...B,
However, in this case, the set o sat-
isfies conditions (i}-{iii) and has the
minimal product of its elements,
and thus is identical to .

But we are not really done. So far,
we have proceeded innocently under
the assumption that there exists a
set with the minimal product of el-
ements. That is, we must prove the
following.

Step 5: The function fla, . . ., 0]
=q, . ..o, takes on a minimal value
on the set A of all sequences o = (o,
..., o) that satisfy conditions (i}{iii)
(this set will be called A).

If it is not clear why we must
prove this assertion, look at figure 1.
It is not true that any function, de-
fined on any set, must take on a
minimal value on that set. Figure 1
shows several examples of functions
defined on intervals, whose values
are real numbers and which do not
take on minimal values on the inter-
vals we have chosen for their do-
mains of definitions. The function
in step 5 is a bit more complicated.
It is a function of several variables,
and its domain of definition is not
just a simple interval. The state-
ment in step 5 asserts that it doesn’t
act, on its domain, like the functions
in figure 1 do on theirs: Step 5 asserts
that this function does take on a
minimal value.

It turns out that assertion 5 rests
on some results from the calculus,
and we will give a sketch of how to
prove it. The following theorem is
proven in advanced courses in calcu-
lus: Any continuous function (of
one or several variables) defined on
a closed and bounded set must take
on a minimal value on that set.

We will apply this theorem to the
function in step 5.

First we argue that f is continu-
ous. This means that its values on
two different sequences whose cor-
responding elements are sufficiently
close to each other can be made as
close as desired. Second, the set A is
bounded. This means that there ex-
ists some number N such that the
elements a, of any sequence from A
do not exceed N (in absolute value).
In our case, we can take N = 1.

Finally, set A is closed. This condi-
tion is a bit more complicated to de-
scribe, but not really difficult to un-
derstand. To say that A is closed
means that a sequence of its elements
converges to none of its own ele-
ments. This translates into the asser-
tion about a sequence of sequences.
Suppose we imagine a first sequence
{or}, then a second sequence (B}, then
a third sequence {y}, and so on. We
then form the sequence of first ele-
ments o, By, ¥y, - - -, and suppose that
it converges to anumber p,. Continu-
ing in the same way, we get the se-
quefice p, = (Py, Dy Py « - .- Thie state-
ment that set A is closed means that
this sequence {p ] is an element of A,
and this statement follows from the
fact that none of the inequalities in con-
ditions (i)-{iii) are strict inequalities.

Having shown that the function f
of assertion 5 satisfies the conditions
of the theorem from calculus quoted
above, we conclude that assertion 5
is correct, and that we haven’t erred
in assuming the existence of a set
with a minimal product.

It is interesting that our problem,
which was stated purely as a prob-
lem in arithmetic, required the use
of a deep result in calculus. And yet
it is typical of the flavor of math-
ematics as a discipline that a simply
posed problem has a solution whose
roots reach deep. @
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HE BEAUTY OF GEOMETRY
is also the beauty of geometric
formulas. Here we have gath-
ered some of the most striking
algebraic relations in a discipline
dominated by figures.
1. The equation

a* + b =c?

b

represents the Pythagorean theo-
rem: The square of the hypotenuse
of a right triangle equals the sum
of the squares of two legs. The
Pythagorean theorem is one of the
oldest theorems in geometry. The
algebraic equation that represents
this theorem provides the basis for
the metric theory of Fuclidean ge-
ometry and trigonometry.

One of the oldest and most el-
egant formulas in geometry is
Hero’s formula, which represents
the area of a triangle in terms of its
sides:

K= \/s(s —a)(s-b)(s-c¢).

Not pretending to be complete, we
present several more well-known for-
mulas of elementary geometry (see
box above). Some of them are in-
cluded in the high school curriculum.
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sino, sinf siny

The first of these formulas is the
“extended” law of sines. The sec-
ond relation is the law of cosines,
which is a generalization of the
Pythagorean theorem.

2. The law of cosines is the first
representative of a broad class of co-
sine laws. Similar relations can be
obtained for triangles in spherical
and non-Euclidean geometry and
for polygons, tetrahedrons, and
other geometric figures. Rather of-
ten, several different relations can
be obtained for the same geometric
figure—for example, for a quadri-
lateral—that can be called a law of
cosines. Bretschneider’s theorem
encompasses one such set of
relations:

m?n® = a’c* +b*d* - 2abcd cos(o + B).

Bretschneider’s theorem has
many consequences. In particular, it
implies Ptolemy’s theorem for in-

a? =b* +¢? - beeosa,

KALEIDOX(

Remarkable geome

2

&) L

scribed quadrilaterals:

3. A triangle is usually specified
by its three elements. For this rea-
son, equations that relate three ele-
ments of the triangle are of particu-
lar interest. We have already listed
several such relations in the box
above. Let’s give another remarkable
equation called Euler’s formula:

d* = R>-2Rr.

&

(L\
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melric formulas
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This formula expresses the dis-
tance between the centers of the in-
scribed and circumscribed circles of
a triangle in terms of the radii of
these circles. If these radii are
known, the distance between the
centers of the corresponding circles
can be calculated. An infinite num-
ber of triangles exist for which these
circles are inscribed and circum-
scribed circles, respectively. Any
point on the larger circle can be
taken as one of the vertices of such
a triangle.

There is no similar formula for
tetrahedrons, but there is a corre-
sponding inequality. However, a
corresponding equation, depending
on the number of sides, can be writ-
ten for any polygon that is circum-
scribed around a circle and inscribed
in another.

A beautiful theorem of Poncelet
(in projective geometry) implies that
if an n-gon exists that is circum-
scribed around a circle and inscribed
in another, then there is an infinite
number of such n-gons, and that any
point of the circumscribed circle can
be taken as one of the vertices of
such an n-gon. Here we write the
equation for the inscribed-circum-
scribed quadrilateral:

4. Many interesting geometrical
figures are connected with the so-
called pedal triangle. For any point
chosen inside a given triangle, the
pedal triangle of this point is a tri-
angle whose vertices are the feet of
the perpendiculars from the point to
the sides of the given triangle (see
tigure below). Here is a remarkable

N2
e

formula for the area of the pedal tri-
angle (some authors give Euler
credit for this formula):
2
oo K| @
4| R?

Here Q, K, R, and d are, respec-
tively, the area of the pedal triangle,
the area of the given triangle, the
radius of the circle circumscribed
around the given triangle, and the
distance from the given point to the
center of the circumscribed circle.
This formula has many interesting
consequences. In particular, if the
given point lies on the circum-
scribed circle, then the area of the
pedal triangle is zero, and thus the
corresponding points lie on the same
line (the Simpson Iine). If we substi-
tute d? in this equation from Euler’s
formula, we obtain a formula for the
area of the triangle with vertices at
the points where the inscribed circle
touches the sides of the given tri-
angle: Sr/2R.

5. Some formulas of plane geom-
etry have analogues in space; others
do not. However, there are remark-
able relations for three-dimensional
tigures for which it would be hard
to find plane analogues. Here is one
such relation that is really amazing.
Consider an arbitrary tetrahedron.
Let its volume be V and let the ra-
dius of the circumscribed sphere be
R. Consider three numbers that are
equal to pairwise products of the
opposite edges of the tetrahedron. It
turns out that a triangle exists such
that its sides are equal to these
numbers, and the area of this tri-
angle is

S =6VR.
—I. F. Sharygin
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PHYSICS
CONTEST

Elevator physics

by Larry D. Kirkpatrick and Arthur Eisenkraft

AVE YOU TAKEN YOUR

bathroom scales to an elevator

for a ride as we suggested in the

January/February 1998 issue of
Quantum? This is guaranteed to
start an interesting conversation,
and you will be advancing the cause
of physics at the same time.

Let’s continue our exploration of
physics in a uniformly accelerated
reference frame by considering a ball
of mass m dropped from a height h
while the elevator has an accelera-
tion a in the upward direction. Let’s
choose the upward direction as posi-
tive, start our stopwatch at the in-
stant we drop the ball, and assume
that the elevator has a speed v, at
this time. Using the subscripts b and
f for the ball and floor, respectively,
we have the following equations for
their positions in the laboratory
frame of reference:

Vi =]:r+vot—%gt2
)
Vs =O+V0t+5at .

Notice that even though we simply
drop the ball in the elevator’s refer-
ence frame, the ball has an upward
velocity v, at this time. The ball is
stationary relative to the floor.

We can find the length of time ¢,
for the ball to reach the floor by set-
ting v, = ;. The time is
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One man's ceiling is
another man's floor.

—Paul Simon
Lo 2B /T
d_\jg'*‘a_\\g’l

where we have defined ¢" = g + a.
Notice that this is exactly the same
formula that we would get if we
dropped a ball while standing on the
ground except that the normal accel-
eration due to gravity has been re-
placed by an “effective” acceleration
due to gravity g'.

Let’s now calculate the velocity
of the ball relative to the floor just
before the ball hits the floor. The
equations for the velocities are

Vi, = Vo—8&t,

Vi=V, + at.
The velocity of the ball relative to
the floor is equal to the velocity of
the ball minus the velocity of the
floor. At the time the ball hits the
floor, the relative velocity v, is

v, =V, -V;=(g+alty =g,

Once again this is the same result
we would get on the ground using
the effective acceleration due to
gravity.

If we assume we are standing on
the ground and drop an ideal ball on
an ideal floor, the ball undergoes a
completely elastic collision with the
floor and returns to the height from
which it was dropped. Conservation
of kinetic energy tells us that the

velocity of the ball simply reverses
direction as it rebounds from the
floor. In the more general case of a
two-body elastic collision, it is the
relative velocity of the two bodies
that gets reversed.

Let’s assume that we now return
to the elevator and examine an elas-
tic collision with the floor. We as-
sume that we reset our stopwatch
and choose the height of the floor to
be zero. The velocities of the ball
and floor (in the ground frame of ref-
erence) are now

’
V=Vt VvV, -8t =v, + &t~ &L,
V=V, + at,

where v, is the velocity of the floor
at the time of the collision. We can
find the time t, when the ball
reaches its maximum height above
the elevator floor by setting the two
velocities equal to each other. (After
this time the floor is moving faster
than the ball, and the ball ap-
proaches the floor again. It is falling.)
Therefore,

g'ty—gt, = at,,

u

or

gty=Ig+alt, =g,

u u

Once again we get the same result
we would get on the ground—the
time to fall is the same as the time
to rise.

This analysis of the ball in free

Art by Tomas Bunk
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fall shows that we can simplify the
calculations by assuming that we
are standing on the ground if we re-
place the normal acceleration due to
gravity by the effective acceleration.
Although we have only shown that
this is true for one problem, this is
a general statement. In fact, one of
the tenets of general relativity is the
equivalence principle: A constant
acceleration is equivalent to a uni-
form gravitational field. In general,
we find the effective acceleration by
taking the vector difference of the
acceleration due to gravity and the
acceleration of the system.

This leads us to our contest prob-
lems:

A. Show that the ball rises to the
height from which it was dropped
(relative to the floor of the elevator).

B. Argue that a ball dropped in a
train moving with a constant hori-
zontal acceleration a follows a
straight line tilted at an angle with
the vertical given by tan 0 = a/g.

Leaf Turner developed our last
problem for the first exam used to
select the members of the 1999 U.S.
Physics Team that will compete in
Italy this summer.

C. A car accelerates uniformly
from rest. Initially, its door is
slightly ajar. Calculate how far the
car travels before the door slams
shut. Assume the door has a friction-
less hinge, a uniform mass distribu-
tion, and a length L from front to
back and that air resistance can be
neglected.

If you are not convinced that us-
ing an equivalent acceleration due
to gravity is the easiest way of solv-
ing this problem, try solving it in the
inertial frame of reference attached
to the ground.

Please send your solutions to
Quantum, 1840 Wilson Blvd., Arling-
ton, VA 22201-3000 within a month
of receipt of this issue. The best solu-
tions will be noted in this space.

Up, up and away

One solution to our September/
October Up, Up and Away contest
problem soared to the top of the pile.
Congratulations to Dr. H. Leverett (a
medical doctor from Texas) who
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loves physics and Quantum!

In part A of the problem, we ask to
what temperature must a balloon’s
air be heated for the balloon to begin
to float. Archimedes’ principle in-
forms us that the weight of the dis-
placed air must be equal to the weight
of the balloon for floating to occur:

mg=mg+1mg,

where m, is the mass of the dis-
placed air, m, is the mass of the air
in the balloon, and m),, is the mass of
the balloon material. Converting
from masses to densities, we obtain

m; =p;V,
anl = pavl
p1Vig =p. V18 + myg
e
pa pl Vl
;0187 kg

, =120 kg/m® -—=

g 8/ 1.10 m?

=1.03 kg/m?.

This is the required density of air in
the balloon for the balloon to float.
Using the ideal gas law, we can find
the corresponding temperature.

paTa = plTl
o piTi _ ( 1.20 kg/m" )(293 K)
Yop, 1.03 kg/m?
=341 K.

In part B, the air is heated to
110°C (383 K), and the balloon rises
isothermally into the atmosphere,
which has a constant temperature of
20°C (293 K). The net force acting on
the balloon F, is equal to the differ-
ence between the buoyant force Fy
and the weight of the balloon Fy;:

FU = Fb - FW
Fb = plvlg
Fy = m3g + myg =p3Vig + mpg

FU = [(pl - p3)V1 — 1, ]gl

where m, and p, are the new mass
and density at this temperature.
The density of the air within the
heated balloon can be found, once
again, from the ideal gas law:

Pl =pi1
o7, (120 kg/m® )(293K)
e ="y = 383K

=0.918 kg/m?
R; :[( 120 kg/m® - 0918 kg/m* |

% (110 m*) - 0187 kg[9.80 m/s
F, =121 N.

Part C requires us to find the
height to which the balloon rises.
The balloon continues to rise until
its buoyancy is equal to its weight:

FB = pyvygl
where p_ is the density of the dis-

placed air at the balloon’s height y.
We have

pyvyg = p3v3g + Mg

Py =pst =
— M3
y Vy
0187 kg
= 0918 kg/m?® + —— =2
Ps 8/ 1.10 m?

=1.088 kg/m?.

Given the relationship between the air
density and the height, we can now
find how high the balloon will go:

&,

py =pi€ 4

o PP
P8 P1

-1.013-10° N/m?
( 120 kg/m? )( 9.80 m/s” )

3
«In 1.088 kg/m

=844 m.
120 kg/m?

In part D, we are asked to describe
the subsequent motion if the balloon
were pulled from its equilibrium po-
sition by 10 m and then released. We
can see that if the balloon is below
the position calculated in part C, then
the balloon will rise. If it goes above
this position, then it will sink. The
balloon will therefore undergo har-
monic motion. If air resistance is
taken into account, the motion will
be damped harmonic motion. (@)



IN THE LAB

Diffraction in laser light

ASERS ARE SOURCES OF LIGHT
with wonderfully high coher-
ence. This is why they are used
to obtain stable interference pat-
terns and to observe the fine diffrac-
tion phenomena that cannot be pro-
duced by nonlaser light sources.

The following explains how to
carry out diffraction experiments
with cylinders, balls, or other bodies
using a laser light source. We will
begin by outlining the experimental
setup.

Figure 1 shows the layout of the
setup to project enlarged Fresnel dif-
fraction patterns of various ob-
stacles. It consists of a laser, a micro-
scope objective M, a pinhole
diaphragm S, and an object O that
produces the diffraction pattern ob-
served at the plane P P. At this plane
the experimenters can set up a white
screen for observing the pattern with
the unaided eye, a camera without
an objective lens to photograph the
pattern, or a photodetector to record
the interference bands.

The photodetector is shielded
from the light source by a narrow
slit or a pinhole diaphragm with a
round orifice. It is mounted on a

by D. Panenko

movable carriage, which shifts it
uniformly together with the dia-
phragm along the y-axis in the obser-
vation plane. The signal of the pho-
todetector is proportional to the
intensity of the light that passes
through the diaphragm. It is re-
corded by a plotter. The plotter has
a carriage that moves with constant
velocity along the x-axis and is de-
flected along the y-axis by the signal
from the photodetector. Thus, the
device plots (in the chosen scale) the
distribution of illumination in the
diffraction pattern as a function of
the distance P,P. The length of the
recorded pattern is 35 mm.

In the first experiment we ob-
tained a diffraction pattern with a
polished metal cylinder 2 mm in
diameter. The axis of this cylinder
was perpendicular to the plane xy,
and the distances were SO = 1 mm,
OP,=2.5mm, and PP = 35 mm (fig.
1). In front of the photodetector was
a slit of width 0.05 mm parallel to
the cylinder’s axis.

Figures 2 and 3a show the results
of the experiment. The symmetrical
diffraction pattern is not uniform,
and we can distinguish two kinds of

Figure 1

=

Figure 2. Diffraction by a cylinder.

interference bands of different ori-
gin. At the edge and away from the
geometric shadow, there is a clear-
cut conventional edge diffraction
pattern—that is, the alternating dark
and bright bands. A specific feature
of this pattern is decreasing space
between the bands away from the
axis of symmetry. In addition to this
pattern, there are equally spaced
bands (also parallel to the cylinder’s
axis) located within the geometric
shadow and just outside of it. Both
kinds of diffraction can be observed
separately and analyzed individu-
ally.

If we cover the cylinder on one
side with an opaque screen, we ob-
tain diffraction only from the uncov-
ered side of the cylinder (fig. 4). The
resulting distribution of illumina-
tion is shown in figure 3b. This is a
typical pattern of edge diffraction,
which is a set of bands whose width
and contrast decrease with distance
from the geometric shadow of the
edge.

Now we consider the second dif-
fraction pattern composed of equi-
distant bands parallel to the
cylinder’s axis and located in the
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Figure 3. Distribution of illumination in diffraction by a cylinder (a), on the edge
of a cylinder (b), and on two slits at the edge of a cylinder (c).

region of the gecometric shadow. The
nature of these bands can be ex-
plained by Thomas Young's (1773~
1829) double slit interference. The
regions of the wave front very near
the cylinder’s surface are the sources
of the secondary waves. The inter-
ference of these waves produces the
diffraction pattern in the geometric
shadow region behind the cylinder.

To carry out such an experiment
(which is similar to Young’s double
slit interference experiment), the rod
was placed between the blades form-
ing slit S. The width of the slit was
chosen such that two openings 0.1
mm in width were formed between
the cylinder’s surface and the blades
of the slit. When this arrangement
was illuminated with laser light,
two bright lines flashed at the
cylinder’s sides, which produced the
Young's diffraction pattern. Figure 5
shows that this pattern is composed
of equidistant bands. The distribu-
tion of illumination in this pattern
is shown in figure 3c.

Thus, diffraction by a cylinder
can be considered to be the addition
of two elementary patterns formed
by diffraction at both edges of the
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cylinder and by Young’s double slit
diffraction. (When comparing the
plots in figure 3, we must note that
the curves (a) and (b) were recorded
at the same sensitivity, while curve
(c) was obtained at a higher sensitiv-
ity.) Usually, Fresnel diffraction by
a wire is associated only with a
bright band along the axis of the geo-
metric shadow. We see that coher-
ent laser light reveals much more
detail in the diffraction pattern.

The second experiment was
conducted with a ball 2.4 mm in
diameter. It was accurately at-
tached by plasticine to a plane-par-
allel glass plate and placed into the
divergent beam of light (fig. 1]. A
screen with a round orifice 0.1 mm
in diameter was placed in front of
the camera.

The results of this experiment are
shown in figures 6 and 7, which
clearly demonstrate two kinds of
diffraction patterns as in the experi-
ment with a cylinder. However, we
can see a distinct bright point in the
center of the geometric shadow,
known as the Arago-Poisson spot.
The history of this spot is very in-
structive and interesting.

The problem of light diffraction
was announced by the French Acad-
emy of Sciences as a subject of com-
petition for 1818. Most of the orga-
nizers of this competition adhered to
the corpuscular theory of light, and
they expected that new competitive
papers would mark the final victory
of their preferred theory. However,
Augustin-Jean Fresnel (1788-1827)
submitted a paper in which he ex-
plained all the known optical phe-
nomena on the basis of the wave
theory of light. Reading his memoir,
the famous French scientist Siméon-
Denis Poisson (1781-1840), a mem-
ber of committee, saw that Fresnel’s
theory produced an “absurd” con-
clusion: There must be a bright spot
in the center of the shadow cast by
a small, round, opaque disk. This
theoretical prediction moved
Francgois Arago (1786-1853) to carry
out the corresponding experiment in

Figure 4. Diffraction by an edge of a
cylinder.

Figure 5. Two-slit interference bands
(Young's experiment). '

Figure 6. Diffraction by a ball.
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Figure 7. Distribution of illumination for diffraction by a ball.

which he observed a bright spot in
the very center of a dark round
shadow. This experiment was cru-
cial to the acceptance of the wave
theory of light.

Experiments with powerful and
coherent light generated by a laser

AMERICAN MATHEMATICAL SOCIETY

make it possible to observe rings
both inside and outside the geomet-
ric shadow. The nature of these
rings can also be explained along
the same lines that are used to in-
terpret the Young’s double slit in-
terference, considering that the in-

How TO TEACH MATHEMATICS
SECOND EDITION

Steven G. Krantz, Washington University, St. Louis, MO

Praise for the First Edition ...

An original contribution o the educational literature on teaching mathematics at the post-secondary level. The
book itself is an explicit proof of the author’s claim “teaching can be rewarding, useful, and fun”.

This expanded edition of the original bestseller, How to Teach Mathematics, offers hands-on guidance for
teaching mathematics in the modern classroom setting. Twelve appendices have been added that are written
by experts who have a wide range of opinions and viewpoints on the major teaching issues.

Eschewing generalities, the award-winning author and teacher, Steven Krantz, addresses issues such as preparation,
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terference pattern in the geometri-
cal shadow is formed by an infinite
number of diametrically opposite
sources of light from the wave front
that interacts with the ball’s sur-
face. Thus, observations with pow-
erful and coherent laser-generated
light yield fundamental knowledge
of Fresnel diffraction caused by
simple-shaped bodies. O
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LOOKING BACK

The century of the cycloid

HE SEVENTEENTH CENTURY

was the golden age of the infini-

tesimal calculus, and the curve

called a cycloid played a unique
role in this era. Oddly enough, the
cycloid has also come down to us in
literature.

In the third part of Gulliver’s
Travels, Jonathan Swift describes
Gulliver finding himself on the
floating island of Laputa. The King
of Laputa, a patron of the sciences,
treats him to an exquisite dinner,
where a mutton shoulder in the
shape of an equilateral triangle is
served. This geometric entrée is fol-
lowed by a pudding in the shape of
a cycloid. It was probably difficult to
imagine a more intricate shape than
the cycloid at the beginning of the
seventeenth century.

About 30 years after the publica-
tion of Gulliver's Travels, the cyc-
loid appeared in the novel Tristram
Shandy, by Laurence Sterne. In it
Toby Shandy, an eccentric, good-
natured man, wants to create an
engineering marvel. He decides to
build a bridge in the shape of a cyc-
loid, as described in the journal Acta
Eruditorum in 1695: “. . . a lead
weight is an eternal ballance, and
keeps watch as well as a couple of
centinels, inasmuch as the construc-
tion of them was a curve-line ap-
proximating to a cycloid,—if not a
cycloid itself.” Let’s look at what
Toby Shandy’s contemporaries in
the middle of the seventeenth cen-
tury knew about the cycloid.

The Histoire de la Roulette,
Appellée Autrement Trochoide ou
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by S. G. Gindikin

Cycloide (The History of the Rou-
lette, Also Called the Trochoid or
Cycloid) (1658), by Amos
Dettonville, is a good source of in-
formation. Amos Dettonville was
actually a pen name used by Blaise
Pascal (1623-1662), the French
mathematician, physicist, and phi-
losopher. Pascal wrote that the rou-
lette is a curve so common that no
figure besides the straight line and
circle is encountered more often. He
said that it appears before our eyes
so often that it is surprising the an-
cients didn’t notice it.

The roulette is simply the path
traveled by a nail on the rim of a
rolling wheel, from the moment the
nail leaves the ground until it meets
the ground again. It’s assumed that
the wheel is an ideal circle and the
ground is an ideal plane. This is also
the definition of a cycloid: The tra-
jectory of a point on the circumfer-
ence of a circle rolling along a line
without slipping. Ascending from
its lowest position, the point de-
scribes a symmetrical convex arc.
Each revolution of the circle pro-
duces a new arc, and there is a cusp
(a place at which the point changes
direction) where the arcs touch each
other (fig. 1).

The term cycloid (from the word
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Figure 1

circle) was introduced by Galileo
(1564-1624), who was probably the
first to notice this curve. Roulette is
the French term (from the verb
rouler, which means “to roll”), and
trochoid is the corresponding Greek
term. The difference in terminology
reflects the disagreement between
the French and Italians about who
discovered the cycloid. Pascal ar-
gued that Father Marin Mersenne
(1588-1648) discovered the curve in
1615, before Galileo.

Epicycloids in the Ptolemaic System

So why didn’t the “ancients” ever
notice the cycloid? Their source of
new curves was limited to problems
about geometric loci, and trajecto-
ries of curvilinear motion were a bit
beyond the scope of most ancient
mathematicians. It was the new
mechanics, which began with
Galileo’s work during the first years
of the seventeenth century, that
turned mathematicians’ attention to
curves of mechanical origin. Galileo
introduced the first such curve—the
cycloid.

Although the ancients did not
know the cycloid, they knew and
successfully used its close relative,
the epicycloid. An epicycloid (figs. 2
and 3) can be obtained as a trajectory
of a point of a circle that rolls with-
out slipping on the outside of a sec-
ond stationary circle (if the circle
rolls along the inside of the second
circle, a hypocycloid is obtained—
see fig. 4). We encounter epicycloids
in the geocentric (Earth-centered)
model of the Solar System, elabo-
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Figure 2

rated on by Ptolemy (A.D. 852-1657).

Plato (427-347 B.c.) and Aristotle
(384-322 B.c.) thought that all plan-
ets, as well as the Sun and the Moon,
revolved about Earth. This theory
not only contradicted the available
numerical data, but also could not
explain many qualitative effects. For
example, Mars, which usually
moves counterclockwise in our sky,
sometimes moves clockwise (the so-
called retrograde motion).

This fact can easily be explained
in the context of the heliocentric
(Sun-centered) system. However,
the ancient scientists tried to recon-
cile data from astronomical observa-
tions with the geocentric system.
Appollonius and then Ptolemy re-
tained the axiom that uniform circu-
lar motion dominated the Universe.
However, they argued that the mo-
tion of planets was complex: Each
planet moves on a circle whose cen-
ter, in turn, revolves on a large circle
about the Earth. It turns out that it’s
possible to choose the speeds of
these two rotations so that the plan-
ets’ trajectories contain loops where
retrograde motion occurs. These tra-
jectories are not exact epicycloids,
but are very close. If we roll a circle
along the outside of another, station-
ary circle, a point on its boundary
will describe an epicycloid, and a
point on its interior will describe an-
other curve, called a curtailed epicy-
cloid, whose cusps are smoothed
(fig.5). If a stick is attached to the
rolling circle, the endpoint of the
stick will describe a prolate epicyc-
loid, whose cusps have become
loops along which the stick’s end-
point moves retrograde (fig. 6).

This ingenious theory not only
accounted for qualitative effects
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such as retrograde motion, but also
made it possible to account for astro-
nomical observations made over
hundreds of years. When Nicolaus
Copernicus (1473-1543) suggested
his heliocentric system, he had dif-
ficulty competing with the existing
versions of the Ptolemaic system in
accounting for astronomical obser-
vations.

It’s interesting that Copernicus
(and later, Galileo) did not reject the
principle of uniform circular motion
and retained circular orbits (which
were later replaced with elliptical
orbits by Johannes Kepler (1571-
1630)). In particular, he wanted to
construct rectilinear motion from
circular motions (it was believed
then that comets moved in straight
lines). He was able to devise a
method: Let a circumference of ra-
dius 1/2 roll on the interior side of
another circumference of radius 1.
Then its points describe certain de-
generate hypocycloids that are iden-
tical to the diameters of the station-
ary circle—each point moves back
and forth on its diameter. I encour-
age the reader to construct this beau-
tiful, intriguing picture.

The cycloid s seen

We do not know exactly when
Galileo became interested in the
cycloid. Was it in his youth at the
beginning of the century, when he
discovered the laws of motion, or 30
years later, when he was writing his
Dialogues Concerning Two New
Sciences while struggling with in-
creasing blindness? This book was
intended to record his remarkable
though yet unpublished discoveries
in mechanics. At that time, Galileo
was serving the sentence of the In-
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quisition at his villa at Arcetri, near
Florence. Two of Galileo’s disciples
assisted him in his last years of life:
young Vincenzo Viviani (1622-
1647) and the more experienced
Evangelista Torricelli (1608-1647).
They helped their teacher complete
his projects, and they were com-
pelled to develop Galileo’s ideas
themselves, because Galileo hadn’t
the strength to do it all himself.

Galileo understood very well
which problems concerning the cy-
cloid needed to be solved first. These
were the problems of constructing
the tangent and of finding the area
under the arch of the cycloid and the
various related curvilinear figures.
In modern terminology, the first
problem pertains to differential cal-
culus and the second to integral cal-
culus.

Tangent to the cycloid

In Italy, Viviani was the first to
construct the tangent to the cycloid.
Later, Torricelli devised an elegant
method for constructing the tan-
gent, based on combining motions.
First, he considered a parabola that
is described by a body thrown hori-
zontally (or at an angle to the hori-
zon). The motion of this body is a
combination of uniform rectilinear
motion and uniformly accelerated
free fall. The velocities of these
motions are known, so adding them
by the parallelogram rule, we obtain
the velocity of the combined motion
directed along the tangent to the
parabola. It is very instructive to re-
peat this calculation, starting with
the fact that the tangent to the pa-
rabola y = x? at point (x, x?) passes
through (x/2, 0). It’s surprising that
Galileo did not find this construc-
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tion (or did he just not publish it?).

Motion along a cycloid is a com-
bination of uniform horizontal rec-
tilinear motion and uniform rota-
tion. The speeds of these motions
are equal (because the circle rolls
without slipping). Combining the
horizontal velocity with the rota-
tional velocity vector, which is tan-
gent to the generating circle and has
the same length, we see that the tan-
gent to the cycloid passes through
the upper point of the generating
circle in the corresponding position
(try to reproduce this construction
in fig. 1).

A similar construction was found
(perhaps a little earlier) by a French-
man, Gilles Personne de Roberval
(1602-1675). Much credit should go
to Roberval for developing a general
technique for drawing tangents by
treating a curve as a trajectory of a
combined motion. His method was
applicable to the cycloid and other
shapes, and it successfully competed
with other methods available at the
time.

However, the future lay in more
direct methods being developed by
Pierre Fermat (1601-1665) and René
Descartes (1596-1650). These meth-
ods did not require an individual
approach to every curve (that is,
there was no need to adjust the com-
ponent motions). It was interesting
to see whether these methods could
be applied to the construction of tan-
gents to curves of mechanical ori-
gin—for example, to the cycloid.

It turned out that the tangent to
the cycloid could easily be con-
structed by Fermat’s method, where
Descartes’s method, which worked
well for polynomial curves, failed.
However, Descartes was not a man

to give up easily. He devised an el-
egant mechanical theory. Instead of
having a circle rolling on a line, he
suggested considering a disk. In this
case, at each moment in time the
motion is very close to the rotation
about a certain (instantaneous) cen-
ter of rotation. The velocity of each
point is perpendicular to the radius
drawn from the center of rotation to
this point. In our case, the instanta-
neous center of rotation is the low-
est point of the rolling disc at which
it touches the directional line. The
result of this line of thinking is a
rule for drawing the tangent to a
cycloid.

Area and the cycloid's companion

Let’s turn our attention to areas.
For the cycloid, French mathemati-
cians considered problems concern-
ing areas before those of tangents
(probably because they felt more
confident with areas). The first prob-
lem was to calculate the area under
the cycloid’s arc. Viviani and
Torricelli argued that Galileo knew
this area equals three times the area
of the generating circle, and
Roberval proved this theorem in
1634. Consider in brief his elegant
reasoning.

At each moment in time,
Roberval projects the observed point
of the cycloid onto the vertical di-
ameter of the rolling circle and
watches the change of this projec-
tion. The curve described by this
projection was called the cycloid’s
companion (fig. 7). Later it turned
out that this symmetrical curve is
nothing more than a shifted sine
curve! It was in this way, and not as
a plot of the sine function, that the
sine curve first appeared in math-
ematics. The area under this curve
can easily be calculated. If we cut it

along the horizontal and vertical
middle lines, the four components
obtained.compose a rectangle with
sides 2mr g r (see fig. 7, where 7 =
1), Therefore; the area under the sine
curve is 2mr2.

What about the sectors between
the cycloid and its “companion’?
These remaining parts were called d
Roberval’s petals, and they illus-
trate a method for calculating areas
that was very popular at the time—
Cavalieri’s principle. This principle
states that if two figures give equal
segments when cut by an arbitrary
horizontal line, their areas are also
equal. Cavalieri considered figures
to be composed of “indivisibles”—
parallel layers of zero thickness—
and stated that the area does not
change when these indivisibles are
shifted. Roberval’s petals have the
same intersection with horizontal as
the half of a circle cut by its vertical
diameter. Therefore, by Cavalieri’s
principle, their total area is the same
as the area of the circle—that is, nzr2.
Thus, the total area under the cyc-
loid arc is 3nr2. An ingenious solu-
tion, isn’t it?

Mersenne’s problems
and Pascal's competition

Thus we come to the end of the
first stage of the cycloid’s “life.” The
first problems concerning this curve
had been solved elegantly, and the
cycloid had become firmly estab-
lished in mathematics. However,
many problems that naturally oc-
curred in the context of developing
the infinitesimal calculus remained
unsolved. The Franciscan monk Fa-
ther Marin Mersenne (whom we
mentioned earlier) played a major
role in discussing new, problems.
Although Mersenne had several
achievements in mathematics and
physics to his name (for example, he
measured the speed of sound rather
accurately), his role in the organiza-
tion of science was much more im-
portant.

At the time there were no scien-

tific journals, and Mersenne served

as a communication link between
scientists throughout Europe. Scien-
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tists from different countries re-
ported their results to Mersenne,
and he communicated the results to
other interested parties (his prestige
guaranteed their full attention).
Mersenne kept track of scientific
problems and communicated them
to scientists who could better solve
them. Starting in 1639 he organized
weekly Thursday meetings, which
were attended by Etienne and Blaise
Pascal (father and son|, Girard
Desargues, Claude Mydorge,
Roberval, and others. These “Thurs-
days” were precursors to the cre-
ation of the French Academy of Sci-
ences.

We can see how Mersenne nur-
tured the growth of young talent
from his relationship with
Christiaan Huygens (1629-1695).
Mersenne started corresponding
with Huygens in 1646. First he
posed training problems, then un-
solved ones, and finally he presented
to Huygens the problem of the effec-
tive length of the compound pendu-
lum. It took Huygens several de-
cades to solve this problem.

As for the cycloid, Mersenne rea-
soned that its study should not be
restricted to calculating the area
under the entire arc, but that seg-
ments cut by different horizontal
lines should be considered as well:
The center of gravity and volume of
the bodies of revolution generated
by these segments should be found,
and so on. Mersenne probably un-
derstood that with these problems,
elementary manipulations with
Cavalieri’s indivisible layers could
not give the result: The integral of
the sine must be calculated in its
general form. For this reason,
Mersenne wanted Pascal, the most
ingenious of his colleagues, to work
on these problems.

However, Pascal turned to them
only in spring 1658, when he was
living in a convent in Port-Royal and
it seemed that he would never do
mathematics again. According to
Pascal’s sister Gilberte Perier and
his niece Marguerite, he turned to
mathematics when he couldn’t get
to sleep because of a terrible tooth-
ache. Meditating on the cycloid dis-
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tracted him from the toothache and
soon took up all his attention. By
morning he knew the solution to the
problem, and the toothache was
gone. Pascal did not want to write
down his result, but his friend the
Duke de Roanne persuaded him to
do it, saying that his return to math-
ematics was inspired from the heav-
ens. The Duke was in turn inspired
to donate 60 pistoles to organize a
competition for solving Mersenne’s
problems.

In June 1658 a letter containing
six problems concerning the cycloid
was sent to Europe’s most promi-
nent mathematicians. The deadline
was tight—the first of October. The
letter was signed Amos Dettonville,
an anagram of Pascal’s pen name
Louis de Montalte, under which his
Lettres a un Provincial were pub-
lished. On October 24 the results
were declared. Mersenne died before
his problems were solved, and his
position as chairman of the jury was
filled by Pierre Carcavi (1603-1684).
John Wallis (1616-1703) solved all
the problems, but there were objec-
tions to his solutions. Huygens
solved four problems, and the prize
was awarded to Dettonville, who
used the prize money to publish the
solutions.

The competition played an im-
portant role in scientific life. It was
of major importance for the future of
the infinitesimal calculus to pass
from considering particular cases to
general problems. The method sug-
gested by Pascal did not use any spe-
cific features of the cycloid and
could be extended to more general
cases. However, Pascal did not do it
himself, and only Gottfried Wilhelm
Leibniz (1646-1716) appreciated this
aspect of the work.

Leibniz, who developed with Sir
Isaac Newton (1643-1727) the gen-
eral methods of differential and in-
tegral calculus, was surprised that
Pascal did not expand on his method
of analyzing the cycloid to more
general cases himself. It’s hard to
guess why. Often scientists don’t
immediately see solutions that ap-
pear quite natural later on. On the
other hand, we can also suppose that

he wasn’t interested in mathematics
anymore. During the last years of
his life he was thinking intensively
about the purpose of life and the
place of humans on Earth.

Pascal’s competition opened a
new stage in the study of the cyc-
loid. The participants did not re-
strict themselves to the problems
suggested by Pascal. For example,
Christopher Wren (1632-1723), a
talented English mathematician and
famous architect (the designer of St.
Paul’s Cathedral in London), didn’t
do very well in the competition
overall. However, he did calculate
the length of the cycloid’s arc. He
proved that this length is 8z, and this
result impressed mathematicians
greatly.

The clock with the cycloidal pendulum

Another participant in the com-
petition, the 28-year-old Huygens,
digressed from his chief project—
constructing the pendulum clock—
to solve the cycloid problems. The
first model of his clock appeared in
1658, and afterward, Huygens was
dedicated to improving it.

The idea underlying the pendu-
lum clock is that the period of pen-
dulum oscillations is a reproducible
unit of time that remains unchanged
when the oscillations damp. This is
the isochronous property of the pen-
dulum discovered by Galileo (the
period of oscillation is independent
of the range of oscillation).

In the seventeenth century, the
most important unsolved scientific
puzzle was the problem of measur-
ing longitude at sea. From ancient
times, it was known how to mea-
sure latitude by looking at the posi-
tions of the stars. But the stars rotate
from east to west, and can give no
clue as to a ship’s longitude. Leading
naval powers offered huge amounts
of prize money to anyone who could
give them a reliable method of deter-
mining longitude at sea. If, for ex-
ample, an accurate chronometer
(clock) could be constructed that
worked well on a rolling ship, then
such a chronometer could be set to
the time at the ship’s port of depar-
ture. Local time could be deter-
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mined by observing the Sun or the
stars, and the difference between
these two would give the ship’s lon-
gitude. (Today we would say that we
were determinig the time zone in
which the ship would be located,
but there was no such global system
in the seventeenth century.)
Huygens intended to use his knowl-
edge of the cycloid to construct such
a chronometer.

Soon after Huygens’s invention
became known, it emerged that
Galileo had also hit upon the idea of
a pendulum clock, but only a year
before his death, when he had no
strength left to implement the idea.
His son Vincenco, who was to finish
the project after his father’s death,
could not solve this problem either.

In creating the first pendulum
clock, Huygens discovered that
Galileo’s assertion that pendulum
oscillations are isochronous was not
completely correct. It holds only for
small oscillations. Then how could
he guarantee the isochronism of os-
cillations? Huygens knew that the
length of the pendulum must be de-
creased as the pendulum’s swing
carries it away from the vertical line.
But what was the exact relation be-
tween the position of the pendulum
and the amount by which its length
should be decreased? For his first
clock, Huygens made cams that
constrained the pendulum as it
swung (fig. 8). He found a shape that
worked by trial and error. However,
he did not know what the exact
shape should be. In despair, he re-
moved the cams from his 1658
model and replaced them with an
amplitude limiter. However, a vear
later, he reintroduced the cams. This
time he knew exactly what their

shape should be in order to guaran-
tee the isochronism of oscillations.
(Recall that in the meantime he had
taken part in Pascal’s competition.)

Galileo understood very well that
the problem of the simple oscilla-
tion of a pendulum could be trans-
formed. Imagine a heavy point par-
ticle, like a marble, rolling down a
slide or chute, with the shape of the
chute coinciding with the pen-
dulum’s trajectory. Then the physi-
cal constraints imposed on the point
particle in the chute are identical to
those imposed on the pendulum.
The isochronism condition is
equivalent to the condition that the
particle arrives at the lowest point of
the chute at the same moment in
time, independent of the starting
point. Such an effect is not surpris-
ing: If the particle starts from a
higher point, it travels farther but
picks up more speed. However,
Huygens found out that, contrary to
Galileo’s opinion, the circular chute
is not isochronous. Huygens sought
the shape of the chute such that the
descent time is independent of the
starting point. He called such a
curve a tautochrone (it is also called
an isochrone). It turns out that a
tautochrone curve is just an inverted
cycloid.

However, the problem of the iso-
chronous pendulum was not yet
solved. It was necessary to find the
shape of the cams that guaranteed
that the pendulum’s weight would
move along a cycloid. Earlier,
Huygens had studied the develop-
ments of various curves. Suppose a
string is wrapped tightly along a
curve, and one end is pulled away
from the curve, so that the string
“peels off” the curve. The path
traced by the pulled endpoint of the
string is called the curve’s develop-
ment. Studying the developments of
various curves helped Huygens un-
derstand that if the pendulum’s
weight is to move along a cycloid,
the cams themselves should be cy-
cloidal in shape. When the
pendulum’s string wraps onto the
cam up to its endpoint, this end-
point is at the lowest point (the turn-
ing point| of the cam. This result is

known as Wren’s theorem, and is
usually expressed by saying that the
perimeter of the cam is twice as long
as the length of the pendulum.

Huygens was sure that the prop-
erties of the cycloid that he had dis-
covered were of fundamental impoz-
tance. He wrote that he had to
consolidate and amplify the studies
of Galileo on falling bodies and he
felt that the discovery of these prop-
erties of the cycloid were the great-
est achievements of this area of
study.

In 1661 the test of the nautical
version of the pendulum clock be-
gan, but it did not lead to the con-
struction of a reliable sea chronom-
eter. However, the studies in
mathematics and mechanics that
Huygens conducted in connection
with the pendulum clock were so
important that his book Horologium
Oscillatorium (The Pendulum
Clock) (1673) is one of the major
texts in classical mechanics, along
with the books of Galileo and New-
ton. In Horologium Oscillatorium,
Huygens stated that the cycloid’s
properties had been studied better
than those of any other curve.

The [ast mystery of the cycloid

The cycloid surprised mathema-
ticians once more at the end of the
century of the infinitesimal calcu-
lus. Newton was the first to under-
stand the necessity of moving from
individual problems to the construc-
tion of a general method. During the
plague years in Lincolnshire, he es-
sentially invented the calculus (his
“method of fluxions”). However, he
did not publish it at once, but used
it to obtain many varied results.
Many of these results appeared in
the pages of his Philosophiae
Naturalis Principia Mathematica
(Mathematical Principles of Natural
Philosophy) (1687), but the method
was not presented in detail there.

In the early 1670s, Leibniz, as a
distraction from his numerous state
and scientific occupations, began to
develop the formalism of the differ-
ential and integral calculus (under
the strong influence of Pascal). He
found out about Newton’s work and
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started corresponding with him in
1676. In contrast to Newton,
Leibniz actively called attention to
his method using both his personal
contacts and the journal Acta
Eruditorum (as you remember, this
was the journal read by Toby
Shandy), which had been published
since 1682.

In 1696 the notice “A New Prob-
lem that All Mathematicians Are
Invited to Solve” appeared in Acta
Eruditorium. It was presented as fol-
lows: “Two points A and B are given
in a vertical plane. Find the trajec-
tory AMB such that a body M de-
scends from A to B along this trajec-
tory in the shortest possible time
moving under gravity.” The prob-
lem gained popularity. Leibniz
wrote that it was very elegant and
quite new. However, in his Dia-
logues Concerning Two New Sci-
ences, Galileo discussed the fact
that a heavy particle descends along
a segment of line slower than along
a broken line with the same end-
points. He was quite sure that a
quarter of a circle was the curve of
the quickest descent. The curve of
quickest descent was named the
brachistochrone. But was it a seg-
ment of a circle?

The timeliness of the quickest
descent problem manifested itself in
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the fact that it was solved rather
quickly by a number of mathemati-
cians: both brothers Bernoulli—
Jacob (1654-1705) and Johann
(1667-1748), Leibniz, Guillaume de
I'Hopital (1661-1704), and Newton
(who presented an anonymous solu-
tion, but his genius betrays itself in

- the work]. The solution by Johann

Bernoulli turned out to be the most
interesting. His idea was quite unex-
pected. He suggested replacing the
mechanical problem with an optical
one.

It turns out that if we assume that
the speed of light at a point M is
equal to ,/2gy , where y is the differ-
ence between the height of points A
and M (and gis the acceleration due
to gravity), then a ray of light pass-
ing from A to B travels along the
brachistochrone. (Fermat had al-
ready established the principle that
light traveling between two points
seeks a path that requires the mini-
mum time to traverse.) Then, using
the laws of reflection and properties
of the tangent to the cycloid (by then
well understood), one can show that
the brachistochrone is just an in-
verted cyloid with its cusp at point A!

One historian of mechanics
wrote that Johann Bernoulli found
his elegant solution without any
general method, using only his geo-

metric intuition and what was
known in optics at that time. Thus,
his artistic nature manifested itself
in science. His brother Jacob was
quite another kind of scientist. He
had much less creative imagination,
but strong critical ability. His solu-
tion was much more unwieldy, but
he did not miss a chance to substan-
tially develop a general method for
solving problems of this kind. Thus,
each brother possessed one aspect of
scientific talent, which is combined
in great scientists such as Newton.

The heroic history of the cycloid
came to an end with the end of the
seventeenth century. The cycloid
mysteriously occurred in various
problems, and nobody doubted that
it plays a very important role in na-
ture. However, some time later it
became clear that the cycloid is not
connected to the fundamental laws
of nature as, for example, are conic
sections. Problems that gave rise to
the cycloid played an important role
in the development of mechanics
and calculus, but after these sci-
ences were sufficiently developed, it
turned out that these problems were
not of the utmost importance. Thus,
an instructive historical illusion oc-
curred. However, in learning the his-
tory of the cycloid, we learn a lot
about the history of science. O]




GRADUS AD
PARNASSUM

Divisibility rules

HIS COLUMN WILL CON-

tinue the discussion of divis-

ibility tests started in the ar-

ticle “Divide and Conquer!” on
page 18. We begin with a generaliza-
tion of the divisibility tests for 9 and
11 given in that article, then we
climb some steps to arrive at more
difficult results.

Problem 1. If S is the sum of the
(decimal) digits of the integer N,
then N =S (mod 9).

Solution. We can write

N=a,10"+a_ 10" + .

+a,10 + a,,.
Now 10 =1 (mod 9), and therefore
102 =1 (mod 9), for any positive in-
teger n. Thus we can write

.+ a,10?

N=a,+a,  +...+a,+a, +a,(mod9),

which is what we wanted to prove.

Problem 2. If §’ is the “zigzag”
sum of the digits of N, then N=§
(mod 11).

Solution. The proof is analogous
to that in problem 1. We use the fact
that 10 = -1 ({mod 11). The zigzag
sum results from the fact that
107 =1 (mod 11) if nn is even and
107 = -1 (mod 11) if n is odd.

Problem 3. (a) Show that a num-
ber consisting of evenly many
identical digits is a multiple of 11.
(b) The number N consists of oddly
many identical digits. Show that
N - 10 cannot be a multiple of 11.

Problem 4. A three-digit number
is chosen, and a new number is
formed by reversing the order of its
digits. Show that the (positive) dif-

by Mark Saul and Titu Andreescu

ference between these two numbers
is divisible by 11.

Problem 5. (a) Find the largest
prime number that divides all inte-
gers of the form AAA. (b) Find the
largest prime number that divides all
integers of the form BBBB. (c) The
largest prime number that divides all
integers of the form CCCCCC is less
than 100. Find this number.

Problem 6. Show that if a
three-digit number is divisible by 37,
then there exists a three-digit num-
ber consisting of the same digits in
some other order, which is also di-
visible by 37.

Problem 7. Walter thought that
he had a good test for divisibility by
7 of a three-digit number. He said,
“If the sum of the three digits is a
multiple of 7, then the number itself
is a multiple of 7.”

“Not true, 914 is not a multiple of
7,but9 + 1 + 4 = 14 is,” said Dick.
“In fact, your trick works only when
the tens digit and the units digit are
identical.”

Show that Dick is correct.

Problem 8. Alina said, “Here’s
how I can check for divisibility by
13.1 take the units digit of the num-
ber I want and cross it out. To the
new number formed, I add four
times the units digit I crossed out.
My original number is divisible by
13 if and only if my new number is.
For example, if I want to test 1937,
I form the number 193, and add
4.7 =28.SoIlget221. But now I
must test this number.”

Carol said, “Not so bad. Just do

the same thing again. We get 22 + 4
= 26, which we know is a multiple
of 13. Your new number is always
less than the one you started with,
so you will eventually end up with
a two-digit number.”

Show that both Carol and Alina
are correct.

Problem 9. Let

N=al0" + an_llon‘1 ...
+a,10% + 4,10 + aj

be an integer, where n is odd. Then
N is a multiple of 99 if and only if
the number

is a multiple of 99. (The notation ab
refers to the two-digit number
whose tens digit is ¢ and whose
units digit is b.)

Problem 10. What is the smallest
2000-digit number that is a multiple
of 992

Problem 11: The binomial coeffi-

cient
99
19

is the 21-digit number

107196674080761936xyz.

What is the three-digit number xyz?

Problem 12: Show that any prod-
uct of 99 consecutive integers is di-
visible by 99! Q
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Art by Sergey Ivanov
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Relativity of motion

HE MOTION OF ANY BODY

is known to be relative, be-

cause its displacement, veloc-

ity, and trajectory depend on
the frame of reference from which
an observer describes it. To describe
a particular motion, we can use dif-
ferent frames of refer-
ence—both stationary
and moving.

In many cases, to
change from one frame
of reference to another,
we need only use the
rule for transforming
displacements, veloci-
ties, and accelerations.
For displacements, we
have

-

Sp1 = Spa + Sy
where s;, is the dis-
placement of a body
relative to the first
frame of reference (for
example, the stationary
one), s, is the displace-
ment of the body rela-
tive to the second frame
of reference (say, a mov-
ing one), and s, is the
displacement of the
second frame of refer-
ence measured relative
to the first frame of ref-
erence. Notice that the
first subscript refers to
the body (or frame) be-
ing measured and the
second subscript refers
to the frame of refer-
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by A. I. Chernoutsan

ence used to make the measure-
ment.

The analogous transformations
for velocity and acceleration are

Ve1 = Vao * Vour

and

Ay = gy T Ay

It is easy to remember the order of
the subscripts if you notice that the
two outer subscripts on the right-
hand side of the transformations
match the subscripts on the left and
the two inner subscripts
on the right are the same.

As an example of us-
ing these transforma-
tions, the velocity of a
boat relative to the land
is equal to the velocity of
the boat relative to the
water plus the velocity of
the water relative to the
land. Symbolically, we
have

VoL = Vew T Vi

It should be noted that
these formulas are valid
for translational motion
of one frame of reference
relative to another (the
coordinate axes of the
moving frame of refer-
ence are parallel to those
of the stationary frame of
reference). In addition,
the velocities of all mov-
ing objects should be far
less than the velocity of
light ¢ = 300,000 km/s,
otherwise quite different
velocity transformations
would come into play.
These are described in
Einstein’s relativity
theory.



Now let’s think about why it is
necessary to change the frame of ref-
erence. Wouldn't it be simpler to use
the same frame of reference in every
case? There are many reasons not to
do this.

First, in many situations we must
use an alternative frame of reference
because a problem cannot be solved
otherwise. Consider the flight of an
airplane in windy weather. The cho-
sen course of the airplane’s axis is
relative to the compass needle, but
the velocity of the plane is measured
relative to the air. The meaning of
such velocity measurements is clear
in the frame of reference fixed to the
moving air, where the data obtained
determine the direction and value of
the airplane’s velocity in this frame
of reference. However, we cannot
use this frame of reference only, be-
cause we need to know the plane’s
location relative to the landmarks in
order to land safely at the destina-
tion airport. So, let’s write the veloc-
ity addition law

VoL = Vpa tVap
where P, L, and A refer to the plane,
land, and air, respectively, and draw
the corresponding velocities in fig-
ure 1. Usually, the wind velocity
and direction are provided by a me-
teorological service, and other data
are known beforehand: the course to
the destination airport (direction of
vector vy, ), the velocity of the plane
relative to the wind, and the
airplane’s velocity relative to the
land (the air-traffic controllers de-
mand that the planes land on time!).
These data are quite enough to cal-
culate all the necessary elements of
avelocity triangle (say, angle 6—the

airport

o
airport

Figure 1

Figure 2

correction factor to the course in
windy weather) using two known
sides and angle of this triangle.

Second, although in many cases it
is not necessary to change to another
frame of reference to solve a prob-
lem, it can drastically simplify the
problem and make the solution
more obvious. Consider, for ex-
ample, the flight of two cannonballs
after the simultaneous shots of two
cannons (fig. 2). How can we know
the distance between the balls? The
simplest way of looking at it is to use
the theoretical approach of Baron von
Munchausen, who liked to travel
straddling a flying cannonball. The
relative acceleration of the balls is
zero, because both cannonballs have
the acceleration due to gravity (air
resistance is neglected here). Thus,
from the baron’s viewpoint (he sits
on ball number 1) the second ball
moves uniformly along a straight
line with velocity

Vo1 = Vot Vig= Vo ~ Vi

By determining the direction of
this velocity from the plot, we can
easily find the closest distance of
approach of the second cannonball
to the baron (we need only verify
that neither of the balls hits the
ground before this occurs).

Of course, we could make all of
the calculations without using the
baron’s frame of reference, but they
would be cumbersome. The “prin-
ciple of Baron von Munchausen,”
which says that the relative motion
of two freely flying bodies is uni-
form, helps to solve many problems.
Explain, for example, why fireworks
produce bright balls of fragments
that grow as they fall.

It is interesting to recall that one
of the dramatic episodes of human
endeavor dealt with none other than
the choice of the most “correct”
frame of reference. The execution of
Giordano Bruno (1548-1600) and the
renunciation of Galileo mark the
dangerous road to scientific knowl-
edge. It was very difficult for man-
kind to agree that Earth is not the
center of the Universe, but rather
just one of the planets revolving
about the Sun.

What did mankind gain by replac-
ing the geocentric (Earth-related)
frame of reference with the helio-
centric (Sun-related) one? Now we
understand that one of the advan-
tages of this transition is the drastic
simplification of planetary motion.
This helped Johannes Kepler (1571-
1630) discover in later times three
tamous laws of planetary motion. In
turn, these laws prompted Newton
to discover the law of universal
gravitation.

So, what is the major advantage of
the heliocentric over the geocentric
frame of reference? In physics, not
all frames of reference are equivalent
from the dynamic viewpoint. There
are so-called inertial frames of refer-
ence, where the laws of mechanics
assume the simplest and sometimes
even self-evident forms. By contrast
to the geocentric frame of reference,
the heliocentric frame of reference
can be considered inertial. However,
in kinematics one frame of reference
is as good as another—we can use
any of them, even accelerating and
rotating frames of reference. How-
ever, rotating frames of reference
have some unusual features, which
should be considered very atten-
tively—but this is a subject for a spe-
cial discussion. : Q

Quantum on frames of reference:

G. Myakishev, “The ‘most iner-
tial’ reference frame,” March/April
1995, p. 48.

B. Belonuchkin, “The fruit of
Kepler's struggle,” January/February
1992, pp. 19-22.

A. Leonovich, “Are you relatively
sure?” September/October 1996, pp.
32-33.
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Webisite genesis

NASA’s Genesis mission an-
nounces the launch of its new
website, which is located at
genesismission.jpl.nasa.org. The
website includes interactive amuse-
ment for science enthusiasts in ad-
dition to continually updated re-
ports of mission preparation and
progress, interviews with Genesis
team members, and science back-
ground on the mission.

Site highlights include a create-
your-own periodic table that illumi-
nates how the periodic table of ele-
ments came to be; an interview with
Chester N. Sasaki, Genesis Project
Leader; and a nine-minute video in-
troducing the mission.

Scheduled for launch in January
2001, the Genesis mission will park
a relatively low-cost spacecraft at a
gravitationally stable point just be-
yond the orbit of the Moon, where it
will collect charged atomic par-
ticles, components of solar wind.
The collected materials, which will
total only a few millionths of a
gram, will include isotopes of oxy-
gen, carbon, and nitrogen. Previous
and current space missions studied
the most abundant elements of so-
lar wind, hydrogen, and helium.

The Genesis mission will measure
the number of particles in the solar
wind, their energy, and their direction
of travel. Upon the spacecraft’s return
to Barth in 2003, scientists will ana-
lyze the data for a “weather report”
on the solar wind and for clues to the
formation of the Solar System.

Solar wind blows at about a mil-
lion miles per hour and carries occa-
sional energetic disturbances that
can cause storms of activity in
Earth’s magnetosphere and knock
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out electrical systems on satellites.
Earth-orbiting satellites are not able
to capture solar wind particles eas-
ily because Barth’s electrical field
deflects most of the solar wind.

Wi, a name, | call myself

NASA’s two new Mars probes
need names, and it’s turning to you.
The Deep Space Mission sent off the
probes last year by hitching them to
another spacecraft that is also travel-
ing to Mars. However, instead of land-
ing gently, the miniature probes will
intentionally crash into Mars’ sur-
face, enabling them to sample the
sediment and test it for the presence
of ice. The forebody of each probe will
get buried, while the aftbody will re-
main on the surface and transmit the
information back to Earth.

NASA is looking for pairs of names
that evoke a spirit of exploration and
risk for the sake of knowledge. If
named after people, the people must
be no longer living; names may be
taken from historical, mythical, or
fictional characters. NASA is not in-
terested in names of superheroes or
names with acronyms. NASA also
suggests naming the probes after
places or things that are related to
each other, or a person and a place or
thing related to that person. Send
your entry with an essay of 100 words
or fewer describing why the chosen
names best represent the mission.

You may submit your entry elec-
tronically at the contest website or by
regular mail by April 30, 1999, to
Deep Space 2 Naming Contest, Jet
Propulsion Laboratory, 4800 Oak
Grove Drive, Mail Stop 301-235,
Pasadena, CA 91109-8099.Winners
will be announced at the end of 1999,
posted on the Deep Space 2 website,

and contacted via postal mail. The
winner and 25 finalists will each re-
ceive a Deep Space 2 poster signed
by the project team. For more infor-
mation, visit The Space Place at
http://spaceplace.jpl.nasa.gov/
ds2cntst.htm.

Not for Squares

This month’s CyberTeaser (B258
in this issue) proved a cinch to solve
for those who could think “outside
the box.” Consider four rectangles at
the upper left corner of the given
rectangle. The ratio of the areas of
rectangles 1 and 2 is equal to that of
rectangles 3 and 4. Therefore, the
area of rectangle 3 is six. Using simi-
lar reasoning, we can find the areas
of the rectangles above the diagonal,
which leads us to the arca of the
desired rectangle being 24. Follow-
ing are the 10 speediest solvers:

Theo Koupelis (Wausau, Wisconsin)
Anastasia Nikitina (Pasadena, Cali-
fornia)

Jim Paris (Doylestown, Pennsylvania)
Nick Bennett (Doylestown, Penn-

sylvania)
Elisabeth Roselle (Fairfield, Ohio)
Christopher Franck (Redondo

Beach, California)

Bruno Konder (Rio de Janeiro, Brazil)
Sergio Moya (Culiacan, Mexico)
Leonid Borovskiy (Brooklyn, New
York)

May Lim (Quezon City, Philippines)

Congratulations! Each of the win-
ners will receive a Quantum button
and a copy of the March/April issue.
Everyone who submitted a correct
answer in the time allotted was en-
tered in a drawing for a copy of Quan-
tum Quandaries, our collection of
the first 100 Quantum brainteasers.
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Math
M256

The desired number has the
form x = 249355¢. Then, we have
2x = 24+13b5¢ = p2 and thus, a is an
odd number, and b and c are even.
Similarly, a is divisible by 3 and 5,
b + 1 is divisible by 3, b by 5, ¢ by 3,
and ¢ + 1 by 5. A little experimenta-
tion shows that the minimal set of
a, b, and c satisfying these condi-
tions is as follows: a = 15, b =20, and
c=24.

M257

Make the substitution y = x + 2.
Then, the equations take the form

ypP-2y-19=0

and
y3 -2y +19=0.

If y, is a root of the first equation,
then -y, is a root of the second equa-
tion. In addition, we can see from the
graphs that each of the equations has
a single real root. The sum of these
roots is zero. Therefore, the sum of
the roots of the original equations is

(Yo~ 2)+ - 2) =4,

M258

Since a radical cannot have a
negative value, we see that x > 0.
From the second-level radical, we
can see that 2 — v2—-x >0, which
leads to x < 2. Therefore, 0 < x < 2,
and we can make the variable sub-
stitution x = 2 cos ¢, 0 < ¢ < /2.
Then,

2+X=2(1+COS¢)=4COSZg

and
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\f4cos29 = Zcosg
2 2

Further manipulations yield

2—2C089=2 1—<:osER :4sin29.
2 2 4

Thus, our equation takes the form

¢

"‘2 +2sin— =2cos
| 1 o
(all roots are taken with the plus

sign, because 0 < ¢ < nr/2). We can
rewrite it as

\2+ 2008(% —%) =2c0s 0.

Finally, we obtain the equation
cos| 2—9 =Cos¢.
4 8

Thus, we have

E—%:quan.

4

Taking into account the constraints
imposed on ¢, we find that ¢ = 27/9.
Answer: x = cos (271t/9).

M259

Let’s prove an auxiliary proposi-
tion: If ABCD is a rectangle and M
is an arbitrary point in space, then

MA? + MC? = MB? + MD?. (1]

First we will prove relation (1). Fig-
ure 1 shows the special case where
point M is in the plane of rectangle
ABCD, and inside the rectangle. We
draw MP 1. AD, and MQ L AC. Note
that AP = BQ and PD = QC. From
using the Pythagorean theorem in

various right triangles, we have

MA? + MC? = AP? + PM2 + MQ* + QC?
= AP? + PD? + MP? + M(Q?
MB? + MD? = BQ? + MQ? + MP? + PD?
= AP? + PD? + MP* + M(Q?,

so equation (1) holds in this case.
The reader can check that the same
argument works when M is outside
the rectangle (but in the plane of
ABCD). If M is not in this plane, we
can make an analogous argument by
considering M’, the projection of
point M onto the plane of ABCD.
We locate points P and Q by draw-
ing perpendiculars M'P and M'Q as
before, and a similar argument leads
to the conclusion.

Now we turn to the problem un-
der consideration. Construct a rect-
angular parallelepiped from the
given tetrahedron in the usual way
(the mutually perpendicular edges of
the tetrahedron are also the edges of
the parallelepiped coming from the
same vertex: see figure 2).

Consider the three faces of this par-
allelepiped containing the three faces
of the tetrahedron (fig. 1). We know

A B
P Q
M
D A
Figure 1
M
|
Figure 2



A
P
M
¢ L] /TN B
. Q
Figure 3

the distance from point M (given in
the problem) to three vertices of each
face. Thus, we can determine the dis-
tance from M to the fourth vertex of
each of these faces. Squares of these
distances are as follows: 5+ 6-9 =2,
6+7-9=4and7+5-9=3.
Therefore, we can find the dis-
tance from point M to the remaining
vertex of the parallelepiped (that lies
opposite the vertex of the tetrahe-
dron with right plane angles). It
turns out that this distance is zero:
2+3-5=0,0r3+4-7=0,0r2+4
— 6 = 0. This means that point M
coincides with this vertex of the
parallelepiped. Therefore, the diago-
nal of the parallelepiped is 3, and the
radius of the sphere circumscribed
around the parallelepiped, and thus
around the given tetrahedron, is 1.5.

M260

Let L be the midpoint of BC. De-
note by Q the point of intersection
of the perpendicular bisector to BC
with line PT (fig. 3). Let us prove that
points B, C, P, and Q lie on the same
circle. First let us show that this fact
proves the assertion of the problem.
Note that tangents to a circle from
the endpoints of a chord make equal
angles with that chord (fig. 4). Now

Figure 4

suppose two circles have a common
point P, and we draw overlapping
chords through this point. If the tan-
gents to the two circles at the other
ends of the chords are parallel, then
the circles are tangent at the com-
mon endpoint of the chords. Indeed,
if the two circles had different tan-
gent lines at point P, these lines
would have to make the same angle
with line PAB (fig. 5).

P

Figure 5

Now if B, C, P, and Q lie on the
same circle, then the circle that
passes through points B, C, and P and
the circle inscribed in the given tri-
angle have a common point P. Points
P, T, and Q lie on the same line; T and
Q belong to different circles; and the
tangents to the corresponding circles
at points T'and Q are parallel. There-
fore, the tangents to these circles at
point P coincide—that is, these
circles are tangent to each other.

Thus, we must prove that points B,
C, P, and Q lie on the same circle. For
this purpose, it is sufficient to prove
that the following relation holds:

CT-TB=QT-TP. (2)

Introduce the notation BC = a, CA
= b, AB = ¢, and let 2s be the perim-
eter of triangle ABC, let K be its area,
let r be the radius of the inscribed
circle, let AN = h be the altitude
drawn to side BC, and let ¢ be the
angle MTN. Assume that angle B of
the given triangle is acute and b > ¢
(for other cases, the reasoning and cal-
culations are practically the same).
First let us recall two facts about the
circle inscribed in a triangle (fig. 6).

(i) rs = K. This well-known for-
mula results from calculating K as
the sum of the areas of triangles ABI,
BCI, CIA.

(ii) If s = (1/2)(a + b + ¢), then

A
%
U
C T B
Figure 6
CT=CU=s-c¢
AU=AV=5s-a
BV =BT =s-b.

These formulas can be proved by
letting CT = CU=x, AU = AV =y,
BV = BT = z, s0 that

X+y=ay+z=bz+z=c,

and solving for x, y, and z in terms
of a, b, and c. We have:

CT:S_C:a_er_—c/
9
_ 3
TH=g—hp=2HE=0 13)
9
We then find that
LT:LB—TB:b;C (4)
and
KNB=spgsp - 220080
2a
_az+c2—b2 _a c? - b?
2a 2 2a

The last relation, with (3), implies
o (b=ds=a)
IN=TB-NB=-—+~ 7
a
Thus,

tan6 = MN _ ha
TN Z(b—c)(s—a)' (5]

Now we have: TP = 2r sin ¢ and TQ
= LT/cos ¢. These relations are clear
from figure 7, in which T’ is the

o
¢ P

2r

Figure 7
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point diametrically opposite to T on
the inscribed circle. Combined with
(5), these two relations imply that

TP QT =1(b-c)tano
_ tha 1K
_Z(S—a)_s—a'

Now, relation (2), combined with

(3), takes the form

=(s-c¢)(s=b).

rK
s—a

This relation follows from two for-
mulas for the area of a triangle: K=rs
(the inradius times the semiperi-
meter) and

K= \/S<S —a)(s-Db)(s-c)

(Hero’s formula). A discussion of
these two formulas can be found in
any book on advanced geometry.

Physics

The frequency of the reflected sig-
nal doesn’t coincide with that of the
radar beam due to the Doppler ef-
fect. The maximum frequency shift
occurs when the velocity of the re-
flected radio wave is directed exactly
to (or from) the radar.

Let’s assume that the radar emits
short radio pulses with a repetition
frequency f,, while the frequency of
the received pulses is f,. The interval
between the arrivals of the n-th and
(nn + 1)-th pulses to the antenna is

l:i""TnH_T

ho fo .

where T, is the time needed for the
n-th pulse to propagate from the ra-
dar to the reflecting object and back,
while T, is the corresponding pe-
riod of the (n + 1]-th pulse.

At the moment of sending the n-
th pulse, the distance between the
radar and the reflecting object is L,
while at the moment of sending the
next (n + 1]-th pulse, this distance
becomes L, ,. We can see that
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oL,
1 s
’ Tn+1 -
v+cC

2LH+1

TH: /
v+ece

where v is the velocity of the wind
in a sandstorm, and c is the velocity
of the radio waves (or light|. The dif-
ference L, — L, ., equals the dis-
placement of the reflecting object
during an interval 1/f;:

from which we get

b =1+ 2]

and

=

P257

The initial air pressure in the
tube results from the hydrostatic
pressure of the mercury column of
height (H - h) = 76 cm and atmo-
spheric pressure. By the problem
conditions, the atmospheric pres-
sure is 10° Pa = 76 ¢cm mercury.
Thus, at the beginning, the air pres-
sure in the tube is about double that
of the atmospheric pressure.

We assume that the displacement
of mercury occurs slowly, so the
system is always at equilibrium.
Near the final state, when almost all
of the mercury is squeezed out, the
air pressure in the tube will be equal
to the atmospheric pressure, or half
the initial value. The volume of this
air HS (S is the cross-sectional area
of the tube) will be twice the initial
volume hS. According to the ideal
gas law, the air temperature in the fi-
nal state must equal that in the ini-
tial state!

We can see that the mercury will
not run out without the tube being
heated. Therefore, our paradoxical
result means that the problem can-
not be solved by considering only
the initial and final states: We
should follow the entire process of
the mercury displacement.

First, let’s find how the air tem-
perature in the tube must change in
order to perform a gradual displace-

adf =100 m/s.
2 fo

ment of the mercury, in which the
system is always at equilibrium.

If at some moment the height of
the air column is z, then the air pres-
sure in the tube P|z) is

P(z) = P, + pglH - 2), (6)

where p is the density of mercury,
and P, is the atmospheric pressure,
which by the problem conditions is
about the pressure exerted by a mer-
cury column of height H/2:

P, =pgH/2. (7)
Plugging (7) into (6) yields

P(z)= pg(%H—z). 8

Since we assume that the air in the
tube is at thermodynamic equilib-
rium for any z, then the air’s pres-
sure P(z), volume Sz, and tempera-
ture T|z) are described by the ideal
gas law:

2P,SH
P(z)Sz ) )
T(z) Ty '

where T, is the initial temperature,
2P, the initial pressure, and SH/2
the initial volume of air in the tube.
Inserting (6) and (8) into (9), we get
the dependence of temperature on
the height of the air column in the
tube:

(3H -2z)z

T(z)=T, e (10)

The function T|z) is plotted in fig-
ure 8. The process of displacing the
mercury corresponds to the part of
the parabola between the points

T(z)
% T
’ 2"3 z
0 in3nH 3H
Figure 8



Figure 9

z=H/2 and z= H (solid line). We can
see that to carry out the slow (quasi-
equilibrium) process of displacing
the mercury, the temperature must
rise to T, = (9/8)T, (at this point half
of the mercury will have run out)
and then fall to the starting value T},

Thus, the complete displacement
of mercury from the tube is per-
formed by heating the air to
T, =326 K. Then this temperature
should be maintained (by a ther-
mal contact with a thermal reser-
voir at a temperature T,). In the
following, the mercury will be dis-
placed by the expanding air, but
during this stage the process will
not be quasi-equilibrium.

The P-V plots help clarify our rea-
soning (fig. 9). The equilibrium dis-
placement is described by the linear
dependence of air pressure on z de-
scribed by formula (8) and shown by
the solid line between the points
z = H/2 and z = H. The same figure
shows the isotherms corresponding
to T, and T,. The initial and final
states lie on the same isotherm
T, = const. Thus, at temperatures
higher than T}, no isotherm crosses
the line P(z). In other words, the equi-
librium state of the air in the tube
cannot be achieved at any value of the
air column height z. Thus, if the air
temperature in the tube is main-
tained just above the value T, all of
the mercury will be squeezed out
from the tube by the expanding air.
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At any arbitrary time the energy of
the system is

2
E:—+CV LV _qVX’
2 2 2 d

where L is the inductance of the
coil, I is the electric current in the
circuit, V is the potential drop
across the capacitor, v is the veloc-
ity of the particle, and x is the
particle’s position. The equation
describing the motion of the point-
charge in the electric field is

gV
T

If V varies harmonically as V = V,
cos wt, then

ma

Vo .
v =2 sin wt,
mdo

aV
mdw
I =-CVymsin wt.

X ==

5 COS W,

Conservation of energy vyields:

2
L 2 mf( q Y |.
E:VOZ[E(C(D) +?(m—wd) ]Sll’l2 ot

' 2
VOZ[% . 5 ]cos2 ot = const.

m(wd)

This equation can be satisfied only
when the coefficients of cos? ot and
sin® ot are equal:

o2
o =—2
2
5 \1/2
(=)
% d
o), \Ld )| gy
2 mC

where ©,> = 1/LC.

Let’s estimate in what cases we re-
ally can neglect the forces due to the
image charges, as we suggested. The
order of this force is ¢2x/e d°, and it
must be far less than the usual elec-
trostatic force gV/d, from which we
obtain
Cf:

= <<l

epd’mom-

Since the area of each plate S >> @2,
and C = g,S/d, equation (1) is valid
when the point-charge doesn’t
change the natural frequency of the
tuned circuit too much.

Figure 10
P259

When the magnetic field is turned
on, each particle will be affected by
the Lorentz force (fig. 10) directed
along the rod and equal to

FE =qvB= qco%B.

The resulting force acting on the
dipole is

F=2F = qolB.

The value of this force is constant,
but its direction continuously var-
ies: Vector F rotates with the rod
with the angular velocity .
Therefore, the dipole’s center
(point O) will also revolve with
the same angular velocity  along
a circle of radius r, which can be
determined from Newton’s second
law:

F=2mo’r,
F  qIB
2me’ 2mo

e
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The problem is solved with the
laws of so-called “paraxial optics”’—
geometrical optics with small angles
of incidence and refraction. For such

Figure 11
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angles, sin o = tan o = o, so Snell’s
law of refraction is reduced to the
form of n,0, = n,0,.

Let’s consider an arbitrary ray in-
cident on the ball at a distance h
from the axis (fig. 11). Because
h << R (the beam is narrow), the
angle of incidence of this ray is

o= h/R << 1. By plotting the further:

passage of this ray, we can deter-
mine all the angles in triangles
AOB, OBD, and BDC:

Z0AB=,0BA=2,
n
/BOD=2%_¢,
n
LBCD:a—(Z—(X—oc):Zoc(l—lj.
n n
Then,
BD= R(Z—O‘ - oc),
n

20(1-1/n)

_Ra(2/n-1)  2-n

~20(l-Ynm) 2(n-1)

By the conditions of the problem,
DC =R, from which we get n = 4/3.

It is crucial that the final formula
does not contain the angle of inci-
dence o, which means that all rays
of the beam will be focused to a
single point. This is one of the laws
of paraxial optics: In a refractive sys-
tem, narrow beams of parallel rays
are either converged to a single point
(a focus) or diverge as if they were
radiated from a single point (virtual
focus).

The second law of paraxial
beam optics says that the rays di-
verging from a single point at
small angles are focused by a re-
fractive system into a point (in
this case the focus may also be vir-
tual). These laws help solve many
problems in which one of the op-
tical elements is an eye: Because
of the small diameter of its pupil,
the eye focuses the rays incident
at small angles. For this very rea-
son we can see a point as a point,
and not as an extended source.
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Brainteasers

B256

Answer:
2+(2-3+3)-4=+(4-5)+5)) =40
or

(2+(2-3)+3)-4)+(4-5)+5)=50.

B257

See figure 12.

___________

Figure 12
B258

Consider the four rectangles at
the upper left corner (fig. 13). The
area of one of them is not known.
Let’s find it. We can see that the ra-

1 3
2 2=6

1 3

Figure 13

tio of the areas of rectangles 1 and 2
is the same as the ratio of the areas
of rectangles 3 and 4. Therefore, the
area of rectangle 3 is 6. Reasoning in
the same way, we can successively
find the areas of the rectangles above
the diagonal that runs from the up-
per left to the lower right. As a re-
sult, we find that the area of the de-
sired rectangle is 24.

B259

Answer: 7 cm, because the only
point D that satisfies the conditions
is the vertex of the regular pyramid
with triangle ABC at its base. In-
deed, 6 < DB <8, and DB is an inte-
ger. Therefore, DB is either 6 cm,
7 cm, or 8 cm; the first and last vari-
ants imply that D lies on AB. (The
reader can check—for example, us-

ing the law of cosines—that this
does not yield an integer for DC.)
Similarly, DC is either 6 cm, 7 cm,
or 8 cm; and the first and last vari-
ants imply that D lies on AC. There-
fore, the only remaining possibility
isAD =BD =CD =7 cm.

B260

The balance will not be disturbed,
but the reading of the spring scale
will change. By the way, will this
reading increase or decrease? (Of
course, it does diminish because the
force of gravity tends toward zero in
the center of the Earth.)

Digital world

Question 1. All you have to do to
compute the perimeter is to count
and add the number of outside boxes
facing northward, southward, cast-
ward, and westward. But the number
of northward facing boxes is just the
width of the darkened area, as is the
number of southward-facing boxes.
Similarly, the number of eastward-
facing boxes is just the height of the
darkened area, as is the number of
westward-facing boxes. Thus the
whole perimeter is twice the sum of
the height and width of the darkened
region. Because of the symmetry of
the circle, this is just four times the
width of the darkened region.

Question 2. If X is a sphere, the
area surplus is 3/2. This can be seen
by looking at X’ along the voxel co-
ordinate directions, positive and
negative (fig. 14). Each of these
views reveals a separate set of voxel
faces, which collectively comprise

nr?

Figure 14




all the visible voxel faces—that is, the
surface of X’. But these six views are
circles, each with area nz2 (where r is
the radius of the sphere). The ratio of
the sum of these areas (6n72) to the
area of the sphere (4n2) is 3/2. You
can apply the “six-views” trick to
compute the area surplus of any con-
vex object from its three projections
(each viewed from two directions).

Question 3. The minimum area
surplus is 1, obtained by a cube
aligned with the voxel coordinate
axes. The maximum area surplus is
+/3, obtained either by a cube voxel-
aligned along its body diagonals or
by an octahedron with its opposite
vertices so aligned. To see the
maximality of /3, consider any al-
most-planar “facet” of X with area A
and unit normal n in voxel coordi-
nates. The area of the corresponding
“facet” of X’ is the sum of the pro-
jected areas along the three voxel-
axis viewing direction from outside
the object X”. This sum is A times
the sum of the direction cosines n.
in the voxel coordinate directions.
The sum is maximized when the di-
rection cosines are all equal (and
thus equal to 1//3 |. Therefore, thL
maximum area surplus of the face
is 3/4/3, or /3. Note that this plOOI
does not depend on the convexity of
the object that is approximated by
cubes, because the argument applies
to each local part of the object’s
boundary.

Question 4. By extension of the
argument in question 3, in N dimen-
sions the minimum area surplus is
1, and the maximum is /N .

Gratdus

Problem 3. (a) If a number has
evenly many identical digits, its zig-
zagsumis 0, so it is a multiple of 11.
(b) If N has oddly many digits, each
equal to d, then its remainder upon
division by 11 is just d. In particular,
no such number can have remainder
10, since d < 10.

Problem 4. If the original number
is 100a + 10b + ¢, we can assume
without loss of generality that a > c.
Then we are investigating the differ-

ence 100(a - ¢) + (¢ - a) = 99(a - c),
which is surely a multiple of 11 (and
also of 9).

Problem 5. (a) AAA = 100A + 10A
+A=111A =3 37A, so the largest
such prime is 37. (b) As before, BBBB
=1111B = 11 - 101B, so the largest
primeis 101. (c) CCCCCC=111111C
=111-1001C=3-37-7-11-13C,
so the answer is 37.

Problem 6. If the number is ABC,
there are six candidates. In fact, the
number BCA must be divisible by
37. Indeed, we have 1004 + 10B
+ C = 37k, for some integer k. Then
100B = 370k - 1000A - 10C, and

BCA =370k - 10004 - 10C + 10C
+A =370k -999A.

Since 999=9-111=27-37, this num-
ber is a multiple of 37.

Problem 7. Walter’s numbers are
of the form

100a + 10b + b =100a + 11b
=2a +4b (mod 7).

The sum of the digits is a + 2b.
The reader can check that a + 2b
= 0 (mod 7) if and only if 2a + 4b
=0 (mod 7), thus the truth of Dick’s
statement. Note that the statement
in italics is true because 7 is prime:
For other moduli the statement may
not be true.

Problem 8. Consider the number
N=10a + b, where b is its units digit
\but a is not its tens digit). Then we
are forming the number N’ = a + 4b.
Then 10N’ =10a + 40b, and 10N’ ~ N
= 39b, which is certainly a multiple
of 13. Hence N= 10N’ (mod 13), and
N =0 (mod 13) if and only if N' =0
imod 13). Notice that N and N’ may
not be congruent modulo 13.

To see that we eventually get a
two-digit number, notice that N- N’
=9a-3b, and if a > 9 (that is, if the
original number contains more than
two digits), then N - N’ is certainly
positive, so N’ < N.

Problem 9. We use the notation of
the first two problems, where S is
the sum of the digits of the number
N, and §’ is the zigzag sum.

Suppose first that N is a mul-
tiple of 99. Then N is a multiple of
9, s0 S is also a multiple of 9, and
118 is a multiple of 99. Similarly,

§” is a multiple of 11, so 9§’ is a
multiple of 99. Then 115 -98"is a
multiple of 99. But this last differ-
ence is just

2(10a, + a,, ; +10a,_, + a, ,+
+10a, + ag),

which is

Z(anan_l +a, 4, 3+...+ alao).

Hence the given sum must be a
multiple of 99.
Now suppose that

Anly ) + 0y 50, 3 +...+aa,
is a multiple of 99. Then twice this
number, or

2(10a, + a, , +10a,_, + a, ,+
+10a, + ay) = 11§ -95

is also a multiple of 99. Then we can
write 11§ - 98" = 99K, for some in-
teger K, and 118 = 99K + 95" is a
multiple of 9. It follows that S itself
is a multiple of 9, and therefore so is
N. Similarly, writing 95’ = 115 - 99K,
we find that §” is a multiple of 11,
and therefore so is N. Hence N is a
multiple of 99.

Problem 10. The smallest 2000-
digit number of all is the number

N =1000 ... 000.

1999 zeroes
Certainly there is a multiple of 99 in
the next 100 integers, so we can as-
sume that the number we seek is of
the form

1000 ... Oab,
—_—

1997 zeroes

for some digits a and b. The criterion
of problem 9 tells us that the sum 10
+00+00+...+abmustbe amul-
tiple of 99, so the smallest possible
values of a and b are 8 and 9. An-
swer:

1000...0809.

R
1997 zeroes

Problem 11. We have

99\
19)

99.98.97. ... .81
19-18-27 --3.2.1'
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and a quick count of the factors of
the numerator and denominator
will show that this number is a
multiple of 2, of 3%, and of 11, but
not of 5. Thus z is a nonzero even
digit. So for this integer,

S=1+0+7+1+9+6+6+7
+4+0+8+0+7+6+1
+9+3+6+x+y+zZ

is a multiple of 9, and

§=1-0+7-1+9-6+6-7
+4-0+8-0+7-6+1
-9+3-6+x-y+z

is a multiple of 11. It follows
that x + y + z is a multiple of 9 and
x - y + z is a multiple of 11, and
these two sums must have the
same parity. (We can see this, for
example, by noting that their sum
is 2x + 2z, which must be even.)
Now x + v + z cannot be 0, because
zis a nonzero digit. f x + y +z =9,
then x —y + z=11 (they must have
the same parity), but the second
number cannot be larger than the
first. Also, x + v + z cannot be 27,
for x, y, and z are at most 9, and z
is even. Hence x + y + z = 18, and
X - y + z must equal 0.

It follows thaty =9 and x+z =9,
and the only possible candidates for
xyz are 792, 594, 396, and 198. Fi-
nally, we note that

(%)

is divisible by 27, as is the number
107196674080761936 (we can verify
this easily by dividing by 9, then by
3). Therefore their difference, which
is xyz, is also divisible by 27. The
only candidate which satisfies this
criterion is 594.

Problem 12. Without loss of gen-
erality, we can assume that the 99
integers are all positive, and we can
write themask+1, k+2,...k+99
for some nonnegative integer k.

Now we look at the quotient

(k+1)(k+2)- (k+99) _(k+99]
99! 99 )

and since any binomial coefficient is
an integer, the conclusion follows.
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S

by David Arns

See the wonders of the sky—wondrous sky!
Astronomic marvels everywhere do meet the eye!
They are waiting, waiting, waiting

for us just to take a glance,
And behold them in their splendor,
Filled with awe that they engender,

as we gaze in dreamlike trance;
And we stare, stare, stare

through the icy winter air,
And are dazzled at the glory

of the heav'nly inventory
Of the sky, sky, sky, sky, sky, sky, sky—
At the heav'nly inventory of the sky.

See the mighty galaxies—galaxies!
Twinkling at us shyly through the branches of the trees.
How they shimmer, shimmer, shimmer
(or so it appears to us),
But their distance is enormous,
So astronomers inform us:
Some, a billion light-years plus.
But they shine, shine, shine,
with a radiance benign,
That belies the brilliant, blinding,
awful glare that we’d be finding,
Were we near, near, near, near, near, near, near—
The glare that we’d be finding were we near.

Think about exploding stars—dying stars,
Throwing through the heavenlies their luminescent scars.
See them glimmer, glimmer, glimmer

with a wispiness of light
From their tendrils filamental
Made from gases elemental

in the darkness of the night,
Reaching out, out, out,

on their interstellar route
Leaving light-years far behind them

where the gravity confined them
In the stars, stars, stars, stars, stars, stars, stars—
In the fusion-heated centers of the stars.

Or think about our neighborhood—our neighborhood!
We have asteroids and planets to explore (and yes, we should).
They are spinning, spinning, spinning
as they orbit round the Sun
And their paths, which are elliptic,
All are close to the ecliptic
As they make their annual run
They go round, round, round,
Yet in vacuum, make no sound,
But continue their rotation,
their precession and nutation
Through the years, years, years, years, years, years, years—
They continue their rotation through the years.



COWCULATIONS

Dutch treat

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE The message continued, “Consider the sequence
column devoted to problems best solved witha 1,2, 3, 6,4, 8, 5, 10,7,14,9, 18, ... and write a nice and
computer algorithm. The herd survived the bliz-  efficient and documented program to generate it. I'm
zard of '99. We stayed warm and cozy in the barn  sending this out as a Dutch Treat in place of a Christmas
while the snow drifts piled up outside, some as high as & New Year’s card this year. Happy New Year, Dr. Tom.”
10 feet. The milk truck was delayed one day when the My barnmates and I went after the challenge like
Interstate highway was closed by whiteout conditions black flies on a fresh cow pie. Such a simple and tasty

that caused a 50-car pileup.
Farmer Paul worked overtime
keeping the driveway leading up
to the barn snow free, food in the
trough, and the gutters clean. Our
milk production stayed on course,
and we passed the time surfing the
Internet and catching up on our e-
mail.

One evening I noticed a new
message in my inbox from Dr.
Tom, a friend from the Nether-
lands. “Buck up, Dr. Mu,” he
wrote, “spring is just around the
corner and soon you’ll be back out-
side playing hopscotch again. But
while you’re waiting for the green
grass to return to the pasture, I have
a programming problem for you.”

Dr. Tom is a professor of Math-
ematics and Computer Science at
the Einhoven University of Tech-
nology, in the Netherlands. He
maintains the website of the Inter-
national Science Olympiads which
includes links to all Science Olym-
piad sites: Mathematics, Physics,
Chemistry, Informatics (Computer
Science), Biology, and Astronomy.
It’s the first place to go to find all
links to International and National
Science & Mathematics Olympi-
ads. I met Dr. Tom at the 1995
International  Olympiad in
Informatics, which was held in
Einhoven.
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treat, surely it can be downed in just a few bytes. After
an hour or so we compared programs. Some were
simple, others not. Some were fast, some were not. One
solution, however, had everything. It was simple, fast,
and ingenious. I wondered to myself, can the readers of
this column come up with a similar elegant solution?
This suggested the next problem, which, you guessed
it, is the next Challenge Outta Wisconsin.

COW 15

Write a program that generates the terms in the se-
quence 1,2,3,6,4,8,5,10,7,14,9,18,.... Testit by
finding the 100,000th term. Speed and elegance count.

Throw your rock then hippity hop.
Cover the squares and don’t stop.
Watch the pattern under your feet.
Discover the rule in this Dutch Treat.
Write the code and make it fast.
Find the number that comes up last.
—Dr. Mu

COW 13

In Cowl3 you were asked to write a program that
would transform any number into its corresponding bi-
nary representation and produce a frequency count of
consecutive bit strings for any specified length. You were
instructed to test the program on the one millionth prime
number raised to the 100th power, examining bit strings
of length 4. The millionth prime to the 10th power was
given, so finding the test number was not the problem—
just raise the given number to the 10th power.

Solution

If you have Mathematica, the millionth prime num-
ber raised to the 100th power can be computed directly.

n = Prime[10°]1°0;

Since there are over 700 digits in this number, let’s save
some space and shorten up the output showing the be-
ginning and ending digits and hide the middle 664 dig-
its. This is done in Mathematica as follows:

n // Short

985238294443356323041458107 <<664>>
7654016757581803694718764001

The development of a fast algorithm for converting
any integer into its base b expansion was given with the
problem in the November/December 1998 column.
Here is the resulting Mathematica code:

baseExpansion[x , b_] := Module[{qg = x,
ans = {}},

wWhile[qg # 0, AppendTol[ans, Mod[qg, bll:
q = Floor[qg/bll;

Reversel[ans]]

Now we can find the binary representation of our number.
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n =

5 2];

baseExpansion|[n,

We have over 2300 digits in this base 2 expansion, so
again we show a shortened part of the number.

// Short

101011100011101010111110010 <<2335>>
011011011001100001111100001

FromDigits([n,]

To look at all bit strings of length 4, we need only
partition n, into lists of length 4 offset by just one bit.

bitStrings = Partition[n,, 4, 11;

bitStrings // Short

({12, 0, 1, 0}, {0, 1, 0, 13, <<2382>>,
{0, o, 0o, 0}, {0, O, O, 1}}

We find the unique expansions by taking the Union
of the bitStrings. It is not a big surprise that we find that
16 possible bit strings occur somewhere in 1,.

uniqueBitStrings = Union[bitStrings]

{{o, 0, o0, 0}, {0, 0, Q, 13, {0, 0O, 1, O3,
{0, 0, 1, 13, {0, 1, 0, 0}, {O, 1, O, 13},
{0, 1, 1, 03, {0, 1, 1, 13}, {1, 0, O, O3},
{1, o, 0, 1y, {1, 0, 1, 0}, {1, 0, 1, 13,
4, 4, @, Ok £ 1. 0, 1% [, 1, 1, 0F.
{1, 1, 1, 111}

Now we can do the frequency count on the occurrence
of each four bit string in n, and make a table of the results.

Table[{uniqueBitStrings[[i]], Count [bitStrings,
uniqueBitStrings[[i]1]1]}, {i, 1, 16}1 //
MatrixForm

{0, 0,0, 0} 96
{0,0,0,1} 134
{0,0,1,0} 126
{0,0,1, 1} 164
{0, 1,0, 0} 148
{0,1,0,1} 156
{0,1, 1,0} 157
{0,1,1,1} 153
{1, 0,0, 0} 134
{1, 0,0 1} 157
{1,0,1,0} 178
{1,0,1, 1} 146
{1, 1,0, 0} 143
{1,1,0, 1} 167
{1, 1,1,0} 153
{1, 1,1,1} 174

We assigned each of the bit patterns its correspond-
ing decimal number

{0,0,0,0-0,{0,0,0, 1} > 1,
la,b,c,d) = a2’ +b2*+c2  +d,...{1,1,1,1} - 15,

and graph the results.



Needs ["Graphics Graphics ™ "]
BarChart [Table[{Count [bitStrings,
uniqueBitStrings[[i]]1], i - 1}, (i,
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A new function, called bitStringDistribution, can be
built in Mathematica to carry out the steps just presented.

bitStringDistribution[number |,
bitStringLength ] := Module[{bitStrings,
uniqueBitStrings},
bitStrings = partition[baseExpansion]|
number, 2], bitStringLength, 1];
uniqueBitStrings = Union[bitStrings];
BarChart [Table[Count [bitStrings,

uniqueBitStrings[[i]]], i - 1},
{l , 1 , 2bitStringLength} ] ] ]

Let’s try it out by examining the bit strings of length
5 in the binary expansion of Prime[10°]'%°

bitStringDistribution[Prime[10%]1°°, 5713

It was a surprise to me that the distribution was not
more uniform. Why should 11111 occur twice as often
as 00000 in the binary expansion of Prime[10°]'%°?
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And Finally .. .

Send in your solutions to drmu@cs.uwp.edu. Past
solutions are available in Mathematica notebooks at
http://usaco.uwp.edu/cowculations.

If you are interested in learning more about any
International Science or Mathematics Olympiad,
hopscotch over to Dr. Tom’s website at http://
olympiads.win.tue.nl/. As always, the USA Computing
Olympiad web site is http://www.usaco.org.
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