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HE CHOREOGRAPHED CLANG OF HAMMERS ON THE

anvil, the dull thud of axes sinking into wood—these strik-
ing images depict events that, when simplified to their fun-
damental elements, can be regarded as interactions between
two bodies. In physics we know such interactions as colli-
sions, a subject of signal importance in the field.

The “clang” and “thud” of the hammer and the axe present
auditory evidence that the character of collisions can vary to
a large degree. These variations naturally lead us into the
realm of elastic and inelastic collisions.

In this issue’s “Collide-o-scope,” we examine the forces
that govern the chance meetings of everything from atoms to
zeppelins. Due to space limitations, we are forced to neglect
such famous collisions as the Titanic and the iceberg, Comet
Shoemaker-Levy 9 and Jupiter, and the heads of The Three
Stooges. However, our historical overview does discuss the
impact of Galileo’s theories on single-body systems as well
as Sir James Chadwick’s work with particle collisions. Turmn
to page 28 to begin working your way through the world of
collisions.
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The anthropic principle

A key to deciphering the Universe?

by A. Kuzin

HE DISCOVERY OF THE VAST-
ness of the Universe has led to
a fundamental problem: Does a
human being mean anything in
this immense Universe? What is a
human being—the aim of the
Universe’s development, the crown
of creation, or one of nature’s negli-
gible byproducts that isn’t much dif-
ferent from the other creatures and
processes in the Universe?

Is the appearance of the human
creature the culmination of the
macro- and microcosm, or just a
whimsical turn in the development
of the Universe? Has biological life
adapted itself to surrounding condi-
tions that “knew” nothing about it,
or were these external conditions
“tuned” to make life possible?

For a long time science had no
data to consider this problem ratio-
nally (although there were plenty of
irrational and mystical answers).
The available scientific knowledge
about the Universe was too frag-
mentary to provide an integrated
picture of the Universe’s develop-
ment. However, the organized ef-
forts of science during almost four
centuries has yielded some fruits.
Now we have a scientific vista from
which to form an integrated view of
the Universe.
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Of course, how little we know!
Therefore, modern hypotheses
should not be considered as the final
verdict, which “sentences” humans
to be the crown of creation. The
skeptic can always justifiably point
to the fact that scientific knowledge
is limited. The topics covered here
are among those “eternal questions”
that will never be answered once
and for all.

Stating the problem

The anthropic principle is the
child of a mental experiment. In this
experiment we assume some change
in the natural laws and then see
whether or not a human could exist
in the modified world. Of course, we
should consider the very essence of
a human being, because we cannot
expect a human to preserve all the
same features in the changed sur-
roundings. There are, perhaps, two
basic qualities inherent to human
beings—intelligence and freedom.

Freedom is the ability to preserve
one’s ego, and not to depend entirely
on what is going on at a particular
moment in the surrounding world.
In other words, it is the ability to act
according to inner motivation.

Intelligence is a prerequisite con-
dition of freedom, because an active

HUMAN INEVITABILITY

response to the outside world is im-
possible without it (in this sense
animals also have intelligence). At
present, the natural sciences are not
ready to treat the problems of intel-
ligence and freedom in general. We
must find the starting rung of the
ladder to make the first steps in solv-
ing these problems.

Only a complicated creature can
actively withstand its surroundings
by understanding and modifying
them according to the needs of its
own existence. The degree of com-
plexity can be qualitatively de-
scribed—and this is what the natu-
ral sciences deal with.

The anthropic principle provides
an answer to the question, Does any
conceivable world order imply the
appearance of more and more com-
plex structures? It should be noted
that the appearance of such struc-
tures is only a necessary, but not the
sufficient condition to create a hu-
man being. However, even an analy-
sis of only this condition yields
many fruits. Thus, let’s consider the
evolution of the Universe from this
viewpoint.

Evolution of the universe

According to modern views, the
Universe is limited in time and

Art by Yury Vashchenko
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space. That is, its age is not infinite
(about 15 billion years), and its vol-
ume is finite. The number of par-
ticles in the Universe is enormous,
but it is also a finite value: N = 108,
The Universe “started” from an un-
imaginable compressed and hot state,
confined in a volume with a radius of
curvature of about 10-3* cm. From
that time (known as the Big Bang)
on, the Universe continuously ex-
panded like an inflating balloon
while its galaxies, stars, nebulas, and
other kinds of matter moved away
from each other like drawings on the
balloon’s surface.

Matter, space, and time are inter-
dependent; they were born simulta-
neously—so the questions, What
was before the Universe? or What
can one see at the edge of the Uni-
verse? are not correctly formulated.
There was no time “before” the Big
Bang, and it is impossible to reach
the limits of the Universe in the way
that we can reach the end of Earth’s
surface.

In the first tiny moments after the
“start,” the temperature was so
huge that no stable structure could
be formed. Even the elementary par-
ticles were continuously converted
into each other. However, the ex-
pansion of matter was accompanied
by a decrease in temperature, and at
some moment stable particles were
formed—electrons, protons, and
neutrons. They were the first objects
with structure, and they point to the
first enigma in the life of the Uni-
verse.

The primary boiling pot con-
tained equal numbers of particles
and antiparticles, but the symmetry
was broken for some unknown rea-
son during cooling. Therefore, the
number of particles N_exceeded the
number of antiparticles N,. As a
result, the annihilation was not
complete—not all of the matter
was converted to light. The scale
of this process is a miracle in it-
self: (N, - N,J/N, = 10, which
means that only one billionth of all
the particles was preserved to form
the Universe (we will see the same
number in another context).

What happened next? Further
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cooling yvielded the generation of the
simplest elements, hydrogen and
helium, which need a stable proton
for their existence. The masses of a
proton m, and that of a neutron m
are known to be almost equal:
m_ - m =2.5m, where m, is the
electron’s mass. The heavier neu-
tron lives only 16 minutes on the
average and disintegrates into a pro-
ton, an electron, and an electron an-
tineutrino:

n—p+e +V,.

Inside nuclei, where the density of
nuclear matter and the kinetic ener-
gies of the particles are large, this
reaction also proceeds in the reverse
direction.

Thus, the neutrons exist in a
state of dynamic equilibrium in-
side the nuclei. Were the neutron
lighter than the proton, the latter
would disintegrate via the follow-
ing reaction:

poe +n+v,,

where e* is a positron and v, is an
electron neutrino. In this case, the
protomatter would have no hydro-
gen, which is the main fuel of stars
and the basic element of water, the
cornerstone of life.

Let’s assume that in one way or
another the existence of atoms is
guaranteed. Note that we consider
only the two simplest atoms—hy-
drogen and helium. These atoms
were synthesized everywhere al-
most immediately, yet the forma-
tion of heavier atoms was delayed,
because it required special condi-
tions.

Indeed, to produce heavier atoms,
one needs the simplest stable nuclei
as raw material and a very high tem-
perature, at which these atoms can
be fused. This high temperature
must be maintained for billions of
years, because thermonuclear fusion
is quite a slow reaction. The Uni-
verse marched this part of its route
too quickly: It needed not billions,
but only hundreds of thousands of
years to reach the more or less
present status of low density and

low temperature. Such conditions
are favorable for the existence of at-
oms (at higher temperatures elec-
trons could not be held by nuclei), but
they are not suitable for synthesizing
atoms.

Thus, the conditions for synthe-
sis and stability of nuclei are incom-
patible. However, this incompatibil-
ity is not the last to be overcome. To
take the next steps along the road of
increasingly complicated structures,
the Universe rejected the property of
space homogeneity. This is the stage
where gravitation was given the key
role. In the gaseous Universe, con-
densed regions were formed—the
seminal galaxies. In turn, they di-
vided into even smaller parts—the
protostars. Note that gravitation
needed enough time to finish this
work before the Universe expanded
too much. While a protostar be-
comes more dense, its temperature
grows until it ignites a thermo-
nuclear reaction, which produces
huge amounts of kinetic energy and
stops further compression of the
star.

It is noteworthy that the first
stars were composed mostly of hy-
drogen (the hydrogen to helium ra-
tio in the young Universe was about
3:1). This was possible because pro-
tons are lighter and more numerous
than neutrons, so not all of the pro-
tons are used to form helium. In an
alternative scenario stars are com-
posed mostly of helium. Such he-
lium stars would be too hot and they
could not live long enough to sup-
port biological evolution on the
planets.

In the interior of stars “alchemi-
cal” transmutations occur continu-
ously: The nuclei of light elements
collide, fuse together, and turn into
nuclei of heavier elements. This pro-
cess of increasing complexity is also
based on rather fine tuning of the
nuclear and electromagnetic forces.
Without this tuning the reaction
chain leading from helium via car-
bon and oxygen to iron and heavier
elements would stop at the initial
stages.

Here is a striking example illus-
trating this fact. At temperatures



T = 10® K, which characterize the
stellar interior, helium is converted
into carbon:

3 4He — 12C + 2y (1)

The letter vy signifies a gamma ray.
The probability of a triple collision
of *He nuclei in the rarefied stellar
plasma is very small (the reaction
occurs in less than 102! s). There-
fore, reaction (1) should proceed very
slowly, that is, at a rate too slow to
produce the amount of carbon nec-
essary to make a planet like Earth.

However, reaction (1) also occurs
via another route! It has two stages.
First, two “He nuclei form one
nucleus of ®Be:

2 “He + (99 + 6) keV — 8Be (2}

The energy value in parentheses!
means that this reaction needs en-
ergy. In other words, the nucleus of
8Be is unstable and “wants” to dis-
integrate. If this nucleus were stable,
the second stage of reaction (1)
(which gives '2C), would become
less and less probable over time,
because all the *He is increasingly
depleted in the production of ®Be.
In reality, the unstable but still inte-
grated nucleus ®Be captures a
nucleus of *He to produce an atom
of carbon:

8Be + “He — 12C + 2. (3)

The probability of the two-stage re-
action (2)-(3] is larger by far than the
triple collision of reaction (1), be-
cause the unstable ®Be still “lives”
10,000 times longer than helium
nuclei. But this is only one reason.
Here we again meet a striking phe-
nomenon. The rates of nuclear reac-
tions do not vary monotonically
with the energy F of the colliding
particles. At some energies (E, and
E, in fig. 1), a drastic increase in the
reaction rate takes place. This phe-
nomenon is called resonance, and
the corresponding energy values are
known as “resonant energies.”
These energies are determined en-
tirely by the structure of the nucleus
produced in the reaction. The criti-

IIn nuclear physics energy is
measured in electron-volts: 1 eV = 1.6 -
107197

Figure 1

cal reaction (3) is resonant: The reso-
nance energy of a 12C nucleus (7.656
*+ 0.008 MeV]) is almost the same
(and a little bit larger) than the sum
of the energies of 8Be and “He nuclei
(7.3667 MeV). The necessary energy
is supplied by the high temperatures
deep within stars.

However, can the carbon be burnt
quickly? Indeed, there is such a re-
action:

12C 4 4He — 160. (4)

No, it will not occur quickly! Reac-
tion (4) is nonresonant, so it occurs
very slowly (the resonance energy of
an '°0O nucleus is 7.1187 MeV,
which is less than the sum of the
rest energies of 1°C and *He nuclei:
7.1616 MeV). The high temperature
increases this sum and thus aggra-
vates the “mismatch” of the energy
values and detunes the resonance.

Now we see that due to a long
chain of “coincidences”—the insta-
bility of the ®Be nucleus together
with its comparatively long lifetime,
the resonant character of reaction
(3), and the nonresonant nature of its
sibling (4)—the reaction chain is not
stopped, and much carbon is pro-
duced, which is so important for life
in the Universe.

When the nucleus of a star is en-
riched enough by the heavy ele-
ments, the star explodes with a dras-
tic increase in luminosity (it
becomes a supernova). In doing so, it
jettisons some of its mass. New stars
are formed from these remains;
these stars are even more enriched
with heavy elements: and so it goes
on and on.

Cosmologists have found that our
Sun is fourth-generation star. As the
age of the Universe is about 15 bil-
lion years, it appears that the mean

lifetime of a stellar generation is
about 3 billion years. However, this
period is far from being sufficient for
biological evolution, because the age
of Earth is about 5 billion years. This
means that our Sun belongs to a
rather rare type of comparatively
long-lived stars. Since most stars
don't live as long (the lifetime of a
star depends on its mass), the
“meaning of their existence” lies in
providing stars like our Sun with
heavy elements.

The ancients believed in the har-
mony of the celestial spheres, and
they considered the cosmological
processes to be interconnected and
understandable by a philosophical
mind, to which they sound like an
orchestra. The life of a star is simi-
lar to a concert by an orchestra
whose members are the forces of
Nature, each with its own instru-
ment and part. The cello (nuclear
forces) and the violin (electromag-
netic forces) lead the entire perfor-
mance; a flute (the strong force)
squeaks sometimes, while the con-
trabass (gravitation) plays in the back-
ground, determining the thythm. The
concert is finished by the weak inter-
actions. Putting aside the flute, they
take French horn and play solo: This
is the rushing flow of neutrinos from
the nucleus of a supernova, which
carries away its outer mantle.

Thus, the Mendeleev’s table is
“produced.” The development of
complexity proceeded with the
formation of molecules, and the
infinite character of its process is
underlain by the existence of a
wonderful element, carbon, which
can form molecular chains of im-
mense length, because it conforms
ideally to this task.2

Carbon has four valence bonds
with angles between them of about
90°. Linking to each other, the car-
bon atoms form something like a
line while two free valences per car-
bon atom bind other atoms and mol-
ecules. In this way something like
an inscription is formed. Before the

2In this short paper I cannot discuss
the problems why other quadrivalent
elements (silicon, for example) are not
quite suitable for this task.
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formation of carbon chains, the en-
tire cosmological process produced
letters. When organic molecules
were formed, the letters (atoms) be-
gan to unite to form words (organic
molecules). However, arbitrary words
do not yield a text. A random set of
words (molecules) and a reasonable
text of a living creature are separated
by an immense gap. Before touching
the problem of life, some aspects of
inorganic evolution should be men-
tioned.

The further the process of in-
creasing structural complexity pro-
ceeds, the more restrictive are the
conditions imposed on this process.
Nuclei do not disintegrate until they
reach temperatures in the billions of
degrees, yet atoms cannot withstand
even a few thousand degrees. As for
molecules, they decay at tempera-
tures as low as hundreds of degrees.
Temperature is the measure of
chaos, and chaos is the antagonist of
structure. However, the process of
organization cannot go on without
chaos, because organization is a per-
manent process that needs motion.
The necessary motion is provided by
heat.

Therefore, evolution is confined
within two extremes: heat and cold.
Too much heat means destruction;
too much cooling means solidifica-
tion and death. When evolution
reaches the stage at which life be-
comes possible, this principle con-
tradiction of the organization pro-
cess becomes so acute that only a
very narrow interval of tempera-
tures is left for life based on organic
molecules.

At present we don’t know the pre-
cise range of this interval—perhaps
only one or two dozen degrees. When
this value is compared with the huge
range of temperatures in the Uni-
verse, it becomes clear that the exist-
ence of such a temperature interval is
far from being self-evident: It results
from quite a fine tuning of natural
laws. Moreover, the possibilities of
the existence of the necessary tem-
perature interval are not enough for
life—there must be a place some-
where in the Universe where this
possibility becomes reality.

8 JANUARY/FEBRUARY 1989

The important point here is that
the “life” temperature (+20 + 15°C]
in such a place must be provided
for billions of years! In addition,
there must be free water, because
no other medium is suitable for
cooking the organic soup. The
cradle of organic life must be pro-
tected from the murderous ultra-
violet radiation of the stars, and so
on. It is clear that the particular
character of natural laws must be
supplemented with the existence
of an event of extremely small
probability: the coincidence of all
the necessary conditions.

The natural conditions on Earth
are very well suited for life. How-
ever, even a tiny displacement of
Earth relative to the Sun would be
disastrous for life. Indeed, an in-
crease of the distance between Earth
and the Sun would cause a drop in
temperature. The growth of the po-
lar caps would increase the reflec-
tion of light from Earth’s surface,
which would induce a further de-
crease in temperature, and so on.
Complete freezing is quite possible
in this scenario. On the contrary, a
small drift toward the Sun and a cor-
responding small increase in tem-
perature may well trigger further
increase, and the climate on Earth
could become like that on Venus.
The unique location of Earth pre-
cludes any hopes of finding a simi-
lar planet somewhere in a reason-
able proximity.

I will not discuss the origin of life
and its evolution, because these are
very difficult and unclear problems
about which we know too little. One
point should be noted, however. The
hypothesis of a probabilistic origin of
life via random mixing of molecules
by the “trial and error” method
should be rejected for two reasons.
First, to provide self-reproduction, it
is necessary to have a vast amount of
molecules of a definite sort. However,
the number of variants is so huge
(about 10'29) that a tiny living cell
cannot indulge itself in the play of
chance, to make a single correct
choice. Second, life on Farth appeared
very quickly, almost immediately
after the planet cooled. By the way, a

famous Russian cosmologist V. L.
Vernadsky considered this fact as an
indication that life existed forever,
which is at odds with the modern
theory of the hot Universe.

Thus, the origin of life is still a
mystery, but the laws of its develop-
ment are more or less understood.
The same can be said about the ori-
gin of intelligence. Similar to the
appearance of life among inorganic
matter, the advent of intelligence to
the non-intelligent Universe looks
like a miracle. In this process, as in
any other transition from one level
of organization to a more compli-
cated level, we see the same princi-
pal feature: At the beginning of its
development, the more complex
structure needs special conditions. It
must be “cherished,” “fostered,”
and “nursed” before it gains full
strength. A grown man is more
clever than a horse and more
adapted to ever-changing conditions
of life, but an infant is certainly
much weaker than a colt in a
meadow. The “coincidences” that
set the stage for the play of struc-
tural complication can be formu-
lated in mathematical terms. We'll
consider this approach to the prob-
lem in the following section.

The anthropic principle
4 a system of equations

The mathematical formulation of
almost every natural law includes
some numerical parameter that is a
given that cannot be modified. Here
is the simplest example: Any elec-
tric charge is described by the for-
mula Q = Ne, where N is an integer.
In this example, the parameter e is
an electron’s charge. Another ex-
ample: The force of gravitational at-
traction of two masses m, and m, is
given by the law

Pl

2
o

The parameter in this formula is the
gravitational constant G. The laws of
modern physics are similarly formu-
lated. For example, the energy of a
photon is proportional to its fre-



quency o, so E = ®. The parameter
# in this formula is Planck’s constant.

In physics, values like e, %, G, ¢
(the speed of light) and so on are
called universal constants. They
mean nothing by themselves, be-
cause their numerical values depend
on the chosen system of units. How-
ever, their dimensionless combina-
tions are of universal importance.

For example, there is only one
dimensionless combination com-
posed of the constants e, #, and c:
o = e/thc = 1/137. This value is
known as the fine structure con-
stant, and it characterizes the force
of the electromagnetic interaction.
The characteristic energy of interac-
tions of free electrons and those in
atoms is only a small correction (of
about o to some degree) to their rest
energy m c’. For example, the en-
ergy of electrons in an atom with
atomic number Z is

E=mcHZaf.

Since o is a small value, the probabil-
ity of the conversion of electrons into
other particles is negligible. The
small value of o underlies the stabil-
ity of electron-proton structures (that
is, atoms and solid bodies). On the
contrary, heavy atoms with Z = or?
= 137 are unstable: The electromag-
netic field at the surface of the
nucleus becomes so strong that it
begins to produce electron-positron
pairs, which screen the “surplus”
nuclear charge and effectively “de-
crease” the charge to a value smaller
than eo .

Similar dimensionless constants
can be composed for any other inter-
action—strong (S), weak (W), and the
gravitational (G). In the latter case it
looks like

D)
_Gmp = 10739,

o~ =
G
hc

where m_ is the mass of a proton. It
is known that og = 15 and oy, = 107,
Both of these interactions are effec-
tive only at distances of about the
nuclear radius.

Thus, the four types of interac-
tions correspond to four arbitrary
(free) parameters o, (k- o, G, S, and

W). They can be furnished with the
dimension of our space d = 3, the
number of particles in the Universe
N =10%0, the ratio of the number of
photons to the number of particles
S=107, and the ratio of an electron’s
mass to a proton’s me/mp =1/1830.
Theoretically, the latter value must
be expressed via o, ay, and o, but
presently we don’t know how to do
this. In general, it is a cherished
hope of physicists to deduce all the
above cornerstone numbers from a
single one. However, this remains
only a dream.

A number of relationships must
exist among the free parameters. To
illustrate this, let’s consider some
examples.

The optimal expansion rate of the
Universe, at which the stars have
time to be born, is provided by the
relationship

Nol =1

The very existence of Sunlike stars
(neither too hot, nor too cold) is
based on the relationship

, 4
o m

oo zau[—e] .
my

To produce a new generation of stars
enriched with heavy atoms, the flux
of neutrinos (the only particles that
participate only in weak interac-
tions) should jettison the mantel of
a supernova. This is possible only if

m, \°
4 = p
ocwzocc( j
€

For atoms to appear in the course
of the evolution of matter, they must
be formed before the development of
gravitational instability, which
makes the Universe heterogeneous.
To meet this requirement, the follow-
ing relationships are necessary:

In a similar way we can consider
the nuclear reactions within stars
discussed above, which also have
some “coincidences” that can be
formulated as necessary conditions
imposed on the universal constants.

The principle fact is thus: The
number of restrictions (equations)
that must be satisfied by the univer-
sal constants exceeds by far the
number of these parameters them-
selves. This is a very important fea-
ture of the world we live in. Not
every system of equations where the
number of equations is greater than
the number of unknowns has a so-
lution. To have a solution, the su-
perfluous equations must be deduc-
ible from the rest of the equations.

Therefore, the very structure of the
natural laws hides some extremely
important principle. At present we
don’t know how to describe this in
mathematical language. It seems to
be some kind of symmetry imposed
on the equations describing the basic
world parameters. Such symmetry
would illustrate the “idea” of the ex-
istence of the Universe, the main
principle of its development in time
and space, and the law of evolution of
its component structures. Everything
we presently know is just the conse-
quence of this main principle. All the
particular laws and regularities in
nature are united in a single principle
law: Somewhere in the Universe a
human being must appear. Q)
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Prime time

PRIMAL INFINITUDE

These numerical oddities exhibit a lack of factors

by G. A. Galperin

OBODY WOULD DISAGREE THAT THE MA-
jority of natural numbers can be factored: 10=2 -5,
60=3-4-5111=3-37,144=3-3-2-2-2.12,
and so on. Such numbers are called composite.

But numbers exist that cannot be represented in this
way. For example, 11 cannot be represented as the prod-
uct of two smaller natural numbers both greater than
1. For this reason, 11 is called a prime number. In gen-
eral, prime numbers are those that cannot be repre-
sented as the product of two factors both greater than 1
(the number 1 is not considered a prime number). Here
are the first few prime numbers: 2, 3,5, 7,11, 13,17, 19,
23,29,31,37,41, .... There is exactly one even number
among them; all the others are odd.

Problem 1. Find all pairs of primes that differ: (a) by

We immediately see that the sequence of prime num-
bers is rather peculiar. We cannot perceive any simple
law that governs the formation of the sequence.

Is this sequence finite? This question was raised in
book IX of Euclid’s Elements. The answer is also given
in that book: “For any given prime number, one can find
a greater prime number; that is, the sequence of prime
numbers is infinite.”

The proof of this proposition given by Euclid is ex-
tremely ingenious. Here is his reasoning. Assume that
the sequence of prime numbers is finite and that p is the
largest of them. Then, the number N=2-3-5-...-p+1
is not prime, since it is greater than p. Thus, it is divis-
ible by a prime number in the range from 2 to p (by our
assumption, there are no other prime numbers). How-
ever, N is not divisible by any of these prime numbers,
because the remainder upon division by any of them is
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1. This contradiction proves that the set of prime num-
bers is infinite.

Euclid’s argument is an indirect proof and does not
suggest any method for constructing a prime number
greater than p. However, it is not difficult to suggest
such a method: It is sufficient to check, for each
number in the range from p + 1 to N, whether it is
prime or not. There must be a prime number among
them. Indeed, if N itself is not prime, then it is di-
visible by a prime number greater than p but smaller
than N. That is, this number must be in the interval
[p+1, N].

Intervals containing
rime numbers

There is another method for partitioning the number
line into intervals containing one prime number each.
First, let’s prove the following: The smallest divisor of
the number N=n! + 1 (wheren!=1-2-3 ... -njisa
prime number greater than n.

We'll call this smallest divisor p. We have p > n, be-
cause n! + 1 is not divisible by any of the numbers 2, 3,
4, ..., n. On the other hand, if we assume that p is a com-
posite number (that is, if p is divisible by any number
less than p), then p is not the smallest divisor of n! + 1,
which contradicts our assumption. Thus, p is a prime
number greater than n.

It follows from this proof that each interval [n, n! + 1]
contains at least one prime number. Thus, the num-
bers 2, 2! + 1, (2! + 1)l + 1, ((2! + 1)! + 1)1 + 1, and so
on partition the number axis into an infinite num-
ber of intervals that each contain at least one prime

Art by Vasily Vlasov
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number. We have again proved the infinity of prime
numbers.

Problem 2. Prove that if p divides (p—1)! + 1, then p is
a prime number. (Hint: Use the proof of the proposition
above|. The converse of this statement is known as
Wilson’s theorem, and is also true.

There is yet another way to partition the number line
into intervals each containing a single prime. It turns out
that each of the intervals [2, 4], [4, 8], [8, 16], [16, 32], ...
contains at least one prime number. However, this
statement is difficult to prove. It follows from a theo-
rem known as “Bertrand’s postulate” (although it was
actually proved in 1852 by the prominent Russian math-
ematician Chebyshev (1821-1894)).

This theorem is formulated as follows: Forn > 7, there
exists at least one prime number between n and 2n - 2.

Problem 3. Using Bertrand’s postulate, prove that
for any natural n, (a) at least one n-digit prime num-
ber exists; (b) at least three n-digit prime numbers
exist. (Hint: 102-1,2.107-1,4.107-!, and 8 - 107!
are n-digit numbers.)

Note that Euclid’s proof does not give the nearest
prime number following p, but usually gives a number
rather far from p. For example, instead of 13, this proof
suggests 2311 as the prime number that is greater than
11; for 13, it gives not 17, but 59, which is a prime divi-
sor of 30,031.

Intervals not containing
rime numiers

To demonstrate the complexity of the structure of
the set of prime numbers, we prove that there are arbi-
trary long intervals that do not contain prime numbers.
For example, we can find a million successive numbers
of which none is prime. Indeed, let N = 1,000,000 and
consider 1,000,000 of the following numbers:

(N+ 1)1 +2, (N+ 1)1 +3, ..., [N+ 1)l + (N +1).

The first of these numbers is divisible by 2, the
second by three, the third by four, and so on. The kth
number (N + 1)! + k is divisible by k, because both
terms divide by k. Thus, all 1 million of these num-
bers are composite. This method makes it possible to
find arbitrary long gaps in the sequence of prime
numbers.

Interestingly enough, the problem of arbitrary long
gaps in the sequence of prime numbers, which is very
close to the problem of the infinity of the set of prime
numbers, both in its statement and its proof, cannot
be found in the works of mathematicians of ancient
Greece. In the next section, we consider another
problem addressed in mathematics of the modern
era.

Arithmetic progressions and
frime numbers

Consider all natural numbers that give the remain-
der 2 when divided by 3: 2, 5, 8, 11, 14, .... These num-
bers can be represented by the formula 3n + 2. Let’s
prove that there are infinitely many prime numbers
among them. For this purpose, we modify Euclid’s proof
a little. Instead of the number N=2-3-5-... - p+1, we
consider the number M=2-3-5-... - p-1, which be-
longs to the sequence 2, 5, 8, 11, 14, ..., 3n + 2, ..., be-
cause its remainder upon division by 3 is 2.

Problem 4. Give the complete proof of the fact that
M can be represented as 3n + 2.

The number M, like N in the previous proof, is not
divisible by any of the numbers 2, 3, 5, ..., p. Whether
M is prime itself, or has smaller prime factors, each of
the factors of M is greater than p. We need to find out
whether there is a number of the form 3n + 2 among
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Table 2.

The distribution of prime

A /n

n

1/ln n A m:ling

numbers in the set of integers.
A_ is the number of primes
among the first n integers.

As n increases, the ratio

A_/n becomes closer

tolflnn (A /n:1/Innis
almost equal to 1 forn = 10°).

1 000

1 000 000

1 000 000 000

0.168

0.078498

0.050847478

0.145

0.072382

0.048254942

these prime factors—that is, a factor belonging to the se-
quence 2, 5, 8, 11, .... Assume that it is not true that all
prime factors of M have the form 3k + 1. However, in
this case, their product also has the form 3k + 1 (see
problem 5a), and this contradicts the fact that M has the
form 3n + 2 (see problem 4). Therefore, our assumption
cannot hold, and at least one prime factor of M has the
form 3n + 2. Thus, there are infinitely many prime num-
bers of the form 3n + 2.

Problem 5. (a) Prove that the product of numbers of
the form 3k + 1 also has the form 3k + 1. (b) Prove a simi-
lar proposition for numbers of the form 4k + 1; (c) Prove
a similar proposition for numbers of the form 6k + 1.

This reasoning (with certain modifications) provides
a tool for proving the infinity of prime numbers of the
form 4k + 3 and 6k + 5. We suggest thinking about the
following problem first.

Problem 6. Prove that any prime number greater than
three (a) has either the form 4k + 1 or the form 4k + 3; (b)
has either the form 6k + 1 or 6k + 5.

In this article we prove the infinity of the set of prime
numbers of the form 6k + 5. Our argument, like Fuclid’s,
will be a proof by contradiction. Assume that there is
only a finite number of primes of the form 6k + 5:
Py Py - P, Consider the number

K=6pp,..p,—1=6{p,p,..p,— 1] +5.

The number K is either prime or has prime factors dif-
ferent from p,, p,, ..., p, (why?). Not all of these prime
factors has the form 6k + 1, because K itself does not
have this form (see problem 5b). Thus, at least one of the
prime factors of K has the form 6k + 5 and is different
from p,, p,, ..., p,- This contradicts our assumption, as
it proves that there are infinitely many prime numbers
of the form 6k + 5.

Problem 7. Prove the infinitude of the set of prime
numbers of the form 6k + 5, giving an explicit method
for their construction.

Problem 8. Give a detailed proof of the infinitude of
the set of prime numbers of the form 4k + 3. (Hint:
Multiply the product of the numbers of this type by four
and subtract 1 from this product.)

Problem 9. Prove that the set of primes whose deci-
mal numeral do not end in 1 (that is, thatendin 3, 7, or
9) is infinite. (Hint: Consider all primes of the form
10k + a, where a # 1, and then follow the above reasoning.)

The following theorem, formulated by the French
mathematician Legendre in 1788 and proved by the
German mathematician Dirichlet in 1837, is a generali-
zation of the propositions we have considered.

Theorem. Any infinite arithmetic progression a,
a+d, a+2d, a+3d,..in which the first element, g, is
coprime to the difference d contains infinitely many
prime numbers. In other words, the function y = dx + a,
where a and d are coprime integers, takes infinitely
many prime values when x runs through the set of natu-
ral numbers.

Dirichlet’s proof is not elementary, and for a long
time no elementary proof of this remarkable theorem
was found. An elementary proof was first obtained in
1949 (161 years after Legendre formulated his theo-
rem) by the Danish mathematician A. Selberg, who
found elementary proofs of many difficult theorems
of number theory.

Twing

Recall the first problem formulated at the beginning
of the paper. As you have certainly guessed, if two prime
numbers differ by an odd number p (by 1 or 17 as in
problem 1), one of them is even and thus equals 2. The
other prime number of the pair, g, differs from p by 2.
If p is also prime, as is the case in problem 1, in which
p = 17, the prime numbers p and ¢ are called twins. In
problem 1, these are 17 and 19.

Problem 10. Using Dirichlet’s theorem, prove that
there are infinitely many prime numbers that do not
belong to any pair of twins. (Hint: These prime num-
bers can be taken from the arithmetic progression
15k +7.)

We can raise the problem: How many pairs of
twins exist? For example, there are 1225 pairs of
twins in the range from 0 to 100,000, and only 518
pairs of twins in the range from 8,000,000 to
8,100,000. Is the number of the pairs of twins infi-
nite? Neither this question nor a more general one
that was stated by the great German mathematician
David Hilbert at the 2nd International Congress of
Mathematicians in Paris in 1900 has yet received an
answer. Hilbert’s problem is formulated as follows:
Is the linear equation ax + by = ¢ with integer coeffi-
cients a, b, and ¢, where a and b are coprimes solv-
able in the set of prime numbers?
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The fundamental theorgm
of arithmeic

Theorem. Any natural number greater than 1 admits
a unique factorization into prime factors (apart from the
order of the factors).

Proof. If there is at least one number that admits two
different factorizations, then there is a smallest such
number N.

The number N = p,p, ... p, = 4,4, .. 4, Where p
and g are primes. We can assume that p, <p, <..<p_
and ¢, <q, < ... <q,, (if this is not the case, we can
change the order of the factors). Note that p, # g,
because otherwise, the number N/p, = N/q, that is
less than N would have two different factorizations into
prime factors. This would contradict our assumption
that N is the smallest such number. Assume that p, < q,
and consider the number N'= N-p,q, ... ¢,,. We can
see that the number

N =pi(DoD3 - Py = Qo3 - ) = (@) = P25 -

is positive and less than N. Thus, by our assumption,
N’ has a unique factorization into prime factors.

14 JANUARY/FEBRUARY 1989

Since the prime number p, is a factor in the factor-
ization of N’, it either coincides with one of the fac-
tors q,, gy, ..., 4, or divides (g, - p;). The inequali-
ties p, < g¢; < q, < ... < @, show that the first case is
impossible. Therefore, p, divides q, - p,. However,
in this case, p, divides g, which contradicts the fact
that g, is a prime. Thus, our assumption is wrong,
which completes the proof of the theorem.

Note. The proof of the fundamental theorem of
arithmetic explains why the number 1 is not consid-
ered a prime number. If we included 1 in the set of
prime numbers, any integer could be factored into
prime factors in a number of different ways, because
an arbitrary number of 1s could be included in any
factorization.

Here is one important consequence of the fundamen-
tal theorem of arithmetic: If a prime number p is a fac-
tor of the product ab, then it is either a factor of a or a
factor of b. Indeed, if p were a factor neither of a nor of
b, then we would obtain a factorization of ab not con-
taining the factor p by multiplying the factorizations of
a and b. On the other hand, ab = pt, where t is an inte-
ger. Multiplying p and the factorization of ¢, we would



obtain another factorization of ab that contained p as
one of the factors. Thus, we would obtain two different
factorizations of ab, which would contradict the funda-
mental theorem.

The fundamental theorem implies that any number
N can be represented as

k _k k
N=p/"py* ... p*,

where k, k,, ..., k_ are the exponents of the prime factors
Py, Dy, -, D, in the factorization of N. All divisors of N'have

the form a = piip2 ... p&, where 0<r <k, 0<r, <k,
0<r. <k,

Yot another proof that the numben
of primes is infinite

The uniqueness of the factorization into prime fac-
tors makes it possible to give another proof that there
are infinitely many primes. This proof belongs to
Leonhard Euler.

Assume that 2, 3, 5, ..., p is a list of all the prime
numbers that exist. The formula for the sum of a geo-
metric progression with a ratio less than 1 implies that
for any n,

1 1 1
I+—+—+ — )
2 2 211 1_}_
2
1 1 1 1
I+—+—+...+— ,
3 3?2 3n 1
1-=
1 1 1 1
Lo b ot e il 1
b p 7 (==

Multiplying these inequalities term by term, we obtain

1 1 1 1 1 1
l+=—+...+— | 1+=+...+— | |1+—+ .. . +—
2 211 3 311 p pn

We'll call the number on the right side of this inequal-
ity A. If we remove the parentheses on the left side of the
inequality, we obtain the sum S of all the numbers that
are reciprocals of the divisors of N =223252 ., p? (it is here
that we use the fundamental theorem of arithmetic).
Therefore, the left side of the inequality is greater than
A =1+1/2+1/3+1/4+1/5+..+1/2" and this sum
includes only a part of the terms of S. Thus, for any n,
A < A. However,

1 (1 1) [1 1 1 1] 1 1‘]
A, =l+—+|=+—|+|=t=F=+= [+..+ T
2 \3 4 5 6 7 8 274 28

SO P OO SO S B
27 4 8 g

1+2

2

We have arrived at a contradiction: A > 1 + n/2 for all
n. Therefore, the set of prime numbers is infinite.

Verifying primality

When we factor anumber N or check its primality, we
must check whether N is divisible by the sequential prime
numbers 2, 3, 5, 7, .... It is sufficient to check the prime
divisors that do not exceed /N . Indeed, if N = ab, then
the smaller of the numbers a and b does not exceed VN
(if both of them were greater than +/N , then the product
would be greater than N). The divisibility of N by a im-
mediately implies that N is divisible by N/a, so we do not
need to verify the divisibility by N/a. Fibonacci (Leonardo
of Pisa) was the first to note this fact.

Examples. (a] If N = 91, then /91 < 10, and check-
ing the primes 2, 3, 5, and 7, we find that 91 =7 - 13;
(b) if N = 1987, then N < 45, and since N is not di-
visible by any of the primes up to 43, 1987 is a prime
number.

In some cases, the primality of a number N can be
established without performing the divisions. The
following simple proposition formulated by Euler as
early as the eighteenth century makes it possible to
establish the primality of a number N in a quite dif-
ferent way.

Euler’s first criterion. If an odd number N > 1 can be
represented as a difference of the squares of two natu-
ral numbers in more than two different ways, then N
is composite; if such a representation is unique, then N
is prime.

Proof. We can assume that N is not a perfect square,
because a perfect square is a composite number. (Like-
wise, we can assume N is odd.) Let

N=m?-n?=(m-n)m +n).

Therefore, m —n and m + n are divisors of N. If N is prime,
thenm -n=1and m + n = N. Therefore, m = (N + 1)/2
and n = (N - 1)/2 are uniquely determined by N, and N
cannot be represented as the difference of two squares in
a different way.

If N is composite (that is, if N = ab, wherea> b > 1
are odd), then the numbers x = (a + b)/2 and y = (a — b)/2
provide another representation of N as the difference of
two squares: since a = x + y and b = x — y, we have
N=ab=x*-y

We see that if N can be represented as the difference
of two squares in more than one way, N cannot be
prime: Prime numbers have a unique representation of
this kind. Conversely, if N can be represented as the dif-
ference of two squares in a unique way, then N cannot
be composite (as we have just proved), and thus, it is
prime.
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This criterion makes it possible to use a table of
squares to verify the primality of numbers. We succes-
sively add the squares of the numbersn < (N-1)/2 to N
and check to see if the sum is a perfect square.

For example, let’s factor 3,551 by using this
method. Successively adding 12, 22, 32, ... t0 3,551, we
check whether the sum obtained is a perfect square.
The verification (using the table of squares) shows
that 3,551 = 602 - 72 =53 - 67.

Problem 11. Use the method described to factor the
following numbers: 6,557, 19,019, and 209,209.

It is not difficult to prove the following criterion.

Euler’s second criterion. If a natural number N
can be represented as a sum of two squares in more
than one way, then N is composite (changing the
order of the addends does not create another repre-
sentation).

It follows from Euler’s second criterion that if a prime
number can be represented as the sum of two squares,
then this representation is unique. It is interesting to
find out which prime numbers can be represented in
this form.

Problem 12. Prove that the numbers of the form
4k + 3 cannot be represented as a sum of two squares.
(Hint: The square of any even number is divisible by 4,
and the square of any odd number gives a remainder of
1 when divided by 4.)

Thus, only prime numbers of the form 4k + 1 are
candidates for this representation. Fermat proved
that all such primes can be represented as the sum
of two squares. His result allows us to answer ques-
tions such as which of the three prime numbers 1973,
1979, and 1987 can be represented as the sum of two
squares.

Problem 13. (a) Prove that for any integern, N=n*+ 4
is composite (Germain’s theorem). (b) Prove that for any
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integers m and n, N = n* + 4m* is composite. (Hint:
N = (n? - 2m?)? + (2mn)?; then, apply Euler’s second cri-
terion.

Polynomials it generate primes

It would not be difficult to deal with prime num-
bers if a simple formula existed that made it possible
to find them. Attempts to find such a formula have
been made for a long time. For example, Euler found
a remarkable trinomial: n? + n + 41 that takes prime
values forn = 0, 1, ..., 39. However, for n = 40, its
value is 412, which is certainly not a prime. It is not
difficult to prove that no polynomial of a single vari-
able can take only prime values.

Quite recently, a polynomial has been found such
that all its positive values at integer points coincide
with the set of all prime numbers. The polynomial in-
volves 25 variables, so one must use all but one of the
letters of the alphabet to write it down:

This polynomial was found as a result of the study
of Diophantine equations. It is related to the solution
to Hilbert’s 10th problem found by the Russian math-
ematician Y. A. Matiyasevich.

In conclusion, we suggest a few more problems.

Problems

14. Find all prime numbers that are simultaneously
the sum and difference of two prime numbers.

15. Prove that the square of any prime number p > 3
gives the remainder 1 when divided by 12.

16. Prove that if p and p? + 2 are prime numbers, then
p3 + 2 is also a prime number.

17. Which prime numbers can be represented as the
sum of two cubes of integers?

18. Whatisnifn+1,n+3,n+7,n+9,n+ 13, and
n + 15 are prime numbers? (0]
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ORBITAL IRREGULARITIES

Satellite aerodynamic paradox |

Examining the forces affecting objects in near-Earth orbits

by A. Mitrofanov

OW DO YOU THINK A BODY

can increase its velocity while

moving in a resistant medium?

At first glance such an event
seems no more probable than the
great Baron Munchausen’s famous
proposal to lift himself up by pulling
his hair with his own hands.

It seems conventional that the ve-
locity of a moving body decreases in
a viscous medium. Still, do not jump
to conclusions. In reality, such an
event is quite possible and is regu-
larly observed when satellites or
meteors move about Earth in the
outer atmosphere, which is a rar-
efied gas. This is the famous satellite
aerodynamic paradox: When enter-
ing the upper atmosphere, the space-
craft is slowed by the rarefied gas,
but it nevertheless manages to in-
crease its velocity.

Before cracking this orbital nut,
let’s consider a simple example from
classical mechanics. A small bob
fastened to the end of an elastic cord
moves with a constant speed along
a circle in the horizontal plane. The
cord obeys Hooke’s law—that is, its
restoring force is proportional to its
extension or compression. If the bob
is somehow slowed, its motion will
be modified. For example, if the bob
is instantaneously stopped and then

Asnuisy)) |eaed Ag Wy
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set free, the stretched cord will give
the bob some velocity toward the
center of rotation. The maximum
speed acquired by the bob can be
found by applying conservation of
energy to the system consisting of
the bob and elastic cord. In the case
when the stretch of the cord is far
greater than its initial length, the
maximum final velocity of the bob
will be almost equal to its initial
rotational velocity.

Our example is a very simpli-
fied analogy of what happens with
satellites during aerobraking in
the atmosphere. The bob plays
the role of a satellite, and the cord
mimics the gravitational attrac-
tion of Earth. Of course, this anal-
ogy is a far cry from reality, be-
cause Hooke’s law has nothing to
do with gravitational forces,
which, similar to electrostatic
forces, vary inversely with the
square of the distance between the
attracting bodies (in our case, to the
square of the radius of the satellite’s
orbit]. The motion of a satellite in
the outer atmosphere is much more
interesting and complicated than
the motion of a bob on a rubber
cord.

To study the orbit of a satellite
moving in a rarefied gas, we need
some formulas. Let’s consider a sat-
ellite of mass m in a circular orbit of
radius R around the Farth of mass
M. In high orbits the major force af-
fecting a satellite is Earth’s gravita-
tional attraction, so the velocity of
a satellite is determined by the equa-
tion

,_GM 0y

R OIV:VOVR, (1)

where G is the gravitational con-
stant; R, is Earth’s radius, which is
approximately equal to 6400 km;
and v, = /goR, is the orbital veloc-
ity just above the surface. Since the
value of acceleration due to gravity
near Earth’s surface is g, = 9.8 m/s?,
the orbital velocity is 7.9 km/s.

The resistive force acting on a sat-
ellite due to the rarefied gas of the
outer atmosphere is given by the for-
mula

2
) o 3 Ay 3y 2)
2

Here p is the density of the orbital
atmosphere, which strongly de-
pends on the satellite’s altitude; S,
is the cross-sectional area of the sat-
ellite (more precisely, the area of
maximum cross-section of the satel-
lite perpendicular to the velocity
vector v of the satellite’s flight rela-
tive to the medium (this value is
referred to as the midsection); and
C, is the drag coefficient, which,
strictly speaking, depends on veloc-
ity, although for a high-altitude
flight of a satellite, it is about 2.

This value means that collisions
of gas molecules with the heat
shield of a satellite are inelastic, so
in a unit time, the satellite is given
amomentum pv> per unit area of its
midsection. Recall that the orbital
speed of a satellite is far greater than
the mean speed of thermal motion
for atmospheric molecules and at-
oms. (Otherwise Earth would lose
its atmosphere very quickly!) There-
fore, when calculating the aero-
braking forces in the following ex-
amples, we neglect the thermal
motion of the particles that com-
pose the surrounding medium.

What results from the existence
of rarefied gas at the altitude of the
satellite’s orbit? In the case of high
orbits, the resistive forces are small
disturbances that cause slight varia-
tions in the orbital parameters. Dur-
ing gradual braking in a rarefied gas,
a satellite descends to a lower orbit.
However, formula (1) says that at
smaller values of R the orbital veloc-
ity should be greater. Thus, the re-
sistive force acting opposite the
satellite’s velocity can accelerate the
satellite in the direction of its mo-
tion!

Moreover, we will see that the
tangential acceleration—the accel-
eration along the trajectory—is ex-
actly equal to the resistive force di-
vided by the satellite’s mass. This
interesting phenomenon is called
the satellite aerodynamic paradox,
and now we’ll scrutinize it more
closely. It is curious that this seem-
ingly difficult problem can be tack-

led using only conservation laws
and elementary calculations.

The increase of a satellite’s speed
during aerobraking in the outer at-
mosphere has a very simple explana-
tion. To put it bluntly, when a sat-
ellite loses its initial tangential
speed, it falls in Earth’s gravitational
field, because the attraction force
F = GMm/R? becomes larger than
the force mv?/R, which is necessary
to keep the satellite in its initial or-
bit. However, the satellite falls not
in the vertical direction (say, like a
brick from a high building), but
along a gradually decreasing spiral,
nearing Earth’s surface with every
turn. Each turn is almost a circle.

As we know, when a body falls in
a gravitational field, its velocity in-
creases. In the case of a decelerating
satellite, a decrease in its potential
energy not only compensates for the
work of frictional forces in the orbit
(the resistance of the medium) but
also increases the satellite’s speed v
and its kinetic energy mv?/2. There-
fore, it is not the aerial friction that
accelerates a falling space vehicle,
but the attraction of our planet. The
resistive forces only help to transfer
a satellite from a high orbit into a
low one—just as in the simple me-
chanical analogy with a bob fastened
to an elastic cord.

Now look at fig. 1, which shows
the trajectory of an artificial satellite
in the upper atmosphere and the
forces affecting the satellite. This
motion occurs in a plane and is char-
acterized by a slow decrease in the
orbital radius. In other words, the
trajectory is a spiral that gradually

Figure 1
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approaches Earth. The decrease in
altitude for each turn of the spiral is
small compared to the satellite’s al-
titude h = R - R, In this figure, F__
is the force of gravitational attrac-
tion to Earth, F__ is the force of air
resistance, F ;18 the vector sum of
F . andF . Since the satellite’s tra-
jectory is a spiral, every turn of
which differs from a circle (although
by a very small value!), the force
F, ., can be decomposed onto two
constituent parts: F_and F—that is,
the normal and tangential (to the
satellite’s trajectory) components.
The force F, that acts along the
satellite’s trajectory increases its
speed such that at a given point on
the trajectory the instantaneous ac-
celeration in the direction of vector
v has a magnitude F /m. Now we
show that F, = F .

Let the force of air resistance F,_
determined by formula (2) act on a
satellite revolving at some orbit of
radius R. The density p(R) is as-
sumed to be constant and small
along the entire orbital turn. We are
to find the increase in the satellite’s
velocity Av and the decrease in its
orbital radius AR in a single turn. We
will do this with the help of conser-
vation of energy, taking into ac-
count the work performed by the
force of air resistance. Recall that
the potential energy of a satellite in
an orbit is

GMm _ 2

—mv

E1: R ’

and its kinetic energy is

9
mv~ E
B=my =y

Therefore, the total energy of the
satellite is

mv
2

E1+E2:—

The balance of energy of the satellite
at the start and finish of an orbital
turn is described as follows:

y 2
mv~ m(v + Av
= ; —ZRRECS:“—(—Z—)‘B)
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As Av << v, this equation yields

o 2mEeR _ 2nF JR
mv myg '
or
Av  OmF,.
v mg 4]
8

The period of the satellite is At =
2nR /v, so the tangential acceleration
of a satellite moving in the upper at-
mosphere is

_Av _2mE. R v K

1es
At otk m '’ (5]

at
mv

from which we obtain

Fres =F
res/
m

F =ma, =m

which was to be proved.

Therefore, the larger the force of
air resistance, the greater the in-
crease in the satellite’s speed. Can
you imagine such a thing when
riding a toboggan? Certainly not.
Why, by the way? After all, a sat-
ellite and toboggan move in the
same gravitational field, don’t
they?

Let’s find the decrease in the
orbital radius R in a single turn.
The relationship between AR and
Av is easily obtained from for-
mula (1):

v

Av =——AR,
2R

where Av was found above. There-
fore,

20 4TEF1'es (()
R mg >

Note that the relative decrease in
altitude is exactly two times the re-
spective increase in the relative
speed of the satellite.

Look at formula (6). Imagine un-
rolling the circle of radius R and a
single turn of the satellite’s trajec-
tory into the line segments AB and
AC (fig. 2). Arrange them such that
segment BC assumes the value

A B
(04
AR
C
Figure 2
AR = 4rF, .
mg

Now we can see that a tangent
line drawn at any point of the
satellite’s trajectory in the rarefied
atmosphere is deflected from the
local horizontal by a certain small
angle:

res Ies

4nF . R 2F
o = arctan =

mg-2nR mg

This angle is not constant. It de-
pends on the resistive force and
therefore on the altitude of the
satellite’s trajectory. The larger the
braking force, the greater this angle.
The satellite moves like a body slid-
ing along an inclined plane, where
the component of the gravitational
force driving the body along this
plane is mg sin a.=2F,_, about twice
that of the resistance force. The vec-
tor sum of the driving and resistance
forces is equal in magnitude to F,_
and directed forward. Therefore, the
resulting force accelerates the satel-
lite, which explains the nature of the
aerodynamic paradox.

Perhaps, an experienced reader
may have noted, the aerodynamic
paradox in the given formulation
results from a specific feature char-
acterizing the gravitational and elec-
trostatic fields, in which the total
energy of a body is equal to the nega-
tive of its kinetic energy. For ex-
ample, if the force of gravitational
attraction to Earth varies as 1/R3,
the tangential acceleration of a sat-
ellite in the rarefied atmosphere
would be F_ /3m. Problem 4 (at the
end of the article) considers the gen-
eral case, when the radial depen-
dence of the attractive force in the
rarefied atmosphere is described by
a power law.

We calculated the acceleration of
a satellite on the basis of the balance



of energy in the gravitational field,
taking into account the work per-
formed by the external resistive
force. The same result could be ob-
tained in another way without con-
servation of energy. To this end, we
use the equation describing the rate
of change of the satellite’s angular
momentum L = mvR in the circular
orbit:

AL
A 7]
where 1= -F R is due to the exter-
nal force. This torque decreases the
angular momentum of the satellite
during its braking in the atmosphere
and causes the satellite to descend
from a high to a low orbit. Let AL be
the decrease in angular momentum
during a single orbital turn. As pre-
viously, the gas density at the
satellite’s orbit is assumed to be so
small that the force F,,, produces
only a small disturbance to the orbit
during a revolution of the satellite.
Thus, AL = mvAR + mRAv. Previ-
ously we obtained the change in
speed in the form

Av = —%,
2R

which is true for gravity. This for-

mula and equation (7) yield the same

formulas for Av, AR, and a,_ as we

obtained earlier.

Equation (7) describes the evolu-
tion of angular momentum and
helps simplify many problems of a
satellite’s movement in the cen-
trally symmetric gravitational field,
because in this approach we need
not take into account the torque of
the gravitational force: The force
acts exactly through the center of
masses of the satellite and Earth, so
its torque is zero.

The aerodynamic paradox and
related problems are important in
applications. Here are some ex-
amples.

Case 1. Density of the atmo-
sphere at high altitudes.

Observations of the aerobraking
of satellites made it possible to de-
termine the profile of atmospheric

density at altitudes so high that nei-
ther airplanes nor balloons can fly.

If a single force that changes the
angular momentum of a satellite is
the force of resistance

E o CvazSX
res — _T—/

where p = p(R) is the unknown func-
tion of the density dependence on
the orbital radius R (or altitude of
the flight h = R - R), then simple
calculations using the angular mo-
mentum equation (you may do
them on your own) result in equa-
tions that describe the function p(R)
using the data for the rate of de-
crease either of the orbital radius
dR/dt or the satellite’s period of
revolution dT/dt obtained at various
altitudes:

1 dR
R)=— ar
PR =3k a
1 dT
R =-czm W

Here C = C_ S, /2m is a constant fac-
tor known as the satellite ballistic
coefficient (its units are m? - kg™!).
Equations (8] and (9] are valid for
high-altitude circular orbits where
collisions of a satellite with mol-
ecules in the rarefied atmosphere
produce only minor changes in its
orbit.

In the times of yore when artifi-
cial satellites did not dance in a ring
about Earth, data on the upper atmo-
sphere were obtained through astro-
nomical observations and radioloca-
tion of the flight of meteors and
meteorological rockets. The modern
navigational devices placed aboard
satellites and the radio transmitters
working hand in hand with land-
based computers made it possible to
track satellites and detect their or-
bital parameters with very high pre-
cision. Due to the many observa-
tions of satellite flights at various
altitudes, a vast amount of informa-
tion is now available on the gas den-
sity in the upper atmosphere, as well
as on its dependence on the season,
time of day, latitude, solar activity,

and so on.

Experiments for determining gas
density in the upper atmosphere can
be more easily conducted with ball-
shaped satellites, in which the cross-
sectional area S_and thus the ballis-
tic coefficient C do not depend on
the orientation of the satellite. The
American Explorer satellites had
such a spherical form. In addition,
they were hollow, a feature that en-
hanced the efficiency of aerobraking
as they probed Earth’s atmosphere
in a broad range of altitudes up to
1000 km, where the atmospheric
density is about 103 to 1071° kg/m3.

Case 2. The last orbital turn.

Let’s evaluate the decrease in a
satellite’s altitude during a single
turn in the upper atmosphere. We
assume the mass of the satellite to
be 103 kg and its midsection to be 1
m?. The mean air density at an alti-
tude of 200 km is 4 - 107'0 kg/m3.
Formula (6) yields

_ 4anZSXR
mg

AR =2 km.

At first glance, AR seems to be a
small value: At every point of the
satellite’s trajectory at this altitude,
the velocity vector is deflected from
the local horizontal by a negligible
angle

2pv7S,

o =5.10"° rad=1”.

n

m§

However, a satellite makes 16 revo-
lutions per day, and due to a con-
tinuous decrease in altitude, it sinks
into the layers where the atmo-
spheric density sharply increases. At
such altitudes the satellite plunges
into the atmosphere more and more
steeply. At an altitude of 150 km,
where p = 4 - 10~ kg/m?, the same
satellite loses 20 km in altitude per
turn! One or two additional turns,
and it encounters such dense air that
it cannot finish a turn, and instead
of continuing its spiral trajectory, it
begins to fall almost vertically. Such
a fall is characterized by huge me-
chanical and thermal loads. The end
of orbital flight is nigh! Hollow, light
satellites fall more rapidly, because
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they are forced out of orbit at higher
altitudes, while their heavy siblings
can revolve around Earth at lower al-
titudes.

Figure 3 shows how the critical
altitude and the corresponding criti-
cal period of a satellite’s revolution
around Earth depend on its ballistic
coefficient C. For example, consider
a satellite with a mass of 2.4 t and a
diameter of 2.3 m, so its ballistic co-
efficient is C = 1.7 - 103 m? - kg1
The plot shows that the critical al-
titude is b = 130 km, and the criti-
cal period of revolution T, = 86 min
54 s. The satellite considered in this
example has approximately the
same ratio S_/m as the spacecraft
Vostok and similar critical orbital
parameters. Specifically, the critical
altitude of the satellite’s flight is
about 125 km.

Note that the critical altitude of
anice ball 1 ¢cm in diameter is higher
than 200 km, and this parameter is
even greater for smaller objects!
Therefore, Earth and its atmosphere
work as a huge vacuum cleaner,
which eliminates small litter from
near-Earth orbits.

Another point of interest: When a
descending satellite approaches the
critical altitude, the force of resis-
tance is still not as large as the force
of gravity. According to formula (6),
these forces relate to each other as
(approximately) the effective thick-
ness of the atmosphere and Earth’s
radius multiplied by 4xn. Thus, the
force of resistance at the critical al-
titude is only about 1/10,000 of the
force of gravity. Isn’t that a tiny
value? Perhaps, but it is quite
enough to destroy a satellite in the
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near future.

Case 3. Lifetime of a satellite in
orbital flight.

The upper atmosphere shortens
the lifetime of a satellite. The for-
mulas derived in this article help
evaluate this value, provided the al-
titude profile of atmospheric density
and the initial altitude of the orbital
flight are known. Although precise
calculation of a satellite’s lifetime is
a laborious task, a simplified esti-
mate assumes that the majority of a
satellite’s life occurs at the highest
altitudes, where the air density is
minimal. The estimates depend on
the type of satellite, or more specifi-
cally, on its ballistic coefficient C.
We do not discuss the solution to
this problem, but we show the re-
sults in Table 1, which provides life-
time estimates for conventional sci-
entific satellites in orbits with
various initial altitudes.

Table 1
altitude (km) lifetime
150 1 day
190 2 days
210 1 week
230 1 month
400 1 year
500 10 years
650 100 years
850 1,000 years
1300 10,000 years
2000 100,000 years

First of all, this table shows how
drastically the air density decreases
at high altitudes. It also explains
why a scientific satellite tightly
packed with expensive devices de-
signed for many years of active work
is launched into an orbit with an
altitude of no less than 500 km.

Problem 1. The first launches of
satellites showed a curious phenom-
enon. After the satellite separated
from the final stage of the carrier
rocket, the rocket outran the satel-

lite and flew ahead of it even when
the rocket engines were stopped.
What is the reason for this strange
phenomenon? Assume that at the
moment of separation the velocities
of the satellite and the carrier rocket
were identical.

Problem 2. Why does aerobraking
of a satellite in the outer atmosphere
transform its initial elliptical orbit
into a circular one?

Problem 3. Show that if the air
density decreases with altitude as
p o< R71/2, where R is the distance
from the planet’s center, the rate of
decrease in the orbital radius of a
satellite is constant.

Problem 4. A satellite revolves in
a circular orbit about a planet with
a rarefied atmosphere. Let’s assume
that the gravitational attraction to
the planet obeys the law F o« R7,
where n is an arbitrary positive
number (n = 2 corresponds to the
usual gravitational force). For what
range of n is the satellite aerody-
namic paradox possible?

Problem 5. Does the braking of a
satellite at high altitudes depend on
air temperature?

Problem 6. Assume that a strong
heating led to the evaporation of all
the water in the Earth’s oceans and
the formation of a thick and hot
atmosphere of water vapor. How
would the motion of the Moon and
existing artificial satellites be affected
by such a metamorphosis? (o]

Quantum articles on aeromechanics
and aerobraking;:
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Math
M251

Pick two. Six different numbers
are given. Prove that one can
choose two of them, say x and y,
such that the following inequali-
ties hold:

O et
1+Xy \/3

M252

Triangle construction. Two non-
intersecting circles with radii R and
r are each tangent to both sides of
the same angle. Construct an isosce-
les triangle such that its base lies on
one side of the angle, the vertex is on
the other side, and each leg touches
one of the circles. Express the length
of the altitude to the base of this tri-
angle in terms of R and r. (I. F.
Sharygin)

M253

Nailing it down. An equilateral
triangle made of a piece of card-
board lies on a plane. Three nails
are driven at points K, L, and M at
its sides in such a way that the tri-

1
= (I. NI. Sergeyev)

2y
L

3y

2x K X

Figure 1

HOW DO YOU
FIGURE?

Ghallenges

angle cannot move (fig. 1). It is
given that points K and L divide
their corresponding sides in the
proportion of 2:1 and 3:2 as in fig-
ure 1. In what proportion does
point M divide its side of the tri-
angle? (A. Shen)

M254

Slicing a cube. A plane inter-
sects a unit cube and divides it
into two polyhedrons. It is known
that the distance between any two
points of one polyhedron does not
exceed 3/2. What value can the
area of this section take? (N. P.
Dolbilin)

M255

Convention glad-handing. Del-
egates from 100 countries arrived at
an international conference. Each
delegation consisted of two per-
sons—the President and the Prime
Minister. Before the beginning of the
conference, some of the participants
shook hands, but none of the Presi-
dents shook hands with his or her
own Prime Minister. During the ad-
journment, the President of Illyria
asked all the other participants how
many handshakes they gave. All the
answers were different. With how
many conferees did the Prime
Minister of Illyria shake hands?
(A. Andzhans)

Physics

Railroad robber. On a flat sec-
tion of railroad tracks there was a

flatcar with a load. One night a
robber sneaked up to it carrying a
light, elastic rubber cord. He tied
one end of the cord to his belt and
the other to the flatcar. Then the
robber ran along the tracks with a
constant speed of 5 m/s. Then
something happened . . . when he
came to he was lying on the flat-
car, which was moving with a
speed of 9 m/s. By how much did
the flatcar’s mass exceed that of
the robber? What happened there,
after all? Assume that the robber’s
boots did not slip, and neglect roll-
ing friction. (A. Vargin)

P252

Wheel on an incline. A wheel
consists of a thin rim of mass M,
very light spokes, and an axle of
mass m. The wheel is put on an in-
cline that makes an angle o with the
horizontal, and then it is set free.
What speed will the wheel acquire
at the time it has covered a distance
L if it rolls without slipping? For
what minimal coefficient of friction
is motion without slipping possible?
(A. Zilberman)

P253

A holey pail. A round hole with
diameter d = 10 cm is drilled in the
bottom of a cylindrical vessel to let
the water drain out. When the hole
is open, some water nonetheless re-
mains in the vessel. Estimate the
mass of this residual water if the wa-
ter does not wet the bottom (that is,
the force of adhesion is zero). The di-
ameter of the vessel is D = 50 cm,
and the surface tension of water is
p = 0.07 N/m. (V. Mozhayev)
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P254

An unknown lamp. Figure 2
shows the dependence of the cur-
rent on the-applied voltage for a
lamp of unknown construction.

N
I P
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» /|
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I ///
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L /l i 1 1 1 1 1 1
2 6 10 14 18 V[V
Figure 2

This lamp is connected to a source
via a 10 Q series resistor. At what
source voltage will the power dis-
sipated by the lamp be 1/4 of the
power produced by the source? (B.

Lloyd mirror, a point source S is
located at a horizontal distance
b =20 cm from a flat mirror, and
at a height a = 10 cm above the
mirror as shown in figure 3. The

P

T\

Figure 3

mirror has a length d = 10 cm. A
screen P is placed at a distance
L = 1 m from the point source.
Determine the vertical height of
the interference picture that
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is formed on the screen. (N.
Beryulova)
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Interference after reflection. In
an interference scheme with a
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The problem of eight points

OMETIMES A PROBLEM WITH

a simple statement has a com-

plicated solution. On these oc-

casions, the challenge is often
to pull out a solution that is orderly,
and from which one can learn. The
following problem is of this type. It
was suggested to students of the
ninth form at the All-Soviet math-
ematical olympiad in Ashkhabad in
1983. It is given here with some mi-
nor modifications.

Problem 1. A circle is circum-
scribed around a triangle ABC. Lines
AP, BP, and CP are drawn in the
triangle’s plane through an arbitrary
point P (not on the circle), and the
second points of intersection of these
lines with the circle are marked.
Prove that there are no more than
eight points P for which the marked
points do not coincide with any of the
triangle’s vertices A, B, and C and
which are the vertices of a triangle con-
gruent to the original triangle ABC.

This problem turned out to be
rather difficult. Some students
solved it by analyzing various posi-
tions of point P relative to lines AB,
BC, CA, and the circle. In this ar-
ticle, we give a more instructive so-
lution, motivated by the idea of
“moving” figures about the plane.
That is, we imagine that certain el-
ements of our configuration rotate.
When they reach a particular posi-
tion, the desired figure appears.

First, we solve the following in-
verse problem.

Rotation and iniersection of lings

Problem 2. Two (not necessarily
congruent) triangles ABC and

by N. B. Vasiliev

A B,C, are inscribed in a circle. Tri-
angle ABC is fixed, and triangle
A,B,C, rotates about the center of
the circle. In what positions of
A,B,C, do the lines AA,, BB,, and
CC, pass through the same point P?
How many such positions are there?

The answer to the last question is
as follows. Such a position is unique.
That is, as triangle A B,C, makes a
complete rotation, lines AA,, BB,
and CC, meet at a point only once
(and in a certain degenerate case,
such a position does not exist|.

This problem can be solved by
using the method of loci.

Lemma. Let chord AB of the
circle be fixed, and let the ends of
chord A,B, slide along the circle.
Then the angle ¢ between lines AA,
and BB, remains fixed, and their
point M of intersection (if ¢ # 0) de-
scribes a circle passing through
points A and B (fig. 1).

Figure 1.

If points A and B are fixed and points
A, and B, move uniformly with the
same angular speed o along the circle,
Iines AA, and BB, rotate uniformly
with the angular speed w/2, and the
point of their intersection, M, moves
along the red circle (with the angular
speed w).

Here is a way of thinking about
the proof of this lemma. Assume
that points A, and B, are moving
uniformly with the same speed
along the circle. Then lines AA| and
BB, rotate uniformly with the same
speed about points A and B, respec-
tively. Therefore, the angle between
them does not change (in fig. 1, for
points M on one side of AB, angle
AMB equals 0, and for points on the
other side, this angle equals © - ¢). If,
at the initial moment, lines AA | and
BB, intersect at a point M,, the
circle circumscribed about triangle
ABM, is the desired trajectory of
point M. Point M moves uniformly
along this circle (the angular speed
of the rotation of the lines equals
half the angular speed of the rotation
of points A,, B,, and M along their
respective circles).

A formal proof of this lemma
would involve several applications
of the inscribed angle theorem. The
reader is invited to construct such
an argument.!

We must note two special cases of
the situation in the lemma. They will
be useful in future considerations.

1. The special case ¢ = 0 occurs
when chords AB and A, B, are equal,
and at a certain initial moment,
point A, coincides with B and point
B, coincides with A. In this case,
lines AA| and BB, initially coincide,
and then, as chord A, B, moves, they
become parallel.

2. When A, coincides with A (or
B, coincides with BJ, the line AA,
(or BB, must be considered tangent
to the circle (if we do not make this
assumption, the two corresponding
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Figure 2.

Point P is at the intersection of two
loci: When the line reaches the
position BP, lines AA| and CC,
coincide with AP and CP.

points must be excluded from the lo-
cus).

Let’s return to problem 2. Using
the lemma, we can construct two
circles that are the loci of the points
of intersection of line AA| with BB,
and BB, with CC, (fig. 2). The first
circle passes through points A and B,
and the second passes through
points B and C. Only one point can
play the role of P—the point of inter-
section of these two circles that is
different from B. We needn’t con-
struct the third locus of intersection
of AA, and CC,—the third circle.
This third circle will pass through
the same point P. A proof of this fact
is left to the reader.

Thus, in general, a unique position
of triangle A, B, C, exists that satisfies
the condition required. In any case,
taking into account the refinements
we have made, we can say that there

Figure 3.

A particular case ¢ = 0: Point P does
not exist (lines AA,, BB,, and CC, are
parallel).
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can be no more than one point P (the
special case is shown in fig. 3). Thus,
problem 2 is solved.

Now we can turn to problem 1.
For every point P not on the circle,
denote by A,, B, and C, the second
points of intersection of lines AP,
BP, and CP with the circle. The
statement of the problem concerns
points P such that triangle A, B, C, is
congruent to triangle ABC. At first
glance, it may seem that by taking
the congruent triangles in problem
2, we can find a single desired tri-
angle A,B,C, that is symmetric to
triangle ABC with respect to the
center of the circle. However, there
is a fine point in the reasoning that
is more logical than geometrical,
which we will discuss after a brief
excursion.

Permutation of vertices and symmetries

Congruent triangles have, by defi-
nition, congruent angles and sides,
and they can be superimposed. It is
common practice to write the con-
gruence of triangles so that the cor-
responding vertices are listed in the
same order. So, for example, if
AABC = ADEF, then /A = /D, /B
= /E, £C = £F, AB = DE, and so on.

Looking back at the statement of
problem 1 with this in mind, we no-
tice that triangle A B, C, is not nec-
essarily congruent to triangle ABC. If
we take into account the correspon-
dence of vertices, it can be congruent
to any of the six triangles ABC, BCA,
CAB, BAC, ACB, and CBA. And the
number of variants is double this, as
we will see, for purely geometrical
reasons.

Triangle A B,C, can be directly
congruent to triangle ABC. That is,
these triangles can be superimposed
by a continuous motion on the plane
(by a rotation R in our problem), or
inversely congruent. In the latter
case, in order to superimpose the tri-
angles, we must “flip” one of them
(reflect it in a line). In our problem,
it suffices to reflect one of the tri-
angles with respect to a certain line.
All the triangles A, B, C, that are in-
versely congruent to triangle ABC
can be obtained from each other by
rotations. To differentiate between

Figure 4. ¢
A particular case: Point P appears
when the triangles coincide.

these cases, we will write the letter
R or S above the equality sign. For
cach of 2 - 6 = 12 alternatives, we can
use problem 2 and construct at most
one desired point P.

This reasoning can be explained
as follows. We take a triangle T
made of cardboard (with the same
circumradius as AABC), place it on
the plane on one of its sides or an-
other, mark the vertices A, B, and
C, (6 different alternatives), place its
vertices on the circle, and find point
P for each of the 2 - 6 = 12 alterna-
tives by rotating this triangle.

To finish solving problem 1, we
must explain why four alternatives
are excluded in the case T = AABC.
One of them (AABCZ AABG)
can be eliminated at once, because in
this case, for each of the three sides,
special case (1) of the lemma occurs
(fig. 3)—lines AA|, BB, and CC,
never meet at a point as triangle
A B,C, rotates. Also, the condition
that none of the points A,, B, and C,
coincide with the corresponding
points A,B, and C eliminates the case
ABACZ AABC, (fig. 4) and two
similar cases: AACBZ AABC,
ACBAZAABC,. In these cases,
point P appears at the moment when
the triangles coincide (in this case,
special cases (1) and (2) of the lemma
both occur (fig. 4)). Problem 1 is
solved.

For those who are patient enough
to finish the analyses, we recom-
mend thinking about the following
questions: (1) Is it true that in the
general case, all 12 alternatives (and
in the case T = AABC, all § alterna-
tives) are realized and give (as a rule)
different points P? (Try experiment-
ing with straightedge and compass.)
(2) How much does the number 12
(or the number 8 in the particular
case) decrease for an isosceles or
equilateral triangle T? (@)
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T IS NO WONDER THAT THE
problem of collisions was very
difficult for Galileo. After all, he
was a founder of the dynamics of
only a single body. On the contrary,
Christiaan Huygens, who modestly
said that he merely “supported and
generalized” Galileo’s theory,
greatly advanced mechanics, be-
cause he started to formulate the
dynamics of several interacting bod-
ies. Having elucidated such a com-
plex phenomenon (by the way, it
was a disaster for Cartesian mechan-
ics), Huygens formulated the law of
conservation of momentum more
accurately and virtually discovered
the law of conservation of mechani-
cal energy. His achievements
opened the door to the further study
of collisions, which was done by
such celebrities as Edme Mariotte,
Thomas Young, Siméon-Denis Pois-
son, and Heinrich Hertz.
When beginning to study dif-
ferent collisions, you must
learn how to distinguish be-
tween elastic and inelastic
. impacts, to reveal the con-
* nections between the con-
cepts of deformation and wave propa-
gation, and to feel the difference
between the mechanical colli- —

sion of macroscopic bodies and =

the interaction of atoms or elemen-
tary particles.

All this is prerequisite if you want
to understand how a ball is kicked or
a nail hammered, how piles are
driven into soil or how iron swords
are forged. There are also such phe-
nomena as “reversed” collisions (gun-
shots and explosions). Collisions are
very important because they underlie
the behavior of molecules of gas and
the scattering of atoms that pierce a
thin metal foil. Tonization of atoms
and the interaction of a quantum of
light with an electron also provide ex-
amples of collisions.

We hope that your own “colli-
sion” with this broad theme will not
be absolutely elastic and that the
despair of Galileo will be replaced by
the insight of Huygens.

Questions and Problems
1. Why does a steel ball bounce
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‘I concluded that the
question on the force of
collision looks very obscure,

and nobody who
previously considered

this problem could
penetrate into its essence,
that is full of darkness and
far from usual human

ideas.”
—Q@Galileo Galilei

much higher from a marble slab
than from asphalt?

2. Why does a fragile object /|,

break when dropped on a hard
floor, but lands safe and sound
when the floor has a soft cov-
ering?

3. Several people can move
a stationary bus, but the bus
doesn’t move when an anti-tank
missile pierces it through. How can
this happen if the force acting on the
bus is much larger than the force
acting in the first case?

4.1In a circus performance an ath-
lete lies under a heavy anvil. A col-
league strikes the anvil with a ham-
mer. Is this trick really
dangerous for the athlete?

5. When a hammer strikes a
piece of steel, it bounces away, but
when it strikes a piece of lead, it re-
coils much less. Which piece of
metal was given more energy?

6. In which case would a rifle fire
a bullet a longer distance—when it

is firmly fixed in a vise or suspended
by strings?

7. Why doesn’t a soldier firing a
bazooka (grenade launcher) feel a
recoil?

8. In Newton’s collision toy, the
five identical steel balls are suspended

COLLID

SCOF

by strings so that they lie
along a line and touch each
other. How will this set of balls
behave if the rightmost ball is
pulled aside and then released?
What will happen if the same
procedure is performed si-

#= multaneously with two or
three balls?

9. A ball falls vertically onto a
smooth wedge that forms a 45° angle
with the horizontal. What will its tra-
jectory be after an elastic collision
with the wedge if the wedge is ini-
tially at rest?

10. Why is it difficult to kick an
underinflated soccer ball a long
way?

11. When an experienced basket-
ball player catches a fast moving
ball, he relaxes his hands and moves
slightly backward with the ball.
Why?

12. What is the principal differ-
ence between the force of a rocket
and the force of an ordinary engine?

13. A projectile fired from a gun at
some angle to the horizon explodes
at the top of its trajectory into two
fragments of equal mass. One frag-
ment returns to the gun along the
projectile’s trajectory. Where will
the other fragment land?

14. Under normal conditions, gas
molecules have speeds of hundreds
of meters per second. Why does the
diffusion of gases proceed rather
slowly?

15. Why is the Brownian move-
ment of small suspended particles
more pronounced than similar mo-
tion of larger suspended particles?

16. Why do electric discharges in

|
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rarefied air occur at smaller
voltages? I
17. How can the atoms of g
a gas be excited? .
18. Why do high-speed neu-
trons easily pass through a
block of lead but are slowed
down in the same volume of *
paraffin, water, or other sub-
stances containing hydrogen atoms?

Microexperiment
Hold a small rubber ball
and a large one, setting the
small ball atop the large one,
and drop them both. How
will they behave after collid-
ing with the floor? Why?

It's interesting that ...

. in the Middle Ages, &
castles were assaulted with
the help of a battering ram
made of a log with a mass
of several hundred kilograms. The
warriors rushed to the gate of a
castle, holding the log on their
shoulders. At the gate they stopped
abruptly and released the log, which
continued its motion by sliding on
the warriors’ leather shoulder plates.

. even before Huygens, the
Czech scientist Johannes Marci
studied collisions and classified bod-
ies as soft, crumbly, and hard, while
René Descartes, who distinguished
between hard and soft materials,
could not see any difference be-
tween elastic and inelastic bodies.

. the variety of interests of
Christiaan Huygens is attested to
not only by his invention of the free
pendulum clock and by constructing
an excellent telescope that helped

' legs, one can traumatize the spi-

.~ height of the jump is just

“When an immobile body
Is stricken by a similar
moving body, than the
latter comes to a
standstill, while the
former starts to move
with the velocity of the
incident bodly.”
—~Christiaan Huygens

him discover a satellite and a ring of
Saturn, but also by his attainment
of a doctoral degree in law. Shortly
before his death, he wrote one of
the first textbooks on as-
tronomy, Cosmotheoros, the
Russian translation of which
was performed at the behest of
Peter the Great.

... Sir Isaac Newton initially for-
mulated his third law only as a
working hypothesis needed to con-
struct mechanics. He thoroughly
checked it in his experiments with
collisions of pendulums.

. collisions evoke very large
forces that can inflict serious dam-
age. For example, when jumping
onto hard ground with extended

nal cord, even when the

slightly more than 1 m, be-
cause too great a load is exerted
on the cord at the moment of impact.
... under normal conditions, an
oxygen molecule travels only
1/20,000 mm between collisions.
However, this distance is rather
large when compared to the size of
the molecule: The proportion is
the same as if a billiard ball trav-
eled 10 m before hitting its
target.
§ 1 ... to extract fillings from
77 almost inaccessible places in
teeth, dentists once used a clever
contrivance. A filling was hooked by
a rod, which had a sliding load. The
load was lifted and then released.
When the load struck the support,
the resulting strong jerk pulled out
the filling.

.. although alpha particles ap-
proaching stationary atomic nuclei
do not contact them, the model of
completely elastic collisions never-
theless accurately describes the scat-
tering of these particles by the nuclei.

... at room temperature, collisions
between atoms are mostly elastic:
They start to be excited in the colli-
sions at temperatures of tens of
thousands of degrees. On the con-
trary, almost all mutual collisions of
elementary particles are elastic in
the known temperature (energy)
range. This is why these particles are
considered to have no internal struc-
ture.

when in 1932 Sir James
Chadwick investigated the proper-
ties of uncharged particles emanat-
ing from a piece of beryllium, he
could not detect them directly.
However, using collisions of these
particles with nuclei of other ele-
ments, he found all of the param-
eters of the unknown particle. This
is how the neutron was discovered.

... when any moving object disin-
tegrates—a projectile, rocket,

atomic nucleus—, the center of
mass of its fragments moves
along the same trajectory that
the intact body would have
taken. This is why nuclear physi-
cists prefer to study collisions in the
frame of reference fixed to the cen-
ter of mass of the colliding particles.
—A. Leonovich
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PHYSICS
CONTEST

Snortin’ lite

by Arthur Eisenkraft and Larry D. Kirkpatrick

ICHAEL JORDAN MAKES

it all look so easy. The ball

tossed at an angle 6 with an

initial velocity v from a
height h gracefully glides in its arc
and swishes through the net. All
that polish from years of practice
and no formal physics.

What are we to do? Can our
mathematical approach help us to
replicate Jordan'’s skills? Definitely
not. But our analysis can help us ap-
preciate the skill of someone who
can sink the jump shot. In fact, our
analysis can then be used to mimic
the work of the broad jumper, the jav-
elin and discus thrower, the volley-
ball spiker, the football punter, the
soccer midfielder, and the baseball
batter.

Trajectories without air resis-
tance follow the simple equations of
kinematics for horizontal motion
with no acceleration and vertical
motion with the acceleration due to
gravity:

X =vytcosO

1 .
y:—zgt2 +votsin®.

From these equations we can de-
rive an equation for the range of a
trajectory thrown from the ground
and returning to the ground. For this
special case, the vertical displace-
ment y is zero. By eliminating the
time t, we obtain

2

2
\% . vy .
x="0¢cos0sin® = —Lsin 26.

8

g

The maximum range of a trajectory

30 JANUARY/FEBRUARY 1998

o —Gary Sn yder 3 '

with two different angles.
The trajectory equations
can provide us with some in-
sights to many of our sports
dilemmas. The ficld-goal
kicker can certainly use the
equations to determine the
range of angles that will pro-
vide his team with three
points. The punter has a dif-
ferent job requirement. He
wants to kick the ball as far
as possible. But if he kicks it

is now proven to be 45°, since sin 26
is equal to 1 for this value.

If we do not restrict the vertical
displacement to zero, we find that

-gx xsin®

2vg cos” 0

cosO

This now demonstrates that for any
given initial velocity and any angle,
the path of a thrown object must be
a parabola!

Using the identity relations

sin®
coso

tano =

and

tan® 0 +1=sec? 0,

we can derive a new equation that
will help us find the angle a ball
must be thrown to reach a specific
point in space:

2 2
yzo—ztan26+xtan6— - -
v 2vy

Since the equation is quadratic, we
see that we can reach any position

so far that his players can’t
get downfield, then the return will
negate his good punt. He must maxi-
mize that distance and maximize the
hang time. Maximizing the distance
requires a kick at 45°, yet maximiz-
ing the hang time requires a vertical
kick (with no down field compo-
nent). What is a punter to do?

These decisions must be very dif-
ficult, and experience must guide
the punter. Physics can provide
some help. If we know the speed of
the defenders as they run down the
field and we know the initial veloc-
ity of the punt, we can suggest ad-
justing the angle of the kick so that
the ball arrives when the defenders
do. We will analyze this while ignor-
ing air resistance.

The range of the punt traveling at
an initial velocity v,and angle 6 and
the corresponding time of flight are
given by the following equations:

2
L
g

2vysin®

o
S
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Figure 1

If the offensive team can run
downfield at a speed v, they can
travel a distance x downfield in the
time t, where x = v,t. The punter
kicks the ball from a position 15
yards behind the line of scrimmage.
If we minimize the difference be-
tween the range of the ball R and the
distance the runners travel, taking
into account the 15-yard lead the
runners get, we will determine the
optimum angle for the punt.

The corresponding equations can
most readily be solved using a solver
on a calculator, a spreadsheet, or
graphing the equations for R and
(x + 13.7 m). Figure 1 shows typical
values of 25 m/s for the ball and
8 m/s for the runners. The runners
will arrive as the ball arrives when
the ball is kicked at an angle of 65°
and travels a distance somewhat less
than its maximum range.

There are some interesting trajec-
tory problems where the physics can
also provide assistance. These will
make up the contest problems for
this month.

1. (a) A free kick is being set up in
soccer. The defenders form a wall
with their bodies between the
kicker and the goal. The ball must
clear the players. The defenders are
1.8 m tall, and they set up the wall
15 m from the kicker, who kicks the
ball at 35 m/s. At what locations can
the ball not land?

(b) How does this shadow region
change as the wall moves in relation
to the kicker?

2. (a) A basketball player shoots a
jump shot with an initial velocity v,
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at an angle 6. For a given basket
that is h meters above the release
point of the ball and L meters hori-
zontally from the basket, determine
the relationship between v, and .

(b) Since the ball must enter the
basket during its descent, describe
this constraint on the initial angle
mathematically.

(c) At what angle is a minimum
speed required to sink the shot?

Doppler beats

In the July/August 1998 issue
we posed a problem combining
beats and Doppler shifts. The
problem was designed by Leaf
Turner, one of the coaches of the
U.S. Physics Team, to help select
members of the 1998 team. This
problem was successfully solved
by Zach Frazier, who graduated
last spring from Ferris High School
in Spokane, Washington, and by
Stephen Hanzely from Young-
stown State University in Young-
stown, Ohio.

Two sirens are located along the
x-axis with frequencies f; and f; for
the left and right sirens, respec-
tively. An observer moving with
speed v, along the x-axis hears fre-
quencies 0.99 Hz, 0 Hz, and 1.01 Hz
on the left-hand side of the sirens,
between the sirens, and on the right-
hand side of the sirens, respectively.

A. In the absence of any motion,
the beat frequency Af is a frequency
source, just like any other type of
source. Therefore, we see that the
frequency is red-shifted on the left
and blue-shifted on the right. This

means that the observer is moving
from right to left.

B. On the left-hand side, the ob-
served frequency Af; is given by

A, = Af[l = V—Oj =099 Hz,

s

where v, is the speed of sound. Like-
wise, on the right-hand side, the
observed frequency Af,” is given by

A = Af[l + 5) - 1.01 Hz.
14

s

Dividing these two equations yields

Yo
My __ vy _101
AfL/ 1—V—° 99
Vi

S

from which we get v_ = 0.01v_.

C. When the observer is be-
tween the two sources, there is no
beat frequency, and the observer
measures the same frequency from
both sources. However, the source
on the left is blue-shifted, and the
source on the right is red-shifted.
Therefore, f & fi-

D. Numerically, we have

fL/ = fL[l + V—O]
VS

and

f = fR(l— Z—]

Setting the two shifted frequencies
equal to each other, we get

1+ 20
fa  ve 101
fo_Ye 99
\4

S

From either of the first two equa-
tions in part B and using v = 0.01v,,
we obtain

i — ;. = 1Hz.

Solving these two simultaneous
equations provides us with the nu-
merical values f; = 50.5 Hz and
f, = 49.5 Hz. O



VERYBODY KNOWS THAT

to boil water, we must heat it.

But could it be possible to boil

water by cooling it? At first
glance this seems impossible. How-
ever, do not hurry with your answer.
Carry out the following simple ex-
periment and think about how to
explain it.

You will need a 30-40 mL test
tube with a tight plug, a Bunsen
burner, and a test-tube holder. Also
prepare a bottle of room-tempera-
ture water and a bottle of ice-cold
water.

Wearing gloves and goggles, pour
the room-temperature water into
the test tube until it is a little more

IN THE LAB

Gold boiling

by S. Krotov and A. Chernoutsan

than half full. Start to warm the test
tube over the burner, making sure to
hold the test tube at an angle (and
pointing away from any people) and
to heat the upper part of the water
column. If the water is warmed at
the bottom of the tube, the expand-
ing vapor can shoot the contents of
the tube into the air.

Wait until the water reaches a
steady boil, then quickly and firmly
plug the tube, simultaneously re-
moving it from the flame. As ex-
pected, the boiling stops immedi-
ately. Now turn the tube upside
down and pour the room-tempera-
ture water over the upper (empty)
part of the tube. What do you think

will occur? The water in the tube
starts boiling again! Of course, after
a while, the boiling stops, but pour-
ing room-temperature water over
the test tube again will cause boiling
to start again. When pouring room-
temperature water over the tube no
longer causes boiling (at this time
the tube is cold enough to hold in
your hand), pour ice-cold water over
the empty part of the test tube. The
water in the cool tube will boil once
more! Can you provide a reasonable
explanation of this so-called “cold
boiling”? Ol
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As easy as (4 4 £)?

Searching for Pythagorean triples

by S. M. Voronin and A. G. Kulagin

OW CAN WE FIND POSITIVE
integer solutions to the follow-
ing famous equation:

a* + br=c2? (1)

Specific solutions to this equation
were known long before mathemat-
ics became a science. Ancient Bab-
ylonians knew the solution (a, b, ¢)
=(3, 4, 5) and a number of other so-
lutions to equation (1), including
some that are difficult to find, such
as (105, 36, 111) or (12709, 13500,
18541).

Although various viewpoints of
pre-Greek mathematics exist, it is
not likely that the Babylonians
used the deductive methods of
mathematics. Mathematics as a
deductive science first appeared in
ancient Greece in the sixth cen-
tury B.c. Tradition ascribes the

/

Figure 1
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first statements of mathematical
problems to Pythagoras. The
mathematicians of ancient Egypt
and Babylon could calculate the
number /2 very accurately, but
the statement of the problem that
J2 is irrational may still have
been alien to them. Equally alien
to them would be the statement of
the problem of the description of
all solutions to equation (1). This
problem was set and solved by the
Pythagorean school.

For this reason, and possibly be-
cause of its clear relationship to the
Pythagorean theorem as well, equa-
tion (1) is called the Pythagorean
problem, and the triples of natural
numbers satisfying this equation are
called Pythagorean triples. It follows
from the Pythagorean theorem that
a Pythagorean triple 0<a< b <ccan
be assigned to a right triangle with
integer legs a, b, and hypotenuse c.
Conversely, each right triangle with
integer sides supplies a solution to
equation (1). Thus, the Pythagorean
problem has a clear geometrical in-
terpretation (fig. 1).

Arithmetic method

If a triple of natural numbers (q, b,
c) is Pythagorean, the triple (ka, kb,
kc) is also Pythagorean for any posi-

PYTHAGOREAN PROBLEM

tive integer k. Therefore, to solve
the Pythagorean problem, it is suffi-
cient to find all primitive triples (a,
b, c)—that is, Pythagorean triples
such that the numbers a, b, and ¢
have no common divisor.

It turns out that it is rather easy
to enumerate all primitive Pythag-
orean triples. The Pythagoreans
knew a simple method based on
the following proposition: If p and
q are coprime and of different par-
ity and p > q, then the triple of
numbers
a=p*-q,b=2pq, c=p*+q [’
is a primitive Pythagorean triple.

For example, if g=2 -3 -7 =42
and p = 163, we obtain the following
Pythagorean triple: (24805, 13692,
28333).

The proof of the proposition is
clear. Indeed, by virtue of (*),

a2+ b2 = (P2 - @) + 4p2 >
=P+ P =c

That is, the triple (a, b, ¢} is
Pythagorean. In addition, it is
primitive: If a, b, and ¢ had a com-
mon divisor, this would also be a
common divisor of the num-
bers ¢ + a = 2p? and ¢ — a = 242,
which contradicts the fact that p
and ¢ are relatively prime.

Art by Vera Khlebnikova
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We have proved that the method
described produces a primitive
triple. It turns out that all Pythago-
rean triples can be obtained by us-
ing method (*).

Next we give (in brief] an arith-
metical proof of this remarkable
fact. The proof explains how it
would be possible to guess formu-
las (*). {Those readers who do not
like arithmetical reasoning can skip
this proof and go to the next sec-
tion.)

Let a primitive triple (a, b, ¢) be
given. The condition of primitivity
can be written as

GCDla, b, c) =1, (2)

where GCD denotes the greatest
common divisor of the numbers in
parentheses. Note that we must
consider the divisors that are com-
mon to all three numbers a, b, and
¢ and not pairwise common divi-
sors. Equality (2) does not imply
that

GCD|a, b) = GCD(b, c)
= GCDic, a) = 1. (3)

However, for any primitive
Pythagorean triple, relations (3} do
hold. Indeed, suppose, for ex-
ample, GCD(a, b) = k > 1. Then, by
virtue of equation (1), ¢? is divis-
ible by k2, and thus, ¢ is divisible
by k, which is impossible because
of (2).

For any primitive triple (a, b, ¢),
the numbers a and b are of different
parity. Indeed, equation (3) tells us
that they cannot both be even. If
they are both odd, say a =2k + 1 and
b=21+1, then

A+ b =42+ P+k+1)+2.

Thus, a? + b? is divisible by 2
but not by 4. By equation (1), ¢ has
the same property. That is, ¢ is
even, so ¢ = 2s for some integer x.
Consequently, ¢? = 4s? is divisible
by 4. Thus, we have a contradic-
tion!

We have established that a and b
are of different parity. For definite-
ness, let a be odd, b be even, and ¢
be odd.

Now the expressions ¢ + a and
¢ — a are both even, so we can
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write ¢ + a = 2m, ¢ — a = 2n for
some integers m and n. The equa-
tion can be rewritten as

b2=c*-a’>=(c+alc-a)
= (2m)(2n) = 4mn. (4)

(Expressions (¢ + a) and (¢ — a) can be
written as 2m and 2n because they
are even.)

Lemma. The numbers m and n
are perfect squares,

2 2
m=p,n=4g,

of two coprime numbers p and g of
different parity.

We invite the reader to prove this
lemma. (Hint: Prove that m and n
are relatively prime using (3), factor
them into prime factors, and substi-
tute into (4).)

Recalling that 2m = ¢ + a and
2n = ¢ — a, we obtain

2p:=c+a 2g*=c—a,

from which we get ¢ = p? + ¢2 and
a = p* — g* Using (1), we obtain
b = 2pqg. Thus, if a, b, and c are a
primitive Pythagorean triple, then it
can be obtained from formulas (*].

Geometric method

Using coordinates we can give a
geometric interpretation of equation
(1). All the solutions to (1) can be
obtained from the primitive solu-
tions by multiplying by a natural
number k. That is, these solutions
have the form (ka, kb, kc), where (a,
b, c) is a primitive Pythagorean
triple. It follows from (1) that

(=

Since a, b, ¢ > 0 are integers,
the numbers a/c and b/c are ra-
tional. The equation of the unit
circle is x2 + y? = 1, and thus
there is a point on the unit circle
with rational coordinates corre-
sponding to every primitive solu-
tion (a, b, c) of equation (1).
Points with rational coordinates
are called rational points. Con-
versely, if we have a rational
point (x, y) with coordinates
x = m/n, and y = m,/n, on the
unit circle, we can obtain equa-

(_1/ O)

Figure 2

tion (5) by reducing the frac-
tions m,/n, and m,/n, to the
least common denominator ¢ > 0.
This equation gives a primitive
triple. Thus, there is a one-to-one
correspondence between the ra-
tional points on a unit circle and
the primitive Pythagorean
triples.

We have obtained a geometric
formulation of the Pythagorean
problem: Find all rational points on
the unit circle x° + y° = 1.

Let’s try to find all such points.
Draw lines through the point (x,, y,)
= (-1, 0). Any line that passes
through the point (-1, 0) and is not
tangent to the circle intersects the
circle at one more point, point (x,,
v,), for example (fig. 2). The equation
of such a line is

y:k‘X+ 1)/

where k is the slope of the line.
Thus, the coordinates of the point
(x,, ¥,) satisfy the system of equa-
tions

X2+y2:1,
v =k(x+1).

Solving this system for x and y and
substituting the value y = k(x + 1)
from the second equation into the
first one, we obtain

X2+ Rx+1)2=1
or
(1+k2)x2+2k2x+Kk2-1=0.

If x satisfies the last equation,
then x is the abscissa of the intersec-
tion point of the line y = k({x + 1)



with the unit circle. In other
words, either x = x; = -1 or x = x,.
Using the usual expression for the
sum of the roots of a quadratic
equation, we have

2k?

X +Xy=———
1+ k%'
from which we obtain

_1-K?
1+ k>

Xy
Since the point (x,, y,) lies on the
line y = k(x + 1), we have

_ 2k
1+ k%

Yo

The last two formulas assign a
point

(x5,72) = -k 2k
R STy S

of the circle x> + y2 = 1 to each num-
ber k. Conversely, a unique value of
the slope, k, corresponds to any
point (x, y) # (-1, 0) of the unit circle,
namely, the value

(7)

Note that if k is rational, the
point (x,, v,) defined by (6) has ra-
tional coordinates, and, con-
versely, if x, and y, are rational, k
is also rational by virtue of (7).
Thus, we have the following
proposition: A one-to-one corre-
spondence exists between the
points with rational coordinates
on the unit circle (except for the
point (-1, 0)) and rational num-
bers.

Making k run through all val-
ues in the interval from —e to +eo,
we can enumerate all points
with rational coordinates on the
unit circle (except for the point
(-1, 0)) and thus, find all primi-
tive solutions to the Pythagorean
problem.

Let’s write down the correspond-
ing formulas. Let k = p/q, ¢ > 0 and
GCD|p, q) = 1. Then, it follows from

(6) that

(&*-p* 2pq
(%2,52) = it Pp) (")

In essence, these formulas are
equivalent to (*)! To obtain exactly
the same result, we must analyze
the parity of p and q.

If p and q are of different parity,
formula (**) corresponds to the
primitive Pythagorean triple (a, b, ¢
= (q*-p? 2pq, ¢* + p*). It pand q are
both odd, then, passing to new vari-
ables g, = (q + p)/2, p, = (@ - DP)/2,
GCD|(p, q) = 1, we obtain

g* +p*=2(q*+p?,
q*-p? =34p1q%,
2pq = (q,* - p?)-

Reducing the fractions in (**] by
2, we obtain

()=

Note that (8) differs from (**] only
by the permutation of x, and y,. If it
turns out that p, and g, are both odd,
then we pass to the variables

2q,p, Qf—pf] -
gt +pi i +pi

q, = (ql +p1)/2,
p2= (ql—pl)/Z,
GCD(pQ/ QQ) = 1/

and so on. As a result, we obtain
either a formula of type (**) or of
type (8], where p, and g, are of dif-
ferent parity and GCD(p,, q,) = 1.
Thus, the primitive solution that
corresponds to the rational point
(x,, v,) # (-1, 0] is given either by
formula (**) or (8) in which p and
q are coprime numbers of different
parity. By virtue of the one-to-one
correspondence between primitive
solutions to the Pythagorean equa-
tion and rational points of the unit
circle (except for the point (-1, 0)),
formulas (**) and (8] imply formu-
las (*).

Rational parameterization of conics

We have obtained formula (6),
which can be used to find all rational
points on the unit circle x* + y> -1 =0.
This formula establishes a one-to-
one correspondence between the pa-
rameter k that takes all real values

}7

Ay -y, = kx—x]

yl (Xlr Y1)

Figure 3

and the points of the circle (except
for the point (-1, 0)); the coordinates
of points (x, y] of the circle are ratio-
nal functions of k. A natural ques-
tion arises: Can this method be used
to produce points lying on other
curves, for example, on an ellipse, a
parabola, or a hyperbola? (Ellipses,
parabolas, and hyperbolas are called
conic sections.)

To answer this question, con-
sider a curve on the plane given by
equation K(x, y) = 0, where K(x, y)
is a quadratic polynomial in x and
y. Ellipses, parabolas, and hyper-
bolas are determined by such
equations. Let (x, y,) be a fixed
point on a curve of this type, and
with rational coordinates. Draw a
line with a slope k through this
point (fig. 3). We seek intersection
points, (x, v], of this line with the
curve. The coordinates of these
points satisfy the following sys-
tem of equations:

{K(X/ y)=0,

V- :k(X—Xl).

Solving this system for (x, ¥), as
we have done for the circle, we rep-
resent the coordinates (x,, v, of the
second point of interséction of the
line y = y; + kix — x;) with curve K
in terms of the parameter k. It is
easy to verify that

A(K) BK
ws)-(2ag) ¢

where A(k), B(k), and C(k) are poly-
nomials of parameter k of the or-
der not exceeding 2. This formula

QUANTUM/FEATURE 37




gives a rational parameterization
of the curve K. That is, it repre-
sents the coordinates of every
point of the curve in terms of ra-
tional functions of a single param-
eter k.

Formula | makes it possible
to find integer points on K. How-
ever, now we are interested in an-
other, quite unexpected, application
of this formula.

Galculating integrals

It turns out that integrals that
look hopeless at first glance, such as

il e

can be calculated by using a rational
parameterization of an appropriate
curve. In this particular case, we can
use the curve

***)

\X +%X 4

K(x, y) = y* - (x2 + 3x - 4).

We note that the point (x, y,)
= (-4, 0) lies on the curve

y(x)=+x* +3x-4.
Consider all lines
y =Kk(x +4)

to obtain the following parameter-
ization (carry out all the manipula-
tions yourself):

1+4k> 5k
(X/y): 1— |

I ‘I-k
Then,
dX:hl—()]{—odk,
1-r2f

and thus, we obtain

I_J‘ dx
Vx> +3x-4

2dk

dx
:JY(X):-[l—kZ'

The last integral is relatively easy
to calculate:

I 2dk —J dk_ _dk
1-k2 J1-k J1+k
1+k

C.
k+

—ln‘1+k‘ ln]l k|+C In

Recall that

y _V‘JX2+3;T4
x+4 x—-4

to obtain the final result (carry out
all the manipulations):

k:

X+4+\X +3x — 4‘

I=In +C.

x+4-+x>+3x- 4‘

This method can be used to cal-
culate many other integrals. We in-
vite the reader to think about which
integrals can be thus calculated.

In this article we used the same
method to solve Diophantine equa-
tions and calculate integrals, thus
solving problems from different
fields of mathematics. Pythagorean
discreteness and Archimedean con-
tinuity turn out to be related. (@)

TOWING.
(EBERGS,
FALLING
DOMINOES,

be run?

Towing Icebergs,

Falling Dominoes,

and Other Adventures in Applied
Mathematics

Robert B. Banks

Robert Banks presents a wide
range of mathematical musings,
both practical and entertaining, that
have intrigued him and others: How
tall can one grow? Why do we get
stuck in traffic? Can California water
shortages be alleviated by towing
icebergs from Antarctica? What is the
fastest the 100-meter dash will ever

Banks shows how math and sim-
ple reasoning together may produce
elegant models that explain every-
thing from the federal debt to the
proper technique for ski-jumping.
Cloth $29.95 ISBN 0-691-05948-9

PRINCETON=MATHEMATICS

I
|
|
|
|
I
I
|
|
I
I
1
I
|
I
|
|
I
|
I
I
1
1
1
1
!
|
|
|
1
|
|
|
|
|
|
|
|
|
I
|
I
I
1
1
i
i
!
I
I
|

v
PRINCETON UNIVERSITY PRESS

An Imaginary Tale
The Story of V-1
Paul J. Nahin

Paul Nahin tells the 2000-
year-old history of one of mathe-
matics’ most elusive numbers,
the square root of minus one,
also known as , re-creating the
baffling mathematical problems
that conjured it up and the
colorful characters who tried to
solve them.

“An Imaginary Tale is a must
for anyone curious about the
evolution of our number con-
cept.”—Eli Maor, author of
e: The Story of a Number

Cloth $24.95 ISBN 0-691-02795-1

AT FINE BOOKSTORES OR CALL 800-777-4726 ® HTTP://PUP.PRINCETON.EDU

38 JANUARY/FEBRUARY 1989

Circle No. 3 on Reader Service Card



AT THE
BLACKBOARD II

Another perpetual motion

HE FIRST ATTEMPTS AT
building perpetual motion de-
vices appeared in eighteenth-
century France. However, be-
ginning in 1775, the French Acad-
emy of Sciences refused to consider
perpetual motion projects.

Indeed, projects to create per-
petual motion devices are usually
scrapped to save wasted time and
effort, because such engines defy the
laws of nature. However, sometimes
it is instructive to think about
whether a certain machine should
be considered a perpetual motion
device.

One thoughtful student heard that
molecules can lose momentum in
collisions with walls. In completely
elastic collisions they bounce off with
the same (and opposite) velocity, but
in completely inelastic collisions
they lose the normal component of
their velocity and end up sliding
along the surface of the wall. This is
how the student conceived of an
idea for her own perpetual motion
device.

She decided to devise a plate in
which completely elastic molecular
collisions would occur on one side,
and completely inelastic collisions
on the other side. She two
such plates and attached
weightless rod so that their match-
ing surfaces faced in opposite direc-
tions. Then she fixed the rod onto 2

made

project?

by A. Stasenko

Figure 1 shows the overhead view:
The area of each disk is S, the mean
thermal velocity of the surrounding
gas molecules is v, and the speed of
each disk is u. The circular arrow
marks the expected direction of ro-
tation of the device. The student set
the left surface of the upper disk to
reflect molecules elastically and the
right surface to reflect them
inelastically.

Our student knew that gas mol-
ecules move in all directions with
equal probability, but she drew only
the molecules moving to and from
the disks. According to the esti-
mates given in physics class, there
are n/6 such molecules per unit vol-
ume (where n is the number density

—V
—F
—
S
Figure 1
A
+v— u);v—g
—_—
—
—1) —(v+u)

of molecules and 6 is the number of
faces on a cube). Therefore, the mo-
lecular flux (that is, the number of
molecules hitting a unit area per
unit time) on the left side of the up-
per disk equals (n/6)(v — u). By the
way, sometimes it’s useful to check
even very simple formulas like this
one. Indeed, at u = v the molecules
will never catch up with the disk or
collide with it, making the molecu-
lar flux on the left side of the upper
disk zero.

Every molecule hits the left side
of the disk with velocity +(v —u) in
the disk’s frame of reference, and
according to the elastic nature of
the impact, will bounce off with a
velocity —(v — u) of the same value
and opposite direction (fig. 2). There-
fore, in the laboratory frame of ref-
erence, the molecules’ velocity after
collision is —(v — u) + u = -v + 21,
and the respective change in mo-
mentum of a single molecule is
m(-v + 2u) - mv. The upper disk
will acquire the same momentum
(in the other direction, of course).
Multiplying this value by the cor-
responding molecular flux and by
the area of the disk, we arrive at
the force acting on the disk from
the left side:

mnS

5

2v—u).

E(V —u)m(2v -2u)S =

O

Now let’s make similar calcula-
tions for the right side of the upper
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disk. In the disk’s frame of reference,
the molecular velocity prior to im-
pact is (v + u), and after the collision
it is zero. In the stationary frame of
reference, the postimpact velocity
equals u, so the change in the mol-
ecules’ velocity is u — (-v] = u + v.
The molecular flux on the right side
of the upper disk is (1/6)(v + u), so
the total force acting on the disk
from this side is

mnS(V+u)2.

Let’s take into account that the
product mn equals the density of the
gas p so that we can write the force
affecting the upper disk as

F= %(2(v~u)2 —(v+u)2)

= E(V2 +u” - 6vu).
6

An equal and opposite force acts on
the lower disk, so the system will
rotate in the direction shown in fig-
ure 1.

Clearly, each of the above forces
will be zero (the system will have
zero angular acceleration] when

u? - 6vu+ v =0.

Our young investigator knew how
to solve such a quadratic equation,
so she found the steady-state
speed:

u,=3vt Vov? —v? = V<3 + 2@5).

Because the disk cannot move faster
than the driving molecules, she
chose only the solution with the
negative sign.

Thus, the steady-state speed of
the disks is

u. =v(3-2+2)=0172v,

which is appreciably less than the
thermal speed of the molecules, so
our smart inventor knew to neglect
the square of u_ in the formula for F.
As a result, the equation (which
states Newton’s second law for the
disk] is transformed to a linear differ-
ential equation:
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du VS( V] u-v/6
S| - |e—— L,
6

a "m\" 6 T

We can see some features of the solu-
tion even without solving this equa-
tion. It’s clear that the acceleration
decreases with increasing speed and
becomes zero when u_=v/6=0.167v.
(Note that this value is close to the
one we obtained earlier.) The con-
stant value 1= m/pvS in the denomi-
nator on the right side of the equa-
tion is called the relaxation time.
For example, when taking m = 1 g,
p = 107 kg/m?3, v = 300 m/s, and
S=1cm? wehavet=3-10°s=1h.
This is the time to reach 63 percent
of the maximum speed (fig. 3).

It should be noted here that our
model is based on free molecular
flow around the disks. For this rea-
son, our inventor assumed the den-
sity of the gas to be five orders of
magnitude less than that of air un-
der normal conditions. In this case,
the mean free path of each molecule
increases by five orders of magni-
tude, and instead of 107 m becomes
just 1 cm, which is comparable to
the assumed size of the disk.

Thus, the device should rotate
forever. It’s even possible to supply
it with a gear to perform useful
work. However, this device has
nothing to do with the kind of per-
petual motion device that was re-
jected by the French Academy of
Sciences. Our device doesn’t try to
produce energy “from nothing.” The
disks receive energy from air mol-
ecules, and the molecules acquire it
in collisions with the walls of a ves-
sel kept at a constant temperature.
Therefore, our thermal motor does
not violate conservation of energy.

There is an abundance of thermal
energy in the world, so at first glance,

u
2
1~ g e ‘
0 T t
Figure 5

this “thermal motor” could take en-
ergy, say, from the ocean and use it to
propel ships. But wait—there are still
a few design issues to address before
we get to that point. How do we ob-
tain disks that reflect molecules elas-
tically at one side and inelastically at
the other? This is where our inventor
had to proceed with caution. It's easy
to take the wrong path and attempt to
construct an impossible device, just
as many before tried to produce en-
ergy from nothing.

Let’s consider our “thermal mo-
tor” from a technical viewpoint.
The elastic surface’s mirrorlike
reflectivity keeps it in thermal equi-
librium with the surrounding gas, so
that the molecules bounce off with
the same speeds with which they hit
the disk. The problem lies with the
other side of the disk, which must be
inelastic.

How do we make the surface in-
elastic with respect to the incident
gas molecules? There are two ap-
proaches to the problem. In the first
(mechanical) way, the surface is
made porous: The molecules ap-
proaching the pores hit their mirror-
like walls and move deeper into the
pores. Every pore curves gradually to
aright angle, eventually ejecting the
molecules out the side of the disk
(fig. 2).

The alternative method could be
called thermal. A certain liquid (say,
liquid nitrogen or helium| keeps the
inelastic surface cool. Since the
mean energy of molecules bouncing
off a surface is determined by the
surface’s temperature, here the
mean energy of the departing mol-
ecules will be much less than that of
the incident molecules.

Which method is better? At first
glance, the second one is more
simple and economical. We’d have
no trouble replenishing the cool-
ant. To maintain the device’s rota-
tion, we would need only to make
sure the temperature of the
vessel’s walls doesn’t fall too low
(to maintain a temperature differ-
ence between the device and its
surroundings).

We’ve just described a device
that could supply humanity with



a huge amount of cheap energy.
Indeed, we could sink a billion of
these devices into the ocean and
pump energy from it. The energy
loss from the ocean would be com-
pensated by solar radiation. It’s
not clear why such devices (called
Maxwell’s demons) cannot work.
However, the scientific answer to
such projects is always an un-
equivocal “no.”

Long ago, scientists understood
that such “thermal motors,” which
are designed to work with only one
thermal reservoir, do not in principle
differ from classical perpetual mo-
tion; they were even termed the sec-
ond type of perpetual motion. There
were perhaps no fewer attempts to
construct such devices than to invent
the first type of perpetual motion de-
vice, but all efforts were fruitless. Of
course, this futility wasn’t accidental:
The second law of thermodynamics
stood in the way of numerous inven-
tors. One formulation of this law,
given by Kelvin and Plank, states that
“no possible process can have as a
sole external effect the work per-
formed at the expense of heat taken
from a reservoir at constant tempera-
ture.” In other words, no possible cy-
clic engine can work using energy
from a single thermal reservoir.
Therefore, the mechanical approach
to constructing the inelastic surface
cannot be successful in principle.
(Why, by the way?)

The thermal approach, on the
other hand, doesn’t violate the sec-
ond law of thermodynamics. An
engine designed with this approach
contains not only a “heater” (the
vessel’s walls) but also a low-tem-
perature sink (liquid nitrogen). The
efficiency of such a device would
probably not be high, though. Alas,
there is no such thing as eternal and
free energy. O

Quantum articles on thermody-
namic laws:

Kaleidoscope: “What a commo-
tion,” May 1990, 32-33.

A. Buzdin, “Keeping cool and
staying put,” May/June 1993, 17-20.

A. Savin, “Mathematics in per-
petual motion,” July/August 1994,
5-8.

The Lorentz/FitzGerald diet

by David Arns

When looking in the mirror one day, dismayed by what I'd seen,
“Svelte” was not the word that leapt to mind;

I seemed distinctly—thicker—than I think I'd ever been,

As I scanned both sides, the front, and the behind.

As T stood, annoyed at just how far I'd let it go,

I recalled an image seen some years before:
Something in an illustration drawn to let us know
That folks get thin as through deep space they soar!

“Yes!” I cried, “that’s it! The little man inside the rocket

Got wondrous thin as past his friend he flew!”

With breakneck speed, my stopwatch in my hand, wherewith to clock it;
I'd drop off fifty pounds or more, I knew.

I hurried to my bookshelf, quickly found the physics section,
And felt the thrill that great discovery warrants;

The index had “FitzGerald,” and additional reflection
Brought associated names like “Hendrik Lorentz.”

In the early days of physics, back when “ether” was a fad,

Both Lorentz and FitzGerald did some math

To show why Michelson and Morley’s famed experiment went bad,
And where they had departed from the path.

I read in fascination how FitzGerald’s new equation
Would show how thin a person could become.

Then, my size would be no longer just a topic for evasion,
For I'd be thin! (At least, as seen by some.]

His equation’s easy: just divide velocity by c

(Where ¢’s the speed of light, I'm sure you know]

Then square it, and subtract from 1, and finally—here’s the key—
Square root the difference and, well, there you go.

Let’s see, now: if I wanted to arrive at half my size,

And revel in the thinness I'd attain,

To five hundred eighty million MPH, my speed would rise,
Or else from social gatherings I'd abstain.

You can bet I was excited, one hair’s breadth from going out
To buy an ion-powered ship to fly,

When a paragraph whose subject matter also talked about
The Lorentz/FitzGerald contraction caught my eye.

Oh, why I read that paragraph, I'll never, ever know!

My plans were dashed in shards upon the floor!

The next thing that I learned is time itself begins to slow,
As velocity increases more and more.

This means, of course, my normal, laid-back, easy-going stylé
Would slow yet more, and I could i1l afford

To talk much slower still, or ‘twould be such a numbing trial
That folks would doze right off, completely bored!

And that was not the worst of it! That selfsame paragraph
Described how high-speed things tend to get heavy!

So even though I'd look like I was thin (don’t make me laugh),
My mass would tend toward that of a Chevy!

Well, I came to the conclusion that a “diet” such as this
Is impractical, and thus, with grim defiance,

I admit that if I just eat less, my weight won’t be amiss—
For, after all, this isn’t rocket science!
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LOOKING BACK

Bohrs quantum Ieap

HE TWENTIETH CENTURY

is coming to a close. How will it

be remembered—the age of elec-

tronics, aviation, or computers?
The answer is not clear, but looking
to the past, physicists of the twenty-
first century will certainly praise the
achievements of their predecessors in
quantum theory, which is a child of
discoveries related to the structure of
the atom and to the principles of
atomic “life.”

Embryonic atomic theary

Although the atomic structure of
matter was guessed at by ancient
philosophers, the real experimental
foundation of this concept was
elaborated not so long ago. Let’s be-
gin our story with spectroscopy. In
1859 Gustav Kirchhoff and Robert
Bunsen developed the method of
spectral analysis and explained,
among other phenomena, the origin
of four dark absorption lines in the
solar spectrum. These lines were
discovered as far back as 1814 by
Joseph von Fraunhofer, and now 45
years later they were shown to coin-
cide rather closely with the bright
lines in the light emitted by vapors
and heated gases of different sub-
stances under normal laboratory
conditions.

In 1885 Johann Balmer published
a paper in which he found that the
wavelengths of these lines could be
described with good accuracy by the
following formula:

2
A=k—W—,
% =GP
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by A. Korzhuyev

where m =3, 4, 5, and 6, and k is a
constant. He also found that these
lines were related to hydrogen. Soon
another five lines were found for
hydrogen, but now they were lo-
cated in the ultraviolet range of the
solar absorption spectrum. The
wavelengths of these new lines were
also described with good accuracy
by Balmer’s formula.

In 1890 Johannes Rydberg pro-
posed another form of this formula:

1 v 4( 1 1 )
Aroc k\22 m? ]
The coefficient 4/k was named the
Rydberg constant R, and according to
modern data, R = 10973731.77 m™..
Another three series of lines were
subsequently discovered, which
were in the infrared region of the
hydrogen spectrum and which also
obeyed the same law. Soon it was
clear that all five series of spectral

lines could be described by a single
Balmer-Rydberg formula:

I ERER)
A n? m?

where the integern=1, 2, 3, 4, and
5 corresponds to a particular se-
ries, and in each series the integer
m assumes values starting from
n+ 1.

However, triumph in the math-
ematical description did not mean
the creation of a fundamental physi-
cal theory of spectral lines. In par-
ticular, the dominating atomic
model of Sir J. J. Thomson, which

considered matter to be a positively
charged fluid in which the negative
electrons were arbitrarily distrib-
uted like “plums in pudding,” did
not explain these results.

At the beginning of the twentieth
century, there were other indica-
tions that pointed to a complicated
structure of matter. In 1900 Max
Planck advanced the idea of the
quantum (discrete) nature of radia-
tion and propagation of light. He
needed such a strange concept to
explain the regularities of thermal
radiation. By the way, his hypothesis
did have some experimental basis:
As far back as 1887, Heinrich Hertz
observed photoemission, an essen-
tially “quantum” phenomenon.
Other enigmatic facts were the dis-
covery of the electron by Sir J. J.
Thomson, radioactivity by Antoine
Becquerel, and thermal electron
emission by Sir Owen Willans
Richardson.

What was a common feature in
all these phenomena? They could
not be explained on the basis of the
old concepts of atomic structure.
However, the history of physics
shows that the accumulation of
such strange data can go on for a
long time until some qualitative
leap occurs, a historical event in sci-
ence that formulates the final ver-
dict either for the accumulated data
or for the theory that at first glance
contradicts them. In atomic physics
such a leap was made by the experi-
ments of Rutherford, which laid the
cornerstone for a new theory of
atomic design.

Art by V. lvanyuk
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Rutherford's experiments

As far back as 1906, Ernest Ruth-
erford studied the passage of alpha
particles through various sub-
stances. In December 1910 he de-
duced the formula that described the
scattering of these particles. It
showed that the number of particles
emitted by a given source (character-
ized by the specified flux density and
kinetic energy of the radiated par-
ticles) into the solid angle 0 is re-
lated to the angle of scattering by the
formula

AN 1

4Ll sin® g

The plot of this function is shown in
fig. 1, where the coefficient of pro-
portionality is taken to be one.
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Figure 1

Rutherford’s assistants Ernest
Marsden and Hans Geiger spent
many weeks in complete darkness
recording the scintillations on lu-
minescent screens that showed
the locations of the scattered al-
pha particles. They detected and
characterized about two million
individual collisions!

The results were revolutionary.
It turned out that some particles
(relatively small in number) were
deflected through very large
angles—sometimes larger than 90°,
According to Thomson’s model this
was impossible. The new data
clearly demonstrated that the plum-
pudding model was out of the ques-
tion. Rutherford published his re-
sults for the first time in May 1911
in the paper “Scattering of alpha rays
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by matter and the structure of the
atom,” in which the nuclear model
of the atom was born and in which
its drastic contradictions with
Thomson’s model were discussed.
According to Rutherford, an atom
was similar to a planetary system,
and it contained a heavy and posi-
tively charged nucleus (its own
“Sun”) as well as negatively charged
electrons (the “planets”) orbiting
around it.

It is instructive to ask if Ruther-
ford was the first physicist who re-
jected the plum-pudding model.
Didn’t anybody see all the complica-
tions and contradictions in the prob-
lem of atomic structure and try to
modify the current views?

The history of physics shows that
such attempts were made long be-
fore 1911. For example, as early as
1901, the French physicist Jean
Perrin lectured on the probable
nuclear-planetary structure of at-
oms. In 1904 a Saturn-like atomic
model was advanced by the Japanese
physicist Hantaro Nagaoka, in
which the central positively charged
nucleus was surrounded by a ring of
electrons revolving with the same
angular velocity. History doesn’t
know whether Rutherford ever met
Nagaoka, who traveled in Europe
and even visited Manchester, but
there is a reference to his model in
Rutherford’s paper. A similar and
quite interesting model was sug-
gested by the English astrophysicist
John Nicholson in 1911 or 1912,
who constructed it to explain a
number of lines of unknown origin
in the spectra of nebulae.

This list could be continued, but
let’s return to Rutherford’s experi-
ments and his paper. Some phrases
in it indicated that he couldn’t help
understanding that his model was at
odds not only with Thomson’s but
also with the classical electrody-
namics of Maxwell, because a con-
tinuously accelerated charge must
continuously radiate electromag-
netic energy. Therefore, in the plan-
etary model, electrons must very
quickly spiral in to the nucleus, and
their “lifetime” (duration of fall)
should be as short as 108 s. Could

such an atom be a stable construc-
tion?

Moreover, according to classical
views, the emission spectrum of at-
oms should consist not of lines, but
of continuous frequency bands, be-
cause the frequency of an electron’s
revolution is not constant. Thus, the
nuclear-planetary model dramati-
cally highlighted the antagonism of
the current theoretical views and
evident atomic stability. Rutherford
himself could not untangle this
puzzle. Nevertheless, a solution was
found.

Bohr's hypothesis

Niels Bohr showed early signs of
becoming an outstanding scientist.
In 1905, as a student at Cambridge
University, he studied the oscilla-
tion of liquid jets in order to mea-
sure surface tension. His work
earned him a gold medal. His mas-
ters dissertation was devoted to the
electron theory of metals (1909), and
thereafter he worked on his doctoral
degree. In 1911 he proved the impos-
sibility of creating a theory of the
magnetic properties of matter en-
tirely on the basis of classical views.

After defending his thesis, Bohr
went to Cambridge for one year’s
work in Thomson’s laboratory,
where in October 1911 he partici-
pated in the traditional Cavendish
Laboratory party together with Ru-
therford, who invited him to work
in his lab in Manchester. This was
the period (spring through autumn
in 1912) when Bohr came to the con-
clusion that the contradictions of
the nuclear-planetary model and
classical electrodynamics could be
solved only with the help of the ex-
otic quantum theory of Max Planck.

Upon returning to Copenhagen,
Bohr worked intensely and in March
1913 finished three papers describ-
ing the principles of his theory. In
September 1913 Bohr reported his
new results in Birmingham at the
meeting of the British Association
for the Advancement of Science.
The audience was most authorita-
tive, rigorous, and exacting. It in-
cluded the cadre of classical physics:
Rayleigh, Jeans, Lorentz, and



Thomson. The patriarchs of science
met the report of the novice with a
rather chilly response. However,
Rayleigh wryly remarked that it
makes no sense to have sexagenar-
ians commenting on modern ideas.
The situation changed for the better
only after a number of papers were
published by Bohr in scientific jour-
nals. Sir James Jeans was the first to
support the ideas of Bohr: “Doctor
Bohr gave the most witty, fruitful,
and I suppose, the most convincing
explanation of the relationships ob-
served in the spectral lines.”

As we have noted, Planck’s idea
on the discrete (quantum) nature of
atomic energy was accepted in the
mid 1920s together with Einstein’s
concept of the quantum structure of
atoms. What was contributed by
Bohr? First of all, he advanced the
notion that the principal inference
of classical electrodynamics on
the continuous character of elec-
tromagnetic radiation emitted by
electrons revolving around the
atomic nucleus must be rejected. In
place of this old concept, Bohr pro-
posed the existence of stationary
states of an atom, in which it doesn’t
emit energy. In addition, Bohr pos-
tulated the possibility of transitions
between the stationary states ac-
companied by either the emission or
absorption of energy. Clearly, one
needs great scientific courage to
make such steps—and Niels Bohr
was equal to the task.

Bohr’s hypotheses subsequently
assumed the form of three famous
postulates giving the rules for quan-
tizing the electron’s parameters in
atoms. According to them, the quan-
tum nature of angular momentum is
described by the formula

1
h
mvr=—n
n

’

where % is Planck’s constant. Com-
bining it with the formula for the
energy of an orbital electron
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and Newton’s second law
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we obtain Bohrt’s famous formula for
the energy of an electron in an atom:
2 <
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This energy is quantized and as-
sumes a set of discrete values corre-
sponding to the integersn=1, 2, ....
Bohr wrote that the “different num-
bers n correspond to series of values
E,, relating to various configurations
of the system, in which there is no
radiation, so they will remain un-
changed until the system is dis-
turbed from the outside.”

It is interesting that in 1913, Bohr
took the advice of a colleague and
compared his formula with that of
Balmer-Rydberg (he was unaware of
this achievement in spectral phys-
ics). Bohr supposed that the spectral
terms R/n? and R/m?> were propor-
tional to the energy of an electron in
various stationary states. The next
step was to assume that the transi-
tion of an atom from one state to
another was accompanied by the
radiation of a single quantum of en-
ergy, from which the famous rule of
spectral frequencies immediately
follows (Bohr’s third postulate):

hvn'ﬁﬁ“ = Efl' - Enq/
ve mzZet [ 1 1
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This coincidence with the

Balmer-Rydberg formula was ideal,
as it attested to the agreement of his
theory with experimental data. Ac-
cording to George Hevesy, when
Einstein was informed of the strik-
ing confirmation of Boht’s theory, he
was astonished by the fact that the
frequency of radiation really didn’t
depend on the frequency of an
electron’s revolution in the atom:
“The large eyes of Einstein opened
even wider and he said: ‘In this case
it is one of the greatest discoveries in
history!””

In his introduction to the paper

“Binding of electrons by a positively
charged nucleus,” Bohr wrote on the
principal role played by Planck’s
constant in his theory: “Only the
existence of the quantum of action
h prevents the fusion of electrons
with nuclei and the creation of a
neutral particle of virtually infi-
nitely small size.... This fact alone
provides a comprehensive explana-
tion of the remarkable relationships
between the physical and chemical
properties of the elements, which
are manifested in Mendeleev’s Peri-
odic Table.”

Cornespondence principle

Rejecting classical electrodynam-
ics, Bohr nevertheless always tried
to find a bridge between the new and
old theories, and in 1912 he formu-
lated the famous correspondence
principle. According to this prin-
ciple, in a number of limiting cases
a physical theory based on the gen-
eralization and development of
some classical theory should yield
the same results as that produced by
this old theory.

For Bohr’s atomic theory the cor-
respondence principle should be in-
terpreted in the following way: For
large quantum numbers n, the re-
sults of quantum theory should co-
incide with those given by the clas-
sical approach. For example, at large
quantum numbers, the “distances”
in the hydrogen atom between adja-
cent energy levels are very small (fig.
2), so these levels become almost
continuous, which is the same as
the concept of continuous energy in
classical physics. In the paper “On
the spectrum of hydrogen,” Bohr
calculated the Rydberg constant us-

\i%
n>1
n=2
n=1

Figure 2
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ing his correspondence principle.
Try to repeat the course of his
thoughts on your own.

Theory and experiment

Can any experimental data cor-
roborate a theoretical conclusion?
As Einstein once said: “Never will

an experiment say ‘yes’ to a theory..

In the best case it says ‘maybe,’ but
mostly we hear only the flat ‘no.””
Thus, the agreement of an experi-
ment with a theory means only “it
is possible,” although disagreement
is a negative verdict. Therefore, a
reasoning on how many and what
kind of experiments should be car-
ried out to prove a certain theory
cannot be absolutely blameless—the
more experiments, the greater the
confidence in a theory. However,
there is no such thing as absolute
confidence in any theory. At any
moment a new phenomenon may be
discovered that contradicts the cur-
rent theory. If this phenomenon
doesn’t result from some flaw in the
experiment, one should think seri-
ously about whether the theory is
always correct and even whether it

is true at all.

In spite of the great number of
experiments that attested to the va-
lidity of Bohr’s theory, the theory
was not perfect. Indeed, this theory
could not explain differences in the
intensities of the spectral lines,
some parameters of the helium
atom, the doubling of spectral lines,
and many other phenomena. It be-
came increasingly clear that there
was an inherent contradiction in the
attempts to combine two incompat-
ible things—classical physics and
quantum postulates—not only in
the limiting cases but in the entire
range of physical phenomena.

In the years 1926 and 1927, Erwin
Schrodinger and Werner Heisenberg,
backed by Bohrt’s theory and a large
number of experimental and theo-
retical prerequisites, laid the founda-
tion for a consistent theory of
atomic structure—quantum me-
chanics. What fate was prepared for
Boht’s theory? A number of its con-
sequences such as the quantization
rules of Bohr-Sommerfeld became
the limiting cases, where modern
quantum mechanics met Bohr’s

theory. The idea of discreteness at
the atomic level was the starting
point in further studies of many sci-
entists. Other aspects of this theory
are of great historical interest. Ac-
cording to Einstein, Bohr’s theory is
“music of the highest quality in the
mental world.” The works of Niels
Bohr were also highly appreciated by
Rutherford: “I consider the papers of
Bohr as the greatest triumph of hu-
man endeavor.”

In 1922 Niels Bohr won a Nobel
Prize for “merits in the study of
atomic structure.” (@]

Quantum articles about atomic
theory:

S. L. Glashow, “The elementary
particles,” September/October 1990,
pp. 49-51

M. Digilov, “A Strange Box and a
Stubborn Brit,” March/April 1991,
pp. 26-27.

S. R. Filonovich, “The Power of
Likeness,” September/October
1991, pp. 23-27.

Bruck, M. Zelnikov, and A.
Stasenko, “Wobbling Nuclear Drops,”’
January/February 1997, pp. 12-17.
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Math
M251

The form of the expression in x
and y reminds us of the formula for
the tangent of the sum of two angles.
In light of this, let’s consider six
angles o, 0., ..., 0, whose tangents
are equal to the given numbers. We
can assume that -n/2 < o < o, < ...
< O < /2 < T+ a,. Points o, ..., 0
partition the segment [o,; T + 04]
into six segments. At least one of
them does not exceed ©/6 in length.
If, for example, o, — o, < /6, the de-
sired inequality can be obtained by
setting x = tan a, and y = tan o, be-
cause

X-y
1+ xy

=tan(o, —o,).

If the last segment, [o,; © + 0], is the
only one that is less than nt/6, we can
set x = tan o, and y = tan o, and use
the identity tan(rm + o) = tan o,;.

M252

Suppose ABC is the required tri-
angle, h is the altitude to its base,
and 20 is the measure of one of its
base angles. Then we have (fig. 1):

KM =KA+ AB+BM
=rtano+2hcot20+ Rtana,
PQ=PC+CQ=CE+CF

Figure 1

ANSWERS,
HINTS &
SOLUTIONS

(since tangents to a circle from a
point outside are equal)

=CA-AE+CB-BF
=2CA-AE-BF
2h

=— —rtano — Rtano.
sin 20

Since KM = PQ), we obtain

rtano +2hcot2o + Rtano

2
=— —rtano — Rtano,
sin 2o

from which we get

h( : L —cot20c]:(R+r)tanoc.
sin 2a

Since
1-cos2o
- —cot2oo=———
sin 20 sin 2
2sin? o
=——— ——=tana
2sinocosa,

we find that h = R + 1.

M253

We prove that the perpendiculars
drawn to the sides of the triangle at
points K, L, and M meet at a point.
Suppose that this is not the case (fig.
2a). Take an arbitrary point P inside
the triangle with the vertices at the
points of intersection. We can see that
in this case the given triangle admits
a small rotation around point P.

Consider an equilateral triangle
ABC with points K, L, and M at its
sides such that AK:KB = 2:1 and
BL:LC = 3:2. We must determine into
what proportion point M divides side
AC if the perpendiculars drawn to the
sides of the triangle at points K, L, and
M meet at a point. Let’s call this point
O |fig. 2b). If we let each side of tri-
angle ABC be 154, then AK =10a, KB

=5a, BL = 9a, and LC = 6a. We then
set AM = x and CM = 15a - x. By the
Pythagorean theorem,

AO? - AK? = OK? = BO?* - BK?.
Therefore,

AO? - BO? = AK? - BK? = 754>
Similarly,

BO!- CO?=BI2?-CL?=45a*
and

CO?2- AO?% = CM?2 - AM?
= 2254% - 30ax.

Adding these equations, we obtain
75a% + 4542 + 22542 - 30ax = 0,
from which we get
x =23a/2.

We see that point M divides the side
AC in the proportion of 23:7.

M254

Let the given plane intersect edge
AB of the unit cube ABCDA B,C,D,

L
M
K
a
C
4N
E,
A B
b K
Figure 2
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(fig. 3) and let A belong to the first
polyhedron and B to the second. It is
not hard to see that the plane must
intersect some edge of the cube at a
point other than its endpoint. This
plane must also intersect the opposite
edge C,D,. In other words, point D,
belongs to the first polyhedron and C,
to the second. Let’s label the mid-
points of edges AB and C, D, as M and
P, respectively. Now the Pythagorean
theorem shows that

AP* = BP*= BC* + C, P
- BB+ B,C>+ C,P”
=1+ 1+1/4=9/4,

so AP = BP = 3/2, and that for all
points of segment PC, except for
point P, the distance to A is greater
than 3/2. Therefore, this segment be-
longs to the second polyhedron.
Similarly, we can prove that
segment PD, belongs to the first
polyhedron. Therefore, the given
plane passes through point P.
Similarly, we can prove that the
plane passes through point M.
This will also be true of any edge
of the cube that passes through the
plane. Thus the plane must pass
through the cube’s center as well.
Now, consider a face of the cube
that is intersected by the given
plane. If the plane intersects two
opposite sides of this face, it does
so at the midpoints, and the sec-
tion forms a square congruent to
the cube’s face {fig. 4a). If the plane
intersects two adjacent edges of
the face, it is not hard to see that
the section forms a regular hexa-
gon (fig. 4b), and the computation
of the required area is now
straightforward. Answer: 1 or

V3
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M255

No participant of the conference
makes more than 198 handshakes.
Since the President of Illyria did not
ask himself about the number of
handshakes, the answers he received
were the numbers 0, 1, 2, ..., 197,
198. The delegate who made 198
handshakes—delegate 198, whom
we can assume to be a president—
shook hands with everybody except
his prime minister. Therefore, ev-
erybody except his own prime min-
ister made at least one handshake,
and thus delegate 0 must be the
prime minister of the same country
as delegate 198.

Eliminating this delegation to-
gether with all handshakes made by
its members, we face the same situ-
ation as at the beginning of our rea-
soning, but for 99 countries. Reason-
ing as before, we see that the
delegates who made 0 and 196 hand-
shakes (they are delegates 1 and 197
of the initial situation) are from the
same country. Continuing our rea-
soning in the same way, we find that
delegate 99 is left without a pair.
Since the list of those polled in-
cludes everybody except the Presi-
dent of Illyria, this delegate 99 is the
Prime Minister of Illyria. Thus, the
Prime Minister of Illyria shook
hands with 99 persons.

PhiysicS

It is convenient to use a frame of
reference that moves with the robber
to the right with speed v, = 5 m/s. In
this system the car’s motion is simi-
lar to the oscillation of a load fas-

tened to a spring attached to a fixed
point (the robber). After the cord is
stretched to the maximum length, it
will start to contract. By the time its
extension becomes zero, the car
strikes the robber with speed v, di-
rected to the right. In the rest frame
of reference, the platform’s speed is
2v,. As the robber lies on the car af-
ter the collision, the speeds of both
bodies are identical. In physics such
collisions are called completely in-
elastic. Conservation of momentum
yields the mass ratio:

M- 2vy+m-vy=(M+m)-18v,

from which we obtain

M =4m.

P252

The simplest way to solve this
problem is based on conservation of
energy. The kinetic energy of a
wheel that rolls with speed v in a
non-slipping manner is

! ! 9
mv?: Mv? My?

E= + +
2 2 2

The last two fractions are the kinetic
energy of the translational motion of
the rim with mass M and the energy
of its rotation around the axis.
When the wheel has traveled the
distance L down the incline, its cen-
ter descended by h = L sin . The cor-
responding decrease in the gravita-
tional potential energy is equal to the
increase in the kinetic energy:

2

2
+ Mv~,

(M+m)gLsino = my

from which we get

~ 12(M + m)glsino.
V_V 2M+m

The uniformly accelerating mo-
tion of a wheel is described by the
formulas L = at?/2 and v = at, from
which we obtain

(M +m)gsino
IM+m

a=

This is the acceleration of the cen-



ter of mass, which is determined
by the total force applied to the
wheel. Two forces act on the
wheel along the inclined plane:
friction and the corresponding pro-
jection of gravity. For the minimal
coefficient of friction, the force of
friction is simply expressed via the
normal force and the coefficient of
friction. Therefore,

(M + m)gsino.— u(M + m)gcoso

=(M+m)a,
and
L= Mtano
T OM+m’

P2563

We consider only the case when
the thickness H of the residual wa-
ter layer is much smaller than the
diameter d of the hole. Let’s draw
two vertical planes passing through
the axis of symmetry of the hole and
making some angle ¢ between the
planes. Consider the water that is
confined between these planes and
an arbitrary vertical cylindrical sur-
face (fig. 5, top view). The radius of

Figure 5

this surface is chosen such that the
distance R - d/2 is much larger than
H (although it is less than d/2). To a
good approximation, at such dis-
tances the water surface can be con-
sidered horizontal.

The equilibrium condition for
this water means the sum of all
forces affecting it is zero, and the
sum of the projection of these forces

on the x-axis is zero. What are these
forces?
The stra id > affected by

ws in fig. 5)

black arrows). Their projectic
respectively

26R sin(gj
2
and

—ngzR sin(%].

Similar forces act on the curved side,
which have projections

ZG(R — éj sin 9
2 2

and

gHZ(R—éjsing
2 2

Here we have neglected the change
in the thickness of the water layer
near the hole (the length of this part
of water is on the order of H, and in
our case H << R - d/2). Now we
must consider only the forces of sur-
face tension affecting the water near
the hole where it contacts the bot-
tom. Figure 6 shows the case where
the bottom of the vessel is some-
what water resistant, when angle 6
between the tangent to the water
surface and the horizontal plane of
the bottom (wetting angle) is larger
than /2. The resulting projection of
the surface tension acting at the
point of contact (red inclined arrow
in fig. 6) is
0

—odsin—~cos®.
2

Thus, the equilibrium condition is
—26Rsin L pgH*Rsin ¢
2 2

—zcs[R - éjgin9 +pgH* (R = éjs,m9
2) 2 2) 2

—odsin g cos9=0.

This equation yields the thick-

0

| R-d2 I

ness of the residual water layer:

;‘26(1 —Ccos 9)
H= |——~.
Vo opg
Now let’s estimate the maximum
mass of residual water. A bottom
that does not wet at all (6 = 180°) cor-
responds to the maximum depth

=) ‘e“g =5.3 mm.
\ps

H

max

In this case, the maximum water
mass is

rt(D2 —d> )
My = pTHmax =i kg
In this case, the thickness of the
residual water can be estimated by
another method as well. It is based
upon the equality of extra pressure
over the convex surface (formed un-
der the influence of surface tension)
and the hydrostatic pressure at the
depth of H___/2:

max:

26 OH
% pg

max

max

2

Thisyields H__ = 2\/'0 /(pg), which
coincides with the previous value.
By the way, this coincidence attests
to the equivalent character of the
assumptions that underlie both
methods of solving the problem.

P254

From the given conditions, the
power of the source is 4 times that of
the lamp. Thus, the voltage drop
across the resistor is 3/4 of the source
voltage, and the voltage across the
lamp is only 1/4 of this value. There-
fore, at the same current, the voltage
drop across the lamp is one third that
across the resistor.

If on figure 2 we plot the current-
voltage relationship for the resistor,
we get a straight line that crosses the
curve for the lamp at 2.5 A and 6 A.
These numbers are approximate, and
their accuracy is determined by the
scale of the graph. You may obtain
slightly different values. Now we can
find the solution. The conditions of
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the problem are met either for 2.5 A:
V=25A-10Q+25A-10/3Q=335YV,
or for 6 A:
V,=6A-10Q+6A-10/3Q=80V.

P255

Let’s construct the image S, of the
source S in the flat mirror (fig. 7).
Source § illuminates most of the
screen’s surface. On the contrary, rays
from image S, (physically, the re-
flected light) cross the rays of source
S only in the region AB. Let’s denote
AB=h and AC =z. Similar triangles
yield

b+d L-b-d

a z—h '

and

from which we get

E
h= bb =16.7 cm.

I+—

Brainteasers

B251

Let a, = x and a, = y. Then,

U

y+1
a3=y+1,a4: x :y+X+1/
X ¥ Xy
y+X+1+1
Xy v+x+1+xy
a:;_ =
‘ y+1 (v +1)y
X
_(y+1)(x+l)_x+1
(y+1)y y ' P
A
S
a B
al @
—S—c
b d
L
Figure 7
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Thus, a, = a,. Similarly, we prove
that a, = a,, and our sequence is pe-
riodic with a period of 5. Therefore,
Ay, = 4y = 1999.

B252

It is sufficient to prove that the
cubes can be superimposed so that
two white vertices of the first co-
incide with white vertices of the
second (even if the third white ver-
tex of the first cube is paired with
a black one from the second, the
other four black vertices of the
second cube must coincide with
black vertices of the first). Figure
8 shows that the eight vertices can

Figure 8

be partitioned into two quadru-
plets such that the distance be-
tween any two vertices of the
same quadruplet equals a diagonal
of the cube’s face. Therefore, if we
color any three vertices of the
cube black, there will be at least
one pair of vertices separated by a
distance equal to a face diagonal.
Thus, among three white vertices,
at least two are at the distance of
the diagonal of the cube face. Let
us superimpose these two white
vertices with the similar two
white vertices of the other cube.
Then four pairs of black vertices
will coincide.

B253

This is impossible. Let’s begin by
coloring the towns two different

Figure 9

colors (black and white) as shown in
figure 9. We have 12 black towns
and 10 white towns, and as we travel
the roads, the colors alternate.
Therefore, if we visit all 12 black
towns, the number of white towns
we pass cannot be less than 11.
However, there are only 10 white
towns.

B254

The minimum value of n is 15.
First, we prove that for 15 cards,
the desired pair can be found. Sup-
pose the contrary. Then the cards
numbered 1 and 15 must be in dif-
ferent stacks, as must cards 1 and
3. Thus, cards 3 and 15 are in the
same stack. Therefore, cards
6=9-3and 10 =25 - 15 are in the
other stack, which contradicts the
assumption, since 6 + 10 = 16.

Now we show that 14 cards can
be distributed between two stacks
such that the sum of the numbers of
any two cards of the same stack is
not an exact square. Here is an ex-
ample: 1,2, 4, 6,9, 11, 13 (the first
stack) and 3, 5, 7, 8, 10, 12, 14 (the
second stack). For any number of
cards less than 14, the cards can be
distributed between the two stacks
in a similar way (with the desired
condition holding true).

B255

The water starts to boil when
its temperature (and that of the
box) reaches 100°C. Then the en-
ergy of the candle is spent vapor-
izing the water, and this process
goes on at the constant tempera-
ture of 100°C, which is too low to
ignite paper.

Kaleidoscope

1. The collision between steel
and marble is almost elastic, yet
the collision between steel and as-
phalt is almost completely inelas-
tic.

2. In the second case, the momen-
tum of the fragile object decreases
over a longer period, so a smaller
force acts on the object.

3. Although the force exerted by




an anti-tank missile is very large, it
acts for a short time and the impulse
on the bus is much smaller than the
impulse produced by several people
over a longer period.

4. No, it is not a dangerous
trick. The acceleration acquired
by a massive anvil in the course of
an elastic collision with a hammer
is virtually zero. Therefore, the
force affecting the athlete is also
very small.

5. The lead.

6. After a shot, the suspended rifle
is given more energy than a firmly
fixed rifle. Therefore, in the first case
the bullet is given less kinetic en-
ergy, so the range is shorter for a sus-
pended rifle.

7. The impulse of the recoil pro-
duced by the bazooka is transferred
not to the gun (and then to the sol-
dier), but to the exhaust fumes that
move in the direction opposite to
the missile.

8. After the impact of a single
ball on the right, the extreme left-
hand ball will move through the
same angle as the right-hand ball
had initially. In the second case,
the impact of two balls on the
right results in the recoil of two
balls on the left. Likewise, the
impact of three balls on the right
results in the recoil of three balls
on the right.

9. The ball will bounce horizon-
tally from the wedge and then move
along a parabolic trajectory.

10. The more inflated ball is more
elastic. A kick imparts less momen-
tum in an inelastic collision than in
an elastic collision. Therefore, an
underinflated ball cannot be kicked
as far.

11. By relaxing the hands and
moving slightly backward, a player
increases the duration of slowing
down the ball, thereby diminishing
the forces.

12. An important feature is the
independence of the force and the
velocity.

13. The center of mass of the
projectile moves with the same ve-
locity before and after the explo-
sion (point C in fig. 10). Therefore
it will proceed along the same

Figure 10

parabolic trajectory as the
unexploded projectile. As both
fragments have equal masses, they
will move symmetrically relative
to the parabolic trajectory of the
center of mass. Thus, the second
fragment will fall at point D,
where BD = AB.

14. The motion of the molecules
is impeded by their mutual colli-
sions.

15. The smaller the surface of a
particle, the more unbalanced im-
pulse it receives from the molecules
that collide with it.

16. At lower densities of a gas, the
mean free path of electrons that ion-
ize the atoms increases, so the elec-
trons can acquire more kinetic en-
ergy at smaller voltages. This energy
is spent ionizing atoms during col-
lisions between an atom and an ac-
celerated electron.

17. The atoms can be excited by
the extra energy received in high-
speed collisions.

18. The mass of a neutron is
nearly the same as that of a proton.
Therefore, a neutron loses more en-
ergy in a collision with a hydrogen
atom than with a lead atom.

Microexperiment

When a large ball bounces off the
floor, it hits the small ball and
gives it a fraction of its momen-
tum and kinetic energy. As a re-
sult, the small ball will bounce
higher than the height from which
it was dropped.

In the Lak

The experiment clearly demon-
strates the physics of the boiling
process. Boiling starts when the
pressure of the saturated vapor at
the temperature of the liquid be-
comes equal to the pressure of this
liquid. When this happens, the

bubbles appearing in the liquid do
not collapse. On the contrary, they
grow, rise to the surface, and burst.
To support marked boiling, one
needs a continuous supply of en-
ergy, which compensates for the
energy expended by the intensive
evaporation.

Near the open surface of the wa-
ter in the test tube, the boiling pro-
cess starts at approximately 100°C,
when the pressure of the saturated
water vapor equals that of the sur-
rounding air (about 100 kPa). The
rapid boiling drives out almost all
the air that was in the tube, so the
contents of the plugged tube consist
almost entirely of water and the
saturated vapor above it.

When cold water is poured over
the tube, both the temperature and
pressure of the vapor decrease.
Therefore, the pressure of the wa-
ter also drops, and its temperature
has no time to change. Thus, the
pressure in the water becomes
lower than that of the saturated
vapor corresponding to its tem-
perature, so boiling recurs. The
energy for boiling is taken from
the cooling water. After a while,
the temperature of the water de-
creases (the pressure in the tube
increases), and boiling stops.

Successively pouring first cold
then ice-cold water results in a
gradual decrease in the tempera-
ture of the water and saturated va-
por. Finally, the pressure in the
tube is very small (at 0°C the pres-
sure of saturated vapor is almost
17 times less than atmospheric
pressure]. To demonstrate this, it
is enough to open the test tube—
you will hear the air rushing into
the tube.

There is another and very at-
tractive way to demonstrate that
there is almost a “vacuum” in the
space above the water. Hold the
tube vertically and shake it vigor-
ously up and down. You will hear
an unusual sound, as if there were
some solid substance instead of
water in the tube. The reason for
this is the absence of air above the
water, which would slow its oth-
erwise free motion.
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Across
1 God of war
5 Leaving

10 Clutched

14 Glossy

15 Love: comb. form

16 60,138 (in base 16)

17 Long narrative poem

18 Of the olfactory
sense

19 Long wavelength
EM wave

20 Ten-sided polygon

22 Drawings of
functions

24 Gun club: abbr.

25 “___ and Nothing-
ness,” by Sartre

27 Moisten with
drippings

30 cgs heat unit: abbr.

31 Major blood vessel

35 Abscisic acid: abbr.

36 Orbital extremum

39 Common or
finishing follower

40 Uncle ___

41 Point

42 Reactive power unit
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1 2 3 4 5 6 7 8 |9 10 |11 |12 |13
14 15 16
17 18 19
20 21 22 |23
24 25 126
27 128 [29 30 31 32 133 |34
44
49
62 163 |64

44 1054.5 joules

45 Book’s ID

47 3-D circle

49 10° pascals

50 Unpredictable
behavior

52 Billion years

53 Vertebral column

55 Saltpetre

57 Ten decibels

58 Four-sided polygon

61 Eight-sided polygon

65 Respiratory organ

66 Mud

69 Facial feature

70 Astronomer ___
Struve (1897-1963)

71 Tied one’s shoes

72 Neurologist
Antonio
(1874-1955

73 Black

74 Polycyclic com-

Moniz

pound
75 Arrange in order

Down

1 Scored perfectly
2 Mellow

ARY 1999

3 __ the Red
4 Trigonometric

function
5 Ttalian city
6 Algerian seaport
7 Greek island

8 Nitrilotriacetic acid

(cellular structure)
10 Six-sided polygon
11 Wyatt
12 Jacob’s wife
13 Units of time
21 ___ circle (equator,
e.g.
23 Nucleic acid
25 Sack
26 Prime number
27 Alkaline
28 Embarrass
29 Brazilian dance
30 Element 29
32 Jewish priest
33 Moon of Saturn
34 Cloister’s passage-

9 apparatus

way
37 Greek letters
38 Sense organ

43 Arrange again

46 Nine-sided polygon

48 Garden tool

51 Isaac Newton’s title

54 Flat surfaces

56 Unit of magnetic
flux

57 773,854 (in base 16)

58 Type of gin

59 A man empowered
by Allah

SOLUTION TO THE
NOVEMBER/DECEMBER PUZZLE

60 Toward
61 Prediction

62 Type of dancer
63 Esker

64 Den

67 Resinous insect

secretion
68 Dry ___

SOLUTION IN THE
NEXT ISSUE
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Program in Mathematics for Young
Scientists (PROMYS)

To be held at Boston University,
July 3 to August 14, 1999, PROMYS
offers a lively mathematical envi-
ronment in which ambitious high
school students explore the creative
world of mathematics. Through
their intensive efforts to solve a large
assortment of unusually challenging
problems in number theory, the par-
ticipants practice the art of math-
ematical discovery—numerical ex-
ploration, formulation and critique
of conjectures, and techniques of
proof and generalization. More expe-
rienced participants may also study
algorithms, geometry and topology,
and combinatorics.

Problem sets are accompanied by
daily lectures given by research
mathematicians with extensive ex-
perience in professor Arnold Ross'’s
longstanding Summer Mathematics
Program at Ohio State University.

In addition, a highly competent
staff of 15 college-aged counselors
lives in the dormitories and is al-
ways available to discuss mathemat-
ics with students. Each participant
belongs to a problem-solving group
that meets with a professional
mathematician three times per
week. Special lectures by outside
speakers offer a broad view of

mathematics and its role in the
sciences

PROMYS is a residential pro-
gram designed for 60 ambitious
high school students entering
grades 10 through 12. Admission

HAPPENINGS

Bulletin Board

lowing criteria: applicants’ solu-
tions to a set of challenging prob-
lems included with the application
packet, teacher recommendations,
high school transcripts, and student
essays explaining their interest in
the program.

The approximate cost of room
and board is $1400. Books may cost
an additional $100. Tuition is to be
determined pending a proposal to
the National Science Foundation.
Financial aid is available. PROMYS
is dedicated to the principle that no
student will be unable to attend be-
cause of financial need.

PROMYS is directed by professor
Glenn Stevens. Application materi-
als can be obtained by writing to
PROMYS, Department of Math-
ematics, Boston University, 111
Cummington Street, Boston, MA
02215, by e-mailing PROMYS at
promys@math.bu.edu, or by calling
(617)353-2563. Applications will be
accepted from March 1 until June
15, 1999.

Not-so-sfiort stack

This month’s CyberTeaser (B254
in this issue) proved controversial.
Many contestants were quick to
point out the ambiguity of the prob-
lem statement. Some contestants
were led astray by the nebulous for-
mulation, while some were able to
think like a Quantum editor and
make the assumptions necessary to
reach the answer we expected.

As Nick Baxter pointed out in his
solution, the ambiguity in the prob-
lem could have been avoided by

simply adding the word always, as

in, What is the minimum value of n
such that at least one stack will al-
ways include a pair of cards whose
numbers add up to an exact square?
The answer n = 4 was quite popular
with those who did not make this
assumption.

Because we have often heard that
life is unfair and that justice is hard
to come by, we decided to consider
n = 15 the only correct response.
Therefore, the following 10 winners
exhibited not only speedy reasoning
but also the ability to read between
the lines and divine exactly what we
were looking for despite the inexact-
ness of the question.

Bob Cordwell (Ellicott City, Mary-
land)

Max Bachmutsky (Kfar-Sava, Israel)
Matthew Wong (Edmonton, Alberta,
Canada)

Leonid Borovskiy (Brooklyn, New
York)

Elio Abbondanzieri
Texas]|

Nick Baxter (Hillsborough, Califor-
nia)

John E. Beam (Bellaire, Texas)
Anastasia Nikitina (Pasadena, Cali-
fornia)

Andrei Cipu (Bucharest, Romania)
Helio Waldman (Campinas, Brazil)

(Houston,

Congratulations! Each of our pre-
scient winners will receive a Quan-
tum button and a copy of the Janu-
ary/February issue. Everyone who
submitted a correct answer in the
time allotted was entered in a draw-
ing for a copy of Quantum Quanda-
ries, our collection of the first 100
Quantum brainteasers. Q
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Art by Mark Brenneman

COWCULATIONS

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. When the snow begins to fly

in Wisconsin and the temperature takes a dive, our
bovine thoughts stray from the barn to places far away.
One of the fondest destinations that warms my milk on
a winter night is Waki-Kowa Beach in the Hawaiian is-
lands. It was there, on a sunny afternoon, where I first
learned how to move my hips like the Memphis Rock-
and-Roller, Elvis Presley. It was back in 1958 when a cu-
rious cow first discovered a piece of Marlex in the barn-
yard and began flipping it around her hips. Soon people
caught on and the hula hoop craze swept the country,
creating the first big market for the newly discovered prod-
uct—crystalline polypropylene, better known as plastic.
Today, the Hula Hoop is a great way to keep fit. And,

04
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believe me, if you're looking for a low-impact aerobic
workout that protects your ankles and knees while
stressing the flanks, obliques, quads, hams, calves, and
deltoids and supplying toning tension to the udder ... the
Hula Hoop is almost a total-body workout.

A Mathematica model

We can create a simple model of the hula hoop by
drawing a red circle just touching a blue disk.

red = RGBColor[l, 0,
blue = RGBColor[0, 0, 1];
Show[Graphics[{blue, Disk[{0, 0},
Graphics[{red, Thickness[0.01],
Circle[{0, (-1)}, 21}1,
AspectRatio =-> Automatic]

01;

1111,




Now we add the motion of hips to the disk, and—
presto—we have a hula hoop!

{Cos[t + Pi], Sin[t + Pil};
{u, v} = {Cos[t + 2 Pi], Sin[t + 2 Pil};
Show[Graphics[{blue, Disk[{x, v}, 21},
Graphics[{red, Thickness[0.01],
Circlel{u, v}, 41}1,
AspectRatio -> Automatic,
True,
PlotRange -> {{-5,
0, 2 Pi, Pi/6}]

Animate[{x, y} =

Frame ->
FrameTicks -> None,

5}, {-5, 5}}1, {t,

To see the animation, use Mathematica and enter the
code above. Now double click on the first graphic and
sway to the rhythm of the Hula Hula. The best I can do
on a static page is to show the output in a graphics ar-
ray. Notice that the blue disk sways as does the red
circle.

What would happen if this hoop could support a
larger hoop, and that one a larger hoop, and so on, and
a cow was skilled enough to keep them all going? This
suggests a problem, which, you guessed it, is your Chal-
lenge Outta Wisconsin.

cow 14

Write a program that will animate four Hula Hoops
that contact each other as shown below, and run the
animation.

A circle around a disk forms a loop,

That’s the model for a Hula Hoop.

Add more hoops and loop them all,

And now be careful so they don’t fall.

When that’s done, do the animations.

You’ve solved this COW, congratulations!
—Dr. Mu

cow12

In COW12 you were asked to write a program that
would accept any zap point {x, y, z} with positive inte-
gers and any base with positive integer length and have
it cowculate the number of lattice points inside the
polyhedron formed by the square base and the zap point.
How many flies can be zapped with a single jolt from a
Fly Zapper at the zap point {6000, 9000, 10000}, assum-
ing a square base of length = 12000.

Solution

The key is to look at intersecting planes z = {. Say
that the square base of the polyhedron has opposite cor-
ners {0, 0, 0} and {base, base, 0}, and that the top point
has coordinates {xtop, ytop, ztop}. Notice that for any
value { between 0 and ztop, the plane z = { will inter-
sect the polyhedron in four points that form a square
with opposite corners {xmin[(], ymin[{], {} and {xmax[{],
ymax|(], {}, where xmin, xmax, ymin, and ymax are de-
termined below.

QUANTUM/COWCULATIONS 8b
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A point on the line connecting the origin to the top
point has the parametric form {xtop ¢, ytop t, ztop t}. So
for z = {, we have t = {/ztop, and then the x and y coor-
dinates of the intersection of this line with the plane
z = { are easily determined:

{ xtop / ztop;
{ ytop / ztop;

xmin[{_]
ymin[C_]

Similarly, the line connecting {base, base, 0} to the top
point can be parametrized as {(xtop — base) t + base, (ytop
—base) ¢ + base, ztop t}. For z = {, we again have t = {/ztop,
and then xmax and ymax can be defined.

smax[{_]1 = { (xtop - base) / ztop + base;
ymax[{_ 1 = { (ytop - base) / ztop + base;

Armed with these coordinates of the square intersec-
tion of the plane z = { with the polyhedron, we next
count the lattice points contained in the interior of each
such square. The zcount function does this in a straight-
forward way.

zcount [{_] :=
(Ceiling[smax[{]] - Floor[:min[{]] - 1) *
(Ceiling[ymax([{]] - Floor[ymin[(]] - 1)

Summing over all z with 0 < z < ztop finishes the
procedure. Here is the assembled function:

interiorLatticePoints3D[base_, {xtop_,
ytop_, ztop_1}] :=
Module[{xmin, ymin, xmax, ymax, zcount},
mmin[l 1 = { xtop / ztop;
ymin[{_]1 = { ytop / ztop;
smmax[{ 1 = { (xtop - base) / ztop + base;
ymax[{ 1 = { (ytop - base) / ztop + base;
o6 JANUARY/FEBRUARY 1999

zcount [{_] :=
(Ceiling[xmax[{]] - Floor[smin[{]] - 1) *
(Ceiling[ymax[({]] - Floor[ymin[{]] - 1)
sum[zcount [{], {{,0+1,ztop - 1}1]]

This function counts the suggested case correctly:

interiorLatticePoints3D[12000, {6000,9000,10000}]
479910022999

This solution was submitted by Louis J. D’Andria.
Correct solutions were also submitted by Eric Rimbey
and Robert Dickau.

And finally...

Send in your solutions to drmu@cs.uwp.edu. Past
solutions are available at http://usaco.uwp.edu/
cowculations.

If you like to hula hoop around the competition while
programming a computer, stop by the USA Computing
Olympiad web site at http://usaco.uwp.edu. The 1999
USA Computing Olympiad is in progress, but there is
still time to enter the remaining Internet competitions

and the National Championship in April. Q)
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Use the response card in this issue to order

Quantum for your child, grandchild, niece,

nephew, mother, father, friend . . . Or call 1 800

SPRINGER (777-4643). Give them six colorful,

challenging, entertaining issues of Quantum—
a year’s worth of reading pleasure!

Factor x into the
QUANTUM equation,

where xis any potential

QUANTUM  reader you know!
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GLOBAL

environmental

CHANGE
series

Deforestation

Deforestation explores the science be-
hind ecological succession-soil erosion,
the makeup of an ecological niche,
habitat fragmentation, energy flow, and
land use methods and management.
With these science-based tools and
skills, students are prepared to address
the central question: Can we balance
resource conservation with economic
growth?

(grades 9-12, 1997, 64 pp.)

#PB138X02 $12.95

Introduced Species

Human activity has introduced species
to ecosystems around the globe. Some
species are benign or even beneficial;
others, like zebra mussels, fire ants,
and water hyacinths, are causing
extinctions of native species and
damage to human systems. Can we
balance these human systems with
natural processes? Seven activities—
using pillbugs, the school grounds,
species dispersal maps, and introduc-
tory genetics—provide students with
‘ ills they need to address this

global question.

=

798, 64 pp.)

NSTA and EPA are designing each volume in the Global
Environmental Change Series with hands-on activities to
cover the major science topics behind each issue. With
both a global picture of the issue and community-based
investigations, students see how science works in today's
world. All volumes include National Science Education
Standards-based content, teaching techniques, and
assessment methods.

Biodiversity

Biodiversity begins with students
measuring the biodiversity of afallen
pine cone and a square meter of
school ground. With this start, stu-
dents build on their knowledge of
food webs and energy flow to an
understanding of ecosystems and
life zones. These qualitative and
quantitative skills enable them to
ask questions, find answers, and
explore decisions about the impact
of human activity on Earth's bio-
logical diversity.

(gracdes 9-12, 1997, 64 pp.)

#PB138X01 $12.95

Carrying Capacity
Carrying Capacity provides a model
for addressing the ability of Earth's
natural systems to support a growing
human population. With easy-to-use
tools such as duckweed,
Wisconsin Fast Plants, and calorie
intake charts, students build growth
curves and land/energy use pictures
that enable them to link small-scale
biology to a global issue.

(grades 9-12, 1997, 64 pp.)

#PB138X03 $12.95

Order your copies today!

Order by calling

(800) 722-NSTA

or order online at
P1/299Q3 www.nsta.org
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Create models by drawing onscreen with a powerful and easy-to-use
graphic interface. Add objects like springs, dampers, ropes and joints.
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