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GALLERY O

llf atermelon-a staple of the summer cookout. Most con-
llU sider it delicious and easy to prepare/ but anyone who's
delved beneath the dark jade rind knows that it can be a
demanding {ruit.

The challenge of selecting a ripe melon is a science unto
itself. Thumping is thought to reveal acoustic clues to the
maturity of the fruit, others prefer to pursue ol{actory indi-
cations of peak flavor. But nothing can suq)ass a core sample
of the pink flesh within. The challenge, however, is far from
over. Assuming you're abiding by the parliamentary proce-
dures of picnics, you will have set aside your cutlery and

Watermelon on a Plate (nineteenth century) American

taken hold of a half-moon wedge of melon with both hands.
The trick, as we all know, is to maximize the amount of fruit
ingested while minimizing the amount o{ juice dribbled onto
your shirt. And there's the question of the seed disposal-
to spit or not to spit, what would Miss Manners do?

Hopefully, after reading this culinary overview, you're
ready to sink your teeth into an even more con{ounding
pwzzle concerning watermelons. It leads off an article that
contains a cornucopia of problems that explore how ap-
pearances can be deceiving. Make sure you have your nap-
kin ready before turning to page 34.

""*---*

Ciit olLdgar \Ntlltan anLl Betntce Chry,sler Garbist'.h, O 1998Iloard oi k:r:.
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The ghostly personage on our cover is
perhaps an ancient wise man coming
forth through the portals of time to
share with us his knowledge o{ the ori-
gins of algebra. Look for him again on
page26, where he expounds the contri-
bution o{ one Muhammad ibn Musa
al-Khwarizmi.

Indexed in Magazine Article
Summ afi es, Ac a d emic Ab sft acts,

A c ademic S e ar ch, V o c ational
Search, MastefiILE, and General

Science Source. Available in
microform, electronic, or paper
format from University Micro-

films International.
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FEEDBACK

lllloneylnumls imaUe

We enjoy hearing from our read-
ers by any mode of communica-
tion. Lloyd Kannenberg e-mailed
us (at quantum@nsta.org) the fol-
lowing reaction to last issue's
Front Matter:

I was amazed at the alle-
gation in "Enough Nerd-
iness" (Front Matter, Mayf
|une 1998) that the nerd im-
age of scientists deters
young people from choosing
careers in science and tech-
nology.

The same image has been
around for a very long time;
why then would its negative
impact only manifest itself
now? A far more likely rea-
son that bright young
people no longer choose
technological careers is that
today they stand to earn far
more by going into manage-
ment or finance. It is true
that there has always been a
gap between salaries of the
management and of the
technical staff of a typical
compan); but in recent
years this gap has widened
into a chasm (I will say
nothing about relative
working conditions, but
think: Does the manager
who decided to put the tech-
nical staff into Dilbert-style
cubicles work in a cubicle
himself?).

Young people aren't stu-
pid. They can apply their
smarts in any of a broad

Reader$ re$poltd

spectruln of careers \\-hr
should they take rr h:,i
amounts to a \-o\\- t'i l' 't -:t"
by following the tecl-rn,,i,-i--
cal path? Nerd rmagel Bah.
Since when ari lxanaSars
and venture caprtalists
sexy?

WhooN
Eric E. \Vicker oi New York City

also chose e-rnarl to contact us
about a questionable calculation in
a prer-ious issue:

I ju.t iound your magazine,
and I thrnk it's great. How-
er-er I thrnk I found an error
rn the \larch Apul 1998 is-
sue in the article " S,vmmetry
rn Algel',ra ' Lrn page 43, ex-
ample -1. \\-e re asked to solve
slmultaneoush- this system
of equations:

lxl- = (''

)..=_ r
t'-
[zx = 10.

Multiplying gives x)ylzz
= -120, right? To go any fur-
ther means taking the square
root of a negative number,
which is imaginary.

The solution on page 52
gives the right sides of these
equations as 6, 15, and 10,
which when multiplied gives
a scluare root +30, and that
works out well.

Anyway, thanks for a great
magazine.

Well, Eric, rve're glad you found

ow rnargezime, and we thank you for
your kind words and for keeping us
honest.

In Physics Contest in the |anu-
arylFebruary 1998 issue on page 32,
middie column, the net force should
be 758 N rather than 588 N. Our
thanks to Victor Mazmanian for
pointing out this regrettable mis-
take.

llllhaftb goinU on?
Summer study ... competitions ...

new books ... ongoing activities ...
clubs and associations... free
samples ... contests ... whatever it is,
if you think it's of interest to
Quantum readers, let us know
about itl Help us fill Happenings
and the Bulletin Board with short
news items, firsthand reports, and
announcements of upcoming
events.

What's on your mind?
Write to us! We want to know

whatyou think of Quantum. What
do you like the most about it? What
wouldyou like to see more of? And,
yes-what don't you like about
Quantum? We want to make it
even better, but we need your
he1p.

You can contact us via e-mail at
quantum@nsta.org, leave a message
in our guestbook at http://www.
nsta.org/quantum/ or send us a let-
ter at

Quantum
National Science Teachers Assoc.
1840 Wiison Boulevard
Arlington Y A 22201 -3000

lllAYiJUltt lggS
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OUANTUM
auth0r

Have you written an article that
you think belongs in Quantum!
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum avthor? Write to us and we'll
send you the editorial guidelines
for prospective Quantum corl-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a

level appropriate for Quantum's
target readership of high school
and college students.

Send your inquiries to:

Managing Editor
Quantum

1840 Wilson Boulevard
Arlington VA 22201-3000
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Askey, Professor of Mathematics
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Suppose an atomic cell of radrus R

consists of a pointlike nucleus, the
inner electronic shells (known as the
ionic core, occupying a volume oi ra-
dius R.), and the outermost electrons,
rvhich fill most of the cell's volume.
Le t's determine the dependence of
the cell's energy on R, say, for a unr-
r-a1ent atom with nuclear charge Ze,
rr he re Z is the number of charges
e qual to the number of electrons in
thc neutral atom) and e = 1.6 10-1e C
rs the eLemcntary charge. This energy
1s aFp:.\rmately the sum of the po-
rer:rra, (n-rs1- oi the coulomb attrac-
ticl-r :c:1\ --n the outer electron and
rhe n,.-c-::.

Planetary [uildinU hloclrs

Blueprints for creating terra firma

by V Meshcheryakov

I T WAS LONG, LONG AGO.
I Irrdgirrg by the fact that Mankind
! do"r not remember the {ace of the
I Creator, who gave birth to the
World, we can reasonably suppose
that people did not participate in
this historical event. What can we
know about it? All hopes are focused
on physics, which helps us look into
the past, learn the laws of the Uni-
verse, and realtze where we should
go in the future,

It is believed that the Universe is
composed of atoms and that these
atoms are made of electrons and
nuclei. This seems quite probable
since there are gobs of electronic
devices around, and thinking lin-
guistically, they should be made of
electrons. However, the Universe is
also composed of stars and planets.
Remember, we ourselves live on a
planet. It seems like the existence of
pianets and electrons should be con-
nected in one way or another. But
how?

The answer to this question can-
not be simple, short, and exhaustive.
Therefore, if you want to look at the
IJniverse as a whole, let's get to
work and let the visage of our Cre-
ator-at first as undetermined as
Nature herself-accompany us.

The Creator sat at His workbench

and ran Hrs iingers over the atoms.
They consisted of positively charged
nuclei surrounded by dense clouds
of negativel,v charged eiectrons.
Drawing two atoms nearer to each
other, He could see the distortions of
the electron clouds resulting from a

complex combrnation of electro-
magnetic interactions.

At small distances the dominat-
ing phenomenon was the attractron
of the electrons of one atom to the
nucleus of the other. As a result,
some electrons became common to
both nuclei (so-called "collecti.r.e
electrons"), and the total energy oi
the system composed of two atorrs
with their electron clouds stuck to-
gether turned out to be less than the
sum of the energy of the same atorns
when separated by a large distance.
However, if rve try to press the at-
orns stil1 closer together, iorces oi
repulsion arise, iorces caused narnh
b1- the rnteraction oi the rnner sl-re1ls

oi the clectron clouJ..
It is easr- to rmagine that rhe

strange construction composed t,i a

fer,v dozen atoms 1ca11ed an atomic
clusterl has a celI structure and rs

srmilar ln man,v respects to an rndi-
vidual atom. The energ)- of a singie
cel1 of this cluster can be evaluated
in the following way.

_)
-Ze-

' 4rrtgR

(here eo is the permittivity o{ free
spacel, the potential energy due to
the coulomb repulsion

, _lZ -r)e2
' 4nzsR

and the non-coulomb repulsion E, of
the outer electron and the ionic core
as well as the kinetic energy of the
outer electron Eu.

The energy Eu arises from the
nonpointlike nature of the ionic

JUI.Y/AUGUSI 1SS8



core. If we assume that the electrons
of the ionic core and the outer elec-
tron are distributed homogeneously
in their . respective volumes
Vr:4nR"3f 3 andQ :4nRBf 3, thenE,
will be directly proportional to the
surface areaofthe core 4nR"2 arrdin-
versely proportional to the ceII's
volume O. Thus,

, - 3e2R?,"r 
4nesR3'

The energy Eo can be evaluated
using de Broglie's formula for the
momentum of an electron:
p : 2nh / 1., where l" is the electron's
wavelength and tt :1.0 . 1014 | . s is
Planck's constant. This formula is
based on the fundamental
experi ment al f act th at in
many respects electrons be-
have like waves. For this rea-
son even a single free elec-
tron should be considered as
a cloud similar to electrons
con{ined in the cluster ce1l.
Assuming l" to be equal to
the length ZxR of the outer-
most orbit and describing the
kinetic energy as m.vzf2,
where v : plme is the
electron's speed and
m": 9.1. 10+1 kg its mass/ we
obtain

the derivative dE(R)ldR and setting
it equal to zero. The result
R- - 3.5 R" corresponds to the mini-
mal value of the energy E-.

In condensed matter, the sizes of
the inner electron shells of most el-
ements do not differ appreciably
from each other and on average are
close to the Bohr radius

oo=**=0.53 to-ro m3.
rue u

This means that the ionic cores of
radius R": ao occupy a very small
part of the cell's volume

-3I; rooz =ro"/o,Ri

fact makes it possible, in a rough ap-
proximation, to subdivide the Uni-
verse into two universes: (l ) the mi-
croscopic universe with electrons
and nuclei that sets the value of O,
and (21 the macroscopic universe
with planets, mountains, and
stones/ the size of which is deter-
mined by this value of O.

Note the difference in the poetic
sound of the words "electron" and
"plartet" on the one hand, and such"
a prosaic, plain word as "stone" on
the other. This results from the
nearness and familiarity of the
stones. On the cofitrary, the distant
and unknown look more attractive.
But are you sure you know a Stone?

It seems as if this term is
appearing for the first
time on the noble pages
of our esteemed firaga-
zine. Next we shall dis-
cuss the phenomenon of
Stone and its brethren.

The energy E* can also
be considered as the work
I// performed by the exter-
nal force /that would need
to be applied to an atom
to remove it from a clus-
ter to a distance larger
than the ce1l's size. In

, other words this dis-
tance should correspond

i to the breaking of the
* interatomic bonds. In
#' this case E- = W = fR

- K)r13/ --
To characterize the ri-

gidity of the interatomic bond, it is
useful to consider the value B = E^l
f2, known as the buik modulus. This
constant charactetizes the energy
density in a cell and can be calcu-
lated from formulas (1) and (2):

")

B =1o-2 e-
.L
+fit oao

_10-)m!_e\! =lon N/m2. (3)

(+ne , )" r8

This value is of the same order of
magnitude as the experimental va1-
ues of the bulk modulus of solid
bodies.

a-)
F-,,' )m"R'

Therefore, the total energy is

n(R\=_ e2 * 3R!i_ *_rr_.ttl\ / 4neoR 4neoRr 2m"RL

Note that there is no paramet er Z irr
this formula. This means that our
estimate can be applied to atoms

_ with an arbitrary number of elec-
3 trons.
t The different signs in formula (1)

€ mean that the coulomb energy tends
f, to compress a cell (and the entire
S cluster) but collapse is prevented byj the non-coulomb energy of the inner
B shells'repulsion and the kinetic en-

Q ..gy of the outer-shell electrons. So

-E' the function E(R) has a minimum at
8 A : R- that can be found by taking

and so they do not prevent the outer
cloud from uniting the atoms into a
strong and elastic cluster whose
properties depend upon the ratio
R"/R-. The volume of a cellin such
a cluster is on the order of

o=1Id =tOza^a11
J

, ^.3

=torl 
nloh=' 

')'_rg_r, 
,,,,. (21

|^"" )

It is noteworthy that most of the
substances in the lJniverse are com-
posed of clusters with atomic vol-
umes that differ from (2) by no more
than one order of magnitude. This

OUA[IIUllll/TIAIURI



Thus in the first approximation
the complicated picture of electro-
magnetic interaction inside the
atomic cell can be described Lly two
parameters: B and O, which make it
possihle to evaluate the rnacroscopic
characteristics of the ciuster.

Step by step, thc Creator pro-
ceeded to construct the cluster, now
joining hundreds of atoms to it, then
thousands. He wondered when the
gravitational effects would start to
show thcmselves. Of course, He
knew that as early as thc third cen-
tury A.D. the great Aristotle would
begin to develop the concept of
spherj cal I y symmetric g,ravitation :

Its shape nfust necessttrily be

spherit',tl . For cvtrv lortt.)tt, -

earth has weight ttnttl .;
reaches tlte centet. cnd lrr.' ,i,-r-
tling of 1'nY1, ."-.. -, ..:.
smallt'r i\', ,uId l't- - . ,' ':
,t wrlveCl .t11 .. - - . . .:. . .. ..: - -
ccttl'lpressicttt rit..;-,,' rr.-i-- i
ot 11.;r.. r:.t.'-.r. ..... . .. .-

lcr".''-.. - .\il-::- '

rh..H-.. - . ll: -i

One can t help arllrung thrs ne-

SI(ct1nq,'i thc llctet.,q.n.ltlu: r'l'l

Elrth': surirtce , -Ltcl'l i]5 trl, )tlntA11l\.

which are 3 to z[ orders of magnitude
larger than the average size of a hu-
man being. Thrs was not a trrvral
stcp on the long road to understand-
ing gravity. However, in spite of the
fact that Aristotle was a first-rate
mathematician as well as an out-
standing physicist, hc did not finish
his study of gravitation, and it took
an additional2,000 years to fincl thc
mathematical description of this
physical idca. Stil1 later anothcr
important problem was solved-the
description of electromagnctic phe-
nomena in a medium, and it was
found, surprisingly, that gravita-
tional forccs are far weaker than
electromagnetic forces. The calcula-
tions made previously can illustrate
this ieature.

The elastic constant B can be de-
termined in another way, via thc
pressure of the critical forcc | = B{i \

applied to the cell's surface. Larger
iorces break the ce1l. Lct's compare
the critical force I with the gravita-

tional force fo acting between two at-
oms. According to Newton's law of uni-
versal gravitation, f ,, : Gm2 f l2R^l2,
where G=6.67. I0-1I"N m2/kg2 is the
gravitational constant. Assuming
the typical density o{ solid bodies to
b" p = 5,000 kg/m3, we get

f" 
= "ry.|. =10-85.f - ga+lz -

These estimates convinced the
Creator that a cluster could be com-
posed of a very large number of at-
oms. However, He was uneasy
about the moment when the graYi-
tational force F compressing one of
the cells of the macroscopls rrni-
verse w-ould su4)ass the elastic iorce
that determined the pressure in a
cell of the rnicroscopic universe,
which would meau the collapse of
the entire construction- What w-ould
follorr.l A nuclear catastrophe? The
full responsibility rested with the
Creator, so IIe proceeded w-ith the
numerical estimation.

Let's express the force F in terms
of the number oi atoms N contailed
in a spherical volume V: NA of
mass &r: Nzz and radius

r grro\'/3
R:l-l\ar)

The weight of a surface atom of such
a cluster is mg, where g is the accel-
eration due to gravity, g{R): GMIR2.
Assuming the cluster's density to be
a constant p: MlV, we get

4n-
s(R)= t"oo. (4)

This relationship says that the ac-

celeration due to gravity at the sur-
face of a spherical cluster grows pro-
portionally to its radius. Thus, atoms
farther from the center have larger
weights. In this reasoning the
cluster's surface just marks the dis-
tance to the probe atom. F{owever,
considering an atom at a distance r
from the center/ we do not find any
changes in its weight for arbitrary
variations of the cluster's radius R > z.

Of course, the conditions around the
atom will vary. Let's see how.

We begin to dri11 a well in the
cluster along its radius. The cross
section of the well will be only
one atom. In so doing we'll weigh
every atom we meet. Clearly, the
result of the measurements will be
the function Fr = mglrp), where r,-

is the distance from the center to
the k-th atom. For example, this
function wi1lgir,e 0 for the u-e rght oi
the central atom l..latl-c . j = 0
Thts i: lll d,- :.lar-c 1r lIh
.\ttst,,tl. . l'-'.: :.1.-:- i: ut rIt.
drsa;pi,llf r.- ,-,i ::ai -tr- at the
a-:::.: l: f >:1:i-.

H,'.---:. :-::-.:. j jrrlhng to the
:::::.: -.',-- s::i: ir ir11 the rr'el1 rvith
r: ::r! -\-:;r rhe irrst atom goes to
iu. r, ;:t'm oi the rr.ell, the central
:. -i i"- aiiected by this atom's
'.'arghr. The next atom increases
rhrs iorce by its own weight, which,
horvever, difiers from the weight of
the frrst atom because it is farther
irom the center. The third atom
then adds its weight to the sum, and
so on.

Thus, to find the force affecting
one of the central cluster's cells, we
should add all the forces Fu acting
aLrng the entire length of the well:

- 
-lr;= ) ! =:iGpm\r, + rr+...+i,,).

1

-\. ,hc r-Leighboring atoms are
separareJ i-.r the distance 2R-, so
r =1"_ . =fF,,....,rt =2kR,r.The
last term ,-,i the sum must be equal
to the ir-r1'c. actlng on the atom 1o-

cated at the sr-rriace oi the cluster of
raJr.u, F. S. : =, =-\''R,,,.Express-
ing F in terms oi R-- ire get

1t
F = "'Goll

.3

I ..
x)R ll-2+ -k+..*-t .['( ))

When the last term of the brack-
eted arithmetic sum r? - N1/3/2 is
large, the sum is approxirnately
equal to

n2 _ N2/3

28

Inserting this value and using the ior-
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mulas R^= Bal4n)ri3 and p : mla
yields

p.= 6pzg2+lz1r7zlz . (Gl

Comparing F with f : Btt2l\, we
obtain the number of atoms in a
cluster:

t ( a\31)

^=-tr[aJ vt

which corresponds to its '/elastic/'-
gravitational stability. The quota-
tion marks stress the fact that in ad-
dition to the given atomic mass, the
parameters B and p = mlA in this
formula are defined by the micro-
scopic mechanisms of interaction in
the atomic cell.

Let's stop and think
about our analysis. Why
is the force F determined
by the pressure of only
one atomic column?
Why did we weigh the
atoms in such a narrow
well? Isn't it clear that
the electromagnetic in-
teraction of an atom
with the wall of our well
will prevent the rcaliza-
tion of such an experi-
ment? Why shouldn't we
useawiderwell, andwhy
didn't we consider the
relationships between
the forces [*, and Fo?

Would you Iike to be
the Creator for a mo-
ment and answer these
questions on your own? And to ask
some new ones? Ecluation (7) was
obtained in 1905 by the English
physicist Sir |ames |eans. It was the
first formula discovered of a number
of relationships that later deter-
mined the gravitational stability of
different systems.

Now let's evaluate the order of
magnitude of Nusing the atomic vol-
ume (2), the bulk modulus (3), and the
previously given value of the charac-
teristic density of solid matter. Ac-
cording to (7) we have N = l}ae. "Mein
Gott!" exciaimed the Creator, "What
might the other parameters of the clus-
terbe?" It is easy to check that the so-

called feans mass and |eans rafius are

M=lO% (gandR = 107m.
This is how Earth was created.

According to formulas (31, (41, and
(5), the acceleration due to gravity at
Earth's surface was related neither
to the planet's size nor to the total
mass of its atoms; it was entirely de-
termined by the set of fundamental
physical constants:

g=(nc)rt2 
=

to-|Guz m?es
- E/) , I
(4nt.o)"'' li*

which resulted in about 10 m/s2.
The planet made by the Creator met
the requirements of " elastic" -gravi-
tational stability and since

building materialsl So He proceed
with His work. He recalled the
strange atomic formations, the clus-
ters He dealt with from the very be.
ginning, and decided to use them.
But first He was to discover a physi-
cal mechanism that would deter-
mine the stable formation of small-
size bodies at the planet's surface.
He had a feeling that such a mecha-
nism existed because the planet He
had created met the requirements of
stability, having its gravitational
field determined only by fundamen-
ta1 constants. By intuition He felt
that this mechanism should exist in
the gravitational field of a stable
planet and not in an arbitrarily con-

structed one. The idea came
: unexp€ctedly and consisted
.' of a gravitationally stable

cluster (this will prevent
breakage of interatomic
bonds) that is placed on the
surface of such a planet and is
affected by its own weight.

He embodied this idea as

f ollows. If a gravitating
planet of mass M and an
atomic cluster of mass Mo << M
are set in physical contact
with each other, their static
ecluilibrium (determined by
the force of attraction
Fo: GMMolR2 andby the op-
positely directed supporting
force) will be achieved by
the breaking of the inter-
atomic bonds at their inter-
face, followed by a redistri-
bution of atoms resulting in
the formation of n supporting

atoms:

D

n: *, (B)

where, we recall, I is the force re-
quired to tear an atom away from
the cluster.

As a fundamental building unit,
the cluster with both the maximum
number of constituent atoms and
the minimal number of supporting
atoms was used. Clearly , a cluster of
larger mass would better protect the
interface against a load of short du-
ration. A similar situation occurs in

" earth in motion
whether in a mass or in frag-
ments, necessarily continues
to move until it occupies the
center equally every way, the
less being forced to equalize
itself by the greater owing to
the forward drive of the weight
impulse.... It must have been

formed in this way, and so
clearly its generation was
sphefical" (Aristotle, On the
Heavens,II:141.

Alas, the newborn planet was
naked. "What to do next?" pondered
the Creator. "If I settle human be-
ings on such a planet, they will need

Ol,A]'ITUil/IIATURI
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the circus trick in which a heavy
sledgehammer strikes a massive slab
resting on a man. The conservation of
momentum.in the hammer-slab sys-
tem makes the slab virtually motion-
less. We invite the reader to prove this
(without, of course, resorting to the
use of a sledgehammer).

The condition of the minimal
number of supporting atoms n = 3 is
necessary because incorporating a

fourth atom is only possible at the
expense of breaking interatomic
bonds, which would cause the col-
lapse of the entire cluster. The case
n < 3 is excluded because it doesn't
provide the stability of a cluster on
a plane.

The three-support cluster was
called a Grain. With the help of
|eans's formula for the total number
of atoms in a planet, equation (7|,
and by inserting f : ga't' and z :3
into equation (8), we can evaluate
such an important building param-
eter of the Grain as its mass:

r B\'12
M^ ={l2l3l" \e) tet

This {ormula shows that the
mass of a gravitationally stable clus-
ter placed on the planet's surface
doesn't depend on atomic mass, and
thus should be determined only by
the character of the interatomic
bonds. However, in that case the
variety of forms and numerical pa-
rameters of natural interatomic
bonds would result in the formation
of clusters quite different with re-
spect to volume per atom/ number
of atoms per cluster, and mass. Does
this happen in nature? At present we
know only one established fact:
Atomic volumes in condensed mat-
ter differ no more than by one order
of magnitude. Indeed, when express-
ing Q and B in terms of the Bohr ra-
dius, we see that the experimental
data taken from the periodic table
are in the following range:

Q=

$-

(ro - ro'),1,

(ro{ -ro-3)e2 (ro)

4w.sa[ t

which is quite narrow.
Clearly, the quasi-constant na-

ture of Q and B is at odds with the
existence of the vast variety of inter-
atomic bonds. However, inserting
(10) into (9)yields

number of atoms in the Grain,

lv^=Mo=Mo=I0'".umpa

as well as its characteristic size,

R^:rA/Oll r=10 lm.
"0

|eans's formula for the number of
atolns in a plane t and relationship
9r resr,rlt in a foi"rnula that cor-Lnects

the Tear. 1n.rss r\ rri-r that oi the
ir:1\'-t.rr1L-rn.:l1r .:a-rLe c iuster:

( 12)

Bt rnsertrng Mo = l,/om and
1I : ,\,Ill, we get

\ = Nt/'r (13)

This result shows that, to rvithin
one order of rnagnitude, the nurnber
of atoms in a Grain is equirl to the
number of atoms locatecl along the
planet's radius. Of conrse, thrs is a
manifestation of the fact thirt both
the radial column oi ator-r-Ls :rnd a

Grain (which is simph a ir-urn-rp1ed

radial column) prodr-rce r';rth their
weights the manmurll -,.ac1 corre-
sponding to the brea^:::. .ri indi-
vidual inreratomr- L :-.i.

The Creator rtt.tJ- ::. - \'r'.rrn very
quickly, and th.e res---: ,,.,'as excel-
lent. This constnL.i- ,: ,r l0i6 at-
oms firmlr :t, ,'J .' :- -. :r'qc sup-
ports, wherever -I -'r .r: 'l--.J-d (tn the
planet's suriace .

"I ttronrlet H: ::t - ,-.it: Ii the
people rr rll cr ct < *c.. :hat My
WorlJ r'.-t- :-:.-:'-: --.,',' 'ti ur if
ther irLl1 3]r,,,-,,-1-r -:r-::-:r- ., nething
prinrrtr. - ...;- . ..:..: ::..1 un.Lrp-
porreJ sir,-.:,-r-r, -\ tror-rbled
:lt.tJ '.r -.t::-. . - t H:> -.1,u.

Tn. r-,rnnan:s ft..tn the pv961r,a-

tlon r-r: the Grarns can still be en-
colillrrred in space as partlcles of
stellar dust. However, thcre is not
verl- much of it, which testifies to
the hrgh e{fectiveness and ecological
punty of the Creator's work.

According to the Creator's design,
these Grains were destined to form
a grainy structure of far greater bod-
ies. So He started to erect a new con-
struction.

A cluster of mass m, of the nert

(11)

where z is a constant coefircient oi
about 1 This rcsult rs rca11r- sr-rrpri:-
ing: The mass oi thc- critrcal cius:el
not only does r-rot.le!en; ,n r[-
lnasS oI thc CL'n>I-l-Le '.1 .':l 1:-: -'-.:
doe s not r1cptn.1 .'n :h; E, :rl :..i:i-s
uithe t'. T1-r- r- -,,. :- .. --::- -.r'r-,::rl
iactl Perh.r-:s iir-s rs:1:i;..Lace rt-hcre
the Crelt,,r :ii:-t rhc r-rarrorr path-
\\.1\ - Qt':-t::- tltc lniclo\copic
LL:1 l\ - l :- rr :th tltc l'llacl OSCOpiC Uni-
r ri'.rl InJecd. the absence of the
Brrhr ra.tus irom the formula [or Mo
sar-s that the Grain's mass doesn't
depend on the particular features of
the interatomlc interactions and is
possibly determined by some kincl o{
averaged properties included in the
coefficient z. The nature of this pa-
rameter can be seen with the help of
formula (11): Being multipliecl by
the elementary charge, it results in
the product ze, whrch can be inter-
preted as the charge underlying the
formation oi the interatomic bond.
Tn such a case the paralxeter z is just
the nurnber oI electrons participat-
ing in the bond.

Let's obtain some estimates. For
example, for lithium O = 2.1 . 10-17 m3
and B(78K) : 0.11 101i N/m2, so
Mo=1.0. 10 e kg anldz= 0.53. For be-
ryllium f) : 0.81 . 10 17 m3 and
B(0) = 1.7 . 10rr N/-2, and thus M.
= 2.0 l0-o I<g and z = l.l. 81- tlr.
wayt can the number of electrons
participating in the bond formation
really be a noninteger? Yes, it can.
Remember, at the beginnrng oi t]-re

article we spoke about e1e ciron
clouds that occupy some space ;rncl
thus can participate in bindrng not
as a whole, but rvith part of the
cloud.

Let's assume that to an order of
magnitude Mo = l0 e kg. Then for
a typical density of solld matter p

= 5,000 kg/rn3, we get the total

ZE
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structural level must be composed
of clusters with critical mass Mn.
Then among the masses m, it is pos-
sible to find an M, such that the
number n, of support clusters Mo is
equal to 3: mr(nr:3) : Mr. The clus-
ters of mass mt < M, prevent break-
age of interatomic bonds between a
pair of clusters with critical masses
Mo, and in this sense they are also
gravitationally stable in the gravita-
tion field of the feans mass.

The number of supporting atoms
nn o{ cluster M, cannot surpass the
approximate number of the surface
atoms of cluster Mo, so no < No2/3.
Therefore, the force of gravita-
tional attraction of cluster M, {
should not be greatil than F, i: No'l'f . As the field at the surface 

-

of the |eans mass is g = GMf R2, and
since the gravitational force affect-
ingclusterM, isF, :M1g, thenM,g
: Nn,l,f . As the number of atoms of
the new cluster is N, : Mrf m, we get

Nr = ly'ol13 = l/;,t = 1tr5/e, (t+)

where f lm9 = \. Using this for-
mula, we find the parameters of
the first structural level:

Ni = 1027,

M, = 50 kg,
R, = 0.3 m.

This was how Stones and Boul-
ders emerged from the Grains. Look
at them-they are so beautiful!
Their grainy structure can be seen
with the naked eye.

"Surely," the Creator thought,
"In a Boulder (or in a Stone) that has
lain on the planet's surface for thou-
sands of years, the upper Grains wili
have fewer supports and thus fewer
interatomic bonds than the lower
Grains. So in due time the Boulders
and Stones will degrade and become
Sand. But, first, people will need
Sand, and second, the next struc-
tural level will be made of Boulders
and Stones."

In a similar way the cluster M,
can be constructed, duly accounting
for equilibrium between the weight

F2: M2g and the supporting force
acting from the side of the |eans
mass, providing it rests on three Mr-
type clusters. The result is

lfflr - N"/'7,1151

This formula yields the following
estimate for the cluster's parameters
in the second structural level:

Nz = ld+
Mr=S. 108 kg,
Rz = 100 m'

That's good! This building material
can be used to make Rocks and
Cliffs, and their disintegration wiil
produce Stones and Bouldersl

Inspired by the invented succes-
sion, the Creator decided to general-
ize formulas (14) and (15). He saw
that the number of atoms in the n-
th structural level was

irrrslu li(r,rtu
No=N.o =N"o t

where k = 0, 1,2, ... .

The numerical convergent series

.y n+I
c -,J- -O11 an I

soo

N, = N3-'('13)"*' -rt-(z/:)".l. (15)

He checked and saw that this for-
mula yielded equation (13) at n:0.
Now He resumed the numerical es-

timation and compiled a table of
structural levels in solid matter. At.
n : 3 He obtained N : Ms/81. The
corresponding Hills #ith a height of

1 km were rather stable, large, and
beautiful. Sti1l He
wanted to crown FIis
work with something
really wonderful. So
He took an extra step
and created the fourth
Ievel. The results
based upon the rela-
tionship No=lptrlzu
aregivenin table 1.

This is how the
Mountains were cre-
ated, which had
heights of up to 10
km. Of course, with

, the passage of time,
I they also broke
ffi do-rr, because the
f ,pp", slabs had

fewer interacting
bonds than the lower

ones/ which were
pressed by a too-heavy

load. But who could invent a better
construction? And is it worth doing?
How could people live without
mountains, which provide them
with a great number of useful min-
erals?

The atoms produced Grains,
which made Bouiders and Stones,
and in their turn composed Rocks
and Ciif{s, and finally Hills and
Mountains appeared. Is it the End?
Not at all! Now it is time for Slabs,
which wili support the Continents.
The Continents need Crust, then
Mantle. Does this process go to in-
Iinrty?

At this juncture He saw that
when 17 ) @t formula (15) yielded
N- : N. That is, the number o{ at-
oms corresponding to the |eans

^r rrf, I f
/Y) -1\l 

--
mg,

f
m8

Ff z)- =t+?*!*...*[?)"?\3) 3 e \3/
has the n-th partial sum
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Level
number

Level
name

Number of
atoms

MASS

(s)
Characteristrc size

(cm)

0 Crain 1016 106 10,

I Boulders and
Stones

1027 104 101

2
Rocks and

Clif{s
1031 1011 104

3 Hills 103e 1016 10.

4 Mountains 1012 10re 106

The Earth 101e 102' 10e

Table 1

Structural levels of sokd matter.

mass. This means that the mass dis-
tribution of solid matter organized
by a three-support hierarchical
mechanism meets the requirements
of elastic-gravitational stability of
the limiting body. In other words,
the next construction made of Sand,

Boulders, Rocks, Hills, Mountains,
and Continents must have a mass o{
the same order of magnitude as the
initial gravitating |eans mass. And
this is really sol Experimental esti-
mates show that Earth consists of
two parts: the core with a mass of

about 2 . 1024 kg and the mantle with
an approximate mass of 4 . 1024 kg.

"I like my work," thought the
Creator. "First, people will easily
understand this mechanism of for-
mation of macroscopic structural
ievels in solid matter. Let them
know what a simple and pleasant
World they live in. And second, now
I know the answer to the puzzle that
tormented me: At what structural
leve1will people live? Of course, at
the planetary level, because a planet
recreates itself."

"Really, I like my work," repeated
the Creator. "On such a planet people
should live and raise themselves. Let
them give the name for this planet,
each people in its native language.
And let it have a thousand names, all
of which will be correctl" O

Quantum articles about planet
construction:
Bruk, Y. and A. Stasenko. "Hard-
core heavenly bodies." ful/Aug
1993, pp.34-38.

facques Hadamard,
A Universal Mathematician
Vladimir Maz'ya and Tatyana
Shaposhnikova, Linkc;ping Uniaersity, Sueden

This book presents a fascinating story of the long life
and great accomplishments of Jacques Hadamard
(1865-1963), who was once called "the living legend of
mathematics". As one of the last universal mathemati-

cians, Hadamard's contributions to mathematics are
landmarks in various fields. His life is linked with world
history of the 20th century in a dramatic way. This work
provides an inspiring view of the development of various
branches of mathematics during the 19th and 20th centuries.

Part I of the book portrays Hadamard's family, childhood
and student years, scientific triumphs, and his personal life
and trials during the first two world wars. The story is told
of his involvement in the Dreyfus affair and his subsequent
fight for justice and human rights. Also recounted are
Hadamard's worldwide travels, his famous seminar, his
passion for botany, his home orchestra, where he played the
violin with Einstein, and his interest in the psychology of
mathematical creativity.

Hadamard's life is described in a readable and inviting
way. The authors humorously weave throughout his jokes
and the myths about him. They also movingly recount the
tragic side of his life. Stories about his relatives and friends,
and old letters and documents create an authentic and
colorful picture. The book contains over 300 photographs
and illustrations.

Part IT of ihe book includes a lucid overr-it'ri trf Haclamard's
enormous l'ork, sparu-Ling or.er sir decade.. The authors do
an excellent;ob of connecting his results i. .lLrrent
concerns. \thile the book is accessible tLr L.eiiltners, it also
provides rich information of interest t. e\:eris.
Co published with ihe London Mathemati.a-:.'.:::1 \timbers of thc L\ls
mar order directlv from the ANIS ai ihe -\\1S :r:::::: :rice. The L\.4S is
..Ei-r,r.. \ -l I r, ChailtyCotrnri--'. ''-
History of \{athematics, \'o1umc 1-1;1'19!: : - ::::: Fiardcover; ISBN G
E218-0511-9; List $79; Individual mcrrbe: !i- --:,r:: ir..le HMATH/1'1Q87

Algebra in Ancient and Modern
Times
V. S. Varadarajan, Urrlt','r..i:t :t Cilifornio,
Los Angeles

This tert offers a special crcfi':ri .ri Inilian rrork in
dlophantine equations durin: :he rri', tirrough l2th
centuries and Italian \\'Lrrk .:r :oir:iiLrns o1 61bic and biqua-
dratic equations from the .ith thrrrugh l6th centuries. The
volume traces the hist.rrrc.ri de|elopment of algebra and the
theory of ecluations irom .rn.ient times to the begimring of
rnodern algebra, or-rtlinir.Lg sorne modern themes, such as

the fundamental theorem of algebra, Clifford algebras, and
quarternions. It is geared tor.ard undergraduates who have
no backgrouncl in calculus.
This book is ct,-I.ul,lrhec1 u'ith the Hindustar Book Agencv (Nerv Delhi)
and is distribulecl l oriclu'ide, except in India, Sri Lanka, Bangladcsh,
Pakistan, and \epal L.r.the Ame'rican Mathematical Societv.

Mathematical 1\'orld, \b1tue 12; 1998; 1 42 pages; Softcover; ISBN 0 E218

0989-X, List 525j All AN{5 members S20; Orcler corle MAWRLD/l2Q87
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BRAINTEASERS

Jusl lol' IhE lun ol it!

8236
Circulu rcasoning. Cut the circle in the figure into two pieces so that it
is possible to put the pieces together to make an equal circle with the
hole in the center.

8240
Sparkling snow. Why is snow often described as "sparkling"?
(A. Panov)

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 52

8238
Ahoy, matey!A raft and a motorboat left town A simultaneously and
traveled downstream to town B. (The ra{t always moves at the same
speed as the current, which is constant.) The motorboat arrived at town
B, immediately turned back, and encountered the raft two hours after
they had set out from A. How much time did it take the motorboat to go
from A to B? (Assume that it travels at a constant rate of speed.)

8237
Distinguishing traits. Of 20 children in a class, 14 have brown eyes,
15 have darkhair, 17 weigh more than B0lbs., and 18 are more than
4feet tall. Show that at least four of the children must have all four
characteristics.

8239
Goldbricking. Three bars of gold alloys of different percentages of gold
have masses of 1 kg, 2 kg, and 3 kg. Can you find away to divide these
pieces in order to make another three bars with masses of 1 kg, 2 kg, and
3 kg but with equal percentages of gold? (Your method must work no
matter what the original percentages of gold may be.)
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Uan del' Waerden3 palhulouical lunction

Examining a "miserable sore"

by B Martynov

TUDENTS OF CALCULUS KNOW THAT IF A
function is differentiable at a given point, then it
is also continuous at that point. They also know
that the converse is not true.

For example, the function y = lxl is continuous when
x = 0 (and at all other points), but it has no derivative at
the point x : 0. Generaily speaking, any function whose
graph has a " corrLer" at some point is not differentiable
at that point. Clearly, it is not difficult to construct a

continuous function with an infinite number of " cor-
ners" in a segment. (Figure 1 represents apart ol a graph
of such a function.) However, all functions of this type,
and all other continuous functions that you might
know, are differentiable at the majority of their points.

For a long time after the invention of dif{erential cal-

rl8 rl4 Llz

Figure 1

l2 JUIY/[tlttl$r rssg

culus, mathematicians th,- :-' ,:: .: rontinuous functions
were "usually" differenr-::,. -:: :=:t a gteat comrnotion
arose in the world of t-t-r:.:::.-::.:-.. -n the 1880s when the
German mathemattcl.r -i':, 

-,'.-=-.rstrass published an ex-

ample of a continuou: :::r.:: :r ::rat rvasn't differentiable
at arry point. (Thrs t\-i; r r -r- -.i,tr rvas first suggested by
the Czech mathen:----.:- l.nhard Bolzano some 40
years earlier, but h-. -.. :., -.,':. not widely publicized.)

"How on Earr:: : --: -:,:-irtlon play such a trick on
us?" asked the f:=:-,- ::---:rematician Henri Poincar6.
Even more e 1rr:::,:-: '.'.-.. hrs countryman Charles
Hermite, lrhc, .:=:.: -:.: he "turns away with horror
and disgust :: ::: ::--. -:iserable sore-a continuous
function that :.. :- j.iir-ative anywhere."

Weierstrass s : ,:.::-*ction was very difficult, but a

much simrl;: .,".-:-,:-- lras proposed during the twenti-
eth centun r-.' ri-: l:tch mathematician B. L. van der
Waerden l:'--:.'::: -.trth the function 00, whose graph
appears r: :-.*:. I Tre function 0o is continuous at ev-
ery polri :- ::r :*rrber line, periodic {with a period of
1), anii rr*irr:r =-;:ce 0 < Qo(x) sll2for allxe R. Also,
the ggap: i ::-. :-i:rction is symmetric with respect to
even'--n- r rm; r-rrrfl x = klZlk e Z). The function Qo is
not d-:-.:.::-.'--ie at all points x = klZ. The iunction

rl4
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Figure 3

Flgure 4

Figure 5

Or(x) : lllz)QoQxl, whose graph is the blue line in figure
3, does not have a derivative at the points x: kl4 (k e Zl,
and the function Qzk) : llzLlqo\2xl, which is graphed in
blue in ftgore 4, at the points x = kl9 lk e Zl.

For all n e N, let Q,(x) : (llLlQol2x). (The function
Q, is graphed in blue in figure 5.) The function 0, is con-
tinuous at all points on the number line and has no de-
rivative when x = klz (k e Zl. And 0 < Qo(x) < Il2'1
forallxe R.

We see that the number of points at which the func-
tion Q, has no derivative increases as n grows.

What if we add up all the functions Q,,? There is ev-
ery reason to hope that the sum will be continuous at
all points and nondifferentiable at any point of the form
kl2n (k e Z, n e N). Unfortunately, the meaning of the

sum of an infinite set of terms is not something we want
to clear up right now. However/ we can consider the se-

quence of functions

%(x) : 0o(x) + Or(x)* ... * 0,(x)

(thus, @, * ,{x} = o"(x)* 0, * r(x}, see figs. 3-5) and prove
that for every x the limit

lgt"(")
exists. To prove it, we'll have to use Weierstrass's theo-
rem, which states that every monotonic bounded se-
quence of numbers has a limit.

From the inequality Qr. r(x) > 0 we get or, * ,(x) > o"(x).
Therefore, the sequence (o,(x))is monotonic. Since

o"(x) : 0o(x) + 01(x)+ ... + O,(x)

we see that the sequence (%(")) is bounded for every x.
Therefore, the limit

limo-(x)
rt-r@ rr \ /

must exist. Let's denote it by @(x). Thus, we've defined
a function @(x) for all real x. It is clearly periodic (with
a period of 1), and 0 < o(x) < 1 for all x e R, and the graph
of the function O(x) is symmetric with respect to every
line x : kl}lwhere k e Zl. A11 these statements can eas-

i1y be derived from the properties of qo and the proper-
ties of the limit of sequences. It is impossible to draw
the graph o{ o(x). We can tell from figures 3-5 that the
number of points where the functions o"(x) have "cor-
ners," and where no derivative exists, increases as n
grows.

0ul' funclion h continuous

The function O(x) is continuous at every point in the
number line. As far as our intuition is concerned, this
statement is clear enough: If the function @(x) had a

" gap" at some point xo, then, for sufficiently large n e N,
the function or(x) would have a similar gap at the same
point x6, yet it would be continuous everywhere else in
the number line. The following proof clarifies these con-
siderations.

Let/s start with a brief study of the influence of the
difference r"(xl : o(x) - @,(x), where we think of x as a

constant and n as a variable:

<l,*-(r) - o,(") = 0,*r(r) + 0,*z(x) +... + q,*-(x).

Clearly,

o<.o,*-(x)-o,(r) =+.**...' 
1

\'-t- 2n+2 2r-3 
"'' 

2n+m+1

1- I
I - 2^- I

= 
,n+z lf 

'- 
,n+t 

'

2
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(We've used here the formula for the sum of a geometri-
cal progression.)

Since

lim O ,*-(x)= O(")

(this is just a pecul iar way of writing the definition of
<D(x))and

*11*"(")= o,(x),

(the variable m infact does not affect the values of or(x),
so this sequence is constant), we have

0 < r,(x)< -!_
2r1+L

Now we can prove that the function (D is continuous
at an arbrtrary point xo e R. Let's take any € > 0 and look
at the absolute value of the difference

lo(xo +h)-o(x6)

= 1.,("0 + h) + r,(xo+ h) - @,(xo) - r,("0)

= 1.,("0 + h)- @,(xo) + lr,(xo + h) + lr"("0)l

However,

l+(",)l ,#

lr,(,0*fi)I.#

nite number of continuous functions. Thus, taking 6
small enough, we can be sure that as soon as lftl . 6,

l*, (ro + 7r) - o,(xo)l < 
f, 

.

So, choosing 5 in this way/ we see that if lhl < 5,

lo(xo +ft)-o(xo)l< e,

which proves that the function @ is continuous at the
point xo.

I[e funHion tlls'tts cultslruc{sd h ltoldillsrsltliahh
The function (D is not differentiable at any point on

the number line.
At first this statement might seem obvious: The

number of points at which the function (D, has no de-
rivative increases as the index n increases, so it's natu-
ral to expectthaf at the limit (that is, for the function
o), it will fill the entire line with nondifferentiable
points. Flowever, this reasoning is naive, as is clear from
the following example:

G(")= l11c"(").

While the number of points where G(x) is not differ-
entiable increases with x, it is clear the function G(x)
: L - xz is differentiable everywhere.

We will prove that @ is nowhere differentiable by
contradiction. Let's suppose that there is an xo e R, such
that (D'(xo) exist.

We "sclueeze" xoby sequences of deficient and exces-
sive binary approximations:

.S,. (sr+1) ,-++ < ,n . s# (k = 0, 1,2,...; sL e Z).
2R+I " 2

Set

Sr. ^ Sr.*l
CI r. = -=1=, lJ r. = L"'i< 

Lk*t,rx Lk+t

oft ( xo . Fl (k = 0,1,2, ...) (1)

and

Therefore,

lo(xo + l;- o1xoll . l@,,(ro + fi)- <D,,(xol. +''t 
2r,

When n is sufficiently large,

1e
z"',

The function O,, is continuous at x0/ as a sum of a fi-

Then

and

Figure 6
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lg"o =|$Ft =xo'

It follows from (1) that

6. Pt-xo <l.o<,0-ou <1.
Pr-ar Fr-ur

Now, from these inequalities, frbm equality (2),

from the easily checked identity

o(po)-o(cro)
-o'(ro)

o(Bo)-o(xo)

0r -xo
@("0)-o("0)

xO - CIk

(21

and
n+1
S,,+ I

,k-11

F* -or
_00-"0[

Fr -"r L

*'o - oo 
[.

Fr-0rL

we conclude that

- *'('.)l

- t'('o)1,

Figure 7

o(0r)- o(crr)

Fr-o*

When i < k,

k.
-s r.
- Loi

i=O '

oo(z'Br)- oo(z'"0)

Fr -ar

(si.+1) ( so_)oo[y.- 
.,J- 

ao[7.rr 
.,)r oo(ziBo)- oo(z'oo)

1* e(E-o ): s("-u ) 
= o,(xo ).k+_ Ft _ cr,t

Now let's demonstrate that, as a matter of fact,

,.* o(Fo)-o(cru)
k-+- Fl - crt

does not exisg which will create the desired contradiction.
From the definition of the function @r, we derive

o,(Fo)-o,(cro) _$ r . 
oo(z'Br)-oo(z'"0)

p* -"u - *i pk -CIk

When i > k, it is true that 2i - k - 1, and there{ore,

Qo(2'"0) = qo(zi-k-lso) = o,

0o(ziBo; = Qo[2'-o-'(sp + 1)]= o.

for such l. Therefore,

o,(Fr)-o,(cu) _$ t
pk -0k - kT

Thus, the ratio

ao(z'Bo; - oo(z'uo)

Fr -ur

o"(Fr)- o,(or)
Fr -or

does not depend on n. Passing to the limit as n ap-
proaches infinity, we obtain

18 JUrY/AUousI lsso

2i Fl -sr I
*.r,

But the function Qs is linear on the segment

I s,. s,.+ll
l2t'*t it 2k+t-i )

(see fig. 7). Thus the ratio on the right is simply the slope
of the corresponding line. That is, it is either + 1 or -1.
Therefore,

o(0r)- o(ur)
= p.t+ q (-1),

Fl-gt

wherep+q:k+1.
The parity of the numb er p . I + cI FII coincides with

the parity of the number

p.r+ q (-t+z) = p.t+ q.t=(o * ri.l: (/<+t)'1= k+1.

Thus the ratio

o(0o)- o("0)

is even when k
Therefore,

0r -or
is odd, and it is odd when k is even.

o(Pr)- o("0)
lim
k+- Fr - cxr

does not exist.

lookinU lon maxima

Let's prove that the greatest value of



M = m-axo(x)= max(D(x)

equals 213 and determine the set of points where @ at-
tains this value. We'l1 slightly violate the strict defini-
tions given in some textbooks by referring to these as
the maximum points, and to the greatest value as the
maximum of the function @. We cannot employ the
standard methods here. We cannot look for the points
where the derivative vanishes, since the function is not
differentiabie. But we can write

o"(2x) = O0(2x) + Or(2x) + ... + q,(zx)

= Qo(2x)* jo.(z'")*... * {.0 (r"-',)

= rllo,e") * ) o o(z',) * ... * fr o. (2"'";]

= z[o'(")+ 0z(")+ ... + Q,*,(x)] = z[o,*,(x)- or(")]
= 2<D,*1(x)- 200(").

Passing to the limit when n ) at we obtain

o(2x) = zo(x)- 200("). (3)

It's worth remarking that there is only one function
with nonnegative values that satis{ies equation (3). We
invite the reader to prove this.

Since 1 is a period of the function O, we see that i is
a maximum point of (D if and only if its fractional part

{i} e [0, 1] is a maximum point, too.
Let's now consider the set E, consisting of the points

of maximum lying on the segment [0, 1]. Using the sym-
metry of the graph of the function (D with respect to the
line x = l12 and equation (3), we find O(1/3)

Let's prove that

Indeed, let i e E and X < l12. Then we have:

@(2fr)= 2o(x) - zOo(r) : 2o(i) - z* = zM - zi < M.

Thus

i <Ml2<t13.
Since the graph of O is symmetric with respect to the
line x : ll2, we conclude that there are no points of
maximum in the interval 1213, I), either.

Now let us prove that M:213. Once again, we use
equation (3):

o(4x) = za(zx) - zqo(zx) = zlzo(x)- zOo (")] - 200 (2x) '

= +o(x)- +00(") -zqo(2x),

o(,) : oo(,)+ jo.tr")* ]q+"; = o,(,)* ]q+";.

The function O, is constant and equal to ll2 at the
segment ll14,3l4l, as we can see in figure 3. Therefore,
for a1l x on this segment,

@(,)= i.i*eA $)

Since

*.[t ?]-[1 q]
^=La'e)'l+'+)'

we can substitute its value into equation (4):

M = o(x) =*.i*tox)=;.i,

Recalling that

we conclude that

y3?
3

*[:) = .[3) ='{i) -'*.[:),
*[1']= r.^[l]= ?\3' "t3' 3

o(i)= M
@(zft)< M

3 = *(*).,,

E-[1 2-l
13', 3l

, =.[1):2\.3, 3'

*[1)= *[2)= ]\3i \3/ 3

tr 3.1l"i.li,i),

Besides this, <D(1/3) : a(2131 :213.
To continue, we need the following statement: If -i

is a,maximum point, then 4i is also a maximum point,
and if 4Z is a maximum point and

then x is also a maximum point. To prove this, let's note
that equation (4) is true for all x such thatand from equation (3) we obtain

OUAIIIUlll/IIAIURI 1I



Ilte selolmafimum ruiltls
Let's now investigate the structure of the set E.
It seems very likely that if Hermite had understood

just how complex van der Waerden's function was, he
would have turned away with even greater disgust. On
the other hand, it seems possible that the subtle and
beautiful structure of this set might have inspired
Hermite to study nondifferentiable functions. Who's to
say?

We already know two points of the set E: ll3 and}l3.
We have also demonstrated that E clll3,2f Sl.Further,
we can show that the set E is closed. This means that
if a sequence of points of E converges to a limit, then
this limit is also in E. To prove it, suppose that
xoeE(n=1,2,3...). fhis means that (D(x,) : M.Let

lg'" = u'

Then, since O is continuous at x, it follows that

o(")= *(111"")= |g3o(x,)= M.

This means that x e E, so E is closed.
From the statements proved at the end of the previ-

ous section, and the fact that 1 is a period of o, it fol- Figure B

18 JU[Y/[ttEltsr rsso

lows that if x is a point of E, then both

t14 + xl4: (t + xlla

and

i be a maxi- Zl4 + xl4 = (2 + xlla

also belong to E. Thus, starting from the points 1/3
and2f 3, we can construct many other points in the set
E:

and so on.
It's easy to see that a1l the numbers of the form

cx.r 0., u.:- I u,-
rl f l-- ----- - .., - -4 4 l- I l

whcrc cvery cx,l ,a2,...,a,,ar+L is either one or two/ are
elements o{ the set E. Since

1111
-_.-:3 4 _t' _r

we can represent such numbers -\ as

CXr (Ir U. U.,, t CX, r
\'-lr - f I r 'r I r

4' + 
'-t'4t,*)'"''

or, drawing an analogl,rrrth the usual decimal fractions,
in the form of an infinrte penodic "quatcrnary" fraction
with a one-digit-long perrocl:

x = 0. cxtoz . . . cl- rrct... -iu-..-t . . . = 0.. cr1a2, . . a rr(ttrr*r).

Since the set E is closed, any number of the {orm

{"}. [],;l

{o}. [J,3]- [i,*]

!= ru= o(i)=

o(4r) =!= u.

<Dti)=l*l*too,= 2

)4 3

(We invite the reader to check this.) Let
mum point. Then

Therefore,

and

=M.

|*!a1+"1,

Now suppose that 4i rs a maximum point and

{i}. [1 q].
L r L4,4)

Then

o(4i) = M:2,

-I I I 2 T I I 12
F._f _._ _r_._ _f _._

4 43',4 43'4 43',

.1.=o.olrlrrltl
I I ^^')')')r))(,-Tl-u'u:
r=L=o.roooooo+ tl
f=a-0.rlrrrlrI tl

fr =0, t222222

1-4=o,2ooooooI t,
1=0.2rllrrr
t')

2: 8 :n ) ) ) ) ) ) )
.t - l2

i=#:o,3oooooo
2:to:0,3r11111

S=o,Bz2zzzz



O(, O(o Ct - C[ -, , O(.^, ,
^:----T---;-T...T---=T - 

T 
- 

T.../
4 4' 4n 4n+t 4n+z

where eacfroj is either one or two belongs to E. In fact,
for every x of this sort/ we can find a sequence (xr) of
points from E converging to x; for instance, if

O(r Cf,r O(-. 1 1
:a = ----!- L ---!- L r ----g- r"n4424n4n3'

then

/ ,_')
lr*", =x 

[for 
0< x- x"<g ]

Thus, the set E consists of all numbers that can be repre-
sented as the infinite quatemary ftaction 0.crro, ... an ... ,
where every o(1 is either one or two (in fig. B, we see the
quatemary decompositions of the number lll2,2ll2, ... ,

ttlr2l.
Now let's prove that E contains no other numbers.

Suppose that the quaternary notation of a number x e E
contains 0 somewhere after the decimal (or quatemary)
point; that is, x =0.u"1u"2 ...a.o\a,r*2...; then

{o'"}= o'ootn*2 "'e E'

l

But

I 13 5112 t 12

Figure 9

7112 213

0.Oo,-rcr,*u ...<0.033 .. = t( +***')=1-[+2 ' 4r ' "')- +'

and thus {4"x} lies outside the segmentlllS,2lSlthat
contains E.

On the other hand, if there is a numeral 3 in the
quaternary notation of a number x € E (that is,
x = 0.crto(z ...a.n}a,n*2..., ) then

{o' "}= o'30n-z "'e E,

which is impossible because 0.3o, * 2... > 0.3 = 314.
We can give a geometric construction of the set E as

follows. Divide the segmentlllS,2lSlrnto four equal
parts and delete the interior points of the two parts in
the middle and the midpoint of the segment (fig. 9).
Then, again divide each of the remaining segments into
four equal parts and delete the interior points of the two
parts in the middle and the midpoi.nts, and so on. The
set remaining after all such deletions consists precisely
o{ all the points in whose quaternary notation we iind
only the numerals I and 2 ltry to prove this yourself ),

in other words, the set E. O
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]lydroHradoxe$

When fluids forsake model behavior

by S. Betyaev

ARADOXES ARE SURPRIS-
ing statements that drastically
contradict common sense. The
practical importance of para-

doxes, "the motors of progress,"
consists of opening up new vistas
of an old theory or paving the way
for a more perfect theory (and
sometimes even for a new branch
of science).

The theory of relativity incorpo-
rated the paradox of a velocity limit
for information transmission into
modern science, and quantum me-
chanics did the same with the para-
dox of signai discontinuity in a mi-
crocosm. Paradoxes gave rise to
the fields of elementary particle
physics and cosmology and stimu-
lated the development of modern
mathematics. The most fundamen-
tal paradoxes/ cornerstones of sci-
ence/ are formulated and interpreted
by geniuses. This was evident to the
giant of Russian poetry/ Alexander
Pushkin:

Oh. the amazing discoveries
That come from the spitit of leaming
And experience, son of errors,
And genius, friend of paradoxas,
And chance, the inventor-god.

Science clearly distinguishes be-
tween experimental {acts and theo-
retical genetahzations based on
mathematical simulations. Scien-

"4,ryY I \+
*-+l ut Y;a lJ f:
-ryfr#6tr

I
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tific paradoxes can be subdivided
into three types.

The first type is a contradiction
between a generally accepted theo-
retical concept and a new theoreti-
cal inference. These simplest of
paradoxes (the "theory-to-theory"
type) result from an improvement of
a mathematical model or calcula-
tional method.

The second type/ contradictions
between general experience and a

new, experimentally based notion
("test-to-test" paradoxes) deserve
more detailed consideration/ which
we'l1 give now, putting aside for a

while the definition and analysis of
the third type of paradox.

The panadoxe$ ol $ylnlneFy
Do symnletrical causes always

result in symmetrical effects? This
is not true on the microscopic
scale (see Richard Feynman's book
Theory of Fundamental Pro-
cesses). However, it isn't always
true on the macroscopic scale ei-
ther. For example, the streamlined
flow of a fluid around a symmetri-
cal body is frecluently asymmetri-
cal. This is the hydrodynamic
symmetry paradox.

Figure 1 shows the symmetrical
water flow around a circular cylin-
der. The trajectories of fluid particles
are made visible with the help of
aluminum powder. In the figure, the
water flows from left to right. The
upper and lower halves of the figure
are symmetrical: One is the mirror
reflection of the other. Moreover,
the flow around the {ront and rear of
the cylinder is also almost sym-
metrical.

Figure 2 shows the flow around
the same cylinder under different
conditions. The vertical symmetry
still exists, but the symmetry be-
tween the left and right sides of
the flow is broken: There are two
closed zones w'i th counter-rotating
fluid particles behind the cylinder.

Finally, figure 3 shows the flow
around the cylinder when both
types of symmetries are disturbed.
In this figure, visualization was
achieved with air bubbles dis-
persed in the water.

Why does the
flow lose symmetry?
Right now we can't
give a complete an-
swer to this ques-
tion. Let's try to deal
with simpler ones
first. For example,
what are the differ-
ences in flow around
the cylinder in the
three cases? Each
case has different
values of the ratio of
the forces affecting
the fluid particles:
the ram force and
the viscous drag
force. This ratio is
characterized by
the dimensionless
Reynolds (Re) num-
ber. At small Re val-
ues the viscous
forces arelarge,anda
body moves in a

fluid like a pellet in
honey (the Re num-
bers for the cases in
figs. 1 and2 are 1.5
and26l. At large Re
numbers the viscous
forces are small, and
the flow becomes
unstable and even
turbulent lRe:2000
in fig. 3).

The change of
symmetly type and
its abrupt destruc-
tion is a fundamen-
ta1 feature of modern
hydrodynamics. In
real-life conditions, absolute sym-
metry is impossible, and there is al-
r /ays some asymmetry in a flow.
Therefore, even if symmetrical
causes result in symmetrical effects,
near-symmetrical causes lead to
cluite asymmetrical consequences.
This is one explanation of the sym-
metry paradoxes in hydrodynamics.

ThB Eiflsllarador
Another paradox, which is physi-

cally close to paradoxes of symme-
tryl was discovered in l9l2 by the
French engineer Alexandre Gustave

Eiffel ( 1 832-1923). In his later years,
he was interested in hydrodynamics,
especially the effects of wind loads
on architectural structures. When
experimenting with balls inside a
self-made wind tunnel, he discov-
ered the paradox that was later
named for him: When the flow
around a ball reached a " crrtical" Re
number of about 150,000, the air
resistance dropped drastically (by 4
to 5 times) when the velocity in-
creased. This observation runs
counter to common physical experi-
ence and intuition.

Figurel

Figure 2
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Let's write the aerodynamic drag
force as

'* n|'
F =C,[RelPu 

-
- vdr.\v/ 

2 4'

where p is density, u- is the veloc-
ity o{ the undistur,bed free stream,
and J is a charactdristic size of the
streamlined body. The proportional-
ity F * pu?*12 can be easily obtained
by dimensional analysis.l The nu-
merical coefficients l12, xl4, and Co
are written for the sake of conve-
nience. The dimensionless drag co-
efficient Cu can be determined ex-
perimentally. Usually it decreases
with Re-that is, with a decrease in
viscous friction.

The Eiffel paradox does not occur
only in flows around spherical bod-
ies. Figure 4 shows the experimen-
tally obtained function C6(Rel for a
ball, cylinder, and disk of the same
diameter l. For the ball and cylinder,
there is alarge scatter of experimen-
tal data at the region of drastic
change of C6, shown by the wide
parts of the curves. On the other
hand, the drag coefficient for the
disk is virtually constantl This re-
sult can be generalized: The Eiffel
paradox does not hold for bodies
with sharp edges.

The Eiffel paradox is explained by
a transition near the critical Ra
number from smooth (laminar) flow
to turbulent (stochastic) flow. Thus,
a small change in the Re number
results in a drastic rearrangement of
the flow.

Small variations in parameters

lY. Bruk and A. Stasenko, "The
Power of Dimensional Thinking,"
May/fune 1992, pp. 34-39.

that lead to radical changes in flow
are typical in hydrodynamics. This
effect is responsible for many in-
stances of surprisingly large scat-
ter in experiment al data obtained
at seeiningly identical conditions.
Therefore, in simulating the flows
around bodies in wind tunnels,
one should take into account ef-
fects of the tunnel's walls, the ap-
paratus supporting the body, the
heterogeneity of the free stream/
and the physical and chemical
properties of the body's surface
(such as roughness, wettability,
and thermal conductivity). In prac-
tice, it is very difficult (if not im-
possible) to do all this.

The Dttloi$ [aradur
One of the founders of experi-

mental hydrodynamics was the
French military engineer P. Dubois
(1734-1809). Dubois showed that
within a certain range of Re num-
bers, the resistance force a{fecting
a body resting in a tunnel with
water running at a certain speed is
less than the resistance force af-
fecting a body moving with the
same speed in motionless water.
According to Galileo's relativity
principle, the result of this experi-
ment should not depend on
whether a body moves in resting
fluid or whether fluid flows
around a resting body.

How can we explain the Dubois
paradox? Using the factors we've
just discussed, of course. The flow in
an experimental basin or aerody-
namic tunnel is less uniform than in
a tranquil sea or atmosphere, so the
transition to turbulent {low takes
place at smaller (subcritical) Re
numbers. This transition manifests
itself in a narrowing of the flow
" tail" andby a decrease in the resis-
tance.

The Dubois paradox is still un-
solved. The difference between ex-
perimental data obtained in a tunnel
and data obtained in real flight is the
number one problem in hydrody-
namics and aerodynamics.

Look at a helicopter resting on
the ground: Its blades curve down-
ward by almost 1 meter. However,

they are straight during flight.
Similarly, the wings of an airplane
change shape because of aerody-
namic forces in real flight. This
change is not very large, but it is
large enough to nullify the results
of scrupulous (and expensive!)ex-
periments. Therefore, to explain
the discrepancies between wind
tunnel and full-scale experiments,
we need to take into account the
elastic properties of materials sub-
jected to the action of hydrody-
namic forces.

The Euhrd Alsln[El't [arador
Now we're ready to learn about

the third type ofparadox. In addition
to the "theory-theory" and "test-
test" paradoxes, there are "test-
theory" paradoxes. These are char-
acterized by a drastic contradiction
between theoretical results and our
experience, intuition, or common
sense.

The most famous hydrodynamic
paradox of this type is the Euler-
d'Alembert paradox. In 1742 Euler
calculated the drag force affecting a

cylinder moving in a frictionless
fluid, and he obtained a paradoxical
result: There was no resistance at all!
Seven yearslater, the great French
mechanician |ean d'Alembert calcu-
lated the flow around an arbitrary
body of a finite volume, and came to
the same striking result of zero resis-
tance.

This calculation directly chal-
lenges common sense. As every-
one knows from experience, it is
necessary to supply force to keep
a body moving in a fluid. This is
why aircraft, ships, and subma-
rines have motors and sails.
D'Alembert could not explain the
paradox, and he bitterly'remarked
that zero resistance was the only
paradox left for future geometers
to solve.

The future geometers (hydrody-
namicists and mathematicians)
had inherited a hard nut to crack.
Before cracking it, let's explain the
geometric character of the para-
dox. The flow studied by Euler and
d'Alembert is symmetrical-that
is, its right part is a mirror reflec-
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tion of its left part (similar to fig.
1). Thus, the projection of the
momentum of the circumflow jet
onto the free stream direction is
constant. It is the same at cross-
sections on the left and right of the
body. In accordance with conser-
vation of momentum, no drag
forces aflect either the jet or the
streamlined body. The point is
that the mathematical models
used by Euler and d'Alembert were
oversimplified. The real flow is
not symmetrical and looks similar
t\ the flows in figures 2 and 3.

As you may have guessed, vis-
cous friction disturbs the symme-
try of a flow. This friction is re-
sponsible for the tail formation
behind a moving body. So do we
understand the Euler-d'Alembert
enigma now? Not quite. The com-
plete explanation is far more com-
plicated. Look again at ligure 4.
Even at the highest attarnable Re
numbers, when the viscous forces
are negligible, the drag coefficient
is not zero.Therefore, asymmetry
and fluid resistance can arise even
in nonviscous fluids.

Such a fluid was "constructed"
by the German physicist Hermann
Helmholtz {1821-1894lr, who
closed the book on the Euler-
d'Alembert paradox. The flow
around a cylinder according to the
Helmholtz model is illustrated in
figure 5, which shows a region of
stationary fluid behind the cylin-
der. Thus, the true mathematical
model should take into account
both friction and separation of the
flow from a body.

Many other paradoxes besides
the Euler-d'Alembert paradox
have originated {rom oversimpli-
fied mathematical models. For ex-

ample, continuous
flow around the
sharp edge of a plate
({ig. 5al results in
the "infinity para-
dox'a: The velocity
of the flow increases
to infinity near the
edge. Additionally,
some kind of centrip-
etal force is needed
to turn the flow
through 180". Ac-
cording to Newton's
third 1aw, the plate
will be affected by
the "leading edge"
force, which is equal
in value to the cen-

a

Figure 6

Figure 7

tripetal one. Where is this force
applied? To the very edge of the
plate-a point without sizel In re-
ality, the fiow around an edge
separates/ and it is characterized
by the line of separation of the tan-
gent velocity (shown in red in fig.
6b). Thus, the velocity at an edge
is actually finite.

Col'l'eclness 0l mathematical models
The development of a consis-

tent mathematical model which
adequately describes a physical
process is a very complicated mat-
ter. In most applications such a
model is just a dream. The math-
ematician D. Birkhoff humorously
proposed subdividing hydrody-
namicists into experimentalists,
who watch phenomena that can-
not be described, and theoreti-
cians, who describe events that
can't be seen.

To avoid being trapped in a
paradox, a mathematical model
shouldn't be oversimplified, and it
should take into account the fac-
tors that result in a paradox when
they are neglected. From a physi-
cal viewpoint, this is a natural re-
quirement. However, mathemati-
cians consider problems on a
much stricter basis-a problem
should also be formulated cor-
rectly. Correctness implies three
requirements for a mathematical
model: the existence of a solution,
uniqueness, and stability.

CTearLy,lack of a solution is a

consequence of model oversimpli-
fication. For example, a solution
describing a radialflow converging
in the vertex of an angle (fig. 7 al
exists at arry Ra number. On the
colatraryt a similar solution for a
radial flow diverging from the ver-
tex of an angle (fig. 7b) exists only
at small Re numbers, which are
less than a certain critical value
Re*. When Re > Re*, a solution
doesn't exist. However, experi-
mentally we can see nonsta-
tionary, separated flow at suffi-
ciently large Re numbers. We've
come upon the paradox of the lack
of a solution in describing the flow
radiating from the vertex of an
angle.

Another problem arises when
there are several solutions. For ex-
ample, there are two roots of a
quadratic equation. Which should
be used? Let's consider the pos-
sible variants from an experimen-
tal point of view. If no possible
root is realized in an etperiment,
it simply means that the chosen
mathematical model and corre-
sponding quadratic equation are
not correct. If only one root de-
scribes the experimental event, it
usually means that this root is
stable, while the other is not. Fi-
nally, both roots can be rcalizedir,
an experiment.

When at certain values of the
parameter (x : xsl one solutionFigure 5
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Figure B

Figure 9

V = ytl is substituted by another
0 : yzl, bifurcation of the solution
takes place (fig. Ba). When both
solutions exist in some range of
the parameter (x, < x < x2), this is
re{erred to as hysterasrs: One solu-
tion (y : Ir) is realized when pa-
rameter (x) is increased from some
value x < x, (the direct pass), while
another solution (y : yzl takes
place when the parameter is de-
creased from x > x, (the reverse
pass). Thus, the fhoice of the
branch of the hysteretic loop de-
pends on the history of the pro-
cess. In aerodynamics, the hyster-
etic modes of flow are observed,
for example/ near the value of the
attack angle corresponding to the
maximum value of the lift force.

The paradox of multiple solu-
tions was solved by scientists at
the dawn of aviation. In 1910 at an
aeronautical show near Paris,
Henri-Marie Coanda, a young Ro-
manian engineer, launched an au-
plane that was a prototype of mod-
ern jet planes. It had jets of fire
emerging from lateral thrust
nozzLes. After a successful flight,
and disembarking with only minor
bruises, the young aviation de-
signer and pilot received enthusi-
astic congratulations. "Mon cher,
you advanced our epoch by 30, no,
by 50 years," exclaimed Eiffel. But
the pilot was distracted by some-

thing else. During
takeoff he had ob-
served strange be-
havior of the jet
plume. Instead of
being reflected
from the speciai
metal plates pro-
tecting the ply-
wood fuselage, the
jet plume followed
their surfaces and
even turned back-
ward.

However, at
that time this phe-
nomenon, which
became known as
the Coanda ef -

tectz, did not at-
tract scientific at-

tention. In the next 25 years,
Coanda, now a famous aircraft de-
signer, conducted experiments
searching for possible practical ap-
plications of this phenomenon.
Now the Coanda effect is used in
designing hovercrafts and hydro-
foils, increasing the propulsive
force of jet nozzles, braking air-
craft upon landing, and muffling
jet engine noise.

We encounter the Coanda effect
in everyday life-for instance, in the
stream of water that "sticks" to the
tea kettle's spout and doesn't make
it into the cup. This turning of the
stream and its following a solid sur-
face is jokingly called the "Kettle
effect." Figure 9a shows a stream
outflow without turning, and figure
9b shows the outflow with the turn-
ing of the stream. These are both
mathematical solutions. So, has the
Coanda enigma been solved? Unfor-
tunately, no. We don't know the
conditions with respect to either
mode of flow.

We mentioned another criterion
for the correctness of mathematical
models-the stability of their solu-
tions. Stochastic, unstable, and rela-
tively sma1l perturbations cannot be
analyzed using classic mathematical

2|et Raskin, "Foiled by the Coanda
Effiect," lanuary lF ebruary 199 4, pp. 5-
11.

tools. We cannot define an indi-
vidual stochastic traiectory, just as

we cannot say whether it will be
raining a month from now. At best,
we can hope to obtain a general de-
scription. There is a rhymed illustra-
tion to this remark by the Russian
poet and philosopher Vladimir
Solovyov:

Nature does not allow
Thevail to be drat+nt,her beauty shovvn;
With instrumants you will not find
What your soul had not already

guessed at on its own.

The paradox of instability arises
when the flow around a body kept
under constant external conditions
nevertheless varies with time. Fig-
ure 3 shows an example of a
nonstationary flow. A flow becomes
nonstationary when the Re number
surpasses a certain critical value.
Although it is known for sure that
instability is caused by the
nonstationary character of flow
separation from a body, there is still
a long way to the final solution of
the instability paradox. O

Quantum articles on fluid me-
chanics:

I. Vorobyov, "Canopies and Bot-
tom-flowing Streams, " |uly/August
1995, pp. 45-47.

H. D. Schreiber, "A Viscous River
Runs Throu gh It," November/De-
cember 1995, pp.4346.

A. Mitrofanov, "Against the
CLLrrert," May/|une 1995, pp.22-
29.

A. Stasenko, "Whirlwinds over
the Runway," |uly/August 1997, pp.
36-39.
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M236
Is that fight! Consider two

circles that inters ect at points A
and B. Let a line through B meet
the circles at points K and M (see

fig. 1). Let E and F be the mid-

Figure 1

points of arcs AK and AM, respec-
tively (the arcs that don't contain
Bl, and let I be the midpoint of
segment KM. Prove that ZELF ts a
right angle.

M237
C omplem entary rhombus angles.

Consider the rhombus ABCD. Find
the locus of points M such that
IAMB + Z-CMD: 180".

M23B
It's only natural. For what natu-

ral number n is the expression
logzo _ r@2 * 2) rational?

M239

has a single solution (xs, ys). Draw
the curve consisting of all possible
positions of the point (xo, 16).

HOW DO YOU
FIGURE?

ChallBltUB$

M240
Run for the border. A math stu-

dent is lost in a vast forest whose
border is a line. (Imagine that the
forest covers a half-plane.) The stu-
dent knows that she is no more than
2 miles from the border. Propose a
route for her such that she would
come out of the forest having
walked no more than 13 miles. (Of
course/ the student doesn't know
where the border lies, and no matter
how close to it she passes/ she can-
not see it. We say that the student
comes out of the forest when she
reaches the border.)

Physirs
P236

Speed of lunar rover. Estimate the
maximum speed of a camera-
equipped, self-propelled vehicle
moving on the Moon's surface and
controlled from Earth. (V. Shelest)

P237
Galaxy mass. According to

scientist's visual estimates, a mass
of M, = 1.5 ' 10IlMo is concentrated
within the limit R :3 . 10eRo from
the Galaxy's center, where Mo is the
mass of the Sun and Ro is the radius
of Earth's orbit. However, the period
of revolution of the stars located at
this distance {rom the Galaxy's cen-
ter is 3.75 ' 108 years, which corre-
sponds to a larger mass.

Find the "hidden mass" of the
Galaxy-that is, the mass of invis-
ible objects inside the sphere of ra-
dius R. When caiculating the stellar
motion, assume the mass M, to be
concentrated at the center of the
Galaxy. (V. Belonuchkin)

P23B
Refuigerutor in a room. A refrigera-

tor maintains an interior temperature
of -12'C. If the temperature of the
room is 25"C, the regrigerator's mo-
tor turns on every 8 minutes. After
t, = 5 minutes, the motor turns off.
Considering the refrigerator to be an
ideal heat engine working in reverse,
find how often and how long the
rcfttgetatot's motor would turn on at
a room temperature of 15'C. At what
maximum room temperature could
the refrigerator maintain the given in-
ternal temperature? (A. Zilberman)

P239
Railroad resistance. Long, bare

conducting rods made of copper are
randomly strewn on the rails of a toy
railroad. Find the resulting resistance
between the rails if the width of the
railroad is I : 5 cm, the diameter of
the rods is d :0.2 mm, the length of
a rod is h = 30 cm, the number of rods
is N = 100, and the resistivity of cop-
peris p: 1.7. 10-8 fi.m. (A. Zilberman).

P240
SpeedingUFO. AUFO flies hori-

zontally above Earth at a very high
speed v. What speed will a ground

Figure 2

observer measure when the direc-
tion to the UFO makes an angle S
with the vertical lfi1.2l? (S. Krotov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50

[lIath

v

Systematic cLlrve. Let the num-
bers a and b be such that the system

()
))=x--d'I 

,

l*=Y *b
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T HE WORDS AICEBRA AND
I algoriLhm are familiar to read-

I ers of Quantum, but do you
t know rireir origins? In fact,

u# both these words are associated
with one scientist: Muhammad

ibn Musa al-Khwarizmi, the out-
standing Arabian mathematician
and astronomer born about e.n. 780
in Hiva (modern Uzbekistan).

Al-Khwarizmi's most productive
period was around the year 825,
when he worked in Baghdad. The
reigning caliph al-Ma'mun patron-
ized astronomy and mathematics.
He built the "Flouse of Wisdom" in
Baghdad, complete with its own li-
brary and observatory. This impro-
vised academy of sciences concen-
trated nearly all the best Arabian
scientists of the time,

Muhammad ibn Musa aL-

Khwarizmi was one of the scientists
commissioned by the caliph to
translate the treatises of Greek math-
ematicians, calculate the length of a
meridian, and do other research. A1-
Khwarizmi wrote many books on
mathematics and astronomy.

In his work on arithmetic, al-
Khwarizmi explains the Indian sys-
tem of notation for numbers and
details the rules of written calcula-
tions in the digital system of nota-
tion. The original Arabic version of
this book is lost, but a Latin trans-
lation made in the twelfth century
survives. This book was one of the
main sources that brought the digi-
tal system of notation to western
Europe. The title of this translation
is Algoritmi de numero Indorum
( "Al-Khwarizmi Concerning the

LOOKING BACK

The leuacy ol ill-lffttuarizlni

by Z. D. Usmanov and L Hodjiev

Hindu Art of Reckoning"). Thus the
term algofithm, the iatinized form
of al-Khwarizmi's name, was intro-
duced to the mathematical lexicon.

At first algoilthm meant just the
positional decimal numeration.
Later this name was given to all
works that spread the Indian nu-
merical system in Europe, and, fi-
naIly, it came to mean the system
itself. Today the word algorithm
denotes a finite set of rules that al-
lows one to solve a problem in a

purely mechanical way, as in a com-
puter program.

In his Algoritmi de numero
Indorum, al-Khwarizmi explains
how to write numbers and perform
the four basic arithmetic operations
with integers and simple fractions.
Still, he considers the doubling of a
number and division by two to be
separate operations. A11 the reason-
ing in the book is carried out only in
words; there is not a single formula
in it, and all the examples are ex-
plained by numbers denoted by
words or Roman numerals rather
than by the usual decimal figures.
Al-Khwarizmi does not explain how
to carry out subtraction when a fig-
ure in the subtrahend is greater than
the corresponding figure in the
minuend.

Another famous book of al-
Khwarizmi is Kitab aL-labr wa al-
muqabalah, which means "The
Book of Integration and Equa-
tion." The Latin translation of this
book became popular in western
Europe, and thus the word algebra
(fuorn al-labr in the title) was used
to name a whole branch of math-

ernatics-the branch concerned,
tili the middle of the nineteenth
century/ aimost exciusively with
ecluations.

In e{f ect, the word al-l abr , accord-
ing to al-Khwarizmi, means thc op-
eration that allows one to move the
terrns from one side of an ecluality to
the other so that at the encl both
parts contain only positivc tcrns.
The word al-ntuqnbttlaTr means the
following operation of collecting
similar terms so that only one posi-
tivc temr oi each degree remains on
one side. Thus, for instance, using
the first operation, one turns the
equation

3xl-5x-(r=5'2 +7x-)
into

.Jxz+(.=*-Izx. 2,

and then, through the second opera-
tion, the equation becomes

2i+4=12x.
So, the whole scrence of eclua-

tions ("a1gebra"l, the s,vrnbols devel-
oped for thrs purpose, and the whole
theorl' of abstract operations that
greu, frorl these investigatJ.ons bear
the name of the operation al-labr.
Unlike ancient Grccks and Arabs
and their successors in Europe, we
don't demand today that both parts
of an ecluation contain only positive
terms.

In his book Krtab nl-lttbr wn al-
muqab alah, al-Khwarizmi consid-
ers linear and Lluadratic etluations,
but he doesn't use any algebraic
formulas. Everything is explained
with words. Thus, he calls the
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variable of an equation the root,
and he calls its square simply the
square. Six kinds of equations are
considered:

. "squares equal to roots,"

. "squares equal to a number,"
o "roots equal to a number,"
. "squares and roots equal to a
number,"
. "squares and a number equal to
rootsr" and
o "roots and a number equal to
squares."

The translation of this set into mod-
ern algebraic language can be writ-
ten as

a* : bx,
a*:b,
ax=b,
a*+bx=c,
a*+b=cx,
ax+b:cx2

where a, b, c > 0.
Al-Khwarizmi investigates the

last three types of equations using
the following examples:

* + IOx:39,
* +21= 10x,

3x+4=*
(later these equations appeared in
many books on algebra). He de-
scribes the equatiotr x2 + l)x : 39
as "a square and ten of its roots
make thirty-nine dirhams, ... and

t0l4

x

r0l4

*

tol4 x tol4

Figure'1

this means that if one adds to a

square something equal to ten of
its roots, one gets thirty-nine" (a

dirham is a silver coin; here it is
used to denote the constant term).
And the procedure that allows one
to calculate the root of this equa-
tion, the formula

5-x

Figure 3

B G
x-

A

F
K L E

./{
N M

x D

x-B

Figure 4

Thus, (5 - xl2 : 4, andtherefore x, = 3.
Figure 4 represents the construc-

tions al-Khwarizmiused to solve the
equation 3x + 4: x2. The square
ABCD with side x is divided into two
rectangles ABFE and EFCD, whose
areas are 4 andBx, respectively. Fur-
ther, we draw the squareAGHMwith
side x - 312.It is not difficult to cal-
culate its area: Itis25l4, since Srr.r,
= 914 and So.rr*, = S,qsru = 4. But
then we have (x - 312)2 :2514, x : 4.

Al-Khwarizmi concludes his trea-
tise with the "Book about Legacies,"
in which we find numerous applica-
tions of equations to the questions
of everyday life, for instance, to the
hereditary laws that existed in the
Arab world at that time.

Al-Khwarizmi's works played an
important role in the history of
mathematics. They were the main
source from which western Europe
learned of Indian numbers and Ara-
bic algebra. But al-Khwarizml's ac-
tivity was not limited to mathemat-
ics. He wrote a geographical treatise
that started the development of geo-
graphical studies in the medieval
East. He organizedscientific expedi-
tions to Byzantia, Hazarta (the re-
gion around the lower part of the
Volga river), and Afghanistan. He
also directed the work that allowed
the calculation of the length of one
degree of arc along a meridian with
good precision.

0ljAilTU I'l/t00 l(lilG BAGI(

+39

al-Khwarizmi explains as follows:
"Take one-half of the number of
roots in this problem, the result is
five; multiply it by its equal, you get
twenty-five. Add it to thirty-nine,
you get sixty-four. Extract the root
from this number, you get eight;
subtract one half of the number of
roots, which is five, and three will
remain. This is the root of the
square that you sought, and the
square is nine."

Al-Khwarizmi proposes two geo-
metric ways of solving this equation
(figs. 1, 2). hr figure 1 four rectangles
with a side equal to lO I 4 aredrawn on
the sides of the square with side x,
after which the corners of the figure
obtained are filled with squares with
sides 10/4. The area of the square
with side x + l0l2 that appears in this
way will be equal to a known num-
ber: 39 + (lOl2l2. And in figure 2 we
see the scluare with the same area 54,
composed of the squares with areasx2
and25, which corresponds to another
possible way of rewriting the equation
* +llx= 39, which is

*+2.5x+25:54.
Although the equation/ + 2I = l}x

has two positive roots (x, : 3 and
xz:71, al-Khwarizmi proposes a geo-

metrical solution oniy for xr = 3.
Flowever, he points out that xz = 7 .

The proposed solution is shown in
figure 3. First we draw a rectangle
ABCD with sides x and 10, then the
square EFCH wtth side 5. A{ter this,
we can calculate the area of the
square EMLO in two different ways.
On one hand it is eclual to (5 - x)2; on
the other hand,

sr*ro= snpcn- S*r"ror*
= 25 - S"r", :25 - (10x - x2)

=2s-2t=4.

/10)rttlc l
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These are two examples of the
Doppler shift. The motion of the
source shifts the frequency of the
sound you hear. If you are at rest
relative to the air, the freqrency f
you hear is given by

" ^( v )I=lol : l,
\y+ysl

PHYSICS
CONTEST

Dnppler heats

"The most persistent sound which reverberates through man's history
beating of war drums." 

-Arthur 
Koestler

by Larry D. Kirkpatrick and Arthur Eisenkraft

S A POLICE CRUISERDRTVES
by with its siren sounding,
you notice that the pitch of
the siren decreases. The same

thing happens at the Indianapolis
500 as a race car passes you. The
pitch of the engine is steady as the
eat apptoaches, decreases as the
car passes by, and is steady (but
lower) as the car recedes into the
distance.

where l" is the frequency heard by
the observer at rest/ v. is the speed
of the source/ and y is the speed of
sound. The minus sign is usedwhen
the source moves toward the ob-
server and the plus sign is usedwhen
the source moves away from the
observer.

Doppler worked out this math-
ematical relationship in 1842. He
pointed out that the motion of the
source toward the observer causes
the sound waves to reach the ears at
shorter time intervals-therefore,
the higher frequency. The reverse is
true when the source moves away
from the observer.

Doppler's formula was put to an
experimental test a few yearc
later. For two days trumpet players
rode on a flat car that was puiled
at different speeds. Musicians who
had perfect pitch stood on the
ground and recorded the notes that
they heard as the train approached
and receded. Their observations
were in agreement with Doppler's
formula.

The motion of the observer also
changes the frequency. When you
ride in a train, the bell at the cross-
ing has a higher (but steady) pitch as

you approach the crossing and a
lower pitch as you leave the crossing
behind. This effect is described by

, ,(v+vn)I=l"l-1,\v)

where vo is the speed of the ob-
server. The plus sign is used when
the observer moves toward the
source and the minus sign when
the observer moves away from the
source.

These two effects can be com-
bined into a single relationship

, ,(v+vn)
I = l"l --=- l,

Iy+ys /

where the upper signs refer to the
motion of one toward the other and
the lower signs refer to motion of
one away from the other.

Another interesting sound effect
occurs when two sirens produce
sound waYes with approximately
the same pitch. The two sound
waves produce a sound with a pitch
halfway between the two pitches,
but with an intensity that varies
periodically from no sound to a
sound with four times the loudness
of either source. The period of this
beat frequency is just the difference
of the two frequencies.

Piano tuners use beats to tune
the wires corresponding to the
same note on a piano. After one
string is tuned to the correct fre-
quency/ it is struck at the same
time as another wire. If the two
wires have the same frecluency,
there is no variation in loudness,
that is, the beat frequency is zero.
However, if the second wire has a
higher or lower pitch, the loudness
of the sound will vary with a fre-
quency equal to the difference of
the two frequencies produced by
the wires. The piano tuner then
adjusts the tension in the second
wire until the beating disappears.

These two sound effects were
combined in an interesting way on
the second exam used to select the
members of the U.S. Physics Team
that will compete in the Interna-
tional Physics Olympiad in Reyk-
javik, Iceland, this |uly.

Two sirens located on the x-axis
are separated by a distance D. As

.)<
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heard by an observer at rest relative
to the sirens, the left-hand siren has
a frequency f1_andthe right-hand si-
ren has a frequency /*. Assume that
you are moving with a constant
speed vo along the x-axis and record
the following observations :

1. When you are on the right-hand .

side of both sirens, you hear abeat
frequency of 1.01 Hz.

2. When you are on the left-hand
side of both sirens, you hear abeat
frequency of O.99Hz.

3. When you are between the two
sirens, the beat frequency is zero.

A. In which direction are you
moving along the x-axis?

B. What is your speed as a fraction
of the speed of sound?

C. Which frequency is greater?
D. What are the numerical values

of the two frequencies?

Please send your solutions to
Quantum, lB40 Wilson Boulevard,
Arlington, YA222OL-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Local lields
We asked our readers in the |anu-

aryfFebruary issue of Quantum to
calculate the local fields on an ide-
alized spherical Earth.

1. At the North Pole, the local
field is due only to the gravitational
force, since the angular velocity
there is zero.

),r= "if, =r?r'N,,Ll R'2

GM"
8N=#=9.804m1s2,

Ri

where

G = 6.6726. 10_1r N.kg2/m2,
ME= 5.977 . 102a kg,
RE = 5.378 . 106 m.

At the Equator, part of the gravi-
tational force is needed to provide
the centripetal force on the rotating
Earth. The local field is reduced by
this amount.

\., ="4_:* - m<,r2R. = mEE,
^Ll n2nE

GM.
8e. =- -;g-ol"Rr

J<E

= (l.so+ - o.o 84) m I s2 = 9.770 m I sL .

At 40' latitude, a component of
the gravitational force is needed to
provide the centripetal force on the
rotating Earth. The local field is
once again reduced by this amount.
In this case/ we resolve the gravita-
tional force into components paral-
leland perpendicular to Earth's axis
of rotation and reduce the perpen-
dicular component by the centrip-
etal force.

In the perpendicular direction:

I 4.* = ff "os 
o - mrrr2R. cos o

= m9perp,

where R. cos 0 is the radius of the
circle that objects at 40o latitude
rotate. Therefore,

(ctw. )
Sp".p = l#-ro2R. lcose

\KE )
=7.484 m ls2.

In the paraliel direction:

I4- = mgpar I

CM"
80,. = f#sin0 = 6.302 m I s2.

11'6

The vector sum of the two com-
ponents is therefore

810 = m/s2

=9.784 m ls2,

o = tan-1 
6'302 

= 4o.Ioo.
7.484

2. The angular deviation between
the local field at 40'latitude and the
radial line toward the center of Earth
is 0.10'.

3. The local field is along the ra-

dial line at the equator (both the
gravitational force and centripetal
force are along the same line) and
along the radial line at the North
Poie (no centripetal force). There
must be a latitude for which the de-
viation is greatest. Finding this iati-
tude and its corresponding deviation
requires us to use the equations de-
rived in part 1:

(cm. \
sp.,p =l#-or2Rr lcoso,\.}(i )

.e^.. = 
q+sine,

dpar 
R3

To find w-here the deviation of
this angle from 0 is a maximum, we
can plot the equation ie'- 0l versus
0 and find the maxrmum. Alterna-
tively, we can find rhe rrraximum on
a spreadsheet or take the derivative
and set it equal to zero:

10'= tafl '

0'- 0 = tan

GM"
---;!-srn0

R,'

(sYr- ro2R. ).o,e[Ri ')

CM.
---:-L sln o

-1 f{p
-e

t+-,'n.).o,e
= tan-l Ktan0 - 0.

where

GMe

R"2
,t _ 

,

(g+_,,a.)
[Rf )

d(e'-e)= a.="",,= _l=o.
de l+K2tan2e. - -'

tl
sin0 = /-.

V K+1

On the rotating Earth, K is very
close to 1 (that is 9.80419.770 = 1.0035),

and the maximum deviation occurs
at an angle slightly less than 45". On
objects where the rotational speed is
much greater, we find that the maxi-
mum deviation occurs at even

7.4842 + 6.302)

3ll JU[Y/[ttGUsr rsgB
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AT THE
BLACKBOARD I

WeiUhlle$$ne$$ in a cal'?

by Sergei Pikin

O DRIVE A CAR WITHOUT
getting into an accident, you
should not only know the rules
of the road, but also the laws of

mechanics. We can see this by con-
sidering the following problem.
How fast should a car travel at the
top of a convex bridge with a radius
of 40 m to momentarily put the
driver in a state of weightlessness?

Let's consider a frame of reference
attached to the ground. The driver is
affectedby two forces: gavity mgand
the supporting force N. Since at the
top of the bridge the driver is weight-
less, N = 0. Lr projections onto the y-
axis, Newton's second law says (fig. 1)

mg: ma, where a: fllR.
This yields

y = r[R = 20 m/s =72 kmlh.

At first everything looks O.K.
This speed is below the speed limit.
But let's think further and ask what
will happen to the car (and the
driver) after passing the top of the
bridge, and what happened to them
before the top? You'll see from the
next calculations that the situation
described in this problem is actually
impossiblel Find, for example, the
normal force Nbefore the car gets to
the top, provided its speed is a con-

stant v = xEf $iS.Ll.In projections
onto the y-axis, the equation of mo-
tion looks like this:

.rnscos 0--N:rilat
where a: vzlR and v=rER, fro-
which we get

N:mg(cos c- 1).

So, if at the top o{ the bridge N: 0,
Nis negative (N< 0)everywhere else!
The passengers would need to fasten
their seatbelts to prevent being

NK

slammed into the ceilingl But the car
can't be "fastened" to the road, so it
will take off from the bridge and after
a spectacular flight will land back on
the road. The most probable result of
suchweightlessness wouidbe a dam-
agedcar.In other words, when trying
to ride on the convex bridge at the
speed v = ,ER, not only can't you be-
come weightless, but you may well
be injured.

Well then, is there a constant
speed at which one can ride on the
convex bridge to experience a mo-
ment of weightlessness? Assume
that the bridge has a radius R and
subtends the angle 2u lfig. 31.

The formula for N shows that the
normal force is minimal at the en-
trance of the bridge. So if the car
doesn't take off when it first hits the
bridge, it won't do so later. Thus,

m8 cos o"- N = foa,

where N > 0 ar..d a : vzfR, frorn
which we get

v < 1gRcosc.

This is the maximum speed at which
to drive a car on a convex bridge.
The state of weightless'ness witl be
experienced twice: at the entrance
and at the exit of the bridge. O

m8

Figure 3
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EVERAL INTERESTINC EL-
ementary theorems concern a
right triangle with the altitude
drawn to the hypotenuse. This

seemingly ordinary situation can
give rise to many interesting and
nontrivial results. We can build
these up from simple properties
studied in most geometry classes.

A

Figure 1

Let ABCbe a right triangle and let
H be the foot of the altitude to hy-
potenuse AB (iig. 1). As usual, we let
AB : c, BC : a, AC = b, AH : b', BH
: a', CH:h, Z.A: o(, and lB:$.The
f ollowing statements and properties
are easy to prove.

l. Triangles BCH, ACH, andABC
are similar to each other.

2. a2 : a'c, b2: b'c. (These rela-
tions imply the Pythagorean theo-
rern'. a2 + b2 : a'c + b'c : cla' + b'l = c2.l

3.h2:a'b',h:ablc.
4. Let R be the center of the circle

inscribed in ABC and let r be its ra-
dius (fig. 2). Then r: (a + b - cllz.

C

AmB
Figure 2

Proof , We note that the quadri-
lateral RKCL is a square and use
the fact that tangents drawn to a

circle from one point are equal.
Then c : la - rl + (b - r), and thus
r:(tlzlla+b-cl.

s. LARB = 1Bo" -(rl2ltA-(Ll2)zB: 135".

Things get more interesting if we
inscribe circles in triangles ACH
and BCH (fig. 3). Let their radii be r,
andrrrespectively, and let their cen-

AA P Rr TrH sl Q

Figure 3

ters be at R and S. Then:

5.r+tr+12:h.
Outline of proof . We have

a+b-c
I --, 2

h+b'-b
-t2t

and

h+ a'- a
"2

Adding these formulas, we obtain
the relation

-aaaI *--* | ' '2'
Proof , Since triangles ACH and

ABC are similar, we conclude that

Similarly

rrbj=-=COS0.
rC

htl^a1--cosp.
IC

Thus,
/t : I cos A., Iz: r sin Cx,

ancl thereiore,

i=rr)+r)).
8. If line CR intersects AB at P,

anci line CJ intersects AB at Q lfig.
31, then AC = AQ and BC = BP.

Outline of proof . The first ec1ual-

ity follows from the following se-
quence of equaiities:

ZCQA: ZBCQ + tB
= ltlz)s. + $: lACH + IHCQ
=B+(1/2)cx=tACQ.

KALEIDOS(
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The second
equality is
proved simi-
larly.

9. Suppose
point 7 is the

center of the
circle inscribed in

triangle ABC lsee
fig. 3). Then 7is also

the orthocenter of tri-
angle CRS (the point

where the triangle's alti-
tudes meetl, and T is also the

center of the circle circumscribing
triangle CPQ.

Outline of proof . The lines BS and
AT are the bisectors of. z.B and lA,
respectively. Since triangles ACQ
and BCP are isosceles, this means
that the lines BS arrd AT are perpen-
dicular to CP and CQ and that they
divide these segments into halves.

10. The lines TrR and 7rS arepa:r-
alle1to BC andAC, respectively.

Outline of proof . Let T, be the
foot of the perpendicular from 7 to
AB. Draw the perpendicular TrR,
from 7, to AC (see fig. 4). Let R* be
the point where TrR, meets A7.

A

Figure 4

We'llshow that Rx : R.
Triangles ATT, and AR*R, are

similar. Therefore,

R*Rz 
=AR,TTt ATt'

From right triangle AR2T, we see
that ARrlATr = cos o. Thus

R*Rr, : 77, cos c1: z coS 0.

But triangles ABC andACH are simi-
lar, and the ratio of any two corre-
sponding parts is equal to ACIAB
: coS cr(. Thus rr/r = cos u, and RR;
COS 0( :/t.

Exercises. Prove the following
statements. Selected proofs are out-
lined.

11. The line PS is parallel to AT,
and the line RQ is parallel to BT.

12. Tnangles ATB, BSC, and
ARC are similar.

13. Points H and 7, lie on the
circle with diameter RS.

14. S71 : RT'.
Outline of proof . Since triangle

TtRRl is a right triangle and since
ZRTTR.: F, we conclude that TrR
sin B :1r = I sin B, and thus [rR = z.

We can similarly show that T,S : r.

15, CU : CV.
Outline of proof . Triangle ST,R is

isosceles (see statement 14) and
right (see statement 10). Therefore,
ZRSTT: 45o. But 7rS ll AC; thus
ZVUC : ZRST.: 45", and triangle
CUV rs isosceles.

16. Points Q, S, T, R, and P lie on
a circle with center at T, and radius z.

Outline of proof . Points S and R
lie on this circle (see statement 14):

Let's show, for instance, that the
point Q also lies on it.

Triangles T,SQ and CQA are
similar (7rS ll AC), and thus

s4 _ TlO
AC QA

(see statement 8).

17. Point K is
triangle CPQ.

TrQ: t'
the orthocenter of

18. The lines PS, RQ, and CH
meet at K.

19. RT :KS : SQ andRP = RK = 7S.

20. RS: C7.

21. Points A, R, S, andB iie on
one circle; points A, P, T, and C lie
on another circle; and points B, Q, T,

and C lie on one circle, too.

22. ATr. BTr: Sor" (Sor" denotes
the area of triangle ABCI.

Outline of proof Let ATr: u ard
BTr: v. Since Sor" : rs (here s is the
semiperimeter of ABC), we have

I
Sesc = )rla+b 

+ c) = r(r + u+ v).

But (u + r)2 + (v + r)2 : c2 : lu + vl2,
and thus 12 + /u + v) : uv. The left
part of this identity is the area of tri-
angle ABC.

23. Scpo : labr)lc. Hint. The
height of triangle CPQ drawn from
the vertex C is h = ablc, and the
length of PQ is 2r.

24. Triangles HSR and ABC are
similar.

25. Triangles RRrT, and SSr7, are
congruent and arc similar to triangle
ABC.

25. Triangles AQR and ARC are
congment.

26. The circles circumscribed
about triangles ARC and CSB touch
each other at C, and CTis their com-
mon tangent.

-L. D. Kurlyandchik

ButAC:QAl
Therefore, S7, :

-?*
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$0, what,s tttlroltU?

Debunking problematic solutions

by l. F. Sharygin

ANY PEOPLE, EVEN SOME
who consider themselves in-
tellectuals, have only a vague
understanding of mathemat-

ics and often feel misgivings about
the simplest of mathematical state-
ments. For example, here is a prob-
lem dealing with a subject everyone
learns in school: percentage.

Problem 1. A farmer harvested 10
tons of watermelons and sent them
by river to the nearest town. It is
well known that a watermelon, as
reflected in its name/ is made almost
entirely of water. When the barge
left, the content of the watermelons
was 99%" water by weight. On the
way to the town, the watermelons
dried out somewhat, and their water
content decreased by l% lto 98%).
What was the weight of the water-
melons when they arrived at the
town?

Many people won't believe the
answer, even if they find it them-
selves. We invite the reader to solve
the problem independently. (Expla-
nations for the problems in this ar-
ticle can be found beginning on page
s3.)

Many people are ready to believe
the silliest reasoning, especially if it
is presented in public in a convinc-
ing manner. Consider, for example,
this old problem.

Problem 2. A retired general de-
cided to sell his old boots. He sent

his butler to the market with the
pair of boots and instructions to sel1
them for $15. The butler met two
one-legged veterans at the market
and sold them each one boot for
$7.S0. When the butler told his mas-
ter about it, the general said that
military veterans should be charged
less. So, he gave the butler $5 and
had him return it to the buyers. On
his way to the market, the servant
squandered $3 on drink and retumed
$1 to each of the veterans. Now let's
count the money: each veteran paid
$5.50. Multiplying $6.50 by 2, we
get $13. And $3 dollars was squan-
dered by the servant: $13 + $a : $16.
Where does the extra dollar come
from?

(This sort of reasoning can be
found, for instance, in the promises of
many politicians.)

This example is rather simple,
but it illustrates the way in which
many mathematical paradoxes are

Problem 3. The following "theo-
rem" is an additional test for the
congruence of triangles. If in tri-
angles ABC arrd ArBtCr the equali-
ties AB : AlBt, AC : ArC' and
IABC = lArBrC, hold, then these
triangles are congruent. That is, the
criterion SSA = SSA guarantees con-
gruence for any two triangles.

"Proof." Construct triangle AB,C
as it is shown in {igure 1. Lr this t1i-
angle ICAB,: lCtAtB, and AB,
: ArBr.Triangies ArBrCr and ABrC
are congruent by SAS (since it is
given that AC: Aptl. Thus, ZABC
: IAB,C and AB = ABr. Now draw
segment BBr. Triangle BAB, is isos-
celes. Therefore, IABB.= IAB2B.
We also see that ICBB,: lCBzB.
Thus triangle CBBris also isosceles,
and CB : CBr. Finally, we conclude
that triangle ACBris congruent to tri-
angle ACB because three of their
sides are equal, and therefore triangles
ABC andArBrCrare also congruent.

obtained. The reader is
pressed to believe plau-
sible but erroneous reason-
ing, the outcome of which
is a statement contradict-
ing some obvious or well- 

^known mathematic alfact. 
A

{Sometimes this error is
very slight and not easy to
find.) To demonstrate this,
we present a geometrical
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Is the "theorem" proved?
We do not ask you to refute the

conclusion of the "theorem." It is
not difficult to see that it is wrong.
But where is the error?

It is not always easy to under-
stand whether or not a mathemati-
cal statement is true. The ability
to find a mistake in reasoning is
one of the most important skills a
professional mathematician can
possess. The history of mathemat-
ics is replete with instances when
mathematicians found mistakes
in proofs that had been considered
flawless for decades.

We'1l consider a few more schol-
ariy examples. Each of the following
problems will be supplied with a

"solution." The solutions will con-
tain an error for you to find.

Problem 4. A parallel ogram AB CD
is given in which IABD = 40'. The
centers of the circles circumscribed
about triangles ABC and CAD lie on
BD. What kind of parallelogram is
ABCD?

B

Figure 2

"Solution." Let O and Q be the
centers of the circles circumscribed
abot ABC and CAD (fig. 2). Since
the perpendiculars drawn to AC
from these centers bisect AC, we
conclude that the line OQ is perpen-
dicular to the diagonal AC.lt fol-
lows that the diagonals of the paral-
lelogram are perpendicular to each
other. Thus, it is a rhombus.

Do you like this solution?
Sometimes the trick is in the

statement of the problem, and not
the solution-

Problem 5. The numbers p and q
satisfy the ecluation * + px + q = 0.
Find p and c1.

"Solution." Using facts about the
sum and product of the roots of a
quadratic ecluation, we have the fol-
lowing system:

30 JttrY/AUGU$T tssg

Solving it, we obtain two pairs:

p = 4:0,
and

P:L,q=-2.
Do you have any doubts concem-

ing the solution?
Problem 6. Solve the equation

tan (x + nl4) :3 cot x - 1.

"Solution." Transform the right
side of this equation by using the
formula for the tangent of a sum,
and introduce the new variable v tan
x. We find that

y*l 
=3 _,l-v v

This leads to y: 3/5, thus,

x : arctan (315) + rk.
Is that all?

Problem 7. How many solutions
does the equation log,/,u x: (ll16l"
have?

"Solution." The functions that
appear on the left- and right-hand
sides of the equation are inverses
of each other. If we draw their

Figure 3

graphs, we'll "see" that they inter-
sect in only one point on the bisec-
tor of the first quadrant. Therefore,
the equation has only one solu-
tion. Any obiections?

The next two problems lie some-
what outside the focus of our article.
The situations they describe seem to
be impossible. This is what attracts
our attention.

Problem 8. A section of greatest
possible area was drawn through the
vertex of a right circular cone. It
turned out that its area is twice the
area of an axral section. Find the
angle at the axial section.

The conditions of the problem
seem to be impossible, since the
axial section of a cone has the great-
est area.

Problem 9. The center of a sphere
lies on another sphere. It is known
that the part of the second sphere
lying within the first one has ar:' area
five times smaller than the surface
area of the first sphere. Find the ra-
tio of the spheres' radii.

Figure 4

To solve the problem we'Ilneed
the formula for the area o{ a spheri-
cal segment: S :ZnhR, where R is
the radius of the sphere and h is the
height of the segment.

"Solution." Let r and R be the ra-
dii of the first and the second spheres,
respectively. Draw a planar section
through the centers of the spheres (fig.
5). We have OA = OB : R and AB = r.
Drop the perpendicular BC from B
to OA. Now AC is the height of the
spherical segment that is the part of
the second sphere lying within the
first one. If we let AC : h, then us-
ing the Pythagorean theorem in tri-
angles ABC and OBC, we eventu-
ally find that the equarion.

lp+q=-p,
\r,=,

y: log,x

Figure 5



P_h2:R2_lR_hlr,

from which we get h: PlzR.
Now, the formula for the area of

a spherical segment gives S : n?.But
the whole surface of the first sphere
is 4nP. Thus the surface of the part
of the second sphere within the first
one is always 4 times smaller than
the surface of the first. But the state-
ment of the problem says that it is
5 times smaller, and thus we have a

contradiction. So, does the problem
have no solution?

Problem 10. A convex quadrilat-
eral with two sides of length l0 and
two other sides of length 6 forms the
base of a quadrilateral pyramid. The
altitude of this pyramid is 7. A1l the
angles between its lateral faces and
its base are 60". Find the volume of
the pyramid.

Figure 6

"Solution." Since all the lateral
faces form equal angles with the
base, we conclude that the projec-
tion of the vertex S of the pyramid
SABCD coincides with O-the cen-
ter of the circle inscribed in ABCD
(fig. 5). The radius of the circle is

7 cotSO':7luB.

The area of quadrilateral ABCD
equals the sum of the areas of tri-
angles ABO, BCO, CDO, andDAO.
All these areas are easy to find. Fi-
nally, we see that the area of the
base is

(10+6) .7112:rtzl"l3.

And the volume of the pyramid
equals 78413"13. Do you agree with
this answer?

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

o
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HAT DO RIVERS, TY.
phoons, and molecules have in
common? Only that they are
all composed of atoms? Not

so. They are all affected by a phenom-
enon known as the Cofiolis force,
which is caused by motion relative to
a rotating frame of reference.

Do we feel this force when we run
on Earth's surface? After all, we are
moving in the rotating system of our
planet. No, we don't. Still, it is the
Coriolis force that makes one bank
of a river steep and the other fiat-
tened, that spins huge air masses
into typhoons, and even intrudes
into the private life of molecules. So,
is this force negligible or not?

Let's consider two adjoining cir-
cular bands on Earth's surface lo-
cated at latitudes 0, and 0r. In figure
1 these bands are different colors.
Clearly, the higher the latitude 0,
the smaller the linear (circumferen-
tial) velocity: vz < vr. For example,
on the North Pole (0 : 9O'1, the lin-
ear velocity is zero.

Imagine a river in the Northern
Hemisphere flowing from south to

Figure 1
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Hiuel'$, lyphooffi,altd

lll0lBculEs
by Albert Stasenko

north along a meridian (perpendicu-
lar to the parallels of latitude-see
fig. 1 ). When flowing from latitude 0,
to latitude 0r, the water particles
" try" to keep their velocity v, (which
is directed to the east), and if Earth's
surface were smooth and slippery,
they would be deflected to the right
(to the east) when reaching latitude
0r. (This path is indicated by the
dashed line in fig. 1). An observer on
Earth's surface would say that the
water particles experience a force per-
pendicular to their velocity. This is
the Coriolis force, discovered in 1835
by the nineteenth-century French
scientist Gustave-Gaspard Coriolis.

Thus, the Coriolis force tries to
push flowing water aside. However,
if a river is confined to its bed, the
water particles will hit the right
bank because they move eastward
with velocity vz < v, and thus they
wiil gradually destroy the right bank
of the river.

If we imagine another Northern
Hemisphere river flowing from
north to south along a meridian
(fig.1 ), we rcalize that it would try to
turn to the west, again to the right
of the direction of its motion. Now
it is clear why all meridional rivers
in the Northern Hemisphere have
steep right banks and flattened left
banks. In addition, the water leve1 at
the right bank is always higher than
that at the left bank.

Clearly, in the Southern Hemi-
sphere meridional rivers must wash
out their left banks. This geographi-

<\
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cal phenomenon was first discov-
ered in 1857 by the outstanding
naturalist Carl Maximovich Barr,
who analyzed his own observations
and earlier reports (beginning in
1826) of Russian travelers. In addi-
tion, he gave the correct explanation
of this phenomenon as being caused
by Earth's rotation.

The effects of Coriolis forces are
manifested most spectacularly in
the motion of water and air masses.
Is there anyone who doesn't know
that the most famous oceanic cur-
rent, the Gulf Stream (directed to
the north in the Northern Hemi-
sphere), deviates to the right, depriv-
ing Canada of warmth and heating

Europe instead! It is a kind of river,
only without banks.

And how are typhoons created,
these formidable atmospheric phe-
nomena with characteristic diam-
eters on the order o{ a thousand
miles, which inflict colossal de-
struction? First a region of decreased
atmospheric pressure forms some-
where due to nonuniform heating of
Earth's surface by the Sun. The air
masses from the adjacent regions of
higher atmospheric pressure rush
toward the depression along radial
directions. As we akeady know, all
moving masses tend to deviate to
the right in the Northern Hemi-
sphere and to the left in the South-

Figure 2

ern Hemisphere. Therefore, a colos-
sal vortex arises, which rotates
counterclockwise in the Northern
Hemisphere or clockwise in the
Southern Hemisphere (fig. 2).

Now let's consider gas molecules.
They are known not only to move

(,
(-
oao
o
0l
o.
iD

OUAIIIIU]iil/AT TIII 8I.ACI(BOARD II 3g

ffiffi ffiil+tff+-i*il*

ffiffiffi,qffilffi

ffi

[+$i;r1tti;l+rq

ffiH+rffi
$uHffi tffifiii+ffiiXiriirurrffii:t ffi
,tttW-,:*'lrn,lffitr$;ifijq iii ii.,,

tftil4,,:1Xl+iil, i.+iirririlri't*iii+|.1:li.?ffi

ffi

ffi+ftil\$$t$t

ffig+iitiiilt$iirr+l1

ffi +$Hi

$Hth:ff :i'liiE$i$$i!$il

l*i$.i,t},ilffi lriiiri'll-$,ffi1,-{ffits]fuffiffi$

mlr-.lT'
ffi

ffi'F-.--1-T*".Fttl*m

ffi

'r .1l,i'.ilf -rli-'l'al.' --t-t
-"' 11 .i I

, : ,:,,,..,,,,,.;.,; ,,.ii, 
-'

, . ,, !r::iii;:lr:r:rr': '

rrrirtlllfil$il+r

;i-

:t.

ilr i.
'r $tl

:t::!.: .?

#

ffi

ffi ffi.



stochastically in any direction but
also to rotate very quickly in such a

way that the energy of their rota-
tional motion willbe of the same or-
der of magnitude as the energy of
their translational motion. In addi-
tion, under certain conditions some
molecular fragments (individual at-
oms or atomic groups and radicals in '

very complicated molecules) can
vibrate relative to the center of mo-
lecular mass. Again, the energy of
this oscillation will be of the same
order o{ magnitude as the energy of
either the translational or rotational
motion. By the way, in physics this
fact is referred to as the principle of
equipartition of energy per degree of
freedom.

Now consider a simple model of
a triatomic molecule that has two
identical atoms attached by elastic,
weightless springs to a central atom
(figs.3 and4). This model simulates,
for example, the carbon dioxide
molecule CO, which is an ex-
tremely important agent in powedul
infrared lasers. When nothing dis-
turbs this molecule, its center of
mass moves along a straight line.
Considering the time axis to point
to the right as usual, we consider the
motion of the molecule's atoms in
the reference frame that rotates
about the center of mass with the
same angular velocity as the moi-
ecule itself. We have already used
such a rotating frame of reference in
considering the flow of rivers and
the motion of oceanic and atmo-
spheric streams on the surface of the
rotating Earth.

There are two basic modes of os-
cillation of the system: (1) the pe-
ripheral atoms simultaneously
move toward and away from the
center of mass (both springs are si-
multaneously compressed or elon-
gated) and 12) the peripheral atoms
simultaneously move in the same
direction, which means that one
spring contracts while the other
stretches out.

It is easy to see that in the first
case (fig. 3), the molecule's rotation
is either accelerated or decelerated.
For example, when both atoms
move toward the center , they are at-

Figure 3

fected by the Coriolis force, which
deflects them to the right relative to
their centripetal motion. Therefore,
in this case the molecule's rotation
is accelerated. On the contrary,
when the peripheral atoms move
away from the center, the Coriolis
force again deflects them to the
right, and this time their rotation is
decelerated. We can observe the
same phenomenon when a figure
skater spins faster by drawing his or
her hands close to the body. This
can also be explained in the inertial
frame of reference by conservation
of angular momentum.

A new and much more interest-
ing phenomenon arises when the
molecule oscillates in the second
mode. Indeed, when the peripheral
atoms move in the same direction,
the Coriolis force again shifts them
to the right. However, while the ro-
tation of one atom is accelerated, the
rotation of the other is decelerated.
As a result, the molecule will be
bent. In a quarter of a period bend-
ing will occur again, but this time in
the opposite direction. Therefore,
the oscillation of atoms in a rotating
molecule leads to additional types of
vibration, cal1ed flexur al vibr ation.

FIowever, since the energies and
velocities of vibration and rotation
in a gas are of the same order of
magnitude, their frequencies can be
similar to each other, so the phe-
nomenon of resonance can occur. As
the molecules usually radiate elec-
tromagnetic waves/ this resonance
will be manifested in the infrared
spectrum of carbon dioxide. Indeed,
spectroscopists have confirmed this.

Figure 4

We note that in the second case, the
oscillation of the peripheral atoms
and the flexing of the springs will pe-
riodically shift the central atom
from the position of the center of
mass, but this will not affect our
qualitative inferences.

Thus we see that seemingly
quite different objects-rivers, ty-
phoons, and gas molecules-have
something in common. Seek and
you will findl O

Quantum articles about rotation
and the Coriolis force:

V. Surdin, "A Venusian Mys-
tery," |uly/August 1995, pp. 4-8.

M. Emelyanov et a1., "Lr Foucault's
Footsteps," November/December
1996,pp.2G27.

lhs, you cafl UBt hack hsues ol

frUAIruTU'VI!
Back issues of Quantum-from
the |anuary 1990 pilot issue
on-are available for purchase
(except September/October
1990, which is out of print). For
more information and prices,
call I 800 SPRINGER (1 800
777-46431. Or send your order
to:

Quantum Backlssues
Springer-Verlag New York, Lrc.

PO Box 2485
Secaucus NJ 07094
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GRADUS AD
PARNASSUM

Symmell'yin alUehril, pal'l lll

ET'S GO BACK TO BASICS.
Suppose we wanted to factor
#-5*+5x-l.Wecannote
that if x : l, the value of the

given polynomial is 0. It follows
from the factor theorem that (x- 1)

is a factor of the polynomial, and we
can obtain the other {actor by divi-
sion. Indeed,

f -5* + 5x- 1 : (r- I)l* -4x+ ll.
Remember the factor theorem?

Factor Theorem: For any number
a, (x- a) is a factor of P(x) if and only
If P(al : o.

Problem 1. Factor

tso* -77x-78.
Problem 2.Factor

# +15x2 + 15x+ 1.

If the vaiue of a polynomiai is 0
when x = k, we sometimes say that
the polynomiaLvarushes whenx: k.

Problem 3. Factor # - 1.

Solution: The given polynomial
vanishes when x = 1. This leads to
the factorization

#-1:(x-Ill*+x+1).
Some readers may have encoun-

tered this factorization already. Both
# - I and# + 1 canbe factored, and
it may be diificult to remember how
each factored form looks. But if we
recall the factor theorem, it is easy

to see that x - 1 must be a factor of
# - 1 and thatx + I must be afac-
torof#+1.

Problem 4. Factor

# -7* +7x-1.

by Mark Saul and Titu Andreescu

Answer: lx - ll(* - 6x + ll.
Problem 5. Factor

f-137*+r37x-1.
Answer: lx - ll(* - 135x + 1).

What's going on? Problems 4 and
5 are not very interesting.

What's interesting is the pattern
that they indicate.

Problem 6.Factor

*-a*+ax-1.
Solution: Once more it is clear

that one factor of this polynomial is
x- 1. We can obtain the other factor
easily, for example by division: It is
* + ll - alx + 1. Thus we have the
complicated looking, but really not
so difficult identity

- #-a*+ax-l
:(x-ll(*+x-ax+l),

which can be checked by multipli-
cation. The reader is invited to look
back at problems 4 and 5 to see that
the answers are indeed of this {orm.

Problem T.Factor

#+a*+ax+1.
Problem 8. Factor

*-a*+2ax-2a2.
Hint: What happens lf x : a?

Problem 9. Factor

*-6*y+4x5F+f.
Problem 10. Factor

abla - bl + bc{b - cl + ca(c - al.

Solution: Let us first consider this
expression as a polynomialin a, and
think oi b and c as "constants." The

polynomialvanishes when a :b ar.d
when a : c/ so it has factors {a - bl
andla - c). Now let us consider the
expression as a polynomial in b. We
aheady know that it vanishes when
b = a, but it also vanishes when
b : c. Thus it has another factor of

{b - c).

Therefore, we can write

ab(a - bl + bc(b - c) + ca(c - a)
: (a -b)(a - cllb - clM,

where M is some polynomial in a,
b, and c. Let us think again of
these two expressions (whose
identity is being asserted) as poly-
nomials in a. Then the left-hand
polynomial is quadratic in a, so
the right side must also be qua-
dratic in a, and M cannot contain
any positive powers of a. But the
same is true for b and c, so M must
be a constant. We can find the
value of the constant, for instance,
by plugging in numerical values
for a, b, and c. We cluickly find
that M = l.

Problem 11. Factor

lo - b)' + lb - c)3 + (c - al3.

Problem l2.Factor ,

(a+b+el3-(a3+b3+c3).

Hint: What happens if a = -b?
Problem 13. For allrealnumbers

a, b, c, x, prove that

_,(* -b)(" - c) ., 2(x - c)(x-a)
q --;--'---------- , T- 

-

" (a-b)(a- c) ' " (u - c)(b - a)

. (x - a\(x -b\ 1+c- 
1c:fu4i=*-'

41OUAlllTUlil/ORAOUS AO PARIIASSUl't



Hint: Consider the problem as an
equation in x. What is its degree?
How many roots can you find by in-
spection? What kind of equation has
more roots than its degree?

Problem 14. For allreal numbers
a, b, c, & prove that

(x -b)(x -.) , (" - c)(x - a)

G-bfu4- @-c)(b-a)
(x - a\(x -b)r -l- 
(c - a)(c-b) - ''

Problem 15. Let m arrd n be two
odd integers. Show that

a"' +b"' + c"'

if and only if

111
a1n b'' c''

1lli =_+_+_.
an +bn +c' an b" cn

Hint: One approach is to construct
a cubic equation for which a-, b-,
and c* are the roots. Then guess at
one of the roots of the equation.

Problem 16. Factor

#*t'+23-3xyz.
Hint 1: Try letting y + z = *x. Hint 2:
Alternatively, and if you know
something about determinants, note
that the given poiynomial is equal to
the determinant

t::
1,,

Problem 17.Let the symbol abc
denote the decimal numeral with a
in the hundreds place, b in the tens
place, and c in the units place. Prove
that if the numberc abc, bca, and
cab arc atl divisible by some integer
n, then aa + b3 + cz - Sabc is also di-
visible by n. (Note: The solution we
give depends on properties of deter-
minants, and is related to the second
solution to probiem 16.) O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54

Phy$ics Phlucncy
Lct NSTA help you $pcak the langua$e 0l physics

Methods of Motion
An Introduction to Mechanics, Book One
Twenty-seven teacher-created activities
aim to simpliff the daunting world of
Newtonian mechanics for students
and teachers.
(grades 6-10,1992 revised ed., 168 pp.)
#PB039X $18.s0

Evidence ofEnergy
An Introduction to Mechanics, BookTwo
The informal hands-on activities in this
book use a variety of techniques to
combat common misconceptions
about mechanics.
(grades 6-10, 1990,200 pp.)
#PB080X $17.9s

Taking Charge
An Introduction to Electricity
Spark student interest in electricity
r,vith 25 hands-on, teacher-tested
activities using readily available
materials.
(grades 5a.0, 1992, 160 pp.)
#PB096X $18.95

Energy Sources and
Natural Fuels
Explore energy, photosrnthesis, fossil
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AT THE

dollar bills:

5.2+2.3+1.4:20.

0ndmed Fillets
The above problem can also be approached in the fol-

lowing way. Suppose we have two triplets of positive
numbers:

ay a2, a3t

by b2, b3.

Consider the sum

S : arbr+ arb,+ a3bp,

where i, i, andkrepresent the numbers
1,2, and 3 assigned arbitrarily. How

, should we assign the numbers to ob-
- tain the largest (or smallest) sum S?* If the largest of the a numbers is

multiplied by the largest of the b
numbers, the median of a is multi-

plied by the median of b, andthe small-
est of a is multiplied by the smallest of

b, thenthe sum S will have its largest pos-

sible value (if there are equal numbers in
a or b, the largest value of S can be ob-

tained in several different ways). If,
g. n the other hand, the largest of

rrNickwantstosetrhe fuffi--ffi tT:,ti'J[""1iJ;'li;t'ffi";
least money, he -;;" .ffiffi: IrcW*ffifu,. 

tipliedbythemedianof b,

take the minimum l' .i and so on, we will obtain
number of bills (two) i ' -, the smallest possible

o three bi1ls from the
CrI envelope with two- ,,' '|wqq4'. +**.;H@F" , 1@" . i,, i Problem 1.

idollarbills,and .i-i 
-- 

,,i&[1 " ^r1"1 
i'i, Provethatfor

Bfourbillsfroirthe ) ' :'i ."1'a"-' '--''?' t ,typositivenum--dfourbillsfromthe r r,'"!.:ii. ,,j';'''", t*" 
\,"1"-*t'i'" \ rrypositivenum-

! envelope with one- ,. ^'' ' " bers a, b, and c the

BLACKBOARD III

0l,dered $EI$

by L. Pinter and l. Khegedysh

ICK'S PARENTS KEEP PAPER MONEY IN ENVE-
lopes. One day they take three envelopes and place
them before Nick. One of the envelopes holds one-
dollar bills, another holds two-dollar biils, and the

third holds five-dollar bills. They ask Nick to take two
bills from one of the envelopes, three biils from another,
and four bills from the third envelope.

How should Nick choose envelopes to get the most
money? How should he choose envelopes to get the
least? To calculate the sum for a random selection of en-
velopes, place the numbers 2,3, and4 into the lower row
of the table below in the corresponding order and then
add the products of the numbers in the columns.

If Nick wants to get the most
money, he must take four bills
from the envelope with the five-
dollar bills, three bills from the
envelope with the two-dollar
bills, and two bills from the
envelope with the one-dollar
bills:

E from the envelope j value of S. This method

$ wrth five-dollar bills, .! r_,r,.,i..-r .-"-+\., _.,*:,f \ enables us to solve the
"s three bi1ls from the -i* ' 

,o,.' 
' 

---:". 
- 

*...*,, i, .-- f,t' 1, \,, followingproblem.
t""'{--*.,*,;* 

.. .--fEn,, 
\'\\1 

followingproblem.
.e*-.' Mic' . F@?#: , ,., i Problem l.

"' : ,r,.'-tGL ', ...-- , ?, s t -', 
"-,1t:-,:1':,,1

1 2 5

,l ,l
?
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following inequalities hold:

a+b+6qaz +b2 *b2 +cz *i +az 
=o, *gl*1. ,r,2c 2a 2b bc ca ab

Let us first prove the first inequality. Write two triplets
of numbers

a2,b2,c2 ,

111
;'b';'

Since the numbers a, b, and c are positive, the larg-
est number of the first triplet is greater than the
smallest number of the second triplet, and the small-
est number of the first triplet is greater than the larg-
est number of the second triplet. Because of this, the
sum

is the smallest sum for the given triplets, and conse-
quently/

,1 ,)
tl--*D-

a

and

,1 ,l
tl- -*b'0

Combining inequalities (2) and (3), we obtain

z(a+b + c\ < a2 ! +u' ! * r' l * o' ! +b) 1 * r' !\/bcacab
a2+b2 b2+c2 c2+a2="*o+b'

To obtain the second of inequalities (1), let's consider
the following triplets:

a3,b3,c3,
abc

ob"'ob"' ob"'

The largest (and respectively, smallest) numbers of the
second triplet are written under the largest (and small-
est) numbers of the first triplet. Consequently,

3 a r.r b J c
Oe-lh"-L(- abc'" abc'" abc

,t ,l b2 c'
-I-Iabc t' ,t h' l4l

i ,1 , I 1, l L'Ll 
- 

+t) _+c
abc ttbc abc

,) )

>a3_La6t_L +.-r_!_=!*!_*! . lslabc abc abc b c L;

Combining incqualities (4) and (5), we obtzrrn

) ,) , ) ) ) )0 +L) Ll'+c' t''ttl
T-.cab

Exercises.
Prove the following ineclu;rlities:
l. a4 + ba > tt3b + ab'\ .

)-. d'ib + b3c + c3a> ttzbc + bzctt + dub.

. ,t'1, ,t 
tt b\,t h 

t.' 
c 
1,/ 

c 
tI,

{. -F - -- "+- -+--+' )(r41r1'
cbcaba

ihere a > O, lt >0, and c, 0).
-1. If a,, az) a.tand b, > br> b., then

3izr,b, +ttrb. +a.b.,) > (ar* a)+a))lb1 +br+b^).

5. If a > 0, b > O,and c, 0, then

abc3

-I 

_J->

h-r- ttlC tl_ Lr- 2

2l t.4- i'l 
=,,' * 

!:. t * 4 *L. I
I h,' oL' ,,1, ) c (t l, I, L rt

,1 ,r 1 ,1
tt'-*lt-;-lc'-

tlD(l

,r ]-].LI
-!( -3o'-+b -r('- l)\
hcl,r'tt'-

I .l ,l ,r[ ., I

-*t'--!tl- -+lt --L'-1, t (' (t Lt
(3) someuell8ralizaliolls

Nou, let there be two scts of n numbcrs:

0r> Lt)) a,tr.. 2Lt,r,

b12b">b.r>... 2b,,.

Consider al1 possible surr-ls of the form

6 = zyb,, + ttrb,. + ... + a,rlt,.

tr.hete i1, i2, ...,1, is some pcrmutation of the numbers
l)11

There ls a finite numbcr of such sums, so there must
be a n-raximum S and a minimum s. It is casv to see that

S = arb, + crrb" +

and
S=arbrr+Arlt,, t+

Let's prove this fact. Note that for any four numbers
a, b, c, and d such that a > b ar.d c > d, the following
inequality holds:

ac + bd> ad + bc,

(since it is equivalent to the obvious inequality

(a*bl(c-d)>01.

Now our assertion can easily be proved. Indeed, if some

(A)

-,. h

-.1-,, n" 1.

. ? b ,, c r) A" ---* b' :-l C"
abc abc
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sum o involves the terms aub o and aobrfor which e < k
and q > p (that is, bo)bnl, then we can'obtain a sum oi'
that is not less thari o with the terms a nb o and a ob ,, by
exchanging.the numbe rs b , and b o.

Performing a series of such peimutations/ we can
obtain the sum S such that S > o. Similarly, if bo> bo,

we can obtain a sum not greater than o by exchahgirig
these numbers. Since the sum s can be obtained as a
result of a series of such permutations/ we have o > s.

Thus, for any sum 6/

s<o<5,

and the cquahty in {B) ls possrblc onlr' tf onc of the sets

al, ...t (111 ot b1, ..., b,, contains eqtlal numbers.
Summing up, we can formuiate a gcneral methocl tor

proving inequalities: If the sets of numbers Ltrt ... , L7-

andb1, ... ,b,,arc ordered identically-that is, rf rl*> a,

implies b,- > b,, then

drbr+ a.b, + ...+ tt,rb,r> arbr, + ttrb,. + ...+ a,,b,. ,

where i1, it, ... ,1,, is an arbitrary permutatlon of the
numbers 1,2, ... ,17.

Proof . Combining n lncclualities

tlrlr,+... + Llrrbrr> ttrb, + orbr+... + tlnbrr,

arbr+... + u,rb,,> ttrbr+ ttrb^+... + u,,br,

orb, + ... + a,,b,r, arbu+ ttrbr+... + arrbrr,

we obtain what is dcsired.
Rentctrl<. Similarly, we can prove that i ar> ar) ...) (t,,

and b, <br<... ( b,,, then

n( a,b, + rtrb., + ... + tt,rb,r\
. (a, * Lt)+ ... + a,r)lb, + b., + ... + b,r).

3. Mean-scluare lnequality:

' oi * rl, + ...+ ni > at + a) + ... + lrj

,nn

lrrooi. \\Ie can assumc that rl, , tt)) . > rz,r. Using the
Chebl,shcv inequality for the case of ai= bifor a1l i = 1,

2, ..., il, u,e obtain

,2...+a,,) ,

and the dcsired inequalitl- can be casily obtained.
Exercises.
6.If ttr, a^)t ..., Lttlare the lengths oi the srdes o{ a con-

vex polygon (where n is the number oi sicles, and n > 3),

then

Q 01. Ll,, - 
ll

-... T 

-

p-2q p-2tt2 p-2a,,- 1't-)'

whcre p : Lt, + a., + ... + altis the perimetcr of the polygon.
7.If ar, a.t ...t L711are nonncgative, then

B.If a, b, and c are positive, then

a8+b8+cs I 1 1\-!-r-

o3bic3 -a b c'

9. (Generalization of problem l.lIf ar, 42, ..., a,
positive, then

{B)

"(ol 
+ ol+...+ol)>(ar+ a2+

1. Cauchy inecluality:

Proof . We can assume that arr- or, ... > ar. Consider
the sets of numbers

Some l,emal'ltahle inequalities

L\ .Lt\01
G' G)

G C})

Q a(t)

tl1tl1 ... Ar, l,..., 
Gn -r,

G,, _,
t "'l

A1 ... 0r,

These two sets are listed in opposite orders. Therefore, -(r,**ut*.. + ali)(af" + ol' + * o';'').

*oX*.

tl, C tl,tl, Cl rlr ..../,
ll-- T...T-

C ot (,' tt1o. C

G

al ...a,
/- )t-lLr

17, 17r ... .l-- r

- Llt , ArO, C rllrl , ... t/.
T...T-

C C. tt, G"
,1 L,1 L f,lrrl r,I

C

2. Chebyshev inecl-ra1tt),. Ii

ifr)tl.)... )4,,)Q

h >h > >h >o' | - "l '1t- "t

(n - r)(af" + a!' + ... * n'i')

-fr _t ^k _k

ate

.+o*
and

then

nlarb, + ttrbr+ ... + a,rb,.)
> lat* Ltz+... * n,rllbl + br+... +b,r).

- /< nr
u1

a,'-a{. +...-ot,-t
' .k-,,

LLn

wherek>;n>0.

oJ; "'

CI
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The Science of HIV
Curriculum Packnge

Developed by the National Science Teachers
Association with funding from Abbott Laborato-
ries. Written by Michael DiSpezio. Video by
Summer Productions.

Crades 9-College, 1997,

#PB1 36X

NSTAs new science-based resource guide is
different from most "AIDS books"-its activities
and readings focus on biological concepts relating
to HIV. Activities cover the following subjects:

. selected topics in cell biology

. basic virology

. HIV structure, replication, and genetics

. immune system function and HIV infection

. drug therapeutics

. prevention strategies

. a global perspective on the AIDS pandemic

This curriculum package can be used as a commu-
nity educational resource or to expand upon a high
school biology or health curriculum. Reproducible
student pages make lesson plans flexible; educator
pages provide background and presentation strate-
gies. Material appropriate for anyone at the high
school level and above.

The text is coordinated with an original video
made for this project. Animations of complex
concepts are interwoven with scientist interviews
and compelling stories of adolescents who are
living with HIV. The video has won numerous
awards, including:

. Best Achievement for Children's Programming
1997 lnternational Monitor Awards

. Silver for Children's Programming
1997 Houston lnternational Film Festival

. Gold Circle Award
American Society of Association Executives

184 pp,30-minute video

$4s.00



XPERIMENTS WITH SOAP
films and bubbles can be done
easily at home without so-
phisticated equipment. How-

ever, you will need to carefully
wash the glassware used and skill-
fully prepare a good soap solution.
The best solution is made from
shampoo dissolved in water, with
small amounts of pure glycerin
and a strong solution of ammo-
ni.um hydroxide added.

An empty ballpoint pen with its
tip cut off can be a thin enough tube
for blowing soap bubbles. It's better
to blow small bubbles. Try not to
leave drops of solution at the bot-
toms of the bubbles. A bubble can be
easily released from the tube with a
quick upward motion of your hand.

After you have prepared every-
thing needed for the experiments
and have practiced blowing soap
bubbles, begin the experiments de-
scribed below.

1. Blow a soap bubble, release it
from the end of the tube, and imme-
diately move away quickly-first
backward, then to the left and the
right. The bubble will follow you!

The bubble's behavior is ex-
plained by the creation of low air
pressure zones during your quick
movements-these are where the
bubble goes.

2. Take a wide glass tube with
a diameter of 2 cm or greater. Take
a piece of foil and cut out a circle
with a diameter a little larger than
that of the tube. Wet the foil with
soap solution and press it to the
top of the tube. Sink the opposite

IN THE LAB

Sudssludig$

by P Kanaev

end of the tube ir-rto a decp con-
tainer filled with water. Soon you
will see the foil cap open
slightly-this is due to thc soap
bubble created under tire cap b,v

the compressed air in the tube.
The deeper the tube sinks into the
water, the larger the foil's angle oi

Figure 1

inciination willbe. At some depth
this angle becomes 90' {fig. 1).

3. Carefully place a soap bubble
on aflat, wet surface, such as wa-
ter/ paper/ or glass. Because the
surface is wet, the bottom part of
the bubble will spread over the
surface and the bubble will be-
come a hemisphere.

Now make a flat soap film on a
wire ring. Make a soap bubble with
about the same diameter as the ring
and place it on the film. Both the
film and the bubble will change
shape, and you will get a very thin,
double-convex lens that is sym-
metrical with respect to the plane of
the wire ring.

4. Dip the empty frame of a pair
of glasses into the soap solution-
the frame willbe covered with two
plane films. Look through these

soap glasses, andyou'Il see things as

they naturally appear-neither mag-
nified nor attenuated. Visibility will
also be normal.

Now modify the experiment.
Holding the frames horizontally this
time, dip them into the soap solu-
tion-you'll get glasses with double-
convex lenses. Surprisingly, obiects
observed through these soap spec-
tacles are not distorted either. Why?

There is air between the thin
curved films, including these double-
convex lenses. The light beams pass-

ing through such lenses arerehacted
very little.

5. Canyouobtain alayer ofsoap
film inside a test tube? That is, not
at the top, but deep inside the tube?
Here we show two ways of forming
such a film.

(a) Fill part of the test tube with
water. Take a strip of paper/ wet it
in the soap solution, and then drag
it over the top of the test tube-
the opening will be covered by a
soap film. To sink the film down
into the tube, tilt the test tube and
pour out some of the water. The
amount the film sinks is deter-
mined by the amoun! of water you
pour out.

(b) Pour a little water into the test
tube and heat it to boiling using a

candle. Remove the test tube from
the heat and cover the top of it with
a soap film. After a while you'll see

the film gradually sink down into
the tube.

Water vapor condenses under the
soap film during cooling and pro-
duces lower pressure in the tube, so

fnil
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the film moves. To accelerate this
process/ the tube can be cooled with
running water.

6. Blow a bubble at the end of a
thin tube. Using modeling clay, at-
tach the free end of the tube to a
horizontal beam secured at about
20 cm above a table. Using a syringe
(or other thin tube), you can pump
air in and out of the bubble. Will this
distort the shape of the bubble? Cer-
tainly not. This follows directly
from Pascal's law.

7. Find a glass flask or bottle
about 6 cm tall and fill it two-
thirds full of soap solution. Make

Figure 2

two electrodes from copper wire
about 8 cm long and insert them
into a rubber stopper or cork. In-
sert the stopper into the neck of
the bottle (ft1. 2lr. The lower ends
of the electrodes should be near
the bottom of the jar, but they
must not contact it. When the
electrodes are connected to a flash-
light battery, small bubbles of a
gas will be released at the cathode
(negative terminal) in the solution.
The bubbles will rise and create a
foam at the surface of the solution.
What is the gas? Will bubbles be
produced if alcohol, glycerin, or
kerosene is poured into the jar in-
stead of the water-soap solution?

To answer these questions we
only need to recall the phenom-
enon of water electrolysis. The gas
released at the cathode is hydro-
gen. There will be no bubbles if
aicohol, glycerin, or kerosene is
used, because the products of elec-
trolysis of these substances are
quite different. o
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lmauine fie Uniuer'$B!

Dedicated to a discussion about
our lJniverse, the "Imagine the Uni-
verse!" web site (http://imagine.
gsf c.nasa. gov/docs/homepage.html)
contains a wealth of astrophysics
information. The site catalogs what
we know about the lJniverse, how it
is evolving, and the kinds of objects
and phenomena it contains. Iust as

importantly, it also discusses how
scientists know what they know,
what mysteries remain, and how we
might one day find the answers to
these questions.

Features of the site include "Ask
a NASA scientist," "Satellites and
Data," "Teacher's Corner," "Other
Good Resources," and "The Imagine
Dictionary." Imagine the Universel
is a service of the High Energy Astro-
physics Science Archive Research
Center within the Laboratory for
High Energy Physics at NASA/
Goddard Space Flight Center.

Fuilne flysics Isacltff scholal'shhs
The AAPT Executive Board offers

a scholarship for future high school
physics teachers. This scholarship is
supportedby an endowment funded
by Barbara Lotze. Undergraduate
students in, or planning to enter,
physics teacher preparation cur-
ricula and high school seniors
planning to enter such curricula
are eligible. Successful applicants,
normally one per year, will receive
a stipend of up to $2,000. The schol-
arship may be granted to an indi-
vidual for each of four years.

Applications will be accepted at
any time and will be considered for
recommendation to the Executive
Board at each AAPT Winter Meet-

HAPPEN INGS

Bullelilt Boal'd

ing. Applications for which ail ma-
terials, including letters of recom-
mendation, are received by the first
day of December will be considered
for recommendation at the follow-
ing |anuary meeting of the AAPT
Executive Board.

Request materials from:
Programs Department
American Association of Physics
Teachers
One Physics Eilipse
College Park, MD 20740
Phone: (301) 209-3300, ext. 5071
Fax: (301) 209-0845
E-mail : aapt-pr og@ aapt. org

Ihuru Producer$ Coltlsst
Earth and Sky Radio Series in-

vites all K-12 students to enter the
1999 Young Producers Contest. Par-
ticipants submit a 9O-second radio
program on a science or nature topic
of their choosing. Entries will be
judged on content (is it accurate?),
presentation (is it engaging?), and
production (is it clearly heard?).

The five winning teams will have
their programs aired on Earth and
Sky in Aprll1999, during National
Science and Technology Week. The
grand prize winning team will re-
ceive a $1,000 U.S. Savings Bond (or
equivalent amount in an interna-
tional check), and the four other
winning teams will each receive a

$500 bond or international check.
Winners willbe chosen from a vari-
ety of age groups. In addition, all
participants will receive a certlficate
stating that the student is "A Young
Producer for Earth and Sky."

Earth and Sky is a daily radio series
that broadcasts on over 950 public
and commercial radio stations in all
50 states. It is also heard in Canada,

the South Pacific, and on many inter-
national networks, including Armed
Forces Radio, Voice of Americ4 and
World Radio Network.

Entries must be postmarked by
December 15, 1998. For contest
guidelines, samples of past winners,
resource materials, and entry forms,
e-mail contest@earthsky.com, or
visit Earth and Sky online at
vrww.earthsky.com. You can also
send a self-addressed, stamped enve-
lope to Young Producers, P.O. Box
2203, Austin, TX 78768.

Biuen t'unne!,s
This month's CyberTeaser (B238

in this issue) led contestants on a
trickier voyage than the problem
first suggested. Fortunately, it was
smooth sailing for the following ex-
pert navigators, who floated us the
first 10 correct responses to our
" ctfrreflt" question:

Alex Wissner-Gross (New Hyde
Park, New York)
Natalia Toto (Boulder, Colorado)
Leo Borovskiy (Brooldyn, New York)
faak Sarv (Tallinn, Estonia)
Bruno Konder (Rio de )aneiro, Brazll)
fim Grady (Branchburg, Newfersey)
)ohn Beam (Bellaire, Texas)
Melania Drozdzewicz (Thornton,
Colorado)
Theo Koupelis (Wausarr, Wisconsin)
Quek Dingfeng (Singapore)

Congratulations! Each of our win-
ners will receive a Quantum button
and copy of the |uly/August issue.
Everyone who submitted a correct
answer in the time allotted was en-
tered in a drawing for a copy of
Quantum Quandafies, our collec-
tion of the first I00 Quantum
brainteasers.
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M236
Let E, be the point symmetric to E

with respect to I (fu. ll.Then W = ME r.
Also, segmentAF = FM and segment
AE: KE (since the corresponding arcs
are equal). If we take point P on the
extension of AB pastA, then ZELML
= I.EKL: ZEAP (the last equality fol-
lows from the properties of the angles
of an inscribed quadrilateral). Simi-
larly, ZPAF: ZLMF.Thts, IFME,
: IFAE, triangles FME, arrdFAE xe
congruent/ and EF: FEr. So, FL, the
median of the isosceles triangle EFE,
is perpendicular to EEr. (To make the
reasoning complete, we should con-
sider configurations other than the
one shown in fig. 1).

Figure 1 Er

M237
It is easy to see that the required

locus includes all the points lying on
diagonals AC and BD of. the dia-
mond. In fact, if M is a point on AC
(fig.2l, then, because the diamond is

D

ANSWERS,
HINTS &

SOLUTIONS

symmetric with respect to AC, we
have

IAMB + ZCMD
: IAMD + ICMD: 180'.

Now let's show that there are no
other points in this locus. Suppose
that a point M that doesn't lie on di-
agonals AC andBD satisfies the con-
ditions. Let's draw a circle through
points A, B, and M.Denote the points
where the circle meets diagonals AC
and BD by Mt and M2, respectively
(fig. 3). Then points M1, M2, and M

D

belong to the required locus. And,
since Z.AMB: Z.AMF: ZAMrB (be-
cause they are inscribed angles inter-
cepting the same arc), we conclude
that LCMD : tCMP : tCMzD.
Therefore, points C, D, M, M, and M,
lie on one circle, too. That is, we've
found two di{ferent circles that have
three common points, which is im-
possible.

M238
If logr, _ 1lnz * 2l = plq, then (n2

+ 2lo : (2n - Ilo, and thus all the
prime factors of the numbers n2 + 2
and2n- 1 coincide. So, the{raction

n2 +2
2"-l

is reducible. Of course, the fraction

4n2 +B 4n2 -l+g
2"-I - 2n-I

=2n+l+ 9

2n-l

must also be reducible. This means
that9lQn - i) is a reducible fraction.
Moreover, all the prime factors of 9
andZn - 1 coincide. There are only
two opportunities now: 2n - | : 3 and
2n - | :9, which simplify to n :2 and
n : 5.II n: 2, we have loga 6 : 1 + 1og, 2.
This number is clearly irrational. If
n: 5, we get loge 27 :312.

M239
Let (x6, 16) be the solution of our

system. The conditions of the
problem imply that the parabolas
y : x2 + a arrdx = 5P + b touch each
other at the point (x6, yo)-that is,
their tangents at this point coin-
cide. Let's find the slope of this
tangent by taking the derivatives
of both functions at this point. For
the first one we have

v'.. .. =2x, ^_^a

and for the second one,

,tl
/ x=xo ,rr=ro ZyO

(here yi denotes the derivative of y as
a function of x, and xi denotes the
derivative of x as a function of y). So,

Zxo: lllZyo), and thus 4xyo : 1. We
see that the point lxs, ysl lies on the
hyperbola determined by the equa-
tion 4xoys = 1. Clearly, we should
take only those points of this hyper-
boia that belong to the firsd quadrant.
(To convince yourself that this is so,

draw a few examples o{ parabolas de-
scribed by the given equations.)

M240
We suppose the student is located

at point O and draw a circle of radius
2 km centered at O. It is given that
this circle either intersects the bor-
der of the forest or is tangent to it, so

Figure 2

50 JUI.Y/AUGUSI 1SS8



if we walk out to the edge of the
circle, then walk around it, we will
encounter the edge of the forest. But
this path is too long.

We can improve on this by noting
that our path must intersect every
tangent to the circle, but not neces-
sarily at the point of contact. We can
construct such a path, of iength less
than 13, as follows. We take a point
A situated 4/"vE miles from O and
draw the two tangents to the circle
from A (see diagraml. Let B be the
point of contact of one of these tan-
gents. It is not hard to see that ZOAB
measures nl6.We proceed from O to

Figure 4

A to B along these line segments,
then around the circle to point C so

that the arc BC hasmeasure 7 n I 6 lafi
length 7r/3 miles). Then we look for
the other tangent from A to the circle,
and drop a perpendicular from C to
this 1ine. If the foot of the perpendicu-
lar is D, then we complete our path
by walking from C to D. This path in-
tersects each tangent to the circle,
and its length is

4 2 -7n: *: +')- +'),JA JE 6

= zn6 *U * 2 < z. 1.7 5 *L zts * z'aa
OJ

=12.8543 << 13 miles.

And, since it intersects all the lines
tangent to the circle with center at
O and a radius of 2 miles, this path
would inevitably lead the student
out of the forest.

Physics

P236
Imagine that at some moment

the vehicle's camera "fottttd" a cra-

ter on the lunar surface and sent a

"report" on this observation back to
Earth. Some period of time will
elapse before the vehicle can receive
an appropriate command:

,_ nl , -L _ L_ A L

C

380.103 km
-a +0.1s-2.5s.

300.103 km/s

Here J is the distance between Earth
and the Moon, c is the speed of the
radio signal , andr is the time neces-
sary for the engineers to decide on a
command.

To estimate the vehicle's speed,
we assume that it is less than the
speed of a car on a country road
(about 20 km/h) by the same fac-
tor that charactertzes the differ-
ence between the time necessary
to transmit a command to the lu-
nar vehicle and the reaction time
of a driver on Earth. Accordingly,
the maximum speed of such a lu-
nar vehicle is

vL-r1-tkmlh.
t

P237
If a body moves along a circle of

radius r with velocity v under the
attractive force of a central body of
mass m/ the centripetal acceleration
*f r equals that produced by gravity
Gmr2 (G is the gravitational con-
stant):

v2 Gm
tt2

As the period of revolution is
t:2nrfv, we get a formula for the
central body's mass:

4n213

Gt,

By comparing Earth's motion
around the Sun (with the period
7o : 1 year) with the stellar motion
about the Galaxy's center/ we obtain
the total Galaxy's mass M inside the
sphere of radius R:

4n2R3
n*21Lrt

nZ m2

M=Mo:r+=1.9'1or1Mo."RdT',

Thus, the invisible mass of Galaxy is

L,M=M-Mr=4.t}LoMo.

P238
The temperature difference be-

tween the re{rigerator's interior and
the surrounding air AT and the du-
ration of the idle period t, are related
by the formula

trLT: const. (1)

Another equation is valid for an
ideal heat engine:

where I4l is the motor's work and Q
is the amount of heat extracted from
a body inside the chamber. The
work performed by the motor is pro-
portional to the time t, the motor is
on

w -'81,

and the amount of extracted heat is
proportional to the entire period of
the refrigerator's cycle lr, + \l and to
the temperature difference A7:

e-(tr +r,rlLT.

Therefore,

l*A(or)2 = const. lzl!1

Inserting the values of x1, 'c2, and AT
corresponding to the first case, and
AT'corresponding to the second case

into equations (1).and (2), we find

xi : 2 rnin, t'2: 4.1 min.

The maximum temperature in
the room corresponds to the condi-
tion r,i = 0:

ATrrro,

M,,,=!t!i,M=
Glo

WAT
-=-O T,

= AT q 
= 4(r.8 K.

\s
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Thus,

f-o:34'8oC'

P239
We assume that aII rods make

electrical contact with both rails.
The mutual contacts between the
rods do not affect the answer to
the problem, because the contact-
ing points have the same poten-
tial.

The resistance of an individual
rod making an angle o with the rails
(0 . s . r) is given by

7, sincr,
ri = PT =P;F.

4

The net resistance between the
rails is given by

I -\' 1 -5 rid2sincr,
p-Lr-L 4pl

t)

= 
ns_N1rir0,),,,"*.
4pl \

Because the copper wires are long
compared to the distance between
the rails, we can estimate the mean
value of sin o,, in the followingway:

(sino,)*",,, = *1i,"" oo =1.

Thus,

I rdL--Z ilNA/

R - 4pJ '";- zpt '

and finally,

a= 2!1 
=4'lo-a Q.

d,N

Note: We obtained the mean value
of net resistance. A particular value
of the resistance depends on how the
rods have fallen on the rails. There-
fore, it will differ from the mean
value. But how much will it differ?
Try to estimate the scatter of resis-
tance values using a random. num-
ber generator.

P240
Let time r elapse during the UFO

flight from point A (nearest to the
observer) to point B, when the UFO
is located at angle Q. We assume that
this period is timed by a watch lo-
cated at point B. Denoting the alti-
tude of the UFO over Earth by J, we
get the path traveled by the UFO
from A to B:

vt=ltan$ (1)

An observer will see the shining
object at points A and B somewhat
later due to the finiteness of the
speed of light c, so his watch will
show the time

11tt=t+ ,--. izl- ccosQ c "

The velocity of the UFO as mea-
sured by the observer is thus

dx
' dt,

dx dt
dt dt,

Differentiating equations (2) and
(1) yields

dt, r, lsin$ dS

dt -' 
""o"zqdt'

and

d0 _ vcos2 0
dtl

Therefore, the velocity we are look-
ing for is

Figure 5

that have dark hair? Well, if the re-
maining 5 children (without
brown eyes) have dark hair, there
must be 9 children with both
brown eyes and dark hair. Of these
9, how many must weigh more
than 80 lbs.? Again, there are 3
students who do not weigh more
than B0 lbs., and i{ these are
among the 9, there must be 5 more
with three of the four characteris-
tics. Finally, there are only 2 stu-
dents who are not more than 4 feet
tall, so there must be 4 students (of
the 5 with three characteristics)
who have all four characteristics.

B23B
Let V be the speed of the boat

and y be the speed of the current.
Then the distance between the
boat and the raft grew at the rate
(V + vl - v : V, when the boat was
going to B (here 7 + y is the veloc-
ity of the boat, taking the speed of
the flow into consideration). When
the boat was going from B to A,
the distance between it and the
raft decreased at the same rate:
lV - v) + v : V. So, when they met,
the time during which the dis-
tance between them increased was
equal to the time during which it
decreased: t hour.

8239
One can divide each bar, regard-

less of the percentage of gold in it, in
the proportion 1:2:3.

8240
Snow is composed of many ice

crystals, so the Sun is reflected
from a vast number of small mir-
rors. Some of them send light di-
rectly to our eyes, and when we
move, one set of mirrors is re-
placed by another. We perceive
this as sparkling.

dt,
dt

Bnainlea$Bl'$

v
v1 - 

-

-t7
1+ -sinQL

8236
See figure 5.

8237
Of the 14 children with brown

eyes, what is the smallest number
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[IUltal'$tttll'oltu?
1. The weight of the watermelons

decreased twofold, to 5 tons. Many
people think this a miracle.

2. It is a mistake to add 3 dollars
to 13. If we do so, we count the 3
dollars squandered by the servant
twice. In fact, i3 : 10 + 3, where 10

dollars is the money received by the
general and 3 dollars is the money
wasted by the servant.

3. If the Jrne BB, passes through
the point C, our reasoning is false
(fig. 6). Angles CBB, ar;.d CBrB are

B

Figure 6 82

equal, but they are equal to 0. In fact,
the reader is invited to examine
those cases where two noncongru-
ent triangles have the same two
sides and nonincluded angle. She or
he will find that it is in exactly these
cases that the line BB, passes
through point C. Thus, we cannot
use the feature of an isosceles tri-
angle.

4. There is a case in which the
centers of both circles mentioned il
the conditions coincide with the
center of the parallelogram. Then
the parallelogram becomes a tect-
angle. Therefore, the problem has a
second answer: 90o.

5. The problem does not say that
the equation has no other roots ex-
cept p and q.The problem has one
more answer'. p : q : -l 12.

6. When we transform the equa-
tion in this way, we narrow down
the domain of the functions that ap-
pear in it, andthe following series of
solutions is lost: x = nl2 + xn.

7,We can easily check that the
numbers l12 and 1/4 satisfy the
equation. These two solutions cor-
respond to the points (112, ll4l and

Figure 7

lll4,ll2l on the graphs of the func-
tions y = log,r,o x and y = ll ll5l",
which are syni.metric to each other
with respect to the bisector of the
first and the third quadrants. Besides
this, these graphs intersect at this
bisector. Thus, the equation has at
least three solutions. As a matter of
fact, both graphs cling tightly to the
coordinate axes (see fig. 7), so it is
quite possible that they intersect
more than once.

It is not difficult to prove with the
help of differential calculus that the
equation has exactly three solutions.
In general, an equation logox: a*
has no more than three solutions.
(The proof is based on the well-
known theorem that says that the
derivative of a function vanishes at
least once between any two zeros of
the function.)

8. Ali the sections of a cone that
pass through its vertex are isosceles
triangles, whose equal sides are all
the same (they are lateral elements
of the cone). If o is the angle at the
vertex of an axial section and q is the
angle between the lateral sides of an
arbitrary section, then 0 < Q < o. But
the area of such a section is propor-
tional to sin Q. Therefore , if a < 9Oo ,

then the axial section is the one
with the largest area. But, i{ cx, > 90',
then the section with the largest
area is the section for which 0 : 90".
The conditions of the problem mean
that cx > 90o and sin cr : lfZ, frorn
which we conclude that cr = 150'.

9. The corect conclusion is that
the second sphere lies completely
within the first one so that 5 is just
the ratio of the surface of the second
sphere to that of the first. Thus the
ratio of their radii is 16. On the
other hand, if the ratio given in the

confitions were less than 4 and were
equal, for example, to 3, then the
problem would have no solution.

10. Let's consider a quadrilateral
ABCD in which AB = BC = 10 and
AD = DC : 6 lfrg.8). The angles at
the vertices A and C are equal. The
area of the quadrilateral is a maxi-
mum when these angles are right.
Thus the greatest possible area of
the base is 50. But this is less than
ll2l "13, the area we found when we
solved the problem (it is easy to
check this).

B

Figure B D

So, does the problem have no solu-
tion? The statement of the problem
does not imply that the projection of
the vertex of the pyramid fa1ls exactly
in the center of the circle inscribed in
ABCD. This implies only that it falls
at a point equidistant from the lines
AB, BC, CD, arrd DA and that this
distance is 7 I ^Ji 

.It is possible that
this point lies outsideABCD. Denote
such a point by O, (fiS. 9). Then the
arca of ABCD could be represented as

the sum of the areas of triangles
ABOtandBCO, (they are equal)mi-
nus the areas of triangles CDO, ar;ld

B

Figure 9

v: log,x
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ADO. (they are also equal).-That is,
it equals (10-6) . 7 "l 3 = 281 

^l 
e. Thus,

the volume of the plramidis 196 I 15 .

0l'adus
Problem 1. If we let x : 1, the

value of l5O* -77x - 73 is 0. Thus
x - 1 is a tactor. Using division of
polynomials, or otherwise, we
quickly find out that the other fac-
tor is 150x + 73.

Problem 2. The givenpolynomial
vanishes when x = -1 . Thus one fac-
tor is x + 1, and the other factor turns
out to be x2 + 14x + 1.

Problem 7. The polynomial van-
ishes when x = -1. This allows us to
find the factorization

(x+1)[x2+(a-l)x+1].

Problem 8. Since the polynomial
vanishes when X : a, one factor is
x - a. Thus we have the factorization
(x- all* + Zal.

Problem 9. The polynomial van-
ishes when y = Jr, so we get the fac-
torization

tx- y)(x" - 5x'y - 5xy" -fl.
Ptoblem 11. Since (a -bl3 = 1b - al3,

the expression vanishes when a = b,
and also when a: c ar.d b : c. So
once again we can write

lo-b)'+(b-cl3 +(c-a)3
: la - bl(b - cl(a - clM,

where Mis apolynomial in a, b, and
c. It is somewhat surprising, but still
true, that the original expression is
quadratic (and not cubic) in a, and so
is the expression

(a-bl(b-cl(a-cl.
And of course (by symmetry) the
same holds for b and c. It follows
once more that M is a constant, and
some judicious plugging in of num-
bers (try a : 3, b = 2, c : 1) will show
that M = -3.

Ptoblem 12. The expression van-
ishes if a : -b, lf a : -c and If b : -c.
Thus it has factors (a + bl(b + cl(a + cl.
An argument similar to those used
in the previous solutions lets us con-
clude that

(a+b+cl3-la3+b3+cB)
:3(a+b)(a+c)(b+cl.

Problem 13. Following the hint,
we note that the equation is qua-
dratic in x. Furthermore, it is true of
x = ar X : b, and x : c. Itany two of
these values are equal, the right side
of the given equation has no sense.
Thus we are looking at a quadratic
equation satisfied by three different
numbers, which must therefore be
an identity.

Problem 14. As inproblem 13, we
can think of this as an equation in 5
and once again it is quadratic. It is
satisfied when x = a, b, or c, and ex-
actiy the same reasoning as in prob-
lem 13 leads to the desired conclu-
sion.

Problem 15. We will show that
both assertions in the problem (for
exponent m and for exponent nl are
equivalent to the statement that
there are two "opposite" numbers
among a, b, and c lthat is, a = -b,
otb:-c,orC=-al.

Certainly, if the set {a, b, c} con-
tains two opposite numbers, then
for any odd exponent k,

1111
7;ri;7=7- uo-7'

Let us prove the converse.
Following the given hints, we

suppose the cubic equation

f-p*+qx-r=0
has roots ak, bk, and ck. Then, since

1111
7;itr;7=7- ao-7'

we know that r : pe, so that the
equation has the form

#-p*+qx-pq=O.
The left side vanishes when x : p,
and so factors into (x - pllxz - ql.
Thus one root of the equation is x
: p. This means that ak + bk + ck
has one of the values ak, bk, ot ck.
Il ak + bk + ck = ak, dnenbk + ck = O,

so bk : -ck, and (since k is odd),
b = -c. A similar conclusion fo1-
lows if ak + bk + ck : bk or ck.

If this solution is difficult to read,

try formulating the problem with
m : I first, then look at the general
situation.

Problem 16. Method I, using hint
1. When x = -(y + zl, a simple com-
putation shows that the polynomial
vanishes. So x + y + z is a factor, and
the other factor can be obtained by
long division.

Method II, using hint 2. A compu-
tation will show that

F*t'+23-3xyz
is indeed equal to

Then, computing with determi-
nants/ we {ind

'*y'*22 -xy-yr-rr).

Problem 17. As inproblem 15, we
write

Multiplying the iirst column by 100,
the second b1- 10, and adding these
to the thrrd column, rve find that

a3 +b3 + c3 - 3abc=

And since the numbers abc, bca,
aad cqb ar-e all divisibie by n, so is
a3+b3+c3-Zabc.

)"'))z x vt.

l, ,'l

), y , lx+;-+ z J- zl

]rr,-lr*.,'*rr,-l
l, ,', l,*;*, ,,1

:1
1

=1r+y+r1]f
l1

=(x+y+z)(x

lnu4
a'+b3 +c'- 3abc=1, , ,l

lbcn

t b c lt00a-lOb+c
c ab=ltoo.*iOa+b

I

lb c a 1100b+10c+a

bc
, O),

cal

bcl
,, hl

ICA

aa
m
6A
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MUSINGS

]loulhiU aln l, l'eally?
i 

: 
"'ti"''l 'il:li.,:&,, bv David Arnsby Dz

. :.
ri," .1_j.iiijt::,ii?

' .ffil:Wn"" sheepishly apologizing to a friend ,,d wronged,

..;.t i;::.:;;4,ltO:irihi*a-hrase that got me started thinking:
.,,1 ..;i$.'.,,: ' ,. 'A:.iiintp., e little phrase that I had heard my whole life long,
;,1; .':1i/,1: ;:.: ):::..,;,.: .' ..,-r.,.:,i"!.:,r.iil,.j1.

. . ,r' But 
1o 

proftiund, I stood agape and blinking.

.:'L : i;..::
, ' ..,e.,. - n. ."iffri'ilr.es a big man to admit that he is wrong,

: . A** tl s,t{xck me: What, exactly, does that mean?t ., , A"d it skuck me: What, exactly, does that mean?

,i,:' " ';,

'."' 
. . Foqr i'.I#.r wide"it was in breadth of beam.

",,-''' ,] ' t 
',."'..,;ffi,', rrot rd,_!t big," I thought, "But 1et's just see how it would look

' ,.:,, ,,i,. .rh: *"."ifil.] !.{ii:iri:

A:ffi.ndred tlriXffirl"ng and a hundred times as wide,
decimi:ier square would roughly be

:,, ,,.." ,;,.*,T,he,.pize of ha.{ i ennis court: ten meters on a side
.! 1:. (,\ f*ct r,yi:I1-knowri1lf,tndre Agassi).

';' ,i, 
j,'

' A'.kilometer square containing buildings old and new,

A
A ,l^-i

And stepping back another step, one hundred times as large,

A fair-sized citv fits within its border.

And now we're getting large enough, our rash and headlong charge

Into "bigness" becomes quite an arduous order.

Kilometers on a side, and we've unfurled
' A square that, when it's stretched out to the limits it allows and

Flattenei out, it aLmost covers up our world.

l
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With one more step/ receding back, enlarged a hundred times,
("Stay wi.th me, please," you hear me importune),

The more we see/ you'Il notice, as our viewpoint ever climbs:

We've just contained the orbit of the Moon.

e step again: the square is five light-minutes on each side;

r-r, alpng with Mercury and Venus

e now within our field of view; our stimulating ride
s a hundred billion meters in between us.

;,what would happen if we took another backward step?

d see th' entire Solar System!

.; "Must we continue on this ride?" My answer's "Yep!"
gback, I offer to assist 'er::'."l

p back, and now we see the emptiness around:

's just a tiny dot
are where almost nothing else is to be found

.days of next to naught!
li

ck along our logarithmic line,
w in evidence,

m tatri and, of course, Wolf 359

attle he Borg was quite intense).

re is now a thousand light-years broad:

usters of the samel

e/ g painted by the hand of God,

like a mu icolored ilame.

ext step/ our penultimate: We see the Milky Way,

thousand light-years, stem to stern.

t with stellar objects tn a dazzling affay
ly unmoving and eterne.

now/ at last, we take our final weary step arrears:

n million light-years at a glance;

k"the point's been driven home-at least it so appears-
I Group within this great expanse.

suddenly, that phrase comes back: about how "big" a rr,an
for him to say that he was wrong-
t "bigness" seems quite sil1y now; he/s surely smaller than

been less offensive all along.

David Arns is a graphics software documentation enginaer for Hewlatt-Packard in Fort Collins, Colorado, and also oper-
ates a small business designing and creating web sites. In his sparc time he dabbles in poetry on scientific themes.

step:

stars/
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IN DEX

Amusing Electrolysis (current
thinking in chemistry), N. Paravyan,
MayflungS, p41 (In the Lab)
An Ant on a Tin Can (finding the
shortest path from A to B), Igor
Akulich, SepfOct97, p50 (At the
Blackboard)
Anniversaries (satellites and science
reform), Gerry Wheeler, Nov/
Dec97, p2 (Front Matter)
Around and Around She Goes (the
motion of merry-go-rounds), Arthur
Eisenkraft andLarry D. Kirkpatrick,
Marf Apr9B, p30 (Physics Contest)

Bad Milk (a dynamic system gone
sour), Dr. Mu, Sep/Oct97, p63
(Cowculations)
Barn Again (a smooth move), Dr.
Mu, ful/Au g9B, p62 (Cowculations)

Circular Reasoning (inscribed
angles), Mark Saul and Benji Fisher,
Nov/Dec97, p34 {Gradus ad
Parnassum)
Come, Bossy (roundingup the herd),
Dr. Mu, May/|un98, p53 (Cow-
culations)
Constructing Quadratic Solutions (a

novel use for compass and straight-
edge), A. A. Presman, lanfFeb9S, p42
(At the Biackboard)
Cool Vibrations (fun with oscilla-
tions), Arthur Eisenkraft and Larry
D. Kirkpatrick, Sep/Oct97, p45
(Physics Contest)

Democratizing Expert Knowledge
(climate change and science in soci-
ety), Maurie |. Cohen, lanlFeb99, p2
(Front Matter)
Depth of Knowledge (effects of air

Uolume I (lgg7-g8)

resistance), Arthur Eisenkraft and
Larry Kirkpatrick, Mayllun99, p28
(Physics Contest)
Do You Have Potential? (the con-
cept of potentiall, A. Leonovich,
Nov/Dec97, p28 (Kaleidoscope)
Does a Falling Pencil Levitate? (table-
top physics), Leaf Tumer and |ane L.
Pratt, Marf ApgB, p22 (Feature)
Doppler Beats (sound frequency and
relative motion), Larry D. Kirkpatrick
and Arthur Eisenkraft, |u1/Aug98,
p28 (Physics Contest)

Elephant Ears (laws of scaling in the
natural world), Arthur Eisenkraft
and Larry D. Kirkpatrick, Nov/
Dec97, p30 (Physics Contest)
Enough Nerdiness (why the geek
stereotype is so uncool), Dennis R.
Harp and }{arry Kloor, Mayflun99,
p2 (Front Matter)

The Far ftom Dismal Science
(sustainability and input-output
economics), Dean Button, Faye
Duchin, and Kurt Kreith, Sep/
Oct97, p38 (Feature)
The Force Behind the Tides (under-
standing the attraction of the Moon),
V. E. Belonuchkin, May/|un98, p10
(Feature)
Forked Roads and Forked Tongues (a

logical lie detector), P. Blekher, Nov/
Dec97 , p10 (Feature)

Gingerbread Man (creating com-
puter graphics), Dr. Mu, |an/Feb98,
p55 (Cowculations)
The Gambler, the Aesthete, and St.
Pete (probabilities and payoffs), Leon
T aylor, I an I F eb9 B, p20 ( Feature )

Hands-on (or -off?) Science (thermal
sensitivity), Alexey Byalko, Nov/
Dec97, p4 (Feature)
Hindsight (when to hold'em and
when to fold'em), Dr. Mu, Nov/
Dec97, p55 (Cowculations)
Homemade Pendulums (describing
their motion), G. L. Kotkin, Mar/
Apr98, p38 (In the Lab)
Homogeneous Equations (more
equation solving), L. Ryzhkov and y.
Ionin, }dayfJungS, p43 (At the Black-
board)
The Horrors of Resonance (are you
in for a rough landing?), A. Stasenko,
MarlApr9B, p45 (At the Blackboard)
How Big Am I Really? (poem), David
Ams, |u1/Aug98, p55 (Musings)
How to Escape the Rain (to run or to
walk?), I. F. Akulich, Mayflun9S,
p38 (In the Open Air)
Hydroparadoxes (when fluids for-
sake model behavior), S. Betyaev,
|ul/Aug98, p20 (Feature)
Hyperbolic Tension (measuring the
coefficient of surface tension), I. I.
Vorobyov, lanlFebgS, p30 (In the Lab)

In the Planetary Net (the potential
in gravitational fields ), V.
Mozhayev, lanlFebg9, p4 (Feature)
Incandescent Bulbs (illuminating
thermal expansion), D. C. Agrawal
andV. |. Menon,lanlFebgS, p35 (At
the Blackboard)
The Ins and Outs of Circles (in-
scribed and circumscribed circles), L
F. Sharygin, Nov/Dec97, p38 (At the
Blackboard)
Interstellar Bubbles (a phase in the
life cycle of stars), S. Silich, Nov/
Dec97 , p14 (Feature)
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Is Bingo Fair? (parlor probability),
Mark Krosky, MayflungS, p4 (Feature)

fingle Belll (bell-ringing in a
vacuum), N. Paravyan, Nov/Dec97,
p27 (In the Lab)

Learning from a Virus (applying sys-
tem dynamics to the spread of an
illness), Matthias Ruth, Sep/Oct97,
p28 (Feature)
The Legacy o[ al-Khwarizmi (the ori-
gins of algebra), Z. D. Usmanov and
I. Hodjiev, |ul/Aug98, p25 (Looking
Back)
Light Pressure (are sunny days more
burdensome?), S. V. Gryslov, May/
|un98, p36 (Looking Back)
TheLimits to Growth Revisited (a

primer on exponential growth, over-
shoot, and dynamic modeling), Kurt
Kreith, Sepf Oct97 , p4 (Feature)
Local Fields Forever (looking at grav-
ity and acceleration), Arthur
Eisenkraft and Larry D. Kirkpatrick,
lanlFeb99, p32 (Physics Contest)
The Lunes of Hippocrates (an early
attempt to square the circle), V. N.
Berezrn, lanlFeb99, p39 (Looking
Back)

Math Relay Races ftelay problems
from the trenches), Don Barry, May/
)un98, p26 (At the Blackboard)
Milk Routes (the best whey into
town), Dr. Mu, Mar/Apr9B, p55
(Cowculations)
Molecular Intrigue (how smali are
molecules?), A. Leonovich, lanf
Feb98, p28 (Kaleidoscope)

The Nature of an Ideal Gas (implica-
tions of the model), A. Leonovich,
May flun99, p32 (Kaleidoscope)
Number Cells (numerical destina-
tions), Thomas Hagspihl, Nov/
Dec97, p41 (At the Blackboard)
Numeral Roamings (exploring non-
traditional mathematical opera-
tions), A. Egorov and A. Kotova,
Mar/Apr98, pl5 (Feature)

On the Edge (compassless construc-
tions), Igor Sharygin, Mar/Apr98,
p28 (Kaleidoscope)
Ordered Sets (ordered triplets, some
generalizations, and interesting in-
equalities), L. Pinter and I.

Khegedysh, |ul/Aug98, p43 (At the
Blackboard)
Overshooting the Limits (reapprais-
ing Malthus with computer simula-
tions), Bob Eberlein, Sep/Oct97 , pl4
(Feature)

Physics in the Kitchen (simple ex-
periments with boiling water), I. I.
Mazin, Sepf Oct97, p54 (In the Lab)
Planar Graphs (can you make the
connections?), A. Y. Olshansky, fan/
Feb9B, p10 (Feature)
Planetary Building Blocks (biue-
prints for creating terra firma), Y.
Mescheryakov, |ul/Aug98, p4 (Feature)
Points of Interest (unique locations
within a triangle), I. F. Sharygin,
Marf Apr98, p34 (At the Blackboard)

Ramanuian the Phenomenon (India's
inspired mathematician), S. G.
Gindikin, Mar/Apr9B, p4 (Feature)
Revolutionary Teaching (the Ecole
Polytechnique in Paris), Yuri
Solovyov, Mar/Apr98, p26 (Looking
Back)
Rivers, Typhoons, and Molecules
(all are affected by the Coriolis
force), Albert Stasenko, lull Aug98,
p38 (At the Blackboard)

Science with Charm (communicat-
ing the simplicity of physics), Ber-
nard V. Khoury, Marf Apr98, p2
(Front Matter)
Scores and SNO in Sudbury (report
on the 1997 International Physics
Olympiad), Nov/Dec97, p44 (IHap-
penings)
So, What's Wrong? (debunkingprob-
lematic solutions), I. F. Sharygin,
|u1/Aug98, p34 (Feature)
Symmetry in Algebra (getting
started with group theory), Mark
Saul and Titu Andreescu, Mar/
Apr98, p43 (Gradus ad Parnassum)
Symmetry, Part II (polynomial equa-
tions and their roots), Mark Saul and
Titu Andreescu, May/|un98, p34
(Gradus ad Parnassum)
Symmetry in Algebra, Part III (using
the factor theorem), Mark Saul and
Titu Andreescu, lullAuggS, p4l
(Gradus ad Parnassum)
Suds studies (soap films and
bubbles), P. Kanaev, lull Aug98, p47
(In the Lab)

The Thermodynamic Universe
(does time have a beginning and an
end?J, I. D. Novikov, Mar/Apr98,
p10 (Feature)
Tied into Knot Theory (the basics of
mathematical knots), O. Viro, May/
|un98, p15 (Feature)
Triangles with the Right Stuff (a spe-
cial case of right triangles), L. D.
Kurlyandchik, |ul/Aug99, p32 (Ka-
leidoscope)

Unidentical Twins (using conjugate
numbers to tame irrationalitites), V.
N. Vaguten, Nov/Dec97, p}O (Fea-
ture)
The Unlimited Appeal of. The Lim-
its to Growtft (it sparked the debate
on "sustainable" economies), Tim
Weber, Sepf Oct97, p2 (Front Matter)

Van der Waals and his Equation
(making an ideal gas real), B.
Yavelov, Nov/Dec97, p35 (Looking
Back)
Van der Waerden's Pathological
Function (examining a "miserable
sore" ), B. Martynov, lul f Atg98, pl2
(Feature)
Variations on a Theme (the Arith-
metic Mean-Ceometric Mean in-
equality), Mark Saul and Titu
Andreescu, lanlFeb99, p37 (Gradus
ad Parnassum)
Visionary Science (atmospheric
anomalies), V. Novoseltsev, May/
|un98, p21 (Feature)

Waves Beneath the Waves {ocean
acoustics), L. Brekhovskikh and V.
Kurtepov, lanlFeb9S, p 16 (Feature)
Weightlessness in a Cat? (road-trip
physics), Sergei Pikin, |ui/Aug98,
p31 (At the Blackboard)
What I Learned in Quantum Land
(poem), David Arns, fan/Feb99, p52
(Musings)
Why Is the Sky Blue? (the physics
behind the sky's colors), Alexander
Buzdin and Sergei Krotov, Mar/
Apr98, p47 (In the Open Air)
The World3 Model (a graphic represen-
tation of a system dynamics model),
Sep I O ct97, p32 (Kaleidoscope)

The World in a Bubble (sustain-
ability in closed ecological systems),
foshua L. Tosteson, Sepf Oct97, p20
(Feature)
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xGr0$ssctEllc8
%t.2
-C5

Arross
I Sorrow
5 Young male horses

11 Width times
length

15 Asian country
(slang)

18 Sumerian moon god

19 Thin as _

20 A geometric shape:

abbr.

21 Length unit
23 Flower oil
24 Writer Btet
25 French director

)acques _ {1908-
re82)

26 Quality: suf{.

27 Phonograph

inventor
30 Mallophaga
31 First garden

32 Astronomer _
Pannekoek {1873-
19601

33 Hertzsprung-_
diagram

35 Directionless
quantity

38 Muhammad _
39 Zip
41 Brother or sister
42 100 square meters
43 French artist _

Tanguy (1900-

1e55)

by David R. Martin

45 Homes
48 Tlpe o{ boom
52 lOr2: pref.
54 1945 physiol.

Nobelist Antonio
_ Moniz

56 Of human waste
58 Corned beef 

-59 Organic compounds

60 JUIY/AUGUsr lsss
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61 _ circle (ecluator,

e.g )

63 That woman
6zl Roster

65 Solution: abbr.
(r7 Australian poet

_ Hope

69 Collection of
anecclotes

70 _-isomer
71 Cyclotron inventor
79 

- 
group (of

topology)
80 Poct's before

B1 Geologist Reginald
A. _ (1871-1957)

82 Resinous insect
secretion

8.3 Egg ce11

85 Poet's even

86 Family member
89 First _ (QB's

concerns)

93 Rounil: prei.

94 Finished second

97 X followers
99 Llthium h1'dror-

icle: abbr.

100 EIdest sor.r oi
Cain

102 Bcgins

104 Coral rrdge

10(r Nitrilotriacetrc
aci.c1

107 Possesscs

109 Sphere

1 10 "_ Cot a Secret"
1 1) Archaeologist

Richard
I 1+ _ reLativity
11S Kind ot rhrcad
120 grcrup \chem.

group I

l2l _ sphrncter
(certain muscle l

122 Elcctricity pioneer

128 Makes lace

1 29 Indonesian islancls

130 Practitioner: suf{.

131 New England state

132 Opp. of endo

133 Race: con-rb. form
134 Mctric mass unit
l.J5 rnalal.ra

136 Trig. {unction
137 Type of carpet

138 _-
Recklinghausen
disease

139 Dice ro11

Iown
I Smal1 insect
2 A Dravidian cave

temple
3 Interested in
4 Type of paint
5 Electromagnetic

induction discov-

CICI

6 Newspaper editor
Abraham 

-(1869-19s1)
7 Type of exam

8 Of a young inscct
9 Uranr-rs satellite

10 lro:en rain
I1 

- 
scries oi

elemcnts
I I Inlei>
I I O-,rn;

tLlIC

1-l Gland sac

15 Quanturn phvsics
pioneer

16 Astronomer _
Cannon (1863-

1941 )

17 1350 to Caesar

22 Foot part

28 Be a waiter
29 Scmlconductor

atom
3.1 Srbhng: abbr.

35 Satisfy
36 Spring: cornb. form
3 / (Jt aucratr
38 Esker

40 " _ Weapon"
44 Zygote

46 1939 chem.
Nobelist Adolf 

-47 Tuscan commune
49 Sodium cyanate
50 Characteristic o{:

suff.
5 I Pursue

53 Wings
55 Otariidae member

57 Swimming stroke
60 Stannous sulfide
62 "When I was 

-"66 Precipitous
68 451 to Brutus

71 Run away
72 Torn apart
73 Nerve: comb. form
74 Hershiser and

namesakes

75 1975 physiol.
Nobelist 

-Dulbecco

76 and terminer
77 One hundredth of

a gray

78 Environrnental sci.

84 Light speed

rcscarchet
87 Concern
88 Sensc organ

90 Blink
91 Musical sound

92 Chaise

95 Archetypical
psychologist

96 Er,O.,

98 City in Alabama
101 1968 physiol.

Nobehst _
Gobind Kl.rorana

103 Elcmcnt 14

105 1965 pl.rysrcs

Nobelist Richard

108 Sworcls

111 Gcophysicist Felix

_ Meinisz (1t387-

19661

113 Type of metal
114 Logic circuit
115 Makc into 1aw

116 l9(r3 chem.

Nobelist Giulicr

117 Port ncar
Edinburgh

I 19 Strike hard
120 Synthetic fiber
123 Okinawan scaport

124 Temple (archaic)

125 Wood: comb. fortl
126 Arrow poison

127 Beatty and Rorem
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COWCULATIONS

Bal'n auain

by Dr Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. This year marks the 150th
anniversary of Wisconsin's statehood. The ses-

quicentennial celebration is a time to reflect on our past
and those who first immigrated to this fertile land in the
Midwest to carve out a living. Their aims were modest:

1. Good Crops,
2.Proper Storage, ,
3. Profitable Livestock,
4. A Stable Market, and
5. Life as Wel[ as a Living.

At least those were the aims that Wesson |oseph

191 1, as he finished building a magnificent round barn on
his dairy far:rn in Beloit, Wisconsin. Two generations of
Dougans eamed a good living delivering their milk to the
babies of Beloit and in the process led a fuil life.

Today, the Dougan Round Barn, like so many
barns scattered around Wisconsin, is worn out,
weather-beaten, and idle. It has lost its paint but not
its charm or its supporters. In fact, the "Friends of the
Round Barr:." have crafted a plan to save the round
barn and restore it to its former glory. They will have
it moved from its present spot to a plot next to the Wis-
consin State Information Center on Interstate 90. There
visitors coming into the state will be able to stop
and admire an artilact of the dairy indus-

Dougan painted on his silo in summer try that has been "bartt agaitt."
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To move a 58-foot-fiameter round bam with a cement
silo in the center is not trivial. Mover Bob will do the li{t-
ing but wants you to cowculate the smoothest move. A
smooth movp from the Dougan Farm to the Information
Center has the following properties:

( 1) It avoids hills and valleys as much as possible,
(2) It avoids any sudden changes in elevation, and
(3) It is the shortest in length.

The order of these propetries is important. Thus, if there
is more than one move that satisfies property (1), then (2)

is used. If there is still more than one move that is best
in properties (1) and (21, then (3) is used.

The Dougan Farm (DF) is a20 x 20 square array of
elevations. The Round Barn is at {1, 1}, and the Infor-
mation Center is at {20, 20}. A Move to the Informa-
tion Center is a list of coordinates {i, l} starting at
{1, 1} ending at |.20,20} and connected by east-west
or north-south moves. Here is the formal definition
of properties of a Move according to the description
above.

(1) A hitt is the highest point of the Move relative to
the elevation at {1, 1}. A valley is the lowest.

hill = llan[DF(Move(i) ) - DF(lilove(l)),
2<=i<=201

vallay = l[ialDF(llove(i) ) - DF(uove(l) ),
2<=i<=20I

A smooth Move should have the lowest possible
(!Ia*lhiII,lbs [va1leyl I ).

Instructions for moving the round barn in the illustration
at left are given by the artist, Mark Brenneman.
(1) Heavy-duty no-slip plunger is attached securely to vent
on barn roof.
(2) Window shade is raised to siart the "Rooster Drive with
Chicken lgnition" (pat. pending). Speed is controlled by the
height of the shade.
(3) As the rooster runs, the cable is reeled in and raises
the barn.
(4) lntermediate gear moves rackthat positions slop trough
in front of pig.
(5) Pig eats slop, gains weight, and eventually...
(6) Breaks the rope holding it up and ialls into spring loaded
bathtub.
(7) When the bathtub goes down, it rocks a lever, which
releases the clutch.
(8) Now the Rooster Drive no longer raises the barn; it turns
a bevel gear, causing the whole upper assembly to pivot.
(9) As the upper assembly pivots, the cow on the cantile-
ver swings away from behind the blinder.
(1 0) Now the cow moves ahead to graze on the grass near
the fulcrum, reducing the moment and causing the canti-
levered board and crane arm to tip slightly.
(11)This causes the bowling ball in the dustpan to drop
into the basket, which reestablishes balance and...
(12) Lowers plastic ants into view of the anteaters.
(13) As the anteaters chase the ants, the machine and barn
roll on to their next destination and the window shade may
be lowered...

(2) If more than one Move has the same value for 1,

then check the slope.

sloDe = Uar<[Abs IIIF(!lov€(i) ) -IIF(!bve(i+1) ) L
1<= l-<= 191

A smooth Move has the smallest possible slope.
(3) If more than one Move scores the same on (1) and

(2), then check the Move length. Make LengthfMove] as

small as possible.
If there is more than one smooth Move in the sense

of (l), (21, and (3), then pick one. Show the smooth Move,
and its smoothness.

{hi11, vaIIey, sloDe, length}

Douuan Fanm

Use the following topological map for the Dougan Farm.

(f [x_, y_l := 7. Sin[*13.1 Coatyl2.I - 5.
Cos[x/3. ] sinty/5.I

DE = ltaaqroselTabtelFloorlf [x, yIJ, lx, L,
2Ol, {y, 1-, 2017)i

P1ot3D[f [x, yl , lr., L, 2Ol , ly, 7,, 201 ,
PlotRaage -> .Lll, PlotPoints -> 30I

Deltsily ilol
In the density plot that follows, the light squares are

the higher elevations and the dark squares are the lower
elevations.

elerratioo.s = LietDensitfrPlot[DF, Fram ->
Falsel

0
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Let's examine a typical Move of the round barn.

Move = {{1, Ll, 12,
t4, 21, 15, 21, {5,
u, ll , 17, 5), {7,
(8, 8), {8,9}, 19,
(10, LLl, (10, L2l,
(10, 15), (10, L6l,
(13, 15), (L4, 15),
lL? , 15), (18, 7.61 ,
t19, 18), l2O, 18),

1), (3, 1), t3, 21,
2l , 17, 2l , 17, 31 ,
61, {8, 5}, 18, 71,
9), (10, 91, {10, 10},
(10, 13), (10, L[l,
{11, 15}, llz, L6l,
(15, 15), (15, 16}
{19, L5l, (19, Ltl,
{2O, 19}, {2O, Z0l}i

We first define the hill, valley, iump, and length of a
Move in Mathematica.The hill value is the largest dif-
ference in elevation between all locations in the Move
and the starting elevation. The valley measures the larg-
est negative drop in elevation.

hill = llarrll}Ett#tt1lL #[t2lIII - rt[1, UI
&/G ![otte]

5

walley = llinIDFII#tI1lL #II2IIII
DF[[l, 1lI &/e l|ovel

-10

The jump number measures the largest increase or
decrease between two consecutive locations in the
Move.

jurgr = !ilarEllbst#t t1l I - #t t2l I I&/C
Part,itiontDFt t#t tll L #t t2l I I l&/e
trilove, l2l , t1l I I

4

Finally, Length measures the total number of steps
in the Move.

f.eagrthlMovel I

39

We put it all together by defining a smooth function
for any Move.

mothtlilove_l := !lo&r1e[{hit1, rralley,
elqpl ,
hill = !ra*[DFIt#II1ll, *II2llll
DF [ [1, 1l I &/GlIovel ;
var.ley = ![inllE[ t#I tU L #[ t2l I I I

DFI [1, 1l I &/B[ovel;
jurqr = lila:r[Abet#tlUI - #It2III&/e

Pantsitidrll,Ft I#t I1I L #[ t2l I I I&/C !&rr€,
l2l, (1)l I i

Print["{hil1,va11ey,juqt,lengrtb} = n,

{hi11, vaIIsy, Juqt, I€ngthtUov€I}II
Visualize the Move by placing it on the Density Plot.

Slrowlelevatiors,
RGBColor[1, O,

smooth[!ilovel

Grql*rice [ {lf}riclgtess [ .011 ,
0L Linetllov€ - .5l ll l,

In case you thought it would be easy to consider all
possible Moves, there are over 35 billion of them with
the shortest possible Length. This is cowculated in
Mathematica with the Binomial function.

Biasrial[38, 191

35345253800

Cour 1 1

Write a program that finds the smoothest N4ove for
the Dougan Round Barn.

Come this Winter. ri-rl} thc iilst snow
Move this barn. and t.r.(a rr s1ow.
Find a wdy Lu Lht iri- r\'.n \ldlrofl,
Whose change rs snrail tn elevation.
When you've fouud tt Lurn it in.
And help restore thts barn again.

-Dr. Mu

sduri0]l t0 c0tlll g

In COW 9 you were asked to find how many milk
routes are possible from the farm to town that deliver
the milk to each customer and never go through a snow-
drift. Here is how Cream County was laid out with the
farm at {1, 1} and the town at {10, 10}.

custdnerE = {{2t 3lr {5r 5}, l9r 9llt
sno$drifte = ({3, 5l , 14, 71, lL, 9lt {7, 41 ,

17, 71, (5, 1}l;
n=10i
road[1, U = Oi
roadln, nI = 0i
roadlx_r y_l z,= L li llsiberQlcustcrEars,

{x, y} I
road[x_, y_I z- 3 li lileuiberQlgnorrdrifts,

{x, y} I
road[+, y-l = 2i
Creaffounty s Arraylroad, (n, n]l;
LlsthsttyPlotslCrestountfr, ftam -> Ealsel

$4 JUIY/AUG[$T rsso



00
00
00
00
00
03
03
03
23
IL

0000
003366
0 0 33 33

0 0 33 0

003366
12 27 33 33

99L20
6030
3330
0000

0 561 LL22

198 s61 s61

L32 363 0

99 23L 0

99 132 0

33 33 0

000
000
000
000

Road key: black: farm and town, white = snowdri{ts, dark gray :
customers, iight gray = all the rest.

The key points to observe about the solution are:
(1) If a customer is located at li, i], then there are no

routes that go through any lx, y) where (x < i arrd y > i)
or {x > i andy < l). Sketch these regions on paper to con-
vince yourself that this is true.

(2) These are no routes that go through the snow-
dri{ts.

(3) There is one route to {1, 1} and other locations
straight east or straight north home that have routes
through them.

(4) If routeslr, yl : the number of routes through {x,
y), then routes[x, y] : routes[x - l, y] + routes[x, y - I].
This happens since the only way to go through {x, y} is
to come from {x - L , yl or {x, y - 1}.

Using these observations, the solution is constructed
in Mathematica as follows:

(a) Define the noRoutesQ predicate that tests
whether (1)is true orfalse at apoint {r, y}, (^ denotes
AND, v denotes OR).

aonoutesQlx_, y_, i_I := (x < custcnrers
ttt, 1ll ,r y > errst@erelli, 2ll v
(x > custws[li, UI n y < cugto[srs
[[i, 2II)
(b) Set the routes[x, yl: O at all locations {x, y} where

noRoutesQ is true {or any customer.
(c) Put zetos at the snowdrifts.
(d) Define the recursive relationship between

routes through lx, yl and those through {x - 1, y} and
lr, y - ll.

(e) Set routes[x, yl: L, east or north of home.
(f) Display the routes through all locations in

Cream County. Read of{ the answer of ll22 routes
into town.

Clearlroutesl
routea [x_, y_I z,= O I i Or eG

TablelnoRoutesQlx, y, il , {i, 3}l
routes[x_, y_l z= 0 li ildberQlsnovrdrifts,

{x, y} l
routes [x_, y_I z= t I i :r == 1 [Orl y == I
route6[x-, y_l s= routeglx, yl = routes[x

- 1, yI + routeslx, y - 1l
Rgrreree lArray ]routes, {n, n} I I I I

Ii[atri:rForm

A correct solution was submitted by Benjamin Karas,
a freshman at Case Western Reserve University.

Altdlimlly..
In commemoration of Wisconsin's Sesquicentennial,

a copy of "stories from the Round Barrr" by |ackie
Dougan Iackson (http://www.uis.edu/-jjackson/
barnbook.htm), granddaughter of W. |. Dougan, will be
sent to the person who submits the smoothest move.

Send your solution to drmu@cs.uwp.edu. Past solu-
tions are available at http://usaco.uwp.edu/cowculations.
If competitive computer programming is your smooth
move, stop by the USA Computing Olympiad web site
at http://usaco.uwp.edu. Take a look at the 1998 USA
team of four students who were just selected to repre-
sent the United States at the 1Oth International Olym-
piad in Informatics to be held in Setfbal, Portugal, Sep-
tember 5-12, 199S. o

American Mathematical Society 10
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The lnvisible Sky
R0SAT and the Age of X-Ray Astronomy
BEBND ASCHENBACH, HERMANN.[IICHAEL HAHN,

and JOACHIM TBUMPER

TheX-raysatellte B0SAT, aunched n 1990, has madea

new universe visrble. it has enab ed astron0mers t0 discover

over 1 20,000 X-ray sources and to look in new ways at ste -

ar explosions galactrc co lisions, extreme y compact pul.

sars, black holes, and quasars that shine 10,000 times more strongly than the brighte$ galaxy, ln

The lnvblble Sky,lwo of the scientists tliho were instrumenlal in the design and launching of the

sale rte describe the cuttrng-edge sc ence be ng done wrth it and show many of lhe most

spectacularco or mages it has geferated. This beautfully I ustrated book s the frsttodescribe

lor lay readers th s most remarkab e astronom ca rnstrument.

1998/17s PP., 200 TLLUS, (150 C0LoByHARDCoVER/$40.00/rSBN 0.387.94928.3

Photo-Guide to
the Constellations
CHRIS KITCHIN, Univers ty of Hertfordhs re, Bayfordbury, UK

There are many books on frnd ng your way around the night

sky, but the Phal7-Gutde la the Cansiellaltans s un que tn

showngphotographsof howtheskyreally ooksunderavar"

etyof differentcondlons,fromlhecityoutskrtstothealrnost
perlect skies deep n the countryside. Along wth these

un que photograph c maps, a detai ed step-by-step gu de to

"star hoppng" and other usefu technrques means that

acquiring a working knowledge 0f the conslellations has never been so easyl

199i/160 PP, 20 tLLUS./SoFTC0VER/$24.95flS8N 3.540.76203.5

PRACTICAL ASTBONOMY SERIES

Ihe 0bserver's Year
366 ilights of the Universe
PATRICK MOORE

There are 365 nights in almost every year. And from the amateur astronomer's point of view, no two

are alike because each one reveals or hides pafi of the sky (and the aslronomical wonders therein).

Which is why Patrick Moore has written this unique book io highlight objects of special interest on

every night of the year. He also writes about the history of the constellations, double stars, nebulae,

the lvloon, planets, even asleroids, Beginning January 1st, he works through the year night by night

and provides tips and insights that only this veteran astronomer and teacher can impart.

1 997/384 PP./S0FToC0VER/$29.95/tSBN 3.540-761 47.0

PRACTICAL ASTRONOMY SERIES

The Sun in Eclipse
MICHAEL MAUNDER & PATRICK MOORE

This book contains everything the amaieur astronomer needs to know about eclipses: what to look

for, when and how to observe, what equipment is needed, even how to mouni an eclipse expedr-

tion. A final chapter "Eclipse l\,4ishaps and oddities" oflers amusing tales of what can go wrong at

the most critical moments even during ihe most well planned eclipse observation, A complete and

lengthy calendar prepares readers for a decade of observalions.

1998/256 PP., 50 tLLUS,/SoFTC0VER/$29,95/|SBN 3.540.76146.2

PRACTICAL ASTRONOMY SEBIES

Ihe Art and Science 0f CGD Astronomy
Ediied by D. RATLEDGE

Twelve leading amateurs in CCD astronomyfrom North America and Europe, who are producing images

that rival lhose ol professional obseruatories only ten years ago, detail iechniques, solutions, advice, and

tipsforanyone choosing or using a CCD camera, This book features many beautiful aslronomical images

and provides essential reading for astronomers who are either using a CCD camera in their wok, orwho

are considering buying one, or who simply want t0 know more about today's available technology,
'1997/212 PP., 50 tLLUS., 8 C0LoR PLATES/SoFTCoVEB/$39.95/|SBN 3.540.76103.9

PRACTICAL ASTRONOMY SERIES

Understanding the Universe
An lntroduction to Ptysics and Askophysics
JAMES B. SEABOBN, Un vers ly of R chmond, VA

Th s unique book emp oys thetoprcs ofastrofomy and astrophysics

t0 provde readers \{th afirm ground ng n the ma n topcs of physics.

The f rst parl ollhe book develops New,ton an mechan cs. Chapters

on electrornagnel sm and e ementary quaftum theory aythe foun-

daLion of the modern theory oi lhe structure 0l rnatter and the ro e

of radiat on in the constilution of slars, Kinetic theory and nuc ear

phys cs prov de the bas s for a d scuss on of sle lar structLlre and

evo ut0n F na y, an examination ol red sh lts and other obser-

val onal data provide a basis 1or d scuss ons oi cosmo ogy and

cosmogony Comp mentary examrnatron cop es are a\/a ab e to

qual f ed nstructors.

1997/304 PP., 251 TLLUS./HARDCoVER/S49,95/rSBN 0.387.98295.7

Something l{ew Under the Sun
Satellites and the Be$nning of the Space Age
HELEN GAVAGHAN

n lh s book the i rst h story 01 afiific a salel tes and the r uses,

He en Gavaghan shows how the ldea o1 pull ng an obiect into

ohit around the Eafih changedfrom sc ence f ctiof t0 ndispensable

iechn0 ogy in the t\,v nk ng of an eye. She lel s the remarkab e

ns de story ol ho\{ obscure men and women, olten aborrng under

str ct secrecy, made lhe extraord nary scientific and techno og -

ca d scoveries needed to make these mirac es happen Comb n ng

- 
an ino'essive ranoe of docunertarion with a con-

ffi petting, reaoable nalrrator, this book 'ecourts the hitn-

'lej e,to .'to d lrslol ol ore o'he rosl r-0o1a1t tecl'roffill erto unto d hrstory olone ol the most irnpodanttechno og es of our time

: 1 997/300 PP,/HARDCOVER/$26,00/ ISBN 0-387-9491 4.3

Seeing Stars
CHRIS KITCHIN & ROBERT FOBREST

Everyone isfamiliarwiththe magnificentphotographstaken by l\,4ariner,The Hubble SpaceTelescope,

and other multi'million dollar pieces ol equipment - but what exactly ought to be visible to the naked

eye, or through an amateuls six-, len-, or twelve-inch refleclor? This essential and highly-illustrated

guide for anyone taking therr first steps in observational astronomy shows what you can expect to

see, helping you getthe most from yourequipment, ltals0 explains how atmospheric conditions affect

"seeing" and how to calculate this considerati0n into your expectations tor observatronal astronomy

on any given evening,

1998/200 PP., 75 TLLUSJHARDC0VER/$34.95/|SBN 3.540.76030.X

PRACTICAL ASTRONOMY SERIES

Astrophysical Concepts
Ihird Edition
MARTIN HABWIT

from review of the second edition -

'...a clear, solb lnlroducllon t0 aslrcphyslcs,.lhal shows how physlcs can be applied t0 aslnnoni-
ul objecls... )ne olthe stong pokls ts lhe pnblens [thalJ give students sone rcal leel lotthe sol
0f calculallons astr1n1ners must d0..." -AM. J, PHYS.

Presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative

understanding of the subjed. Emphasizing physical concepls, the book outlines cosmic events and

provides a series of astrophysical sketches, For thrs lhird edition, nearly every pan 0f the text has

been reconsidered and rewrilten; ne\,v sections have been added to cover recent developments,

and the rest has been revised and brought up to date.

1998/665 PP., 234 tLLUS./HARDCoVER/$69.9s/SBN 0-387-94943-7

ASTBONOMY & ASTROPHYSICS LIBBARY

Four Easy llYays to 0rder:
. Call Toll Free: 8oo-SPBINGEB 8:30 am to 5:30 pm ET

Please menuon Code 5350 when orderng by phonei

.Write to Springerverlag New Yo*, lnc., Dept. 5350, P0 Box 2485, Secaucus. NJ 07096-2485;

. E-mail orders@springer-ny.com (outside North America, orders@springer,de):

. Visit your local scientiric bookslore or urge your librarian t0 0rder,

5/98 Beference Code 5350
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