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Watermelon on a Plate (nineteenth century) American

atermelon—a staple of the summer cookout. Most con-
W sider it delicious and easy to prepare, but anyone who's
delved beneath the dark jade rind knows that it can be a
demanding fruit.

The challenge of selecting a ripe melon is a science unto
itself. Thumping is thought to reveal acoustic clues to the
maturity of the fruit, others prefer to pursue olfactory indi-
cations of peak flavor. But nothing can surpass a core sample
of the pink flesh within. The challenge, however, is far from
over. Assuming you're abiding by the parliamentary proce-
dures of picnics, you will have set aside your cutlery and

taken hold of a half-moon wedge of melon with both hands.
The trick, as we all know, is to maximize the amount of fruit
ingested while minimizing the amount of juice dribbled onto
your shirt. And there’s the question of the seed disposal—
to spit or not to spit, what would Miss Manners do?

Hopefully, after reading this culinary overview, you're
ready to sink your teeth into an even more confounding
puzzle concerning watermelons. It leads off an article that
contains a cornucopia of problems that explore how ap-
pearances can be deceiving. Make sure you have yvour nap-
kin ready before turning to page 34.
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FEEDBACK

Readers respond

Money trumps image

We enjoy hearing from our read-
ers by any mode of communica-
tion. Lloyd Kannenberg e-mailed
us (at quantum@nsta.org) the fol-
lowing reaction to last issue’s
Front Matter:

I was amazed at the alle-
gation in “Enough Nerd-
iness” (Front Matter, May/
June 1998) that the nerd im-
age of scientists deters
young people from choosing
careers in science and tech-
nology.

The same image has been
around for a very long time;
why then would its negative
impact only manifest itself
now? A far more likely rea-
son that bright young
people no longer choose
technological careers is that
today they stand to earn far
more by going into manage-
ment or finance. It is true
that there has always been a
gap between salaries of the
management and of the
technical staff of a typical
company; but in recent
years this gap has widened
into a chasm (I will say
nothing about relative
working conditions, but
think: Does the manager
who decided to put the tech-
nical staff into Dilbert-style
cubicles work in a cubicle
himself?).

Young people aren’t stu-
pid. They can apply their
smarts in any of a broad
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spectrum of careers. Why
should they take what
amounts to a vow of poverty
by following the technologi-
cal path? Nerd image? Bah!
Since when are managers
and venture capitalists
sexy?

Whoops

Eric E. Wickey of New York City
also chose e-mail to contact us
about a questionable calculation in
a previous issue:

Ijust found your magazine,
and I think it’s great. How-
ever, I think T found an error
in the March/April 1998 is-
sue in the article “Symmetry
in Algebra,” on page 43, ex-
ample 3. We're asked to solve
simultaneously this system
of equations:

Xyr=
}72 = —2_
zx =10.

Multiplying gives x%y2z?
= -120, right? To go any fur-
ther means taking the square
root of a negative number,
which is imaginary.

The solution on page 52
gives the right sides of these
equations as 6, 15, and 10,
which when multiplied gives
a square root £30, and that
works out well.

Anyway, thanks for a great
magazine.

Well, Eric, we're glad you found

our magazine, and we thank you for
vour kind words and for keeping us
honest.

Oops

In Physics Contest in the Janu-
ary/February 1998 issue on page 32,
middle column, the net force should
be 768 N rather than 588 N. Our
thanks to Victor Mazmanian for
pointing out this regrettable mis-
take.

What's going on?

Summer study ... competitions ...
new books ... ongoing activities ...
clubs and associations free
samples ... contests ... whatever it is,
if you think it’s of interest to
Quantum readers, let us know
about it! Help us fill Happenings
and the Bulletin Board with short
news items, firsthand reports, and
announcements of upcoming
events.

What's on your mind?

Write to us! We want to know
what you think of Quantum. What
do you like the most about it? What
would you like to see more of? And,
yes—what don’t you like about
Quantum? We want to make it
even better, but we need your
help.

You can contact us via e-mail at
quantum@nsta.org, leave a message
in our guestbook at http://www.
nsta.org/quantum, or send us a let-
ter at

Quantum

National Science Teachers Assoc.
1840 Wilson Boulevard
Arlington VA 22201-3000
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Have you written an article that
you think belongs in Quantum!?
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us and we'll
send you the editorial guidelines
for prospective Quantum con-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a
level appropriate for Quantum’s
target readership of high school
and college students.

Send your inquiries to:

Managing Editor
Quantum
1840 Wilson Boulevard
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Does your library
have QUANTUM?

If not, talk to your librarian!

Quantum is a resource that
belongs in every high school and
college library.

“A first-class ‘new’ magazine. . .
one can appreciate the meaning of
quality and imaginative challenge
... it is for anyone with an interest
in science, particularly math and
physics. Highly recommended.”—
Library Journal

It should be in every high school
library [and] in most public
libraries . . . we owe it to our
students to make Quantum
widely available.”—Richard
Askey, Professor of Mathematics
at the University of Wisconsin,
Madison
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Plangtary builting blocks

Blueprints for creating terra firma

by V. Meshcheryakov

T WAS LONG, LONG AGO.

Judging by the fact that Mankind

does not remember the face of the

Creator, who gave birth to the
World, we can reasonably suppose
that people did not participate in
this historical event. What can we
know about it? All hopes are focused
on physics, which helps us look into
the past, learn the laws of the Uni-
verse, and realize where we should
go in the future.

It is believed that the Universe is
composed of atoms and that these
atoms are made of electrons and
nuclei. This seems quite probable
since there are gobs of electronic
devices around, and thinking lin-
guistically, they should be made of
electrons. However, the Universe is
also composed of stars and planets.
Remember, we ourselves live on a
planet. It seems like the existence of
planets and electrons should be con-
nected in one way or another. But
how?

The answer to this question can-
not be simple, short, and exhaustive.
Therefore, if you want to look at the
Universe as a whole, let’s get to
work and let the visage of our Cre-
ator—at first as undetermined as
Nature herself—accompany us.

The Creator sat at His workbench
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and ran His fingers over the atoms.
They consisted of positively charged
nuclei surrounded by dense clouds
of negatively charged electrons.
Drawing two atoms nearer to each
other, He could see the distortions of
the electron clouds resulting from a
complex combination of electro-
magnetic interactions.

At small distances the dominat-
ing phenomenon was the attraction
of the electrons of one atom to the
nucleus of the other. As a result,
some electrons became common to
both nuclei (so-called “collective
electrons”), and the total energy of
the system composed of two atoms
with their electron clouds stuck to-
gether turned out to be less than the
sum of the energy of the same atoms
when separated by a large distance.
However, if we try to press the at-
oms still closer together, forces of
repulsion arise, forces caused mainly
by the interaction of the inner shells
of the electron clouds.

It is easy to imagine that the
strange construction composed of a
few dozen atoms (called an atomic
cluster) has a cell structure and is
similar in many respects to an indi-
vidual atom. The energy of a single
cell of this cluster can be evaluated
in the following way.

CONSTRULGTIVE THENKING

Suppose an atomic cell of radius R
consists of a pointlike nucleus, the
inner electronic shells (known as the
ionic core, occupying a volume of ra-
dius R ), and the outermost electrons,
which fill most of the cell’s volume.
Let’s determine the dependence of
the cell’s energy on R, say, for a uni-
valent atom with nuclear charge Ze,
where Z is the number of charges
(equal to the number of electrons in
the neutral atom)ande=1.6-10"° C
is the elementary charge. This energy
is approximately the sum of the po-
tential energy of the coulomb attrac-
tion between the outer electron and
the nucleus

(here ¢, is the permittivity of free
space), the poten energy due to

and the non-coulomb repulsion E; of
the outer electron and the ionic core
as well as the kinetic energy of the
outer electron E,.

The energy E, arises from the
nonpointlike nature of the ionic



Collages by Vera Khlebnikova

core. If we assume that the electrons
of the ionic core and the outer elec-
tron are distributed homogeneously
in their . respective volumes
V,=4nR 3/3 and Q = 4nR3/3, then E,
W111 be d1rectly proportional to the
surface area of the core 4nR * and in-
versely proportional to the cell’
volume Q. Thus,

212
B, = 3e ch .
4me R

The energy E, can be evaluated
using de Broglie’s formula for the
momentum of an electron:
p=2nh /A, where A is the electron’s
wavelengthand 7 =1.0-10347J - s is
Planck’s constant. This formula is
based on the fundamental
experimental fact that in
many respects electrons be-
have like waves. For this rea-
son even a single free elec-
tron should be considered as
a cloud similar to electrons
confined in the cluster cell.
Assuming A to be equal to
the length 2nR of the outer-
most orbit and describing the
kinetic energy as m_v?/2,
where v = p/m_ is the
electron’s speed  and
m,=9.1-10! kg its mass, we
obtain

h2

E S
! 2m,R>

Therefore, the total energy is

(1)

2 2,2 2
BR)=——&_y SRee” , _h -
4negR - 4negR°  2m,R

Note that there is no parameter Z in
this formula. This means that our
estimate can be applied to atoms
with an arbitrary number of elec-
trons.

The different signs in formula (1)
mean that the coulomb energy tends
to compress a cell (and the entire
cluster) but collapse is prevented by
the non-coulomb energy of the inner
shells’ repulsion and the kinetic en-
ergy of the outer-shell electrons. So
the function E(R) has a minimum at
R = R_ that can be found by taking

the derivative dE(R)/dR and setting
it equal to zero. The result
R_ ~3.5R_corresponds to the mini-
mal value of the energy E_

In condensed matter, the sizes of
the inner electron shells of most el-
ements do not differ appreciably
from each other and on average are
close to the Bohr radius

_Anegn?
ay =——-5—
m.e

=0.53-1071% m?

This means that the ionic cores of
radius R_ = a, occupy a very small
part of the cell’s volume

3
R -100% =10%,

m

and so they do not prevent the outer
cloud from uniting the atoms into a
strong and elastic cluster whose
properties depend upon the ratio
R /R . The volume of a cell in such
a cluster is on the order of

=2ERS =10%4}
3

5 \8
5102[@332—] =10 m?
m.e

(2)

It is noteworthy that most of the
substances in the Universe are com-
posed of clusters with atomic vol-
umes that differ from (2) by no more
than one order of magnitude. This

fact makes it possible, in a rough ap-
proximation, to subdivide the Uni-
verse into two universes: (1) the mi-
croscopic universe with electrons
and nuclei that sets the value of Q,
and (2) the macroscopic universe
with planets, mountains, and
stones, the size of which is deter-
mined by this value of Q.

Note the difference in the poetic
sound of the words “electron” and
“planet” on the one hand, and such
a prosaic, plain word as “stone” on
the other. This results from the
nearness and familiarity of the
stones. On the contrary, the distant
and unknown look more attractive.
But are you sure you know a Stone?
It seems as if this term is
appearing for the first
time on the noble pages
of our esteemed maga-
zine. Next we shall dis-
cuss the phenomenon of
Stone and its brethren.

The energy E_ can also
be considered as the work
W performed by the exter-
nal force f that would need

to be applied to an atom
to remove it from a clus-
ter to a distance larger
than the cell’s size. In
other words this dis-
tance should correspond
to the breaking of the
interatomic bonds. In
this case E_ = W = fR

" le/S

To characterize the ri-
gidity of the interatomic bond, it is
useful to consider the value B=E_/
Q, known as the bulk modulus. This
constant characterizes the energy
density in a cell and can be calcu-
lated from formulas (1) and (2.):

B=102—
4neoao

107 ® fisett

(4mey) 2

=10!! N/mz. 3]

This value is of the same order of
magnitude as the experimental val-

ues of the bulk modulus of solid
bodies.
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Thus in the first approximation
the complicated picture of electro-
magnetic interaction inside the
atomic cell can be described by two
parameters: B and Q, which make it
possible to evaluate the macroscopic
characteristics of the cluster.

Step by step, the Creator pro-
ceeded to construct the cluster, now
joining hundreds of atoms to it, then
thousands. He wondered when the
gravitational effects would start to
show themselves. Of course, He
knew that as early as the third cen-
tury A.D. the great Aristotle would
begin to develop the concept of
spherically symmetric gravitation:

Its shape must necessarily be
spherical. For every portion of
earth has weight until it
reaches the center, and the jos-
tling of parts greater 1
smaller would bring abou
a waved surface, g
compression and co
of part and part unti
ter is reached (Aristotle, On
the Heavens, 11:14).

One can’t help admiring this ne-
glecting of the heterogeneities on
Earth’s surface, such as mountains,
which are 3 to 4 orders of magnitude
larger than the average size of a hu-
man being. This was not a trivial
step on the long road to understand-
ing gravity. However, in spite of the
fact that Aristotle was a first-rate
mathematician as well as an out-
standing physicist, he did not finish
his study of gravitation, and it took
an additional 2,000 years to find the
mathematical description of this
physical idea. Still later another
important problem was solved—the
description of electromagnetic phe-
nomena in a medium, and it was
found, surprisingly, that gravita-
tional forces are far weaker than
electromagnetic forces. The calcula-
tions made previously can illustrate
this feature.

The elastic constant B can be de-
termined in another way, via the
pressure of the critical force f = BQ2/3
applied to the cell’s surface. Larger
forces break the cell. Let’s compare
the critical force f with the gravita-
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tional force f,, acting between two at-
oms. Accordmg to Newton’s law of uni-
versal gravitation, f, = Gm?/(2R,.?,
where G =6.67- 10N m?/kg? is the
gravitational constant. Assuming
the typical density of solid bodies to
be p = 5,000 kg/m?3, we get

fg_r~ Gm*

These estimates convinced the
Creator that a cluster could be com-
posed of a very large number of at-
oms. However, He was uneasy

=107,

about the moment when the gravi-

The weight of a surface atom of such
a cluster is mg, where g is the accel-
eration due to gravity, g(R) = GM/R>.
Assuming the cluster’s density to be
a constant p = M/V, we get

8(R)= %“GpR (4)

This relationship says that the ac-
celeration due to gravity at the sur-
face of a spherical cluster grows pro-
portionally to its radius. Thus, atoms
farther from the center have larger
weights. In this reasoning the
cluster’s surface just marks the dis-
tance to the probe atom. However,
considering an atom at a distance r
from the center, we do not find any
changes in its weight for arbitrary
variations of the cluster’s radius R > r.
Of course, the conditions around the
atom will vary. Let’s see how.

We begin to drill a well in the
cluster along its radius. The cross
section of the well will be only
one atom. In so doing we’ll weigh
every atom we meet. Clearly, the
result of the measurements will be
the function F, = mg(r,), where 1,
is the distance from the center to
the k-th atom. For example, this
function will give O for the weight of
the central atom, because g(z,) = 0.
This is in accordance with
Arisrorle s h\‘ ot ‘“1\:1: about the
ravity at the

i drilling to the
o fill the well with
atoms. After t he first atom goes to
the bottom of the well, the central
cell is affected by this atom’s
weight. The next atom increases
this force by its own weight, which,
however, differs from the weight of
the first atom because it is farther
from the center. The third atom
then adds its weight to the sum, and
SO on.

Thus, to find the force affecting
one of the central cluster’s cells, we
should add all the forces F, acting
along the entire length of the well:

As the neighboring atoms are
separated by the distance 2R, so
~OR_,1,=4R,,...,1; =2kR . The
1a5t term of the sum must be equal
to the force acting on the atom lo-
cated at the surface of the cluster of
radius R. Sor_=R =N'"3R_.Express-
ing F in terms of R we get

F:—Gm

3 p
NY3 ) (5)
5

><2Rm£1+2+...+k+...+

When the last term of the brack-
eted arithmetic sum n = N3/2 is
large, the sum is approximately
equal to

52 ) N2/3

2 8

Inserting this value and using the for-



mulas R = (3Q/4n)'/3 and p = m/Q
yields

F = Gp*Q*3N?23, (6)

Comparing F with f = BQ2/3, we
obtain the number of atoms in a

cluster:
3/2
1 B
N= — ,
mp2 (Gj (7)

which corresponds to its “elastic”-
gravitational stability. The quota-
tion marks stress the fact that in ad-
dition to the given atomic mass, the
parameters B and p = m/Q in this
formula are defined by the micro-
scopic mechanisms of interaction in
the atomic cell.

Let’s stop and think
about our analysis. Why
is the force F determined
by the pressure of only
one atomic column?
Why did we weigh the
atoms in such a narrow
well? Isn't it clear that
the electromagnetic in-
teraction of an atom
with the wall of our well
will prevent the realiza-
tion of such an experi-
ment? Why shouldn’t we
use a wider well, and why
didn’t we consider the
relationships between
the forces f, and F,?
Would you fike to be
the Creator for a mo-
ment and answer these
questions on your own? And to ask
some new ones? Equation (7) was
obtained in 1905 by the English
physicist Sir James Jeans. It was the
first formula discovered of a number
of relationships that later deter-
mined the gravitational stability of
different systems.

Now let’s evaluate the order of
magnitude of N using the atomic vol-
ume (2), the bulk modulus (3), and the
previously given value of the charac-
teristic density of solid matter. Ac-
cording to (7) we have N = 10%. “Mein
Gott!” exclaimed the Creator, “What
might the other parameters of the clus-
ter be?” It is easy to check that the so-
called Jeans mass and Jeans radius are

M=10**kgand R = 10" m.

This is how Earth was created.
According to formulas (3), (4), and
(5), the acceleration due to gravity at
Earth’s surface was related neither
to the planet’s size nor to the total
mass of its atoms; it was entirely de-
termined by the set of fundamental
physical constants:

)1/2 N 10"1G1/2m335

N (47580)5/2?14

N
&

which resulted in about 10 m/s2.
The planet made by the Creator met
the requirements of “elastic”-gravi-
tational stability and since

building materials! So He proceed
with His work. He recalled the
strange atomic formations, the clus-
ters He dealt with from the very be-
ginning, and decided to use them.
But first He was to discover a physi-
cal mechanism that would deter-
mine the stable formation of small-
size bodies at the planet’s surface.
He had a feeling that such a mecha-
nism existed because the planet He
had created met the requirements of
stability, having its gravitational
field determined only by fundamen-
tal constants. By intuition He felt
that this mechanism should exist in
the gravitational field of a stable
planet and not in an arbitrarily con-
structed one. The idea came
unexpectedly and consisted
of a gravitationally stable
cluster (this will prevent
breakage of interatomic
bonds) that is placed on the
surface of such a planet and is
affected by its own weight.
He embodied this idea as
follows. If a gravitating
planet of mass M and an
atomic cluster of mass M, << M
are set in physical contact
with each other, their static
equilibrium (determined by
the force of attraction
F,= GMM,/R? and by the op-
positely directed supporting
force) will be achieved by
the breaking of the inter-
atomic bonds at their inter-

“earth in motion,

whether in a mass or in frag-
ments, necessarily continues
to move until it occupies the
center equally every way, the
less being forced to equalize
itself by the greater owing to
the forward drive of the weight
impulse.... It must have been
formed in this way, and so
clearly its generation was
spherical” (Aristotle, On the
Heavens, 11:14).

Alas, the newborn planet was
naked. “What to do next?” pondered
the Creator. “If T settle human be-
ings on such a planet, they will need

face, followed by a redistri-

bution of atoms resulting in

the formation of n supporting
atoms:

n=2, 9
where, we recall, f is the force re-
quired to tear an atom away from
the cluster.

As a fundamental building unit,
the cluster with both the maximum
number of constituent atoms and
the minimal number of supporting
atoms was used. Clearly, a cluster of
larger mass would better protect the
interface against a load of short du-
ration. A similar situation occurs in
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the circus trick in which a heavy
sledgehammer strikes a massive slab
resting on a man. The conservation of
momentum in the hammer-slab sys-
tem makes the slab virtually motion-
less. We invite the reader to prove this
(without, of course, resorting to the
use of a sledgehammer).

The condition of the minimal
number of supporting atoms n = 3 is
necessary because incorporating a
fourth atom is only possible at the
expense of breaking interatomic
bonds, which would cause the col-
lapse of the entire cluster. The case
n < 3 is excluded because it doesn’t
provide the stability of a cluster on
a plane.

The three-support cluster was
called a Grain. With the help of
Jeans’s formula for the total number
of atoms in a planet, equation (7),
and by inserting f = BQ*3 and n = 3
into equation (8), we can evaluate
such an important building param-
eter of the Grain as its mass:

This formula shows that the
mass of a gravitationally stable clus-
ter placed on the planet’s surface
doesn’t depend on atomic mass, and
thus should be determined only by
the character of the interatomic
bonds. However, in that case the
variety of forms and numerical pa-
rameters of natural interatomic
bonds would result in the formation
of clusters quite different with re-
spect to volume per atom, number
of atoms per cluster, and mass. Does
this happen in nature? At present we
know only one established fact:
Atomic volumes in condensed mat-
ter differ no more than by one order
of magnitude. Indeed, when express-
ing Q and B in terms of the Bohr ra-
dius, we see that the experimental
data taken from the periodic table
are in the following range:

95(10—102)513,

e (10_5—10_3)82 (10]

4
4reqag
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which is quite narrow.

Clearly, the quasi-constant na-
ture of Q and B is at odds with the
existence of the vast variety of inter-
atomic bonds. However, inserting
(10) into (9) yields

ze

02411:80@1/2’ (11)
where z is a constant coefficient of
about 1. This result is really surpris-
ing: The mass of the critical cluster
not only does not depend on the
mass of the constituent atoms but
does not depend on the Bohr radius
either. This is quite a fundamental
fact! Perhaps this is the place where
the Creator built the narrow path-
way connecting the microscopic
universe with the macroscopic uni-
verse! Indeed, the absence of the
Bohr radius from the formula for M,
says that the Grain’s mass doesn’t
depend on the particular features of
the interatomic interactions and is
possibly determined by some kind of
averaged properties included in the
coefficient z. The nature of this pa-
rameter can be seen with the help of
formula (11): Being multiplied by
the elementary charge, it results in
the product ze, which can be inter-
preted as the charge underlying the
formation of the interatomic bond.
In such a case the parameter z is just
the number of electrons participat-
ing in the bond.

Let’s obtain some estimates. For
example, for lithium Q=2.1- 10" m?
and B(78K) = 0.11 - 10! N/m?, so
M,=1.0-107kgand z=0.53. For be-
ryllium Q = 0.81 - 10717 m3 and
B(0) = 1.7 - 10! N/m?, and thus M,
=2.0-107 kg and z = 1.1. By the
way, can the number of electrons
participating in the bond formation
really be a noninteger? Yes, it can.
Remember, at the beginning of the
article we spoke about electron
clouds that occupy some space and
thus can participate in binding not
as a whole, but with part of the
cloud.

Let’s assume that to an order of
magnitude M, = 10~ kg. Then for
a typical density of solid matter p
5,000 kg/m?, we get the total

In

number of atoms in the Grain,

_ My My

=108
m pQ '

Ny
as well as its characteristic size,
1/3 ~ 104
Ry = (N,QY3 =10 m.
Jeans’s formula for the number of
atoms in a planet and relationship
(9) result in a formula that connects

the Jeans mass with that of the
gravitationally stable cluster:

1/3

M, =(Mm?) (12)

By inserting M, = Nym and
M = Nm, we get

N,=N!3 (13)

This result shows that, to within
one order of magnitude, the number
of atoms in a Grain is equal to the
number of atoms located along the
planet’s radius. Of course, this is a
manifestation of the fact that both
the radial column of atoms and a
Grain (which is simply a crumpled
radial column) produce with their
weights the maximum load corre-
sponding to the breaking of indi-
vidual interatomic bonds.

The Creator made the Grain very
quickly, and the result was excel-
lent. This construction of 10!° at-
oms firmly stood on its three sup-
ports, wherever it was placed on the
planet’s surface.

“T wonder,”
people will ever gu
World rests on three
they will always im
primitive like r and unsup-
ported structures?” A troubled
shadow came over His face.

The remnants from the produc-
tion of the Grains can still be en-
countered in space as particles of
stellar dust. However, there is not
very much of it, which testifies to
the high effectiveness and ecological
purity of the Creator’s work.

According to the Creator’s design,
these Grains were destined to form
a grainy structure of far greater bod-
ies. So He started to erect a new con-
struction.

A cluster of mass m, of the next

e fhoi
C u

that My

U

e something




structural level must be composed
of clusters with critical mass M,.
Then among the masses m, it is pos-
sible to find an M, such that the
number n, of support clusters M, is
equal to 3: m,(n, = 3) = M,. The clus-
ters of mass m, < M, prevent break-
age of interatomic bonds between a
pair of clusters with critical masses
M,, and in this sense they are also
gravitationally stable in the gravita-
tion field of the Jeans mass.

The number of supporting atoms
n, of cluster M, cannot surpass the
approximate number of the surface
atoms of cluster M, so n, < N,>/3.
Therefore, the force of gravita-
tional attraction of cluster M,
should not be greater than F,
= N,2/3f. As the field at the surface
of the Jeans mass is g = GM/R?, and
since the gravitational force affect-
ing cluster M, is F, = M,g, then Mg
= N,23f. As the number of atoms of
the new cluster is N, = M, /m, we get

leNé/sng:NS/%N”/ (14

where f/mg = N,,. Using this for-
mula, we find the parameters of
the first structural level:

N, = 10%,
M, =50 kg,
R =03 m.

This was how Stones and Boul-
ders emerged from the Grains. Look
at them—they are so beautiful!
Their grainy structure can be seen
with the naked eye.

“Surely,” the Creator thought,
“In a Boulder (or in a Stone) that has
lain on the planet’s surface for thou-
sands of years, the upper Grains will
have fewer supports and thus fewer
interatomic bonds than the lower
Grains. So in due time the Boulders
and Stones will degrade and become
Sand. But, first, people will need
Sand, and second, the next struc-
tural level will be made of Boulders
and Stones.”

In a similar way the cluster M,
can be constructed, duly accounting
for equilibrium between the weight

F, = M,g and the supporting force
acting from the side of the Jeans
mass, providing it rests on three M-
type clusters. The result is

N, = N12/3 mig _ Né9/9 _ N19/27, (15)

This formula yields the following
estimate for the cluster’s parameters
in the second structural level:

N, =10%*
M, =5 10%kg,
R, =100 m.

," g
s
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That’s good! This building material
can be used to make Rocks and
Cliffs, and their disintegration will
produce Stones and Boulders!

Inspired by the invented succes-
sion, the Creator decided to general-
ize formulas (14) and (15). He saw
that the number of atoms in the n-
th structural level was

wherek=0,1, 2, ....
The numerical convergent series

L= 2)1‘ 2 4 2\"
2 —| =l+=+—+...+|=
3 379 3

k=0

has the n-th partial sum

n+l
g, 8-,
n
SO
N, = Ny S NI (g

He checked and saw that this for-
mula yielded equation (13} at n = 0.
Now He resumed the numerical es-
timation and compiled a table of
structural levels in solid matter. At
n = 3 He obtained N, = N®/81. The
corresponding Hills with a height of

1 km were rather stable, large, and

beautiful. Still He
wanted to crown His
work with something
really wonderful. So
He took an extra step
and created the fourth
level. The results
based upon the rela-
tionship N, = N?11/243
are given in table 1.
This is how the

Mountains were cre-

ated, which had

heights of up to 10

km. Of course, with

the passage of time,
they also broke
down, because the
upper slabs had
fewer interacting
bonds than the lower
ones, which were
pressed by a too-heavy
load. But who could invent a better
construction? And is it worth doing?
How could people live without
mountains, which provide them
with a great number of useful min-
erals?

The atoms produced Grains,
which made Boulders and Stones,
and in their turn composed Rocks
and Cliffs, and finally Hills and
Mountains appeared. Is it the End?
Not at all! Now it is time for Slabs,
which will support the Continents.
The Continents need Crust, then
Mantle. Does this process go to in-
finity?

At this juncture He saw that
when n — «, formula (16) yielded
N_ = N. That is, the number of at-
oms corresponding to the Jeans
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Level Level Number of mass Characteristic size about.d. IQ *kgand the mantl; with
o ——— s Q) (cm) an approximate mass of 4 - 10** kg,

“T like my work,” thought the
0 i 101 10-6 10~ Creator. “First, people will easily
understand this mechanism of for-
y Boulders and ™ L0* Lot mation‘ of ma}croscopic structural
Stones levels in solid matter. Let them
know what a simple and pleasant
9, Rocks and 103 oM 104 World they live in. And second, now
Cliffs I know the answer to the puzzle that
3 Hills 10% 10 105 tormented me: At what structural
level will people live? Of course, at
] , the planetary level, because a planet

4 Mountains 1042 10" 106 recreates itsell”
“Really, Ilike my work,” repeated
i The Earth 10% 10%7 107 the Creator. “On such a planet people
should live and raise themselves. Let
Table 1 them give the name for this planet,

each people in its native language.
And let it have a thousand names, all
of which will be correct!” (o]

Structural levels of solid matter.

mass. This means that the mass dis- Boulders, Rocks, Hills, Mountains,

tribution of solid matter organized
by a three-support hierarchical
mechanism meets the requirements
of elastic-gravitational stability of
the limiting body. In other words,
the next construction made of Sand,

and Continents must have a mass of
the same order of magnitude as the
initial gravitating Jeans mass. And
this is really so! Experimental esti-
mates show that Earth consists of
two parts: the core with a mass of

Quantum articles about planet
construction:

Bruk, Y. and A. Stasenko. “Hard-
core heavenly bodies.” Jul/Aug
1993, pp. 34-38.
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BRAINTEASERS

Just for the fun of itt

B236

Circular reasoning. Cut the circle in the figure into two pieces so that it
is possible to put the pieces together to make an equal circle with the
hole in the center.

B237

Distinguishing traits. Of 20 children in a class, 14 have brown eyes,
15 have dark hair, 17 weigh more than 80 1lbs., and 18 are more than
4 feet tall. Show that at least four of the children must have all four
characteristics.

B238

Ahoy, matey! A raft and a motorboat left town A simultaneously and
traveled downstream to town B. (The raft always moves at the same
speed as the current, which is constant.) The motorboat arrived at town
B, immediately turned back, and encountered the raft two hours after
they had set out from A. How much time did it take the motorboat to go
from A to B? (Assume that it travels at a constant rate of speed.)

B239

Goldbricking. Three bars of gold alloys of different percentages of gold
have masses of 1 kg, 2 kg, and 3 kg. Can you find a way to divide these
pieces in order to make another three bars with masses of 1 kg, 2 kg, and
3 kg but with equal percentages of gold? (Your method must work no
matter what the original percentages of gold may be.)

B240

Sparkling snow. Why is snow often described as “sparkling”?
(A. Panov)

ANSWERS, HINTS & SOLUTIONS ON PAGE 52
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FUNCTIONALLY LITERATE

Van ter Waerden's pathological function

Examining a “miserable sore”

by B. Martynov

TUDENTS OF CALCULUS KNOW THAT IF A
function is differentiable at a given point, then it
is also continuous at that point. They also know
that the converse is not true.
For example, the function y = |x] is continuous when
x = 0 (and at all other points), but it has no derivative at
the point x = 0. Generally speaking, any function whose
graph has a “corner” at some point is not differentiable
at that point. Clearly, it is not difficult to construct a
continuous function with an infinite number of “cor-
ners” in a segment. (Figure 1 represents a part of a graph
of such a function.] However, all functions of this type,
and all other continuous functions that you might
know, are differentiable at the majority of their points.
For a long time after the invention of differential cal-

y

1.

1/2 4

1/4 1
1/8 1

1/8 1/4 1/2 1 X

Figure 1
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culus, mathematicians thought that continuous functions
were “usually” differentizble. In fact, a great commotion
arose in the world of mathematics in the 1880s when the
German mathematician Karl Weierstrass published an ex-
ample of a continuous function that wasn't differentiable
at any point. (This type of function was first suggested by
the Czech mathemartician Bernhard Bolzano some 40

years earlier, but his work was not widely publicized.)
“How on Earth could intuition play such a trick on
us?” asked the French mathematician Henri Poincaré.
Even more emphatic was his countryman Charles
Hermite, who stated that he “turns away with horror
and disgust from this miserable sore—a continuous

function that has no derivative anywhere.”
Weierstrass’s construction was very difficult, but a
much simpler ¢ ‘;”;- was proposed during the twenti-
eth century by the Dutch mathematician B. L. van der
Waerden. It be Zins W mh the function ¢,, whose graph
appears in figure 2. The function ¢, is continuous at ev-

ery point on the number line, periodic (with a period of
1), and ?::;::iei since 0 < ¢O(x) < 1/2 for all x € R. Also,
the graph of this function is symmetric with respect to
every line of the form x = k/2 (k € Z). The function ¢ is
not differentizble at all points x = k/2. The function
¥
1 e
1/2]
R S )2 S A S
gure 2

Art by Vasily Vlasov
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0, (x) = (1/2)¢,(2x), whose graph is the blue line in figure
3, does not have a derivative at the points x = k/4 (k € Z),
and the function ¢,(x) = (1/2%)¢,(2*x], which is graphed in
blue in figure 4, at the points x = k/8 (k € Z).

For all n e N, let ¢ (x) = (1/27)0,(2"x). (The function
0, is graphed in blue in figure 5.) The function ¢, is con-
tinuous at all points on the number line and has no de-
rivative when x = k/27 (k € Z). And 0 < ¢y(x)< 1/27+!
for all x e R.

We see that the number of points at which the func-
tion ¢, has no derivative increases as n grows.

What if we add up all the functions ¢_? There is ev-
ery reason to hope that the sum will be continuous at
all points and nondifferentiable at any point of the form
k/22 (k € Z, n € N). Unfortunately, the meaning of the
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sum of an infinite set of terms is not something we want
to clear up right now. However, we can consider the se-
quence of functions

(DH(X) = %(X) + (DI(X) T+ ¢H(X)

(thus, @, (x] = @ (x)+ 0, [x], see figs. 3-5) and prove
that for every x the limit
lim @, (x)

exists. To prove it, we’ll have to use Weierstrass’s theo-
rem, which states that every monotonic bounded se-
quence of numbers has a limit.

From the inequality ¢, , ;(x) > O weget @, " %) 2 @ (x).
Therefore, the sequence (@, (x)) is monotonic. Since

(DH(X) = (Do(X) + ¢1(X)+ -t ¢H(X)
<1/2+1/4+ ... 1/22+1 =

we see that the sequence (@ (x)) is bounded for every x.
Therefore, the limit

1-1/22+1 <1,

o @a(x)

must exist. Let’s denote it by ®(x). Thus, we’ve defined
a function ®(x) for all real x. It is clearly periodic (with
aperiod of 1), and 0 < ®(x) < 1 for all x € R, and the graph
of the function ®(x) is symmetric with respect to every
line x = k/2 (where k € Z). All these statements can eas-
ily be derived from the properties of ¢, and the proper-
ties of the limit of sequences. It is impossible to draw
the graph of ®(x). We can tell from figures 3-5 that the
number of points where the functions ® (x) have “cor-
ners,” and where no derivative exists, increases as n
Zrows.

Our function i continuous

The function ®(x) is continuous at every point in the
number line. As far as our intuition is concerned, this
statement is clear enough: If the function ®(x) had a
“gap” at some point x,, then, for sufficiently large n e N,
the function @ _(x) would have a similar gap at the same
point x,, yet it would be continuous everywhere else in
the number line. The following proof clarifies these con-
siderations.

Let’s start with a brief study of the influence of the
difference r,(x) = ®(x) - ®,(x), where we think of x as a
constant and n as a variable:

(Dn-%—m(X)—q)n(X)=¢n+l(X)+¢n+2(X)+"'+¢n+m(x)'
Clearly,
1 1 1

OS(DH_HH(X)—(I)H(X)SFZ—‘FW'F W

1
1 1—2—m 1
= 2n+2 ' 1_1 2n+1 '

2



(We’ve used here the formula for the sum of a geometri-
cal progression.)
Since
lim @,..,(x) = &(x)

(this is just a peculiar way of writing the definition of
d(x)) and

lim @, (x)=®,(x),

m—>oeo

(the variable m in fact does not affect the values of @ (x],
so this sequence is constant), we have

1
0<r,(x)< S

Now we can prove that the function @ is continuous
at an arbitrary point x, € R. Let’s take any £ > 0 and look
at the absolute value of the difference

‘d)(xo +h)—®(x0)’
= ‘q)n(XO +h)+1,(x¢ + h) —d)lj(xo)—rn(xo)‘
< ‘(I)n(XO +h)—<Dn(X0)‘ +‘IH(X0 +h)‘ +‘1’H(XO)1.

However,
‘&QJSE%‘
and
(0 + ) <
Therefore,

nite number of continuous functions. Thus, taking 8
small enough, we can be sure that as soon as |h| < §,

}(DH(XO +h)—CDn(XO)‘ < %

So, choosing & in this way, we see that if |h| < §,

|®(xq +h) - (x| <,

which proves that the function ® is continuous at the
point x,.

The function we've constructed is not difierentiable

The function ® is not differentiable at any point on
the number line.

At first this statement might seem obvious: The
number of points at which the function ®, has no de-
rivative increases as the index n increases, so it’s natu-
ral to expect that at the limit (that is, for the function
@), it will fill the entire line with nondifferentiable
points. However, this reasoning is naive, as is clear from
the following example:

G(x) =1lim G,(x).

While the number of points where G(x] is not differ-
entiable increases with x, it is clear the function G(x)
= 1 — x? is differentiable everywhere.

We will prove that ® is nowhere differentiable by
contradiction. Let’s suppose that there is an x, € R, such
that @’(x,) exist.

We “squeeze” x,, by sequences of deficient and exces-
sive binary approximations:

Sk (s +1)
21<+1 ==0 2]{4—1

(k=0,1,2,...;s € Z).

) 1
‘CD(XO +h)- (D(XO)‘ < }d)n (xo +h)- (I)H(XO)‘ - ' Set
Sk sp+1
oy = Bx = :
When n is sufficiently large, ks gkt
Then
L B
gn 9 oy <x9 <P (k=0,12,..) (1)
The function @ is continuous at x,,, as a sum of a fi- and
y y y
1
Gy
L4 0 X L1 x T o 12 11 X

Figure 6
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lim o = lim B, = xo. (2]
It follows from (1) that

-X Xo — O
O<Bk—031,0<—0—ksl.
Kk~ Ok kK~ Ok

Now, from these inequalities, from equality (2), and

from the easily checked identity

©(Bx) - ()

Br—og ~¥lxo)

Bi-x F»(Bk)—@(xw i )}
Br — oy Br—Xo 0

+ X0 — O q)(XO)_q)(ak) —d)'(X )
Br — o Xog — Ok ol

we conclude that

P(By) — @(oux )
Br—og

lim
k—oo

=®’(xq).

Now let’s demonstrate that, as a matter of fact,

P(B1) — P(orr)
Br—og

lim
k—oo

does not exist, which will create the desired contradiction.
From the definition of the function @, we derive

= ¢ Br — o

2u(Pi)=0,(on) % 1 00(2B) — 00(2" )

Bi-o
When i > k, it is true that 2-%-1 and therefore,
902 o) = 00(2" s ) =0,
00(2'Bx ) = 00[2' (si +1)] = 0.

for such i. Therefore,

D, (Bx)— P, (o) ki'%(ziﬁk)—%(zj“k)

:2 Br — o

Bk — Oy i=0 2!

Thus, the ratio

(Dn (Bk) - (Dn ((xk)
Br— o

does not depend on n. Passing to the limit as n ap-
proaches infinity, we obtain
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1/2 1

Figure 7

OB ) - Do) =ii'

1
Bk — Oy i=0 2

When 1 <k,

1 ¢0(21Bk)—¢0(210‘k) %(;if:j—%(ﬁ—%l_—ij

o Br —og _1l
21{+1—i

But the function ¢, is linear on the segment

Sk Sp+1
2]{+171' / 2k+1—1

(see fig. 7). Thus the ratio on the right is simply the slope
of the corresponding line. That is, it is either +1 or —1.
Therefore,

S

wherep+ g=k + 1.
The parity of the number p - 1 + g - (-1) coincides with
the parity of the number

pl+g (-142)=p-l+q-1=(p+q)-1=(k+1)-1=k+1

Thus the ratio

O(B;) - P(og)
Br —og

is even when k is odd, and it is odd when k is even.
Therefore,

lim DBy ) - Ptz )
Br —og

k—oo

does not exist.

Looking for maxima

Let’s prove that the greatest value of



M= max (D(X) = %fﬁ( D(x)

equals 2/3 and determine the set of points where ® at-
tains this value. We'll slightly violate the strict defini-
tions given in some textbooks by referring to these as
the maximum points, and to the greatest value as the
maximum of the function ®. We cannot employ the
standard methods here. We cannot look for the points
where the derivative vanishes, since the function is not
differentiable. But we can write

D, (2x) = 0 (2x) + 01 (2%) + ...+ 0,,(2x)
1 1 n+
=¢O(2X)+5¢0(22X)+...+2—Hq)0(2 1X)
1 ¥
—rto(2"]

= 2[¢1(X) +y(x)+... + ¢H+1(X)] = 2[(DH+I(X) = ¢O(X)]
=20, (x)—200(x).

1 1
= 2|:E¢0(2X)+2—2(])0(22X)+ ot

Passing to the limit when n — «, we obtain

®(2x) = 2D(x) — 20,(x). (3)

It’s worth remarking that there is only one function
with nonnegative values that satisfies equation (3). We
invite the reader to prove this.

Since 1 is a period of the function ®, we see that X is
a maximum point of @ if and only if its fractional part
{¥} € [0, 1] is a maximum point, too.

Let’s now consider the set E, consisting of the points
of maximum lying on the segment [0, 1]. Using the sym-
metry of the graph of the function ® with respect to the
line x = 1/2 and equation (3}, we find ®(1/3)

1 2 1 1
of3)-o{3)-20(3)-20d3)
1 1 2
of3)-2(3)-3
Let’s prove that

Ec l,%
3°3

Indeed, let X € E and ¥ < 1/2. Then we have:

and from equation (3) we obtain

D(2X) = 20(X) - 20 (8) = 2(X) - 28X =2M - 28 < M.
Thus
X <M/2<1/3.

Since the graph of ® is symmetric with respect to the
line x = 1/2, we conclude that there are no points of
maximum in the interval [2/3, 1], either.
Now let us prove that M = 2/3. Once again, we use
equation (3):
D(4x) = 20(2x) - 20,(2x) = 2[2(I>(X) - ZQ)O(X)] —20,(2x)
= 4.(D(X> — 4¢0(X) - 2¢O<2X),

O(x) = 0o(x) + 5 00(2x) + 1 @(4x) = @, (x) + L0(4x).

The function ®, is constant and equal to 1/2 at the
segment [1/4, 3/4], as we can see in figure 3. Therefore,
for all x on this segment,

1 1
Since
- {1 2} {1 3}
X e el R Rl il
33 4" 4

we can substitute its value into equation (4):

1

M=®(§)=l+lq>(4f<)3—+lM.
2 4 2 4
M<2
3
Recalling that
wsof1)-2,
3) 3

we conclude that

of 1]-af2]=2.
3 3) 3
Besides this, ®(1/3) = ®(2/3) = 2/3.
To continue, we need the following statement: If X

is a maximum point, then 4% is also a maximum point,
and if 4X is a maximum point and

{z}e B ﬂ

then x is also a maximum point. To prove this, let’s note
that equation (4) is true for all x such that 1
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1 3 lows that if x is a point of E, then both
{X}e{z'ﬂ- 1/4 + x/4 = (1 + x)/4
and

(We invite the reader to check this.) Let X be a maxi- 2/4 + x/4 = (2 + x)/4

mum point. Then . .
also belong to E. Thus, starting from the points 1/3

N 1 2 1 3 and 2/3, we can construct many other points in the set
{Zle|=, S |c|= =) E:
33 4°4 :
Therefore, E;l+l.l, %Jrl.l, l_;_l.%/
4 434 434 43
2 1 1 .
3 M=o(%)= 7" Z(I)(4X)’ and so on.
9, It’s easy to see that all the numbers of the form
D(4%) === M.
3 04 Oy Oy 1 Ol
X=—+—=+ e NS — <

7

3 s uu T = =
4 4 47 47 3

Now suppose that 4% is a maximum point and
where every o, o, ..., 0, 0, is either one or two, are

g 1 3 elements of the set E. Since
{X} € Z, Z ¥
1 1 1 1
—=—t—+——..,
Then 3 4 4 4°
D(4%)= M = %’ we can represent such numbers x as
and X:ﬂ+a_2+...+a:_an+l Cnyg
4 42 47 4n+1 4n+2 4

1 1 2,
O(X)==+—D(4%) === M.
(%) 2 4 ( X) 3 or, drawing an analogy with the usual decimal fractions,
in the form of an infinite periodic “quaternary” fraction

Let’s now investigate the structure of the set E. x=0.000 ... 0L 0,10 g .. = 00040 ... OLH(LIHH).
It seems very likely that if Hermite had understood
just how complex van der Waerden's function was, he
would have turned away with even greater disgust. On
the other hand, it seems possible that the subtle and

Since the set E is closed, any number of the form

beautiful structure of this set might have inspired 1% =0,0111111 ...

Hermite to study nondifferentiable functions. Who's to 1 2
e 1-2-00222222..
We already know two points of the set E: 1/3 and 2/3. 1_ % ~0,1000000 ...

We have also demonstrated that E < [1/3, 2/3]. Further, 4 12
we can show that the set E is closed. This means that L o4.9,1111111

if a sequence of points of E converges to a limit, then 3 12
this limit is also in E. To prove it, suppose that vV 1% =0,1222222 ...
x, €E(n=1,2,3...). This means that ®(x,) = M. Let % _ % 20,2000000 ...

limx, =X. Ty
Fiden 7 _0,2111111 ..

12

2 _ 8
£===0,2222222 ..

Then, since ® is continuous at %, it follows that Vizt1
%= % -0,3000000 ..

@&yd%hm&thm®@J=Af
n—seo n—oo S5 _10_

03111111 ...

6 12

11 _

This means that X € E, so E is closed. 12~ 0,3222222 ..

From the statements proved at the end of the previ-
ous section, and the fact that 1 is a period of @, it fol-  Figure 8
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X:gl_+%+ +(X_H+M+0Ln—+2
4 42 411 4H+1 4n+2

where each o is either one or two belongs to E. In fact,
for every x of this sort, we can find a sequence (x,) of
points from E converging to x; for instance, if

anﬁ-i-ﬂ-‘r... % Ll,
4. g2 4n  4m 3

then

. 1
ililgoxn =X [fOI‘OSX—XH < 4n+1].

Thus, the set E consists of all numbers that can be repre-
sented as the infinite quaternary fraction O.o,a1, ... o, ...,
where every o, is either one or two (in fig. 8, we see the
quaternary decompositions of the number 1/12, 2/12, ... ,
11/12).

Now let’s prove that E contains no other numbers.
Suppose that the quaternary notation of anumber x e E
contains 0 somewhere after the decimal (or quaternary)

173 5/12 1/2 712 23
Figure 9

1 1 1
0.00,,,70 .3 ...<0.083...:3[4—2+4—3+...)=Z,

and thus {42x} lies outside the segment [1/3, 2/3] that
contains E.

On the other hand, if there is a numeral 3 in the
quaternary notation of a number x € E (that is,

x=0.0,0,5 ...0., 30,5 ...,) then
{47x}=030,,, ..€E,

which is impossible because 0.30. , , ... >0.3 = 3/4.

We can give a geometric construction of the set E as
follows. Divide the segment [1/3, 2/3] into four equal
parts and delete the interior points of the two parts in
the middle and the midpoint of the segment (fig. 9).
Then, again divide each of the remaining segments into
four equal parts and delete the interior points of the two

point; that is, x =0.040, ... @, 0at,,, ...; then
{47x}=000,,5 ..< E.

But

parts in the middle and the midpoints, and so on. The
set remaining after all such deletions consists precisely
of all the points in whose quaternary notation we find
only the numerals 1 and 2 (try to prove this yourself),
in other words, the set E.
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FLOW CHARTS

Hytroparatoxes

When fluids forsake model behavior
by S. Betyaev

ARADOXES ARE SURPRIS-

ing statements that drastically

contradict common sense. The

practical importance of para-
doxes, “the motors of progress,”
consists of opening up new vistas
of an old theory or paving the way
for a more perfect theory (and
sometimes even for a new branch
of science).

The theory of relativity incorpo-
rated the paradox of a velocity limit
for information transmission into
modern science, and quantum me-
chanics did the same with the para-
dox of signal discontinuity in a mi-
crocosm. Paradoxes gave rise to
the fields of elementary particle
physics and cosmology and stimu-
lated the development of modern
mathematics. The most fundamen-
tal paradoxes, cornerstones of sci-
ence, are formulated and interpreted
by geniuses. This was evident to the
giant of Russian poetry, Alexander
Pushkin:

Oh, the amazing discoveries

That come from the spirit of learning
And experience, son of errors,

And genius, friend of paradoxes,
And chance, the inventor-god.

Science clearly distinguishes be-
tween experimental facts and theo-
retical generalizations based on
mathematical simulations. Scien-

MNAueA| A AQ LY
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tific paradoxes can be subdivided
into three types.

The first type is a contradiction
between a generally accepted theo-
retical concept and a new theoreti-
cal inference. These simplest of
paradoxes (the “theory-to-theory”
type) result from an improvement of
a mathematical model or calcula-
tional method.

The second type, contradictions
between general experience and a
new, experimentally based notion
(“test-to-test” paradoxes) deserve
more detailed consideration, which
we’ll give now, putting aside for a
while the definition and analysis of
the third type of paradox.

The paratoxes of symmetry

Do symmetrical causes always
result in symmetrical effects? This
is not true on the microscopic
scale (see Richard Feynman’s book
Theory of Fundamental Pro-
cesses). However, it isn’t always
true on the macroscopic scale ei-
ther. For example, the streamlined
flow of a fluid around a symmetri-
cal body is frequently asymmetri-
cal. This is the hydrodynamic
symmetry paradox.

Figure 1 shows the symmetrical
water flow around a circular cylin-
der. The trajectories of fluid particles
are made visible with the help of
aluminum powder. In the figure, the
water flows from left to right. The
upper and lower halves of the figure
are symmetrical: One is the mirror
reflection of the other. Moreover,
the flow around the front and rear of
the cylinder is also almost sym-
metrical.

Figure 2 shows the flow around
the same cylinder under different
conditions. The vertical symmetry
still exists, but the symmetry be-
tween the left and right sides of
the flow is broken: There are two
closed zones with counter-rotating
fluid particles behind the cylinder.

Finally, figure 3 shows the flow
around the cylinder when both
types of symmetries are disturbed.
In this figure, visualization was
achieved with air bubbles dis-
persed in the water.

Why does the
flow lose symmetry?
Right now we can’t
give a complete an-
swer to this ques-
tion. Let’s try to deal
with simpler ones
first. For example,
what are the differ-
ences in flow around
the cylinder in the
three cases? Each
case has different
values of the ratio of
the forces affecting
the fluid particles:
the ram force and
the wviscous drag
force. This ratio is
characterized by
the dimensionless
Reynolds (Re) num-
ber. At small Re val-
ues the viscous
forces are large, and a
body moves in a
fluid like a pellet in
honey (the Re num-
bers for the cases in
figs. 1 and 2 are 1.5
and 26). At large Re
numbers the viscous
forces are small, and
the flow becomes
unstable and even
turbulent (Re = 2000
in fig. 3).

The change of
symmetry type and
its abrupt destruc-
tion is a fundamen-
tal feature of modern
hydrodynamics. In
real-life conditions, absolute sym-
metry is impossible, and there is al-
ways some asymmetry in a flow.
Therefore, even if symmetrical
causes result in symmetrical effects,
near-symmetrical causes lead to
quite asymmetrical consequences.
This is one explanation of the sym-
metry paradoxes in hydrodynamics.

The Eiffel paratox

Another paradox, which is physi-
cally close to paradoxes of symme-
try, was discovered in 1912 by the
French engineer Alexandre Gustave

Figure 3

Eiffel (1832-1923). In his later years,
he was interested in hydrodynamics,
especially the effects of wind loads
on architectural structures. When
experimenting with balls inside a
self-made wind tunnel, he discov-
ered the paradox that was later
named for him: When the flow
around a ball reached a “critical” Re
number of about 150,000, the air
resistance dropped drastically (by 4
to 5 times) when the velocity in-
creased. This observation runs
counter to common physical experi-
ence and intuition.
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Let’s write the aerodynamic drag
force as

2 2
F=CylRe) PP

!

where p is density, u_ is the veloc-
ity of the undisturbed free stream,
and ] is a characteristic size of the
streamlined body. The proportional-
ity Focpu’]®can be easily obtained
by dimensional analysis.! The nu-
merical coefficients 1/2, m/4, and C
are written for the sake of conve-
nience. The dimensionless drag co-
efficient C, can be determined ex-
perimentally. Usually it decreases
with Re—that is, with a decrease in
viscous friction.

The Eiffel paradox does not occur
only in flows around spherical bod-
ies. Figure 4 shows the experimen-
tally obtained function CyRe) for a
ball, cylinder, and disk of the same
diameter 1. For the ball and cylinder,
there is a large scatter of experimen-
tal data at the region of drastic
change of C;, shown by the wide
parts of the curves. On the other
hand, the drag coefficient for the
disk is virtually constant! This re-
sult can be generalized: The Eiffel
paradox does not hold for bodies
with sharp edges.

The Eiffel paradox is explained by
a transition near the critical Re
number from smooth (laminar) flow
to turbulent (stochastic) flow. Thus,
a small change in the Re number
results in a drastic rearrangement of
the flow.

Small variations in parameters

Y. Bruk and A. Stasenko, “The
Power of Dimensional Thinking,”
May/June 1992, pp. 34-39.
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that lead to radical changes in flow
are typical in hydrodynamics. This
effect is responsible for many in-
stances of surprisingly large scat-
ter in experimental data obtained
at seemingly identical conditions.
Therefore, in simulating the flows
around bodies in wind tunnels,
one should take into account ef-
fects of the tunnel’s walls, the ap-
paratus supporting the body, the
heterogeneity of the free stream,
and the physical and chemical
properties of the body’s surface
(such as roughness, wettability,
and thermal conductivity). In prac-
tice, it is very difficult (if not im-
possible] to do all this.

The Duhois paratox

One of the founders of experi-
mental hydrodynamics was the
French military engineer P. Dubois
(1734-1809). Dubois showed that
within a certain range of Re num-
bers, the resistance force affecting
a body resting in a tunnel with
water running at a certain speed is
less than the resistance force af-
fecting a body moving with the
same speed in motionless water.
According to Galileo’s relativity
principle, the result of this experi-
ment should not depend on
whether a body moves in resting
fluid or whether fluid flows
around a resting body.

How can we explain the Dubois
paradox? Using the factors we’ve
just discussed, of course. The flow in
an experimental basin or aerody-
namic tunnel is less uniform than in
a tranquil sea or atmosphere, so the
transition to turbulent flow takes
place at smaller (subcritical) Re
numbers. This transition manifests
itself in a narrowing of the flow
“tail” and by a decrease in the resis-
tance.

The Dubois paradox is still un-
solved. The difference between ex-
perimental data obtained in a tunnel
and data obtained in real flight is the
number one problem in hydrody-
namics and aerodynamics.

Look at a helicopter resting on
the ground: Its blades curve down-
ward by almost 1 meter. However,

they are straight during flight.
Similarly, the wings of an airplane
change shape because of aerody-
namic forces in real flight. This
change is not very large, but it is
large enough to nullify the results
of scrupulous (and expensive!) ex-
periments. Therefore, to explain
the discrepancies between wind
tunnel and full-scale experiments,
we need to take into account the
elastic properties of materials sub-
jected to the action of hydrody-
namic forces.

The Euler-o’ Alembert paradox

Now we're ready to learn about
the third type of paradox. In addition
to the “theory-theory” and “test-
test” paradoxes, there are “test-
theory” paradoxes. These are char-
acterized by a drastic contradiction
between theoretical results and our
experience, intuition, or common
sense.

The most famous hydrodynamic
paradox of this type is the Euler-
d’Alembert paradox. In 1742 Euler
calculated the drag force affecting a
cylinder moving in a frictionless
fluid, and he obtained a paradoxical
result: There was no resistance at all!
Seven years later, the great French
mechanician Jean d’Alembert calcu-
lated the flow around an arbitrary
body of a finite volume, and came to
the same striking result of zero resis-
tance.

This calculation directly chal-
lenges common sense. As every-
one knows from experience, it is
necessary to supply force to keep
a body moving in a fluid. This is
why aircraft, ships, and subma-
rines have motors and sails.
D’Alembert could not explain the
paradox, and he bitterly‘remarked
that zero resistance was the only
paradox left for future geometers
to solve.

The future geometers (hydrody-
namicists and mathematicians)
had inherited a hard nut to crack.
Before cracking it, let’s explain the
geometric character of the para-
dox. The flow studied by Euler and
d’Alembert is symmetrical—that
is, its right part is a mirror reflec-



tion of its left part (similar to fig.
1). Thus, the projection of the
momentum of the circumflow jet
onto the free stream direction is
constant. It is the same at cross-
sections on the left and right of the
body. In accordance with conser-
vation of momentum, no drag
forces affect either the jet or the
streamlined body. The point is
that the mathematical models
used by Euler and d’Alembert were
oversimplified. The real flow is
not symmetrical and looks similar
to the flows in figures 2 and 3.

As you may have guessed, vis-
cous friction disturbs the symme-
try of a flow. This friction is re-
sponsible for the tail formation
behind a moving body. So do we
understand the Euler-d’Alembert
enigma now? Not quite. The com-
plete explanation is far more com-
plicated. Look again at figure 4.
Even at the highest attainable Re
numbers, when the viscous forces
are negligible, the drag coefficient
is not zero. Therefore, asymmetry
and fluid resistance can arise even
in nonviscous fluids.

Such a fluid was “constructed”
by the German physicist Hermann
Helmholtz (1821-1894), who
closed the book on the Euler-
d’Alembert paradox. The flow
around a cylinder according to the
Helmholtz model is illustrated in
figure 5, which shows a region of
stationary fluid behind the cylin-
der. Thus, the true mathematical
model should take into account
both friction and separation of the
flow from a body.

Many other paradoxes besides
the Euler-d’Alembert paradox
have originated from oversimpli-
fied mathematical models. For ex-

Figure 5

ample, continuous
flow around the
sharp edge of a plate
(fig. 6a) results in
the “infinity para-
dox”: The velocity
of the flow increases

to infinity near the a
edge. Additionally,
some kind of centrip-
etal force is needed
to turn the flow
through 180°. Ac-

cording to Newton'’s
third law, the plate
will be affected by g
the “leading edge”
force, which is equal
in value to the cen-
tripetal one. Where is this force
applied? To the very edge of the
plate—a point without size! In re-
ality, the flow around an edge
separates, and it is characterized
by the line of separation of the tan-
gent velocity (shown in red in fig.
6b). Thus, the velocity at an edge
is actually finite.

Correciness of mathematical models

The development of a consis-
tent mathematical model which
adequately describes a physical
process is a very complicated mat-
ter. In most applications such a
model is just a dream. The math-
ematician D. Birkhoff humorously
proposed subdividing hydrody-
namicists into experimentalists,
who watch phenomena that can-
not be described, and theoreti-
cians, who describe events that
can’t be seen.

To avoid being trapped in a
paradox, a mathematical model
shouldn’t be oversimplified, and it
should take into account the fac-
tors that result in a paradox when
they are neglected. From a physi-
cal viewpoint, this is a natural re-
quirement. However, mathemati-
cians consider problems on a
much stricter basis—a problem
should also be formulated cor-
rectly. Correctness implies three
requirements for a mathematical
model: the existence of a solution,
uniqueness, and stability.

Figure 7

Clearly, lack of a solution is a
consequence of model oversimpli-
fication. For example, a solution
describing a radial flow converging
in the vertex of an angle (fig. 7a)
exists at any Re number. On the
contrary, a similar solution for a
radial flow diverging from the ver-
tex of an angle (fig. 7b) exists only
at small Re numbers, which are
less than a certain critical value
Re*. When Re > Re*, a solution
doesn’t exist. However, experi-
mentally we can see nonsta-
tionary, separated flow at suffi-
ciently large Re numbers. We've
come upon the paradox of the lack
of a solution in describing the flow
radiating from the vertex of an
angle.

Another problem arises when
there are several solutions. For ex-
ample, there are two roots of a
quadratic equation. Which should
be used? Let’s consider the pos-
sible variants from an experimen-
tal point of view. If no possible
root is realized in an experiment,
it simply means that the chosen
mathematical model and corre-
sponding quadratic equation are
not correct. If only one root de-
scribes the experimental event, it
usually means that this root is
stable, while the other is not. Fi-
nally, both roots can be realized in
an experiment.

When at certain values of the
parameter (x = x,) one solution

QUANTUM/FERTURE 23




%)

Yi—

nE——

thing else. During
takeoff he had ob-
served strange be-
havior of the jet
plume. Instead of
being reflected
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Figure 8

from the special
metal plates pro-
tecting the ply-
wood fuselage, the
jet plume followed

.

-

Figure 9

(y = y,) is substituted by another
(y = ¥,), bifurcation of the solution
takes place (fig. 8a). When both
solutions exist in some range of
the parameter (x, < x < x,), this is
referred to as hysteresis: One solu-
tion (y = y,) is realized when pa-
rameter (x) is increased from some
value x < x| (the direct pass), while
another solution (y = y,) takes
place when the parameter is de-
creased from x > x, (the reverse
pass). Thus, the choice of the
branch of the hysteretic loop de-
pends on the history of the pro-
cess. In aerodynamics, the hyster-
etic modes of flow are observed,
for example, near the value of the
attack angle corresponding to the
maximum value of the lift force.
The paradox of multiple solu-
tions was solved by scientists at
the dawn of aviation. In 1910 at an
aeronautical show near Paris,
Henri-Marie Coanda, a young Ro-
manian engineer, launched an air-
plane that was a prototype of mod-
ern jet planes. It had jets of fire
emerging from lateral thrust
nozzles. After a successful flight,
and disembarking with only minor
bruises, the young aviation de-
signer and pilot received enthusi-
astic congratulations. “Mon cher,
you advanced our epoch by 30, no,
by 50 years,” exclaimed Eiffel. But
the pilot was distracted by some-

214 JULY/AUGUST 1998

their surfaces and
even turned back-
ward.

However, at
that time this phe-
nomenon, which
became known as
the Coanda ef-
fect?, did not at-
tract scientific at-
tention. In the next 25 years,
Coanda, now a famous aircraft de-
signer, conducted experiments
searching for possible practical ap-
plications of this phenomenon.
Now the Coanda effect is used in
designing hovercrafts and hydro-
foils, increasing the propulsive
force of jet nozzles, braking air-
craft upon landing, and muffling
jet engine noise.

We encounter the Coanda effect
in everyday life—for instance, in the
stream of water that “sticks” to the
tea kettle’s spout and doesn’t make
it into the cup. This turning of the
stream and its following a solid sur-
face is jokingly called the “Kettle
effect.” Figure 9a shows a stream
outflow without turning, and figure
9b shows the outflow with the turn-
ing of the stream. These are both
mathematical solutions. So, has the
Coanda enigma been solved? Unfor-
tunately, no. We don’t know the
conditions with respect to either
mode of flow.

We mentioned another criterion
for the correctness of mathematical
models—the stability of their solu-
tions. Stochastic, unstable, and rela-
tively small perturbations cannot be
analyzed using classic mathematical

2Jet Raskin, “Foiled by the Coanda
Effect,” January/February 1994, pp. 5-
11.

tools. We cannot define an indi-
vidual stochastic trajectory, just as
we cannot say whether it will be
raining a month from now. At best,
we can hope to obtain a general de-
scription. There is a thymed illustra-
tion to this remark by the Russian
poet and philosopher Vladimir
Solovyov:

Nature does not allow

The veil to be drawn, her beauty shown;

With instruments you will not find

What your soul had not already
guessed at on its own.

The paradox of instability arises
when the flow around a body kept
under constant external conditions
nevertheless varies with time. Fig-
ure 3 shows an example of a
nonstationary flow. A flow becomes
nonstationary when the Re number
surpasses a certain critical value.
Although it is known for sure that
instability is caused by the
nonstationary character of flow
separation from a body, there is still
a long way to the final solution of
the instability paradox. (o]

Quantum articles on fluid me-
chanics:

I. Vorobyov, “Canopies and Bot-
tom-flowing Streams,” July/August
1995, pp. 45-47.

H. D. Schreiber, “A Viscous River
Runs Through It,” November/De-
cember 1995, pp. 43-46.

A. Mitrofanov, “Against the
Current,” May/June 1996, pp. 22—
29.

A. Stasenko, “Whirlwinds over
the Runway,” July/August 1997, pp.
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Math
M236

Is that right! Consider two
circles that intersect at points A
and B. Let a line through B meet
the circles at points K and M (see
fig. 1). Let E and F be the mid-

Figure 1

points of arcs AK and AM, respec-
tively (the arcs that don’t contain
B), and let L be the midpoint of
segment KM. Prove that ZELFisa
right angle.

M237

Complementary rhombus angles.
Consider the rhombus ABCD. Find
the locus of points M such that
LAMB + ZCMD = 180°.

M238

It’s only natural. For what natu-
ral number n is the expression
log,, _,(n*+ 2) rational?

M239

Systematic curve. Let the num-
bers a and b be such that the system

y=x>+a
x=y>+b

has a single solution (x,, y,). Draw
the curve consisting of all possible
positions of the point (x, y,).

HOW DO YOU
FIGURE?

Ghallenges

M240

Run for the border. A math stu-
dent is lost in a vast forest whose
border is a line. (Imagine that the
forest covers a half-plane.) The stu-
dent knows that she is no more than
2 miles from the border. Propose a
route for her such that she would
come out of the forest having
walked no more than 13 miles. (Of
course, the student doesn’t know
where the border lies, and no matter
how close to it she passes, she can-
not see it. We say that the student
comes out of the forest when she
reaches the border.)

Physics

P236

Speed of lunar rover. Estimate the
maximum speed of a camera-
equipped, self-propelled vehicle
moving on the Moon’s surface and
controlled from Earth. (V. Shelest)

P237

Galaxy mass. According to
scientist’s visual estimates, a mass
of M; = 1.5 - 10" M, is concentrated
within the limit R = 3 - 10°R,, from
the Galaxy’s center, where M is the
mass of the Sun and R, is the radius
of Earth’s orbit. However, the period
of revolution of the stars located at
this distance from the Galaxy’s cen-
ter is 3.75 - 10® years, which corre-
sponds to a larger mass.

Find the “hidden mass” of the
Galaxy—that is, the mass of invis-
ible objects inside the sphere of ra-
dius R. When calculating the stellar
motion, assume the mass M, to be
concentrated at the center of the
Galaxy. (V. Belonuchkin)

P238

Refrigerator in a room. A refrigera-
tor maintains an interior temperature
of —12°C. If the temperature of the
room is 25°C, the regrigerator’s mo-
tor turns on every 8 minutes. After
T, = 5 minutes, the motor turns off.
Considering the refrigerator to be an
ideal heat engine working in reverse,
find how often and how long the
refrigerator’s motor would turn on at
aroom temperature of 15°C. At what
maximum room temperature could
the refrigerator maintain the given in-
ternal temperature? (A. Zilberman)

P239

Railroad resistance. Long, bare
conducting rods made of copper are
randomly strewn on the rails of a toy
railroad. Find the resulting resistance
between the rails if the width of the
railroad is I = 5 cm, the diameter of
the rods is d = 0.2 mm, the length of
arodis h =30 c¢m, the number of rods
is N = 100, and the resistivity of cop-
perisp=1.7-10°Q m. (A. Zilberman).

P240

Speeding UFO. A UFO flies hori-
zontally above Earth at a very high
speed v. What speed will a ground

\4

Figure 2

observer measure when the direc-
tion to the UFO makes an angle ¢
with the vertical (fig. 2)? (S. Krotov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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HE WORDS ALGEBRA AND
algorithm are familiar to read-
ers of Quantum, but do you
M know their origins? In fact,
“" both these words are associated
with one scientist: Muhammad
ibn Musa al-Khwarizmi, the out-
standing Arabian mathematician
and astronomer born about a.p. 780
in Hiva (modern Uzbekistan).

Al-Khwarizmi’s most productive
period was around the year 825,
when he worked in Baghdad. The
reigning caliph al-Ma’mun patron-
ized astronomy and mathematics.
He built the “House of Wisdom” in
Baghdad, complete with its own li-
brary and observatory. This impro-
vised academy of sciences concen-
trated nearly all the best Arabian
scientists of the time.

Muhammad ibn Musa al-
Khwarizmi was one of the scientists
commissioned by the caliph to
translate the treatises of Greek math-
ematicians, calculate the length of a
meridian, and do other research. Al-
Khwarizmi wrote many books on
mathematics and astronomy.

In his work on arithmetic, al-
Khwarizmi explains the Indian sys-
tem of notation for numbers and
details the rules of written calcula-
tions in the digital system of nota-
tion. The original Arabic version of
this book is lost, but a Latin trans-
lation made in the twelfth century
survives. This book was one of the
main sources that brought the digi-
tal system of notation to western
Europe. The title of this translation
is Algoritmi de numero Indorum
(“Al-Khwarizmi Concerning the
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LOOKING BACK

by Z. D. Usmanov and |. Hodjiev

Hindu Art of Reckoning”). Thus the
term algorithm, the latinized form
of al-Khwarizmi’s name, was intro-
duced to the mathematical lexicon.

At first algorithm meant just the
positional decimal numeration.
Later this name was given to all
works that spread the Indian nu-
merical system in Europe, and, fi-
nally, it came to mean the system
itself. Today the word algorithm
denotes a finite set of rules that al-
lows one to solve a problem in a
purely mechanical way, as in a com-
puter program.

In his Algoritmi de numero
Indorum, al-Khwarizmi explains
how to write numbers and perform
the four basic arithmetic operations
with integers and simple fractions.
Still, he considers the doubling of a
number and division by two to be
separate operations. All the reason-
ing in the book is carried out only in
words; there is not a single formula
in it, and all the examples are ex-
plained by numbers denoted by
words or Roman numerals rather
than by the usual decimal figures.
Al-Khwarizmi does not explain how
to carry out subtraction when a fig-
ure in the subtrahend is greater than
the corresponding figure in the
minuend.

Another famous book of al-
Khwarizmi is Kitab al-Jabr wa al-
muqgabalah, which means “The
Book of Integration and Equa-
tion.” The Latin translation of this
book became popular in western
Europe, and thus the word algebra
(from al-Jabr in the title) was used
to name a whole branch of math-

The legacy of al-Ktwarizmi

ematics—the branch concerned,
till the middle of the nineteenth
century, almost exclusively with
equations.

In effect, the word al-Jabr, accord-
ing to al-Khwarizmi, means the op-
eration that allows one to move the
terms from one side of an equality to
the other so that at the end both
parts contain only positive terms.
The word al-muqgabalah means the
following operation of collecting
similar terms so that only one posi-
tive term of each degree remains on
one side. Thus, for instance, using
the first operation, one turns the
equation

3x2-5x+6=x2+7x+2
into
3x2+6=x2+12x+2,

and then, through the second opera-
tion, the equation becomes

2x2+4=12x.

So, the whole science of equa-
tions (“algebra”|, the symbols devel-
oped for this purpose, and the whole
theory of abstract operations that
grew from these investigations bear
the name of the operation al-Jabr.
Unlike ancient Greeks and Arabs
and their successors in Europe, we
don’t demand today that both parts
of an equation contain only positive
terms.

In his book Kitab al-Jabr wa al-
mugqabalah, al-Khwarizmi consid-
ers linear and quadratic equations,
but he doesn’t use any algebraic
formulas. Everything is explained
with words. Thus, he calls the



variable of an equation the root,
and he calls its square simply the
square. Six kinds of equations are
considered:

* “squares equal to roots,”

e “squares equal to a number,”

* “roots equal to a number,”

e “squares and roots equal to a
number,”

e “squares and a number equal to
roots,” and

e “roots and a number equal to
squares.”

The translation of this set into mod-
ern algebraic language can be writ-
ten as

ax? = bx,
ax* = b,
ax = b,

ax* + bx =,
ax>+b=cx,

ax + b = cx%,

where g, b, ¢ > 0.

Al-Khwarizmi investigates the
last three types of equations using
the following examples:

x% + 10x = 39,
x*+21 =10x,
3x+4=x>

(later these equations appeared in
many books on algebra). He de-
scribes the equation x*> + 10x = 39
as “a square and ten of its roots

make thirty-nine dirhams, ... and
10/4
x x2
10/4
10/4| x |10/4
Figure 1
X 5x x2
5 25 5x
5 X
Figure 2

this means that if one adds to a
square something equal to ten of
its roots, one gets thirty-nine” (a
dirham is a silver coin; here it is
used to denote the constant term).
And the procedure that allows one
to calculate the root of this equa-
tion, the formula

2
x= G9)+39¥@=&
2 2

al-Khwarizmi explains as follows:
“Take one-half of the number of
roots in this problem, the result is
five; multiply it by its equal, you get
twenty-five. Add it to thirty-nine,
you get sixty-four. Extract the root
from this number, you get eight;
subtract one half of the number of
roots, which is five, and three will
remain. This is the root of the
square that you sought, and the
square is nine.”

Al-Khwarizmi proposes two geo-
metric ways of solving this equation
(figs. 1, 2). In figure 1 four rectangles
with a side equal to 10/4 are drawn on
the sides of the square with side x,
after which the corners of the figure
obtained are filled with squares with
sides 10/4. The area of the square
with side x + 10/2 that appears in this
way will be equal to a known num-
ber: 39 + (10/2)%. And in figure 2 we
see the square with the same area 64,
composed of the squares with areas x>
and 25, which corresponds to another
possible way of rewriting the equation
x* + 10x = 39, which is

x2+2-5x+25=64.

Although the equation x*> + 21 = 10x
has two positive roots (x; = 3 and
x, = 7}, al-Khwarizmi proposes a geo-
metrical solution only for x, = 3.
However, he points out that x, = 7.
The proposed solution is shown in
figure 3. First we draw a rectangle
ABCD with sides x and 10, then the
square EFCH with side 5. After this,
we can calculate the area of the
square EMLO in two different ways.
On one hand it is equal to (5 - x}%; on
the other hand,

Semro = Sercr ~ SmrcHOLM 5
=25- 8507 =25 - (10x - x*)
=25-21=4.

F E
M 5-x X A
B Il of ¢
5
x2 X
K |H |T
C 5 10 D
Figure 3
B x —3/2 A
x-3
L E
F
< 132
N M |3
x-3| 3/2
G X D
Figure 4

Thus, (5 - x> = 4, and therefore x, = 3.
Figure 4 represents the construc-
tions al-Khwarizmi used to solve the
equation 3x + 4 = x2. The square
ABCD with side x is divided into two
rectangles ABFE and EFCD, whose
areas are 4 and 3x, respectively. Fur-
ther, we draw the square AGHM with
side x — 3/2. It is not difficult to cal-
culate its area: It is 25/4, since S;;
=9/4 and S, ;g = Sapee = 4 But
then we have (x - 3/2)2 = 25/4, x = 4.
Al-Khwarizmi concludes his trea-
tise with the “Book about Legacies,”
in which we find numerous applica-
tions of equations to the questions
of everyday life, for instance, to the
hereditary laws that existed in the
Arab world at that time.
Al-Khwarizmi’s works played an
important role in the history of
mathematics. They were the main
source from which western Europe
learned of Indian numbers and Ara-
bic algebra. But al-Khwarizmi’s ac-
tivity was not limited to mathemat-
ics. He wrote a geographical treatise
that started the development of geo-
graphical studies in the medieval
East. He organized scientific expedi-
tions to Byzantia, Hazaria (the re-
gion around the lower part of the
Volga river), and Afghanistan. He
also directed the work that allowed
the calculation of the length of one
degree of arc along a meridian with
good precision. Q)
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PHYSICS
CONTEST

Doppler beats

“The most persistent sound which reverberates through man's history
IS the beating of war drums.” —Arthur Koestler

by Larry D. Kirkpatrick and Arthur Eisenkraft

S A POLICE CRUISER DRIVES

by with its siren sounding,

you notice that the pitch of

the siren decreases. The same
thing happens at the Indianapolis
500 as a race car passes you. The
pitch of the engine is steady as the
car approaches, decreases as the
car passes by, and is steady (but
lower) as the car recedes into the
distance.

These are two examples of the
Doppler shift. The motion of the
source shifts the frequency of the
sound you hear. If you are at rest
relative to the air, the frequency f
you hear is given by

f=fo[ = ]
VFv,

where f, is the frequency heard by
the observer at rest, v, is the speed
of the source, and v is the speed of
sound. The minus sign is used when
the source moves toward the ob-
server and the plus sign is used when
the source moves away from the
observer.

Doppler worked out this math-
ematical relationship in 1842. He
pointed out that the motion of the
source toward the observer causes
the sound waves to reach the ears at
shorter time intervals—therefore,
the higher frequency. The reverse is
true when the source moves away
from the observer.
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Doppler’s formula was put to an
experimental test a few years
later. For two days trumpet players
rode on a flat car that was pulled
at different speeds. Musicians who
had perfect pitch stood on the
ground and recorded the notes that
they heard as the train approached
and receded. Their observations
were in agreement with Doppler’s
formula.

The motion of the observer also
changes the frequency. When you
ride in a train, the bell at the cross-
ing has a higher (but steady) pitch as
you approach the crossing and a
lower pitch as you leave the crossing
behind. This effect is described by

f:f(vivoj

v

where v, is the speed of the ob-
server. The plus sign is used when
the observer moves toward the
source and the minus sign when
the observer moves away from the
source.

These two effects can be com-
bined into a single relationship

where the upper signs refer to the
motion of one toward the other and
the lower signs refer to motion of
one away from the other.

Another interesting sound effect
occurs when two sirens produce
sound waves with approximately
the same pitch. The two sound
waves produce a sound with a pitch
halfway between the two pitches,
but with an intensity that varies
periodically from no sound to a
sound with four times the loudness
of either source. The period of this
beat frequency is just the difference
of the two frequencies.

Piano tuners use beats to tune
the wires corresponding to the
same note on a piano. After one
string is tuned to the correct fre-
quency, it is struck at the same
time as another wire. If the two
wires have the same frequency,
there is no variation in loudness,
that is, the beat frequency is zero.
However, if the second wire has a
higher or lower pitch, the loudness
of the sound will vary with a fre-
quency equal to the difference of
the two frequencies produced by
the wires. The piano tuner then
adjusts the tension in the second
wire until the beating disappears.

These two sound effects were
combined in an interesting way on
the second exam used to select the
members of the U.S. Physics Team
that will compete in the Interna-
tional Physics Olympiad in Reyk-
javik, Iceland, this July.

Two sirens located on the x-axis
are separated by a distance D. As

Art by Tomas Bunk
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heard by an observer at rest relative
to the sirens, the left-hand siren has
a frequency f; and the right-hand si-
ren has a frequency f;. Assume that
you are moving with a constant
speed v  along the x-axis and record
the following observations:

1. When you are on the right-hand .

side of both sirens, you hear a beat
frequency of 1.01 Hz.

2. When you are on the left-hand
side of both sirens, you hear a beat
frequency of 0.99 Hz.

3. When you are between the two
sirens, the beat frequency is zero.

A. In which direction are you
moving along the x-axis?

B. What is your speed as a fraction
of the speed of sound?

C. Which frequency is greater?

D. What are the numerical values
of the two frequencies?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Local fields

We asked our readers in the Janu-
ary/February issue of Quantum to
calculate the local fields on an ide-
alized spherical Earth.

1. At the North Pole, the local
field is due only to the gravitational
force, since the angular velocity
there is zero.

Gmym,
z B= R =1mgN,

_ GMg
EN T R]%

=9.804 m/s?,

where

G=6.6726- 10" N - ke2/m?,
M, = 5977 - 10°* kg,
R, = 6.378 - 105 m.

At the Equator, part of the gravi-
tational force is needed to provide
the centripetal force on the rotating
Earth. The local field is reduced by
this amount.
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ZFzGM—fm—meRE =mgg,
RE
GM;
R
=(9.804-0034) m /s* =9.770 m /s>

8 = _mzRE

At 40° latitude, a component of
the gravitational force is needed to
provide the centripetal force on the
rotating Earth. The local field is
once again reduced by this amount.
In this case, we resolve the gravita-
tional force into components paral-
lel and perpendicular to Earth’s axis
of rotation and reduce the perpen-
dicular component by the centrip-
etal force.

In the perpendicular direction:

M

ZFperp = G §m cos6 — mo”Rg cosd

Ry
=& perps

where R; cos 8 is the radius of the
circle that objects at 40° latitude
rotate. Therefore,

Sperp = [G}i\f]z — wZRchose
E
=7484 m/s>.

In the parallel direction:

Z Fpar = mgpar/

= G—AfEsine =6.302m/s”.
Rg

par

The vector sum of the two com-
ponents is therefore

840 =V7.484% +6.302* m /s>

=9.784 m/s?,
_1 6.302
7.484

0 =tan =40.10°.

2. The angular deviation between
the local field at 40° latitude and the
radial line toward the center of Earth
is 0.10°.

3. The local field is along the ra-

dial line at the equator (both the
gravitational force and centripetal
force are along the same line) and
along the radial line at the North
Pole (no centripetal force). There
must be a latitude for which the de-
viation is greatest. Finding this lati-
tude and its corresponding deviation
requires us to use the equations de-
rived in part 1:

GM
Zperp = [R—ZE — (DZRE]COS 9,
E
Mg

8par = R%

Mg

1 Re

% —w?R; |cos®
Rg

sin @,

sin®

0’ =tan"

To find where the deviation of
this angle from 6 is a maximum, we
can plot the equation (8" - 6) versus
0 and find the maximum. Alterna-
tively, we can find the maximum on
a spreadsheet or take the derivative
and set it equal to zero:

9’—6=tan"" E -0

=tan"' Ktan0 - 0.

where
GMg
GM
Rg
d(e'—e) Ksec?0

__ XS ~1=0,
de 1+ K*tan’0

sinf = L
K+1

On the rotating Earth, K is very
close to 1 (thatis, 9.804/9.770 = 1.0035),
and the maximum deviation occurs
at an angle slightly less than 45°. On
objects where the rotational speed is
much greater, we find that the maxi-
mum deviation occurs at even
smaller latitudes. (0
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AT THE
BLACKBOARD |

Weightiessness in a car?

by Sergei Pikin

O DRIVE A CAR WITHOUT
getting into an accident, you
should not only know the rules
of the road, but also the laws of
mechanics. We can see this by con-
sidering the following problem.
How fast should a car travel at the
top of a convex bridge with a radius
of 40 m to momentarily put the
driver in a state of weightlessness?
Let’s consider a frame of reference
attached to the ground. The driver is
affected by two forces: gravity mg and
the supporting force N. Since at the
top of the bridge the driver is weight-
less, N = 0. In projections onto the y-
axis, Newton’s second law says (fig. 1)
mg = ma, where a = v?/R.
This yields

V:\/g_Rle m/s =72 km/h.

At first everything looks O.K.
This speed is below the speed limit.
But let’s think further and ask what
will happen to the car (and the
driver) after passing the top of the
bridge, and what happened to them
before the top? You'll see from the
next calculations that the situation
described in this problem is actually
impossible! Find, for example, the
normal force N before the car gets to
the top, provided its speed is a con-

-7

a* mg

y

[ R——

Figure 1

stant v = w@ (fig. 2). In projections
onto the y-axis, the equation of mo-
tion looks like this:

mg cos o.— N = ma,

where a = v?/R and v =/gR, from
which we get
N = mg(cos o.— 1).
So, if at the top of the bridge N =0,
Nisnegative (N < 0) everywhere else!

The passengers would need to fasten
their seatbelts to prevent being

N_A
\a

‘,_/\/;;

slammed into the ceiling! But the car
can’t be “fastened” to the road, so it
will take off from the bridge and after
a spectacular flight will land back on
the road. The most probable result of
such weightlessness would be a dam-
aged car. In other words, when trying
to ride on the convex bridge at the
speed v = JgT? ,not only can’t you be-
come weightless, but you may well
be injured.

Well then, is there a constant
speed at which one can ride on the
convex bridge to experience a mo-
ment of weightlessness? Assume
that the bridge has a radius R and
subtends the angle 2 (fig. 3).

The formula for N shows that the
normal force is minimal at the en-
trance of the bridge. So if the car
doesn’t take off when it first hits the
bridge, it won’t do so later. Thus,

mg cos o.— N = ma,

where N > 0 and a = v?/R, from
which we get

v <. /gRcosa.

This is the maximum speed at which
to drive a car on a convex bridge.
The state of weightlessness will be
experienced twice: at the entrance
and at the exit of the bridge. (@)

N_A

mg

Figure 3
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EVERAL INTERESTING EL-
ementary theorems concern a
right triangle with the altitude
drawn to-the hypotenuse. This
seemingly ordinary situation can
give rise to many interesting and
nontrivial results. We can build

these up from simple properties

studied in most geometry classes.

Figure 1

Let ABC be aright triangle and let
H be the foot of the altitude to hy-
potenuse AB (fig. 1). As usual, we let
AB=c,BC=a,AC=b,AH=b', BH
=a’,CH=h, ZA =0, and ZB=.The
following statements and properties
are easy to prove.

1. Triangles BCH, ACH, and ABC
are similar to each other.

2. a? = da’c, b* = b’c. [These rela-
tions imply the Pythagorean theo-
rem: a2+ b =dc+bc=cla+b')=c2)

3.h*=a’b’, h=abc.

4. Let R be the center of the circle

inscribed in ABC and let r be its ra-
dius (fig. 2). Thenr = (a + b - ¢)/2.

Figure 2

Proof. We note that the quadri-
lateral RKCL is a square and use
the fact that tangents drawn to a
circle from one point are equal.
Then ¢ = (a — 1) + (b - 1), and thus
r=(1/2){a + b -c).

5. ZARB = 180°— (1/2£A — (1/2)4B
- 135°.

Things get more interesting if we
inscribe circles in triangles ACH
and BCH (fig. 3). Let their radii be r,
and r, respectively, and let their cen-

Art by Jose Garcia
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ters be at R and S. Then:

6.r+1,+1,=h.
Outline of proof. We have

a+b-c
r=—"
2
h+b'-b
n=—",
2
and
p _h+a'-a
. 2

Adding these formulas, we obtain
the relation

7.2 =1 1,2
Proof. Since triangles ACH and
ABC are similar, we conclude that

— =—=Cosd.
roc
Similarly
n a
2 == =cosp.
r o c
Thus,

1, =rcoso,r,=rsinao,

KALEIDOS!

mangles with t

and therefore,

rr=r2+r1,2
8. If line CR intersects AB at P,
and line CS intersects AB at Q (fig.
3), then AC = AQ and BC = BP.
Outline of proof. The first equal-
ity follows from the following se-
quence of equalities:

LCQA = ZBCQ + 4B

= (1/2)o. + B = LACH + ZHCQ
- B +(1/2)0.= ZACQ.
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The second
equality is
proved simi-
larly.

9. Suppose
point T is the
center of the
circle inscribed in
triangle ABC (sec
fig. 3). Then Tis also
the orthocenter of tri-
angle CRS (the point
where the triangle’s alti-
tudes meet), and T is also the
center of the circle circumscribing
triangle CPQ.

Outline of proof. The lines BS and
AT are the bisectors of ZB and ZA,
respectively. Since triangles ACQ
and BCP are isosceles, this means
that the lines BS and AT are perpen-
dicular to CP and CQ and that they
divide these segments into halves.

10. The lines T, R and TS are par-
allel to BC and AC, respectively.

Outline of proof. Let T, be the
foot of the perpendicular from T to
' AB. Draw the perpendicular T|R,
f from T, to AC (see fig. 4). Let R* be
the point where T|R, meets AT.

Figure 4

We'll show that R* = R.
Triangles ATT, and AR*R, are
similar. Therefore,
R*R, AR,
TT, AT,

From right triangle AR,T, we see
that AR,/AT, = cos o. Thus

R*R, =TT, cos o. = r COS 0.

But triangles ABC and ACH are simi-
lar, and the ratio of any two corre-
sponding parts is equal to AC/AB
= cos o. Thus r,/r = cos a, and RR,r
COS Bl =1,

Exercises. Prove the following
statements. Selected proofs are out-
lined.

11. The line PS is parallel to AT,
and the line RQ is parallel to BT.

12. Triangles ATB, BSC, and
ARC are similar.

13. Points H and T, lie on the
circle with diameter RS.

14. ST, = RT,.

Outline of proof. Since triangle
T\RR, is a right triangle and since
ZRT\R, = B, we conclude that T,R
sin B =1, = rsin B, and thus T\R = r.
We can similarly show that T|S = r.

15.CU=CV.

Outline of proof. Triangle ST, R is
isosceles (see statement 14) and
right (see statement 10). Therefore,
ZRST, = 45°. But TS || AC; thus
£ZVUC = ZRST, = 45°, and triangle
CUV is isosceles.

16. Points Q, S, T, R, and P lie on
a circle with center at T, and radius r.

Outline of proof. Points S and R
lie on this circle (see statement 14).
Let’s show, for instance, that the
point Q also lies on it.

Triangles T,5SQ and CQA are
similar (TS [l AC), and thus

ST, IO

AC QA’

But AC = QA (see statement 8).
Therefore, ST, = T)Q =1.

17. Point K is the orthocenter of
triangle CPQ.

18. The lines PS, RQ, and CH
meet at K.

19.RT=KS=SQand RP=RK=TS.
20. RS = CT.

21. Points A, R, S, and B lie on
one circle; points A, P, T, and C lie
on another circle; and points B, Q, T,
and C lie on one circle, too.

2. AT, - BT, =8 5. (S 45 denotes
the area of triangle ABC).

Outline of proof. Let AT, = u and
BT, =v.Since S, = s (here s is the
semiperimeter of ABC), we have

S upc =%r(a+b+c):r(r+u+v).

But (u+rP+(v+rP=c2=(u+vp

and thus 72 + r{u + v) = uv. The left
part of this identity is the area of tri-
angle ABC.

23. Scpg = labr)/c. Hint. The
height of triangle CPQ drawn from
the vertex C is h = ab/c, and the
length of PQ is 2r.

24. Triangles HSR and ABC are
similar, :

25. Triangles RR, T, and SS, T are
congruent and are similar to triangle
ABC.

25. Triangles AQR and ARC are
congruent.

26. The circles circumscribed
about triangles ARC and CSB touch
each other at C, and CT is their com-
mon tangent.

—L. D. Kurlyandchik
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S0, What's wrong?

Debunking problematic solutions

by I. F. Sharygin

ANY PEOPLE, EVEN SOME

who consider themselves in-

tellectuals, have only a vague

understanding of mathemat-
ics and often feel misgivings about
the simplest of mathematical state-
ments. For example, here is a prob-
lem dealing with a subject everyone
learns in school: percentage.

Problem 1. A farmer harvested 10
tons of watermelons and sent them
by river to the nearest town. It is
well known that a watermelon, as
reflected in its name, is made almost
entirely of water. When the barge
left, the content of the watermelons
was 99% water by weight. On the
way to the town, the watermelons
dried out somewhat, and their water
content decreased by 1% (to 98%).
What was the weight of the water-
melons when they arrived at the
town?

Many people won’t believe the
answer, even if they find it them-
selves. We invite the reader to solve
the problem independently. (Expla-
nations for the problems in this ar-
ticle can be found beginning on page
53.)

Many people are ready to believe
the silliest reasoning, especially if it
is presented in public in a convince-
ing manner. Consider, for example,
this old problem.

Problem 2. A retired general de-
cided to sell his old boots. He sent
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his butler to the market with the
pair of boots and instructions to sell
them for $15. The butler met two
one-legged veterans at the market
and sold them each one boot for
$7.50. When the butler told his mas-
ter about it, the general said that
military veterans should be charged
less. So, he gave the butler $5 and
had him return it to the buyers. On
his way to the market, the servant
squandered $3 on drink and returned
$1 to each of the veterans. Now let’s
count the money: each veteran paid
$6.50. Multiplying $6.50 by 2, we
get $13. And $3 dollars was squan-
dered by the servant: $13 + $3 = $16.
Where does the extra dollar come
from?

(This sort of reasoning can be
found, for instance, in the promises of
many politicians.)

This example is rather simple,
but it illustrates the way in which
many mathematical paradoxes are
obtained. The reader is
pressed to believe plau-
sible but erroneous reason-
ing, the outcome of which
is a statement contradict-
ing some obvious or well-

QUESTIONABLE ANSWERS

Problem 3. The following “theo-
rem” is an additional test for the
congruence of triangles. If in tri-
angles ABC and A B,C, the equali-
ties AB = A|B;, AC = A,C,, and
ZABC = £A,B|C, hold, then these
triangles are congruent. That is, the
criterion SSA = SSA guarantees con-
gruence for any two triangles.

“Proof.” Construct triangle AB,C
as it is shown in figure 1. In this tri-
angle ZCAB, = ZC,A B, and AB,
= A,B,. Triangles A|B,C, and AB,C
are congruent by SAS (since it is
given that AC = A,C,). Thus, ZABC
= ZAB,C and AB = AB,. Now draw
segment BB,. Triangle BAB, is isos-
celes. Therefore, ZABB, = ZAB,B.
We also see that ZCBB, = ZCB,B.
Thus triangle CBB, is also isosceles,
and CB = CB,. Finally, we conclude
that triangle ACB, is congruent to tri-
angle ACB because three of their
sides are equal, and therefore triangles
ABC and A, B, C, are also congruent.
B

O

known mathematical fact.
(Sometimes this error is
very slight and not easy to
find.) To demonstrate this,
we present a geometrical
“theorem.”

Figure 1

Collage by Vera Khlebnikova
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Is the “theorem” proved?

We do not ask you to refute the
conclusion of the “theorem.” It is
not difficult to see that it is wrong.
But where is the error?

It is not always easy to under-
stand whether or not a mathemati-
cal statement is true. The ability
to find a mistake in reasoning is
one of the most important skills a
professional mathematician can
possess. The history of mathemat-
ics is replete with instances when
mathematicians found mistakes
in proofs that had been considered
flawless for decades.

We'll consider a few more schol-
arly examples. Each of the following
problems will be supplied with a
“solution.” The solutions will con-
tain an error for you to find.

Problem 4. A parallelogram ABCD
is given in which ZABD = 40°. The
centers of the circles circumscribed
about triangles ABC and CAD lie on
BD. What kind of parallelogram is
ABCD?

A B

N

D C

Figure 2

“Solution.” Let O and Q be the
centers of the circles circumscribed
about ABC and CAD |fig. 2). Since
the perpendiculars drawn to AC
from these centers bisect AC, we
conclude that the line OQ is perpen-
dicular to the diagonal AC. It fol-
lows that the diagonals of the paral-
lelogram are perpendicular to each
other. Thus, it is a thombus.

Do you like this solution?

Sometimes the trick is in the
statement of the problem, and not
the solution.

Problem 5. The numbers p and g
satisfy the equation x> + px + g = 0.
Find p and q.

“Solution.” Using facts about the
sum and product of the roots of a
quadratic equation, we have the fol-
lowing system:
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{p+q=—n
pg=q.

Solving it, we obtain two pairs:
p=q=0,
and
p= 1/ q-= -2.

Do you have any doubts concern-
ing the solution?
Problem 6. Solve the equation

tan (x + n/4) =3 cot x — 1.

“Solution.” Transform the right
side of this equation by using the
formula for the tangent of a sum,
and introduce the new variable y tan
x. We find that

This leads to y = 3/5, thus,
x = arctan (3/5) + nk.

Is that all?

Problem 7. How many solutions
does the equation log, ,, x = (1/16}*
have? ‘

“Solution.” The functions that
appear on the left- and right-hand
sides of the equation are inverses
of each other. If we draw their

y

Figure 3

graphs, we’ll “see” that they inter-
sect in only one point on the bisec-
tor of the first quadrant. Therefore,
the equation has only one solu-
tion. Any objections?

The next two problems lie some-
what outside the focus of our article.
The situations they describe seem to
be impossible. This is what attracts
our attention.

Problem 8. A section of greatest
possible area was drawn through the
vertex of a right circular cone. It
turned out that its area is twice the
area of an axial section. Find the
angle at the axial section.

The conditions of the problem
seem to be impossible, since the
axial section of a cone has the great-
est area.

Problem 9. The center of a sphere
lies on another sphere. It is known
that the part of the second sphere
lying within the first one has an area
five times smaller than the surface
area of the first sphere. Find the ra-
tio of the spheres’ radii.

Figure 4

To solve the problem we’ll need
the formula for the area of a spheri-
cal segment: S = 2nhR, where R is
the radius of the sphere and h is the
height of the segment.

“Solution.” Let r and R be the ra-
dii of the first and the second spheres,
respectively. Draw a planar section
through the centers of the spheres (fig.
5). We have OA = OB=Rand AB-r.
Drop the perpendicular BC from B
to OA. Now AC is the height of the
spherical segment that is the part of
the second sphere lying within the
first one. If we let AC = h, then us-
ing the Pythagorean theorem in tri-
angles ABC and OBC, we eventu-
ally find that the equation

/N

Figure 5




2 -k =R*-(R-hP,

from which we get h = r2/2R.

Now, the formula for the area of
a spherical segment gives S = r>. But
the whole surface of the first sphere
is 4nr>. Thus the surface of the part
of the second sphere within the first
one is always 4 times smaller than
the surface of the first. But the state-
ment of the problem says that it is
5 times smaller, and thus we have a
contradiction. So, does the problem
have no solution?

Problem 10. A convex quadrilat-
eral with two sides of length 10 and
two other sides of length 6 forms the
base of a quadrilateral pyramid. The
altitude of this pyramid is 7. All the
angles between its lateral faces and
its base are 60°. Find the volume of
the pyramid.

Figure 6

“Solution.” Since all the lateral
faces form equal angles with the
base, we conclude that the projec-
tion of the vertex S of the pyramid
SABCD coincides with O—the cen-
ter of the circle inscribed in ABCD
(fig. 6). The radius of the circle is

7 cot 60° = 7/4/3.

The area of quadrilateral ABCD
equals the sum of the areas of tri-
angles ABO, BCO, CDO, and DAO.
All these areas are easy to find. Fi-
nally, we see that the area of the
base is

(10 + 6) - 7/+/3 = 112/+/3.
And the volume of the pyramid

equals 784/3+/3 . Do you agree with
this answer? Q)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

By William K. Hartmann with Joe Cain

Make an
impact in
your class-
room with
this interdis-
ciplinary

guide to

cratering. How do craters
form? What can craters tell
us about planetary science?
How have impacts affected
Earth’s history and the
history of life?

Produced in cooperation
with NASA and The Plan-
etary Society, Craters!
includes 20 ready-to-use,
hands-on activities that use
cratering to teach key
concepts in physics, as-
tronomy, biology, and Earth
sciences. Special features

include a summary of re-
search on Shoemaker-Levy
9’s encounter with Jupiter,
and a detailed background
section for teachers. The
book comes with a Mac/
Windows CD-ROM packed
with supplemental images
for use with classroom
activities. But you don'’t need
a computer to make excellent
use of the activities bevause
all of the
pages—
including
beautiful
images of the
Moon and other cratered
surfaces—are photocopy-
ready.
Grades 9-12, 1995, 240 pp.
#PB120X $24.95

To order, call 1-800-722-NSTA
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Rivers, typhoons, and

HAT DO RIVERS, TY-

phoons, and molecules have in

common? Only that they are

all composed of atoms? Not
s0. They are all affected by a phenom-
enon known as the Coriolis force,
which is caused by motion relative to
a rotating frame of reference.

Do we feel this force when we run
on Earth’s surface? After all, we are
moving in the rotating system of our
planet. No, we don’t. Still, it is the
Coriolis force that makes one bank
of a river steep and the other flat-
tened, that spins huge air masses
into typhoons, and even intrudes
into the private life of molecules. So,
is this force negligible or not?

Let’s consider two adjoining cir-
cular bands on Earth’s surface lo-
cated at latitudes 8, and 6,. In figure
1 these bands are different colors.
Clearly, the higher the latitude 6,
the smaller the linear (circumferen-
tial) velocity: v, < v,. For example,
on the North Pole (6 = 90°), the lin-
ear velocity is zero.

Imagine a river in the Northern
Hemisphere flowing from south to

19 =90°

Figure 1
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molecules

by Albert Stasenko

north along a meridian (perpendicu-
lar to the parallels of latitude—see
fig. 1). When flowing from latitude 6,
to latitude 6,, the water particles
“try” to keep their velocity v, (which
is directed to the east), and if Earth’s
surface were smooth and slippery,
they would be deflected to the right
(to the east) when reaching latitude
0,. (This path is indicated by the
dashed line in fig. 1). An observer on
Earth’s surface would say that the
water particles experience a force per-
pendicular to their velocity. This is
the Coriolis force, discovered in 1835
by the nineteenth-century French
scientist Gustave-Gaspard Coriolis.

Thus, the Coriolis force tries to
push flowing water aside. However,
if a river is confined to its bed, the
water particles will hit the right
bank because they move eastward
with velocity v, < v,, and thus they
will gradually destroy the right bank
of the river.

If we imagine another Northern
Hemisphere river flowing from
north to south along a meridian
(fig.1), we realize that it would try to
turn to the west, again to the right
of the direction of its motion. Now
it is clear why all meridional rivers
in the Northern Hemisphere have
steep right banks and flattened left
banks. In addition, the water level at
the right bank is always higher than
that at the left bank.

Clearly, in the Southern Hemi-
sphere meridional rivers must wash
out their left banks. This geographi-




cal phenomenon was first discov-
ered in 1857 by the outstanding
naturalist Carl Maximovich Barr,
who analyzed his own observations
and earlier reports (beginning in
1826) of Russian travelers. In addi-
tion, he gave the correct explanation
of this phenomenon as being caused
by Earth’s rotation.

The effects of Coriolis forces are
manifested most spectacularly in
the motion of water and air masses.
Is there anyone who doesn’t know
that the most famous oceanic cur-
rent, the Gulf Stream (directed to
the north in the Northern Hemi-
sphere), deviates to the right, depriv-
ing Canada of warmth and heating

Europe instead! It is a kind of river,
only without banks.

And how are typhoons created,
these formidable atmospheric phe-
nomena with characteristic diam-
eters on the order of a thousand
miles, which inflict colossal de-
struction? First a region of decreased
atmospheric pressure forms some-
where due to nonuniform heating of
Earth’s surface by the Sun. The air
masses from the adjacent regions of
higher atmospheric pressure rush
toward the depression along radial
directions. As we already know, all
moving masses tend to deviate to
the right in the Northern Hemi-
sphere and to the left in the South-

Figure 2

ern Hemisphere. Therefore, a colos-
sal vortex arises, which rotates
counterclockwise in the Northern
Hemisphere or clockwise in the
Southern Hemisphere (fig. 2).

Now let’s consider gas molecules.
They are known not only to move
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stochastically in any direction but
also to rotate very quickly in such a
way that the energy of their rota-
tional motion will be of the same or-
der of magnitude as the energy of
their translational motion. In addi-
tion, under certain conditions some
molecular fragments (individual at-
oms or atomic groups and radicals in
very complicated molecules) can
vibrate relative to the center of mo-
lecular mass. Again, the energy of
this oscillation will be of the same
order of magnitude as the energy of
either the translational or rotational
motion. By the way, in physics this
fact is referred to as the principle of
equipartition of energy per degree of
freedom.

Now consider a simple model of
a triatomic molecule that has two
identical atoms attached by elastic,
weightless springs to a central atom
(figs. 3 and 4). This model simulates,
for example, the carbon dioxide
molecule CO,, which is an ex-
tremely important agent in powerful
infrared lasers. When nothing dis-
turbs this molecule, its center of
mass moves along a straight line.
Considering the time axis to point
to the right as usual, we consider the
motion of the molecule’s atoms in
the reference frame that rotates
about the center of mass with the
same angular velocity as the mol-
ecule itself. We have already used
such a rotating frame of reference in
considering the flow of rivers and
the motion of oceanic and atmo-
spheric streams on the surface of the
rotating Earth.

There are two basic modes of os-
cillation of the system: (1) the pe-
ripheral atoms simultaneously
move toward and away from the
center of mass (both springs are si-
multaneously compressed or elon-
gated) and (2) the peripheral atoms
simultaneously move in the same
direction, which means that one
spring contracts while the other
stretches out.

It is easy to see that in the first
case (fig. 3), the molecule’s rotation
is either accelerated or decelerated.
For example, when both atoms
move toward the center, they are af-
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Figure 3

fected by the Coriolis force, which
deflects them to the right relative to
their centripetal motion. Therefore,
in this case the molecule’s rotation
is accelerated. On the contrary,
when the peripheral atoms move
away from the center, the Coriolis
force again deflects them to the
right, and this time their rotation is
decelerated. We can observe the
same phenomenon when a figure
skater spins faster by drawing his or
her hands close to the body. This
can also be explained in the inertial
frame of reference by conservation
of angular momentum.

A new and much more interest-
ing phenomenon arises when the
molecule oscillates in the second
mode. Indeed, when the peripheral
atoms move in the same direction,
the Coriolis force again shifts them
to the right. However, while the ro-
tation of one atom is accelerated, the
rotation of the other is decelerated.
As a result, the molecule will be
bent. In a quarter of a period bend-
ing will occur again, but this time in
the opposite direction. Therefore,
the oscillation of atoms in a rotating
molecule leads to additional types of
vibration, called flexural vibration.

However, since the energies and
velocities of vibration and rotation
in a gas are of the same order of
magnitude, their frequencies can be
similar to each other, so the phe-
nomenon of resonance can occur. As
the molecules usually radiate elec-
tromagnetic waves, this resonance
will be manifested in the infrared
spectrum of carbon dioxide. Indeed,
spectroscopists have confirmed this.

‘/,

Figure 4

We note that in the second case, the
oscillation of the peripheral atoms
and the flexing of the springs will pe-
riodically shift the central atom
from the position of the center of
mass, but this will not affect our
qualitative inferences.

Thus we see that seemingly
quite different objects—rivers, ty-
phoons, and gas molecules—have
something in common. Seek and

you will find! (o]

Quantum articles about rotation
and the Coriolis force:

V. Surdin, “A Venusian Mys-
tery,” July/August 1996, pp. 4-8.

M. Emelyanov et al., “In Foucault’s
Footsteps,” November/December
1996, pp. 26-27.
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GRADUS AD
PARNASSUM

Symmetry in algebra, part Il

ET’S GO BACK TO BASICS.

Suppose we wanted to factor

x> - 5x% + 5x — 1. We can note

that if x = 1, the value of the
given polynomial is 0. It follows
from the factor theorem that (x - 1)
is a factor of the polynomial, and we
can obtain the other factor by divi-
sion. Indeed,

x3-5x2+5x-1=(x-1){x*-4x+1).

Remember the factor theorem?
Factor Theorem: For any number
a, (x—a)is afactor of P(x) if and only
if P(a) = 0.
Problem 1. Factor

150x% - 77x - 73.
Problem 2. Factor
x5+ 15x2 + 15x + 1.

If the value of a polynomial is O
when x = k, we sometimes say that
the polynomial vanishes when x = k.

Problem 3. Factor x> — 1.

Solution: The given polynomial
vanishes when x = 1. This leads to
the factorization

B-1=(x-1)x*+x+1).

Some readers may have encoun-
tered this factorization already. Both
x2—1 and x3 + 1 can be factored, and
it may be difficult to remember how
each factored form looks. But if we
recall the factor theorem, it is easy
to see that x — 1 must be a factor of
x3 — 1 and that x + 1 must be a fac-
tor of x3 + 1.

Problem 4. Factor

x3-7x*+7x-1.

by Mark Saul and Titu Andreescu

Answer: (x — 1)(x*> - 6x + 1).
Problem 5. Factor

x3-137x%+137x - 1.

Answer: (x — 1)(x?> - 136x + 1).

What's going on? Problems 4 and
5 are not very interesting.

What's interesting is the pattern
that they indicate.

Problem 6. Factor

x3—ax®+ax-1.

Solution: Once more it is clear
that one factor of this polynomial is
x— 1. We can obtain the other factor
easily, for example by division: It is
x% + (1 - a)x + 1. Thus we have the
complicated looking, but really not
so difficult identity

Boagdvax=1
=(x-1)x*+x—ax+1),
which can be checked by multipli-
cation. The reader is invited to look
back at problems 4 and 5 to see that
the answers are indeed of this form.
Problem 7. Factor

x3+axt+ax+ 1.
Problem 8. Factor
x3 — ax® + 2ax — 242

Hint: What happens if x = a?
Problem 9. Factor

x* — 633y + 4xy® + vt
Problem 10. Factor
abla - b) + be(b - ¢) + calc - a).

Solution: Let us first consider this
expression as a polynomial in g, and
think of b and c as “constants.” The

polynomial vanishes when a = b and
when a = ¢, so it has factors (a - b)
and (a - c). Now let us consider the
expression as a polynomial in b. We
already know that it vanishes when
b = a, but it also vanishes when
b = c. Thus it has another factor of
(b-c).

Therefore, we can write

abla - b) + be|b - ¢) + calc - a)
={a - b)la-c)b-cM,

where M is some polynomial in a,
b, and c. Let us think again of
these two expressions (whose
identity is being asserted) as poly-
nomials in a. Then the left-hand
polynomial is quadratic in a, so
the right side must also be qua-
dratic in g, and M cannot contain
any positive powers of a. But the
same is true for b and ¢, so M must
be a constant. We can find the
value of the constant, for instance,
by plugging in numerical values
for a, b, and ¢. We quickly find
that M = 1.
Problem 11. Factor

(a—bP +[b=¢P +[c—alP
Problem 12. Factor
(a+b+cP—(a®+b°+c3).

Hint: What happens if a = -b?
Problem 13. For all real numbers
a, b, ¢, x, prove that
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Hint: Consider the problem as an
equation in x. What is its degree?
How many roots can you find by in-
spection? What kind of equation has
more roots than its degree?

Problem 14. For all real numbers
a, b, ¢, x, prove that

(x-b)(x-c) . (x-c)(x-a)

(a-b)a-c) (b-c)(b-a)
+<X—a)(X—b) .
(c—a)(c-b)

Problem 15. Let m and n be two
odd integers. Show that

1 111
aln +b1n +CI’H - am +b? CIH
if and only if
. i
a®+b%+c®  a" b "

Hint: One approach is to construct

a cubic equation for which a™, b™,

and ¢™ are the roots. Then guess at

one of the roots of the equation.
Problem 16. Factor

x3 + y® + 23 - 3xyz.

Hint 1: Try letting y + z = —x. Hint 2:
Alternatively, and if you know
something about determinants, note
that the given polynomial is equal to
the determinant

Xy Z
z Xy

y z X

Problem 17. Let the symbol abc
denote the decimal numeral with a
in the hundreds place, b in the tens
place, and c in the units place. Prove
that if the numbers abc, bca, and
cab are all divisible by some integer
n, then a3 + b3 + ¢ - 3abc is also di-
visible by n. (Note: The solution we
give depends on properties of deter-
minants, and is related to the second

solution to problem 16.) (o
ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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Ordered sefs

by L. Pinter and |. Khegedysh

ICK’S PARENTS KEEP PAPER MONEY IN ENVE-

lopes. One day they take three envelopes and place

them before Nick. One of the envelopes holds one-

dollar bills, another holds two-dollar bills, and the
third holds five-dollar bills. They ask Nick to take two
bills from one of the envelopes, three bills from another,
and four bills from the third envelope.

How should Nick choose envelopes to get the most
money? How should he choose envelopes to get the
least? To calculate the sum for a random selection of en-
velopes, place the numbers 2, 3, and 4 into the lower row
of the table below in the corresponding order and then
add the products of the numbers in the columns.

If Nick wants to get the most
money, he must take four bills
from the envelope with the five-
dollar bills, three bills from the
envelope with the two-dollar
bills, and two bills from the
envelope with the one-dollar
bills:

5. 4+2-3+1-2=28.

If Nick wants to get the
least money, he must
take the minimum 2
number of bills (two) y
from the envelope
with five-dollar bills,
three bills from the
envelope with two-
dollar bills, and | .
four bills from the -/ wo ®
envelope with one-

-

dollar bills:
5.2+2-3+1-4=20.

Ordered triplets

The above problem can also be approached in the fol-
lowing way. Suppose we have two triplets of positive
numbers:

a;, a,, d,
b

17 = 73

Consider the sum

S=ab,+ azbf +asb

kr

where i, j, and k represent the numbers
1, 2, and 3 assigned arbitrarily. How
should we assign the numbers to ob-
tain the largest (or smallest) sum S?
If the largest of the a numbers is
multiplied by the largest of the b
numbers, the median of a is multi-
plied by the median of b, and the small-
est of a is multiplied by the smallest of
b, then the sum S will have its largest pos-
sible value (if there are equal numbers in
aor b, the largest value of S can be ob-
tained in several different ways). If,
on the other hand, the largest of
a is multiplied by the smallest
of b, the median of a is mul-
tiplied by the median of b,
and so on, we will obtain
the smallest possible
value of S. This method
enables us to solve the
following problem.
Problem 1.
Prove that for
any positive num-
bers a, b, and ¢ the

oy
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following inequalities hold:

a2 +b? b2+t P+a® A bEOA2
+ + o

a+b+c<

e,
2c 2a 2b bc ca ab

Let us first prove the first inequality. Write two triplets
of numbers
2

7

202

1
=

Q
oy

7

7 7

Q=
S|~

Since the numbers a, b, and ¢ are positive, the larg-
est number of the first triplet is greater than the
smallest number of the second triplet, and the small-
est number of the first triplet is greater than the larg-
est number of the second triplet. Because of this, the
sum

21 o1

3 2

a—+b —+c
a b

.1
C

is the smallest sum for the given triplets, and conse-
quently,

2lippliolepl ppl 21 (2]
a G b c a
and
azl+b2l+czlﬁa2l+bzi+czl. (3]
a b c c a b

Combining inequalities (2) and (3), we obtain

2(a+b+c)gazl+bzl+czl+azl+bzl+czl
b c a c a

a+b: b2+ P +d
= + +

c a b

To obtain the second of inequalities (1), let’s consider
the following triplets:
a®, b3, c?,

a b ¢
abc’ abc’ abe’

The largest (and respectively, smallest) numbers of the
second triplet are written under the largest (and small-
est) numbers of the first triplet. Consequently,

3 4a s b 3 C
a°—+b°—+c°—
abc abc abc
s b c a at b* &
26— 4h P — =2 —t—,
abc abc abc ¢ a b (4)
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a 3 c
. B

b
abc

abc abc

2 12 o
c 1 d ) a b ¢

B Pt P =2
abc abc abc b ¢ a (5]

Combining inequalities (4) and (5], we obtain

: : ; ‘ ) ‘ D)
a® pP a> b c? P ¢
+ +

a
Y —t—F+— |2 —F
bc ac ab c a b b c a
_(12+b2 b2+ P +d
6 a b
Exercises.
Prove the following inequalities:
1.a* + b*=a3h + abd.
2. a3b + b3¢c + c3a > a’bc + b ca + c2ab.
3 3 3 3 3 3
a’b a’c b°a b’°c c’a c°b
. —+—+— 4+ "4+~ 4+~ " >6abc
b c a b a

c
(here a >0, b >0, and ¢ > 0).
4.1fa 2a,2a,and b, 2 b, > b,, then

3la\b, + a,b, + azb;) > (a, + a, + a;)(b, + b, + b,).
5.1fa>0,b>0,and ¢ > 0, then

a b é
+
b+c a+b

1 & 55
a+c 2

Some generalizations

Now let there be two sets of n numbers:
a; 2(122(132... >a

b, z2byzh,2...

Consider all possible sums of the form

o=ab; +ab; +...+ ab;

where 1, 1,, ..., 1, is some permutation of the numbers
1,2, .., n

There is a finite number of such sums, so there must
be a maximum S and a minimum s. It is easy to see that

S=ab, +ab, +...+ab,
and
s=ab,+ab, | +..+ab,.

Let’s prove this fact. Note that for any four numbers
a, b, ¢, and d such that a > b and ¢ > d, the following
inequality holds:

ac+ bd > ad + be,
(since it is equivalent to the obvious inequality
(a-Db)c-d)=0).

Now our assertion can easily be proved. Indeed, if some



sum c involves the terms a b, and a; b, for which e < k
and q > p (thatis, b, 2D ), then we can'obtain a sum o’
that is not less than o with the terms ab, and a,b_, by
exchanging the numbers b and b .

Performing a series of such permutations, we can
obtain the sum S such that S > ¢. Similarly, if b > b
we can obtain a sum not greater than ¢ by exchangmg
these numbers. Since the sum s can be obtained as a
result of a series of such permutations, we have ¢ 2 s.
Thus, for any sum o,

q’

s<G <, (B)

and the equality in (B) is possible only if one of the sets
a,, .., a,orb,, .., b contains equal numbers.
Summing up, we can formulate a general method for
proving inequalities: If the sets of numbers a,, ... , a,,
and b, ..., b, are ordered identically—that is, if a; > q)
implies b - bl/ then
aby + by + ...+ a,b, 2 ab; +ayb; +..+ayb;
where 1}, 1,, ... , i, is an arbitrary permutation of the
numbers 1,2, ... , n.

Some remarkable inequalities

1. Cauchy inequality:

q+ay+..+a
n

Proof. We can assume thata, >a,>... 2
the sets of numbers

a_. Consider

oy LA 1 =4
G G* G

G Gl GU

== =1
a, aa, a ... a,

These two sets are listed in opposite orders. Therefore,

_a G aq G_2+ LA ay G"
&g CFmay 00 0l
<4, a9 G Bl o By,
G G, @q G"  @ay...a,,
Gy tdyt...tdy
- G

2. Chebyshev inequality. If

4,z2d,2... 2a,20
and
G b,2b,>... 2b,20,
nla,b, + a,b,+... +a,b,)
2(a, +ay+... +a, )b, + by+... +b,).

Proof. Combining n inequalities

2 NE T +a,b >ab, +a, by +... +ab,
ab,+... +ab, za;b,+abs+... +anb1/
a By + v +aubn>[llbn+ a,by +... +anbny

we obtain what is desired.
Remark. Similarly, we can prove thatif a, 2a,> ... > a
and b, <b, < ...<b , then

+a b))

nn

c+a)lb,+by+..+Db

3. Mean-square inequality:

n(a,b; + ety + s
<(a, +a, +

9a12+a, +. +au a1+a2+...+an

\ n n

Proof. We can assume that a, >a, >... 2 a,. Using the
Chebyshev inequality for the case of a;= b,foralli=1,
2, ..., 1, we obtain

5

) 2 2
n(af+a§+‘..‘-a;) (@ +ay+...+a,),

and the desired inequality can be easily obtained.
Exercises.
6.1f ay, a,, ..., a, are the lengths of the sides of a con-
vex polygon (where n is the number of sides, and n > 3),
then

n
- 7
n-2

a a, a

+ ot —=2
p—2d2 p_2a11

p—2aq

wherep=a, +a, +
7 It Byp g o

. +a,isthe perimeter of the polygon.
a, are nonnegative, then

(a1k+m +a£<+m " ...+aﬁ+m)

(af‘ e ak)(a{“ +a® + .+ am).

n

8.If a, b, and ¢ are positive, then

a®+b%+c S, 1.1
b3 a b ¢
9. (Generalization of problem 1.)If a,, a,, ..., a, are
positive, then
(n- 1)(a1 +ay + ..+ am)
< af +ak +. +af§ af +af + .. +ak .
a{< m a]2<7111
alj‘ +a§< + ...+af_1
k-m /
al?
where k > m > 0. (0]
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A Community Resource

To Understand and Prevent AIDS

The Science of HIV
Curriculum Package

AJH JO 99UaS = .

Developed by the National Science Teachers
Association with funding from Abbott Laborato-
ries. Written by Michael DiSpezio. Video by

Summer Productions.

NSTA’s new science-based resource guide is
different from most “AIDS books”—its activities
and readings focus on biological concepts relating
to HIV. Activities cover the following subjects:

« selected topics in cell biology

- basic virology

« HIV structure, replication, and genetics

« immune system function and HIV infection
« drug therapeutics

« prevention strategies

+ a global perspective on the AIDS pandemic

This curriculum package can be used as a commu-
nity educational resource or to expand upon a high
school biology or health curriculum. Reproducible
student pages make lesson plans flexible; educator
pages provide background and presentation strate-
gies. Material appropriate for anyone at the high
school level and above.

The text is coordinated with an original video
made for this project. Animations of complex
concepts are interwoven with scientist interviews
and compelling stories of adolescents who are
living with HIV. The video has won numerous
awards, including:

- Best Achievement for Children’s Programming
1997 International Monitor Awards

« Silver for Children’s Programming
1997 Houston International Film Festival

« Gold Circle Award )
American Society of Association Executives

Grades 9-College, 1997, 184 pp, 30-minute video

#PB136X

$45.00

To Order Call 800-722-NSTA
Visit Our Web Site www.nsta.org




XPERIMENTS WITH SOAP

films and bubbles can be done

easily at home without so-

phisticated equipment. How-
ever, you will need to carefully
wash the glassware used and skill-
fully prepare a good soap solution.
The best solution is made from
shampoo dissolved in water, with
small amounts of pure glycerin
and a strong solution of ammo-
nium hydroxide added.

An empty ballpoint pen with its
tip cut off can be a thin enough tube
for blowing soap bubbles. It’s better
to blow small bubbles. Try not to
leave drops of solution at the bot-
toms of the bubbles. A bubble can be
easily released from the tube with a
quick upward motion of your hand.

After you have prepared every-
thing needed for the experiments
and have practiced blowing soap
bubbles, begin the experiments de-
scribed below.

1. Blow a soap bubble, release it
from the end of the tube, and imme-
diately move away quickly—first
backward, then to the left and the
right. The bubble will follow you!

The bubble’s behavior is ex-
plained by the creation of low air
pressure zones during your quick
movements—these are where the
bubble goes.

2. Take a wide glass tube with
a diameter of 2 cm or greater. Take
a piece of foil and cut out a circle
with a diameter a little larger than
that of the tube. Wet the foil with
soap solution and press it to the
top of the tube. Sink the opposite

IN THE LAB

Suds stutlies

by P. Kanaev

end of the tube into a deep con-
tainer filled with water. Soon you
will see the foil cap open
slightly—this is due to the soap
bubble created under the cap by
the compressed air in the tube.
The deeper the tube sinks into the
water, the larger the foil’s angle of

bubble

e e foil

Figure 1

inclination will be. At some depth
this angle becomes 90° (fig. 1).

3. Carefully place a soap bubble
on a flat, wet surface, such as wa-
ter, paper, or glass. Because the
surface is wet, the bottom part of
the bubble will spread over the
surface and the bubble will be-
come a hemisphere.

Now make a flat soap film on a
wire ring. Make a soap bubble with
about the same diameter as the ring
and place it on the film. Both the
film and the bubble will change
shape, and you will get a very thin,
double-convex lens that is sym-
metrical with respect to the plane of
the wire ring.

4. Dip the empty frame of a pair
of glasses into the soap solution—
the frame will be covered with two
plane films. Look through these

soap glasses, and you’ll see things as
they naturally appear—neither mag-
nified nor attenuated. Visibility will
also be normal.

Now modify the experiment.
Holding the frames horizontally this
time, dip them into the soap solu-
tion—you’ll get glasses with double-
convex lenses. Surprisingly, objects
observed through these soap spec-
tacles are not distorted either. Why?

There is air between the thin
curved films, including these double-
convex lenses. The light beams pass-
ing through such lenses are refracted
very little.

5. Can you obtain a layer of soap
film inside a test tube? That is, not
at the top, but deep inside the tube?
Here we show two ways of forming
such a film.

(a) Fill part of the test tube with
water. Take a strip of paper, wet it
in the soap solution, and then drag
it over the top of the test tube—
the opening will be covered by a
soap film. To sink the film down
into the tube, tilt the test tube and
pour out some of the water. The
amount the film sinks is deter-
mined by the amount of water you
pour out.

(b) Pour a little water into the test
tube and heat it to boiling using a
candle. Remove the test tube from
the heat and cover the top of it with
a soap film. After a while you'll see
the film gradually sink down into
the tube.

Water vapor condenses under the
soap film during cooling and pro-
duces lower pressure in the tube, so
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the film moves. To accelerate this
process, the tube can be cooled with
running water.

6. Blow a bubble at the end of a
thin tube. Using modeling clay, at-
tach the free end of the tube to a
horizontal beam secured at about
20 ¢cm above a table. Using a syringe
{or other thin tube), you can pump
air in and out of the bubble. Will this
distort the shape of the bubble? Cer-
tainly not. This follows directly
from Pascal’s law.

7. Find a glass flask or bottle
about 6 cm tall and fill it two-
thirds full of soap solution. Make

Figure 2

two electrodes from copper wire
about 8 cm long and insert them
into a rubber stopper or cork. In-
sert the stopper into the neck of
the bottle (fig. 2). The lower ends
of the electrodes should be near
the bottom of the jar, but they
must not contact it. When the
electrodes are connected to a flash-
light battery, small bubbles of a
gas will be released at the cathode
(negative terminal) in the solution.
The bubbles will rise and create a
foam at the surface of the solution.
What is the gas? Will bubbles be
produced if alcohol, glycerin, or
kerosene is poured into the jar in-

y ¢ » y : ?
stead of the water-soap solution? THE POWER TO LEARN. THE POWER TO EARN.
To answer these questions we " FIND OUT HOW YOU CAN GET THE POWER BY

only need to recall the phenom- CALLING 1-800-97-NACME.
enon of water electrolysis. The gas

released at the cathode is hydro-
gen. There will be no bubbles if
alcohol, glycerin, or kerosene is
used, because the products of elec-
trolysis of these substances are
quite different. (]

NATIONAL ACTION COUNCIL FOR'MINORITIES IN ENGINEERING
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Imagine the Universe!

Dedicated to a discussion about
our Universe, the “Imagine the Uni-
verse!” web site (http://imagine.
gsfc.nasa.gov/docs/homepage.html)
contains a wealth of astrophysics
information. The site catalogs what
we know about the Universe, how it
is evolving, and the kinds of objects
and phenomena it contains. Just as
importantly, it also discusses how
scientists know what they know,
what mysteries remain, and how we
might one day find the answers to
these questions.

Features of the site include “Ask
a NASA scientist,” “Satellites and
Data,” “Teacher’s Corner,” “Other
Good Resources,” and “The Imagine
Dictionary.” Imagine the Universe!
is a service of the High Energy Astro-
physics Science Archive Research
Center within the Laboratory for
High Energy Physics at NASA/
Goddard Space Flight Center.

Future physics teacher scholarships
The AAPT Executive Board offers
a scholarship for future high school
physics teachers. This scholarship is
supported by an endowment funded
by Barbara Lotze. Undergraduate
students in, or planning to enter,
physics teacher preparation cur-
ricula and high school seniors
planning to enter such curricula
are eligible. Successful applicants,
normally one per year, will receive
a stipend of up to $2,000. The schol-
arship may be granted to an indi-
vidual for each of four years.
Applications will be accepted at
any time and will be considered for
recommendation to the Executive
Board at each AAPT Winter Meet-

HAPPENINGS
Bulletin Board

ing. Applications for which all ma-
terials, including letters of recom-
mendation, are received by the first
day of December will be considered
for recommendation at the follow-
ing January meeting of the AAPT
Executive Board.

Request materials from:
Programs Department
American Association of Physics
Teachers
One Physics Ellipse
College Park, MD 20740
Phone: (301) 209-3300, ext. 5071
Fax: (301) 209-0845
E-mail: aapt-prog@aapt.org

Young Producers Gontest

Earth and Sky Radio Series in-
vites all K-12 students to enter the
1999 Young Producers Contest. Par-
ticipants submit a 90-second radio
program on a science or nature topic
of their choosing. Entries will be
judged on content (is it accurate?),
presentation (is it engaging?), and
production (is it clearly heard?).

The five winning teams will have
their programs aired on Earth and
Sky in April 1999, during National
Science and Technology Week. The
grand prize winning team will re-
ceive a $1,000 U.S. Savings Bond (or
equivalent amount in an interna-
tional check), and the four other
winning teams will each receive a
$500 bond or international check.
Winners will be chosen from a vari-
ety of age groups. In addition, all
participants will receive a certificate
stating that the student is “A Young
Producer for Earth and Sky.”

Earth and Sky is a daily radio series
that broadcasts on over 950 public
and commercial radio stations in all
50 states. It is also heard in Canada,

the South Pacific, and on many inter-
national networks, including Armed
Forces Radio, Voice of America, and
World Radio Network.

Entries must be postmarked by
December 15, 1998. For contest
guidelines, samples of past winners,
resource materials, and entry forms,
e-mail contest@earthsky.com, or
visit Earth and Sky online at
www.earthsky.com. You can also
send a self-addressed, stamped enve-
lope to Young Producers, P.O. Box
2203, Austin, TX 78768.

River runners

This month’s CyberTeaser (B238
in this issue) led contestants on a
trickier voyage than the problem
first suggested. Fortunately, it was
smooth sailing for the following ex-
pert navigators, who floated us the
first 10 correct responses to our
“current” question:

Alex Wissner-Gross (New Hyde
Park, New York)

Natalia Toro (Boulder, Colorado)
Leo Borovskiy (Brooklyn, New York])
Jaak Sarv (Tallinn, Estonia)

Bruno Konder (Rio de Janeiro, Brazil)
Jim Grady (Branchburg, New Jersey)
John Beam (Bellaire, Texas)
Melania Drozdzewicz (Thornton,
Colorado)

Theo Koupelis (Wausau, Wisconsin)
Quek Dingfeng (Singapore)

Congratulations! Each of our win-
ners will receive a Quantum button
and copy of the July/August issue.
Everyone who submitted a correct
answer in the time allotted was en-
tered in a drawing for a copy of
Quantum Quandaries, our collec-
tion of the first 100 Quantum
brainteasers. Ol
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Math
M236

Let E, be the point symmetric to E
with respect to L (fig. 1). Then KE = ME,.
Also, segment AF = FM and segment
AE = KE (since the corresponding arcs
are equal). If we take point P on the
extension of AB past A, then ZE, ML
= /EKL = ZEAP (the last equality fol-
lows from the properties of the angles
of an inscribed quadrilateral). Simi-
larly, ZPAF = ZLMF. Thus, ZFME,
= LFAE, triangles FME, and FAE are
congruent, and EF = FE,. So, FL, the
median of the isosceles triangle EFE,,
is perpendicular to EE,. (To make the
reasoning complete, we should con-
sider configurations other than the
one shown in fig. 1).

P“ F
e ,
<. A )
N [ L :
K B M
Figure 1 By

M237

It is easy to see that the required
locus includes all the points lying on
diagonals AC and BD of the dia-
mond. In fact, if M is a point on AC
(fig. 2), then, because the diamond is

D
ch
Nt
B

Figure 2
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symmetric with respect to AC, we
have

ZAMB + ZCMD
= LAMD + ZCMD = 180°.

Now let’s show that there are no
other points in this locus. Suppose
that a point M that doesn’t lie on di-
agonals AC and BD satisfies the con-
ditions. Let’s draw a circle through
points A, B, and M. Denote the points
where the circle meets diagonals AC
and BD by M, and M,, respectively
(fig. 3). Then points M,, M,, and M

Figure 3

belong to the required locus. And,
since ZAMB = ZAM,B = ZAM,B (be-
cause they are inscribed angles inter-
cepting the same arc), we conclude
that ZCMD = ZCM,D = ZCM,D.
Therefore, points C, D, M, M,, and M,
lie on one circle, too. That is, we've
found two different circles that have
three common points, which is im-
possible.

M238
If log,, , (n*+2)=p/q, then (n?
+2)9 = (2n - 1)?, and thus all the
prime factors of the numbers n? + 2
and 2n — 1 coincide. So, the fraction
n*+2
2n-1

is reducible. Of course, the fraction

4n*+8 4n’>-1+9
An-1 2n-1

=2n+1+
n__

must also be reducible. This means
that 9/(2n — 1) is a reducible fraction.
Moreover, all the prime factors of 9
and 2n — 1 coincide. There are only
two opportunities now: 2n -1 =3 and
2n—-1=9, which simplify ton =2 and
n=>51n=2, wehavelog,6=1+log,2.
This number is clearly irrational. If
n =5, we get log, 27 = 3/2.

M239

Let (x,, y,) be the solution of our
system. The conditions of the
problem imply that the parabolas
y =x*+aand x = y*> + b touch each
other at the point (x,, y,)—that is,
their tangents at this point coin-
cide. Let’s find the slope of this
tangent by taking the derivatives
of both functions at this point. For
the first one we have

Y=z, = 2X

and for the second one,

¥ 1 1
e X;ZYO 2}70

(here y’. denotes the derivative of y as
a function of x, and x;, denotes the
derivative of x as a function of y). So,
2x, = 1/(2y,), and thus 4x,y, = 1. We
see that the point (x, y,) lies on the
hyperbola determined by the equa-
tion 4x,y, = 1. Clearly, we should
take only those points of this hyper-
bola that belong to the first quadrant.
(To convince yourself that this is so,
draw a few examples of parabolas de-
scribed by the given equations.)

M240

We suppose the student is located
at point O and draw a circle of radius
2 km centered at O. It is given that
this circle either intersects the bor-
der of the forest or is tangent to it, so




if we walk out to the edge of the
circle, then walk around it, we will
encounter the edge of the forest. But
this path is too long.

We can improve on this by noting
that our path must intersect every
tangent to the circle, but not neces-
sarily at the point of contact. We can
construct such a path, of length less
than 13, as follows. We take a point
A situated 4/+/3 miles from O and
draw the two tangents to the circle
from A (see diagram). Let B be the
point of contact of one of these tan-
gents. It is not hard to see that L/OAB
measures /6. We proceed from O to

Figure 4

A to B along these line segments,
then around the circle to point C so
that the arc BC has measure 7n/6 (and
length 7n/3 miles). Then we look for
the other tangent from A to the circle,
and drop a perpendicular from C to
this line. If the foot of the perpendicu-
lar is D, then we complete our path
by walking from C to D. This path in-
tersects each tangent to the circle,
and its length is

_4_+l+27_ﬂ:
V3 N3 6

=2J§+%"+2<2-1.75+g315+2

+2

=12.8543 << 13 miles.

And, since it intersects all the lines
tangent to the circle with center at
O and a radius of 2 miles, this path
would inevitably lead the student
out of the forest.

Physics

P236

Imagine that at some moment
the vehicle’s camera “found” a cra-

ter on the lunar surface and sent a
“report” on this observation back to
Earth. Some period of time will
elapse before the vehicle can receive
an appropriate command:

t=2£+r
c

3
_, 380107 km o\ 96,

300-10° km /s

Here 1 is the distance between Earth
and the Moon, c is the speed of the
radio signal, and 1 is the time neces-
sary for the engineers to decide on a
command.

To estimate the vehicle’s speed,
we assume that it is less than the
speed of a car on a country road
(about 20 km/h) by the same fac-
tor that characterizes the differ-
ence between the time necessary
to transmit a command to the lu-
nar vehicle and the reaction time
of a driver on Earth. Accordingly,
the maximum speed of such a lu-
nar vehicle is

VL~V%~11<m/h.

FZ2537

If a body moves along a circle of
radius r with velocity v under the
attractive force of a central body of
mass m, the centripetal acceleration
v?/r equals that produced by gravity
Gmr? (G is the gravitational con-
stant):

As the period of revolution is
t = 2mr/v, we get a formula for the
central body’s mass:

_ 4n’r?
&t

By comparing Earth’s motion
around the Sun (with the period
T, = 1 year|) with the stellar motion
about the Galaxy’s center, we obtain
the total Galaxy’s mass M inside the
sphere of radius R:

_4n’R§ . 4n’R°
" gt e
3 2
~My R Te 19101,
R T

Thus, the invisible mass of Galaxy is

AM = M- M, =4-10"°M,.

PZ36

The temperature difference be-
tween the refrigerator’s interior and
the surrounding air AT and the du-
ration of the idle period 1, are related
by the formula

T,AT = const. (1)

Another equation is valid for an
ideal heat engine:

W _aT
Q T'

where W is the motor’s work and Q
is the amount of heat extracted from
a body inside the chamber. The
work performed by the motor is pro-
portional to the time 1, the motor is
on

W-~r1,

and the amount of extracted heat is
proportional to the entire period of
the refrigerator’s cycle (1, + 1,) and to
the temperature difference AT:

Q ~ (1, + 1,)AT.
Therefore,
leL71:2(AT)2 = const. ()
T

Inserting the values of 1, 1,, and AT
corresponding to the first case, and
AT’ corresponding to the second case
into equations (1) and (2), we find

T =2 min, 1) = 4.1 min.

The maximum temperature in
the room corresponds to the condi-

tion 15 =0:
B
ATy =AT Iz = 468 K.

max \J
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Thus,
t. =348°C.

P239

We assume that all rods make
electrical contact with both rails.
The mutual contacts between the
rods do not affect the answer to
the problem, because the contact-
ing points have the same poten-
tial.

The resistance of an individual
rod making an angle o with the rails
(0 < o< =) is given by

1
_ LI singy
ri_pg_p Tl:dz .
4

The net resistance between the
rails is given by

1 1 nd®sino;
Rl T
2

T .
= 4—p1N(sm (xi)mean.

Because the copper wires are long
compared to the distance between
the rails, we can estimate the mean
value of sin o in the following way:

' 1 e,
(sinoy;) =—.[ sino, - do, =
mean T 0

n
Thus,

1_nd2N%_d2N

R 4pl ' m 2pl’
and finally,
R= 22"] ~4.10 Q.
d°N

Note: We obtained the mean value
of net resistance. A particular value
of the resistance depends on how the
rods have fallen on the rails. There-
fore, it will differ from the mean
value. But how much will it differ?
Try to estimate the scatter of resis-
tance values using a random num-
ber generator.

52 JULY/AUGUST 1998

P240

Let time t elapse during the UFO
flight from point A (nearest to the
observer) to point B, when the UFO
is located at angle ¢. We assume that
this period is timed by a watch lo-
cated at point B. Denoting the alti-
tude of the UFO over Earth by I, we
get the path traveled by the UFO
from A to B:

vt =1tan ¢ (1)

An observer will see the shining
object at points A and B somewhat
later due to the finiteness of the
speed of light ¢, so his watch will
show the time

s (2)

The velocity of the UFO as mea-
sured by the observer is thus

poodx _dxdt v
'dy  dedy  dy
dt

Differentiating equations (2) and
(1) yields

dy 1 Ising d¢

=14+ y
dt ccos? ¢ dt
and
do _ vcos?
dt I

Therefore, the velocity we are look-
ing for is
%
Vl = o .
1+—sind
G

Brainteasers

B236

See figure 5.

B237

Of the 14 children with brown
eyes, what is the smallest number

Figure 5

that have dark hair? Well, if the re-
maining 6 children (without
brown eyes) have dark hair, there
must be 9 children with both
brown eyes and dark hair. Of these
9, how many must weigh more
than 80 1bs.? Again, there are 3
students who do not weigh more
than 80 lbs., and if these are
among the 9, there must be 6 more
with three of the four characteris-
tics. Finally, there are only 2 stu-
dents who are not more than 4 feet
tall, so there must be 4 students (of
the 6 with three characteristics)
who have all four characteristics.

B238

Let V be the speed of the boat
and v be the speed of the current.
Then the distance between the
boat and the raft grew at the rate
(V +v)-v =V, when the boat was
going to B (here V + v is the veloc-
ity of the boat, taking the speed of
the flow into consideration). When
the boat was going from B to A,
the distance between it and the
raft decreased at the same rate:
(V-v)+v=V.So, when they met,
the time during which the dis-
tance between them increased was
equal to the time during which it
decreased: 1 hour.

B239

One can divide each bar, regard-
less of the percentage of gold in it, in
the proportion 1:2:3.

B240

Snow is composed of many ice
crystals, so the Sun is reflected
from a vast number of small mir-
rors. Some of them send light di-
rectly to our eyes, and when we
move, one set of mirrors is re-
placed by another. We perceive
this as sparkling.



What's wrong?

1. The weight of the watermelons
decreased twofold, to 5 tons. Many
people think this a miracle.

2. It is a mistake to add 3 dollars
to 13. If we do so, we count the 3
dollars squandered by the servant
twice. In fact, 13 = 10 + 3, where 10
dollars is the money received by the
general and 3 dollars is the money
wasted by the servant.

3. If the line BB, passes through
the point C, our reasoning is false
(fig. 6). Angles CBB, and CB,B are

B
A

@

Figure 6 By

equal, but they are equal to 0. In fact,
the reader is invited to examine
those cases where two noncongru-
ent triangles have the same two
sides and nonincluded angle. She or
he will find that it is in exactly these
cases that the line BB, passes
through point C. Thus, we cannot
use the feature of an isosceles tri-
angle.

4. There is a case in which the
centers of both circles mentioned in
the conditions coincide with the
center of the parallelogram. Then
the parallelogram becomes a rect-
angle. Therefore, the problem has a
second answer: 90°.

5. The problem does not say that
the equation has no other roots ex-
cept p and g. The problem has one
more answer: p = g =—1/2.

6. When we transform the equa-
tion in this way, we narrow down
the domain of the functions that ap-
pear in it, and the following series of
solutions is lost: x = /2 + ©n.

7. We can easily check that the
numbers 1/2 and 1/4 satisfy the
equation. These two solutions cor-
respond to the points (1/2, 1/4) and

y= (k)

0 \ X

y = log, x
16

Figure 7

(1/4, 1/2) on the graphs of the func-
tions y = logl/léx and y = (1/16),
which are symmetric to each other
with respect to the bisector of the
first and the third quadrants. Besides
this, these graphs intersect at this
bisector. Thus, the equation has at
least three solutions. As a matter of
fact, both graphs cling tightly to the
coordinate axes (see fig. 7), so it is
quite possible that they intersect
more than once.

It is not difficult to prove with the
help of differential calculus that the
equation has exactly three solutions.
In general, an equation log, x = a*
has no more than three solutions.
(The proof is based on the well-
known theorem that says that the
derivative of a function vanishes at
least once between any two zeros of
the function.)

8. All the sections of a cone that
pass through its vertex are isosceles
triangles, whose equal sides are all
the same (they are lateral elements
of the cone). If o is the angle at the
vertex of an axial section and ¢ is the
angle between the lateral sides of an
arbitrary section, then 0 < ¢ < o.. But
the area of such a section is propor-
tional to sin ¢. Therefore, if a0 < 90°,
then the axial section is the one
with the largest area. But, if o, > 90°,
then the section with the largest
area is the section for which ¢ = 90°.
The conditions of the problem mean
that o > 90° and sin o = 1/2, from
which we conclude that o = 150°.

9. The correct conclusion is that
the second sphere lies completely
within the first one so that 5 is just
the ratio of the surface of the second
sphere to that of the first. Thus the
ratio of their radii is +/5. On the
other hand, if the ratio given in the

conditions were less than 4 and were
equal, for example, to 3, then the
problem would have no solution.
10. Let’s consider a quadrilateral
ABCD in which AB = BC = 10 and
AD = DC = 6 (fig. 8). The angles at
the vertices A and C are equal. The
area of the quadrilateral is a maxi-
mum when these angles are right.
Thus the greatest possible area of
the base is 60. But this is less than
112/+/3, the area we found when we
solved the problem (it is easy to

check this).
B

a() (e

Figure 8 b

So, does the problem have no solu-
tion? The statement of the problem
does not imply that the projection of
the vertex of the pyramid falls exactly
in the center of the circle inscribed in
ABCD. This implies only that it falls
at a point equidistant from the lines
AB, BC, CD, and DA and that this
distance is 7/~/3. It is possible that
this point lies outside ABCD. Denote
such a point by O, (fig. 9). Then the
area of ABCD could be represented as
the sum of the areas of triangles
ABO, and BCO, (they are equal) mi-
nus the areas of triangles CDO, and

B

Figure 9
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ADO, (they are also equal). That is,
itequals (10— 6)- 7+/3 =28/+/3 . Thus,
the volume of the pyramidis 196/+/3..

Gradus

Problem 1. If we let x = 1, the
value of 150x2 - 77x — 73 is 0. Thus
x — 1 is a factor. Using division of
polynomials, or otherwise, we
quickly find out that the other fac-
tor is 150x + 73.

Problem 2. The given polynomial
vanishes when x = —1. Thus one fac-
tor is x + 1, and the other factor turns
out to be x* + 14x + 1.

Problem 7. The polynomial van-
ishes when x = —1. This allows us to
find the factorization

(x+1)[x*+(a-1)x+1].

Problem 8. Since the polynomial
vanishes when x = g, one factor is
x —a. Thus we have the factorization
(x - a)(x? + 2a).

Problem 9. The polynomial van-
ishes when x = y, so we get the fac-
torization

(x - y)ix3 - 5x%y - 5xy? - y3).

Problem 11. Since (a— b =—{b-af,
the expression vanishes when a = b,
and also when a = cand b = ¢. So
once again we can write

(a-bP+(b-cP+(c-af
={a-b)b-c)la-c)M,

where M is a polynomial in a, b, and
¢. It is somewhat surprising, but still
true, that the original expression is
quadratic (and not cubic) in a4, and so
is the expression

(a-b)b-cla-c)

And of course (by symmetry) the
same holds for b and c. It follows
once more that M is a constant, and
some judicious plugging in of num-
bers (trya=3, b =2, ¢ = 1) will show
that M = -3.

Problem 12. The expression van-
ishesifa=-b,ifa=-candif b =—c.
Thus it has factors (a + b)(b + c)(a + ¢).
An argument similar to those used
in the previous solutions lets us con-
clude that
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(a+b+cP—(ad+Db3+c3
=3(a + b)la + c)(b + ¢).

Problem 13. Following the hint,
we note that the equation is qua-
dratic in x. Furthermore, it is true of
x=a,x=Db, and x = c. If any two of
these values are equal, the right side
of the given equation has no sense.
Thus we are looking at a quadratic
equation satisfied by three different
numbers, which must therefore be
an identity.

Problem 14. As in problem 13, we
can think of this as an equation in x,
and once again it is quadratic. It is
satisfied when x = g, b, or ¢, and ex-
actly the same reasoning as in prob-
lem 13 leads to the desired conclu-
sion.

Problem 15. We will show that
both assertions in the problem (for
exponent m and for exponent n) are
equivalent to the statement that
there are two “opposite” numbers
among a, b, and c (that is, a = -b,
or b =-c, or ¢ =-a).

Certainly, if the set {a, b, c} con-
tains two opposite numbers, then
for any odd exponent k,

11 11
a“ +bX+ck gk pR o K
Let us prove the converse.
Following the given hints, we

suppose the cubic equation
xX>—px*+qx-r=0
has roots a¥, b% and cX. Then, since

1 1.1
a+bk+ck &b

ek’
we know that r = pg, so that the
equation has the form

x> —px*+ gx-pqg=0.

The left side vanishes when x = p,
and so factors into (x — p)(x* - q).
Thus one root of the equation is x
= p. This means that gk + bk + ¢k
has one of the values a*, b%, or ck.
If ak + bX + ¢k = gk, then bk + ck =0,
so bk = —c¥, and (since k is odd),
b = —c. A similar conclusion fol-
lows if ak + b% + ¢k = b¥ or ck.

If this solution is difficult to read,

try formulating the problem with
m =1 first, then look at the general
situation.

Problem 16. Method I, using hint
1. When x = —{y + z), a simple com-
putation shows that the polynomial
vanishes. So x + y + z is a factor, and
the other factor can be obtained by
long division.

Method II, using hint 2. A compu-
tation will show that

x>+ y3+ 23 - 3xyz

is indeed equal to

Xy z
z x .
vV z X

Then, computing with determi-
nants, we find

Xy 2z |x+y+zyz

Z X y|-|x+y+z Xy

y z X| |X+y+z z x
lyz
=(X+y+z)lxy
1zx

:(X+Y+Z)(X2+y2+ZZ—XY—}/Z—XZ).

Problem 17. As in problem 16, we
write

ab ¢
a®+b3+c®-3abc=|c a b
bca

Multiplying the first column by 100,
the second by 10, and adding these
to the third column, we find that

ab ¢ [100a+10b+c b ¢
¢ a b|=|100c+10a+b a b|

b ca [I00b+10c+a ¢ a
S0
abc b ¢
a® +b3 +c® -3abc=|cab a b|.
bea ¢ a

And since the numbers abc, bca,

and cab are all divisible by n, so is
a*+ b® ¢ & = Babe,



MUSINGS

How bigam | really?

by David Arns

When sheepishly apologizing to a friend I'd wronged,

He said a phrase that got me started thinking:
A mmple little phrase that I had heard my whole life long,

und, I stood agape and blinking.

: ‘It takes a big man to admit that he is wrong,”
~ And it struck me: What, exactly, does that mean?

 How blg is “blg?” And to what grouping does that word belong?
Then in my mind I saw the following scene:

We stlll Were shaklng hands, and I beheld the hand I shook,
Four 1nches W1de it was in breadth of beam.

; hat’s not. ‘rei"l big,” I thought, “But let’s just see how it would look
~ff~7’A‘hundreld times as large...” Thus went my dream.

(A hundred times as big again, and what would be in view?
A square that’s several city blocks in size,

A k1lometer square containing buildings old and new,
Plus streets and homes, delightful to the eyes.

"kznd stepping back another step, one hundred times as large,

A fair-sized city fits within its border.
And now we're getting large enough, our rash and headlong charge
Into “bigness” becomes quite an arduous order.

~ Two orders more of magnitude, arriving at ten thousand

Kilometers on a side, and we’ve unfurled
A square that, when it’s stretched out to the limits it allows and

kFlattened out, it almost covers up our world.
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With one more step, receding back, enlarged a hundred times,
(“Stay with me, please,” you hear me importune),

The more we see, you'll notice, as our viewpoint ever climbs:
We’ve just contained the orbit of the Moon.

~ We step again: the square is five light-minutes on each side;

un, along with Mercury and Venus
Are now within our field of view; our stimulating ride

s a hundred billion meters in between us.

- Now, what would happen if we took another backward step?
. Why,

we could see th’ entire Solar System!
You moan, “Must we continue on this ride?” My answer’s “Yep!”
g back, I offer to assist ‘’em.”)

ore step back, and now we see the emptiness around:
m’s just a tiny dot
séi,uare where almost nothing else is to be found

iad stars, anc clusters of the same!
nd nebulae, appégring painted by the hand of God,

1ext step, our penultimate: We see the Milky Way,
thousand light-years, stem to stern.

t with stellar objects in a dazzling array

ﬂy unmoving and eterne.

nd now, at last, we take our final weary step arrears:

ten million light-years at a glance;

k’the point’s been driven home—at least it so appears—
al Group within this great expanse.

suddenly, that phrase comes back: about how “big” a man
s for him to say that he was wrong—
That “bigness” seems quite silly now; he’s surely smaller than

If been less offensive all along.

David Arns is a graphics software documentation engineer for Hewlett-Packard in Fort Collins, Colorado, and also oper-
ates a small business designing and creating web sites. In his spare time he dabbles in poetry on scientific themes.
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The World3 Model (a graphic represen-
tation of a system dynamics model),
Sep/Oct97, p32 (Kaleidoscope)

The World in a Bubble (sustain-
ability in closed ecological systems),
Joshua L. Tosteson, Sep/Oct97, p20
(Feature)
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11 Width times
length

15 Asian country
(slang)

18 Sumerian moon god

19 Thinas ___

24 Writer Bret

25 French director
Jacques ___ (1908-
1982)

26 Quality: suff.
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32 Astronomer ___
Pannekoek (1873-
1960)

33 Hertzsprung-___
diagram

L
>< [:Fnss sclanﬂe ‘ by David R. Martin
&=
_'-'2 7 9 10 12 [13 [14 15 |16 17'
é 21 22
26
30
33 34
47 48 49 150 |51
Bi7 58
63 64
69 70
76 77 |78 |
8 ‘*
97 99
103 104 106
113
114 9
121 124 125 1126 |127
128 130 131
132 134 135
Ta 138 139
Amlﬂss 20 A geometric shape: 27 Phonograph 35 Directionless 45 Homes
I —— abbr. inventor quantity 48 Type of boom
& Whnag maks hptses 21 Length unit 30 Mallophaga 38 Muhammad ___ 52 10'2: pref.
23 Flower oil 31 First garden 39 Zip 54 1946 physiol.

Nobelist Antonio
___ Moniz

41 Brother or sister

42 100 square meters

43 French artist ___
Tanguy (1900~
1955)

56 Of human waste
58 Corned beef ___
59 Organic compounds




61 ___circle (equator,
e.g.)
63 That woman
64 Roster
65 Solution: abbr.
67 Australian poet
__ Hope
69 Collection of
anecdotes
70 __ -isomer
71 Cyclotron inventor
79 ___ group (of
topology)
80 Poet’s before
81 Geologist Reginald
A. __ (1871-1957)
82 Resinous insect
secretion
83 Egg cell
85 Poet’s even
86 Family member
89 First ___ (QB’s
concerns)
93 Round: pref.
94 Finished second
97 X followers
99 Lithium hydrox-
ide: abbr.
100 Eldest son of
Cain
102 Begins
104 Coral ridge
106 Nitrilotriacetic
acid
107 Possesses
109 Sphere
110 “_ Got a Secret”
112 Archaeologist
Richard
114 ___ relativity
118 Kind of thread
120 __ group (chem.
group)
121 ___ sphincter
(certain muscle)
122, Electricity pioneer
128 Makes lace
129 Indonesian islands
130 Practitioner: suff.
131 New England state

132 Opp. of endo

133 Race: comb. form

134 Metric mass unit

135 __ malaria

136 Trig. function

137 Type of carpet

138 -
Recklinghausen
disease

139 Dice roll

Down

1 Small insect
2 A Dravidian cave
temple
3 Interested in
4 Type of paint
5 Electromagnetic
induction discov-
erer
6 Newspaper editor
Abraham ___
(1869-1951)
7 Type of exam
8 Of a young insect
9 Uranus satellite
10 Frozen rain
11 _ series of
elements
12 Inlets
13 Ozone tempera-
ture
14 Gland sac
15 Quantum physics
pioneer
16 Astronomer
Cannon (1863-
1941)
17 1350 to Caesar
22 Foot part
28 Be a waiter
29 Semiconductor
atom
34 Sibling: abbr.
35 Satisfy
36 Spring: comb. form
37 Of aircraft
38 Esker
40 “___ Weapon”
44 Zygote

46 1939 chem.
Nobelist Adolf __

47 Tuscan commune

49 Sodium cyanate

50 Characteristic of:
suff.

51 Pursue

53 Wings

55 Otariidae member

57 Swimming stroke

60 Stannous sulfide

62 “When Iwas __ "

66 Precipitous

68 451 to Brutus

71 Run away

72 Torn apart

73 Nerve: comb. form

74 Hershiser and
namesakes

75 1975 physiol.
Nobelist
Dulbecco

76 ___ and terminer

77 One hundredth of
a gray

78 Environmental sci.

84 Light speed
researcher

87 Concern

88 Sense organ

90 Blink

91 Musical sound

92 Chaise

95 Archetypical
psychologist

96 Er,O,4

98 City in Alabama

101 1968 physiol.

Nobelist
Gobind Khorana

103 Element 14
105 1965 physics

Nobelist Richard

108 Swords

111 Geophysicist Felix
__Meinisz (1887-
1966)

113 Type of metal

114 Logic circuit

115 Make into law

116 1963 chem.
Nobelist Giulio

117 Port near
Edinburgh

119 Strike hard

120 Synthetic fiber

123 Okinawan seaport

124 Temple (archaic)

125 Wood: comb. form

126 Arrow poison

127 Beatty and Rorem

SOLUTION IN THE
NEXT ISSUE

SOLUTION TO THE MAY/JUNE PUZZLE
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COWCULATIONS

~ Barn again

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. This year marks the 150th
anniversary of Wisconsin’s statehood. The ses-
quicentennial celebration is a time to reflect on our past
and those who first immigrated to this fertile land in the
Midwest to carve out a living. Their aims were modest:

1. Good Crops,

2. Proper Storage, >
3. Profitable Livestock,

4. A Stable Market, and

5. Life as Well as a Living.

At least those were the aims that Wesson Joseph
Dougan painted on his silo in summer

1911, as he finished building a magnificent round barn on
his dairy farm in Beloit, Wisconsin. Two generations of
Dougans earned a good living delivering their milk to the
babies of Beloit and in the process led a full life.

Today, the Dougan Round Barn, like so many
barns scattered around Wisconsin, is worn out,
weather-beaten, and idle. It has lost its paint but not
its charm or its supporters. In fact, the “Friends of the
Round Barn” have crafted a plan to save the round
barn and restore it to its former glory. They will have
it moved from its present spot to a plot next to the Wis-
consin State Information Center on Interstate 90. There
visitors coming into the state will be able to stop
and admire an artifact of the dairy indus-
try that has been “barn again.”
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To move a 68-foot-diameter round barn with a cement
silo in the center is not trivial. Mover Bob will do the lift-
ing but wants you to cowculate the smoothest move. A
smooth move from the Dougan Farm to the Information
Center has the following properties:

(1) It avoids hills and valleys as much as possible,
(2) It avoids any sudden changes in elevation, and
(3) It is the shortest in length.

The order of these properties is important. Thus, if there
is more than one move that satisfies property (1), then (2)
is used. If there is still more than one move that is best
in properties (1) and (2), then (3) is used.

The Dougan Farm (DF) is a 20 x 20 square array of
elevations. The Round Barn is at {1, 1}, and the Infor-
mation Center is at {20, 20}. A Move to the Informa-
tion Center is a list of coordinates {7, j} starting at
{1, 1} ending at {20, 20} and connected by east-west
or north-south moves. Here is the formal definition
of properties of a Move according to the description
above.

(1) A hill is the highest point of the Move relative to
the elevation at {1, 1}. A valley is the lowest.

hill = Max[DF(Move(i)) - DF(Move(l)),
2<=1i<=20]

valley = Min[DF(Move(i)) - DF(Move(l)),
2<=1i<=20]

A smooth Move should have the lowest possible
(Max[hill,Abs[valley]l]).

Instructions for moving the round barn in the illustration
at left are given by the artist, Mark Brenneman.
(1) Heavy-duty no-slip plunger is attached securely to vent
on barn roof.
(2) Window shade is raised to start the “Rooster Drive with
Chicken Ignition” (pat. pending). Speed is controlled by the
height of the shade.
(8) As the rooster runs, the cable is reeled in and raises
the barn.
(4) Intermediate gear moves rack that positions slop trough
in front of pig.
(5) Pig eats slop, gains weight, and eventually...
(6) Breaks the rope holding it up and falls into spring loaded
bathtub.
(7) When the bathtub goes down, it rocks a lever, which
releases the clutch.
(8) Now the Rooster Drive no longer raises the barn; it turns
a bevel gear, causing the whole upper assembly to pivot.
(9) As the upper assembly pivots, the cow on the cantile-
ver swings away from behind the blinder.
(10) Now the cow moves ahead to graze on the grass near
the fulcrum, reducing the moment and causing the canti-
levered board and crane arm to tip slightly.
(11) This causes the bowling ball in the dustpan to drop
into the basket, which reestablishes balance and...
(12) Lowers plastic ants into view of the anteaters.
(13) As the anteaters chase the ants, the machine and barn
roll on to their next destination and the window shade may
be lowered...

(2) If more than one Move has the same value for 1,
then check the slope.

slope = Max[Abs [DF (Move(i))-DF(Move(i+1))1,
1<= i<= 19]

A smooth Move has the smallest possible slope.

(3) If more than one Move scores the same on (1) and
(2), then check the Move length. Make Length[Move] as
small as possible.

If there is more than one smooth Move in the sense
of (1), (2), and (3), then pick one. Show the smooth Move,
and its smoothness.

{hill, valley, slope, length}

Dougan Farm
Use the following topological map for the Dougan Farm.

(f[x_, v ] := 7. 8in[x/3.] Cosl[y/2.] - 5.
Cos[x/3. ] 8in[y/5.]

DF = Transpose[Table[Floor[f[x, v1], {x, 1,
20}, {v, 1, 20}11:

Plot3D[f[x, Y], {x, 1, 20}, {Y: 1, 20},

PlotRange -> All, PlotPoints -> 301]

. 20
Density plot
In the density plot that follows, the light squares are
the higher elevations and the dark squares are the lower
elevations.

elevations = ListDensityPlot [DF, Frame ->
False]
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A Move

Let’s examine a typical Move of the round barn.

Move =
{4, 2},
{7, 4}, {7,
{8, 8}, (8,
{10, 11},
{10, 15},
{13, 16},
{17, 16},
{19, 18},

{{1,
{5,

1},
2},
5},
9},
(10,
(10,
(14,
{18,
{20,

{2,
{6,
17,
{9,
123,
16},
16},
16},
18},

1},
2},
6},
9},
{10,
{11,
{15,
{19,
{20,

{3,
{7,
{8,
{10,
13},
16},
16},
16},
19},

1},
2},

{3, 2},
{7, 3},
6}, (8, 7},
9}, {10, 10},
{10, 14},
{12, 16},
{16, 16},
{19, 17},
{20, 20}};

We first define the hill, valley, jump, and length of a
Move in Mathematica. The hill value is the largest dif-
ference in elevation between all locations in the Move
and the starting elevation. The valley measures the larg-
est negative drop in elevation.

hill = Max[DF[[#[[1]], #[[2]111] - DFI[1, 111
&/@ Movel

6

valley = Min[DF[[#[[1]1]1, #[[2]1]1]1 -
DF[[1, 1]] &/@ Move]

-10

The jump number measures the largest increase or
decrease between two consecutive locations in the
Move.

jump = Max[Abs[#[[1]] - #[[2]]]&/@
Partition[DFLI[#[[11]1, #[[2]]1]]&/@
Move, {2}, {1}1]

4

Finally, Length measures the total number of steps
in the Move.

Length[Move] ]
39

We put it all together by defining a smooth function
for any Move.

smooth[Move_] :=

slope},
hill =

Module[{hill, valley,

Max[DF[[#[[1]1], #[[2]111] -

DF[[1, 1]] &/@Movel;

valley = Min[DF[[#[[11], #[[2]111]1 -
DF[[1, 1]] &/@Move];

jump = Max[Abs[#[[1]1]1 - #[[2]]1]&/@

Partition[DF[[#[[111,
{2}, {1}11;
Print["{hill,valley, jump,length} = ",
{hill, valley, jump, Length[Move]}]]

#[[2]]1]1]1&/@ Move,

Visualize the Move by placing it on the Density Plot.
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Show[elevations, Graphics[{Thickness[
0], Line[Move -

.011,
RGBColor[1l, O, .51}11,

smooth [Move]

In case you thought it would be easy to consider all
possible Moves, there are over 35 billion of them with
the shortest possible Length. This is cowculated in
Mathematica with the Binomial function.

Binomial[38, 19]

35345263800

Gow 11

Write a program that finds the smoothest Move for
the Dougan Round Barn.

Come this Winter, with the first snow.

Move this barn, and take it slow.

Find a way to the freeway station,

Whose change is small in elevation.

When you've found it, turn it in,

And help restore this barn again.
—Dr. Mu

Solution to COW 9

In COW 9 you were asked to find how many milk
routes are possible from the farm to town that deliver
the milk to each customer and never go through a snow-
drift. Here is how Cream County was laid out with the
farm at {1, 1} and the town at {10, 10}.

customers = {{2, 3}, {5, 6}, {9, 9}};

snowdrifts = {{3, 5}, (4, 7}, {1, 9}, {7, 4},
{7, 7}, {6, 1}};

n = 10;

road[l, 1] = 0;

road[n, n] = 0;

road[x , y ] := 1 /; MemberQ[customers,
{x, v}l

road[x , vy ] := 3 /; MemberQ[snowdrifts,
{x, vy}l

road[x , v 1 = 2;

CreamCounty = Arrayl[rocad, {n, n}];

ListDensityPlot [CreamCounty, Frame -> Falsel]



Road key: black = farm and town, white = snowdrifts, dark gray =
customers, light gray = all the rest.

The key points to observe about the solution are:

(1) If a customer is located at {1, j}, then there are no
routes that go through any (x, y} where (x <iand y > j)
or (x >iand y <j). Sketch these regions on paper to con-
vince yourself that this is true.

(2) These are no routes that go through the snow-
drifts.

(3) There is one route to {1, 1} and other locations
straight east or straight north home that have routes
through them.

(4) If routes|x, v] = the number of routes through {x,
y}, then routes|x, y| = routes[x - 1, y| + routes[x, y — 1].
This happens since the only way to go through {x, y} is
to come from {x - 1, y} or {x, y — 1}.

Using these observations, the solution is constructed
in Mathematica as follows:

(a) Define the noRoutesQ predicate that tests
whether (1) is true or false at a point {x, v}, (A denotes
AND, v denotes ORJ.

noRoutesQ[x_, v , i_] := (x < customers
[[i, 111 A ¥ > customers[[i, 2]] Vv
(x > customers[[i, 1]] A ¥y < customers
[[i, 2]])

(b) Set the routes|x, y] = 0 at all locations {x, y} where
noRoutesQ is true for any customer.

(¢) Put zeros at the snowdrifts.

(d) Define the recursive relationship between
routes through {x, v} and those through {x - 1, y} and
{Xr y - 1}

(e) Set routes[x, y] = 1, east or north of home.

(f) Display the routes through all locations in
Cream County. Read off the answer of 1122 routes
into town.

Clear[routes]
routes[x , y ] := 0 /; Or @@

Table[noRoutesQIx, vy, il, {i, 3}]
routes[x_, v. 1 := 0 /; MemberQ[snowdrifts,

{x, y}]
routes[x_, vy 1
routes[x , v 1]

==1/; x == 1 [Or] Yy ==
:= routes[x, y]l] = routes[x

- 1, vyl + routes[x, vy - 1]
Reverse[Array[routes,
MatrixForm

{n, n}ll //

0 0 0 0 0 0 0 0 561 1122
0 0 0 0 0 33 66 198 561 561
0 0 0 0 0 33 33 132 363 0
0 0 0 0 0 33 0 99 231 0
0 0 0 0 0 33 66 99 132 0
0 0 3 12 21 33 33 33 33 0
0 0 3 9 9 12 0 0 0 0
0 0 3 6 0 0 0 0 0
1 2 3 3 3 0 0 0 0
1 1 1 0 0 0 0 0 0 0

A correct solution was submitted by Benjamin Karas,
a freshman at Case Western Reserve University.

And finlly...

In commemoration of Wisconsin’s Sesquicentennial,
a copy of “Stories from the Round Barn” by Jackie
Dougan Jackson (http://www.uis.edu/~jjackson/
barnbook.htm), granddaughter of W. J. Dougan, will be
sent to the person who submits the smoothest move.

Send your solution to drmu@cs.uwp.edu. Past solu-
tions are available at http://usaco.uwp.edu/cowculations.
If competitive computer programming is your smooth
move, stop by the USA Computing Olympiad web site
at http://usaco.uwp.edu. Take a look at the 1998 USA
team of four students who were just selected to repre-
sent the United States at the 10th International Olym-
piad in Informatics to be held in Setubal, Portugal, Sep-
tember 5-12, 1998. Ol
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Improve Your Seeing with Good Reading from Springer

The Invisible Sky THE

ROSAT and the Age of X-Ray Astronomy IVISIB
BERND ASCHENBACH, HERMANN-MICHAEL HAHN, :
and JOACHIM TRUMPER

The X-ray satellite ROSAT, launched in 1990, has made a
new universe visible. It has enabled astronomers to discover
over 120,000 X-ray sources and to look in new ways at stel-
lar explosions, galactic collisions, extremely compact pul-
sars, black holes, and quasars that shine 10,000 times more strongly than the brightest galaxy. In
The Invisible Sky, two of the scientists who were instrumental in the design and launching of the
satellite describe the cutting-edge science being done with it and show many of the most
spectacular colorimages it has generated. This beautifully ilustrated book is the first to describe
¢ forlay readers this most remarkable astronomical instrument.

i 1998/175 PP., 200 ILLUS. (150 COLORYHARDCOVER/$40.00/ISBN 0-387-94928-3

Photo-Guide to

Ch

the Constellations 00 cuioe 10
CHRIS KITCHIN, Universty of Hertfordhsire, Bayfordbury, UK THE CONSTELLATIONS |
There are many books on finding your way around the night . =Rt

sky, but the Photo-Guide to the Constellations is unique in
showing photographs of how the sky really looks under a vari-
ety of different conditions, from the city outskirts to the almost
perfect skies deep in the countryside. Along with these
unique photographic maps, a detailed step-by-step guide to
“star hopping” and other useful techniques means that
acquiring a working knowledge of the constellations has never been so easy!
1997/160 PP, 20 ILLUS./SOFTCOVER/$24.95/1SBN 3-540-76203-5
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The Observer’s Year

366 Nights of the Universe
PATRICK MOORE

There are 365 nights in almost every year. And from the amateur astronomer’s point of view, no two
are alike because each one reveals or hides part of the sky (and the astronomical wonders therein).
Which is why Patrick Moore has written this unique book to highlight objects of special interest on
every night of the year. He also writes about the history of the constellations, double stars, nebulae,
the Moon, planets, even asteroids. Beginning January 1st, he works through the year night by night
and provides tips and insights that only this veteran astronomer and teacher can impart.
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The Sun in Eclipse

MICHAEL MAUNDER & PATRICK MOORE

This book contains everything the amateur astronomer needs to know about eclipses: what to look
for, when and how to observe, what equipment is needed, even how to mount an eclipse exped-
tion. A final chapter “Eclipse Mishaps and Oddities” offers amusing tales of what can go wrong at
the most critical moments even during the most well planned eclipse observation. A complete and
lengthy calendar prepares readers for a decade of observations.
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The Art and Science of CCD Astronomy

Edited by D. RATLEDGE

Twelve leading amateurs in CCD astronomy from North America and Europe, who are producing images
that rival those of professional observatories only ten years ago, detail techniques, solutions, advice, and
tips for anyone choosing or using a CCD camera. This book features many beautiful astronomical images
and provides essential reading for astronomers who are either using a CCD camera in their work, or who
are considering buying one, or who simply want to know more about today's available technology.
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Understanding the Universe

An Introduction to Physics and Astrophysics
JAMES B. SEABORN, University of Richmond, VA

This unique book employs the topics of astronomy and astrophysics
to provide readers with a firm grounding in the main topics of physics.
The first part of the book develops Newtonian mechanics. Chapters
on electromagnetism and elementary quantum theory lay the foun-
daion of the modern theory of the structure of matter and the role
of radiation in the constitution of stars. Kinetic theory and nuclear
physics provide the basis for a discussion of stellar structure and
evolution. Finally, an examination of red shifts and other obser-
vational data provide a basis for discussions of cosmology and
cosmogony. Complimentary examination copies are available to
qualified instructors.

1997/304 PP., 251 ILLUS./HARDCOVER/$49.95/ISBN 0-387-98295-7

Something New Under the Sun

Satellites and the Beginning of the Space Age
HELEN GAVAGHAN

In this book, the first history of artificial satellites and their uses,
Helen Gavaghan shows how the idea of putting an object into
orbitaround the Earth changed from science fiction to indispensable
technology in the twinkling of an eye. She tells the remarkable
inside story of how obscure men and women, often laboring under
strict secrecy, made the extraordinary scientific and technologi-
cal discoveries needed to make these miracles happen. Combining
an impressive range of documentation with a com-
pelling, readable narration, this book recounts the hith-

L+ ertountold history of one of the most important technologies of our time.
w===n 1997/300 PP./HARDCOVER/$26.00/ ISBN 0-387-94914-3

PASES 8 SEABORN

Seeing Stars

CHRIS KITCHIN & ROBERT FORREST

Everyone is familiar with the magnificent photographs taken by Mariner, The Hubble Space Telescope,
and other multi-million dollar pieces of equipment - but what exactly ought to be visible to the naked
eye, or through an amateur's six-, ten-, or twelve-inch reflector? This essential and highly-illustrated
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see, helping you get the most from your equipment. It also explains how atmospheric conditions affect
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