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TARA]I{ 1] I( \
d.r."trr.k t,Lr,:- l
created aS part r'r :1

(and racing aficionado\Frank Stella. Each piece ir this
series is named atter a diti:erent racetrack. Like the sculp-
ture, a racetrack can assume a cornplex overlapping

[arama II (1982lrby Frank Stella

,LMED AFTER AN AUTOMOBILE
Le of tr'Iadrid, Spain. This piece was
he Crrcuit series by American artist

structure. Intersections, however, can pose quite a prob-
lem to racetrack designers-as well as to the drivers who
must navigate them. The designers of planar graphs are
also quite conc.erned with intersections. Discover the
complex patterns that emerge from these graphs in this
issue of Quantum.

Gift of LilLl Ach\onWallace, O 1997 Ij(



TU
JANUARY/FEBRUARY 1998

"Invest in yourself" are words of advice
that this little pig has chosen not to
heed. Instead, all this little sow's ear
can hear is the promise of coins in her
silk purse. She is willing to bet her ba-
con on the the toss of a coin, even
though it may end up "breaking the
bank," so to speak.

To understand why our porcine
friend is willing to bet the farm on the
outcome of a series of coin tosses/ turn
to page 20.
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FRONT MATTER

Demucralizinu Brpel'l lrnoulledUe

Climate change and the public understanding of science

HE WARMING PUBLIC DE-
bate on climate change affords
educators a fascinating opportu-
nity to examine the enigmatic

role of science in modern society.
While presidents and prime minis-
ters receive briefings on the most
up-to-date findings on how green-
house gases may be altering global
meteorological conditions, few ordi-
nary crtizens have seen even a
single shred from the mountain of
documentation produced by the
Intergovernmental Panel on Cli-
mate Change. Only a handful of in-
quisitive souls have carefully evalu-
ated the contrasting arguments in
august publications such as Science
and Nature.

Recent polls suggest that despite
a lack of homework and little for-
mal scientific training, most Ameri-
cans have aheady decided whether
global warming is a pressing con-
cern or a figment of millennialist
imaginations. To assist Americans
as they struggle with technical de-
tails, President Clinton enlisted 100
ebullient television weather person-
alities. How has it come to pass that
people without even the most basic
understanding of the science of cli-
mate change sit as judge and jury on
the most irascible problem ever to
confront humanity?

As science has become omni-
present in everyday 1ife, it has been
lifted from the laboratory and out of
the exclusive purview of specially
qualified personnel. Science has
become part of our common public

discourse and now serves new soci-
etal rolet hc*ides functioning as a
rigorous techniq ue for i nterrogating
nature. In lir,ing rooms/ pubs, and
lrowling allcy. :ciuncc-or its ne-
gation-is norr, used as an excuse to
justify values and agenclas. People
define themselr-e s in relation to sci-
ence. They use scientific knowl-
edge to afiirm their rdentities and to
impose coherence on the rvorld.

For instance, pLlrported envi-
ronmentallsts unable to distin-
guish between Fahrenhert and
Celsius temperature scales impul-
sively wrap themseh-es rr-r the sci-
ence of climate change-at lcast
since the balance of reported er-i-
dence shif ted in their iar or. Iu
contrast/ but equally rrlpetu-
ously, their industrial adversaries
concoct elaborate conspiracr
theories to discount a growing
body of data weighing against
their interests. Change the issue
to nuclear power or food irradia-
tion, and the sides swap foils wrth
hardly a forethoughtl

One view o{ this seemingly con-
fuscd situation blames reckless
politicians for again undermining
science by granting an i1l-informed
public entry into the arena. Chalk
up climate change as yet another
calamitous episode in which sci-
ence has been knocked from the
straight and narrow by inadvisable
outside scrutiny. The conclusion
arising from this view is that sci-
ence, and humanity in general, are
poorer as a result.

An alternative perspective recog-
nizes that larger society occasion-
ally appropriates certain types of
expert knowledge from the scien-
tific realm. For instance, to better
understand the unsettling experi-
ences of urbanization and industri-
alization during the nineteenth cen-
tury, the public seized haphazardly
upon certain elements emerging in
the nascent fields of economics and
psychology. By borrowrng organiza-
tional categories and terminology,
people were better able to grasp phe-
nomena such as unemployment
and mental illness.

This initial interaction paved the
way for a dialectical relationship
between experts in these disciplines
and the wider public. Though the
process is by no means complete,
growing numbers of social scien-
tists are coning to reahze that they
cannot wall themselves off from
outside contact tor fear that such
exposure will contaminate their
objectivity. The conventional pos-
ture is becoming increasingly un-
tenable, and the best scholars are
intimately engaged with the indi-
viduals they study. This new type of
knowledge production often has a
thrust and parry character to it. Ex-
perts' findings are regularly tested
against 1ay experience, and this vali-
dation process feeds back iteratively
into successive rounds of inquiry.

We can view public appropriation
of science as the most recent phase
ol a 400-year process of intellectual
maturation. During this time, the
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natural and physical sciences, for
both good and i11, have infused
themselves into virtually every
sphere of modern life. Recent dis-
putes over concerns such as global
warming suggest the public is at-
tempting to draw on this knowl-
edge, albeit awkwardly and with
poiitical intent. Such developments
mean that science educators must
make science more accessible and,
through this process, reestablish its
relevance in the lives of ordinary
people.

Rigor need not be sacrificed in
the pursuit of democratizing expert
knowledge. Rather, scientists and
science educators need to recognize
the increasingly central position of
their expertise and find meaningful
ways to impart their special knowl-
edge to the general public.

-. 
Maurie |. Cohen

Maurie f. Cohen is Ova Arup re-
search fel1ow at Oxford Centre fot
the Environment, Ethics d Society,
Mansfield College, Oxfod [Jniver-
sity, United Kingdom.
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ln lhe ilanelal'y nel

Seeing the potential in gravitational fields

by V. Mozhayev

HE GRAVITATIONAL IIELD
is the weakcst ot the tol'ces in
nature/ yet lt ls oiten the domi-
nant torcc irt tltc rrracroscopic

wor1d. Let's examine the gravita-
tional interaction between bodies at
rest or moying rather slowly (relative
to the speed of light). Such are the
conditions when Newton's law of
gravitation is valid. This 1aw says
that any two material points (that is,
bodies whose linear dimensions are
much less than the distance be-
tween them) with masse s m, and m,
are mutual\y attracted by a force F
that is directly proportional to the
product of both masses and inversely
proportional to the square of the dis-
tance between them:

, nffilffi), -g r .r'

The proportionality factor G is
known as the gravitational constant
and has the value G : 5.57 . 10-11

m3/kg.s2.
Newtonian gravitational fields

obey the superposition principle-
the gravitational force acting on a

material point is the vector sum of
the gravitational forces due to all
other particles, and each of these
forces is independent of the others.

Ncwton's l,rrr of gravitation im-
plies that the corresponding gravita-
tional field is :r potential field, which
means that the iielcl performs no ret
work when a l.,ody moves along any
closed ilaiLcr-',r'r'and returr. to its
starting pornt. This property oi the
gravitational irelcl results also in a

relationshrp between the gravita-
tional iorce F acting on a material
point anil rrs potential energy U. In
the case ot a spherically symmetric
gravitirtior-r:r1 ii e1d, this relationship
ls described br

F =-du .-: 
dR,

r,rhele F, i: thc r'.rdirl component of
the force. Belorv we consider corf-
crete examples of motions in spheri-
cally symrnetric fields.

Problem 1. ,l' Assurning, a zcro
value for the potential energy at in-
finity, detcrmine the potential en-
ergy of a body of mass m in Earth's
gravitational fie1d. Considcr Earth to
be a hornogeneous sphere of mass Mu
and radius Ru. Consider the cases
when thc body is placed inside and
outside Earth. {b) To what maximum
distance from thc Earth's surface
could a small body of mass rn travel
if it was imparted with initial veloc-

ity ec1ua1 to the orbital velocit1, r,,rr,,

just above Earth's surfircel
Solution. (a) First we consider the

casc when a hody o[ trit'- nt is irn
arbitrary distance I from Earth's cen-
ter and 1 , Rt. In this case the body
is af{ected by the force of gravity
n = -GmMrlr2 and rs drrccted toward
Earth's centcr. Enhstrng the formula
F : -dU ldr, where U is the poten-
tial encrgy of a bodl in Earth's gravi-
tatlonal field, we have

rr l rr..u =-t rut +C.,
J

wherc C, is a constant to bc deter-
mined from the condition U(-) : 0.
Inserting the formula for the gravi-
tational {orce results iu

IJlr)- G"'M'-Cr
I

We can thus sec that C, : 0.
Now consider thc case when

I . Rp.. The gravitational {orce inside
Earth is given by F : -GmMrrf Ruz

(prove it). There{ore,

tt1,y= l9!p-c,
" JlF

The constant C, is determined
from the boundary condition

tl
l
C
CO

>
_o
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U(Re) : -GmMulRB. After some ma-
nipulations we get

n._ 3CmMy
' ZRr

Therefore,

f .) I
tr(r\= c*Mrl ll tl _ q 

L\ / RE 
LZl.n. ) 2)

The plot of U(r) is shown in figure 1.

Evidently, a similar function will
describe not only Earth's gravita-
tional field but any gravitational field
generated by a ball with a homoge-
neous density.

Usually the dependence shown in
figure 1 is called a "potential well."
This term refers to the fact that if
the total energy of a body placed in
such a field is less than zero, the
body will be "trapped" in the well,
which means that it cannot escape
from Earth to infinity and its motion
is bounded. The maximum possible
radius of the body is determined by
the walls of the well, at which the
body's speed becomes zero and the
body returns to Earth.

(b) For a fixed value of initial ve-
locity vo, the body will travel to the
largest distance from Earth if its ve-
locity is directed along a radius. This
farthest point H can be found using
conservation of energy:

mv'o nffiMt n ffiMz
z -- & =-t'oa*H'

from which we get

Figure 2

URE

-
)CME / (nrvr'J- t

As the orbital velocity is

The potential energy of a body at
the surface of such a planet equals
the sum of potential energies in the
gravitational fields of a planet of uni-
form density and of a ball of density
p1 and the same radius as the hole's.

The minimum value for the es-
cape velocity will be at that point of
the planet's surface where the poten-
tial energy has the minimum abso-
lute value (that is, at point A in fig-
ve 2l.If we call the escape velocity .

for this point v1r then the condition
for the body's total energy to be zero
willbe

vl nM -ct3(B-I)M n
T-.-[-" 1o*4p 

="'

Substituting the numerical values for
o and B, we get

,? -\cA=v? -9r, =0.'6Rt2

Therefore,

rT5
v. =.lllv =12.5 km/s.' V12

Problem 3. Find the length of the
semimajor axis of elliptical orbit of a
satellite revolving about Earth, pro-
vided its total energy (kinetic plus
potential) equals E.

Solution. Let Earth be at the left
focus F, of the elliptical traiectory
shown in figure 3. In this case point
A (apogee) corresponds to the high-
est altitude ofthe satellite, andpoint
P (perigee) corresponds to its lowest
altitude. We denote the length of
segment PF, as r, and the length of
FrA as 12, so the length of the semi-
maior axis is 2a: t, + tz.

The total energy of the satellite at
point P is:

U

0

the substitution vields

H=R,

Problem 2. The escape velocity for
a planet is v = 12 km,'s. Find the mini-
mal value of escape r.elocity for a

similar pianet that has a hole filled
with matter that is double the den-
sity of the planet's matter B : 2, (iig-
ure 2). The ratio of the hole's radius
to thc radius of the plane t ts ct -- I 12.

Solution. The escap,e r,elocity for
a planet is the velocitl at the planet's
surface that corresponds to zcro to-
tal energy of the body. For a horno-
geneous planet of mass ,1I ancl radius
R, this condition yields the e.luation

v) ^M' -c'-=0.2R
In the case of a planet with nonuni-
form density that contains l car itr'
filled with a substance of densit,v

3Bl/
'' 4nRt'

we consider this hole as a superpo-
sition of two cavities-one with the
planet's normal density

3Mpo=. ;,4rh

and another with the density

3(B-0M
4nR3

ntM.
/- L

^E

3 -mMe7G&

Figure 1

GME f RE,
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mv? GmMo - i A The velocity of the spacecralt vo
--------------r-= E, . -/|p\ -- .. at point A just before the engine2 \ / \ starts can be obtained from the rela-

^mMo l( ^*M, \' mL) move along a circular orbit of ra- orbit around the Sun to be circularh--(; "+ |t(; : 
)* * dius.rr?Theaccelerationdueto witharadiusREs=1.5.l08kmand' 2E lit ' -- gravrtiT at Earth's surface is g, and a period of revolution T: 1 year. The

( -mMuI (r-\2E

where m is the satellite's mass, v, its
tionship between the semimaj, tlonsnlp between the semlmaror axls

\ of the elliptical orbit and the total
speeg, a1d Mrthe mass of Earth. We I \,1"/ I "" 

ergy oft^he spacecraft (see problemspee!, arrl lvIE the mass oI .Earth. We i Vrt- 7 I "rergy 
ofthe spacecraft (see proble

use Kepler's second law (the law of '', )Y I Zl. In our case this relationship is
areas): The radius vector connecting ' 

i

Earth and a satellite sweeps out equal i .,' mvzA n ffiMp.
^^,'^l ^^-i^l^ ^f li*^ 'T.Li^ i -"'areas over equal periods of time. This

i ,,.' mv'A nfrMr _ nmMr

law results in the foltowing equation i '
for orbital points A and P: Figure 4 from which we get

v'rt:v2r2' 
relationship is true not only for ;MJ: r, \

Let'scallthisproductL.By express- Earth's satellites but also.for the "o= trt ,l'-; )="0ing v, in terms of L an.d inserting it orbits of planets of the Solar Sys- I
III LVIIITO VT ! d

into the formula of the total energy/ tem and their satellites, provided Since r, > a, t;nenvA.vo.Therefore,
we get: the satellites (natural or artificial) to pass- from ellipiicaito circular

have masses that are much less orbitthespacecrafimustincreaseits
,,2 *GnME ,, -*L' =o than that of the central body. 

""i"tilifryE ZE "' Problem 4. A space vehicle re-
volves about Earth along an ellip- a R" ( [r, )

This equation has two roots corre- tical orbit whose semimajor axisis a'v = vo - v A = ,/HtS-l I- tP-: I
sponding to points A and.P because 2a. Earth's center is located at the V 1z [ ! a )
the coefficient atrrand the constant focus F, ({igure 41. At this time the problem 5. Find the approximate
lerm o,f this equation are the same spacecraft passes the most remote value o{ the escape velocity that
forbothpoints. Soweget point located a distance rrfrom should be impar-ted to a rocket

Earth's center/ the spacecraft's launched from Earth such that it
, n frMr l( ^ *Iy',r\' *tJ booster is ignited for a short time. would leave the Solar System forever.
n - -c " - tt (r-! ) * za , i:y^:l:"11 :l:_"*:'lr*:{ :h.: Neglect the inftuence of the ptanets' 2E 1( spaceship be changed to make it of tle Solar System. Consider Earth,s

mM, l( ^ *tlt,\' mt] move along a circular orbit of ra- orbit around the Sun to be circular

Earth's radius is R.. oibitrl velocity around Earth is
It immediately follows that the Solution. Since the new orbit v^,u=7.9 km/s.
semimajor axis of the satellite's el- must be circular, the new velocity "'Solrtior. Let,s divide the rocket,s
liptical orbit is should be perpendicular to the ra- fiajectory into two parts. The first

dius vector connecting Earth's cen- part we shall consider in the Earth,s
2a=rr+rz:-GyyE ter and the center oi*rss of the |fri.-of ."ferenceandwe,llneglectE space vehicle, so the change in theheterogeneityof theSun,sgravi-

velocity should be directed along tational fIeld. Assuming Earth,s
It should be noted that total en- the spacecraft's velocity. Now let's mass M, to be infinitely la=rger than

ergy E is a negative value because calculate the value and the sign of that of ihe rocket m, we*rit" 
"orr-the overall energy for bounded mo- the change in velocity. servation of energy in the following

tion must always be negative. (Note The value of the orbital velocity form:
that we assumed at the beginning of a spacecraft tn a circular orbit of
that the potential energy at infinity radius z, is found by equating the mvZ - mMe mi*
rs zero,. centripeial force to the giavitational G " = --------:-

what is the physical meaning of force: 
avltatlonal 2 - RE 2 '

this {ormul a? At a given (constant) n where y is the rocket,s velocity at
total energy, a satellite may travel yd 

= 
G-* . Earth,s surface and v_ the rocket,s

along a wide variety of elliptical or- 12 - 4 velocity at the tirie it leaves
bits, but all of them wiil have the Earth,s gravitational field. Let,s
same semimajor axis. If we know Therefore, express Ihe rocket,s potential en-
the size of this semimajor axis, we r = ergy in terms of the velocity of cir-
can calculate the satellite's toral ,,^ = EIwr: [-& ""i1, 

*",trn of a satellite around
energy. Naturally, the described 'u 

1- ,, 1"t' t Earth near its surface:

n12
a
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Then

During the second stage, after the
rocket has "Ieft" Eatth's gravitational
field, we'll consider its motion in the
gravitational fieid of the Sun. In the
Sun's system of reference, the veloc-
ity of the rocket is a vector sum of
velocity v- and the velocity of the cir-
cular motion of Earth around the Sun
V. Determine the value of the para-
bolic (guess why its ca1led "para-
bolic")velocity v, that a body in orbit
around Earth needs to leave the Solar
System forever. Accorfing to conser-
vation of energy we have

-ul _ rrTMs n
- -u--u,2 Rut

from which we get

,^= lr"lt =,lzvo 1l Rss

The rocket's minimum velocity
v-r, will occur when its velocity
vector is directed along the Earth's
velocity-that is, when vo: v-+ V.
Since V = ZnRrrlT = 30 km/s and
v*o= 7.9 km/s, v-* : 16.7 km/s.

Problem 6. Find the minimum ad-

ditional velocity that can be imparted
by a short impulse to a satellite mov-
ing in a very high circular orbit around
Earth in order to send it to Mars. As-
sume the orbits of Mars and Earth to
be circular. Earth's orbital radius R.,
is 1.5 . 108 km, and Mars's orbit radius
R*, is 1.52 times larger.

Solution. "Avery high circular or-
bit" means that the radius of the
satellite's orbit is much larger than
Earth's radius, so we can neglect the
velocity of the satellite relative to the
planet. However, being Earth's satel-
lite, it moves with Earth around the
Sun in a circular orbit with velocity

v = lry-= ry. = 3o km/s,
XRes T

where M, is the mass of the Sun and

7 is the period of Earth's revolution
about the Sun. If we accelerate the
satellite in the direction of Earth's or-
bital motion, it will move in elliptical
orbits with semimajor axes that are
larger than the diameter of Earth's
orbit and that grow with the change
in velocity. So, the satellite will get
to Mars i{ the maximum remote or-
bital point intrudes into the circular
Martian orbit. Such a trajectory is
shown in figure 5 by the dashed line.
The semimajor axis of thrs orbit equals
2a: Rrr* Rms. In this orbit the total
energy of a satellite of mass m is

, ,1

_ m\V +v)' nmMs
2 Rps

, .,
mlV +v)- -.l

-nl/'
2

*(r' +zvv -v2)
2

Now we recall the relationship be-
t\ reen the semimajor axis of an el-
lipse and a satellite's total energy:

D ,D \CMs
^ES 

r 
^MS - n, _2Vv _ v,

2V2RES
= 

,2 -r, - rz'
Simple manipulations yield

(R*, -/rES)v2
v2 +ZVv - -0,

Rlag + Rsg

which naturally has two roots:

,, =v( @_r'l=2.es km/sl.!Rrr+R.r )

and

,. =-v(,* E- \=-62.eskm/s.' t !Rrr+R,-r]

As we accelerate the spacecraft in
the direction of Earth's velocity, the
first root is the soiution of our prob-
lem. Notice, however, that " en
passant" we solved one more prob-
iem-the second root is also correct
and describes the acceleration of the
spacecraft in the opposite direction.
Note that v, is exactly equal to v,

Figure 5 i

plus doubie the velocity (60 km/s) of
Earth's orbital flight around the Sun.

Exercises. (I) Imagine a narrow
well drilled from Earth's surface to
its center. A body falls into this well
from infinity, where it had zero ve-
locity. What velocity will this body
have at the center of Earth? Consider
Earth to be a homogeneous sphere of
radius RE. At Earth's surface the ac-
celeration due to gravity is g. Hint:
Infinity here means alarge distance
from Earth where the attraction be-
tween a body and Earth is negligible
but where both bodies revolve around
the Sun as a single entity.

(2) The escape velocity for a planet
is vo : 10 km/s. Find the minimal
value of the escape velocity in a simi-
lar planet that has a hole (figure 2)
fi1led with matter of half the planet's
density. The ratio of the hole's radius
to the radius of the planet is 0.5.

(3)A spacecraft moves about Earth
in an elliptical orbit with semimajor
axts a. Earth's center is located at
the focus F, of the ellipse (figure 4).

When the spacecraft is at point P
(perigee), and when the distance
from Earth's center is zr, the rocket
engine is started. How should the
spacecraft's velocity be changed at
this point to place it iq a circular
orbit of radius r,? Take as given the
values of Earth's radius Ru and the
acceleration due to gravity at Earth's
surface.

(4) A shot is fired from a satellite
moving in a circular orbit with veloc-
ity vo. The direction of the shot makes
an angle 0 = 120' with the satellite's
velocity. What should the bullet's
velocity relative to the satellite be for
the bullet to f1y to infinity? O

^mM, rG-;- = mvi,rr.'
11E

--) --) n..2vn-v -LVirh.
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BRAINTEASERS

Just lol' IhB lun ol il!

8221
Chipping in.lohn, |im, and Gerry went to a baseball game. On the way
|ohn bought five bags of potato chips, fim bought two bags, and Gerry
didn't buy any. During the game they allate the chips, each one eating
as much as the others. After the game/ Gerry figured out how much the
bags of chips cost and handed over $1.40. How much money should
|ohn get?

8223
Navigation squared. A checker starts on the lower left square of the
board shown in the figure. How many different paths are there for it to
move from there to the upper right square? The checker may move in
only two directions: upward and to the right.

8222
The weight of gilt. The figure at the right represents the gilded area of a
pattern. (The border of this figure consists of four semicircles with
diameters AB, AC, BD, and CD.) The weight of the gold paint needed to
cover the figure depends on the arca of the figure. The artist knows only
two numbers: the lengths of AD and CD. Can he calculate the area of
this figure?

8224
Connect-the-dots cubed. Can you draw a six-segment broken line
through all the vertices of a cube?

Ya
f
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8225
Touching pornts. Two wheels roll toward each other with identical
angular velocity. At the moment of collision they contact each other at
the same points that touched the ground before they began rolling. Could
the radii of the wheels differ?

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 47
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Can you make the connections?

by A. Y. Olshansky

LECTRIC CIRCUITS, TRAF-
fic schemes, geographical maps,
structural formulas of mol-
ecules, and family trees are ex-

Planal' Uraphs

amples of graphs, in which certain
points are connected by curves that
signify some relationship between
the points. In the following article we
deal with those properties of planar
graphs that do not change under con-
tinuous transformations-in other
words, with topological properties of
graphs.

The principal facts of planar to-
pology, established in the eigh-
teenth and nineteenth centuries
(Eu1er's and |ordan's theorems, for
example), are ful1y visual. More sur-
prising are the more recent observa-
tions, such as the nice theorem by
A. A. Klyachko and the simple but
elegant lemma of ). R. Stallings (see

sections 6 and 7 below), published in
1993 and 1987 respectively in con-
nection with some combinatoric
group theory problems.

ab

Figure 1

10

Graph theory can be applied, for
example, in the design of computer
circuit boards. The connections
among the chips must lie flat along
the board. We can solve these prob-
lems in a graph-theoretic setting. For
instance, suppose you are given five
points on a plane. Is it possible to
connect each of them to all the rest
by a system of nonintersecting
curves? In figure la all but one pair
of points are connected by green
lines, the latter being connected by
the red line. Unfortunately, this red
line crosses one green curve. But
would it be possible to avoid intersec-
tions if we adopted another kind of
planar connection?

A similar problem to consider is
the old one about three wells. There
are three wells (4, 5, 6) and three
farmsteads 11,2,3) whose owners are
at odds. To keep the peace, we must
make paths from each farm to each
well such that the paths don't cross
anywhere (fig. 1b).

To answer these and other ques-
tions, let's first clarify the properties
of a line on a p1ane.

1. Planan ctlrue$
A circle, border of a square, or the

path 1-4-2-6-3-5-1 in figure I b com-
ply with our intuitive idea of a
simpie closed curve on a plane-a

.a
I

' .: I ll l:'r :l:
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line without self -intersections,
which we can draw if we return to
the point where we began without
lifting the pencil from the paper. If
a curve's endpoint does not coincide
with its beginning, we'll call the
curve an arc.

This intuitive concept of a closed
curve is quite sufficient to under-
stand our further exposition. But for
readers who are not satisfied with
this visual explanation, we offer a
formal definition. It generaltzes the
following simple observation: We
can obtain the border of a square by
a continuous transformation of its
circumscribed circle (for example, if
we project every point onto the near-
est side of the square).

In the general case/ we consider
an arbitrary continuous map I of the
circle O with unit radius onto some

set C on a plane such that the fo1-
lowing properties hold:

(a) f is a one-to-one map-that is,
each point X of the circle has one
image Y: f(X)in C, and conversely,
each point Y e C has exactly one
inverse image X e O IF(X) : Yl,

(b) Map / is (uniformly) continu-
ous. This means that for any positive
number e, however small it is, we
can find a number 6 > 0 such that for
any two points X, and X, e O situ-
ated at a distance less than or equal
to 6 from each other, the distance
between their images Yr: /(Xr) and
Yz: flxzl is less than e.

If there exists a map f :O -+ C with
properties (1)and (2),we say that set
C is a simple closed curve. When a

variable point X moves around O,
the corresponding point Y: l(X) goes
around curve C.

The definition of a planar arc d drt-
fers from that given above in only one
detail: We should take standard seg-
ment [0, 1] instead of the circle O.
When the pointX e 10, 1] varies from
0 to 1, its image Y: f(Xl "runs across"
arc d.The images of the numbers 0
and 1 are the endpoints of arc d.

2. Jondan's theul'em
A standard unit circle divides a

plane into two components: the in;
terior component/ consisting of all
points (x, y) satisfying the inequality
* * f < 1, and the exterior compo-
nent, defined by the condition
* *f > 1. It is impossible to connect
a point P(x' yrl in the interior com-
ponent with a point Q(x2, yz) in the
exterior component with an arc that
does not cross circle O. This is not
difficult to see/ if one uses an argu-

\
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ment by continuity. Suppose a point
(x. y) varies along an arc connecting
P to Q. Then the distance between
(x. y) and thq origin varies continu-
ously (it is measured by the function

,lr' * y'). Since it takes on a value
lbss than 7 at P and a value greater
than 1 at Q, rt must take on a value
exactly equal to 1 at some interme-
diary point R. This point R must then
be on the circle.

|ordan's theorem states that any
simple closed curve C on a plane
shares this property of circles. That
is, the set of ai1 points on the plane
that do not lie on C splits into two
domains: the interior (or bounded)
part Erand the exterior (unbounded)
part E, Any two points from one
domain can be connected by an arc
that belongs entirely to this domain,
yet it is impossible to connect a point
in E, to a point rn Erby an arc that
doesn't intersect C.

This theorem is complemented by
Schenfliss's theorem: Any point
Z e E, can be connected with each
point Y e C by afi arct all of whose
points (except for Y) lie in Er. A cor-
responding statement can be made
{or Er.

Rigorous proofs of |ordan's and
Schen{liss's theorems suddenly turn
out to be very difficult and are often
omitted in introductory topology
courses. We shall not give them here
either. We are partly justified by the
fact that the statements of these two
theorems are clear on an intuitive
level. Besi{es this, for our purposes
it is enough to consider only broken
lines with a finite number of links
and not arbitrary curves (but even in
this case Jordan's theorem is not
trivial! ).

3. Gl'a[[s in a ilane altd ott a sphoru
First of all, let's agree to consider

only finite graphs. We define a pla-
nar graph f as a set V : lv, vr... lof
points on the plane, called vertices,
together with a set E : ler, er... I of
links connecting some of the points
in V. A link connecting two different
vertices is an arc, and a link that
starts and ends at the same vertex
is a simple closed curve (such a link
is sometimes called aloopl. No link

Figure 2

may have a point in common with
any other link (except its endpoints).

A graph f is called connectad if
any two vertices can be connected
by a continuous path consisting of
several links of the graph. For ex-
ample, the graph in figure 2a is not
connected: It breaks down into the
two connected components l, and
lr. In what follows, we will consider
only planar graphs with at least one
link.

In accordance with |ordan's theo-
rem/ every simple closed cuwe (in-
cluding broken lines) composed of
the links of a planar graph f breaks
the plane into two domains, and thus
the whole graph l- decompo-ses into
several domains, or faces. The red
graph in figure 2b consists of five
interior faces (in pink) and one exte-
rior (unbounded) face-the planar do-
main with the inner border 1-2-3-
4-1.

|ordan's and Schenfliss's theorems
provide an opportunity to associate
with each planar graph I another pia-
nar graph fl dual to it. This is done
in the following way. We begin by
choosing a point within each face of
graph I (points a, b, c, x, y, z in fig.
2b): These will be the vertices of
graph I{. Let ebe a common edge of
two faces F, and F, of graph f with
points o, and o, chosen within them
respectively. We then choose a point
o on e d:-ffercnt from its endpoints and
draw arcs or-o and o;olyingwithin
appropriate faces. (Figure 2c is a de-
tail of graph 2, showing this construc-
tion for the two faces F, and F, with
vertices or: a and o, = b inside them.)
We construct an edge of t{, which we
l.abel eo, by drawing an arc oto-o2
connecting vertices o, and orand
crossing over edge e ol the original
graph.

C

The graph l-0, which is dual to the
rcd graph f, is drawn in fig. 2b wlth
blue 1ines. By deflnition, thc numbcr
of vertices in graph l-i) equals the
nurnber of faces in f, the nurlber of
edges in fo ecluals that in I {thc
reader is invited to check this), and
the number of faccs in fo ccluals the
number of vertices in f.

It is ezrsy to imzrgine how to put a

planar graph on a sphcrc. Con-
versely, ever,v graph f on a sphere
hils a planar rcilli;ation: We call a

point O rtithrn onc of its faces the
north L',o1e :rn11 project the spherical
grapfi 1- irom O on thc planc, tangent
to the slhere at the south pole. In
particular, ii we "infiate" the faces
of a cubc to a sphere (one of the ways
to do so rs to projcct thc cube's edges
onto the surface o{ a circurnscribecl
sphcrc from its center) and then ap-
p11- to the obtained spherical graph
thc procedure of stereographrc pro-
jection descril-red above, we get the
recl graph shown in figure 2b. Onc oi
the faces of the cube (in fact, one
that is situated r,rnder the north pole)
corrcsponcls to the unbounded face
of planar graph 2b. Similarly, the ver-
tices, edges, ancl iaccs of cach con-
vcx polyhechon turn into the vertices,
cdgcs, and faces oi sorne planar
graph. (The reacler can check, for
example, that rn thc planar clevelop-
ment described here, the graph of an
octahedron rs dual to that of a cubeJ.

4. tulel''s lot'mula
Let N, Ne, and N, b" the num-

ber of vertices, edges, and faces of a
polyhedron P respectiveiy. For in-
stance/ if P is a cube, then (Nr, \,
Nr) = (s, 12, 6); l{it is an octahedron,
(^,/v, ly'E, Nr) : (0, 12, 9li for a tetra-
hedron, this triplet ecluals (4, 6, 4)i
for a dodecahedron (fig. 3a) it ecluals

f1
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(20, 30, l2); for an n-lateralpyramid
it is (n + 1,2n, n + l); and for an
n-lateral prism it is (2n, 3n, n + 21.

One can ct_reck that in each of these
CASCS

N, - Nu * At: 2. (1)

Is this just a curious coincidence or
a manifestation of a general rule?

It turns out that Euler's formula
(1) holds for all planar graphs l, and
thus for all convex polyhedrons,
since it is possible to put them down
on the plane such that one of their
faces turns into an unbounded do-
main. It is easy to prove Euler's for-
mula by induction on NB, the num-
ber of edges of a planar graph f.
Suppose that -A/E : 1. Then there are
two possibilities: The only edge of f
can be either a loop or a simple arc.
In the first case there is only one ver-
tex and, according to |ordan's theo-
rem, two faces. In the second case
(Nv, NE, NF) : (2, 1, 1). We can see
that relation ( I ) holds in both cases.

If NE > I, there are again two
CASCS:

(a) Graph f contains a vertex o of
degree 1-that is, a vertex that be-
longs only to one edge e, and a is not
a loop (1ike vertex O in graph f in fig.
2a). Then graph P, which appears if
we remove edge e and vertex O from
graph f, is connected, and in it
Nu : N, & : Ah- 1, N; : N.- 1. (2)

Since M. = 
^,fE 

- 1, we can assume
that Euler's formula is already
proved for I-': Mu - M. + Mu : 2. If
we substitute My, Mu, and M, in
this formula in accordance with (2),

we obtain Euler's formula (1) for f.
(b) Every time we finish traveling

along some edge e : ert we can con-
tinue our movement along another
edge er. The number of edges in
graph f being finite, we will inevi-
tably go along the edges we've al-
ready passed if the number of con-
tinuations described above is large
enough. Thus, in this case we can
find a simple closed path consisting
of several consecutive ed.ges e' a2,

..., eoof graph f (it is possibie that
k : 1). |ordan's and SchenJliss's theo-
rems imply (and moreover, it is in-
tuitively clear), that if we remove

edge e from graph f (so that the ver-
tices at its endpoints remain un-
moved), the number of faces will
decrease by l-that is, in graph f'
obtained in this way

N'u = Nv Mu : AL- 1, Mr : Ah- 1.

Now one can finish the inductive
reasoning just as in the first case.

5. Planan Uraphs
We now apply Euler's formula to

certain spherical or planar graphs.
These are graphs such that the num-
ber of edges we must pass to go
around any of its faces (including the
outer one in the case of a planar
graph) is greater than or equal to
some fixed n > 2.If we go around
every face and sum up the numbers
of edges we've passed, we'll count at
least n\ edges. Since in this way
we'lI count each edge twice, we ob-
tain the inequality

2l/. > n\.
Now 1et's multiply relation (1) by n
and add it to this inequality. We get

n(N,, -zlNr<_#. (3)- n-2

Inequality (3 ) proves useful whenever
we try to determine whether any
"abstract graph" can be drawn on a
plane or sphere. By "abstract" graph
we mean a collection of finitely
many vertices connected by links
that have no common points except
their endpoints, whether or not it
can be drawn on the plane.

It is easy to show that we cannot
put graph f<, (fiS. la) on a plane so
that no self-intersections appear. In
fact, there are no loops or multiple
edges (two or more distinct edges
with common ends) in it, and thus
each of its faces would have at least
three boundary edges if this graph
was put on a plane. But, putting n : 3
in formula (3), we see that it does not
hold for graph Ku since the graph has
5 vertices and 10 edges.

And if we assume that graph K" 
"(fig. 1b) has a planar realization, #e

can apply formula (3) to it withn:4
since there are no closed paths con-
sisting of three edges in it either. (For

instance, having passed along three
consecutive edges starting from a

farm, we'll inevitably come to a

well.) So, we once again arrive at a
contradiction with (3) since Nu : 6
and \:9 here.

It's evident that any graph con-
taining a smaller graph (subgraph)
that cannot be put on a plane is
nonplanar itself. AIso, all graphs ho-
meomorphic to.(o and K.., (that is,
all graphs that appear if we decom-
pose every edge e of Ko or K" 

" 
into

several new edges by putting addi-
tional vertices on it) are nonplanar.

Pontrjagin and Kuratowski's fa-
mous theorem says that there are no
other obstructions to planarity:

Graph f is planar if and only if it
contains no subgraphs homeomor-
phic to graph K, or to graph .(.,..

We've proved that the condition
of this theorem is necessary. It is
much more difficult to prove that it
is sufficient (see section 3).

Another interesting application of
formula (3) appears if we take n : 6.
It is well known that bees build their
honeycomb so that each cell (inte-
rior face) is a hexagon. Would they
be able to put the honeycomb on a
sphere and keep to this rule? Formula
(3) would give us the inequality

a,1
Nr <.Nv . 14)

On the other hand, there are at least
three edges coming out of each ver-
tex. Thus 3Nu ( 2N. (we put the co-
efficient 2 on the right since we
colrnt eYery edge twice when we
count the edges coming out of all the
vertices.) This contradicts equation
(4), so it is in fact not possible to have
a honeycomblike construction cov-
ering an entire sphere..

Moreover, this reasoning shows
that there are no convex polyhe-
drons such that each of their faces
has at least six sides. This is why
soccer balls are made from both hex-
agonal and pentagonal patches.

Problem: Derive the inequalities
connecting the number of vertices
and the number of edges of a bail
made of k pentagonal and 7 hexago-
nal patches and show that k > 12.
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Figure 3

(Hint: The number of edges is
lll2l(5k + 611, and the number of
vertices is not greater than
{Il3l(5k + 67).)It would be possible
to make the ball out of 12 pentago-
nal patches-just like the dodeca-
hedron, composed of 12 penta-
gons-but this sort of ball wouldn't
be round enough. In reality, soccer
balls are made of 12 pentagonal
and 20 hexagonal patches sewn
together along 90 edges (fig. 3b).
Find the number of its vertices us-
ing Euler's formula.

0. 0ne-ulay lrallic
Stallings's lemma says that in a

city that has only one-way streets
there must exist a block such that
one can drive around it without go-
ing the wrong way.

A rigorous mathematical setting
of this lemma is as follows: Let I be
an oriented planar graph-that is, a
planar graph in which a direction,
symbolized in figure 4by an arroq
is assigned to each edge (we shall not
get deeper into the mathematical de-
tails here). Let's call this graph "cor-
rect" if it does not contain a vertex
such that all the edges adjacent to
it "come out of" the vertex (such ver-
tices are called sources) or "come
into" it (such vertices are called
sinks). If the traffic scheme de-
scribed above is reasonable, then the
graph corresponding to it will be cor-
rect; otherwise drivers will be forced
to violate the rules.

vation: Having walked along some
edge e1, we can always continue
along another edge ersince, by as-
sumption, the endpoint of edge a, is
not a sink. The number of edges in
graph f being finite, there will inevi-
tably be repetitions in the sequence
al, a2, ..., which means that there
exists a closed oriented path p ifi
graph f. We can assume that this
path is chosen without self-intersec-
tions, otherwise we could substitute
p for some part of it. The red path in
figure 4 is an example.

According to the |ordan curve
theorem, p divides the plane into two
domains. The interior domain O con-
tains several faces Fy, F2, ..., Foof
graph f (in fig. 4, k : S).Assume that
path p is chosen so that the number
of faces in O willbe the fewest pos-
sible. To prove Stallings's lemma, it's
enough to show that k = I (that is,
thatp goes around exactly one face).

Assuming that k > 1, we arriye at
the conclusion that some edges of
graph f must lie inside the domain O.
Since graph f is connected, one of
these edges I will have a common
vertex o with border p of domain O
(fig. a). We will consider only the case
when / "goes out" of o. The opposite
case (when f "comes into" o) can l:e
deduced from this one if we invert the
orientation of all edges in f.

Because end o, of edge I = l, is not
a sink, there must exist an edge f,
coming out of it. Continuing this
construction/ we obtain a path q,
composed of edges f 1, f 2, ... (the blue
path in fig. 41, inside domain O.
There will be no self-intersections in
q, as we can see from the minimality
condition imposed upon path p.
Therefore, the oriented path q will
reach the border p of domain O at

some other vertex o' . Path q breaks
the closed path p into two partst pl
andpr. One of these parts will come
out of o' and go into o. This part/ to-
gether with path 4, forms a simple
closed path encircling a domain in
which the number of faces is less
than k.

This contradiction with the choice
of path p and the number k shows
that the above assumption is wrong
(because k : 1).

7. Collisinns ane ineuitable

In Klyachko's theorem we'l1 deal
not only with traffic rules but also
with dynamic models of motion on
a sphere. The reader car, try to find
a planar interpretation of this theo-
rem.

In what follows, f is a connected,
nonoriented graph on a sphere around
whose {aces points are moving clock-
wise (possibly with nonconstant ve-
locities). To distinguish them from sta-
tionary points of the graph, let's call
the movrng points "cars." Thus, a car
moves along the border of every facet.
When we pose the problem more ac-
curately, we'11 prove that car acct-
dents are inevitable in this situation.

It is easy to check this statement
when there is only one vertex and
one edge e (a loop) in the graph. For
instance, if e is an equator that di-
vides sphere S into northern and
southern hemispheres (fig. 5a), then
one car must go around the northern
hemispherg moving clockwise along
the equator (for an imaginary ob-
server standing at the north pole) and
the other car will go clockwise
around the southem hemisphere (but
from the point of view of an observer
standing at the south pole).

The inevitability of accidents for

We will prove Stalling's lemma
using methods different from those
in section 2. -Ihat is, we want to
show that a correct graph I must
contain an interior face that one can
walk around, following the orienta-
tion of its sides. An example is the
pink face in figure 4.

We start with the following obser- Figure
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Figure 5

a graph with two vertices, which
cuts the sphere into a number of
"slivers" along several meridians,
(fig. 5b) is not so evident, and the
reader might try to organize the
movement without accidents (alas,
in vain). It is even less evident that
the statement is true for graphs with
a greatc'r number of vertices.

Let's make some further assump-
tions in the setting of this problem.
First of all, we assume that graph f
has no vertices of degree 1 (otherwise
one would be able to avoid collisions
by "hiding" all the time at the only
edge adjacent to this vertex). Second,
the time it takes for any cat to
traverse an edge is bounded from
above by a constant 7 > 0, which is
the same for all cars. Otherwise, for
example, some of the cars could
move with a motion that is "infi-
nitely damped," and might not ever
get very far from their initial posi-
tions. Third, when a car comes to a
vertex, it should immediately pro-
ceed along the next edge. (One can
relax this condition a bit and allow
the cars to stop on the vertices, but
only for a limited amount of time.)
Eventually, every car must always go
clockwise around its face; reverse
movement is not allowed. (For a car
traveling "clockwise," the {ace as-
signed it always lies to the right of
the direction of the car's movement.
We'll refrain from a more detailed ex-
planation of this notion.)

If cars go around the faces of a

spherical graph f so that all the as-
sumptions made above hold, the traf-

b

fic is said tobe regular.
Klyachko's theorem. No regular

traftic, regardless of the initial posi-
tions of cars, cafi go on forever. In
other words, after some time two
cars will inevitably collide.

We'il prove this statement by
contradiction in several steps (note
that in (a) it is set a bit more gener-
ally than here).

(a)It's convenient to think thatat
every moment of time t > 0, there is
no more than one car at a vertex of
graph f. One can always satisfy this
condition by a very small local
change o{ the schedule of movement
so that no new collisions occur.

(b) At every moment , > 7, there
is no edge with two cars standing on
it at points different from its end-
points. In fact, since each car goes
clockwise around its face, cars must
go in opposite directions along the
common edge of these faces. But this
means that they will soon meet or
that they met at some previous mo-
ment t' > t - T > 0 and now are driv-
ing away from each other.

(c) Let's consider the dual graph
fo. Suppose that at the moment
t > T, the ith car, going around face
F, of graph f (the black graph in fig.
5c), is in edge e of this face (but not
at a vertex). Then we shall pick out
edge eo of graph Io, crossing edge e.

Let's orient edge e0 so it crosses edge
e from right to left as one looks to-
ward the direction of the ith car's
movement. Because of the results of
section 2, there should be no trouble
concerning the choice of orientation

for edge eo.

So, for each nonsingular moment
of time t > T, when no car is stand-
ingat avertex/ we have constructed
an oriented graph A, (in fiS. 5c the
edges of this graph are red), consist-
ing of all vertices of graph I{ and all
edges of this graph that we've picked
out, with their orientation defined
above. (So, the number of edges in A,
= the number of cars : the number
of faces in f : the number of verti-
ces in f = the number of vertices in
A.ltt

(d) For each vertex of A, there is
one {and only one) edge eo of the
same graph coming out of this ver-
tex since, in accordance with the
definition, this vertex lies inside a

face F, of graph I and at any
nonsingular moment t, the ith car,
which goes clockwise around {, is
on one of its sides.

As in section 6 above, we can find
a simple closed oriented path p con-
sisting of the edges e : a1, a2,... of
graph A, (the solid red path in fig. 5c).
We'll designate as O the spherical
domain with border p such that p
goes clockwise around it.

(e)Whathappens when the ith car
goes through a vertex from edge a to
the next one? It's clear that edge eo,

corresponding to e, should be re-
moved from graph A, so that the new
graph A,, (if it is defined in a unique
way) contains instead of a0 another
oriented edge f (fig. 5d). But edge fl
will not leave domain O since the car
goes clockwise around Fr. We can
extend the oriented path, beginning
with edgef, until we obtain a closed
path p' in graph Ar,, encircling a do-
main O'that contains fewer vertices
of graph f (or faces of f0) than O (see

the solid red path in fig. 5d).
(f)The number of vertices of the

graph f, enclosed by the secluence of
paths p, p', p", ... constructed il this
way/ cannot decrease infinitely.
Thus there must exist a moment
to > 7 such that the graph Aro is not
defined in a unique way. This can
happen only if two cars are on the
same edge of graph f at the same
time. In view of step (b), this implies
that there must have been, or must
soon be, a collision. O
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Exploring the sound science behind oceanic investigations

by L. Brekhovskikh and V Kurtepov

IKE A LONG-DISTANCE
telephone network for whales,
oceanic acoustic waveguides al-
low sound to propagate for thou-

sands of kilometers. Besides provid-
ing a convenient way for denizens of
the deep to stay in touch, these un-
derwater sound pathways al1ow re-
searchers to collect vast amounts of
data tor large areas of ocean.

We have an acute interest in
knowing as much as possible about
the ocean's conditions, the motion
of its waters, and the structure of its
fioor. This knowledge is used for sur-
face and underwater navigatiory find-
ing regions of maximum biological
productivity/ accounting for the
ocean's eff ect on climate and
weather, and many other purposes.

Using sound waves to probe the
ocean is an increasingly important
oceanographic method as the limita-
tions of traditional data collection
become apparent. Many research
ships from different countries con-
tinuously navigate the oceans. They
record the conditions of water at dif-
ferent depths and the characteristics
of the atmosphere above the ocean
and of the ground underneath it.
While these data are very important,
they provide too little information to
describe the current state of ali the

world's oceans with enough detail.
To do this the data flow would need
to be increased a thousand times,
which can be done only with the
help of satellite-based devices.

Data acquisition systems based on
artificial satellites and space stations
can rapidly collect data about many
characteristics of the ocean over vast
areas. Measurements of intrinsic
oceanic radiation in the infrared and
centimeter wavelength ranges make
it possible to record ocean surface
temperatures. By analyzing the dif-
fu sion of centimeter electromagnetic
waves on the ocean's surface, we
can determine the characteristics of
surface waves/ surface currents, and
near-surface winds.

By analyzing the time necessary
for an electromagnetic pulse to travel
to the ocean's surface and back to
the satellite/ we can measure varia-
tions in the ocean's elevation over
large areas. This method made it
possible to discover a " dertt" of about
23 m in the ocean's surface, located
over the Puerto Rico Depression of
the ocean floor.

A11 these data, however, deal with
the ocean's surface. And we can
guess why: Electromagnetic waves
just can't penetrate seawater to arly
appreciable depth. Light fades away

within dozens, and a powerful laser
beam only penetrates a few hundred
meters.

But acoustics provides a tool to
scan the oceanic depths. Only sound
waves can propagate in water {or
very large distances. Indeed, in oce-
anic experiments the sound of com-
paratively sma1l underwater explo-
sions was detected by scientists at a
distance of 22,000 km!

Let's recall a discovery made half
a century ago. In 1946 Russian sci-
entists in the Sea of |apan observed
an interesting phenomenon. When
antisubmarine bombs were exploded
at a depth of about 100 m, the sound
waves propagated without marked
fading for hundreds of kilometers. A
detailed analysis of the experimen-
tal data showed that this phenom-
enon results from a dependence of
the speed of sound in the opean upon
depth.

More specifically, the speed of !
sound in seawater varies with tem- j
perature, salinity, and hydrostatic $
pressure. During the tests in the Sea f,
of |apan the salinity was almost in- S
dependent of depth, so it did not af- I
fect the experimental results. With l'
an increase in depth from zero to $
about 300 m, the speed of sound fe1l {
due to a drop in temperature. At 3
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larger depths the variation in tem-
perature was negligibly smail, about
0.3-0.5'C. However, a further in-
crease in depth (the maximum depth
in the Sea of fapan is 3,700 m) led to
a marked increase in hydrostatic
pressure that caused a gradual in-
crease in sound velocity. A11 these
factors produce a partrcular depen-'
dence of sound speed on depth.

An example of such a dependence
(a vetical profile of the sound speed)
is shown in figure 1. The minimum
sound velocity is reached at a depth
of 300 m. The speed of sound in-
creases both above and below this
level. What results from such a pro-
file of sound speed?

Figure 2 shows sound beams leav-
ing an acoustic radiator at a depth of
100 m and propagating to a receiver
located at a depth of 300 m and
placed 184 km from the source. Due
to sonic refraction the beams bend
and return periodically to the hori-
zontaL axis corresponding to the
minimum sound speed. In doing so,

the entire family of beams (some of
them are shown in fig. 2) neither
contacts the ocean floor where the
sound couid be absorbed nor goes to
the ocean surface where the sound
could be dissipated by various irregu-
larities. As a result, the sound trav-
els to the receiver with very little loss
in intensity via pathways kne+rn-as
oceanic acoustic waveguides. This
phenomenon makes it possible to
record sound signals thousands of ki-
lometers away from their source.l

sound speed lrr,lsl

1450 1500 1550

Acoustic waveguides thus explain
the propagation of sound over long
distances observed in 1946 tn the Sea

of |apan. It turns out that wave-
guides are present in any sea or
ocean/ provided it is deep enough.

The emitted sound signals travel
via different waveguides and arrive
at the receiver at di{ferent times. Any
changes in the sound speed profile,
even small ones, lead to fluctuations
in the aruival time of sound coming
via an individual waveguide. These
fluctuations can be used to charac-
terize the particular waveguides.
Since the properties of water fully
determine the arrival times of the
signals, the signals ate aL extremely
sensitive indicator of their watery
medium.

It turns out that the speed of
sound depends not only on depth but
also on the horizontal position. In
fact, the speed of sound in a horizon-
tai slice of the ocean can only be con-
sidered to be constant only within a

range of a few tens of kilometers.
The most important role in the hori-
zontalvariation of the speed of sound
is played by the oceanic vortices dis-
covered by Russian scientists. This
discovery was the main result of the
"Po1ygon" experiment carried out in
1970. When studying the strong cur-
rent associated with the trade winds
in the Atlantic Ocean (which was
considered particularly stable), the
researchers found that this current
contains giant watery vortices hun-
dreds of kilometers in diameter that

distance fuom acoustic radiator (krr.l

100 150

are similar to atmospheric cyclones.
Further studies showed that such
vortices occur in virtually the entire
ocean. The centers of these giant
vortices travel at speeds of up to
300 m/h, but the rotational motion
is 10 times faster. The passage of an
intense vortex sometimes results in
changes that can completely break
an acoustic transmission or, on the
other hand, produce a sonic "mi-
rage"-that is, it can make audible
usually inaudible sources of sound.

Some years ago an idea was dis-
cussed to begin long-term (about one
year) observations of the large-scale
variability of the ocean in an arca of
about 106 km2 by taking advantage
of the high sensitivity of sound sig-
nals to variations rn the water's prop-
erties. To do this we would need to
place a system of anchored acoustic
generators and receivers at various
depths along the equatorial perim-
eter of the area and then measure
fluctuations in arrival times of sig-
nals traveling via all possible
waveguides. As we mentioned, these
signals carry information about the
irregularities met on the way. In this
way we can scan the depths to ob-
tain an image of an entire volume of
water. No fleet of scientific ships can
perform such a huge number of si-
multaneous measurements. By re-
cording the time differences in re-
ceived signals we should be able to
recreate the sound speed field-that
is, determine the value of sound
speed at different locations in the
water area. This method is known as

acoustic tomography (from the
Greek word xopoo-a slice or hunk).
Analysis of these data provides infor-
mation about vortices.

The principle method of recon-
structing a sound speed field is as fol-
lows. The region under study is di-
videdinto Nvolume cells whose size

lThe propagation of sound waves in
the oceanic acoustic waveguides is
considered in detail in the paper of A.
Varlamov and A. Malyarovsky, "The
Oceanic Phone Booth," in the May/
|une 1993 issue of Quantum, pp.37-
39. See also the contest problem "Sea
Sounds" by Arthur Eisenkraft and
Larry D. Kirkpatrick lpp. 34-36,
March/April L99 6). -Ed.
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(tens of kilometers horizontally and
hundreds of meters vertically) is
smal1 in comparison with that of the
vortices. The speed of sound inside
the nth cel1 at moment t, depth z,
and horizontal coordinates (5 y) can
be presented as

c,lx, y, z, t): cokl + acnlx, y, z, tl,
n: L,2, ..., N.

Here, colz) is the known value of
sound speed in the absence of vorti-
ces, and Ac, is the change in the
sound speed in the nth cell, caused
by the vortices. We wi1l be determin-
ing the values of the Acr,.

The profile co/) coresponds to a
set of M waveguides (beams), which
in the absence of vortices connect all
the sources with all the receivers.
These "referetrce" beams di{fer from
the "real" ones that propagate in the
real medium with vortices. The tra-
jectories of the reference beams and
the periods to-lm:1,2, ..., Ml of
sound propagation along them are
calculated by computers. When the
values lLcnl are far less than co
(which is a common situation) the
real beams do not differ markedly
from the reference ones. Denoting
the duration of signal propagation
along mth reference beam by t*, we
obtain an approximate equation for
fluctuations of the arrival times
Lt*= t*- to- in the following form:

t/
Lt,, -\E^,a,"n.

n=l

Considering all the possible
beams, we get a set of M equations
relative to A,cn(n: 1,2, ..., N). The
coefficients E *n canbe calculated if
the trajectory of the mth reference
beam and the geometry of the nth
cell are known. For the cells not "vis-
ited" by the mth beam, E*n= 0.By
measuring fluctuations of sound sig-
nal arrival times Ar- and solving the
system of linear equations, we ob-
tain the values of Acrfor every ce1l.
This is the basic calculational proce-
dure, though in practice there are ad-
ditional technical and mathematicai
problems to cope with.

If we succeed in reconstructing
the sound speed distribution
c, (x, y, z, t), we can obtain the ap-
proximate values of the tempera-
ture, salinity, and density of water
through relationships known in
seawater physics. Information on
ocean temperature for a large atea
of water helps determine the heat
content of the ocean/ which is a
prerequisite for weather forecast-
ing. Although this is by no means
trivial, acoustic tomography can do
much more. By measuring the dif-
ference in the times necessary for
signals to travel to and from two
acoustically connected points, we
can find the average projection of
the ocean current onto the direc-
tion of the sonic track. Research-
ers hope to apply this approach to
measuring the large-scale circula-
tion of the ocean, which can't be
achieved by traditional methods.
There are global projects to em-
brace huge areas of the world's
oceans with a tomographic net-
work. This would mean a break-
through in the study of the inter-
actions between the ocean and the
atmosphere, which is the key prob-
lem in the theory of climate forma-
tion on Earth.

Another prospective application of
acoustic tomography relates to the
study of the ocean f1oor. This is not
a simple task-these researchers are
separated from their subject by a
column of water several kilometers
deep. The available methods, seismic
profiling of the ocean floor and
deepwater drilling, are cumbersome
and expensive. However, there are
alternative approaches.

The arsenal of scientific hydro-
acoustic devjces is becoming more
and more sophisticated with au-
tonomous ground stations (AGS).
These stations, equipped with
sound receivers (hydrophones), spe-
cialized computers/ and magnetic
tape recorders, can sink to the
ocean floor and work there. When
a research ship moves away from
an autonomous ground station, the
station records the noise of the
ship's engines. In accordance with
the laws of sound propagation in

Figure 3

the ocean and within sedimentary
rocks, the signals received by the
autonomous ground stations travel
via water and bottom pathways,
the latter resulting from sound re-
fraction in the ocean floor (fig. 3).
These signals are recorded against
the background noise produced by
the vessel and by the sounds dissi-
pated at the ocean surface and
ocean floor irregularities. When
the ship moves/ the " trajectories"
of water and bottom beams gradu-
ally change. The relative time lags
of the engine noise arriving via
both beams also varies.

Dividing the oceanic sedimen-
tary rocks into arbitrary layers
with temporarlly unknown values
for sound speed, we can incorporate
these values into a system of equa-
tions similar to what we obtained
earlier in the problem of oceanic
tomography. Instead of At-, this
system will operate with the au-
tonomous ground station-measured
values of the arrlal time lags of
engine noise at different distances
between the ship and the autono-
mous ground station. Solving this
system/ we reconstruct the sound
speed profile in the sedimentary
rocks. After data collection is com-
plete, the station can be retrieved,
and the experiment can be re-
peated at another location.

Acoustic methods are also widely
used to study small-scale irregulari-
ties and processes in the ocean. For
example, the distortions of a sound
signal dissipated by the ocean floor
carry information about the uneven-
ness of the floor-water boundary and
about the irregularities in the sedi-
mentary layers. In the future, this
method may lead to acoustic visual-
izationof the ocean floor. O
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Can you flip your way to a fortune?

by Leon Taylor

T T'S A SLOW WINTER DAY. THE DOWN.
I ,o*r, theaters are rerunning Nightmare on
I Pennsvlrania Avenue, and iootball season is
I or"r. But here's a way to slay the time. I have
a spot of change from buying this morning's News-
Frce Press. Suppose that I keep tossing a dime un-
til it comes up heads. End of game. If I get heads
on the first toss, I will pay you $1; if I get heads
on the second toss, $2; if on the third toss, $4; et
cetera, et cetera, et ceterat as the King of Siam
would say. Generally, if I get heads on the nth
toss, I will pay you $2" - 1. (Yawn.) Now, how
much will you stake to partake of this diverting
game of chance?

Well, if you think like a computer, you wiil
stake your wallet, your MasterCard, your condo
keys, and your Christmas air ticket to Tahiti.
The expected value of this bore of a bet strolls
off toward infinity.

Unexpefied Brporled ttalm
Hard to believe? Let's go figure. The ex-

pected valuq.of the bet is your best mathemati-
cal guess o-\\ worth. To compute it, you will
think aboutr\€rything that could happen, how
likely it is to happen, and what it would be
worth to you if it did happen. An example: Sup-
pose that I had agreed to flip the coin just once.
Then you wouid have a 50% chance of getting
heads, with the grand prize of $1, and you would
have a 50% chance of getting tails, worth zilch.
Heads or tails: That seems to cover all the
bases. So the expected value of the bet is
(1/2)$1 + (1/2)$o: $.50.
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But I didn't agree to flip the coin just once. I agreed
to keep flipping it, regardless of swollen thumbs, until
it came up heads.

If that blpssed event occurs on the second toss, then
you will get $2. But to get heads on the second toss, we
must have gotten tails on the first toss. What is the prob-
ability of tails, then heads? Well, one toss doesn't affect
the other, so we must reflect separately on each. On the
first toss, the probability of tails is.50%. On the second
toss, the probability of heads is 50%. We thus have half
a chance of getting to the second toss and then half of
that chance of getting a head. The probability of getting
our first head on the second toss, then, is

111
22 4'

The expected payoff on that throw is (1/a)$2 = $.S0.
Onward. What's the probability that we'l1get the first

heads on the third toss? We must have gotten tails on
the first two tosses, and then heads. So the probability
of the first heads on the third toss is

You see the pattern: The probability that the first heads
will appear on the nth toss is lll2l".

Finally, to compute the expected value of the bet, add
up the expected payoffs for all the tosses that could oc-
cur. After all, you might get lucky; a head might not
appear until the tenth toss-or the hundredth. We (and
your tax accountant) must take all of these possibilities
into account. Let's save some paper (al1 the paper in the
world, in fact) and use a series:

i(*r'')+=s.50+$.50+$.50+.... (r)L,t\ 12,

This is an in{inite number of SO-cent pieces. More than
the Milky Way can ever ho1d.

Why do we obtain this bizarre result? On any toss,
the prospect of getting heads and the payoff to it offset
one another. You have a chance of I 12 of getting heads
on the first toss, but the payoff would be only $1. You
have a chance of only lll124 of getting the first heads
on the tenth toss, but the payoff would be $512. For any
toss, the expected payoff is just $.50. But you could get
the first heads on any of an infinite number of tosses.
The bet embraces this infinity of possibilities, so what

\ we might loosely call its "expected y2lss//-1ss g2n/1

Q really compute it-diverges to infinity.
W It is sorely tempting to look atthat series and say, "OI
S course its value isn't finite. It has an infinite number of
a terms!" But suppose that you could win only $1 no

{ matter when you obtain the first heads. Then the ex-

Q pected value of the bet would be

-t

I(sr)*=$.50+$.25+$.25+.... l2l_, , .)11
n=l

This too is an infinite series, but the terms get smaller
and smaller-shrinking, in a sense, to an atom/ a neu-
tror1 a quark. . .. Remarkably, this series sums to just $ I .

See for yourself: Punch the problem into your calcula-
tor and let it run for a few hours. Or days. Or try this:

Problem 1: Take in hand the formula for the sum of a
geometric progression that is infinite. Use the formula
to prove that (21 converges to $ 1.

Now look back again at (1). That series, which drifts
into infinity, is a real showstopper. A bet with an infi-
nite payoff!

But you would not really fork over your wealth for
that bet with an infinite payoff. Why not?

A mone reali$tic Ualne
Perhaps you have trouble believing th atl am infinitely

rich. (So does my wi{e.) Then, even for a long trail of tails,
all I can do is pay you what I have, and that will limit
the payoff that you expect. The French mathematician
Poisson shows this with a ntfty example. Suppose, for
convenience, that the bet pays off 2 {or heads on the
nth toss. Also suppose that I have only so much
money-let's call this amountM. Then think about this
game: I will agree to toss the coin N times or until I get
heads, whichever comes first. And I will pay you only
what I can. Of sourse/ we can make N as large as we
want.

To understand how my vast fortune affects the value
of getting heads after many coin tosses, we need away
to relate my fortune to the number of tosses. For reasons
that will become clear (I hope), Poisson would write
down my fortune as M:2'll + h).Here, v is an integer
that we can later compare to the number of coin tosses/
and -h is a number such that 0 < ft < 1. First we'll find a
v thatwill make M approximate my fortune, then we'l1
pick h to make the match more exact. And now, haul
out your calculator from under the dirty c1othes....

Problem 2: Suppose that my fortune, M is $67.5 mil-
lion (fat chancel). What are v andhT

Whatever vwe pick, Iook at what happens on the first
y tosses. Your expectation of the bet for those tosses is

=1+1+...+1=v.

Remember, M : 2ll + hl, and that's larger than 2 .If
I have to toss the coin at least v times before you get
heads, then I wiil have to pay you ali that I have, which
is 2(l + h). So the expected value of the bet (not just of
the first v tosses) is

1111
222I

(, l, , (t')^- *( I ),'
[z]- l+l' " lz'J-

v+2,(1.r)[#. .+) i3
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As N approaches infinity t your expectation of the bet
settles down between v + 1 and v + 2. For instance, if
my fortune is $67.5 million, then you will stake no
more than $27 or $28.

Problem 3: How do we know that (3) is right?
Problem 4: Use the formula for the sum of a finite geo-

metric progression to show that (41flows from (3).

Problem 5: Show that if my fortune is $67.5 million,
then you will stake no more than$27 or $28 to wrest it
from me.

Problem 6: Show that as N approaches infinity, your
expectation of the bet in (4) settles between v + 1 and
v+2.

Those calculated bets-$27 or $28-do look plausible.
But one recalls an unsigned remark about Poisson:
"When he had to choose, as between two opposing
ideas, the one that he would dignify with an application
of his analysis, he generally made the wrong choice."
Even when , say, Caesar's Palace has a fortune smaller
than that of the New York Federal Reserve, its chance
of going broke need not be the reason that you will stake
just a few dollars for its bet. The French mathematician
|oseph Bertrand argued that, for the purposes of the
game, the house could always limit its largest possible
payoffby redefining the units in which it paid off. Sup-
pose that its fortune is $600,000, or 50,000,000 pennies.
Then, for heads on the first toss, it might pay just a
penny/ or a speck of copper, or a grain of sand, or a
molecule of hydrogen. "The fear of insolvency may be
reduced without limit, " Bertrand said. Stili, whether or
not you break the bank, the basic question remains:
Why would most of us pay only a few dollars for a bet
with an expected value of many thousands of dollars?

Ihu hel yotlr lile
Another approach to the problem is to look at similar

bets in the real world and ask why people won't stake
their all to take them. Consider an agent that never
seems to fear insolvency-the government. It issues
tickets in a lottery. Ticket I pays $1 if heads comes on
the first toss. Ticket 2pays $2 if heads doesn't come until
the second toss. Ticket 3 pays $4 if heads doesn't come
until the third toss. Ticket 4 pays $8 if heads doesn't
come until the fourth toss. And so forth. For 50 cents a
pop, you might buy tickets I and2. But would you buy
ticket 50,000,000? Not according to Antoine-Augustin
Cournot, the founder of mathematical economics. He
pointed to the French Lottery, in which one drew five
numbers out of ninety and bet on various combinations.
The lottery had withdrawn, for lack of sales, the option
of a bet on a particular combination of five numbers.
" One imagines, " Coumot wrote archly, "that there must
be a limit to the smallness of chances."

Maybe some probabilities are too small to perceive.
In the eighteenth century, the probability that a56-year-
old man would die overnight was 1 in 10,000. Most men
in the prime of their lives give flary a gloomy thought
to the prospect of dying before breakfast, so one could
reasonably take the probability of I in 10,000 as beneath
notice, said the French naturalist Buffon. When you
calculate the expected value of my bet, you will set this
probability, and smaller ones, equal to zero. (You may
wonder why Buffon did not select the probability that
a man in his twenties would die overnight. Perhaps it
was because Buffon fought a duel at that age/ as a stu-
dent in Angers. With the yeatst he would grow more
prudish, to the point of describing gambling as le mal
epidemique.)

As a man of the world who regarded infinity as une
id€,e de pilvation, Buffon seemed destined to devise the
proposition that some events were too unlikely for us
to worry about. Upon hearing of it, Edward Gibbon guf-
fawed. "If a public lottery were drawn for the choice of
an immediate victim," wrote the English historian,
" andIf our name were inscribed on one of the ten thou-
sand tickets, should we be perfectly easy?"

Would a million tickets soothe the modern mind?
Federal regulators limit concentrations of hazardous
substances to imposing a risk of death of no more than
one in a million during 70 years of daily ingestion. So

do we perceive smaller probabilities than our ancestors
did? Perhaps. Or perhaps we are more afraid of dying.
The selection of a threshold probability begins to look
arbitrary. Condorcet proposed, as a threshold, the risk
of sailing on the packet from Dover to Calais. That was
before the French Revolution. (Considering Condorcet's
fate, he woutrd surely have picked, as the smaller risk,
that of sailing from Calais. He perished in the French
prisons.) Would we now regard the prospect of drown-
ing in the English Channel too small to entertain while
beating toward France?

Family leud
Finally, and most simply, try afl experiment in the

laboratory of your mind. Suppose that you did face a
house that could p ay off aninfinite pile of dough. Would
you risk all your income to take its bet? Me neither.

But why do people refuse to take a bet with an infi-
nite payoff-that is, with an infinite mathematical
expectation? The most famous solution to th4t problem
came from Daniel Bernoulli, who pondered the question
as posed by his cousin Nicholas. The Bernoullis were a
distinguished, and bedeviled, family of mathematicians.
As Protestants in the Spanish Netherlands in the days
of the Spanish Fury, they had fled Antwerp during the
massacres by Catholics in 1583. They eventually re-
settled in the Swiss city of Basel, whete they commenced
to subtly persecute one another.

For the Bernouliis were riven by jealousy. Daniel's re-
bellious uncle, lacob, became an astronomer, taking on
the motto Invito P aue, Sider a V erso : Against my father's

v+(r+r)(r-#) l4)
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will, I turn to the stars. )acob was also a superb mathema-
tician. It was he who had first proposed how to calculate
the probability of an event such as obtaining the first head
on the tenth toss. He secretly taught mathematics to his
younger brother |ohn, who crossed his father's wish that
he go into business. |ohn proved to be an adept student-
too adept for lacob, who suspected that his brother was
plotting to usuq) him as the mathematician at the Uni-
versity of Basel. Maybe |acob was half-right: When he died
in 1705, |ohn won his old job.

Arrogant, regal, a1oof, the most famous math-
ematician of his day, )ohn cast green eyes of his
own upon his talented son Daniel, who had
begun taking lessons in mathematics at age
11 from his teenage brother. Father fohn
tried to force Daniel into business.
Daniel preferred medicine and math.
Luckily, he had prospects. At age 25,
he was lured from Basel to teach at
the new St. Petersburg Academy in
Russia. However, the academy had
no students, other than the two
that every professor brought with
hirn. For a mathematician bent on

more out of the hundredth dollar than out of the mil-
Iionth. Then even if the bet pays off an infinite number
of dollars, the satisfaction of that much money to you
can be modest. You might pay just a few dollars for it.

Bernoulli argued that one's satisfaction in a gain
would relate proportionally to the size of the gain but
inversely to one's fortune. You think more highly of a
$1,000 windfall than of a $10 windfall, but the $1,000
means more to you if you are a pauper than if you are a

millionaire. Let x be the amount of money that
you now have and Let dx be an addition

to your money. (Nota bene: dx is one
symbol, not the product of d and x.l
Let y be your satisfaction in money
and let dy be the addition to your
satisfaction. Then, Bernoulli ar-
gues/

dv= k'dv
X

for some positive number k.
To put (5) in English un-

adorned: The change in your
satisfaction varies directly with
the change in your money, and
it varies inversely with the
amount of money that you
have. For example, if you are
as rich as Croesus (in the days
bef ore Cyrus the Great
stripped him), and if your
grandmother bestows upon

,, i you a birthday check for $5,'r then your satisfaction will in-
, crezSe just a bit; dy wlllbe a
, smidgen. A lot, though, de-

pends on k. This is a positive
constant that expresses one's
sawy as a consumer, one's abil-

ity to cope with rapid rises in
., wealth. The well-educated may

have high k values: You will enjoy a

windfall of a million dollars more if you
know just what to do with it. To cap-

ture these ideas, Bernoulli uses calculus
to pull out of (5) a logarithmic function that

ties satisfaction to fortune:

vlxl: klogx + c,

where c is a constant. In fact, let's specify the constant
as the product of -1, k, and the log of your level of for-
tune before taking the bet, a fortune we'1l call u:

vlx):klogx-klogo.

(5)

research, in an era whcn most
mathematicians had to spend i

most of their time teaching, the !

academy was Elysium. But St.
Petersburg-Peter's n ew capi-
tal shaped out of the Neva
swamps at the cost of thou-
sands of lives, including that
of the architect, who came
under the knout of the tsar-
was young/ rowdy, and raw.
The court politics were hard
to take, and as the Aca-
demy's backers expired, its
future clouded. With illness
as an alibi, Bernoulli quit the
city atter eightyears, rn1733,
virtually shaking the dust off
his sandals. He yielded his job
with grace (arare commodity for
a Bernoulli) to a hearty young
friend from Switzerland who could
dash off apaper between the first and
second calls to his dinner. The friend's
name was Leonhard Euier.

The aesthetic Daniel had disdained the gambling life
in holy Russia. Yet from it he seems to have gained an
insight into the przzle that a gambler might pay litt1e
for a bet of seemingly infinite value: The gambler does
not think of money but of its utility, of its power to pro-
cure felicity.

Suppose that each dollar more adds less and less to
your satisfaction. You get more satisfaction out of the
first dollar that you spend than out of the hundredth;
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Finally, since we want to treat D as an argument in
a log {unction, let's put as much of (8) into one 1og func-
tion as we can/ by putting that sum of functions under
one log roof . Since log x, + log x, : log xrx, and r log x
: log x', we can convert (8) into

,=fI(,, +z*'\)* -o.

Problem 7: Check that, as promised, log [(o( + Dlla]
equals the value of (9).

By Bernoulli's reckoning, if you begin with a fortune
of $100 (that is, o : $100), then you will pay no more
than about $4 for the bet (that is, D will be about $4.
When I tried out Bernoulli's equation on my micro
home companion, QBasic, I got $a.39). In other words,
you will give up the bet for offers that well exceed $4.

Problem 8: Verify Bernoulli's estimate that if you be-
gin with a fortune of $100, then you will pay no more
than about $4 for the bet.

Problem 9: If youbeginwith a fortune of $1,000, about
how much will you pay?

In effect, Bernoulli had usurped the old view of ex-
pectation, which legal scholars of the seventeenth cen-
tury had developed to chip away at the church's tenet
that gambling and usury were unjust. They had sought
to compute a just return for bankers and insurers who
shouldered risk. |ustice/ as they saw it, meant that all
would charge the same price for a risk-its mathemati-
cal expectation. Lr this exegesis of expectation, one peers
into the future like a stone-faced judge. By contrast, in
Bernoulli's theory, one deliberates on the future like an
anxious merchant. The value of the risk varies from one
person to another; not all will pay the same price. That
argument nettled Nicholas Bernoulli, a professor of Ro-
man and canon law. He objected that his cousin had
failed "to evaluate the prospects of every participant in
accord with equity and justice." Daniel replied, quite
simply, that his theory "harmontzed perfectly with ex-
perience." He was calibrating the math to fit the world.

What's it mally ltlol'lh?
Fast forward by more than a century. Among

economists, the Young Turks arrle, brandishing
their scimitars of calcu1us. They cut up, with relish,
the teaching of the Old Turks that the value of a good
depended on the amount of labor that went into its
making. No, they say, the value of a good depends
upon the consumer's satisfaction in it, especially in
the last unit consumed. The Young Turks call that
unit satisfactton marginal utility, and they make it
their touchstone. Curiously, they credit the concept

Here, y co4veniently expresses your relative gain (or
loss) in felicity as your fortunes wax (or wane). In the
manner of the callow economists, we'll call this func-
tion the utility of the amount x of the money that you
gain. If your fortune remains at cx,/ then your y-odometer
will remain stuck at zero, for y = k log 1 : 0.

Back to the bet. For simplicity, let's set k : 1. You be-
gin with fortune cr. If you get heads on the nth toss, then
you will add to o the amount2-r . Your glorious new for-
tune x will b e a + 2'-r . The utility of that fortune to you,
y(x), will be log[(o + ,n-r)la).The probability that you will
get the fortun e is I pJ . Accounting for every toss on which
the first heads can occur/ we can define the expected utility
U to you of undertaking the bet:

"=:(,)'*[*#J
What would you pay to take this bet? Surely you

would pay no more than you thought the bet would be
worth to you. We've aheady seen that this amount is
less than the mathematical expectation of the basic St.
Petersburg bet, which is infinite. The question is
whether we can use that notion of utility to come up
with a more precise estimate of what the bet would be
worth to you in terms of satisfaction. It may help to
approach the question by the back door. Suppose that
you had the right tci take the bet for free. Then how
much would I have to pay you to induce you to yield
your right? It would have to be some amount-let's call
it D-that, you think, would leave you as satisfied as

the bet would. Suppose that you add D to the fortune tr
that you aheady have. Then-remember (6)!-the util-
ity of your new fortune wili be log [(o + D)lo"]. You won't
give up your bet unless this utility is at least as great
as what you expected to receive from the bet. We must
pick D so that log [(o + Dllu) equals the value of (7). To
do this, let's put (7) in a more palatable form.
Since log lxrlx2l : log x, - log x2, we can write

Since log cx is a constant/ we can set it outside the sum-
mation:

t- rl
u=loglfl("* r"), l-toga. (e)

L r=I -l

Finally, we have our expression for D;

17)

" 
= : (r.),"*(" * z"-')- i (#),* "

" = 
I(+)'"r(" 

* 2'-')-'"-"i[+)

But (manna from heaven!) that last series just sums to
1, so

" 
= Z(;J 

t"r(" * z"-')- log u.

24 JANUARY/tEBRUARY rsoB

(8)



not to Daniel Bernoulli but to an English philosopher,
|eremy Bentham.

By the twentieth century/ econornists were finally
coming to grips with the sage from St. Petersburg.
Among them, Karl Menger raised a red flag. What if you
raised the bet fron:'2- I on the nth toss? You could do
this by specifying a 1og function that had no bounds. As
the amount of money, 5 loped off into infinity, so did
the utility from money, Ulx). For.instance, it was quite
possible to find a sum of money x, such that u(x,) = 2 - t 

.

But in that case, the utiiity of the bet was

The obvious solution was to set a ceiling on the
amount of satisfaction that one could receive from any
amount of money-that is, to bound the utility func-
tion. In (5), this amounts to specifying a maximum value
for y(xl-say, a million utils for any income that is at
least $10 million. For example, a gambler with this util-
ity function would reap no pleasure from receiving more
than $10 million. So he would pay no more than $10
million for any bet. In fact, Bernoulli knew of that solu-
tion. His paper reprinted a remark by yet another Swiss
mathematician, Gabriel Cramer, that the value function
really should be bounded. (Cramer had a knack for
unknotting problems. Cramer's rule, for using matrices
to solve simultaneous equations, still helps us model
everything fuom hurricanes to world economies.) Unfor-
tunately, Cramer concocted a function in which the total
value of money eclualed the total amount of money un-
til one had amasse d, say , $ 10 million , after which addi-
tional amounts of money were worth nothing. Marginal
value suddenly swooped from one to zero. Surely the
descent should be more gentle than that.

A utility function that graphs as a hyperbola will do
the trick more neatly than Cramer's function. Let wbe
wealth and let Z be the state of bliss. Then scribble
down the function

u(w)=:y- (10)\ / Z+w

This, for a utility function, is a cream puff . See for your-
self!

Problem 10: In (10), show that U(w) gives us zero util-
ity for zero wealth; marginal utility of one for zero
wealth; and a smooth, asymptotic hang-glide to Z in
utility as wealth increases.

What does all this have to do with today? Well, why
do societies invest so 1itt1e in accumulating knowledge?
Consider the dire straits of pure mathematics-the ba-
salt of science and technology. Pure math enables econo-
mies to grow/ yet we spend little to support it. The same
was true in Daniel's day. Although rulers recognized that
mathematics would improve the navigation of their ships

and the precision of their cannons/ few wouldpay much
for it. The short list begins with Frederick of Prussia and
ends with Catherine of Russia. (Theirs was money well
spent/ on mathematicians obsessed. While paging
through the Aeneid, Euler chanced upon this line: "The
anchor drops, the rushing keel is stay'd." He dropped
his book, seized his pen, and modeled the swaying of
the ship.) What whetted the jealousy of the Bernoullis
was their perpetual scramble for a handful of jobs and
prizes: fohn Bernoulli tossed one son out of the house
for winning aprrze from the Academy of Sciences rn Paris
that |ohn had vied for. "After a11," remarks a sparkling
historian of math, E. T. Be1l, " il rattonal human beings
get excited about a game of cards, why should they not
blow up over mathematics, which is infinitely more
exciting? "

For the nation, investment in basic research is a
gamble, a groping for high-payoff, low-probability ideas,
a pursuit of heads on the hundredth toss. If expected
payoffs were a1l that mattered, then we would be fools
not to spend more on research. But bend your ear to
Bernoulli: What matters is not the amount of money
that we might make-it's the satisfaction that we would
derive. Suppose that we don't have much use for an-
other half billion bucks. Then we might well prefer to
keep the income that we have to risking part of it on a
gamble.

For that reason, appeals to finance more research be-
cause it will someday pay off in cold cash won't stir the
nation. What may open hearts and wallets, however, is
an appeal to ante up for research because it is a gamble, a

historic thrill. Think of the race to the Moon! O
ANSWERS, HINTS & SOLUTIONS ON PAGE 50
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HOW DO YOU
FIGURE?

Challoltug$ in phy$ics and malh

tlllAIh Physics

M221
Seven-digitmust. Find the length of
the longest geometric progression,
all of whose terms are seven-digit
positive integers.

M222
Triangular heights. In triangle AB C,

ZBAC equals cx. The circle inscribed
in the triangle touches its sides at
points K, L, andM, andMlies onBC.
Show that the ratio of the length of
altitude MM, of triangle KLM to the
length of altitude AA, ol triangle
ABC equals sin (o/2).

M223
Radical prool. Prove that

.3ic 2n -tan-+4S1n-= VII.
11

M224

11

Solvable system. Solve the following
system of ecluations:

(For a hint, read the first three
lines of our printed solution. )

M225
Infinite pr o gr ess-p erhap s. The set
of natural numbers is divided into
two parts. There are no three-
member arithmetic progressions in
one of them. Must the other part
have an infinite arithmetic prog-
ression? (A. Skopenkov)

2.2n4

lr*y 2-x
] 
1."y - r-2"

l r-y 3+y
t-

It-"y l+3y'

P221
Rod hits a wall A rod of length
I : 10 cm slides with velocity

Figure 1

v = 70 cm/s and rotates on a

smooth horizontal surface. What
angular velocity is necessary for
the rod to hit the wall flatwisc (see

fig. i ) rf it was oriented parallel to
thc wa1l at a distance I - 50 cm.
{I. Potcrayiko)

P222
Shnrt life of a soap bubble. A girl
blows a soap bubble using a long
tube. After inflating the bubble, she
opens the end of thc tube, which
causes the bubble to collapse in
somc time t. What is the lifctime ot
a bubble with nvice thc tli:uretcr i

Assume that thc air tnor-es sLorr'lr'
inside thc tLthc .rnJ tlr. pr ,p.r trc- i
the soap iilm arc rrlentlcal rn L-,oth

bubbles. lD. Kr:Frtsor-'

rZZJ
Sttclt tr sintple cfucttit. The circuit
diagram in figurc 2 contains ideal
batteries and identical arnmeters.
What will a voltmeter shou, in this
circuit? What can the resistance ol'

the ammeters and the voltmeter
be? Remcmber, sometimcs actual

4.5 V

Figure 2

devices are {ar from ideal!
(A. Zilberman)

P224
Electric discharge in a gas. At room
temperature, only a small portion of
neon (Ne) atoms are broken down
into electrons and ions during an
electric discharge in a rarefied neon
gas. Neon's atomic mass is 4 . lO4
times larger than that of an elec-
tron. The mean free path of the elec-
trons (that is, the mean average dis-
tance an electron moves between
collisions) is 1 : 0.1 mm. The gas is
in an electric fieid E : 10 V/cm. De-
termine the mean kinetic energy of
the electrons and their correspond-
ing temperature. The Boltzmann
constant is k : 1.38 . 10-23 llK, and
the electric charge of an electron
ts e: I.6. l0 le C. {D.Kuptsov)

P225
Shining thread. A source of light is
a thin thread of length 7 : 10 cm 1o-

cated on the principal axiq of a con-
verging lens with focal length l: 5

cm and diameter D : I m. The
near end of the thread is located a

distance a = lO cm from the lens.
Find the minimum size of the illu-
minated spot on a screen placed on
the other side of the lens perpen-
dicular to the lens's principal axis.
(A. Zilberman)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 45
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"Because of their size, the motion of

the tiny bits of matter cannot be

seen. "-Mikhail Lomonosov

KALEIDOS

[UloleHlar
j

I

Do you really know how :

OME STROKES OF THE GEN-
eralized portrait of molecules:
They are so small that If every-
body on Earth donated one bi1-

lion molecules, the total mass of the
collected matter would be no more
than a few billionths of a gram...

They are so numerous
that if a glass o{ "labeled"
molecules was poured into
an ocean/ then after a long
period of time a glass of

water from any ocean would con-
tain no less than 200 labeled moi-
ecu1es...

They are so crowded that a mol-
ecule in a gas under usual conditions
has 10 billion collisions per second
with other molecules...

They are so quick that a verti-
cally moving air molecule could
reach an altitude of about 10 km
before being stopped by the force of
gravity, if it didn't collide with
other molecules...

However, in spite of their small
size and brisk motion, molecules be-
tray their presence in a number of
ways. We hope your solutions to the

following problems will not permit
the molecules to hide from eyes
armed with modern knowledge.

Questions and problems
1. Why is the volume of a mixture

of water and alcohol less than the
sum of the volumes of water and al-
cohol taken individually?

2. Why does a highly inflated and
tightly closed rubber ball shrink over
the course of several days?

3. A tube with walls made of a
microporous material is placed in-
side a reservoir from which the air is
pumped out. If the tube contains a

mixture of gases, the gas that accu-
mulates in the reservoir has a higher
concentration of the lighter mol-
ecules. Why?

4. There are three isotopes of hy-
drogen with mass numbers of 1,2,
and 3. Ions of which isotope move
more rapidly to the cathode during
electrolysis?

5. One face of one end (B) of a
glass slide is covered with a layer oI
copper. The slide is suspended on a
thread as shown in figure 1. It does

Figure 1

not move in air, but when chlorine
is substituted for the air, the slide
rotates with side B moving forward.
Explain this phenomenon. Hint: The
chlorine molecules are adsorbed by
copper, but they are reflected by
glass.

6. To weld one piece of iron to
another, a blacksmith heats both

I

I

28 JAttttlARY/TTBBUARY tssB



f SCOPE

I' illlriutlE

"The origin of things is not visible to

the human eye."-Lucretius

i-

I

,v small molecules are?

pieces white-hot in the flame of a
forging furnace, places one piece
over another on the anvil, and ham-
mers them together with strong
strokes. The resulting
joint is strong. Whyi

7. Two identical
vessels are set on
each side of an
equal-arm ba1-
ance. One of the ri

vessels is fil1ed
with dry air, the l

other with wet air
of the same pressure
and temperature. Which
vessel is heavier?

8. In what atmospheric layers
does air behave more like an ideal

gas-near the Earth's sur-
face (the troposphere) or
"up above the world so
high" (that is, in the
stratosphere)?

9. The magnetic field
in aWilson cloud chamber

is uniform. Why does the track of a
particle have a varying (continuously
decreasing) curvature?

It is interesting that...
...in the Tennessee River valley a

giant fabric was constructed that
separated two isotopes of uranium

1235U and z:su;. The gaseous mix-
ture of the two isotopes circu-

l!{icroexperiment
Hcat water in a kettle just to the

boiling point and turn the burner off.
Wlry docs a strong vapor jet inrme-
diately shoot upward from the
l<ettle cven though
ntl vapor coultl he
seen before?

-Compiled by
A. Leonovrch

Quantum articles
about molecular kinetics:

1. Kikoin, A., "Temperature, heat,
and thermometers," May 1990, pp.
t6-21.

2. Schreiber, H. D., "Be1ow abso-
lLrte zcro," January/Feb ruary 1997,
pp.23-27.

3. Stasenko, A., "An ideal gas gets
real, " Septcmber/Octobcr 1993, pp.
42-43.

4. Stasenko, A., "Love and hate in
the molecular world," November/
Deccmber 1994, pp. 10-13.

5. "What a commotion," Ma1-
1990, pp. 32-33.

ANSWERS, HINTS & SCLUTIOIIS
ON PAGE 48

,, lated throughout the cham-
iiil bers with porous wails.

I

I

The lighter molecules dii-
fused through the wa1ls
more rapidly than the
heavier molecules, which
made it possible to sepa-

rate the isotopes.
...in clouds of interstellar

gas/ researchers found not only
comparatively simple molecules,
such as water and ammonium, but
also complex organic compounds.
The compounds were detected by
emission and absorption spectral
lines in the radio frequency range.

0l|Alllrtllll/t{ALil00s[0pr 2g



IN THE LAB

]lyperholic lensiolt

A handier way of measuring a superficial coefficient

HE USUAL WAY OF MEA-
suring the coefficient of surface
tension of a liquid is based on
how far the liquid is drawn into

a caplllary tube. However, the cap-
illary tubes and a microscope to
measure their internal diameter are
not always readily available. Fortu-
nately, two glass plates can be used
in place of the caplllary tubes.

Begin by submerging the plates
parallel to each other in a vessel of
water. Slowly bring them close to
each other, maintaining the paral-
lel orientation. When the plates are
very close together, water will rise
between them due to the force of
surface tension (fig. 1). From the
height y and width d of thewall of
water between the plates, we can
easily find the coefficient of sur-
face tension o. Indeed, the force
due to the surface tension is
F :ZoL, where Z is the length of a
plate (the factor 2 appears because
the wall of water is pulled up by
both plates). This force counterbai-
ances the weight of the wall of
water with mass m: pLdy, where

by l. l. Vorobyov

p is density of water. Thus,

ZoL: pLdyg.

Therefore,

I
o = )osdv {11

Our setup makes it possible to
perform an interesting experiment.
Let's push the plates together at
one end and leave a sma1l separa-
tion at the other (fig. 2). Water will
rise between the plates and form a
wonderfully regular surface (of
course/ you should use clean, dry
glass plates). It is not difficult to
understand that the vertical cross-
section of this surface is a hyper-
bola. Indeed, insert the separation
(how it depends on x) into equation
(1) instead of d. As we can see from
the similar triangles in figure 2,

Here D is the separation at the end
of the plates, I is again the length of

the plates, and x is the distance from
the reference point (located on the
line where the plates are in contact)
to the position where we calculate
the height of the water level and
clearance between the plates.
Therefore,

I -xo = 1P8YD1,

or

2oL 1

' PgD x tLl

Ecluation (2) describes a hyperbola.
To carry out this experiment, use

glass plates that are 10 by 20 cm.
Use a match to fix the separation and
a cuvette from a photo lab as a ves-
sei. The height of the water level can
be conveniently measured if you af-
fix graph paper to the outer surface
of one of the plates. When you have
a curve drawn by the water/ make
sure that it is a hyperbola. Recall
that the area of any rectangle under
the hyperbola is the same (fig. 3).

d=D1
L

Figure 1
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Other instructive experiments
can be carried out with our setup. For
example, you could use a thermom-
eter to measure the water's tem-
perature and find the dependence of
surface tension on temperature. You
could also study the effect of dissolv-
ing substances in the water on this
physical phenomenon.

At last, think about this question:
The direction of the surface tension
F is perpendicular to the line where
the water surface contacts the glass

ffi1. a). The vertical component of
this force is counterbalanced by the
weight of the water column. What
force counterbalances its horizontal
component? o
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PHYSICS
CONTEST

local lields loreuer
"What doth gravity out of his bed at midnight?"

-Shakespeare, 
Henry lV

by Arthur Eisenkraft and Larry D. Kirkpatrick

p = (60 t<g)(a m1s2 + 9.8 m/s2 
)

= 588 N,

where F, is the force of the scale and
F. is the gravitational force.

" The scale reads 588 N, or 180 N
more than your normal weight. But
it's not just the scale's reading. You
really do feel heavier while the eleva-
tor accelerates upward. You experi-
ence the same sensations that you
would have on a planet with a stron-
ger gravitational pull.

If we move to two dimensions,
we have a more interesting effect.
As your car acceleratesl you are
pressed against the seat. It is al-
most as if another planet appeared
behind your car. You now experi-
ence the gravity of Earth and the
apparent gravity connected to the
acceleration. If the car accelerates
at 9 .B rnf s2 , you will experience the
vector sum of the effects of the
gravity and the acceleration. Ignor-
ing the prior knowledge that cars
are hortzontal, the two accelera-
tions are indistinguishable.

An interesting experiment to
perform involves a helium balloon
tied to the seat in your car. As the
car accelerates forward, the helium
balloon will lean forward. There
are two distinct ways of explaining
why. The first involves the inertia
of the air. An acceleration forward
compresses the air in the rear of
the car. The increased pressure in

the rear of the c,ar forces the bal-
loon forward to the area of lower
pressure. Alternatively, we can
imagine the acceleration of the car
as being equivalent to a gravita-
tional field pointing backward. We
can find the effective gravity by
finding the vector sum of the two
gravitational forces. The helium
balloon will point opposite this
Yector sum in the same way that
it points opposite the Earth's down-
ward pull. We can call the vector
sum of the gravitational fields the
"Iocal field. "

Both approaches, pressure differ-
ences and local fields, can be used
to explain the motion of the helium
balloon. What's so nice about the
fieid lnterpretation is that the angle
of the balloon can provide an in-
stantaneous calculation of the
car's acceleration. If the angle is
45' , the car must be accelerating
at 9.8 m/s2.

We live on an accelerating planet.
Earth is rotating on its axis, and all
objects on Earth must have"a centrip-
etal force pulling them toward the
axis of rotation. Objects at the equa-
tor require a large centripetal force
in comparison to objects in the
United States. Objects at the North :<
Pole require no centripetal force at f;
all. What force is responsible for this Z
centripetal force? It must be gravity f
since gravity is the only force E
present. If a component of gravity is 6
required for the centripetal accelera- t

N ASTRONAUT'S DAY MAY
be more intense than yours,
but the physics is basically the
same. You get in an elevator

and feel a bit heavier as the elevator
accelerates upward. The astronaut's
shuttle accelerates upward and the
astronaut feels three times as heavy.
You jump off a step and experience
weightlessness for less than a sec-
ond. The astronaut lives on the space
shuttle or Mir and experiences
weightlessness for days or months.

How do we comprehend these sen-
sations of feeling heavier or lighter?
Can we distinguish between accelera-
tions and gravitational fields? The e1-

evator problem is a classic in elemen-
tary physics: If an elevator accelerates
a 60 kg student upward at 3 mf s2,
what is the student's weight? If you
are stanfing on a bathroom scale in a
stationary elevator (as only a dedi-
cated, socially secure physics student
would), the scale supports you by ap-
plying a force equal in magnitude to
Earth's gravitationai force. The force
exerted by the scale is what we call
your "weight." When the elevator
begins to ascend, the scale pushes on
you with an additional force-enough
to accelerate you.

\r=ma
E 

-E 
_ftrs-rg=tI7A

F' = rTla* F'

r' = m(a+ ar)
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tion, then the remaining gravita-
tional force must be considered the
object's weight. Assuming a spheri-
calEarth, the weight of an object at
the equator (r,irhat a bathroom scale
would read) would be less than the
weight of that same object at the
North Pole.

The bathroom scale in the eleva-
tor had a different reading because
of its acceleration. We can use this
weight as a measure of the local
field. Similarly, we can consider the
local field of Earth at each latitude.
The local field is equai to the vector
difference of that gravitational fieid
and the centripetal acceleration.
These local field effects are quite
real. The astronauts sense them, we
sense them, and Earth senses them.
The local field defines the direction
an object fa1ls and the perpendicular
to the surfaces of liquids. Over ti.me,
the local field has actually changed
the shape of Earth!

Our contest problem begins by
asking you to find some loca1 fields
on an idealized spherical Earth.

(1) Calculate the local field at the
equator, the North Pole, and at 4Oo

latitude.
(2) Determine the angular devia-

tion of the local field at 40'latitude
from the radialline toward the cen-
ter of Earth.

(3) The local field at the equator
is along aradial line; the local field
at the North Pole is also along a ra-
dial iine. For al1 other latitudes, the
local field deviates from the radial
direction. For which latitude is the
deviation of the local field from the
radial line the greatest? Calculate
this deviation.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, YA222OL-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

A physirs soulllf
We asked our readers in the |uly/

August issue of Quantum to analyze
the atmosphere of an unknown
planet using an uncalibrated graph
of pressure versus time generated as
a probe descended vertically. We

begin by examining a small rectan-
gular slice of the atmosphere with a
horizontal cross-sectional area A and
thickness Ay. The force due to the
pressure differences on the slice in
the vertical direction must support
the weight of the air within the slice.
Therefore,

PtA * PuA: pALyg,

where P* and P, are the pressures at
the upper and lower surfaces, p is the
mean density of the air, andg is the
value of the local gravitational field.
Thus,

LP: pgLy.

If we divide both sides by a smal1
increment of time At, we can find
how the pressure changes with time:

where v is the speed of the probe.
Because we do not know the den-

sity o{ the gas, we use the ideal gas
law

PV: nRT

to find that

nM PM
' v RT'

where n is the number of moles of
gas, M is the molecular weight, R is
the gas constant/ and T is the abso-
lute temperature of the gas. This
Ieads us to

AP RT
Lt PMg

We use this relationship to find the
speed of the probe just before it hits
the surface. We find the surface
value of rcltt by calculating the
slope of the pressure-time curve just
before it flattens out. We estimate a
value of 0.060 t 0.006 units/s. Using
values of 7, = 400 K, P" = 60 units
from the graph, M : 44. 10* kg/mol,
g"= 9.9 N/kg and R : 8.3 |/mol.K, we
obtain v"= 7.6 + 0.8 m/s, where the
uncertainty in the speed is due to our
uncertainty in the slope. We note
that the unit of pressure/ and there-

fore the calibration, does not matter
because the units in the rutia LPIP
cancel. Therefore, the pressure cali-
bration is not needed for this mea-
surement.

At a constant speed it takes the
probe

t=L=2ooo+2oos
ys

to fall from a height h: 15 km. At
t : 2000 s, P = 15.0 units, g: 9.8 N/kg
at altitude, and lJDlLt: 0.012 units/s,
we get

PMgv"t =-=490K.
nLP

Lt

Using the other times and the cor-
responding pressures and slopes, we
estimate that there is an uncertainty
of 90 K or more in the temperature.
Therefore, we are not able to deter-
mine the temperature very accu-
rately.

A significantfactor in the ana\y-
sis is the assumption that the probe
has a constant speed for the entire
15 km. If the probe had reached ter-
minal speed before it reached an al-
titude of 15 km, the probe should
slow down due to the increased air
resistance as the atmospheric den-
sity increases. If the probe takes
2OYo longer to complete the de-
scent from 15 km, the calculated
temperature decreases to about
430 K. If the probe had not reached
terminal speed at an altitude of
15 km, the descent time could be
quite a bit shorter, resulting in a
much higher temperature. we con-
clude that we really do not know
the temperature very well and that
if the mission is to be repeated, the
mission scientists should be ca-
pable of measuring the probe's
speed profile.

Final1y, we note that we obtained
a higher temperature at altitude than
at the surface. This differs from
Earth's atmosphere, where the tem-
perature at an altitude of 15 km is
approximately -50'C/ very much
lower than typical surface tempera-

LP Av
Ar =p8 A, =P*v,
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AT THE
BLACKBOARD I

lncandesceltl hulhs
I I I umi nati ng thermal expansion

D. C. Agrawal and V. J. Menon

expansion? Let's try to answer these
questions using some basic physical
arguments and some numerical es-
timates.

OST OF YOU
have heard about
thermal expansion,
a property which

must be taken into as-
count in many engineering
projects. The most com-
mon textbook example is
railroad tracks-gaps are
left between the rails to
accommodate the rails'
expansion in hot weather.
Thermostats in homes and
appliances depend on the
difference in expansion of
the two metals of a bime-
tallic strip. Another house-
hold item that exhibits
thermal expansion is the
lightbulb.

If your physics teacher
asks, "What is the hottest
thing in your home?" you
should answer/ "The fila-
ments in the incandes-
cent bulbs." Indeed, the
filament in a typical 100-W
bulb operating at 120 V
has a temperatdre as high
as 2900 K, which is about
half the temperature of
the solar photosphere.
This raises a number of
questions. For example,
how do we know the fila-
ment is so hot? Also, the
filament must have ex-
panded noticeably in both length
and diameter because room tem-
perature (-300 K) is much lower.
What are the physical effects of this

Filaments in 100-W
bulbs are made of ex-
tremely thin, smooth
tungsten wire with length
Lo = 0.475 m and radius
ro = 3.05 '10*5 m at room
temperature 7o : 300 K.
To accommodate such a

long wire in a small glass
housing, the filament is
wound in the form of a

coil or perhaps a coiled
coil. At room temperature
the resistance is fairly low,

Ro = &? = 9.18 c),
7116

where po:5.65 ' 10-8 f).m
is the resistivity of tung-
sten.

When such a bulb is
turned on, a relatively
large current begins to
flow,

13.1 A,

where V is the constant
voltage for a direct current
or the rms value for an al-
ternating current. As r-or-r

would expect, thi. cau.=.
a large alnounr ,'r ' '.. -
heating, and the rar:.:i-
ture oi th. ir-,::-.--:

quickly rises. Within about 0.1 s. the
temperature achieves its normal op
erating value 7, and the bulb glorrs
with its full brigharess.

1/
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o
C
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The physical prop"rti", of metals
are usually temperature dependent.
For instance, the resistivity of tung-
sten is experimentally known to
obey a power law,

Furthermore, the temperature de-
pendence of the length is given by

L=Lolt+o(T)),

where

is the effective coefficient for ther-
mal expansion of tungsten at tem-
perature 7. Metallurgists have mea-
sured this coefficient and state its
value as a percentage change in the
length compared to the length mea-
sured at the standard temperature
293 K. The value of the coefficient
varies over a wide range, from
0.003% at300Kto2.209% at3555 K.
In many textbooks, o(T) is approxi-
mated by u(7 - 76), where cr is con-
sidered a constant. However, over
the large temperature range consid-
ered here, a for tungsten varies sig-
nificantly.

When we apply this thermal ex-
pansion to both the length and the
radius of the filament, we find that
the resistance of the filament at a

Table 1

temperature 7 becomes

-pL
ftr-

-T"1
( T )' '''l ro(t + o(r)) 

|=o,lr,,] 
L-;G,rf]

, .1.215
,[T] I-*lhl

As you may recall, the rated
power P ol a bulb in normal opera-
tion is given by the rate of produc-
tion of joule heat,

n v' Yr(l-o(r))lT 'r:t'r=R= ru l, ill

In principle this equation can be
solved for ?. This may appear com-
plicated because of the presence of
o(7), for which we only know the
tabular form from the literature.
Luckily, the saving feature of the
equation is that o(7) is numerically
small compared to unity through-
out the range 300 K < T < 3655 K.
Therefore, we can resort to a
simple approximation technique to
find the solution.

For this putpose/ 1et's introduce a
model temperature T' that satisfies
equation (1)when o(7) = 0.Therefore,

( ,rz \iG
r' =r^l += | lzl"IRoPJ

The physical significance of 7'is
that it represents the temperature
of a hypothetical hot filament that
does not expand thermally. Be-
cause we can expect T' to be rea-
sonably close to the unknown tem-
perature 7, we can, to a first
approximation, replace o(7) by
olT'), a constant, and resolve equa-
tion (1) to obtain

r =r'(r+o(r'))*

Using the binomial theorem we can
further approximate this expression
to read

( o{"'l\r =r't t+_! I i.qtI t.Zts ) '"'
This is the desired temperature of
the filament. The difference be-
tween T and 7' is due to the ther-
mal expansion.

When we insert typical param-
eters for the 100-W bulb into equa-
tion (2), we find T' : 2890 K. We
now look in the CRC Handbook of
Physics and Chemistry to locate
the pair of temperatures surround-
ing 7'and deduce the value of o(T')
by linear interpolation. Thus we
find o(2890 K) : 1.553% and

T =Iileorfr+ 
0'016) :2e27 R.
1.zts )

The data and results for other bulbs
manufactured by General Electric
are shown in table 1.

AJthough the coefficient of ther-
mal expansion o(7) is smal1, the dif-
ference T - T' = 37 Kis substantial.
The reason for this significant effect
is that the temperature T' in eclua-
tion (3) is large compared to room
temperature. This is why we are jus-
tified in saying that incandescent
bulbs provide a good illustration of
the effects of thermal expansion in
metals.

D. C. Agrawal is a reader in the De-
p artment of Agricultur al Engineer -

ing and V. f. Menon is a UGC re-
search scientist in the Department
of Physics at Banaras Hindu t-Ini-
varsity, Varanasi, India. E-mail:
v j m en on@b an ar a s, er n et. in

, ,1.215rT)
P=Pol - |

\. ro /

"(r)=+

e

P

(w)
Ln

(m)

l'r

(m)

T'
(K)

o(r')
(%)

T

(K)

T_T'
(K)

o 0.371 5.71 10 6 2276 1.492 2296 2A

60 0 533 2.29 1A 5 2497 1.251 2523 26

100 0.475 3 05. t0 s 2890 1 (tr? 2927 37

500 a.B7 4 9.02 10-" Zl/J 1.458 2806 33

I 000 0.973 1.45 101 3134 1.752 3179 45

5000 1128 3.68 10-4 3418 I 996 347 4 56

1 0000 1.384 5.84..1 01 3492 2.461 J55 59

JAIIIUARY/IIBRllARY I S g838



GRADUS AD
PARNASSUM

Ual'ialiolt$ olt a lhelne

by Mark Saul and Titu Andreescu

In other words, If a, b > 0, then

,, ,a+bUAD= 
U r

and

T 1 a+b
ttAO:-

if and only ll a: b.
Proof: The square of a real num-

ber cannot be negative. Therefore
|"tr - "61' 

> o. But this means that

l,h)' *6fD)' -z[ab >0,

or

a+b > 2"1ab ,

which gives us the required result.
Equality holds onlywhen (vE - ",lUl'
: 0, or when a: b.

Now can you see the meaning of
variations -3, -2, and -1? You will
find more exercise in the following
variations. Often the AM-GM in-
equality is used to compare a prod-
uc,t to a sum or to transform the one
into the other. Watch how this
theme unfolds.

AB

Variation 1: A rectangle has pe-
rimeter 20. What is its largest pos-
sible area?

Variation 2: A rectangle has area
100. What is its smallest possible
perimeter?

Variation 3: Generalize the so-
lutions to variations I and 2 to
show that (a) if the sum of two
positive numbers is constant, then
their product is maximal when
they are equal, and (b) if the prod-
uct of two positive numbers is
constant, then their sum is mini-
mal when they are equal.

Variation 4: If x is a real number,
find the smallest possible value of
the expression x + lf x.

Variation 5: If x is a positive real
number, show that 2",1x - x a l.

Variation 5: If x is a real number,
find the largest possible value of the
expression$+al(6-x).

Variation 7: If 0 < x < nf 2, find the
smallest possible value of tan x + cot x.

Variation B: For any real number
x, find the largest possible value of
(sin2 x)(cos2 x).

Variation 9:lf x is a real number,
find the minimum value of the ex-
pression 2x + 2-".

Variation 10: If x, y, andz are non-
negative real numbers, show that

x rfyz + y.l xz + rJry < xy + yz + zx.

Variation ll:It a, b, c, and d are
positive real numbers, show that

.r(a + c)(b + c) >.'86 + r cd.

The Arithmetic Mean-Geometric Mean i nequal ity

HE THEME OF THIS COL-
umn is a classic inequality called
the Arithmetic Mean-Geometric
Mean (AM-GM) inequality. But

bcfore we introclnce this theme, we
will usc a procedure pioneered by
Luclwig van Beethovcn rn his "Eroicit"
Variations for piano, op, 35: We will
present some plcJ i nl1n.u1' r'ariations
beforc stating the theme. Please try
them before reacling on.

Variation-3: What is the smallest
value that the square of a real num-
ber can take on?

Variation -2: Figure 1 shows a
semicircle with center O. Its diam-
eter has been divided into two seg-
ments of lengths a andb. Which is
larger, OP or XY?

Variation -1: In trapezoid ABCD,
segment MN connects the midpoints
of legs AD and BC. Segment XY di-
vides the trapezoid into two smaller
trapezoids similar to each other. Fig-
ure 2 shows XY closer to the smaller
base than to the larger base and there-
fore smaller than MN. Is this correct?

THEME: The arithmetic mean of
any two positive real numbers is
greater than or equal to their geomet-
ric mean. The two means are equal if
and only i{ the two numbers are equa1.

P

Figure 1 Figure 2
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Variation 12: Point D is chosen in
the interior o{ angle ABC. A variable
line passes through D, intersecting
ray BA at M 4ndray BC at N. Find
the position of line MN that gives
the smallest possible area for tri-
angle MBN. (For a hint to this rather
difficult problem, glance at the dia-
gram in the solution without read-
ing the details.)

Variation 13: We start with n
positive numbers xr, X2t ...r x, whose
product is 1. Show that if we add 1

to each number, the product of the
new numbers must be greater than
or ec1ual to 2".

For our last variation, we again
follow Beethoven's lead. Like his,
our last variation is something of an
extended fugue, and it uses a rather
advanced generalization of the AM-
GM inequality: For n positive num-
bers ar, a21 ...t ant

A, * A. +...+ A-

n

(That is, the arithmetic mean of n
numbers is not less than their geo-
metric mean.) Equality holds just
when a, - az: : ar.For a beauti-
ful proof of this generalized inequal-
ity, due to Cauchy, see for example
An Introduction to Inequalities by
Edwin Beckenback and Richard
Bellman (Washington, D.C.: Math-
ematical Association of America,
196rl.

Variation t4: (This problem was
posed by one of the authors at the
Romanian National Olympiad, final
round, 1984.)Take n numbers X' x2,
..., xnirr the open interval ll14, l).
Find the minimal value of the ex-
pression

For what values of xr, x2,..., x, does
this minimum occur? Hint: As your
first step, use the AM-GM inequal-
ity to find a lower bound for the ex-
pression xoz + lf 4.
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LOOKING BACK

The lunes ol Hippocl'ales

An early attempt to square the circle

I N THE FIFTH CENTURY s.c.
I in Greece, there lived a scientist
! *rror" name was Hrppocrates or
I cirior. It was Hippoirates who
undertook the first recorded attempt
to write down the basic principles of
geometry. Unfortunately, his work
did not survive until our days.

A legend says that Hippocrates
was an unlucky merchant who
came to Athens seeking justice after
he had been robbed by pirates. There
he met wise men who spent most
their time solving geometry prob-
lems. So, when he failed to pros-
ecute the robbers, he took comfort
in besting the most skilled of these
wise men in the study of geometry.

Hippocrates was trying to "square
the circle"-that is, to construct,
using only a compass and straight-
edge, a circle whose area would
equal the areaof a given square. It's
not difficult to "square" a triangle or
a trapezoid, so Hippocrates might
have thought that his major purpose,

by V. N. Berezin

squaring a circle, was at hand. How-
ever, he couldn't do it (since it is
impossible, as Carl Louis Ferdinand
von Lindemann proved at the end of
the last century), yet he managed to
construct several figures that look
like planar domains bounded by cir-
cular arcs, their arca still equal to
the area of a square.

In the history of geometry,
Hippocrates' name is associated
with figures of a special shape, the
so-called "lunes." We can define the
lune in the following way: If we draw
a semicircle in the exterior of a chord
of a circle so that its ends coincide
with those of the chord, the figure
bounded by the smaller arc of the
circle and the semicircle is the lune.

We see four yellow lunes in figure
1. Hippocrates noticed that the sum
of their areas equals the area of the
blue square. In fact, the reader is
invited to check that the sum of the
areas of the semicircles drawn on the
sides of the square equals the area

of the circle circumscribed about it.
If we delete the violet segments from
the semicircles, we obtain four lunes,
and if we delete them from the large
circle, we obtain the square. This
shows that the areas of the four ye1-
1ow lunes add up to the area of the
square.

Figure 3

Figure 2 illustrates another theo-
rem of Hippocrates. The figure shows
a trapezoid whose larger base is a
diameter of the large semicircle and
whose other three sides are equal in
length to the radius of the semicircle.
It turns out that the area of such a
trapezoid equals the sum of the ar-
eas of the oranges lunes and the area
of the orange semicircle. (These
Iunes are congruent by constructiorl
and the semicircle is equal to those
that form the outer boundary of the
lunes.) The proof of this theorem is
similar to that of the theorem in the
preceding paragraph.

The configuration in figure 3 was
also suggested by Hippocrates. Both
legs and the smaller base of the trap-
ezoid have lengths equal to 1, and
its larger base has a length of .,8.
The lower arc bounding the domain

0llAirTllri{/L00rilrllG BAcr( 3g
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Figure 4

shaded by black lines in figure 3 (we
can caII this domain "the general-
izedlune") is tangent to the diago-
nal of the trapezoid.It turns out that
the area of the shaded lune equals
the arca of the trapezoid (to prove it,
we can check that the sum of the
areas of the two lunes on the legs of
the trapezoid and the lune on the
smaller base equals the area of the
lune on the larger base).

Figure 4 represents a configura-
tion whose properties Hippocrates
apparently did not know. The area
of the right triangle in figure 4
equals the sum of areas of the
lunes. The proof of this statement
can easily be derived from the
Pythagorean theorem. By the way,
this configuration has another
wonderful property: The lunes in it
have equal width. More accu-
rately, the diameters of the great-
est circles that can be inscribed in
the lunes are equal to half the dif-
ference of the sum of the legs of the
right triangle and its hypotenuse.

The configuration in figure 5 was
suggested by Archimedes. At 1east,

so said the famous Arabian math-
ematician of the ninth century

Figure 5

Thabit ibn Qurrah, who was an ex-
pert in the works of Archimedes.
Archimedes' books, unfortunately,
do not survive. This figure is usually
called an arbelos, or "cobbler's
knife."

Thabit ibn Qurrah demonstrated
that the areaofthe arbelos equals the
area of the circle whose size and con-
struction are shown in figure 5 (it
seems likely that he followed
Archimedes' reasoning). We invite
the reader to find a proof of this state-
ment o

Corneclions
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See the table below for a list of corrections. The fo1-
lowing paragraph replaces the lastparagraph on page 21:

We can easily check that anz . bn'.Indeed, this
would mean that 2n + I + Z^[n(n +l) < 4n +2. A short
computation will show that this inecluality is equiva-
lent to the inequality 4n2 + 4n < 4nz + 4n + 1, which is
certainly true. Thus an2 . bn2, and (since both are
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positive) a,. bn. Next we show that ar2 > 4n + L.

Again, the inequahty 2n n I * Z"[n@+ll > 4n + 1 is
equivalent to 
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true. Also, the number bn' = 4, + 2 gives a remainder
of 2 when divided by 4, and thus it cannot be the
square of an integer (the reader is invited to check
this directly). Therefore, the scluare of the integer [br]
is not greater than 4n + l.
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Elefil,on eloquenm
With his 1897 discovery of an elec-

tron, British physicist |. f. Thomson
changed the world considerably.
Flicking the light switch, turning on
the radio, and using cellular phones
are miracles that are taken for
granted today. However, causing
these devices to operate would not
be so simple without this technologi-
cal breakthrough.

On February 3, 1998, the U.S.-
based Institute of Electrical and Elec-
tronics Engineers, Inc. (IEEE), will
downlink throughout North America
a live broadcast of this year's Fara-
day lecture produced in Great Brit-
ain by the Institution of Electrical
Engineers. The lecture, kee of charge
to participating organizations, is en-
titled "Bright Sparks of the Uni-
verse-An Electron's Eye View." It
will document the discovery of the
electron and how it affected our
views of the world.

Professors Frank Close and Bryson
Gore will deliver the presentation in
conjunction with the Science Mu-
seum of London. This engaging pro-
gram is one hour long and includes
colorful background, demonstra-
tions, and experiments using audi-
ence participants. Students from
high schools and middle schools will
be able to easily comprehend and
appreciate the program through
clear explanations o{ complex tech-
nical concepts. Participating schools
can also ask IEEE local sections to
provide them with an on-site engi-
neering professional who can answer
questions about the lecture topics.

Schools and other organizations
can register for the Faraday lecture
at no cost. For more information on

HAPPEN INGS

Bullelilt Boal'd

how to receive this broadcast/ con-
tact: IEEE, 445 Hoes Lane, PO Box
1331, Piscataway, NJ 08855-1331.
Phone: (7321 562-5595;Eax: 1732) 981-
I 68 6 ; E - mall: t. garny s@ieee. org.

CallinU all conteshnts
Looking to enter a physics bowl?

Want to pit your robotic creation
against all challengers? Think you
can design a futuristic city that will
outshine all others? If these types of
competitions interest you, you
should check out Scott Pendleton's
new book, The Ultimate Guide to
Student Contests Grades 7-12, pub-
lished by the Walker Publishing
Company ($15.95, 384 pp., ISBN
0-8027-7sr2-81.

This volume provides information
on more than 250 contests that stu-
dents can enter in the fields o{ sci-
ence, engineering computing, math-
ematics, and many other disciplines.
The contests are divided into three
sections. Part I, Unveil Your Talents,
focuses on contests that require skills
such as photography/ essay writing,
video production, and other artistic
talents. Part II, Show What You
Ihow, includes contests that testyour
knowledge in specific content areas.
Part trI, See and Be Seen, explains how
to compete for various recognition
awards, join honor societies, and bring
your work to the attention of aca-
demic talent searches.

Sample questions for many con-
tests are provided along with contact
information, including addresses,
fax and phone numbers, and web
sites. Entry deadlines are provided in
most cases. If you're up to the chal-
lenge, pick up a copy of this book to
find a contest that will test your
skills.

Jlow nntlo be a "chiNllale"
This month's CyberTeaser was

not exactly brain surgery/ but if
you've ever had a hard time carv-
ing up the check among you and
your friends at a restaurant, it may
have brought back memories. Hap-
pily, in our scenario (brainteaser
B22l in this issue), each person
ended up paying his fair share for
the potato chips he ate.

Here are the first ten contestants
who sent in a correct answer to our
crunchy question:

fudith-Hana Tovshteyn (Brooklyn,
New York)
Matthew Wong (Edmonton, Alberta)
Clarissa Lee (Perak, Malaysia)
|im Grady (Branchburg, New |ersey)
Cobus de Waal (Windhoek, Namibia)
Leonid Borovskiy (Brooklyn, New
York)
Theo Koupelis (Wausau, Wisconsin)
fim Paris (Doylestown, Pennsylvania)
Oleg Shpyrko (Somervillg Massachu-
setts )

Hayden Huang (Cambridge, Massa-
chusetts)

Congratulations! Each of our win-
ners will receive a Quantum button
and a copy of the lanuaryfFebruary
issue. Everyone who submitted a
correct answer in the time allotted
was entered in a drawing for a copy
of Quantum Quandaries, our collec-
tion of the first IOO Quantumbratn-
teasers.

Why not try your hand at the lat-
est CyberTeaser? You'll find it at
www.nsta.org/quantum/contest.
Remember, even if you're not among
the first ten, if you submit a correct
answer you might win a prize! Q
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AT THE
BLACKBOARD II

ConstruclinU quadralic sulutions

A novel use for compass and straightedge

by A. A. Presman

From the start it is clear that there
is more than one such circle. There-
fore, we can suppose that it passes
through points B(xr,0) and C(xy O),

where x, and xz are the roots of the
quadratic equation, and (for definite-
ness) through the point A(0, 1) (see

fig. 1). Then, according to the two-
secant theorem,l

oc.oB=oE.oA,
from which we get

OB.OC xtx) ct tL =_ OAla'

the product of the roots.
The center S of the circle lies in

the intersection of perpendiculars SF
and SK drawn to the midpoints of
chords AE and BC, thus

NE WAY TO EXPLORE THE
solution of a quadratic equation
is to graph the corresponding

[tparabola. This is easily done
with software but can be tedious
when working by hand. In geometry
we often use the classical tools of
straightedge (unmarked ruler) and
compass to perform constructions.

One day one of my students
asked, "Why don't we solve qua-
dratic ecluations using a compass
and straightedge when it is so easy
to draw a cucle?|" he asked. Thus
the following problem arose during
our math lesson-

Problem: Given three real num-
bers a, b, and c-which are coeffi-
cients of the quadratic equation
a* + bx + c : O-find the radius and
coordinates of the center of a circle
that meets the x-axis in points whose
x-coordinates are the roots of this
equation (we assume throughout
that a + 0).

Al0,

Figure .l

42

OF: a =o1".22a

We can now find the roots of the
quadratic equation a* + bx + c: 0 A(0,

using a compass and straightedge.

lThis theorem says that if we draw
two secants to a circle from a point
outside, the products of each whole
secant and its external segment are
equal.

We assume that, given line seg-
ments of lengths p and c1, the reader
knows how to construct, with
straightedge and compass/ segments
of lengths p + q, p - c1, kp and p lk (for
a natwral, number k), and given a

segment of unit length, plcl and pc1.

We begin by constructing polnts

El0,

Figure 2

-b
v. * v- - -/.OK="l "'= tt =-" an.l2).2a

1*9

_b
2a
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Sl-bl2a,lc + a)l2a) (the center o{ the
circle) and A(0, 1). After this, we
draw a circle with radius SA. The x-
coordinates oi the points where the
circle meets the x-axis are the roots
of the quadratic cquation.

We invitc the readcr to prove the
correctness o{ this construction.
We'll point out three special cases
that should be distinguished and a

diagrammatic way to find complex
roots of the equation.

(1) The radius of the circle is
greater than the y-coordinate of the
center. The circle meets thc x-axi.s
at points B(x,, 0) and Clx,,0) (see fig.
1 ). In this case the equation has two
real roots.

(2) The radius of the
circle is equal to the x-co-
ordinate of the center. The
circle touches the x-axis at :'

point B(x,, 0)1see fig. 2).

In this case, the equa-
tion has two ec1ual real ,' ":
roots. The x-coordinate of .,:'l
the contact point is

^t, -

(3) The radius of the
circle is less than the y-co-
ordinate of the center. The
circle does not meet the x-
axis (see fig. 3).

In this case the equa-
tion has two complex con-
jugated roots:

b {4ac-b)
2a 2a

The real part of the com-
plex root is expressed by the
length of BC: -blLa-the
x-coordinate of the center.
The absolute value of the
imaginary part is equal to
the length of tangent BC.

Using this construction,
it's easy to investigate
properties of the roots, in-
cluding formulas for their
sum and product. But it
would be unfair to use
them when we justify our
construction. So we'l1 con-

clude the article with an algebraic
interpretation of the suggested solu-
tion of a quadratic equation.

Instead of using the ecluation
ax2 + bx + c : O, we'l1 consider an
equivalent system:

Each root x, of the equation cor-
responds to the solution x = xt, y :0
of the systcm and vice vcrsa. The
first equation of the system defines
a circle (we rnvite the reader to check
this), and the second the x-axis.
Their intersections are points (x,, 0),

where r, are the roots.

The solution of quadratic equa-
tions using straightedge and com-
pass appears as early as Euclid's EJ-

ements. But the solution of
equations of higher degree (such as

most cubic equations) turns out to
be impossible by the same meth-
ods. This fact is connected with
two o{ the three great construction
problems of anticluity: trisecting
the general angle and duplicating
the cube. The reader is invited to
research the interesting and well-
documented unfolding of this story
through history. The third prob-
lem, squaring the circle, is touched
on in the article "The lunes of
Hippocrates" on page 37. O

[n*' + bx + c + ay) -(c+,r]y = g,

Iv=0.

_h

2,

a-

ao

.{ 
".i\

i::), '
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The Science of Hry
Curriculum Package

Developed by the National Science Teachers
Association with funding from Abbott Laborato-
ries. Written by Michael DiSpezio. Video by

Summer Productions.

Crades 9-College, 1997,

#PB1 36X

NSTAs new science-based resource guide is
different from most "AIDS books"-its activities
and readings focus on biological concepts relating
to HIV. Activities cover the following subjects:

. selected topics in cell biology

. basic virology

. HIV structure, replication, and genetics

. immune system function and HIV infection

. drug therapeutics

. prevention strategies

. a global perspective on the AIDS pandemic

This curriculum package can be used as a commu-
nity educational resource or to expand upon a high
school biology or health curriculum. Reproducible
student pages make lesson plans flexible; educator
pages provide background and presentation strate-
gies. Material appropriate for anyone at the high
school level and above.

The text is coordinated with an original video
made for this project. Animations of complex
concepts are interwoven with scientist interviews
and compelling stories of adolescents who are
living with HIV. The video has won numerous
awards, including:

. Best Achievement tor Children's Programming
1997 lnternational Monitor Awards

. Silver for Children's Programming
1997 Houston lnternational Film Festival

. Gold Circle Award
American Society of Association Executives

184 pp,30-minute video

$4s.00
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M221
Consider a progression in which

the first term is b, = 2'o and the com-
mon ratio is c1: 514. Since b, > 106

and br, = 510 < 107 and the first
through eleventh terms are nat:ual
numbers, we conclude that the first
eleven terms of this progression are
seven-digit numbers. Now let's
prove that eleven is the best possible
result. Suppose a progression exists
that contains twelve or more seven-
digit numbers. Let q: mln be the
common ratio of this progression
(where mln is a fraction in lowest
terrns and q > ll and b, its first term.
Then m < 4. hrdeed, i m > 4, then

btz=btel'' =bLfr-" , *"
n

(because b, must be an integer, and
thus b, is divisible by nri), and
mrr > 511 > 107. rf m < 5, then the
Ieast possible value of q is 413. But
(4l3lt > 10, and thus b,, > 107.

M222
Suppose the center of the circle

inscribed in ABC is /, and A/ meets
KL atP (fig. 1). Triangle fi(Ais a right
triangle (because lK is a radius of the
inscribed circle). We have AI L KL
since AK = AL andA/ bisects angle

A

ANSWERS,
HINTS &

SOLUTIONS

KAL. Also, KP is the altitude to the
hypotenuse of right uiangle KAl.
Thus /K2 : IP " lA. But IM : TK.
Therefore IMz : IP x IA, or

This equality means triangles IPM
andlMA are similar (because Z-PIM
: z.AlMl.Thus

PM 
=TM=TK =sing. irlAM TA TA 2 t''

Furthermore, ZIPM = ZIMA, and
therefore

tMPL =90.* ZTPM
= 90'- zlMA: LAMB. (2)

Now we can find the desired ra-
tio:

MMr: PM . stn ZMPL,
AAr: AM.sin ZAMB.

From (1) and l2l we conclude that

PMsinZMPL PM CT

= S1n-AMS|IZAMB AM 2

M223
We multiply both sides of the

given equation by cos lSnllll and
square both sides to obtain

We can now work with each term
separately. Our goal will be to ex-
press each as a sum of cosines of
certain angles.

Using the identity

sin2A=[]lf, - coslA),
\2/'

we have

. n3n
s1n- 

-11

Using the identities

sin2A = 2sin A cos A

and

cos(A - B)- cos(A + B) : 2sin A sin B,

we have

3ir Ztr 3n 6n 2r6sln_sln_ - 4s1n_srn_11 11 11 11 11

=zro"!-2.o.8.11 ll',

Similarly, we have

,Ztt r 3ir
IOSIn- tl 11

^2n-lOn
-2COS- - zCoS-

,(zn\ "(zr\+ I6sln-l _ lcos-l _ 
|

[1r, (11,
/^ . (1)

=tt..,.2[fl.
[11/IM=TA

TP TM

=[1)l,r-.n,!l)\2r\. rr )

Jr 21 3r i)_4srn_cos_ 
|, lt Il tt)

,-l

= I .ll.n.!1 II tt)'
=+(t or1t)lr*.i,.!t)\. 1I il. tt )

=4-4cos4fr *4"o"6n11 i1

11

and finally,

11

. "I3n)Srn"l 
- 

|

[11i
(gx\ /2ru\ (sn\

+8sml 
-ls1nl -lcosl -l+[11' Irri \.11'

, 3rc 11 11 6nIlcos-_=_+_cos_1122li

T

4/ ---t-

/\

Figure 1
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Now we go back to (1) and replace
each term with a sum of cosines. If
we move all these cosines to the left
and ali the constants to the right, we
obtain

2ro"4+zcos4n *2ro"6n
11 11 11

+ 2"orE*2"o.10* =-1.
11 i1

We now have, on the left, a sum
of the cosines of angles in the
arithmetic progression, and can
use a clever but standard trick. We
multiply both sides by sin(n/11),
which is the sine of the common
difference of the arithmetic pro-
gression, to get

rZnn4nzsln-cos-+zsrn_cos_11 11 11 11

n6nnBn
+ zsln-cos- + zsln-cos-11 11 i1 1t

rlOnn
11 11 11

We now use the identity

2sinAcos B = sin(A + B) + sin(A - B)

= sin(A+ B)- sin(B - A)

to trans{orm the products on the left
to sums. We get

.3n fi 5n 3n+sln-11 11 11 11

.7n 5n 9n 7n+s1n__sln_+s1n_

xtY _ (u - t)(v + 1) + (v - t)(u + t)

1+ xy (u + t)(v + 1)+ (u - l)(v - 1)

Zttv -2 tw -l=-Zuv+2 uv+l'

and

2(u+r)-("-t)
u+r-z(u-t)

So we have

uv-l u+3 iv =-3.uv+l -u+3'
Similarly, from the second equation,
we obtain u: -2*. Substituting this
expression for u in the first equality,
we compute

qJ
Y- =--, SOV

4'.

Also,

u= -2v2

Answer:

VlB +1

i/I8 - 1',

M225

= -\.18

r 1,5/\J-t\'+

'-ia-i+

Not necessarily. An arithmetic prog-
ression of natural numbers can be
uniquely given by a pair ( a, d), where a
is the first member and d is the
di{ference. Therefore, ail such prog-
ressions can be numbered. (The pairs
(a, dl arc divided into two groups with
constant sum , + d and are then
numbered within each group-say, by
the growth of a. This method of
numbering will give the following
sequence of pairs: (1, 1), (1, 2l1, (2, l),
(1, 31, (2, 2), ,.3, tl, lt, 4), ....) Let
A,, i : l, 2, ...,bethe ith progression in
our numbering. Beginning with any
numberp, fromA,, we will choose the
numbersp, fr om A, p rfrom Au, and so
on, such thatpr.l is greater than}pr.
Then the set P : lp, pr, ...,) will not
contain three-member arithmetic
progressions, since pr-p,, p,, p,-p,
for any ft > I > i. At the same time/ the
set of natural numbers that are not
members of Pwilinot contain a single
infinite progression, since at least one
element of any such progression is a

member of P.

Physics

P221
The distance I from the rod's cen-

ter to the wallwil1 be covered dur-
ing time 'c : Llv: 5 s. To make the
parallel collision possible, the rod
must make a half-integral number of
turns during time t. Therefore,

(DnT,: I1Il,

where n : l, 2,3, ..., from which we
get

1rulr:n -' (3)
1"

Is this the final solution? Not at
all! When ro is iarge enough, the rod
wili strike the wall with one end
before the parallel collision occurs.
To find the angular velocity neces-
sary for aparul7elcollision, note that
at the moment of collision the veloc-
ity of end A of the rod (fig. 4) cannot
be directed away from the

Figure 4

wall. Indeed, if it was directed away
from the wall, this would mean that
just before the collision the rod was
inside the wall, which, of course, is
impossible. The velocity of point A
is composed of the velocity of the
rod's center and the linear velocity
of the rod's end about its center.
Therefore,

alVA=U-r=T*v>0.

from which the condition for rrl fol-
lows:

*.2f=2 s-r.
1

Plugging formula (3) into this condi-

-=
l-2x

zr+3

-tt+ 3

11 11

. 11:i 9n
+ sln-

11 11

. lln fi rL-sln- =_sln_.il 11 ll',

which verifies the identity.

M224
First we introduce the new vari-

ables u and y;

u-I v -l
u+1' ' v +l

We then transform each expres-
sion in the first equation. We have

11 11
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tion, we see that only three values
of rrlo are solutions to the problem:

ro, : 0.63 s-1, 02 :1.26 s-1, and
ro, : 1.89 s-1.

P222
The air in the tube moves slow1y,

so the force of viscous friction can b'e

considered proportional to the air
velocity. The extra pressure in the
bubble is small relative to the atmo-
spheric pressure/ so we can neglect
changes in air density in the bubble.

At any moment the force of viscous
friction is almost precisely counterbal-
anced by the force of the extra pres-
sure, and this pressure AP is inversely
proportional to the bubble's radius.
Therefore, the air velocity

Y*A-P*1'
T

The rate of change in the bubble's
voume is proportinal to the air veloc-
ity,

LV1
-xVx-.Ltr

Therefore,

AV AT

v *7'

If we have two bubbies with radii z,
and 12, the ratio of the periods nec-
essary to decrease their volumes by
the same small fraction is given by

Lt, 
= 

rl
Or, = ,.r,, t1)

Now wc split the ctrntinuous 1.ro-
cess of the collapse of a bubbie rnto
steps in which every bubble de-
creascs its volume by the sarne frac-
tion. During the entire process, the
ratio of thc radii is constant and equal
to their initial ratio. Therefore, equa-
tion {4) is valid not only ior differen-
tial values At but also for integral
values of the bul"rbles' lifetimes.
Thus,

P223
There are two answers to this

problem. If the internal resistance of
the voltmeter is large, then a curent
of 0.2 mA flows through it. In this
case; the voltage drop across the
voltmeter is between 4.5 and 4.8
volts, so

4.8 - V = 22R and V - 4.5 : 2R.

Here the internal resistance of the
ammeters R is measured in kilohms.
The solution of this equation is

V=4.64VandR:0.071 ko.

In another (and quite possible)
case, when the internal resistance of
the voltmeter is low, its voltage drop
is smaller than the voltage of either
battery. Therefore, atotal current of
4.2 mA flows through the voltmeter.
In this case we have another system
of equations:

4.8 -V = 2.2R and 4.5 -V :2R.

The respective values are V: 1.5 V
and R = 1.5 kO. The voltmeter's in-
ternal resistance is 1.5 V/4.2 mA
: 0.36 kO, which is far from being a
good characteristic of a voltmeterl

P224
According to the conditions of the

problem, only a small fraction of the
neon atoms arcionized. This means
that most atom-electron collisions can
be considered elastic. Energy and
momentum conservation give us the
value of an electron's loss in kinetic
energy during a frontal collision with
a neon atom at rest:

4m *v2
AKt, =--'-r M z '

where v is the electron's velocity
before the collision (we took into
account that m << M).In a typical
collision, the energy loss will be of
the same order of magnitude.

Let's suppose that between two
collisions an electron moves with
uniform acceleration a = eEfm dur-
ing time r,:11v. After a collision, the
electron's velocity can be directed
anywhere, but on ayerage the kinetic
energy an electron gains between

collisions is on the order of

LKE" ="r!! -(e1l)'z. .-"-L -- z ZmvL'

The velocity (and therefore the
kinetic energy) of an electron will
notYarywhen LKE.: AKE, so

mr2 eEl iM
+ \111

The corresponding "electron tem-
perature" is

,=-t=4!lNI -4.104 K.3k 6k\m

P225
A simple plot (see fig. 5) of the light

paths provides the position of the
screen S corresponding to the

Figure 5

smallest light spot. The positions of
points A and B can be {ound from the
lens formul a, and the size of the spot
from similar triangles. The distance
of point A from the lens is 20f 3 crn,
and that of point B is 10 cm. There-
fore,

10-7

Thus, 1: 8 cm, and the spot's diam-
eter d is 0.2 of the lens's diameter,
which yields d =Zmrrr.

Brainlea$ers

8221
|ohn shoulcl be paid $ 1.(r0 becar,rse

fim owes him 200, too. In fact, cach
boy ate 7 l3 of abag of popcorn. Thus,

,20t--
fo

10 20

3

t2= l6ty
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A

M

= t[f". b)' - *' + (a - x)2 - (a-a - 1'z)

= [lulu 
* z") + (za - b - zx)a)= aa [.

Figure 6

I l3 of abagis 20q, and |im ate I l3 of
a bag more than he bought.

8222
Suppose AD : a andBC :b.If we

set AB equal to x (see fig. 6),then
CD : a -b - x.The area of the figure is

i@"'-AB2+zo'-co')

Thus, this is enough information to
calculate the area of the figure.

8223
Consider three squares situated

like those in figure T.Itthe number
of different paths to the left square
is a and the number of paths to the
lower square is L,, then the num-
ber of paths to the third square is
a + b. Now, we can simply start
from the lower le{t square and
write in each square the number of
different paths that go to this
square (see fig. B).

Figure 7

Figure B

8224
Thebroken line AKLMBB 4, (fu. 9)

passes through all the vertices of the
cabe ABCDATBTCTDT, (Here D, be-
longs to AK Ctto KL, and D to MB.l

AB

Figure 9

8225
Look at the angles between the

vertical radius of each circle when
they intersect and the radius that
was originally vertical. It is given
that the arcs of these two central
angles are equal, so the angles them-
selves must be equal. But this is
impossible if the radii are not equal
(figure 10).

lhleidr$copo
1. In a mixture of water and alco-

hol, the molecules are more tightly
packed than in either of the compo-
nent fluids, which have marked gaps

between the molecules.
2. Due to the pressure difference

between the inside and outside of the
ball, the air molecules diffuse
through the ball's rubber wa1l, so its
pressure drops.

3. The mean kinetic energy of any
molecules in the gas mixture is the
same (it is determined by the gas's
temperature), so the light molecules
have higher velocities than the
heavy molecules. Therefore, the
light molecules diffuse through the
wall more rapidly than the heavy
molecules.

4. The slowest ions are those with
the largest mass/ so in the race to the
cathode, the 3H isotope lags behind
its brethren.

5. Due to inelastic collisions be-
tween copper and chlorine mol-
ecules, the resulting pressure on the
copper-covered end is about half the
pressure that affects the opposite
end.

6. The hammer strokes press the
two pieces of iron together. At white-
hot temperatures the iron molecules
from each piece diffuse deeply into
the other, forming a very strong weld.

7. The equal volumes contain the
same number of moles, provided the
pressure and temperature of both
gases are identical. The average
molar mass of air is larger than that
of an air-water mixture. Therefore,
the vessel with wet air is lighter than
that with dry air.

8. Air behaves more like an ideal
gas in the stratosphere because it is
more rarefied.

9. The radius of the path of a

charged particle in a uniform mag-
netic field is proportional to the
speed of the particle. The path of the
particle in the Wilson cloud cham-
ber is made visible by ionizing atoms
along its path. This ionization causes

the particle's kinetic energy to de-
crease. Consequently, the particle
slows down and the curvature of the
path continaully decreases.

Microexperiment
Water vapor itself is invisible.

When the burner is on, rising jets of
hot air fly around the kettle and
warm the water vapor. When the
burner is turned off, the water vapor
cools and condenses. There{ore, we
observe a cloud consisting of the tiny
water droplets.

Gnadus
Variation -3: The answer is, of

course/ 0. This need not be taken as

an axiom describing the relation
" gteatet tharl" Rather, it iollows
from the axioms of the mathemati.-

I 5 9 L7 34

1 4 4 8 t7

I J 4 9

I 2 o 4 5

1 1 1 1 1
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cal structure called an ordered field.
Variation -2: Segment XY is half

of a certain chord, and OP is half of
a diameter. Since a diameter of a

circle is its longest chord, OP > XY.
Analyticaily, this follows {rom (or can
be considered a proof of) the main
theorem, since OP = la * b)12 and

lr
-L.\ = xAD .

Variation -1: Yes, rt is, but this
time it's easiest to appeal to the
theorem of the theme. Let AB : tt
and CD = h. Then a standard theo-
rem tells us th:rt -\I-\: ya + b)lz.Il
trapezoids ABII and XYCD are
similar, then AB:I] = -\l-:CD, which
leads to XY = -, L1b, Our theme tells
us that XY < MN antl r-. thr-rs closer
to the smaller base.

Variation 1: If the iength and
wrdth of the rectangle are denoted by
a and b respectively, then r'-e have
a + b = 10, and we must irn'1 the
maximum of ab. But the All-G-\{
inecluality says 21 ab < a + b: 10 so

that

-)- (n+b\
nh< -- * 

=)5.tr)
./

A quick check will show that ri
a - b = 5, thcn the tnaximum i:
achicved. In this case the rect-
angle is a square.

Variation 2: If the length and
width of the rectangle are denoted by
a and b respcctivcly, then we have
ab : 100, and we must find the mini-
mum of 2a + 2b, or, ccluivalentlv, the
minimum of a + b. Again, thc AN-
GM inequality says a * b > I .ii'
= 20, with equalin- ii and onlr rf
n : b : 10. The shape oi this :-t-rt-r-
mal rcctanSlu tr l:a'rr j -,{1..il* -r:r-
its perimetcr rs -10.

\rariation ,l: The grnerah:at:, :r.
are rmrnedrate. 1al It rr - ir r-. consiar:
then [(a + b)l2l rs also constant, ;rnd
is an upper bound tor ab. The trr,o
expressions are equal if and only.4
a = b. lb) I{ ab is constant, 11rsn 21i ab
is constant, and this is a lower bound
for a + b, achieved also when a : b.

Variation 4: Since the product of x
and 1lx is constant (it is 1), their sum
is mrrumal when they are equaf which
is when x : I l, : 1. The smallest pos-
sible value of the expression is 2.

Variation 5: This looks dii{erent
irom the previous variation. But we
can make it look the same if we re-
write it so that it compares a sum
(rather than a difference) to a prod-
uct, which is what the AM-GM in-
equality does for us. Here, we can
write 1 r x) 211x . Then, letting a = 1

and b : x in the AM-GM inequality,
we have our result.

Variation 6: One could, of course,
multiply this out, get a quadratic
function in x, and use some standard
techniques for finding the maxi-
[rum. However, we can also note
that (x + 4) + 16 - x) = 10, a constant,
so the product of the two numbers
is maximal when they arc equal.
This is when x : 1, and the largest
possible value of the expression is 5.

Note that we have not (yet) vio-
lated the condition of the AM-GM
inecluality that requircs both num-
bers to be positive. However, one
might ask if we could get a still
larger product if either term were
negative, a situation not covered by
the,{M-GM inequality. But of course
in this case the product is negative,
:rnd our maximum value is larger.
The reader rs invited to explore the
sltuauon ior expressions of the form
ir - rr i. - ,vl ior various values of a
and h.

Yariatron 7: On the domain indi-
cated .u-r.l ior any real number x for
rrhrch ran -r and cot x are defined,
italn r ..r: -r = 1 Thus their sum is
rlrnr:-L:. .,rhcn tan x: cot r, which
is rr L:r t::n,\ = 1. The recluired mini-
n,,r:-t -.-.lue is ).

r,-.:'- ;i: ,-rit \:The sum sinl -r + cosl -x is

a :rs:::ri rt e qr-u1s 1 . So tl-re largest r-alue
'i i:]c i..-:1 rroduct occurs trhen ther-

..1 
= 

;J,,' .r :, : -:*urp1e rr hen r : ; -1. This
,,.-::..: -..t---- :. I -1. \iti that this r.tn-

,'1.- i '' - r : ' t:.,t I:. Iaf -c.t va]Uq

oi si:-i r ..)s r 1s - I T|us rcsult 1ead. to

another solution when we note that
sin 2x: 2 sin x cos x, so sin x cos x
: (1/2)sin 2x, whose maximal value is
112.

Variation 9: The product l21l2l
is constant (it is 1), so the expression
is minimal when 2': 2-*, which is
when x: 0. The minimal value is 2.

If we consider the related expres-
sion (e" + e-"112 (where the number
e is the base of the natural loga-
rithms), then we are studying the
function y: cosh x (the hyperbolic
cosine of x), which is of importance
in engineering and theoretical work.
Its minimal value over the real num-
bers is also 2.

Variation 10: The square roots on
the left side of the given inequality
are an open invitation to apply the
AM-GM inequality. We have

xiYz + Y^,i xz + z
"r"yv+z x+z x+v

1v/ I17-La--------:-

222
= xy + yz+ xy.

If only all our estimates would fall
out so neatlyl The two expressions
are certainly equal when x : y : z.
But are there any other possibilities
for equality?

Variation 1 1: You can try writing
the square roots as sums immedi-
ately, but it probably won't work. In
this case, it is easier to square both
sides and work with the equivalent
inequality

la + cl(b + dl> ab + cd + z"tmi .

This simplifiesto ac +bd2z"tmcd ,

and now we can use the AM-GM
inequality directly.

Variation 12: As shown in figure
11, we draw line DE parallel to BC
{with E on ray BAl, and lfne DF par-
ailel to AB (withF onray BC). Then
we draw segment EF.Let S, denote
the area o{ triangle MED, S, the area
of triangle DFAI, and S the area of tri-
angle DEF. Then, because diagonal
E.F bisects parallelogram EDFB, the
area of triangle EFB is also S. So the
areato minimize is S, + S, + 25.

Notice that the positions of lines
DE and DF, and thus the value of S,

does not depend on the position ofFigure 11
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line MAI, so we only need to mini-
mize the sum S, + Sr. Now the tri-
angles MED and EBFhave equal al-
titudes from points D and 4 so the
ratio of their areas is just the ratios
of their bases, or Sr/S = MEIEB. Sini-
larly, the ratio of the areas of tri-
angles DFN and EFB is equai to the
ratio of theirbases, or Sr/S : FNI BF.
Finally, the ratio MEIEB = MDIDN,
and FNIBF = DNIMD, because par-
ailel lines intercept proportional seg-
ments on any transversal. Therefore

slsz_MDDN_1
S S DN M,D_,,

Thus SrS, : 52, a constant, and
S, + S, is minimal when S, : Sr: S.

This happens when MN is parallel
to EF.

Variation 13:We know X1r x2r ...t
Xn: I, and we want to show that

(t + x,)(t * *r)... (t+ x,)> 2".

We can use the AM-GM inequality
to transform each sum on the left to
a product. We have

l+x1> z"tEA =2^[x1,

and similarly for the other factors.
Multiplying, we find that

(t + x,)(t * rr)... (t + x,)
> (2.,,"{)(z^ii;) (r.,,,'", ) =zn t,

which is the result we need.
Variation 14: We would like to use

the AM-GM inequality on the ex-
pression xn- lf 4, but this is not the
sum of two positive numbers. Follow-
ing the hint, we look at xoz + lf 4,
which is the sum of two positive
numbers. By the AM-GM inequality,
we have

,lxi2xp--

(with similar results when -k : 1 or

xl=21og,,,,xp

/ t\,l"o-i)

+ rog,. ("- - +) 
+... + log,. 

[", - +)
> 2logr, x, + 2logr, x, + 2log,, xo

+...+21og,,xr.

SO

k : n).Using this estimate, we can
find a lower bound for the logarithms
in the required sum. We takb the
logarithm base k - 1 of each side of
the previous inequality. Remember-
ing that Xk_ I < 1, we are careful to
reverse the sense of each inequality,
and find that

1ogr,. 
,

< losrr

Now we can find a lower bound
for the required sum. If this sum is
S, then

S = rog*, 
G, - i)+ tog,, (", - +.)

s: ) log* x2 + Iogx2 xa + logr, xo

+ . .' + 1ogr, x1.

This is a sum of positive numbers,
since, for each k, both xo and xo_, are
less than 1. Thus we can use the AM-
GM inecluality once more to find that

{ 
>1og", x2+log,rx,

+1og,, xu +...+1og", x,

>" .

By the "chain rule" for logarithms,
the radicand is equal 1o logr, x1,
which leads to a lower bound for S

of 2n. Equality holds if all the xo's are
equalto lf2.

TheUalnhlor
Problem 1: Let S sum up the

simple progression in (2):

^r I I 15=-*-+-+...+-+....2492"

Double the fun:

.11 125=1+-+-+...+-+....242n
Since every term in S is finite, we

can subtract S from 25:

With a bit of pruning, we get

s:1. (B)

Multiply through by the constant
$1 in (2) to get, er, $1.

Solution 2: We want to find an
integer for y such that 2v approxi-
mates $67,500,000. Let's equate2v
to $67,500,000 and then round y to
the nearest integer. Taking natural
logs and solving for v gives us

2s-s=r+1-1*1- 1*...
2244
11

-T,.. 
...,2' 2"
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V=
ln 67,500,000

= 26.008384t664

So set v equal to 26. Now, 226 :
$67,108,864. To equate 226(t + hl to
$67.5 million, set h equal to
.005828381.

Solution 3: You can think of the
expected value of the entire bet as the
sum of two expectations: that kom the
{irst v tosses and that from the later

^,/ 
- 1z tosses, $,hatever N might be.

The expected valr-re oi the fir.st r tosses
is just r,. The expecte d r.alue oi the
later ItI - rz tosses sums the expecta-
tion of each of those tosses. In each
case/ the expectation rs iust the prob-
ability of getting heads on that toss
times the fortune ,vou would receive
from that event.

Solution 5: Use the appropriate
values for v and i rn {4).

Solution 6: Consider that fi can
range from 0 to 1.

Solution 9: About $6.
Solution 10: You can check that

U{01 = 0, Ull) = 1; and U(w): Z as

w becomes infinitely large.
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MUSINGS

ttUhal llearned in 0uanlum land
Have you ever, while standing around at apartyt or maybe a businesslike meeting,
Attempted to tell a clever new joke, and ended up feeling a fool?
The people you told it to looked at you blankly, their silence was almost a beating,
You think, "If I only could shrink clean awayt as minute as a small molecule!"

But before you go thinking in terms of this sort, please think of iust what you are saying;
The Land of the Quantum is dangerous/ yes/ and you shouldn't go into it careless,
Consider your actions before you go there, it's a perilous game you are playing;
The Land of the Tiny is quite unforgiving-did you know the whole place is airless?

But if you're determined to shrink clean away to avoid the cold glares at the partyl
Prepare for adventures you've never conceived, in this Place of the Terribly Small:
Bone up on your Heisenberg, Einstein, and Bohr, and take your last llreal^; eat hearty!
And then go ahead, shrink away! But please don't overshoot into Nothing At A1l.

And when you get down there, you'd better keep watch to avoid the high-energy photons:
They'll come up behind you and knock you down flat and be gone ere you come to your senses.
And then if you go on a nucleus tour, say "H7!" to the neutrons and protons.
(But I doubt you'll be able to make it that far, what with all the strong force's defenses.)

And if you see opposite colors and spins and appearance and charge in a pair,
We1i, you can be sure that they soon will be gone in an energy burst of some power.
For one is an everyday particle while the other's arr " auti," and there
Is the crux of the problem, for when they combine/ you could die in a gamma-ray shower.

And don't even try to make friends with the folks that you meet in the Land That Is Mini,
They'll snub you, reject you, and oust you, and there will be naught you can do that wiil change it.
There's a Principle all the particles know that will keep you in shamed ignominy,
Some fella named Pauli came up with the rule-I don't think you can rearrange it.

Then, if you are tired and want to sit down, and a nice, empty spot seems to beckon,
Think twice before going and filling that spot, that electronic orbital shell,
At least, be prepared at the drop of a hat (or a photon emission, I reckon),
To vacate the premises pronto! posthastel or things will not go at all well.

The reason for this is, the place where you've parked is reserved-it's a 'Iectron's position.
And while they're away on vacation, you've clearance to stay in their station, rent-free.
But as soon as they've done seeing sights, they will signal that, we1l, they are now in transition,
So you have an entire femtosecond or two to reactt pack your suitcase, and f1ee.

And then, as 7f that weren't enough, you will find that you're getting quite lonely and tired;
This Land of the Quantum is not what you'd planned when you wanted to leave all your friends.
A better idea, perhaps, maybe, ts to prevent yourself from getting enmired
In hasty, ill-planned, or just silly remarks-it's much better {or you in the end.

-David 
Arns

David Arns is a graphics software documentation engineer for Hewlett-Packard in Fort Collins,
Colorado, and also operates a small business designing and creating web sites. In his spare time he
dabbles in poetry on scientific themes.
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DECI$NS
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COWCULATIONS

Einuel'hread lnalt

A spicy byte

by Dr.

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a
computer algorithm. My neighbor, friend, and
dairy farmer |ohn Dough made his annual batch

of gingerbread men again this year and gave them as gifts
to his friends. He grows his own ginger and swears that
his cookies are not only tasty, but "good for what ails
ya." Last month, Farmer |ohn gave me some of his fine
ginger so I could experiment with making my own spicy
bytes.

I recently read an article by Robert Devaney in an old
issue of Algoilthm, published in |anuary 1992. One of
the first curious objects he happened upon while experi-

Mu

menting with computer graphics was a gingerbread man.
It started with a very simple iteration in the plane, be-
ginning from a single point. By graphing the orbit of the
iterations of this point, the image of a gingerbread man
magically appeared. This I had to see.

His gingerbread man function defined on points in the
plane can be written it Mathematica as

GBM[{x_, y_}] := {1 - y + Abslxl x}

So, I started with an atbittary point {1, 2} and applied
the GBM function repeatedly.lnMathematica the com-
mand Nestsr.ist does the job by creating iterations of
the initial point a under the function / as in
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NestsListlf, a, 47

{a, f [a], f tf tall, flftf ialll, f tf tf tf tallll]
When I applied the GBM function to the point {1, 2},

I got the sequence

Nestlist[cBM, {1, 2l, 61

{tT, 2}, {0, 1}, {0, 0}, {1, 0}, {2, t}, {2, 2},
{L, 2}}

The orbit oi the GBM function cycled back to the
original pointll,2l after six transformations. Other points
gave different sequences:

Nestlist[GBM, {1, 5}, 19]

gingerbread man. One of your tasks in this issue's " ChaL-
lenge Outta Wisconsin" is to find this point.

Clear I gingerbreadMan I
gingrerbreadMan = Nestlist[cBM, {a, b}, 50000];
ListPLot [gingerbreadMan / . tt<_, y_] -> ly - ><,

-Y - x),

COW 8. Find an initiai point {a, blthatwill generate
a gingerbread man. Write a program that will find the
period for a point in the plane under the GBM function.
Where are the points with short periods and where are
those that generate a gingerbread man? Is the period for
the gingerbread man finite?

Run, run as fast as you can,
You can't catch me,
I'm the Gingerbread man.

{1, sl,
1 trt
I trl
2 21

) 11 J1 21 Ja 11 rtr l1rt L)t tJ, J)t tlt Jlt l)t tJl

-3, -1), {s, -31, {9, s}, {5, 9},
-L, -3j, {5, -1}, {7, 5}, {3, 7},
1, -3), {5, L}, {5, s}, {1, 5}}

What can we say about the orbits of the GBM func-
tion? Some orbits cycle back to the original point. For
example, the orbit of ll , 2\ cycles back to {1, 2} after six
transformations. The orbit of {1, 5} cycles bacl< after 19
transformations. The period of a cycle is the length of
the cycle, or how many steps it takes to return to its
initial point.

Devaney discovered that certain points have ex-
tremely long periods, and, by plotting the correspond'
ing orbit of these points, a gingerbread man appears. I
investigated this by writing a short Mathematica pro-
gram that creates an orbit of 50,000 points, rotates the
image 135 degrees ({x, v} -> {y - rrr -y - x} ) and
graphs the gingerbread man standingup (the originalwas
lying down). 1l)

)

200

eria Inow -
100

Bact

However, there is one point missing in my program.
This is the initial point {a, b}, which creates the entire

soluti0n t0 c0U1J 0
Two issues back, you were asked to consider Farmer

Paul's DDS Model for bacteria growth in milk. If we take
a series of bacteria measurements in milk at equally
spaced times, then the bacteia count changes accord-
ing to the following Logistic Growth Model. Note: If now
is the present time period, now - I is the previous time
period, with 1 representing a fixed unit of time.

Bacteria[0] = 1;
Bacteria[now] = Bacteria[now - lJ

(Temperature - 32)+ ' - 'Bacteria[now-1]

,['-

The length of time it takes the bacteria to reach a
reading of B0 is the length of time it takes to sour. The
challenge in COW 5 was to find the temperafixe T at
which milk soured twice as fast as it does at 7: 50'F.

First, let's see how long it takes the milk to sour at
50'F.

E = 50.; b = 1; i = 0;

whilelb < 80, b = b+ 
(r-sz') ulr--Ll, i++t ; i200 ( 100 I

6B

Our problem is to find the temperature ap which the
bacteria level will reach 80'F in halJ this time, or 34 units.
We first create a function sourTime, which reads the
temperature and returns the time it takes to sour milk.

sourTime [T- I := Module [ {b = 1, i = 0},

urhile[b < 80, 6 = o* (*-"') t[r--L-.], i++], il200 ( 100 /
Now, we close in on the temperature at which milk

sours in 34 units of time.

f = 50;

50 JATtlARYiTTBBUABY 1ss8



delta = f. i
DolWhileIsourTimelT] > 34, T += deltal;

f=T-.de1ta;
deLta = deItsa/10, {3}l

Print [ trThe answer is ,, , T + 10
del"tal

The answer is 68.67

Let's check it out.

sourTime t 58 . 57 l

34

It works as advertised.

Aduanced $oliliolt
Morton Goldberg submitted a more elaborate

cowculation based on the solution of a continuous model
(a differential equation) of the discrete relationship.

By making the substitutions Bacteria -+ b, n - | --> t
and taking At as the time unit, the recursion given above
can be put into the form

with the intial value condition b[0] : 1. Mathematica
can find a closed-form solution for this differential equa-
tion using DSol-ve.

Clear [b, T]

solurion = DSolvettb,trl -- 
(t- sz)trrti r- bttl \,

200 ( 100 i
bt0l:1], bltl, tI

{{bttl-> -
100

-1-(:zt rr+Loe, [ (-11)Li ioo31/50)

-1 a 6200\

This solution can be simplified to

blt_,T_l=

100

100

blt+ tt1-bltl t,r su)..( 1,[rl

200 "l 1 00

u,l,l=(':i14,1[, - ,Jf

/ -\
I (sz-r) ' I

1 + 99 e\' '2oo )

timeEoSour = timeTosour /. firsts[e.]

66 .4602

Finally, we cowculate the temperature at which it
sours twice as fast.

FindRoot[b[tsimeToSolur/2, T] == gg.,
tT, 50) I

This cowculation differs from the discrete solution be-
cause the continuous model is approxrmated by the dis-
crete one.

A New Yean

In starting a new yeart we are faced, rather abrupt1y,
with a new number-l999.It will take some time to get
used to 1998, especially when writing checks. Unlike
1997, 1998 is not a prime year. However, it is between
two primes:1997 and 1999 (called twin primes). That
wolr't happen agatn for 30 years/ as the following
cowculation shows.

TabLe IPrime IPrimePi [1997] + il , ti,
0, 5)I

In Mathematica, prLnePi tnl equals the number of
primes < n, and prirne I j 1 equals the lth prime number.

What else is interesting about 1998? Let's look at its
divisors.

Divisors I1998I

{L, 2, 3, 6, 9, aB, 27, 31 , 54, 74, 77L, 222,
333, 666, 999, L998j

Next take the proper divisors of 1998 and add them up.

ApplylPlus, DroplDivisors[19981, -1]I

2562

Since the sum is gteatil than 1998, we call l99B an
" abundant" number. Thus, I am very encouraged about
the abundantyear 1998, which is flanked by two prime
years. It sounds like a Happy New Year to me, and I
hope to you.

Attd linillly...
The cowculations sent in on COW 7 will appear in

the next issue. Solutions to COW, _, will appear in
COWr. This gives all cowhands more time to ruminate
on possible solutions before they e-mail them to me at
drmu@uwp.edu. Past solutions are avallable on the web
at usaco.uwp. edu/cowculations.

If competitive computer programming is your inter-
est, stop by the USA Computing Olympiad web site at
usaco.uwp.edu. The 1998 USA Computing Olympiad
Internet competitions are underway. O

AT

TakingtheLirnitasal-+0grvestheclJierentr:rlecluation {t99j, t999,2003, 2atr, 2aLj, 2o2j,
2429 j

\orr rr ith i. :. I rrhich lrleaslr.re s the bacterra cou.nt
at time r rnth rlrlk at te lrf e rarure f. rr.e cou-culate the
t,imeToSour.

CLear ItimeToSour]
EindRootIbltimeTosour, 50]
{timeTosour, 60} I

{timeTosour -+ 66.4602}
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Revolutioni zeYour Curriculum !
Our Integrated
Mathematics and
Science Solutions
Redefine
Your Educational
Enuironment
Interactive Phvsics'makes ir easv

to integrate modeling"and simulation into
your physics curriculum by offering a

complete desktop motion lab. Create models
by drawing onscreen with a powerful and
easy-to-use graphic interface. Add objects like
springs, dampers, ropes and joints. Measure
physical quantities like velocity, acceleration,
momentum and energy. Interact with your
model in real time by changing properties as

the simulation runs. Wdely adopted by many
textbook publishers and with more than half
a dozen awards and thousands of educational
users, Interactiue Plrysics is the standard in
physics modeling and simulation solutions.
Interactive Physics: Single User . . . .$r+g
LabPackpricing ....Call

MOdellUS'"gives students the power to
interact with models in real time to gain
powerful insights into the underlying
mathematics. Its equation-based approach to
modeling offers an educational compliment to
Interactiue Physlcs. Typical math programs act
as calculators, treating the model as a static
entity. But Modellus lets students manipulate
mathematical variables during a simulation to
study the effects of their changes on anima-
tions, graphs and tables. By supporting multi-
ple cases and multiple data representations,
Modellus offers students valuable feedback
during the problem solving process.

Modellus: SingleUser ......$rgg
Lab Packpricing ....Call

Create simulations by sketch-
ing out bodies and attach-
ments with a simple point-
and- click us er int erl ace.
Alter physical properties like
lriction and mass duing the
simulation to gain ualuable
insight into the system.

With Modellus, simulations
are crealed lrom mathemati-
cal equations. Explore scien-
tific models by interacting
with algebraic, differential,
and iteratiue equations
in the context of a physical
system.
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