i 1Spifihger -




GALLERY [@]

p o ©
+ion
Mellon (,DHELTlOl

Catlin and Indian Attacking Buffalo Herd (1857/1869) by George Catlin

EORGE CATLIN (1796-1872) BELONGED TO THAT

legion of creative spirits who left a profession (in his
case, the law) to take up the pen or brush (in his case, both).
After a brief stint as a portrait painter, Catlin headed west
to follow a boyhood interest: Indians. Intent on document-
ing what he perceived as a vanishing way of life, he produced
more than 500 paintings and sketches, and in 1841 he pub-
lished his two-volume Letters and Notes on the Manners,
Customs, and Condition of the North American Indians.

The picture presented here offers an ironic commentary
(unintentional, no doubt) on the threatened lifestyle Catlin
was recording—the Indian with his bow and arrow, Catlin
with his rifle. When the Europeans set foot on the North
American continent, an estimated 60,000,000 bison (or
buffalo) roamed the western plains. The Indians of that

region depended on the bison for their livelihood. By 1900,
the bison had been hunted to the verge of extinction.

William F. (“Buffalo Bill”) Cody won renown as a killer
of bison. In the 1860s, he had been hired to provide meat
for the workers on the Union Pacific Railroad, and in an
eight-month period he shot 4,280 buffalo. He was not alone
in his hunting. Others killed the animal for its hide, for
sport, or sometimes just for its tongue. Through concerted
action by cattle ranchers and conservationists, the bison
was brought back from the brink and now thrives on man-
aged government preserves (in much smaller numbers).

The story of the American bison is an instructive case
of population growth, predator—prey relationships, and
resource management. It is fitting that it be told (albeit
briefly) in this special issue of Quantum.
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'FRONT MATTER

The unlimited appeal of
The Limits to Growth

“Although there are ‘limits’ to a certain type of activity,
there are no limits to learning and creativity.”

HIS ISSUE OF QUANTUM IS

largely devoted to marking an

event that occurred a quarter of

a century ago—before many of
our readers were even born. What
was so important about the publica-
tion of The Limits to Growth in
19722

To begin to answer this question,
we need to back up another five
years. In 1967, an Italian industrial-
ist by the name of Aurelio Peccei
and a Scottish scientist, Alexander
King, saw that governments world-
wide seemed incapable of addressing
certain long-range trends that
threatened the well-being of future
generations. They saw the world'’s
population increasing at a staggering
pace, nonrenewable resources being
depleted at increasing rates, and
millions of people living at subsis-
tence levels or under threat of fam-
ine with little prospect of improve-
ment. The time had come, they felt,
to mobilize like-minded people and
take action to build a saner and
more sustainable world.

In April of the next year, thirty-
six European economists, scientists,
and statesmen met in Rome to dis-
cuss these issues unconstrained by
politics or ideology. They continued
to meet in other cities and expanded
their ranks, but the location of their
first meeting had given them a
name: The Club of Rome.
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—The Club of Rome

In 1969, the members decided that
a quantitative model of the present
and future “predicament of man-
kind” might prove more persuasive
with decision makers than their ver-
bal statements had been. In 1970 the
Club of Rome turned to Jay Forrester
of MIT, who had developed a com-
puter technique for dealing with the
complexities of industrial production
and had already applied it to social
questions as well. In late 1970 fund-
ing was secured, and an international
staff of seventeen specialists at MIT,
under the direction of Dennis Mead-
ows, began work on a world model
based on Forrester’s concept of sys-
tem dynamics. In addition to the
technical reports presented at meet-
ings in 1971, the MIT team produced
a book intended for the general pub-
lic, The Limits to Growth, written by
Donella Meadows.

The Limits to Growth was imme-
diately hailed by many as revolu-
tionary, teaching us how to see the
Earth as a closed system and, with
its sophisticated interconnections,
equations, data tables, giving us the
courage to address problems that
had seemed impossibly complex. It
was also reviled by others who
pointed out the imprecision of the
variables, or the ingenuity of human
beings in overcoming limits, or the
apparent failure of previous models
(most notably the one offered by

Thomas Malthus in 1798). Ironi-
cally, the book was born into a
world riding a 20-year crest of eco-
nomic growth. Who needed its (sup-
posed) “gloom and doom”? Two
years later, however, an oil embargo
sent a shudder through the indus-
trial world and cast the question of
energy production and consumption
in a whole new light.

The debate sparked by The Limits
to Growth continues, as researchers
revise their models and update their
data in support of “progrowth” or
“sustainable” economies. Many are
now focusing more on critical assess-
ments of economic models and less
on Forrester-type “world models.”
The Club of Rome itself has changed
its emphasis, choosing to focus on
discrete aspects of global problems
(for example, international law re-
garding the use of the seas). Its most
recent monograph, Taking Nature
into Account, criticizes the kind of
“national accounting” that makes
the gross national product (GNP)
such an influential (and distorted)
measure of economic success.

To return to our initial question:
why is the publication of The Lim-
its to Growth worth commemorat-
ing? It marked the first time that a
global model of this sort had been
commissioned by an independent
body (rather than a government or
the United Nations). But perhaps



more importantly, it was the first
study to make an explicit link be-
tween economic growth and conse-
quences for the environment. It
questioned the reigning dogma that
“growth is good” and forcefully in-
serted the concept of sustainability
into our policy debates.

We hope this issue of Quantum
will give you some sense of the ex-
citement and hope arising from
work with system dynamics and
world modeling. Our sampling of
this vast subject area consists of five
feature articles:

* “The Limits to Growth Revis-
ited” offers a primer on exponential
growth, overshoot, and dynamic
modeling.

* “Overshooting the Limits”
demonstrates different ways a limit
can be approached and the conse-
quences of overshooting it.

* “The World in a Bubble” takes
us inside the simulated Earth of Bio-
sphere 2, where sustainability be-
came a life-or-death issue.

¢ “Learning from a Virus” applies
the techniques of system dynamics
to the spread of an illness in a popu-
lation.

¢ “Input-output Economics” de-
scribes an effort to harness I-O eco-
nomics to take account of the
“bads” produced by an economy as
well as the nonrenewable resources
required to sustain it.

Our Kaleidoscope in this issue is
a graphical representation of the re-
vised World3 model that appears in
Beyond the Limits, the 1991 sequel
to The Limits to Growth. The
model, along with its supporting
equations and data, is included in
the freely distributed modeling soft-
ware Vensim PLE (see page 19).
The Quantum staff would like to
thank Kurt Kreith of the University
of California-Davis for his unflag-
ging efforts as the editor of this spe-
cial issue. We welcome comments
from our readers. Our e-mail address
is quantum®@nsta.org; our postal ad-
dress is Quantum, 1840 Wilson Bou-
levard, Arlington VA 22201-3000.
—Tim Weber,
Managing Editor
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A NEW WORLDVIEW

The Limits to Growth revisited

A bit of history, and a challenge to our readers

by Kurt Kreith

T HAS BEEN 25 YEARS SINCE

The Club of Rome published its

provocative study The Limits to

Growth. To commemorate this
event the editors of Quantum have
undertaken a special issue, one that
describes The Limits to Growth and
examines its implications. It also in-
vites Quantum readers to engage in
some “dynamic modeling” as de-
scribed in this and subsequent ar-
ticles.

Contrary to the usual Quantum
fare, my introduction to The Limits
to Growth (let’s call it LTG for short)
will not deal with an established
scientific phenomenon or math-
ematical structure. Rather, it pre-
sents LTG’s framework for thinking
about the Earth’s ability to sustain
both humankind and our industrial
economy. Also we will become fa-
miliar with some remarkable soft-
ware that can help us develop our
own framework for thinking about
what The Club of Rome’s founder
referred to as “the predicament of
mankind.”

But before turning to LTG itself,
it may be useful to recall some other
historical events. When Nicolaus
Copernicus published his monu-
mental De Revolutionibus Orbium
Celestium (“On the Revolution of
the Celestial Spheres”), he also con-
fronted the world with a controver-

sial new framework for thinking
about a system, namely the solar
system comprised of the earth, sun
and its planets. The immediate
question, “Is Copernicus correct?”
was, in retrospect, not the most im-
portant question to ask. The Coper-
nican model, one in which the Earth
and planets pursue circular orbits
about a stationary Sun, is in detail
not correct. Nonetheless, Coper-
nicus’s heliocentric framework for
thinking about celestial change was
a monumental step, one that set the
stage for Kepler, Newton, and others
to apply the finishing touches.

Similarly, when Charles Darwin
published Origin of Species, he
sought to explain the diversity of life
forms on earth without reference to
modern principles of heredity (to say
nothing of DNA]. Nonetheless,
Darwin’s theory of natural selection
provided an important new frame-
work that enabled others to think
more creatively about the natural
world. Without claiming that LTG
is destined to play a comparable role
in understanding the environmental
issues confronting our civilization,
it is worth noting that science often
advances in a less than orderly fash-
ion.

Such historical examples also
suggest that a 25th anniversary may
be somewhat premature for efforts

to resolve the controversies that sur-
round LTG. It was more than a hun-
dred years before Newton provided
the Copernican model with its final
vindication, showing that the mo-
tion of the planets follows from an
inverse square law of gravitation.
And while Darwinism continues to
command great respect, the precise
role of natural selection in evolu-
tionary change remains a topic of
controversy to this day.

Accordingly, this issue of Quan-
tum is at best an “interim report” on
The Limits to Growth. Aside from
describing the framework that LTG
provides for thinking about “the pre-
dicament of mankind,” it is also in-
tended to provide Quantum readers
with an introduction to the field of
“system dynamics.” Indeed, it is
LTG’s compelling arguments for the
need to address issues of environ-
mental change in the context of “the
global system” that may turn out to
be LTG’s most lasting legacy.

The global system

So what is the global system that
LTG so forcefully called to our at-
tention? In a nutshell, it calls for an
embedding of human activity
within the earth’s ecosystem and
then taking account of the many
connections and interactions that
exist. The overall idea is expressed
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thermodynamic
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angle labeled “Eco-
nomic Subsystem”
that is at the heart
of LTG. For here is
a subsystem of the
closed global eco-

low-grade
energy

planetary sinks

system, one that is
subject to human

global ecosystem

Figure 1

in figure 1 (reproduced from a 1992
sequel to LTG called Beyond the
Limits).

Such a diagram raises topics from
the physical sciences that have been
addressed in past Quantum articles.
The large circle can be thought of as
representing the boundary of a
physical system, one that is open to
energy flows but (neglecting an oc-
casional meteorite or water mol-
ecule) closed to material flows.
Such a closed system is subject to
the laws of thermodynamics and
can therefore be studied in terms of
established physical principles. In
the July/August. 1996 issue of
Quantum (“The Power of the Sun
and You”), V. and T. Lange point
out that, at a distance of 93 million
miles, a square meter oriented per-
pendicular to the sun’s rays receives
1.4 KJ of solar radiation each second.
In the November/December, 1995
issue (“Less Heat and More Light”),
Y. Amstislavsky reviews the physi-
cal laws governing thermal radia-
tion (or “heat loss” in the above dia-
gram). And in the March/April,
1991 issue (“Atmospherics”), A.
Byalko sets forth the physical laws
governing the Earth’s thermal equi-
librium, a subject of growing inter-
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decision making.
While physical sys-
tems tend to be de-
terministic in na-
ture, this economic
subsystem is be-
lieved to be subject
to free will. It is, after all, the deci-
sions we make as individuals and
through our governing institutions
that are at the heart of our efforts to
address environmental issues.

Focusing on this economic sub-
system, LTG’s developers singled
out three major components: hu-
man population, food, and indus-
trial production. Going on to iden-
tify “planetary sources” with
resources and “planetary sinks”
with pollution, one arrives at the
five variables whose interaction was
studied in LTG.

In mathematical terms it is
tempting to represent these five
LTG variables as vertices of a regu-
lar pentagon (fig. 2). A daunting task
facing LTG’s authors was the formu-
lation of “functional relationships”

heat loss

population

o+

resources indus

food polintion

Figure 2
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among the variables in figure 2, ones
that specify how changes in one
variable will affect the others. Some
of these relationships are familiar
ones, such as the dependence of
population on food and the depen-
dence of industrial production on
resources. However others, such as
the dependence of food on pollution
and on industrial production, tend to
be more subtle. Formulating such
functional relations and then trans-
lating them into language under-
standable by a computer is the es-
sence of the “World3” model
underlying LTG.

Why was LTG controversial?

In 1972 the MIT Project Team
headed by Dennis Meadows pub-
lished a nontechnical report entitled
The Limits to Growth. After de-
scribing the exponential growth that
has marked human population and
industrial activity throughout the
20th century, LTG presented a se-
ries of “scenarios” generated by the
World3 model. It also presented
three conclusions, the first of which
can be broken into two parts:

la. If the present trends in world
population, industrialization,
pollution, food production and
resource depletion continue un-
changed, the limits to growth on
this planet will be reached
sometime within the next one
hundred years.

1b. The most probable result will be
a rather sudden and uncontrol-
lable decline in both population
and industrial capacity.

My reason for breaking conclu-
sion 1 into two parts is to separate
the controversial from the m

u
dane. Simple “back of the envelope”
C 0 €O

clusion la. At cum
rates of growth |a d

xceed 30 billion in
D = corresponds to about
10 acre of axrable land per person
compared to the almost 2
tly used to sustain
style of the average

L —esczn It there are individuals




who wish to challenge conclusion
la, we need only change “one hun-
dred years” to “two hundred years.”
But rather than dwell on this point,
let us accept LTG’s assertion that
exponential growth cannot be in-
definitely sustained

But what about conclusion 1b? Is
it unduly alarmist? Might not the
approach of limits simply lead to a
reduction in growth, one that corre-
sponds to a smooth leveling off of
human population and industrial
production? On what basis did LTG
raise the specter of “a rather sudden
and uncontrollable decline in both
population and industrial capacity”
as a likely scenario?

Critics raised other questions as
well. To what extent do the func-
tional relationships connecting
LTG’s five variables reflect the com-
plexity of “the real world”? In what
sense did the insights developed in
working with World3 provide a ba-
sis for LTG’s conclusions? It was
here that a range of important ques-
tions about the nature and signifi-
cance of mathematical modeling
came to the fore.

Such questions were not unantici-
pated. LTG’s World3 model was pre-
ceded by an earlier “world model”
described in Jay Forrester’s book
World Dynamics. Both LTG and
World Dynamics stressed the distinc-
tion between predictions and sce-
narios, noting that computer models
tend to generate the latter. Also, these
authors did not claim to represent
“the real world” in terms of just five
variables. They pointed out, however,
that all human decisions are based on
some sort of mental model and that,
unlike World3, many of the assump-
tions that go into our mental models
are not explicitly spelled out. By tak-
ing into account phenomena that are
neither intuitive nor part of our expe-
rience, LTG’s authors believed that
World3 did provide new insights,
ones that can serve as a valuable ad-
junct to our mental models.

Quantum readers interested in
pursuing this debate may want to
begin by reading The Limits to
Growth or its 1992 sequel Beyond
the Limits. They will then be in a

position to confront the arguments
of LTG's critics (both sequels and
critiques are listed at the end of this
article). For our purposes, however,
it will be more productive to side-
step this debate and focus on the
underlying ideas from system dy-
namics. For once we are familiar
with some of the modeling tech-
niques arising in LTG, we will be in
a better positions to reach our own
conclusions about the uses and
limitations of World3 and of math-
ematical models in general.

But before setting LTG aside, let’s
note its two other conclusions. Con-
clusion 2 reflects the fact that World3
is not inherently apocalyptic. That is,
by changing some of the “inputs”
that underlie LTG’s more pessimistic
scenarios, World3 is capable of gener-
ating scenarios that embody
“sustainability.” In this vein, LTG’s
second conclusion states:

2. Tt is possible to alter these growth
trends and to establish a condi-
tion of ecological and economic
stability that is sustainable far
into the future. The state of glo-
bal equilibrium could be designed
so that the basic needs of each
person are satisfied and each per-
son has an equal opportunity to
realize his individual human po-
tential.

The third and final conclusion is
one to which we shall return after
doing some modeling ourselves. It
asserts:

3. If the world’s people decide to
strive for this second outcome
rather than the first, the sooner
they begin working to attain it,
the greater will be their chances
of success.

Enter STELLA

In the course of their develop-
ment of World3, the authors of LTG
made use of ideas from system dy-
namics that are now embodied in
several kinds of computer software.
Among these is a remarkable icon-
based simulation software package
called STELLA® By way of setting
the stage for some of the other mod-

reservoir

3

flow

Figure 3

eling projects in this issue of Quan-
tum, it will be useful to describe
some of the features of STELLA.

STELLA modeling is based on
four icons, which enable us to rep-
resent dynamical systems in an in-
tuitive format. By way of illustra-
tion, we begin with just two icons.
One is a rectangle, representing a
reservoir (or stock), and the other is
a pipe with an arrow at one end
called a flow (fig. 3).

The simple system represented in
figure 3 can be interpreted as a tank
being filled with water. If we mea-
sure volume in terms of gallons and
time in terms of minutes, the flow
would be measured in terms of gal-
lons/minute.

One of STELLA’s most important
capabilities is the following: given a
specified flow (in terms of gallons
per minute), calculate the amount
(gallons) of water accumulated in
the tank in T minutes.

If the flow is constant (say, 3 gal-
lons/minute), the answer is easy. The
amount of water accumulated in the
tank is given by 3T, where 3 is the
rate of flow and T is the amount of
time elapsed. If, however, the flow
varies with time, the problem be-
comes more challenging. Denoting a
nonconstant flow by f{t), we might
now approximate the amount of wa-
ter accumulated at time T by (1)
monitoring the rate of flow at given
time intervals, (2) assuming the flow
is essentially constant between such
monitoring, and (3) calculating the
resulting accumulation by applying
the rule “volume = rate x time” in
these small time intervals.

Let’s illustrate this idea in the
case of a tank that is being filled at
flt) =2t + 1 gallons/minute for 4 min-
utes. A(t) will denote our approxima-
tion for the amount of water accu-
mulated in the tank (fig. 4).
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Time f(t) A(t)

0<t<1 1 t

1<t<?2 3 1+3(t-1)

2<t<3 5 4 4+ 5(t-2)

3<t<4 7 9+ 7(t-3)
Figure 4

If we are only interested in calcu-
lating A(t) at the integer times t =1,
2, 3, and 4, we could do the same
calculation by means of a simple
spread sheet program (see “Look,
Ma—No Calculus!” in the Novem-
ber/December 1994 issue of Quan-
tum). This spreadsheet corresponds
to repeated applications of the rule

AT =AT-1)+AT-1) (1)

forT=1,2, 3, or 4 (fig. 5].

Problem 1. Verify that equation
(1) corresponds to A(T) = A{O) + f{O) -
1+f1)-1+..+AT-1) 1, where
A(0) is the volume of water in the
tank at t = 0.

Problem 2. Apply the scheme in
figure 4 (or figure 5) to the flow
fit) = 1 + t? to calculate A(4).

In case greater accuracy is de-
sired, we could monitor the flow
into the tank more frequently than
once a minute. Monitoring such
flows four times a minute calls for
repeated applications of the rule
Alt)=A(t-0.25) +f[t-0.25)/4. As in
problem 1 above, this leads to

a(r)= a(0)+ 19, £025)  F0S)
f(075 F(T -0.25)

Those familiar with calculus may

sum corresponding to
the integral of ft)
fromt=0tot=T."In
other words, lurking
underneath
STELLA’s friendly
icons is a spreadsheet
program that per-
forms numerical inte-
gration and thereby
provides approximate
solutions to problems
such as

max inflow

Figure 6

dA
T (t);

A(0) = A,.

However, one of the beauties of such
software packages is that they en-
able us to conceptualize and “run”
dynamical systems without involv-
ing the calculus. This capability also
enables us to do some rather sophis-
ticated modeling in an icon-based
format, one that requires only alge-
bra and functional notation.

By way of introducing STELLA’s
two other icons, let’s consider a
mundane example: the tank that sits
on the back of the ubiquitous flush
toilet! This tank has both an outflow
(for creating a siphon effect in the
toilet) and an inflow (for refilling the
tank). Inside the tank there is a
“float,” one that links the rate of
inflow to the amount of water in the
tank and is responsible for shutting
off the inflow once the tank has ac-
quired a prescribed level. In model-
ing such a system, STELLA uses a
connector to reflect the fact that in-
flow depends on the amount of wa-
ter in the Tank (fig. 6).

Also included in figure 6 is a cir-
cular icon called a converter that can
be used to introduce a variable or

notice that A(T) is just a “Riemann “parameter” that affects the
A B C
1 [Time (1) A(t)
2 |0 =2"A2+1 0
3 |=A2+1 =2"A3+1 =C2+B2*1
4 |=A3+1 =2*A4+1 =C3+B3*1
5 |=A4+1 =2"A5+1 =C4+B4*1
6 |=A5+1 =2"A6+1 =C5+B5*1
Figure 5
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Tank

inflow

flush

system’s dynamics. In the context of
figure 5, the converter called max
inflow is connected to inflow. What
we have in mind is the fact that toi-
let tanks have shutoff valves whose
setting controls the maximum rate
at which the tank can be refilled.

Having created such a dynamical
system, STELLA’s dialog boxes en-
able us to program rules such as the
following into a spreadsheet under-
lying these icons:

1. At time t = 0, the Tank contains 11
gallons of water—that is, A(0) = 11.

2. At time t = 1, a flush drains the
tank at 7 gallons/s for 2 seconds.

3. The max inflow converter is set at
2 gallons/s.

4. The inflow is given by the smaller
of max inflow and 11 - Tank.

When this symbolic toilet is flushed,
the water in the tank falls rapidly for
two seconds. As soon as the volume
falls below 11 gallons, the tank be-
gins refilling, as defined by inflow in
rule 4, until it again reaches its ca-
pacity of 11 gallons.

Not only does STELLA calculate
the changes in the variables high-
lighted above, it will also draw a
graph describing the dynamics of
such a system (fig. 7).

Asyou may have guessed by now,
these computational techniques can
be applied to phenomena other than
just tanks and water flows. A reser-
voir can represent a population, with
flows in and out representing births
and deaths. A reservoir can also rep-
resent money in the bank, with
flows in and out representing depos-
its and withdrawals. Indeed, a host
of different variables that are subject
to increase and decrease according



Figure 7

to some mathematical rule can be
represented by such an icon. Fur-
thermore, the rate at which a vari-
able changes can depend on that
variable itself (this is called feed-
back) and on the state of other vari-
ables (this occurs in a system).

Against this background, we can
now think of elaborating on figure 2
in STELLA format. The vertices of
the pentagon would be replaced by
five “sectors” containing reservoirs
with numerous inflows and out-
flows. The ten edges would be re-
placed by a bevy of connectors and
converters that reflect functional re-
lationships between population,
food, pollution, industrial capacity,
and resources. The resulting iconic
diagram would provide a detailed
blueprint for anyone seeking an ex-
plicit understanding of the assump-
tions that underlie this particular
“world model.”

When LTG appeared in 1972,
very few people were in a position to
understand such models, their uses,
and their limitations. By contrast (as
we’ll see below), software such as
STELLA now makes the underlying

Balance

@ 5

interest

Figure 8

ideas accessible to anyone with a
modern desktop computer.

Population dynamics

In “Look, Ma—No Calculus!”
(November/December 1994), spread-
sheets and banking analogies were
used to describe some important
ideas from population dynamics.
Here “$100 deposited in a bank at
10% interest per year” was the start-
ing point for developing the concept
of exponential growth, while varia-
tions on this banking theme led to
other phenomena. Let’s now con-
sider how STELLA enables us to
deal with these same ideas and, in
particular, with investigation 2 as
posed in “Look, Ma—No Calculus!”

A balance of $100 deposited at
10% interest corresponds to the
STELLA icons shown in figure 8.
Here we must also use STELLA's
dialog boxes to specify that the ini-
tial Balance is 100 and that the in-
terest is 0.1 - Balance. Given simple
interest paid annually, this leads to
the results shown in figure 9.

However, STELLA can also be
asked to compound your interest
quarterly, implementing the rule
B{t+0.25) = B(t] + 0.025 - B(t) (fig. 10).
This is done by setting DT = 0.25 in
STELLA’s “Time Specs” menu. (On
most older versions of STELLA
DT =0.25 is the default setting. To
get annual compounding one must
set DT = 1.)

Continuing in this vein, investi-

1: Tank 2: flush 3: inflow 10:51 PM  7/1/97 a
13 12.00
g] | Time Balance
B ——
| \ / i o]  $100.00
1 $110.00
\ / 2 $121.00
1
’ 4 Final $133.10
1! Inai .
2:] 6.00 \ /
2
\I / Figure 9
3 3 ~
4 / \ ’1/ 3\ .
g] 000 " ) 5 2 gation 2 from “Look, Ma—No Cal-
" 0.00 3.00 6.00 9.00 1200 [ culus!” was based on a dubious
g  Grent Time 10:42PM  7/1/97 Murky Savings and Loan, one that

offers its clients an attractive 10%
rate of interest. However, Murky
also subjects their accounts to a
“very small” service fee of 0.05%,
albeit one that is applied to the
square of the balance! In terms of
STELLA’s icons, this means that the
reservoir Balance also has an out-
flow attached to it, which we’ll call
fee (fig. 11).

The connectors from Balance to
both interest and fee enable us to
specify that interest = 0.1 - Balance,
while fee = 0.0005 - Balance - Bal-
ance. With dialog boxes so defined,
STELLA readily provides a graph
describing the growth of $100 depos-
ited at Murky (fig. 12).

To see why an initial deposit of
$100 never grows past $200 at Murky,
let B(t) denote the balance after t

10:55 PM 7/1/97

Table 1 a

Y
Years Balance ’_
.00 $100.00
.25 $102.50

.50 $105.06

.75 $107.69
1.00 $110.38
1.25 $113.14
1.50 $115.97
1.75 $118.87
2.00 $121.84
225 $124.89

2,50 $128.01

2.75 $131.21

Final $134.49
Figure 10
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Figure 11

years. Assuming annual compound-
ing, Murky’s rule can be written

B(t + 1) = B(t) = 0.1 - B(t] - 0.0005 -
B(t) - B(t)
- 0.0005 - (200 - B(t)) - Blt).

This formulation shows that bal-
ances under $200 will grow in value,
but that balances over $200 will ac-
tually decline in value. At B = 200
the annual service fee of 0.0005 - B?
exactly cancels out the annual inter-
estof 0.1 - B.

Problem 3. Given quarterly com-
pounding, B(t + 1/4) — B(t) = 0.025 -
B(t) - 0.000125 - B(t) - B(t). What will
happen to $50 deposited at Murky
under this rule?

While unlikely in the world of
banking, these ideas do occupy an
honored place in population dynam-
ics. During the 19th century a Bel-
gian biologist named Verhulst sug-
gested that in certain constraining
situations (for instance, yeast cells
in a closed jar) populations do grow
according to the rule dN/dt = a - Nit)
- b - N(t)?, where the constant a re-
flects the population’s unfettered
growth rate and b reflects the sever-

fee

ity of some external constraint to
continued growth. Given annual
compounding, dN/dt corresponds to
N(t + 1) - N(t), and Verhulst’s equa-
tion becomes

N(t+1)- N(t)=a- N(t)-b- N(t)*

=b- E - N(t)} N(2).

The fact that such a population in-
creases if N < a/b and decreases if N
> a/b suggests that a/b can be inter-
preted as the “carrying capacity” of
the system being represented. That
is, if N(0) < a/b, such a population
will grow, but never past its limiting
value of a/b. In LTG such S-shaped
functions are said to correspond to
sigmoid growth.

Of course we should not take
such models too seriously. The
rule N(t +1) = Nl[t)=a- N(t)-b - N[t}?
also leads to sigmoid growth—but
toward a different limit. To see this,
you need only calculate what hap-
pens if Murky applied its 0.05% ser-
vice fee to the cube of your balance!
What is important here is that a

1: Balance

1 200.00 !
r1
/ i
/1 /
1 100.00
T 0.00
0.00 20.00 40.00 60.00 80.00
a Graph 1 Years 11:02 PM 7/1/97
Figure 12
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linear feedback “a - Nit)” is being off-
set by an opposite effect
“_b - f(N(t)),” where f(N) is of the
form N2, p > 1. Such “superlinear
damping” terms also give rise to a
form of sigmoid growth whose lim-
its are determined by a and b.

Problem 4. Find the “carrying ca-
pacity” of an environment in which
a population grows according to
Nit +1)= N[t} = 0.1 - N - 0.0005 - N3.
Repeat for N(t +1) - N(t) = 0.1 - N -
0.0005 - N°2.

Back to LTG

While LTG’s World3 addressed
the interaction of five different vari-
ables, the Verhulst equation deals
with only one. Yet even such a one-
dimensional “shadow” of World3
can provide important insight into
the phenomena arising in LTG. Sup-
pose that after finding that figure 9
generates exponential growth (of the
kind that has marked human popu-
lation and industrial production
throughout the 20th century), we
have done some back-of-the-enve-
lope calculations indicating that
such exponential growth cannot be
sustained throughout the 21st cen-
tury. Then, going back to Verhulst’s
time-honored ideas from population
dynamics, we have also hypoth-
esized a form of “superlinear damp-
ing” of the form —~bN?, perhaps re-
flecting the effects of pollution and
declining resources on the global
ecosystem.

Well, so far so good. The sigmoid
growth given by Verhulst’s model
corresponds to a “soft landing,”
whereby a population stabilizes at
its carrying capacity N = a/b. (The
important fact that carrying capac-
ity may itself change with time is
addressed in equations (2) and (3)
below.) This raises the following
important question: What was it
about World3 that corresponded to
“a rather sudden and uncontrol-
lable decline in both population
and industrial capacity”?

Investigation 2 from “Look, Ma—
No Calculus!” suggests that at least
part of the answer lies in a phenom-
enon called “delayed feedback.” Re-
call that in programming the dialog




boxes corresponding to figure 12, we
indicated that it is the current balance
that determines the year-end pay-
ments and withdrawals. Such as-
sumptions also underlie the Verhulst
equation and the related models in
which superlinear damping leads to
sigmoid growth.

But what if a population manages
to inject delays into the nonlinear
damping term that determines the
limits imposed by its carrying capac-
ity? Such delays could arise as the
result of a society’s reliance on non-
renewable resources to sustain eco-
nomic growth or the fact that it
takes time for pollution to affect our
health and degrade the soil.

Investigation 2 provides some im-
portant insights into such “delayed
damping” in terms of a banking anal-
ogy. Here we suppose that Murky of-
fers its established customers the fol-
lowing alternate way of computing
the service fee on their accounts. Af-
ter 10 years with Murky, your service
fee will be based not on this year’s
balance, but on your balance 4, 6, or
8 years earlier. What is the effect of
such delayed damping on money de-
posited with Murky?

STELLA provides an easy way of
answering such questions. In pro-

gramming figure 12’s dialog box for
fee, we simply replace fee = 0.0005 -
Balance - Balance by fee = DE-
LAY(0.0005 - Balance - Balance, d),
where d refers to a converter with a
positive value. STELLA now enables
us to do a “sensitivity run,” plotting
Balance for a range of values such as
d = 4, 6, and 8. The outcome is
shown in figure 13.

With this delayed damping model
we are able to realize the four behav-
ior modes that LTG associated with
a growing population. We have al-
ready seen how positive feedback
leads to exponential growth in the
absence of limits and to sigmoid
growth in the presence of super-
linear damping with immediate
feedback. The two other modes that
STELLA has just helped us discover
are called overshoot and oscillation
to equilibrium and overshoot and
collapse. In the case of our modified
Verhulst equation, these two phe-
nomena correspond to delayed feed-
back with small and large delays,
respectively. In the context of
World3, such phenomena are ac-
companied by an erosion of carrying
capacity (also reflected in the
Malthus-Condorcet model below).
While far simpler than World3, in-

Balance
3 = =3
O
interest fee
d
1: Balance 2: Balance 3: Balance
1 400.00
/\\
3
yARN! i
f-1
1 200.00 1 1
/7 7 N
2 |~
41/
1: 0.00 \ 3 3
0.00 20.00 40.00 60.00 80.00
a ? Graph 1 Years 11:06 PM 7/1/97
Figure 13

vestigation 2 does provide us with
mathematical insight into LTG’s fi-
nal conclusion:

“If the world’s people decide to
strive for this second [sustainable]
outcome rather than the first, the
sooner they begin working to attain
it, the greater will be their chances
of success.”

More fuestions and defiate

Well, you have now seen some
applications of STELLA and have
gained some insight into dynamic
modeling. But what about the impli-
cations of all this for The Limits to
Growth?

The conclusion that I drew was
that the framework that LTG pro-
vided for thinking about environ-
mental issues was path breaking.
First, it pioneered the use of com-
puter technology to model environ-
mental issues on a global scale in the
context of a closed system. Second,
it called for taking account of delays
in building such models, an impor-
tant innovation that theorists such
as Verhulst were probably unable to
handle. Indeed, investigation 2 in
“Look, Ma—No Calculus!” corre-
sponds to the numerical solution of
a delay differential equation dN/dt
= 0.1N(t) - 0.0005N(t — d)*. The
mathematical theory for such equa-
tions is scarcely 50 years old.

Others have drawn very different
conclusions. In his recent book How
Many People Can the Earth Sup-
portt, Joel Cohen worries about the
extent to which a model such as
World3 can truly reflect the com-
plexity and unpredictability of the
real world. How near to “the real
thing” does a model have to be to
play a useful role in debates on re-
lated social issues? Cohen refers to
such models as “mathematical car-
toons” that can be effective in both
conveying and distorting truths.

However, Cohen himself is not
immune from the lure of modeling.
In a recent article entitled “Popula-
tion Growth and Earth’s Human
Carrying Capacity” (Science, July
21, 1995), he develops a different
generalization of the Verhulst equa-
tion, one that he calls the Malthus—
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Condorcet model. Instead of relying
on a single differential equation
dN/dt = aN(t) - bN(t)* = bla/b -
N(t)IN(t), Cohen considers a system
of equations

& o pefke)-P0) )
dK dapr
E:c-g. (3)

with the following interesting inter-
pretation. Equation (2) resembles the
Verhulst equation for a population of
size P(t) in an environment with car-
rying capacity K. However, as in the
real world, K is not constant. Rather,
according to equation (3), K has a
growth rate that is proportional to the
growth rate of Pt). This reflects the
point of view that “every human be-
ing represents hands to work and not
just another mouth to feed.” The
question of whether the productivity
of our hands exceeds the demands of
our mouths would, in this model, be
reflected by whether c is positive or
negative. And it is the case ¢ < 0 that
corresponds to the erosion of re-
sources, a concept that plays an im-
portant role in LTG.

In his analysis of these equations,
Cohen observes that the “annual
compounding” solution generates the
same four behavior modes (exponen-
tial, sigmoid, overshoot and oscilla-
tion to equilibrium, and overshoot
and collapse) encountered in LTG
(and exhibited by our delay Verhulst
equation dN/dt = aN(t) - bN(t - d)?).

P growth

&3

Carrying Capacity K

K change
Figure 14
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In his critique of The Limits to
Growth, Cohen observes that a
model as transparent as equations (2
and (3) suffices to generate behavior
modes that LTG associated with
World3. This leads him to ask
whether the authors of LTG may
have based their conclusions on an
unnecessarily complex model, whose
lack of transparency can mislead
those unversed in system dynamics.

Rather than try to resolve such
different interpretations, let us note
that the Malthus—Condorcet model,
recently cited in a premier research
journal, is readily accessible to any-
one equipped with systems software
such as STELLA. The diagram in fig-
ure 14 will get you started.

In fact, you are now in a position
to elaborate on Cohen’s Malthus—
Condorcet model as well. For ex-
ample, you can use STELLA’s built-
in DELAY command to replace
equation (2) with

dp

o= tK(P(t)-P(e-d)". (2]

In this way computer technology
and system dynamics can help you
engage issues that lie at the cutting
edge of scientific discourse.

Exercises

1. Suppose Murky tries to save
money by updating your account ev-
ery ten years, rather than every year.
That means that after 10 years you
would receive 10 x 10% = 100% inter-
est on your last
balance and pay a
service fee of 10 x
0.05% = 0.5% on
the square of your
last balance. Cal-
culate the value of
$100 after 10, 20,
and 30 years.
What do you
think would hap-
pen to $100 depos-
ited at Murky for
100 years?

2. Suppose that
Murky becomes
even more sloppy,

compoundingevery

Population P

thirty years instead of every ten. Cal-
culate the value of $100 after 30, 60,
and 90 years. What do you think
would happen to $100 deposited at
Murky for 1,000 years?

3. When ¢ > 0 in equation (3), a
generalization might call for replac-
ing ¢ with L/P(t), where L is a posi-
tive constant and P(t) is the size of
the population at time ¢. This corre-
sponds to the assumption that a
population’s ability to enhance the
Earth’s carrying capacity will de-
cline as P gets large. What additional
connectors and converters are
needed to accommodate this gener-
alization in figure 14?2

4. In the context of the Malthus-
Condorcet model (equations (2) and
(3)), generalize on exercise 3 so that
K(t) increases when P < 2 and de-
creases when P > 2.
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Just for the fun of it

B211

Match boxes. In the picture you see twelve matches arranged in
three squares. Arrange the matches to form six squares (again
with a side length of one whole match). (I. Sharygin)

B212

Six and three. Find six points on the plane such
that each of them lies at a distance 1 from exactly
three other points of this set. (I. Yaschenko) !

B213

Ratio of ratiocinators. Every seventh mathematician is a philoso-
pher, and every ninth philosopher is a mathematician. So which is
more numerous, mathematicians or philosophers? (A. Spivak]

B214

Look out below. Find the fraction
between 96/35 and 97/36 with the
smallest denominator. (D. Averyanov)

B215

Excellent square. Cut the square in the figure into four identical
parts, so that each part contains exactly one X. (I. Sharygin)
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Aisnulay) |1aaed AQ Ly h

QUANTUM/BRAINTEASERS 13







—
[©)
<
w
®

nouea| Aefl

MALTHUSIAN MODELING

Overshooting the limits

On plateaus and the various ways to reach them

by Bob Eberlein

HE LIMITS TO GROWTH (LTG) HAS BEEN A

topic of discussion for the last 25 years, and that

discussion has often generated, as one of the au-

thors Donella Meadows is fond of saying, more
heat than light. Of the many points raised by this work,
a very important one has often been overlooked because
of its simplicity. While many have criticized World Dy-
namics and The Limits to Growth as being simply a re-
statement of Malthus’s Essay on the Principle of Popu-
lation, there is a fundamental difference. While Malthus
tried to explain why the human condition was destined
to be one of perpetual suffering, the LTG work addressed
the dynamics of change, showing that the human con-
dition could improve significantly, and degrade even
more quickly.

Thomas Malthus was an English economist who
lived from 1766 to 1834. He is most famous for his work
suggesting that human population growth would pro-
ceed in unchecked exponential growth in the absence
of any constraints. He also thought that food production
could not ever do more than grow linearly and therefore
concluded that most people would always live at a mea-
ger subsistence income level. It was this work of
Malthus that led some to label economics “the dismal
science.”

Malthus relied on logic, mathematical analysis, and
written arguments to support his position. The Limits
to Growth made use of a simulation model. These two
approaches do not represent exclusive alternatives—
rather, they should be considered complementary.
Mathematical and logical arguments can often be used
to summarize the results of simulation studies. Simu-
lation models can also be used to test conjectures and
explore issues that do not easily lend themselves to rig-

orous mathematical analysis. In this article I will de-
scribe the use of simulation techniques to explore the
so-called “overshoot problem.”

The computer simulation environment used in this
article is Vensim®PLE (Personal Learning Edition). This
software is free for educational use and information on
how to obtain it is provided at the end of the article.

Population growth

At the heart of all this discussion is the fact that “a
thousand millions are just as easily doubled every
twenty-five years by the power of population as a thou-
sand” (Malthus). In more mathematical terms, we
would express this as “the rate of growth of population
is proportional to the population itself.” Using the stock
and flow notation of system dynamics, we can represent
this as shown in figure 1. Arrows with double lines are
used to represent a pipe through which a “flow” leads
to changes in a “stock.” Births increase a population,
and this is indicated by the arrow births going into Popu-
lation. The variable deaths decreases Population, and
this is shown by the right-pointing arrow. The clouds

Population P
deaths

/

average lifetime

£3

births

/4

live birth rate

Figure 1

Simple population growth model.
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shown at the ends of these arrows are
used to indicate that source of births

Population for different "live birth rate” values

and repository of deaths are outside the
boundaries: of the model. The curved
arrows that are shown connecting
Population to deaths, average lifetime
to deaths, and so on, are used to indi-
cate functional dependence. That is, to
determine the value for deaths we need
to know both Population and average
lifetime.

This picture represents a basic popu- 0

600 B

450 B

300 B

150B

lation growth model, but it is not com- 1900
plete. The picture says that births are
determined by Population and live 035
birth rate, but it does not specify the 040
exact nature of that relationship. Be- 045

hind the picture are the actual formu-

1930 1960

1950

2020 2050 2080
Time (Year)
Person
Person
= = & e, POLSOH

las or equations that specify the exact
relationships between variables. For
births we have

Figure 2

births = Population * live birth rate (1)

This equation says that the number of births at any time
is proportional to Population at that time. A unit of time
is a central element to all system dynamics models, one
that is often left implicit in the formulation of the un-
derlying equations.

Our equation for deaths is formulated somewhat dif-
ferently. Since a (stable] population with an average life
span of 10 years has an annual death rate of 10%, we can
substitute 1/average lifetime for death rate. This leads
to the equation

deaths = Population/average lifetime (2)

The equation for Population is a little different be-
cause Population is an accumulation—that is, a stock
whose change in size is determined by births minus
deaths. In equation (3) below we use Vensim notation
to specify that an initial population of 1.65 billion is ac-
cumulating births — deaths—that is, adding each year’s
change to the previous year’s value:

Population = INTEG(births -
deaths, 1.65¢9) (3)

Unconstrained population growth.

the results in figure 2.

For live birth rates larger than the death rate, all simu-
lations generated by this model will exhibit the same
type of behavior, namely exponential growth. The dif-
ference in results caused by seemingly small differences
in live birth rate is striking.

Limited food supply

Malthus’s most prominent thesis was that limitations
in the food supply would prevent the unchecked growth
in population that would otherwise occur. He argued that
as the population rises, the amount of food per person
falls, making disease, war, and famine more likely. In
terms of our system dynamics approach, we would have
to specify the functional relationships by which inad-
equate food supply contributes to deaths. This is con-
tained in the effect of food deaths function in figure 3.

To specify the functional relations in figure 3, we re-
place equation (2] with

For this simple model we could ac- E‘:Qulatlon -

tually determine a closed-form solu-
tion that would give Population as a
function of time (see problem 1 at the
end of this article]. This is, however,
not possible in general, and the simu-
lation approach to problems relies on
numerical computation, not on find-
ing “analytical solutions” in terms of
formulas or algebraic expressions. Set-
ting average lifetime to 65 years, we
can simulate this model for several dif-
ferent values of live birth rate and see

Figure 3
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Population growth model with food constraint.
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specifies a series of (x, y] pairs that gives
rise to the function shown in figure 4.

In this context, we now complete
the model with the following Vensim
formulas:

food per capita =

food supply/Population (7)
food supply = 3e+009 (8)
normal average lifetime = 65 (9)
normal food per capita = .5 (10)

The results of running such a simula-
tion for several live birth rates are

the input s the relative food avaiabilty
o

Figure 4
The “effect of food deaths” function.

deaths = (Population/normal average lifetime) * effect of
food deaths (4)

In Vensim notation, the next equations is

effect of food deaths = effect of food deaths
function(food per capita/normal food per capita) (5)

Measuring food in tons and food supply in tons/year,
we now specify a nonlinear relationship between the ra-
tio food per capita/normal food per capita and resulting
increase in deaths. The Vensim notation

effect of food deaths function((0.1,100),
(0.25,10),(0.5,4),(0.75,1.5),(1,1),(2,1)) (6)

shown in figure 5. Three interesting
conclusions can be drawn from this.
First, the population grows and
achieves a plateau just as Malthus said
it would. Second, while there are differ-
ences that result from changes in the
live birth rate, the population ap-
proaches an equilibrium regardless of
this rate. Third, the lower the birth
rate, the lower the equilibrium population reached and
therefore the greater the equilibrium food per capita.

While our analysis has led to some interesting re-
sults, they are essentially the same as those of Malthus.
However, the mechanisms we have modeled are more
appropriate to a “hunter-gatherer” society than more
complex social forms, including our modern industrial
civilization. This leads us to ask, “What other things
can happen?”

Nonrenewaile resources

A fundamental difference between The Limits to
Growth and figure 5 was the inclusion in LTG of a fi-
nite Nonrenewable Resources stock. This stock de-

creases as resources are used as part of

Population for different "live birth rate" values

economic activity. In order to relate
this stock to the preceding model, we

include a target resource consumption

variable that is dependent on popula-
tion. To acknowledge the dependence
of agriculture on resources such as fuel,
water, and fertilizer, we change the
names of some variables and indicate
the fact that a lack of resources can
now also contribute to deaths (fig. 6 on
the next page).

The top part of figure 6 is precisely

1900 1930 1960 1990 2020

Time (Year)

2050

2080 the same as the one we saw previously,
with food replaced by resources in the

variable names. The variable food sup-

035

Person . :
- ply has been incorporated into a more

040

Person

045

complex relationship resource con-

Person
sumption, which is no longer a constant

Figure 5

Population growth with a fixed food supply.

but is dependent on target resource
consumption and Nonrenewable Re-
sources. The Vensim equation for
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normal average /
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lifetime

target resource resources per capita

consumption
normal
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capita
Nonrenewable 7
=7 »B
Resources
resource
consumption
Figure 6

Population growth model with nonrenewable resources.

resource consumption is

resource consumption = MIN(target resource con-
sumption, Nonrenewable Resources * maximum
fractional extraction). (11)

This equation says that resources are consumed at a rate
to meet the demands of the population except that there
is a limit on how fast the remaining resources can be ex-
tracted.

The equation for target resource consumption is

target resource consumption = Population *
normal resources per capita (12

————X——(

deaths

effect of resources deaths

<f——______ maximum fractional
extract

ponentially, much like a

radioactive substance
\ with a half-life of about
140 years.

The results of running
this simulation for vari-
ous live birth rates are
shown in figure 7. Here
population is no longer
increasing monotonically
toward a plateau, but in-
stead rises well beyond
the levels achieved in
preceding models and
then falls. The different
values for live birth rate
change both the time and
the population level at
which the turnaround oc-
curs.

By adding in the nonre-
newable resource stock,
we have introduced a
new pattern of behavior for this model. This behavior
results from the fact that Nonrenewable Resources are
initially plentiful, but that their continued consumption
eventually makes them insufficient to support an expo-
nentially growing population. This result is not re-
stricted to a society’s dependence on nonrenewable re-
source.

Even if we allow for resource renewal at a constant rate,
an overshoot of limits still occurs. The underlying prob-
lem is that there is an endowment of resources that can
support a very large population for a time, but that expo-

effect of resources deaths
function

and the equation for Nonrenewable Re-

Population for different "live birth rate” values

sources is
80B

Nonrenewable Resources =
INTEG(-resource 60 B
consumption,Se+12) (13)

This last equation indicates that an 40B

initial resource stock of 5 - 10! units

is decreased by resource consumption. 20 B

The resource units correspond to an

amount that would provide for ten bil- 0

lion people for 1,000 years at the nor- 19(;0

1930 1960 1990 2020 2050 2080
mal consumption rate of 10 units/per- Time (Year)
son/year. The maximum fractional
extraction is set at 0.005/year, which 035 Person
corresponds to an accelerated extrac- 440 - N
. p 045 — Person
tion time of 200 years. It can be shown
(see problem 2 below) that once the
population is sufficiently large to put Figure 7

pressure on resource extraction, the
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models. Vensim PLE is free for educational and
personal use. It can be downloaded from the
World Wide Web at http://www.vensim.com.
Vensim PLE includes both the World2 model
documented in World Dynamics and the World3
model as updated for Beyond the Limits. For
more information contact

Ventana Systems, Inc.
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nential growth, left unabated, will exhaust any resource
that is not itself growing exponentially. A tragic example
is that of Easter Island. Here islanders harvested trees
faster than they could replenish themselves and, as a re-
sult, were unable to build canoes from which to fish.

In equation (11) above we specified that resources are
to be consumed according to the population’s needs, ex-
cept that no more that 1/2 of one percent of the exist-
ing resources can be consumed in a single year. This is
a fairly gentle way of bumping into a resource limit. A
more complex and perhaps realistic formulation, such
as that used in the World models, can lead to more
abrupt overshoot and decline.

Conclusions

The lessons of The Limits To Growth go far beyond
what we have touched on here. The centrally important
point made in this article is that adjustment to limits
need not involve a monotonic approach to a plateau. As
more realism is introduced into the model, taking into
account the interactions among pollution, industrial
capital, agriculture, and land, the overshoot and subse-
quent decline become significantly more pronounced.

Computer simulation provides an engaging way to
address the monotonicity question and convey it without
reference to calculus and differential equations. As a
building block for investigation, simulation has another
big advantage. While it may be tough to start out with an
elaborate structure for a model, simulation enables us to
build on simpler structures. Furthermore, once additional
structure is included, the resulting model still allows for
solutions based on simulation. By contrast, only the sim-
plest problems allow for closed-form solutions, and this
can make heuristic insights very difficult to develop.

Experimentation with simulation will always give

results. Intelligently used, these results can provide
important new insights and a great deal of learning.

Problems

1. An annual census reveals that an population of 100
rabbits has a live birth rate of 20%/year and an average
life span of 10 years. Find a formula for the number of
rabbits at the end of n years.

2. A population uses 1/, th of its remaining nonre-
newable resources each year. How many years will it
take for its resource reserves to be reduced to 50% of
their original level?

Bob Eberlein is the head of product development at Ventana
Systems, Inc. He holds a Ph.D. in Management from MIT and
has been consulting and teaching in the field of system dy-
namics since 1984.
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The world in  bunole

‘Planetary management” in the closed ecological systems

of Biosphere 2
by Joshua L. Tosteson

N 1968, AN ECLECTIC INTER-

national group of scientists,

economists, politicians, and edu-

cators gave birth to a new organi-
zation, the Club of Rome, which
soon thereafter commaissioned a
groundbreaking study known as the
Project on the Predicament of Man-
kind. The goal of the project was to
address humanity’s growing impacts
upon the global system, and the pre-
dicament that “despite (our) consid-
erable knowledge and skills, (we do)
not understand the origins, signifi-
cance, and interrelationships of its
many components and thus (are) un-
able to devise effective responses.”
The Limits to Growth (LTG for
short|, whose legacy and influence
we explore in this issue of Quan-
tum, was the project’s effort—and
perhaps humanity’s first systematic
attempt—to map out and assess
these interrelationships on a plan-
etary scale.

Perhaps LTG’s most important
contribution to our intellectual heri-
tage lies in the way that it forced us

2 to think about the Earth’s bio-

sphere—the interconnected natural
systems within which human
economies and societies are situ-
ated, that enable life on the planet to
flourish—as a “closed” system. In

contrast to “open” systems, in
which matter can move in and out,
closed systems do not permit the
transfer of materials. For most of
human history people have acted as
if the Earth is an open system, with
limitless resources and an infinite
capacity to absorb human impacts.
This was an easy assumption to
make because the scale of human
civilization, relative to the size of
planet, had been small up until the
past one hundred and fifty years.
But with an ever growing, tech-
nologically advancing human popu-
lation, the scale of human activity
on the Earth since the mid-1800s
has made us acutely aware that the
Earth’s resources and life support
systems do indeed have limits.
While the Earth’s biosphere is ener-
getically and informationally open
(meaning that sunlight, gravity, and
other sources of energy and force act
upon the Earth), it is in fact a mate-
rially closed system—sort of like a
huge, sealed jar. Except for the infre-
quent escape of light elements into
space and the occasional intrusion
of a meteor or asteroid, the Earth
does not gain or lose any matter.
LTG powerfully showed us,
through the computer model
World3, how human beings could

EESSONE: FOR ST HESRIEAN EI:

conceivably exhaust the Earth’s
supply of natural resources and test
the limits of the planet’s ability to
support humans. Despite the
model’s power, however, it was still
difficult for people to picture how
its results really connected to their
lives and to the real world around
them. Twenty-five years later a liv-
ing model, a human experiment in-
side a sealed miniworld, has again
illuminated many of the themes
that LTG first brought to the
world’s attention, in a particularly
immediate and graphic way.
Covering 3.15 acres of area in the
high Sonoran desert just north of
Tucson, Arizona, Biosphere 2 is a
research facility that has captivated
the imagination of both scientists
and the public throughout its occa-
sionally controversial six years of
life. The facility houses five wilder-
ness biomes (rainforest, desert, sa-
vanna and thornscrub, estuary, and
ocean with coral reef), an intensive
agriculture biome (IAB), and human
living quarters (see figure 1 on the
next page). From 1991 to 1994, the
facility was used to support two live-
in crews within the enclosure, dur-
ing which time the crews remained
sealed inside Biosphere 2 and were
responsible for meeting all of their
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Figure 1
Biosphere 2 facility.

survival needs. More recently under
the management of Columbia Uni-
versity, the facility has been utilized
to investigate scientific questions
pertinent to human impacts upon
the global environment.

As a materially closed system,
Biosphere 2’s climate, atmospheric
composition, recycling of water and
nutrients— all of the basic life sup-
port functions that the Earth pro-
vides for us—must be almost com-
pletely engineered by humans. To
support human life within the en-
closure, the original project scien-
tists had to manage the environmen-
tal conditions of Biosphere 2’s
biomes to maximize food produc-
tion, maintain a safe balance be-
tween oxygen and carbon dioxide
levels, preserve a high level of
biodiversity, and successfully re-
cycle water and nutrients for drink-
ing and rainwater—all in the con-
text of material closure. In short,
they had to manage all of the basic
life-support functions of the planet
within an enclosure not much big-
ger than a couple of football fields!

In this article I will look at some
of the challenges that we have had
in managing the complex closed sys-
tem of Biosphere 2. I'll focus mostly
on the story of Mission One in Bio-
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sphere 2, when eight crew members
lived inside the Biosphere for two
years, from 1991 to 1993. Then I'll
take some of the lessons that were
learned from that experience to re-
flect on the Earth (“Biosphere 1" as
a closed system and to take a fresh
look at some of the ideas that were
born twenty-five years ago in The
Limits to Growth. Along the way,
I'll present some problems that are
intended to stimulate further explo-
ration of the themes that are
touched on in the article.

Oxyen loss, concrete, and the
microbial feast: Mission One in
Biosphiere 2

What would our lives be like if we
had to manage the Earth in order to
maintain oxygen levels in the atmo-
sphere at safe levels (between 19%
and 21%)? What if international
emergency task forces had to be de-
ployed to find ways of keeping atmo-
spheric carbon dioxide (CO,) levels
from climbing above 2,000 parts per
million (current CO, levels are
about 355 parts per million)? What
if small mistakes in the strategies
chosen to deal with these problems
could send the planet into a cata-
strophic spiral? What if, in short, we

had to engineer the Earth’s life sup-
port systems to meet all of our sur-
vival needs?

This is, in a nutshell, what life for
the “Biospherian” crews was like.
For two years, from September 1991
to September 1993, eight individuals
lived inside the enclosed facility of
Biosphere 2 (a second crew also lived
inside the facility between March
and September 1994). During this
period, the crew members’ priorities
were to feed themselves, make sure
that the atmosphere’s chemical
composition remained safe, and
maintain a high level of biodiversity.
They operated under the assump-
tion that the system would remain
closed for 100 years and that no new
species would be introduced—in
other words, that the Biosphere
would be operated as a completely
closed system. As it turned out,
their goals were almost impossible
to achieve, for reasons we will ex-
plore below.

Rainforest management

To begin, let’s look at how the
crew managed the rainforest biome
to help meet their survival needs.
The rainforest was a critically im-
portant biome for the crew, for a
number of reasons. First, the
rainforest held a great deal of the
Biosphere’s biodiversity, and the
crew was eager to preserve it. But
more importantly from a survival
point of view, the rainforest also
played a huge role in helping to
maintain the balance of oxygen and
CO, in the Biosphere’s atmosphere.
Plants “breathe,” or sequester, car-
bon dioxide through the process of
photosynthesis, while exhaling oxy-
gen at the same time. This process
is described by the following reac-
tion:

CO, +H,0 5 CH,0+0,, (1)

where CH,O is a general formula for
organic material made by the plant
after assimilating CO, from the at-
mosphere.

Because rainforests are extremely
productive ecosystems (meaning
that their plants take in carbon diox-
ide at very fast rates), they produce
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CO, levels in Biosphere 2, September 1992 to March 1993.

much of the oxygen on Earth (Bio-
sphere 1) and help keep carbon diox-
ide levels relatively low in the
Earth’s atmosphere. In Biosphere 2,
the rainforest biome served a simi-
lar function: to ensure that oxygen
levels stayed high (around 21 %) and
CO, levels stayed relatively low.
But by the fall of 1992, one year
after the Biosphere was initially
sealed, the Biospherians became
concerned about the rising levels of
CO, in the facility (fig. 2, as well as
the steady decrease in oxygen levels
(fig. 3). Clearly photosynthesis was
not able to keep pace with some
other process that was adding CO,
to, and taking O, out of, the atmo-
sphere. In this context, the role of
the rainforest in helping the
Biospherians boost oxygen levels
and stop the rise of carbon dioxide

became urgently important.

The Biosphere’s rainforest is ap-
proximately 1,900 m? and has a vol-
ume of 35,000 m®—about 1/4 the
total volume of the enclosure (see
figure 1). It is 22 m from the ground
at its highest point. Air handlers,
located in the basement underneath
all of the biomes, produce flows of
chilled and heated air through the
rainforest, thereby controlling tem-
perature and humidity. Ground and
overhead sprinklers produce rain,
and a fogging system enables the
rainforest to be run at very high hu-
midity levels. Sensors within the
rainforest monitor atmospheric
composition, temperature, light,
and humidity, which allowed the
Biospherians and the project scien-
tists outside the facility to monitor
the conditions of the Biosphere in
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Figure 3

O, levels in Biosphere 2, September 1992 to March 1993.

real-time. (You, too, can look at Bio-
sphere 2 data in real time, by visit-
ing the Biosphere 2 World Wide Web
site at www.bio2.edu).

With these resources at their dis-
posal, the crew encouraged the
growth of fast-growing weedy spe-
cies because of their ability to take
up carbon and produce oxygen rap-
idly. Elsewhere in the rainforest, the
crew pruned plants to stimulate
more photosynthesis. But keep in
mind that the Biosphere is a closed
system. The crew could not just re-
turn the pruned plant material to the
soil, because it would decompose
and the carbon that the plants took
out of the atmosphere (which they
stored in their tissue) would be re-
leased back into the atmosphere.
Microbes—small bacteria that live
in the soil—use organic material
(dead plants and animals) as their
source of food. Their decomposition
of soil carbon pulls oxygen out of the
atmosphere and releases carbon di-
oxide back into the atmosphere.
This process is described by the fol-
lowing reaction:

0, + CH,0, » CO, + H,0, (2)

where CH,O represents a general
formula for organic material in the
soil. :

So the crew had to store the
pruned biomass in the basement to
keep the carbon that it took out of
the atmosphere from returning back
into active circulation within the
system. In this way, the Bio-
spherians hoped to set up a process
by which carbon was consistently
removed from the atmosphere,
while oxygen was continually added
to the atmosphere. Living in a closed
system was not easy!

Probiems

The volatility of a system’s carbon
cycle (the biological, soil, and atmo-
spheric reservoirs that hold carbon in
a system and the processes that trans-
fer carbon among them) is closely re-
lated to the time it would take for the
flows to “flush out” all CO, or CH,O
from its carbon reservoirs. If the sys-
tem is in equilibrium (inflow equals
outflow), this index of volatility is
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Simple model of the carbon cycle inside the Biosphere 2 rainforest biome.

obtained by dividing the amount of
carbon held in a reservoir by the size
of the inflow (or outflow) of carbon.
By assuming that all carbon atoms
spend the same amount of time in a
given reservoir, this index can also be
thought of as the “residence time” of
carbon-bearing molecules.

Problem 1. Figure 4 represents a
simplified equilibrium model for the
carbon cycle in Biosphere 2’s rain-
forest biome. Here we measure car-
bon in grams and carbon flows in
grams/hour. Calculate the residence
times for carbon-bearing molecules
in the rainforest’s atmosphere, plants,
and soils.

Problem 2. Figure 5 represents a
simplified equilibrium model for the
Earth’s carbon cycle prior to the in-

dustrial revolution. Here we measure
carbon in gigatons (Gt) and carbon
flows in Gt/year. Calculate the resi-
dence times of carbon-bearing mol-
ecules in the Earth’s pre-industrial
atmosphere, plants, soils, and oceans.

Problem 3. It is estimated that
prior to the Industrial Revolution,
the Earth’s atmosphere contained
about 0.028% CO,, or 280 parts
per million (ppm). Data gathered
at the Mauna Loa Observatory in
Hawaii (fig. 6) indicates that from
1960 to 1990, the CO, level in the
Earth’s atmosphere rose at about
2 ppm/year. Assuming this addi-
tional CO, represents the burning
of fossil fuels, estimate the num-
ber of gigatons of carbon burned
each year.

pre-industrial

615 gigatons (Gt)

atmosphere: |

124 A

62

terrestrial
biosphere (plants):

731 Gt 62

62

Y

soils:
1,238 Gt

Figure 5
Global carbon cycle (after McElroy, “The

nent of the Planet’s Life Support System,”

University).
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ocean:
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Atmosphere: An Essential Compo-
text for Science A-30, Harvard

Where's the carbon?

Despite their tireless efforts, the
crew’s strategies for managing the
rainforest did little to halt the loss of
oxygen from the atmosphere, as fig-
ure 3 clearly shows. In fact, oxygen
levels dipped so precipitously low in
January 1993—to a health-threaten-
ing 14%—that the project officials
made the difficult decision to pump
oxygen into the Biosphere via the
“lungs” (hence the sharp increase in
oxygen levels depicted in figure 3).
Fortunately for the crew, the Bio-
sphere could be made an open sys-
tem in an emergency. Had the Bio-
sphere been in space, the crew
would surely have died.

Former Biospherian crew mem-
ber Linda Leigh recalled her tiring
journey through the Biosphere to the
lungs to get a first whiff of injected
oxygen, reflecting that there was
“something very poetic about taking
an expedition to a lung in order to
breathe.” It was clear by then that
the crew’s strategy was ineffective at
meeting their survival needs. What
no one knew at the time, however,
was why this was the case.

Researchers from Columbia Uni-
versity were called in to try and find
out what was going on. They
quickly determined that the cause of
the problem likely lay within the
carbon-rich soils of Biosphere 2. The
soils of Biosphere 2 were originally
loaded with a large amount of or-
ganic matter, which (as we learned
earlier) microbes in the soil use as
their source of food. Because there
was so much organic carbon in Bio-
sphere 2, they reasoned, the process
of decomposition occurred at an ex-
tremely rapid rate. And because the
glass and spaceframe of the facility
blocked as much as 45% of the ex-
ternal light from getting to the
plants, the photosynthesis rate of
the plants could not keep up with
the decomposition rate in the soil.
This led, they hypothesized, to the
constant buildup of CO, and deple-
tion of O, in the Biosphere 2 atmo-
sphere.

For this hypothesis to be valid,
however, the number of CO, mol-
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ecules (expressed in moles) added to
the Biosphere 2 atmosphere should
have been equal to number of O,
molecules lost from the atmosphere.
This is because, as equations (1] and
(2) show, for every CO, molecule
taken up or released by photosyn-
thesis or decomposition, an O, mol-
ecule is also released or taken up.

The data in figure 7, however, re-
veal that the number of moles of
CO, that were released to the Bio-
sphere 2 atmosphere was less that
the number of moles of O, that were
taken out between September 1992
and January 1993. Over that period,
only about 1.1 - 10* moles of CO,
were added to the atmosphere, while
about 5.4 - 10° moles of O, were
taken out.

Clearly the total amount of CO,
released to the atmosphere was
quite a bit less than the total
amount of O, taken out from the
atmosphere—a full order of magni-

Gas measured, date Measurement
CO,, September 1992 | 2,000 ppm
CO,, January 1993 4,000 ppm

0O, September 1992 21%

0O, January 1993 14%

Figure 7

Changes in carbon dioxide and
oxygen levels in Biosphere 2.

tude, in fact. However, despite ap-
pearances to the contrary, these data
do not necessarily invalidate the re-
search team’s original hypothesis.
Why? Because there could have been
some process in Biosphere 2 occur-
ring independently of the ecosystem
processes we have examined (photo-
synthesis and decomposition] that
was taking carbon out of the atmo-
sphere without releasing oxygen
back into the atmosphere. As it
turned out, two such processes were
indeed at work.

Answers in unlikely places

First, chemical scrubbers had
been automatically pulling CO, out
of the atmosphere for quite some
time. But quick calculations re-
vealed that the amount of carbon
dioxide “scrubbed” from the atmo-
sphere could not come close to ac-
counting for the total amount of
“missing” carbon.

Puzzled, the team began to inves-
tigate a number of possibilities to try
and address the problem. At one
point, it was proposed that the con-
crete in Biosphere 2 had been react-
ing with the CO, in the air via the
following reaction:

CO, + CalOH] — CaCO, + H,0. (3)

Suspecting this was the case, they
took samples from the concrete. If the
concrete were indeed reacting with
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atmospheric CO,, then it should have
contained a high abundance of
CaCO; (carbonates) They found that,
indeed, high levels of CaCO, were
present in the concrete, enough to
confirm that the concrete had re-
moved sufficient atmospheric carbon
to hide the effects of the rapid decom-

position and slow photosynthesis. So,

as it turned out, the chemical scrub-
ber and, more importantly, the con-
crete masked the most important
dynamic of the system for the health
of its inhabitants—namely, that de-
composition significantly outpaced
photosynthesis because of the over-
abundance of organic material in the
Biosphere 2 soils.

While inside the enclosure, the
Biospherians’ biome management
strategy seemed to be an intelligent
way to deal with the problem of
maintaining a healthy atmospheric
composition, while still preserving
a high level of biodiversity. But be-
cause they lacked appropriate,
timely knowledge of a very complex
system, the Biospherians could not
know why their strategy was inef-
fective—they could only observe the
ever decreasing oxygen levels inside
Biosphere 2. Given the initial condi-
tions of the Biosphere (high soil or-
ganic carbon and low light levels for
two years), how might you have
managed the system—without any
inputs from outside the system—to
mitigate the buildup of CO, and the
loss of oxygen? Do you think that
the Biospherians’ strategy was well
thought out?

A tale of two closed systems

Despite their best efforts, the
Biospherian crew members were un-
able to find a solution to their prob-
lems in a way that enabled them to
retain Biosphere 2’s material closure.
It was lucky indeed that they were
able to add oxygen at a critical junc-
ture, or they would surely have met
an unhappy end. Their almost tragic
story offers us a contemporary alle-
gory, a cautionary tale for us as we
approach the 21st century.

First and foremost, the Bio-
spherians’ experience reminds us
that we do not know nearly enough
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about how our planet works to build
even a very tiny, miniature version
of it that would capture all of its
most important features. In this
sense Biosphere 2, as a model, failed
to reproduce the essential behaviors
of the larger system (the Earth) that
it was built to simulate. The expe-
rience of Mission One reveals that
our planet is an unimaginably com-
plex, closed system that will always
continue to surprise us with its be-
havior—happily in some cases and
perhaps tragically in others (as in the
Biospherians’ brush with oxygen
starvation).

Despite our lack of knowledge
and the inevitability of surprises,
however, we know what can happen
when a really complicated system
gets thrown out of equilibrium. In
Biosphere 2, the system designers
made a fundamental error. They set
up the plant-soil-atmosphere sys-
tem in such a way that the balance
of CO, and O,, which is established
by photosynthesis and decomposi-
tion rates, could not be maintained
in a way that supported human life
for very long. In Biosphere 1, we
have now become the system de-
signers, whether we are fully aware
of it or not. By altering the reservoirs
and flows of countless chemical spe-
cies and natural resources, from
plants and soils to minerals and
waters, we are in effect redesigning
an extremely complex system that
has been in a dynamic equilibrium
for millennia. And we are receiving
a variety of indicators from the Earth
system—the loss of stratospheric
ozone from CFCs, the rise in atmo-
spheric CO, levels from fossil fuel
combustion, and many others—that
bear striking resemblance to the
frightening loss of O, that the Bio-
spherians witnessed, but were sim-
ply unable to stop in a relevant time
frame. Through a flawed design,
some mistakes, and plain bad luck,
the Biospherians reached and ex-
ceeded the limits of the Biosphere’s
ability to support people.

The question raised by all of this
is: how close are we to the limits of
the Earth’s ability to support people?
Are we perturbing the Earth’s sys-

tems in such a way that they may no
longer be able to perform their life
support functions for us? As Bio-
sphere 2 showed us, we are not very
good at building or managing plan-
ets. But, unlike in Biosphere 2, we
don’t have an airlock door that we
can walk through if things go wrong.
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HOW DO YOU
FIGURE?

Gliallenges in physics and math

Math
M211

Plane coincidence. Find all pairs of
numbers m and n such that the set of
points on the plane whose coordinates
satisfy the equation ly - 2x| =x coincides
with the set defined by the equation
Imx + nyl = y. (D. Averyanov)

M212

Meeting of circumscriptions. In tri-
angle ABC sides CB and CA are equal
to a and b, respectively. The bisector
of the angle ACB intersects side AB
at point K, and the circle circum-
scribed about the triangle intersects it
at point M. The second point at
which the circle circumscribed about
the triangle AMK meets line CA is P.
Find the length of AP. (V. Protasov)

M213

A bracing problem. Solve the follow-
ing system for arbitrary a, b and c:

———+xz=g,
X z
b
———+xy=aq,
y
E——+yz=b
z vy

(I. Sharygin)

M214

Tetrahedral conditions. Prove that
one can fold a given paper triangle so
that it covers without overlap the
surface of a unit regular tetrahedron
(that is, a triangular pyramid whose
edges are all equal to 1), if (a) the tri-
angle is isosceles, with legs of length

2 and vertex angle equal to 120°;
(b) two sides of the triangle are equal
to 2 and 2+/3 and the angle between
them is 150°. (I. Sharygin)

M215

Let 1997 be. Let b(n) denote the num-
ber of ways of representing n in the form

- ) .02 .0k
D=dy+a;+2+0ay2*+ ... +a,-25

where the coefficients a, 1 =0, 1, 2,
..., k, canbe equal to 0, 1, or 2. Find
b(1997). (V. Protasov]

Physics

Athletes bound. Two runners joined by
an elastic cord are standing at points A
and B. They start to run simulta-
neously: runner A to the east with a
velocity v, = 1 m/s, and runner B to the
south with some constant acceleration.
Find this acceleration if it is known that
aknot C tied on the cord passes through
agiven point D (see figure 1). (S. Krotov)

A
2m
C
4m
2m
8m N
w E
j S
B
Figure 1

P212

Wind tunnel warmth. A model of a
dirigible is tested in a wind tunnel,

Figure 2

where an air flow of speed v =300 m/s
is directed at it. At point A (located
precisely on its axis) the speed of the
tlow drops to zero (see figure 2). Find
the temperature of the air near this
point. The temperature of the sur-
rounding air is T = 300 K. (A. Zil-
berman)

P213

Mercurial shakedown. Why does it
take so long to take a person’s tem-
perature with a mercury thermom-
eter (about 10 minutes), whereas one
can shake the mercury back down
almost immediately after the mea-
surement is taken? (G. Kosourov)

P214

Splintered charge. A conducting
sphere exploded and produced a
number of fragments, which scat-
tered over a large distance. The
splinters are arbitrarily connected by
thin wires. Which is larger: the elec-
tric capacitance of the system of
splinters or that of the original
sphere? Neglect the capacitance of
the wires. (F. Lutsenko)

FZ15

Reflection of a sunbeam. An ob-
server catches a sunbeam in a small
mirror while standing in front of a
large one in which she sees her im-
age. What will she see if she directs
the sunbeam at the image of the
small mirror in the large one?
(S. Krotov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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Learning from a virus

An application of systems thinking and dynamic modeling

by Matthias Ruth

ID YOU EVER WONDER WHY, AFTER A LARGE

number of people suffer from the flu, the epidemic

seemingly disappears, only to reappear again a few

weeks later? Or did you ever wonder how it hap-
pens that economists insistently talk about the equi-
librium of demand and supply, yet prices tend to fluc-
tuate and never really settle down? And how is it pos-
sible that over many years, forests in Canada and the
United States seem lush and healthy, and then, within
one summer, insect outbreaks decimate the foliage and
turn the forest from green to brown? The insects are vir-
tually gone by the next year, and the forest slowly re-
turns to its original state, only to be infected again a few
years later.

Nonfinear dynamic systems

These phenomena have a number of features in com-
mon. First, the systems that generate such seemingly
erratic behavior consist of individual parts that inter-
act with each other. In the case of influenza, there is
one group of people who carry the virus and a second
group that receives the virus upon contact with mem-
bers of the first. In the case of demand and supply in-
teractions, we have a marketplace within which pro-
ducers and consumers exchange goods and services. In
the case of insect outbreaks, we have insects that eat
leaves and trees that produce them A first precondition
= for understanding dynamic systems is to identify their
main constituents.

A second feature common to all of these systems is
that interactions among their individual parts do not
occur instantaneously, but in a time-delayed manner.
Those infected with the flu may keep wandering about
for a few days and pass on the virus to others. Producers

who offer their goods and services on the market may
generate excess supply that leads to a drop in price. As
a result, they may restrict production in the next pe-
riod, leading to shortages and subsequent price in-
creases. As forests grow they provide increasing
amounts of food for insect populations that will take
on a size that is ultimately too large for the forests to
sustain. Thus, a second precondition for understanding
dynamic systems is to identify the extent to which in-
teractions among system components are subject to
time lags.

A third feature of many real-world dynamic processes
is that the response of one system component may not
occur in direct proportionality to a stimulus that it re-
ceives. Rather, the responses may be related to the
square of the initial stimulus or take place in some other
nonlinear relationship.

Understanding the world in which we live requires
understanding the role of complex feedback processes
and the way in which their strength changes over time.
Yet modelers are often tempted to compartmentalize
systems into subsystems for which it is possible to
specify cause-effect relationships that lead to “closed-
form” solutions of the kind we are accustomed to see-
ing in textbooks.

Unfortunately, the methods that achieve such solu-
tions may limit the extent to which one is able to ac-
commodate time lags and nonlinear relationships. By
placing undue emphasis on finding closed-form solu-
tions, we run the risk of eliminating from our models
the very features that make them interesting.

Fortunately, computer technology provides alterna-
tive tools, ones that enable us to put more life into our
models of real world processes. In this article T will
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introduce you to a graphical programming language that
enables virtually anyone to describe, model, and analyze
complex dynamical systems. As such, this software pro-
vides a valuable tool for efforts to understand the world
in which we live. It’s a starting point for the investiga-
tion of nonlinear dynamic phenomena and provides an
opportunity to easily assess the limits of our knowledge
about these phenomena, to foster dialog about them,
and to generate new knowledge.

Systems thinking and dynamic modeling

Every day we develop models of dynamic processes.
When trying to cross a busy street, we estimate the
width of the street, our own speed, and the speed of the
cars approaching us. In our mind we abstract away de-
tails that we consider inconsequential, such as the color
of the cars. Then, we relate the remaining pieces of in-
formation to each other and make a projection of the
possible outcome if we try to cross the street. If we con-
clude that it’s safe to walk and have drawn the right con-
clusion, we'll use our model again in similar situations.
If we're wrong—Dbut sufficiently lucky—we'll revise our
model for next time.

For some decisions, mental models are sufficiently
simple and accurate to provide a basis for action. How-
ever, the larger the number of system components and
the more time lags and nonlinearities there are in the
system, the more difficult it is for us to develop ad-
equate mental models for decision making. For large,
complex systems, direct experimentation may also be
undesirable. For example, it’s much safer and less costly
to do global climate change experiments on the com-
puter rather than in the real world.

To model and better understand nonlinear dynamic
systems requires that we describe the main system com-
ponents and their interactions. System components can
be described by a set of “state variables”—we’ll also call
them stocks—such as the number of people in a country,
the mass of an organism, or the amount of capital in an
economy. These state variables are influenced by “flows,”
such as the births and deaths that occur in a population,
growth of an organism, or investment in new capital. The
size of the flows may in turn depend on the stocks them-
selves and other parameters of the system.

There exist various programming languages that are
specifically designed to facilitate modeling of nonlinear
dynamic systems. Among the most versatile of these
languages is the graphical programming language
STELLA® To model the dynamics of a system in
STELLA, we begin by identifying the system’s
stocks, flows, and parameters, and then establish
the appropriate connections among them.

STELLA represents stocks, flows, and param-
eters (also called “converters”) with the symbols
shown in figure 1. By selecting one of these sym-

e

STOCK

[CLOUD] @ﬁ
FLOW CONNECTOR

(INFORMATION FLOW)

PARAMETER
(CONVERTER)

Figure 1

Let’s assume we want to model the spread of a virus
in a town with an initial population of 1,020. There are
two categories of people in this town—a group of 1,000
people that are not immune to a disease and a group of
20 people who carry the virus. These two groups of
people are our state variables and constitute the first
part of our dynamic model (fig. 2). After assigning names
to these stocks, we address the question marks indicat-
ing that the size of each stock is not yet specified.
Double-clicking on each of the stocks opens a dialog
window in which you are asked to specify the stock’s
initial size. This provides the opportunity to enter popu-
lation sizes of 1,000 and 20 for the respective stocks. If
we now click OK, the stock’s dialog box closes and the
question mark is removed.

NONIMMUNE INFECTED

Figure 2

Next we need to specify how these stocks change over
time—for example, that there is an influx of nonimmune
people each week into the town that we model here. Let’s
assume that there are seven immigrants into the system
To capture this immigration, we select the “flow” sym-
bol from the toolbar, place it in the diagram, and drag the
arrow onto the NONIMMUNE stock. The fact that these
nonimmune immigrants come from a place that is not
part of the model is represented by the fact that-the flow
originates in a cloud. Next we specify the size of this flow,
in our case by entering “7” in the flow symbol’s dialog

NONIMMUNE INFECTED

RECEIVE VIRUS

bols from the STELLA toolbar and placing it in  NONIMMUNE IMMIGRANTS
a diagram window, we specify the components
of our model. Figure 3
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NONIMMUNE

NONIMMUNE IMMIGRANTS

Figure 4

box. Similarly, we include a flow RECEIVE VIRUS to
model the rate at which people from the nonimmune
stock make the transition to the INFECTED stock of
people who carry the virus (fig. 3).

Before dealing with the question mark appearing in
the RECEIVE VIRUS flow (we have not yet specified the
size of that flow), let’s assume that 90% of the people
that are infected with the virus survive the disease and
that the other 10% die. Those who survive are subse-
quently immune to the virus and do not infect others.
Two more flows are required to move people out of the
INFECTED stock of those that carry the virus (fig. 4).

Now we select the STELLA icon representing a pa-
rameter, such as the survival rate. By double-clicking on
SURVIVAL RATE we open a new dialog box and specify
the value of this parameter as 1/10.

Next, we need to tell STELLA how the survival rate
affects the size of various flows. To do this, a fourth
modeling tool is required. The information arrow con-
veys the fact that one part of the model has impact on
another. Here, we will specify that the SURVIVAL
RATE and the INFECTED stock together determine the
number of people that survive each week:

SURVIVE = SURVIVAL RATE * INFECTED (1)

RECEIVE VIRUS

el

INFECTED

DIE

SURVIVE

Since the death rate is (1 - SURVIVAL RATE), these
same icons also determine the flow of people that die
each week as

DIE = (1 - SURVIVAL RATE) * INFECTED (2]

Our model now looks like the one in figure 5. Note
that individuals do not move instantaneously through
the system. The model is run for discrete time steps. At
each time step, the equations that describe the system’s
dynamics are executed by the computer. For example,
individuals enter as NONIMMUNE IMMIGRANTS
and become part of the stock of NONIMMUNE, where
they temporarily remain. While they are part of the
NONIMMUNE stock, they are susceptible to the dis-
ease. Some NONIMMUNE individuals will get re-
moved during the next time step into the stock of IN-
FECTED, where they stay for a time step, until they
leave the system either as survivors or dead. By making
these simulation time steps small, we can approximate
continuous time. But the sequence of the model steps
that describe the progression from NONIMMUNE to
INFECTED captures the essence of the time-delay at
which the disease can be passed on to others.

CONTINUED ON PAGE 34

NONIMMUNE INFECTED
RECEIVE VIRUS
; } ? as
NONIMMUNE IMMIGRANTS DIE
SURVIVE SURVIVAL RATE

Figure 5
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“LEARNING FROM A VIRUS” CONTINUED
FROM PAGE 31

We still need to specify the mechanism by which the
virus gets passed from person to person. Here epidemi-
ologists reason that the number of meetings between
nonimmune and infected people is proportional to the
size of the populations. A tripling in the size of IN-
FECTED would lead to a tripling in the number of meet-
ings, while a halving would halve the number of meet-
ings. To reflect such a mechanism, we draw information
arrows from INFECTED to NONIMMUNE to RE-
CEIVE VIRUS and, in the resulting dialog box, multi-
ply the size of the two populations by a RATE OF CON-
TACT. This corresponds to

RECEIVE VIRUS = RATE OF CONTACT
* NONIMMUNE * INFECTED (3)

It remains to define RATE OF CONTACT. Here
we’ll assume that the rate at which people make con-
tact depends on the size of the stock labeled IN-
FECTED, and this is conveyed by an information arrow
from INFECTED to RATE OF CONTACT. We also

0.002
[
(=]
=
[
r4
=
=]
n
[—]
ul
(==
=
o=
0.001
INFECTED
Figure 6
NONIMMUNE
RECEIVE VIRUS
@T <
NONIMMUNE IMMIGRANTS
RATE OF CONTACT
Figure 7
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assume that this rate is high as long as the number of
people who do not suffer from the disease is small. How-
ever, as more people become sick, the rate of contact
declines (the sick people are at home in bed). To build
this assumption into our model, we double click on the
RATE OF CONTACT icon and enter, in graphical form,
a guess of how the contact rate is related to the num-
ber of people that carry the virus. The following assump-
tion is built into our model (fig. 6).

Specifying the above (highly nonlinear) relationship
completes the STELLA formulation of the model (fig. 7).
The nonlinear relationship between INFECTED and
RATE OF CONTACT has led to a model that cannot
be solved in closed form. Also, we have no intuitive
basis for inferring the course of the disease. However,
given software such as STELLA we can obtain a numeri-
cal solution for the model we have constructed. Run-
ning the above model over 300 simulated weeks yields
the results shown in figure 8.

Having obtained a solution, we can summarize the
phenomenon as follows. There are periodic severe out-
breaks of the disease in which both the stocks of
nonimmune people and those that carry the virus grow
slowly and steadily. The resulting number of contacts is
initially small, but it increases quickly as more
nonimmune people enter the town. As the product de-
fined in equation (3) grows, so does the number of people
moved from the stocks into the clouds—either they die
or they become immune. In both cases, we need not keep
track of them because they have no subsequent influence
on the spread of the disease. Once these people have left
the model, the RECEIVE VIRUS flow gets smaller again,
making the disease seemingly disappear, only to reappear
some weeks later.

In addition to acquiring an insight into the cyclic
nature of the epidemic, we also note that successive
peaks are becoming smaller. Can you develop a hypoth-
esis for why, in the very long run, the number of
INFECTED stabilizes at a low level? What would that
level be? (An answer is provided in the Answers, Hints
& Solutions section at the back of the magazine.)

INFECTED

SURVIVE SURVIVAL RATE




1: NONIMMUNE 2: INFECTED

lation (monkeys M) carries a virus that

3 19686

can be spread to a second population
(humans H). The virus is also passed
within the monkey population from in-

% 10884

fected to nonimmune ones, but it is not
received by monkeys from humans. In
contrast, humans can get the virus both

from monkeys and from other humans
that carry the virus.
The STELLA model corresponding to

888

2

this situation consists of two submodels,
each of which is similar to the one already
considered. We now have epidemics tak-

0.00 75.

Figure 8

A simple Etola model

Now that we’ve gained some insight into one kind of
epidemic, we can ask how the outbreaks of the disease
would change if the virus were spread from one species
to another, similar to the spread of Ebola. Here one popu-

.00

ing place among monkeys and among hu-
mans, with an important additional fea-
ture: an “information arrow” from
INFECTED M to H RECEIVE VIRUS cor-
responds to the fact that humans can get
the virus from infected monkeys as well as from infected
humans. By way of simplification, we’ll now assume that
the various “rates of contact” are constants rather than
depending on the size of the infected populations.

The structure of the resulting STELLA model is shown
in figure 9. The fact that monkeys receive the virus only

300.00

NONIMMUNE H INFECTED H
@ H RECEIVE VIRUS e
O A
NONIMMUNE IMMIGRANTS H DIEH
S ‘ O
TR OB CONTAGT H1 SURVIVEH  SURVIVALRATEH
RATE OF CONTACT H2
NONIMMUNE M INFECTED M
M RECEIVE VIRUS S
Qﬁ ——e -w‘ S
NONIMMUNE IMMIGRANTS M DIEM
SURVIVEM SURVIVAL RATEM
RATE OF CONTACTM
Figure 9
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Humans Monkeys
NONIMMUNE IMMIGRANTS 7 10
NONIMMUNE 1,000 1,000
INFECTED 5 20
RATE OF CONTACT il =80 0.003
H2 varies
SURVIVAL RATE varies 0.2

Figure 10

from other monkeys is reflected by the relation

M RECEIVE VIRUS = RATE OF CONTACT M*

INFECTED M * NONIMMUNE M

The fact that people receive the virus from both mon-

keys and people is reflected by

H RECEIVE VIRUS = RATE OF
CONTACT HI * NONIMMUNE *
INFECTED H + RATE OF CON-
TACT H2 * NONIMMUNE *
INFECTED M (5)

The question marks that originally ap-
peared in figure 9 were removed by
specifying the initial size of the four
stocks, the various rates of contact,
and the survival rates for both mon-
keys and humans.

Our hypothetical initial conditions
and parameters of the model are pre-
sented in figure 10. The entry “varies”
in figure 10 corresponds to the assump-
tion that there are two different strains
of the virus. One strain gets passed from
monkeys to humans through direct con-
tact. While the likelihood of this occur-
rence is low, this is the more deadly
strain. The other strain of the virus can
be carried through the air from the mon-
keys to humans. While it has a higher
likelihood of affecting humans, this vi-
rus is not as deadly as the first.

Such considerations lead us to sug-
gest two model runs based on the fol-
lowing alternative values for RATE OF
CONTACT H2 between humans and
infected monkeys and the correspond-
ing values for the SURVIVAL RATE H.
The first run corresponds to the air-
borne virus with higher contact rate
and higher rate of survival. The second
run corresponds to the virus passed by
direct contact that has a lower rate of
survival (fig. 11). Figure 12 gives the re-
sults of these two runs.

36 SEPTEMBER/OCTOBER 1987

(4)

Model run | RATE OF CONTACT H2 SURVIVAL RATE H

1 0.00025 0.155
2 0.00015 0.065
Figure 11

The first model run shows that the virus can stay in
the human population for long times. The behavior of
the disease mirrors that of our very first model above,
in which we only considered one population. Periodic
outbreaks are followed by long periods in which the dis-
ease affects very few individuals. The more intriguing
case is depicted by the second model run. Here, a simi-
lar pattern of disease outbreak, temporary calm, and
new outbreak occurs. But the disease totally disappears
after 290 model weeks. Can you explain why? (The
answer is given in the solution section.)

As in the previous model, this setup is a very simplis-
tic one, with a very small number of stocks (four) and

Model Run 1
1: INFECTED H
800.
400.004
0. 1 1 1 1
.00 125.00 250.00 375.00 500.
Weeks
Model Run 2
1: INFECTED H 2: INFECTED M
1: 800.00
2: 500.00
1: 400.00
2: 250.00
% 8% lmm?2 IIJ e L ) )
.00 125.00 250.00 375.00 500.
Weeks

Figure 12




flows (eight) and a very limited number of nonlinearities
(two). Yet the dynamics are much richer than many of
us would have expected! In one case, the disease shows
periodic outbreaks and always a positive number of
INFECTED H. In another case, after making small
changes in parameters such as the contact rate, we find
that the disease entirely vanishes. These findings would
suggest that an understanding of contact rates is central
to understanding the spread and persistence of a disease
in a population over time. These findings also indicate
that it may be difficult to respond to outbreaks of highly
contagious diseases—there just may not be enough time
to find a vaccine, and the disease may disappear soon
after wreaking havoc within a population.

The lessons of this model, however, go beyond those
findings. By crystallizing our understanding of system
processes within the context of a dynamic model, and
by putting the pieces of a system together and running
them in interaction with each other, we have been able
to lay open the dynamic consequences of our assump-
tion and generate insight that would have been very
difficult to gain without the help of the model and a
computer program like STELLA. The model also helped
us identify key parameters of a system’s dynamics—
such as the contact rate that describes an important
aspect of the spread of a disease—and through this may
guide data collection and analysis. Along the way, im-
portant new questions may have been stimulated whose

About STELLA®

STELLA is becoming increasingly popular in the
social and natural sciences as well as in business de-
cision making. It is used on the Macintosh, IBM,
and—in conjunction with compilers—on main-
frames and supercomputers. An ever larger number
of books is becoming available that provide introduc-
tions to systems thinking and dynamic modeling,
some of which make extensive use of the STELLA
software. It is my hope that through these books and
many other collaborative efforts we can build a mod-
eling community of students, teachers, and research-
ers spreading the dynamic modeling enthusiasm—
and systems thinking—by word of mouth and by
people in groups of two or three sitting around a com-
puter doing this modeling together, building a new
model or reviewing one by another such group.

answers, in turn, could be found with expansions of our
model or the development of a new model. [0

Matthias Ruth is a professor at the Center for Energy and
Environmental Studies and the Department of Geography,
Boston University. He is the author of several books on dy-
namic modeling published by Springer-Verlag. Dr. Ruth’s
Web page can be found at http://web.bu.edu/CEES/
readmoreMR.html.
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The far from dismal science

How input-output economics sheds light on environmental issues

by Dean Button, Faye Duchin, and Kurt Kreith

N ITS MASTHEAD, QUAN-

tum is billed as “The Magazine

of Math and Science.” Does

the “dismal science” of eco-
nomics have a place in the pages of
Quantum? In other words, do math-
ematics and the physical sciences
overlap with economics in a mean-
ingful way?

Not unexpectedly, our goal in
writing this article is to suggest
some affirmative answers to these
questions. Furthermore, in light of
this issue’s focus on computer tech-
nology, system dynamics, and The
Limits to Growth, we will use
spreadsheets and STELLA®to make
our case in an environmental con-
text.

With STELLA's icons, traditional
economic theory can be represented
by the diagram in figure 1. Here
“economy” corresponds to a very
complex system—one that absorbs a
wide range of “resources” and trans-

Economy

forms them into “goods” that our
society consumes. Lately, however,
we have become increasingly aware
of undesirable by-products that are
associated with some economic pro-
cesses. To reflect this fact, we have
labeled the economy’s outflow to
include “bads” as well as “goods.”
More important than the labels in
figure 1 is the fact that “resources”
originate in a cloud and “goods and
bads” terminate in a cloud. These
iconic clouds reflect the fact that
conventional economic theory
tends to sidestep questions of where
an economy'’s resources come from
and where its goods and bads even-
tually go. In other words, much of
economic theory is dedicated to
studying the economy as if it were
a closed system, without consider-
ing the larger biophysical world in
which the economy exists. In fact,
the economy is an open system ex-
isting within a much larger, materi-

O

resources

goods and bads

AND "BADS”

ally closed system. From a tradi-
tional perspective, however,
STELLA’s “clouds” serve as a re-
minder of the fact that sources and
sinks are not included in figure 1.

Against this background, studies
such as The Limits to Growth can
be thought of as posing a fundamen-
tal challenge to traditional econom-
ics. They ask economists to emu-
late the physical sciences by
embedding their theories within a
larger system, notably that of the
Earth and its biosphere (see figure 1
of “The Limits to Growth Revis-
ited” in this issue).

Actually, efforts to respond to this
challenge predate The Limits to
Growth. Nicholas Georgescu-Roegen
began his professional life as a math-
ematician, one who studied thermo-
dynamics under the tutelage of Emile
Borel. After turning his attention to
economics, he sought to reconcile
the laws of thermodynamics with
the functioning of economic sys-
tems. In particular, he confronted
economic theorists with the Second
Law of Thermodynamics, asserting
that economic activity (like all other
tully contained physical processes)
increases the measure of disorder
called entropy. Another prominent
economist who has responded to
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such challenges is Wassily Leontief.
As a Harvard colleague of Georgescu-
Roegen, Leontief harnessed the
power of computers to develop what
he called input—output economics.
His earliest efforts were aimed at
improving on figure 1 by acknowl-
edging that economies use different

categories of resources—termed in-

puts (iron, coal, petroleum, lumber,
labor, etc.) to produce many catego-
ries of goods termed outputs (food,
machinery clothing, housing, etc.).
Here Leontief created mathematical
tools to represent the interrelation-
ships among such inputs and out-
puts. Along the way to winning a
Nobel prize for his contributions, he
also found time to explain his work
in the popular press (in Scientific
American).

While input-output economics
was originally formulated as a closed
system, Leontief and his colleagues
soon recognized a need to acknowl-
edge the importance of sources and
sinks outside of the economic sys-
tem that is itself situated within the
Earth’s ecosystem. Input-output
economics served as the foundation
on which a model of the world
economy was developed and subse-
quently refined. Though the details
of the world model are beyond the
scope of this article, we will be able
to illustrate some of the underlying
mathematics.

Input—outut economics

In one of his articles, Leontief il-
lustrated input-output analysis in
terms of an economy consisting of
just three sectors: Agriculture,
Manufacturing, and Households.
These sectors produce three distinct
commodities: wheat (measured in
bushels), cloth (measured in yards),
and labor (measured in person-
years). What input-output analysis
provides is a mathematical represen-
tation of the interdependence of
these sectors. Thus agriculture re-
quires wheat for next year’s seeds,
cloth for sacks, and labor to till the
fields. Manufacturing requires
wheat stalks for fiber, cloth to pack-
age its products, and labor to work
in the mills. Households require
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wheat for food, cloth for apparel, and
labor for various domestic services.
The resulting economic model cor-
responds to figure 1 in that there is
no attempt to address where its
three categories of “resources” come
from or where its three categories of
“goods and bads” (in this case there
are no bads| eventually go.

To get some insight into the is-
sues arising in a closed economic
system, let’s begin by replacing the
Manufacturing sector in this imagi-
nary economy with an Energy sec-
tor. This substitution enables us to
retain the simplicity of a three-sec-
tor economy while also acknowl-
edging the finiteness of one of its
resources (fossil fuels flowing into
this economic system) and the fact
that CO, produced by the burning of
fossil fuels must be recycled and/or
absorbed by the Earth’s ecosystem
(fig. 2).

After developing the essential
mathetmatical ideas in this three-
sector context, we will reintroduce
Manufacturing as a fourth sector. At
this point it’s useful to introduce
some additional mathematics—
namely, the matrix theory required
for the solution of three linear equa-
tions in three unknowns. With such

tools at our disposal, the transition
to four sectors will illustrate the
mathematical ideas required for
more elaborate applications—for
example, the World Model based on
forty-four sectors that provides the
basis for a recent book, The Future
of the Environment.

So let’s begin with a three-sector
economy, one whose components
are now labeled Agriculture, En-
ergy, and Households. Assuming an
annual output of 100 bushels of
wheat, 50 barrels of fuel, and 300
person-hours of labor, we represent
the outputs of these three sectors
by x, = 100, x, = 50, and x, = 300.

What input-output analysis now
calls for is a breakdown as to how
these products are distributed
among the various sectors. Such in-
formation can be conveyed by
means of a 3 x 4 grid like table 1.
(Note: the form of this table follows
that prescribed in matrix algebra, in
which matrices are identifed by the
number of rows and the number of
columns (r x ¢) contained in the
matrix. Here there are three rows
and four columns, represented by
the unshaded area.)

Referring to wheat, fuel, and labor
as commodities 1, 2, and 3, respec-

sunshine
= C =
6 Carbon Cycle D
recycling recycling
< Economy
Fuel Reserves Atmosphere
fuel co2
0O
resources goods and bads

Figure 2




Table 1

= 10 bushels

20 bushels X, = 70 bushels

structure of the
economy—that is,

100 bushels the input require-

X,, = 20 barrels

x,, = 10 barrels X, = 20 barrels

ments per unit of
output—remains

50 barrels

X, = 220 person-hours

X, = 50 person-hours X, = 30 person-hours

300 person-hours

unchanged).

tively, the table assigns a value x,; to
the number of units of commodzty
irequired to sustain the above out-
put of commodity j. Here x; = 10,
x,, =20, and x,, = 220, reflecting the
fact that it requires 10 bushels of
wheat, 20 barrels of fuel, and 220
person-years of labor to sustain the
production of 100 bushels of wheat,
and so on.

At this point it becomes impor-
tant to acknowledge a fundamental
difference between the first two sec-
tors (Agriculture and Energy) and
the third (Households). Sectors 1
and 2 represent commodities (food
and fuel) that are required to sustain
the community’s well being. Ac-
cording to table 1, this particular
community’s households require 70
bushels of wheat and 20 barrels of
fossil fuel. They are in turn obli-
gated to invest a total of 300 person-
hours of labor to sustain this level
of consumption. Since x,, = 70 and
X,, = 20 are requirements that a par-
ticular level of consumption im-
poses on an economy, we designate
these as exogenous (externally im-
posed) variables.

This special role calls for a change
of notation. In what follows, we’ll
set X3 =y, and x,; = y,. As for x,, =
220, x5, = 50, x4, = 30 and x; = 300,
let’s assume that the community is
somewhat flexible in the amount of
labor it’s able to commit to sustain-
ing its economy. On this basis, our
analysis will for the time being ig-
nore these variables.

These changes enable us to sum-
marize the first two rows in table 1
as

Xl +X12+y1
Xpp1 ¥ Xpp +Vy =

=X,
Xy,

or

(x; - x))) - %), =¥,
=Xy + (%) = Xp) = ¥, (1)

Note that the exogenous variables

v, = 70 and y, = 20 have now been
isolated on the right side of equa-
tions (1).

To simplify this last system of
equations further, we make an addi-
tional definition of the structural
coefficients

X
—Lfori=1,2andj=12.

X

(2)

Recalling that x,; denotes the
amount of commodity i required to
sustain the production of X, units of
commodity 7, it follows that a;; de-
notes the amount of commodlty i
required to sustain the production of
a single unit of commodity j. That
is, since it takes 20 barrels of fuel
(x,, = 20) to produce 100 bushels of
wheat (x; = 100), it takes 0.2 barrels
of fuel to produce a single bushel of
wheat. This is the rationale for in-
troducing the structural coefficient
a,, = x,,/x,. This last change in no-
tation enables us to write the system
of equations (1) as

(1-ay)x -
—a,, %, + (1 -

Yir

Voo (3]
Recalling the values of x;; and x;
from table 1, this system becomes

0.9x, - 0.4x, = y,
-0.2x, +0.8x, =y

10Xy =
ay))x, =

(4)

Problem 1. Use equations (4] to
confirm that an imposition of the
exogenous valuesy, = 70 and y, = 20
corresponds to x, = 100 and x, = 50.

What makes the system of equa-
tions (4] so important is that it em-
bodies the structure of this particular
economy. If the population of this
community grows, the exogenous
variables y, and y, can be expected to
grow as well, although not necessar-
ily at the same rate. The question
“What effect will such population
growth have on the economy?” can
then be answered in terms of equa-
tions (4) (assuming, of course, that the

By way of a spe-
cific example, suppose that the
population of this community were
to double. A doubling of the exog-
enous variables to y, = 140 and

=40 would require that the entire
economy double its annual output,
from x, = 100 to 200 bushels of
wheat and from x, = 50 to 100 bar-
rels of fuel.

But what if this community were to
accept energy conservation measures,
ones that maintain the households’
level of fuel consumption at the cur-
rent level of y, = 20 barrels/year—
even as the population doubles. If the
community’s food supply is still to in-
crease to 140 bushels of wheat, such
conservation measures wouid not suc-
ceed in holding fuel production at the
pregrowth level of x, = 50 barrels/year.
Rather, agriculture and energy would
both experience increased fuel demands
(even though the households do not),
and we would now determine x; andx,
by solving the system

0.9x, - 0.4x, = 140,

-2x, + 0.8x, = 20. (5)

Problem 2. Solve equations (5) for
x; and x,. Explain why x, fails to
double, even though households re-
quire twice as much food. Explain
the increase in x,.

Static vs. dynamic

Readers looking ahead to the task
of extending these ideas to four sec-
tors (Leontief studied economies de-
scribed in terms of hundreds of sec-
tors) may see a need to harness
technology to help us solve systems
larger than equations (3). But before
turning to this task, let’s note that
the techniques presented so far have
been static in nature. Given an
economy represented by (4), these
equations enable us to determine
the outputs x, and x, that corre-
spond to the exogenous values y, =
70 and y, = 20, and later to the ex-
ogenous valuesy, = 140 and y, =

4
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For each new set of values fory, and
v,, a separate application of equa-
tions (4) is called for.

But what if we are interested in
determining how this economy will
evolve with time? It is here that in-
put—output economics becomes
more elaborate, introducing consid-
erations such as the technological
changes that take place and the ac-
cumulation of buildings, machines,
tools, etc., that make it possible to
produce a changing mix of goods.
But even without confronting such
concepts, we can build a dynamic
model by formulating specific rules
by which y, and y, are likely to
change with time and then asking
for the corresponding change in x (¢}
and x,(t). By way of specific example,
let’s suppose that household de-
mand for food will grow at 3% per
year while household demand for
energy will satisty y,(t] = 20 + t. As-
suming the structure of the
economy remains constant, how
will the total demand for energy
change with time?

One way of answering this ques-
tion is by means of a spreadsheet
program that calls for repeated appli-
cations of equations (4). Underlying
such a program is the fact that the
solution of equations (4) is given by

08y, +04y,

064

. _ 02y, +09y,
T 064

1
(6)

and this enables us to use a spread-
sheet to calculate (and plot) the
changing values of x, and x, corre-
sponding to the assumed changes in
y, and y, (fig. 3).

Problem 3. Suppose y, grows at
2% per year while y, declines at 1%
per year. Develop a spreadsheet pro-
gram that determines the corre-
sponding values of x,(t) and x,(t).

Larger systems

Readers familiar with matrices
may have observed that equations
(6) can be arrived at by other means.
That is, equations (4) can be thought
of as a matrix equation of the form
Cx = y, where C is a 2 x 2 matrix
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A B c | D | E F G

1| Time yi(t) y2(t) x1(t) x2(t)

[ 2| 1 70 20 100 50

3 2 7210 22 103.88, 53.47 |
4 3 74.26 23 107.20| 55.55 ]
5 4 76.49 24 110.61 57.65| ]
6 5 7879 25 114.11 59.78

7 6 81.15 26 117.69 61.92

8 7 83.58 27 121.35) 64.09

9 o T — - ]
1 10| i
[11] 150 Household Demand 150 Total Output

| 12 ] i
| 13 ] /

14| 100 — 100 Food
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(18] Fuel |
19
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21 1 2 3 4 5 6 7 1 2 3 4 5 6 7
22

Figure 3
given by and governmental agencies the

09 -04
C= ’
-02 08
x is a column vector with compo-
nents (x,, x,}, andy is a column vec-
tor with components (y,, v,). In this

context, equations (6) now corre-
spond to x = Cly, where

[le _Cly- _1_(0.8 O.4j(y1]-
Xy 064102 09 \y,
As this example suggests, the prob-
lem of solving large systems of lin-
ear equations is mainly one of in-
verting large n x n matrices.

In order to relate these ideas to
the system of equations (3}, it’s use-
ful to introduce the matrix I whose
elements are all zeros—except for
1’s down the principal diagonal.
Known as an identity matrix, it en-
ables us to write equations (3) in the
form (I - A)x = y, where A is the
structural matrix whose elements
are the coefficients a,, defined by
equation (2). In this notation, the
solution of equations (3) is x =
(I - A)ly, where we are now faced
with the challenge of computing the
inverse of C = (I - A).

It’s important to note that the in-
formation embodied inI - A is regu-
larly collected by statistical offices

world over and is regularly utilized
in similar, though more elaborate,
economic analyses.

A four-sector economy

With this background in mind,
let’s reintroduce the Manufacturing
sector into the three-sector eco-
nomy we’ve been examining. An
input—-output model for what is now
a four-sector economy will confront
us with three equations with three
unknowns. While there are many
ways of solving such systems, our
approach will be based on matrix
methods that carry over to larger
systems as well.

Let’s begin by representing our
four-sector economy by means of a
4 x 5 table (see table 2). Noting that
x;, =10, x, = 10, x,, = 20, ..., while
x, = 100, x, = 40, ..., our previous
method of analysis leads to the sys-
tem (I - A)x =y, where

0.9091 -0.2 -0.286
I-A=|-0045 08 -0214
-0182 -04 08571
and
70
y=|20|
20



10 bushels

10 bushels 20 bushels

70 bushels 110 bushels

5 yards

10 yards 15 yards

20 yards 50 yards

20 barrels

20 barrels 10 barrels

20 barrels 70 barrels

220 person-hours

80 person-hours 50 person-hours

30 person-hours 380 person-hours

Readers familiar with matrix multi-
plication are invited to confirm that

12419 0.5914 0.5618

Limits to Growth has helped many to
see how important it is to confront
many of today’s problems from a

powerful tool for taking a more sys-
temic approach to issues involving
the use of natural resources, their

“systems perspective.” transformation into goods that hu-

(I—A)_1 = 01616 15054 0.4301 Input-output economics is a man societies need and want, and
0.3387 0.828 14866 A B | C b | ¢ F e [ w [ 1T 13

b i 1AL <1 | Mo
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y3=20lead tox, =110, x, =50, and | 3 |output s 10 15 20 50| A=|oosss 02 02143
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Using a spreadsheet, we can again 4 (Output 20 20 10 20 70 0.1818 0.4\ 0.1429
create a dynamic version of this 5 \
four-sector model. The following :
program assumes that Yy, grows at 6 0.9091 -0.2) -0.286 1.2419| 0.5914 0.5618
37% per year, y, grows at 1% per | 5 | (-A)=| 0045 08 0214  (I-A) Inverse = | 0,163 15054 04301
year, and ¥, remains constant at 20 ]
barrels/year (see figure 4). 8 -0.182 0.4 0.8571 0.3387 0.828 1.4866
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ditional, single-disciplinary ap- ‘ |
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ing the problems associated witha | 14| 14 70 72.1 74.263 76.491 78.786 81.149 83.584
complex and highly interconnected - ' '
world. More and more, we've come 15| y2() 20) 202 20402 20.606 20.812] 21.02| 21.23
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prises many interrelated and overlap- [17
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guide those after Copernicus, The Figure 4
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how the ways we provide for our-
selves materially impact the rest of
the world.

In this article we've seen how in-
put-output economics allows us to
construct a mathematical model of
an economic system in terms of dif-
ferent sectors, analyze the interrela-
tionship between inputs and out-
puts in each of the sectors, and
provide a formal mechanism for
considering where resources for pro-
duction processes come from and
where the products made and their
associated wastes eventually go.
This helps economics achieve the
important objective we mentioned
earlier—that of embedding eco-
nomic theory in a larger, material
system. In addition, input-output
economics helps both natural and
social scientists draw a more sharply
focused and detailed picture of what
actually takes place in the real
world. The urgency of many of
today’s problems demands solutions
of much greater specificity than tra-
ditional methods can provide.

Ten years ago, a report entitled
Our Common Future—more com-
monly referred to as the Brundtland
Report—was prepared for the World
Commission on Environment and
Development. The Brundtland Re-
port was largely responsible for popu-
larizing the term sustainable devel-
opment, which it defines as the
ability of humanity “to ensure that it
meets the needs of the present with-
out compromising the ability of fu-
ture generations to meet their own
needs.” The report describes the en-
vironmental and economic problems
the world community faces, identi-
fies a number of technological and
organizational measures that might
be implemented to achieve
sustainability, and concludes that
two seemingly contradictory goals—
economic growth and environmental
preservation—can, in fact, be
achieved through the appropriate
management of technology and social
organization. When these goals are
considered within the context of
ongoing efforts to raise the material
standard of living for a growing global
population, it becomes obvious that
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closer scrutiny is warranted in order
to learn whether or not achieving
them is feasible.

Beyond Brundtiand

In The Future of the Environment
(Oxford University Press, 1994), Faye
Duchin and Glenn-Marie Lange use
input-output economics to take a
closer look at some of the recommen-
dations of the Brundtland Report.
Their economic analysis reveals that
many of the positions taken are over-
optimistic or unrealistic. Duchin and
Lange go on to apply input-output
economics in developing and evaluat-
ing a number of options—called sce-
narios—that could serve as alterna-
tive paths to achieving sustainable
development. While traditional
economic analysis tends to focus its
attention on revealing the “right
prices” that would lead to the most
efficient allocation of resources in
order to satisfy consumer demand
and preferences, this analysis seeks to
accomplish more. The approach dem-
onstrated in The Future of the Envi-
ronment attempts to go beyond these
narrow considerations to integrate a
broader systems perspective and pro-
vide the empirical evidence needed to
make informed and realistic deci-
sions about important issues.

Duchin and Lange begin by con-
structing several development sce-
narios: the Our Common Future sce-
nario—based on the assumptions and
recommendations set forth in the
Brundtland Report; a Reference sce-
nario—based on the assumption that
no technical changes occur after 1990
to improve environmental condi-
tions; and three additional scenarios,
all based on many of the assumptions
contained in the Our Common Fu-
ture scenario but each assuming a
more prominent role for alternative
energy sources (either hydroelectric,
nuclear, or solar) considered in com-
bination with a more rapid rate of
modernization in energy-intensive
sectors of the largest developing
economies in the world (China and
India). By providing methods and data
to actually evaluate each of these dif-
ferent development paths, this kind
of work extends beyond an exclusive

focus on prices and in so doing pre-
sents a more realistic picture of what
actually takes place in the real world
economy.

Economists (like mathematicians
and physicists) must make assump-
tions. But, as Quantum readers have
seen many times, making assump-
tions can be a risky business. As in
other disciplines, it’s important to
explicitly recognize the assumptions
made because they can—and usually
do—play a powerful role in determin-
ing the conclusions that are drawn.
For instance, the Brundtland Report
assumes that clean and efficient mod-
ern technologies associated with the
use of energy and materials in produc-
tion processes are adopted in all parts
of the world economy over the next
several decades. Duchin and Lange
assembled the input-output tables
and other data necessary to analyze
the impact of this assumption and
found that this assumption was too
optimistic. They looked specifically
at the emission levels of three pollut-
ants associated with the production
of energy: carbon, sulfur, and nitro-
gen. They discovered that while lev-
els of emissions in their models are
reduced significantly below what
they would have been, assuming no
technological changes or improve-
ments in production processes (an
assumption of the Reference Scenario
that Duchin and Lange constructed
to serve as a basis for comparison),
these emissions still increase by a
substantial amount. For instance,
carbon emissions increase by a sig-
nificant 60%. Nitrogen emissions
rise by 63%), and sulfur emissions
increase 16%.

A solering scenario

The analysis performed by Duchin
and Lange provides an even more de-
tailed look at the future presented in
the Brundtland Report. The picture
that emerges is not only quite differ-
ent, it’s more structured and system-
atic. Their data show that, in addition
to an overall rise in the level of pol-
lution worldwide, the primary source
of pollution shifts from the developed
northern hemisphere to the rapidly
developing southern hemisphere.




While it may be a comfort to some
that pollution levels decline in the
north, from a systems perspective it’s
obvious that the entire world feels the
impact of pollution. This isolated
“fact” provides little basis for long-
term optimism when considered in a
broader context. In contrast to the op-
timism expressed in the Brundtland
Report, a significant amount of em-
pirical evidence—including that pre-
sented here—indicates that the goal
of cleaner air and water will demand
far greater efforts to achieve than
one might conclude from the
Brundtland Report.

With the growing world popula-
tion, declining stocks of natural re-
sources, environmental degradation,
habitat destruction, and climate
change becoming regular features in
our daily news, there has never been
a more urgent need for ways in which
we—as individuals and communi-
ties—can make better, more intelli-
gent decisions about the direction our
future and the future of the environ-
ment will take in the opening decades
of the 21st century. There are many
exciting opportunities to become ac-
tively engaged in developing the
kinds of innovative and effective
tools described here—tools that can
make a positive contribution to solv-
ing today’s environmental and eco-
nomic predicament. The need to con-
struct new scenarios that help define
alternatives to the options currently
offered is virtually boundless. By
combining the rigorous quantitative
analysis provided by input-output
economics with the creativity and
imagination of a new generation of
researchers, there is reason to be
hopeful that realistic and feasible an-
swers can indeed be found.

Economics—the dismal science?
Far from it! @
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PHYSICS
CONTEST

Gool vibrations

“The world is never quiet, even its silence eternally resounds
with the same notes, in vibrations which escape our ears.”

—Albert Camus

by Arthur Eisenkraft and Larry D. Kirkpatrick

LOW RUMBLE THROUGH
the Earth convulses a highway
like a fish gasping for air. A
child in a distant playground
gracefully moves his body, propel-
ling the swing to new heights. An
operatic singer shatters a crystal
glass with the precision of her voice.

The Earth, the child, and the so-
prano play with oscillations. Not
content with the simple vibrations
of sound, or a mass on a string, or a
screen door swinging to and fro, this
active cast of characters forces the
systems and produces fascinating
results. To understand what is hap-
pening, we will review the simplest
vibrating system before exploring
the more complex activities of our
players.

A mass hangs from a massless
spring. In its stable position, the
force of gravity on the mass must be
equal and opposite to the force of the
spring. This defines the equilibrium
position of the system x|

mg - kxy=ma=0,

Xo=—>
If the system is pulled below its
equilibrium position, there is a net
force pulling the mass upward. We
can define the stretch of the spring
x as the distance beyond the equilib-
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rium position:

d*x
—kx=ma=m-—

dt*
We can “guess” at the solution to
this differential equation:
x = A cos (ot + ¢).

Taking derivatives, we find

_dx

ve—= —Awsin(ot + ¢),
2
a= % =-Ao? cos(wt +0).

To find out if we have guessed suc-
cessfully, we substitute these solu-
tions for x and d2x/dt?into our origi-
nal equation —-kx = md?x/dt? and
find that this is indeed a solution
when

where o/2x is equal to the frequency
of vibration v of the oscillator.

The situation gets more compli-
cated when it is made more realistic.
All oscillating systems have a re-
tarding force. Often this retarding or
damping force is proportional to the
velocity of the mass. The amplitude
of this oscillation will decrease and
decrease until the mass eventually

comes to rest. But does the fre-
quency change under this force? The
equation of motion is now

L
dt de?

A solution to this equation if b (the
coefficient of the damping force) is
small is

x= A PH2 cos(w’t + ),
()

m \2m)

A plot of this equation shows an
oscillation of constant frequency,
which damps out exponentially.
Exploring this solution will be part
of the contest problem.

A more interesting motion occurs
when a varying external force also
drives the oscillating mass with a
damping force. This external force
can be the positioning of a child’s
body to make the swing reach new
heights or the soprano’s voice driv-
ing the molecules in the glass crys-

tal. In this case, the equation of
motion is

o =2y’ =

d*t

~kx - b% +F,, cos(0”t) = et

The solution of this equation is

Art by Tomas Bunk







X= %Sin(w”t -9),

where

A2 L

Clies \/mz(mﬁz _ (02) +ben”>

and

bmll

-1
= COS :
¢ G

We can see that the frequency of
oscillation is now that of the exter-
nal driving frequency and not the
natural frequency. If the driving fre-
quency is equal to the natural fre-
quency and the damping force is
zero (b = 0), we see that G becomes
zero and the displacement x will get
infinitely large. This is called reso-
nance. Of course, there is never a
situation where the damping force is
exactly zero, and we find that the
resonance does produce very large
displacements, although not infi-
nite. This is the explanation for the
collapsing highway, the crystal be-
ing broken, and the child being able
to swing to such new heights.

Our contest problem oscillates
from some simple problems to some
graphical and mathematical analy-
sis.

The first problem was a small
part of one of the questions in this
summer’s very successful Interna-
tional Physics Olympiad in
Sudbury, Canada. In fact, the local
radio station offered a prize to any
listeners who could call in a solu-
tion.

A. A mass hangs from a massless
spring and oscillates with a fre-
quency of 1 Hz. If the spring is cut
in half, what is the new oscillation
frequency?

B. A mass m hangs from 3 mass-
less springs as shown in the figure.
The springs have spring constants
k,, k,, and k;. When m is displaced
from its equilibrium position, what
is the period of oscillation?

C. (1) Sketch the solution for the
damped oscillator. (2) The mean
lifetime is defined as the time it
takes for the oscillator’s amplitude
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to reach 1/e of its initial value. De-
rive an equation for the mean life-
time. (3) A hanging block with a
mass of 2 kg is attached to a mass-
less spring with spring constant
equal to 10 N/m. The mass is dis-
placed from its equilibrium position
by 12 cm. If the damping force has
a bvalue of 0.18 kg/s, find the num-
ber of oscillations made by the
block during the time interval in
which the amplitude falls to 1/4 of
its original value. (4) Derive an ex-
pression for the velocity of the mass
at any given time.

D. A forced oscillator can have
substantially different effects on a
mass. (1) Show graphically how the
amplitude depends on the ratio of
the driving frequency o” and the
natural frequency o for the follow-
ing values of the damping coeffi-
cient b: b =0, mw/4, mw/2, mo, and
2mo. (2) Derive an expression for
the velocity of the mass at any given
time.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Mars or hust!

As predicted, the Mars Pathfinder
landed on Mars on July 4, 1997, and
has sent back fantastic pictures of
the surface of Mars. We fully expect
to find Sojourner toys in sandboxes

and backyards very soon.

Our contest problem in the
March/April issue explored two
simplified ways of leaving Mars or-
bit and landing on the Martian sur-
face. Excellent solutions were sub-
mitted by André Cury Maiali and
Gualter José Biscuola from Brazil.

A. The gravitational force acting
on a satellite of mass m orbiting
Mars is given by

GMm

(R+h)*

where G is the gravitational constant,
M and R are the mass and radius of
Mars, and A is the altitude of the or-
bit above the surface. Because the
surface gravity on Mars is given by

this force can also be written as

ng2

(R+h)2 .

Equating either of these expressions
for the gravitational force to the cen-
tripetal force mvZ/(R + h) allows us
to solve for the orbital velocity v,

g GM

vo=R |5 = | &
0 \/R+h \VR+h'

Using the numerical values given in
the problem, v, = 3.38 km/s.

B. According to the statement
describing the first method of land-
ing, the path is an ellipse that is tan-
gent to the orbit and to the Martian
surface at the two ends of the ellipse.
Let the speed of the satellite be v,
after the retrorockets have fired and
v, at the surface and write down the
expressions for the conservation of
angular momentum

mv,R = mvy(R + h)

and the conservation of mechanical
energy

1 . GMm_1_, GMm
277A R T2 X Rih’

Solving for v, we obtain



[2R

VX:VO\/2R+h =329 km /s.

Conservation of angular momen-
tum now tells us that

R+h

Vi=Vy =3.65km/s.

This answer makes sense, because
the speed must increase as the sat-
ellite descends to the surface.

C. This time the rockets fire in
the radial direction. Therefore, the
rockets do not change the angular
momentum of the satellite. Conser-

mechanical energy to find the speed
at point X. Let’s call this speed v to
distinguish it from the speed we
obtained for the first method. Then

1 o

mvs — =—1m
2 Y T Ryn  2TVET TR

GMm _1_ , GMm

Solving for vy, and using our expres-
sion for v, we obtain

B2
“(1+F =340km /s.

\

D. Our Brazilian readers point out
that we can get much better com-
parisons by calculating the changes

VY =VO

In the second case, the two velocity
vectors v, and v, are not parallel, but
we know that v, = v, + v, where v,
is the radial component of velocity
imparted by the rocket engines.
Therefore, we can use the Pythag-
orean theorem to find

AVBZVI=VO%=365H‘1/S.

Then Av, /Av, = 0.240, or about one-
fourth as much.

E. We now compare the landing
speeds:

R+h [R+h) 2R
——=Vp

vation of angular momentum tells in the velocities at point X algebra- Va=Vx R R \e’ OR+h’
us that ically rather than using our numeri- R4k
mv.R = mvyR + b cal results. In the first case, vyand v, vy = Vo( ]
B 0 ’ lie along the same direction and we R
Thus can simply subtract them to obtain
- Thus
-
Vg =V, * =374 km /s, AV, =V =-Vx =Vg|1— 3’ 2R 9R
V2R+h Ya_ | = 0974
—87.7m/s Fp 4dRtR
We can now use conservation of -0 : (@)
I |
e—— | —

——
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An ant on a tin can

Finding the shortest path from A to B

WO STUDENTS ARE PON-

dering the following problem:

A tin can takes the form of a

right cylinder with radius R and
height H. An ant is sitting on the
border circle of one of its bases
(point A in figure 1). It wants to
crawl to the most distant point B at
the border circle of the other base
(symmetric to A with respect to the
center of the tin). Find the shortest
path for the ant.

“But it’s a very simple problem!”
the first student says confidently.
“We just have to consider the planar
development of the tin. Let’s say, for
the sake of definiteness, that the ant
first crawls along the side surface
and then across the upper base (of
course, it’s possible that the ant
takes the symmetric route: first
crawling across the lower base, then
along the side surface; but the length

J

Figure 1
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by Igor Akulich

of this route is the same). Develop-
ing the tin can on the plane (fig. 2a),
we see at once that the shortest path
goes first along the linear element
AM of the cylinder, then continues
along the diameter MB. The length
of this route is S . = H + 2R.”
“Wait a second,” the other student
replies. “One can very comfortably
develop the tin can in a different way!
Just throw away the lids and spread
the side surface on the plane so that
we get a rectangle (fig. 2b). Then the
shortest path will be the segment
connecting points A and B—its

lengthisS_, =+ H? +n®R?* . And the

image of the ant’s route on the tin can

will be a part of a corkscrew line.”
The students were on the verge of

quarreling when a the idea occurred

a B
2R
M
H
A
Figure 2

to them to compare both paths—the
shorter one will be the correct an-
swer. First they determined the con-
ditions whereby the lengths of both
routes are equal, writing down the
equality

H+2R=+H?*+7*R?.

Then they transformed it:

(H + 2R)? = H? + n’R?,
H? + 4HR + 4R? = H? + ?R?,
4H = (2 - 4)R,

finally arriving at

2
H_E =146
R 4

Thus the lengths are equal when

nR B

H? + n’R2

Art by V. lvanyuk







the ratio of the tin can’s height to its
radius is equal to this figure. Now we
can conclude that if H/R < ©?/4 - 1,
then the shortest path was given by
the first student; if H/R > n2/4 - 1,
then the shortest path was given by
the second student.

The students were so glad and
proud of themselves, they couldn’t
help boasting to their math teacher
about the solution they’d found.

Question to the reader: What
would you tell them if you were
their teacher?

The teacher speaks

Let’s answer together: “Sorry,
you're wrong! You've certainly
solved a problem, but . . . it’s another
problem. Namely, you took two
possible routes from point A to point
B and determined the conditions
whereby one of them is shorter than
the other. But in addition to these
two, there are many other paths (see
figure 3) that go from A along the
side surface to an arbitrary point P
on the border circle of the upper
base, and then from P to B along a
segment of a straight line on the
upper base.”

As you can see, the paths pro-
posed by the students are only par-
ticular cases of the path we've sug-
gested. In the path proposed by the
first student, P coincides with point
M; in that of the second, it coincides
with B. That is to say, the students
suggested two “extremal” variants.
And the truth is, undoubtedly,
somewhere in between.

Lets work this through

We're looking for the shortest
path. Denoting the center of the

A
~igure 3

52 SEPTEMBER/OCTOBER 1997

upper base by O and the radian mea-
sure of the angle MOP by ¢, we find
without much trouble that the
length of arc MP equals R¢, and the
length of the shortest curve AP is
H? + R%¢? the
Pythagorean theorem), and the
length of segment PB is 2R cos (0/2).
Thus the length of the entire path is
a function of 6—namely

(according to

S= \J”Hz + chpz + 2Rcos%

Now we just have to find the
minimum of this function at the
segment ¢ € [0, 7|

You probably know how to do
this. A function can attain the mini-
mum either at one end of the inter-
val or somewhere in the middle. As
far as the ends are concerned, the
students have already looked a them
(their paths correspond to the values
¢ = 0 and ¢ = 7). But how should they
look for the minimum inside the in-
terval? Here the universal method is
given by differential calculus. Let’s
take the derivative:

2
K9 —Rsing.

I
N“‘j H* + R20° 9,

The points of the interval (0, «t)
where this derivative vanishes, or is
not determined (although this is
impossible here), are suspected of
being the extremum. If the function
has local maxima or minima in this
segment, it can attain these values
only in points of this sort. So let’s
put the derivative equal to zero:

2
‘R—Jg, - Rsin9 =0,
\’,‘Hz + R%? )
or, after simplifying,
% = Sing. (1)
VH? + R* 2

Now all we need to do is find all ¢
satisfying this equation that belong
to the interval (0, wt), calculate the
corresponding values of S, and, fi-
nally, from all the numbers S(¢) ob-
tained in this way, as well as S(0),
S(rn), choose the smallest. No sweat!

That's easy for you to say!

True. The first insurmountable
obstacle is to solve equation (1). In
fact, it can’t be solved—that is, it’s
impossible to express ¢ in terms of
H and R by means of elementary
functions.

So what shall we do? There’s only
one way out of this situation: find a
“roundabout” method. First, let’s note
that if a function has a local mini-
mum at a point, then it must decrease
to the left of this point and increase
to the right. Therefore, its derivative
is negative to the left of this point,
vanishes at the point, and is positive
to the right of it. In other words, the
derivative increases in some neigh-
borhood of the local minimum. Thus
the second derivative must be posi-
tive (or zero, in the extreme case) at
the minimum point. And if the sec-
ond derivative is negative, we can
state with certainty that there is no
local minimum at the point (it’s quite
clear there is a maximum).

So, let’s find the second derivative:

272
S”=—R il —Ecos9

[rreme] 22 P

We have to find its sign is at the
points where the first derivative van-
ishes—that is, in the points for which
equation (1) holds. But how can we do
this? Let’s try this “trick”: we trans-

form the quantities \| H* + R%6* and
H? using equation (1):

\r"’HZ -‘rRZ(i)2 = —Rq)q) 7

sin—
2

~R2%?



We substitute these formulas in
equation (2):

cos29
R? qu)z q%
.
sin” =+
S” = = 2 —Ecos9
2 2
X
sim9
2
:ﬁcosg~ ZCOSQSing—(j)
20 2 2 2
R O, . ,
=—cos— —-0).
2% c0s2(51nq> )

If 0 < ¢ < m, the factor to the left of
the parentheses is positive, and
thus the sign of §” coincides with
that of the expression sin ¢ — ¢.
But, as is well known, sin ¢ < ¢ when
0 < <7, and thussin ¢ - ¢ < O when
¢ € (0, m). So if the function S has an
extremum in this interval, it can

only be a maximum and not a mini-
mum

The tudents were right atter alll

We see that S attains its minimal
value at one of the ends of the seg-
ment [0, ©]. This means the students
found the correct answer. They were
right!

How do you like that? Yet our
objections were correct, too. A para-
dox, wouldn’t you say?

No, not really. Just good luck.
The students were fortunate in that
their incorrect solution gave the cor-
rect answer to the problem. Situa-
tions like this are not all that rare.
You probably can recall something
similar that happened to yourself.
As a matter of fact, this article was
written just to give you a piece of
advice (which you may have heard
already, but it bears repeating): even
when you use the most obvious and
the most reliable methods (for in-
stance, the method of planar devel-

Figure 4

opment, when you’re looking for the
shortest route), you ought to be very
cautious and ready to doubt your
reasoning. Otherwise you might get
into trouble.

By the way, our solution isn’t
quite complete either. We didn’t
take into consideration paths that
like the one in figure 4. Think of
what to do about them. Then check
your answer (in the back of the
magazine, as usual). (@
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PhysICS in the kitchen

Simple experiments with boiling water

O PERFORM THE FOLLOW-

ing experiments we need an

empty glass, a pan of water, a

thermos, a kettle, an electric
stove—and what else? Certainly the
most important thing: an inquisitive
mind, plus the desire to perform
some physical “tricks.”

Why is water pulled into the glass?

Take an ordinary pan and pour
some water into it (to a depth of
2-3 cm). Then lower an empty glass
upside down into the pan. Set the
pan on the stove, heat the water, and
let it boil for about 5 minutes. Turn
the stove off. Soon you'll see water
being drawn up into the glass, rising
higher and higher until it fills most
of it.

Now let’s explain what we've
seen. What is the force that lifts the
water in the glass? Clearly it can
only be the force of atmospheric
pressure (that is, the pressure of the
surrounding air). This means that
the air pressure inside the glass is
less than the atmospheric pressure.
By how much? It’s not difficult to
estimate the pressure difference (AP)
inside and outside the glass—it’s
equal to the hydrostatic pressure of
the water in the glass at the end of
the experiment. Assume the height
of the water column is h = 10 cm,
the water density p = 103 kg/m?, and
the acceleration due to gravity
g = 10 m/s2. From this we get

AP = pgh =103 Pa = 0.01 atm.
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by I. I. Mazin

So, why did the air pressure inside
the glass become less than the atmo-
spheric pressure? The first thought
that comes to mind is this: as the
water boils, the air in the glass is
heated, so it expands and partially
leaves the glass. Indeed, looking
closely at the pan, we notice air
bubbles leaving the glass. When the
remaining air cools (after we turn
the stove off), it compresses, so the
vacated space will be occupied by
water. Let’s estimate the magnitude
of this effect.

Assume the volume of the glass is
V =200 cm?, the initial temperature
(before heating) T, = 300 K, the final
temperature T, = 373 K, and the at-
mospheric pressure P = 1 atm =
10° Pa. From the ideal gas law we ob-
tain the fraction of air that remains
in the glass after boiling:

pv=21RT,
M

pv="2RT),
M

from which we get

m_1_og
m T,

Thus the cooling of the hot air to the
initial temperature results in a com-
pression to 80% of the volume of the
glass. Thus only 20% is occupied by
water. And yet we saw that water
filled more than half the glass! At
best we can explain only one third of

the effect. If we take into account
that the water rises in just a few sec-
onds, and that this time is too short
for the air to cool to room tempera-
ture, we're forced to admit that our
explanation is erroneous and that
we need to look for another.

Where did we go wrong? It seems
we were mistaken in supposing that
the glass is filled only with air. We
forgot about water vapor. Indeed,
during the five minutes of turbulent
boiling, water vapor was entering
the glass continuously, mixing with
the air and trying to push it out.
When we turned the stove off, the
glass was mostly filled not with air
but with water vapor. And not just
water vapor—saturated vapor. The
saturated vapor pressure P_ de-
creases during cooling, and the drop
in pressure is very abrupt (see the
figure below). We need to cool the
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water by only 0.3°C to decrease the
pressure by 0.01 atm. Clearly such a
cooling can take place almost in-
stantaneously.

Our experiment also shows that
if the water is boiled long enough, on
cooling it will fill almost the entire
volume of the glass. There is virtu-
ally no limit on the height of the
water column—after all, a pressure
of 1 atm is created by a water col-
umn 10 m high.

The question arises: is five min-
utes enough time to evaporate the
necessary amount of water? Let’s
try to come up with an answer.
The evaporation rate depends on
the power output of the stove, the
size of the pan, and so on, so let’s
use the actual numbers obtained in
experiments. In our case a layer of
water 1 cm deep evaporated from
the pan in about 30 minutes. So
during five min, m = 3 g of water
will evaporate from a surface equal
to the cross-sectional area of the
glass—about 20 cm?2. At a tempera-
ture T = 373 K and pressure
P = 1 atm, this saturated vapor oc-
cupies the volume

V= m KT = 5 liters!
M P

Assuming that the vapor mixes ho-
mogeneously with the air, we get
only (0.2 1/51) - 100% = 4% of the
volume of the glass is occupied by
the air, while the other 96% is occu-
pied by water. This result can actu-
ally be observed.

When is it more ditficult to pull the cork
from a thermos?

For the second experiment we
need a thermos, preferably with a
narrow cork that plugs the neck
tightly but doesn’t go into it en-
tirely. First we boil water in a kettle,
then pour it into the thermos. A
little later we pour it out and plug
the thermos tightly with the cork.
Try to pull the cork from the ther-
mos a few hours later—you will see
how tightly it is set in the neck. You
won’t have an easy time removing
it! (This is why we should use a cork

that extends a bit from the neck.) If
instead of plugging an empty ther-
mos we had plugged one filled with
boiling water, the suction effect
would be very small or absent en-
tirely. But what will happen if we fill
only a half or a quarter of the ther-
mos with the boiling water? You
might think that the suction force
would be somewhere in between the
two extremes. But that’s not the
case. The effect will be just a little
stronger than with a full thermos.
Let’s see why.

A characteristic property of a
thermos is its low heat transfer. In
a good one-liter thermos, water
cools only 2-3°C per day. Since
the specific heat of water is
4.2 kJ/(kg - K), we can estimate the
amount of heat dissipated by the
thermos in one day (= 10 kJ). An
empty thermos has a mass of
about 200 g. The specific heat of
the thermos’s material (glass and
metal) is about 0.5 kJ/(kg - K), so a
heat transfer of 10 kJ corresponds
to a temperature drop of about
100°C. This means that the ther-
mos will cool to room tempera-
ture—that is, the temperature drop
will be 80°C. According to Charles’s
law, this temperature drop corre-
sponds to a pressure difference of
0.2 atm. For a cork with a cross sec-
tion of approximately 5 cm?, this re-
sults in a rather appreciable force of
about 10 N.

Since the specific heat of water is
almost 10 times that of glass, even
100 g of water in the thermos will
reduce the decrease in temperature
(and the respective pressure differ-
ence) by a factor of four. For a quar-
ter-filled thermos, the pressure dif-
ference will be smaller by a factor of
seven; in a half-filled thermos, it
will be smaller than that for an
empty thermos by a factor of 15.

Explain this!

Here’s one last experiment. Fill
half a thermos with very hot milk,
plug it with a cork, and shake it vig-
orously. You’ll see milk bubbles
around the cork—air is escaping
from the thermos. Can you figure
out why?



International Mathematical Olympiad

Competing against teams repre-
senting a record 82 countries, a team
of six US high school students won
six medals at the 38th International
Mathematical Olympiad (IMO) held
in Mar del Plata, Argentina, July 18—
31,1997, and tied for fourth place.

The top 10 teams and their scores
(out of a possible 252 points) were
China (223), Hungary (219), Iran
(217), United States (202), Russia
(202), Ukraine (195), Bulgaria (191),
Romania (191), Australia (187), and
Vietnam (183).

The 1997 IMO US team members
were Carl J. Bosley (Topeka, Kan-
sas)—gold medalist, Nathan G.
Curtis (Alexandria, Virginia)—gold
medalist, Li-Chung Chen (Cupertino,
Californiaj—silver medalist, John J.
Clyde (New Plymouth, Idaho)—silver
medalist, Josh P. Nichols-Barrer
(Newton Center, Massachusetts)—
silver medalist, and Daniel A. Stron-
ger (New York City)—silver medalist.

Carl Bosley was one of four stu-
dents (out of 460 participants) who
scored a perfect paper.

The Head Coach and Leader of
the Team was Titu Andreescu of the
Ilinois Mathematics and Science
Academy. The team was also ac-
companied by Elgin Johnson of Iowa
State University and Walter E.
Mientka of the University of Ne-
braska-Lincoln.

Here is a representative question
that was used in this year’s IMO:

An n x n matrix (square array)
whose entries come from the set
S={1,2,...,2n -1} is called a silver
matrix if, foreachi=1, ..., n, theith
row and the ith column together
contain all elements of S. Show that
(a) there is no silver matrix for

Bulletin Board

n=1997; (b) silver matrices exist for
infinitely many values of n.

The American Mathematics
Competitions (AMC) is a program of
the Mathematical Association of
America, and the USA Mathemati-
cal Olympiad is an AMC activity
sponsored by nine national math-
ematical sciences organizations. Fi-
nancial and progam support is pro-
vided by the Army Research Office,
the Office of Naval Research,
Microsoft Corporation, the Matilda
R. Wilson Fund, and the University
of Nebraska-Lincoln.

International Physics Olympiad

A report on the XXVIII Interna-
tional Physics Olympiad will appear
in the November/December issue.

Nof a plane old CyberTeasen

The September/October Cyber-
Teaser (brainteaser B212 in this is-
sue) was a cinch—once you realized
you weren’t going to be able to solve
it by pushing matchsticks around
the tabletop. We were impressed by
the ASCII drawings sent in by some
of our contestants (the CyberJudge is
all thumbs in that department) and
by the JPEGs and bitmaps as well.
But of course, all you needed was the
right words . . .

Here are the first ten persons who
submitted a correct answer elec-
tronically:

Theo Koupelis (Wausau, Wisconsin|
Matthew Wong (Edmonton, Alberta)
Brian S. Mansfield (Loveland, Ohio)
Leo Borovskiy (Brooklyn, New York)
Jim Grady (Branchburg, New Jersey)
Badri Ramamurthi (Albuquerque, New
Mexico)
Chantelle March (Morphett Vale, South
Australia)

Jim Paris (Doylestown, Pennsylvania)
Lee Ai Ling (Darul Ridzuan, Malaysia)
Oleg Shpyrko (Cambridge, Massachusetts)

Each will receive a Quantum but-
ton and a copy of the September/Oc-
tober issue. Everyone who submitted
a correct answer in the time allowed
was eligible to win a copy of Quan-
tum Quandaries, our collection of
the first 100 Quantum brainteasers.

Care to go toe to toe with the lat-
est CyberTeaser? Then head to
www.nsta.org/quantum and click

on the Contest button.

" Whats aeing?
Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!

Whats on your mind?

Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more
of? And, yes—what don't you like about
Quantum? We want to make it even bet-
ter, but we need your help.

What$ our address?

Quantum
National Science Teachers Association
1840 Wilson Boulevard
Arlington VA 22201-3000

Be a factor in the
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Across

1 German physicist
Ernst _ (1840-
1905)

5 Fusible ceramic
mixture

9 60,091 (in base 16)

13 Move suddenly

14 Instant

15 Great ___ (dog)

16 Like a battery

19 Sum

20 Mongoloid or
Caucasian, e.g.

21 Spore sacs

22 Test tube baby
pioneer John ___

23 Luminous ring

25 Like the ocean

28 Organic compounds

31 Muslim doctors

32 Excessive

34 ___bang

36 BBQ favorite

37 Regime

38 ___ -Civita symbol

39 Abscisic acid: abbr.

40 Elongated fruits

41 Laser infrared radar

42 Polysaccharide

44 Trig. function

45 Absorbed dose units

46 Wheel hub

08

Brigs <

"
Epﬂss SBIE"EB by David R. Martin
1 2 3 4 5 6 7 8 9 10 |11 |12
13 14 15
16 17 18
19 20 21
22 23 |24
25 |26 |27 28 29 130
31 32 |33 34 35
36 37 38
39 40 41
42 43 44
45 46
47 |48 49 50 |51 |52
53 54 |55 56
57 58 59
60 61 62
47 Birth-control 11 ___ Db'rith 44 Astronomer Carl 52 Exist in France

advocate ___
Guttmacher

49 Enclosure

50 ___ wind (of
western China)

53 Selective diffusion
process

57Jai ___

58 Austrian composer
__ Berg

59 Anthropologist
Hrdlicka

60 Rotate

61 Nevada lake

62 Unit of heredity

Down
1 44,522 (in base 16)
2 Hairless
3 Procreated
4 And so on: abbr.
5 Dress
6 Food grain
7 Fish dermatitis

8 “toa___."” perfect)

9 Inventor Thomas

10 43,724 (in base 16)
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12 Ten decibels

14 Sum of diagonal
matrix elements

17 Sodium sesquicar-
bonate

18 ___ acid (green apple
juice ingredient)

22 Edges or borders

23 Suspends

24 60 coulombs: abbr.

25 Koran chapter

26 Pretext

27 Rachel and Leah’s
father

29 966,362 (in base 16)

30 Jewish month

32 Averages

33 Atmosphere

35 Fastened with a belt

37 Geophysicist Harry
Fielding ___ (1859-
1944)

38 Mallophaga

40 Type of kingdom

41 Surveyor’s instru-
ment

43 C,H,N,0,

_ 53 Sense organ
46 Nymph
47 More stable isomer:

54 Computer memory:
abbr.

55 Novelist ___ Edvart
Rolvaag (1876-1931)

pref.
48 Loyal, in Edinburgh

49 52,666 (in base 16) 56 __ laser

50 Seagirh land SOLUTION IN THE

51 Tres NEXT ISSUE

SOLUTION TO THE
JULY/AUGUST PUZZLE
R|E |[C[K X|Y|L|A|N T|A|A|L
U|S |E |E RIE|A|D|Y E|E|JA|A
PA|L|P A|JA|B[A]A T|B|A|R
P|U|ILI|LI|E]|Y|S DIS|E|R|I |E|S
E|S|T T|E|S|L]|A _

AP |E|R|T|JU|R|E A|L|P|A|C|A
O|R|T E|B|[O|IN|Y S|O[D[A|S
R|O|H]|E E[O|S |I |N D|IO|S|T
T|W|Y|L |A T|O|P|I |C N|E [E
A|L|L [E|L [E RIE|C[E|P|T]|]O|R

_ C|l|O|IR[D]|S H|E |R
P|EIN|T]|E |N|E A|R|S |[E|N|I |C
A[G|A]|R E|LJ|A|E|O LIE[D|A
L|E|N|O S|A|[L|A[M O|V|I |D
I |[R|O|N T|Y|P|E |E G|E [N]E




Math

The set defined by the equation
[y — 2x| = x consists of tworays: y = x,
x20, and y = 3x, x > 0. It’s not hard
to see that the equation |3x-2y| =y
defines the same rays. There are no
other possibilities.

M212

Triangle CPK is congruent to tri-
angle CBK, because CK is a com-
mon side (fig. 1), ZPCK = ZBCK, and
ZKPC = ZKMA = ZCBK. The last
two equalities follow from the prop-
erties of inscribed angles. Thus
AP =|CP - CA| =a-b|.

M213

The system is linear with respect
to parameters a, b and c. Let’s use it
to express a, b, and c viax, y, and z.

Eliminate denominators in the
second and the third equations and
replace the expression given in the
first equation with c. After simplify-
ing, we obtain

—a(l + Xz)yz +b(xz+y)x

= x222y - x%y%z,

aly - xz)z - b(l + zz)xy

2.2
= —x22ly — xytz,

Figure 1

ANSWERS,
HINTS &
SOLUTIONS

Get rid of b (multiplying the equa-
tions by (1 +z?)y and (xz + y), respec-
tively, and adding the first equation
to the second]. We obtain

(1 +x2)(1 + 22)y%z + (v - xz)|y + x2)2)
= xyz{(xz - x%y)(1 + 22}y

~ [xz + y2?)(xz + y)),
or

al-x2223 - X292 — 228 — 2z 4 2z
- x273) = xyz(xyz + xyz3 - X2y —
x2y?722 - x272 — xyz — xyz3 - y222)

—that is,

az(y?2? + x%52 + y 22 + x%22)
= xyz(x?y2z? + x*y2 + y22% + x222).
Butit’s evident thatx, y, z# 0. Thus

a =xy. Further, we findb = yz, c = xz.
We thus obtain the system

a=xy,
b=yz,
c=xz.

Multiplying these three equations
term by term, we find abc = x2y222.
Thus abc > 0, and xyz = ++/abc.

Therefore, the answer is

+Jabc +abc ++abc
b ' a ' ¢ i

M214

Consider a triangle ABC that can
be folded into the surface of a unit
regular tetrahedron (without over-
laps), so that the vertices of the tet-
rahedron correspond to the vertices
of the triangle and to the midpoints
of its sides. Draw the median AD in
the triangle and continue it after
point D to a distance equal to itself.
We obtain point E. Then we can fold
the triangle ABE into the surface of
the same tetrahedron so that the
vertices of this tetrahedron corre-
spond to the vertices of the triangle
and to the midpoints of its sides.
(This fact is evident enough. Tri-
angle ACD is, in a certain sense,
substituted for triangle BED, which
takes the place of ACD on the sur-
face of the tetrahedron.)

Figure 2 shows how we can ob-
tain, using the transformation
above, the triangles described in
parts (a) and (b) from an equilateral
triangle with side 2. This triangle is
a development of a unit regular tet-
rahedron, so that the vertices of the
tetrahedron correspond to the verti-
ces and midpoints of the sides of the
triangle. Thus we conclude that it is
possible to fold these triangles into
the surface of a unit regular tetrahe-
dron.

Figure 2

QUANTUM/ANSWERS, HINTS & SOLUTIONS 08




M215

Note that b(2n + 1) = b(n). (The
first digit in any such representation
of 2n + 1 is 1. Dropping it and divid-
ing all the rest by 2, we obtain a rep-
resentation of n. Thus we get a one-
to-one correspondence between the
representations of n and 2n + 1.) We
also note that b(2n) = b(n) + b(n - 1)
(the first term corresponds to the
case a, = 0, and the second to the
case a, = 2). Now we compute

b(1997) = b(998) = b[499) + b(498) =
2b(249) + b(248) = 3b(124) + b(123)
- 3(b(62) + b(61)] + b(61) = 3b(62) +
4b(61) = 3b(31) + 7b(30) = 10b(15) +
7b(14) = 17b(7) + 7b(6) = 24b(3) +
7b(2) = 31b(1) + 7b(0) =31 -1+7 -1
- 38.

Physics

At any moment while the ath-
letes are running the cord is
stretched uniformly, so the ratio of
the distances from the point C to the
ends of the cord will not vary with
time. The figure in the problem
shows that this ratio is initially
equal to

|AC|: |CB|=1:4.

Clearly the displacement Ax of the
knot to the east is determined by the
displacement AS_ of runner A—at all
times it equals 4/5 of that displace-
ment:

5 5

Using the dimensions given in the fig-
ure, we see that point D is Ax =4 m
to the east. Therefore, the knot passes

through point D when
t= A 5s.
4 Vo

The displacement Ay of the knot
to the south is determined by the
shift AS_ of runner B, so at any mo-
ment Ay = AS/5. At time ¢t = 5 s the

80 SEPTEMBER/OCTOBER 1887

knot is shifted from the initial po-
sition to the south by Ay = 2 m.
Thus runner B, moving with an ac-
celeration a, runs the distance
ASy=5Ay= 10 m in time t = 5 s—
that is,

1 o
Eat =ASy,

which reduces to

AS,
t; =i—g m/32=0.8 m/sz.

P212

We'll denote the temperature and
pressure of the air at a distance from
the model as T, (T, = T = 300 K)
and P, and the corresponding val-
ues near point A as T, and P,. For
a stationary flow we can consider
any portion of the gas—how it
moves and what happens to it. For
definiteness, let’s take one mole of
air (the molecular mass of air
M = 29 g/mole] and look at a
“tube” that it enters from far off
and from which it emerges near
the model. To avoid purely formal
difficulties associated with the
complete stoppage of the air near
our point, we’ll consider this speed
small compared to the initial
speed (but not exactly equal to
zero!).

The outside air, “pushing” our
portion of gas into the “tube” at the
entrance, performs work

W, =PV,

a=

where V, is the volume of one mole
of air at temperature T. Leaving the
tube, the gas performs work, “push-
ing away” the surrounding air—that
is, negative work is performed on
the gas:

W, = -P,V,,

where V, is the volume of a mole of
gas at temperature T),.

Let’s assume that the gas in the
“tube” does not exchange heat with
the surrounding air. (Strictly speak-
ing, this isn’t so, but we can'’t rea-
sonably estimate this heat ex-
change. Therefore, we'll obtain the

upper limit for the temperature ef-
fect we're investigating.) The change
in the internal energy of our portion
of gas is determined by the work
done by the outside forces and the
change in the kinetic energy of this
portion of gas as a whole:

2
W1+W2+ M; :AU
- CV(TZ _Tl)
= —R(T2 —Tl)

(since air is a diatomic gas, its mo-
lar heat capacity at constant volume
is Cy, =/R).

Using the equation of state for
one mole of ideal gas, PV = RT, we
find

W, = P,V, = RT|,
W, = -P,V, = -RT,.

Now we can write

2
RT, -RT, + M; - %R(Tz -Ty),

from which we get

Mv?

Ty =T, + ——= 345K,
7R

P213

For temperature measurements
the thermometer must be heated
from room temperature to that of
the human body—that is, by about
15-17°C. The mercury in the ther-
mometer can be shaken down when
its temperature drops by 3-4°C.
Since the thermometer’s scale be-
gins at 34°C, a temperature decrease
of a few degrees produces empty
space above the crimp.-We must
take into account that when objects
are heated and cooled, the rates of
their temperature changes are pro-
portional to the temperature differ-
ence between the object and its sur-
roundings, so the dependence of a
thermometer’s temperature on time
looks like the curve in figure 3.
Therefore, the time necessary to
cool a thermometer to the tempera-
ture at which the mercury can be




temperature

shaken down is far less than the
time needed to measure the body
temperature.

P214

Let’s give the system of splinters
an electric charge g (g > 0 for defi-
niteness) and begin to reconstruct
the sphere from the fragments con-
nected by the wires (whose capaci-
tance we ignore). Clearly the surface
charge density at any part of the re-
composed sphere will be positive.
Thus the electrostatic forces cause
the fragments to repel each other the
entire time they are near one an-
other. So we need to perform work
W > 0 to restore the sphere.

The charge of the restored sphere
is ¢ and its electrostatic energy is
E = q*/2C,, where C_ is the sphere’s
capacitance. The energy of the sys-
tem of fragments was E; = ¢%/2C,,
where C, is its capacitance. Clearly
W =E_ - E, and since W > 0, then
E > E—that is,

2 2
L SPW. S
2C, ~ 2G;

Therefore, C, < C—that is, the elec-
tric capacitance of the original
sphere is less than the total capaci-
tance of its fragments connected by
wires.

P215

The spot of light that can be
seen in the large mirror is a reflec-
tion of the spot of light formed on
a “screen” in front of the large
mirror. The role of the screen may
be played by the observer’s body, a

wall reflected in the mirror, and so
on. However, the screen has a
“hole” in it—the small mirror it-
self. If the sunlight reflected first
from the small mirror, and then
from the large one, strikes the
small mirror again, there will be
no spot of light. After the first re-
flection from the small mirror, the
beam passes perpendicular to the
plane of the large mirror, and thus
it hits the image of the small mir-
ror in the large one. Therefore, if
the observer directs her spot of
light at the image of the small mir-
ror, she will no longer see the spot
of light.

Brainteasers

B211

Arrange the matches in a cube
with an edge length of one match.

B212

One possible answer is to make
the six points the vertices of two
equilateral triangles with unit side
length, lying at a unit distance from
each other (fig. 4).

B213

Let x denote the number of people
who are both mathematicians and
philosophers. Then the number of
mathematicians is 7x, and the num-
ber of philosophers is 9x. Thus phi-
losophers are more numerous. (One
might wonder whether x is zero. But
if this question has occurred to you,
then you are both a mathematician
and a philosopher, and thus x is dif-
ferent from zero.)

X

Figure 4

B214

Our task is to find the smallest
natural n such that one can find a
whole number between 96/35 - n and
97/36 - n. It’s not hard to check that
the desired number is 7, and the frac-
tion 19/7 (96/35 - 7>19>97/36 - 7).
We can verify by direct computation
that numbers smaller than 7 don’t
work.

B215

See figure 5.

Figure 5

TG revisited

1. The value of $100 is given in
the table below. Continuing the pro-
cess for a few more decades is likely
to convince you that your balance
will never grow past $200.

Time Balance Interest — fee

0-10 years 100 100 - 50 = 50

10-20 years 150 150 - 112.50 = 37.50

20-30 years 187.50 187.50 - 1756.78 = 11.72

30 years 199.22

2. The value of $100 is given in
the table below. This form of sloppy
bookkeeping leads to balances that
oscillate about $200 and correspond
to the phenomenon of “chaos.”

Time Balance Interest — fee
0-30 years 100 300 - 150 = 150
30-60 years 250 750 — 937.50 = -187.50
60-90 years 62.50 187.50 — 58.59 =128.91

90-120 years 191.41 574.22 — 549.55 = 24.67

3. In figure 14 (in the article), we
need only draw a connector from the
rectangular reservoir labeled Popula-
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tion P to the circular converter la-
beled ¢. Of course we must also as-
sign a value to L and program the
rule “c = L/P(t)” into the system.
This is done by means of a dialog
box that is opened by double-click-
ing the icon c.

4. One possibility is c = L(2 — P)/P.
Another isc = L(2 - P)//P . Which do
you think is more realistic? Why?

Virus

Why will there be a stabilization
of the number of INFECTED in the
case of the disease spreading within
one population! What will that num-
ber of INFECTED be in the long run!
The model shows initially a severe
outbreak of the disease because the
initial stocks of NONIMMUNE and
INFECTED people are large. Thus,
the product of

RATE OF CONTACT *
NONIMMUNE * INFECTED

is large. As the infected move on to
either die or survive, the stocks be-
come smaller. In the long-run, the
only NONIMMUNE ones in the
population are the NONIMMUNE
IMMIGRANTS, to whom the disease
will be passed on. Thus, the number
of INFECTED will be, in the long run,
those seven NONIMMUNE IMMI-
GRANTS.

Why does the disease entirely
disappear in the two-population
model when the virus is passed on
by direct contact! With a lower con-
tact rate, the stock of NON-

IMMUNE H can temporarily build
up again after the first severe out-
break of the disease, and the stock of
INFECTED H becomes larger for
each subsequent outbreak. The
more individuals that are infected,
the more are being removed in the
following period from the system,
and INFECTED H reaches zero.
Similarly, the INFECTED M rapidly
goes to zero, and as a result

H RECEIVE VIRUS = RATE OF
CONTACT HI1 * NONIMMUNE
H * INFECTED H + RATE OF
CONTACT H2 * NONIMMUNE
H * INFECTED M = 0.

One of the ways in which the dis-
ease can reenter the population is by
reappearing in a mutated form. Can
you model that case?

For a powerful description of the
dynamics of the Ebola virus, see The
Hot Zone by R. Preston (New York:
Anchor Books, 1995).

World in @ bubhie

1. For the Biosphere 2 rainforest,
the residence time of carbon in a res-
ervoir (T) = Reservoir size (gC)/Rate
of inflow into or outflow from reser-
voir (gC/unit time).

e For the atmosphere: T = (50,000
gC)/(4,000 gC/hr) = 12.5 hours

e Plants: T'= (1,100,000 gC}/(4,000
gC/hr) = 275 hours = 11.5 days

e Soils: T = (100,700,000 gC)/
(2,000 gC/hr) = 50,350 hours = 2,100
days = 5.75 years

2. Global carbon cycle:

e Atmosphere: T = (615 Gt)/{124
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Gt/yr + 60 Gt/yr) = 3.3 years

e Plants: T = (731 Gt)/(124 Gt/yr)
= 5.9 years

e Soils: T = (1,238 Gt)/(62 Gt/yr)
= 20 years

e Ocean: T = (36,866 Gt)/(60 Gt/yr)
= 614.4 years

3. e Step 1. Find the amount of Gt
of air in the Earth’s atmosphere:

(0.028/100 CO,| - x Gt air = 615
Gt CO, in air

x=2210°Gt air

e Step 2. Determine what a 2 ppm
(or 0.0002%) increase in CO, is in Gt:

(0.0002/100 CO, each year)- 2.2 -
10° Gt air = x Gt added each year

x = 4.4 Gt CO, added each year

Ant

The length of the path ACDB
equals that of the path AC’DB—see
figure 6. And the latter path is
clearly longer than AC’B. So our
answer is right.

AC=CD

AT

Figure 6
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ELCOME BACK

to Cowculations,

the column de-

voted to problems
best solved with a com-
puter algorithm.

The average cow in
Farmer Paul’s herd pro-
duces 10 gallons of milk a
day. The raw milk goes di-
rectly from the cow
through the milking ma-
chine into a cooling tank,
where it is held until it is
picked up by a refrigerated
milk truck every day, 365
days a year. Thus, within a
day or two, milk that my
bovine friends have lov-
ingly produced is on your
local supermarket shelf
ready for your enjoyment.

Refrigeration is the key
to preserving milk. With-
out it, the shelf life of our
sweet natural product
would be very short. Bacte-
ria, which enters the milk
from many sources—none
of which I want to discuss
in public—soon starts to
multiply and eventually
transforms our sweet nec-
tar into a sour mess. The
growth of bacteria in milk
has been identified by
Farmer Paul as obeying a
Discrete Dynamical Sys-

COWCULATIONS

Bad milk

A dynamic system gone sour

by Dr. Mu

QUANTUM/COWCULATIONS
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tem (DDS) similar to the models used to predict the
population growth of humans. Think of bacteria as little
people.

Farmer Paul’s DDS Model for bacteria growth in milk
states that if we take a series of bacteria measurements
in milk at equally spaced times, then the bacteria count
changes according to the following Logistic Growth
Model (note: if now is the present time period, now — 1
is the previous time period, with 1 representing a fixed
unit of time):

Bacterial0]=1;
Bacterial[now]=Bacteria[now-1] +
(Temperature-—32)

200
Bacteria[now —1]

200

Bacterial[now-1] (1-

The length of time it takes the bacteria to reach a
reading of 80 is the length of time it takes to sour. This
time period is highly dependent on the temperature at
which the milk is stored. Here is a picture of the bacte-
ria growth in milk for the two temperatures 50°F and
75°F:

Bacteria Growth in Milk
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Now for your “Challenge Outta Wisconsin.”

COW 6. Given Farmer Paul’s model for the growth
of bacteria in milk, cowculate the temperature at which
milk will sour twice as fast as it does at 50°F.

The milk has gone to the cooling tower.

Better use some compuiter power.

To crack this COW,

You must know how

To find the time when the milk turns sour.
—Dr. Mu

Solution to COW 5

Last time I proposed the problem of how to fairly
award prize money to two baseball teams that end the
series before one team wins 50 games.

COW 5. Write a program that will cowculate the
winnings of each team based on BABE’s rules. You are
to assume that if the game score is currently at Hol-
steins: H, and Jerseys: J, the probability that the next
game will be won by the Holsteins is H/(H + ]}, while
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the probability it is won by the Jerseys is J/(H +]). Also,
if P is the probability that the Jerseys will win fifty
games first, then they should be awarded P - 1,000 of the
prize money. Report your answer for the series that
ended Holsteins: 35 and Jerseys: 41.

Let ProbJWins[H,J] represent the probability that the
Jerseys will win 50 games before the Holsteins, given
the current games won is H for Holsteins and ] for Jer-
seys. Clearly, ProbJWins[H,50] = 1 for H < 50 because
the Jerseys have won 50 games. Also, ProbJWins[50,J]=0
for ] < 50 because the Holsteins have won the series. We
can work backward from the boundary conditions with
the following recursive relationship:

ProbJWins[H, ]| = Hﬁ ;

/ ProbJWins[H,] +1].
+/

ProbJWins[H +1,]]

+

This simply says that the only way to win from the
current score of H to ] is for the Holsteins to win the
next game (with probability H/(H +])) and then to win
from a score of H + 1 to ], or to have the Jerseys win the
next game (with probability J/(H +])) and then win from
a score of H to | + 1. One of these two results must oc-
cur and they are mutually exclusive.

These conditions are specified in Mathematica®as
follows:

Clear [ProbdWins]
ProbJdWins[H , 50]:=1/;H<50
ProbJdWins[50, J_]:=0/;J<50
ProbJWins[H_,J_]:=

H
ProbJWins[H,J]=I{+‘JProbJWins[H+1,J]

+ ProbdWins[H,J+1]

H+J

The winning amount for the Jerseys, given a series end-
ingat H=35and ] =41, is

1000.ProbJdJWins [35,41]
924.097

Not bad, and clearly better for the Jerseys than it
would have been if other settlement methodswere used.

Note that in this cowculation, past performance is an
indicator of future performance, because the H/(H + J)-
factor—the chance H wins the next game—is more fa-
vorable to the Holsteins if they are ahead in the num-
ber of wins to date. The classical version of this problem,
called the problem of points, uses a fixed probability p
for the chance of a win at each game. In this case, past
performance is not assumed to be an indicator of future
performance. If we assume the Holsteins and the Jerseys
are an even match in every game, then p = 0.5 for each
game and we apply the classical model. We get the fol-
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lowing set of recursive relationships:

Clear [ProbJdWins]

ProbdWins[H_,50] :=1/;H<50
ProbdWins[50,J ]1:=0/;J<50
ProbJWins[H_,J_] :=ProbJWins[H,J]=.5
ProbdWins [H+1,J] +.5ProbJdWins [H, J+1]

The winning purse for the Jerseys if the classical model
is used, given a series ending at H = 35 and ] = 41, is

1000.ProbdWins[35,41]
894.98

Not as big a difference as might be expected—only
about $30 less. This classical form was first posed to the
French mathematician Pascal in 1654 as a gambling
problem: how to split the pot before a game has ended
given the present state of the game. A closed form
mathematical solution exists for the classical case, but
not for COW 5. This one requires a computer algo-
rithm.

A simulation Solution

Another way to approach this problem is to actually
simulate playing out the series by using random num-
bers to decide who wins each game. According to
BABE's rules, if the present game score is Holsteins H
and Jerseys ], then by picking a random number between
0 and 1 (Random[]), the Jerseys win the next game if
Random[]<J/ (HE+J); otherwise the Holsteins win.
Once a team has reached 50 wins, the series if over. So,
we start with the score Holsteins: 35, Jerseys: 41, and
record who reaches 50 first. We repeat this 1,000 times
and compute the percentage of times that the Jerseys
reached 50 first.

Morton Goldberg submitted a compiled solution in
Mathematica. Presented below is a variation of his so-
lution, without any compile.

Begin by defining the function PlayBall, which
takes the current gameboard {Hostein wins, Jersey wins,
Goal}, plays one game, and updates the gameboard.
Once either side has reached the goal, the gameboard
remains the same:

PlayBall[s_]:=Module[{h=s[[1]1],3=s[[2]]},
If[Random[]<j/ (h+3j),{h,j+1,s[[311},
{h+1,35,s[[311}11;
PlayBalll[s_]:=/;Max[s[[1]],s[[2]1]]1==s[[3]]

A series is over once a team has reached the goal (50
wins) and PlayBall remains fixed. This is done in
Mathematica with the FixedPoint function. Now we
need to keep a tally of which side reached the goal of
50 games first. We define the Tally function: if the
Holsteins reach the goal first, increment by one the
number of Holstein series victories; otherwise incre-
ment the wins for the Jerseys:

Tally[s 1:=Tf[s[[1]]==s[[3]],Holsteins++, Jerseys++] ;

Now all that remains is to set the variables to zero and
define the standings:

{Holsteins=0, Jerseys=0};
standing={35,41,50};

We repeat the series 1,000 times and print the out-
come:

Do[Tally[FixedPoint [PlayBall, standingl], {1000}];
{Holsteins, Jerseys,N[Jerseys/
(Jerseys+Holsteins), 3]}

{69,931,0.931}

Morton Goldberg averaged the output from 10 inde-
pendent simulations, resulting in P = 0.925+0.003, giv-
ing the Jerseys a prize of $925. This is very close to the
analytical solution of $924.10.

And finally ...

Please end your cowculation for COW 6 to
drmu@cs.uwp.edu. To view all previous COW rumina-
tions, take a peek at http://usaco.uwp.edu/
cowculations. (o]

Read more about it
on the World Wide Web!

Here is a list of World Wide Web sites mentioned
in various LTG articles in this issue:

* Biosphere 2: www.bio2.org

* High Performance Systems, Inc. (STELLA):
www.hps-inc.com

* Ventana Systems, Inc. (Vensim):
WWww.vensim.com

* Matthias Ruth: web.bu.edu/CEES/
readmoreMR.html

The Club of Rome maintains a Web site
(www.ClubOfRome.org) where you can find a his-
tory of that organization, a “short version” of The
Limits to Growth, and many useful links.

An FTP site at the University of lllinois
(ftp.ncsa.uiuc.edu/GlobalModels/SoftWare) has
a Mac Hypercard version of the World3 model
that includes a set of classroom materials
(BeyondTheLimits.Mac.SEA .hgx) and other items
of interest.

You can also use a Web search engine to find
many other sites, entering such search terms as
“system dynamics,” “sustainability,” “World3,”
and the like.
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