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GALLERY CI

I IKE THE IMPRESSIONISTS IN GENERAL, GEORGES
LSeurat (1859-1891) was a keen observer of light and its
effects. But Seurat seemed to take his interest in the sub-
ject to greater technical depths than the rest. Early in his
brief career he became acquainted with the work of sev-
eral Swiss aestheticians, one of whom examined the rela-
tionship between lines and images, while the other com-
bined mathematics and musicology. Later he met the
chemist Michel-Eugdne Chevreul, who was 100 years old
at the time, and investigated Chevreul's theories about
light. In particular, Seurat experimented with the effects
that can be achieved with the three primary colors-

The Lighthouse at Honfleur (1886) by Georges Seurat

yellow, red, andblue-and their complements. Eventually
he developed the technique (called Pointillism) of apply-
ing tiny spots of contrasting colors that could not be dis-
tinguished from a normal viewing distance, but which cre-
ated a shimmering vibrancy in the painting as a whole.

The fact that the human eye will blend tiny spots of color
into a completely different color when viewed from the
proper fistance is exploited in a "work ol art" found in vir-
tually every home: the color television set. The article "Can
You See the Magnetic Field?" investigates this phenomenon,
exposes the inner workings of the color television, and poses
some interesting questions. It all begins on page 18.

Collection ot' Mr and Mts. Paul Mellott @ 1997 Boud of Trustees, Natlonal Gal1ery of Att, Washiagton
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Cover art by V asily Vlasov

The colorful grillwork on our cover is a
fanciful representation of a something
you probably have in your own living
room. It is the aperture mask in the pic-
ture tube of a color television set. And,
as if to indicate the impermanence o{ a
television image, the "same" grid is re-
produced on page 19. The impression is
quite dif{erent/ and that is, of course,
what allows television to show "mov-
ing" images. It actually shows a rapidly
changing series of still images (much as

a movie does).
Everyone knows how to watch TV.

But do you know how to look at a mag-
netic {ield? You can use your TV set to
do it. Turn to page 18 to learn how.

Indexed rn Magazine Article
Summaries, Academic Ab str acts,

Aca demic S earch, V o c ational
Search, MastefiILE, and General

Science Source. Available in
microform, electronic, or paper
format from University Micro-

films International.
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FRONT MATTER

The demullushliuut'e

Algebra where you least expect it-the daily news!

IME FOR TRUE CONFES-
sions. I love mathematics. No
one had to tell me that I would
need it or that I should study it.

It was always exciting to me to ex-
plore new ideas with rnathematics.

I have always found rn the depth
and structure of mathemati.cs a ha-
ver; o predictability that comforts,
an unexpectedness that delights,
and a depth that goes iar be1-ond
polynomials or derir-atir-es. And I
have alwa.vs been engaged in math-
ematics-having the benefrt oi
Iearning by dorng mathematrcs and
the opportunity to construcr m\-
own mathematical understandrng.

Another confession: I see math-
ematics everywhere. Most notabl,v
in science, technology, and in archi-
tecture. But I also appreciate the
driving force of mathematics in
dance, music, and the arts.

Although I'm immersed in math-
ematics, I'm still always thrilled
when I see mathematics working for
us in everyday-but ingenious-
ways. In other words, finding math-
ematics where I least expect it.

Over the Memorial Day weekend
I was reading the Washington Post
when I came across the article, "In
Ocean City, Md-, Visitor Count Theory
Holds W-ater." Ia a lighthearted man-
ner, the Posz pointed out that while
many vacation resorts count cars and
hotel occupsncy rates to measure
their popularity, Ocerrn Cirr records
every shower, every load si J*rrndr.!-,

and every toilet flush- T<rrr.n locals
refer to it as the "demothl& tigure'"
(as in "demographics" md'itush- -

According to the Posr, thcre"s a

complicated algebraic formula that
over the years has become simpli-
fied this way:

To calculate any day's demoflush figure,
start with the number of gallons of sew-
age that rush into the town's 64th Street
wastewater treatment plant by mid-
night. Divide that numberby 36.04, a

factor based loosely on the average num-
ber of gallons of water a beachgoer uses
in 24 hours. Voili: the oificial estimated
one-day population of Ocean City.

The story included a graphic with
rhe iollowing equation for the total
recorded sewage output s:

5=17+bx+Cy,

rrhere ;r is rhe infiltration (gallons of
groundr'-ater seeping into the sew-
age p1F,es', i. Ls the average sewage
ourpur per resident or overnight visi-
tor, r is the number oi residents and
overnrght r-rsitors c is the average
sewage ourpur per dar- r-isitor, andy
is the number oi dar r-rsrtors. This
equation gave readers a chance to
see what {actors iar behrnd the
magic number 36.0+.

When I read about the use oi alge-
bra to translate sewage into a popu-
lation count/ I was excited-partly
because of the way it was being
used, but partly because the Wash-
ington Pos, saw fit to publish the
article, showing the public how
mathematics is used in our daily
Iives.

We see opportunities for math-
ematical reasoning in absorbing and
:crrng upon the enormous amounts
- --ri,.rrmation that we encounter

-..-' Take, for instance, the nervs-
, - lr: :harts and bar graphs are

the most common, but we are also
seeing a vaiety of arithmetic equa-
tions being used to illustrate a point.
When you describe mathematics in
words, it is opaque and ponderous.
Yet, when you take the same idea
and put it into mathematlcal sym-
bo1s, you simplify it.

For example, in the October 16,

1996, issue of the CJr,c.: go Sun-Titnes,
I read an article on the nation's fat in-
dex as repor-tsfl l-rr the National Center
for Health Statrstrcs INCHS). Federal
guidelines suggest that people keep
their bodr- mass rndexes under 25.

The Sur-ftmes, using the NCHS
formula as a guide, advised readers
to "do the math" and calculate their
bod,v mass index as iollows:

Multiply your welght in pounds by 0.45
to get kilograms. Next, convert your
height to inches. Multiplr- this number
by 0.0254 to get meters. N{ultiply that
number by itself. Then dir-rde this into
your weight in kilograms.

I had to chuckle. Such compii-
cate d rhetoric could easily be sirnpli-
iied in an algebraic equation as fo1-
lorr-s:

0.45W^
B\11 = I

{0.0254H, )2

where l,4/n is weight in pounds and H,
is height in inches. The article indi-
cates that if your body mass index
(BMI)is greater than25, you are too
fat. That is, you are ovelweight if

0.45W^

@lzuff'zs
This can be calculated to be

JUtY/AUGUSI IO87



about equivalent to

w-
700-+>25,.Hi

which (after we divide both sides by
700) is equivalent to

W^
-+ > 0.035.
Hi

In other words, you did not have
to convert weight to kilograms or
height to centimeters.l This would
have made it easier to see the alge-
braic reasoning: divide your weight
(in pounds) by the square of your
height (in inches). If that number is
greater than 0.035, you are too fat.

Isn't that much easier? Algebra,
for all the mystery it holds, opens
the doors to all kinds of opportuni-
ties. It provides people with a means
to formulate problems and reach
conclusions based on reasoning
about situations. Apparently, the
town of Ocean City recognizes that.

I think it's only fair to tell you,
though, that there's some debate over
the demoflush figure as an accurate
means of population estimates. For
example, what about drinking at the
beach that affects people's use of wa-
ter? And what about beachgoers' pre-
dicted twice-a-day showers (before
and after the beach) that have not
been factored in?

But as Ocean City officials point
out/ cars coming into town could
cafiy a lone shopper or seven high
school seniors, and condominiums
could house one person or 14, so at
this point their demoflush figure is
still their best bet.

What do you think? If you have
anotherway to tally the tourist popu-
lation for Ocean City, or if you have
seen algebraic reasoning at work in
everyday situations, please write me
and let me know. I'd love to see what
innovative ideas you may have.

-Linda 
P. Rosen

Linda P. Rosen js executive director of
the National Council of Teacherc of
Mathematics, 1906 Association Dilve,
Reston VA 20191-1593.

1NCTM encourages the use of SI
units among the general public in the
United States.
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Colder lneiltt$ sloulet'

The elegant and wide-ranging Arrhenius equation
tells us how much slower

by Henry D. Schreiber

ELAXING ON A COOL SUM-
mer night in the country/ you
notice that the crickets arerr't
as noisy and the fireflies aren't

flashing as brightly as the night be-
fore. The only apparent difference is
that the previous night was some-
what warmer. After thinking about
it, you realize your observation may
not be that surprising-common
sense te1ls you that things tend to
slow down when they get colder.
You keep food from spoiling by stor-
ing it in a refrigerator, and you know
that bears slow down so much they
often take a long nap in the winter.
So perhaps it's understandable that
crickets chirp less and fireflies flash
less when they are cold. But then
you wonder whether you can quan-
tify these observations. Is there
some factor by which the activities
of these critters decrease with tem-
perature? Can you model this tem-
perature dependence by a math-
ematical equation? Would such
modeling aid in understanding how
crickets chirp and fireflies flash? Are
theories about such behavior or the
effect of temperature already avail-
able? These and numerous other
questions pop into your mind. In
your search {or answers, 1,ou realize
the importance of mathematics for
interpreting the happenings rn both
the natural and physical rvorlds.
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]vlathstnalicfll models

Central to the scientific method
are the activities of making observa-
tions and collecting data to either
substantiate or refute a hypothesis,
such as whether cricket chirping
systematically decreases with tem-
perature. You realize, however, that
to measure the amount of cricket
chirping every degree from, say,
10'C to 25oC, would take lots of
time and effort. A better approach
might be to do measurements at a
{ew temperatures/ then model the
results with a mathematical equa-
tion to describe the temperature de-
pendence of this behavior. After all,
many modern scientific theories
expiain observed behaviors or prop-
erties within the context of an equa-
tion.

Figure 1 shows some data for the
frequencies of cricket chirping and
ftuefly flashing in units of chirps per
minute and flashes per minute, re-
spectively/ as a function of tempera-
ture. Both relationships show a simi-
lar dependence on temperature. You
envision that you should be able to
represent these data with math-
ematical equations.

Linear, parabolic, sinusoidal, ex-
ponential, and logarithmic func-
tions are aIl available to mathemati-
cally describe behaviors of things
ranging from electrons to crickets.
You ask first, "What function is the
best model of the data in figure 1? "
and then, "Why does that equation
work?" Often simple mathematical
considerations for the laws of nature
allow scientists to understand seem-
ingly paradoxical situations. Agree-
ment with a partieular mathemati-
cal model provides a possible
common underlying reason for an
observed behavior. In other words,
much of nature follows set rules,
which in turn can be expressed by
specific mathematical equations.

The Al'nltenitt$ Bqtlailion

You survey references to see how
others model and explain the effect
of temperature on how fast things
happen. Time and time again, the
Arrhenius theory surfaces to ratio-

nalize thermal effects by a decep-
tively simple equation:

rate = 4"-ElRr,

whereA andE areconstants unique
to the particular system, R is the
ideal gas constant of 8.314 |/mole'K,
and ? is the temperature in kelvins
('C plus 2731. Several scientists de-
veloped this equation by trial and
error over a century ago, but the
Swedish chemist Svante Arrhenius
was the first to justify the equation
on a theoretical basis with thermo-
dynamics. Accordingly, this funda-
mental equation now bears his
name.

The Arrhenius equation bridges
the gap between the world of crick-
ets and fireflies and that of mol-
ecules with mathematical images of
rates of molecular reactions. In order
for molecules to react, Arrhenius
argued that two criteria have to be
met. First/ the molecules have to

collide; and second, they have to
possess enough energy for the reac-
tion to take place. Thus the rate of
the reaction depends directly on the
frequencyA of collisions and on the
efficiency @-nlnrlr of such collisions.
Molecular collisions are most effec-
tive when the energy barriers E for
reaction are low and the tempera-
tures 7 are high. This exponential
efficiency function is always a {rac-
tion ranging from rrear zero at low
temperatures to near unity at suffi-
ciently high temperatures. Its actual
value represents the interplay of the
relative magnitudes of E (the energy
recluired before the molecules can
react) and T (the measure of the en-
ergy available to the molecules).

You can manipulate the Arrhen-
ius equation by taking natural loga-
rithms of both sides of the equation
to yield

In (rate) = ln A + In e-ElRr,
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or/ upon rearrangement/

ln(rate\=-E I +lnA.\ / R7

This is rro* rn the form of a straight
line equation:y : mx + b, where the
y-vaiableis the natural logarithm of
the rate and the x-variable is the re-
ciprocal of the absolute tempera-
ture. The slope m of the line is pro-
portional to the energyE required for
reaction, while the y-intercept b
depends on the frequency A of col-
lisions.

A straight line resulting from a
plot of the logarithm of how fast
something happens versus the recip-
rocal temperature in kelvins con-
veys the message that that system
behaves according to the Arrhenius
equation. You can calculate the nu-
merical value of E from the slope of
this line. The greater the change in
rate with temperature, the greater
the value of E and the more energy
has to be supplied in order for the
molecules to react. To illustrate the
collection of rate-temperature data
and its subsequent correlation to the
Arrhenius equation, refer to the
boxed insert describing an experi-
ment that can be done in the labo-
tatory or at home. When a system
obeys the Arrhenius equation, this
implies that rates are governed by
molecular reactions according to the
two Arrhenius criteria-molecules
colliding, but needing sufficient en-
ergy before reacting.

Ghinilng, llasltinu, and mlliding
Figure 2 shows the data of figure

1 plotted as the logarithm of the
chirping or fiashing frequency with
respect to the reciprocal tempera-
ture in kelvins-that is, as a test of
the Arrhenius equation. You see the
linear function for ln (rate) versus
llT infigure 2 much easier than the
exponential form for rate versus

"-ElRr 
infigure 1. It's apparent {rom

figure 2 that crickets chirping and
fireflies flashing obey the Arrhenius
relation. You can also determine the
values for E and A from the slope
and intercept of the straight line.
The energy required to initiate

chirping or flashing is about 50 k|/
mole, as calculated from the slopes
of the straight lines in figure 2. This
energy is consistent with your deter-
mination of the energy required for
other reactions such as the bleach-
ing of red food coloring.

Because the rates of cricket chirp-
ing and firefly ilashing follow the
Arrhenius equation, you conclude
that these events are controlled by
molecular reactions. Cricket chirp-
ing and lirefly flashing are reflec-
tions of happenings in a molecular
world. Thus, the underlying mecha-
nisms involve first the coliisions of
molecules, then rearrangements of
these molecules in reactions that
result in chirps or flashes. The
Arrhenius equation/ although rooted
in the molecular world, manifests
itself by describing how fast events
happen in the macroscopic world.
Mathematics aid in such imaging.
The temperature dependence of
cricket chirping frequencies would
be hard to envision directly unless

you count chirps as logarithms of
chirps and measure temperatures in
reciprocal units.

Another advantage in determin-
ing the mathematical equation that
models an activity is to use the
equation to extrapolate your experi-
mental results. For example/ sup-
pose you want to know the expected
frequency of cricket chirping at
30oC, somewhat outside the tem-
perature range of your experiments.
The equation for the straight line in
figure 3 is

ln(chirping ftequency) = -6U * 26.72.

If you now substitute the tempera-
ture o{ 303 K (273 + 30'C) in this
equation, you solve the equation for
a chirping rate of 253 chirps per
minute. Other scientists may test
such mathematical models, and
thus your underlying hypothesis for
the origin of cricket chirping, by
comparing your predictions with
direct measurements.
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[llleasul'inu hutulemperalure allecls a rgaclion Fals

This simple experiment illustrates the collection and
manipulation of data to test the Arrhenius equation. It's
much easier than trying to convince crickets or fireflies
to cooperate, and it can be done within the confines of
a laboratory or even your kitchen. Always wear eye pro-
tection when doing such experiments and exercise good
safety practices, such as adult supewision.

if you mix solutions of bleach and red food coloring,
the red color eventuaily fades to a colorless solution.
The bieach oxidizes the red dye to a colorless product,
much like you add bleach to your wash to get clothes
whiter. How fast this reaction occurs depends on the
relative concentrations of the bieach and food coloring
as well as the temperature. However, you focus on just
the temperature effects by keeping the amounts of the
reactants constant.

For this experiment/ you measure the time that it
takes for the reaction to proceed to a certain point-that
is, for a defined amount of the red color to disappear.
This is analogous to timing a runner in the 100-meter
dash-one can then measure the speed of the runner by
the time taken to run that distance. The shorter the
time, the faster the runner. The rate of a reaction is simi-
larly the distance that a reaction travels (or reacts) per
unit time.

[elmerce $olurtioffi
Prepare a stock solution of the red {ood coloring by

mixing 4 drops of this food coloring with 100 mL of wa-
ter. Likewise, prepare a stock solution of bleach by mix-
ing 25 drops of any brand of household bleach with
100 mL of water. Use beakers or plastic cups for these
solutions.

Obtain two 13 x 100 mm test tubes (or alternatively
3-oz. plastic cups). Label one test tube I; mark a line at
3 mm and one at 6 mm from the bottom. Pour the stock
solution of the red food coloring to the 3-mm mark, then
add water to the 5-mm mark, and mix. Label the sec-
ond test tube F; mark lines at 0.75 mm and at 6 mm
from the bottom. Once again pour the stock solution o{
the red food coloring to the first mark, dilute with wa-
ter to the 6 mm rnark, and mix. Test tube I (initial)wil1
represent the color oi the mixtures before reaction;
while test tube F (fina1) wili represent the color, a much
lighter red, after the reaction travels an arbitrary dis-
tance. This distance turns out to be 25o/" (0.75 is 25%
of 3 mm) o{ the red color left, or in other words after the
reaction has proceeded to 75o/" completion. In this ex-
periment, you will time (to the nearest second with a
watch) how long it takes to get a mixture from color I
to that of color F at several temperatures.

Ilemaction
Obtain two more 13 x 100 mm test tubes (or3-ozplas-

tic cups). Mark each one 3 mrn from the bottom. Pour the
stock solution o{ the red food coloring to the 3-mm mark
in the one test tube. In the other, do the same with the
stock bleach solution. Pour the bleach into the red {ood
coloring and start timing as you mix. Record the time that
it takes for the color that is initially equivalent to that of
I to fade to that represented by test tube F. Measure the
temperature of the mixture with a thermometer-it
should be room temperature. Afterwards the reaction
mixture can be poured down the drain, and the two test
tubes rinsed with water for re-use.

Repeat the experiment several times, but at higher and
lower temperatures. For example, let the two test tubes
containing 3 mm each of the respective stock solutions
of red food coloring and bleach sit in the refrigerator,
freezer, warm-water bath, etc., {or several minutes before
mixing, timing and recording the temperature. Time the
transition from color I to color F by comparing colors of
the reaction mixture and the reference F solution.

Ty[lmldah and msttll$
You will collect data similar to that displayed in the

table below. However, your exact times may depend on
the strengths of the solutions {due to variations in differ-
ent brands of food coloring and bleach). The data should
confirm your expectation that it takes less time for the
reaction to proceed a certain distance at higher tempera-
tures, and takes longer at lower temperatures. Because the
reaction trav els 7 5'/" of its way to completion in the times
measured, you calculate relative rates by dividing 7S%by
the time. This provides the average rate in terms of per-
cent progress per second. kr other words, the reaction goes
fast at high temperature, and slow at 1ow temperature. If

Expefimental resubs for the reaction of rcd food coloring
with bleach.

r ("c) I (s) 1/r (K r) rate (%/s) ln (rate)

3.5 690 0.00362 0.1 1

7.0 474 0.00357 016 -1.84

12.0 292 0.00351 o.26 L5b

22.s 121 0 00338 0.62 -o.48

27.A 69 0.00333 109 +0.08

30.0 47 0.00330 160 +A 47

34.5 35 0.0032s 2.14 +C 7e
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you plot these rates, with units of per-
cent/s, as a function of the tempera-
ture, you produce a graph (like the
one in the {igure at the left) with the
same shape as that manifested by the
chirping of crickets and the flashing
of fireflies in figure l.

To test the Arrhenius equation,
you now plot the natural logarithm of
the rates as a function of the recipro-
cal temperature in kelvins. As shown
in the figure, the experimental points
define a straight line. Thus the Ar-
rhenius equation provides a reason-
able explanation ior the data. You ca1-

cuiate the energy E required for this
reaction b1'multiplying the slope of
the line b-v the numerical value of R
and changing the sign, because the
siope equals -ElR tn this straight line
equation. In this case, E is about
'0 kl, mole. For the reaction of bleach
and red iood coloring to occur, first
the bleach and dye molecules must
co11ide, then only a certain number of
these collisions must be effective-
those in which the colliding mo1-
ecules possess at least 70 k|/mo1e.

10-r The reason the reaction is slower at
the lower temperatures is that a

smaller percentage of the colliding
molecules possess energy above this
cntical value of 70 k|/mole.

cal model is widely applicablel Why?
Be iar:se a1l involve the common fea-
ture :i coliiding molecules and the
-bre 

a-<r:-Ls and making of bonds within
the n'rle cr-Lles to initiate the activity.

You can ertend r-our thinking to
other erperiments thar ma,v selTe as

tests ior the Alrhenrus equation. For
erample, )rou can easi11- measure the
rate at which fruit rots as a iunction
of the prevailing temperature. Get a

bunch of bananas. Separate them, as-

suming each to be at the same initial
level of ripeness. Keep one at room
temperature, another in a refrigerator,
another next to a radiator. Time how
long it takes each banana to achieve
the same level o{ rottenness-that is,
{or three quarters of each banana's
surface to turn black-as a function
of the temperature. Would r-c,r-L -\:ict
this process to be gor'.-tttc* l'' iile
Arrhenius equatir-,r, r,1 --. ---:te's

2.5

!

3ro
"o

353010

\)

b{

\.)

"a

Flowinu, cotlttliltu, altd lnore collidinU

You have determined that the
rates of crickets chirping and fire-
flies flashing, as well as the bleach-
ing rate of red food coloring, can all
be explained by the Arrhenius equa-
tion and thus have as their basis the
collisions and rearrangements of
molecules. What other activities fol-
low the Arrhenius equation? The
temperature dependence of the rates
of most chemical reactions-for ex-
ample, the decay of hydrogen iodide
(HI) to hydrogen (Hr) and iodine
(12)-likewise obey this ecluation.
After all, to start this reaction/ two
HI molecules must first collide, but
before they rearange they must pos-
sess a certain amount of energy for
their activation to areactive state. A
wide range of activities from diverse
scientific fields similarly follow the
Arrhenius equation: material diffus-

ing through a liquid, the beating of
a terrapin heart, the setting of ce-
ment/ alpha brain wave frequency in
humans, the creep rate of ants-the
list goes on. The Arrhenius equation
describes the effect of temperature
on each of these phenomena.

Figure 3 shows that the Arrhenius
equation is equally valid for the vis-
cosity of a liquid and for a person's
counting rate. hr the former case/ you
might argue that the Arrhenius plot
appears reversed. But remember that
the viscosity of a liquid is the resis-
tance to flow. The rate o{ flow or the
fluidity of the liquid is the reciprocal
of the viscosity, which would then
correct this apparent discrepancy.
Even the effect of a person's tempera-
ture on how fast that individual
counts from one to ten/ and thus
one's time perception, follows the
Arrhenius equation. This mathemati-
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defines a straight line whose slope
depends on the energy required to
initiate that event, whether.it in-
volves two molecules reacting, a

water molecule hitting a solid's
molecule to send it into solution, or
a molecule breaking free of other
molecules to escape into the gas
phase. A1l rely on the coilision of
molecules and a critrcal energy to be
surpassed before anything happens.
These universal mathematical equa-
tions modeling the laws of nature al-
low scientists to unrie;rtand seem-
ingly different situa*itns.

One approach ;n scrence is for
you to make an oiservation, to
model that behavior with a math-
ematical equation, to explain the
event by comparing it to similar
equations, and to make predictions.
The underlying theme in your un-
derstanding is that the molecular
world controls events in your real
world. You use mathematics-an
amphibian living in two worlds-to
explain both of them. O

0.7

103.0'F 97.4'F

3.r9 3.19s 3.2 3.205 3.21 3.215 3.22 3.225 3.23 3.235 xlo-3
r ecipro c al tamp er atw e lL f Kl

Figure 3
Auhenius plot of glycerol viscosity and counting rate

your chance to participate in the sci-
entiJic process of posing of questions,
proposing a certain hypothesis or
model, then testing the models.

Interestingly, the form of equa-
tions that describe the temperature
dependence of other properties is
strikingly similar to the Arrhenius
equation. The Van't Hoff equation
details the temperature dependence
of the solubility s for a solid dissolv-
ing in a liquid:

lns=- E' 
+,1",

RT

where E, is the energy associated with
the dissolution process. And the
Clausius-Clapeyron equation gives
the temperature dependence of the
vapor pressurc p of a volatile liquid:

Ir.D=-Eu +1...,RT

where E, is the energy required to
vaporize the liquid. The logarithm
of that property versus the recipro-
cal of the temperature (in kelvins)

Understand
HIV
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Understand
Biology
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Curriculum Package
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8206
Perplexing perpendicular. A straight line and a point A outside it are given.
Using a compass and a straightedge, draw the perpendicular from A to this
line such that the total number of lines or circles drawn during the construc-
tion does not exceed three (the third line must be the perpendicular itself).

8208
Pedestrianbanker. Mr. R. A. Scall, president of the Pyramid Bank, lives in a
suburb rather far from his office. Every weekday a cx from the bank comes
to his house, always at the same time, so that he arrives at work precisely
when the bank opens. One morning his driver called very early to tell him
he would probably be late because of mechanical problems. So Mr. Scall left
home one hour early and started walking to his office. The driver managed
to fix the car quicldy, however, and left the garage on time. He met the
banker on the road and brought him to the bank. They arrived 20 minutes
earlier than usual. How much time dld Mr. Scall walk? (The car's speed is
constant, and the time needed to turn around is zero.) (I. Sharygin)

8207
Sunlit windows. A town is nestled in the eastern slope of a mountain. In
the morning aweary traveler who rested at the foot of the mountain
observed the sunlight reflected in the windowpanes. He noticed that as

time passed the "illumirtated" windows shifted: in some houses the light
was "turned off," in others it was "turned on." In which direction do the
illuminated windows shift: up or down? To the left or to the right?
Expiain this phenomenon.

il- ci

8209
Color the cube. Color the eight vertices of a cube in two colors (red and
blue) such that any plane containing three points of one color contains
one point of the other color. (N. Vasilyev)

821 0
Strange calculator. Suppose you have a hand-heid calculator that can
per{orm only two operations: for a given integer a, it carr compute either
2a + | or (a - lll3. {The second operation is possible only if a - 1 is divis-
ible by 3.) Can you produce an 8 on this calculator starting with a 1?

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 54
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All $orl$ ol $orlillu

Sometimes ifb a big job, even for computers!

by P. Blekher and M. Kelbert

T N THIS ARTICLE WE'LL TALK

I about one of the branches a of a
I comparatively young science:
I putt.rn recognition theory. Spe-
cifically, we'll discuss classification
methods. Classification is the divi-
sion of a certain set of objects into
groups of objects that are close to
one another in some sense. You may
want to classify, say, the factories in
a given industry, the earthquakes
observed in a certain region, the
weather in September over the
course of many yea:rst species of di-
nosaur in a particular geologic pe-
riod, and so on. What is important
here is that the objects classified be
characterized by a certain set of
numbers and attributes. For simplic-
ity, we'I1 consider the case where
each obiect is described by a certain
set of numbers.

ClassilyinU students
Suppose we want to divide all the

students in the ninth grade of a
given school according to how they
spend their free time after school.
We'll question each student and
write down what portion of this
time the student spends doing
homework and how much time is
spent on recreation. The remaining
time (for meals, sleep, transporta-
tion, and so on) doesn't interest us at
this point. Thus, each student will
be characterizedby two numbers:

homework time and recreation
time. So a student can be repre-
sented by a point in the coordinate
plane, and we arrive at a purely
mathematical problem: how can a
given set of points in the plane be
split into groups of "close points"?

The same question arises in
many serious applied problems ex-
cept that the number of coordinates
in these problems is much larger
(usually several dozen).

For instance, there are .many
companies in the textile industry.
Some of them are specialized, manu-
facturing a rather narrow range of
products, others are huge enterprises
that produce a wide variety of items.
There are giant plants, medium-
sized factories, and small, local fac-
tories. To compare the work of dif-
ferent enterprises and plan their
operations,l one has to classify
them-that is, divide them into
groups containing each type of en-
terprise. The enterprises differ in
their economic indices. Let's choose
the most important of them (for in-
stance, gross output, production
costs/ wages) to base our classifica-

lAlthough this article originally
appeared during the Soviet era of
centralized planning for entire
industries, a similar kind of planning
occurs in large US corporations,
especially those that have acquired a
number of smaller companies in a
given industry.-Ed.

=o
U
3

x
3
o

tion on. Denote the number of these
indices by n.

We assign a set of numbers
(x1, ..., xr) to each enterprise, where
x, is the value of the first index, x, the
value of the second index, and so on.

A pair of numbers (x1, x2) defines a
point in space/ and an n-tuple
(x1, x2, ..., xnl, by definition, is consid-
ered a point in n-dimensional space.

Thus, our problem boils down to
a problem of classifying points in n-
dimensional space.

ll$ ltard ttuil[ottt colnpttmr$
To solve classification problems,

various algorithms for computer
processing have been developed.
The need for computers arises for
two reasons. First, the number of
objects to be classified is usually
very large, and it's simply impos-
sible to process all the data "by
hand." Second, the objects are usu-
ally multidimensional.

If there are only twq coordinates,
as in our example with students, and
the number of objects isn't too large,
a human being can compete with a
computer in solving the classi{ication
problem. The "human" approach is
visual: we can simply look at the pic-
ture with the points representing our
objects and isolate the regions where
the points are more dense. Experi-
ments show that the resuits of such
partitioning are more or less the same

13OUA[JItlllll/IIAIURI



for all persons tested. The reason is
that people involuntarily want to
bunch the close points together in
one group and ppread out the different
groups fairlyfarfrom one another. But
iJ the number of parameters is three
or more/ a visual representation is
practically useless, and the classiJica-
tion becomes difficult for a human
berng.

Psychologists conducted the fol-
lowing experiment. The persons be-
ing tested were given sets of cards
with number triples representing
space coordinates of a number of
points. They were required to split
the points into two natural groups.
There was in fact aplane tilted with
respect to the coordinate axes that
divided the points into two groups
such that the distance from each
point to the plane was large compared
to distances betweenpoints in either
group. Most people divided points by
the value of one of the coordinates,
which led to unnatural partitioning.
Almost no one managed to construct
the correct partitioning.

So special algorithms were devel-
oped for classi{ying points in multidi-
mensional space. One of the criteria
for correct operation of these algo-
rithms is the requirement that in clas-
sifying points on the plane they pro-
duce a " rratLrr al" partitioning-that
is, the kind that people come up with.

T[e minimum lenuil ilss
Before describing one of these

classification algorithms, we'll now
describe an algorithm for construct-
ing a connected system of segments
joining given points with minimal
total length. (A system of segments
is called connected if, starting from
any of their endpoints and moving
along the segments of this system/
you can reach any other endpoint.)
To make it easier to visualize, let's
consider a construction in the plane.
The algorithm is the same for mul-
tidimensional space, but we can't
draw the system.

Imagine we're given N points A,
..., A, in the plane. Suppose for sim-
plicity that all the distances be-
tween these points are different.
Write down all the pairs lA1, A2l,

(At, ABl, ... ,lA*-1, Ary) and arrange
them in increasing order of distance
between points in a pair. |oin the
first pair, then the second pair, and
so on. If a given segment completes
a cycle (that is, if it's possible to iso-
late from the segments already
drawn several segments that form a
closed polygonal path)/ we erase it
and pass to the next one. And so we
continue, up to the longest segment.
The system of segments thus ob-
tained has no cycles. (A connected
system of segments without cycles
is called atree.l

Problem 1. Prove that the system
of segments constructed above has
the smallest total length among all
connected systems of segments ioin-
ing the given points.

Problem 2. Prove that the same
system of segments can be obtained
by the following dual construction:
draw all the segments and affange
them by length in descending order.
Erase the longest segment/ then the
second longest, and so on. If deleting
of the next segment destroys the
connectedness of the entire system/
leave it in place and pass to the next
one. Keep doing this until you reach
the shortest segment.

Problem 3. Suppose that some of
the distances between points 41,....,
A*are equal. Arrange each group of
segments of the same length in arbi-
trary order and apply the construc-
tion described in problem 2. Prove
that the system of segments ob-
tained will have the minimum total
length regardless of the order of the
equal segments. (The minimal sys-
tem of segments is not necessarily
unique in this case.)

The algorithm described above
for constructing the tree of minimal
length is relatively simple but re-
quires an extensive search and thus
considerable computer time. Faster
algorithms exist, but they're also
more complicated.

Parlition into gnoups

Now that we know how to con-
struct the minimal-length tree/ we
will use it to describe an algorithm
{or partitioning. Essenti ally, after w e

construct the minimal-length treel,

the set A,, . . ., A, is partitioned into
groups by deleting some of the seg-
ments from this tree. It's natural to
delete the longer segments, but in
such a way that the points in any of
the groups obtained are arranged as

densely as possible. This intuitive
idea can be formalized by introduc-
ing the following values.

Suppose we want to partition the
set {A1, ..., Ar} into -k + 1 groups.
Choose an arbitrary k segments of
the tree f and delete them (fig. 1).

We get k + 1 connected groups of
points 11, ..., Io r r. For each of the
groups calculate the ratio of the to-
tal length o{ the segments in the
group to the number of segments-
that is, the average length of a seg-
ment in this group. If a group con-
sists of one point only, the
corresponding average length is zero
by definition. Denote these average
lengths by ly, 72, ...,1o * , and the
lengths of the deleted segments by
b1, b2, ..., b*.

Consider the value

F :1r+1r+ ...1o*r-br*br- -bo
Clearly the denser the points are in
each group and the more distant the
groups are from one another, the
smaller F is. Therefore, one possible
algorithm for our sorting task couid
be as follows: take the minimal-
length tree, delete k segments from
it in every possible way, calculate
the corresponding values F, and
choose the partition with the small-
est F. I{ there are several "minimal"
partitions, take any one of them.

In algorithms that are actuaLly
used, the value F is usually defined
in a more complicated way.

Computational experience has
shown that algorithms like the one
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described above produce sufficiently
reasonable partitions. The main
drawback of these algorithms is they
require too much search time. As
the number of points grows, the
problem becomes inaccessible even
for modern computers.

To cope with this difficulty, we
can use the following idea. We try to
include points separated by a dis-
tance less than a certain a in one
group. The entire construction is
performed in two steps. In the {irst
step, the set 41, ..., AN is divided
into smaller groups G1, ...,G- such
that each group G, fits in a circle S,

of radius R = al2 and the points of
other groups lie outside Sr. (We'11

explain later how to do this.) In the
second step, only the centers
01, ...,O^o{ the circles 51, ..., S-
are considered. The minimal-length
tree is constructed for the set 01, ...,
O-. Minimizing the value F corre-
sponding to this tree, we divide the
set 01, ..., O- into groups as de-
scribed in our first algorithm. This
produces a partition of the set
A1, ..., A^: two points A,andA,are
put in one group if they belong to
the same small group Gr, or if the
centers of the circles corresponding
to their respective small groups be-
long to the same group in the parti-
tion of the centers 01, ...,O-. This
two-step process decreases the
number of points to which we must
apply our first algorithm: the num-
ber m is usually much smaller than
{ and the calculation can now be
done by a computer.

TIts U'ollsm olfie mouing dl'cle
It remains to discuss how the set

of points 41, ..., A* can be divided
into the smaller groups Gr, ..., G^.
One algorithm for solving this prob-
lem is called the "trout" (it is said to
resemble a method of catching
trout). Again, we'll describe this
algorithm for the plane, although it
works equally well in multidimen-
sional space/ too.

Suppose thatNpointsAl, ..., Ay
are given in the plane. Place small
balls of unit mass at these points
and draw an arbitrary circle So of
radius R containing at least one ball.

.Ar

Figure 2

Let O, be the center of mass2 of the
balls lying in So, and let S, be a circle
with center O, and radius R. Fur-
ther, denoteby O, the center o{
mass of the balls lying in S, and by
S, the circle with center Orandra-
dius R, and so on.

For instance, in figure 2 you see
eight points A1, ..., Ar. The initial
circle So covers only one pornt, A3,
which becomes the center O, of
circle Sr. Circle S, covers points 42,
43, A4, and the center of mass of
these three points coincides with
the center of circle Sr. We continue
the construction similarly, and
when we come to circle S, we find
that it contains the points 42, 43,
A4, 45, 45, Ag, and its center coin-
cides with their center of mass, so
all the subsequent circles coincide
with it. Later we'l1 show that this is
the general situation-that is, {or
any points A1, ..., Ary and any initial
circle So containing at least one of
these points, all the circles will co-
incide after a certain step. In other
words, movement of the circle along
the route So -+ S, -+ S, -+ ... can't go
on forever. The points covered by
the last circle will be assigned to the
first group. Then the same proce-
dure is applied to the remaining
points-that is, we "lautrrch" a new
circle, whose final position deter-
mines the second group. The process
is repeated until all the points are as-
signed to one o{ the groups.

Irllhy does the chde stnp?
In the remainder of this article

we'll prove that our circle indeed
"stops." Looking at figure 2 we no-
tice that the circles So, S, 52, ...
cover an ever growing number of
points, and that their final position
corresponds to the greatest accumu-
lation of points. It would be natural
to suppose that for any points
Ar, ...,AN and circle So the number
of points covered by Ss, S, Sr, ... at
least does not decrease. Ho*ever,
figure 3 shows that this is not true.
But in a cefiain sense the density of
points in the circles does indeed
grow-rather than looking at the
number of points falling in the circle,
we need to take into account how
close to the circle's center they lie.

To be specific, let the points
Air, ..., Aro lytng in a circle S with
center O. We'll define the value

*[n'-(oo,, )'.]L \ ''t .)

The closer a point is to the center/
the greater its contribution to the
value F(S). Let's prove that when we
construct the circles 51, 52, 53, ...,
the sequence of values F(So), F(51),
F(S2), ... increases until there are no
new circles. To this end we'llneed
the notion of rotational inertia and
the Steiner Theorem, which is use-
ful in many problems of geometry
and mechanics.3

The rotational inertia of point
massesA,, ..., A-relative to a point

so

)t

3Actually, in mechanics the
rotational inertia is defined with
respect to an axis rather than a
point.-Ed.

15

so

F(s) = [a' - 
(oa,, )']+.

zln any coordinate system, the
centu of mass for a set of unit masses
located at the points (x,, y1l,lx.,, yrl,
. .., lx-, y-) is, by definition, a mass of n
units'loc?ted at the point {[x, + x, + ...
* xnlln,ly, * yr+ ... + ynllnl.'

Ao. Lo, oo,

A"
:i'
A.5

Figure 3
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A is defined by the formula

I(A): (AAtl2 + ... + (AA*)2.

The Steiner Theorem allows one
to calculate I(Al if the rotational in-
ertia IlCl of this system of points
relative to their center of mass C is
known. The theorem says that

IlAl: I(C) + m(CAl2.

Let's prove this theorem. Place
the origin of a coordinate system at
the center of mass of points
A1, .. ., Am-that is, at point C. Then
IIC) = xl + x] + ... * *,: + y,2 + yr) +
... * y*z.Let (x,, r;) be the coordi-
nates of the points Ar. Then the co-
ordinates of their center of mass C
are(xr+ ... +x,,)lm,lyr* ... *y-)lm).
So, because of our choice of origin, we
havex, +... + x^=yt+... + y*:0.
Denote the coordinates of A by lr, yl.
Then

I(Al : l{x, - x)2 * ly t - ylzl
: ... + ll**- *)' * (y-- ylzl
= (xrz + y12) + ... + lx^) * y*21

+ m(* + fl -Zx(xr+ ... + x-)
- Zy(yr + ... + y*l

= IIC) + m(CAl2,

because2x(x, + ... +x-) =2y1yt+...+y*)
: 0. This completes our proof of the
Steiner Theorem.

Let's prove now that if the circle
S, does not coincide with So, then
F(Sr) > F(So). Renumber the points
A1, ..., A*so that the points covered
by So but not by S, get the numbers
from 1 to p; the points inside both
S, and S, get the numbers from p +
I to q; and the points in S, but out-
side So get the numbers from q + I
to r. The circle So now contains the
points A 1, ..., A o, and S, contains
the pointsA p* t, ).., A.. ClearlyF{So)
can be expre-ssed in terms of the ro-
tationai inertia 1(O) o{ the points
A1, ..., A, relative to the center O of
circle So:-

F(So) = lRz - (OA1l21+ ...
* [R2 _ (OA"l2]

: qR2 - rlol. '.

The center O, of the circle S, is the
center of mass of the points 41, ...,
Ar, so by the Steiner Theorem

40)=lorl+q(ool)z

-that is,

F(So) : crR2 - rlo | - qlOO )2: [R2 - lorArl2] + ...
* [R2 - (oiq)z]- q(oot)z.

Compare the last formula with

F(sl) : lRz - (o4,* r)21 * ...
* [R2 - lo;A,lr].

The right side of the iast equation
lacks the terms

[R2 - (O1A1)2]' . . .' lR' - lO LApl2l' (t)

but contains the terms

lR2 - (O lAq. rlrl, ..., lRz - (O i,l2l (2)

that do not enter into the expression
for F(So). Now we notice that the
pointsA,, ..., Aolie outside the circle
S,. Therefore, ihe values in expres-
sion (1) are all negative. On the other
hand, the points A, * 1, .. ., A,7te inside
the circle S,, so the values in expres-
sion (2) are all nonnegative. It follows
that if we remove the terms of the
first group from the expression for
F(So) and add those of the second
group/ we can only increase the to-
tal-that is, F(Ss) < F(Sr) - qlOO?|, or

F(S1) > F(So)

if the points O, and O do not coin-
cide.

In the same way we can prove
thatF(So. 1), F(So) if the points Oo*,
and Oo do not coincide. Now it's not
difficult to show that al1 the circles
S,r, Sr* 1, ... coincide after a certain
number n. Indeed, by the construc-
tion, each point O- is the center of
mass of the points covered by the
circle S-. Consider all the subsets of
the set A1r ...t A, and their centers
of mass. The point O - * | is one of
these centers. Since there are only a
finite number of these centers/
some centers in the sequence O,
O 1, O 2, . . .-say, O, and O, must co-
incide. However, we've proved that

F(Sj) < F(S,*,) < ... < F(Sr),

and since S, : S, F(Si) = F(S,) as well.
Therefore, F(Sr)= F(Si* r) : ... : F(S,).

Now recall that the equality

F(Sj) : F(Sj. 1) is possible only in the
case S, : Si * r. But if two consecutive
circles coincide, all the subsequent
circles will coincide with them. This
means that the movement of our
circle So -+ S, --> S.z. + ...can't go on
forever-or, as mathematicians say,
the "troLlt" algorithm converges.

Ttilo new Hollems
To conclude, we'll pose two more

problems. The procedures they in-
corporate are also used to classify
points in multidimensional space.
As before, we'll restrict ourselves to
the case of the plane.

Problem 4. Suppose that the
points Ay, ..., A* are divided into I
(nonempty) groups Gr, ...,Gr, Let
O 1, . . ., O, be the centers of mass of
these groups. Construct a new par-
tition of the set 41, . . ., ANby the fol-
lowing rule: if O, is the ciosest of the
centers O 1,..., O, to the point Ao
(1 < k < N), then this point is as-
signed to the Jth group; if there are
several centers at the minimal dis-
tancefromAlr we choosefrom them
the one with the smallest number.
After discarding empty groups (give
an example where empty groups
emerge!), renumber the remaining,
say,p groups (p < l). This gives a new
partition cl, ...,GJ. Find the cen-
ters of mass for these groups and re-
peat the process with the new cen-
ters to obtain a partition G?,..., G:
lq < pl, and proceed in the same way.
Prove that the partitions will coin-
cide after a certain step.

In the next problem the following
notation will be used: for an arbi-
trary subset G of the set 41, ..., An
and point A put IlA, G) : lAAr)2 + ...
+ lAAl)2, where the summation is
taken over the points of G.

Problem 5. Suppose thal an initial
partition G1, ..., G, of points 41, ...,
A, into nonempty groups is given as

in the previous problem. The new
partition Gl, ..., Gj will differ from
the initial one by ihe "location" of
only one point, which is moved into
a new group-namely, we move the
point A, to the group G, for which
the value{A, G;) is minimal (if there
are several such groups, choose the
one with the smallest number). If A,

l0 JU[Y/AUGUsr 1ss7
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was the only point in its group, which
thus has become empty after the
move/ discard this group and renum-
ber the rest arbitrarily. The numberp
of new groups is either I or I - 1 Re-
peat the process for the points/.2, ...,
A, in order; then againforAr, forA2,
and so on. Prove that all the partitions
coincide after a certain step.

The advantage of the algorithms
described in these problems over the
"trol:Lt" algorithm is that they con-
verge quickly and so need less com-
puting time. However/ an unfortu-
nate choice of the initial partition in
these algorithms may result in an
unnatural final partition, as illus-
trated in figure 4.
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Mayllune 1997
. p. 19, co1. 3: the display equations are all offby a factor c. Thus

the first equation should read

Lo = Grl2h1l2c-312

lnot ...c-tlz as printed). The factor c in the remaining display equa-
tions should read c'slzt cslz, arrd ctlz. Our thanks to Flavis
Pakianathan, a physics teacher at Methodist High School in Ipoh,
Malaysia, for pointing this out.

. p. 38, col. 3: the third display equation should read)": flf,f.*.
The wavelength in the film is less than that in air; therefore, we
need to multiply by the index of refraction n rather than divide by
it. (Thanks again to Flavis Pakianathan.)

March/April1997
See page 47 for feedback on "A Planetary Air Brake."
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Zen and the Art of Physics
Demonstrations
ROBERT EHRTICH

Physics has the reputation of being difficult to understand
and remote from everyday life. Robert Ehrlich, however, has
spent much of his career disproving these stereotypes. ln the
long-awaited sequel to his book Turning the World lnside Out
and 175 Other :;mple Physics Demonstrations, he provides a
new collection c,' physics demonstrations and experiments
that prove that physics can actually be "made simple."
lntentionally using "low tech" and inexpensive materials from
everyday life, Why Toast Lands Jelly-Side Down makes key
principles of physics surprisingly easy to understand and fun
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Gan yotl $EE the lnilUltglic lield?

Figure 1

Photog,raph of the screen of a color TV
with a small permanent magnet in
front of it.

by iron filings or magnetic viewing
paper.

It's not harci to take a picture of a
TV screen colorfully disturbed by a
magnet. You don't even need a tripod.
The luminescence of an ordinary TV
screen is large enough so that, using
ASA 100-200 film and opening the
diaphragm completely, you need only
a lll5 s or even 1/30 s exposure.
Shorter exposures won't do any good
(can you say why?), while longer ex-
posures call for a tripod.

What was going on in our experi-
ment? No doubt many of our readers

How to use your TV in a new and enlightening way

by Alexander Mitrofanov

ET'S DO A SIMPLE EXPERI-
ment that's entertaining and
quite colorful. Ail we need is a
small permanent magnet-

taken from an old toy or some mea-
suring device-and a color TV. Turn
on the TV, tune it to some channel,
and bring the magnet up to the
screen. You'll produce spectacular
color changes near the magnet,
which are especially striking if the
original image on the screen had a

large expanse of a singie color (fig. 1).

In presence of a magnet, the tele-
vision screen presents a splendid
picture much like the colors in oily
films on wet asphalt or the Northern
Lights. The colored bands converge
near the outline of the magnet and
thus make the magnetic field "vis-
ible." Try manipulating the magnet
and see what happens. Move it to-
wardthescreen andaway fromit, or
rotate it, and watch the colors
change. In this experiment the "im-
age" of the magnetic field is even
more impressive than the pattern of
a magnetic field "drawn" by iron fil-
ings, needles, or nails lfig.2), or ob-
tained with "magnetic viewing pa-
per" (which consists of a thin film of
oil with suspended ferromagnetic
particles spread on a paper backing
and covered with clear plastic). Also,
the TV screen "senses" rather small
fields-smaller than those detected

o
U)
(U

'o
(U

_o
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Figure 2
Nails on a magnet.
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know the answer. The explanation is
really rather simple. When we bring
a magnet up to the TV screen, its
magnetic field penetrates the screen
and enters the picture tube. The
Lorentz force induced by the magnet
causes an additional deflection of the
electron beams, which leads to color
shifts in those parts of the screen
where the deflection is gteat enough.
Deflection of an electron beam in a

magnetic field is a weli-known phe-
nomenon/ but what does it have to do

with the color changes? This clues-

tion requires a separate explanation
(although we won't go into all the
technical details).

We usually don't pay much atten'
tion to the wonderful properties of
our eyes/ which allow us to distin-
guish colors in all their splendid va-
iety, to take in the bright, rich hues
of our surroundings/ to sense the
subtlest gradations in tint and tone.
The wonderful world of light sensa-
tions is a common phenomenon in
most people's lives. We should be
thankful that nature "supplied" us
with just this type of vision!

But what do we mean by "color"
and "color vision"? The light radiat'
ing {rom many sources/ such as the
Sun, a filament lamp, an illuminated
sheet of white paper/ or a fragment of
the daytime sky-is composed of a
continuous range of electromagnetic
waves of different wavelengths. By
definition, visible light consists of
wavelengths that can be detected by
the eyes of mostpeople (leaving aside
the phenomenon of color blindness).
This light lies in the range of about
380 to 760nm, which corresponds to
the colors violet and dark red. Using
a glass prism, diffraction grating, or a
set of color filters, we can decompose
a more or less homogeneous mixture
of rays from any source into the nar-
row bands corresponding to different
wavelengths that we say have " drtfer-
ent colors," which our eyes distin-
guish as red, orange, yellow, green/

blue, indigo, and violet-as well as

innumerable shades based on these
colors. The result of splitting a light
beam into its components of various
wavelengths or frequencies is called
a spectrum (from the Latin word for

"image"l. Color vision is possible
because the retina of our eye contains
light detectors called cones/ which
absorb light differently depenfing on
its wavelength. The pigments in the
three types of cone have broad light
absorption bands, but the maxima of
light absorption are located in differ-
ent spectral regions and correspond
to the wavelengths 430, 530, and
560 nm. Cones aren't the only light
receptors in the eye. When the light
is weak-in a darkened room/ say/ or
at dusk-the cones don't respond to
the visible light, and another mecha-
nism is "switched on"-one based on
cells called rods. Rods contain the pig-

ment rhodopsin, whichis highly sen-

sitive to light. Rods are responsible for
vision in dim light, when we can see/

but can't distinguish colors.
Using optical instruments, we

can not only decompose light and
obtain the spectrum of the light
source/ we can also perform the re-
versal operation: collect rays of dif-
ferent color together. Mixing differ-
ent colors can produce some striking
results, not at all obvious before-
hand and quite unpredictable.

Let's look at apopular demonstra-
tion that originated in experiments
Newton and Maxwellperformed on
color mixing. Using three proiectors,
we illuminate a screen with three
partially overlapping beams that
pass through different color filters:
red, gteen, and blue. By varying the
relative intensity of the beams, we
can get white light on the screen
where all three beams overlap
(fig. 3). Another overlapping area

Figure 3
Mixing colors

shows that mixing red and green
Iight produces yellow, and doing the
same with blue and green produces
cyan. We can also say that illumi-
nating a white screen with cyan and
red beams produces white light.

Now imagine that spots of red,
green, and blue light are located
close to one another on the screen.
They don't overlap, but due to their
very small angular sizes, they atert't
resolved individually by the eye.
Such a composite pattern will look
like a white spot on the screen. This
is due to diffraction: each colored
spot of the three-color pattern is out
of focus on the retina and slightly
blurred, so the individual cones are
affected by the light of all three col-
ors. As a result, the brain considers
the three-color pattern to be a single
white spot. By varying the ratios of
the color intensity of the beams, and
possibly by changing the back-
ground, we can observe a colored
spot of any color and shade. Painters
of the "pointillist" school (for in-
stance, Seurat and Signac) used a

similar technique, applying small
dabs of unmixed paint that blended
into different colors when the can-
vas was viewed from a distance.

These features of color vision
underlie the functioning of the pic-
ture tube in a color TV. The screen
is composed of many small geo-
metrically identical phosphorescent
elements in the shape of circles or
strips and collected in groups of
three (fig. 4). These phosphorescent
elements (cells) have different
chemical compositions based on
zinc, sulfur, selenium, phosphorus,
and other elements, so that they ra'
diate red, green, and blue light when
struck by an electron beam. Three
electron beams of controlled inten-
sities are focused on the correspond-
ing neighboring cells to produce
these three colors in certain propor-
tions, which makes it possible to re-
produce a wide spectrum of colors
and hues. The resulting image is
pretty clear because the phosphores-
cent cells are very small. However,
you can see them either with the
naked eye, if you get close to the
screen/ or with a magnifying glass.
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Figure 4
Screen of a pictura tube with mosaic and gratelike
phosphorescent elements.

two other electron guns
bombard their own
phosphorescent cells.
Basically this is how a
picture tube that uses a
color-splitting shadow
mask works.

Even this brief de-
scription of a color pic-
ture tube provides
enough information for
you to understand why
the magnetic field of a
small permanent mag-
net distorts the colors
on the TV screen, but
hardly affects the shape
of the objects pictured.
Indeed, when the hori-
zontal component of
the Lorentz force, act-
ing on the electron
beams from the exter-
nal magnet placed near
the screen, causes a de-
flection o{ the beams to
fistances comparable to

the horizontal period of the mask
apertures or to the space between
the phosphorescent strips, it will not
produce a visible deformation of the
object's shape, but it will radically
disturb the balance of the mixed

colors. In the external magnetic field
the electrons "go astray" and enter
the wrong apertures in the shadow
mask, so they bombard the phos-
phorescent cells of the "wrong"
color. When the magnet is removed,
the correct colors are restored,

Attentive readers, and in particu-
lar those who have seen the shadow
mask of a color picture tube, could
enrich our explanation wlth another
possible mode of action of the exter-
nal magnet. The magnet attracts the
mask, which is made of soft iron,
and the deformed mask begins to
allow "foteign" electrons to pass
through.

So, just to be safe, you should
only use small magnets (1-2 cm3)
when you experiment with the TV
screen. A larger magnet might break
the screen, or the shadow mask
might become permanently de-
formed, causing the electron guns
and other parts of the TV to go out
of tune.

To conclude, I'11 leave you with
an amusing story that the great Rus-
sian physicist P. L. Kapitsa used to
tell his students. A certain naval
captain, the commander of a battle-
ship, arrived in Moscow from the
Far East and visited the Russian

They can also be seen in a magnified
photo (fis. 5).

Let's look at figure 4 again.In ad-
dition to the three-color phosphores-
cent cells of the screens with mosaic
or gratelike structures/ this figure
shows the corresponding shadow (or
aperture) masks. These are thin
metal sheets with a large number of
regularly placed apertures. The
shadow mask is attached behind the
screen at a distance of about 1 cm
from it. Every picture tube contains
three electron guns (fig. a). During
TV transmission all three electron
beams are focused by a common
magnetic deflection yoke at a cer-
tain phosphorescent triad on the
screen/ but the intensity of each
beam is controlled individually ac-
cording to the original picture as
viewed in red, green, and biue light.
The mutual disposition of the elec-
tron guns/ phosphorescent cells, and
apertures in the shadow mask is
chosen in such away that a cell of a
particular color is exposed only to
"its own" electron gun, which is
modulated by the video signal re-
sponsible for the corresponding
color in the resulting picture. The

Figure 5
Photographic enlargement of a portion of a color TV picture tube.
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Academy of Sciences. He claimed to
have invented a new type of magnet.
According to him, the magnet had
only one pole-the north pole! The
captain had a letter with him from
his superior, an admiral, who asked
the scientists to examine the inven-
tion and to give an expert opinion.
Was it an important discovery?

The magnet looked absolutely
ordinary: just a bar of metal of about
1 kg painted red. Lo and behold, both
ends were really north-seeking!
Kapitsa, to whom the captain was
sent, quickly figured it out: the mag-
net was composed of two identical
magnetized bars whose south-seek-
ing poles were skillfully glued to-
gether. The paint covered up the
joint. Kapitsa asked the captain why
he puiled such a stunt. It turned out
that the captain had never been to
Moscow, although he dreamed of it
all his life. His superior wouldn't
grant him a leave of absence-this
was the only way he could think of
to visit the capital!

What if the admiral had a color
TV set and a copy of this issue of
Quantumz. Would he have sent the

captain to Moscow, or to some more
remote place? Guess how a TV set
could help the admiral to unravel
t}rre puzzle of the captain's magnet.
While you're at it try to answer the
following questions.

1. A rainbow includes the entire
spectrum of visible light. So why is
the color brown absent?

2. Mixing yellow and blue paint
produces green. If yellow and blue
beams from projectors equipped
with filters are mixed on a screen/
the overlapping area is white. Why
does the mixing of the same colors
produce such different results?

3. How is the color black pro-
duced on the screen of a color TV?
Why does the screen of the TV when
turned on often seem darker than
when the TV is turned off?

4. When there is a full moon, you
can see many objects outside at night.
Their colors, however, are far from
what you see in the daytime. A simi-
lar phenomenon can be observed in
the experiment with a color TV: if a
balanced color image is weakened by
a dark, spectraily neutral filter, red
and green tints will disappear and the

image will become grayish blue. Can
you explain this?

5. How can one know whether an
external magnet deflects the elec-
tron beams or simply attracts and
deforms the shadow mask of a color
TV's picture tube?

6. Are electrons deflected toward
the right or left part of a TV screen
due to the Earth's magnetic field? Say

the TV set is located (a) in New York
City, (b) in New Orleans, (c) at the
equator, (d) in the south of Australia.

7. Estimate the shift of the elec-
tron beam in a TV picture tube un-
der the influence of the Earth's mag-
netic field. The energy of the beam
is 25 keV, and the tube is 0.2 m long.

B. Under the action of an external/
variable magnetic field the image of
objects on the screen of a color TV
set readily change color, but their
shapes seem immune to the mag-
netic perturbations. Why?

9. Is it possible, using a color TV
set as an indicator, to find magnetic
objects inside an opaque package?

10. How can one determine the
charge-to-mass ratio of the electron
using a TV set? o
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Energy Sources and Natural Fuels$olume 2
This new publication from NSTA details the process of how fossil fuels are cre-
ated,discovered,and refined. Building on concepts presented in the first volume,
Valume 2 fuses biology,chemistry,physics,and earth science to demonstrate how
organic material becomes petroleum products.Activities help students under-
stand geological processes involved in the formation of fossil fuels, forms of en-
ergy €onyersion,and the technology of finding and refining fossil fuels.

Grades t l*12,1996,104 pp. I
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Energy Sources and Natural Fuels,Yolume I

Follow the historical unraveling of our understanding of photosynthesis from the
lTth century to the early 20th century with Volume I of Energy Sources cnd
Notum/ Fuels. Full-color illustrations woyen into innovative page layouts bring the
subiect of photosynthesis to life. Created by a team of scientists, engineers, and
educators.the student activities translate industrial test and measurernent meth-
ods into techniques appropriate for'school labs.
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HOW DO YOU
FIGURE?

Challeltuss in phy$ics and lnalh

tUlallt
M209
Old-f ashioned
approach. With a
calculator you
can discover that

M206
Double roots. Find all a such that
both of the following equations have
two integer roots:

*+ax+1996:O
and

x2 +!996x + a: O.

(V. Protasov)

M207
Points on a leg. Four points K, P, H,
and M arc taken on a side of a triangle.
These points are the midpoint, the
endpoint of the bisector of the oppo-
site angle, the point o{ tangency with
the inscribed circle, and the base of
the corresponding altitude, respec-
tively (fig. 1). Show that ilf. KP = a and
KM:b,thenKH : 

^loU. 
(I. Sharygin)

Figure 3

the equation x3 - x - 3 =0 has a
unique real root, and that this root is
greater than {,/i3. But can you prove
that this conjecture is in fact true?
(V. Paniyorov)

M210
Thirty degrees Jess. In triangle
ABC,bisectors AAr, BB, andCC,
of the interior angles are drawn
(fi1.2l. Prove that if ZABC : L20",
then lArBrCr = 90'. (A. Yegorov)

when it expands from 40 I to 80 I?
Does it get cooler or warmer when
it expands from 140 1 to 180 l? Find
the ratio of the specific heats for
these regions. (A. Zilberman)

P208
Two fluid films. Two fluid films are
formed on the surface of a liquid and
separated by a movable rod of length /
(frg. 4). The coefficients of surface ten-
sion of the films are o, and or. What
force must be applied to the rod to keep
it foom moving? (A. Buzdin, S. Ikotov)

A

Figure 2

B

Figure 1

M208
Small as possible. Find the least
possible value of the expression

x2y= g +xCOSX+cos2x.

(D. Averiyanov)

Physics

P206
Box with a spring. A mass m oscillates
onthe endof a springhungfrom the top
of a box of mass Mplaced on a table.
At what amplitude of oscillation will
the box jump from the table? The
spring constant is k. (L. Bakanina)

P207
Gas expansion. One mole of ideai
monatomic gas expands from an ini-
tial volume of 20 I to a final volume
of 200 l. During this process the
pressure in the gas cylinder varies
according to the table in figure 3.
Does this gas take in or give off heat

Figure 4

P209
Round capacitor. An insulated concen-
tric spherical capacitor with intemal
and extemal spheres of radii R, and R,
has a charge Q. Find the energy density
of the electric field in the space be-
tween the spheres if R2 - R, .. Rr.
(V. Mozhayev)

P21 0
Wherc's the stail. Estimate the errorin
measuring the angular coordinate of a
starvisible from the Earth at an angle of
B = 45' above the horizon. The refractive
index of the air at the Earth's sudace is
n: 1.0003. (S. Gordyunin, P. Gorkov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 52

v (t) 2a 40 60 80 100 124 140 r60 180 2AO

P (kPa) r00 354 19.2 12.58 I 78 6.95 6.3 5.3
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Visual proofs of the Pythagorean theorem

by Daniel J. Davidson and Louis H. Kauffman

$eeinu is helietliltu

HE PYTHAGOREAN THEO-
rem is well known to most high
school students. It says that i a
an.d b are the legs of a right tri-

angle and c is the hlpotenuse, then
az + b2: c2. Eiisha Scott Loomis, in
his book The Pythagorcan Prcposi-
fion (Washington: NCTM, 1958),
records no less than 367 proofs. Of
these, 109 are algebraic and 255 in-
volve geometric construction. We
will first look in detail at Loomis's
demonstration number 9. Loomis
credits Henry Perigal for its publica-
tion in the journal Messenger of
Mathematics ll873,Yol.2, p. 10a).

The PenigalUml
We begin with a square and dis-

sect it with two cuts perpendicular
to each other, meeting at the center
of the square. Either cut can be re-
garded as the hypotenuse of a right
triangle obtained by dropping a per-
pendicular from one end of the cut
at A to the opposite side of the
square at B (see figure 1a).

Problem 1. Show that any right
triangle can be produced by choos-
ing a suitable scluare, a suitable line
AB, and dropping perpendicular A C.

Solution. The angle ABC can
range from 45' to 90", rf we rotate
AB aboutpoint O (with a degenerate
case at 90'). This lets us construct a
triangle ABC that is similar to any
given right triangle. Choosing a

Figure 1

square of the right size will allow us
to make triangle ABC congruent to
any given right triangle.

Our original square STUR can be
regarded as the square of the larger
leg AC of triangle ACB. Our dissec-
tion with two cuts leaves each side
of the square divided into seg-
ments RB : 1(for longer segment)
and BU: s (for shorter segment).

Problem 2. Show that all four
pieces into which AB and A'B' dis-
sect the square are con-
gruent.

In our dissected
square,l :RB =UB' =TA
: SA', and s: BU : B'T
: AS : A'R. Since the
base of our triangle has
length BC, and since AS
: RC: s, we have BC :
J - s. So the length of side
BC o{ the right triangle is
equal to the difference

Rcel. : -,4._-1^*.*aihortt

small square " capt:Lred" in its center.
This small square has a side eclual
to I - s : BC, so it is the square on the
shorter leg of the triangle. The large
new square (with the hole in it)is just
the square on the hypotenuse of our
triangle, and the yellow area is equal
to the square on the longer leg. Thus
the square on the hypotenuse is equal
to the sum of the squares on the two
legs. This completes Perigal's proof.

DilIr-1-'^_.-lll\lr l\ i

rl\lllliI : \o t

i ir' I

lr\ii\ltl\r
L--r: - \ -l17aAL{

between the
long and short
segments of the
dissection piece.

Turning to
figure 2, we see
thatwe carrear
range the four
pieces of the
original square
to produce a
new/ larger
square with a

I

I

I

I
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1
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Figure 3

A genel,alization

Instead of putting a square on each
side of a right triangle, suppose we
choose some irregular shape with at
least one straight side (for example,
the shape labeled F in figure 3). Now
take three scaled versions of F, labeied
Fo, F6, and F,, with the straight side
scaled up or down to match sides a,

b, c of our right triangle.
Tsr,onEn. Area(Fr) : area(Fo) +

area(F6l'.
Proof . The argument depends on

the fact that the areas of similar fig-
ures are proportional to the squares
of any linear measurement (a discus-
sion of this fact can be found in any
geometry text). So if the ratio of the
area of Fo to a2 is k (so that
arealFo) : ko'), then area(F 

") 
: kcz,

and arealFnl : PO'. Then, since
a2 + b2 : c2, it follows that
ka2 + kb2: kc2, which is what the
theorem states.

It may seem a bit startling that
this wide generalization of the

Pythagorean theorem comes so eas-
ily from a simple fact about areas of
similar figures. Indeed, this simple
fact gives a direct proof of the
Pythagorean theorem itself .

Consider right triangle RST in

Figure 5

figure 4, with hypotenuse RT and
right angle at S. Drop perpendicular
SD from S to the hypotenuse. Then
the triangles RSD, STD, and RST
are all similar. As in the previous
proof, let the ratio of the area of tri-
angle RSD to a2 (where a is the
length of its side RS) be k, so that
area(RSD) = ka2. Then area(STlDl :
kb2, and area(RS?) : kcz. But it is
clear from the diagram that
area(RSD) + area(STD) = area(RST),
so kaz + kb2 = kcz, ot a2 + b2 : c2.

SymmeFhs and mouomettt
Compared to other dissection

proofs, the Perigal proof is both
simple and uniclue. It's simple be-
cause it recluires only two dissection
lines. It's unique in that it is the oniy
dissection proof recorded by Loomis
that does not dissect the squares on
both legs of the triangle. The squares
on the smaller leg and on the hypot-
enuse are created by "rearranging'.'
the four congruent parts of the
square on the larger leg (labeled 1, 2,
3, 4 in figure 5). As it turns out, this
rearrangement can be done in three
different ways: by translations of the
pieces across the center of the
sQuare; by rotation of each part in its
own corner; or by turning each part
over to its other side and translating
to the opposite corner (a glide-reflec-
tion). Figure 5 shows these three
types o{ symmetric transformations
in the Perigal proof.

To highlight the dif{erences, we
have redrawn figure 5 as figure 6,
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Figure 7

introducing a picture oi the
elephant-faced Hindu god Ganesha,
striding across the scluare. This gives
each piece of the square a unique ap-
pearance/ allowing us to see the
work of each o{ these three moves.

Figure 7 shows two ways of rear-
ranging the pieces of the square.

Problem 3. Identify the transfor-
mation that each piece has under-
gone.

Problem 4. Prove that the " cap-
tured" space (the white region in the
center) is a rectangle, and find its di-
mensions in terms of J and s.

0fiel' pl'ouls and he classic Uool
Figures 8 through 14 illustrate

other dissection proofs of the Pythag-
orean theorem. We leave it to the
reader to explain how they were con-
structed and how they furnish a proof
of the Pythagorean theorem. We have
provided references to Loomis's book,
in case a hint is needed.

Finally, let's consider Euclid's fa-
mous proof. He begins with a bril-
liant and simple idea: drop a perpen-
dicular line from the right angle of
the triangle to the hypotenuse and
continue this line so that it bisects
the hypotenuse square into two rect-
angles (I andR-see figure 15). Then
Euciid proves the utterly fantastic
lactthat each rectangle has the same
area as the corresponding square on
the leg sides of the right triangle.

This is so simple that anyone can
remember the proof up to this point.
However, it requires a clever con-
struction of auxiliary triangles to
demonstrate the coincidence of ar-
eas (fig. 16).

Triangle ADEhasbase AD and
height AB. Thus the area of triangle
ADE : tlz@BllADl : tlrarealL'1. But

Figure B

Loomis proof No. 56

Figure 9
Loomis proof No. 205
(also credited to
Henry Perigal).

Figure 1O

The Chinese and
Perigal proofs
placed side by side.
They look simple-
but who would
guess that they
p,rove the same
theoreml
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Figure 11

Loontis prool Nr-t. 91
(attibuted to Chjnese,
Persian. and Indian
ttuthors tts well tts to
Pythttgoras himself).

Figure 13
Loomis proof No. 19.

triangle GDH has base GD and height
DE. Thus the area of triangle GDH:
rlrarca(L). But triangle GDH is con-
gruent to triangle EDAI lCheck this

Figure 12
Loontis ltroof No

Figure 14
Loomi,s proof

by rotation in either triangle about
vertex D.) Therefore, arealL') =

arcalLl. The same argument applies
to the other rectangle R' and square

'f

R. This gives us Euclid's Q.E.D.
Euclid's proof is technically more

complex than Perigal's proof and the
other dissection proofs shown here.
But it turns on a very sirnple idea in
the argument (drop a perpendicular)
and another neat idea (rotate a tri-
angle to find congruence).

Problem 5. A theorern in geom-
etry states that either leg of a right
triangle is the mean proportion be-
tween the whole hypotenuse and
the segment cut off by the altitude
to the hypotenuse that is adjacent to
that ieg. How does Euclid's proof
also demonstrate this theorem? O
Daniel |. Davidson is an afiist living in
Chicago, Illinois. Louis H. Kauffman rs
a professor of mathematics at the (Jni-
v er sity of lllinois-Chicago.

R'

Figure 1trIJ
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KALEIDOS(

,,COMPLETE QUADRiLAT-
eral" is a figure formed by {our
straight lines on the plane
none of which are paralle1 and

no three of which pass through the
same point (see figure 1). The points
where these lines meet are called
the vertices of the complete quadri-
lateral. Thus any complete quadri-
lateral has six vertices. Segments
that connect two vertices of a com-

Figure 1

plete quadrilateraland do not belong
to any given lines are called diago-
nals of the quadrilateral. Thus it has
three diagonals.

Complete quadrilaterals possess a

number of peculiar properties. Here
are some of them.

1. The midpoints of the diagonals
of a complete cluadrilateral belong to
one straight line m l{ig. 2l.In Ger-
many and Russia this line is called
Gauss's line, whTle in England they
callitNewton's lina. (It seems likely
that what we have here is an attribu-
tion, rather than real authorship. The
Light from huge stars often makes the
twinkling of small stars invisible.)

2. If alL the lines forming the
quadrilaterai touch one circle, then
Gauss's (or Newton's) line contains

Figure 3

the center of this circle (fig. 3).

On this point the old geomelry
books are in better agreement/ calling
this statemeut Newton's theorem.

3. Any three lines of a compLete
quadrilateral form a triangle. There
are four such triangles. Many prop-
erties of complete cluadrilaterals are
connected with wonderful points in
these triangles. For example, it turns
out that their orthocenters belong to
one straight linep, and that this line
is perpendicular to Gauss's linel
(This is illustrated in figure 4, which

l
\

Figure 2

28

The colnplet

How did you manage with incorntr

by I F Snary,'

Figure 5

shows two out of the three altitudes
of each triangle.) In the Russian
mathematical literature this linep is
sometimes called Van Oebel's line.

4. Four circles circumscribed
about four triangles that make uP a
complete quaddlateral (see the pre-
vious paragraph) meet at one Point
M. This point is called Miquel's
point (fig. 5).

5. The centers of the four circles
mentioned in the previous para-
graph lie on another circle (fig. 5).

6. If four vertices of a complete
quadrilateral beiong to one ctcle,
then the Miquel's point lies on the

ql
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f SCOPE

tquadl'ilalel'al
:omplete ones all these years?

S raryg in

Figure 7

diagonal connecting the two re-
maining vertices lftg. 7).

7 . If four vertices of a complete
quadrllateral belong to a circle, then
the center of this circle and the two
remaining vertices of the cluadrilat-
eral form a triangle whose ortho-
center coincides with the point
where diagonals connecting the four
vertices lying on the circle meet

(fig. B). Note that we might have to
extend the diagonals beyond the ver-
tices of the cluadrilateral in order to
find their point of intersection.

8. Three circles whose diameters
are diagonals of a complete quadrilat-
eral meet at two points lying on the
line p (see property 3 above) (fig. 9).

9. Suppose that the straight lines
containing the diagonals of a com-
plete quadrilateral form a triangle.
The center of the circle circum-

scribed about this triangle belongs to
the line p (fig.10).

Before we formulate the next
property of complete cluadrilaterals,
Iet's recall a certain classical state-
ment about triangles. In an arbitrary
triangle, three points-the ortho-
center/ the center of the circum-
scribed circle, and the point where
its medians meet-lie on a straight
Iine. This line is called Euler's line

Figure 11

(fig. I 1). The following property of a
complete quadrilateral has to do
with this line.

10. If any one of the four lines
that form a complete cluadrilateral
is parallel to Euler's line in the tri-
angle formed by the three other
1ines, then every other line of the
quadrilateral possesses the same
property (f15. l2l.

1 1. Let's erect perpendiculars at
the midpoints of the segments con-
necting the orthocenter and the cen-
ter of the circumscribed circle of
each of the four triangles that make
up a complete quadrilateral. These
perpendiculars meet in one point,
called Harvey's point. O

Figure 12
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PHYSICS
CONTEST

A physics soulllf

"Enough! or Too Much."-William Blake,
The Marriage of Heaven and Hell

by Arthur Eisenkraft and Larry D. Kirkpatrick

blue (),: 450 nm), the circumference
of its orbit is 42,000 km, the Earth's
radius is 3,760 km, and the gravita-
tional field at the Earth's surface is
9.8 N/kg." All of these numbers are
extra information for students who
realize that the gravitational force
on the satellite is perpendicular to
the satellite's displacement and,
therefore, the work is zero!

Is this {au or is it a "trick" ques-

tion? Recognizing what information
is useful and what is extraneous is
important in life and in physics
problems. We have had students
complain about problems in which
additional, superfluous information
was provided. In an attempt to gen-

erate discussion, one of us (LDK)
gave the students a problem and de-

liberately omitted one vital piece of
information. He then asked, "What
do you need to be able to solve this
problem?" The problem was not
well received, but asking such prob-
lems should be commonplace. In
the real world, physicists and engi-
neers often have to figure out what
measurements are recluired to ob-
tain the data needed to solve prob-
1ems.

Sometimes, the physicist works
through the theoretical aspects of a
problem only to discover that a

number is not needed, or that a cah-
bration is not needed. This brings us

to this month's problem. It is based
on one o{ the problems on the sec-

ond examination used to select
members of the 1997 US Physics
Team that will compete in the Inter-
national Physics Olympiad that is
hosted by Canada in Sudbury,
Ontario, this |u1y. The problem
originally appeared tn Kvant, ottr
sister publication, many years ago.

Upon entering the atmosphere of
a planet, a probe descended straight
down to the surface. Along the way
it recorded the atmospheric pressure
as a function of time as shown in
figure 1 (on page 32). Unfortunately
the calibration of the pressure gauge

has been lost and the units on the
pressure axis are not known. Your
mission, should you choose to ac-
cept it, is to compensate for this lack
of calibration.

The atmosphere is mostly carbon
dioxide with a molecular mass of
44 glrnol and can be treated 1oca1ly

as an ideal gas. The surface'tempera-
ture { at the surface is 400 K, the
gravitational fieldg at the surface is
9.9 N/kg, and the radius R of the
planet is 5,000 km.

A. Apply Newton's secondlaw to
a small slab of the atmosphere of
vertical thickness Ay to show that
the change in pressure AP between
the top and bottom of the slab is
given by

HAT DISTINGUISHES THE
world's great chefs from the
millions of adequate cooks is
an understanding of the con-

cepts of cooking. We strive for a
similar appreciation of physics con-
cepts in our students. Most of the
time the problems in physics text-
books do not require much under-
standing to obtain the answer in the
back of the book. If the problem
gives the massm and accelerattona
of an object and asks for the value of
the net force F acting on the obiect,
it is not too difficult to find a for-
mula containing m, a, and F and
plug in the numbers. To enhance
such a cookbook problem, we may
provide superfluous information
like the velocity v of the obiect or its
color )". Students who simply look
for an expression containingm, a, v,
.F, and )" will not succeed with this
approach. Students must under-
stand the concepts well enough to
understand that the velocity and
color are not needed. Only the ca-
pable chef can ensure that the
souffl6 will rise.

As an example of giving extra in-
formation, consider the following
problem: "How much work does the
gravitational force perform on a sat-
ellite in a circular orbit around
Earth? The mass of the satellite is
4,500 kg, the color of the satellite is
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,r larbitrzrry units)

1,000 2,c

Figure 1

LP: pgLy,

where p is the atmosphere's density
and g is the local gravitational fie1d.

B. Using this formula {or the
change in pressure with altitude and
the graph, estimate the probe's
speed vo iust before it strikes the
surface. Why is the calibration data
not needed?

C. Under the simplifying assump-
tion that the probe's speed is con-
stant during its travel through the
lower atmosphere, estimate the
temperature of the atmosphere at a
height of 15 km above the surface.

D. Estimate the uncertainty in
your determination of this tempera-
ture. How confident are you that
your value for the temperature is
meaningful?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA2220l-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Do you U'olni$s ltotto tsll?
The fanuary/February contest

problem asked readers to orient two
radio antennas so that one friend liv-
ing in town A receives a maximum
signal and while a second friend liv-
ing in town B receives no signal. A
wonderful solution was submitted

3,000

by our colleagues Andr6 Cury Maia1i
and Gualter |os6 Biscuola (jointly)
and Flavis Pakianathan.

In part A of the problem the two
radio sources were in phase. To
solve this problem, we must realize
that the path difference between the
antennas S, and S, and town A must
be equal to an integral number o{
wavelengths. The geometry/ as

shown in figure Z,leads to the famil-
iar ecluation

nr),=dsin0r.

The path difference between the
antennas S, and S, and town B must
be equal to an odd integral number
of half-wavelengths. This leads to a
similar ecluation

["r*l']n=dsinou.\." 2)

Subtracting these equations and
solving for the distance d between
the sources, we get

-1u= ln,-(n,+t/z)]1"
sin01 - sin02

We can see that there are an infi-
nite number of selections for the
distance between the antennas and
their orientation that allows for an
antinode at A and a node at B. If we
take the simplest situation where

town A lies on the perpendicular
bisector of the line connecting the
antennas/ the distance d is defined
by the orientation of the angle 0r:

-, (n, + llz)L
sin 0,

Part B of the problem asked for
the parameters of the array (includ-
ing the phase shift) such that the
distance between the antennas is a
minimum.

The total path difference when
there is a phase delay 6 between the
sources is

6IdslnH+-
2n

The constructive and destructive
interf erence ecluations thus become

5Tn1lr=dsrn0r*.',-'" 
;,. 

" 
. '"' 6).ln"+-l/-=dsrn0.+-.

\'2) " 2n

Subtracting these equations and
solving for the distance between the
sources d, we get

, ln, - (n, + tl2)l)"

sinO, - sin02

We can minimize dby minirnrz-
ing the numerator and maximizing
the denominator. The numerator
would be a minimum if

nt=nz+!'
2

But since n, and n2are integers,
this is impossible. The smallest
value of the numerator occurs when
frt: flz'

We can find the maximirm value
of the denominator by taking the
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derivative of the denominator and
setting it equal to zero:

/: sin 0, - sin 0r.

Since 0, and 0, are both dependent on
the orientation of the antennas, Iet's
replace 0, with 01 - Q, where Q is the
angle between the two locations:

f' : cos 0, - cos (el- O),
cos er = cos (01 - 0).

For the cosine of the two angles to
be equal and q + O, 2n, 4fi, ..., we
must have

el=-(er-O),
d0_rtrr - --,2

This makes sensg because in setting
up the affay we found from our
analysis of the numerator that n,
and n, are equal. Therefore, we ex-
pect that the perpendicular bisector
of the aruay should pass between the
two towns.

The equation for the minimum
distance between the sources then
becomes

The corresponding phase shift be-
tween the antennas can now be
found:

nr),=dsinOr*P,
Ztt'

^-Tc-3nb=--'[fin,---zrn,.2',2',
Part C of the problem asked for a

numerical solution for a broadcast
frequency of27 IvlTIz and angles be-
tween north and the directions to the
towns of 72 and 157", respectively:

L=9=lLl m,
v

.11.1m
d- - '-- -' = 4.1 m.

4sin42.5'

The orientation of the antenna is
such that the perpendicular bisector
of the line connecting the antennas
makes an angle of 72 + 42.5' with

)_u-

4sin0
2

o

A hnilliant idea

You can talk of brilliant light,
Light that makes like day the night,
Or of adjectives like "bright" and nouns l:tke " glare,"
But if you're wanting shining
That can fry your eyeball's lining,
Then you'll find that lasers are beyond compare.

See, a laser is a light
That's so very, very bright,
You can aim it up and bounce it off the Moon.
For a laser blast's duration,
It is no exaggeration,
It's more dazzling than the Sun at cloudless noon.

Yes, it's bright! bright! bright!
Whether blue or green or red-they're never white.
When alaser is a-lasing,
You had best avert your gazing
If you ever want to see another sight.

If you want to build a laser
For your wife, that will amaze her,
It's quite easy to assemble in a day.
Get a flashtube filled with xenon
(Like the strobe that you're so keen on)
And wrap it'round a rod like DNA.

Now, that rod is made oi stuff
That, when energized enough,
The atoms will emit a photon shower
Which will then leak out the end,
So you need to make it bend
Back into the rod, so it builds up more power.

It will grow! growl growl
If the polished ends reverse it to and fro.
Every time, it bounces back,
Hits the wall, reverses track-
A11 the while, the xenon tube pumps in its glow.

Well, the silver-polished ends,
On which power growth depends,
Are not polished, qtite exactly, just the same.
So the end whose mirror's weaker
Finally gives, and there's no sleeker
Kind of light than that, which shoots with pinpoint aim.

Now, the wavelengths of this light
Are identical, all right,
And the photons al1 go marching, locked in sync.
It's "coherent," as they say
When describing such a ray.
So, that's how to build a laser-what'cha think?

It is cool! cool! cool!
To create a laser of one gigajoule.
You can vaporize a tree,
Rid your dog of every flea-
fust don't let your child take it in to school 

-oavid erns
the north.
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MATH
INVESTIGATIONS

Cuunliltu pl'ohlems in linils Uruttp$

This column proves finite as well . . .

by George Berzsenyi

URING THE PAST DECADE,
one of the best programs sup-
ported by the National Science
Foundation (NSF)has been Re-

search Experiences f or Undergradu-
ates (REU). Within this program,
eachyear around twenty mathema-
ticians receive funding to work with
5-12 students on a variety of topics
in mathematics during aperiod of 6-
9 weeks during the summer. The
students work in goups and/or with
their advisor and his/her associates
on a suitable research problem for
which they have adequate back-
ground, in the hope of finding at
Ieast a partial solution. In general,
their work is highly focused and
very intensive. Ideally, in addition to
proving some theorems, conjectur-
ing others, and solving related prob-
lems, they become familiar with
many aspects of the research envi-
ronment. They read a number of
papers on related results, learn
proper techniques for verifying the
originality of their findings, familiar-
ize themselves with suitable soft-
ware packages, and learn how to
communicate their results orally
and in written form.

Of the many excellent REU pro-
grams conducted throughout the
United States, in my opinion, Gary
Sherman's "Computational Group
Theory" was thebest. He conducted
it single-handedly for eight years

(from 1989 to 1995 at Rose-Hulman
Institute of Technology), with six
students for seven weeks eachyear.
His 48 students (14 women and34
men) came from many different
schools (Binghampton, Brown,
Bowling Green, Carleton, Carnegie-
Mellon, Chicago, Duke, Harvard,
Haverford, Hendrix, Wooster, Illi-
nois, Michigan, Mills, Nebraska,
New Mexico State, Pomona, St.
Norbert, and Rose-Hulman), and
most of them went on to prestigious
Ph.D. programs. During their stay at
Rose-Hulman, they produced a total
of 37 technical reports, which led
(thus far) to 16 refereed publications
(with 4 more in preparation).Many
of them also gave well-received pre-
sentations at various national and
regional meetings of the American
Mathematical Society.

Though I was heavily involved
with other activities (first, chairing
the Department, and then with an
NSF-supported Young Scholars
Summer Program),I thoroughly en-
joyed my limited interactions with
Gary's students, admiring his
"coaching style," and watching the
incredible effects thereof. The stu-
dents usually worked in groups of
two to four, with each of them being
in several of the groups. Hence their
interactions were constant and most
beneficial. The experimental aspects
of their research was done with the

help of the powerful computer alge-
bra system Magma (an updated ver-
sion of Cayley). For the most part,
they worked on a variety of count-
ing problems in finite group theory
motivated by the question: What is
the probability that two group ele-
ments commute? (This question
was originally considered by the leg-
endary Paul Erd6s and his associ-
ates.) In partioular, Gary's students
managed to show that the probabil-
ity that a pair of elements in a finite
group generates a cyclic subgroup is
either 1 or at most 5/8. Moreover, a
finite group has either a unique cen-
tralizer or at least four centralizers,
and it has four if and only if the
group, modulo its center, is the
Klein four-group. One of his stu-
dents (|ordan Ellenberg, who was a
multiple winner of both the USA
Mathematical Olympiad and the
Putnam Examination) also managed
to show that the probability that a
triple product is rewritab[e (that is,
xyz e lxzy, yxz, zxy, yzx, zyxl) is
either 1 or at most 17/18.

For a complete listing of the tech-
nical reports and the articles based on
them, the reader is referred to Rose-
Hulman's Web site (http://www.rose-
hulman. edu I Class I ma I HTML/REU/
NSF-REU.html); to obtain copies
thereof, please contact the secretary
o{ our Department of Mathematics.
A more complete description of
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Dr. Sherman's program can be found
in an article published in the Decem-
ber 1992 issue of PR.IMUS (Volume tr,
Number 4,,pp.289-308). For a com-
plete listing of the 20 REU sites in the
area of mathematics in 1997 , please
see the NSF's Web page (http:ll
w-rvw.nsf . gov/mps/dms/reulist.htm).
I strongly recommend to my readers
to explore the problems addressed in
the various REU programs, they
should provide excellent sources for
their mathematical investigations.

Another excellent source for
mathematical investigations is the
regular "IJnsolved Problems" col-
umn of The American Mathemati-
cal Monthly. Whiie in general the
problems are more demanding most
of them are well within the exper-
tise of the readers of Quantum.
There is also a column of "Student
Research Projects" h The College
Mathematics lournal, which I also
strongly recommend to my readers.

My reason for suggesting alterna-
tive sources of problems is that this
is my last "Math Investigations"
column. Though I thoroughly en-
joyed writing these columns and the
subsequent interactions with my
readers, all good things must come
to an end. I greatly appreciate the
opportunity provided by NCTM and
NSTA to serve in this capacity, and
I am most thankful to Tim Weber
for his excellent editorial assistance
throughout the years.
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dependence, Missouri) in my March/
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Golkhovoy (St. Petersburg, Russia)
in response to one of the questions
posed in my March/Aprtl l99l ar

ticle ("Adventures Among Pi
sets"). He showed that {13, 24,45}
is a Pr-set for , e {-296, -56, 16241,

[3,8,99] is a P,-set for t e 1-8,232,
l9l2l, ar'd{21, 32,45} is a P,-set for
t e l-656, -415, 1254].

Beiatedly, I also wish to acknowl-
edge the contributions of Phillip
Embree (Centertown, Missouri) and
E:nc Zrzermann ( Sunbury, Pennsylva-
nia) to my fuly/August 1994 ("Con-
structing Triangles from Three Given
Parts") and Septemberf October 1994
('/Constructing Triangles from Three
Located Points") articles, along with
the contributions of |ames F. Murphy
(Bucks Harbor, Maine), Bernardo
Recaman (Bogota, Colombia), Tenie
Remme1 (San Diego, California),
Helio Waldman (Campin as, BrazTll,
Richard Fischer (Princeton, New fer-
sey), Ron Ruemmler (Edison, New
|ersey), and |ohn L. Horst and his stu-
dents (Brent Siegrist, Marcelo Mast,
and Ryan Raines of Eastern Menno-
nite College, Harrisonburg, Virginia)
to my September/October 1993
( "Endless Self-description" ) article. I
was also most thankful to Benjie
Chen (Sunnyville, Califomia) for his
comments on my November/De-
cember 1993 ("Periodic Binary Se-

cluences") article, and to |ason A.
|ones (Phoenix, Maryland) and Robert

I. Veith (Louisville, Kentucky) for
their interest in the problems featured
in my May/lune 199 4 ( "Happy Birth-
day, Uncle Paul") article. Finally, I
wish to call my readers' attention to
a recent article by Harold Reiter (en-

titled "The Chinese Restaurant Ap-
proach to Integer Representation
Problems"), whose preliminary ver-
sion served as the basis for mylulyl
August 1995 ("Finding the Family
Resemblance" ) column. Harold's ar-
ticle appeared in the March 1997 is-
sre of. Mathematics and Informatics
Quarterly. O

George Berzsenyi is a prof essor of math-
ematics department at Rose-Hulman
Institute of Technology in Terre Haute,
Indiana. His e-mail address is
g eor g e.b er z s eny i@r o s e-hulm an. e du.
Quantum is most grateful to Dr. Ber-
zsenyi for the time and effort he has de-
voted to this magazine from its very in-
ception. We hope to see his b5rline on
occasion in futwe jssues.
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AT THE
BLACKBOARD I

Whil{Mnds ottel' Iho rultttuay

"The end of the runway rushes toward us,

Moscow lnstitute of Physics and Technology

I T'S ALWAYS EXCITING TO
I ,rr." otr rn an arrprane/ Dur 1r

I yo.r r" ,r, , ,-r,i prane, you
I would do well to leave plenty oi
room between you and the jumbo jet
taking off in front of you. Have you
ever seen a pigeon land on dusty
ground? You can see the vortices
produced, because the dust particles
are stirred up by the flapping wings.
Similar vortices are generated by a
jumbo jet when it takes off. The
plane produces powerful downward
streams of air, and woe to the light
plane that tries to follow the big
plane at this critical moment. The
wings of the small plane may enter
vertical air flows having opposite
velocities, which simply flip the
plane on its back. Because the plane
is still close to the ground, the pilot
doesn't stand a ghost of a chance.
Unfortunately in the annals of avia-
tion one can find numerous reports of
crashes due to this phenomenon. It
stands to reason that vortices on the
runaway are a subject of keen inter-
est to pilots/ atr traf{ic controllers, and
aerodynamic engineers. Although it
is a dauntingly complex subject, we
can certainly gain something by ex-
amining this subject, "vortex kine-
matics," in simplified form.

What is a vortex? It can be ob-
served, say, when water goes down

The call comes: 'Rotate!' and we're off . . ."

-from 
an old song popular at the

by Albert Stasenko

the drain of a sink or bathtub. If the
water contains tea leaves or other
small particles, you can readily see
that the nearer a particle is to the
axis ofrotation, the greaterits linear
( circumferential) velocity. In hydro-
dynamics there is an important con-
cept, the potential vortex, in which
the linear velocity is inversely pro-
portional to the distance from the
axis: v - | lr lfig. I ). The same notion
can also be expressed like this: the
linear velocity times the circumfer-
ence is a constant value, called the
circulation-that is,

v.2nr =t. (1)

(By the way, the same formula also
describes a magnetic field H if we
replace v with H arrd f with 1(cur-
rent).

It's not hard to imagine that a mov-
ing airplane is generally followed by

Figure 2

two vortices moving in opposite di-
rections. Indeed, to counterbalance
the force of gravity, the plane's wings
must send a large amount of air
downward. The air particles then
move sideways and then upward. As
a result of the forward motion of a
plane, these particles move along a
helical trajectory [{tS. 2).

These two vortices can be consid-
ered as mirror reflections of each
other relative to the vertical plane of
symmetry of the a:rrcraft: in figure 3
its component is the OY;axis. The
air streams produced by the right
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Figure 4

and left vortices move downward
along the OY-axis. So this vertical
plane of symmetry plays the role of
an impermeable (for vortices) parti-
tion. Let's imagine a plane flying
over an airfield at a low altitude H.
The ground is certainly imperme-
able for air motion, so the air
streams generated by the two real
vortices will pass parallel to the
ground as well (fig. a). The pattern of
the air streams will look as if there
were another pair of "underground"
vortices that are the mirror reflec-
tions of the two real vortices relative
to the horizontal plane.

Physicists adore analogies: recall
that this pattern is just like that of
a magnetic field generated by four
paraliel wires carrying ec1ual
amounts of electrical current. In fig-
ure 4 the direction of these imagi-
nary curents is indicated by a dot (if
the current flows toward the reader)
or a cross (if it flows away from the
reader). Note that the magnetic field
of a single wire propagates to infin-
ity, but the composite pattern of the
magnetic field generated by four
wires (fig. 4) makes it look as if im-
permeable partitions were between
the fields of each wire! This is the
key point: instead of two real, com-
plicated vortices interacting with
the horizontal plane, we can work
with four simple potential vortices
without any boundary plane. Isn't
that beautiful?

In this approach, any of the four
vortices is located in the total field
generated by the three others. Let's
look at the motion of one of the

vortices-say, number I (fig.5). The
position of its axis can conveniently
be described in polar coordinates. A
point in this system is described by
the length p of a vector drawn to the
given point from the origin and by
the azimuth angle Q {ormed by the
radius-vector p and some reference
line-we'Il choose OY lor this pur-
pose. In this system the velocity
vector v has a radial component yo

and an azimuth component v. that
is perpendicular to the radius-vector.
Now we obtain the velocities gener-
ated by all three vortices (numbers
2, 3, and 4) at the axis of the first
vortex. According to equation (1)/

the left real vortex (number Z) gen-
erates a velocity that is directed ver-
tically downward and has an ampli-
tude

(2.)
v-

f=-2r.2psinQ2n.22

(Here we took into account that
z = p sinQ.) The radial and azimuthal
components of v(2) (fig. 5a) are

--l2l --(2) ---, fcosQvi' = -v" cosQ - - 2n.zp"ir,q,
{2) o\ I-yd . = y" sInq - ," _rp

Here the minus sign means that the
radial component of vectorv(2)is di-
rected opposite the radius-vector.
The velocity v(3) generated by the
left imaginary vortex (number 3) has
only an azimuthal component:

(3) -f'o 2n.2p'

Finally, the velocity la) produced by
the right imaginary vortex (number
4) has the following components:

--(+t f sinQ'P 2n.ZpcosQ'

..(4),o
2n.2p

Both the radial and the azimuthal
velocity components can be ex-
pressed in terms of the correspond-

Figure 5

ing time derivatives of the polar co-
ordinates:

Ao
'o - Lt'

A0vo=Pat'

These are the components of the
sum of the velocities formed by the
three vortices. (Note: in contrast to
the great Baron Munchausen, the
vortex 1 can not act upon itsei{.) So

Ap r ( cosQ sinQ)
N: 2".2p1.- r*ro - 

"oro.,l'

^oI-Ql'At 2n.2p

Thus we have obtained a set of
kinematic equations-that is, the
mathematical relationships be-
tween the space and time variables.
Now we'll try to solve this sys-
tem-nothing is impossible for in-
trepid Quantum readers! First, let's
divide one equation by the other to
eliminate time. In this way we

H

/z
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obtain a relationship between the
radial and azimuth coordinates of
the vortex axis:

Ap

pAQ

sin2q-cos2q _ cos20

while the first equation of this sys-
tem yields a value for the vertical ve-
locity with which both vortices de-
scend to the ground:

Ap f cos2Q

-=--A, - 2nrprorQ"*O'

because p sin Q : l, where J is the
distance between the vortices.

Plugging equation (3)into the sec-
ond ecluation of system (2), we get

a(zo) 
= 

I lr
sin2 2q 2n p?-'

Again we have obtained an equation
with separated variables: the azi-
muth of the vortex axis is on the left,
while the time variable is on the
right. Integrating this equation
(again we can use a table of integrals)
we have

f11
_f

2"f^' = trtt2qo - t^o21' l4l

where the angle Qo corresponds to
the initial moment t : 0 (when the
vortices were formed behind the air-
plane). Figure 5a shows that
tango = lf 2H, where H is the altitude
of the plane.

So we see that the equations (3)

and l\ completely define the posi-
tions of the vortex axes at any mo-
ment in time. For example, for t -+
- we have tan 2g -+ 0, so S -s nlZ,
and p -+ -. Therefore, the vortex
axes diverge and spread parallel to
the ground. In doing so, the radial
velocity Ap/A, becomes the horizon-
tal velocity of the vortex axis:

Aof
____VZ@

At 2n^

for S -+ nlL.
Let's estimate this velocity. Ac-

cording to the theorem formulated
by Nikolay Yegorovich Zhukovsky,
the lift (which in horizontal flight is
equal to the aircraft's weight I4l) is
determined by a simple formula

W:lp,ul,

where p, is the density of the atmo-
sphere and u is the velocity of the
plane. For example, let's consider a

flight at an altitude equal to half the
distance between the vortices:
H : U2.In-this case, Qo = nf 4 and
po: p- : ^@;f, :Hi"'E =U"8,
which gives us

w"l,
' z@ 

2np^u12'

To estimate this value, let's assume
the following parameters for a
jumbo jet taking o[f: m: 300 t,
W=mg:3 106N, 1=50m,
u = 100 m/s, p, = 1 kg/m3. The vor-
tices will move to the right and to
the left with a velocity

v.*=2.5 mf s.

All our reasoning is valid when
the air is calm. Now imagine that a

cross wind blows from the right
with the same velocity, 2.5 m/s. In
this case the right vortex of a heavy
plane will remain over the rufiaway,
and it will hinder the next plane tak-
ing off until it dissipates.

And now, bon voyage-rnay all
your flights be vortex-free! O

Uisil
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sind cos d I
_ srnZQ
2

Here we reduced the right-hand
term to a common denominator and
used the trigonometric formulas for
the sine and cosine of a double
angle. Multiplying both sides of this
equation byAQ, we separate the vari-
ables according to mathematical ter-
minology: the left side depends only
on Ap, while the right side depends
only on S. Thus

Ap _ _ 
cos2Q' A(20) _ _ 

A(sin20).
p sin2Q sin2Q

(Remember, the derivative of a sine
is a cosine.) Finally, simple integra-
tion (one can look it up in a table of
integrals) yields

, o , sin2Q.
l1-l-; ln-p. *" 

sin2Q '

OI

p _ sin20.
p. sin2Q '

where p- is the value of the radius-
vector corresponding to some
angle 9". Clearly the radius is mini-
mal p- when sin 2Q : l-that is,
when 0 = nl4. Thus we have

p= 1

p- sin2Q

What a nice relationshipl
Now we know what the compo-

nent of the vortex axis on the verti-
cal plane looks like. First, it's sym-
metric relative to the bisector of the
right angle YOZ. Second, when
Q -r 0 or Q -> nf 4, the value of the ra-
dius-vector tends to infinity. Con-
sider, for example, the case when
Q --> 0, p -+ - (that is, when the air-
plane is high in the sky). The second
equation of system (2) shows that
the azimuth velocity tends to zero
(so the vortex velocity is vertical),

OI

I-

2rl- " Y-'

(3)
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AT THE
BLACKBOARD II

Hemal'kahle limils

(Generated by classical means)

by M. Crane and A. Nudelman

OR ANY TWO POSITIVE NUMBERS a AND b,
the number (a + b)12 is called their arithmetic mean,
and the number "l ab iscalled their geometric mean.
We encounter these two mean values more often

than the harmonic mean 2abl(a + bl of a and b (for ex-
ample, the average speed of a car thattravels the first half
of a trip at a speed a and the second half at a speed Zr is
equal to the harmonic mean of a and b). Ati these mean
values lie between the numbers a and b (readers are in-
vited to check this themselves).

It's easy to verifyl that the following inequalities hold
for all positive a * b:

2ab 
- 

a+b
a+b 2

In this article we'llbe using limits tor avery specific
purpose. Say we're given two positive numbers a andb,
a <b.If we calculate apau of their mean values, we ob-
tain the numbers a, and br. Further, we can calculate
the same mean values fora, andb1, and thus obtain the
new numbers aran.d br. Then we repeat this procedure
with these two numbers, and so on. As a result of this
activity, we get two number sequences: (arl andlbrl.

For example, if we take the geometric mean and the
arithmetic mean of the numbers 1 and 3, we get

or= Jd = 1.732050808, br=2;
ar= 1.851209718, br= 1.85025404;
as=1.863616006, br=1.863617561;
ao= 1.863516784, bo= 1.863616784;

etc.

We see that the sequences la,l and (b,l in this ex-
ample converge very quickly to each other. Will this
always be so? It turns out that sequences of this sort a1-

lSee, for example, An Introduction to Inequalities by
Edwin Beckenback and Richard Bellman (Washington:
Mathematical Association of America, 196ll.-Ed.

ways have a common limit. It's not difficult to prove
this statement. But how can we find the limiting value?

Al'ilhmetic-]tarlnoltir lneatt

We'Il start with the case when the chosen pair of
mean values consists of the arithmetic and harmonic
means. Thus the terms of the sequences (a,) ar.d(brl are
defined by the formulas

2a,bn

ar, +bn'

(n : l, 2, ..,i ao= a; bo= bl.
It follows from inequality (1) that

a < anl an*r<bn*r.bn.b

-that is, the sequence (ar) increases to "meet" the de-
creasing sequence (br).

Thus both sequences are monotonic and bounded;
therefore, in accordance with Weierstrass's theorem,

they tend to the limits o = l53r" and B = ]g1b". 
Pass-

ing to the limit in one of the equalities (2)-for example,
in the second one-we find

F=lgb, r,=l*%*=i(m"
and thus o: B-that is, sequences (a,) and (bnlhave a
common limit. This limit is called the ailthmetic-
harmonic mean of the numbers a and b. Let's find it
algebraically.It follows from equalities (2) that

ar*l.bn*t= arr.b, arbr: ab,

and so

a.2' l*o" r lg3r" = lrgr" 
.Iimbn

)= ab'

, a. +b.n .="n+t 2 12)

(1)

.l1io,)=j("*o),

,'2
=[li-r-]=

\n+- )

=Li-ra(anxbn

(6

o:
C
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Therefore,

a=lab =B

(the arithmetic-harmonic mean coincides with the geo-
metric mean).

Exercise 1. Prove that

bn-an.T

We see that the sequences (aol and (br) converge
rather quickly to \tm . So they might prove useful when
one wants to find an approximate value for the square
root of some number. To calculate Jc, the sequences

la,l and(b,) should start with numbers a and b such that
c = ab (for instance, a: l,b : c), and the smaller the dif-
ference between a and b, the faster this process con-
verges. So, if we want to calculate J55, we had better
take a = 7, b : B, and r;.ot a : L, b : 55. It's easy to check
that the sequences lanl and (b,) satisfy the formulas

In order to illustrate this reasoning, let's calculate 
^h2

and take b :4.Wehave

a,=!(o*fl=,u,2[ 4 )
b, 

= 
3.454285715,

fu = 3.464tO1620,

ba 
= 

3.4641OL615,

and from this point on, all the decimal digits up to the
ninth remain the same: "fi2 =3.46410L615.

Anifi melic-UeolnsFic lnealt
When Carl Friedrich Gauss was fourteen years old,

he discovered, on the basis of numerical examples, that
when the sequences (a,) and (b,l are calctlated by
means of arithmetic and geomefiic means

l1An.l=l1n0n, Dn_l=
ar, +b,

(o = 0, I, 2, . . .i ao : a, bo: bl, they converge very quickly.
Exercise 2. Prove that there exists a common limit

of the sequences (3).

This common limit is called arithmetic-geometric
mean of the numbers a andb and is denoted by p(a, bl.
It's not at all easy to find an explicit formula that would
express pla, b) as a function of a and b.The first person
to find such a formula was Gauss himself. He obtained
it by means of extremely sophisticated and i.ngenious
reasoning that used the properties of elliptic integrals.

v(a,b)=
TE

rl2

,T
0

dx
lffi

"tl a' stn' x + b' cos' x

By the way,7f we "invert" this expression, we obtain a
f.astway to compute the integral in the denominator: it's
equal to rlpfu, bl, and an approximate value of. pla, bl
can be found rather quickly by means of the sequences

la,l and(b,1.

Geomell'ic-]tarlnotth lnsalt
If we construct the sequences (aol and lb 

") 
bv means

of the harmonic and geomeftic means

We'll offer this expression without a proof:

2arb,

2 ' br*t
trI

\on bn

. r(. c) cbn+t==lbn+, l, an+r=1-
z\ D") 0n

U-,1- bn+r={M $)ar, + bn'

(n : 0, l, 2, ...; ao= a,bo = bl,it's not hard to prove that
they converge to a common limit. Let's call this limit
the geometric-harmonic mean of the numbers a arrdb
and denote itby v(a, b). However, there's nothing new
in this case, if we compare it with the sequences (3),

since we find immediately from formula (41 that

11_+_
lanbn

-=
an+l

Therefore,

_r (r 1)
i@D=vla'i)'

or, by Gauss's formula,

(3)

v(a,b) =
zob"tt' dxrII r ) ,') )"o \ d- CoS- x + D- sln- x

$druaFtcflen[mg mean

So only the first of three mean values-arithmetic-
harmonic, arithmetic-geometric, and geometric-har-
monic-can be expressed in an elementary way as a
function of the original numbers a and b. Even more
surprising, a slight change in the sequences (3)produces
sequences whose common limit can be written as an
elementary function of a and b (although the word "el-
emefltary" doesn't mean that it is easy to find this
limit!). Put

a- +b-an+l=-T,bn+r=

ln = O, L,2, ...; ao= a't, bo= bl.

42 JUrY/rttGU$T rssT
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Figure 1 Figure 2

Exercise 2. Prove that there exists a common limit
of the sequences (5).

This limit is called the Schwab-Schenberg mean.
Let's find it. It's curious that it can be derived from el-
ementary geometrical considerations.

Figure 1 shows an isosceles triangle AOB with iegs

lOAl : lOBl = b and altitude lODl = a (the angle at vertex
O is denoted by 2Q), and also shows the arc ACB of the
circle with center at vertex O and radius b llocl LlABl.
LetlArBlbe the line joining the midpoints of sides lACl
and lBCl of triangle ABC.Then

loql = lool + loql = lorl-.ry
b-a a+b=A+ Z = , =Or.

Since triangLe OA.C is a right triangle,

loel' =loorllocl= arb,

loa,l= {arb =br.

Thus we see that the numbers a, and b, are obtained
from the numbers a andb alter asimple geometric con-
struction, and that the segment of length a, is again the
altitude drawn from the vertex of an isosceles triangle
with lateral side br. We note further that

tA1OB1 = Q, l,q,r,l = |l"ut

If we make similar constructions with the triangle
A.OB, we obtain the isosceles triangle AzoBzlfig.2l,
in which

loorl= ar,

loerl=lonr1=6r,

A.OB" =9.
2',

le,n,l = |lo,u,l = )le al.

Figure 3

Repeating this construction n times, we obtain the
triangle A,OBowith altitude lOD,l : a,arrdlateral
sides

loe,1=loBnl=bn,

ZA-OB- = --E-
2n-1',

le,a,l= llaal.l ll| 
2,' 

I

Now let's draw an arc of the circle with radius
b, corresponding to the central angle 2Q and then di-
vide it into 2n congruent arcs. If we sequentiaily con-
nect the points into which the arc is divided by
chords, we obtain a regttl.ar 2"-link broken line in-
scribed in this arc. Its length is equal to
znlAnBnl : lABl.This broken line is circumscribed
about the arc of the circle with the same center and
central angle and with radius anlfig.3). Since the pe-
rimeter of this broken line is confined between the
lengths of the arcs, we have

2Qa,.lABl < 20b,,

and thus

2Q hm a n < legl < 2Q lirnb,.
.n-)e

Since lrg3a,=!\b,, we see that the common limit
o is given by the formula

I,.-

*_"',lb'-a'
a

AICCOS-
b

Finally, we note that if a = l12 andb : ll nli, we
have cx = 2ln; thus sequences (5) allow us to calcu-
late the number ru with an arbitrary degree of pre-
cision. O
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FUNDAMENIALS

lnlernal EltErUy and heal

Why does "Q" appear in the reference tables and not "AU"?

by Alexey Chernoutsan

HE CENERALIZATION OF
the law of conservation of en-
ergy for thermal processes pro-
duced two new notions. First,

the very concept of energy was
broaden in such away that, in addi-
tion to the widely known mechani-
cal energyE-""h, it now included the
internal energy U. Second, scientists
rcalized that one need not perform
mechanical work to change a

system's energy-during heat ex-
change, energy is transferred from a

warm body to a cold body at the
molecular level without any macro-
scopic mechanical motion. The
amount of energy transferred via
this mechanism is called heat Q.
Both of these notions are present in
the new form of the law of conser-
vation of energy:

Q:LU+W,
where I4l is the work performed by
a system against the external forces.
We can write this law in a more gen-
eral form that takes into account a
possible change in the mechanical
energy:

Q:A(U+E-""6) +lf.
This "full strength" version of

the law is used in textbooks only
when processes involving ideal
gases are being discussed, because
these gases can change their volume
significantly, and this is accompa-
nied by mechanical work. Clearly in
this case all three terms of the law
of conservation of energy play

equally important roles. For ex-
ample, during an isobaric process
both the temperature and the vol-
ume of agasYaryt so we need to take
into account both the change in the
internal energy of the gas and the
work it performs.

However, in problems where the
"participants" are liquid and solid
bodies, we usually apply formulas for
heat transmission that describe the
amount of heat transferred during the
process of warming and cooling:

q = cmlTr- T1l;

melting and freezing:

Q : +mLu

or evaporating and condensing:

Q: +mLu.

Here c is the specificheat, m is the
body's mass, 7is its temperat:ute, L,
is the latent heat o{ fusion, and I, is
the latent heat of vaporization.
These formulas are used in the most
natural and logical way to construct
the thermal balance equation de-
scribing the heat exchange between
bodies in a closed (that is, thermally
isolated) system. In the process of at-
taining thermal ecluilibrium, these
bodies exchange heat, so the formu-
las for heat transfer are quite natu-
ral here (although, as we'Il see later,
some doubts exist even in these
cases).

However, in problems involving
conversion of mechanical energy into
thermal energy/ the situation isn't so

clear. Consider a simple example: the
inelastic collision of two identical
balls moving toward each other with
equal velocities. In determining the
temperature to which the balls will
be heated, we usually say that in this
case all the mechanical energy is con-
verted to heat, and then we apply the
formula that describes the amount of
heat necessary to warm the bodies.
The resulting equation

nfrv2 .^.L- - zvIllLT
2

settles the issue. Still, a natural
question arises: why is the formula
for heat transmission applied in this
case, where no heat exchange occurs
at all? The answer is that the phrase
"er:.ergy is converted to heat" refers
not to heat transfer but to the
change in the internal (thermal) en-
ergy, described by the law of conser-
vation of energy: AU + AE-""n : 0. So

we should apply formulas describing
the changes in the internal energy
rather than those describing heat
exchange relationships, What are
these formulas?

Let's leave melting and evapora-
tion for a while to investigate how
internal energy depends on tempera-
ture. But why only on temperature?
The question should be put like this:
how does internal energy depend on
pressure and temperature? Indeed,
the state of a system is determined
by two parameters, so internal en-
ergy must depend on both of them.
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Only the energy of an ideal gas de-
pends on a single parameter (tem-
perature), but this isn't the case for
liquid and solid bodies. However, in
most problems the pressure can be
considered constant (equal tot sayl
the atmospheric pressure). So in
these problems it's sufficient to es-
tablish the dependence of internal
energy on temperature at constant
pressure. Note that, strictly speak-
ing, the aforementioned formulas
for heat transfer have to do with iso'
baric processes/ so reference books
give not an arbitrary value for the
specific heat c, but the specific
heat c, corresponding to constant
(atmospheric) pressure.

If the pressure as well as the tem-
perature varies in a particular case,
it's useful to know that changes in
external pressure of a few atmo-
spheres produce rather small varia-
tions in internal energy. For ex-
ample, a l-atm increase in the
pressure applied to water at a tem-
perature of 300 K results in a de-
crease in internal energy of about
10 |/kg. On the other hand, heating
a body by I K increases the energy
by 4,200llkg.

Let's return to the topic at hand.
Say we warm a body by AT at con-
stant pressure and write the law of
conservation of energy for this pro-
cess. The amount of heat necessary
forwarmingis Q: cmLT. Thework
performed against external forc,es
W = PLV, where AV is the increase
in volume due to the thermal expan-
sion: AV = YpAT = (mlplBtT (where
p is the body's density and B is the
coefficient of thermal expansion).
The law o{ conservation of energy
Q : AU + I4lresults in a formula de-
scribing the change in internal en-
ergy:

nu =(c-0]-ar,I P,l

which differs from the correspond-
ing heat transfer formula by a negli-
gible value (the correction for the
heat capacity manifests itself only in
the ninth decimal place). Therefore,
to evaluate the change in internal
energy, we can confidently apply a

formula like the one for heat trans-
mission-that is, LU = cmLT.We
should keep in mind however, that
there is an important difference be-
tween these formulas: the formula
describing the change in internal en-
ergy is valid not only for the process
of heat exchange, but also for any
other mode of changing the intemal
energy (for example, by collision).

Let's go further. Changes in vol-
ume are often much more pro-
nounced in the processes of melting
and crystallization than during the
heating of a body. For instance,
when water fteezes, its volume in-
creases by approximately 10%,
which corresponds to 10 | of me-
chanical work performed by each
kilogram of water at atmospheric
pressure. This is a negligibly small
value compared to the latent heat of
fusion Lr:3.34. 105 J/kg, so the cor-
rection to this large value due to the
mechanical work shows up only in
the fi{th decimal place. Again we see

that to calculate a change in internal
energy we can apply formulas for
heat transmission. And again, the
formulas for internal energy can be
used regardless of how this energy is
changed.

The last process we'II examine is
the evaporation of a liquid. We'llas-
sume that evaporation takes place in
a cylinder beneath a piston that
maintains a constant (atmospheric)
pressure in this closed system equal
to the saturated vapor pressure. At a
given pressure/ evaporation proceeds
at a particular temperature (for wa-
ter at atmospheric pressure, it's
373 K). Let's estimate the mechani-
cal work performed by the vapor,
taking into account that its volume
is much larger than that of the
evaporated liquid:

W = P(V,^r- Y,*) = PVvap = #or,
where M is the molar mass of the
substance. The corresponding
change in the internal energy is

and so the relative correction to
the latent heat of vaporization is
RTIML, = 0.O76, or almost B%.
Clearly in this case the change in
internal energy differs significantly
from the latent heat of evaporation.

Well, after going through so
many arguments "infavor of" inter-
nal energy, we might still wonder
why the formulas for Q are taken to
be fundamental, and not those for
AU. Why do the reference books all
give values for the latent heat and
not for changes in internal energy?
To answer this question, let's look
at the heat balance equation, one of
the most important practical appli-
cations of the thermodynamic for-
mulas.

What is the correct form of the law
of conservation of energy to describe
heat exchange in a closed system? At
first giance we might think it should
look like LU = 0, where U is the to-
tal internal energy/ which can also be
written as AU, + LUr+ ... :0. How-
ever, this is not correct. If the system
includes bodies whose volumes
change significantly (gases, vapors),
the work performed by the system
against external forces will not be
zerol so the total internal energy will
not be constant/ even though AU +

W : 0. Let's write down the law of
conservation of energy for every
body in the system- Q, = LU , + W 1,

Qz : LU 2 + W r, ...-and add them all
up. Since the total work performed
by the bodies as they interact is zero
(whichfollows from Newton's third
law), the sum I4l, + Wr+ ... is equal
to the work lAlperformed against the
external forces only. Since AU, +

LUr+ ...: LU, andAU +W:0,we
can write the law of conservation of
energy in this form:

Qr * Qz + ... :01.

This means that the exact ecluation
for thermal balance in fact deals
with the amount of heat transferred
between the bodies in the system/
and not with the changes in their
internal energies. So the reference
books are doing the right thing after
all. But it was fun to raise doubts
about them, and even more fun to
dispel these doubts. O

au=(r. -#)-,
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FEEDBACK

Caution: ltu ail' hrake$ ult lhis planet!

But is there another braking mechanism?

by David P. Stern

they will end up co-rotating as well.
The fifference here is that because

the ionospheric plasma has a high
electrical conductivity, the motion of
ions near Earth is communicated
electricaliy along the entire length of
the magnetic field line (or "line of
force"l. The result is that ions strung
out along a field line tend to move in
such a way that they continue shar-
ing a field line at later times as well.
If ions at the low end of the field line
rotate with the Earth, those further
away will also tend to co-rotate/ even
in the absence of collisions.

Does this happen? Observations in
space suggest that the ionospheric
plasma on field lines that close within
about 5 Earth radii (32,000 km) share
the Earth's rotation, forming a

"plasmasphere" that rotates with the
Earth below.

On field lines that close at greater
distances-those of the auroral zone
and the polar regions-the process is
more complicated. The ionospheric
ends of those field lines will stilltry
to co-rotate, though one must real-
ize that the rotation speed so close
to the pole is rather slow. But the
distant ends of the lines may be an-
chored in a distant medium that
does not allow them to co-rotate.

Lr a rarefied plasma, field lines tend
to channel electric currents/ as i{ those
lines were copper wires. I{ the Earth end
of each field line rotates with Earth
while the distant end is not allowed to
do so, a "fluid dynamo" is created be-
tween the distant reg.on and the iono-
sphere. That "dynamo" (see http:ll
www-spof . gsf c.nasa.gov/Education/

wcurrent.hffnl on the WorldWide Web)
drives an electric currenti around a cir-
cuit that includes parts of both regions,
as well as connectingfieldlines, andthe
magnetic force i x B exerted on the cur-
rent through the ionosphere by the
Earth's magnetic field acts as a brake
(the current also distorts the field
lines). Such a dynamo in fact exists
between |upiter's ionosphere and the
planet's moon Io, whose orbital mo-
tion lags behind the ionospheric
plasma's rotation (see http://www-
spof . gsf c. nas a.gov/Education/
wio.html).

Starting with the " Tiad" spacecraft
n 197 3 (htp://www-spof .gsfc.nasa.gov/
Education/wtriad.html), satellite obser-
vations have mapped currents between
the ionosphere and distant space gener-

ated by the relative motion of the two
media (ionospheric and distant). The
curents turn out to be quite large-
of the order of a million amperes.

The pattem of these currents, how-
ever/ suggests that the relative mo-
tion to which they respond is not the
one due to the Earth's rotation.
Rather, it represents the motion of
distant space plasmas to which those
lines maybe linked, especially the fast
flow (= a00 km/s) of the "solar wind"
spreading out radially from the Sun.

The effect of the ionosphere's rota-
tion seems to be negligible. Thus, not
only does the Earth lack an " atrbrake,"
it does not seem to have much of a
magnetic brake, either. O

David P. Stern is a physicist at the
Goddard Space Flight Centar in
Greenbeh, Maryland. His e-mail ad-
dr es s is u5 dp s@lepv ax. gsf c. nas a. gov.

HE ARGUMENTS OF ACRA-
wal and Menon ("A Planetary
Air Brake," March/April 19971
are flawed by the assumption

that some outside force prevents the
high atmosphere from rotating with
the Earth. They suggest this occurs
ttear aheight of ft = 105 m: 100 km,
assume a viscosity q and a laminar
velocity gradient, and proceed to cal-
culate the resulting resistance to the
Earth's rotation.

But there seems to exist no such
force, and the atmosphere at 100 km
appears to rotate with the Earth.
High-altitude rocket payloads have
released clouds of sodium andbarium
vapor at these altitudes, and those
clouds are not held motionless while
the Earth rotates beneath them.

In a coilision-dominated gas, vis-
cosity is practically independent of
density. However, as one rises above
100 km, one soon enters the region
where most atoms and molecules
move on ballistic paths, with hardly
any collisions, and the effective vis-
cosity of the atmosphere becomes
negligibiy small, because in a perfect
vacuum there is no viscosity. One
does not expect any "airbraking" the
more so since there exists no object
outside the atmosphere to which an-
gular momentum can be transferred.

There could, however, exist an
electromagnetic brake, involving
the ions of the ionosphere, extend-
ing upward from around 100 km.
These ions collide with atoms and
molecules of the neutral atmo-
sphere, which shares the Earth's ro-
tation, and if that is the only factor,
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IN DEX

Uolume I (l 090-97)
Adding Angles in Three Dimensions
(taking a plane theorem into the
realm of polyhedrons), A. Shirshov
and A. Nikitin, May llun97, p46 (At
the Blackboard)
The Advent of Radio (why radio was
invented when it was), Pavel Bliokh,
Nov/Dec95, p4 (Feature)
All Sorts of Sorting (classification
algorithms), P. Blekher and M.
Kelbert, lull Au,g97, p 12 (Feature)
Are You Relatively Sure? (relativity
in its many forms), A. Leonovich,
Sepf Oct96, p32 (Kaleidoscope)
The Ashen Light of the Moon (the
how, when, and why of a faint lunar
glow), Alexey Byalko, Sep/Oct96,
p40 (In the Open Air)
Ax by Sea (actually, ax + by : c: ap-
proaches to Diophantine equations),
Boris Kordemsky, Nov/Dec96, p22
(Feature)

Below Absolute Zero (who said it's
impossible?), Henry D. Schreiber,
lanlFeb97, p23 (Feature)
Billiard Math (reflections on simple
optical reflection), Anatoly Savin,
Nov/Dec96, p28 (Kaleidoscope)
The Bombs Bursting in Air (a look at
sample problems and their social
significance), Arthur Eisenkraft and
Larry D. Kirkpatrick, Sepf Oct96,
p34 (Physics Contest)
Borsuk's Problem (n-dimensionality
meets combinatorics), Arkady
Skopenkov, Sep/Oct95, p1 5 (Feature)
Bottling Milk (so many bottle
sizes!), Dr. Mu, MarlApr9T, p63
(Cowculations)

Can You See the Magnetic Field? (us-

ing a TV as a detector), Alexander
Mitrofanov, lull Aug97, p 1 B (Feature)
Chess Puzzles and Real Chess (what
happens when the two worlds inter-
sect), Yevgeny Gik, Sepf Oct96, p64
(Toy Store)

A Clock Wound for All Time (the
Earth as a timepiece-can it mea-
sure its own age?), V. I. Kuznetsov,
May llun97, p25 (Feature)
Colder Means Slower (the Arrhenius
ecluation), Henry D. Schreiber, lu.ll
Aug97, p4 (Feature)
Color Creation (partial "rainbows"
in oil slicks), Arthur Eisenkra{t and
Lalry D. Kirkpatrick, Mayfl:;n97,
p36 (Physics Contest)
The Complete Quadrilateral (definition
and peculiar properties), I. Sharygin, JuV
Au$7, p2B (Ikleidoscope)
Confessions of a Clock Lover (the
cosmic consequences of switching
hands), V. M. Babovii, Sepf Oct96,
p44 (Horoiogical Surprises)
Counting Problems in Finite Groups
(problems from Research Experiences
for Undergraduates), George Berzsenyi,

lull Aup7, p34 (Math Investigations)
Creating Scientist-citizens (thoughts on
"scientific ltteracy"), Bernard V.
Khoury, MarlApgT, p2 (FrontMatter)
The Creative Leap (Einstein's sci-
ence-everyone's science), Gerry
Wheeler, lanlFeb97,p2 (Front Matter)

The Demoflush Figure (algebra
where you least expect it), Linda P.

Rosen, l:uJlArg97, p2 (Front Matter)
Desperately Seeking Susan on a Cyl-
inder (a geometric approach to search
and detection), A. Chkhartishvili and
E. Shikin, }darf Apr97, p10 (Feature)
Do You Promise Not to Tell? (uses

of constructive and destructive in-
terference), Arthur Eisenkraft and
Larry D. Kirkpatrick, I an f F eb97, p30
(Physics Contest)
Does Elementary Length Exist? (sur-
prising implications of relativity and
quantum mechanics), Andrey
Sakharov, May flun97, p14 (Feature)

Embedding Triangles in Lattices (a

classic problem from Math.Note at

DEC), George Berzsenyi, Sep/Oct96,
p38 (Math Investigations)
The Equalizer of a Triangle (a clever
line that does double duty), George
Berzsenyi, MarlApr9T, p51 (Math
Investigations)

Fair and Squared! (quadratic equa-
tions in physics problems), Boris
Korsunsky, Mayllun9T, p53 (At the
Blackboard)
Feeding Rhythms and Algorithms
(premier of computing column), Dr.
Mu, Nov/D ec9 6, p37 (Cowculations)
The First Bicycle (each wheel con-
sisted of two sticks), Albert
Stasenko, lanlFeb9T, p44 (At the
Blackboard)
A Flight to the Sun (the challenges
of sending a probe to the nearest
star), Alexey Byalko, Nov/Dec96,
p15 (Feature)
From Cherokee Math to Tubby
Genes (educational content on the
World Wide Web), Tim Weber, May/
lun97, p2 (Front Matter)
From a Roman Myth to the
Isoperimetric Problem (searching for
the greatest area given ec1ual perim-
eters), L F. Sharygin,lanfFeb97, p34
(At the Blackboard)

The Game of Battleships(achieving
naval superiority on a paper sea),
Yevgeny Gik, Nov/D ec96, p56 {Toy
Store)
The Green Flash (an unqsual spec-
tacle at the ciose of day), Lev
Tarasov, lanlFeb9T, p38 (In the
Open Air)

Farewell to |CMN (in memory of Ba-
sil Rennie), George Berzsenyi, Mayf
lun97, p40 (Math Investigations)
In Foucault's Footsteps (a simple
experiment on the Coriolis force),
M. Emelyanov, A. Zharkov, Y.
Zagarnov, and V. Matochkin, Nov/
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Dec96, p26 (In the Lab)
In Memoriam: Paul Erdo[0178]s
(1913-1996) (an appreciation of the
great problem master), George
Berzsenyi, Nov/Dec96, p40 (Math
Investigations)
Inscribe, Subtend, Circumscribe
(variations on a geometric theme),
Vladimir Uroyev and Mikhail
Shabuniq Nov/Dec96, p10 (Feature)
Internal Energy and Heat (why Q is
in the reference tables, not [D]U),
Alexey Chernouts an, l:ulf Aug97 ,

p3B (Fundamentals)
Irrationality and Irreducibility (how
are they connected?), V. A.
Oleynikov, May llur97 , p22 (Feature)

Let's Not Be Dense About It! (facts,
questions, and problems about den-
sity), A. A. Leonovich, Mayfl:un97,
p32 (Kaleidoscope|
The Long Road to Longitude (how
we finally became "coordinated"),
A. A. Mikhailov, MarlApr9T, p42
(Looking Back)
Lunar Miscalculation (how to get
stranded in the pitch-dark moun-
tains), Bill G. Aldridge, Nov/Dec96,
p2 (Publisher's Page)

Magnets, Charges, and Planets (the
search for connections among
forces), Albert Stasenko, ly'ray lltn97,
p42 (At the Blackboard)
Mars or Bust! (problems related to
exploring the Red Pianet), Arthur
Eisenkraft andLarry D. Kirkpatrick,
Marf Apr97, p34 (Physics Contest)
Merry-go'round Kinematics (a dy-
namic game of cherry tossing),
Albert Stasenko, Sep/Oct95, p4B (At
the Blackboard)
The Multidimensional Cube (an in-
troduction to multidimensional
space), Vladimir Dubrovsky, Sep/
Oct96, p4 (Feature)

The Name Game of the Elements
(confusion and politics in chemis-
try), Henry D. Schreiber, Sepf Oct96,
p24 (Featurel
The Nature of Light (the Compton
effect), Arthur Eisenkraft and Larry
D. Kirkpatrick, Nov/Dec96, p30
(Physics Contest)
Not All is Revealed (the Uncertainty
Principle and other forms of indeter-

minacy), Albert Stasenko, Nov/
Dec95, p42 (At the Blackboard)

Of Combs and Coulombs (a smor-
gasbord of electrical questions and
facts), A. Leonovich, lanfFebg7, p28
(Kaleidoscope)
On Kaleidoscopes (a look at them in
all their dimensions), E. B. Vinberg,
May flun97, p4 (Feature)
Out Standing in the Field (diwyrng up
the purse in a shortened season), Dr.
Mu, fut/Aug97, p55 (Cowculations)

A Physics Souffl6 (having enough in-
formation, or too much), Arthur
Eisenkraft arrd Larry D. Kirkpatricll
lillAug97, p30 (Physics Contest)
A Planetary Air Brake (viscous drag
and the slowing of the Earth), D. C.
Agrawal and V. |. Menon, Mar/
Apr97, p40 (At the Blackboard)
A Prelude to the Study of Physics
(models and their role in science),
Robert |. Sciamanda, Nov/Dec95,
p45 (Fundamentals)

Questioning Answers (in every end-
ing is a beginning), Barry Mazrr, lanf
Feb97 , p4 (Feature)

Remarkable Limits (generated by
classical means), M. Crane and A.
Nudelman, ldlAtg97, p34 (At the
Blackboard)
Resistance in the Multidimensional
Cube (a physicai application of a
math concept), F. Nedemeyer andY.
Smorodinsky, Sep/Oct95, pl2 (Fea-
ture)
Revisiting the N-cluster Problem (a

classic problem from Math.Note at
DEC), George Berzsenyi, I anlFeb97,
p47 (Math Investigations )

A Revolution Absorbed (how non-
Euclidean geometry entered the
mainstream), E. B. Vinberg, |an/
Feb97, p18 (Feature)
Rubik Art (monumental designs
built from the classic cube), May/
lun97, p31 (Toy Store)

Seeing is Believing (visual proofs of
the Pythagorean theorem), Daniel |.
Davidson and Louis H. Kauffman,
lul I Aug9 7, p24 (E eaturel
Shady Computations (a paradox at
the boundary of dark and light),

Chauncey W. Bowers, Nov/Dec96,
p34 (At the Blackboard)
Slipping Silage (how to calculate the
amount of stolen hay), Dr. Mu, May/
ltn97, p63 (Cowculations)
Solar Calculator (accurate thinking
about precision), BiIl G. Aldridge,
Sep/Oct95, p2 (Publisher's Page)
Squaring the Hyperbola (a different
approach to logarithms and expo-
nents), Andrey Yegorov, Marf Apr97 ,
p25 (Feature)
Stitring Up Bubbles (vapor cones and
vortices in a boiling liquid), T. Polya-
kova, V. Zablotsky, and O. Tsyga-
nenko, Marf Apr97, p52 (In the Lab)
Superprime Beef (superprimes and
repusprimes), Dr. Mu, l anfFeb9T,
p55 (Cowculations)
Swinging foom Star to Stal (accelerating
a spacecraft into the cosmos), \4adirnir
Surdin, Marf Apr97, p4 (Feature)

Three Physicists and One Log
(which physicist bears the brunt?),
Roman Vinokur, MarlApr9T, p48
(At the Blackboard)

Vikings and Voltmeters (report on
the 1996 Lrtemational Physics Olym-
piad), Dwight E. Neuenschwander,
Sep/Oct95, p52 (Happenings 

)

Volumes without Integrals (the
Cavalieri principle), I. F. Sharygin,
Mar I Apr97, p32 (Kaleidoscope)

The "Water Worm" (the Archi-
medean screw), M. Golovey,Ianl
Feb97, p40 (In the Lab)
Whirlwinds over the Runway (vorti-
ces generated by iarge jet planes),
Albert Stasenko, lul I ktg97, p42 lAt
the Blackboard)
Whistling in Space (electromagnetic
signals from outer space), Pavel
Bliokh, Marf Apr97, p18 (Feature)
Why Doesn't the Sack Slide? (impu1-
sive sliding friction), Alexey Cher-
noutsan, Maylltn9T, p50 (In the Lab)
Wobbling Nuclear Drops (macrolaws
in microworlds), Yuly Bru( Maxim
ZeInikov, and Albert Stasenko, |an/
Feb97, p12 (Feature)

Young US Mathematicians Excel in
Bombay (report on the l99SInterna-
tional Mathematical Olympiad),
Sep I Oct9 6, p55 (Happenings)
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Earth & Slry t'adin seefis

sludenlwl'ilens
Students in grades K-12 are in-

vited to write and produce their own
science radio programs for the inter-
nationally syndicated series Earth &
Sky. The Earth & Sky radio series
will broadcast five winning entries
in its fourth annual Young Produc-
ers Contest during the first week of
May 1998. The winning teams will
also win US Savings Bonds. The
winning student programs will be
chosen by a panel of judges from the

HAPPENINGS

Bullelilt Boal'd

broadcasting and scientific commu-
nity. The deadline for the contest is
December 15, 1997.

Earth & Sky began broadcasting
on September 30, 1991, on 30 radio
stations. Today it is heard by mil-
lions on over 650 public and com-
mercial radio stations in all 50
states. Earth & Sky is heard interna-
tionally in 134 countries through
the Armed Forces Radio Network,
Voice of America, Canadian Broad-
cast News Satellite, and Radio for
Peace International (short-wave), as

well as independent stations in the

People's Republic of China, Bul-
garia, Australia, Panama, Taiwan,
and the Netherlands Antilles. The
program is funded by the National
Science Foundation.

Educational materials and other
information about Earth & Sky are
available on the World Wide Web
(www.earthsky.com). You can also
contact Earth & Sky by e-mail
(contest@earthsky.com) or fax (512
477-444r).

A [yherTeasen yott calt hattk olt
The |uly/August CyberTeaser

(brainteaser 8208 in this issue) al-
lowed our Russian colleagues a
chance to poke some fun at their
new breed of financial entrepre-
neurs. The head of the "Pyrarnid
Bank" is named "R. A. Scall"-or
"rascal," if you ignore the periods
(and drop att "L"1. Luckily our con-
testants were not to be distracted by
such silliness. And most of them got
the answer right.

Here are the first ten persons who
correctly timed Mr. Scall's perambu-
lation:

Pasquale Nardone (Brussels, Belgium)
|ohann Visser (Rotterdam, The

Netherlands)
Pelle Hamberg (Lidingoe, Sweden)
Bdan Platt (Woods Cross, Utah)
Keith Frikken (Dakota, Minnesota)
Oleg Shpyrko (Cambridge, Massachu-

setts)
Howard Brown (Idaho Falls, Idaho)
Bob Cotdwell (Albuquerque, New

Mexico)
How Yu Khong (Kuala Lumpur,

Malaysia)
Grant Anderson {Portland, Oregon)

The newest Quantum Cyber-
Teaser awaits your best efforts at
www.nsta. org/quantum/contest.htm.

fhis could be
e best

But itts freco
You can't buy the Consumer Information Catalog anyvhere.
But you can send for it, free! It's your guide to more than 200 free or
low-cost government publications about getting federal benefits,
finding jobs, staying healthy, buyrng a home, educating your
children, saving and investing, and more.

Send today for your latest free Consumer Information Catalog.
The Catalog is free. The information is priceless.

Send your name and address to:

Consumcr Information Center
Dept. BElSr, ]|rreblq colomdo 8lCC9

A public service of this publication and the Consumer lnformation Center of the
U.S, General Services Administration
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Amoss

I Concern
5 Yellow, gummy

pentosan

10 Philippine volcano
14 Plaintiii
15 Prepared

16 61,098 (in base 15)

I 7 Fleshy appendage

l8 699,306 (in base l6)
19 Ski lift part
20 Wheels for belts
22 Molecular structure

group

24 Superlative: suff.
25 Unit of magnetic

flux
25 An opening
30 Artiodactyl o{ the

camel

34 Scrap of food
35 Black
.37 Carbonated

beverages

38 Architect Mies van
der 

-40 Microscopy dye

42 Archaic do

43 Dancer 

- 
Thary

45 Issue

47 Born
48 One of a gene pair
50 Sense organ

52 Ropes or cables

54 That woman
55 C;Hp
58 Element 33

62 Lab gel

63 Oi1: comb. form
65 Tyndareus's wife
66 TV's lay _
6/ Glashow-

Weinberg 

-rrrodel
(-:8 Roman poet

69 Element 1.6

z0 Nlelr'rLle nor e1

-1 Unit oi l.reredrtr

0oum

I Basketball coach

Adolph _
2 Botanist Katheri.ne

3 IJnit of life
4 Early astronomer
5 Radiation source

6 Yes votes

1 2 4 5 7 B 9 10 11 12 13

14 15 15

t7 18 t9

20 1 22 23

z\) 27 28 29 30 31 32 33

35 36 37

38 39 +0 4I

43 44 +5 46 47

4B 49 50 51

55 55 s7 58 59 60 5I

6) 63 64 55

66 67 58

6r) 70 71

7 Place {or experi-
ments

8 711,390 (in base 16)

9 A{rican lake
10 Four-footed animal
11 Phosphatase unit
12 43,694 (in base 161

13 _ Onsager

21 Italian family
23 Building rr,ings

Ztr (lovarlant and

contrzu'ariant
26 \'laior bloocl r-essel

l7 Lurk
1S Tr-pe oi alcohol
I Ll D]..-. ^..-'-, I rarlr PdlL

l1 
- 

hinge IINV
zoo\

3l Cheese: comb. {orm
33 Mitosis star

36 Cry of pain

39 Fundamental
particle

4l Nickel alloy
44 Healing plant
46 So-so grades

49 British math. W. _
Brown (1866-1938J

by David R. Martin

51 1975 Chem.
Nobelist Vladimir

53 Wait
55 Steep cliff (in

Harvaii)
56 The Ohre in

Cermany
57 10-e: pref.NANo

58 44,718 (in base 15)

59 Compacted snow
50 Chemical suff.

51 

- 
oil {used in

per{umes)

64 Swiss mountain

SOLUTION IN THE
NEXT ISSUE

SOLUTION TO THE
MAY/JUNE PUZZLE
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M206
Let's suppose that none of the

equations has a root whose abso-
lute value is equal to 1. If x, andx,
are the roots of the first equation,
then we can show thatlal: lx, + x2l
< lx,l + lxrl 2 + 998 : 1000. Indeed,
lxrl and lxrl are positive whole
numbers different from 1 and their
product is equal to 1996. The sum
of such numbers attains the great-
est possible value when one of the
numbers is equal to 2. Similarly
we can determine from the second
equation that lal > 2 . L994. This
contradiction shows that at least
one of the equations has a root
whose absolute value is equal to 1.

Now, if we check all possibilities,
we'II see that a = -1997.

M207
Let the points lie on sideAB of tri-

anfl,e ABC in which AB = x, BC: y,
CA= z. To make the situation clearer
we can suppose that y > z. We will
first calculate the distances of each
point in question from P, using some
common techniques for working
with special points in a triangle.

Clearly, BK: xl2. To find thb dis-
tance BP, we use the fact that an
angle bisector of a triangle divides the
side to which it is drawn in the ratio
of the two other sides. This means
that, for some number m, BP : ym
and AP : zm.Then ym + zm = x, so
thatm: xlly * zl, andBP = xylb * zl.

To find BH, we locate points E and
F where the triangle's inscribed circle
touches sides BC and AC, respec-
tively (fig. 1). SettingBH :BE =p, AH
= AF = q, CE : CF : r, we find that
p + q : xt q + I : z, andt + p : y. Add-
ing, we obtainp + q + r : lx * y + z)f2,
andp : p + q + r - lq * rl = @ + y + zll2
-2212=(x+y-zll2.

ANSWERS,
H INTS &

SOLUTIONS

KPHM
Figure 1

To find BM, we look at right tri-
angle BCM, in which BM: y cos B.
The law of cosines will let us ex-
press cos B in terms of x, y, and z:
cosB: (**f -z2ll2xy.If {ollows
that BM: l* * 1P - zzll2x.

Now it follows that

KP=BP-BK="(v-z)
2(v + z)'

KH=BH-BK=Y-2.2'
KM= BM- BK =Y2 - '22xl

and we can check that KLP = KP . KM,
OI

KH = Job.

M2OB
Oneway to findmaximal ormini-

mal values of a function is to look for
the square of an algebraic expression.
For real values of the variable, this
square cannot be negative. In the
present case/ we can write

I

v-^ +xcosx+2cos2x-1'8
1,

=!(*_4cosx)z -1.8' /

Thus y cannot be less than -1. In
fact, drawing the appropriate graphs,
we can easily show that there are
values of x such thatx + 4 cos x: 0.
Hence the value we seek is -1 .

M209
We can verify the uniqueness of

the real root of the ecluation
f - x- 3 = 0 by drawing the graph
of its left side and finding proper
extremal values. If we raise both
numbers we are comparing to the
fifth power and subtract one from
the other, we arrive at the following
problem: is the number x5 - 13
greater or less than 0? (Here x is the
root.) But taking into consideration
that x satisfies the equation
f - x- 3 = 0, we find xs : x3* :
*(x + 3) =:F + 3:? :3* + x + 3. Now
we have to compare the number
3x2 + x- 10, where x salisfies the
equation -:C - x - 3 : 0, with 0. But
the quadratic trinomial3:2 +x- 10
vanishes when x: 5f 3, while the
only real root of f - x- 3 : 0 is
greater than 513 (the left side of the
last equation is negative when
x:5131. Thus3x2 + x- 10 > 0 for this
x-that is, for x , {,/i3 .

So the calculator did not mislead
us.

M210
For triangle ABB1, the straight

line BA, is the bisector of the angle
adjacent to the angle lABBr. (this
is a consequence of the fact that
IABC = 120".)But, sinceAA, is the
bisector o{ Z.ABC, the point of inter-
section of these two lines is equidis-
tant from the lines BBr, AB, and
AC-that rs, BrA, is the bisector of
ZBBTC. Similarly, BrC, is the bisec-
tor of ZBBTA. Now it is ciear that
lArBrCL: 90".

Physics
P206

At rest the spring stretches a dis-
tance Ax, due to the load m (see fig-
ure 2l:
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Figure 2

The box is aiiected br the force of
gravity Mg and the tension T of the
spring. The magnrtude oi the ten-
sion is ? = kx. k rs drrected down-
ward when the sprLng rs stretched
and upward in th. opposite case.
The box will starr iumprng when the
tension T excc.ls thc force of grav-
ity Mg-that is, rrhen T > Mg. At the
criticai condrtron, T = Mg, which
correspond= to rhe elongation

Thereiore, the box will jump when
the amphtude oi the oscillations is
equal to

^-\- \r-_ ,M+mli.
^-M -.}- -l k

P207
The best way to solve this prob-

Iem is to graph the gas expansion
and graphically calculate the work
performed by the gas in the stages of
interest to us.

For the first stage (40-801), thls u,ork
is about 860 | r,vhile ior the second stage
(140-180 1), it's approxirnatel)- 250 T.

The tabular data allou- us to calculate
the temperaturc of thc gas at an) purnt
and thus to obtain the changes rn the rn-
temal energy. In the first stage, the ex-
temal energy decreases by 635 |, but in
the second stage it increases by 93 J. Of
course/ these values are approximate,
silce we're calculating on the basis of
a graph. Applyrng the law of conserva-
tionof energy, we shallfindthe amount
of heat transfered to the gas in the first

stage is Qr: W, + AU, : 225 |. This
means that in this stage the gasrcceived
heat, while its temperature dropped
from 171 to 120 K. Similarly, in the sec-

ond stage we have Q2 = 343 [ in this
stage temperature rose from ll7 to
125 K, so the gas gotwarmar. h1 the first
stage the specific heat is negative (ap-

proximately -4.5 )/(mole . K)), because

the gas was heated, but its temperature
dropped. hthe secondstage the specific
heat is equal to about 45 |/(mole ' K), so

the ratio we seek is -10 (minus ten!).

P208
For the sake of definiteness we'l1

suppose that or> or. Without exter-
nal forces, the rod moves to minimize
the surface energy. In doing so, the
film with the larger surface tension
wiII shrink, the other film wiII
stretch, and the rod will shift. The
force acting on the rod from the fluid
on the right is F, :2or1, and the force
acting from the left is F, = 2orJ. We
took into account that a fluid film has
two surfaces. To maintain the system
at rest, an external force must be ap-
plied to the rod that is equal to

F : Fr- F, = 2(or- o,)1.

P209
The energy stored in a capacitor

does not depend on the way it has
been charged. So we can choose the
following mode of charging: one takes
a small portion of charge from infin-
ity and brings it to the spheres. First
we charge the inner sphere. Let it
have some charge q (which we've al-
ready delivered), and now additional
charge Aq is added to the sphere. In
flsing so we perform the work

Lw= r q\q.
4xes Rl

We can write this expression right
off the bat, knowing the formula for
the potential o{ a charged sphere
c1f 4r,toRr. Or we can begin with
Coulomb's law and write the expres-
sion for the work performed by mov-
ing along an elementary section of
the path and integrate it for the en-
tire trajectory of the test charge:

qLq
4nes Rt

The total work required to transfer
charge Q to the inner sphere is

o

,nz =T I Ldo= Q2
' J 4neo Rr ' BneoR,

Now let's charge the oute[
sphere. For definiteness we assume
that the charge of the inner sphere is
positive, so the outer sphere must be
negativeiy charged. Let that charge
be q at some moment. When a smali
charge Aq is transferred, it will be
affected by two fields: that of the
charge +Q (inner sphere) and that of

-4 (outer sphere). So the elementary
work performed during the transfer
of the charge -A,c1 frorr, infinity to
the outer sphere is

I

1 QAq 1 ct\q
Avv =-4rrso R, - 4"% R, '

Correspondingly, the total work
needed to charge the outer sphere is

I,
Aw =- | lqlq ar=

4nen J r'

t,tr.=--d-* Q' 
=' 4ntnR7 Bne6Rz

l

it,

I

f-z

l"r=T

l\/t n
\ 1r _l\r -- K

Q,
BnesR2

Now the capacitor is charged, and
its energy is

o2(t r)(l=W,+W.= - I - - - 
l.

8rue6 [ R1 Rz )

A11 this work is concentrated be-
tween the spheres of the capacitor in
the form of electrostatic field en-
ergy. Since R, - R, << R, the field
can be considered homogeneous,
and its strength is equal to

()
L- 

^4nenR, 4nt.nR?,

Let's express the total energy of the
electric field in terms of its strength:

q2(t t) e2 AR

Sneo I R, R, ) 8re6 R,2

=zrc,oE2R?LR.
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To find the energy density, this expres-
sion must be divided by the volume
V : anRlLR oicupied by the field:

'U E'EZ

V2
We've been dealing with a normal

capacitor, and strictly speaking this
formula for the energy density cor-'
responds to an electric field in a
vacuum. Let's generalize this for-
mula for a medium with dielectric
constant r > 1. In this medium the
work necessary to transfer the same
charge to the spherical capacitor will
be less by alactor of r. The electric
{ield strength will be reduced pro-
portionally, and the formula for the
energy density will be

-2KI^,8'
7)=-----L

2

This doesn't mean that filling a
charged capacitor with dielectric
material results in an increase in en-
ergy density (remember, the charge is
constant). Quite the opposite oc-
curred in our case: the energy of the
capacitor decreased by a factor of r.
However, if voltage rather than
charge is been kept constant as the
capacitor is filled with a dielectric,
the electric field strength will be the
same, and the energy of the capacitor
will be r times greater.

P21 0
The visible position of a star differs

from the actual position due to the
re{raction of light in the atmosphere.
The thickness of the atmosphere-
that is, the altitude at which the air
is practically absent and the refractive
index is l-equals several dozens of
kilometers. It is far less than the
Earth's rafius, so in this problem we
can assume that the atmosphere is
a plane. Its refractive index gradually
increases from I in the upper layers
to n > 1 at the Earth's surface. Light
from a star can be considered paral-
lel rays incident upon the upper lay-
ers of the atmosphere at an angle
nf 2 - a, where o is the true angular
position of the star above the hori-
zon. We observe the star at an angle
p > o (fig. 3). Accorfing to Snell's law

Figure 3

for a stratified medium,

(r ) / \
srnl --flr=r.,,,,[ 1-R]

\2 i \,2')'
or

cos (B - (0 - cr)) = (1 + (n - 1)) cos B.

Sincen - I << I and so B-o << B, we
have the approximation

cos B+ (B -u) sinB = cos B+(n - 1)cosB.

Therefore,

B - u = (n - 1) cotan B

=3 l0{rad= 1'.

This is the measurement error for
the angular altitude of a star at the
surface of the Earth.

Bl'ainlea$El'$

8206
Draw two arbitrary circles passing

throughA with centers on the straight
line (fig. 4). Denote the second point
where they meet byB. ThenAB is the
perpendicular we seek.

207
In the situation described, the

" easteu" windowpanes are ar-
ranged approximately parallel. So
they can be considered fragments of Figure 5

a single large mirror. As the Sun
rises, its image in the mirror does
the same. Thus the "illuminated"
windows shift up the mountain
slope. In addition, we note that in
the Northern Hemisphere, they
shift a bit to the south; but i{ the
town is located in the Southern
Hemisphere, they shift slightly to
the north. At the equator/ there is no
shift sideways at the vernal and au-
tumnal equinoxes.

B2OB
It foliows from the statement of

the problem that the car met the bank
presidentwhenitwas 2012= 10 min-
utes from the banker's house. So the
total time Mr. Scall spent walking is
50 minutes (he stopped walking 10
minutes before the time the car usu-
aIly arrived, and he started t hour
before the car's usual arrival time).

8209
See figure 5.

821 0
Here is one possible method: 1, 3,

7, 15, 31, 63, r27, 42, 85, l7l, 343,
ll4, 229, 75, 25, 8.

I

I

Figure 4
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COWCULATIONS

0ul slandinU in the lield

The Holsteins vs. the Jerseys

by Dr. Mu

ELCOfIE E.{CK TO COWCULATIONS, THE Each summer two farm clubs, the Burlington Holsteins
column d.','- :;; to problems best solved with a and the Waterford |erseys, square off on the diamond out
computer algorithm. behind Paul's bam. They usually play all summer and try to

When 11- ::r::1q sun \\,arms the pasture and the get enough games so that at least one team wins fifty games.
green grass grort. .-- :.r--r-rnd, a cow's thoughts naturally Thefirstteamtowinfi{tycollectstheprizeof $1,000putup
turn to grazing ar; ::s.::li. My bovine friends love base- by the BABE (Bovine Association of Baseball Enthusiasts).
ball. It's a nice s- :'.. -":r- game. You can nip on the grass Occasionally the summer weather rn Wisconsrn doesn't
and shoo the fh.s .-,..':-.' rrith your tail, and all the while cooperate, makrng it di{ficult to get enough games played to
be out stdndrns r :::= :re.d. Arrd of course cows, like base- pennit a fi{ty-game winner. Last week, for example, one of
ball professionsl: ;1:,--r' a good chew. those Midwest thunderstorms moved through the area and

t
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tumed the grass to a muddy swamp. So this year, with the
game tally at 35 for the Holsteins and 41 for the |erseys,
the BABE had to call the series off and divide up theprize
money. The.problem, of course, is how to do this fairly.

The Holsteins, who are notoriously good at coming
from behind to win the series, wanted to split the money
evenly ($500 each), claiming they were robbed of their
stretch run. The |erseys favored al afiaflgement
whereby the money would be divided based on how
many games each team had won so far. Thus, the |er-
seys would settle for 41176 of the money, or $539.47 .

But the BABE claimed thag according to the ru1es, in any
series that does not go to completion the prize money must
be split as follows: Beginning with the games wol! cowculate
the probabfity that one team (say the |erseys) would have
been the first team to win 50 games had the series contin-
ued. Assume that the chance that a team will win the next
game they play is based on the games won so far. Thus, if the
score is Holsteins: 35 and |erseys: 41, the probability the |er-
seys win the next game is 4U76. Of course this probability
changes as the virtual series is played out. Once you lcrow
the probability that a team reaches fifty games firsg multi-
ply it by $1,000 to get the teams fair share.

This will take some cowculations.
COW 5. Write a program that will cowculate the win-

nings of each team based on BABE's rules. Report your
answer for the series that ended Holsteins: 35 and |erseys:
41. You are to assume that if the game score is currently
at Holsteins:H and /erseys:f, the probability that the next
game will be won by the Holsteins rs H l(H + /), while the
probability it is won by the )erseys is T lW + fl. Also, if P is
the probability that the |erseys will win fifty games first,
then they should be awardedP . 1,000 of the prize money.

Now it's your time to step up to the plate. Send your
cowculation to drmu@cs.uwp.edu. To view all previous
ruminations, take a peek at http:l lusaco.uwp.edu/
cowculations.

This COW is headed for the plate.
It may be early, it may be late.
You whack the ball,
Or take the call,
But never, ever procrastinate.

-Dr. Mu

s0luti0ll t0 cotlll 4
Last time we introduced the following silage probiem. As

he does every year, Farmer Paul put up his feed com last
October in a huge silo capable of hoiding up to 120,000
pounds. hr latefall, hebegan taking out a daily feedallotment
of 300 pounds. Unknown to us, our silo was being broken
into during the night and a fixed proportion removed. Each
day Farmer Paul took 300 pounds for feed; each night the thief
stole ( l/n)th of the silage left in the silo (portion :n is the same
for each night). This was repeated for a total of five days
and nights. The thief always stole an integer number of
pounds. After the theft was stopped, Farmer Paul still had
enough silage left to feed us for 210 days but not 211. In

order to determine the proper monetary settlement, Spe-
cial Agent Mark needs to determine exactly how many
pounds of silage were stolen.

Before you do any coding on this problem, get out an en-

velope and do some "back of the envelope" cowculations. For
example, grven the constraints of the problem, what is the
smallest portion that is even worth considering?

We know there is room in the silo for at most 120,000
pounds of silage. For five days and nights we subtract 300 and
reduce the supplyby afactor of (portion- l)/portion. This is
accomplished by the function reduce Isilagel =
( silage-3 0 0 ) (portion-1 ) /portion. Now the portion
cannot be so small that after five repetitions of this pro-
cess the amount of silage left is below the total feed for
210 days, or 210 . 300 = 53,000. The reduceleilagel
function can be nested five times with the Nestlist com-
mand in Mathematica9

Let's try it with portion = 8:

reduce [silage_l : = ( silage-3OO ) (portion-1 ) /
portion
portion=8i
NestliEt Ireduce, 120000, 5 I / /N

{120000. , 1,04737 .5, 9L382.8, 7969'7 .5,
694.72.8, 60526.2\

It appears that portion = B will not work because we are
left with onLy 50526.2 after five nights, which is below
63,000. However, for portion : 9 we have more than
63,000 pounds of silage left over:

portion=9 i
Nestlist Ireduce, 120000, 5 I / /N

{120000., 106400., 9431L.L, 83565.4,
7 401,3 .'7 , 65523 . 3 )

So we have established portion : 9 as the lowest value
to begin our search for a solution There are two direc-
tions we can go. From top to bottom or bottom to top.

Top to bottom
First create a function TopToBottomlsilagel that

generates the amount of silage left after the silo has been
reduced for five days and nights. Note that if
TopToBottomlEilagel is an integer, then the amount
of silage left after each night is also an integer. So you don't
need to check the silage is an integer after every night,
only after all five nights. I'11 leave that for you to rumi-
nate on. Here's the function TopToBottqnl'silagel:

Clear Isilagel
portion=9;
TopToBottomlsilage_l =Nest Ireduce, silage, 5l
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Begin with the silo filled with silage = 120,000 pounds
of corn. As long as the TopToBottomlsiLagel func-
tion is not an integer (t rntegerg), take a pound away
( s i lage- - )' and try again. Once TopToBottdn I si lage ]
is an integer, you have a solution:
silage=120000;
while [ ! rntsegerQ [TopToBottomlsitagel ],
silage-l ;
Print [..Start .., si].age, o Finish
\, TopToBottom I si].agel l,
Print ["Thief stole ..,silagie-
TopEoBottomlsilagel - 15001
Start 115698 Finish 63136
Thief stole 51062

Bottom to top
It's considered bad programming form to create a com-

puter algorithm that simply tries all possibilities and
looks for a solution by brute force. The silage problem
presents such an opportunity. While brute force may not
be able to be eliminated, it can be significantly reduced
by looking at the problem differently, namely backwards.
Let's start from the other directiorl where we end up with
at least 63,000 pounds of silage after five days and nights
and go from bottorir to top looking for an all integer
match. First, we construct the increase Isi]-agel func-
tion, which computes how much silage we had the day
before some was fed to the cows and some stolen:

Clear I silage, iacrease ]
portion=9;
increase[si].age_l := silage * portion/
(portion-1) + 300

We define theBottqdrcrrop lsilagel function, whichuses
the ttest command to go back five days and compute the
amount of beginning silage. If Botr,omTorop Isilage] is
an integer, then we had an integer after every night:

BottdnToTop I si lage_] =Nest I increase, si lage, 5 ]

9 (300+

o -l - --.-
O /1nn! -

:

9 (300+
9 (300+

300+
8

Begin with the silo depleted to silage : 63,000 pounds
of corn. As long as the BottomToToplsilagel func-
tion is not an integer (t rnregergl, add a pound (si-
lage++) and try again. Once BottomroToplsilagel
is an integer, you have a solution:

silage=53000;
WhiLe [ ! IntegerQ [BottomToTop Isilagel L
silage++l;
Print ["Start *, BottomToTop [si]-age! ,,,
Finish ",silagel;
Print Ir'Thief sto].e \.,BottomToToBlsilageJ -
silage - 15001

Start 115698 Finish 63136
Thief stole 5L062

Going backwards/ the program is 35 times faster and
is essentially instantaneous.

teedlaclr
A group of three students-David Click, Mike Powers,

and Laura Arthur-and their instructor, Thomas O'Nei1l
, at the Shenandoah Va11ey Governor's School in Virginia
examined the problem using Mathematica and ruled out
a large number of portions greater than nine. Here is their
solution, which is slightly modified to fit with the discus-
sion given above. It tests all portions from 9 to 2560 and
takes a few minutes to complete. The first time you try
this program, change 2560 to25 to get the answer quickly.

increase I silage_] : =siLage*portion/ (portion- 1 ) +3 O O

For I
portion=9, portion<=255 0, portion++,
For I

silage=63 000, silage<53300, siJ-age++,
startSilage=Nest Iincrease, silage, 5J ;
If IhtegerQ Istartsilage] &&

( startSilage<=120000 ),
Print I
"Start silage = \\,startsilage,
" End silage = \,siIage,
.. portion = N,porLion,
.. Stolen = \\,startSilage_silage_1s0o1

, Continuel
l

l

Start silage = 1-1-5698 End silage = 63136
Portion = 9 Stolen = 5L062

From a practical standpoing no respectable thief would
bother taking iess that 1/100 of the silage each night. Add this
to the fact that Dr. Mu spotted a pickup truck full of silage
andyou must conclude that we have found theunique solu-
tion. From a purely mathematical standpoing however, we
need a proof that there is no solution for a portion n > 2560.
Of course the insurance company would love to find one.

Vincent B6ron, 18, a student at Collbge de Bois-de-
Boulogne in Montr6al, Qu6bec, Canada, also sent in a
C program that found the correct solution.

tvlatfiematica $l[0
If you would like to learn how to cowculate with

Mathematlc4 join me on the Intemet at the Mathematica
SILO (Summer Internet Leaming Opportunity). During
the week of |uly 28-31, I will ruminate on the fundamen-
tals of Mathematica programming for all you cowhands.
If you don't have a copy of Mathematica,I'Il send you a
trial CD with a full version. With Mathernaticainstalled
on your system/ all you need to do is get on the Intemet/
come to our SILO (http://usaco.uwp.edu/silo), and start
milkin' the COWs. I've got plenty of chores to keep you
busy. Send me an e-mail at drmu@cs.uwp.edu to loin in.
Don't procrastinate-do it nowl O

o
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[*--l Chaos Data Analyzer:
mf{ the professional.Version
i ii Filii:" L f ulien c. sprott, Universiiy of wisconsin, Madison

I i: #*"- [ c.otg" Rowlands, univeriity of warwick

I i: ;# ' I ceared for the serious researcher and data analyst, c h a o s

I n'rp"r"" f, Oata Analyzer Pro includesawidemenuof testsand

I t sample data seis and allows records of up to 3z,ooo points.--

Physics Academic Sof tware

tsBN (Dos) | 56396- 5t5- |

Single copy: 53oo

WithChaos Data An alyzer Pro youcancalculate
Hurst exponents, false nearest neighbors, entropy, BDS statistics,

and algorithmic complexity. You'll be able to detrend your data

with a variety of methods; generate two kinds of surrogate data

sets; and make predictions using four different techniques, including an artificial
neural net.

Display modes include stereoscopic three-dimensional views, IFS clumpiness, ard
wavelet transforms. ln addition, you'll get 44 real-world sample data sets, an online

tutorial and a comprehensive user's manual.

Chaos
Demonstrations 3.o
Julien C. Sprott
George Rowlands

Chaos Demonstrations
contains a unique collection

of z5 physical and biological
systems including random

and determin istic fractals,
cellular automata, anaglyphs,
the driven pendulum, nonlin-
ear and Duffing oscillators,

and the magnetic quadrupole,

tseNl (oos) 156396- 46 4-3
Single copy: 59o

Chaos Data Analyzer
lulien C. Sprott
George Rowlands

Chaos Data Analyzer
easily detects hidden

determinism, or chaos, in

seemingly random data and

determines the properties of
the equations underlying the
phenomena. the package

consists of fourteen different
analytical tools or programs

including calculations of
probabi lity distribution,
power specirum, Lyapunov

exponent, and various mea-

sures of fractal dimension.

tsstl (oos) o-883r8-883-X
Single copy: $r3o

Chaotic Dynamics
Workbench
Roger W. Rollins
0hio Univesiiy

C DW enables you to perform

interactive numerical experi -

ments on complicated nonlin-
ear systems without requiring
you to set up or solve the

underlying differential
equations. TheYe is a stYong

emphasis on graphical pYesen-

taiion and direct, real-time
interaction. Systems modeled

by CDW include Duffing

two-well and Ueda oscillators

and the Lorenz system.

lsBN (Dos) 0-883r8-682-9
Single copy: S9o

Chaos Simulations
Tom Bessoir and
Alan Wolf,
The Cooper Union

This collection of fifteen com-
puter animations graphical ly

demonstrates the key features
of deterministic chaos. lt dis-
plays phenomena in ascending

order of mathematical difficul-
ty, from simple mapping that

defines a logistical model to

fractal structures and differen-
tial equations. Demonstrations

include billiards in a stadium

and n-body gravitational
motior.

ISBN (D05) o-883r8-686-l
Single copy: $9o

Chaotic Mapper
lames B. Harold, University of Maryland

Chaotic Mapper enablesyouto examine zz linearandtwo-dimensional iierative maps

of chaotic systems and three-dimensional differential eguations. lts elaborate plotting capabili-
ties allow you to create bifurcation cascades and fractal basin boundaries. You can enter your

own equations and study convergence maps, 2-D plots, Poincare sections, and much more.

tssNl (oOS) o-883r8-98o-r 'Single copy: $9o
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