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GALLERY O

NYMMETRY HAS ALWAYS BEEN AN IMPORTANT
il.l.rrr"nt in art. In their book Symm etry in Chaos: A
Search for Pattern in Mathematics, Art and Nature, math-
ematicians Michael Field and Martin Golubitsky provide

numerous examples o{ such symmetry/ from a rose win-
dow at Chartres to the hood ornament on a Mercedes Benz.

Nature is also full of symmetry-in fact, one is led to
wonder i{ our art would be so symmetric if nature were
not. But to a degree not found in art, nature is also cha-

otic, in the recently coined technical sense. A chaotic
system is unpredictable, complex, and sensitive to initial
conditions. It is often described by a remarkably concise
set of "rules," yet minute variations in these rules can

Dutch Quilt lt992lby Michael Field and Martin C,olubitsky

produce elr;istrc alh-'Iiicr.r-Ll rr. u.i: s.

In adclition to pre se-ntil-tg a Vrsuirl icast ,-lt th.'lt ttrt-n -sr:-',-

ntetr jc icons, qttilts, and svnrnre tt jc it ttctrtls, Freld and

Golubitsky provide the rnathernatics behind the pictures,

including the QuickBasic code used to generate them. Many
images from the book and the computer codc can be {ouncl

on the Worlcl Wide Web at http://math.uh.eciu/-chaos.
Although the authors called the above design "Dutch

Quilt," it is also reminiscent of the kind of pattern you
might see in a kaleidoscope. Like the kaleidoscope irnage,

"Dutch Qui1t" is based on a hexagonal tiling o{ the plane.

Ior a look at kaleidoscopes that goes well beyoncl the
simple tubular toy/ tllrn to page 4 and keep turning . . .
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Cot,er art by Yury Vashchenko

As an1' chei knows, it takes time to re-
duce a hquid stock properly. It can't be
hurrred, even ri lou le rn a hurry. Sorle-
trmes the stuii seems "rrreducible." The
wait can drive you cra:f i But the results
are worth 1t.

If you patiently u,ork through the
artlcle that begins on page 22, ,vou'11 end
up with a strong sense o{ the connectior-r
b etween rrza tion ality and tr r e du c ib iltty
in mathematics, if not the culinary arts.
Perhaps the best bet for cooks ls to keep
a sharp knife handy and chop off those
pesl<v prefixer before startrng any recipe.
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FRONT MATTER

Frum Chul'okee malh Io tuhhy Uslte$

tVofes from the Hard Drive C@fe

utterance. One interpretation says
that a medium-for instance, televi-
sion-not only affects the way con-
tent is presented, it selects the con-
tent. The most newslvorthy "event"
on a given day might be the release
of statistics showing a decrease in
violent crime, yet more air time will
likely be devoted to a live shot of a

reporter recounting the details of an
actual crime, or, better yet, a crime
in progress. Television wants to do
what it does best, which is show pic-
tures. There's nothing inherenth-
wrong u,ith that, as long as \re r.-
mind ourselves of the limrtations :

pictures-their iack of context t:r.r:
ambiguity, and so on.

Late last yeart as the hoh.i.,--.' : ::
season approached/ som-:--- :
called Web TV was introd--:: - - :

Some of the Web si:=s

featured at the
Hard Drive C@{e

Access Excellence
www.gene.colx 3:

Challenger Centtr OrT ;-e
www.challeI:i-: : i
ENC Online
www.enc.*::
Lawrence Hell :: i.:.nte
wwrv.lh..-.-1..., ---
lYational lsji;a Trlecrmrouni'
cations In:dr:;rr

a television set with Internet capa-
bilities built in. Interestingly, it was
sold without a keyboard lalthough
one could buy one as an accessory).
The implication is that most Wel:
"surfers" roam from site to site
much like "couch potatoes" flip
from channel to channel. Web TV
seems more T\rthan Web, more pas-
sive than acrire, more entertaining
than iatellecrually s atisf ying.

$[eanrt-hi1e, the technology con-
tinues to flourish. ]ava, Shockwave/
aad other Web browser enhance-
menEsare already adding movement
anrl sound {and who knows, maybe
eren smell) to some high-voltage
sites- "Design" takes the lead, and
wordsmiths struggle to stay rel-
erant. Web design becomes a big
production, with budgets to match.

Is that the message of this new
medium?

Happily, many oi the pioneers
who headed into c;-trerspace have
been busy creati:rg interestrng, use-
ful, and yes/ entertai[iog content on
shoestring budgets. A highlight of
the ENC Hard Drire C@i6 was the
presentation by the National Indian
Telecommuaications Institute
( NITII. N-TII rains Nativq American
teachers ra the basics of Web work.
The teachers chen go home and pro-
duce T{eb pages of their own. In one
instaace, a teacher has combined
Cherokee language instruction
pr-hichcan'tbe taught in the schools)
rrrith mathematics. It's a fascinating
niche that shows how the Web can be
usedto provide a smal1, scattered au-
dience with unique educational ma-
tenal at very little cost.

rlT ECHNoLocY coNTENr
- - I and access are comlng to-

I sether." said Linda Roberts

I ot tne U.S. Department oI
Education on April 14, moments be-
fore she and Senator feff Bingaman
of New Mexico cut a "virtual rib-
bon" to open the 2nd Annual Hard
Drive C@f6, hosted by the National
Geographic Society and organized
by the Eisenhower National Clear-
inghouse for Mathematics and Sci-
ence Education {ENC). The event
showcased 32 World Wide Wel: sites
devoted to education iincluding
those of the National Science
Teachers Association and the Na-
tional Council of Teachers of Math-
ematics), and it offered some encour-
agement to those who feel that
technology will do just iine, and that
access is on its way-it's the content
we're worried about.

One reason content is trouble-
some on the Web is that it's hybrid
medium with a high visual content.
While a picture can convey informa-
tion more quickly in some situa-
tions, in most others the written
word is much more efficient, You
can take in far more inforrnation
reading for a half hour than watch-
ing the evening news on TV. What
is it about moving lmages in a box
that transfixes us? A simulated emo-
tional bond is created, and for some
it is very poweriul indeed.

A generation &go, Marshall
Mcluhan said, "The medium is the
message," and sparvned new way o{
looking at television and other mass
media. Many people have teased
many messages out o{ that Delphic

nu[ia.:-:. : -

NPR :tir-c= F:-us Eids
Conn.t:--: l
1\-/.-!1- ::- :. :: - =1ms,/SfkidS
L 5-{ Trd.ar- Cies'liae
:-=S.-,:-= ..:a: : -:^-.aOm
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Several " graduates" of Genen-
tech's Access Excellence program-
teachers who are scattered across
the United States-are collaborating
to put data from the Human Ge-
nome Project into a form that is use-
ful to teachers and students. As they
explained their plans for activities
involving the "tubby gene" to.a
C@fd visitor, their enthusiasm was
evident-and contagious.

It was encouraging to see that
some of the bigger media players
like USA Today, National Geo-
graphic, and National Pubiic Radio
(NPR) are producing Web sites
aimed at students, teachers, and par-
ents. Even more heartening is the
response of the scientific commu-
nity to such efforts. The NPR site
engages the services scientists who
act as "mentors," answering ques-
tions from students. Ira Flatow, host
of NPR's Science Friday, says that
interest is so great among working
scientists, the producers of his Web
site have to tum away mentors (they
have about 40).

It was striking that, despite the
availability of powerful Web search
engines, one still encounters sites
with long lists of links to other sites.
True, someone has waded through
the hundreds of hits and picked the
"best," but the notion that someone
knows what's best for me goes
against the Web grain. Also, Web
pages come and go, and links to
them must share their fate.

As the World Wide Web evolves,
we'l1 continue to find sites to give us
the latest baseball scores and stats,
and sites that want to sell us some-
thing. But it seems likely that we'II
also be able to find sites that provide
thoughtfully produced, thought-pro.
voking content, especially in the sci-
ence area.

If you would like to sample the
entrdes and i la carte dishes served at
the Hard Drive C@fe, you can visit
the ENC's page at www.enc.org/
hdcafef , or e-mail me for the Web
addresses of all the participating
organizations.

-Tim Weber
Managing Editor, Quantum

tweber@nsta.org
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0n kaleidoscopg$

A mathematician looks at them in all their dimensions

by E. B Vinberg

HE KALEIDOSCOPE (FROM THE GREEK FOR
"viewing a beautiful form") is a children's toy in
which pieces of colored glass, reflected many times
in three mirrors, produce amazingpatterns. These

mirrors are aranged as the three side faces of a regular
triangular prism, so that the angles between them are
equal to nl3.If the values of the angles were different,
then, generally speaking, the images would overlap and
no symmetric pattern wouid appear. Still, there are
some exceptions, which we'Il find later in this article.

The ordinary kaleidoscope, described above, is aetu-
aIly two-dimensional, since we see just a plane pattern
in it. One can imagine a three-dimensional kaieidoscope
as a polyhedral chamber with mirror sides. An observer
placed inside it would see repeated images of all the
items lying inside the chamber. The images would over-
lap, except for a few particular cases (we'11 list them
below) when this doesn't occur-instead, a symmetric,
three-dimensional pattern appears.

Leaving aside the question whether it can be realized
in practice, one can speak about multidimensional kalei-
doscopes, as well as non-Euclidean kaleidoscopes-that
is, kaleidoscopes on a sphere and in Lobachevskian space.
A comprehensive description of all kaleidoscopes in Eu-
clidean space and on a sphere of an arbitrary dimension
was givenin l934by theEnglishmathematicianH. S. M.
Coxeter. The cover of the Russian translation of his book
shows a kaleidoscope on an ordinary (two-dimensional)
sphere (fig. 1). There is an intimate connection between
spherical kaleidoscopes and regular polyhedrons, which
we'll discuss in more detail below.

Kaleidoscopes on the Lobachevskian plane were used
by Poincar6 and Klein at the end of the last century in
their research on the theory of automorphic functions

of a complex variabie. In 1958-60 the eminent Dutch
artist M. C. Escher created several intriguing designs
based on these kaleidoscopes.

Since 1965 kaieidoscopes in Lobachevskian space
have become the subject of intensive research in con-
nection with certain problems in group theory. A com-
plete description of such kaleidoscopes in an arbifiary
dimension is far from being completed. There is a sur-
prising theorem (proved by the author of this article)
that asserts that no kaleidoscope exists in n-dimen-
sional Lobachevskian space if n > 30. Examples of such
kaleidoscopes are known only for n < 8.

o

0)l
cx Figure 1
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In addition to their applications in
geometry (regular polyhedrons), the
theory of functions of a complex vari-
able, and group theory, kaleidoscopes
play an important role in number
theory, the theory of Lie algebras, alge-
braic geometry, and many other
branches of mathematics. However, I
should point out that the word "kal'ei-
doscope" is not used in the mathemati-
cal literature. Mathematicians speak of
a "discrete $oup generated by reflec-
tions" instead.

Figure 2

In this article, we won't have an opportunity to ex-
amine the applications of kaleidoscopes (except for the
connection between spherical kaleidoscopes and regu-
1ar polyhedrons). However, the investigation of kaleido-
scopes themselves occupies a strong niche in the field
of geometry.

Fundamental U'orul'ty
To begin our survey of kaleidoscopes, let's consider

the simplest situation: two mirrors set at an angle o to
each other. If a= nlk for some integer k, we will say
that o is an integral submultiple of n.If u is not an in-
tegral submultiple of n, then (see figure 2a) images of
an item placed between them overlaps, so that you see

images of two different points in one point. (As a mat-
ter of fact, you see images of two different points simul-
taneously only if you change your point of view. How-
ever, this has no bearing on our theoreticai discussion.)
If, on the other hand, cx is an integral submultiple of rc,

this overlapping does not occur (fig. 2b).
Since the images of any point do not leave the plane

perpendicular to the common axis of the mirrors (this
is the plane depicted in figure 2), the
phenomenon discovered above is
planar in nature. We can speak
about reflections of plane figures
with respect to straight lines, and
figure 2 demonstrates that repeated
mirror images of a plane figure with
respect to the sides of an angle do
not overlap if and only if the value
cr of the angle is an integral submul-
tiple of rc. More precisely, If a = nf k,
where k 2 2, is a positive integer,
then the plane splits into 2k congru-
ent angular domains with a com-
mon vertex, so that an image of the
original angular domain appears in
each of them. In half of these do-
mains, the picture wi1l be inverted;
in the other half, including the origi-
nal one, it will be normal.

Imagine a convex polygonal do-
main formed by mirrors. When will
the images obtained by repeated

reflections with respect to the sides not overlap? It fol-
lows from our reasoning above that all the angles of the
polygon must be integral submultiples of n. It's possible
to prove the sufficiency of this condition. If the condi-
tion ho1ds, the plane breaks up into polygons congru-
ent to the original one/ so that any two of them that
have a common side are symmetric with respect to this
side. Each polygon in this tiling contains an image of the
original domain. A tiling of the plane obtained from an
equilateral triangle is shown in figure 3. This is, in fact,
the tiling you see in an or&nary kaleidoscope.

Similarly, repeated images of the interior of a con-
vex polyhedron, after reflections with respect to its
faces, do not overlap if and only if all dihedral angles
of the polyhedron are integral submultiples of ru. This
theorem holds even for non-Euclidean polygons and
polyhedrons.

A polygon (or polyhedron) whose (dihedral) angles are

all integral submultiples of rc is called a Coxeter poly-
gon (polyhedron). So the task of describing all theoreti-
cally possible kaleidoscopes is equivalent to describing
all Coxeter polygons and polyhedrons.

lllAY/JUllJI I8O7
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Trrvo-dimensional ltaleidosmpes
It's not difficult to find all Coxeter polygons on the

Euclidean plane. We know that sum of the angles of a
Euclidean polygon is equal to n(n - 2). Thus the aver-
age value of its angles is n(1 - 2lnl, which gives xf 2 for
n = 4. But it follows from the definition of a Coxeter
polygon that none of its angles can exceed xf 2. Therc-
fore, the only Coxeter quadrangle is a rectangle, and
there are no Coxeter polygons with more than four
sides.

Further, since the sum of the angles in a triangle is
n, we have the following Diophantine equation for a
Coxeter triangle with angles nfk, nf 1, nf m:

Up to permutations of k, 1, and m, this equation has
three solutions:

(3, 3, 3ll, (2, 4, 4ll, {2, 3, 5l|.

Thus there are exactly three different Coxeter triangles:
equilateral triangle, isosceles right triangle, and right
triangle with acute angles equaltonf 3 andnlS.Figure 4
shows the corresponding tilings of a plane. These
tiiings, together with that of the rectangle, constitute
the four types of two-dimensional Euclidean kaleido-
scopes.

In a similar way, we can find all two-dimensional
spherical kaleidoscopes. It can be proved that the sum
of the angles of a spherical n-gon is greater thannln - 21.
What can we say/ then, about the number of angles in
a Coxeter spherical polygon? Simply this: there are no
Coxeter spherical polygons other than triangles. For the
case of a Coxeter spherical triangLe, equation (1) is re-
placed by the inequality

which has four solutions:

12,2, ml, (2, 3, 3l1, .2, 3, 4l1, 
,,2, 

3, 5).

The first of these solutions corresponds to the tiling of
a sphere with4m "birectangular" triangles, produced by
the equator and 2m meridians equidistant from one
another. The solution(2,3,5) corresponds to the tiling
shown earlier in figure 1.

We'll return to spherical kaleidoscopes below in con-
nection with regular polyhedrons.

As far as kaleidoscopes on the Lobachevskian plane
are concerned, they are much more diverse. Everything
that is impossible on the Euclidean plane or on a sphere
becomes possible on the Lobachevskian plane. In f.act,
the sum of the angles of ann-gon on the Lobachevskian
plane is less than n(n - 21. Thus on the Lobachevskian
plane there is an z-gon with angles nfk' nfk2, ..., frlk,
for all k1, k2, ..., -k, satisfying the inequality

111 +...+-<n-),.kr k2 k,,

This inequality holds automatically for fl > 4, and for
n -- 4 it holds only if lk, k2, k3, k4) + (2,2, 2, 2).Il n = 3,
we obtain the following inequality {or a Coxeter triangle
with angles nf k, nf 1, nlm:

1.1*a.r (3)klm

Its solutions include all triplets lk, 1, ml except for the
solutions of equation (1) and inequality (2).

111
I

klm (1)

111
-+-+->1.klm 12)

Figure 4
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Figure 5

For example, on the Lobachevskian plane there is a
triangular kaleidoscope with angles nfL, xf 4, nl5, The
tiling corresponding to it is shown in figure 5. Here we
use the so-called Poincar6 model, in which the
Lobachevskian plane is represented by an open disk and
the straight lines on it are represented by its diameters
and arcs of circles, perpendicular to its border; the angles
coincide with their Euclidean counterparts.l

Spherical ltaleidoscope$ altd t'egttlflr polyhedl'ons

Any regular polyhedron can be associated with a

spherical kaleidoscope.
Let M be a regular polyhedron with center at O.

Let A be the center of one of its faces, B the midpoint
of an edge adjacent to this face, and C one of the two
vertices that beiong to the edge. We'll call the trihe-
dral cone K with vertex at O and edges passing
through points A, B, and C, respectively, the funda-
mental cone of the polyhedronM (see figure 5, where
M is a cube).

If we vary the faces, their edges, and the vertices be-
longing to the edges, we'll obtain many different fun-
damental cones from any given polyhedron. They do not
overlap, and their union covers all oi space. We can find
the number N of fundamental cones from one of the fol-
lowing formulas:

N=ZpF=4E:2qV, i-l

'1M. 
C. Escher's fanciful tilings on the hyperbolic plane

can be {ound in almost any book devoted to his artistry.
See, for instance, M. C. Escher Kaleidocycles by Doris
Schattschneider and Wallace Walker (Pomegranate
Artbooks, 1977)-the image on page 19 uses squares and
triangles in a tiling of Escherian fishes.

where we use the following notation:

F is the number of faces of the polyhedron M;
E is the number of its edges;
V is the number of its vertices;
p is the number of sides of (each) face;
q is the number of edges emerging from each
vertex.

Thus for a cube,

F = 6, E = 12, V = 8, p = 4, q : 3,N= 48.

The polyhedron M is symmetric with respect to
every plane containing a lace of a fundamental cone,
and any two adjoining fundamental cones are sym-
metric to each other with respect to their comtron
face. For example, if we consider a cube, then the
plane OAC is its symmetry plane, passing through
two opposite edges; and the cone K' symtnetrrc to the
cone K with respect to this plane rs the fundarnental
cone whose edges pass through the potnts -{, C, B' (see

figure 6).
The edge OA ol the fundamental cone K is a com-

mon edge ol 2p drffercnt fundarre:tal cones, and therr
dihedral angles at this edge are e.1ua1. Thus the dihe-
dral angle at edge OA oi cor:e ,r rs equal to n/p. Simi-
larly, the dihedral angle ar.jge CB is equal tonf2, and
the angle at the edge OC :s ;"ua1 to nf q. Thus we con-
clude that a iundamen:a- ...ne cuts irom a sphere con-
centric to the polrheir::: -',1 a nght spherical triangle
with acute angle s : :' :.:ld ; c7. Any two o{ these tri-
angles having a cc:r:n.,:r sLde will be symmetric with
respect to this s- j.e Ir: rnls way we obtain a spherical
kaleidoscope

When \re la!s :rom a regular polyhedron to the
spherical ka-e rc-- SCope , a piece of information is lost.
We cannot .a-.- ',,:rich edge (OA or OBJ of a funda-
mental Crri:i r:SSiS through the center of a face, and
u'hrch edr. :.sses through a vertex of the polyhedron
.\f. The s;-::; kaLerdoscope will correspond to the
rpgrrl;' - 'r.'-=,i'rrn M'whose vertices coincide with
centars t: ::le
iaces ..i ::h he-
dron -'.1. Regurlar
polr're.ir'ons .1{

ari -ll' oi this
sL.ri are ca1led
JuaLs of each
other. for ex-
an-Lple, a cube is
the dual oi an oc-
tahedron. The
tetrahedron is its
orun dual {or, it's
the dual of a

regular polyhe-
dron, which is a

tetrahedron).
The numbers p

lt4AY/Jl|lllI 1SS7
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afld q switch when we pass from M to M' , as do the
numbers F andV.

Every spherical kaleidoscope, determined by one of
the solutiops

(2,3,3]/, (2,3, 4), (2,3,51

of inequality (2), corresponds to a pair of dual regular
polyhedrons. These pairs are tetrahedron-tetrahedron,
cube-octahedron, and dodecahedron-icosahedron, re-
spectively. There is no regular polyhedron correspond-
ing to the solution (2, 2, m), since its existence implies
thatp, q> 3.

It's known that the area ofa spherical triangle is equal
to its angular exsess-that is, to the sum of its angles
minus n. In particular, the area of a right spherical triangle
withacuteanglesnlp atdnlqecluals lllp * ... +Ilq*llzln.
Recalling that area of the whole sphere rs 4n, we obtain
another formula for calculating the number N:

rl p +tlc1-tl2

(compare this with equation (4) above).
A simiiar connection exists between regularn-dimen-

sional polyhedrons and kaleidoscopes on an ln - t )-dimen-
sional sphere. It's amazingthat while there are oniy five
regular polyhedrons in three-dimensional space/ there are
srx of them in four-dimensional space/ and there are only
three of them inn-dimensional space if n >4 (they are ana-
logues of the tetrahedron, cube and octahedron).

Thnee-dimersional kalsido$coru$
The task of finding all Coxeter polyhedrons is com-

plicated by the f.actthat the relations between dihedral
angles of a polyhedron are not as simple as the relations
between the angles of a polygon.

The intersection of a convex polyhedronM and a small
sphere with center C at one of its vertices defines a con-
vex spherical polygon whose angles are equal to the di-
hedral angles at the corresponding edges of M. Therefore,
iJ the number of edges emerging from the vertex C is q,
then the sum of the dihedral angles at these edges is
greater thannlq- 2). This implies that if all the dihedral
angles of the polyhedron M are not greater than nlZ (in
particular, if it is a Coxeter polyhedron), then there are
only three edges emerging from any of its vertices. Poly-
hedrons that satisfy this last condition are ca11ed primi-
tive. Thus, the cube and tetrahedron are primitive poly-
hedrons; the octahedron is not.

However, these simple inequalities do not exhaust
the set of relations between the dihedral angles of a
convex polyhedron.

Consider the simplest case/ when M is a triangular
pyramid. Let's assign arbitrary numbers to its faces and
denote the angle between the rth and 7th faces by
aii : ait Using linear algebra, we can show that the
angles of a Euclidean triangular pyramid comply with
the following relation:

I t - cos o(12 - cos c[,13 - cos aro 
I

l-.or cr, z 1 - cos c,c,, -.o. oro 
I| " '*l=0.

l-cosa13 -cos023 I -coso3al (6)

l- cos oro - cos c[24 - cos 0,34 I 
I

(The determinant on the left is called the Gramm de-
terminant of the system of unit vectors orthogonal to
the pyramid's faces. It vanishes because these vectors
are linearly dependent.)

Note that we can similarly prove that the angles o,
0, y of a Euclidean triangle satisfy the relation

However, iJ the sum of any two of the angles is less than
n, this equation is equivalent to the equality o + B + y = n.
(Try to prove it!)As far as the equation (5) is concerned,
it cannot be reduced to such a simple form.

Ecluation (5), together with the inequalities derived
above, are necessary and sufficient for the existence of
a triangular pyramid with dihedral angles o, in Euclid-
ean space. Using this fact, we can find all Euclidean
triangular pyramids whose dihedral angles are integral
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I t -coscr -cosBl

l-"oro t -cos.1l=0.

l-cosB -cosy 1 
|

(5)

OUAI\ITUtl IEATURi



,4\

^\

(----f-------->\l ."/\t,-
C

Figure 7

submultiples of a. It turns out that there are exactly
three of them. They are shown in figure 7, where the
following notation is adopted: dihedral angles at the
clear edges are ec1ua1 to nf 2, and at the edges with one
or two strokes they are equal to nf 3 and nf 4, respec-
tively. We can see that the first of the pyramids in fig-
ure 7 is cut by its plane of symmetry into two pyramids
similar to the second. The third pyramid can be ob-
tained in the same way from the second.

Except for these three, there are only {our other ka-
leidoscopes in Euclidean space that can be reduced in
some sense to planar kaleidoscopes. They are made of
right prisms whose bases form a two-dimensional ka-
leidoscope.

Three-dimensional Euclidean kaleidoscopes are di-
rectly related to crystallography. Some crystal lattices
can be obtained if we place several atoms in a certain
way in such a kaleidoscope and consider all their im-
ages, which appear as repeated reflections with respect
to the sides of the kaleidoscope. Thus the lattice o{ a
diamond appears from the first kaleidoscope shown in
figure 7 If weplace atoms of carbon at the two vertices
marked in the {igure. The lattice of table salt appears
from the second if atoms of sodium and chlorine are
placed at the vertices indicated.

We can also {ind kaleidoscopes on a three-dimen-
sional sphere. A11 these kaleidoscopes are nothing but
(spherical) triangular pyramids. The equai sign in equa-
tion (5) is replaced by the " greater than" sign, iust as the
sum of the angles of a triangle becomes greater than n
when we pass from the plane to the sphere.

mdt'syou$ileonem
In Lobachevskian space, the eclual sign in equation

(6) is replaced by the "less than" sign. We can {ind all
the Coxeterpolyhedrons in Lobachevskian space/ which
are triangular pyramids. However, they make up only
a trifling part of all Coxeter polyhedrons in this case. |ust
as on the Lobachevskian plane, there are Coxeter poly-
gons with an arbitrarTly large number (as a matter of
f.act, with an arbitrary number) oi sides, in
Lobachevskian space there exist Coxeter polyhedrons
with arbitrarily large number o{ faces. Still, unlike poly-
gons, their combinatoric structure might be very com-
plicated. Therefore, it's difficult to give a complete de-
scription of them.

It appears that the most complete description of all
possible Coxeter polyhedrons in Lobachevskian space
is contained in the theorem proved by E. M. Andreyev

rn1970. This is a general theorem, concerning not only
Coxeter polyhedrons but all polyhedrons whose dihe-
dral angles do not exceed nl2. Polyhedrons of this sort
are called acute-angied (though they might have right
dihedrai angles). As we proved above (no corrections to
the proof are necessary in the case of Lobachevskian
space), every acute-angled polyhedron is simple.

Andreyev's theorem suggests the necessary and suf-
ficient conditions for the existence of an acute-angled
polyhedron of the given combinatoric structure (other
than that of a triangular pyramid) in Lobachevskian
space. These conditions are as follows:

1. If three faces of the polyhedron meet in a vertex, then
the sum of the angles formed by them is greater than
n (the necessity of this condition was proved in the
previous section).

2. If three faces of the polyhedron are adjacent to each
other but do not meet in a veftex, then the sum of the
dihe-dral angles between them is less than rc.

3. If four faces adjoin each other "in a circle" (like the
Iateralfaces o{ a quadrangular prism), then there are
dihedral angles di{ferent frornnf2 between them.

4. I{ the polyhedron is a triangular prism, then some of
angles between its bases and its lateral faces are dif-
ferent fromnl}.
Andreyev's theorem is in a certain sense analogous

to the famous theorem of A. D. Alexandrov concern-
ing the existence of a Euclidean polyhedron with the
given development. Still, there is no exact Euclidean
analogue of this theorem (and there cannot be). It's one
of the theorems that are peculiar to Lobachevskian ge-

ometry/ like the criterion of congruence of triangles
with equal angles.

Using Andreyev's theorem, we can prove/ for ex-
ample, that there exist "rectangular" polyhedrons (that
is, polyhedrons whose dihedral angles are all right
angles) with an arbitraily large number of faces in
Lobachevskian space. (The reader is invited to try to
prove this.) And so we have many different rectangular
kaleidoscopes in Lobachevskian space. Since we can't
look at ali of them in detaii here, I'11 confine myself to
noting that since the end of the last century, kaleido-
scopes in Lobachevskian space have been applied to the
arithmetic of quadratic forms, and during the past 15

years they have {ound application in three-dimensional
topology. O
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strange painring. There is a painting on the wal1 of Dr. smile's waiting room.
The unusual thing about this painting is the way it's hung. Dr. Smile hammered
two nails (instead of one) into the wa11. He says that he has wound the picture
wlre around these nails in such away that the painting would fa11 if either the
nail were pu11ed out. How did he do it? (A. Spivak)

8202
Missing digit. How would the number I 11995
change (that is, will it increase or decrease,
and by what factor will it be multiplied) if the
first nonzero digit in its decimal notation
were omitted? (D. Averiyanov)

8203
Oil and vinegar.Imagine you're preparing a picnic
basket for yourself and a friend and you'd like to
have a tossed salad. The problem is, you like your
salad with just vinegar on it, and your friend likes
it with just oil, but you don't have room for two
containers. Since oil and vinegar don,t mix, you
fill a single bottle with both liquids. Can you take
a little vinegar to prepare your salad and a spoon-
ful of oil for your friend's salad in such a way as to
leave the rest of oil and vinegar in the bottle?

8204
Triangles in a parullelogram. Two arbitrary points are taken inside a parallelogram. Line segments connecring
them to all the vertices of the parallelogram are drawn (see the figure above). Prove that thJsum of the areas
of the two red triangles is equal to the sum of the areas of the t*o blr. triangles. (I. Sharygin)

8205
Family planning. Afamily of four lfather, mother, son,
and daughter) went on a hike. They walked aLI day
long and, when evening was aheady drawing on/ came
to an o1d bridge over a deep guily. It was veyy dark and
they had only one lantern with them. The bridge was
so narrow and shaky that it could hold no more than
two persons at a time. Suppose it takes the son
1 minute to cross the bridge, the daughter 3 minutes,
the father B minutes, and the mother 10 minutes. Can
the entire family cross the bridge in 20 minutes? If so,
how? (When any two persons cross the bridge, their
speed is equai to that of the slower one. Also, the
lantern must be used while crossing the bridge.)
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From an article written in 1958 by the
great scientist and human rights
activist Andrey Dmitryevich Sakharov
for the journal Physics in High School.
Published in Quantum's sister
magazrne Kvant in L991.-Ed.

sively described on the basis of
known principles, although we may
sometimes need to use powerful
computing resources and additional
experimental data (as recently hap-
pened, for example, with the phe-
nomena of superfluidity and super-
conductivity).

However, when physicists try to
explain the nature of mass, electric
charge, and other properties of el-
ementary particles themselves, as

well as their mutual interactions
and conversions one into the other,
an impression arises that in this
branch of physics we lack certain
fundamental principles. Research
conducted with particle accelera-
tors/ as well as experiments with
" ttatur aL accelerators " ( cosmic rays ),

have produced one surprise after
another. In just the last 10 years,
dozens of new elementary particles
with queer properties were discov-
ered, including two "types" of neu-
trino (of electron and muon origin).1

lMany changes have taken place in
the field o{ elementary particles since
1968. There are now three types of
neutrino, the muon is no longer a
meson/ and quarks mediate the strong
force. However, in the interest of the
historical perspective/ we have chosen
to leave the article in its original
Iorm.-Ed.

Moreover, the list of discoveries
contains violations of the symmetri-
cal nature of natural law for mirror
reflection, for the conversion of par-
ticles into antiparticles, and for re-
versing the direction taken by physi-
cal processes. This last violation of
symmetry is the most surprising,
since it still lacks even a phenom-
enological description.

Only by a stretch of the imagina-
tion can the author consider himself
an expert on the physics of elemen-
tary particles. Nevertheless he dares
to discuss one of the basic problems
in this field-the problem of el-
ementary length. This has to do
with the supposed existence of a

limitation in principle on the appli-
cation of modern science's basic
ideas about space and causality (that
is, the theories of quantum mechan-
ics and relativity). It involves the
need to describe "sma11-scale" phe-
nomena lying beyond a certain limit
by means of some new, more ab-
stract and more fundamental physi-
cal concepts and mathematical
methods.

This article will not describe new
and wonderful discoveries. Its basic
assertion is of a rather negative na-
ture. Nevertheless the author feels
that in addressing the problem of the
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Does Elelnertary lenulh ilisl?

Some surprising implications of the theory of relativity
and quantum mechanics

by Andrey Sakharov

CIENTISTS ALL OVER THE
world expect the physics of el-
ementary particles to provide
results of great practical and

even philosophical importance, per-
haps defining more exactly the basic
notions of time, space/ and causality.
There is no reason to expect such
changes in the fundamental prin-
ciples in otherbranches of physics, in
which the atomic particles (electrons,
photons, nuclei) can be considered
the basic ones. In optics, biophysics,
molecular and crystal physics, and
most other areas, the basic principles
of quantum mechanics, statistical
physics, and the theory of relativity
provide the firm and reliably proved
foundation for the theoretical descrip-
tion and explanation of observed phe-
nomenq and for new predictions, dis-
coveries, and practical applications
(like the transistor, laser, electrolumi-
nescence/ paramagnetic resonance,
the Mossbauer effect, holography,
and so on). We are certain that in
these branches of physics any new
phenomenon can be eomprehen-
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first principles of science (such un-
shakable concepts as length and an
interval of time), any step forward
and any more precise definition of
nuances should be of interest not
only for specialists. So, however
unclear the situation is, the author
has decided to talk about the tortu-
ous drama of ideas in one corner of'
modern theoretical physics, as he
sees it.

Even before the creation of quan-
tum theory, when trying to describe
the electron as a point particle, scien-
tists encountered an obstacle in cal-
culating its electrostatic energy. Let's
recall that the electrostatic energy of
a sphere with a uniform surface
charge density ecluais tJ = e2lprl,
where e is the charge and z is the ra-
dius.2 For an arbrtrary distribution of
the charge density along the radial di-
rection, we have tJ - e2lr. The point
electron corresponds to the approxi-
mation r -+ O, which yields f-/ -+ -.
According to Einstein's famous for-
mula, the energy U is related to the
rest mass aslr, = IJf c2, so the mass of
the point electron must be infinite.
hrserting the experimentally obtained
electron mass into the formula
m = ezf (rczl yields r = 2.8 . 10-13 cm.
This value is known as the classical
radius of the electron.

The situation became even more
complicated with the advent of
quantum mechanics. On the one
hand, quantum effects result in far
smaller numerical values for the
electromagnetic energy of the elec-
tron for the samez, but the problem
of infinite energy W -) * at r -+ 0
still exists, though now I4l is propor-
tional to ln (rl) and not torl. On the
other hand, the principal difficulties
in considering the electron as a point
particle arise when calculating the
other basic theoretical values: the
force of interaction between par-
ticles, the probabilities of scattering
or decay, and so on. Still, it is very
difficult to reconcile the notion of a
nonpoint particle with the prin-
ciples of relativity theory-indeed,
signals could travel with a velocity
greater than that of light along the

hr this system of units, Coulomb's
constant k = 'l{rois set equal to l.-Ed.

solid body of an extensive particle.
It was proposed that the quantum

theory of elementary particles is in-
complete both logically and math-
ematically. This thought was for-
muiated most clearly in the 1930s
by the outstanding German physi-
cist and theorist Werner Heisenberg.
Here ls the line of his argument. In
his opinion, the difficulties of the
theory of elementary particles had
deep, intrinsic roots; they touch on
fundamental principles, just as the
seemingly unsolvable problems of
the electromagnetic theory of mov-
ing bodies did before the creation of
relativity theory, or the paradoxes of
atomic phenomena before the era of
quantum mechanics.

The difficulties of electrodynam-
ics could not be overcome without
revising and delineating such a

seemingly self-evident notion as si-
multaneity. The new formulas of
relativity are only a secondary result
of such an epistemological revision
of basic notions. The paradoxes of
wave-particle duality gave rise to
even more profound ideas-the
complementarity principle and the
statistical interpretation of the wave
function. According to Heisenberg,
the inconsistencies in considering
elementary particles as point ob-
jects, the absence in the modern
theory of any uiteria that would
determine the numerical values for
the mass and charge of elementary
particles-these are manif estations
of the incomplete and inexact char-
acter o{ the very notions of space,
time, and causality for "small-sca1e"
phenomena.

Heisenberg noted that Einstein's
theory of relativity differs from the
ideas of Galileo and Newton on
space and time by postulating the
existence of an absolute unit o{ ve-
locity, which in Einstein's theory is
the maximum velocity for the
propagation of interactions, numeri-
cally equal to the velocity of light in
vacuum (c: 3 . 1010 cm/s). At ve-
locities that are far less than c, the
pre-Einsteinian concepts describe re-
ality correctly. Similarly, the bound-
ary between quantum and classical
(that is, "nonquantum") theories is

determined by another basic con-
stant, which has the dimension "en-
ergy x time": Planck's constant h,

which is the proportionality factor
for the difference in the energies of
two quantum levels and the electro-
magnetic frequency related to the
quantum transition:

Er- Er= fia.

If rrr is measured in angular units
radf s, the numerical value of the
constant f equals 1.05 . 10-27 erg. s.

Planck himself measured the oscil-
lation frequency v = af2n in s-1, so
he defined as the constant h = Znlr =
6.6 . 10-27 erg. s. The definition and
designation of fiwerc introduced by
Dirac.3

The classical notions correspond
to reality when one is deaiing with
macroscopic processes-for in-
stance/ investigating the transmis-
sion of radio waves by an antenna/
when the emitted energy E is much
greater than the energy of an indi-
vidual quantum frrrl. However/ the
classical approximation is abso-
lutely useless when one is consider-
ing the emission of a single photon
by an excited atom.

Heisenberg noted further that dif-
ficulties in the quantum theory of
elementary particles arose in ana-
lyzing problems where the transi-
tion of a large amount of energy or
momentum was important-that
is, during collisions of particles
whose location was severely re-
stricted in space and so had a very
small de Broglie wavelength. Thus
Heisenberg advanced a hypothesis
that at some elementary length 1o

(in the first variant of his concept he
considered this to be the classical
radius of the electronr), the known
laws of quantum and relativistic
theories lose their power/ and that
to describe such a tiny world we
need new notions, even more

3As a rule, physicists do not use the
SI system of units, preferring instead
the CGS system (the first letters of the
fundamental units: centimeter, gram,
second). In this system/ the erg is the
unit of energy {1 erg = LO-l I).If some
value is measured in a unit that has no
special name, physicists write "CGS
unit."-Ed.
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abstract than the ones used in these
theories.

According to Heisenberg, it is the
magnitude 7o that also determines
the characteristic scale for the mass
of elementary particles. Taking as

the unit of mass hl clo : 70 }y'reY f c2,

we obtain the mass of particles at
rest with a high degree of accuracy
(the following list is based on the
current set of elementary particles):

p-meson
fi-meson
K-meson
n-meson
proton/ neutron
A-hyperon
X-hyperon
E-hyperon
electron
photon, neutrino,
graviton

etc.

312
2
7
8

13.5
t6
17
t9
t lr37

0

Digressing a bit, 1et's note that
the availability in modern theory of
two "natural" units (their dimen-
sions are [c] : length ltime andl/tl =

energy x time) leads to the situation
where, among the three basic units
forming the basis of any system of
units (for example, in SI, m, s, kg),
only one unit (say, the length l)
must be considered arbitrary. The
unit of time can be defined as
T - Ll ci the unit of mass as M = hf Lc;
the unit of energy asE :ltcf Li and so
on. In theoretical physics it is a com-
mon practice to accept /t. = c = | and
to measure all the physical patam-
eters as powers of length. This trick
greatly simplifies the formulas, from
which the coefficients h and c have
disappeared. In this system/ momen-
t:;l::rp, massm/ and energyE are ex-
pressed in the reciprocal units of
length-say, cffi-l. The relativistic
formulas for energy and momentum
look like this:

_mr-L=---;- ",,1m- i p- ,

"ll- v'
mv' $-"

The magnetic moment is ex-
pressed in units of length or in the

reciprocal units of mass. Forexample,
the magnetic moment of the electron
(aiso known as the Bohr magneton-
see below) is equal to elQml. Other
physical magnitudes can be expressed
in a similar way. The application of
this "one-dimensional" system of
units is rather effective, provided the
magnitudes for unit mass or length
are characteristic of the phenomenon
being investigated. Now let's retum
to Heisenberg's ideas.

When Heisenberg advanced his
notions, the list of elementary pa?
ticles included only the electron
(and its antiparticle, the positron),
proton/ neutron/ andphoton. Nowa-
days this list is expanded to include
dozens of particles. Among the
added items are the p-meson (muon)
and two "sorts" of neutrinos, which
together with the electron and the
corresponding antiparticles form the
family of weakly interacting par-
ticles, the leptons. In addition, a

number of new, strongly interacting
particles were discovered. These in-
cluded particles with a very short
lifetime; they were called resonance
particles (for example, the 1-meson
in the list above). The strongly inter-
acting particles (hadrons) are subdi-
vided into two large groups: the so
calIed baryons, which are similar in
their properties to the proton and
neutron (the long'lived baryonsA, I
E were named hyperons); and the
mesons-typical examples are the ri-
and p-mesons, which are responsible
for nuclear forces, as well as K- and

n-mesons (which were also listed
above).

Now we have no reason to sup-
pose that the mass of any natural
particle is necessarily of the order of
Lllo= 70 MeV (takingh: c = 1, we
use I MeV as a unit not only of en-
ergy but of mass, momentum, and
reciprocal length). For example, we
have every reason to believe that
there are particles (probably un-
stable)with much larger masses. So
this "empirical" argument in favor
of Heisenberg's numerical value for
elementary length now seems not
very convincing. The argument
based on the classical estimate of
electromagnetic mass is also not

convincing due to the aforemen-
tioned decrease in this value in
quantum theory. The last point
strikes one as being particularly
important.

Heisenberg supposed that there
wil1be drastic deviations from mod-
ern theory in the laws of interaction
of elementary particles at energies
larger thanlllo= 70 MeV. Initially,
when new particles were discovered
in cosmic rays, which had great pen-
etrating abilities, it was thought that
they were electrons that possessed
high energy and thus did not " obey"
the laws of quantum electrodynam-
ics. However, it soon became clear,
that they were just ordinary par-
ticles whose mass was 200 times
that of electrons, and this "trivtaI"
property was responsible for their
unique penetrating power. Nowa-
days there are no phenomena that
could confidently be interpreted as

an overt violation of modern theory.
Let's examine this in more detail.

Modern physics knows of four
kinds of interaction:

1. "Strong" interactions (the nuclear
forces are a typical example);

2. Electromagnetic interactions;
3. "Weak" interactions (which are

responsible for the processes of
beta-decayl;

4. Gravitational interactions.

A comprehensive quantitative
theory and extensive experimental
data exist for electromagnetic inter-
actions, so this is a good field in
which to look for possibie deviations
from modern theory. Until now all
such attempts have produced nega-
tive results. I will describe some of
them, because even a negative result
is important for such an important
problem-an analysis of ,experimen-
tal accrracy yields an estimate of
the possible limit to the validity of
modern views. It is also important
that this question has various links
with other fields of modern physics,
so it is interesting in itself.

At present/ among the electro-
magnetic properties of elementary
particles, the magnetic moment is
the most studied. According to a
hypothesis advanced in 1925 by
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Uhlenbeck and Goudsmit, the elec-
tron is similar to a tiny top-it has
an angular moment equal to l12 {in
units of #) and also has a dipole mag-
netic moment el(2m1. Much evi-
dence was collected in favor of this
hypothesis in the course of research
on magnetic phenomena in spec-
troscopy. Later the outstanding En-
glish physicist Paul Dirac showed
that Uhlenbeck and Goudsmit's
hypothesis was compatible with the
description of the electron as a point
charged particle obeying the equa-
tions of quantum mechanics and
relativity.

Surprisingly, in the 1930s it was
found that the magnetic moment of
the proton was 2.9 times larger than
ef lLm"l, where mo is the proton's
mass.In addition, the Russian theo-
rists Tamm and Altshuler predicted,
and the American scientist Luis
ALv arez experimentally detected,
the existence of magnetic moment
of the neutron, which is electrically
neutral and according to the formula
above should not have any magnetic
moment at all. Now the accepted
practice is to call the magnitude
ps: ell2ml the normal magnetic
moment/ and to treat arry extra mo-
ment as "anomalous." According to
modern views, the anomalous mag-
netic moment of the proton and
neutron is caused by their inner
structure, but a theory for this phe-
nomenon is still lacking-as well as

a theory for the strong interacting
particles.

Until1947 it was thought that
the electron had no anomalous mo-
ment. However, a study of the inter-
action energy between the
electron's magnetic moment and
that of the proton resulted in some
discrepancies. (By the way, this in-
teraction is responsible for the elec-
tromagnetic waves (wavelength
I = 21 cm) radiated by atomic hydro-
gen in the cosmos, which play a
very important role in radio as-
tronomy.) The American theorist
Gregory Breit proposed-and
shortly thereafter his compatriots,
the experimentalists Kusch and
Foley-found a tiny anomalous
magnetic moment in the electron.

The relative value of this moment
was about 1.2. l0-3 . The theory of the
anomalous magnetic moment had
been created by the outstanding
American experimentalist )ulian
Schwinger in 1948 as the result of the
great advances in the mathematical
apparatus of quantum electrodyaram-
ics made in 1940s by Schwinger and
independently by Sinitiro Tomonaga,
Hans Bethe, Hendrik Kramers, Rich-
ard Feynman, Freeman Dyson, and
others.

According to Schwinger, the rela-
tive anomalous moment is given by
the formula

4=F-!to =r'=1.16.10-3lro 2n

and results from the interaction of
an electron or p-meson with the
electromagnetic quantum fluctua-
tions (or zero-point vibrations) of a
vacuum.

In quantum theory, a vacuum is
not synonymous with emptiness.
For any system, this theory intro-
duces the concept of energy levels
(Bohr's hypothesis). Extrapolating
this approach to the vacuum yields
an interpretation of the photon as

an excited state of one of the
vacuum's electromagnetic oscilla-
tory degrees of freedom. The basic
state (level) of every degree of free-
dom corresponds to the absence of
a photon with a given wavelength.
Although the average value of the
quantum-mechanical electric field
in this system is zero at any mo-
ment of time, the field does exist,
because its amplitude, which corre-
sponds to the given degree of free-
dom, cannot be equal to zeto and so

undergoes quantum zero oscilla-
tions (quantum fluctuations), creat-
ing a "cloud of probability" near the
average (equilibrium) state. The full
energy of the interaction between a

charged particle and the zero oscil-
Iations of the vacuum derives from
interaction with zero oscillations o{
different wavelengths, and the
change in this energy in the " exter-
nal" magnetic field was interpreted
by Schwinger as being caused by the
anomalous magnetic moment.

The interaction energy of elec-
trons with the vacuum's zero oscil-
lations can be expressed by an inte-
gral taken over all possible values of
the momentum p (reciprocal wave-
lengths) of these oscillations, where
ps is the assumed limit to the appli-
cability of current concepts. Thus
the energy is proportional to

"'P- m ',o. doffi"-a' ldP t . = l2'7n---!-" 
t 

- 
lpr+^, t_ p

= me2ln&.
m

For dimensional reasons, when a

magnetic field of intensity H is
present, the expression under the
integral sign will change by a value
proportional to e3H lp2. Therefore,
the change in the electron energy in
a magnetic field, which in accor-
dance with Schwinger's idea we con-
sider equal to F - Fo, is proportional

Po.
to me3 H [4 . rn".

Jnu
mE

J t r)
Ir_tro _me"lmr_AI

According to Schwinger, the propor-
tionality {actor in this formula is
ll4n.Earlier we wrote this formula as

e2 e3
It-l"to = 2nlro= 4n*

-that is, without the factor
It - *zlpozl, which corresponds to
po ) *.When po * *, we have cor-
rections to the anomalous moment
proportionalto m2 f po2. Denoting by
a, the theoretical value obtained by
Schwinger and other theorists,
which gave a more precisg estimate
within the framework of modern
theory, we have (in order of magni-
tude)

r_d-a, -ffiZat p3'

or
m

rD
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This formula shows that the most
"promising" object for studying vio-
lations of quantum electrodynamics
is the heaviest particle among the
known ones-the p-meson/ whose
anomalous moment fluctuates (this
was noted by the Soviet physicist
Berestetsky).

The first experiments that de-
tected the anomalous moment of
the electron were done by the mo-
lecular beam method. The credit for
the development of this method,
which dates back to the ciassical
experiment of Stern and Gerlach,
belongs mostly to the American
physicist Isidor Rabi. However, the
most precise measurements of c
(with a relative accuracy 6 : 2. 10-s
for the electron and 6 = 4 . 10-3 for
the p-meson) were done in a num-
ber of American laboratories much
later and by a different approach.
These experiments showed that
a:1.162. 10r + 0.004 . 10-3 (these
data are for p*-mesons; similar re-
sults were obtained by Farley and
Brown for p--mesons). With all
known corrections, the theoretical
value a, equals L.1654. 10-3-that
is, it coincides with the experimental
value to within the accrxacy of the
measurements. There{ore, the value
6 : {a - a rl I ardefined above is certai.nly
less than 4. lF. Thus quantum elec-
trodynamics is undoubtedly correct
for energies and momenta less than

os : -l I +. 1 o-3 
-that 

is, when these

values are less than a few GeV.
Another method for studying the

applicability of quantum electrody-
namics is based on the collisions of
electrons with electrons and elec-
trons with positrons in so-called col-
liding beams. Why do we need col-
liding beams? The theory of
relativity combines the vector of (ki-
netic) momentum p and the energy
of the particle E into the so-called
four-vector. Three-dimensional vec-
tors have the property of preserving
their scalar product during rotation
of the three-dimensional coordinate
axes. However, given a more general

" Lorentzian transf ormation" of the
reference system, which takes into
account not only the rotation of the

coordinate axes but also the shift
into another inertial reference
frame, a more general invariant
emerges: the Einstein-Minkovski
scalar product of four-vectors. For
two colliding particles, the four-di-
mensional scalar product of the en-
ergy-momentum vectors is given by

I : E$)- pupz,- pv,pt.r- pt,pz,.

Clearly all qualitative theoretical
assertions, and in particular the de-
viations {rom modern theory/ can
depend only on an invariant value.
When an electron at rest (11 = 0) col-
lides with an electron having a mo-
mentum Pz = P, we have

-)Ir=*r-t+P).

On the other hand, for colliding
beams of elecrrons having mornenta
Pr : P and P: = -P, the invariant is

Iz= n12 + 2Pz'

If p = l03m {that is, has an energy of
500 MeV), then 1, = 2 . 10311. The
advantage of the colliding beam
method is obvious when we com-
pare 1, and 1r.

Experiments with colliding beams
have been conducted in Novosibirsk
(Russia)under the guidance oi Budker
and seern quite promising. Within the
accurac,v of the measurelnents/ these
expenments shorved no deviations
t1arlr nlodern theon-.

Thr-rs the boilr oi theoretical and
L\l!l'il"llcl-lll. -ll -ttt::.ttt. i 't-c. U: IO

adrnit that F{.rse nberg s the ore trcal
irmrt r' = .r. nruSt be sh-:tec ra t:l
greater energres. Although n-larir-e
in character, thrs result ls \ e n' 1lrf -

portant for the rnodern phr srcs oi
elementary particles.

Long ago the American ph1-srcist
Eugene Wigner noted that the r-ery-

notion of measuring tiny interrrals oi
time and space iAx a Lo = 10 '13 cm;
It 1 Lolc: 10 'r'1 s) encounters diifi-
culties in principle, if one simulta-
neously takes quantum mechanical
effects and gravitation into account,
The distance and time interval be-
tween any two points in Einstein-
Minkowski space (that is, between
two "events") must be subjected to
quantum fluctuations/ or to zero

quantum oscillations, just as any
other physical value. In this respect
the gravitational field cannot differ
qualitatively from the electromag-
netic or any other field. Note thatLo
can be estimated by dimensional
analysis.a In his time Max Planck
noted that, using the numerical
value of the gravitational constant
G :6.67 . 10-8 CGS, as well as the
constants h andc, one can construct
a system of "natural" units for all
physical magnitudes (in other
words, substitute the "one-dimen-
sional" system described above for
the "zero-dimensional" system of
units). For instance, the unit of
length Io can be defined as

L0: Grl2f-Ltl2c-112 :1.61 . 10-33 cm.

Correspondingly, the unit of time
will be

T.r -'o-/-l)\l)c\)10---U t,
C

= 5.35 . l0-ll s,

that of energy

h
. tt 

--t),l2.ll.E,n=-=L: ll ("70
= 2 . 1016 erg = 1628 

"r,

and that of mass

L
11 L r-l -,. I ,-- -_ij = , =L. /i r

rl-

= t.t S 1O-r s

It turns oLLt that \\tr51ner's u,ork
mentione d abor-el leacls to the extrac-
tron oi these trro magnitudes, lo and
f , as the boundaries of our modern
vrerr oi the nature of time and space.
Some scientrsts iincluding the Rus-
sran theorist Kompaneyets) have
pointed out that using Io as the ef-
iectrve radius oi the electron does
not lead to an excessively large elec-
tromagnetic mass in cluantum elec-
trodynamics, contrary to what
r,r.ould happen in classical electro-

aFor a primer on dimensional
analysis, see "The Power of
Dimensional Thinking" by Yuly Bruk
and Albert Stasenko lQuantum, Mayf
lure 1992).-Ed.
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New from NSTA!
dynamics. The reason is that the
aforementioned fact that electro-
magnetic mass in quantum electro-
dynamics is ptoportional to ln (rl).
Recently the Russian scientist
Markov offered the hypothesis that
Io (and thus the related magnitude
Mo : llLo) determines also the
maximum possible mass of an el-
ementary particle. He coined the
term "maximon" for such a par-
ticle. It is known that the formation
of stable particles from component
parts that can themselves be un-
stable results in a decrease in the
total mass (the mass "def.ect" that
arises in nuclear physics as a sma1l
correction to Prout's law). So, fol-
lowing Markov, we should not be
surprised that the observable stabie
particles (electrons, protons/ and so
on) have masses that are far iess
than the "natLrral" unit of mass
Mo= 2. 10-s g.

More and more physicists now
think that this boundary ^Lo will
Iead to the most drastic changes in
our views. Still it is very impor-
tant to be sure that there are no
other characteristic values be-
tween r = 2.8 10-13 cm and
to = 1.51 . 10-33 cm that could play
a similar fundamental role. At pres-
ently this question can be answered
only by indirect theoretical consid-
erations. Here is one of the argu-
ments, which is taken from an
analysis of the principles of the gen-
eral theory of relativity.

It is known that the motion of
material bodies in a gravitational
field is described in Einstein's
theory as movement along the
shortest line in " ctJrYed" space-
time. Because of this "ctJrvatt)re,"
the shortest distance is not a

"sttaig;ht" line but a "curved" line
in space-time described by the set
of ecluations

x = f tltl, v = frltl, z = f eftl,

where f 1, f2, f j are nonlinear func-
tions.

In Einstein's theory, the degree of
the curvature of space is found by a

condition that can be quaiitatively
described in the following way. In
the vicinity of bodies possessing

mass (or energyt which is the same
thing), space is affected by a curving
"force" (of course, the term "force"
is used here in a certain generalized
sense). At the same time, space has
the property of "elasticity" that
"works against" the curving force.
The balance of these two "forces"
determines the degree of curvature.
Usually the deviations of the prop-
erties of space from the properties
described by Euclidean geometry
are rather small-that is to say, the
"elasticity" of space is very large.

What determines the "elastic-
ity" of. a vacuum? We might sup-
pose that it is variations in the
quantum fluctuations of the
vacuum. Earlier we discussed
these fluctuations in connection
with Schwinger's theory of the
anomalous magnetic moment.
Here, we might say that when
space-time is being "curved, " the
fluctuations become " ctamped"
and that they "violate" the bound-
aries, which results in an increase
in the vacuum's energy. In a for-
mal sense, this effect is infinite if
fluctuations of the shortest wave-
length are taken into account. The
value of the gravitational constant
(the reciprocal of the "coefficient
of elasticity of space") will have
the correct numerical value only if
the fluctuations have a wave-
length greater than.Lo - 10-33 cm.
The future will say whether this
reasoning is correct.

So-what is there beyond the
limit set by Lo? What modifications
to quantum theory (if any) will be
necessary for processes occurring at
distances less than 10-33 cm, or
characterized by energies larger
than 1028 eV? Nobody knows. We
should probably agree with those
scientists who expect profound,
fundamental changes in the way we
think about physics. The value
1028 eV is so much higher than the
range of energy currently studied
(the largest Russian ring accelera-
tor, at Serpukhov, has an energy of
"ortly" 7 . 10lo eV) that the final
clarification of this set of problems
may remain out of reach for the

o
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HOW DO YOU
FIGURE?

Challeltuo$ in phy$ics and malh

IUlalh

M201
Mindyour minuses. Find the unique
real root of the equation

# -B* -3x- 1= o.

M202
Squared numerators. Prove that if

abc.

-=
b+c c+a a+b

then

a2 bz c2

-r-r-- 

- ll
b+c' c+a a+b-"'

M203
Hens and roosters. One day Mrs.
Cook bought a hen at the market.
This hen laid two eggs and then was
cooked for a dinner. As is well
known, from each egg either a hen
or a rooster can hatch. Each rooster
was eaten soon after it hatched, and
a hen was eaten only after it had laid
two eggs. This process went on for
several years, until it ended in a
natural way: only roosters remained,
and they were eaten. It turned out
that the total number of roosters
eaten was 1997.What was the total
number of hens eaten? (A. Yegorov)

M204
Middle of all chords. Find the loca-
tion of the midpoints of all the
chords drawn in a given circle so
that their endpoints lie on different
sides of a given straight line inter-
secting this circle.(L Sharygin)

M205
Finding the center. A circle on the
plane is gtven. Its center is not shown.
Find the center using a compass
(without a straightedge) in such a way
that the total number of arcs or circles
you draw does not exceed six. (V. Pan-
fyorov)

Physics

P201
System in equilibrium. A massless
inelastic cord with masses of 1 kg and
3kg attached to its ends is strung over
a light pulley. This pulley is set on a
shaft with friction, and the force of
friction is proportional to the axial
load. In this system the acceleration
of the larger mass was 2 m/sz. What
is the mass that must be added to the
smaller mass to place the system in
equilibrium? (S. Varlamov)

P202
Pucks onice. Apuck of massMslides
on ice with a velocity vo and strikes
a puck of mass 2M at rest. After the
impact the first puck stops. The sec-
ond puck hits a wall and after an elas-
tic rebound hits the first puck head
on. Find the velocities of both pucks
after the last collision. Note that dur-
ing a collision a certain fraction of the
maximum energy of deformation is
transformed into heat. (A. Vargin)

P203
Gas undu a piston. One mole of
ideal monatomic gas is put under a
massive piston in a vertical ther-
mally insulated cylinder at a tem-
perature 70. The gas is compressed
by lowering the piston, After per-

forming work I4l, the piston is re-
leased and assumes a new equilib-
rium position. Find the temperature
?, for this state. (V. Uzdin)

P204
Collision coutse, Four military jets
are conducting maneuvers. Three of
them (1, 2, and3)follow each other
as shown in the figure below; the
fourth one (4)f1ies in a direction at
an angle 0 = 30o with the course of
planes 1,2, and 3. None of the
speeds designated on the diagram is
known. It is known, however, that
the pilots in planes I,2, and3 begin
to hear plane 4 at the same moment.
It is also known that the pilot in
plane 1 begins to hear plane 4 when
the distance between the two is
three times the minimal distance
achieved during the approach of
plane 4. Is plane 1 flying at super-
sonic speed? (B. Korsunsky)

P205
Two images, one obiect. An enlarged
image and a reduced image are
formedby a single lens of focal length
F on a screen set at a distance I from
the object. Find the ratio of the sizes
of these images. (E. Kuznetsov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 58
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lnralionality and il'reducihilily

It all started with the square root of 2 . . .

by V. A. Oleynikov

HEANCIENT GREEKS KNEW
that

the cluantity ^lZ is irrational

and could prove it.
Infact, suppose that it's rational.

Then we can write it down as an
irreducible fraction ^lZ = alb.nut
this means that

2b) = a2

Now it's clear that a is divisible
by 2, and a2 is divisibleby 4, so b
also is divisible by 2. Thus the frac-
tion af b is reducible.

The fraction af b cannotbe reduc-
ibie and irreducible at the same
time, so O is not a fraction. This
property made O an unwelcome
guest in the world of numbers,
which was ruled by harmony and or-
der, simplicity and perfection.

The number J2 owes its exist-
ence to the diagonal of a unit square
and numerous unsuccessful at-
tempts to measure it by means of
rational line segments. These fail-
ures troubled the ancient Greeks
very much and caused a good deal of
intellectual ferment. Reality, em-
bodied in the geometrical figure,
was knocking on the door of the
beautiful and sublime.

).a'
b'

Centuries later, ^li claimed its
right to be considered a "number"
by becoming another reality: the
root of the equation x2 - 2 : 0, and
it turned out that

the number O is irrational,

the polynomialx2 - 2 = 0 is
irreducible.

Our aim is to clarify the connection
between irrationality and irreduc-
ibility.

lnneducibility
An nth-degree polynomial in x

Plx) = ao+ atx + ... + a-tr'

with integer coefficients

AO, Al, "' , A---, ti-- C

is called irueducible ti :I:.:- ;:. no
polynomialsli-x anJ - .. -.'-:: tnte-
ger coefficients :u:|. ::.::

and u,ith degr:=s ...s thann. Other-
wise, P,-r' rs c.l-e::::lcible.

For esarrp,e the polynomiai
x' - \- -.r - I :. r.lucible 1it's equal
to lx - 1' -rl - 1 -check 

itl), and the
pol,vnomral -rl - 1 is irreducible
ithink rrhr

The hnear brnomial ao + a,x is the

simplest example of an irreducible
polynomial. Its only root x : -aof a,
is a rational number. However,

an irreducible nth-degree
polynomial , fr) 2,

has no rational roots.

This statement is follows from
the following more general fact:

Trm,onEnr. If ais a commonroot
of two polynomials P(x) and
Q&), and one of them-for in-
stance, Qk)-is irueducible,
then the polynomial d P(x),
for some integer d, is divisible
by Qt4:

d .P(x) = L(x) 'Q&).

This theorem bears the name of the
iamous German mathematician
Carl Friedrich Gauss I --'-1855).

It will be pror-ec L",eiorr. And the
property menuor:i abor-e i.s directly
implied b1- it s-.lce no polynomial
whose degr;. -'- IS greater than one
can dir-ide . --l;ar brnomial evenly.

The ; ...-.rirty of producing
man\- l--..- rlrational numbers is
no\r r:-:r :o us. We can look for
the :: =:::ng the roots of trreducible
p-,--.-1 ::lrals. The following state-
r:-:: :.hers us into the mYsterious
-.:: -,1 rrreducible polynomials:

22 rtAY/JUilt tssT
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Ersr,Nsrr,rN's cRrrERroN. Suppo s e
that for the given polynomial
P(x) there exists a prime p such
that the leading coefficient a,
of this polynomial is not divis-
ible by p, all the other coeffi-
cients ak are divisible by p, k
: 0, 1,..., n - 1, and the con-
stant_term ao is not divisible
by p'. Then the polynomial
P(x) is irreducible.

During his short life, the German
mathematician F. G. M. Eisenstein
( 1823-1 852) suffered much from his
own bad luck and his contemporar-
ies' indifference to his work. His
ideas were understood only many
years a{ter his death.

Proof. Suppose that, on the con-
trary, there exists a reducible poly-
nomial P(x) with the given proper-
ties of its coefficients. It can be
represented as the product

P(x)= r(x) Q(x)

of the polynomials

Llxl = bo+ brx + ... * b{,
Q(x) = co+ crx + ... + coVm

with integer coefficients. The lead-
ing coefficients b, and c^ are non-
zero, and we can suppose that
m > 1> 1. If we add up the coeffi-
cients of the same powers of x in this
product and compare the results
with the coefficients o{ P{xl, we get

Ag =bgC6,

a1 =b6c1 tbp6,
a2 = b6c2 + brc, + b2c6 ,

a1 =bsc1 +brc1 -1+ "'+bps,
a- = bgc- + bp--1 + "' + b -co,

a, =b1C-,

Consider the first of these equali-
ties. We know that the constant
term aois divisible byp; this means
that either bo or cois divisible by p;
but it is impossible that both these
terms are divisibleby p, since ao is
not divisibleby p2.

Let's assume that bo is divisible

by p andthatcois not. Then we pro-
ceed to the second equality: a, is
divisible by p andbocris divisible by
p; thus brco also is divisible by p.
Therefore, b, is divisible by p . . .

. . . And so we go on reasoning in
this way until we come to the
(J + 1)st equality (involving the coef-
ficient a 

1l: 
a rts divisible by p , ard alI

of bs, ..., bt-r, are divisible byp as

well. Therefore, brcoand hence bris
divisible by p.

Now we jump directly to the last
equality:we conclude that the lead-
ing coefficiertt ar= brc*rs divisible
by p, which contradicts the condi-
tion of the criterion.

If we assume that in the first
ecluality, co and not bo is divisible by
p, we'll have to go back to the very
beginning, proceed in the same way
to the (m + 1)st equality (involving
the coefficient a-1, and then jump to
the last equality.

So we see that the decomposition
P(xl = Llxl. Q(x) is impossible, and
thus P(x) is an irreducible polyno-
mial. Having established this crite-
rion, we proceed to the next stage.

lrnalional radhals
The polynomial* - 2 is ireduc-

ible, by Eisenstein's criterion (take
p = 2). Together with J2 we obtain
the irrational numbers

{P'

where p is an arbitrary prime and
n = 21 3, ... . All these numbers are
roots of the polynomials

P(xl=x"-p,

which are irreducible, according to
Eisenstein's criterion. The number

\tpr^pk

is irrational lf p r, ..., p p are different
primes. This number is a root of the
irreducible polynomial

P{xl:xn-py..p*.

To these irrationalities, we can add

,tr,+{i+:WA
for all natural a, b, ...(try to con-

struct polynomials for these mon-
sters yourself and prove that they are
irreducible).

All these examples illustrate how
Eisenstein's criterion works. But
stil1, one can't say that it's a big step
beyond what the ancient Greeks
knew. As a matter of fact, it's pos-
sible to prove the irrationality of the
last expression, raising it succes-
sively to the powers 1, m, ..., n and
then reasoning in the way we did to
prove the irrationality of JZ. fhe
following sum of radicals seems
more impressive:

+1|i a...a!* "i[o*u .

br !r bk !r

If all the quotients

mr mp

- 
t "' t-nr I7p

are in lowest terms and different
from one another, then the sum is
an irrational number. To prove this,
let's suppose that it is rational and
equal to alb.PutN: r, ... no. Then

{E i. a root of the polynomial with
integer coefficients

m,N m,.N
a,B -- a,-B -; aB
-j-x "t *...* :^ 16 "^ ---l-tbr bk b'

where B : b by..bkl.The degree of
this polynomial is less than N. But,
according to our theorem it must be
divisible by the irreducible Nth-de-
gree polynomial xN - p, which is
impossibie.

This sort of activity could be con-
tinued successfully (for example, we
can combine the two last results to
obtain new irrationalities). Success
inspires hope, but somqtimes it cre-
ates illusions. It might seem that if
we pile up more and more new radi-
cals and apply the four arithmetic
operations to the whole numbers
a, b, ...,we'll get more and more
new irrational numbers. The best
way to dispel illusions in math-
ematics is to consider a "special
case," One of such special case is
the qqgqlpn whether the expres-
sion4 a" + b" isrational fornatural
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a, b, (n > 3). This question is equiva-
lent to Fermat's last theorem:

There arc no natur al numb er s x, y,
and z such that x + y : z, in which n
is a natural numbq greatu than 2.

The great 17th-century French
mathematician Pierre de Fermat
proposed this problem and left it to
us unsolved. Since that time, for'
over three hundred yearst the best
(and the worst) mathematicians
have tried to solve it.1 Seemingly
simple, this problem has attracted
the attention of numerous amateur
mathematicians, and many anaive,
uneducated soul was swallowed up
in this swamp.

In 1908 the German millionaire
P. Wolfskehl offered a large mon-
etaty award to whoever solved the
Fermat's last theorem, thus provok-
ing a growing avalanche of erroneous
"solutions." Efforts continued un-
abated despite the devaluation of the
deutsch mark in the 1930s, which
lessened the award considerably.

Theupshot of theseremarks is clear:
the mass production of irrational radi-
cals is an apparently promising, but
devilishly dangerous occupation.

Uariations
Eisenstein's criterion is often in-

sufficient to tell whether the poly-
nomial P(x) is irreducible, because it
demands that all the coefficients d6,

a1t ...t an+rt exceqt for the leading
term ant have a common prime divi-
sor p. There are many polynomi-
als-for example,

*+L,*+1,x6+#+1

-for which no such divisor exists.
Nevertheless, the resources of
Eisenstein's criterion are far from be-
ing exhausted. One merely has to
"shake up" the polynomial P(x) by
making some substitutions for the
variable x.

The question of the irreducibility
of the polynomial

Plx)=*+t
IIn 1995 the English

mathematician Andrew Wiles
published a proof of Fermat's last
theorem that brings together several
disparate areas of modern
mathematics.-Ed.

can be reduced to Eisenstein's crite-
rion in the following way. Suppose
that Plx) is reducible. Then P(x + Il
must be reducible, too. But P(x + 1) =
* + 2x + 2 is irreducible according to
Eisenstein's criterion f.or p = 2. The
polynomials/ + I and# +:'3 + 1 are
irreducible for the same reason. A
similar transformation allows use to
say whether the polynomial

P(xl=x"-r *rn-Z +... + 1

-called the cyclotomic polyno-
mialz-is reducible.

The polynomial P(x) is reducible
if n = p' k is a composite number,
because

p(,)=#=(";[i'

_ 
(xe - r(xe(ft 

- 1) 
+ xe(r. - 

2) 
+ ... + 1)

and it is irreducible if 1 = p is a
prime.

In fact, if P(x) were reducible, then
P(x + l)would be reducible, too. But

(x+l)P -1P(x-1)-+\ / (x+1)- 1

= yP -t + Crpxl -z + ... + C$-r .

A11 the coefficients here3 are divis-
ible by p, since

p(p-t)...(r-k+t)

x-1
=(xr-1-xP- 2 +...+1)

(ro 
o -Ir -urPrk -'' *... - r),

(k. p),

and the numerator is divisible byp,
while the denominator is not. More-

2The roots o{ this polynomial are
the nth roots of 1 (except for 1 itself),
all oi which are complex, unless n is
even (when one of them is equal to
-1). These numbers, on the complex
plane, form the vertices of a regular
n-gon inscribed in a unit circle, and so
divide this circle into n equal arcs.
The term "cyclotomic" means "citcle
splitting" and is used {or this reason.

3We use the binomial coef{icients
C] and Newton's binomial theorem
(s0e any standard precalculus text).

over, the constant terrn C!- t : p it
not divisibleby p2. Accbrding to
Eisenstein's criterion, P(x + l/ is ir-
reducible, and thus P(x) is irreduc-
ible as well.

From this result it follows that
the cyclotomic polynomial

XP-I+XP-2+...+1:0

cannot have any rational root for
p>3.

It's possible to prove that the
cyclotomic polynomial has no real
roots either-that all its roots are
complex numbers. We can then pose
a more difficult cluestion: when are
these roots "not too iruational"-
that is, when can they be expressed
by quadratic radicals (obtained by
applying to integers the four arith-
metic operations and the operation
of taking the square root)? This
question interested the ancient
Greek mathematicians, since it's
equivalent to the following con-
struction problem: for which p it is
possible to construct a regularp-gon
with a compass and straightedge?

The young Carl Friedrich Gauss
took up this challenge and proved
that the roots of the cyclotomic
polynomial can be expressed by qua-
dratic radicals if (and only lfa) p is a
Fermat prime: p = 3, 5, 17, 257, ...,
22k + I, . .. . Gauss was very proud of
his discovery and even "expressed
the desire that a regular 17-gon be
engraved on his tombstone."

Here is another, more modest
achievement of the great Gauss.

lsmma olt Uilnititte polynomials

This lemma will help us prove
the theorem formulated above. We
calla polynomial

P(x) = ao+ arx + " +fnxn

pilmitivelf its coefficiefltS 116r a1t ...r
anhave no common prime divisors.

Gauss's lemma says that

the product of two pilmitive
polynomials js also a primitive

polynomial.

aThis part o{ the statement was
proved by Pierre Laurent Wantzel
(1814-1848), a tutor at the Ecole
Polytechnique in Paris.

kr
c5=
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This lemma is used in many theo-
rems of algebra and number theory.
If you have followed the proof of
Eisenstein's criterion above, you
will have no difficulty understand-
ing the proof we give below, because
they have a lot in common.

Suppose the opposite is true:
there exist two primitive polynomi-
als

L(x)=bo+brx+...*bl,
Q(x) = co+ crx + ... + c-xm

whose product is the polynomial

P(xl = ao+ arx + ." + arxn

that is not primitive.Letp be one of
the common divisors of its coeffi-
cients. Let brbe the lowest term of
the polynomialL(xl that is not divis-
ible by p,0 < i < 1, and c, the lowest
term of the polynomial Q(x) that is
not divisibleby p,0 < 7 < m. Such
coefficients must exist; otherwise
the polynomials I(x) and Q(x) wouid
not be primitive. The coefficient of
xi* I in the product

I(x)Q(x)

is equal to

...*bi-rci ,r+ ...*bi*1ci-1+ ...

and is not divisible byp, since all the
terms in this sum except b,c, are di-
visible byp. On the other haird, this
sum equals a, *,-the coefficient of
P(x), and thus must be divisible byp.
This contradiction proves the
lemma.

And now the end is at hand.

Pl'onloltlte theorum
Now we'll prove the theorem of-

f.ercd at the outset: if a polynomial
P(x) has common root o(, with an ir-
reducible poiynomial Q(x), then
Q(x) divides into P(x) multiplied by
someintegerd+0.

Let's divide the polynomial P(xl
by Q(x) "with a remainder":

c*xn' + ...* co

anxn +...
:

r--lx*-I+....

We obtain the following equality:

P(xl = Lrlxl. q(x) + R,(x).

The quotient Lr(xl = (anf c*lx"-* + ...
and the remainder Ar(x) : r*_tx*-r
+ ... will be polynomial functions of
x with rational coefficients.

If the remainder of this division
were equal to zeto (that is, rf Plxl
were divisible by Q(x)), everything
would already be clear, because then

P(x)=r,(r) Q(r)= irAl Q(r),

where d is the common denomina-
tor of the coefficients of Ir(x).

tf R,(x) = 0, then its degree is less
than that of the divisor Q(x), and the
number o, which is the common

root of P(xl and Q(x), is a root of the
polynomial Rr(x) as well:

a,(u) : P(cx)- r,(cr) . Q(cr) = 0.

Dividing Q(x)by R,(x), we obtain a

new remainder Rr(x)with the same
property. Its degree is less than the
degree of Rr(x) and so less than the
degree of Q(x).

Dividing Q(x) successively by the
new remainders Rr(x), Rrlx), ..., Rplx),

either we'll arrive at the contradiction

Rp(x)=c*0

teliing us that o is not a root of R,.(x),
or we'Il find a polynomial R,.(x) that
divides into Q(x)without a remain-
der: Q(x) : tokl ' no(x). Bringing the
rational coefficients of lo(x) and
R1(x) to a common denominator and
removing the common divisors in
their numerators/ we can rewrite
this ecluality as

e(")= ilLt")at")),

where afb is an irreducible fraction
andL{x), R(x) are irreducible polyno-
miais.

Now it's sufficient to show that
the coefficient af b in the last prod-
uct is an integer-that is, that b =+1.
Suppose this isn't true. Let p be a
prime divisor of the number b. Then
it follows from the equality

bQB) = alLlx)R(xl)

that all the coefficients on the right
side are divisible by p; a ls not divis-
ible by p, because af b is an irreduc-
ible fraction. Thus all the coeffi-
cients of the polynomial l(x)R(x) are
divisible by p.Butthis is impossible,
according to the Gauss's lemma.

Therefore, the polynomial

a(x) = [tal(x)]R(x)

is reducible, which contradicts the
original condition, thus proving the
theorem completely.

The ancient Greeks are long gone.
The confusion of the Dark Ages has
passed. The 19th century-the true
"classical age" of mathematics-has
slipped away as we1l. What willbe the
Iasting mathematical monuments of

oour own centurv?

anx'+
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A cloclr tnlottltd lol' all tilne

The Earth is a timepiece that can measure its own age-almost!

by V. l. Kuznetsov

EVERAL YEARS ACO, THE
Quantum article "Physics
Fights Frauds" (|anuary/Febru-
ary 19931 described how scien-

tists use carbon dating to determine
when very old objects were made.
This techniclue involves measuring
the concentration of the radioactive
carbon isotope laC. However, the
resolution of this method is limited:
the concentration of the 1aC isotope
is too small in objects whose age is
more than 50,000-70,000 years.
Sometimes we're interested in
events that occurred much earlier.
After all, Homo sapiens has been
around for some 500,000 years, and
organie life emerged on Earth more
than a billion years ago.

The skeletons and the imprints
left by ancient living things in rock
can say much about the evolution of
life on Earth. The placement of the
geological strata can tell us the rela-
tive dates of certain events. How-
ever, it's much more difficult to find
the absolute date, although some-
times it's possible to come up with
estimates based on the thickness of
sedimentary rocks. But how do we
determine the age of the rocks and
of the Earth itself?

The first estimates of the Earth's
age were made on the assumption

that the temperature of the Earth
when it was formed was the same as

that of the Sun today-about
5,000 K. In this approach, the
Earth's age is taken to be ec1ual to
the period necessary for the Earth to
cool and for a stable crust to form,
plus the age of the crust itself. Tack-
ling the problem of the Earth's age,
the great English physicist Lord
Kelvin assumed that initially the
Earth had the temperature of mol-
ten rock, and that over time it
gradually became cool while radiat-
ing heat from the surface into space.

Based on his calculations, Lord
Kelvin concluded that no more than
100 million years was required for
the Earth's surface to cool to the
point where it became suitable for
plants and animals.

Lord Kelvin made his estimates
before the discovery of radioactivity,
so he didn't take into account the
extra heat released inside the Earth
by nuclear reactions. Later scientists
came to the conclusion that this "ra-
dioactive" heat slowed the rate of
cooling significantly. Thus the esti-
mate of the time needed for the
crust to form was gradually in-
creased-first to 200 million years
and then to 1.5 billion years.

If we know the age of the Earth's

crust and add it to the 1.5 billion
years it took the Earth's crust to
form, the resulting sum wi1l be the
Earth's age. But how do we deter-
mine the span of time that elapsed
from the moment the oldest miner-
als formed to the present, which is
equal to the age of the planet's crust?

For this we need a clock that
counts off hundreds of millions and
billions of years. This clock must
measure "accumulated" time. An
example of such a device is the clep-
sydra-a water ciock that counts
time by the amount of water drip-
ping from one vessel to another. "I
still have much water left"-thus
spoke a defendant in a Roman court
of law, indicating that he had
enough time to make his case. An-
other example is the hourglass,
where sand tracks the passage of
time.

Like the clepsydra or the hour-
glass, the radioactive clock also
measures accumulated time. The o
more atoms of the radioactive iso- i
tope that have decayed, the older the f;
mineral. The half-life 7,,. of a sub- 5
stance that is suitable foi'il"rrrtit g S
periods of the order of billions of J
years must also be of this order of >=

magnitude. Only under this condi- |
tion will a significant number of the i
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radioactive atoms in a mineral be
preserved to the present day.

The first type of radioactive decay
used to find the age of minerals in-
volved the transformation of ura-
nium isotopes into lead. Natural
uranium consists of three kinds of
atoms having different masses: the
isotopes 23811 , 23s11 , and 234U. The
most prevalent isotope of uranium
i. 2389". It constitutes 99.3% of ura-
nium ore taken from any location.

Let's follow the steps in the decay
of the isotope23sU (fig. I ). The atoms

of z$lV slowiy turn into atoms of
Iead 2!f rb and helium f He. Four
and a half billion years must pass be-
fore half of the initial amount of
238U turns into lead and helium.
This process includes 14 radioactive
transitions, where each disintegrat-

u92
Pa 9I

Th 90

Ac 89

Ra 88

Fr 87

Rn 86

At 85

Po 84

Bi 83

Pb 82

23,1u 238u

ht I
/

230Th /r I
I

..rT1,

22C x^l
I
I

222Rn I
I

21oPo 214Po /
A,I/}til 214

z1

1

Po

lr ll /
206pb 210pb llapb

t24 128 t32 136 140 144 i48

ing uranium atom yields one atom
of stable lead and also eight atoms of
helium:

'33v -B !ue+ 
lllvu+e 

-le.

It's possible to find the age of a piece
of dense rock-say, granite-by

' grinding it in a mill, dissolving the
powder in an acid, extracting the
lead and uranium, and then deter-
mining how many atoms of the iso-
tope 206Pb the mixture contains per
atom of 238U. How does that give us
the rock's age? Here's how.

Let's denote by N the number of
uranium atoms and by N, the num-
ber of lead atoms 2o6Pb that were in
the piece of rock at the moment of
analysis. Then \ = N + N, is the
number of uranium atoms at the

moment the granite was
formed. Here we assume
that all the lead atoms in
the granite were formed
by radioactive decay. Ac-
cording to the law of ra-
dioactive decay,

N N fl'tr,
-=-=l-l
No N+Nr \Z) t

where t is the age of the
granite. Taking the loga-
rithms of both sides of
this equation yields a

formula for calculating
the age of the mineral:

the radon can escape. In this case the
number of lead atoms in the sample
will be less than that of the uranium
atoms that decayed during the time
the sample has existed. Under this
condition, the age of the rock calcu-
lated according to formula (1) will be
less than its true age,

On the other hand, the rock
might contain lead that was formed
simultaneously with the other ele-
ments and could have entered the
mineral as the Earth's crust was
forming. This is called primary lead.
The presence of primary lead pro-
duces a value for the rock's age that
is higher than it should be.

To determine the age correctly,
we must be sure that radon was not
released {rom the mineral, and we
need to know how to estimate the
proportion of primary lead in the
sample.

Lead of radioactive origin (radio-
genic lead) accumulates not only as

the result of the decay of 238U but
also due to the radioactive decay of
235u and 232Th. The isotope 2o6Pb is
a descendant of 2381J, while the iso-
topes 2ozPb and 2o8Pb are the final
products of the decay of 23sU and
232Th, respectively.

Natural lead also contains the
light isotope 2o4Pb, which does not
accumulate during the radioactive
decay of any r,atLlraL radioactive el-
ement. So where does the "light"
lead come from? Only one answer is
possible: lead o{ mass numb er 204
was formed simultaneously with
the Earth's other elements.

The isotopic composition of lead
that has no radiogenic admixtures
was determined by analyzing iron
meteorites. These meteorites have
no uranium or thorium, which are
the sources of radiogenic lead. The
lead in the meteors contains one
partzoaPb, 10 parts 2o6Pb, 10 parts
2o7Pb, and 29 pats2osPb.

This isotopic analysis makes it
possible to estimate the amount o{
primary lead from the quantity of
204Pb in a rock. So, if the lead doesn't
contain 2o4Pb or has only a smal1
amount, ptactically all the lead is
radiogenic.

The first measurements of the age

1=4/'lrNolnZ N
(1)

number of neutrons

Figure 1

Radioactive decay of uranium. The nuntber of
neLtttolls in a nucleus is plotted on tlte abscissa
and the numbers of Wotons (the atomic number
of an eLement) along the ordinate. The arrows
directed dotrnward mark the prccess of alpha
decay. In this process the atomjc nttcleus emjts a

fast helium nucleus (alpha-particle) thereby losittg
a pair of protons and two neuftons. The ttpward
Ltftows designate beta-deca,v. Here the nellfton
from the nttcleus turns into d protoll, resulting in
an increase in the atontic nutnbu bv one.

In these calculations
we assumed that the
sample has no extra lead
and does not exchange
matter with the sur-
roundings. However,
this is not universally
true. Indeed, there is an
element, radon, that is
formed during the decay
of uranium. This ele-
ment belongs to the
group of noble gases, and
if the rock sample is not
dense enough, some of
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of minerals and of the Earth itself
resulted in far lower values than
those accepted by modern science.
Perhaps a.mistake crept in due to
the diffusion of radon. Later, more
precise data were obtained not only
due to improvements in the lead-
uranium method, but also as a result
of the development of other tech-
niques. The data are considered re-
liab1e when the results obtained by
different methods coincide. Fortu-
nately, the uranium isotopes are not
the only set of nuclei whose half-life
is the same duration as the geologic
eras. The table below shows other
radioactive isotopes used to verify
the age of a mineral.

Natural potassium contains a
small amount of the radioactive iso-
tope a0K, whose half-life is i.3 bit-
lion years. Usually the nucleus of
aOK emits an electron and turns into
calcium.

It's impossible to distinguish be-
tween the radiogenic and primary
calcium that has accumulated in
rocks. However, only 89% of the
isotope aOK disintegrates in this way,
while ll% of it disintegrates by an-
other way-by K-capture/ as the
physicists say. K-capture is a process
by which the atomic nucleus cap-
tures an orbital electron and be-
comes the nucleus of an element
whose atomic number is less by one.

Thus f! f turns into an isotope of ar-
gon, flAr ltis.zl.

Studies of minerals have shown
that in some rocks-for example, in
mica-argon has been trapped with-
out leaking out for billions of years.
While the Earth's crust was forming,
primary argon "boiled out" into the
atmosphere, so the mi.nerals must
contain only radiogenic argon. Thus

ilo,

19 protons

18 prorons
22 neutrons

+0^
roLd

2l neutrons

20 protons
20 neutrons

Figure 2
Radioactive decay of the isotope a]K.

by extracting argon from the mica in
granite, we can find the age of the
grani.te by potassium decay, and
then check the result by the lead-
uranium method.

We can determine the half-life of
the isotope aoK using a device for
detecting beta-particles and an ordi-
nary watch, and we can find the
number of atoms N by chemical
analysis. The value \ equals N + N,
where \ is the number of aoK atoms
that dechyed during the entire pe-
riod of the granite's existence. \
can be calculated if we know the
number of argon atoms in the mica.
Let's denote this number byA. Then
Nn : a/O.II (because the transfor-
mation of potassium into argon
makes up 11% of the total number
of decays of the radioactive potas-
sium isotope). Thus \ = N +4/0.1 1.

Inserting this expression into for-
mula (1)we get

7,,,(t\t=-:!'lnll+ " l. rotln} \ 0.11N, tLt

Of great interest also is the ru-
bidium-strontium radioactive
clock. The rubidium isotope 87Rb rs
radioactive and turns into the stron-
tium isotope 87Sr by emitting beta-
particles. Natural rubidium con-
tains 28"/o of the radioactive isotope.
The method for rubidium-stron-
tium dating of minerals is very
simple. By chemical analysis one
first determines the total amount of
rubidium in the sample and then the
amount of isotope 87Sr in it. After
these procedures, calculations are
made according to the formulas for
radioactive decay.

Al1 the methods discussed here
determine the age of minerals from
the moment of their crystallization.
However, the products of radioac-
tive decay are kept near the original
nuclei only in solid bodies. In mol-
ten material the atoms freely inter-
mix, and as the chemical properties
of a substance composed of daughter
nuclei differ from those of the initial
substance, the products of nuclear
decay are concentrated elsewhere.

As a rule, the most ancient rocks
1ie under massive, thick deposits.
Only in some regions do they come
near the surface. On the Kola Penin-
sula (in northwest Russia, on the
Arctic Ocean) a granite slab was
found that solidified and hardened
3.4 billion years ago. This is one of
the oldest minerals on Earth. If its
age is added to the time needed for
a solid crust to form on Earth, the
total age of the planet is approxi-
mately five billion years. A limita-
tion on this method of determining
the Earth's age is that the period of
formation of the planet's crust is
obtained by calculation, and the ini-
tial data are not that reliable. In par-
ticular, it's very difficult to take into
account the heat dissipated by
nuclear fission in the Earth's interior.
However, there is another way to find
the Earth's age without complicated
thermal calculations/ one that is
based only on radioactive dating.

According to modern views, the
meteorites and the Earth are made of
the same material and condensed at
the same time. The masses of mete-
orites are small, and so it took far

89%

Method (isotope) Measured age (years) Half-life (years)

Rad ocarbon ( 'C)
1 00-50,000 5 570

Argon-potassium (r!K) > 100,000 1 .3 1O'g

Rubldium-strontlum (r"Rb) > 5,000,000 5.0 1010

Lead-uran um ('riU) > 200,000,000 4.5 . 10'g
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less time for them to cool than was
necessary for the Earth. So we can
assume that the minerals in meteor-
ites crystallized at the moment the
Earth was "cteated." The age of
meteorites can be determined by
their lead and uranium content. If
the Earth and meteorites were
formed simultaneously, the result
will give us the Earth's age as weil.

When the concentration and iso-
topic composition of uranium and
lead was measured in stone meteor-
ites (which contain uranium, unlike
iron meteorites), the age of these
heavenly bodies was documented:
about 5 billion years. Similar data
were also obtained by potassium-
argon and rubidium-strontium
methods, which indicated that me-
teorites range in age from 4.3 to 4.8
billion years.

Space research has opened up new
prospects for radioactive dating. In
the future, space vehicles and probes

will bring soil samples from planets
in our Solar System to Earth. Scien-
tists will then have a substance that
may tell them something about the
ages of fistant planets.

Samples of lunar soil have al-
ready been studied. They also con-
tain radioactive isotopes. The ages

of minerals taken from different
regions of the Moon proved to be
different. This means that the for-
mation of the hard lunar crust
took an amount of time compa-
rable to the Moon's age. In some
places the lunar matter solidified
earlier, in others-later. Here and
there the still weak crust was bro-
ken and the lava streams filled the
hollows. Nevertheless, lunar rocks
are extremely old. The youngest
have been around for more than 3
biilion yearst which corresponds
to the age of the oldest minerals on
Earth. Thus the inner geological
life of the Moon stopped in the
first 1.5 billion years of its exist-
ence. From that time all volcanic
activity in the Moon ceased, and
this natural satellite of the Earth
became a passive celestial body,
changing only in response to exter-
nal events such as solar wind or
meteorite bombardment.

Data on the age of planets in the
Solar System are essential to re-
search into its origin and history.
The question how secondary heav-
enly bodies formed near primary
bodies is key to understanding the
processes of creation of the satellite

systems of lJranus, |upiter, and Sat-
urn. Scientists believe that investi-
gations into the origin of the planets'
satellites are the most direct route to
a general theory explaining the for-
mation of the celestial bodies re-
volving around the Sun. O

tUliUhty slher has stl'uffi out

The outlook wasn't brilliant for AI Michelson that day,
The project he'd been working on just wouldn't go his way.
With Morley, he'd been working on this simple apparatus
To indicate the speed of Earth through ether's rigid lattice.

You see, electromagnetism moves through outer space/

And it moves/ as had been proven t at arr astronomic pace.

And, of course/ it was "self-evident," arrd " evety schoolboy knew"
That wave motion needs a medium for it to vibrate through.

The speed at which a wave proceeds depends on the rigidity
Of the stuff it's going through, and hence, extreme rapidity
Requires a medium strange indeed: it must be inelastic,
While still allowing matter through-this stuff must be fantastic!

So even though no evidence had ever been presented,
The existence of this " ethe!" that the physics world invented
Had so taken scientists by storm that no one had even thought
The idea might be wrong, and it would shortly come to naught.

Well, Michelson and Morley, they believed it like the rest,
And set about to prove its truth, and so conceived a test
Which split a beam of light, and at right angles them aligned,
To show the interference patterns when they recombined.

So Michelson and Morley, they set up a granite slab,
And floated it on mercury they'd gotten from the lab.
They put a light source on the top, some mirrors, and a splitter;
With bated breath, they lit the lamp, their eyes were al1 a-glitter.

They looked upon the tiny screen for interference fringes
(When apaLr of out-of-phase beams on a screen impinges).
But not a single fringe was found, at that or any angle
To which they tumed their optics bench, their massive stone rectangle.

This history-making failure was truly quite successful,
Although for these two scientists, I'm sure 'twas very stressful.
The lesson that I hope we've learned, as connoisseurs of science,
Is that truth, andnot assumptions, makes with us the best alliance.

-David 
Arns

David Arns is a graphics software documentation engineer for Hewlett'
Packard in Fort Collins, Colorado, and also oparates a small business de-
signing and ueating Web sites. In his spare time he dabbles in poefty on
scientific themes.
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O, RUBIK'S CUBE HAS NOT
spawned a multifaceted
monster. The designs in
these photographs are the

work of Dr. Hana Bizek, a physi-
cist at Argonne National Labora-
tory, who has taken to building in-
teresting designs out of many
copies of Rubik's intriguing toy.

Dr. Bizek's Rubik designs were
inciuded in an art exhibition at
Argonne. You can visit a virtual
version of the exhibition at
www. anl. gov/OPA/sciart.

Can you answer the following
questions about the designs in the
photographs?

1. How many Rubik's Cubes do
you need to build one of these de-
signs?

2. Different manufacturers of

Dr. Hana
Cube.

:
;i

a

=c
a

c

c
a

a
c

TOY STORE

Ruhilr arl

A physicist's pastime

Rubik-type cubes
sometimes arrange
the same six colors in
di{f erent ways on
their cubes. In how
many ways can this
be done? Two color-
ings are considered
distinct if a cube bear-
ing one of them can be
moved into a position
so that it looks exactly
like the other. (Con-
sider mirror-image col-
orings as distinct).

3. Inside each design
are a number of Rubik's
cubes that arc invisible
from the outside. Since they are in-
visible, it does not matter what they
look like, as long as they are of the
corect size. Their number depends
on the design's overall size. How
many such central cubes appear in
cubical designs
made of 8,27,64,
and 125 cubes?

4. Assume that
the designs in the
photographs are
constructed out
of identical Ru-
bik's cubes, and
that they are
constructed so
that the inter-
nal faces (faces l

that are not part
of the large de-
sign) that are touching are colored
the same. How many colors would
a design made from eight solved

cubes have?
5. The photographs display de-

signs made from fewer than six
colors. Yet they are made from
conventional six-color cubes. How
is that possible?

Rubik's Cube
has inspired sev-
eral Quantum ar-
ticles over the
years-see, for in-
stance/ "The A-
maze-ing Rubik's
Cube" (September/
October 199 Ll,
"Portrait of Three
PuzzIe Graces" (No-

vember/December l99l), and
"The Last Problem of the Cube"
(March/April 1995). O

Bizek "twiddling" a Rubik's
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KALEIDOSCOPE

Lsl$ nol he dense ahoul il!

("\t" being density)

by A. A. Leonovich

"lt seems, therefore, that
there is no dense matter
in the world."-Lucretius
"With a device one can
determine when the air is
thicker and heavier and
when it is thinner and
li ghter. "-Evangelista
Torricelli

"Air that is twice as
dense is twice as
elastic. "-Robert Boyle

"The Earth's density is
5.48 times that of
water. "-Henry Cavend ish

" lne relatronsnrps
between pressure,
temperature, and density
for an ideal gas can be
understood if we
suppose that the
particles move with
uniform velocity along
strai ght paths. "-James
Clerk Maxwell

Questions and ptoblems
1. What is behind the constant

movement of water in a hot-water
heating system?

2. Which is heavier: a box filled
with small buckshot or a box filled
with large buckshot?

3. As they leave the last lock in

I

rUl fl;f?ff5.fH3,HflT:
ll or, reaoers are sayrng.
ff "Th",'s child's play,'dei-

sity." But let's not be too cocky-
look again at the epigraphs. A1-
though it seems a self-evident and
rather modest physical concept/
density is ever ready to come to the
aid of scientists as they ponder se-
rious questions-the composition
of matter; differences in the physi-
cal properties of various things;
gravitation; motion in fluids; and so

on. The list o{ problem ateas can
easily be conti.nued, just as we
might add the names o{ many con-
temporary scientists to the list of
famous thinkers above. They study
both the microcosm and the struc-
ture of the stars, where huge densi-
ties can be met; they investigate the
far reaches of outer space and the
expanding lJniverse, whose future
and destiny dramatically depend on
changes in the negligibly smail den-
sity of matter.

But without venturing so far, we
can see how versatile the concept of
density is. Indeed, in addition to the
density o{ matter, scientists also use
the notions of charge, current, and
energy density; there are also such
concepts as surface and linear den-
sity. So there are many interesting
things in our world that are related
to density, and here you have a

chance to encounter them once
again-and renew your respect for
this "simple" idea.

the Panama Canal, ships drift slowly
into the ocean without turning on
their engines. What forces push
them?

4. A piece of wood floats in water
such that three fourths of its volume
is submerged. What is the wood's
density?

5. A piece of ice floats in a jar
filled with water. On the surface of
the ice is a wooden ball whose den-
sity is less than that of water. Will
the water level be different after the
ice is melted?

5. A hole is made in the ice in the
middle of a large frozen lake. The
thickness of the ice is exactly 10 m.
What length of rope do you need to
fill a pail with water?

7. Can you predict, before a

melted substance becomes solid,
how its density will change if you
have a solid sample of the sub-
stance?

B. Which of the two aerometers
(devices for measuring the density of
liquids) shown in figure 1 should be
chosen to record changes in a

liquid's density most accurately?

Figure 1

Opposite: entering the "Dog's Cave"
(see item on page 34).
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9. An object is weighed on a pre-
cise scale placed under a glass bell
jar. Would the reading change if air
is pumped ogt of the bell jar?

10. A object suspended from a
spring scale is submerged in a jar ot
water at room temperature (fig. 2).
How will the reading on the scale
change if both the water and the.
obiect are heated?

11. At the bottom of a jar filled
with a fiuid (gas or liquid) there lies
an object whose density is slightly
higher than that of the fluid. Is it
possible to lift the object by apply-
ing pressure to the fluid?

12. Two volumes of water of the
same mass but different tempera-
tures (1'C and 7'C) are mixed. WilI
the total volume of water change
when thermal equilibrium is
achieved? Neglect heat exchange
with the surroundings.

13. Some water is subjected to
increasing pressure. Should one
warm it or cool it to keep its volume
constant?

14. An empty glass vial floats in
water at room temperature. When
water is added to the jar, the vial
rises. But when some more water is
added to the iar, the vial sinks. How
can you explain this phenomenon?

15. Plot the graphs of the tem-
perature dependence of the density
of an ideal gas during isothermal,
isobaric, and isochoric processes.

Figure 2

34

16. Two identical jars are set on a
balance scale. One of them is {illed
with dry air, the other with moist
air. The pressure and temperature
are the same. Which jar is heavier?

17. How does the lift of a balloon
depend on the ambient tempera-
ture?

18. Why does a charged conductor
covered with dust quickly lose its
charge?

19. Two cylindrical carbon elec-
trodes are submerged in a copper
sulfate solution. Copper precipitates
on the surface of one electrode. Why
is the copper layer thickest on the
side of the electrode facing the other
electrode?

Microexperiment
Try to find the average density of

your body. What do you need to do it?

It's interesting that . . .
. . . the ancient Greek physician

Hippocrates noted in his writings
that rainwater is lighter than other
kinds of water. It's remarkable that
the ancient Greeks could distin-
guish between rainwater and well
water by their densities, and that
they used rainwater to calibrate vol-
umes^

. . . since the 17th century people
have determined the density of solid
bodies by means of the bilancet,
thought to have been invented by
Galileo himself. This device, similar
to a spring scale/ allowed one to
compare the weights of objects both
in water and in the air.

. . . pondering the existence of the
vacuum/ Otto von Guericke decided
to test experimentally the theory of
Descartes that all space is filled with
matter. The idea behind these {irst
experiments for producing "empti-
ness" eventually led to the creation
of the vacuum pump.

. . . the originality of Cavendish's
experiments to determine the average
density of the Earthlay in that they
dealt with the gravitational inteiac-
tion of comparatively small masses
under laboratory conditions. Previ-
ously all the estimates of this density
were based upon the measurements
of the plumb line deviation from the

vertical line due to the action o{ a
nearby mountain.

. . . in Italy, near Naples, there is
a famous cave called the "Dog's
CaYe." Carbon dioxide gas (which is
1.5 times as dense as the air) is con-
tinuously given off in its lower part.
This gas spreads along the floor of
the cave and s1ow1y seeps out of the
cave. A person can safely walk into
the cave, but for a dog the foray
would be deadly.

. . . the density of amber is close
to that of seawater. As a result, am-
ber can be "suspended" in water for
dozens of years without dropping to
the sea floor and abrading itself
against the sand.

. . . the enigmatic anomalous be-
havior of water when the tempera-
ture changes in the range 0-4oC is
explained by its quasi-crystal struc-
ture. A temperature increase in this
range results not only in an increase
in the interatomic distances but
also in the rearrangement of this
structure/ which eventually pro-
duces a tighter packing of the water
molecules.

. . . the very f.act that substances
have a "critical temperature" dem-
onstrates the absence of a funda-
mental distinction between gas and
liquid (and not only at temperatures
higher than the critical point). In-
deed, by varying the pressure and
temperature/ one can turn a liquid
into a gas without passing through
a boiling phase-that is, in a
smooth, continuous way.

. . . if we mentaliy spread the
matter in all the stars in our Galaxy
uniformly, the average density of
matter will be approximately
5' IO-24 g/cm3.

. . . one ten-thousandth of a second
after the big bang (the moment the
Universe began to expand), its average
densitywas about 10la g/cm3-equal
to the density of atomic nuclei!

. . . the current value for the av-
erage density of the lJniverse deter-
mines how it will evolve further.
Either the process of expansion will
go on infinitely, or it will be re-
placed by contraction. It's possible
that the matter in the lJniverse ex-
ists in some forms that are difficult

lltlAY/JUI'lE 1007



to observe, so a precise value for the
density of the present-day lJniverse
hasn't been found yet, and the pros-
pects of the Universe's future are
open to discussion.

Quantum articles about density

. Yakov Zeldovrch, "A lJniverse
of Questio r:.s, " I altrLary f F ebruary
1992, pp. 6-11

. William A. Hiscock, "The In-
evitability of Black Holes," March/
April 1993, pp.26-29

o V. Mayer, E. Mamayeva, "Two
Physics Tricks, " March/ApriI I99l,
p.35

. A. A. Abrikosov, "The Story of
a Dewdrop," September/October
1992, pp.34-38

. I. I. Mazin, "An Invitation to the
Bathhouse, " September/October
1990, pp.20-22

. Albert Stasenko, "From the
Edge o{ the lfniverse to Tartarus,"
March/April 1996, pp. 4-8

o Arthur Eisenkraft, Larry D.
Kirkpatrick, Physics Contest-se-
ries of installments on electrostat-
ics: )uly/Au gtlst 1992, p.24 i I anuary f
February 1993, p.44; November/
December 1993, p. 46i Mayflune
1994,p.40 O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 61

0l'ah thal chain

ol thuuUht!

Did an article in this issue of
Quantum make you think o{ a re-
lated topic? Iot down your
thoughts. Then write to us {or our
editorial guidelines. Scientists and
teachers in any country are invited
to submit material, but it must be
written in colloquial English and
at a level appropriate for Quan-
tum's target readership of high
school and college students.

Send your inquiries to:

Managing Editor
Quantum

1840 Wilson Boulevard
Arlington VA 22201-3000

Phy$ios Phluency
Let N$TA help you $pcak tne hnguaSe 0l physics

Methods of Motion
An Introduction to Mechanics, Book One

TWenty-seven teacher-created activities
aim to simplifi, the daunting world of
Newtonian mechanics for students

and teachers.
(grades 6-10,1992 revised ed., 168 pp.)
#PB039X $18.s0

Evidence of Energy
An Introduction to Mechanics, BookTwo
The informal hands-on activities in this
book use a variety of techniques to
combat common misconceptions

about mechanics.
(grades 6-10, 1990,200 pp.)
#PB080X $17.9s

Thking Charge
An Introduction to Electricity
Spark student interest in electricity
with 25 hands-on, teacher-tested

activities using readily available

materials.
(grades 5-10, 1992, 160 pp.)

#PB096X $18.9s

Energy Sources and
Natural Fuels
Explore energy, photosynthesis, fossil

fuels, and more in this collaboration
between NSTA and the Russian

Academy of Science. (A teacher's guide

and classroom sets also are available.)
(grades 9-10, 1993, 80 pp.)
#PBl04X $r2.9s

To Order, Call:

(s00) 722-NSTA
MasterCard, VISA, Discover, and Purchase Orders

Please make all orders payable in U.S. currency\JI

0 llAlxrlJ ltll/r(Ar.il 0 0 s t 0 P t 35



PHYSICS
CONTEST

E LOVE COLORS-THE
colors of spring and summer,
the colors of butterfly wings
and rainbows, the colors of

soap bubbles, and the colors from a
CD. How are these the same? How
are they different? Should we iook to
the same cause for what appears to
be the same effect?

Isaac Newton, in his study of col-
ors, devised some wonderful inves-
tigations. Described in his book
Opticks, published in 1704, he d9-
tails a series of experiments. In one,
he shined light from his window
through a prism and observed the
colors of the spectrum that had tan-
talized so many others before him.
He then brought these colors back
together again with a second prism
and saw, as no one before him had,
that the white light returned. New-
ton then surmised that white light
is a comblnation of all the colors of
the spectrum. In school we learn the
name of Mr. Roy G. Biv to help us
remember the order of these colors
(red, orange, yellow, green/ blue, in-
digo, violet). These spectral colors
are observed through diffraction
gratings, through prisms, and in
rainbows.

The rainbow is arguably Nature's
most beautiful optical display. After

Colol' croalion

"She comes in colors everywhere,
she combs her hair,
she's like a rainbow."

-M i ck J agger/Keith Ri chards

by Arthur Eisenkraft and Larry D, Kirkpatrick

a rainf.all, the bow of colors can ex-
tend from horizon to horizon. The
creation of the rainbow involves the
physics of refraction and reflection
and a geometry first explained by
Descartes. The light rays from the
sun refract as they enter the rain-
drops (fig. 1). This refraction causes
the different colors of the white light
to bend by different amounts/ pro-
ducing a spectrum. Upon hitting the
back side of the water droplets, the
light is partially reflected back to-
ward the general direction of the
sun. These light rays then refract
again upon leaving the water drop-
let. The light rays emerge at many
angles depending on where the light
enters that rain drop. But each color
tends to be concentrated at a special
angle. With your back to the sun,

the special angle between the
shadow of your head and the red
light is 42. If youlook up at 42, you
see red Iight. This also occurs at 42
to the left or right. In fact, it occurs
at 42o in every direction. The locus
of points that is 42 from the shadow
of your head is a cone. This explains
why you see a bow of red light across
the sky-a bow at 42". The special
angle for orange light is a little less
than 42. The arc of orange light is,
therefore, seen just below the red
1ight. Similarly, the arcs for the
other spectral colors are unique and
together they foim the rainbow in
Roy G. Biv order from outside to
inside.

The colors from soap bubbles and
oil slicks are not the Roy G. Biv co1-
ors of the rainbow. If you have occa-
sion to look at soap bubbles or to
notice the colors in oil puddles after
arain, you will recognize the colors
as muted reds and blues and not the
pure vibrancy of the rainbow colors.
The way in which these colors are
produced is quite different. We refer
to the creation of these colors as due
to thin film interference. In thin
film interference, light reflected
from the top and bottom surfaces of
the film interfere, enhancing some
colors and diminishing other colors.Figure 1
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water: n : 1.33

Figure 2

Let's take a closer look at the cre-
ation of colors from thin film inter-
ference (fig. 2). Imagine the thin
layer of oi1 that rests on a puddle of
water. If only red light was shining
on the thin layer of oil, some of the
Iight would reflect off the surface
and some of the light would refract
into the oil layer. Some of the re-
fracted light would then hit the in-
ner surface and some would reflect
back into the oil film. Most of this
light would then exit the film (un-
dergoing another refraction) and
combine with the originally re-
flected ray of light. If the two light
beams had traveled equal distances,
they would constructively interfere
with one another, and lots of red
light would be reflected. But the
light ray that traveled into the film
and back again traversed an addi-
tional distance. If the total distance
were equal to one wavelength of red
light, then the two rays of red light
wou1d, once again, constructively
interfere. If the total distance were
equal to one-half wavelength of
light or 11, wavelengths of light, the
rays would destructively interfere.
Destructive interf erence essentially
means that there is no red light re-
flected.

Let's imagine the more complex
situation where white light is shin-
ing on the thin film of oil. If the
thickness of the film is such that the
red light undergoes destructive in-
terference, you would see the com-
plete spectrum minus red light-
Oy G. Biv. This light is a muted
purple, which we do see in oil slicks
and in soap bubbles. If the thickness
of the film is such that the violet

light undergoes destructive inter{er'
ence/ you would see Roy G. Bi,
which looks like a muted red.

The actual situation has one
more complication that must be
taken into account. As many of us
have seen, a wave reflecting off a
boundary can undergo a phase shift.
A crest of a wave can hit a boundary
and reflect as a trough. This occurs
when the wave is reflected from a
stiffer medium or one with a higher
index of refraction. A phase shi{t can
be mathematrcally expressed as a
shift of one-half wavelength. To de-
termine the correct thickness of the
film for destructive interference, one
must calculate the total path differ-
ence due to the thickness of the oil
and any phase shifts that may occur
at the boundaries. Since the index of
refraction of oil is 1.20 and the index
of refraction of water is 1.33, there
is a phase shift of the ray reflected off
the oil and aphase shift reflected off
the water surface.

The phenomenon of thin film in-
terference has industrial applica-
tions. One of the problems in build-
ing sophisticated lens systems is
that the internal reflections can
cause stray light in the photograph.
By coating the lens with a thin film
of magnesium fluoride, the un-
wanted reflection can be eliminated.
Let's assume that the coating of
magnesium fluoride has an index of
refraction of 1.35 and a 100-nanom-
eter layer is evaporated onto a lens
of index of refraction 1.50. Which
wavelength of iight will not be re-
fiected from the surface? We will
assume that the light is incident
perpendicular to the surface.

The light must travel through the
thin film and back again, a total dis-
tance of 200 nm. Since the film has
a higher index of refraction than the
air 11.36 > 1.00), there is a phase
shift of one-half wavelength upon
re{1ection. The light which reflects
from the film-glass interface also
undergoes a phase shift of one-half
wavelength, since once again the
light is reflecting from a material
with a higher index of refraction
(1.60 > 1.36). The light traveling
along path 1 reflected from the first

sur{ace and underwent a phase shift
of rlrwavelength. The light travel-
ing along path 2 entered the fiim,
traveled 100 nm, reflected off the
second surface and underwent a
phase shift of rlrwavelength, and
then traveled an additional 100 nm
to the first surface. But the 100 nm
in the film is not like 100 nm in the
air. The wavelength of light is
shorter in the film by a factor equal
to the index of refraction. The light
from these two paths will destruc-
tively interfere if the total path dif-
ference is a multiple of rl, wave-
length in the fiim. For the thinnest
coating of magnesium fluoride, the
total path length in the film must be
equal to rlr)"in the film:

'lrLrrr^= 2oo nm,

OI

Irrr- = 400 nm.

Therefore, the wavelength in air is

), = 
trfil- 

= 544 nm.
n

We offer two problems this
month. One is adapted from a prob-
lem first given at the International
Physics Olympiad (IPhO)in Czecho-
slovakia rn 1977, and the other is a
problem from Fundamentals of
Physics by Halliday, Resnick, and
Walker.

A. White light falls on a soap film
at an angle of 30'with the normal.
The reflected light displays a pre-
dominantly bright green color of
waveiength 500 nm. The index of
refraction of the liquid is 1.33.
(i)What is the minimum thickness
of the film? (ii) What color would be
seen if the light source feli on the
same soap film from the vertical di-
rection

B, A thin film of acetone (n:1.251
coats a thick glass plate (n = 1.5).
White light is incident normal to the
film. In the reflection, fu1ly destruc-
tive interference occurs at 600 nm
and fully constructive interference
at700 nm. Calculate the minimum
thickness of the acetone film.

Please send your solutions to

oi1: n = 1.20
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Quantum, 1840 Wilson Boulevard,
Arlington YA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

The nailne olliuhl
In the November/December is-

sue of Quantum, we asked our read-
ers to work with the nonrelativistic
Compton effect in which a photon
collides with a ftee electron. Correct
solutions were submitted by Robert
Marasco (a junior at North Penn
High School in Lansdale, Pennsylva-
nia), Timothy Spegar (a graduate stu-
dent in mechanical engineering at
Penn State University), and jointly
by Andr6 Cury Maiali and Gualater
|os6 Biscuola (engineers and physics
teachers in |undiai, Sdo Paulo, Bra-
zil). For the most part, we will fol-
low Maiali and Biscuola's solution.

A. Knowing that the energy and
momentum of a photon are given by
E = hf and p = hf f c, respectfully, we
can write down the equations for
conservation of energy and momen-
tum in one dimension:

hf =hf'*!*r', (t)
2

hf hf'::!-=-::!-+mV, l2lCC

where f and f' are the initial and fi-
nal frequencies of the photons, m is
the mass of the electron, and v is the
speed of the electron after the colli-
sion.

B. We now collect the frequency
terms in equations (1) and l2l and
square the equations to obtain

h'ff '

C. Repiace the term in the first
parentheses in equation (5)with its
equivalent from equation ( 1 ) and use
the wave relationship c = )"f to ob-
tain

hzcz -(c c\/1 .\

- 

= hl --- ll -mc' l.Ttlt' t I )"' )\2 I
OI

D. We can get the energies of the
X rays from

E=hf =*=2.80.10-i5 J.'1"

Because this energy (17.5 keV) is
much, much larger than the binding
energies of the electrons to their at-
oms (-10 eV), the electrons can be
treated as being free.

The kinetic energy K of the recoil
electron can be found from

K=h(f-f,)=r/+-+l
t )" ?,"' )

Using equation (5) and defining
),"a: hf mc, we obtain

R=hf( 2L. )=L12kev.'[]"+2X.J

Because this is very small compared
to the rest energy of the electron
(0.511 MeV), the electron can be
treated nonrelativisticaliy.

E. We obtain the two-dimen-
sional equation by starting with the
two components of the equation for
the conservation of momentum.

p:p'cos0+p"sinQ, l7lg=p'sin0-p"cosQ, (8)

where P" = mv is the electron's mo-
mentum and p = hf lc = hl?t and
p': hl),'are the momenta of the pho-
tons.In equations (7) and (8), put the
electron terms on the left-hand side
and the photon terms on the right-
hand side, square both equations,

and add them together to obtain

p"2 = p2 - 2pp' cos 0 + p'2. l9l

The equation for the conservation of
kinetic energy is

K : pc - p'c. (10)

Divide equation (10) by c, square it,
and subtract it from equation (9):

nK2
o! - 7 =ZPP'(L-coso)' (11)

Now let's look at the left-hand
side of equation (11) in more con-
ventional terms:

a 1 m2r4 " n( - ,2)m'v' - -------;- = m'v'l I- " I4co I 4c' )
= m2v2 = 2mK = Zmc(p - p'),

where we/ve neglected the term in
tf,f c2. Therefore,

mc(p - p'l : pp'll - cos 0).

Dividing through bypp' and express-
ing the momentum in terms of the
wavelengths/ we get the desired re-
sult:

L
),",_)"= ..-(t_cos0).mc'

o
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Subtracting equation {3) from equa-
tion (4)yields

afr' = 
niLc: ', - 4t.h' [ +c-t

Neglecting the last term in the pa-
rentheses, we have

h2
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Reflections on the James Cook Mathematical Notes
memory of Basil Rennre

by George Berzsenyi

Problem 2. Given a set of n dis-
tinct points in the plane, they
form n(n - 1)(n - 2ll2 angles, all in
the closed interval between 0 andm.
What can we say about these angles?
One simple thing is that their mean
is 60" = nf S.Perhaps we can say that
at least one angle 

= 
Aln) and at least

one angle) Bln),whereAlnl andBlnl
are given by

Problem 5. An advertisement by a
Iocal builders' merchant for "mirror
tiles" set me thinking about how
hard it is to see one's back. If I tile the
walls of my bathroom with these
mirror tiles could I look directly (not
obliquely) at my back? In a rectangu-
lar room it would be possible by
standing at any point of the rhombus
whose vertices are the midpoints of
the sides, or indeed by standing at any
point not on either diagonal and fac-
ing in the direction of one o{ the di-
agonals. But what if the bathroom
were triangular? (p. 4128; |une 1985)

m 1 2 3 4 5 o 7

k 1 1 2 2 2 2

HE PURPOSE OF THE PRES-
ent column is to pay tribute to
the memory of Basil Rennie,
who created the lames Cook

Mathematical Notes ITCMNI in
1975, as a unique periodical featur-
ing superb mathematical investiga-
tions by him and fellow mathema-
ticians around the world. As I am
coming close to the end of my term
as the author of these columns, I
wish to call my readers'attenti.on to
the wonderfully conversational
style of Basil's superb journal, so
that they may find alternative
sources for their future investiga-
tions. To whet their appetites, I will
list below some of the cluestions
posed by Basil in his ICMN, to my
knowledge, many of them are still
not resolved. The references indi-
cate the pages of the issues where
these problems appeared; for several
other problems and more informa-
tion about ICMN, the reader is re-
ferred to my Problems, Puzzles, &
Paradoxes column in the Summer
1997 issue of Consortium.

Problem 1. Given m things, we
want to choose the same numberm
of k-element subsets so that no two
of these have more than one ele-
ment in common. For eachm, what
is the largest possible ft? The first
few seem to be as follows lp. 5137i
May t992):

How does the table continue? (p.
5090; February 19921

Problem 3. Two random points in
the unit disc (from a uniform prob-
ability distribution) give a random
line segment (ending at the two
points). Find the probability that
two such random line segments in-
tersect. (p.6017; February 1991)

Problem 4. Suppose that three ran-
dom points in the unit disc are cho-
sen from the distribution with uni-
form probability density. Calculate
the expectation and the variance of
the area of the triangle formed by the
three points. (p. 5281; October 1990)

Much like Paul Erd6s (who was
one of his frequent contributors), Ba-
sil Rennie was constantly probing
the boundaries of our mathematical
universe. He had an unerring talent
for posing problems which would in-
trigue his readers and friends; we
will greatly miss him andhis/CMN.
Several of my own investigations
were prompted by his correspon-
dence; I only wish I had learned
more from him. He passed away on
the 15th of November,1995.

The first issue of ICMN appeared

n 3 4 5 6

A(n) 60" 45' 36" 30"

B(n) ou- onc 1 08" 124.
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in1975, while the last (issue 70)was
completed shortly before his death.
Issues 1-31 of |CMNhavebeenpub-
lished in ttr.ree bound volumes; they
are probably still available from the
Head of the Mathematics Depart-
ment of |ames Cook University of
North Queensland (Post Office |ames
Cook, North Queensland4811, Aus-
tralia). Prior to his retirement, Basil
was the Professor and Head there-
hence the name of his publication.

We can hope that issues 32-70w:Jl
also become available in bound vol-
umes in the near future. I strongly
recommend them to my readers. Q

CAIAIOG

0rF"
We get that sort of comment all
the time. People are impressed
that our free Consumer
Information Catalog lists so
many free and low-cost
government booklets. There are
more than 200 in all, containing
a wealth of valuable information.

Our free Catalog will very likely
impress you, too. But first you
have to get it. Just send your
name and address to:

Consumer lnformation Center
Department KO
Pueblo, Colorado 81009

A public service of this publication and
the Consumer lnlormation Center of the
U. S. General Services Administration
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AT THE
BLACKBOARD I

[Ula$nel$, uhal'ue$, and planels

"Physics has begun to notice that to think about nature is not
simply a matter of recording it, but of giving it that form of unity it
would not have if it were not contemplated."-Pierre Teilhard de

Chardin, Phenomene humain

by Albert Stasenko

HAT COULD BE MORE EL.
ementary than a straight
wire with constant currentl?
Every student knows that

the current generates a magnetic
field B around the wire. The field
lines are circles concentric with the
wire lying in planes perpendicular to
the wire This can easiiy be visual-
izedby means of classical iron fil-
ings spread on a sheet of cardboard
placed perpendicular to the wire. So,
what's there to say?

We1l, imagine, weplacedinto this
magnetic field a square conducting
frame with area a x a, which carries
a constant current /", (fig. 1). Let the
two edges of this fraine be parallel to
the straight wire and the size of the
frame be much less than the dis-
tance r to the wire-that is, a << r.
According to figure 1, the magnetic

Figure 1

42

field is perpendicular to all the edges
of the frame, so each edge will expe-
rience a magnetic force that is pro-
portional to the magnetic field B
(generated by the curent 1), to the
length of the edge a, and to the cur-
rent 1r. Let's examine these forces.

The edgeAK located at a distance
r from the wire experiences a farce
perpendicular to the wire and eclual
to F(r) : IuaBlrl.I'm assuming you
know the right-hand rule and that
you have aLready figured out the di-
rections of the vectors B, In, and F.

Since the cuffent flowing in the edge
CD is directed counter to that in
AK, the magnetic field will act on
CD in the opposite direction with a

force F{r + al = IraBlr + a). The value
of this force differs fromF(r)because
the strength of the magnetic field de-
pends on the distance from the cur-
rent-carrying wire (and we have a

strong suspicion thatB decreases as

r increases). As for the other forces
acting on the edgesAD and KC, they
counterbalance each other (we as-
sume that the frame is not deformed
by the action of all these forces).
Thus the net force acting on the
frame is equal to the algebraic sum
of the two forces acting on the edges
AK and CD:

F = F(r + a)- r(r)

= I$(B(r + a) * e(r))

- , a,B (1)

= lIA'-,
u

where M denotes the change in the
magnetic field B over the distance
a<<r,

What have we obtained? A smal1
frame carrying a current.I, and lying
in the same plane as a straight wire
carrying a current .I is attracted to
this wire by a force proportional to
the value of the current flowing in
the frame, and also to its area and
the rate of change in the magnetic
field strength with distance from the
current-carrying wire (LB lal. To tell
the truth, "grown-up" physicists
don't use so many words..They use
mathematics instead, which begins
with some definitions. The product
Iraz is called the magnetic moment
p- of the current-carrying frame,
because the magnetic lines of force
produced by a small current-carry- !
ing frame look very much like that f
of the electrostatic field E generated :
by an electric dipole p" (only at large >=

distances, of course-that is, when I
r >> a, which we have assumed from {

llllAY/JUtllt 1SS7
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Figure 2

the very beginning). Figure 2 shows
schematically the lines of magnetic
and electric forces, or in other
words, the vector fields B and E. The
ratio L,B f a : AB I M is called the gra-
dient of. the magnetic field. Now we
can express the thought contained
in equation (1) in far fewer words,
and at the same time guess at some
generahzations of the example cho-
sen here (this is a yery important
moment for physicists, when math-
ematics helps them greatly).

The point is, the frame can take
any shape-circle, triangle, and so
on. Also, instead of a frame it may
be a very different object-say, a
small permanent magnet (the mag-
netic needle from a Lilliputian com-
pass). The external magnetic field B
can also be generated not by a cur-
rent-carryrng wire, but by any arbi-
trary source. In all these various
situations, the force affecting a mag-
net placed in the heterogeneous
magnetic field will be proportional
to the magnetic moment of a small
object (a probe) and to the gradient
of the external magnetic field. For
example, it is this force that pu11s a
small permanent magnet into a so-
lenoid connected to a voltage
source/ and also foils our attempts to
extract the magnet from the coil.

Well, let's return to the current
that flows in a straight line. It's clear
by intuition that its magnetic field
decreases somehow with distance.
But how? This question is answered
by one of Maxwell's laws: the prod-
uct of the magnetic fieldB(z) and the

circumference Znt of a circle con-
centric with the wire is proportional
to the current l generating the field:

B(r).Znr = p,ol

The factor Lro (the permeability of
free space) is needed to account for
the different dimensions on the two
sides of the formula (in SI units). It's
one of the fundamental physical
constants/ but we won't pay too
much attention to it here-we have
other fish to fry. It's more important
to recognize that we have formu-
Iated a kind of conservation law:
however far we move away from an
(infinite) straight current-carrying
wire, the product Znr . B(rl will re-
main the same. Physicists call this
product the "circulatiorr" of the
magnetic field along a loop. Thus
the magnetic field generated by an
infinite straight electric current is
inversely proportional to the dis-
tance from it:

B{z) = r01 
.\/ 2xr

How can we obtain the value of
LBIM? Those who know what a de-
rivative is can dif{erentiate this
formula with respect to the radius to
immediately get

AB _ psI 
^[t) _ [01

-=-^,Lr ztr -\r ) 2rcr2'

Those who haven't studied calculus
yet can obtain the change in the in-
verse radius using algebra:

r-r-Ar Ar=-=_-(r+ar)r f'

In the last term on the right-hand
side we neglected the value of Ar in
the denominator/ because it's very
small comp ared to r itself-remem-
ber, we agreed at the very beginning
that a = At << t.

Now let our small current-caryzing
frame (or magnet) have mass m and
move with a velocity vo normal to the
straight current-Iat a distancero from
it. How will the frame move?

We know that the frame is af-
fected by a magnetic force that is in-
versely proportional to the square of
the distance to the wire. Where do
we meet such forces in physics? Lit-
erally everywhere. According to
Newton's law of universal gravrta-
tion, any two masses are attracted
by a force that is inversely propor-
tional to the square of the distance
between them:

D - nfrlfrzrN - -s----.-.
1''

(Of course, Newton's law describes
the force acting between two masses
regardless of their mutual orienta-
tion in space. In our case, the mag-
netic force always lies in the plane
of the current-carrying frame.) Ac-
cording to Coulomb's law, two op-
posite charges are mutually at-
tractedby a f.orce that is inversely
proportional to the square of the dis-
tance between them:

%= 4nts

So our problem is solved: a current-
carryingframe or a permanent mag-
net will move near the straight cur-
rent just as massive bodies move
near the Sun-either along elliptical
trajectories (like the planets) or
along parabolas and hyperbolas (like
comets) if its initial velocity vo is
large enough.

Thus, the process we've been ex-
amining can be reduced to a physical

QtQz
|)

I
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process of an entirely different na-
tvret yet governed by the same
mathematical equations (in our case
the analogous process is described
by Kepler's laws-see "The Fruits of
Kepler's Struggle" in the lanuaryf
February 1992 issue of Quantuml.
The search for physical analogies is
a yery interesting and practically
useful occupation!

Now is the time to exclaim:
"How wonderful that the world is so
harmonious, so unified! "

But, as usual, after the first parox-
ysms of joy induced by an interesting
finding, we have second thoughts:
Did we forget something? Naturally,
we did.

First, does the current -carrying
frame rotate such that its plane re-
mains normal to the magnetic lines
of force at all points along its trajec-
tory? Indeed, the frame is not a
point-it has both mass and size. So
its inertial characteristics should be
taken into account when we con-
sider the rotation of the frame about
its axis.

Second, in the general case the
distance between the frame and the
wire varies, and so does the mag-
netic flux through the plane of the
frame. This variation will generate
an electromotive force in the frame,
which will change the current flow-
ing in it. The alternating current
wili in turn induce an emf, which
will try to counterbalance the
changes in the magnetic field within
the frame.

Third, this process will also
change the current flowing in the
straight wire (the phenomenon of
mutual induction).

Fourth. . .

Then again, maybe it's better to
stop here and say that our theory
is correct only when all these
effects are very small and can be
neglected. o

ellipse
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The grid printed with the March/
April CrissCross Science was
incorrect. Here is the correct
grid. (Now, don't peek at the
answers printed in this issuel)

Our apologies for any frustration
this may have caused our cross-
word fans.
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AT THE
BLACKBOARD II

Addiltu altule$ inlhree dimensions

Taking a theorem for plane figures into the realm of polyhedrons

by A. Shirshov and A. Nikitin

HE THEOREM ON THE SUM
of the angles of a plane polygon
occupies an important place in
Euclidean geometqr, and so the

question of a spatral version of the
theorem arises quite naturally. In
this article u.e'11 present the analo-
gous theorern and discuss various
subjects associated with it.

Thu measure ol an nhedl'al angle

We'll measure plane and polyhe-
dral angles in the following w ay.Let
AOB be an arbrtrary angle on the
plane. Draw a circle of radius r > 0
and center at point O. We'll callthe
measure of the angle AOB the ratio
of the arc A'mB' contained within
the angle AOB to the length of the
entire circle (fig. 1).

b

If this method of measurement is
adopted, the measure of a one-degree
angle, for example, is | 1350; the mea-
sure of an angle of n radians is I 12; and
the well-known theorems conceming
the sum of the angles of a triangle and
the sum of the angles of a convex
poiygon will read as follows: the sum
of the angJes of a triangle is equal to
1/2, and the sum of the angles of a
convex n-gon is equal to nl2 - 1.

Now let's look at an arbrtrary n-
hedral angle. We'll draw a sphere
around its vertex (in the case of a

dihedral angle, around an arbitrary
point on its edge) and call ratio of the
area of the spherical surface con-
tained in the angle to the area of the
entire sphere (fig. 2) the measure of
the n-hedral angle.

II n > 2 and 41, A2t ...t Anare the
points where the edges of the n-
hedral angle meet the sphere, then
we'l1write lArAz...Anl for the mea-
sure of the n-hedral angle and 1Ar1,

lAzl, ...,1A,1forthe measures of the
corresponding inner dihedral angles

Ar, 4, ..., Arof then-hedral angle.

Each face of the n-hedral angle
intersects the sphere along a great
circle, and the figure cut from the
sphere by ail the faces is called a
spheilcal polygon (fig. 2).

Figure 2

Figures 3 and 4 (on the next page)

represent a spherical 2-gon and a
spherical triangle, respectively.

As we see from figure 3, the mea-
sure of a dihedral angle is equai to the
measure of the correspopding linear
angle. If we switch to new notation
from the well-known equation that
expresses the area of a spherical tri-
angle in terms of the radian measure
of its angles,l we obtain

2lABCl: lAl* litl+lcl-tlz, (1)

lSee the article on non-Euclidean
geometry/ "A Revolution Absorbed,"
in the |anuary fEebruary issue.-Ed.
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Figure 3

where A, b, andC areinnerdihedral
angles at the edges OA, OB and OC,
respectively, of the trihedral angie.

Indeed, the area of a figure F,
composed of two spherical triangles
ADC and A'D'C'is the same as the
areaofthe 2-gon C (*e use the same
notation for a Z-gon and its corre-
sponding dihedral angle); the area of
a figure F, composed of the triangles

AD'B and A'DB ts the same as the
area of the 2-gon b; and a figure F,
bounded by the semicircles ABA'
and A'CA is simply the 2-gon A.
The common part of these three fig-
ures F, aFraFs= FtaF, = FraF,
= Fa n F, is the spherical triangle
ABC, whose area we are trying to
calculate. If we add up the areas of
these figures, the result will be three
times the areaof ABC. On the other
hand, if we subtract from this sum
the doubled area of triangle ABC,
we'll obtain the area of the visible
hemisphere (fig. a). Finally, we have
rlz = Al+ ;a; + tl - zlABcl-that
is, equation (1) is true.

It follows from ecluation (l ), that
the sum of the measures of the inner
dihedral angles of an arbitrary trihe-
dral angle is half again as large as the
doubled measure of the angle.

Now we can find the area of a

convexn-hedra1angle. Keep in mind
that any convex n-gon can be de-
composed into n - 2 triangles. Simi-
larly, any convex n-hedral ln , 2)
angle can be decomposed into n - 2
trihedral angles, and the correspond-
ing spherical n-gon is at the same
time decomposed into n - 2 spheri-
cal triangles (fig. 5). Applying equa-
tion (1) to al1 these triangles, we find

Figure 4

that for an arbitrary spherical n-gon
ArA2...Ar, which corresponds to
some convexn-hedral angle, the fol-
lowing equation is satisfied:

lAl.14l. ..141 -zlAtAz ..A,1

n. l2l
2

This means that the sum of the
measures of the innu dihedral
angles of an n-hedral angle is nl2 -

L times larger than doubled mea-
sute of the n-hedral angle.

We'llcallthe quantity

1Ar1* 1Ar1+ ... + 1A,1-z1erer...A,l

the "excess" of the polyhedral angle
oArA2...An.

Exercise 1. Use equations (1) and
(2) to find (a) the measure of the trihe-
dral angle at a vertex of a cube; (b) the
measure of the trihedral angle at a
vertex of regular tetrahedron; (c) the
measure of the quadrihedral angle at
a vertex of octahedron.

T[e sum 0l lltc altule$ in a polyhedl'olt

Now let's consider an arbitrary
tetrahedron. Denote the values of its
trihedral angles as o, (i : 1,2, 3, 4l
and the values of its dihedral angles
as Fi (l : L,2,..., 6). The excess of a
trihedral angle is equal to i/2; thus
the sum of the excesses of all the
trihedral angles in a tetrahedron is 2.
Note that each dihedral angle ap-
pears in this sum twice: first at one
vertex/ adjacent to an edge; and then
at another. Thus the following
equality is valid:

64
z\9t -2\a, = z.

i=r i=t

Therefore,

64

IP, - Io, = 1' (s)
i=l i=l

Consider an arbitrary convex k-
corner pyramid. Let the letter o de-
note the measure of the k-hedral
angle (at the vertex of the pyramid),
s the sum of the measures of the tri-
hedral angles at its base, B the sum
of the measures of all the dihedral
angles at its base, and p the sum of
the measures of all the dihedral
angles formed by its lateral faces.
Now we can calculate the sum of
the excesses at all the vertices of the
pyramid, as we did above for the tet-
rahedron.

From equation (2) it follows that

1,

0-2a=i-1,,2

and from equation (1) we obtain

I

F + 2F -2o=;k.
Thus

F-o+ o=), Wl

F+F-(cr+a) =+-r. (s)

Thus ecluations (3) and (5) show
that for a tetrahedron, as well as for
any convex k- corner pyramid, the
difference between the sum of the
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Figure 6

rneasures of allthe dihedral angles
and the sum of the measures of all
the polyhedral angles at its vefiices
depends only on the number of
faces of the pyramid,

Consider now an arbitrary convex
polyhedron withn faces (fig. 6). Take
an arbitrary pointA inside the poly-
hedron and connect it with all the
points on the polyhedron's edges.
We obtain a decomposition of the
polyhedron into n pyramids.

We note that the sum of the mea-

sures of all the polyhedral angles at
point A of these pyramids is 1; the
sum of the measures of al1the trihe-
dral angles at the bases of the pyra-
mids is eclual to the sum Q of the
measures of all the polyhedral
angles at the vertices of the polyhe-
dron; and the sum of the measures
of all the dihedral angles at the bases

of the pyramids is equal to the sum
O of the measures of all the dihedral
angles of the polyhedron. This obser-
vation, together with equation (4),
yields directly the equality

1-o+ r=i,n,
OI

71o-6==-i. 16l
2

Notice that we need the condi-
tion that the polyhedron be convex
only to simplify the reasoning. We
encourage the reader to make some
gener aliz ations in this direction.

The theorem on the generalized

sum of the angles of a polyhedron
was first provedby Gu6 in 1783, and
further developments were pub-
lished in 1837 by Brianchon.

One of the wonderful properties
of equation (4) is that, unlike its pla-
nar analogues, it is valid even in
non-Euclidean geometry.

Exercise 2. (alFind the generalized
sum of the angles of the cube and the
dodecahedron. (b) Find the sums of
the measures of the polyhedral angles
at the vertices of these polyhedrons.

Exercise 3. Use equation (1) to
calculate the sum of the excesses of
the poiyhedral angles of a convex
polyhedron with E edges and V ver-
tices. (Answer: E -V.l

Exercise 4. Use equation (6) and
the result from the previous exercise
to derive Euler's famous equation
that links the number of faces F, the
number of vertices V, and the num-
ber of edges E of a convex polyhe-
dron:E -V = F -2.

Exercise 5. Give an example of a
polyhedron for which V - E +F = 0. CI

MffiffiN
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By Clifford E. Swartz

Send orders to:
American Association of Physics Teachers

One Physics Ellipse
College Park, MD 20740-3845

Used Math by Clifford E. Swartz
is not a math text. It is a physics
teacher's tutorial on all the math
for the first two years of
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IN THE LAB

Ullhy doesnt thg sack slide?

And how does a gynmast "stick" a landing?

by Alexey Chernoutsan

URING A PHYSICS CLASS A
teacher put a matchbox on the
table and then placed a glass of
water on top of it (fig. 1). "How

can one pul1 the box from under the
glass without touching glass? |ust
tug on it? No, the glass will be
dragged along with the box. Pay at-
tention, now!"

With these words the teacher
took a heavy ruler, pulled it back,
and smacked the matchbox. It flew
to a far corner/ matches flying, but
the glass rested on the table almost
in the same placel

Why didn't the glass budge? To
avoid misunderstanding, I should
note that the teacher struck the box,
not the glass. The only horizontal
force acting on the glass is the force
of friction from the box Fr, = Vmg,
where p is the coefficient of friction,
m is the mass of the g1ass, and g is
the acceleration due to gravity.
Surely, even this force can impart
an appreciable speed to the glass,
moving the box along the table with
a sma1l acceleration. (What would
be the upper limit of such an accel-
eration if the glass is to be prevented
from sliding?) The point is not the
magnitude of the force, but the fact

that after a sharp blow from the
ruler the matchbox immediately
flew off, so the force offriction acted
only during a very brief time. This
period was so short that the force of
friction had no time to impart any
appreciable momentum Lp,: FrrLt
to the glass.

This example shows that in ana-
lyzingthe forces acting on a body or
a system of bodies, one must also
take into account the duration of
their action. For example, at the
moment a shell explodes, it is af-
fected by an external force-the
force of gravity. In spite of this force,
one can assume that the total mo-
mentum of the system is conserved.
The total momentum of the frag-
ments is equal to the momentum of
the shell, because the change in the
system's momentum is negligible
during the very short time of the ex-
plosion.

"Something's wrong here," an
inquisitive reader may argue. "Look
at ahard ball that bounces on the
floor (fig. 2). The duration of the
impact is very small, but the change

in momentum is quite appreciable:
it's Apu : IrTv - l-*rl = Zmv.What's
going bn here?."

You're absolutely right. The effect
of a force is not always negligible just
because it acts for a short time. The
effect of a force is evaluated neither by
its magnitude nor by the period of its
action. The correct way to decide
whether a force can be neglected is to
estimate the momentum this force
would impart to an object if it was the
only force acting on the object. When
the force is constant, the increase in
the object's momentum is equal to
FAr (this magnitude is called theim-
pulseli when the force is variable, its
impulse is given by the sum F,unAt
= IFjAf,. The effect of this force c"an

be neglected if its value is constant
and the period of its action is short.
This is what happens when a shell
explodes. Nothing of the kind takes
place with the force acting on the
ball bouncing on the f1oor. If we de-
crease the duration of the impact by
a lactor of 10 (due to the increased
hardness of the ball and the floor),
the average value of the force witl in- t
crease by the same factor of 10. As !
a result, ihe change in the ball's mo- f;
mentum will still be 2mv. By con- $
vention, such forces are called im- E
pulsive. The effects of impulsive 9
forces may be substantial even for I
very brief interactions. c)o

(ULet's consider firing a cannon as *
it slides down on an inclined plane c5

I

&
Figure 1
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Figure 3

(fig. 3). Can we use the law of con-
servation of momentum to find the
cannon's velocity after the shot?
Yes, we can-but first we need to
find the direction upon which the
projection of the net external force
is zero. However, in our case there
is no such direction! The system is
affected by the force of gravity mg
and the normal force N due to the
plane. If we choose the horizontal
axis, we can neglect the force of
gravity (its projection is zero), but
the projection of the normal force
isn't zero, and we can't neglect the
impulsive force! If we chose the axis
parallel to the inclined plane, the
projection of the force of gravity
won't be zero. Which is preferable?

What we need to do, actually, is get
rid of the impulsive force-that is, the
normal force. The impulse of the con-
stant force ofgravity canbe neglected,
because the duration of the cannon
shot is very short. On the other hand,
the effect of the impulsive normal
force doesn't tend to zero and can re-
sult in an significant change in the
system's momentum. However,
since this force is perpendicular to the
inclined plane, the momentum o{ the
system "cannon-projectile" won't
change if it's projected on the direc-
tion of the cannon's motion.

So, during brief processes (bursts,
collisions) only impulsive external
forces modify the momentum of a
body or system of bodies, while the
effect of nonimpulsive forces can be
neglected.

"Do you understand? " the
teacher asks. "Okay, let's look at an-
other example. A sack slides along
an inclined chute and falls onto the
floor (fig. 4). What happens next?
Will the sack stop immediately, or
will it slide a little at first under its
own momentum?"

Figure 4

"Well, it's pretty clear," a student
answers/ "the sack is affected by the
force of frictlon in the horizontal di-
rection, and the duration of the im-
pact is small, so the horizontal mo-
mentum of the sack won't change-
just as in the previous example with
the glass. As for the vertical momen-
tum, it will become zero due to the
impulsive normal force. So we con-
clude that, for some time after the
fall, the sack will slide."

Something is wrongwith this rea-
soning, and this is felt by everyone
who has observed how a sack falls
onto the floor. Why? In this ex-
ample, the force of sliding friction
pN is also impulsive-just iike the
normal force. In the example with
the glass, the normal force had a
fixed value mgl so the effect of fric-
tion was negligible. However, in the
case of a sack falling from an in-
clined chute, both the normal force
and the force of friction are impul-
sive forces, so the change in the hori-
zontal momentum during the im-
pact cannot be neglected. Whether
the sack stops or not depends en-
tirely on the coefficient of friction p:
if it's large enough, the velocity of
the sack "disappears" entirely dur-
ing the impact. Try to estimate
what value of the coefficient of fric-
tion would make such "disappear-
ance" possible.

Similar considerations help ex-
plain why gymnasts can land on
their feet and stop immediately af-
ter jumping from an apparatus (the
rest of the explanation has to do
with their extraordinary skilll). Try
to explain how an object can bounce
off a rough floor at some angle other
than the angle of incidence, or the
mechanics of a "spin serve" in sports.
And most important-see if you can
find examples on your own and de-
vise problems dealing with impulsive
and nonimpulsive forces. O

52 llilAY/JUlllE 1Sg7



AT THE
BLACKBOARD III

Fail' and $qtlared!

What to Co when a physics problem has been "reduced"
to a math problern lnvolving a quadratic equation

by Boris Korsunsky

HAT DO YOU DO IF YOU
want to solve a physics prob-
lem? Well, unless it's a
purely conceptual one/ you

use all the facts to come up with an
equation (or several equations). Usu-
al1y, once you have the equations to
play with, you tell yourself: "Okay,
the physics is over, let's do some
math." Or, as some prominent
physicists iike to put it, "the phys-
ics problem is now reduced to a
math problem." But occasionally
math gets a little revenge. A very
common example involves the qua-
dratic equation. If you have to deal
with it as you solve a problem, look
out! Once you solve the equation,
you have to interpret the solution.
And this is another physics prob-
lem-sometimes a tough one.

Let's look at some examples from
various areas of physics.

Problem 1. Two cars are traveling
along the same road. Car I moves at
a constant velocity v; c&t 2 starts
from rest with a constant accelera-
tion a. Initially car 2 is a distance d
behind car I. How long (t) will it
take car 2 to pass car l?

This one isn't too bad, is it? Once
you write the equation x(t) for each
car and set them equal, you end up
with something like this:

!ot'-vt-d=0.
2

This equation
roots:

has, of course,

L_
u

Are they both valid solutions? In
other words, can the cars meet
twice? Not likely. So, which one do
we choose? The positive one, of
course. And so the answer to the
problem is

l.

v+\v-+ZaCl
a

The next example is a bit more
complicated.

Problem 2. A vertical tube of
length 1 is inserted into mercury to
a depth of 112. Then the top end is
sealed. Find the helghth of the mer-
cury column left in the tube after
the tube is pu1led out of the mer-
cury. The temperature is constant
and the atmospheric pressure is
equal to that of a mercury column of
height H.

To solve this problem, Iet's con-
sider the equilibrium of the bottom
surface of the column: the pressure
"up" must equal the pressure
"down." It will be convenient to
express the pressure in units of
"length": the pressure "Ltp" equals
the atmospheric pressure H; the
pressure "down" equals the pressure
of the air above the column (P')plus

two that of the column itself (P"). For the
air pressure in the tube, using PV =

constant/ we can write

= P',(]- h),

or
t-.t ;:'- ,-
I l-fi

For the mercul.r- column,

P" = ::.

The conditron P = P' - P" brings us
to the equatlon

h)- t:g- ltl.-ul -ntt - \ tf - 11_1 - J I - - U,

whose roots are

, 1l+ I I --l .)

))

Now, you're an experienced prob-
1em solver and will qulckly identify
the positive root. The trouble is,
they're botTi positive. A second look
at the roots, though, reveals that the
bigger one is not only greater than
zero, it's also greater than 1! This
leaves us wrth the answer:

, H+l
2

{fr +P

These examples show us how to
find the root that is not a solution to
the problem (of course, sometimes

" ti"' *Zoa
IH-
2
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both roots are solutions-see exer-
cise 1 at the end of the article). The
next problem is different: it can be
solved withput finding the roots.

Problem 3. The focal length of a
converging lens is /. Find the mini-
mum possible distance x between
an object and its real image. (Hint: if
you aren't {amiliar with calculus
yet, it's okayl)

The lens equation

11
o x-o

leads to the quadratic equation with
respect to the object distance o:

o2-ox+fx:0,
the discriminant o{ which is

D:xlx-afl.
Because o exists only for D , 0,
Xmin = 4l' Voil)!

In the next example, the algebra
gets more complicated, but agatn,
we analyze the discriminant rather
than try to find the roots.

Problem 4. A fireworks rocket is
tested in the center of a large cylin-
drical pit of diameter d. After the
rocket explodes, the buming pieces
are expected to have speeds not ex-
ceeding a eertatn value y. Find the
depth h of the pit that will provide
safety for observers standing on the
very edge of the pit (provided they
are careful enough not to f.all into
the pit!).

To solve this one, let's write the
equation of motion for the piece that
makes it to the top edge of the pit.
Suppose the piece takes off at a cer-
tain angle e (fig. 1):

x=(vcoso)r=t,

y=(vsino)r -!sr'=t.,L

Figure i

54

Eliminating the time, we get the fo1-

lowing quadratic equation for tan 0:

o - 4v2 Shvztan-0__tano*_+I=0.gd sd'

We want this equation zot to have
solutions. That is, we want

t ttZ / - o \

D=[Y:l -^ty:+r].0,Isa./ [sd' )
OI

, v4 -s.)dz
8gv'

Looking at the numerator on the
right-hand side, we can see that if
* . gd, then any h will do. In other
words, the rocket can even be tested
on level ground. Otherwise the for-
mula above yieids the answer.

The last problem goes back to
"root elimination." But this time
the procedure isn't at all simple,
even though the probiem is pretty
innocent looking. Let's see how
tricky it gets.

Problem 5. A test tube of length 1

is filled with air at a pressure P and
closed with a light movable piston.
The test tube is then submerged in
water to a depth H (fig.2) and the
piston is released. Find the height h
of the air column in the test tube.
The density of water is p and the
atmospheric pressure is P,.

Using the equilibrium condition
for the piston, we have

pcfl -h) + P^: P',

where P'is the new pressure of the
air in the test tube. A1so, because

PV = constantr
Pl: P'h.

Combining these equations, we get

And this is where the trouble be-
gins! First of a1l, the discriminant of
the equation isn't necessarily posi-
tive, which makes sense. For ex-
ample, lf P >> P^andHis just slightly
greater than 1, the piston will be
pushed out of the beaker. But what
if a solution does exist? Intuitively,
we can expect if to be the only one,
but the equation gives us two:

_P]
pc

Both roots are positive, and both must
be less thanl. How do we choose the
" good" one? To answer this cluestion,
we must look at the stability of the
equilibrium (an important concept
that is often overlooked). Consider
the graphs of the functions P' : Pllh
andP' = P^+ pg(H -h) (fig.3). The in-
tersection points I and2 correspond
to ft_ and fr*, respectively. Consider
the changes in pressures correspond-
ing to small deviations from the equi-
librium positions L and 2. Anaiysis
reveals that only point 1 corre-
sponds to a stable equilibrium,
which is the only real possibility.
(Technically, if the piston is some-
how brought to a halt at position 2,
it will stay there, and solution 2 will
be realized.)

h'-(H*&), *!!=o
\ pc,/ p8

llr*&J'
4\ pB)

. 1( P-)h =- H+ "l+' 2[ ps)

o'

P':Pn+pg(H-h)

lllAY/JUitt 1SS7
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Now that you have some respect
for the quadratic ecluation, try these
exercises.

Exercise 1. Two cars begin to
move at the same time: car 1 is mov-
ing from A to B; car 2 from B to A.
Car 1 is moving at a constant veloc-
ity v, while car 2 starts at a velocity
u and has a constant acceleration a

directed fromA to B. It's knorvn that
the cars met nrrce, rrhile moving in
the scrze direction. find the range of
v that allows this to happen. The
distance AB equals 7.

Exercise 2. Charges +Q and -2Q
are fixed at a distance J from each
other. Find the point at which a

third charge q will be in ecluilib-
rium.

Exercise 3. A rock is thrown out
a window, which is set at a height /:
above the ground. The initial speed
of the rock is v. Frnd the maximum
horizontal distance 7 the rock can
travel if the takeoii angle is chosen
appropriately. Use an approach simi-
lar to that in problem 4. O
Boris Korsunskl re acfres at Northfield
Mount Hetnton Sc,hoo1 in Northt'leld,
Massachusetts.
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II[al$ happeniru?
Summer study ... competitions ... new
books ... ongoing activities ... clubs
and associations ... free samples ...

contests ... whatever it is, if you think
it's of interest to Quantumreaders,lel
us know about it! Help us fill Happen-
ings and the Bulletin Board with short
news items, firsthand reports, and an-
nouncements of upcoming events.

lilltal$ on yottr lnind?
Write to us! We want io know what you
lhink of Quantum. What do you like the
most? What would you like to see more
of? And, yes-what don'f you like
aboul Quantunft We want to make it

even better, but we need your help.

ltlJhal$ oun addne$s?

Quantum
NSTA

1B4O Wilson Boulevard
Arlington VA 22201-3000

CRATE

By William K. Hartmann with Joe Cain

Make an
impact in
your class-
room with
this interdis-
ciplinary
Suide to
cratering. How do craters
form? What can craters tell
us about planetary science?
How have impacts affected
Earth's history and the
history of life?
Produced in cooperation
with NASA and The Plan-
etary Society, Craters !
includes 20 ready-to-use,
hands-on activities that use

cratering to teach key
concepts in physics, as-

tronomy, biology, and Earth
sciences. Special features

include a summary of re-
search on Shoemaker-Levy
9's encounter with Jupiter,
and a detailed background
section for teachers. The
book comes with a Mac/
Windows CD-ROM packed

with supplemental images
for use with classroom
activities. But you don't need
a computer to make excellent
use of the activities bevause

all of the
pages-
including
beautiful
images of the

Moon and other cratered
surfaces-are photocopy-
ready.

Grades 9-1.2, 1995, 240 pp.
#PB120X $24.95

To ordatr, canl 'il -800-799*NSTA
Quantum
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Scholarshhs lol' youn0 utlolnelt
Infusium 23, a producer of hair

care products, has established a spe-
cial awards program aimed at young
women in the lJ.S. "For more than
three decades/ women have played
an increasingly significant part in
the American workplace," said
fohnna Doyle, Manager of Research
and Development at Infusium and
Chairperson of the Awards Program.
"But girls often need more encour-
agement to develop a strong interest
in fields like science, where role
models are generally male."

Infusium 23 will award 23 grants
of $1,000 each, specifically ear-
marked for female high school stu-
dents to use toward the pursuit of
education in science-for college,
summer classes, extracurricular pro-
grams/ etc. The goal of the program
will not only be to recognize those
young women aheady interested in
scientific fields, but also to encour-
age other young women to explore
the many opportunities available in
a field that is often overlooked by
females.

In a recent survey conducted by
Infusium 23 andtargeting thousands
of hish school students across the
country/ more than one third of
those pol1ed were still undecided as

to what career track to take. Of
those who had a preference, the top
three careers listed by males were
computer science (13%), engineer-
ing (9%1, and medicine/physician
(8%). The top three career choices
for females were teaching ( 13 % ), the
arts (12%1, and medicine/physician
ltt./").

Doyle was inspired to pursue her
own career when she was one of
only two girls to enter a science pro-

HAPPEN INGS

Bulletitt Boal'd

gram sponsored by the Boy Scouts of
America. Independent studies have
also shown that when females are
actually encouraged to enter these
so-calied "masculine preserves" of
science and technology, their test
scores in those areas quickly ec1ual,

and often overtake, those of boys in
the same areas.

To apply for these awards/ open to
all female high school students, an
applicant should provide a state-
ment including

. What career in science she wants
to pursue and why;

o Extracurricular activities demon-
strating career commitment;

. The person or persons who have
influenced her career choice.

These statements should be sub-
mitted, along with the applicant's
name/ address, age, school grade,
and name of school, to Infusium 23
Women in Science Awards, 40 West
57th Street,ZSrd floor, New York
NY 10019. Applications must be
postmarked by September 15, 1997 .

A riiloly cylel'[ridUu
As usual, many of our Cyber-

Teaser contestants showed admi-
rable ingenuity in confronting the
most recent problem posted at our
Web site (brainteaser 8205 in this
issue). But, unfortunately, they
were often too clever by a half. An
answer in the affirmative can be
achieved without any contortions,
and fortunately many entrants
found the way there.

Here are the first ten who submit-
ted a correct answer:

Leonid Borovsky (Brooklyn, New York)
Xi-An Li (Middlebury, Vermont)
Guy Ben Zvi (Ramat Yohanan, Israel)
Masato Kobayashi {Kyoto, }apan)

Clarissa Lee {Perak, Malaysia)
How Yu Khong (Kuala Lumpur,

Malaysia)
[im Grady {Branchburg, New }ersey)
Avner Nevo and Ori Charag (Ramat

Yohanan, Israel)
Aaron Manka (Arlington, Virginia)
|aak Sarv (Tallinn, Estonia)

Each will receive a Quantumbut-
ton and a copy of this issue. Con-
gratulations! AIl who submitted a

correct answer were eligible for a
drawing to receive a copy of Quan-
tum Quandaties, our collection of
brainteasers.

The next CyberTeaser awaits you
at www.nsta.org/contest.

Duracell/llSil comrutitiolt utliltlter$
What useful and entertaining

products are missing in catalogs and
stores? Six ingenious new ideas have
just become realities due to the cre-
ativity of American teenagers in-
volved in the 1Sth Duracell/NSTA
Scholarship Competition. Top in-
ventions announced in March in-
ciuded two musical gadgets, two
safety tools, a new device for the
blind, and a parking space finder.

The L997 competition awarded
over $100,000 in savings bonds to
100 high school inventors and recog-
nized over 700 students nationwide
for their innovative ideas.

"While these are prototypes, the
technical know-how behind them is
sufficient for production of each as

a viable product," said Arthur
Eisenkraft, judging chair. "These
winners showcase the inventive
spirit that the Duracell Competition
rewards in our youth."

The first-place $20,000 savings
bond winner was Ashley Eden, a

CONTINUED ON PAGE 62
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Acl'oss

1 "Who 
- 

turn to?"
Tony Bennett hit

5 Landed

9 Tied one's shoes

14 Cattle
15 Mongoloid or

Caucasran, e.g.

16 965,2911in base 16)

17 Type oi gin
18 Physicist Niels _
19 Bar game

20 Inductance units
22 Small pellets

24 Sleep motion: abbr.

25 Rocky peak

26 OSS's successor

27 1012: pref.

28 _ catalyst
3l Electron or proton

property
33 Child's first rr,ord

34 10-r pascals

35 Ascom-vcetous

fungi
39 _ agar

40 Two rnilllon
pounds

42 Hawaiian tree
,13 Angle unit
45 Time unit: abbr.

46 Good-hearted
,17 Yellow dye

49 Heredity units
50 Focusing device

53 Electrical conduc-

tivity unit
5,1 Distilled coal

55 Arab's robe

56 Wood: comb. form
r / lluorlne or

chlorine, e.g.

61 Microwave source

63 Shady mountain
side

65 Measuring der-ice

66 699,lll 1rn Lrase 15

67 Danish p1arr,right
Kar _

68 Cor-rp d 

-69 Sorue
-0 Tr-:e ai curieli
-1 Qr,raiitr-: suii.

0own

1 Hyperbolic iunction
2 Vehicle part

3 Element 10

4 Resistance to
acceleration

5 Molecular biologist
Werner _

6 Asian country
7 Fish dermatrtis

g rb,o3
9 Solid-state lamps

10 Absclsic acid: abbr.

1 I British novelist
Iohn Le 

-Drner
Knobby splcule
Charged particle
Heavy partlcle
Like element 24

Oolong, e.g.

_ trrax (ozocerite)

Dalai 
-64,957 lirt base 16)

Unrt of heat: abbr.

Army leader: abbr.

Like computer data

Outer body layer
Musical sound

Arabrc letters

- 
Baisakhi idusty

sc1ua1l in Bengal)

Elen-rent 50

"no 

- 
ands or

buts . . ."
Petrologen
width x height x
lengti-r

50 Andean animals 59

51 965,290 (in base 16)

52 Of the olfactory
sense 60

i4 Sricl<v 6l
56 Long wavelength 61

EM wave
57 Workman
58 Logic crrcurt

Portuque se

neuroiogr sr

Antonio _ I{oniz
Meshes oi iabric
Nlora1', e.g.

Immature shoot
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M201
We can transform the equation

into 2# - # - 3x2 - 3x- I = 0, or
2# = lx + ll3 , or xTli : x + 1. From this
we obtain

1'- r'lz -t'

M202
Let's multiply the first equation by
a + b + c.Each term simpifies as fol-
lows:

(a+-b+ c)a =!-* o,b+c b+c
(a+b+c)b _ b' _b

a+c a+c
(a+b+c)c= 

", *".a+b a+b

so the given equation becomes

2 ,2 2aDc
--+ +-=ta+b+c=a+b+ctb+c 0+c ab

which gives the desired result.

M203
We can assume that all the hens

that are alive at any given time in
the process described 1ay eggs simul-
taneously, and that the chicks hatch
from all the eggs at the same mo-
ment. Let akandbobe the numbers
of hens and roosters at the kth
stage-that is, ar= l,bt= 0. Accord-
ing to the statement of the problem,

aktr+bo*r=2a0. (1)

and a, = 0. Add up equalities (1) for
k = I through n. We get

ANSWERS,
HINTS &

SOLUTIONS

(ar+ ar+ ... + ar) + lbr+ br+ ... + bnl
: ...:Z(at+ a2+ ... + an-1).

Since a, : 0 and at: l, we get
br+br+ ...*bn:ar+ a2+ ... + an_r+I.
This means that there was one less
hen than there were roosters-that
is, the number of hens was 1996.

M204
Denote the center of the given

circle by O, and let A and B be the
points where the line meets the
circle. Draw circles with diameters
OA and OB (they will pass through
the midpoint of AB). The location
we seek consists of (1) alt points that
lie within one and only one of these
circles and (21the point O.

Let's prove this. First, we note
that for every point K within the
given circle, there is only one chord
such that K is its midpoint. This is
the chord perpendicular to OK lK
must of course be different from O).
Draw an arbrfiary line through O.
Let M, and Mrbe the points where
this Line intersects (for the second
time) the circle with diameter OA
and the circle with diameter OB, re-
spectively. Consider the situation
shown in figure 1. Since OA and OB
are diameters of their respective
circles, ZAMp and ZBMrO are

right angles. Now it follows that ali
the chords whose midpoints belong
to the radius OD but not to the seg-
rrrent MrMr lie completely on one
side of the line AB.Infact, M, is the
midpoint of the chord passing
throughA, andMris the midpoint of
the chord passing through B. On the
other hand, if a chord meets the seg-
rrrent MrMrin its internal point and
is perpendicular to it, then its end-
points lie on the different sides of the
line AB. Thus if we forget about O for
the time being, the intersection of the
point we seek and the line OD con-
sists of the segment MtMz. This rea-
soning is valid {or any line, passing
through O, even if point O lies be-
tween points M, and Mr. Finally, we
note that point O also satisfies the
conditions of the problem.

M205
We'il begin by pointing out the

necessary construction and then we'll
offer aproof of it. Let's take points A
and B on the circle such that the dis-
tance between them is greater than
the radius of the circlel and draw a

circle passing through B whose cen-
ter is atA. Let it meet the given circle
for the second time at C (we assume
that points C and B are different).
This is the first c,ircle of our construc-
tion. Then we construct point D,
symmetric to A with respect to the
line BC. For this purpose we will need
two more circles; theywillbe the sec-
ond and the third circles of our con-
struction. Draw a circle of radiusDA
whose center is at D. Let this (the
fourth) circle meet the first at points
E andF. Circles with centers atE and
F passing through A-the fifth and
the sixth circles of our construction-
meet at point O, which is the center

lwe do not consider that this
requires drawing afl arc.

58 lilAY/JUNr rsoT
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Figure 2

of the given circle.
Proof. It's clear that the point

where the fifth and sixth circles inter-
sect lies on the line AD. So it's
enough to prove that OA = R, where
R is the radius of the given circle,
which is circumscribed about the tri-
angle ABC.PLLI AB = AC: a andlet
ft be the length of the altitude drawn
to side BC in the triangle. The "ex-
tended law of sines"2 teils us that

AC
=)RsinIABC

or

D_ AC _a2 /rr
^- 2ti"lABC- zh' trl

On the other hand, trianglesADE and
AEO are similar, andAD = DE =2h,
AE: AO = a. Thus

AO AE
AE= AD,

or equivalently

AOa
-=-a 2h'

Therefore,

Comparing this equality with equa-
tion (1), we see that AO: R. Thus,
O is the center of the given circle
lfis.21.

rThe extended Iaw of sl.nes says
that in anv triangle ABC, af sin A =

blsin B = -- S:l: C = lR, rvhere R is the
radius oi :ir: .::c:-::lscrrbed circle.

Physics

P201
Let's calculate the tension in the

cord at both ends of the pulley. Sup-
pose the tension in the cord near
mass M = 3 kg is 7r. For this load we
get

Mg-Tr= Ma,

and thus

Tr= Mlg- al.

Similarly, on the other side of the
pulley we have

n1t)-tt18:mat

and thus

Tr= m(g + a).

The difference in the tension on
both sides of the pulley counterbal-
ances the friction in the shaft
(strictly speaking, one should talk
about torques and not forces, but in
this case it makes no difference).
The friction is proportional to the
axial load-that is, to the force 7, +

7r. Thus

Tr- Tr: klT, + T2).

Although we can find the coeffi-
cient k from this equation, it's more
practical to obtain the value
(1 - k)/(1 + k), since later we'll need
just this expression:

1-k 
= 

m(s+a)
1+k u(s-o)'

Equilibrium is achieved within
the entire range of possible "extra"
loads-from the minimum (when
the downward acceleration of the
larger mass is zero) to the maximum
(when this mass is lifted uniformly
upward). To find the minimum ex-
tra load Am, we write

m+Lmr=1-k
M 1+k'

which gives us

2ma 1.
Am1 =-=; kg.

8-a L

Similarly, for the maximum extra
load Lmrwe have

m+ Lnt2

rthrch gives us

r-k
t+k'

llr(s- a)-m2(g+a)

M

Lrnl = =5k9.

1

n-
1L

rr(g + a)

P202
This problem can be solved di-

rectly by calculating all the succes-
sive collisions using the laws of con-
servation of energy and momentum,
taking into aecount the heat losses.
However, the problem has a simple
and elegant solution.

Clearly, after the first collision
puck 2 has a velocity volL. To cal-
culate the result of the collision of
the pucks after the recoil from the
side wa1l, it will be convenient to
switch to the moving reference
system/ which travels with a ve-
locity vof 2 from the side wall. In
this reference frame puck 2 is
again at rest (as before the first
collision), while puck I again ap-
proaches it-with half the velocity,
however. After the second impact
puck 1 stops/ just as after the first
impact, and puck 2 acquires veloc-
ity vol4.In the laboratory frame of
reference the velocity of puck 1 is
v6l2 and is directed away from the
side wall, while the velocity of
puck 2 is vof4 and is also directed
away from the wall.

5gOUAlllIUIIl/ANSl,1ltRS, llINIS & SOTtlTIOlllS



P203
The work I4l performed on the

system is spent in changing both
the internal energy of the gas AU
and the potential energy of the pis-
161 AEr:

W=LU+AEn.

For one mole of monatomic ideal
gas, the change in the energy is given
by the formula

au=fn1r, -4;.2',^

The change in the piston's potential
energy can be found in this way: it
is equal to the work needed to move
the piston quasi-staticaliy from the
initial state to the final one. While
this is happening, the external force
at any moment must be equal to the
force of gravrty mg acting on the pis-
ton. Since the piston is at equilib-
rium in the initial and final states,
the force of gravity ecluals the gas
pressure P times the area of the pis-
ton S (we neglect the pressure of the
outside air).

Denoting the change in the
piston's height by ft, we get

/Jo: mgAh = PSM = PLV,

where AV is the change in the vol-
ume of the gas. Using the ideal gas

law for one mole of gas, we have

LEp=PLV=R(7"-ro).

From this we obtain

.1
w =;R(r. - ro)+ a(4 - ro)

6
= lR\T" -Ts),

and consequently

P204
First let's findvo. The only

way the sound waves pro-
ducedby plane 4 reach planes
1,2, and 3 at the same mo-
ment is if plane 4 is moving

Figure 3

at a supersonic speed (uo, 
", 

where c
is the speed of sound). Then, knowing
that the shock wave forms an angle
sin 0 = vof c and that the wave front
must be parallel to the course, trigo-
nometry allows us to find vo = c/sin 0
(see figure 3).

Now let's consider planes I and 4.
In the reference frame of plane 1,
plane 4 approaches at a velocity
v+-v' In the triangle in figure 4, we
can see that sin a = Il3. The law oi
sines yields

vl 
=v4

sm(e - o) sins'

the ratio of the sizes of the images is

Hr _ mth _ irlo, 
.Hz mzh irlor'

Now we need to find o, o, ir, attd
ir. According to the lens formula,

By the statement of the problem,

o+i=L.
Eliminating o from the above eclua-
tions yields the square equation

i2-iL+FL=0,
from which we get

LE; 
- 

L t- lTi] 1 - - 
L ^t- - I L.2 \4

In addition, the principle of
reversibility of optical rays results in
ot = iz and o, = rr. Therefore,

Bl'ainlea$Ers

8201
Look at figure 5.

8202
The number will decreas eby a f.ac-

tor of 50. In f.act, I 11996 = 0.0005. . . .

If the first digit (5) were omitted, we
would obtain the number

( t 1 ) ,^ I I
f.rq% - zooo )'" = 1996 so'

111_r_-
oi1.

,r=
sm(e - a) sin0 sino

Solving this equation and substitut-
ing numerical vaiues for the trigono-
metric functions of 0 and o, we ob-
tain the answer:

v: L.lc.

P205
Let the height of the object be h.

Then the image's height is H = mh, so

rF 
-T ,2W

5R

190.- e

Figure 4

when plane 4 is here,
it can be heard I

painting

80 ttrtAY/JUtrtE losT

Figure 5
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Figure 6

8203
The oii lies on top of the vinegar

in the bottle. If the bottle is tumed
over, the vinegar will still lie be-
neath the oil, but it will be in the
neck of the bottle. So you can pour
out some oil from the bottle in the
upright position. Then turo the
bottle over, stopping the bottle with
your finger, and release the vinegar
in a controlled stream.

8204
If we add triangles I and 2 to the

red ones (fig.6l, the total area will be
ec1ua1 to half the area of the parallelo-
gram. ]Indeed, Seau* Sc.aaz ='lrhr.
AB + tlrhr. CD = tl2AElhr * E2)-:

' l,rAB . h = r lzs eaco, since AB : cD .l
The same thing happens if triangles
1 and 2 are added to the blue ones.

8205
First the son and daughter cross

the bridge together. (It takes them
3 minutes). Then one of them-for
instance, the son-returns to his
parents. (Add 1 minute.) The father
and mother cross the bridge together
(10 minutes). The daughter comes
back (3 min.utes). The son and
daughter cross the bridge again
(3 minutes). Thus, the total time is
3 + 1 + 10 +3 + 3 =Z]minutes.

l(aleido$copB
1. The difference in the densities

of water heated to various tempera-
tures.

2. The volume occupied by the
buckshot doesn't depend on its ra-
dius, so both boxes have the same
MASS.

3. The freshwater in the lock has
a lower density than the saltwater in

the ocean. The lock is opened when
the hydraulic pressure is equal on
both sides, which means that the
level of freshwater is higher than
that of the seawater. Water flows
out of the lock and carries the ship
with it.

4. Three quarters of the water's
density.

5. It will not.
6. In the middle of a large lake,

the ice doesn't rest on the lake bed
but floats on the water. Since the
ratio of the densities of ice and wa-
ter is 0.9, the same proportion (0.9)
of the ice's thickness is submerged
in water. So the distance from the
top surface of the ice to the water
(and thus the rope's length) is
I meter.

7. Throw a solid test piece into
the melt. If it floats on the surface,
the density will decrease when the
melt hardens; if it sinks, the density
will increase.

8. The aerometer with the thin-
ner scaling tube.

9. The balance reading will in-
crease if the mean density of the
object is less than the density of the
weights. In the opposite case it will
decrease, and it will not change at all
when the densities are equal.

10. If the object and the water
expand equally when heated, the
reading on the scale will not change.
If the object expands less than the
watert the reading will increase, and
vice versa.

11. If the object is compressed less
than the fluid when pressure is appiied,
then at some pressure its density will
become less tlran that of the fluid, so the
object will rise to the sudace.

12. The volume will decrease.
13. If the initial temperature of

the water was less than 4"C, it must
be cooled; but when the opposite is
trug the water must be heated.

14. Initially, water that is cooler
than the water in the vessel is added;
then water that is warmer is added.

15. See figure T,wherel is the iso-
therm, II is the isobar, and III is the
isochore.

16. The jar with dry atu is heavier.
17. The lift is proportional to the

difference in the densities of the air

Figure 7

and the gas in the balloon. Since the
density difference (and the density
itself) is inversely proportional to
temperature, the lift is greater in
cooler air.

18. There are projections on the
dust particles where the charge den-
sity is greatest and from which the
electric charge quickly "flows off."

19. The cuffent density is greatest
in this area.

Microexperiment
Divide the mass, measured with

a balance, by the volume, deter-
mined by the amount of water dis-
placed in, say, a bathtub. Compare
the resulting density with that of
water.

Fail' altd $quarod!
1. The conditions of the problem

will be satisfied if the equation

vt=l-ut+at'
2

has two roots, both greater thanuf a.
Calculations yield

Ntril . u.u.o1 ;;-,

2. Intuitively, charge q must be
placed as shown in figure 8. Then,
from Coulomb's law,

q +Q -zQo------------o----------------ox1
Figure 8

0lJAilTU]il/ArrStlltRS, lililIS & 80t Uil0ilS 8l



2qQ
, -,) |

(x+l)
OI

x2 -zix-72 =0,

, = 7(t ,"D).

The negative sign corresponds to
placing charge q between +Q and

-2Q; of course, no equilibrium is pos-
sible in this case. So the answer is

" = l(r+ -uD).

3. The equations of motion are

y = (vcos0)t,

y = h+(vsino)t +
When the rock hits the ground, x: I
y: 0. Combining the equations, we ob-
tain a quadratic equation for tan 0 (see

problem 1). Solving the equation, we get

tanO =

The answer exists if
lt+ zghh4 - lgll2l\/l>0,

or if

1<lvlg)1i +2gh.

The maximum possible l is thus

1= lvls\Fit|.

BULLETIN BOARD
CONTINUED FROM PAGE 56

16-year-old junior at Montgomery
Blair High School in Silver Spring,
Maryland. Eden invented Harmony
Helper, a practicd, and entertaining
musical training machine that
teaches people to sing harmony.

C]Q 
-

x2

,'( , -zgh (d)')
*, ['- "' 

--;l 
)

Three lights indicate whether a singer
has produced a tone that is sharp, flat,
or on pitch. Harmony Helper offers
three octaves, and when its users
can't get the right note, it features a

"hittt" button that, when pressed,
plays it correctly.

Ashley, her parents, and her spon-
soring teacher, Doris Sandoval, were
guests of Duracell at the 45th annual
National Science Teachers Associa-
tion convention in New Orleans.
She was honored along with the five
second-place winners at an AprII 2
ceremony and participated in an
April 3 invention workshop and
birthday party for the competition.

Second-place awards were given
to Scott Fulford, a junior at the Colo-

rado Academy in Denver, for the
Sensational Metronome; Hilde
Anne Heremans, a senior at Detroit
Country Day in Troy, Michigan, for
the Compass for the Blind; Michael
Kennedy, a senior at Fox Lane High
School in Bedford, New York, for
ClearView Goggles; Seung-|oo Lee,
a sophomore at the Academy for the
Advancement of Science and Tech-
nology in Hackensack, New |ersey,
for TAPS-The Available Parking
Spaces; and Leonard Shtargot, a se-
nior at San Mateo High School who
lives in Foster City, California, for
the Portable 60-Hz Power Line De-
tector. Each is the ryinner of a

$10,000 bond and was honored in
New Orleans along with their par-
ents and teacher-sponsors.

In its fifteenthyear, the Duracell/
NSTA Scholarship Competition
also announced ten third-place win-
ners, who each receives a $1,000
savings bond; 25 fourth-place win-
ners, who received $200 bonds; and
59 fifth-place winners, who received
$100 bonds.

Curl'ections

The Gallery Q in the last issue contained a misprint. The ma-
rine chronometer was invented, and George Washington was three
years old, ir'1735 (not 1835). 

* * * * *

Several readers wrote to object to a passage in Lev Tarasov's "The
Green Flash" in the lan:uaryfFebruary issue. Professor Andrew T.
Young at San Diego State University writes:

One cannot say the Sun is 2 degrees below the horizon [p. 39] because of
the light-travel time; if such an argument were true/ large stellar systems
like globular clusters and galaxies, across which the light-time is many
years, would be smeared out around a great circle of the sky by the Earth's
rotation! Apart from a very small displacement due to the aberration of
light, the Sun and stars really are about where they appear to be, because
there is a continuous stream of light from these celestial sources to our
eyes. The light-travel time has no effect on apparent position, except for
the very small displacements of the objects themselves during the time
of light propagation. The diurnal motion is just the reflex of the Earth's
rotation, so it produces no such effect as you describe.

Prof. Young provided the Web address of his own green flash page
(www.isc.tamu.edu/-astro/research/sandiego.html) and pointed us
to another (www.bishop.hawaii.org/bishop I planet I Greenflash.html).
He also took us gently to task for referring to |ohn William Strutt
as "Sir |ohn Rayleigh." He was, of course/ Lord Rayleigh.

AAPT

Franklin Spear-Basic Books

North{ield Mount Hermon Summer School

NSTA Special Publications

49

11

9

12, 20, 35, 52, 55, Cover 4
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ELCOME BACK TO COW-
culations, the column devoted
to problems best solved with
a computer algorithm.

A concrete silo stands tall next to
Farmer Paul's barn. It was built in
1910 for the princely sum of 85 do1-
lars, foliowing plans published in the
Farmers' Institute Bulletin. It has
beenused ever since to store our win-
ter {eed corn. Corn is an ideal silage
since it is a source of energy, fiber, and
protein. Without it, we cows would

COWCULATIONS

$lippinU silaue

A corny caper

by Dr. Mu

go dr1 in the rtntel and f armer Paul
would lose hrs monihh'n-iilk check.
Keeping the silage saie and dn rs a

high priority around here. That s r'-hr-
we are determined to soh-e a firosr
distressing corny caper.

As he does every yeart Farmer Paul
put up his feed corn last October rn a
huge silo capable of holding up to
120,000 pounds. In late {a11, he began
taking out a daily feed allotment of
300 pounds. Unknown to us, our silo
was being broken into during the

night and a fixed proportion removed.
Each night, the silage thiei stole ex-
actly 1l/nlth of the corn rernaining in
our si1o. Oddly enough, this was al-
\ra\-s an integer number of pounds.
Don't ask me to explain how I know
ti-Lis-cou's are psychic.

Each dar , Farmer Paul took out
another -300 pounds {or our feed,
una\\'are of the nightly skimming.
After trr e dar-s and nrghts, I discov-
ered the culprit lllute Lr), accident
and turned hrm r.r-r to Farmer Pau1.

C
(d

E
c)
C
C
a)

co
f<
c0

_o
t
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We were all relieved.
At this point, Special Agent Mark

from Barn & Silo Insurance entered
the case. His investigation establish-
ing the following sequence of
events.

Each day Farmer Paul took 300
pounds for feed; each night the thief
stole (l/n)th of the silage left in the
silo (n is the same for each night).
This was repeated for a total of five
days and nights. The thief always
stole an integer number of pounds.
After the theft was stopped, Farmer
Paul stil1 had enough silage left to
feed us f.or 2L0 days. Thank goodness!

COW 4.In order to determine the
proper monetary settlement, Special
Agent Mark needs to determine ex-
'actly how many pounds of silage
were stolen.

Okay, cowhands, it's time to get
up/ get out, and start cowculating.
COW 4 is waiting foryou. Sendyour
cowculation to drmu@cs.uwp.edu.
To view all previous ruminations,
take a peek at http://usaco.uwp.edu/
cowculations.

Yes, you may twite a better rhyme,
But can you do it every time!
Soive the COW and then we'll see

lusthow clever you canbe!

-Dr. Mu

solution l0 cotfll 3
Last time we posed the following

milk bottle problem: find an efficient
algorithm for cowculating the num-
ber of ways of pouring 10 gallons of
milk into bottles of the following
sizes: two-gallon, ga1lon, half-gallon,
quart, pint, and half-pint.

Whenever I have a big problem to
solve I like to lie down, get comfort-
able, and think on it for a spell.
Rushing out to write code before I've
ruminated a bit is a big mistake.
Don't make it.

Before we get started, let/s intro-
duce some notation to keep track of
things in an orderly way. First there
is the different bottle sizes we are
using. It's easiest to express them in
terms of how many half-pints each
holds. Our half-pint, pint, quart, half-
gallon, gallon, and two-gal1on sizes
are translated into a list of half-pints:

size={1, 2, 4, 8, t5,321 i
Each element of the size list can be
referenced with an index. So

size I tm] I is the mth element in
the list. For example:

size [ [3] I
4

Nowwe define a two-dimensional
array Whey [il], fl] , which ecluals the
number of ways you can distribute n
half-pints of milk usrng any subset of
the first m bottle sizes Size t t1l l,
Size I l2'J'J , ..., Size I tm] I .Thus, if
m : 2 andn: 10, whey [2, 1o] is the
numberof ways 10half-pintsof milk
can be distributed into any combina-
tion of half-pint or pint bottles. This
number can be broken down into two
cases. If we decide to fill a pint bottle,
there are 8 half-pints left, which can
be distributed into pints and half-
pints inlrltrey [2, 8 ] ways. If we don't
use any pint bottles, the 10 units of
milk can be distributed into haif-
pints inlrthey[1,101 ways. Thus we
arrive at the all important relation-
ship:

WheY[2,10] = WheY[1,101 +

Whey[2,8]

But the same argument applies
for any m and n. Ruminate on this
one:

Vlltreylm_,n_l := Wheylm-1, nl
+ vrftreylm, n-size I Iml I l

Notice when you use one bottle of
size [ [ml I, the number of half-pints
of milk left to distribute is n-
size I tm] I . Got it? Thus we've
transferred the problem of finding
wheylm,nl into two subproblems.
But these subproblems can be pushed
back to more subproblems, using the
same relationship, until finallywe are
down to three simple cases.

1. As we all know, if we have only
half-pint bottles to put the milk in,
this can be done in exactly one way.
This is expressed in MathematicarM as

Wtrey[1,n-l =1

2. If you have a bottle of
size I [rn] I and this is exactly how
much milk you have left (n :
size I tm] I ), then i{ you use at least

one bottle of size [ [ml ] , it can be
distributed in only one way-allin
that bottle. Now there is no milk
left to distribute. Thus when the
milk is down to zerot we assign the
value t. This is expressed in
Mathematica as

Wtrey lm_, 01 =1

3. Finally, it's impossible to use
a quart bottle when you have less
than a quart of milk left to distrib-.
ute. Of course, this applies generally
to all bottle sizes whenever
n < Ej-ze I Iml I . This is expressed in
Mathematica as

Wtrey[m_,n_l =0 lilr<0
Combining these commands, we
have the basic recursive Mathe-
matica solution:

Clear Iwhey1
Size={1, 2, 4, 8, t5, 321 i
Wheylm_,n_l:=0 /i n<O
Wheylm_,01=1;
Whey[1,n-] =1;
Whey [m-, n_] : =Wtrey [m, n] =ltlttsy [m-
1,nl +Wtrey [m,n-Size I tnl I I

So let's see how many ways we
can distribute 10 gallons (160 half-
pints)using a1l6 bottle sizes:

Whey [ 5, 150 ]
643s0

Okay, now look at how the number
changes as we increase the bottle
sizes allowed from 1 to all 6:
Table [Wheyln,150l , {n,1,5} I
{1,, 81, 1681, ]-234L, 3884L,
64350)
Finally, let's see what happens using
all six bottle sizes by increasing the
amount of milk from 1 gallon to 10
gallons, in jumps of a quart:

Wtreys=Table [ {n,Whey [ 5, n] ],
tnr4r150,4)l
{{4, 4}, {8, t_0}, {t2,20},
{L6, 36}, {20, 50}, {24,
94j , {28, 140} , {32, 202} ,

{36, 284}, {40, 390}, {44,
a24j , {48, 692} , {52,
{a6, L154}, {50, L46A}
{64, LB21 }, { 68 , 2264
{12,2180}, {'76,3384
{80, 40BB}, {84, 4944

64 ltilIY/JU|llE 1SS7

{88, .844}, t92, 6920}

e00),



{96, 8148}, {100 , 9544},
{t04, L1124}, {108, L2904},
{L12, L4904} , {LL6, L11-44} ,

{120, L9644} , tL24, 22424} ,

{128, 25509} , {132, 28924} ,

{L36, 32594} , {L40, 36844} ,

{144, 4L404} , {148, 46404} ,

{152, 51874} , {L56, 57844} ,

{160, 64350} }

The graph on the right shows all
the wheys. It was created by the
command

ListPlot lWtreys, Frase- >Tare]

Postscript. Notice that this solu-
tion can easiiy be changed for farm-
ers who live in other countries and
use diff erent bottle sizes. Iust
change the size iist to match the
containers you use. A-nd it can be
used for other applications. For ex-
ample, if size = {1,5,10,L5,50,100},
which represents the number of pen-
nies in each U.S. coin trom a penn)'
to a silver dollar, thenTfhey[6,10001
is the number of ways you can make
change for 10 dollars usirg U.S.
coins. The answer is 2,103.596.

Come to lhs SlL0!
As you can see/ Mathematica is

more than just the largest collection
of mathematical functions ever as-

sembled in one package for doing
Mathematics. It is also a powerful
symbolic programming language
that can be used to solve your most
personal bamyard problem, provided
you know how it works. If you
would like to learn how to cow-
culate in Mathematica, ioin me on
the Internet at the Mathematica

SILO (Summer Internet Learning
Opportunity). During one week in
fuly, I will ruminate on Mathe-
matrca fundamentals between
milkings. You'll need to have ac-
cess to the Internet and a willing-
ness to do some mental chores.
You don't need any prior Mathe-
matica knowledge or even the soft-
ware itself to participate. If you'd
like join the herd at the SILO this
summer/ send an e-mail message to
drmu@cs.uwp.edu. O
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OUANTUM
in every library and college bookstore!

That's our goal. So i{ you doo't tild Quanlum where you
expect to, ask loritl Quanturn is a resource that belongs
in every library and bookstore.

"A first-class 'new'magarine . . . one can appreciate the
meaning of quality and imagioative chal-lenge . . . it is
{or anyone with an interest in science, particularly math
and physics. Highly recom m ende d.. " -Lib 

r ary f outn al

". . . fu1I o{ stirnulating articles . . . excellent mathematical
reading for students at school and wiversity."-Nature

" Q77antum's entry ioto the world of teens {and older fo1k,
too) should be embraced and welcomed. Its relatively low

Share the OUANTUM experience!
To order, call 1 800 SPRINGER (1 800 777-4643)

subscription price makes it a bargain for the wealth of
knowledge and recreational materials its readers
receiv e." -fournal 

of Negro Education

"Translations are in excellent and easily understandable
English; English-language articles are similarly well
written. This wonder{ul magazine should be in every
secondary school library and in college and.public
libraries as well."-Magazines for Libraries

"It should be in every high school library [and] in most
public libraries . . . we owe it to our students to make
Qu antum widely av ailable. " 

-Richard 
Askey, Prof es s or

of Mathematics at the University of Wisconsin, Madison
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Quantum Quandaries brings together the first 100 brainteasers from Quan-
tum magazine. You'll find number rebuses, geometry ticklers, Iogic puzzles,
and quirky questions with a physics twist. Students and teachers alike enjoy
these fun quandaries. For each brainteaser, an easy "escape" is provided by
simply turning the page. Newly illustrated by Quantum staff artist sergey
lvanov. (208 pages, 111/z x 151/+ cm)
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