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GALLERY O

D EFORE HE \1AS A SOLDIER, CENTLEMAN FARMER,
D and presideut oi th e United States, George Washington
was a snrvefor-,\t the age of l6 he served as an assistant
to the official surFe'riL'rr t-ri Prince William County, Vir-
ginia, and kept a dlarr- crr his experiences. He records the

TheWashington Family ll789-96\ by Edrvard Sar-age

discomiorts oi .-.,- '- . . -

with dou[''le it> \\ -, - ' ,

and describe5 an.,-.

ne thread Bear blanket
such as Lice Fleas & c"

n n-ndran -rar party bear-
itcu. r,i€.s appointed theing a scalp. A 1-ear --.:

of Iicial srrrveytrr or C..
ditional experience i:.r

the public servant devoted to international matters as well
as the privat e citizen who amasse d a geat deal of land. His
adopted son holds a compass, as if his father had just
qtizzed him about the number of acres at Mount Vernon.

The globe contains a curious contrivance, perhaps for
determining the position of the Sun or other heavenly
body. It most assuredly showed latitude and longitude to
a reasonable degree of precision. Did Washington hear sto-
ries, as a young surveyor/ o{ how di{ficult it once was to
determine one's longitude accurately? And how the inven-
tion of the marine chronometer in 1835 (when George was
just three) revolutionized navigation?

It was arguably the most important scientific problem
of the time, and you can read about it in "The Long Road
to Longitude," which begins onpage 42.

wilclcrness.
Many years later, as h; , - -

trait, symbols of his maltlLr-:' - - -

lery of ,att, Washin.ton
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The jaunty horseman on our cover is
confident that his horse is comfortably
shod. Even though each boot is a differ-
ent shape, he koows that the volumes of
the boots are all the same.

How does he know? He knows be-
cause he's Francesco Bonaventura
Cavalieri, and in 1629 he developed a
method for determining volume with-
out the use of integrals. (His method in-
volved "indivisibles.") Cavalieri was a
student of Galileo and, true to his
name, he chivalrously delayed publish-
ing his result Ior six years because his
mentor was planning a work on the
same subject.

Read about Cavalieri's principle in
the Kaleidoscope, right in the middle of
this issue.
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FRONT MATTER

[realiru scienlisl-cilinns

How many scientists does it take . . .?

VERY PLACE I TI'RN, SCIENCE
and technology seem to be
making the news. Exciting as-

tronomy and astrophysics show
up almost weekly in the New York
Times. The Washington Post and
Time rnagazine regularly report
breakthroughs in biology and the
health sciences. Stunning photos
from the Hubble Space Telescope
regularly adorn magazines and even
serve as wall-adorning posters.

In vitro fertllizations bring the
miracle of life to otherwise childless
couples. Premature babies now regu-
larly overcome overwhelming odds.
Television shows dramatic video
from within living bodies. Faster and
faster computers enrich (and com-
plicate) our lives. DNA testing and
other laboratory techniques have
revolutionized iaw enforcement and
judicial proceedings. Microproces-
sors enrich our homes, vehicles,
shopping malls, factories, and of-
fices.

Within the science community
itself, the exponentially increasing
size of journals reflects the incred-
ible growth of research activities.
Physics sees the merging of particle
physics and cosmoloqy, a dramatic
blending of the very smallest and
the very largest scales of the uni-
verse. Events during the first
femtosecond alter the big bang ex-
plicate the ten-billion-year history
of the cosmos.

While science is thriving, while
technology is remaking the econ-
omy of the United States and of

much of the world, why then do we
hear so much about the sad state of
science education in our nation?
While science and technology are
omnipresent in our lives, why do
poiicy makers talk so much about
"scientific Tlliteracy"? In my own
discipline of physics, why do many
o{ our most committed education
researchers now tell us that our stu-
dents do not understand what we
think we are teaching them, even if
they manage to earn passing grades?

As a scientist, I am thrilled about
the excitement across all fields of
science. As a citizen, I am pleased
that research and technology have
redefined and strengthened our
economy. As a teacher, however, I
am concerned that most people do
not begin to understand the science
and the technology on which we
increasingly rely.

Not everyone wants to become a

scientist. Many don't have either the
interest or the perseverance to learn
much about the quantitative as-
pects of science. Nevertheless, the
community of scientists, science

teachers, and prospective scientists
needs to recognize our continuing
responsibility to nurture scientific
interests in all of our citizens.

The gap between a limited num-
ber of scientists creating exciting
scientific and technical break-
throughs and a growing number of
citizens who are unaware of the sci-
ence and technology that underlie
their daily lives is aiready wide
enough. Those on both sides of the
divide must assure that the gap

doesn't become a chasm.
Even with a limited number of

scientists, science will continue to
thrive. But without many more sci-
entist-citizens/ our society will be
increasingly alienated from the sci-
ence and technology forces that de-
fine our future. And a society es-

tranged from its science will have
neither good science nor an auspi-
cious future.

-Bernard 
V. Khoury

Bernard V. Khoury is the Executive Of-
ficer of the American Association of
Physics Teachers ( AAPT),

uisil OUANTUM 0n lhe lfrleh!

You'll find an index of Quantum articles, a directory of personnel an[ sdi-
vices, background information on Quantum and its sister magazine Kvant,
a preview of the next issue, the CyberTeaser contest/ and more.

Point your Web browser to

hlt[://www.nsIa.oru/quallluIn

]I4ARCII/APRIt



Pathwags is a practical tool to
help science teachers move
their teaching and professional
development toward the vision
of the Standards. F illed with
specific suggestions and clear
examples that guide teachers
in implementing each of the
standards, NSTAs Pathways is
a valuable resource for every
high school science educator.
Grades 9-I2, 1996, 196 pp.

#PB126X $24.95

To order, coll:

r-800-722-NSTA

OUANTUM
THE MAGAZINE OF N/ATH AND SCIENCE

A publictttion of the Nt.tionul Science Teaclters Association fNS?Al
0 Quantum Burettu of the Russian Acadenty of Sciences

in cctniunction with
the Amefican Association of Physics Teachers (AAPT)

d the Notional Council of Teacher.s of Mathematics NC:TM)
7'lrc Ndtrorrdl Scidlcc Tedc-h€Is,{ssocidti(ni is dit arsanizntian of st:itttt:c eLTucation ptr-tfessictnals

ttnd has ds lLs ltttltose the stittLtlatton. lnptuvement, ancl cootlination oi science teachiag and leanttlg

Publisher
Gerald F. Wheeler, Erecutive Dircctor, NSTA

Associate Publisher
Sergey S. Krotoy, Director, Quantum Bureau,

Professor oi Physics, Moscory Statc University

Founding Editors
Yuri A, Ossipyan, Prcsident, Quantlrm Bureau

Sheldon Lee Glashow, Nobel Laurertc lphy*icsl, Harvard University
William P. Thurston, Fields Medalist (nathematics), University oi Calilomia, Berkclcy

Field Editors lor Physics
Larry D. Kirkpatrick, Proiessor oi Physics, Montana State Unitersity, MT

Albert L. Stasenko, Proiessor of Physlcs, Moscow Institute of Physics and Technology

Field Editors for Matltemdtics
Mark E. Saul, Computer Consultant,/Coordinator, Bronxville School, NY

Igor F. Sharygin, Prolessor oi Mathernatics, Moscorv Stirte Univcrsity

Managing Editor
Timothy Weber

Staff Artist
Sergey Ivanov

Assrstalt Manoger, Mttgazines ( Springer-Verlag)
Madeline Kraner

Editorial Consuhants
Yuly Danilov, Senior Researcher, Kurchatov Institute

Irina Oleynik, Managing Editor, Quantum Bureau

I nt er n ation al C o n sult Ltnt
Edward Lozansky

Advertising Mttnagers
Paul Kuntzler (Washington oificc)
Bob Vrooman iNew Yorl< officel

Advi:ory Bn,trd
Bernard V. Khoury, Executive Officer, A-{PT

Linda Rosen, Executivc Director, NCTM
George Berzsenyi, Proiessor of Mathcmatics, Rose-Hulman Institute of Tcchnology, IN

Arthur Eisenkraft, Science Department Chirir, Fox Lane High School, NY
Karen fohnston, Proiessor of Physics, North Carolina State Unlvcrslty, NC

Margaret f. Kenney, Protessor of Mathematics, Boston College, MA
Alexander Soifer, Professor ol Mathematics, Univcrsity of C,.l,rrado-Colorad,) Sf rin8\, CO

Barbara I. Stott, Mathemarics Teacher, Rivcrdale High School, LA
Ted Vittitoe, Rctired Physics Teacher, Parrish, FL

Quanrunr (ISSN I0'18,88201 is publishcd bimonthly by the
National Scicncc Texchers Associatlon in coooeraiion r.ith
Splnger-Vcrlag Nen, Yorl<, Inc. Volunie 7 i6 iisucs) r,ill be
pubhshedin 1996 1997. Qrrortrar containsauthorized En-
glish'langrrage translations iron l(vant, a ph,vsics and
metilcmatics magazinc pubhshed by Quantum Bureau
(Nloscolr,, Russial, as rvell as original matcnal in English.
Editorial offices: NSTA, I 8,10 Wilson Boulevarcl, Arlington
VA 21.201-3000, telephonci i7031 243 7100; clcctronic mail:
quantrun@nsta.org. Production offices: Springer Verlag
\ru \^rl. lru., l-ilutlr {icnuc,\ru \,'rl \} n0l0-b:b.

Atlvetising: N{8.{
Advertrsmg Represcnlatives: iWashingtonl PauL Kuntzler
(7031 243 71 00; iNcv, Yorkl Brian Skcptcu i2 l2l ;160 1575; and
C. Probst, Springer-Verlag GrrbH c\ Co. KG, D 1,1191 Bcr-
lin, Germany, telephone 49 (01 30-827 87 0, relcx I 85 .11 1.

Printed on acid frcc paper.

Pcricxhcals postage parcl at Netv York, NY, and addrtional
mailing otices. Postmaster: se1ld a.ldress changes to: (laaa
,17n, Sprrnger'Verlag Ncw York, Inc., fournirl Fulirllment
Scn ices Departmcrt, I,.O. Box 2;1ii5, Sccaucus NJ 07t)96
2,185. Copyrighr O i997 NSTA. Printed in U.S.A.

Subscription Inlormation:

Nortl Arnerrca: Student ratet S17.70, Personal rate (non-
sruclcntl: S23.70; InstitLltional rate: Xi;l5.00; Srnglc Issue
Prlce: S7.50. Rrtes inclLLdc postage and handllng. (Cana-
clian customers please ac1c1 7ol. CST to subscription price.
Springer Verlag GST rcgistratlon numbcr is l233949llt.l
Subscriprions bcgin rvith next pubhshcd issue (hackstarts
may bc rerluestedl. Bull( riitcs for students are available.
Scnd orders to Qrdrtlrlr, Spnnger Veriag Ncw York, Inc.,
P.O. Box 2:t85, Sccaucus NI 07096 2.185, or call I 800
SPRINCER i777 .16'131 iin Nen York, call [20]13.18-,103.1).

All Cotuttttes Oulsrde r\iortfi Ainuricd: Person:rl rate is
US$3 1.70 including slrriilcc dclivery charges; institutional
rate is USS,15.00, airmail delivery rs US$ 1 3.00
aclditronal lall rates calculated m bM at the ex
change rate cLLrrcnt at the tule of purchasc].
SAL {Surfacc' Arrmail Listedl is m:inclatory ior
fapan, Inclia, Australia, ancl Nov Zealand. Cus
romcrs should ask for the approprrate price Iist.
Orders uray bc placed through your bookseller
or dircctl,v through Sprlngcr-Vcrlag, Postiach
!l I I ln D-lr)(.fl Berlin Cun rrnl

Ol|AlllIUll,l/IRO[IT llllATTTR



$ulinuiltu Inom stan to slal'

How to accelerate a spacecraft far into the cosmos

by Vladimir Surdin

I HE POSSIBILITY OF INTER-

I stellar flight is a very enticing
I oroblem. If we could solve it,
I intire vistas would open uP'

We could studY the surfaces of dii-
ferent kind of stars, find new Plan-
etary systems, and even (dare we saY

it? ) come into contact with extrater-
restrial civilizations. In this article
we won't examine everY conceiv-
able soiution to this problem. Many
clever proiects have been proposed

in recent years, ranging from nuclear

and photon-powered spacecraft (for

example, the British "Daedalus"
prolecl) to a design involving a solar

sail. Instead we'il look at one com-
paratively new idea that in principie
makes it possible to send a latge
number of small automated Probes
to various stars in our GalaxY.

Slingshol efiect
The trajectories of interplanetary

flights are often planned so that the

spacecraft pass near the planet not
only to study it, but also to accelerate

the spacecraft bY means of the
planeis gravitation. A change in the-

ilight trrJ""tory due to the action of

a planet's gravitational field is usually

referred to as a "slingshot effect'"
This effect was repeatedly used dur-

ing the flight of the Voyager II space-

craft on its Earth-|upiter-Satum-Ura-
nus-Neptune itinerary. To investi-
gate the Sun's Polar regions, the
iJlys"t spacecraft was paradoxically
launched toward )uPiter (it isn't a

trivial thing to get near the Sun-see

"A Flight to the Sun" in the Novem-

ber/December 1996 issue). To mini-
mize fuel consumption in its mission

to |upiter, the Galileo spacecraft flew
to Venus first. Plans call for the space-

cratt to f1y near every intervening
planet to use its gravitation to accel-

Lrate and point the spacecraft in the
proper direction.- rt 

" 
mechanics of this effect can

easily be understood by the following
simple example. If a heavy ball ro11-

ing on a table collides with a light ball

rolling in the opposite direction, its
velocity will hardly change, while the

lighter balt will bounce awaY with
increased veiocity. (See figure 1. Solve

this problem yourself, using the laws

of consewation of kinetic energy and

of momentum.) A similar Phenom-
enon occurs during the " gtavitational

collision" of a heavY Planet with a

light spacecraft. The only difference

is that the collision of solid bodies is

almost instantaneous, while the
gravitational encounter goes on-for a

iong time. However, the laws of me-

chanics are the same in both cases'

b

&\ -----7--eJ-

Figure 1

Thus the outcome is the same: after

the spacecraft flies around the planet,

its velocity increases. But how much?

Figure 2 will helP us solve this
problem. We use the simPle ru]e o"f

velocity addition in two inertial ref-

erence frames. From the viewPoint
of a distant observer (who watches
the flight while sitting comiortably
on/ say/ the Sun!), the Planet moves

with a velocitY v., while the sPace-

craft moves with"a velocity vr'-The
directions of these velocities torm
an angle o. From the viewpoint of an

observer on the Planet, the sPace-

craft approaches with a velocity v*

and flies off with the same veloc-
ity-only its direction differs from
the previous one bY some angle P' In

llilIRCll/[PRlI lsgT



spaceuaft
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Figure 2

our reasoning we assume that the
planetary system of re{erence is
pr actic ally inertial-indeed, the per-
turbation of the planetary motion
caused by the nearby flight of a
spacecraft is inconceivably smalI.
Relative to the distant observer, the
receding space vehicle has a velocity
vr*. lJsing the parallelogram rule, we
get

"? 
: 

"? 
* ,; - 2v.vn cos u

and

,-?: ,? * rn, - 2v + vnsin (B/2).

It's clear at once that when the
planet and spacecra{t move toward
each other (that is, in opposite direc-
tions-g = 180o), and if their meet-
ing causes the spacecraft to head in
the opposite direction (F = 180"), the
spacecraft's velocity wili be in-
creased by twice the planet's veloc-
ity. This is the most efficient case
(fig. 3). However, to make the ma-
neuver reasonably effective as a ve-
locity enhancer, both angles should

vB.- \ \ \d- -.-\\ \ \\-\\ry\

be in the range
cr,B=90'.Of
course/ the
spacecraft
must fly over
the planet's
surface with-

minimum dis-
tance to the
planet's center
must be more
than its radius.
The laws of

celestial mechanics say that in this
case the maximum receding veloc-
ity of the spacecraft relative to the
planet after their meeting will be
v^^*:0.45v""", where v"". is the es-
cape velocity at the planet's surface.
If the planet revolves about a starl
the corresponding value will be
va ra voro + 0.5v..", where vo.o is the
orbital velocity of the planei.
To make it possible for the space-

craft to leave the Solar System after
approaching a planet, the condition
v-o 2 

^l2vnt 
must be met-that is,

the spacecraft's velocity must be
greater than the velocity needed to
escape from the planet's orbit. Table
1 shows that not all the planets in
the Solar System can be effective
//f9ss1g1s//-only the
giant planets cafl
kick the spacecraft
out of the Solar Sys-
tem with a single
slingshot maneuver.
The last column in
the table shows the
resulting velocity of a
spacecraft leaving our
Solar System after
such a slingshot ma-
neuver.

$Ellan calarull
Now we know

that by choosing a
particular near-planet
trajectoryt we can
impart extra velocity
to a spacecraft with-
out fuel consumption
and thus send it out
of the Solar System.

Clearly this extra energy is taken
from the mechanical energy of the
planet. Can we come up with a simi-
lar mechanism to accelerate space-
craft in the vast expanses of the Gal-
axy? After all, the stars are moving
too/ so a slingshot maneuver near
them could increase the velocity of
our interstellar probe.

Astronomers know that the char-
acteristic velocities of stellar mo-
tion are in the range of 10-20 km/s
for young stars and 250-300 km/s
for the oldest ones. So each meeting
with a star along a proper trajectory
will add hundreds if not thousands
of kilometers per second to the
spacecraft's speed. As in the case
with a planet, the limit of an effec-
tive maneuver is determined by the
value v-rr, which is much larger for
stars than for planets (see table 2).
However, despite a wide variety of
masses and sizes, ordinary stars
have similar values of v^^r, a;p-
proximately equal to that of our
Sun. This value isn't particularly
Iarge (- 300 km/s), so such stars
won't be the focus of our interest.
Of particular importance for sling-
shot maneuvers are o1d compact
stars-white dwarfs, neutron stars/
and perhaps black holes (although
the last-named won't be considered

\.-_\'--
v^\

t "* ]v
\

1". ,
Planatary data related to perturbation maneuvers
per[ormed in theit vicinity.

Table 1

P anet

Orbita

velocity
v"," (km/s)

Escape velocity
at the surface

v.". (km/s)

Velocity required
to leave solar

system Av (km/s)

Mercury 4B 4.2

Venus 35 t0

Earth 30 11

Mars 24 5

Jupiter 13 60 36

Saturn 10 36 22

Uranus 68 21 13

Neptune 5.4 24 14

P uto 4.7 1?

Vz-r\q.-J 
l

".2k
Figure 3
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Table 2

Parameter
Common

star (Sun)
White dwarf

Neutron star

R =R R-" = 5oB.

N,4ass of star M.
,1

o.7 2 2

Radius of star ,R. 1 001 20 km 20 km

Escape velocty at the surface v.- (km/s) 617 5,1 65 '15 104 23. ,103

l\,4aximum veloc ty of probe v.", (km/s) s09 2,583 B. 101 12 1A3

Tldal acceleration a (m/s') for ar = I m i0j 05 7.10 530

here because very little is known
about them).

The luminosity of most compact
stars is not high, and their electro-
magnetic radiation offers no great
danger for the spacecraft flying near
them. However, there is a physical
phenomenon that can severely re-
strict the very possibility of perform-
ing a slingshot maneuver, and this is
particularly important for a flight in
the vicinity of a neutron star. I'm
talking about the tidal effect of a
star's gravitational field, which tries
to impart a differential acceleration

a = ZGM.Lr/R3 to parts of the space-
craft, where G is the gravitational
constant/ M. is the star's mass, R is
the distance from the spacecraft to
the star/s center/ and Ar is the dis-
tance between the spacecraft's parts.
Table 2 shows that the tidal forces
near a neutron star are very strong, so
they may be dangerous for the integ-
rity of the spacecraft. Nowadays you
can find electrical and mechanical
devices that can withstand tidal ac-

celerations up to 106 m/s2, so the
minimum distances between the in-
terstellar probe and the surface of a

Maximum speed of a probe and tidal acceleration t'or flybys of starc o'f
various types.

neutron star presented in table 2
seems quite reasonable.

We should note that in contrast
to common stars, whose mass is
approximately proportional to their
radius and consequently does not
have much effect on v-,*, the radii
of neutron stars and white dwarfs
decrease as their masses increase.
This feature dramatically affects the
value of v-r*. Table 2 shows only
the average values for these strange
stars, which may differ from the
characteristics of individual stars by
afactor of 3 to 4.

How loru willthe accslsratim lasl?
The strategy for accelerating in-

terstellar probes is clear: as the
spacecraft approaches the next star-
accelerator, the probe's automatic
pilot probe must choose from
among the nearest stars one moving
toward the probe and then adjust the
approach to the first star so that the
slingshot maneuver will send the
probe off to the second star. I{ the
path correction occurs far enough
from the flyby point, the amount of
fuel consumed will be negligible.
Maybe other methods of flight con-
trol will have been found by then-

using interstellar magnetic
fields, perhaps, or radiation
pressure-so that no fuel will
be needed at all.

Now let's estimate the
time necessary ior a probe to
acquire the velocity v-", if it
had been launched from the
Solar System with a velocity
vo. For simplicity we'll as-

sume a homogeneous distri-
bution of stars in space with
an average distance 7 benveen
them. A11 the stars have the
same velocitr- o, rr-hrch is cha-
:trc:.l l-,' :,ne:-Lted. 1r eve4' " co1-

l'.r,:r ir-rth a star re sults i]1 an
lr.r.ase rn the probe's veloc-
rtv of lr': o, the probe needs
to periorm N = (v-r, - vo\lo
slingshot maneuvers/ which
will recluire a time

N-1
,-Y'-./- r --(o'k=(l

! i'.

o
C

oo
oa

_o

i!)
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For a rough estimate we can re-
place this sum with t - llvo when
v (( o, and with an integral for vo > o,
which yieids t - (llol In (v-o/vo). We
see that the dependence of the accel-
erating period on the initial and final
velocities is weak: for vo = 100 km/s
and 300 km/s < v-,* S 10s km/s, we
have 1 <ln(v-olvs) < 7. Thus in all
cases the formula

*=r7r I - t )"--'['o 
"J'

gives a rather accurate estimate. It
uses three values. What are they?

hcaping the Solm $ysBm
What velocity does our probe

need to ieave the Solar System? Up
to now only slingshot maneuvers
near the giant planets have been
used to accelerate the Pioneer and
Voyager spacecraft into interstellar
space. The velocities of these space
probes relative to the Sun were
about 20 km/s. In principle, a com-
plicated slingshot maneuver in the
gravitational fields of fupiter or Sat-
urn could accelerate a probe to a
speed of almost 100 km/s. However,
the planets must be in a certain con-
figuration for this to happen.

Another method of entering in-
terstellar space that seems quite
possible today is the acceleration of
small probes with electromagnetic
mass accelerators. Such accelerators
were developed within the frame-
work of the Strategic Defense Initia-
tive (SDI). Laboratory versions of
such devices have accelerated a
mass of t0 g to a velocity of 10 km/s.
It's expected that a large-scale elec-
tromagnetic accelerator could im-
part a velocity in the range of
2040 km/s to an object with a mass
of about 1 kg. A further increase in
velocity requires a drastic increase
in the size of the accelerator
(> I km), which is considered unac-
ceptable for the SDI program. How-
ever, it may not be an obstacle in a
project to launch interstellar probes.
So one might hope that an electro-
magnetic accelerator will be con-
structed in space-one that could
accelerate sma1l probes to velocities

of at least 100 km/s and could be
pointed in any direction at any time,
without regard for how the planets
are configured.

T]te be$ location
Let's say that aninterstellar probe

has left the Solar System with a ve-
locity vo: 100 km/s. The accelera-
tion time depends on the type of star
chosen for the maneuver. Table 3
shows the times it takes to acceler-
ate the probe to maximum velocity.
It should be noted that the concen-
tration of stars is related to the av-
erage interstellar distance by the
simple formula l: n-r13.

As we see/ near the Sun the accel-
eration time is measured in the hun-
dreds of thousands of years no mat-
ter what star "populatiott" is used.
However, if we were located at the
center of a globular star cluster, this
time would decrease to a few thou-
sand years, and at the center of our
Galaxy this period is a few hundred
years. For a planetary system located
at the center of our Galaxy, it would
be reasonable to launch probes with
a velocity vo = 300-400 km/s. In this
case the probe could be accelerated
by white dwarfs to a velocity of
5,000 km/s in only 100 years, and by
neutron stars to a velocity of
100,000 km/s in a mere 300 years

Table 3

(provided, of course, the probe could
withstand the tremendous tidal
forces in the vicinity of the neutron
star). Even more elaborate variants
of gravitational acceleration for in-
terstellar probes are possible in prin-
ciple. For example, astrophysicists
know of double star systems con-
sisting of a neutron star and a white
dwarf. These compact stars orbit
with a velocity of more than
1,000 km/s. An approach to one of,
the components of such a system
would increase a probe's velocity by
2,000 km/s! These systems are gen-
erally found in the depths of globu-
lar star clusters. {In fact, the central
regions of these star clusters are ex-
tremely attr activ e places f or ctv lliza-
tions that dare to take the first steps
on the road to space colonizatton.)

lnuisille $[ace $cottl$
Nowadays we have at our disposal

very compact and energy-efficient
information devices. Microtrans-
ducers and microprocessors can be
found in the most unexpected
places-telephone receivers, note-
books, ballpoint pens, and greeting
cards. And we are on the threshold
of a new era in microsurgery, when
tiny devices floating in the blood-
stream will gather information {or
diagnosis and provide treatment.

characteristic acceletation time of a spacecraft launched ftom vafious sites and
using various stat clusterc in the galaxy. The initial velocity vn = 100 km/s.
Figwes in parentheses are theoreticaT values; all otherc are baied on obsewation

Locatron Star cluster n (ps ') o (km/s) t (year) v-", (km/s)

Near the Sun

disc stars 0.1 45 105 400

halo stars 0 005 250 2. 1a5 400

whlte dwarfs 0.05 50 2. 10' 5,000

neutron stars (10*) (r 00) 4. 105 105

Star c uster

comrnon stars 4. Ia' 20 4. 103 400

wh te dwarfs (5 '100) 2A 3. 10' 5,000

neutron stars (10') 20 104
,105

Center of the galaxy

(R - .1 pc)

whlte dwarfs (10') 254 300 5 000

neutron stars (t 0') 250 103 10"
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Space research will possibly take
a similar route. Today it's hard to
imagine that an interstellar space-
craft like thg proposed Daedalus, re-
cluiring a kilometer-long rocket with
a nuclear engine, might actually be
built someday. Such a monster
could be assembled only in Earth
orbit, and the necessary work would
take at least 15 years. For a flight
involving only a small crew, it
would be necessary to spend almost
the entire store of nuclear fuel avail-
able on our planet. Only then could
this rocket be accelerated to a veloc-
ity of afew thousand kilometers per
second. A trip to the nearest star
would take about a hundred years. A
vast amount of effort and money
would be spent on a single expedi-
tion, whose cost would be num-
bered in the trillions of dollars. This
project is hardly more than a dream.

A more promising method of
studying the distant cosmos wouldbe
to build many similar, relatively in-
expensive microprobes, about 1 m in
size and 10-100 kg in mass. Given the
rapid rate of miniaturrzation, they
might be even smaller. This is the
only approach to gaiactic research
that would not exhaust the energy
and material resources of the planet.
Since they are small, the microprobes
could enter regions of relatively dense
interstellar and interplane tary mattet
and could approachvery compact and
massive objects.

The strategy of using micro-
probes in space research must re-
main the subiect of another article.
Such a discussion would include the
potential of optical communication
as the most favorable for the vast
distances involved, and also the pos-

sibility of returning the probes to
their launch site.

If similar probes launched from
other planetary systems have entered
our Solar System, we have no means
o{ detecting them at present. No
doubt the same would be true for our
future space probes and for any intel-
ligent life forms we would hope to
encounter. So our proposed method of
galactic reconnaissance seems the
safest and most responsible for the
life forms on this planet. O
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Des[el'alely seekinu Susan ult a cylinder

A geometric approach to problems of search and detection

by A. Chkhartishvili and E. Shikin

VEN THE MOST ABSTRACT
mathematical problems often
have easily recognized and trace-
able roots in our everyday life.

Sometimes the circumstances that
give rise to these problems arerathet
far removed from mathematics.

This article will examine one
such class of problems: search and
detection.

We hardly need to point out the
importance of search problems in
our lives. In fact, it's all but impos-
sible to pinpoint when these prob-
lems began to attract attention.

You can easily imagine one of our
most distant ancestors creeping
carefully into a cave, torch in hand.
It was vitally important to make
sure that this potential abode be free
of dangerous inhabitants such as
wild animals or poisonous plants,
snakes, or spiders. If they happened
to have settled there first, our ances-
tor would have to find them and get
rid of them.

A somewhat modernized version
of this prehistoric story is the dy-
namic game "Beauty and the Beast, "
in which the Beast has to catch the
Beauty in a dark room, The room
has an arbitrary shape, known to
both players (maybe because o{ sev-
eral small openings high in the

walls, letting in some light). The
Beast, who is assumed to be ex-
tremely intelligent, moves at a corr-
stant speed and can instantly change
direction; the Beauty enjoys abso-
lute freedom of movement. Capture
occurs if the distance between the
Beauty and the Beast is less than a
given value.

Here's another example. Imagine
an ancient castle surrounded by a
picturesque forest. To prevent his
enemies from sneaking into the
castle, its owner, a rich and noble
duke, has ordered that apath be cut
around the castle, so that his faith-
ful knights could keep watch along
it (see {igure 1). The duke must de-
cide how many knights he needs to
be sure that no enemy scout can
cross the path unnoticed. We'll an-
swer this question below.

As you can see, the participants
in these search problems pursue dif-
ferent goals: some of them search,
while others try to hide or to escape.
The problems we'll investigate ln
this article will involve only one
searching object-the //sssfts1//-

and, generally speaking, an arhitrary
number of objects that arc sought.
The behavior of the objects sought
may also vary. So we need to distin-
guish between searches involving

Figure 1

stationary objects and those involv-
ing moving objects. In the second
case, the most interesting problems
are those in which the objects
sought try to avoid capture and
therefore take all available informa-
tion about their opponent into con-
sideration when they move.

Search sets-that is, sets on
which the search process takes
place-come in the widest variety
imaginabie. One of the simplest is
the infinite round cylinder, which
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will serve as the location for most of
the basic events below.

In this article we propose a geo-
metric approach to search problems
that uses certain auxiliary sets
whose forms and locations change
with time. It will be convenient to
statt a discussion of their nature/
origins, and useful properties with
the planar case (that is, when all the
objects move on a single plane).

Simple searclt on ile ilane
Let A and B be two point objects

on the plane. We assume that they
can move with constant velocities cr

and B, respectively (cx , F), and that
there are no other restrictions on
their behavior. We say that the ob-
ject B is detected by the obiect A, if
at some moment the distance be-
tween them is less than or equal to
a constant positive number 1. We'll
call A the s ear ching obj ect and B the
fleeing obiect.

Information available to the ob-

iects. We assume that both objects
know the shape of the search set and
the values of all the parameters cr, B,
andl. In addition, the fleeing object B
knows the future trajectory of the
searching object A as well as A's po-
sition on the search set at any mo-
ment. On the other hand, the search-
ing objectA knows nothing about the
location of object B up to the very
moment of possible detection.

If an object's velocity is constant,
one usually says that its motion is
"simple."

The searching object A caruies
with it an imaginary circle of radius
1, and it stays at the center of this
circle at all times lfie. 2]r. If the flee-
ing object B fails into this l-circle of
detection, it means that A has suc-
cessfully completed its task (detec-
tion). Clearly A tries to find B,
which in turn tries to avoid capture.

Prohibited sets. As long as A is
stationary, theT-circle of detection is

Figure 2

12

a prohibited set for B. But as soon as

A starts to move (with velocity o),
the set prohibited for B starts to
grow. We'll show how this happens.

Suppose that A travels along a

straight line L Then at every mo-
ment/ near line I in the direction of
travel of object A, a set arises around
I on which B must not appear or it
wili be detected as A advances along
this line. Let's construct this set/ tak-
ing to = 0 as the moment when A
starts moving. Suppose A starts at a
point Ao and reaches a point A, after
r units of time (fig. 3). In that time, B
can travel at most a distance of Br in
any direction. So if B is caught in a
circle of radius 1- Bt aroundA, it will
be detected. So this circle is part ofB's
prohibited set. It's clear that if in the
beginning B is in this circle, then at
the moment t, when A comes to A,
it will enter the l-circle of detection.

Figure 3

This reasoning is valid for all t
from 0 to llp. Therefore, all the
circles drawn in this manner (they
are lined up along L, and their radii
decrease in the direction of A's
movement) are prohibited for B.
Hence their union is prohibited for
B as well. This union is bounded by
att arc of a circle ro of radius I and
two line segments tangent to this
circle, drawn from the point that lies
onL at a distance cd/p from the cen-
ter of the circle (fig. 4). We'llcallthis

figure thewarning area.The angle ),
betweenl andco's radii drawn to the .

contact points, is determined by the
following equation:

"BCOSA = -.
c)(

The reader is invited to show that
if B is outside the waming area, rt can
flee from A If rt moves at an angle ),
to A's trajectory L (or, equivalently,
if it moves perpendicular to the
straight part of the warning area's
border) (fig. s).

There is another set of points that
B cannot enter: the area B doesn't
have time to enter after the search-
ing objectA has left it along with its
1-circle of detection. Its structure is
quite similar to that of the warning
area: it's the union of circles with
centers on A's traiectory and gradu-
a1ly decreasing radii (starting with
l-the radius of the /-circle of detec-
tion). We'll call this set the residual
area.I\ote that after a time equal to
1l$ atter objectA starts to move, the
residual area acqutres the shape
shown in figure 5.

+
Figure 6

We'll call the union of the warn-
ireg and residual areas the tracing
area lfig.7l.

+
Figure 7

+
Figure 5

+

+
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Figure B

Properties of the tracing area (in
the ease where the trajectory of the
searching objectA is a straight line):

1. The length of the segment cut
by tracing the area of the trajectory
equals

L^ =21!."p
2. The shape of the tracing area

depends neither on the direction of
movement nor on the moment of
time t > 7/p under consideration.

3. The straight line I is an axis o{
symmetry of the tracing area, and
the center of the /-circle of detection
is its center of symmetry.

Let's return to the knights patrol-
ling the guard path around the
castle. Suppose their speeds are iden-
tical and equal to u and that B < o is
the greatest speed of a villain who
tries to sneak into the castle (he has
to cross the path to do so). We'1lalso
consider that a knight is able to rec-
ognize a spy at a distance less than
or equal to L

When knights are riding along the
path, each of them carries his own
tracing area along with him. These
areas are determined by the num-
bers u, B, l and the trajectory-that
is, the guard path, whose length is I.
Each tracing area cuts an lo-long
segment from the path. Thus the
number N of knights needed to pro-
tect the castle ftom enemy intrusion

must satisfy the inequality

(see figure 8, where N: 3).

Seamh oltlhe iltliltim ryfndel'
We define an inJinite cylinder as a

set of points in space that are equifis-
tant from a given straight line-the
axis of the cylinder. A plane pelpen-
dicular to the axis intersects the cyl-
inder in a so-calleddirecting circle.Its
rafius does not depend on the cutting
plane and is called the radius of the
cylinder. Any plane containing the
cylinder's axis cuts it along two
straight lines-called Jin ear eTements
of the cylinder.

Let C be an infinite cylinder of
radius r. Consider an rnfinite Znr-
wide strip II on the plane (that is, the
part of the plane bounded by two
parallel straight lines). Clearly, it's
possible to wind this strip II around
the cylinder so that the straight lines
that define II coincide with each
other and with a linear element of
the cylinder. Or, if we start with the
cylinder, we can cut it along one of
its linear elements and "unwrap" it
to obtain aZrcr-wtde strip (fig. 9).

Plane development of the cylin-
der. Now imagine that one of the
linear elements and one of the di-
recting circles of a cylinder are cov-
ered with a paint that never dries.
Now 1et the cylinder roll over the
plane uniformly in a straight line.
After each full revolution of the cyl-
inder, the painted linear element
will leave a straight line painted on
the plane; and the distances between
these traces will be equal to 2nr-
the circumference of a directing
circle. The trace left by a directing
circle will also be a straight line
(fig.10).

Figure iO

Reversing this procedure/ we can
ro11 the entire plane onto the cylin-
der (fig. 11). What will the lines on
the plane look like inthis plane de-
velopment?

Figure 11

Depending on the angle between
the line and the direction of the roll-
ing, we can assign these lines to
three classes:

1. Lines that are parallel to this
direc,tion (each of them rolls onto
one of the directing circles of the
cylinder (fig.12).

+qeLlLi[3ffi
Figure 12

2. Lines that are perpendicular to
this direction (each of them turns
into a linear element of the cylinder
(fis.13).

ffimffiffiw
Figure 13

3. Lines that form anacute angle
with this direction (they turn into
curves on the cylinder, called cork-
screw lines (fig.ia).

ffiffiffiru
Figure 14

It's interesting to see how the
corkscrew lines look on the plane

zrafr > r

OUANIU]I/l/IIATUBI 1 3

ffi[flLl_}
Figure 9



Figure 15

development of the cylinder.
Let I be a corkscrew line on a cyl-

inder C. Cut C along a linear element
and develop it on the plane. Figure
15 represents l's image after this
procedure. Note that this is not a
continuous line.

Directing circles, linear elements,
and corkscrew lines are the ana-
logues of the straight lines on the
plane: they have the property of be-
ing the shortest distance between
any two points. Lines that have this
property are called geodesics.

Let's consider all possibie geode-
sics emerging from an arbrtrary
point on the cylinder C and mark off
segments that are I < nr units long.
The sum of all these segments is
called the geodesic ctucle of radius 1

(fis.16).
Two point obiects-the searching

object A arrd the fleeing object B-
move on a cylinder C of radiusr. We
assume that their scalar velocities cx,

and B (respectively) are constant and
that o, > B. B is considered to be
found if it enters the geodesic circle
with radius I and center at A.

Suppose that at first B is not close
to A and that the latter knows
which half of the cylinder B is in.

We'll show that if the parameters
of the problem satisfy certain condi-
tions, then there exists a corkscrew
line such that if the searching object
A moves along it, it will necessarily
find the fleeing object B.

It's clear that when A moves
along a corkscrew line, a tracing area
appears around it on the cylinder,

Figure 16

Figure 17

which is a union of geodesic circles.
If we develop the cylinder on the
plane, the corkscrew line will
change into a straight line, and the
geodesic circles into ordinary circles,
and so the tracing area on the cylin-
der will develop into an ordinary trac-
ing area on the plane (fig. 17).

Let's look at how the situation
changes when we change the angle
between A's trajectory and the di-
recting circle (that is, the angle of
inclination). Suppose that the fol-
lowing inequality is satisfied:

oJ < nr}.

Let object A begin moving along a
directing circle of the cylinder. Then
the tracing area contains a cylindri-
cal strip of nonzero width, which is
prohibited for B (fig. 18a). When A
moves along a corkscrew line with
a small angle of inclination, the pro-
hibited area will still encircle the
cylinder, and the warning and re-
sidual areas will overlap (fig. 18b).
This will happen until the warning
and residual areas just touch (this is
ensured by the third property gov-
erning the tracing area for a straight
line on the plane). We can calculate
(fig. 18c) that this occurs when the
angle of inclination between the
corkscrew line and the directing
circle is equal to

vo=r-P'
where ), is defined as before and

1

V = drCCoS_.

If the angle v, increases further, the
picture changes abruptly: the tracing
area will contain no cylindrical strip
(fig. 18d and 18e). The object in fig-
ure l8f is moving along the linear el-
ement of the cylinder.

When A moves along a geodesic
on the cylinder, the tracing area does

not change its shape, iust as whenA
moved with a constant velocity
along a straight line on the plane.
Thus, moving along the corkscrew
line fo inclined at an angle v, to the
directing circle, the position of A
will not allow B to jump over to the
other half of the cylinder, and if the
projection of A's speed on the
cylinder's axis is greater than B's
velocity, o, sin vo > p, then A will
catch B.

Since cos I: P/o and vo = I - p,
the iast inequality can be written as

z)">v+|. (t)

So, if formula (1) is satisfied, de-
tection is possible and can be
achieved by A's moving along the
corkscrew line lo, which intersects
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Figure 20

C as shown in figure 20) is constant
and equals

cr' = clt, sin vo.

It's clear that the most advantageous
way for B to escape is to move along
a linear element of the cylinder. So,

to show that it doesn't matter which
half of the cylinder B is on, it's con-
venient to consider the movement
of both objects as projected on the
vertical axis.

Let obiects A' arrd B move along
a (vertical) line with constant scalar
velocities u'and p, respectively,
p < c/. We'll describe astrategy {orA'
that gives it an opportunity to get as

close as J to B to the given distance
1. Imagine two new objects M* and
M-that move fromA"s initial posi-
tion up and down, respectively, with
velocities

o('+ B

2

(fis.2l). Obiect A' starts to move
upward along the straight line and,
catching up with M* (because of its
greater speed), it immediately turns
in the opposite direction and moves
downward. When it catches up with
M- it once again changes direction
and chases after the object M*, and
so on. Clearly, by acting in this way
A will sooner or later end up at a
distance less than I fuom B.

It's not hard to see thatA"s move-

--,--l

W'<-::t---Y

Figure 22

ment along the cylinder's axis, de-
scribed above, corresponds to A's"
movement along the chosen cork-
screw line fo.

B. The limited case. Suppose at
the initial moment the searching
object A knows that the fleeing ob-
ject B is standing somewhere in the
cylindrical belt G bounded by two
directing circles (frg. 22). If the
searching object is far enough from
thisuncertaintybelt G, then as time
passes, the width of G will grow (at
the rate of 2B).

Assuming that the parameters in
the problem comply with inequality
(1), we'll describe a trajectory of the
searching object A that will neces-
sarily allow it to find the fleeing ob-
ject B.

There are three possibilities. At
the initial moment to: 0, thel-circle
of detection around A could

(1) lie outside the belt G;
(2) belong to the belt G com-

pletely;
(3)belong to the belt G partially.

In the first two cases the search-
ing traiectory is constructed accord-
ing to a common rule. At first, object
A moves along the linear element of
cylinder C toward the nearest border
circle of the belt G, until the dis-
tance from A to this circle is less
than or eclual to a = l sin pr (fig. 23).
At this moment, A decides to
change the linear trajeciory for the

15

O
$4 Il"l

Figure 19

the directing circle at an angle vo.

If 1> nr, then A may just move
along a linear element, catching B

because of its greater speed. In the
case when aJ < nrB, there is practi-
cally no chance for successful detec-
tion (fig. 19).

Two delectiolt prohlsln$ olt the

inilinite cylittdor
Applying the notion of tracing

areas to a search problem allows us
not only to find essential relations
between parameters that are suffi-
cient for a successful search (detec-
tion), but also to determine the nec-
essary trajectories.

A. The unlimited case. It was
shown above that object B, which
moves with a constant scalar veloc-
ity B, canbe detected on an infinite
cylinder C of radius r by object A,
which moves with a constant scalar
velocity o, provided that inecluality
(1) is satisfied and if it is known
which half of the cylinder B occu-
pies initially.Inf.act, if inequality (1)

is satisfied, this second bit of infor-
mation is superfluous. Let's see
why.

In accordance with its resources,
the searching object A at frrst
chooses for its ftajectory the cork-
screw line ls, which intersects the
directing circle at an angle

vo:I-P,
where l" and p are determined by the
relations

cos l, = cos !r

Independently of the direction of A's
movement along this line, the ver-
tical component of its velocity (for
definiteness we orient the cylinder Figure 21
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Figure 24

corkscrew line Io $ee figue 24a,
which shows the position of the
warning arca andthe border circle at
this time). After this, A moves along
fo until the distance from A to the
farther border is less than or eclual to
I sin p. Figure 24b depicts the posi-
tion of the residual area andthe sec-

ond boundary circle at the final mo-
ment of the search game.

Since we are interested only in
finding sufficient conditions for suc-
cessful detection, we can just reduce
the third case to one the of previous
two.

Pnohlems ol combing, [atnollinu,

anddel8]'n0me
In considering the movement of

arbitrary objects A and B on the sur-
face of an infinite cylinder, we can't
be sure that the parameters a, F, l,
and r satisfy inecluality (1), let alone
the condition J > nr. Although an
area prohibited for B still arises, it
can not be used to solve the detection
problem. However, there are many
other interesting problems, rich with
applications, that could be solved
withmuch easier confitions imposed
on their parameters. We'l1 pose
these problems and point out the re-
lations between the parameters that
allow for them to be solved.

A. Combing. Let's assume that

7 < trr, B < u, cos l" < sin (I- p).

In this case, moving along the cork-
screw line fo inclined at an angle
vo : I - [r to the directing circle of the
cylinder, A continuously encloses
the cylinder with its tracing area.
But since the vertical component of
its velocity is less than or equal to p,

A canonly push B away, and only if
it knows which part of the cylinder

Figure 25

B was in originally. Figure 25 illus-
trates this situation (it shows the
cylinder's development, and the 1in-

ear element by which the cut was
made is drawn through the center of
the detection circle).

If, on the other hand,

1> xr, B> a,

then A's detection circle will itself
enclose the cylinder, and if in addi-
tionA knows which part of the cyl-
inder B is in, it will be able to push
B away.

B. Patrolling. Let's assume that

In this case the best traiectory tor A
is a directing circle. Then the warn-
ing and residual areas will have a
common vertex, soA, patrolling the
cylinder, will cover the neck of the
cylinder ior object B. (fig.26l.

C. Deterrence. Let's assume that

In this case A is not able to prevent
B from moving along the cylinder.
However, traveling in front o{ B
along the corkscrew line inclined at
an angle p - ), to the directing circle,
A will deterB's movements ltt1.27l.

D. (Failure.) If , finally, we assume
that

Figure 27

then A lacks the resources even to
deter B.

So we see that the relations be-
tween a, 9, l, and r became weaker
andweaker as we move from the de-

tection problem to the ousting
("combing") problem, and further to
the patrolling and deterrence prob-
lems.

General rematk. The last three
problems may strike you as rather
simple (we not only posed them, we
also pointed out the relations be-
tween the parameters that ensure a

resolution and the strategies that lead
to success for the objects). But that's
because we could base our solutions
on our preceding analysis of the more
difiicuft detection problem. O
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8196
Intimidating equation. Solve this equation:

r0-919- Bl8 - 7(7 - 616 - sls - 414- 3(3 - zlz - x)))))))) = x.

r-"->

8200
Traveling ants.Two ants stand at opposite corners of a 1-meter square.
A barrier was placed between them in the form of half a 1-meter square
attached along the diagonal of the first square, as shown in the picture.
One ant wants to walk to the other. How long is the shortest path?

81 97
Ball in a iar. SalIy and her brothers |esse and Raphael were playing with
a ball that was 4 cm in diameter. They dropped it in a cylindricai jar
whose mouth had a diameter of 5 cm. They managed to get the ball out
without turning the jar upside down. How did they do it?

8198
Straight line. Car, you draw a single
straight line that divides the areas of
both figures at the right in half?

B l gg -""'+'

Boiled oj1. One morning a laboratory assistant at the United Science
Institute weighed an open vessel of boiling oil on a very precise scale
Before going home in the evening she weighed the oil again, after it
had cooied. The result was surprisingly differentl What happened?
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Hadio waues in a neuill'al 0as
Radio waves travel in a vacuum

at the speed of light c :3 ' 108 m/s.
They are electromagnetic oscilla-
tions with a frequencies F ranging
from severalhertz to thousands of
gigahertz (1 GHz : loe Hz). By way
of comparison/ a conventional elec-
tronic device operates at frequencies
from hundreds of kilohertz (kHz) to
hundreds of megahertz lMHzl.In
this article we're interested in fre-
quencies in the range of a few kiio-
hertz (f = 103-104 Hz).

The propagation of radio waves
in a medium differs from that in a

vacuum. A medium always con-
tains electrically charged particles,
which can be in either a "fixed" (or
bound) state (that is, electrons in
neutral atoms) or a "fTee" state
(electrons in plasma). In addition to
electrons, which are carriers of
negative charge, the medium con-
tains positively charged particles
(ions). In the frequency range of in-
terest to us here, the role of ions is
rather small, because they have a
very large mass (compared to the
electron) and thus oscillate with a
very small amplitude. But electrons,
oscillating in the radio wave's elec-
tric field, themselves become
sources of secondary radio waves at
the same frequency.

Thus the resulting wave is gener-
ated in a medium that spreads with
another velocity. The change in the
wave's velocity is explained by the
refractive indexn, which shows the
{actor by which the velocity of the
electromagnetic wave in the me-
dium is less than that in vacuum:

c,, = ,r(r). (I)

The meaning of the subscript "p"
will be discussed below. Denoting
the refractive index byn(ro),1 we em-
phasize the fact that in general the
refractive index of a given medium
may differ at various frequencies.
The dependence of n on rll is called
the dispersion, and it becomes par-
ticularly noticeable when there is
resonance-that is, when the radio
wave's frequency ro approximately
equals the natural oscillation fre-
quency of electrons rrlo. If the fre-
quency difference is large enough-
for example/ cD << o,-the dispersion
is very sma1l. In this article the na-
ture of the function n(ro) plays a de-
cisive role, so as a first step we need
to estimate the natural frequencies
of electron oscillation in a neutral
gas and in plasma.

lThe factor ro is called the angular
frecluency of oscillation. It's measured
in rad . s-1. The relationship between ro

and I is very straightforward: a = 2nf .

o
E

Y

Eo
_o

WhisllinU in $pace

It's not an idle pastime-it's a phenomenon
that allows us to study the near-Earth region
without leaving the ground

by Pavel Bliokh

HE SPACE AROUND EARTH
isn't as " empty" as you might
think. There you can find neu-
tral particles (atoms and mo1-

ecules of atmospheric gases) as well
as free charges-the electrons and
ions forming the galactic plasma.
Even though we live almost exclu-
sively at the bottom of an ocean of
air, it's important for us to know
what's going on in the other layers
of the atmosphere, because there is
a close connection between the pro-
cess occurring in outer space and the
conditions of life here on Earth.

Cosmic particles and electric and
magnetic fields at high altitudes are
routinely monitored with devices
installed on satellites and rockets.
However, there are other ways of
doing this. It turns out that much
inf ormation on atmospheric proper-
ties hundreds and even thousands of
kilometers from Earth can be ob-
tained without leaving the lab. And
these "Earth-bound space studies"
can be conducted with very simple
methods. The equipment needed
costs about as much as a radio or
TV set. But to take advantage of
these tempting possibilities, you
first need to learn how to hear the
cosmic "whistling" (electromag-
netic signals coming from outer
space). And that's what this article
is a1l about.
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3$K-f€"'.



Let/s start with a neutral gas,
where electrons ari: bound within
atoms and molecules. The precise
calculations,of their natural frequen-
cies are performed by quantum me-
chanical methods, but we can obtain
reasonable estimates by analogy
with the simplest oscillatory sys-
tem-the {ree pendulum. Recall the
famous formula for the (natural) fre-
quency of its oscillations:

G
oo =.,/i, l2l!l

where g is the acceleration due to
gravity and l is the pendulum's
length. Multiplying the numerator
and denominator of the radicand
(that is, the quantity under the radi-
cal sign) by the pendulum's massm,
we get

lD
ILt

'o = i*' (3)

This formula deals with the gravi-
tational force F, : mg instead of g.
Now we can m6dify it to describe
the oscillations of electrons. We
merely replace the gravitational
force F, with the electrostatic
force F""that "holds" electrons in
the atom. According to Coulomb's
law, this is equal to F" = e2 f 4neoaz,
where eo : 9 . l}tz C2/N-m2 is the per-
mittivity of free space, e = 1.5 . 10-1e C
is the electron's charge, and
a = lO-ro m is the size of the atom
(which here plays the role of the
pendulum's length). Inserting 7: a
into equation (3)gives us

Taking into consideration the
electron's mass m = 9 . 10-31 kg, we
get oo = 1016 rad ' s-1, which corre-
sponds roughly to the frequency
range of visible light and exceeds by
far the frequency of the radio waves
we are interested in. Therefore, the
inequality 0 << 0o is correct with a
high degree of reliability, which
means that the neutral gas has vir-
tually no affect on the propagation of
rafio waves. Even in the lower, most

dense layers of the atmosphere near
the Earth's surface, the refractive
index n differs from 1 only in the
fourth decimal place, and in outer
space the effect of the neutral gas is
still smaller. It is manifested only
indirectly, when "free" (plasma)
electrons collide with their neutral
counterparts. These collisions cause
a damping of the oscillations, but in
our case we can neglect it.

Badio waues in plasma

Under the influence of external
factors (for instance, radiation or
collisions), one or a few electrons
can be knocked out of atoms/ result-
ing in "free" electrons and ions. This
ionized gas is what scientists call
plasma. Plasma usually contains
neutral particles as well, but the
fewer of them there are, the more
clearly the peculiar properties of
plasma manifest themselves.

These is practically no natural
plasma in the lower layers of the
atmosphere, because the ionizing
solar radiation (ultraviolet rays and
X rays) is much weaker here. At an
altitude of about 50 km, the ionizing
effect of solar radiation begins to
increase. This marks the start of the
ionosphere-that is, the Earth's
plasma shell. At altitudes of 300 to
400 km, the density of electrons and
ions reaches a maximum and then
slowly decreases, even though the
intensity of ionizing factors in-
creases with altitude. This is be-
cause the density of the air is very
small at these altitudes, and al-
though the atmosphere is almost
completely ionized, the number of
"ftee" electrons and ions is never-
theless small. In the outermost re-
gions of space/ the degree o{ iontza-
tion is very high, and according to
modern estimates, -99.9% of the
visible universe exists in the plasma
state.

Perhaps you've noticed that,
when I mention plasma electrons, I
keep putting the word "free" in
quotes. Here's why. Even though the
electrons are not bound to their at-
oms, they still interact with other
electrons and ions by means of elec-
trical fields. These forces operate at

great distances, and it is these forces
that are responsible for specific
plasma oscillations.

Let's assume that the electron
density increases by chance in some
small volume. This means that a
surplus of negative charges arises
here, and the electric field generated
by these charges pushes the elec-
trons out of this region. Eventually
the extra charge is dissipated awayt
but in the process the electrons ac-
cluire a velocity and move away
from one another. As a result, the
electron density in the volume un-
der consideration becomes less than
ayeraget while the density of posi-
tive ions doesn't change. The short-
age of electrons is equivalent to the
appearance of a positive charge and
an electric field that draws the es-
caping electrons back again. But as

they move back, the electrons again
acquire velocity and pass over the
equilibrium position because of
their inertia, resulting in an accu-
mulation of negative charge, and the
cycle begins anew.

To estimate the frequency of this
oscillatory motion we again use
equation (4), but instead of the
atom's size a we insert the average
(equilibrium) distance between elec-
trons. Let the average number of
electrons per unit volume (1 m3) be
Nn. Then the distance between
th-em is Nn tl: {on average, of
course). Assuminga : At-'l' in eclua-
tion (4), we get the formula for the
natural frecluency o{ electron oscil-
lations in plasma:

Measuring the frecluency inhertz
and the electron densityin m-3, and
inserting into equation (5) the nu-
merical data for tst a, arrdm, we ob-
tain a simple formula:

-frlHzl= l"/No [*-'].

The maximum density of electrons
is about 1912 ,r-3, so the natural fre-
quency /" - 10 MHz lies in the radio
wave rarige. This means that the re-
fractive index of the ionosphere can

(s)

(4)
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deviate substantially from I, and at
o = on a strong dispersion arises. In-
deed,'the formula of the refractive
index lookp like this:

t)
l(l):

n =.,i1 _+ 
16l

! (t)-

Let's look at the main features of
this equation (which I've simply
given you without deducing it step
by step). If we increase the frequency
of the radio waves/ starting from the
range o < 0)D to the values 0) > 0)n, we
can see that the properties of the
plasma change drastically at reso-
nance-that is, when 0: 0o.When
0) < (DD, the radicand in equation (5)

becori'res negative and the refractive
index is imaginary. This means that
such low-frequency waves cannot
propagate in plasma. Conversely,
when r,l > o,, then fl . l, and it ap-
proaches I ds the frequency goes to
infinity. This tendency of n(rrr) to
approach 1 as ro -+ - is a character-
istic property of any medium and
not exclusively of plasma. It's ex-
plained by the factthat, due to iner-
tia, electrons cannot oscillate at an
infinitely high frequency. Thus sec-
ondary waves of extremely high fre-
quencies are not generated in the
medium, and the primary electro-
magnetic wave passes through the
medium as if it were propagating in
a vacuum.

When fl < l, equation (1) gives
vn) c, which means that the wave
tiavels in plasma with super-
relativistic velocity. It might seem
that this relationship violates the
basic tenet of Einstein's theory of
relativity, which says that no event
(physical body, field perturbation, or
signal) can move with a velocity
greater than the speed of light c. But
no violation has actually occurred.
The velocity calculated according to
equation (1) has to do with a wave of
a certain frequency. Such a wave is
an infinite sinusoid, which cannot
itself transmit a signal, because its
shape is stable at all times.

In order to transmit a signal, one
must use not one frequency but a
group of frequencies from which it
is possible to form a wave of the re-

quired shape. The rate of propaga-
tion of the entire group of waves is
different from the velocity of a
single wave and is determined by
the equation

t,

'r - 
n* ry 17)

da

To distinguish between these
types of velocity, the velocity deter-
mined by equation (1) is called the
phase velocity (thus the subscript
"p" introduced above), while the
velocity determined by equation (2)

is called the group velocity (which
explains the subscript "g" in equa-
tion (7)). In a vacuurtr, 17 : 1 and
dnlda = 0, so vn: v,: c.By calcu-
lating dnlda using e'quation (6), we
can show that, in plasma,

V^'V.= g7'

Since vo > c/ then vr l c, which
means that radio signbls propagate
in plasma with a velocity less than
c, which corresponds to the afore-
mentioned tenet of the theory of
relativity: as trl approaches r,ro from
the higher frequencies, the'phase
velocity becomes infinitely large
(ro - -) and the group velocity tends
tcjzero (vn -+ 0). This means that sig-
nals with"rrl < rrlo do not exist {that is,
do not propagate) in plasma.

Radio uraues in maunetically autiue

plasma

Magnetic fields exist everywhere
in the cosmos. They are generated
by electric currents (streams of
charged particles) and by perma-
nently magnetized heavenly bodies
(Earth is one such). The basic mag-
netic field in the ionosphere is a geo-
magnetic field. It is this field that
deflects the magnetic needle of a
compass.

Now we want to clarify how
equation (5) must be modified if
plasma is immersed in a constant
magnetic fieid (such plasma is called
magnetically activel. As we've seen,
the dispersion properties of a me-
dium-that is, the nature of the
function n(ro)-is closely linked

with the natural frequencies of elec-
tron oscillations. In the absence of a
magnetic field, plasma electrons
move (oscillate) identically in every
direction. The natural frequency of
these isotopic oscillations (that is,
oscillations that are independent of
the direction of the velocity) is deter-
minedby equation (5). Whenplasma
is placed in a magnetic field Bo, the
charactet of the electron movement
will change drastically: a strong de-
pendence on the velocity's direction
v arises.

We recall that a magnetic field
does not affect stationary charges or
charges that move along the mag-
netic lines of force Bo. However,
charges that move perpendicular to
Bo are affected by the Lorentz force
in the direction perpendicular to v
and Bo. This force is equal to

F^= av1B6, (B)

where v, is the projection of the ve-
locity vector v on the plane per-
pendicular to Bo.

Let's decompose an arbitrary
electron veiocity v into its longitu-
dinal and transverse components:
v : vll + v_r. The movement alongBo
is not affected by the magnetic field,
so the longitudinal velocity compo-
nent v, doesn't "feel" the presence
of Bo. Thus longitudinal electron os-
cillations are characterized by the
same frequency cDn that had been ob-
tained earlier (equation (5)).

The motion of electrons in the
transverse plane, however, is quite
different. Because the Lorentz force
(ecluation (B)) is perpendicular to v,
the velocity doesn't change in mag-
nitude, although the trajectory
curves constantly. As a result, an
electron revolves in a circle of radius
p with angular frequenq.y rrr*. Thus
v1 : Po)-, and the force

F^= ep@^Bo.

Refening back to the initial equation
(3) and substituting oo for {D-, l for p,
and F* for F_, we get

E E.,^hwm:.J-:rl-'
\mp \ m

Solving this equation yieids
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This value is known as the gyromag-
netic fuequency or Latmot preces-
sion frequency of eLectrons. In the
ionosphere, Bo z 4 . l}-s T and
ol* - 106 s-1. This frequency belongs
to the radio wave raflget so Earth's.
magnetic field exerts a significant
influence on radio signals propagat-
ing in the ionosphere if their fre-
quency ro is close to om.

Note that equations (5) and (9),

which give the natural frequencies
of electron oscillations in plasma,
contain equal signs, unlike equation
(a). This is because a strict calcula-
tion of the frequencies o1 and co-
yield the same result.

Now we need to write the formu-
las for the refractive index in mag-
netically active plasma. This is not
an easy task, because the velocity of
radio wave propagation depends on
its direction relative to Bo. In addi-
tion, the structure of the electric
field in the wave (that is, its polar-
izationl must also be taken into ac-
count. Here we're restricting our-
selves to the simple case of
longitudinal propagation along a
magnetic line of force Bo. Even in
this case, though, there are two
equations (not one) for the refractive
indices:

flr=

11) -

rn 1i

o o o '-o-- o

Figure 1

Electrons in a magnetic field, which
revoTve in the same dfuection for any
initial velocity. The magnetic field Bn
points Loward the reader, perpendicu--
lar to the plane of the page.

the wave's electric field (polariza-
tion) correspond to the character of
the electron motion. As the elec-
trons revolve around the magnetic
lines of force Bo (fig. 1), the electric
field of the radio wave must also
rotate. However, the electric field
can rotate in one or the other direc-
tion depending on the mode of radio
wave generation. The resonance at
frequency 0 = 0- occurs only in the
case when the direction of revolu-
tion of the electrons coincides with
direction of rotation of the electric
field. As equation (10) shows, the
refractive indexnr(r,l) tends to infin-
ity at resonance. In reality the in-
crease of n, is limited, and we would
find its maximum if we take into
account the collision of electrons
with other particles. We then find
that a wave with a refractive index
n, has some very oddproperties, and
for that reason it is referred to asex-
traordinary.

In the opposite case, when the
wave's electric field rotates in the
direction counter to that of the
electron's revolution, nothing un-
usual can be expected at o = rD-. In-
deed, ecluation (11) f.or n, supports
this conclusion. Generally, the prop-
erties of the wave n2 are very simi-
lar to those of a wave propagating in
plasma without a magnetic field.
Thus it's called an ordinary wave.

The particular features of n, and

.n2 waves manifest themselves
elearly. Let's recall that in plasma
without a magnetic field, a radio
wave with frequency r. 0)o cannot
propagate due to the negative radi-
cand in equation (5). An ordinary
waYe nz shares the same property/
although its low-frequency limit is
determined by a slightly modified
inequality: rrl(rrl + ro- ) . oo.

Extraordinary waves behave quite
differently. If rrl < 0*, the second
term in the radicand equation (10)
becomes positivg so atlowfrequen-
cies no constraints on movement
are imposed on an exttaotdinaty
wave.It can easily be seen that the
propagation o{ radio waves in the
kilohertz range is limited by the fol-
lowing strong inequalities: 0) << (Dm

and rrl << tD,2/{D-. At low frequencies,
equation (tO) for nr can be simpli-
fied-the 1 in the radicand can be
thrown out, which gives us

0)D
h,=-..t -

r/ocD-
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(10)

(1 1)

(To avoid a complicated digression,
I've simply given you the equations
without showing how they are de-
rived.)

0ndinmy altd srffflordinary wauus
The resonance condition formu-

lated above as the coincidence of
radio wave frequency with the natu-
ral frecluency of electron oscillations
(in the case where ro: ro-) is a nec-
essary but not a sufficient condition
for resonance in a magnetic field. It's
also necessary that the structure of

lr2)

We recall that the refractive index in
magnetic free plasma is always less
than 1. Here, though, frrru l, due to
the aforementioned inequalities.
This means that the wave has ayery
small velocity compared to c (vo :
cf nr.< c). To get a sense of its struc-
ture, draw the strength of the elec-
tric (or magnetic) field as an arrowE
and follow its motion. If we made an
animated film of our sketches, we
would see that the tail end of the ar-
row moves with velocityv. along the
Iine of force Bo, while its pbinted end
revolves around Bo with an angular
velocity rr:, and the vector E always
stays perpendicular to Bo (fiS. 2).

Simultaneous translation and
rotation result in a helipal fiaiec-
tory of the arrowhead of vector E.
Thus its name-a helical wave/ or
simply helicon. There are other syn-
onyms in the literature: whistling
wave/ whistie, or whistler. These
words have nothing to do with the
structure of the electric field-they
describe the peculiar natural phe-
nomena that result from the propa-
gation of helical waves. These phe-
nomena are called whistling

,*PI - ----r----------- ,
ol(ro - ol-)
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Figure 2
Helical wave prcpagating in plasma along a constant magnetic
field Bn with a phase velocity vn The aruowhead of vector E
cfucumscilbes a helix rotating'ivilh angulm velocity a.

between a
fraction of sec-
ond and one
second/ while
the oscillation
periods T = llf
are much
shorter-of
the order of
10-3-10-4 s. So
we can speak
of an "instan-
taneous fre-
quency" f(tl
for a given mo-
ment t. We'1l

see below that the dependence of
frequency on time contains informa-
tion about the properties of cosmic
plasma thousands of kilometers
from Earth.

As a rule, signals are not detected
singly but rather as a series of
pulses, one after the other, with in-
tervals in the second range. Soon
after the discovery of whistling at-
mospherics it became clear that the
entire series was generated by a

single atmospheric discharge and
thus consisted of repeated echo sig-
nals. But how can we explain such
long delays (of the order of a second
or more)? There simply are no such
distances on Earth! Even an around-
the-world echo of a radio wave trav-
eling at the speed of light returns in
about 0.13 s. A persuasive hypoth-
esis was offered in the early 1950s.
It proposed that the pulses propa-
gate from the lightning to the detec-
tor not along the Earth's surface but
through outer space, along a line of
force of Earth's magnetic field

between two magnetically conju-
gated points3) (fig. 3). If the dis-
charge occurred near the receiver,
the primary atmospheric is recorded
first (it travels along the Earth's cir-
cumference and is heard as a brief
crack called a spheric. Later the re-
ceiver detects a whistle that trav-
eled along the magnetic line of force
to the opposite hemisphere and re-
turned by the same route after re-
flection from Earth (a so-called "late
whistler"). When the lightning and
the receiver are located in different
hemispheres, spherics are absent,
and the first recorded signals are
whistling atmospherics ("early
whistlers"). In both cases, a repeat-
edly reverberated echo is heard (up
to 20 repetitions) with an interval
ratto o[2:4:6... for late whistlers and
1 :3 :5 ... for early whistlers (fig. 3).

The hypothesis that the signals
travel along geomagnetic lines of
force also explains such features of
whistlers as the increase in the de-
tection delay with the geographic
(or more precisely, magnetic) lati-
tude of the observation site and the
fact that whistlers rarely occur in
the low latitudes. Experiments con-
ducted in 1958 with artificial
sources of electromagnetic radia-
tion provided valuable support for
this hypothesis. Signals transmitted
at a frequency of 15.5 kHz were re-
ceived in the opposite hemisphere
with a delay of t - 0.7 s. The whis-
tlers recorded at these conjugated
points at the same frequency were

sMagnetically conjugated points are
the points on the Earth's surface that
lie on the same magnetic line o{ {orce.

atmospherics, and they are used in
the near-Earth research mentioned
at the outset o{ this article.

whisllinu allno$[h8ric$
Atmospherics are natural electri-

cal discharges in the atmosphere,
generally induced by lightning. No
doubt you've aheady encountered
them, when you turned on an AM
radio during a thunderstorm. The
crackling noise is caused by atmo-
spherics. The nature of this interfer-
ence is well understood.In addition
to a flash of light and a blast of
sound, lightning also produces pow-
erful electromagnetic radiation in a
broad frequency range. This radia-
tion was first detected in 1895, when
Alexander Popov constructed his
"thunderstorm detector. "2 The first
receivers had a limited range of de-
tection, but with the advent of the
vacuum tube it became possible to
detect lightning discharges at gteat
distances. And so rn l9l9 the first
reports of peculiar radio signals,
dubbed "whistling atmospherics, "
began to appear.

Atmospherics are radio impulses
of quickly changing frequency in the
kilohertz range. A receiver for de-
tecting them can be a simple 1ow-
frequency amplifier (even without a

recti{ier! ). The amplified atmospher-
ics are perceived as a kind of whistle,
which expiains their name.

The characteristic period of the
frequency change in one pulse is

2See S. M. Rytov's article "From
the Prehistory of Radio" in the May/
fune 1990 issue of Quantum.

Figure 3
Diagrams illustrating the tnechanism of generation of eorly (left) and lttte lrig,htt
whistlers. A is the location of the lightning discharge, B is tlte receit,er, ttnd A' is
the location of the signal's reflection. Distances are measttred in Earth rttdtt.
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also delayed by the same value. The
common delay corresponded to the
calculated length of the geomag-
netic line of .force.

The observed delay can be ex-
piained with the help of previously
obtained results. We recall that a sig-
nal propagates in plasma with an
group velocity vs given by equation
(7). Using the siniplified equation for
the whistler wave refractive index
(equation (12)), we can show that

L.:o,n-"-'@'
The factor D is not influenced by fre-
quency but does depend on plasma
parameters and the length of the
whistler's track. This coefficient is
calied the whistler's dispersion.It is
found experimentally by analyzrng
the function /(t)-that is, the spec-
trogram of the whistlers (fig. a). Ac-
cording to the value of D that is
found, we can estimate the electron
concentration and the magnetic
field strength.

There is no doubt about the con-
nection between whistling atmo-
spherics and lightning discharges,
but there is one apparent contradic-
tion that should be examined. At
any given moment/ about 2,000
thunderstorms are raging in the
Earth's atmosphere. These storms
produce nearly 100 lightning flashes
per minute on average. Yet the rate
of detection of whistler in the tem-
perate latitudes is only a few events
per minute. Why are these numbers
so drastically different? The answer
is that a receiver located at a par-
ticular site doesn't "hea{' most of
the whistlers. To detect a whistler,

a receiver must be located either
near the lightning discharge or near
its magnetically conjugated point.
However, thunderstorms are dis-
tributed very nonuniformly in the
Earth's atmosphere. They mostly
occur in the equatorial regions, but
in these regions whistlers are not
observed due to the unsuitable ge-

ometry o{ the geomagnetic field (the
lines of forces are located too close
to Earth). There is another reason
for the low rate of detected whis-
tlers. Whistlers are generated only
when the electromagnetic pulse is
located near the magnetic line of
force (when it "sticks" to it). Some
special conditions are necessary for
this-conditions that are not always
met for any given lightning dis-
charge. "sticking" occurs when the
plasma contains fluctuations run-
ning parallel to the magnetic field.
However, even in homogeneous
magnetically active plasma the di-
rection of energy {low of the helical
wave approaches the direction of Bo.

Calculations show that the limiting
angle of deflection of the group ve-
locity from this direction is about
20o when the frecluency rrl is much
less than the gyrofrequency om.
Nevertheless, this condition cannot

dn r71
(il- = -idaz

and

where

24
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i/

^2cVs='ZVo=-=
nl 0p

The length of the trackl and the de-

lay t are linked by the usual rela-
tionship L = vst.It should be noted
that the valuet of o- and rrlo vary
along the track, as does the'group
velocity v,. Therefore, in the afore-
mentionea equation we must take
some average value for vn We can
use the following values"for mag-
netic field intensity and electron
concentration, which arc character-
istic for altitudes of several thou-
sand kilometers: Bo = 4 ' l0-5 T,
No - 10e m-3. For a frequency
rrl - 104 s-l we get nl - t0 and
v"- 6.107 m.s-1. Since the length
of the magnetic line of force be-
tween the conjugated points in the
our experiment was I - 40,000 km,
the calculated value of the group ve-
locity corresponds to a delay
t = Lf vn - 0.57 s, which is in a good
agreenient with experimental val-
ues. This supports the hypothesis
that whistlers are in fact the helical
waves we considered above.

It's not too difficult to calculate
also the relationship between the
delay and the signal frequency. To
this end we insert the previously
derived value v.(ro) into the equation
t = L I v rand obt"ain t : Larl}c 

^@ ̂  
.

This equation is usually written as

8

6

4

2

0

Figure 4
Whistling atmospheilcs (above) and its specuogram (below). At a moment to
the lightning discharye simultaneously excites all the frequencies (in tha low
frequency range), which is shown by a vetical line in the lower graph. At a

moment t- the whistler's "nose" has arrived. After a cefiain delay At the signal
is detected. after being reflected from the magnetically coniugated point on the
opposite hemisphere.
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ensure by itself the propagation of a
whistler along the geomagnetic line
of force. When whistling atmo-
spherics are detected by a satellite,
their nuniber is much larger com-
pared to terrestrial observations,
because the apparatus on the satel-
lite detects all the signals and not
just those that were trapped in tJre
waveguide.

l[llea$ul,iltg $pace plo$lna

choracterislic$
A geomagnetic line of force (the

carrier of whistling atmospherics)
can extend far from Earth-up to
tens of thousands of kilometers, de-
pending on the geomagnetic latitude
of the observation point. This means
that variations in a radio signal con-
tain information about the charac-
teristics of the plasma at very high
altitudes. By calculating the signal
delay in heterogeneous plasma, we
can show that the dispersion D is
integrated (accumulated) along the
entire track of the pulse, and the
contribution of those portions of the
traiectory with smalI Bo is particu-
larlyLarge. This becomes clear if we
remember that, in the formuia forD,
the frequency 0m stands in the
radicand's denominator, so

D- I

iBo
Although it's not possible to deter-
mine the plasma density at various
altitudes directly according to the
dispersion D (since only an integral
concentration along the entire track
can enter into the equation), this
relationship can be used to check
one or another model describing the
dependence of \ on altitude. It is
particularly important that, due to
the drastic decrease in Bo with dis-
tance from Earth, the main contri-
bution to dispersion is made by val-
ues of \ near the apogee of the
trajectory (that is, at the highest al-
titudes).

Whistling atmospherics have
played and continue to play a no-
table role in investigations of near-
Earth space. Data obtained from
such research led to a revision of

10e

108

No(mr)

r23
Figure 5
A drastic change in the elecfton concentration ("knee" ) at the boundary of the
inner layu of the magnetospherc (shaded region). The data points were obtained
by means of whistlers. The distance fuom Earth is measured in Earth rudii.

l07

106

views about how far Earth's iono-
sphere extended (the consensus had
been a few thousand kilometers at
most). The conclusion that high
concentrations of electrons exist at
great distances, which resulted from
the analysis of whistlers, was di-
rectly confirmed later by the mea-
surements made on board rockets
and satellites.

The history of the discovery of the
so-called "knee" (a drastic decrease in
electron density at altitudes of
I 5,000-25,000 kilometers-see figure
5) is another example of fruitful re-
search involving whistlers. The
boundary of the inner region of the
magnetosphere, full of relatively
denseplasma (AIo > 108 mr)androtat-
ing together with Earth, is located at
these altitudes. Evidence for the exist-
ence of such a vast plasma shell
around Earth was obtained from the
measurements made by a Soviet
rocket in 1959 and by the American
satellite Explorer I in 1953. The re-
sults obtained with the whistler tech-
nique also con{irmed the existence of
the "knee" and make it possible to
record regularly the shell's boundary
with an acctuacy o{ 0.1 Earth radius.

5 R/RBrr,1,

I have illustrated the usefulness
of whistlers by the example of elec-
tron concentration measurements.
In doing so, I used equation (13)
which is valid, as you recall, in a
limited range of frecluencies-about
I to7 kHz. At higher frequencies the
condition 0 .. 0- is violated (we
used it when we deduced the ap-
proximate equation ll2l for nr(ro),
while the lower frequency limit is
due to the fact that we neglect the
motion of ions at the very outset.

If the frequency range for recording
whistlers is made broader, new pos-
sibilities arise. I'11 yust make note of
a few. Often whistlers are observed
that have a minimal arrival time at a
certain frequency. These are called
"nose" whistlers (at the frequencyf.
in figure 4). Two branches appear in
the spectrogram at higher frequen-
cies: an increase with an abrupt stop
at some frequency /-rr, and a de-
crease that enters the region we have
been analyzing. In this frequency
tafige, where [D ( 0)-, the influence
of the magnetic field is manifested

CONTINUED ON PACE 37
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squal'ing lhe hyperhola

A different approach to logarithms and exponents

by Andrey Yegorov

I NSCHOOL, THEEXPONENTIAL

! function x ) ax is usually intro-
I duced after several generalizations
I of the operation of raising numbers
to powers. First, powers with natural
exponents are defined, then powers
with rational exponents, and finally,
powers with irrational exponents. At
this point, the logarithm is defined as

a function that is the inverse to the
exponential function.

This article will take the opposite
approach: we'll start with a definition
of the logarithm, and then we'llpro-
ceed to its inverse function, "the ex-
ponent." The definition we are going
to give brings to light many of the
basic properties of these functions
and ailows one to find estimates that
are useful in physics. It also illusffates
a frequently used mathematical
method for producing new functions
from those aheady known.

We'1lbe applying this method to
the function x -+ lf x, whose graph
y : llx, as you know, is a hypeiboie. a

DnprNrrroN. Let b be a positive
number. Denote by ln b the real
number whose absolute value is
equal to the area of a figure bounded

j by the graphy = lf x, the positive x-
g axis (y : 0l1, and the lines x : 1 and

ff *: b. We take the sign of this area

:9 to be positive when b > 1 (fig. la) and
i negative when b < 1 (fig. lb). If b = 1,

B we put In b = 0. We call the function
? b -+ ln b the naturallogailthm. Figure 1

For those who are familiar with
the notion of integrals, I'11 rewrite
our definition as follows:

s^tb.
hbI lla*, if b>0.

ix
Now, if you are eagerto follow all

of our reasoning in all its rigorous
detail and solve all the problems
(which ate attimportant part of this
article), you'll need a solid under-
standing of real numbers and their
properties. However, the article is
written in such away as to make all
the basic properties of logarithms
and exponents understandable to
anyone familiar with only the "na-
ive" concepts of limit, real numbers,
continuity, and so on, but not famil-
iar with all the details involved in a
rigorous definition of these con-
cepts. At least, that was my aim.

Al'ea
One of the notions that require a

rigorous definition is that of area.
Indeed, we must explain what we
mean by the phrase "the area of a
curvilinear trapezoid" (see figure i).
In school one hears about the area of
a polygon, or the area of. a circle and
its parts/ but our "trapezoid" is
bounded by a hyperbola on one side.

Here I'11 confine ourselves to the
remark that area is a function defin-
able for a rather large class of figures
(this class includes all the polygons,
all the convex bounded figures, and
outr "ttapezoid" as well). This func-
tion must satisfy the following con-
ditions:

1. The arca of any figure is a positive
number.

2. Equal figures have equal areas.
3. If we cut a figure into two parts

OUAIITlJil IIATURI



Figure 2

such that the area is defined for
both of them, then the sum of
these areas is equal to the areaof
original figure.

4. A rectangle with sides a and b has
atea ab.

I won't describe the class of fig-
ures for which such a function S

exists, but I'11 show that the area of
a "curvilinear fiapezoud" a < x < b,
O <y < 1/x (fig. 2) is uniquely defined
by the above conditions l-4.

To this end, we'lldivide the seg-

ment [a, b] into n equal parts and
construct two "stairways"-that is,
steplike figures composed of rect-
angles with bases (b - alln on the
positive x-axis. One of these figures
will contain t}rre "trapezoid," while
the other is contained in it lfig.2l.
Let S1 and Sj'be the areas of these
stairways. These areas are well de-
finedby conditions 3 and(.It's clear
thatSr'.S.Sr".

On the otherhand, we can show that

o, o,, b-a(1 t)
s; _s; =;l;_t) (r)

Indeed, if we let lb - alln: k, then
this difference is the sum of the dif-
ferences

Figure 3

28

krl---]-) *p( | - 1)
^[; ,+k) '"[a+2k a+k)

*p( r --l-)* *- \a+3k a+2k)

.( r I )rll--- |- ^[d + nk a+(n-t)k )'

This sum "telescopes" (most of the
terms cancel out), and the result fol-
lows from the fact that a + nk = b.

Equation (1) shows that when n is
big enough, the difference between S1

and Sf is arbitrarily small. So there
exists only one number S lying be-
tween Sj and S{ for all n {it also fol-
lows from this that both sequences Sj
and Sj'approach S as n increases-
that is, S is their common limit).

This clarifies the concept of the
area of the "curviltneat trapezoid"
and along with it our definition of
the function y = ln x.

ThE ltalu'allogal,iflm
The fundamental property of the

natural logarithm is expressed by
the formula

lnxrxr= ln xr +l1;,x, l2l

(for x, > 0, Xz > 0). This means that
the natural logarithm of a product is
equal to the sum of the natural loga-
rithms of the factors.

Before we prove equation (2), let's
establish one important property of
curvilinear trapezoids formed by the
function y = llx. Let S[A, B] denote
the area of a curvilinear trapezoid
with vertices A and B (fig. 3). Then,
if.b > a > 0 andk is an arbitrary posi-
tive number, we have (fig. a)

Sla, b): Slka, kbl. (3)

To prove this statement, consider
the transformation of the plane that
maps the point {x, y) into the point
(kx, ylkl. (You can think of this as a

combination of two mappings, the
first expanding all the distances from
the positivey-axis by the f.actork, and
the second constricting all the dis-
tances from positive x-axis by the
same factor (fig. a)). We can see that
this transformation turns the trap-
ezoid over the segment a < x < b into
that over ka < xi ta1 1rig. 5). In fact,
if the point (x, y) belongs to the first
trapezoid, thena <x <b and0 <xy< 1.

But this means thatka < kx < kb arrd
0 < (kx)ylk < l-that is, the point
(k , ylkl belongs to the second trap-
ezoid. Conversely, if lkx, ylk) is a
point of the second trapezoid, then
the point (x, y)belongs to the ffust.

Note that this mapping does not
change the area of the trapezoid (or
any other figure). Indeed, since rect-
angles whose sides are parallel to the
axes do not change their areas (their
bases are multiplied by k and their
heights by llk), the areas of the stair-
way figures associated with a curvi-
linear trapezoid do not change ei-
ther. Thus the areas of curvilinear
trapezoids will remain the same.

Therefore,

Sla, bl: Slka, kbl.l

Now it's not difficult to prove
that S[a, b] : ln b - ln a. Ftgrre 6

shows the different cases, depending
on the sign of the area representing
ln a and ln b. But then

lnb - ln a = ln kb -lnka. (3')

b-'r kPt
rThatis, l:a"= l:a".:x

aka

il[RI1l/APBil. 1 SS7
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Figure 6

Although this formula has been
proved so far only forb > a, it is true
for all positive numbers a ar,d b,
sincefor a>bwehave

ln a -lnb :lnka -7rlkb,
which is equivalent to equation (3').

Now the fundamental property of
the logarithm follows directly from
equation (3'). It suffices to take
b : x2, a : 1, k= xt. In particular,
when x, : ll\ = x, we get

Inx=-h1 . $lX

The following equations can be de-
rived without much trouble from the
fundamental property (equation (2)) :

lnxrxr...xn:lnx, +lnxr+... +ln xr, (5)

ln 
X1 

= lnxl - lnxr, (6)x,1. 1

We'll be using these equations
below.

Gmilol,r+lnr
Equation (2) al1ows us to learn

more about the behavior of the func-
tion y : ln x. First, 1et's check that ln
x grows indefinitely as x increases. In
fact, since ln 2 > 0, and by virtue of
equation (5l,ln2 =ln(Z 2. ... 2l:
ln 2 + Ln 2 +. + ln 2:nln}, thenlnl
grows without limit as n increases,
and this implies unlimited growth of
y : ln x. (Indeed, ln x > n \n 2 for
x > Zn-Ileave it to the reader to prove
that ln x increases monotonically.)

Now 1et's examine the logarithm's
behavior as x approaches 0. Since

ml= -ln}n --nln2,
2n

we see that ln x < -n ln 2 for
0 < x < lll-t}r'at is, if x is sma1l
enough, the logarithm can be arbi-
trarlly large negative number.

Now we're ready to draw an ap-
proximate graph of y: ln x (fig.7l.

Tlte eruonsltt
We can prove that each real num-

ber is a value of the function we
examined above. In addition, this
function takes each value only
once-that is, for each realx there is
only one solution y of the equation
x:Iny. The real numbery that sat-
isfies this equation is denoted by

Y=expx'
Thus we have obtained a new func-
tion x -+ exp x that is inverse to x -+
1n x. It's called tlrre exponent. Note
that the very definition of the expo-
nent implies the identity

exp (ln x) : ln (exp x) : x. (71

The graph of the function y = exp
x is symmetric to the graph of y: ln
x with respect to the line y : x. In-
deed, since the equality y: exp x is
equivalent to lny =& we can obtain
the exponent's graph from that of
the logarithm by means of a trans-
formation that maps the point (x, y)

into the point (y, x). And this map-
ping is simply the symmetry with
respect to the line y = x (fig. 8).2

Thus the exponent is an increas-
ing function, defined on the number
line -- < x < +@ and taking positive
values. In addition, it takes arbi-
trarily large values as x increases and
tends to zero as x approaches --.
lls tttndameltlal property

The fundamental property of the
exponent is expressed by the follow-
ing equation:

exp (x, + xr) = exp xl . exp xr. (8)

To prove equation (8) we'll use the
fundamental property of the natural
logarithm and equation (7). Since
lny ry, : loy, * lny a then fory, = expx1,

Y2 = exP x, we have 1-n y tyz = xt + \-
that is, yt yz: exp (xr + xrl, or e4p xr .

exp x2: exp (xr + xr). From the ftrnda-
mental property of the exponent (or
from the corresponding property of the
logarithm), we can derive the equalities

exp(-x)= 1

expx

2To verify that this figure is corect,
prove that ln x < x for all x > 0.

Figure 7 Figure B
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and
exp (x, + xz + ... + xr)

: exp x, ' exp x2' ... ' exp xn.

We'll use the symbol e for the
number exp 1. In other words, e is
the solution of the equation ln e : l.

Using the fundamental property
of the exponent, we'Il prove that for '

all rational x = mln, exp x = ex. First
of all, for natrral m,

expm=exp(1+1+...+1)
:expl'exp1'expl=em

and

/ \ I - I -^-*exP(-m)=-=-=e .' expm e*

So exp m : em for every whole num-
ber m. Moreover, for natural num-
bers n,

-that is,

1-,
exP- = 1!'

n

For any rational x = mln (where
n > 0, andn andm are integers) we get

,..m
m ( I \ ., 

-\m _nm.nexpl=l expl | =(reJ =en \ n)

-that is, exp x = ex for all rational x.
If cx is an irrational number, it's

most convenient to regard the equa-
tion ea: exp c as a definitionof eo.

So, for all x,

expX=ax. (9)

This equation, together with the
ecluation (7), means that for any posi-
tivex, its logarithm is such a number
that e raised to this power gives x:

ern'=explnx=x.

Al'liFal'y lases
Now we can define y = ax for arry

a > 0, a + l, and ail x, setting

ax = exp lxln al: e'rno,

as well as the logarithm of x > 0 with
base a, setting

, lnx
logax

IflA

One can show that these func-
tions satisfy the same fundamental
properties:

A*r**, = A*, . A*, ,

logoxlx2 - log, xr+Logoxr.

(for x, > 0, xz > 0), and that

oloro* = r.

We leave it to the reader to check
that the definitions given above cor-
respond to the traditional ones. In
what follows, however, we'll prima-
rily be interested in those properties
of logarithms and exponent for
which it is essential that the base is
e and not any other number.

Deniualiue$

Up to this point we've been dis-
cussing properties of logarithms and
exponential functions that you
might already know from your high
school studies. But now we're going
to look at properties connected with
the rates o{ variation of these func-
tions. These properties are very im-
portant for physics. Let's begin with
some definitions. We'll call the dif-
ference tf : fl"l - fl"o) the incre-
ment of the function x -+ f(x) on the
segment [xr, x11, and the difference
Ax : x, - xo the increment of the ar-
gument. It's natural to call the quo-
tient

Ax Xr -Xn^fAx
/("1)- l(x6)

t -Xo
the mean velocity of variation of the
function x --> flxl on the segment
[xo, x11. Indeed, if x is time and /(x)
is the distance traveled by a moving
body up to the moment x, then
Lf I Lx rs the average sp eed during the
interval [xo, x11. Suppose that xo is
fixed and x, approaches xo. If the
quotient Al/Ax tends to some limit,
we'Il call this limit the derivative of
{unctionx -+ f(xl at the point xo and
denote rtby f (xol.(We can regard
this as the instantaneous rate of the
function's change at the moment
xo.) The derivative describes the

0

Figure 9

function's behavior near xo.
The derivative has a simple geo-

metric meaning. Let Mo be a point
on the graphy = f(xl, corresponding
to x = xo-that is, the point with co-
ordinates (xo, flxsli M, is the point
(xt, f(xyll. Draw the line MoMr. The
slope of this line-that is, the tan-
gent of its inclination to the positive
x-axis (fig. 9)-equals

/(x1)- /(xs)
tanO( = xt -Xo

As x, approaches xo, the secant line
tends to a limiting position-the
tangent drawn to the cu:re y = flxl
at the point xo. Thus the derivative
at x : xo is equal to the slope of the
tangent to the graph x -+ f(xl drawn
through the point lxo, flxsl).

Let's try to calculate the deriva-
tive of the function flxl : ln x. Its
increment on the segment [xo, x1J

equals

ln xr - lnxo = 1n 
xl
x0

/ --\
=k[1+xr -xo 

l.

['o)
Therefore,

Inxr -rnxo =l!99, rrot
Xr -X0 xO n

where

t--xI-xo
X6

As x, tends to xo, h approaches 0. So

we iust need to find how the quotient
[In (1 + hl]lhbehaves for smallh.

The de{inition of the logarithm
given above will soon allow us to

_l

f 1\' (t I 1\
lexp- | =expl -+-+"'+- |\n)\nnn)

= exPI= a
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make some simple evaluations,
from which it will follow that
lln(l +hlllhapproaches 1 asTr tends
to zero-that is,

ln (1 + hl =h (for smail h). (11)

This equation is very important for
making estimates. We can rewrite it
AS

exp.h = 1 +ft (forsmalll). (12l'

From these we obtain basic equa-
tions for the derivatives of loga-
rithms and exponents:

(xr-xo)fxs xt -Xo
(xr-xo)fxo+l- xr

alr, 1*rr-ro aXr-xo.
x0 x0

OI

1 ln(t+(r, - "dl"o) r

- 

/ \ \ . ",1 -/ , 
.

x\ Xl -X0 X6

(for x, > xo). When x, tends to xo,
this rate converges to l/xo, thus
proving equation ( 13) for the deriva-
tive of a logarithm. So we have
shown that there exists a tangent to
the logarithm's graph at every point,
and that its slope is equal to 1/xo for
x: Xo.

To find the slope of a tangent
drawn to the exponent's graph, we
recall that this graph is symmetric
to the logarithm's with respect to
the line y : x. As you can see in fig-
ure 11, 0o + 0o : nfZ, and since oo is
the inclination of the tangent drawn
to the logarithm's graph at the point
(xo, ysl, we have tan 0o : I lxo. Finally
we obtain the following:

ranBs= r^n(!-on)= I
(2 ") tanor,6

_-, _^Yo
-^0-tr

-that is, the slope of a tangent
drawn to the exponent's graph for
each x equals the exponent's value
at & thus proving equation (14).

For arbitrarybases, without much
difficulty we obtain

(log,x)'=llro, (13')

(a"l' : a"ln a. lt4'l

Note that both these equations
are valid for natural logarithms and
exponential functions with base e.
For other exponential functions, the
instantaneous rate of change is pro-
portional to (not equal to) the value
at point xo.

Consider the bounds of equation
(15)once more. We see at once that
the approximate equality (11) and,
therefore, its equivalent (1211, follow
directly from them. In fact, when
lxl .. 1, the quantity * is negligibly
small compared to x. For example
when lhl .. 0.1, the relative error of
equations (1 I ) and (12) is not greater
then 1%-thatis, the difference be-
tween the quotient of their left and
right parts and 1 is not greater than
one hundredth.

We can also derive from the same
bounds of equation (15) the follow-
ing remarkable equation for the
number e:

and more generally, the following
equation for the exponent:

(see problem 1 below).

Smies ropre$Etttalion ul a/
Equation (15) is rather cumber-

some to use in calculations, because
we must take very big n if we want
to achieve good precision. In this
section, we'll look at another expres-
sion for the exponent, one that rep-
resents it as the sum of an infinite
series:

(13)

and

(exp x)'= exp x. (14)

tualuatinu fie nafit'al loUal'illm ltsar 1

Here is one of the most important
properties of the logarithm:

,)

*- * 
.= ". <ln(l+x)<x. (15)x+1 x+1

In order to prove these inequali-
ties forx > 0, we need only compare
the area of the curvilinear trapezoid
ABCD with the areas of rectangles
AD'CB and ADC'B (fig. 10). The
trapezoid's area is In (1 + x), while
the area of AD'CB is equal to

AB.BC=x. 1

x+1'

and the area of ADC'B is AB . AD :
x. I = x. Readers are invited to check
this estimate for-l < x < 0 on their own.

Lrequalities ( 15) a1low us to evaluate
the average tate at which a logarithm
changes (see equation (10)). Let
x : (xt - xol I xoin equation ( 1 5 ). We get

(lnr)' = 1

e=ri^(t*1')"
n+-( n )

eXpX = rir,rfr+I]' (16)n-+_\ n )

*2 *ke" =I+x+ 
-+...+++1.2 1.2.....k , (r7)

just as the geometric progression
1 +x+ X2 +...,1x1 .1, represents the
functiony=llll-x).

This decomposition is convs-
nient for two reasons. First, rf r ou
want to calcuiate the exponent .,-,:,

CONTII]UED O.\ P.]GT :: :
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I N THIS ARTICLE WE'LL DERTVE

| ,"-r"r, tormulas lor llnolng vol-
| ,r*", wrrnout rne use or rnregrals.
I w"'tt rely heavily on a principle
formulated by a pupil of Galileo in
t629.

IbFahedron
This method for finding the area'

of a tetrahedron employs neither in-
tegrals nor limits. It does, however,
make use of an intuitive proposi-
tion, the similarity principle, that
masks the integral.

Srrvrrr,eRrrv pRrNCrpLE. If all the
edges of a tetrahedron are muhi-
plied by the f actor k, its volume will
be multiplied by the factor ks.

In particular, if all the edges are
multiplied by 2, the volume will be
multiplied by 8.

Before we prove the formula for
the volume of a tetrahedron, let's
recall two formulas for the volume
of a trihedral prism. Suppose that S

is the area of its base and h is its al-
titude (fig. 1). Then its volume is

Figuure 1

V = Sh. We can also express the vol-
ume of the prism using the arca of
its lateral face Q and the distance d
from this face to the opposite edge:
v =1lzQdlfis.2l.

Figure 2

Now let's look at the tetrahedron
ABCD, in which the area of ABC is
S and the altitude drawn to this face
is h (fis. 3). Let Vbe the volume of the
tetrahedron. Denote the midpoints
of the tetrahedron's edges by the let-
ters K, L, M, N, P, T as in figure 3.

Figure 3

Decompose the tetrahedron into
four polyhedrons: two tetrahedrons
DKML and INTC whose edges are
half those of the of the original tet-
rahedron, and two trihedral prisms
APN KML and P MBNLT. According
to the similarity principle, the vol-
umes of the tetrahedrons DKMI and
LNTC are both Vf B. Let's express
the volume of each prism using their
corresponding formulas. The vol-
ume of the first prism is

sh 1

- ' -:- = -:- STlr42 8

and that of the second is

1.L4=fsh.
222I

We obtain the following equation
for the volume V:

From this equation
formula we seek:

we obtain the

Sphme
To derive the formula for the vol-

ume of a sphere, we'll use another
well-known principle.

CAvAI-IERI's pnrNcIprE. Two
bodies lying between two
parallel planes have the
same volume if their cross
sections cut off by any plane
parallel to these planes have
equal areas.

Consider four

v 1_
V =- +-Sh.

44

1 ,-
V =-Sh.

J

the
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KALEIDOS

Uolumesttuitl1ot
i

Call in the Cavalie

Figure 4

sphere of radius R, a cylinder ci-rcum-
scribed around the sphere, and two
perpendicular cones. The vertices of
the cones coincide with center of the
sphere, and their bases coincide with
those of the cylinder. Figure 4 shows
a section of this solid, formed by a
plane passing through the axis of the
cylinder. We will use this picture to
illustrate how the formula for the
sphere's volume can be derived from
Cavalieri's principlg if we know the
formulas for the volume of a cylinder
and a cone.

Let's consider the sphere and the
cylinder separately, and think of
both cones as removed from the cyl-
inder. (The sections of these two
bodies are drawn separately in the
figure 5. The sphere lies between the
bases of the cylinder.)

Take any plane parallel to
bases of the cylinder such that

32 lt/lARCil/APRil. 1g$7
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ralieri principle!

distance between it and the sphere's
center is x. This plane cuts a circle
of radius JA' - ,2 fromthe sphere.
The area of this circle is n(R2- x2).
The intersection of the plane and
the second body is a round ring with
external radius R and internal radius
x. It's clear that the area of the ring
is also equal to n(R2- *). According
to Cavalieri's principle, we can
equate the volume of the sphere to
that of the cylinder minus the vol-
umes of the two cones:

v =2nR3 -3no' =tno'.

lnEnseclinu cylirder$
Let's solve the followingproblem:
Caiculate the volume of the com-

mon part of three infinite cylinders
of radius R such that their axes lie in
one plane, pass through one point,
and form equal angles with each
other (fig. 5).

Solution. Consider a sphere of ra-
dius R whose center is at the point

Figure 7

where the axes of the cylinders in-
tersect (tig. 71. Draw an arbitrary
plane parallel to the one where the
axes lie. The section of the common
part formed by this plane is a regu-
lar hexagon circumscribed around a
circle that is a section of the sphere.
The ratio of the areas of these sec-
tions does not depend onthe plane
chosen and ls equal to ZJS /n. fhus
the ratio of the volumes of the com-
mon part and the sphere is the same.
So the volume we seek is (B"vE/3)R3.

This notion allows one to solve a
similar problem, when the number
of cylinders is not three but an arbi-
trary integer n lthat is, the axes of
the cylinders lie in one plane, pass
through one point and the angle be-
tween adjacent axes is n/n).

A rolatiolt pl'ollem

Cavalieri's principle can help us
solve the following problem as well:

Given an isosceles triangle with
base a and altitude h drawn to the
base. Let the altitude belong to the
line 1. The linem intersects l and iies
in the plane perpendicular to that of
the triangle, so that the angle be-
tween m andl is cr. Find the volume
of the body that arises as a result of
the triangle's rotation aboutm (fis. B).

Using Cavalieri's principle, we can
show that the volume we seek is equal
to that of a cone with a circular base
of radius a and altitude h cos cx. To
check this, let's project the altitude
of the triangle onto line m. We'll
obtain a segment of length h cos o,.

Construct an isosceles triangle in
which this segment is the altitude
and the base is equal to a. (The ver-
tex opposite the base in this triangle
is the projection of the correspond"
ing vertex of the original triangle.) If
the constructed triangle is rotated
about m, the outcome wili be the
aforementioned cone. A plane per-
pendicular to m cuts the solid whose
volume we seek along a ring, while a
cone cuts it along a circle. Now it suf-
fices to show that the areas of these
figures are equal, and we find

V= nazhcosu

A dhlance pl'ollem

And, to conclude the article,
here's a simple problem whose solu-
tion is based on common sense:

A plane convex figure is given,
with area S and perim eter L. Find the
volume of the body consisting of all
points in space whose distance from
the figure is less than or equal to a
given positive number d.

This problem is easy to solve when
the given figure is a plane polygon. hr
this case, the volume we seek con-
sists of two prisms of height d and
bases of area S, a number of half-cyl-
inders of radius d and total height I,
and several segments of a sphere of
radius d whose union is the whole
sphere (these segments adjoin the ver-
tices of the polygon and their surfaces
consist of spherical 2-gons and two
semicircles). Thus for a polygon we
can write the following formula for
the volume:

V =ZSd+lnd't+lndt.23

In fact, it can be shown that the
same formula holds for an arbitrary
convexfigure. O

-L F. Sharygin

l2

I

I

i

Figure 6 Figure B
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PHYSICS
CONTEST

lUlal'sorhust!
"l've always wanted to see a Martian," said Michael,

"Where are they, Dad? You promised."
"There they are," said Dad, and he shifted Michael on his

shoulder and pointed straight down

-Ray 
Bradbury, The Martian Chronicles

by Arthur Eisenkraft and Larry D. Kirkpatrick

AVE YOU EVERWANTED TO
go to Mars? Mars is the next
frontier. Those of you who are
too young to have watched the

Herculean efforts to send the first
humans to the Moon may be able to
participate in the next big space ex-
ploration. You may be an astronaut,
an engineer/ or a computer analyst
helping with the mission. Thousands
of people will be required. Recently
the public's interest in Mars was
heightened by NASA's announce-
ment that scientists may have found
evidence for the existence of primi-
tive li{e on ancient Mars.

Sending humans to Mars will re-
quire a lot of preparation. The work
has alreadybegun. Besides the crucial
work on studying how humans live
in space for long periods of time, two
recent launches have sent satellites to
our nearest planetary neighbor.

On November 7, 1995, NASA
launched the Mars Global Surveyor
(MGS), which will reach Mars on
September, 12,1997, to begin a two-
year survey of the atmosphere and
surface of Mars from orbit. The
MGS will require 309 days to make
its journey. (You can learn more
about the Mars Global Surveyor
mission on the Web at http://mgs-
www.jpl.nasa.gov.)

On December 4, 1995, NASA
launched Mars Pathfinder on a tra-
jectory so that it will land on the
surface of Mars on Independence
Day, a trip of 212 days. Mars Path-
finder contains a microrover that
willbe used to deploy scientific in-
struments and explore the terrain
around the landing site. (You can
learn more about Mars Pathfinder at
http : //mpfwww. jpl.nasa. gov. 

)

It's interesting that the satellite
that was launched last arrives at
Mars first. We can get some under-
standing of this by looking at a sim-
plified orbital problem.

Let's assume that we have a sat-
ellite in a circtlar orbit around the
Sun with a radius equal to the aver-
age radius of the Earth's orbit. Let's
fire rockets in the forward direction
tangent to the orbit. If we increase
the speed of the satellite by the cor-
rect amount, the satellite will be
placed into an elliptical orbit that
has its greatest distance from the
Sun equal to the average radius of
Mars's orbit. If Earth and Mars are in
the proper relative positions, this
would allow the satellite to orbit or
land on Mars. In our calculations,
we neglect the gravitational effects
of Mars and the Earth and consider
only the Sun's gravity.

We can find the required speed of
the satellite using conservation of
energy

lrGmm.lrCmm.
;171V1 = -II1VMLrr.zrn

and conservation of angular mo-
mentum

0VEIE: 117V7fi7,,7t

where m and ms ate the masses of
the satellite and the Sun, respec-
tiveiy; r. and r* are the orbital radii
of Earth and Mars, respectively; and
v. and vM are the orbital radii of
Earth and Mars. Note that these two
velocities occur at the ends of the
ellipse-that is, when I : rp and
r: r',rr respectively, and that the ve-
locities are perpendicular to the radii.
Solving these two equations for vp,
we obtain

I r-
i LtM

YE - Yo-l-r
\ rE +/M

where

is the orbital speed of the Earth.
Using zm : 1 .53 rE, we find that
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yE = 1.10 vo. Knowing that G :
5.67 . t}-rr N. m2/kg2, m, = 2.0. ldo L8,
andrr: 1.5 . 1011 m, we obtain nu-
merical valueB of v, = 29.7 krnl s and
vr:32.7 km/s. Therefore, we must
increase the satellite's forward speed
by 3.0 km/s.

We can do a similar calculation
at the other end of the ellipse to find .

out how much we need to acceler-
ate the satellite to match the orbital
speed of Mars. Conservation of an-
gular momentum tells us that
vyt= 21.4 km/s and that Mars's or-
bital speed is 24.1km/s. Therefore,
the satellite needs to speed up by
2.7 kmls.

Because Kepler's laws are appli-
cable for any obiect orbiting the Sun,
we can use Kepler's third law to find
out how long it takes the satellite to
reach Mars. Let's compare the circu-
lar orbit of the Earth to this transfer
ellipse connecting Earth and Mars
with a major axis equal to 1E + IM:

/ \1 / \)

[]-r-l =["*'*I.[r../ [ zr, )

Therefore, Tt= l.42TE:1.42 years.
Because the satellite only executes
one half of the elliptical orbit, the
time is 0.71 years = 260 days. Longer
and shorter periods can be obtained
by using different ways of leaving
Earth orbit and entering Mars orbit.
For a better calculation, we also
need to take into account the gravi-
tational fields of Mars and Earth.

Our problem this month is based
on a problem that appeared on the
second exam used to select the mem-
bers of the 1995 US Physics Team,
which won four gold medals and one

dtuection
of thrust

Figure 1

38

silver medal at the International
Physics Olyrnpiad in Australia.

Let's assume that the Mars Glo-
bal Surveyor is in a circular orbit
about Mars at the designed height of
367 km above the surface. We also
assume that we can neglect the ef-
fects of Mars's atmosphere and that
Mars has a radius R = 3,400 km and
a surface gravity g : 3.72 mls2.

A. Find the speed of the satellite
in its circular orbit about Mars in
terms of the values given above.

Although the Global Surveyor is
not designed for this purpose, 1et's
assume that we want to send the
satellite down to the Martian sur-
face. The satellite could reach the
surface by firing its rocket engines
for a short period of time. We will
consider two special cases.

B. In the first method, the retro-
rockets are fired at point X tangent
to the orbit to slow the satellite. The
circular path becomes an elliptical
path that brings the satellite to a
landing strip on the Martian surface
at point A on the side opposite to
point X, as shown in figure 1.

(i) Determine the speed of the sat-
ellite immediately after the retro-
rockets have been fired.

(ii) Determine the speed of the
satellite as it reaches Mars's surface
at point A.

C. In the second method the rock-
ets are fired at point X perpendicu-
lar to the orbit, giving the sateliite a

momentum directed toward Mars.
The circular path becomes an ellip-
tical path that brings the satellite to
a landing strip on the lunar surface
at point B one quarter of the way
around Mars, as shown in figure 2.

(i)Determine the speed of the sat-

ellite as it reaches Mars's surface at
point B.

(ii) Determine the velocity of the
sateilite immediately after the rock-
ets have been fired.

D. How do the magnitudes of the
changes in velocity at point X com-
pare for the two methods?

E. How do the speeds of the sat-
ellite at Mars's surface compare for
the two methods?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA22201-3000 within a

month of receipt o{ this issue. The
best solutions willbe noted in this
space.

Ilte [nmbs lul'sNinu in ain
In the September/October issue

of Quantum we asked our readers to
analyze the paths of fragments emit-
ted in a fireworks display. Specifi-
cally, we asked at what time is the
frequency of fragments hitting the
ground the greatest? To simplify the
problem, we assumed that there was
no air resistance and that the explo-
sion was isotropic. We will follow
the solution given a few years ago by
Tainan Wang, an undergraduate stu-
dent at SUNY Stony Brook and
former member of the Chinese
Olympiad Team.

Assuming that all the fragments
have the same speed relative to the
center of mass, then the fragments
will form a sphere with the center of
mass as its center. The radius of this
sphere will increase in proportion to
the time, as the entire sphere de-
scends toward the ground with ac-
celeration g.

Figure 3 shows the expanding
sphere at times t and t + Af . During
the time interval Lt, all fragments

ll,IARC1l/APRII 1gg7

Figure 2 Figure 3
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within A0 have hit the ground.
The motion of the fragments is

described by the following simulta-
neous equations:

-1
r(t)= n-)st' +'ot'

t(t) = vP'

where vo is the initial velocity of the
center of mass and v, is the speed of
the expanding sphere.

Since

zcosO = L
h+vot -irU

cos0 = vtt

the fragments within A0 can be
found by comparing the area of this
surface fragment with the total sur-
face area of the sphere. The area of
the sur{ace fragment is the product
of the circumference of the surface
and the arc length of that fragment
(rA0), assuming thatAt is very small.

The number of fragments is
therefore

(2rursine)(rAe)

frequency

f *^*

tr

Figure 4

t2 tlme

As a check on our work, the area
S beneath the curve must equal the
total number of particles N:

Does this make physical sense?
Imagine a limiting case where the
velocity of the fragments is very,
very large. We can see that the par-
ticles that were shot downward will
have a small difference in their ver-
tical velocities and will all hit the
ground at almost the same time.
The particles that were shot straight
up will also have a small difference
in vertical velocities. This small dif-
ference wiil lead to a large lag time
due to the long time in flight.

We also asked the more provoca-
tive question about whether it makes
a di-fference if we learn to solve pro-
jectile problems using sports and res-
cue planes or morter shells and
bombs. We now wonder why most of

our readers did not bother to express
their opinion on this pedagogical/so-
cial question

-WHISTLING IN SPACE"
CONTINUED FROM PAGE 25

very strongly, and whistling atmo-
spherics play the role of natural
"magnetometers."

At very low frequencies, so-called
"ionic whistlers" can be observed.
Their spectrogram contains infor-
mation about the masses of ions,
which makes it possible to do a
chemical analysis of cosmic gas at
distances of tens of thousands of ki-
Iometers from Earth! Not only that,
the strict formulas for nr(<o) include
the dependence on electron tem-
perature/ so whistlers can also be
used as remote "thermometers". . .

Isn't it wonderful that, with the
help of physics, we can penetrate far
into outer space without ever leaving
the planet! This is not to take any-
thing away from those who build
rockets and the sophisticated equip-
ment they carry-they are monu-
ments to human ingenuity. But it's
signi{icant that nature itself has pro-
vided us with the possibility of carry-
ing out remote measurements of the
cosmic phenomena. It has laid thou-
sand-kilometer-long waveguides
along the geomagnetic lines of force
running from one hemisphere to the
other in outer space. They have ex-
isted as long as the Earth has, but it
wasn't until the advent of radio that
it became possible to use such a won-
derful "instrument." O

3t

o

'j, 
o, = Jon=if .meae = ru.

tro

M=
4m2

jnri,reoe,

where Nis the total number o{frag-
ments.

The frequency can now be found:

"dn..Lnt=--Ilm-, dt ar_+o At
.. N _Ae- Ilm -S1n0-
^t-+O 

2 Lt

= 
I 

Nrirre do

2dt
I n, dcos0

- -r'n dt

=lr[-e-.41)- z "[zv, vt * )'

The graph of this equation is shown
in figure 4. In the figure, t, is the
time at which the first fragment hits
the ground and is the time where the
frequency of particies hitting the
ground is the greatest.
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HOW DO YOU
FIG U RE?

Challeltug$ in phy$ics and malh

task may sometimes prove impos- p 
1 97sible. (A. Belov)

M200
Cfucular reasoning. A trapezoid
ABCD (in which AD and BC are
bases) is inscribed in a circle. Its diago
nals intersect at point M. Let a
straight line perpendicular to the
bases of ABCD meet BC at K and
meet the circle at I (where I is the
point of intersection for which M lies
on line segment KLl. Let MK = a
and LM = b. Express in terms of a al.rd

b the radius of the circle tangent to
segments AM and BM, and also tan-
gent internally to the circle circum-
scribed about ABCD. (I. Sharygin)

Physics

P1 96
Elbow in motion. Two rigid rods of
lengthI, and Lrare connectedbyan
articulated joint at pointA. Their free
ends move away from each other uni-
formly with the corresponding veloci-
ties v, andvrdirected along the same
line (fig. 1). Find the acceleration of
pointA at the moment the rods make
an angle of 90'. The rods are moving
in the same plane. (B. Bukhovtsev)

vzB

Figure 1

Heating a planet The planet "E" is
very similar to Earth, but on this
planet the anti-ecologists won the
last planetary parliamentary elec-
tions. They built huge nuclear
power stations all over the planet,
including the seas and oceans. When
they are in operation, 1,000 W of
power is dissipated per square meter
of the planet's surface. How soon
after energy production begins will
the atmospheric temperature rise by
1 K? Assume that the planet itself is
not heated and that energy is dissi-
pated into space at a constant rate.
(S. Varlamov)

P1 98
Discharge in a gas. The dependence
of the cuffent l flowing in a gas dis-
charge tube on thevoltage Vsupplied
between the tube's electrodes for the
case of a non-self-maintained gaseous

discharge is given in figure 2. A tube
with a series load resistanceR :3 ' 108

O is connected to a source with a con-
stant emf '8 : 6 kV. Find the steady-
state current flowing in the tube and

1(pA)

L2

tlllAIh

M196
Not 1997. Find a positive decimal
number (which may not be an inte-
ger) that will increaseby a factor of
1996 if you exchange the digits in
the first and fifth decimal places.
(D. Averiyanov)

M197
Switch and square. Find all pairs of
natural numbers x and y such that
both x2 + 3y and5P + 3x are squares
of whole numbers. (I. Sharygin)

Ml98
Conservative estimate. Find a rela-
tion between a, b and c if a = x + I lx,
b:y * lly, c:xy + Ilxy lwhercx, y
are variables). The relation must not
contain any radicals.

Ml99
Hands-on politics. In the parlia-
ment of lllyria, each member
slapped the face of exactly three
other members of this prominent
body. Several parliamentary com-
mittees are to be organized so that
each member of the parliament
works in one (and only one) of them.
To avoid conflicts within a commit-
tee, it's necessary to fill it with depu-
ties who have never slapped one
another in the face. Prove that if the
number of committees is greater
than or equal to 7, this condition can
always be met, but that if there are
fewer than seven committees, the

38 trtAIctt/APRrr rosT
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the voltage drop across the tube. Ne-
glect the internal resistance of the
emf source. {V. Mozhayev)

Pl 99
Magnetized sptual. A plane helix
with a large number of turns and an
external radius R (fig. 3) is placed in
a homogeneous magnetic field that
is normal to the helix's plane and
varies according to the formula
B = Bo cos rrlr. Find the em{ induced

Figure 3

in the spiral. The distance between
adjacent turns is constant. (I. Slobo-
detsky)

P200
Photoiournalism. A page from a
newspaper was photographed twice
with a cartterawhose objective has a
focal length of 50 mm. The first photo
was made at the minimum distance
(for this objective) a = 0.5 m. Before
the secondphoto was taken, from the
new minimum distancg a spacerring
of thickness h = 25 rnm was attached
to the camera. Find the ratio of the
sizes of the images on the film for
these two cases. (V. Deryabkin)
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AT THE
BLACKBOARD I

A planelary ail' hl'ake

Viscous drag and the slowing of the Earth

D. C. Agrawal and V. J. Menon

ET'S SEE IF WE CAN CALCU.
late the slowing of the Earth's
rotation due to the viscous drag
of its atmosphere. Most stan-

dard textbooks quote Newton's for-
mula for the viscous force as

t

,1

(1)

where q is the coefficient of viscos-
ity, A is the area of the surface un-
der consideration, v is the stream-
line velocity of the layer at a height
x, anddvf dx is the velocity gradient
at that height. Let's first consider a
laboratory example before extend-
ing these ideas to the Earth's rota-
tion.

A Ialol'atory ottalnple

Consider a tub containing wa-
ter of depth h. Let's move a rect-
angular piece of glass horizon-
tal1y with velocity v while
keeping its lower surface just in
contact with the upper surface of
the water. The no-slip condition
between the solid and the liquid
requires that the water in con-
tact with the glass move with
the same velocity y. Because of
the viscosity of the water/ suc-
cessive layers at progressively
increasing depths will acquire
smaller and smaller velocities
until the velocity becomes zero
at the bottom. Assuming that
the motion of the plate causes
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only streamline flow, the velocity
gradient becomes dvldx: vlh,
where the vertical coordinate x has
been measured from the bottom of
the tub. Therefore, the external
force required to keep the glass plate
moving at this uniform velocity be-
comes, by virtue of equation (1),

F=nAL.- 'r'- h,
where A is the area o{ the plate.

Some interesting aspects of this
equation are worth emphasizing.
The force is inversely proportional
to the depth of the watert which
implies that a larger force is re-
quired when the water is shallow
than when it is deep. This idea can
be roughly generalized to the mo-
tion of a boat in a still pond pro-
vided we ignore the extra resis-
tance offered by the water due to
a stzable portion of the boat being
submerged.

Ihe tarth$ rolatiott
It is well known that the Earth

has a rotational kinetic energy due
to its spin about its axis. This en-
ergy is about 2.2 - L02e f. The pe-
riod of this rotation is experimen-
tally known to decrease at arate of
1 ms per century. This implies a

continuous loss of the rotational
kinetic energy of 1.1 . 1012 W. The
major reason for this loss is attrib-
uted to the tidal friction in the
Earth-Moon system/ but there
should also be a contribution from
the viscous drag on the Earth from
the presence of its atmosphere.

Let's estimate the effect of the
atmosphere using a simple model
with minimal mathematical labor.
Assuming that the Earth has a ra-
dius R and an angular velocity ro

about the North-South axis, a
point P at a latitude 0 {see the fig-
ure) will have a linear velocity
v = oJr = rrlR sin 0. The point P is
situated on a narrow circular strip of
radius z = R sin 0, width Rdl, and
area dA : 2nR2 sin 0 d0. The atmo-
spheric layer in contact with this
strip moves with velocity v, but the
higher layers have gradually de-
creasing velocities, vanishing at

some height h above the ground.
Since the velocity gradient is vf h,
the viscous force on the strip un-
der consideration is

6P =t1(znRz sine de);.

The power consumed by the vis-
cous drag on the strip is then

n

dp =vdF= n(Z,rR'sine ae)f .

The net power lost by the Earth
due to the viscous drag is given by
the integral

P = lndP- 
8nrlco2Ra 

.- Jo*- 3h

Putting in the average numeri-
cal values

R:5.37 . 106 m,
n : 18.I . 10-s poise,

a : 7.29 ' 10-s s-1,
h:105m,

we obtain

P : t.3. 1010 w,

which is only about 1% of the
power lost due to the tidal fric-
tion. Of course/ the value we
obtained is to be regarded only as
a representative number illus-
trating the direct application of
Newton's formula. There are fur-
ther complications, such as the
change of '4 with altitude, uncer-
tainty in selecting h, and the
presence of water vapor and dust
in the atmosphere. O

D. C. Agrawal is a reader in the Dapart-
ment of Farm Engineering at Banaras
Hindu Univercity in Varanasi, India.
V. ). Menon is a UGC Research Scien-
tist in the Depaftment of Physics at the
same institution.
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LOOKING BACK

The lonu l'oad Iu lonuilude

How we finally became "coordinated"

by A. A. Mikhailov

HE POSITION OF A POINT
on the Earth's surface is deter-
mined by two coordinates: the
geographic latitude and longi-

tude. Do you know where these con-
cepts came from? In the second cen-
tury A.D. the Greek astronomer and
geographer Claudius Ptolemaeus
(Ptolemy) introduced the concepts
of length and width to measure the
extent of the countries bordering on
the Mediterraflean Sea, which
stretched from east to west. Mea-
surements along the length of the
Mediterranean he called "length,"
and those in the transverse direction
he called "width." Later these con-
cepts, which could be applied to any
object, were modi{ied to describe the
position of an object on the Earth's
surface. So special terms were
coined: iatitude and longitude. A1-
though these notions, clearly illus-
trated on a globe, are known to all,
many are unaware of their strict
definitions.

It's often said that the latitude Q

is the angular distance of a particu-
lar point from the Earth's equator,
and that the longitude i, is the dihe-
dral angle between the plane of the
given meridian and the one conven-
tionally designated as the zero (or
prime) meridian. Thus the network
of meridians and the parallels of
latitude drawn on the globe's sur-
face make it possible to indicate the
geographic coordinates of any place

on the Earth. Naturally a knowledge
of coordinates is necessary. But how
do we determine our own geo-
graphic coordinates? We do it by
performing some astronomical ob-
servations. Let's assume we've cal-
culated the latitude and longitude of
our location. Can we be sure that
the point on the globe with these
coordinate is the actual place where
we are on Earth? The answer is an
emphatic //n6//-gvg11 if we know
our coordinates with the utmost
precision.

This is because the Earth is not a

true sphere, while the globe-a sim-
plified and greatly reduced model of
the Earth-is. It is the irregular
(nonspherical) shape of the Earth
that causes the deviation between
the geographic coordinates obtained
by astronomical observations and
those given on a map or globe for a
particular location.

If the Earth were strictly a sphere,
any plumb line dropped from the
Earth's surface would pass through
the Earth's center/ and the equator
and meridians would be circles of
the same radius, equal to that of the
planet. In that case, the geographic
latitude could be measured as the
meridianal arc drawnfrom the equa-
torial plane to the given site, and the
geographic longitude as the equato-
rial arc stretching from the conven-
tional prime meridian to that of the
given point.

The true shape of the Earth
(geoidl is rather complicated, al-
though it is close to that of an ellip-
soid of revolution, flattened in the
polar regions. This shape results
from the heterogeneous distribution
of mass inside the planet and on its
surface-in particalar, from the ex-
istence of continents with high
mountains and oceans with deep
hollows in their troughs.

Due to the eliipsoidal shape of the
Earth, a plumb line doesn't necessar-
ily pass through the center of the
planet, and the irregularities of the
geoid shape results in additional lat-
eral deviations of the plumb line, so
it might not even intersect the
Earth's axis. These factors lead to
the so-called plumb line devia-
tions-that is, the "anomalous"
(from the spherical point of view)
variations in its direction for differ-
ent locations on the Earth's surface.
Taking into account that the practi-
cai method of determining latitude
and longitude uses the plu$b line as

a basic direction to orient the astro-
nomical too1s, the discrepancy be-
tween the true geographic coordi-
nates of a point on the Earth's
surface and that shown on a globe
becomes quite understandable.

Now it's time to strictly formu-
late the definitions of latitude and
longitude. Latitude is the angle be-
tween the local plumb line and the
equatorial plane. Notice I didn't say
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"the plane of the Earth's equator."
Due to deviations of the plumb line,
the Earth's equator (that is, the line
whose points all have zero geo-
graphic latitude) does deviate from
the plane cross section of the Earth
by the value o{ the plumb line's in-
clination, reaching lO" ot more (par-

ticulariy in mountainous regions), '

which corresponds to a linear dis-
tance o{ approximately 300 m. This
is true not only for the equator but
{or the parallels of latitude as well
(that is, the lines of the same lati-
tude), which are not plane curves for
the same reasons.

The strict definition of geo-
graphic longitude is as follows: lon-
gitude is the dihedral angle formed
by two planes parallel to the Earth's
axis of rotation, one of which in-
cludes the plumb line at a chosen
reference point and the other a

plumb line in the location to be de-
termined. Rather than measure lon-
gitude in degrees, we could use time
units. The necessary calctlation is
simple: a full rotation of the Earth
about its axis (that is, 350") takes 24
hours, so t hour corresponds to 15o;

1 minute of time corresponds to 15'
("15 minutes") of arc; 1 second of
time corresponds to 15" ("15 sec-
onds" ) of arc.We know that noon (or

midnight) occurs at different mo-
ments at locations with different
longitudes. It's not hard to see that
the time difference between noon-
time at a given place and noontime
at the reference location (whose lon-
gitude is taken to be zero) is simply
the longitude of that place.

According to an international
agreement ratified in 1884, the refer-
ence (zero) longitude corresponds to
the location of the Greenwich obser-
vatory near London, which was
founded in 1675. Before the agree-
ment/ the national observatories of
various countries served as reference
locations: in Russia, it was the obser-
Yatory at Pulkovo, near St. Peters-
burg; in France, the Paris observatory;
and so on. In previous centuries, lon-
gitudes were counted {rom Ferro in
the Canary Islands-the westernmost
point of the Old World (which in-
cluded the continents of Europe, Asi4

and A{rica). At that time all the lon-
gitudes were counted in the same di-
rection (the values had the same
sign)-eastward from Ferro.

Due to plumb line deviations, all
the meridians (lines of equal longi-
tude) are likewise not plane curves
obtained from a cross section of the
Earth by the planes containing the
planet's axis, but rather are slightly
curved lines shifted up to several
hundred meters to either side of the
plane cross sections.

How accurate are the geographic
coordinates determined from astro-
nomical observations? It basically
depends on how these measurements
are made. The most precisely deter-
mined coordinates are those of astro-
nomical observatories: their latitudes
are known with an accvracy of 0".1,
and their longitudes to within 0.01
second of time. Note that 1" of a me-
ridian arc conesponds to 31 m on the
Earth's surface, while 0".1 second of
time corresponds to 46matthe equa-
tor (and about half that in the middle
latitudes). Thus the aforementioned
values correspond approximateiy to 3
m on the Earth's surface. Now we see

that it is not enough to say that the
Paris observatory is located at
48'50'1 1" North latitude, 0h9'20'.93
East longitude. We need to indicate
the spot on the observatory's grounds
that has these coordinates! (In this
case, it's the location of a device for
measuring the coordinates of heav-
enly bodies.)

Now let's see how latitude and
longitude can be determined from
astronomical observations. Latitude
can be obtained very simply: you
iust measure the angular altitude of
the celestial polel above the horizon
(fig. 1). Since the celestial pole isn't
marked by a star or planet in the sky,
astronomers use either a star with a

known angular distance from the
pole or the Sun, whose angular alti-
tude is given for arry day of the cur-
rent year in the Ephemerides.2

lSee the "Commentary" onpage 46.
2The Ephemerides are tables in

which the positions of heavenly
bodies are given for any given moment
of time (sometimes for many years
into the future).

Figure 1

The geographic latitude of a given
point (the angle between the
plumb line at the location and at
tha equatorial plane) is equal to
tha angulu altitude of the celes-
tial pole above the local plane of
tha horizon.

The plane of the horizon is
determined in practice by the fuee
surface of a liquid in a vesseT, by a
bubble in the tube of a Level, or by
the dtuection perpendicular to the
plumb line at the given location.
The other direction-that is, to the
celestial pole-is determined from
asft onomical ob s erv ations. Tha
celestial pole is located in the
middle of the points of the upper
and lower culminations of any
circumpolar star.

A precise determination of the
longitude at a given place on the
Earth's surface is equivalent to
determining the local time.
Having chosen by convention the
reference location of zero longi-
tude, one notes the local time at
the reference location, which is
being kept by a chronometer or
other timekaeping device. Then
the local time is determined for
the given point on the Earth's
surface from an observation of the
Sun or other heavenly body. Then,
by compafing the local time with
the reference time, one can obtain
the longitude of this place.
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The altitude measurement is per-
formed when the heavenly body
passes through the celestial merid-
ian (that is, when this altitude is
maximum). Special devices were
invented for this purpose that can
measure angles with a high degree
of accuracy. The first primitive an-
gular device, called a facob's staff,
was used in the Middle Ages, and in
the 1730s the sextant was invented
in England (fig. 21, which is still
used for measurements at sea or in
the air. As the visual sightings are
being made, the sextant is held in

Figure 2
(a) The images of two objects whose
angular distance is to be measured
are superimposed in the sight (3) by
nleans of two miruors (1, 2). Mfuror 1,

attached to a stationary;fuame (4), is
covered with silver only to half its
height, the other ltalf is transparent.
The frttme ends with a ljmb (5),
which is a circttlu arc of 60' ithts
explains the name oi the device).
Mfuror 2 is attached to the movable
part of the frame-tlte so-called
alidade (6), which can turn abottt the
axis passing through the limb's
centu perpendicular to its plane. (b)
This figwe shows how the limb helps
one find tha angle a formed by the
two miruors. This angle is related to
the angulm distance 0 between the
observed objects by the formttla
e: B- Y= 2(B/2 - Tl2) = 2u.

the hand to lessen the effects of
pitching and rolling. Usually the
image of the Sun (or a star at night)
is lined up with the horizon in the
eyepiece. With some experience one
can measure the angular altitude
above the horizon with an aacrfiacy
of one minute of arc or 1ess. When
measuring the angles on land,
where it's possible to fix a device
firmly on a tripod/ one uses more
precise instruments-for example, a
goniometer. It can measure angular
distance with an accuracy of. l" or
better.

In principle, it's very easy to de-
termine longitude: the difference
between the iongitudes of two
points is equal to the difference in
the local times at the same in-
stant. However, before the inven-
tion of radio it was very difficult in
practice to determine longitude.
Indeed, with no means of direct
communication, how could one
know the precise time at a given
moment in Greenwich (the refer-
ence location for counting longi-
tudes) if one was hundreds or
thousands of kilometers away? In
the old days, one approach was to
use an astronomical phenomenon
visible simultaneously from both
of these places and which occurred
at a certain Greenwich time
(known beforehand)-for example,
eclipses of the Moon or |upiter's
moons. (The possibility using |o-
vian eclipses to find longitudes
was suggested by Galileo, who dis-
covered |upiter's moons in 1510.)

Unfortunately, these events do
not occur instantaneously, but can
last for a number of minutes, so they
can be recorded only with a corre-
sponding error. One minute of time
corresponds to 28 km at the equator/
so this method of longitude determi-
nation has an intrinsic error of hun-
dreds of kilometers. There were
other drawbacks: it was almost im-
possible to observe the eclipses o{

fupiter's satellites from the deck of
a rolling ship; days would pass be-
fore the next eclipse occurred; and
the planet couldn't be seen for sev-
eral months in the year. Lunar
eclipses are far rarer events/ occur-

ring two times a year at most. Trav-
elers would have to wait days or
even weeks before they could make
several observations (and one
needed to make several to obtain
control values and improve the ac-
crJracy of the measurements).
Clearly it wasn't possible to use
such a method of longitude mea-
surement for navigation at sea.

In the 16th century another way
of determining the local time on the
standard meridian, the so-called "lu-
nar displacement// method, was
found, although its practical applica-
tion wasn't possible untii the inven-
tion of the sextant. The Moon
makes its way around the Earth like
the hand of a clock moving on the
stellar " dial." However, this hand
rotates very slowly-atll55 the rate
of the hour hand of an ordinary
clock. Now, obviously one can de-
termine time by looking only at the
hour hand, but due to its slow move-
ment such "measurements" will be
very approximate. Since the lunar
"hartd" moves even more slowly,
one can't expect to obtain precise
data from the lunar clock.

But the situation isn't as bad as it
seems/ because the "face" of this
clock was created with great accu-
racy: the positions of the stars are
known, so the "divisions" of this
{ace are very fine and precise. One
need only determine the position of
the Moon relative to the stars very
accurately by means of precise
goniometric (angle-measuring) de-
vices. During the course of an hour
the Moon shifts relative to the stars
by a distance equal to its diameter/
which is visible from the Earth at an
angie of about 30'. Fixing the
Moon's position relative to the stars
with an accuracy o{ 1' results in an
accuracy in time measurement of
two minutes.

To apply this method, one must
know the minute details of the
Moon's motion. Only then can the
apparent lunar position provide
the local time at the standard me-
ridian and thus the difference be-
tween the local time at the
observer's location and at Green-
wich (that is, the longitude). This
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Iommeltlary
Ir you oBSER\IE TFrE NrGHT sKy over the course of several
hours, you can see that the constellations change their
position relative to the horizon. For example, in the
eastern part of the celestial spher6, the stars ascend
above the horizon and move to the right. In the north-
em part of the sky, most stars trace their daily concen-
tric circles. We may say that the entire firmament (the
celestial sphere) revolves about some line called the
celestial axis. The points where the celestiai axis in-
tersects the celestial sphere are called the celestial
poles (North and South). The North pole is the one
where an obseryer on the outer side of the firmament
watches the celestial sphere rotate in the clockwise di-
rection. Of course, this rotation is only an illusion-
in reality, it's the Earth that rotates about its axis in
the counterclockwise firection. It's clear that the ce-
lestial axis is parallel to the planet's axis.

In addition to the celestial axis and poles, there are
a number of characteristic points and lines on the ce-
lestial sphere (fig. A). The plane SWNE is the plane
of the horizon-that is, the plane tangent to the
Earth's sphere at the point C where an observer is

Iocated. The line NS is the midday line (at midday
vertical objects cast shadows along this line). A
plumb line drawn through point C intersects the ce-
lestial sphere at the zenith point Z. The plane that
passes through the points S, Z, P (the ceiestial North
Pole) and N is the celestial meridian plane. The ce-
lestial equator is the line where the celestial sphere
intersects the plane that is perpendicular to the ce-
lestial axis and passes through the observer (point C).

Each star crosses the celestial meridian twice a day
(these "culminatiofls" are their corresponding posi-
tions). When a star is at its upper culmination, it as-
sumes the highest position above the horizon. Cor-
respondingly, the lower culmination is the lowest
position of a star relative to the horizon (fig. B).

Both the lower and upper culminations can be ob-
served for stars located near a celestial pole. Rising
and setting stars/ on the other hand, have only an
upper culmination (the lower one occurs below the
horizon). The moment of the Sun's upper culmina-
tion is called true midday, and its lower culmination
is true midnight.

peridiap zenith

Figure A Figure B

method imposed heavy demands
on celestial mechanics, which de-
veloped the theory of the rather
complicated motion of the Moon.
The accuracy of the lunar dis-
placement method wasn't mark-
edly better than that of the previ-
ous one, but it could be applied at
any time when the Moon was vis-
ible, so it's clear why it was very

popular among travelers, espe-
cially sailors.

However, the lunar displace-
ment method didn't satisfy the old
salts entirely, because of its com-
plicated calculations and poor ac-
curacy. Long voyages of sailing
vessels depended greatly on the
force and direction of the wind,
and very often the ships were out

of sight of land for long periods. So
it was extremely important to
know the ship's location (that is,
the latitude and longitude). In
1713 the British government, tak-
ing a keen interest in secure navi-
gation lat that time Great Britain
had the largest and most devel-
oped fleet of ships in the world),
offered a huge prize of. $20,000 for
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the invention of a reliable method
to determine longitude with an ac-
curaey of ll2 degree. A portion of
this prize.was awarded (posthu-
mously, alas) to the German as-
tronomer Tobias Mayer for his
tables of lunar motion, which
made it possible to improve preci-
sion when measuring longitude by
the lunar displacement method.
Half of the prize was given to the
English clock maker and inventor
|ohn Harrison, who in 1735 had
constructed the marine chronom-
eter.3

The marine chronometer is a
spring-driven clock much like a
modern pocket watch. The chro-
nometer had three hands-hour,
minute, and second. The second
hand would jump forward every
half-second with an audible click
that could be heard several meters
away. What made the chronom-
eter so convenient was that it
could be transported at sea with-
out affecting its accuracy. It was
mounted in a box with a gimbaled
suspension along two perpendicu-
lar axes, so that the clock main-
tained its ievel position even if the
box was tipped.

Soon this method of transport-
ing chronometers became wide-
spread for work on land. Scientists
undertook expeditions to deter-
mine the longitudes of populated
areas for map-making purposes
and to refine the longitudes of the
various national observatories. For
example, the first director of the
Pulkovo observatory, V.Y. Struve,
organized a special expedition in
1843, equipped with 60 chronom-
eters/ to determine the difference
in longitude between Pulkovo and
Greenwich.

The problem of longitude mea-
surement was solved in a quite un-
expected way when the telegraph
was invented in the middle of the
last century. Now it became pos-
sible to transmit Greenwich mean
time (GMT) and thus determine

3For a fascinating account of |ohn
Harrison's achievement, see
Longitude by Dava Sobel (New York:
Walker and Company, 1995).-Ed.

the difference between local time
and GMT with the previously
unachievable precision of frac-
tions of a second. Of course, the
given location would need a tele-
graph link for this to be possible,
which made the method useless
for ships at sea. Nevertheless, tele-
graph cables laid on the ocean floor
connected the continents and made
it possible to determine the longi-
tude of Washington's observatory
yery accrfiately. In Russia, the stan-
dard time was that of St. Petersburg
(strictly speaking, Pulkovo mean
time). It was transmitted by wire
from the Pulkovo observatory to the
central telegraph office in St. Peters-
burg, and from there to telegraph
and railway stations all over the
country. At noon Pulkovo time, a
gun fired from the Peter and Paul
Fortress.

As you may guess/ the invention
of the wireless telegraph (that is,
radio-see the May 1990 issue of
Quantum, p. 39) provided the final
and universal solution to the old
longitude problem. As early as l92l
the radio station Novaya Goliandia
in St. Petersburg began transmitting
(severai times a day) rhythmic time
signals consisting of 61 ticks per
minute, resulting in a time interual
between ticks of ll50 s. By timing
the ticks of one's chronometer with
the ticks transmitted by radio, one
could tune one's timepiece to
Greenwich mean time with an ac-
curacy of several hundredths of a
second.

The procedure wasn't perfect,
though. The faulty operation of an
observatory's clock and other
technical difficulties in broadcast-
ing the radio signals might cause
an error of a fraction of second.
However, this error could be cor-
rected later, a{ter the signals were
received at the observatory and
the times of current astronomical
events were recorded. Special as-
tronomical bulletins were pub-
lished monthly for this purpose,
giving the precise moments of
transmission of past signals and
thus providing a way to correct a
chronometer later. Of course, such

high accuracy was necessary only
for determining longitude with the
utmost precision. For practical
navigation, where an accuracy of
1 s is more than adequate, such
published corrections had no value
at all. Nowadays, due to the inven-
tion of quartz clocks and then
molecular and atomic clocks,a
which keep time for many months
with an accuracy of several thou-
sandths of a second, corrections of
the transmitted radio signais have
been practically reduced to zero.
At long last the age-o1d problem of
finding the geographic longitude
was solved with the utmost preci-
sion.

I'11 conclude our account with
an example. Imagine a person who
knows the astronomical tricks for
finding one's geographic coordi-
nates. Send that person to an arbi-
trary place-a desert island, the
mountains, an uncharted wilder-
ness-anywhere. And to compli-
cate the problem, let this person
not know which country/ or even
which hemisphere, he or she is in.
Let that person lose track of time,
becoming unaware of what day or
month it is. However, give that
person a copy of the astronomical
annual with logarithmic tables, a
theodolite or goniometer, a chro-
nometer showing an arbitrary
time, and a radio receiver (for hear-
ing the time ticks only). All that
person will need is to observe the
stars on a clear night and the Sun
the next morning in order to deter-
mine (after the necessary calcula-
tions) the month, day, latitude, and
longitude. Looking at a rnap, the
person could point out her or his
location and the route to the near-
est town or any other place. In other
words, an educated person can
never be lost on planet Earth. O

aThe role o{ the pendulum in a
quartz clock is played by a slice o{
qvaftz cut in a certain way. Electro-
magnetic oscillations are excited in
this crystal, the {requency o{ which do
not vary {or a long period of time. The
operation of molecular and atomic
clocks is based on the natural
oscillations of certain molecules and
atoms.
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AT THE
BLACKBOARD II

Three phy$icisls and olte loU

Then, we were young and strong, Now, we know physics . . .

by Roman Vinokur

v - .-;'L''t '7 zu /2'

Figure 2
Statics diagram representing a
static ally indeterminate pr oblem :

three unknowns and only two
equations.

in the form

Fl = F|L

(because the torques about the cen-
ter of the log are equal), or

Fr, = F,

and

F, + Fr+ Fr: W
(the weight 1// of the
beam equals the result-
ant of the forces F1, F2,

and F3). The physicists
arrived at two linear
equations (1) and (2)
with three unknowns.

I lSvt

Figure 3
leff's model: a log consisting of two similar pieces.

The number of possible solutions in
such a case is infinite. For ex-
ample, Fr: F, : 0, Fz: I4l (that is,
one person works hard, the others
rest), or F,.=Fr:W12,Fr:0 (where
the previous situation is reversed).
Of course, the "fair" solution
Fr = Fz: Fe = Wl\ also holds true.

Later the physicists learned, af-
ter looking in some textbooks,
that such a problem is called staa-
cally indetetminate.I should also
mention that the physicists were
quite young. In fact, they were just
first-year students of physics, and
the author was one of them.

"Well," said |eff, "I know what
to do. Let's consider the log as be-
ing cut in haif. Now we have two
similar logs. Let Roman and Peter
support the outer ends, and I'11
stay in the middle, carrying the
inner ends" (fig. 3).

"The problem has only one solu-

NCE UPON A TIME THERE
were three physicists carrying
logs to build a house (fig. 1).

Their shoulders ached, but no-
body complained. However, physi-
cists are physicists, even if they're
doing a backbreaking job. One of
them raised an interesting question:
which position under the log-front,
middle, or rear-bears the brunt?
They stopped to draw the statics dia-
gram (fig. 2) on the ground. The log
was considered a straight, uniform
beam. Three supports (the shoulders
of the carriers) were assumed to be
equally spaced (a distance L apartl,
and the middle support was exactly
under the beam's center of gravity.
The iog was assumed to be horizon-
tal, so that the forces Fy, F2, and F,
at the supports are vertical.

The fundamental equations for
static equilibrium could be written

Figure 1

Three physicists carrying a 1og. They
look similar, but they aren't (see
below).

(1)

12)

oc
o

o
O)
C)

c/)

_o

AlSw
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Figure 4
Roman , modl- :...r..1i. -:t put in
plar iu,resJ /-ij .-. -':

tion," |eff continued. 'Each of you
two creates a force oi It- -1, and I
have to withstand a ioad of
ZlWl4) = W12, because I carry two
ends simultaneoush-. Am I right?
Certainlyl So the onlv solution is
I, = Fa =W11, F. = It-l The guy in
the middle has to rrork harder. Oh,
well-I guess the middle rvay'isn't
always the bestl"

"Cive me a breakl" Peter ob-
jected. "I've been both in the middle
and in the rear, and I felt no differ-
ence. I think r-our model may be
flawed, fefil Marbe it's not such a
good idea to'sp1it'rhe log. What do
you think, Romani "

"I'm not sure. ' I sat d. "But I think
we need to denr-e some additional
equations that allow for the defor-
mation of the 1og and the carriers. It
won't be easr- . . ."

Here's rr-har rr-e managed to come
up lvith.

Since wood rs stiifer than a hu-
man body, we assumed that the
log is absolutely rigid 1it undergoes
no deformation at all). On the
other hand, the carriers were mod-
eled as simple springs with spring
constants k1, k2, and k, (fig. a).
From the viewpoint of mathemati-
cal physics, the model strikes me
as pretty true to life: the stronger
the carrier, the bigger his spring
constant.

If al1 the springs were initially
the same height, their deforma-
tions x1, xr, x., after loading are lin-
early related:

^r 
f i r

(see figure 5). Such a simple rela-
tionship holds because the 1og is
considered straight and rigid, and

Figure 5
Linear relationship of spring deforma-
tion.

the middle support is the same dis-
tance from the front and rear sup-
ports. The deformationsxrr xz, arLd
x3 were assumed to be small to
prevent the 1og from tilting signifi-
cantly. In this case, the horizontal
components of the forces are rela-
tively insignificant and can be ne-
glected without grave conse-
quences.

Using the well-known spring
equation Fr: k;., (where i: 1,2,31
and equation (3), we got

F, _\lkr+Frlk, ,,,i- z t4l

After solving the system of three lin-
ear equations (1), (2), and l4), we ar-
rived at the final solution:

4=4= zkrk3
W

4krk, + kr(k,

kr(ft, +kr)
* kr)

4kkr+kr(( +kr)

The expressions obtained
looked a bit cumbersome and so in
need of further analysis. As a start,
we briefly reviewed the simplest
situations.

If the springs are identical
(k, = kr: k3), our equations give
Fr = Fz: Fe = I4fl3. Thus the load
is equally distributed among "uni-
forrr," carriers. But what if one of
the carriers has fallen?

Let's consider the situation when
the middle caruier falls out of the
picture (fig. 5). Now k, : kB, k2: O.

It follows from equations (5) that
F, = 0 and Fr : Fe = W 12. (By the way,
in the case of two carriers, the prob-
lem is staticaliy determined and can
be solved without using equation
(a).) So the load on the front and rear
carriers becomes 50Y" greater than
in the three-carrier case.

If the front canier falls (fig. 7), so
thatkr= kr and ka = 0, the result ob-
tained from equations (5) seems para-
doxical: Fr: Fr= 0, Fz= W. Heaven
help the person in the middle! A11 the
weight is now on his shoulders. If the
rear carrier fiies to help by pushing up
that end of the 1og a torque is 

"."rt"d,rotating the 1og clockwise. So the 1og
would move out of the equilibrium
position. . .

Naturally, a similar scenario un-
folds if the rear carrier falls down.

At this point Peter and |eff recalled
that they were not "uniform." feff
was twice as strong as each friend (he
was a weightlifting champ).

"Okay!" Peter said. "Let one of
the spring constants be twice that of
the other two. You're a giant of a
man,leII, and we both admire you
greatlyl"

We analyzed two cases: (1) with
|eff in the middle and (Zlwith |ef{ in
the rear. In the first case, k, : k, and
kz: 2k1. Applying these relation-
ships in equations (5) we got

Figure 7
Loss of front carrier.

0ll[ilIllit/Ar T1lt BLrct(00AnI

w. (s)

(3)

H
Figure 6
Loss of middle carrier.
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Figure 8
leff in the middle: he's twice as strong
and bears twice the bwden.

F, : F, = W 14, Fz= W 12 (fig. 8).

"Hey, that looks familiart" lefl ex-
claimed, smiling. "My initial model
proved to be incorrect, but I'm still in
the middle, bearing the brunt!"

"We11, not only you," said Peter.

"Look, in the second case (fig. 9) we
have kr: k, and \ = zkz. As a resulg
F, : F, :o l rrW, andF, =3 I rW. So when
I moved from the rear to the middle, I
felt no significant fifference, because
3 I ,rW =0 

.27W is only a little brgger than
0.25W. |eff e4perienced a more signifi-
cant change: alrrw 

= 0.36W rather
than 0.514/. So, we were both right,
|eff! That's why you felt a difference

ahout ai(t't /..,r' rlvvt\ a'{ou't u'*' 
'

alau,t allw

Figure 9
Peter in the middle now: he feels no
differcnce (but leff and I did).

between the rear and middle posi-
tions and I didn't. Once again we see

the importance of learning physics!"
"And the importance of having

good friends," I said.
This happened long ago. Now

we're able to solve any statically
indeterminate problems, but as for
carryinglogs... O

Roman Vinokv is a physicist specializ-
ing in mechanics. A graduate of the
Moscow Physico-Technical Institute,
he works as a test engineer at Valeo En-
gine Cooling in lamestown, New York,
(This article is based on an actual oc-
cunence.)
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MATH
INVESTIGATIONS

The Equalizel' ul a trialtule
A clever line that does double duty

by George Berzsenyi

the basis of the figure above, it may
seem that some tri:ngles can have as
mar.y as six equalizers. For exampig
fi CP < CA and CQ < CB, then one
can reverse P and Q (that is, reflect
them in the bisector of zACAl, arfi
the same may be done when P and Q
are located on the other two pairs of
sides. However, I strongly believe
that three is the upper limit for the
number of equalizers.

To analyze the situation via fur-
ther computer experiments,let a, b,
c be the lengths of sides BC, CA, AB,
respectively, and assume that
a 3 b <c = 1. Then there is a one-to-
one correspondence between these
" scaled" triangles and the points (a, bl
of the plane that lie in the region
bounded by the lines x + y : l, x = I,
and y = v. Consequentiy, by introduc-
ing a fine mesh in the x-y-plane, one
can plot those points whose coffe-
sponding triangles have ong threg or
any other number of equelirers.

To simplify our further discus-
sion, let PC = p and QC = q. Then
the requirements for PQ to be an
equaLizer can be expressed by the
conditions

1
P4=|ab

and

t,p+q=1@+b+c),

where thefirst condition comes from
r /2pq sin C : 'lrlr /rob sin C) and the
second one from c + (a - pl + PQ +
(b - ql = p + e+ PQ. Therefore, one

may recognize p and q as the two so-
lutions of the quadratic equation

,'-!(o*b+c\r+!ab=0.2\ ' 2

Letting s : (a + b + cllL, it follows
that

p, q=;(s*l? -nu)

Clearly, one must have s2 > 2ab, as

well asp < a andq< b. Similar ataLy
sis applies to the other potential
equalizers as well.

The present investigation was
prompted by a nice problem posed in
the 1988-89 Scottish Mathematical
Challenge. For more information
about this wonderful program the
reader is referred to my "Problems,
Ptzzles, and Paradoxes" column in
the Spring 1997 issue of Consofiium.

In closing the present column I
wish to point out that there is also a
three-dimensional analogue of the
equalizer. Hence my final challenge
is: Prove that for any tetrahedron
there exists a plane which cuts the
tetrahedron into two patts with equal
volumes and surface areas. Sure1y,
many of the questions asked about
the equalizers of the triangle have their
appropriate analogues for the tetrahe-
dron, and should keep my readers busy.
Please send your findings to me c/o
Quantum, I 840 Wilson Boulevard,
Arlington Y A 22201-3000. Perhaps
they will generate further discussion
in a future column. O

ET ] BE A LINE IN TItr, PLANE
of LABC. We will say that I is
an equalizer of LABC if it cuts
the triangle into two parts

whose areas and perimeters are
equal. For instance, if in the figure
shown below,

arca(CPQI = area(PQABI

and

CP + PQ+ QC : PQ + QA + AB + BP,

then we say that PQ is an equalizer
of LABC. My first challenge to my
readers is: Prove that there is an
equalizer for every triangle. I recom-
mend a carefully executed continuity
argument to accomplish this task.

One can also observe that some
triangles can have as many as three
equalizers. However, on the basis of
some computer experiments con-
ducted by -y friend and former col-
league Professor Emeritus Herb
Bailey, it seems that there are no tri-
angles which have exactly two equal-
izers. Hence, ffiy next challenge is:
Prove or disprove this claim. More-
over, I hereby challenge my readers to
prove or disprove that no triangle can
have more than three equalizers. On

C
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Vapor cones and vortices rn a boiling liquid

by T. Polyakova, V. Zablotsky, and O. Tsyganenko

HERE'S NOTHING EXOTIC
about a boiling liquid. You en-
counter this phenomenon just
about every day. It may seem

that nothing new or surprising could
occur when ordinary water boils.
But actually this is a rather compli-
cated and multifarious process/ one
that is still not fully understood.

This article deals with boiling
water that is rotating. We'll begin
with the description of a very
simple experiment anyone can do at
home. Heat up some water in a cy-
lindrical vessel with a radius of
about 10 cm and a height of
25-30 cm. |ust when the water be-
gins to boil, stir it vigorously to set
it in rapid rotation. The surface of
the water wiil take on the shape of
a paraboloid of revolution, and the
angular velocity will decrease
gradually as time passes due to the
friction between the water and the
vessel wall. However, if we apply
heat in a small area at the center of
the vessel's bottom, we'Il see aYery
strange picture. Boiling will take
place only at the center of the bot-
tom, and a large number of bubbles
will quickly ascend along the axis of
revolution. Then a column of vapor
bursts through the surface of the
watert and the characteristic noise
and splashing of a boiling liquid oc-
cur. Immediately after this the wa-
ter level near the cyiinder's wali
drops, and the velocity of rotation

IN THE LAB

$lil'l'inU tlp huhhles

increases. Then the angular velocity
decreases and, after a period of 1-2 s,

the cycle is repeated. The time de-
pendence of the angular velocity of
rotation of a boiling liquid is indi-
cated by curve A in figure 1. The
other curve B shows the angular
velocity of a nonboiiing liquid.

If you tried to do this experiment
yourself and failed, don't give up.
Try it again, changing the intensity
of the heat or altering the water level
in the vessel. This phenomenon is
very sensitive to the heating condi-
tions. The experiment is easier to
perform if the heat is supplied by a
gas burner.

At least two questions arise
when we compare curves A and B.
First, why does the boiling liquid
have an oscillating angular velocity
in contrast to the nonboiling one?
Second, what does the period of os-
ciilation of the angular velocity de-

ro (c-11

24
Figure 1

20

16

t2

8

pend on? To answer these questions
and understand the nature of the ob-
served phenomenon, let's first ex-
amine the main features of the boil-
ing process in a liquid heated from
below.

Boiling is the process of intense
vapor formation, characterized by
the continuous generation and
growth of bubbles inside the liquid,
which ascend to the surface due to
the buoyant force. A very important
parameter that affects how the boil-
ing proceeds is the so-calledthermal
head LT : Tt- 7., where ?, is the
heater's surface temperature and {
is the liquid's boiling point. There
are three types of boiling, which de-
pend on the value of lT: nucleate,
transitional, and film boiling. In addi
tion, if all parts of the liquid have the
same temperature 70, which is equal
to the boiling point, such boiling is
called saturated. When 7, < d, and
the boiling takes place only near the
heater, this is nonsaturated (or
underheated) boiling.

Nucleate boiling is usually di-
vided into four basic stages. For wa-
ter being heated in a metal vessel, -the first stage is observed at B

AT: 10-16 f, which is referred to as {
the region of separate bubbles. This !
stage is characierized by the exist- €
ence of individual active centers of $
bubble generation. Bubbles of vapor >r.

sticking to the bottom of the vessel I
do not interact with the other f

52 il[Rr[/APRr.1ss7

8 10 tz tlcl



Jsi.ui:n\a J
+'\!J

'"r.".,,....' 
_rra
i
i.\\

-_- iI
'.#.{ ,i :{"

,rht.r,i
, I " 1.,',.,i,: ,+., ,.. }

:' r a ^''
,.'. - $'-

'r.r,l.- 
o

.S --.--"-

\,,-
"! 1... ..,. _t'

i . ', "'^,,,-
,il ;
a 'r'u*.-..r

I ",.iJ-.!

ir',,-
\J ."

J'q

{i"'*': {.e i i
i\ tr $i 1

" Lt \"".^r f \
., iffi,,"1 '
#Et r'-.. \
wffl i-' I

" i*'r'\'{ -
t.vt \- !." '\'\ 't\ .=,-. :- * , -.

,, , L_/., ,
,i J I-,l;,' n:*""',;' ?*",

i /f,- =r*"q
I\

iW
h'"$
ffi,s
{/:

::r
i
'1 i

J:'

{i

=-.{-
I
t
a

eflmr

-./ a.*?

;."



o
o

o
o
o

o
o

o
o

bubbles heading upward. Every ac-
tive center is surrounded by its own
"zone of influence" whose radius r
is equal to.the diameter of the
bubbles when they break away from
the bottom (dn). Similarly, the influ-
ence zone of the rising bubbles is a
sphere of diameter 2dr.Thenumber
of active centers on the vessel's bot.
tom increases with AT, while the
distance between the neighboring
centers decreases. When the average
distance between adjacent centers
approaches (approximatelyl 2d n, the
second stage of boiling begins.

In this stage, continuous chains
of bubbles (rather than individual
ones) are generated at some active
centers-that is, the vapor columns
arise from the interaction of indi-
vidual bubbles. A further increase in
ATcauses bubbles to merge not only
within the same column but in ad-
jacent centers as well. Several col-
umns produce a unified structure
called the "vapor cotte," which
marks the beginning of the third
stage of boiling. Now a large
amount of vapor is rising from the
heated surface. Usually the vapor
cones are connected to this surface
by a large number of vapor stems.
When a vapor cone grows large
enough, it breaks away from the
bottom and rises.

The fourth stage of boiling begins
at LT = 22 K for water and lasts un-
tllburn-out occurs. At this stage the
cone/s stems merge to produce a

vapor cloud that touches the heat-
ing surface. Thus at this stage of
boiling there are some regions of
film boiling.

Now let's return to the enigmatic
oscillations of the angular velocity
of boiling water.Let the liquid rotate
as a whole (that is, like a solid body)
with an angular velocity rrl. It's easy
to show that in this case the free
surface is described by the following
equation:

o2Z-Zs= uLr2, (1)

where g is the acceleration due to
gravity , z is the vertical coordinate,
zo is the value of z along the axis,

Figure 2

andr is the radius of the bubble col-
umn (fig. 2). Since the pressure of the
liquid acting on the vessel/s bottom
is P: gz, equation (1) yields the de-
pendence of the pressure at the bot-
tom on the distance from the axis of
rotation:

P = P^ *Pa2r2 . 0l,_,0, 
2 , 121

where Po is the pressure at the cen-
ter of the bottom and p is the liquid's
density. If a bubble of radius R is
formed in the rotating liquid, it can
grow only when the pressure inside
the bubble (P6) is larger than the sum
of the external pressure (equation
(2ll and the extra pressure under the
curved surface of the liquid (the
Laplace pressure). The latter is equal
to 2o f R, where o is the coefficient of
surface tension. It follows from
equation l2l that if the temperature
of the bottom surface is the same
throughout, the bubbles generated
at the center of the bottom enjoy the
best conditions for growth. In addi-
tion, the linear velocity of the rotat-
ing liquid increases at larger dis-
tances from the axis o{ revolution,
which is also unfavorable to bubble
$owth. If any bubble appears at
some distance from the center, the
buoyant force pazrV (where V is the
bubble's volume), which is directed
toward the axis of rotation, it will
move to the center.

We've come to the conclusion
that in a rotating and boiling liquid
all the bubbles should concentrate
near the axis of rotation. Now let's
examine in greater detail the condi-
tion leading to growth for a bubble

located at this axis. To characterize
the degree of vorticity of a fluid flow,
a special physical parameter is intro-
duced-the circulation f. In the vi-
cinity of the bubbles under consid-
eration, the circulation is not
zero-it equals

| :2naR2.

The presence of a nonzero circula-
tion means that the bubble (strictly
speaking, its "equator") is affected
by the negative pressure from the
liquid, which is related to the circu-
lation by the {ormula

. pro2R' pf'
- | 2 gnzP.z'

The condition for bubble growth is
met when Pb> P' where

P, = Pn*?--PL {31ruRBr2R2r"/

Taking different values for the
circulation I as a parameter/ we can
derive the set of functions P,(R)
shown in figure 3. The curves indi-
cate that an increase in the circula-
tion provides better conditions for
bubble growth.

It's interesting that the pressure
from the liquid caused by its rotation
about a bubble acts counter to the
Laplace pressure. For example, in ro-
tating water the in{luence of the wa-
ter on the boiling process is entirely
counterbalanced at f > 1.5 cmzf s.

This means, inparticular, that one can't
superheat water that has vortices
with this value for the circulation.

f, - Po (atm)

_J
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From our previous discussion and
from figure 3, we can conclude that
a vortex with an arbitrary value for
the circulation can be a possibie cen-
ter for bubble generation. Such cen-
ters do appear in our experiment
with rotating water. As the tempera-
ture of the water in the cylinder
To . T, (that is, we're dealing with
underheated boiling), boiling centers
can be formed only near the bottom,
where the circulation is greatest.
Since the boiling point is deter-
mined by the condition Pb(T.) = P1,

then in accordance with equation (3)

and figure 3 the boiling point is
lower at sites where f * 0 than at
sites where f : 0. This means that
the value (71 - 7r) can be much
Iarger at the center of the bottom
than elsewhere.

If the thermal head at the center
of the bottom reaches A7= 16-20 K,
the second or third boiling stages
begin, depending on the value of l.
In our experiment the third stage
most likely occurs. The vapor cones
generated at the bottom rise along
the axis of rotation and merge, pro-
ducing rather large vapor cavities
that ascend to the surface. When
such a vapor column breaks at the
center of the liquid's surface, the
surroundi.ng "cotd" surface water
(70 . 7") rushes into the hollow cav-
ity. The water moves downward,
swirling like water going down the
drain in a bathtub. At this moment
the angular velocity of the water's
rotation increases, because the mo-
ment of inertia for the system de-
creases when water moves from the
wall toward the axls of rotation.l
Cold water entering from the sur-
face is quickly heated inside the cyl-
inder to a temperature that allows
the vortex to again become the ac-
tive center of boiling. Large vapor
cavities form anew at the axis of ro-
tation, which push the water to-
ward the wall of the vessel, thereby
increasing the moment of inertia for
the system and decreasing the

lYou ma}
COnSerYaLl:1: :
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angular velocity of the water before
the vapor column breaks through
the surface.

Thus we can provide a vety
simple answer to the first question
posed at the beginning of this article.
The angular velocity of a nonboiling
liquid decreases monotonically due
to friction with the vessel's wall-
just like figure skaters who don't
change the position of their arms
during a spin. On the other hand, the
angular velocity of a boiling liquid
does vary, as with spinning figure
skaters who periodically spread
their arms and draw them in.

It remains to explain who coordi-
nates the motion of the figure
skater's arms-or/ in other words,
what determines the period of oscil-
lation o{ the angular velocity of the
boiling liquid. According to our pro-
posed mechanism for the oscilla-
tions, their period is equal to the
sum of the time t, of vapor bubble
ascent and the time t, it takes for
water to drop from the surface to the
bottom. It's known that large
bubbles (R > 0.1 cm) rise in water
with a veiocity v = 30 cm/s. So the
time it takes for a bubble to ascend
is t, = zolv 

= 
0.7 s. It isn't so easy to

find the value of t, because the wa-
ter moYes downward along a com-
plicated path. However/ we can ob-
tain a rough estimate using the
formula H = gt2l2 for free fall. At
H = 25-30 cm, this equation yields
tr=O.3 s. Thus the period of oscilla-
tion is

T=tr+tr=ls,
which is in good agreement with
experimental data.

It's also interesting to see how
boiling of underheated water occurs
when the circulation in the vortex
is small. To do such an experiment,
the water needs to be rotated rather
slowly before boiling begins, and
the phenomenon should be ob-
served by illuminating the water
with a lamp. If the rate of heating
isn't very high and the heat source
is small enough, a separate active
center of bubble generation may
arise near the axis of rotation. In
this casg the second stage of boiling

can be observed when the bubbles
merge in the vertical direction,
forming aYapot column. Naturally,
when the vapor rises to the surface,
no change in the angular velocity of
the entire system occurs, because
both the vapor source and the boil-
ing mass of water are too small.
However, a tiny eddy can be seen at
the center of the water's surface,
which casts a shadow on the bot-
tom of the vessel. (The whirlpool
produced on the surface forms a lens
that scatters the light from the
lamp.) This means that after the va-
por column breaks through the sur-
face, the cold water runs downward.
Indeed, about 0.5-1 s after the eddy
appears/ the boiling center stops its
activity, but in a few moments the
whole process begins again.

In this article we considered only
a few aspects of nucleate boiling, but
they were enough to help us draw a
number of important conclusions
about the nature of this remarkable
phenomenon. o

lflltat$ happeltinU?
Summer study ... competitions ... new
books ... ongoing activities... clubs and as-
sociations ... free samples ... contests ...

whatever it is, if you think it's of interest to
Quantum readers, let us know about itl
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

ltll]tat$ olt yoil'lniltd?
Write to usl We want to know what you
think ot Quantum. What do you like the
most? What would you like to see more
of? And, yes-what don'tyou like about
Quantunft We wani to make it even bet-
ter, but we need your help.
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Quantum
National Science Teachers Assoc.

1840 Wilson Boulevard
Arlington VA 22201 -3000
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-SQ UARING THE HYPERBOLA"
CONTINUED FROM PAGE 31

need only take a comparatively smail
number of terms in the equation

x2 xn
e^ =I+X+-+...+-

2l n!

(this is important for work with com-
puters). Second, this representation sug-
gests a more insightful approach to the
exponent-for examplg it allows one to
prove that e is an irrational number
(see problems 11 and 12 below). We'Il
prove equation (17) for x > 0 onlY.

Set
l :fl/ X\T,(x)=l t+:1
\ n/

and

-r2xnS-lxl=I+x+-+...+-.,\ / l.Z nt

We need to show that

tim S,(x)= expn.
n+- "' '

The binomial theorem gives us

On the other hand, if we get rid of
all but the first k terms on the right
side of this inequality, we get

If k is constarrt andn grows to infin-
ity, the right side of this inequality
converges to Sr,(x), since every factor
in parentheses tends to 1, while
(l + xlnln approaches exp x. Finally,
we have

exp x, S1(x)

for all k-that is, the sequence S1(x)

is bounded above and (for x > 0) in-
creases. Therefore, it has a limit, so

that

IimS,,(x)=l+x *t*tz-- ^t ' 21 3l

*k+."+-+...<expx.
k!

From equation (18)we find (proceed-

ing to the limit for n -+ -) that

IimS,(x)2 expx.
n+@

It follows that

t,
tf

expx
..2 _,n

= l+x+ ^ +...+ ^ +...
2l nt

1. (a) Prove the inequalities

".rn(t*I).,n+x \ n,l

l* , -n, where n is a natural number).
(b)Use them to verify the equation

2. Find the following limits:
(') 11:{n'

{b) lima;' ' ns* 2rt

(c) hmltl;
n+* n

(d) rimP.
n+_ {fl

3. Find the areas of the curvilin-
ear trapezoids defined by the func-
tionsy=axandY:logrx.

4. Find following limits:

(a) timf I + I 
+' ' ,--\ n+1 n+2

{b} ti-f 1 * I *...* ' )." r--[n+x n+2x n+nx )

5. Prove that

rl 111
-+-+... +- < lnn < I+-+... +-.23nZn

5. Prove that the sequence

a- =L*1*1*... + I -ln(n+1)-'rr23n\/

converSes.
7. Prove that

8. Find the slopes of the tangents
to the curves y : a' and y: logo x.

9. Find the limit

lrm n(+E - r).
n+6 \

10. Use the geometric definition
of the logarithm to verify the in-
equalities

2* .ln(t+x).*\**',)2+x \ / 2(x+1)

for x > 0 and use them to show that

*2,r22x-;<ln(l+x)<x- , *r".

1 1. Prove that

x'e*(-
(n + 1)!

forx>0.
12. Use problem 11 to prove that

number e (a) is irrationaf (b) is not a so-

lution of any equation a* + bx + c:0
withwhole coefficients (a ,0). O

Pl'ohlems

l,t * l)' > r + x-,. l,r - 1)4
I n/ ( n/21

* *(,-+)('-;l'")* 1)..+_ l.
2n )'

l,, *t]"\' ",/

, x n(n-l\ x2
= r t - 

- 
r ----l----------a 

-n' 1.2 n2

r-1+ 1- 1...=1r2.
234

o<e* -(r***" *...* "')
[ 2 nt)€xpX=rirrrfr-I]"n+_\ n )

xn
+... +-

nn(, r)tI-- I

- l n) .
=l*x+' x'

t.2

l,_1) [,_31)t, n) ( n )_-p-kt
xn

+... + 
-.nn

A11 the numbers in parentheses on
the right are less than one. If we re-
place all of them with 1, the right
side will increase, and therefore

. s("). (18)
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fraclalfitlania
Sofnvare and book
by Phil LaPlante
McGraw-Hill, Blue Ridge Summrt,
PA 17294-0850
$2e.es (PC)

The beauty of fractals is in the
images created. In print and on the
computer, LaPlante has produced
many of the basic images students
usually use to study fractals and
chaos theory. Test material concisely
defines terrns and discusses concepts
of fractals and chaos theory by using
examples effectively. The program-
ming and math code used to produce
the computer images are printed in
hard copy. Given the proper com-
puter tools and a sufficient back-
ground in math and computer pro-
gramming, a user can manipulate the
programs. This leads to an under-
standing of a basic concept of
fractals-slight changes in initial con-
ditions iterated many/ many tinies
lead to dramatic difference> in out-
put. This sensitive dep.rendsr.. ...
initial conditions is a rheme rhat
unites unstable svsretrrs, iracra]s, ani
chaos. Chaprers rn the text rnclude
"Foundations oi Chaos and Fractal
Theory," "Chaos and Fractals rn Na-
tttre," and "simulated Fractals and
Chaos." The appendixes include an
explanation of Turbo Pascal graphics.

-\s suggested by the author, the
r-r: and so{tware can be used to
.*:: .:::-lr COUISeS in PaSCal pfO-
i:,-:-.-:--:-. :':.ia1cu1us, geometry/
.:,: - : - ,,i:t .t-,:l-as. The software

'-1 l: -i:- : :-. - :- .--, ateaChef
'...:.- .- - - ".. -]-:-I-
ti:, : '

HAPPEN INGS

Bullelilt Board
benefit Irom this material. Under-
standing the formulas can help un-
lock some of the mysterioLls beauty
of the fractal images. A strength of the
materials is that a uscr can explore
the "what if" possibiiities by chang-
ing the algorithms used to generate
fractals. Users will certainly enjoy the
many fr-rlia sets produced.

For the science teacher, the ex-
amples are a l"lit weak. However, the
study of chaos theory and fractals as

it applies to science is a new study
with great possibilities, as can be seen
in the chapter "Chaos and Fractals in
Nature." An explanation oi self-simi-
larity using a coastline does not
clearly iilustrate the concept. A wolf-
caribou relationship is graphed with
the aid of a Lotus 1-2-3 spreadsheet.
A user can manipulatc s()lnc \.i1ri-
ables, but, as in any natural s\-srillf
not all variahle> altcctin{ p, rl. -,r :'

can be factorecl in,
]t i> intri.Lrrn: r ,.-- .:.- -.: - .

sirtrpl. rtt.tt1t.:t:.:: -..- - .:-: :
.ltt.. -Ln::r-..-: -: :r.:.-.--,.---- \-
lll'.i : .,:-::.-.--.: ..:-::f.-- ..'li:
F\.\ -- ,-- .,.' ,.:: i:'.::.1- r1t-ti-i,'f
r1.1t,Jr-; .r:L- pr,t,!11,ai,1 rrtth some suc-
-... 1'LtI rr tak.. a l.tt oi rlnaglnatir)n
to see the images rn other scenes.
The problem of accurately predict-
ing the \,veather is discussed, as are
problems in predicting stock prices
and fluid dynamics.

Programs arc written using
Borland's Turbo Pascal 5.5 compiler,
and they require an IBM-compatible
PC with an Intel 80286 processor
and an EGA or VGA monitor. lJsers
rvith Turbo Pascal 5.5 can modify
the programs and discover that
;leuqing one line rvill lead to vastly
.i.::;r;lr results. This provides great

which is very useful for introductory
work in fractals and chaos theory.

-Carol Houck
Broward County Schools
Fort Lauderdale, Florida

tntomolouical Cytel'Teasen
Sometimes the long way around is

the shortest way there. At least, that
was the case with the March/April
CyberTeaser (brainteaser 8200 in this
issueJ posted at the Qurllturl \\-elr
site. Here are the first 10 respsn.ls1,t
who submitted a correct !trls\\-erl

Matthew Spencer St;rte C.,L,tic
Pennsr'1r-ani:r

A, S. Sudheesh B.in:.r.. :. i:t::.:
Robin Damion \ ,::-:::::-:::: ::::-..:li
Bob Lind T : .. .'..-- -. -
Sinton.r \ilolor.i : --t'... r..-i. i--r'....1
Oler Shplrko C-.::----:-::.',i-,..-::::---

:a:::

Jnn.rth:n Drror -...--..-." ..'..=-
Peter Difir-rre -..-... ::'.:--. \-t::t

Charles Kehoe ii-r::::; K:r:::s
Iim Paris D r:. -t::,- -,tn. Pe nnsr 1r-anra

The se iollis rri1l receir-e a Qttttntttttt
button and a cop,v oi this issue. A11

those u.ho submittecl a correct an-
s\rer \\rere eligible for a drawing to re-
ceive a copy oi Quttntttnt Qttanda-
ries, ottr collection of brainteasers.

One person almost slipped
through a loophole in the staternent
of the problem as posted on the Web
(we closed it in the print version).
While most of our entrants assurned
that one ant wouldwalk to the other
ant, this contestant took advantage
of our loose wording and assumed
that the ants could fly (and some
ants do fly-for a while, anyway).
But he made the fatal mistake of not
explicitly stating the actual dis-
tance-he just described the path.

Let's hope our current CyberTcaser
is airtrght. You'll find it at http:ll
\11-\r .nsta.org/contest.

ities for interaction and

!!I\TU[| llAPPININGS 5l

the p: :--:
careiu 

--.' 
: rt -- - : -

ming cc;.. -:
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40 Type o{ equation
41 Aquatic plant
42Llke some iron
44 Horses

45 Middle East country
46 And so on: abbr.

47 Seed proteins

50 Cyclotron-reso-
nance maser

55 German title
56 Fuming sul{uric

acid
58 

- 
Descartes

59 Leave 

- 
Beaver

60 Sodium: comb. form
61 Interested in
52 British archaeolo-

gist 

- 
Garstang

63 Biological stain

64 Anthropologist
Carleton 

-
Ioum

1 Carbamide
2 Exploding device

3 Ad phrase

4 Math. course

5 Degraded

by David R. Martin

gi,.2
-C5

Acnoss

1 Shady mountain
side

5 703,149 (in base i6)
l0 47,821(in base 16)

14 Brazrlian novelist
Toao Guimaraes

15 Cosmologist Sir
Hermann _

16 Nautical attention-
getter

17 Mathematician 
-Artin

18 699,818 (in base 15)

19 Placed

20 Ordinate's compan-
ion

22 Quality of sound

24 Western Indian
25 

--Einsteinstatistics
26 Worked hard

29 Geologic period

33 Happen
34 Varnish ingredient
35 Reciprocal ohm
36 The thing here

37 Type of acid
38 60,141 (in base 16)

39 Billion years

6 Anthropologist
Erarrz 

-7 fournalist Carr Van

8 Computer language

9 Simple molecular
form

10 

- 
series {of

spectroscopy)

ll Moby Dick charac-

ter
12 Coconut husk fiber
13 Unit of force

21 Roman road

23 Book's ID
25 Alkaline
26Type o{ pole

27 Biochemist Severo

28 Cake topping
29 oxide (CeO^)

30 Real or virtual
follower

31 In front
32 Points of minimum

disturbance
34 Large thrush
37 Methyl ethyl

ketone

38 Like some motors

40 Bird nostril's
covering

41 10-18: pref.

43 CN4(C6H5)3CH

44 Sunday speech

47 Alphabet run
48 Apollo's mother
49 Norse goddess

50 Obtains

51 Soviet cosmonaut

_ Cagarin
52 Gambllng town
53 Aware of
54 Elemcnt 10

57 

--tzu 
(Chin.

philosopl-rerl

SALUTION IN THE

NEXT ISSUE

SALUTIAN TO THE

J AN U ARY/F EB R U ARY P U ZZLE

J 4 6 9 10

13 t4 15 16

t7 18 l9

z0 2I z2 t3

27 28 z9 30 32 )J )4

35 36 38

39 10

42 13 +4

45 46 47 48

1 52 53 54 )ll 55 57 i8 59

50 1 62 63

54 'Js 65

57 68 69

E G A D A B B D S C

D o C E S C R E E M M H C

D R E w T H I E F E B A E

Y E L P E E G I L L I T E

E L L I P S E T I S S I L E

L A i N E P A R T S D I E

I S N T D o N E E D E M E

F K E I D E O I S N E

L I N K A G E N M A T I C

D U ? L E T B E o B A N

S L A V R E C U R M A Y o

T A T I o w I N G I B I S

M E N N E D D Y C o N E
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M196
It's clear that in the number we

seek ail the digits to the left of the
decimal point are zerost as is the
digit in the first decimal place (oth-
erwise the number could not grow
so much when we exchange the dig-
its). Let x be the number we seek,
and a the digit in the fifth decimal
place-x = 0.0* ** a* .... If we ex-
change the figits in the first and fifth
places, we obtain the number

aax+-_--- 10 10s 
.

Thus we obtain the equation

aax+ _ ---r!-=1996x,10 105

from which we get

9999a 3333
..----q

1995.105 665.105

= (o.oooosor...)a.

But a is the fifth
If we look at how

66r

M197
Certainly'.

so we crn rr:f
someposl::'.- -t__:
We Can WIII: I -

some positivc ---.i: - :' -

ANSWERS,
HINTS &

SOLUTIONS

relations we find that

Znmz +\nz
9-4mn

2n2m+3m2
't - 9-4nm

But x, y, ffi, fi arc all natural num-
bers. Thus 9 - 4mn ) 0, mn: 1, or
mn:2.In the fi.rst case, m: n = lr
from which we get x: y = 1. In the
second case, either fi :2r m = |
(which gives us x = 15, y = lll, or
n : l, rr7 = 2 (, : ll, y : l5l.

Ml98
We have

a*b=x+y+IIJ-
xy

=6*r)7! (1)

xy

AIso,

ab=xy*l* L*L.
XYYX

Thus

Thus

(a+b\2
\ / nt)

-=

ab-c+2 ''''

or, a{ter simplifying,

a2+b2+c2:abc+4.

M199
First we'll construct a case in

which six committees are not
enough. Consider a group of seven
deputies. We can number thern l, 2,
3, 4, 5,5, 7. Assume that the first
deputy slapped deputies 2, 3, and 4.
We can write this as 1 -+ 2, 3, 4.
Continuing on in this fashion, we
have 2 --> 3, 4,5; 3 -+ 4, 5, 6; 4 --> 5,
6, 7i 5 -+ 6, 7, l; 6 --; 7, 7, 2; 7 --> L,

2,3.
We can express this situation

graphicalLy, as in figure 1. The verti-
ces denote the deputies, and the ar-
rows the relations gmong them. It's
clear that no pair oi deputies can be
appointed to -.he serne committee.
Each deputr has slapped or been
sLapped in the face by every other
deputy!

N-orr- let's prove that seven com-
noittees are enough. We'lI do it by
induction on the number of deputies.

Figure 1

,rIllrtES, HlTS & s0tlJTt0ils

(* + r\2
ab-c+2

xy

Let's square equation (1) and divide
the result by equation (2). We get

lz)

:.rt-.t 5g



Suppose that it's true for arry par-
liament of n deputies. We must
show that it'must be true f.or any
parliament qf. n + 1 deputies. Take
any such parliament. Then there
must be a deputywho was slapped
no more than three times (otherwise
the number of blows received would
be greater than the number of blows
given). According to the inductive
hypothesis, the remaining r depu-
ties can be appointed to seven com-
mittees, and thus the condition of
the problem is satisfied. (The fact
that some of them perpetrated fewer
than three slaps can only make our
task easier.) But since the last
deputy slapped three others and was
in turn slapped no more than three
times, there must exist a committee
to which he can be appointed.

M200
Let O be the center of the circle

circumscribed about ABCD, Q the
center of the circle we seek, N the
point diametrically opposite to I,
and F the point where the smaller
circle touches BM. Suppose that
NK = c and x is the radius we're
looking for. We have

BIe : BK. KC = NK. KL = c(a + b).

Applying the Pythagorean theorem
to triangle BKM, we get

BIW = BI? + KIW : c(a + bl + az.(ll

We know thatBC is parallel to MQ
(since MI( and MQ are bisectors of
angles thatare adjacent and supple-

Figure 2

00

mentary). From this it's not hard to
see that trianglesBKM andMFQare
similar right triangles. Therefore, we
can write QM = lBM. QI)/MI(. Sub-
stituting QF = x, MK = a, and the
value of BM found in ecluation (1),

we find

We now write down the Pythagorean
theorem for triangle QMF, using the
{act that OQ : la + b + clfL - x,
oM : IML - oLl : lb - (a + b + cllll :
rlrla * c - bl, and the value of QM
we've found above (see equation (2)):

\2ln+b+c \l__x I

[2 )

_(o -b + c)' , *2 1 .., (3)

=t+7lc(a+b)+a')'

After a tedious but straightforward
simplification of this equation, al1the
terms containing c2 drop out. Then,
if we collect terms with c and with-
out c separately, we find

cl(a+bl*+a2x-azbl
+ azlla + blx - abl = 0.

The first quadratic trinomial factors,
and we get

cl(a+blx-ab)lx+al
+ azlla + blx - abl:0.

Then the whole left-hand expression
factors:

l(a + blx - ab)fc(x - al + azl = 0.

Setting each factor equal to zerot we
find that

ab

a+b

Figure 3

sponding rods (see the figure accom-
panying the problem). To caiculate
a, and azwe use the fact that the
acceleration does not vary when one
inertial system o{ reference is substi-
tuted for another.

Let's switch to a reference frame
moving to the left with velocity vr. In
this system the left-hand end of the
left rod (point B) is at rest, and the
right-hand end of the right rod (point
C) moves to the right with a veloc-
Lty vr + vr, while point A describes a
circle of radius frffiS.3). Thus the
acceleration a can be decomposed
into centripetal and tangential com-
ponents. The components corre-
spond to the accelerations a, and a,
respectively.

The magnitude of the centripetal
acceleration a, = t? f L2, where v is the
linear velocity of point A's motion
along the circle. At the moment the
rods form a 90o angle, the velocity
vector v is directed along the right-
hand rod. At that very instant the
right-hand end of rodAC has a veloc-
ity v, + vrdirected to the right. Since
the rod is rigid, the projections of the
velocities of its ends on the rod itself
must be equal (otherwise its length
would vary). Thus (see figure 3)

, = (rr+ v2)cos*1 -Q' :"')!' .

ffi;4
Therefore,

,. =X-k'+v'l2t? .*L Lz 
Qi *4)1,

Similarly, switching to a refer-
ence system moving to the right
with a velocity ytl we get

o, =(''*")'.t]' .*1 
(rl + L2r)r,

l2l

Physics

P196
Decompose the vector a of the

total acceleration of point A at the
moment the rods form a 90' angle
into the sum of two accelerations a,
arrd a, directed along the corre-

c(a+b) + a2.

llllRClt/APRtL 1SS7



The total acceleration is

ic )
U-\iui TU^ -\1

(v1+ v2)2 E;4
(4 * t)r,t,

The angle B formed by vector a and
the rod AC is characterized by the
formula

P197
When heated, the air will erpani

at constant pressure/ determined br-
the weight of the air column above
it. The air is considered a mixture of
two diatomic gases, ox)-gen and nr-
trogen (we neglect all orher gases).
The molecular hear capacrr\- of this
gas when heated at a consrant pres-
sure is 2.5R + R = ,1.5R \\-e need to
find only one more r-alue: the total
number of moles :: oi gas in the at-
mosphere. The pressure at the
planet's suriace :. de rermined by the
weight of rhe errire atmosphere.
Because the :hrckness of the atmo-
sphere rs iar iess than the radius of
the planer \re can neglect the de-
crease rn rhe acceleration due to
gravitr- r'-rth altitude.

If m rs rhe mass of the atmo-
sphere, S rs the area of the planet's
surface, and M is the mean molar
mass oi the gas, then for pressure
P = I atm we have

n ffiE nMg
ss

and

PS

Mg

The time r that it takes to raise the
temperature of the atmosphere 1 K
can be found from the heat baiance
equation:

3.5RnA7: NSt,

which gives us

3.5RPA7 . ^lI=-=IU's.
Mgl/

tanp= ?=(+)'

P1 98
Figure 4 shows schematically

how the gas discharge tube is con-
nected. Let's find the minimal value
of emf that saturates the current in
the tube:

€-ir=V.+1.R,

where % = 10' V andls : 10 s A (see

the figure accompanying the prob-
1emJ. Inserting these numerical val-
ues we get E-,r, = 4 kV.

In our case, the emf of the source
/. , t orn.Thus the current in the
:uhe equals the saturation current.
T::t r-,rkage 1'across the tube is de-
:-:t.i'i.,' :he condrtion Z = V + 1rR,

ir,:n r,,-hrcr rre ottain
;.'= f. - /.R = 3 k\'

The current in the tube could be
derermrned in another lvay. Let's
assurre that the current in the cir-
cuit is less than the saturated cur-
rent. In this case, Ohm's law can be
written as

.6=1(R,+R),

where R, is the tube's internal resis-
tance. It can be determined by the
slope of the linear portion of the
volt-ampere curye {or the tube (see
the figure accompanying the prob-
lem):

R, =L=lo8e.
t-

Thus

7=-J-=t5pA.
R, +R

This value is larger than 1r. There-
fore, the initial assumption that
1 < 1, was wrong. This means that
the current flowing in the tube is
saturated.

P199
The emf induced in a turn of ra-

dius r, is equal to

@ A@,
"1 Lt'

whereA@, is the change in the mag-
netic flux through the area encircled
by a turn during a short time inter-
val Lt:

= -ml Boi.r,1,t sin rof .

The total emf induced in the entire
helix is the sum of all the electromo-
tive {orces induced in the turns:

cB-!<p -S 
A@i

@-2@r-"- 
lt

= Borosinrot 2"r?

The value ru! can be eonsidered to be
the volume of a cylinder of unit height
having a bas e of areatfi .Then E ru1 is

the sum of the volumes of such cylin-
ders. Since the difference between the
radii of adjacent rylinders is small (the
number of tums is large), the total vol-
ume of all these cyLinders is approxi-
mateiy equal to the volume of a cone
of height n and base areanRz (fig. 5):

Z rr? =V =lxRzn.ta
o

A(D, = 543

= ,rri2Bo(cos[ro(t + 
^t)]- 

cosor)

-,-[. / ar\. Ar-l
= -Znr! B^l sin oll r + 

*- 
| sin ro -" I'"1 \ z) 2)

Since At is small,

( -\r)sinco t- - l=sint':t,\ 2)
.ATATsln(l]_=cD_22

Figure 5

OtlAIITU[lll/[IIISlllIRS, 01

Figure 4
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Thus the total emf induced in the
helix is

1

'8 = --,nR2 nB"ol sin olf .-uJ

P200
First we apply the lens formula

where d is the distance from the
photographed object to the camera's
obiective, I is the distance from ob-
jective to the image, and F is the fo-
cal length of the objective (fig. 6).

When the newspaper is photo-
graphed in the first instance (without
the spacer ring)where dt= a, a sharp
image will be formed at a distance

^aF+_
a-r

In this case the linear size of the
image (see figure 6) is

When a spacer ring of thicknessh
is used to increase the distance be-
tween the film and the objective, a
sharp image will be formed at a dis-
tance

-aFtz=h*h- ^+ha-t
from the objective. In this case, the
minimum possible distance be-
tween the newspaper and the obiec-
tive is

dz= frF =laP+h(a-P)lrfr-F F2 +h(a-F)

Figure 6
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d'f F'

l,=LL=L F
' a a-F

The corresponding size of the image
is

1"=LL=L( F *h).' dr. [a-F F)

Thus the ratio of the sizes obtained
on the film in the two cases is

l, h(a- r\
-=- = ---:--------J1 1 

- 
E E

LF,
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8196
We could expand out and find

that x = 1. Or we could guess at the
beginning thatx = t (it's easy to see
that this works), then note that the
equation is linear and cannot have
any more solutions.

8197
The children poured water into

the jar. The ball floated up and they
took it out.

8198
The answer to the question is yes.

There is a result in geometry that
guarantees that for any two figures
on the plane, there is a line that di-
vides both in half. If you don't be-
lieve this theorem, look at figure 7.

Figure 7

8199
The cooled oil has less volume

than the heated oil. The "yacant"
space had been occupied by air. So in
the evening the scales showed a
higher value than in the morning.

8200
Suppose one ant/ in walking to-

ward the other, tries to go toward the
barrier rather than around it (along
the edges of the square). Certainly, its
path should be symmetric with re-
spect to the barrier: if it follows two
different paths, then one must be
shorter than the other, and the longer
path wastes time. Also, when it gets
to thebase of thebarrier, the shortest
way over is a path perpendicular to an
edge that is not on the ground. If we
fold the batier flat against the origi-
nal square, we get the diagram in fig-
ure 8. Since ABCD is a square, we are
comparing a + b to b + c. Since a > c,

the path along the edge of the original
square is the shortest.

Figure B
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ELCO\IE BACK TO
Cowculations. the colurnn
devoted to pri-.b1erls best
solved with a colnFulsl ,1*.-

rithm.
It's getting harder the se tlavs to

make ends meet by sellin-e n-u1k in
bulk 10-gallon cans to the creame 11-.

The price of mill< last year took : hrg
tumble, with the corresponding der'-
astating effect on our income. Er.en-

) ear tor the past l0 years we've beerr

COWCULATIONS

BotllinU lnilk

Let them count the whey

by Dr Mu

paid a smaller percentage oi the re-
tail cost for a quart milk. It's dovr,n
now to about 34o/o of what you pa,v
in the store. Since the price oi mrlk
has not gone up noticeabl;-, the
srnall Wisconsin dairy farmer is be-
ing squeezed. Naturally, I am fan-rr1-
iar with the feeling.

Farmer Pau1, my boss and a melrl-
be r of the Wisconsin Institute ior
\eu, Entrepreneurs/ has decided to do
something drastic to raise the famiir

income. He's going to distribute our
milk himself. He plans to put the
milk in bottles, as he did years ago
when he started farming, and deliver
it door to door. A11 those beautiful
glass bottles he carefully stacked
away in crates 4Oyears ago will spring
back into service once again. In the
good old days we had long-necked
glass milk bottles. The cream that
collected at the top was poured off
and put on your hot cereal. And

C
(U

E
9

:
x
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across the side in red, was printed our
proud name-Progressive Dairy.

The other day,Farmer Paul took
a 10-ga11on can of milk and started
pouring it into some bottles he had
lying around the barn. (Remember:
2 pints : 1 quart, and of course
4 quarts = i gallon.) When he was
done, he had the distribution of
milk-filledbottles shown in the fol-
lowing table:

there is only a finite number, other-
wise devise an algorithm to generate
a generous supply.

Mathematica solution to COW 2a

We begin with the list of l-digit
primes which, of course, are all
superprimes:

superPrime [1] ={2,3, 5, 7 I
{2, 3. 5, 7}

Now let's try out our new function:

superPrime [31

{233, 239 , 293 , 3tL, 313,
3L1 , 313, 319, 593, 599 ,

1L9, '733, 139, 791)

OK, let's print them all in a table:

Tabl-e IsuperPrime [n] , {n,1,8} I
{{2, 3, 5, 7}, {23, 29, 31-,
3'7 , 53, 59 , 1L, 13 , '79) ,

{233, 239, 293, 3L1-, 313,
3L7 , 313, 3-/9, 593, 599,
1L9, 733, 139, 791j, {2333,
2339, 2393, 2399 , 2939,
3119 , 3131 , 3133 , 3'739 ,

3'/93, 3797 , 5939, 7].93,
133L, 7333, '7393 j , t23333,
23339, 23399, 23993, 29399,
31193, 3L3'79, 31337, 31339,
31391 , 59393, 59399 , 11933,
73331, 13939j, {233993,
239933, 293999 , 313319,
373393, 593933, 593993,
1L9333 , '73939L, '739393 ,

'739391,'739399j, {2339933,
2399333, 2939999 , 3133199,
s939333, 73939L3,'739393L,
7393933J, {23399339,
29399999 , 31331 999 ,

59393339, 73939133))

It turns out that there are no super-
primes with more than eight digits:

superPrime [91
{}
The primeQ functron rn ]'lathe-
matica 3.0 rs r-en'fast and known to
be conect ior anr-r: . 1.5 1010, which
rs tar ber-ond the nr-rmber of a1l the
corr's that er-er hved. For those pro-

Srammlng rn C or Pascal, you'll need
to \rrlre )-our own primeQ function.

Solutions in C

Kemy Brazier, a lOth gader at Pin-
errood School in Woodland Park, Colo-
rado, submitted the following primeQ
function, called chkPrime, in C. It's
good to n < 2,L47,483,647 =231 - 1:

ints chkPrime(long n)
(

long i;

for (i = 3i i*i (= rrii += 2)
if ( (n *" i) == NULL)

return 0i
return 1;
)

The 2-digit
superprimes are

constructed
from the l-digit
superprimes by

Flmmm, I thought, this is interest-
ing. How many ways is it possible for
Farmer Paul to distribute a l0-gallon
can of milk among the bottle sizes
that we have displayed above? Two
distributions are the same if they fill
exactly the same number of bottles of
each size. I want to know the number
of unique ways. But if you can solve
the problem for 10 gallons, surely it
would be just as easy to solve it for 20
or30 or evenNgalions. So that's it-
that's your "Challenge Outta Wis-
consin/// or COW, for this issue:

COW 3. Find an efficient algo-
rithm to cowculate the number of
ways of pouring N gallons of milk
into bottles of the sizes found in
farrner Paul's milk cooler.

You can e-mail your cowculations
to me/ Dr. Mu, at drmu@cs.uwp.edu.

Our milk is exceptional, of
course/ and we guarantee:

You can whip our cream,
But you can't beat our milk.

-Dr. Mu

s0luti0n l0 c0w 2a
In the last issue, we introduced

the idea of a superprime. A
superprime is a prime number that
remains a prime number when any
number of digits are deleted from
the right-hand side of the number.
For examp1e,59393 is a superprime,
because 59393,5939,593,59, and 5

are all prime numbers.
Farmer Paul needs all the

superprime numbers he can find to
identify his growing herd of
superprime cows. Your job was to
find all the superprime numbers, if

multiplying each digit by 10 and add-
ing one of the four odd single figits {1,
3,7,9\. Allprimes larger than 5 must
end with one of these digits. We add
all possible combination of elements
from superPrime t1l *10 with {1, 3,

7,9]1ir, Mathematica as follows:

outer IPlus, superPrime [1] *10,
tL,3 r7 ,917
{{21, 23,27,29}, {31, 33,
aa aol rtr1 tr? q.? (o1
) I r )a J r lJrr JJ t J t , JJ J t

{7t, 73, 71 , '79}}

The output of the most recent com-
putation is denoted by %.We then
fiatten this output to one list:

Flatten [e.]

{2L, 23, 21 , 29, 31, 33, 37,
39,51, 53, 5'7, 59,71,,'73,
7'7, 79j
These are a1I the possible 2-digit super-
primes. Now we select out those that
test positive for being prime (in other
words, PrimeQlxl is true):

Select [2", PrimeQ]
{23,29,31, 37,53, 59,
7L, 73, 79j
Voila! We have the 2-digit super-
primes. Use the same technique to
generate the 3-digit superprimes.
This suggests a recursive relation-
ship between superPrime [n] and
suBerPrirne [n-11 . Here is the defi-
nition that combines into one func-
tion what we developed step by step
above:

superPrime lL7 = {2, 3, 5, 7 I i
superPrime [n-l : =
Select IFlatten IOuter IP1us,

superPrime [n-1] *10,
tL,3,7 ,9l7l , PrimeQl

84

Size 2 gal 1 gal 112 gal quart pl nt 1/2 p nt

Number I 3 2 t3 3 6
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His complete short and sweet pro-
gram can be seen on the
Cowculations Web page given at the
end of this column.

Superprime graph
How many superprimes are there

for each value of ni We will
cowculate that number :rnd graph
the results. In \Iathematica, t ength
is usecl to measure the srze oi a list.
For erampls, t1-rere are 8

superpritnc: rr'rth - .1r rrt.:
LengUh IsuperPrime t7 ] l
B

Figure 1 is a graph ot thr nr::rbe r oi
superprirnes for each drir sr:i iLom
1to8:
ListPlot ITable I Length
IsuperPrime [n] l, (n, 1, 8] l,
Pl-otiloined.- >True,
A><esLabel->
{ "digits", "superl)rimes " i ]

sLlpe1-p11n7es

25, 27 , 32, 33, 35, 37 , 42,
43, 45, 47,52,53, 55, 57,
62, 63, 65, 67 , 12, 13, 75,
17 , 82, 83, 85, 81 , 92, 93 ,

95, 97j
(Note: I decided not to add a zero in
front of a digit to avoid getting a
number such as 007.1 Now select
out the primes:

Select [2", PrimeQI
{13, t7 , 23, 3'7 , 43, 47 ,

53, 67,'73, 83, 97j
As before, we define the repusPrime
function recursively:

repusPrime [n_] : =
Select IElatten IOuter
[P1us,10^ (n-1) *Range [9] ,
repusPrimeln-llll,
PrimeQI

Let's try it out:

repusPrime [3 ]
.-_-_3 , 1,31 , 161 ,

Other solutions
Benjamin Mathews, a 10th grader

at St. Mark's School of Texas in
Dallas, submitted an impressive/
high-precision C solution to both
the superprime and repusprime
problems. It's posted aiong with
Kenny's solution on the Cow-
culations Web page at http ll
usaco.uwp. edu/cowculations.

A big superprime "thank you"
goes to two other cowhands for sub.
mitting Pascal solutions: Po-Shen
Loh, a 9th grader at Iames Madison
Memorial High School in Madison,
Wisconsin; and Noam Zetlberger, a

10th grader at West Windsor-
Plainsboro High School in West
Windsor, New |ersey.

Finally, it was pointed out by Ben
Mathews that 1997 is a repusprime
year. Officially, I is not a prime,
which is the only thing that pre-
vents 1997 from being a superprime
year. But in Wisconsin, nothing
could prevent 1997 fuorr, being a

Super Bowl Champs year. E

ll0uu I0 [e a

OUANTUM
auth0r

Have you written an article that
you think belongs in Quantum!
Do you have an unusual topic that
students would {ind fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us and we'll
send you the editorial guidelines
for prospective Quantum con-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial Englis'h and at a

level appropriate for Quantum's
target readership of high school
and college students.

Send your inquiries to:

Managing Editor
Quantum

1840 Wilson Boulevard
Arlington VA 22201-3000

16t
141
nl

23, 283 , 313,
A'7 ?tr2 1tr'1
q7 aa1, 161
13, 6L7 , 643,
'73, 683, 743,
23, 853, B83,
53, 967,983,

\\-,r.:: h.ippens at 8 digits?

Length I repusPrime t8 ] l
-__

L r- .- -.:f -lTr'1nles, repusprimes are

Sr,'1,,-i:. Lrr s check it out by graph-
in: ::r. ::--r:ri.,et lor each digit size:

Li stPlot ITab1e ILengt,h
IrepusPrime In] l, {n, 1, 8} l,
Plot,loined- >True,
A>resLabel - >

{ "digits", "repusprimes" } l
Frgure I shorrs the plot of this

iunction. It appears as ii the left-
handed farrners are going to have all
the repusprimes they will ever need.

repuspritnes

r13, L91 ,

3L1 , 33'7 ,

313, 383,
<, ? E,A1

641 , 653,
113 , 191 ,

931 , 941 ,
qqTl

10 I
8

6
dlgits234

Figure 1

Solution lo C0[IU 2h
There is more than one \,va\: to

slice a prime beef, and son-re oi m\-
left-footed bor,rne con-Lpanions ic-t

me kno\\' about rt. Ther ask.-d,
"What about prlmes that r.-marn
prime when an,v cligrt on the ler, rs

cut off? " They were ca11ed
repusprimes, and COW 2b asked
you to generate them.

Mathematica solution to COW 2b
Begin with the set of l-digit

:il

:=; -s i -:-='11={2,3,5,71 500
400

.100

r00
t

lieit from

678 digits



Wlha,t does the future hoLd

fl.arth's climate has

developed over
billions of years-
enabling plant and
animal lite to evolve
a-nd thrive. Horo
does elimate affect
life on Earth? How
does climate
change? Do hurnans
have an impact on
it? What is the
euid'ence?

Cut through the
hype and confusion
to address the vital
subiect of clirnate
change in a i

scientifie manner
withForecasti.ng th:e

Future,'This new
pulilication frorn
NSTA and the
Scripps Institution of Oceanography offers
educators and students a multi-science route for
exploring all aspects of climate and climate
change. Fifty pages of background information
and l4 classroom activities help students
understand climate change through animal
biology, chemistry, Seology. meteorology. physics,

and plant biology. The concepts are tied together
by a sophisticated limeline thal- shows climatic
changes, major extinctions, and othey key events
in Earth's history.

Explore the evidcnce for global climate change with
Forecasting the Future-order your copy today!

Written by the Education Department of the
Stephen Birch Aquarium-Museum, Scripps
Institution of Oceanography

Grades 6-10. 1996. 160 pp.

#PB r r 8X $2 t.95

Learn about Earth's natural

climate cycle and the effect
humans have on global climate
with Forecosting the Future-new

Highlights include:
. beautifully illustrated

narrative of the
comPonents of climate

. l4 activities and more
than 40 extension
activities

. activities from six
disciplines: chemiscry,

geology, physlcs,

meteorology, plant and
animal biology

. innovative timeline of
Earth! natural history

. glossary of terms

. extensive annotated
bibliography

. procedural drawings
that illustrate activities

. time estimates and a

teachers section for
each actrvlty

forr LEarthb clilmate?

Speleothems offer a layered

record of
Earth's past

climace

Fish scales can be used as

indicators of changing

environmental conditions

T-@ order, cafl l-800-722-NSTA
Quantum

Ail
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