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The Washington Family (1789-96) by Edward Savage

WAS A SOLDIER, GENTLEMAN FARMER,
t of the United States, George Washington
was a survevor. At the age of 16 he served as an assistant
to the official survevor of Prince William County, Vir-
© his experiences. He records the
discomforts of sleeping under “one thread Bear blanket
with double its We: ¢ Vermin such as Lice Fleas & ¢”
and describes an encounsers
ing a scalp. A year ] ;
official surveyor of Culpe :
ditional experience in dealing wish the challenges of the
wilderness.
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the public servant devoted to international matters as well
as the private citizen who amassed a great deal of land. His
adopted son holds a compass, as if his father had just
quizzed him about the number of acres at Mount Vernon.

The globe contains a curious contrivance, perhaps for
determining the position of the Sun or other heavenly
body. It most assuredly showed latitude and longitude to
a reasonable degree of precision. Did Washington hear sto-
ries, as a young surveyor, of how difficult it once was to
determine one’s longitude accurately? And how the inven-
tion of the marine chronometer in 1835 (when George was
just three) revolutionized navigation?

It was arguably the most important scientific problem
of the time, and you can read about it in “The Long Road

Longitude,” which begins on page 42.
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FRONT MATTER

Greating scientist-citizens

How many scientists does it take . . .7

VERY PLACEITURN, SCIENCE
and technology seem to be
making the news. Exciting as-
tronomy and astrophysics show
up almost weekly in the New York
Times. The Washington Post and
Time magazine regularly report
breakthroughs in biology and the
health sciences. Stunning photos
from the Hubble Space Telescope
regularly adorn magazines and even
serve as wall-adorning posters.

In vitro fertilizations bring the
miracle of life to otherwise childless
couples. Premature babies now regu-
larly overcome overwhelming odds.
Television shows dramatic video
from within living bodies. Faster and
faster computers enrich (and com-
plicate) our lives. DNA testing and
other laboratory techniques have
revolutionized law enforcement and
judicial proceedings. Microproces-
sors enrich our homes, vehicles,
shopping malls, factories, and of-
fices.

Within the science community
itself, the exponentially increasing
size of journals reflects the incred-
ible growth of research activities.
Physics sees the merging of particle
physics and cosmology, a dramatic
blending of the very smallest and
the very largest scales of the uni-
verse. Events during the first
femtosecond after the big bang ex-
plicate the ten-billion-year history
of the cosmos.

While science is thriving, while
technology is remaking the econ-
omy of the United States and of
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much of the world, why then do we
hear so much about the sad state of
science education in our nation?
While science and technology are
omnipresent in our lives, why do
policy makers talk so much about
“scientific illiteracy”? In my own
discipline of physics, why do many
of our most committed education
researchers now tell us that our stu-
dents do not understand what we
think we are teaching them, even if
they manage to earn passing grades?

As a scientist, [ am thrilled about
the excitement across all fields of
science. As a citizen, I am pleased
that research and technology have
redefined and strengthened our
economy. As a teacher, however, I
am concerned that most people do
not begin to understand the science
and the technology on which we
increasingly rely.

Not everyone wants to become a
scientist. Many don’t have either the
interest or the perseverance to learn
much about the quantitative as-
pects of science. Nevertheless, the
community of scientists, science

teachers, and prospective scientists
needs to recognize our continuing
responsibility to nurture scientific
interests in all of our citizens.

The gap between a limited num-
ber of scientists creating exciting
scientific and technical break-
throughs and a growing number of
citizens who are unaware of the sci-
ence and technology that underlie
their daily lives is already wide
enough. Those on both sides of the
divide must assure that the gap
doesn’t become a chasm.

Even with a limited number of
scientists, science will continue to
thrive. But without many more sci-
entist-citizens, our society will be
increasingly alienated from the sci-
ence and technology forces that de-
fine our future. And a society es-
tranged from its science will have
neither good science nor an auspi-
cious future.

—Bernard V. Khoury

Bernard V. Khoury is the Executive Of-
ficer of the American Association of
Physics Teachers (AAPT).
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Swinging from star to Star

FAR-REACHING RESEARCH

How to accelerate a spacecratft far into the cosmos

by Vladimir Surdin

HE POSSIBILITY OF INTER-

stellar flight is a very enticing

problem. If we could solve it,

entire vistas would open up.
We could study the surfaces of dif-
ferent kind of stars, find new plan-
etary systems, and even (dare we say
it?) come into contact with extrater-
restrial civilizations. In this article
we won’t examine every conceiv-
able solution to this problem. Many
clever projects have been proposed
in recent years, ranging from nuclear
and photon-powered spacecraft (for
example, the British “Daedalus”
project) to a design involving a solar
sail. Instead we’ll look at one com-
paratively new idea thatin principle
makes it possible to send a large
number of small automated probes
to various stars in our Galaxy.

Slingshot effect

The trajectories of interplanetary
flights are often planned so that the
spacecraft pass near the planet not
only to study it, but also to accelerate
the spacecraft by means of the
planet’s gravitation. A change in the
flight trajectory due to the action of
aplanet’s gravitational field is usually
referred to as a “slingshot effect.”
This effect was repeatedly used dur-
ing the flight of the Voyager Il space-
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craft on its Earth-Jupiter-Saturn-Ura-
nus-Neptune itinerary. To investi-
gate the Sun’s polar regions, the
Ulysses spacecraft was paradoxically
launched toward Jupiter (it isn’t a
trivial thing to get near the Sun—see
“ A Flight to the Sun” in the Novem-
ber/December 1996 issue). To mini-
mize fuel consumption in its mission
to Jupiter, the Galileo spacecraft flew
to Venus first. Plans call for the space-
craft to fly near every intervening
planet to use its gravitation to accel-
erate and point the spacecraft in the
proper direction.

The mechanics of this effect can
easily be understood by the following
simple example. If a heavy ball roll-
ing on a table collides with a light ball
rolling in the opposite direction, its
velocity will hardly change, while the
lighter ball will bounce away with
increased velocity. (See figure 1. Solve
this problem yourself, using the laws
of conservation of kinetic energy and
of momentum.] A similar phenom-
enon occurs during the “gravitational
collision” of a heavy planet with a
light spacecraft. The only difference
is that the collision of solid bodies is
almost instantaneous, while the
gravitational encounter goes on fora
long time. However, the laws of me-
chanics are the same in both cases.

Figure 1

Thus the outcome is the same: after
the spacecraft flies around the planet,
its velocity increases. But how much?

Figure 2 will help us solve this
problem. We use the simple rule of
velocity addition in two inertial ref-
erence frames. From the viewpoint
of a distant observer (who watches
the flight while sitting comfortably
on, say, the Sun!), the planet moves
with a velocity v,,, while the space-
craft moves with a velocity v,. The
directions of these velocities form
an angle o. From the viewpoint of an
observer on the planet, the space-
craft approaches with a velocity v,
and flies off with the same veloc-
ity—only its direction differs from
the previous one by some angle 8. In



spacecraft

Figure 2

our reasoning we assume that the
planetary system of reference is
practically inertial—indeed, the per-
turbation of the planetary motion
caused by the nearby flight of a
spacecraft is inconceivably small.
Relative to the distant observer, the
receding space vehicle has a velocity
v,.. Using the parallelogram rule, we
get

2_ .2 2
V=V + W, 2VSVp Ccos o

and
vi=v2ls+ vZ2—-2v+ v, sin (B/2).

It’s clear at once that when the
planet and spacecraft move toward
each other (that is, in opposite direc-
tions—o = 180°), and if their meet-
ing causes the spacecraft to head in
the opposite direction (B = 180°), the
spacecraft’s velocity will be in-
creased by twice the planet’s veloc-
ity. This is the most efficient case
(fig. 3). However, to make the ma-
neuver reasonably effective as a ve-
locity enhancer, both angles should

-

vl e
Figure 3

v+ V

be in the range
o, B = 90°. Of
course, the
spacecraft
must fly over
the planet’s
surface with-
out crashing
into it, so the
minimum dis-
tance to the
planet’s center
must be more
than its radius.
The laws of
celestial mechanics say that in this
case the maximum receding veloc-
ity of the spacecraft relative to the
planet after their meeting will be
Vinax = 046V, where v___is the es-
cape velocity at the planet’s surface.
If the planet revolves about a star,
the corresponding value will be
Vinax = Vo, + 0.5V, wherev_, is the
orbital velocity of the planet.

To make it possible for the space-
craft to leave the Solar System after
approaching a planet, the condition
Voax 2 N2 V., Must be met—that is,
the spacecraft’s velocity must be
greater than the velocity needed to
escape from the planet’s orbit. Table
1 shows that not all the planets in
the Solar System can be effective
“boosters”—only the

Clearly this extra energy is taken
from the mechanical energy of the
planet. Can we come up with a simi-
lar mechanism to accelerate space-
craft in the vast expanses of the Gal-
axy? After all, the stars are moving
too, so a slingshot maneuver near
them could increase the velocity of
our interstellar probe.

Astronomers know that the char-
acteristic velocities of stellar mo-
tion are in the range of 10-20 km/s
for young stars and 250-300 km/s
for the oldest ones. So each meeting
with a star along a proper trajectory
will add hundreds if not thousands
of kilometers per second to the
spacecraft’s speed. As in the case
with a planet, the limit of an effec-
tive maneuver is determined by the
valuev_, , which is much larger for
stars than for planets (see table 2).
However, despite a wide variety of
masses and sizes, ordinary stars
have similar values of Viaxs aD-
proximately equal to that of our
Sun. This value isn’t particularly
large (~ 300 km/s), so such stars
won'’t be the focus of our interest.
Of particular importance for sling-
shot maneuvers are old compact
stars—white dwarfs, neutron stars,
and perhaps black holes (although
the last-named won’t be considered

giant planets can Table 1
kick the spacecraft
out of the Solar SYS- Orbital Escape velocity | Velocity required
. . Planet velocity at the surface to leave solar
tem with a single
. v (km/s) v (km/s) system Av (km/s)
slingshot maneuver. o
The last column in Meroury 48 40 _
the table shows the
resulting velocity ofa | Venus 35 10 —
spacecraft leaving our
Solar System after | Ferth a0 1 -
such a slingshot ma-
ch a slingshot ma W i 5 B
neuver. ;
Stellar catapul M - i
Now we know | Saum 10 36 22
that by choosing a
particular near-planet | Uranus a8 a 1B
trajectory, we can
. ) Y . Neptune 5.4 24 14
impart extra velocity
to a spacecraft with- | g, 47 17 _
out fuel consumption

and thus send it out
of the Solar System.

Planetary data related to perturbation maneuvers
performed in their vicinity.
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Art by Sergey lvanov

Table 2
Comish Neutron star
Parameter sfar B White dwarf
R.=R | R, =50R

Mass of star M. 07 2 2
Radius of star A, 0.01 20 km 20 km
Escape velocity at the surface v (km/s) 617 5,165 15 - 10 23 . 10°
Maximum velocity of probe v (km/s) 309 2,583 8. 10* 12 10°
Tidal acceleration a (m/s?) for Ar=1m 10° 0.5 710 530

Maximum speed of a probe and tidal acceleration for flybys of stars of

various types.

here because very little is known
about them).

The luminosity of most compact
stars is not high, and their electro-
magnetic radiation offers no great
danger for the spacecraft flying near
them. However, there is a physical
phenomenon that can severely re-
strict the very possibility of perform-
ing a slingshot maneuver, and this is
particularly important for a flight in
the vicinity of a neutron star. I'm
talking about the tidal effect of a
star’s gravitational field, which tries
to impart a differential acceleration
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a = 2GM.Ar/R? to parts of the space-
craft, where G is the gravitational
constant, M. is the star’s mass, R is
the distance from the spacecraft to
the star’s center, and Ar is the dis-
tance between the spacecraft’s parts.
Table 2 shows that the tidal forces
near a neutron star are very strong, so
they may be dangerous for the integ-
rity of the spacecraft. Nowadays you
can find electrical and mechanical
devices that can withstand tidal ac-
celerations up to 10° m/s?, so the
minimum distances between the in-
terstellar probe and the surface of a

neutron star presented in table 2
seems quite reasonable.

We should note that in contrast
to common stars, whose mass is
approximately proportional to their
radius and consequently does not
have much effect on v __, the radii
of neutron stars and white dwarfs
decrease as their masses increase.
This feature dramatically affects the
value of v . Table 2 shows only
the average values for these strange
stars, which may differ from the
characteristics of individual stars by
a factor of 3 to 4.

How long will the acceleration last?

The strategy for accelerating in-
terstellar probes is clear: as the
spacecraft approaches the next star-
accelerator, the probe’s automatic
pilot probe must choose from
among the nearest stars one moving
toward the probe and then adjust the
approach to the first star so that the
slingshot maneuver will send the
probe off to the second star. If the
path correction occurs far enough
from the flyby point, the amount of
fuel consumed will be negligible.
Maybe other methods of flight con-
trol will have been found by then—
using interstellar magnetic
fields, perhaps, or radiation
pressure—so that no fuel will
be needed at all.

Now let’s estimate the
time necessary for a probe to
acquire the velocity v, if it
had been launched from the
Solar System with a velocity
v, For simplicity we’'ll as-
sume a homogeneous distri-
bution of stars in space with
an average distance / between
them. All the stars have the
same velocity 6, which is cha-
otically oriented. If every “col-
lision” with a star results in an
increase in the probe’s veloc-
ity of Av = ¢, the probe needs
to perform N = (v_ - v,l/c
slingshot maneuvers, which
will require a time




For a rough estimate we can re-
place this sum with ¢ ~ I/v, when
v < 6, and with an integral for v, > o,
which yields ¢t ~ (I/o)In (v, /v,). We
see that the dependence of the accel-
erating period on the initial and final
velocities is weak: for v, = 100 km/s
and 300 km/s<v__ <10°km/s, we
have 1 <In(v_, /v, <7. Thus in all

cases the formula

1 1
t=2 —+—1|
Vg ©
gives a rather accurate estimate. It
uses three values. What are they?

Escaping the Solar System

What velocity does our probe
need to leave the Solar System? Up
to now only slingshot maneuvers
near the giant planets have been
used to accelerate the Pioneer and
Voyager spacecraft into interstellar
space. The velocities of these space
probes relative to the Sun were
about 20 km/s. In principle, a com-
plicated slingshot maneuver in the
gravitational fields of Jupiter or Sat-
urn could accelerate a probe to a
speed of almost 100 km/s. However,
the planets must be in a certain con-
figuration for this to happen.

Another method of entering in-
terstellar space that seems quite
possible today is the acceleration of
small probes with electromagnetic
mass accelerators. Such accelerators
were developed within the frame-
work of the Strategic Defense Initia-
tive (SDI|. Laboratory versions of
such devices have accelerated a
mass of 10 g to a velocity of 10 km/s.
It’s expected that a large-scale elec-
tromagnetic accelerator could im-
part a velocity in the range of
20-40 km/s to an object with a mass
of about 1 kg. A further increase in
velocity requires a drastic increase
in the size of the accelerator
(= 1 km), which is considered unac-
ceptable for the SDI program. How-
ever, it may not be an obstacle in a
project to launch interstellar probes.
So one might hope that an electro-
magnetic accelerator will be con-
structed in space—one that could
accelerate small probes to velocities

of at least 100 km/s and could be
pointed in any direction at any time,
without regard for how the planets
are configured.

The best location

Let’s say that an interstellar probe
has left the Solar System with a ve-
locity v, = 100 km/s. The accelera-
tion time depends on the type of star
chosen for the maneuver. Table 3
shows the times it takes to acceler-
ate the probe to maximum velocity.
It should be noted that the concen-
tration of stars is related to the av-
erage interstellar distance by the
simple formula I = n-1/3.

As we see, near the Sun the accel-
eration time is measured in the hun-
dreds of thousands of years no mat-
ter what star “population” is used.
However, if we were located at the
center of a globular star cluster, this
time would decrease to a few thou-
sand years, and at the center of our
Galaxy this period is a few hundred
years. For a planetary system located
at the center of our Galaxy, it would
be reasonable to launch probes with
a velocity v, = 300400 km/s. In this
case the probe could be accelerated
by white dwarfs to a velocity of
5,000 km/s in only 100 years, and by
neutron stars to a velocity of
100,000 km/s in a mere 300 years

(provided, of course, the probe could
withstand the tremendous tidal
forces in the vicinity of the neutron
star). Even more elaborate variants
of gravitational acceleration for in-
terstellar probes are possible in prin-
ciple. For example, astrophysicists
know of double star systems con-
sisting of a neutron star and a white
dwarf. These compact stars orbit
with a velocity of more than
1,000 km/s. An approach to one of
the components of such a system
would increase a probe’s velocity by
2,000 km/s! These systems are gen-
erally found in the depths of globu-
lar star clusters. (In fact, the central
regions of these star clusters are ex-
tremely attractive places for civiliza-
tions that dare to take the first steps
on the road to space colonization.)

Invisihle Space scouts

Nowadays we have at our disposal
very compact and energy-efficient
information devices. Microtrans-
ducers and microprocessors can be
found in the most unexpected
places—telephone receivers, note-
books, ballpoint pens, and greeting
cards. And we are on the threshold
of a new era in microsurgery, when
tiny devices floating in the blood-
stream will gather information for
diagnosis and provide treatment.

Table 3
Location Star cluster ~ n (ps™) o (km/s) t (year) V.. (km/s)
disc stars 45 10° 400
halo stars 0.005 250 2.10° 400
Near the Sun
white dwarfs 0.05 50 2. 10° 5,000
neutron stars (1079 (100) 4.10° 10°
common stars 4.10* 20 4.10° 400
Star cluster white dwarfs (5-10% 20 3.10° 5,000
neutron stars (10°) 20 10 10°
white dwarfs (109 250 300 5,000
Center of the galaxy
(R ~1pec) neutron stars (10% 250 10° 10°

Characteristic acceleration time of a spacecraft launched from various sites and
using various star clusters in the galaxy. The initial velocity v, = 100 km/s.
Figures in parentheses are theoretical values; all others are based on observation.
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Space research will possibly take
a similar route. Today it’s hard to
imagine that an interstellar space-
craft like the proposed Daedalus, re-
quiring a kilometer-long rocket with
a nuclear engine, might actually be
built someday. Such a monster
could be assembled only in Earth
orbit, and the necessary work would
take at least 15 years. For a flight
involving only a small crew, it
would be necessary to spend almost
the entire store of nuclear fuel avail-
able on our planet. Only then could
this rocket be accelerated to a veloc-
ity of a few thousand kilometers per
second. A trip to the nearest star
would take about a hundred years. A
vast amount of effort and money
would be spent on a single expedi-
tion, whose cost would be num-
bered in the trillions of dollars. This
project is hardly more than a dream.

A more promising method of
studying the distant cosmos would be
to build many similar, relatively in-
expensive microprobes, about 1 m in
size and 10-100 kg in mass. Given the
rapid rate of miniaturization, they
might be even smaller. This is the
only approach to galactic research
that would not exhaust the energy
and material resources of the planet.
Since they are small, the microprobes
could enter regions of relatively dense
interstellar and interplanetary matter
and could approach very compact and
massive objects.

The strategy of using micro-
probes in space research must re-
main the subject of another article.
Such a discussion would include the
potential of optical communication
as the most favorable for the vast
distances involved, and also the pos-
sibility of returning the probes to
their launch site.

If similar probes launched from
other planetary systems have entered
our Solar System, we have no means
of detecting them at present. No
doubt the same would be true for our
future space probes and for any intel-
ligent life forms we would hope to
encounter. So our proposed method of
galactic reconnaissance seems the
safest and most responsible for the
life forms on this planet. Q]
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MATHEMATICS IN ACTION

Desperately seeking Susan on a cylinder

A geometric approach to problems of search and detection

by A. Chkhartishvili and E. Shikin

VEN THE MOST ABSTRACT

mathematical problems often

have easily recognized and trace-

able roots in our everyday life.
Sometimes the circumstances that
give rise to these problems are rather
far removed from mathematics.

This article will examine one
such class of problems: search and
detection.

We hardly need to point out the
importance of search problems in
our lives. In fact, it’s all but impos-
sible to pinpoint when these prob-
lems began to attract attention.

You can easily imagine one of our
most distant ancestors creeping
carefully into a cave, torch in hand.
It was vitally important to make
sure that this potential abode be free
of dangerous inhabitants such as
wild animals or poisonous plants,
snakes, or spiders. If they happened
to have settled there first, our ances-
tor would have to find them and get
rid of them.

A somewhat modernized version
of this prehistoric story is the dy-
namic game “Beauty and the Beast,”
in which the Beast has to catch the
Beauty in a dark room. The room
has an arbitrary shape, known to
both players (maybe because of sev-
eral small openings high in the

walls, letting in some light). The
Beast, who is assumed to be ex-
tremely intelligent, moves at a con-
stant speed and can instantly change
direction; the Beauty enjoys abso-
lute freedom of movement. Capture
occurs if the distance between the
Beauty and the Beast is less than a
given value.

Here’s another example. Imagine
an ancient castle surrounded by a
picturesque forest. To prevent his
enemies from sneaking into the
castle, its owner, a rich and noble
duke, has ordered that a path be cut
around the castle, so that his faith-
ful knights could keep watch along
it (see figure 1). The duke must de-
cide how many knights he needs to
be sure that no enemy scout can
cross the path unnoticed. We'll an-
swer this question below.

As you can see, the participants
in these search problems pursue dif-
ferent goals: some of them search,
while others try to hide or to escape.
The problems we’ll investigate in
this article will involve only one
searching object—the “seeker”’—
and, generally speaking, an arbitrary
number of objects that are sought.
The behavior of the objects sought
may also vary. So we need to distin-
guish between searches involving

Figure 1

stationary objects and those involv-
ing moving objects. In the second
case, the most interesting problems
are those in which the objects
sought try to avoid capture and
therefore take all available informa-
tion about their opponent into con-
sideration when they move.
Search sets—that is, sets on
which the search process takes
place—come in the widest variety
imaginable. One of the simplest is
the infinite round cylinder, which
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will serve as the location for most of
the basic events below.

In this article we propose a geo-
metric approach to search problems
that uses certain auxiliary sets
whose forms and locations change
with time. It will be convenient to
start a discussion of their nature,
origins, and useful properties with
the planar case (that is, when all the
objects move on a single plane).

Simple search on the plang

Let A and B be two point objects
on the plane. We assume that they
can move with constant velocities o
and B, respectively (o > B), and that
there are no other restrictions on
their behavior. We say that the ob-
ject B is detected by the object A, if
at some moment the distance be-
tween them is less than or equal to
a constant positive number 1. We'll
call A the searching object and B the
fleeing object.

Information available to the ob-
jects. We assume that both objects
know the shape of the search set and
the values of all the parameters o, B,
and I In addition, the fleeing object B
knows the future trajectory of the
searching object A as well as A’s po-
sition on the search set at any mo-
ment. On the other hand, the search-
ing object A knows nothing about the
location of object B up to the very
moment of possible detection.

If an object’s velocity is constant,
one usually says that its motion is
“simple.”

The searching object A carries
with it an imaginary circle of radius
I, and it stays at the center of this
circle at all times (fig. 2]. If the flee-
ing object B falls into this I-circle of
detection, it means that A has suc-
cessfully completed its task (detec-
tion). Clearly A tries to find B,
which in turn tries to avoid capture.

Prohibited sets. As long as A is
stationary, the I-circle of detection is

Figure 2
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a prohibited set for B. But as soon as
A starts to move (with velocity o),
the set prohibited for B starts to
grow. We'll show how this happens.

Suppose that A travels along a
straight line L. Then at every mo-
ment, near line L in the direction of
travel of object A, a set arises around
L on which B must not appear or it
will be detected as A advances along
this line. Let’s construct this set, tak-
ing t, = 0 as the moment when A
starts moving. Suppose A starts at a
point A, and reaches a point A, after
t units of time (fig. 3). In that time, B
can travel at most a distance of Bt in
any direction. So if B is caught in a
circle of radius I - 3t around 4, it will
be detected. So this circle is part of B's
prohibited set. It’s clear that if in the
beginning B is in this circle, then at
the moment ¢, when A comes to A,
it will enter the I-circle of detection.

Figure 3

This reasoning is valid for all ¢
from O to I/B. Therefore, all the
circles drawn in this manner (they
are lined up along L, and their radii
decrease in the direction of A’s
movement) are prohibited for B.
Hence their union is prohibited for
B as well. This union is bounded by
an arc of a circle o of radius I and
two line segments tangent to this
circle, drawn from the point that lies
on L at a distance al/B from the cen-
ter of the circle (fig. 4). We'll call this

Figure 4

Figure 5

figure the warning area. The angle A
between L and w’s radii drawn to the
contact points, is determined by the
following equation:

B

cosh=—.
o

The reader is invited to show that
if Bis outside the warning area, it can
flee from A if it moves at an angle A
to A’s trajectory L (or, equivalently,
if it moves perpendicular to the
straight part of the warning area’s
border) (fig. 5).

There is another set of points that
B cannot enter: the area B doesn’t
have time to enter after the search-
ing object A has left it along with its
I-circle of detection. Its structure is
quite similar to that of the warning
area: it’s the union of circles with
centers on A’s trajectory and gradu-
ally decreasing radii (starting with
I—the radius of the I-circle of detec-
tion). We'll call this set the residual
area. Note that after a time equal to
I/B after object A starts to move, the
residual area acquires the shape
shown in figure 6.

Figure 6

We'll call the union of the warn-
ing and residual areas the tracing
area (fig. 7).

Figure 7




Figure 8

Properties of the tracing area (in
the case where the trajectory of the
searching object A is a straight line):

1. The length of the segment cut
by tracing the area of the trajectory
equals

L, =212,
B

2. The shape of the tracing area
depends neither on the direction of
movement nor on the moment of
time t > I/p under consideration.

3. The straight line L is an axis of
symmetry of the tracing area, and
the center of the I-circle of detection
is its center of symmetry.

Let’s return to the knights patrol-
ling the guard path around the
castle. Suppose their speeds are iden-
tical and equal to o and that § < o is
the greatest speed of a villain who
tries to sneak into the castle (he has
to cross the path to do so). We'll also
consider that a knight is able to rec-
ognize a spy at a distance less than
or equal to L

When knights are riding along the
path, each of them carries his own
tracing area along with him. These
areas are determined by the num-
bers a, B, I and the trajectory—that
is, the guard path, whose length is L.
Each tracing area cuts an Lj-long
segment from the path. Thus the
number N of knights needed to pro-
tect the castle from enemy intrusion

must satisfy the inequality

o
ONI—>L
B

(see figure 8, where N = 3).

Search on the infinite cylinder

We define an infinite cylinder as a
set of points in space that are equidis-
tant from a given straight line—the
axis of the cylinder. A plane perpen-
dicular to the axis intersects the cyl-
inder in a so-called directing circle. Its
radius does not depend on the cutting
plane and is called the radius of the
cylinder. Any plane containing the
cylinder’'s axis cuts it along two
straight lines—called linear elements
of the cylinder.

Let C be an infinite cylinder of
radius r. Consider an infinite 2nr-
wide strip IT on the plane (that is, the
part of the plane bounded by two
parallel straight lines). Clearly, it’s
possible to wind this strip IT around
the cylinder so that the straight lines
that define II coincide with each
other and with a linear clement of
the cylinder. Or, if we start with the
cylinder, we can cut it along one of
its linear elements and “unwrap” it
to obtain a 2nr-wide strip (fig. 9).

Figure 9

Plane development of the cylin-
der. Now imagine that one of the
linear elements and one of the di-
recting circles of a cylinder are cov-
ered with a paint that never dries.
Now let the cylinder roll over the
plane uniformly in a straight line.
After each full revolution of the cyl-
inder, the painted linear element
will leave a straight line painted on
the plane; and the distances between
these traces will be equal to 2nr—
the circumference of a directing
circle. The trace left by a directing
circle will also be a straight line
(fig.10).

Figure 10

Reversing this procedure, we can
roll the entire plane onto the cylin-
der (fig. 11). What will the lines on
the plane look like in this plane de-
velopment?

“oN
Figure 11

Depending on the angle between
the line and the direction of the roll-
ing, we can assign these lines to
three classes:

1. Lines that are parallel to this
direction (each of them rolls onto
one of the directing circles of the
cylinder (fig.12).

Figure 12

2. Lines that are perpendicular to
this direction (each of them turns
into a linear element of the cylinder
(fig.13].

Figure 13

3. Lines that form an acute angle
with this direction (they turn into
curves on the cylinder, called cork-
screw lines (fig.14).

Figure 14

It’s interesting to see how the
corkscrew lines look on the plane
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Figure 15

development of the cylinder.

Let T be a corkscrew line on a cyl-
inder C. Cut C along a linear element
and develop it on the plane. Figure
15 represents I''s image after this
procedure. Note that this is not a
continuous line.

Directing circles, linear elements,
and corkscrew lines are the ana-
logues of the straight lines on the
plane: they have the property of be-
ing the shortest distance between
any two points. Lines that have this
property are called geodesics.

Let’s consider all possible geode-
sics emerging from an arbitrary
point on the cylinder C and mark off
segments that are I < nr units long.
The sum of all these segments is
called the geodesic circle of radius 1
(fig.16).

Two point objects—the searching
object A and the fleeing object B—
move on a cylinder C of radiusr. We
assume that their scalar velocities o
and B (respectively) are constant and
that a > B. B is considered to be
found if it enters the geodesic circle
with radius I and center at A.

Suppose that at first B is not close
to A and that the latter knows
which half of the cylinder B is in.

We'll show that if the parameters
of the problem satisfy certain condi-
tions, then there exists a corkscrew
line such that if the searching object
A moves along it, it will necessarily
find the fleeing object B.

It’s clear that when A moves
along a corkscrew line, a tracing area
appears around it on the cylinder,

Figure 16
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y 4

Figure 17

which is a union of geodesic circles.
If we develop the cylinder on the
plane, the corkscrew line will
change into a straight line, and the
geodesic circles into ordinary circles,
and so the tracing area on the cylin-
der will develop into an ordinary trac-
ing area on the plane (fig. 17).

Let’s look at how the situation
changes when we change the angle
between A’s trajectory and the di-
recting circle (that is, the angle of
inclination). Suppose that the fol-
lowing inequality is satisfied:

od < mrf.

Let object A begin moving along a
directing circle of the cylinder. Then
the tracing area contains a cylindri-
cal strip of nonzero width, which is
prohibited for B (fig. 18a). When A
moves along a corkscrew line with
a small angle of inclination, the pro-
hibited area will still encircle the
cylinder, and the warning and re-
sidual areas will overlap (fig. 18D).
This will happen until the warning
and residual areas just touch (this is
ensured by the third property gov-
erning the tracing area for a straight
line on the plane). We can calculate
(fig. 18c) that this occurs when the
angle of inclination between the
corkscrew line and the directing
circle is equal to

V():;\’_Hr

where A is defined as before and

1
=arccos—.
H nr

If the angle v, increases further, the
picture changes abruptly: the tracing
area will contain no cylindrical strip
(fig. 18d and 18e¢). The object in fig-
ure 18f is moving along the linear el-
ement of the cylinder.

When A moves along a geodesic
on the cylinder, the tracing area does

not change its shape, just as when A
moved with a constant velocity
along a straight line on the plane.
Thus, moving along the corkscrew
line I, inclined at an angle v, to the
directing circle, the position of A
will not allow B to jump over to the
other half of the cylinder, and if the
projection of A’s speed on the
cylinder’s axis is greater than B’s
velocity, o sin v, > B, then A will
catch B.

Since cos A = B/ocand v, = A - L,
the last inequality can be written as

2k>u+g. (1)

So, if formula (1) is satisfied, de-
tection is possible and can be
achieved by A’s moving along the
corkscrew line Iy, which intersects

a
—>
b
= 4 ‘w
— Aé%f” g
C

§

e 4 %
f
T é
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Figure 18
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Figure 19

the directing circle at an angle v,,.

If I > r, then A may just move
along a linear element, catching B
because of its greater speed. In the
case when ol < nrf, there is practi-
cally no chance for successful detec-
tion (fig. 19).

Two detection problems on the
infinite cylinde

Applying the notion of tracing
areas to a search problem allows us
not only to find essential relations
between parameters that are suffi-
cient for a successful search (detec-
tion), but also to determine the nec-
essary trajectories.

A. The unlimited case. It was
shown above that object B, which
moves with a constant scalar veloc-
ity B, can be detected on an infinite
cylinder C of radius r by object A,
which moves with a constant scalar
velocity o, provided that inequality
(1) is satisfied and if it is known
which half of the cylinder B occu-
pies initially. In fact, if inequality (1)
is satisfied, this second bit of infor-
mation is superfluous. Let’s see
why.

In accordance with its resources,
the searching object A at first
chooses for its trajectory the cork-
screw line 'y, which intersects the
directing circle at an angle

V0=7\_M/

where A and u are determined by the
relations

B

COSA =+, cosp=i.
o

nr

Independently of the direction of A’s
movement along this line, the ver-
tical component of its velocity (for
definiteness we orient the cylinder

¥

N~e—
Figure 20

C as shown in figure 20) is constant
and equals

o = o sin v,

It’s clear that the most advantageous
way for B to escape is to move along
a linear element of the cylinder. So,
to show that it doesn’t matter which
half of the cylinder B is on, it’s con-
venient to consider the movement
of both objects as projected on the
vertical axis.

Let objects A” and B move along
a (vertical) line with constant scalar
velocities o and B, respectively,
B < o. We'll describe a strategy for A’
that gives it an opportunity to get as
close as I to B to the given distance
I. Imagine two new objects M, and
M_that move from A”’s initial posi-
tion up and down, respectively, with
velocities

’

o' +B
2

(fig. 21). Object A’ starts to move
upward along the straight line and,
catching up with M_ (because of its
greater speed), it immediately turns
in the opposite direction and moves
downward. When it catches up with
M, it once again changes direction
and chases after the object M, and
so on. Clearly, by acting in this way
A will sooner or later end up at a
distance less than I from B.

It’s not hard to see that A”’s move-

Figure 21

Figure 22

ment along the cylinder’s axis, de-
scribed above, corresponds to A’s
movement along the chosen cork-
screw line T,

B. The limited case. Suppose at
the initial moment the searching
object A knows that the fleeing ob-
ject B is standing somewhere in the
cylindrical belt G bounded by two
directing circles (fig. 22). If the
searching object is far enough from
this uncertainty belt G, then as time
passes, the width of G will grow (at
the rate of 23).

Assuming that the parameters in
the problem comply with inequality
(1), we'll describe a trajectory of the
searching object A that will neces-
sarily allow it to find the fleeing ob-
ject B.

There are three possibilities. At
the initial momentt, =0, the I-circle
of detection around A could

(1) lie outside the belt G;

(2) belong to the belt G com-
pletely;

(3) belong to the belt G partially.

In the first two cases the search-
ing trajectory is constructed accord-
ing to a common rule. At first, object
A moves along the linear element of
cylinder C toward the nearest border
circle of the belt G, until the dis-
tance from A to this circle is less
than or equal to a = I sin u (fig. 23).
At this moment, A decides to
change the linear trajectory for the

Y
(e
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Figure 23
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Figure 24

corkscrew line I (see figure 24a,
which shows the position of the
warning area and the border circle at
this time). After this, A moves along
T, until the distance from A to the
farther border is less than or equal to
I sin p. Figure 24b depicts the posi-
tion of the residual area and the sec-
ond boundary circle at the final mo-
ment of the search game.

Since we are interested only in
finding sufficient conditions for suc-
cessful detection, we can just reduce
the third case to one the of previous
two.

Problems of combing, patrolling,
and teterrence

In considering the movement of
arbitrary objects A and B on the sur-
face of an infinite cylinder, we can’t
be sure that the parameters o, B, I,
and r satisfy inequality (1), let alone
the condition I > nr. Although an
area prohibited for B still arises, it
can not be used to solve the detection
problem. However, there are many
other interesting problems, rich with
applications, that could be solved
with much easier conditions imposed
on their parameters. We'll pose
these problems and point out the re-
lations between the parameters that
allow for them to be solved.

A. Combing. Let’s assume that

I<mr, B<a,cosh<sin(A-u).

In this case, moving along the cork-
screw line T, inclined at an angle
v, =A—p to the directing circle of the
cylinder, A continuously encloses
the cylinder with its tracing area.
But since the vertical component of
its velocity is less than or equal to §,
A can only push B away, and only if
it knows which part of the cylinder
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Figure 25

B was in originally. Figure 25 illus-
trates this situation (it shows the
cylinder’s development, and the lin-
ear element by which the cut was
made is drawn through the center of
the detection circle).

If, on the other hand,

Iznr, 20,

then A’s detection circle will itself
enclose the cylinder, and if in addi-
tion A knows which part of the cyl-
inder B is in, it will be able to push

B away.
B. Patrolling. Let’s assume that
i = E <l
nrooo

In this case the best trajectory for A
is a directing circle. Then the warn-
ing and residual areas will have a
common vertex, so A, patrolling the
cylinder, will cover the neck of the
cylinder for object B. (fig. 26).

C. Deterrence. Let’s assume that

i<ES1.
nr o

In this case A is not able to prevent
B from moving along the cylinder.
However, traveling in front of B
along the corkscrew line inclined at
an angle u — A to the directing circle,
A will deter B’s movements (fig. 27).

D. (Failure.)If, finally, we assume
that

I<mr, B>o,

Figure 26

Figure 27

then A lacks the resources even to
deter B.

So we see that the relations be-
tween o, B, I, and r became weaker
and weaker as we move from the de-
tection problem to the ousting
(“combing”) problem, and further to
the patrolling and deterrence prob-
lems.

General remark. The last three
problems may strike you as rather
simple (we not only posed them, we
also pointed out the relations be-
tween the parameters that ensure a
resolution and the strategies that lead
to success for the objects). But that’s
because we could base our solutions
on our preceding analysis of the more
difficult detection problem. (@
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BRAINTEASERS

Just for the fun of it

B196

Intimidating equation. Solve this equation:

Bigs

Ball in a jar. Sally and her brothers Jesse and Raphael were playing with
a ball that was 4 cm in diameter. They dropped it in a cylindrical jar
whose mouth had a diameter of 5 cm. They managed to get the ball out
without turning the jar upside down. How did they do it?

o

B198

Straight line. Can you draw a single 1
straight line that divides the areas of £
both figures at the right in half? ; A o

B199

Boiled oil. One morning a laboratory assistant at the United Science
Institute weighed an open vessel of boiling oil on a very precise scale.
Before going home in the evening she weighed the oil again, after it
had cooled. The result was surprisingly different! What happened?

B200

Traveling ants. Two ants stand at opposite corners of a 1-meter square.
A barrier was placed between them in the form of half a 1-meter square
attached along the diagonal of the first square, as shown in the picture.
One ant wants to walk to the other. How long is the shortest path?

ANSWERS, HINTS & SOLUTIONS ON PAGE 62
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Whistling in Space

Its not an idle pastime—it's a phenomenon
that allows us to study the near-Earth region
without leaving the ground

by Pavel Bliokh

HE SPACE AROUND EARTH
isn’t as “empty” as you might
think. There you can find neu-
tral particles (atoms and mol-
ecules of atmospheric gases) as well
as free charges—the electrons and
ions forming the galactic plasma.
Even though we live almost exclu-
sively at the bottom of an ocean of
air, it’s important for us to know
what’s going on in the other layers
of the atmosphere, because there is
a close connection between the pro-
cess occurring in outer space and the
conditions of life here on Earth.
Cosmic particles and electric and
magnetic fields at high altitudes are
routinely monitored with devices
installed on satellites and rockets.
However, there are other ways of
doing this. It turns out that much
information on atmospheric proper-
ties hundreds and even thousands of
kilometers from Earth can be ob-
tained without leaving the lab. And
these “Earth-bound space studies”
can be conducted with very simple
methods. The equipment needed
costs about as much as a radio or
TV set. But to take advantage of
these tempting possibilities, you
first need to learn how to hear the
cosmic “whistling” (electromag-
netic signals coming from outer
space). And that’s what this article
is all about.
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Radio waves in a neutral gas

Radio waves travel in a vacuum
at the speed of light ¢ = 3 - 10® m/s.
They are electromagnetic oscilla-
tions with a frequencies F ranging
from several hertz to thousands of
gigahertz (1 GHz = 10° Hz). By way
of comparison, a conventional elec-
tronic device operates at frequencies
from hundreds of kilohertz (kHz) to
hundreds of megahertz (MHz). In
this article we're interested in fre-
quencies in the range of a few kilo-
hertz (f = 103-10* Hz).

The propagation of radio waves
in a medium differs from that in a
vacuum. A medium always con-
tains electrically charged particles,
which can be in either a “fixed” (or
bound) state (that is, electrons in
neutral atoms) or a “free” state
(electrons in plasma). In addition to
electrons, which are carriers of
negative charge, the medium con-
tains positively charged particles
(ions). In the frequency range of in-
terest to us here, the role of ions is
rather small, because they have a
very large mass (compared to the
electron) and thus oscillate with a
very small amplitude. But electrons,
oscillating in the radio wave’s elec-
tric field, themselves become
sources of secondary radio waves at
the same frequency.

NATURAL INSTRUMENTATION

Thus the resulting wave is gener-
ated in a medium that spreads with
another velocity. The change in the
wave’s velocity is explained by the
refractive index n, which shows the
factor by which the velocity of the
electromagnetic wave in the me-
dium is less than that in vacuum:

(o}

v :m.

p

(1)
The meaning of the subscript “p”
will be discussed below. Denoting
the refractive index by n(w),! we em-
phasize the fact that in general the
refractive index of a given medium
may differ at various frequencies.
The dependence of n on ® is called
the dispersion, and it becomes par-
ticularly notfceable when there is
resonance—that is, when the radio
wave’s frequency o approximately
equals the natural oscillation fre-
quency of electrons w,. If the fre-
quency difference is large enough—
for example, ® « o,—the dispersion
is very small. In this article the na-
ture of the function n{w) plays a de-
cisive role, so as a first step we need
to estimate the natural frequencies
of electron oscillation in a neutral
gas and in plasma.

IThe factor o is called the angular
frequency of oscillation. It’s measured
in rad - s7!. The relationship between o
and f is very straightforward: © = 27f.
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Let’s start with a neutral gas,
where electrons are bound within
atoms and molecules. The precise
calculations.of their natural frequen-
cies are performed by quantum me-
chanical methods, but we can obtain
reasonable estimates by analogy
with the simplest oscillatory sys-
tem—the free pendulum. Recall the
famous formula for the (natural) fre-
quency of its oscillations:

g = \/%/ (2)

where g is the acceleration due to
gravity and [ is the pendulum’s
length. Multiplying the numerator
and denominator of the radicand
(that is, the quantity under the radi-
cal sign) by the pendulum’s mass m,
we get

F
ng (3)

Wy =
This formula deals with the gravi-
tational force F,=mg instead of g.
Now we can modify it to describe
the oscillations of electrons. We
merely replace the gravitational
force F_, with the electrostatic
force F, that “holds” electrons in
the atom. According to Coulomb’s
law, this is equal to F, = e?/4ne a?,
where g, =9 - 10712 C2/N-m? is the per-
mittivity of free space, e = 1.6 - 1071° C
is the electron’s charge, and
a = 10719 m is the size of the atom
(which here plays the role of the
pendulum’s length). Inserting I = a
into equation (3) gives us

62

(O E\/sonl—as (4)

Taking into consideration the
electron’s mass m = 9 - 103! kg, we
get ©, = 101 rad - s7!, which corre-
sponds roughly to the frequency
range of visible light and exceeds by
far the frequency of the radio waves
we are interested in. Therefore, the
inequality ® < @ is correct with a
high degree of reliability, which
means that the neutral gas has vir-
tually no affect on the propagation of
radio waves. Even in the lower, most
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dense layers of the atmosphere near
the Earth’s surface, the refractive
index n differs from 1 only in the
fourth decimal place, and in outer
space the effect of the neutral gas is
still smaller. It is manifested only
indirectly, when “free” (plasmal)
electrons collide with their neutral
counterparts. These collisions cause
a damping of the oscillations, but in
our case we can neglect it.

Ratio waves in plasma

Under the influence of external
factors (for instance, radiation or
collisions), one or a few electrons
can be knocked out of atoms, result-
ing in “free” electrons and ions. This
ionized gas is what scientists call
plasma. Plasma usually contains
neutral particles as well, but the
fewer of them there are, the more
clearly the peculiar properties of
plasma manifest themselves.

These is practically no natural
plasma in the lower layers of the
atmosphere, because the ionizing
solar radiation (ultraviolet rays and
X rays) is much weaker here. At an
altitude of about 50 km, the ionizing
effect of solar radiation begins to
increase. This marks the start of the
ionosphere—that is, the Earth’s
plasma shell. At altitudes of 300 to
400 km, the density of electrons and
ions reaches a maximum and then
slowly decreases, even though the
intensity of ionizing factors in-
creases with altitude. This is be-
cause the density of the air is very
small at these altitudes, and al-
though the atmosphere is almost
completely ionized, the number of
“free” electrons and ions is never-
theless small. In the outermost re-
gions of space, the degree of ioniza-
tion is very high, and according to
modern estimates, ~99.9% of the
visible universe exists in the plasma
state.

Perhaps you’ve noticed that,
when I mention plasma electrons, I
keep putting the word “free” in
quotes. Here’s why. Even though the
electrons are not bound to their at-
oms, they still interact with other
electrons and ions by means of elec-
trical fields. These forces operate at

great distances, and it is these forces
that are responsible for specific
plasma oscillations.

Let’s assume that the electron
density increases by chance in some
small volume. This means that a
surplus of negative charges arises
here, and the electric field generated
by these charges pushes the elec-
trons out of this region. Eventually
the extra charge is dissipated away,
but in the process the electrons ac-
quire a velocity and move away
from one another. As a result, the
electron density in the volume un-
der consideration becomes less than
average, while the density of posi-
tive ions doesn’t change. The short-
age of electrons is equivalent to the
appearance of a positive charge and
an electric field that draws the es-
caping electrons back again. But as
they move back, the electrons again
acquire velocity and pass over the
equilibrium position because of
their inertia, resulting in an accu-
mulation of negative charge, and the
cycle begins anew.

To estimate the frequency of this
oscillatory motion we again use
equation (4), but instead of the
atom’s size a we insert the average
(equilibrium) distance between elec-
trons. Let the average number of
electrons per unit volume (1 m?3) be
N,. Then the distance between
them is NO*I/3 (on average, of
course). Assuming a = N; /% in equa-
tion (4), we get the formula for the
natural frequency of electron oscil-
lations in plasma:

Measuring the frequency in hertz
and the electron density.in m=3, and
inserting into equation (5) the nu-
merical data for €, e, and m, we ob-
tain a simple formula:

f, [Hz] =94/ Ny [m™].

The maximum density of electrons
is about 10!2 m=3, so the natural fre-
quency f, ~ 10 MHz lies in the radio
wave range. This means that the re-
fractive index of the ionosphere can



deviate substantially from 1, and at
® = o, a strong dispersion arises. In-
deed, the formula of the refractive
index looks like this:

| 2
| (0]
n:\“u——mg. (6]

Let’s look at the main features of
this equation (which I've simply
given you without deducing it step
by step). If we increase the frequency
of the radio waves, starting from the
range o < @, to the values® > ®_, we
can sce that the properties of the
plasma change drastically at reso-
nance—that is, when o = ®_. When
<o, the radicand in equation (6)
becomes negative and the refractive
index is imaginary. This means that
such low-frequency waves cannot
propagate in plasma. Conversely,
when o > o, then n < 1, and it ap-
proaches 1 as the frequency goes to
infinity. This tendency of n(o) to
approach 1 as ® — « is a character-
istic property of any medium and
not exclusively of plasma. It’s ex-
plained by the fact that, due to iner-
tia, electrons cannot oscillate at an
infinitely high frequency. Thus sec-
ondary waves of extremely high fre-
quencies are not generated in the
medium, and the primary electro-
magnetic wave passes through the
medium as if it were propagating in
a vacuum,

When n < 1, equation (1] gives
v,> ¢, which means that the wave
travels in plasma with supez-
relativistic velocity. It might seem
that this relationship violates the
basic tenet of Einstein’s theory of
relativity, which says that no event
(physical body, field perturbation, or
signal) can move with a velocity
greater than the speed of light c. But
no violation has actually occurred.
The velocity calculated according to
equation (1) has to do with a wave of
a certain frequency. Such a wave is
an infinite sinusoid, which cannot
itself transmit a signal, because its
shape is stable at all times.

In order to transmit a signal, one
must use not one frequency but a
group of frequencies from which it
is possible to form a wave of the re-

quired shape. The rate of propaga-
tion of the entire group of waves is
different from the velocity of a
single wave and is determined by
the equation

To distinguish between these
types of velocity, the velocity deter-
mined by equation (1) is called the
phase velocity (thus the subscript
“p” introduced above), while the
velocity determined by equation (2)
is called the group velocity (which
explains the subscript “g” in equa-
tion (7)). In a vacuum, n = 1 and
dn/dw = 0, so v, = v, = ¢. By calcu-
lating dn/dm using equation (6), we
can show that, in plasma,

v o=c2
¥yt Vg = 0%

Since v_ > ¢, then Vv, < C, which
means that radlo s1gnals propagate
in plasma with a velocity less than
¢, which corresponds to the afore-
mentioned tenet of the theory of
relativity: as ® approaches o, from
the higher frequencies, the phase
velocity becomes infinitely large
( v, = | and the group velocity tends
t0 Zero (v — 0). This means that sig-
nals with o< o, do not exist (that is,
do not propagate) in plasma.

Radio waves in magnetically active
plasma

Magnetic fields exist everywhere
in the cosmos. They are generated
by electric currents (streams of
charged particles) and by perma-
nently magnetized heavenly bodies
(Earth is one such). The basic mag-
netic field in the ionosphere is a geo-
magnetic field. It is this field that
deflects the magnetic needle of a
compass.

Now we want to clarify how
equation (6) must be modified if
plasma is immersed in a constant
magnetic field (such plasma is called
magnetically active). As we've seen,
the dispersion properties of a me-
dium—that is, the nature of the
function n(w)—is closely linked

with the natural frequencies of elec-
tron oscillations. In the absence of a
magnetic field, plasma electrons
move (oscillate) identically in every
direction. The natural frequency of
these isotopic oscillations (that is,
oscillations that are independent of
the direction of the velocity) is deter-
mined by equation (5). When plasma
is placed in a magnetic field B, the
character of the electron movement
will change drastically: a strong de-
pendence on the velocity’s direction
Vv arises.

We recall that a magnetic field
does not affect stationary charges or
charges that move along the mag-
netic lines of force B,. However,
charges that move perpendicular to
B, are affected by the Lorentz force
in the direction perpendicular to v
and B, This force is equal to

F_=ev B, (8)

where v, is the projection of the ve-
locity vector v on the plane per-
pendicular to B,

Let’s decompose an arbitrary
electron velocity v into its longitu-
dinal and transverse components:
v =v, +v,. The movement along B,
is not affected by the magnetic field,
so the longitudinal velocity compo-
nent v, doesn’t “feel” the presence
of B,. Thus longitudinal electron os-
cillations are characterized by the
same frequency m_that had been ob-
tained earlier (equation (5)).

The motion of electrons in the
transverse plane, however, is quite
different. Because the Lorentz force
(equation (8)) is perpendicular to v ,
the velocity doesn’t change in mag-
nitude, although the trajectory
curves constantly. As a result, an
electron revolves in a circle of radius
p with angular frequency o_. Thus

v, = po,, and the force

F  =epo B

m

Referring back to the 1n1t1a1 equation
(3) and substituting w, for ®_, I for p,
and F ’ for F_, we get
E, /eco BO
0, = 2= |—22
\/mp V' m

Solving this equation yields
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This value is known as the gyromag-
netic frequency or Larmor preces-
sion frequency of electrons. In the
ionosphere, By, =4 - 10 T and
o, ~ 106 s71. This frequency belongs
to the radio wave range, so Earth’s
magnetic field exerts a significant
influence on radio signals propagat-
ing in the ionosphere if their fre-
quency o is close to ®_.

Note that equations (5) and (9),
which give the natural frequencies
of electron oscillations in plasma,
contain equal signs, unlike equation
(4). This is because a strict calcula-
tion of the frequencies o, and o
yield the same result.

Now we need to write the formu-
las for the refractive index in mag-
netically active plasma. This is not
an easy task, because the velocity of
radio wave propagation depends on
its direction relative to B,. In addi-
tion, the structure of the electric
field in the wave (that is, its polar-
ization) must also be taken into ac-
count. Here we're restricting our-
selves to the simple case of
longitudinal propagation along a
magnetic line of force B,. Even in
this case, though, there are two
equations (not one) for the refractive
indices:

(To avoid a complicated digression,
I've simply given you the equations
without showing how they are de-
rived.)

Ordinary and extraordinary waves

The resonance condition formu-
lated above as the coincidence of
radio wave frequency with the natu-
ral frequency of electron oscillations
(in the case where ® = ®_ | is a nec-
essary but not a sufficient condition
for resonance in a magnetic field. It’s
also necessary that the structure of
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Figure 1

Electrons in a magnetic field, which
revolve in the same direction for any
initial velocity. The magnetic field B,
points toward the reader, perpendzcu—
Iar to the plane of the page.

the wave’s electric field (polariza-
tion) correspond to the character of
the electron motion. As the elec-
trons revolve around the magnetic
lines of force B (fig. 1), the electric
field of the radio wave must also
rotate. However, the electric field
can rotate in one or the other direc-
tion depending on the mode of radio
wave generation. The resonance at
frequency o = o, occurs only in the
case when the direction of revolu-
tion of the electrons coincides with
direction of rotation of the electric
field. As equation (10) shows, the
refractive index 1, (o) tends to infin-
ity at resonance. In reality the in-
crease of n, is limited, and we would
find its maximum if we take into
account the collision of electrons
with other particles. We then find
that a wave with a refractive index
n, has some very odd properties, and
for that reason it is referred to as ex-
traordinary.

In the opposite case, when the
wave’s electric field rotates in the
direction counter to that of the
electron’s revolution, nothing un-
usual can be expected at ® = o_. In-
deed, equation (11) for n, supports
this conclusion. Generally, the prop-
erties of the wave n, are very simi-
lar to those of a wave propagating in
plasma without a magnetic field.
Thus it’s called an ordinary wave.

The particular features of n, and

n, waves manifest themselves
clearly. Let’s recall that in plasma
without a magnetic field, a radio
wave with frequency o < ®_ cannot
propagate due to the negative radi-
cand in equation (6). An ordinary
wave n, shares the same property,
although its low-frequency limit is
determined by a slightly modified
inequality: o(w + o ) < ®
Extraordinary waves beﬁave quite
differently. If o < ®_, the second
term in the radicand equation (10)
becomes positive, so at low frequen-
cies no constraints on movement
are imposed on an extraordinary
wave. It can easily be seen that the
propagation of radio waves in the
kilohertz range is limited by the fol-
lowing strong inequalities: ® << @_
and ® <« o ?/o_. At low frequencies,
equation (10) for n; can be simpli-
fied—the 1 in the radicand can be
thrown out, which gives us

(12)

We recall that the refractive index in
magnetic free plasma is always less
than 1. Here, though, n, > 1, due to
the aforementioned inequalities.
This means that the wave has a very
small velocity compared to ¢ (V
c¢/n, < c). To get a sense of its struc-
ture, draw the strength of the elec-
tric (or magnetic) field as an arrow E
and follow its motion. If we made an
animated film of our sketches, we
would see that the tail end of the ar-
row moves with velocity v, along the
line of force B, while its pointed end
revolves around B, with an angular
velocity m, and the vector E always
stays perpendicular to By, (fig. 2).
Simultaneous translation and
rotation result in a helical trajec-
tory of the arrowhead of vector E.
Thus its name—a helical wave, or
simply helicon. There are other syn-
onyms in the literature: whistling
wave, whistle, or whistler. These
words have nothing to do with the
structure of the electric field—they
describe the peculiar natural phe-
nomena that result from the propa-
gation of helical waves. These phe-
nomena are called whistling



E between a
fraction of sec-
ond and one
second, while
the oscillation
periods T = 1/f

Figure 2

Helical wave propagating in plasma along a constant magnetic
field B, with a phase velocity v,. The arrowhead of vector E
circumscribes a helix rotating with angular velocity .

atmospherics, and they are used in
the near-Earth research mentioned
at the outset of this article.

Whistling atmospherics

Atmospherics are natural electri-
cal discharges in the atmosphere,
generally induced by lightning. No
doubt you’ve already encountered
them, when you turned on an AM
radio during a thunderstorm. The
crackling noise is caused by atmo-
spherics. The nature of this interfer-
ence is well understood. In addition
to a flash of light and a blast of
sound, lightning also produces pow-
erful electromagnetic radiation in a
broad frequency range. This radia-
tion was first detected in 1895, when
Alexander Popov constructed his
“thunderstorm detector.”? The first
receivers had a limited range of de-
tection, but with the advent of the
vacuum tube it became possible to
detect lightning discharges at great
distances. And so in 1919 the first
reports of peculiar radio signals,
dubbed “whistling atmospherics,”
began to appear.

Atmospherics are radio impulses
of quickly changing frequency in the
kilohertz range. A receiver for de-
tecting them can be a simple low-
frequency amplifier (even without a
rectifier!). The amplified atmospher-
ics are perceived as a kind of whistle,
which explains their name.

The characteristic period of the
frequency change in one pulse is

2See S. M. Rytov’s article “From
the Prehistory of Radio” in the May/
June 1990 issue of Quantum.

o are much
shorter—of
the order of
103-10*s. So
we can speak
of an “instan-
taneous fre-
quency”  flt)
for a given mo-
ment t. We'll
see below that the dependence of
frequency on time contains informa-
tion about the properties of cosmic
plasma thousands of kilometers
from Earth.

As arule, signals are not detected
singly but rather as a series of
pulses, one after the other, with in-
tervals in the second range. Soon
after the discovery of whistling at-
mospherics it became clear that the
entire series was generated by a
single atmospheric discharge and
thus consisted of repeated echo sig-
nals. But how can we explain such
long delays (of the order of a second
or more)? There simply are no such
distances on Earth! Even an around-
the-world echo of a radio wave trav-
eling at the speed of light returns in
about 0.13 s. A persuasive hypoth-
esis was offered in the early 1950s.
It proposed that the pulses propa-
gate from the lightning to the detec-
tor not along the Earth’s surface but
through outer space, along a line of
force of Farth’s magnetic field

N

S

Figure 3

between two magnetically conju-
gated points3) (fig. 3). If the dis-
charge occurred near the receiver,
the primary atmospheric is recorded
first (it travels along the Earth’s cir-
cumference and is heard as a brief
crack called a spheric. Later the re-
ceiver detects a whistle that trav-
eled along the magnetic line of force
to the opposite hemisphere and re-
turned by the same route after re-
flection from Earth (a so-called “late
whistler”). When the lightning and
the receiver are located in different
hemispheres, spherics are absent,
and the first recorded signals are
whistling atmospherics (“early
whistlers”). In both cases, a repeat-
edly reverberated echo is heard (up
to 20 repetitions) with an interval
ratio of 2:4:6...for late whistlers and
1:3:5... for early whistlers (fig. 3).

The hypothesis that the signals
travel along geomagnetic lines of
force also explains such features of
whistlers as the increase in the de-
tection delay with the geographic
(or more precisely, magnetic) lati-
tude of the observation site and the
fact that whistlers rarely occur in
the low latitudes. Experiments con-
ducted in 1958 with artificial
sources of electromagnetic radia-
tion provided valuable support for
this hypothesis. Signals transmitted
at a frequency of 15.5 kHz were re-
ceived in the opposite hemisphere
with a delay of ¢ ~ 0.7 s. The whis-
tlers recorded at these conjugated
points at the same frequency were

3Magnetically conjugated points are
the points on the Earth’s surface that
lie on the same magnetic line of force.

Diagrams illustrating the mechanism of generation of early (left) and late (right)
whistlers. A is the location of the lightning discharge, B is the receiver, and A’is
the Iocation of the signal’s reflection. Distances are measured in Earth radii.
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also delayed by the same value. The
common delay corresponded to the
calculated length of the geomag-
netic line of force.

The observed delay can be ex-
plained with the help of previously
obtained results. We recall that a sig-
nal propagates in plasma with an
group velocity v, given by equation
(7). Using the simplified equation for
the whistler wave refractive index
(equation (12)), we can show that

R )
do 2
and
2c  2¢/00,
Vg = ZVP =—i= .
n o,

The length of the track L and the de-
lay t are linked by the usual rela-
tionship L = v_t. It should be noted
g

that the values of o, and o, vary
along the track, as does the group
velocity v,. Therefore, in the afore-
mentioneé equation we must take
some average value for v,. We can
use the following values for mag-
netic field intensity and electron
concentration, which are character-
istic for altitudes of several thou-
sand kilometers: By =4 - 10° T,
N, ~ 10° m=. For a frequency
o ~ 10* s7! we get n; ~ 10 and
v, ~6-10" m - s7.. Since the length
of the magnetic line of force be-
tween the conjugated points in the
our experiment was L ~ 40,000 km,
the calculated value of the group ve-
locity corresponds to a delay
t= L/Vg ~0.67 s, which is in a good
agreement with experimental val-
ues. This supports the hypothesis
that whistlers are in fact the helical
waves we considered above.

It’s not too difficult to calculate
also the relationship between the
delay and the signal frequency. To
this end we insert the previously
derived value v (o) into the equation
t=L/v,and obtaint = Lo, /2¢ 00, .
This equation is usually written as

D
t=7f‘f (13)

where
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The factor D is not influenced by fre-
quency but does depend on plasma
parameters and the length of the
whistler’s track. This coefficient is
called the whistler’s dispersion. It is
found experimentally by analyzing
the function f{t}—that is, the spec-
trogram of the whistlers (fig. 4). Ac-
cording to the value of D that is
found, we can estimate the electron
concentration and the magnetic
field strength.

There is no doubt about the con-
nection between whistling atmo-
spherics and lightning discharges,
but there is one apparent contradic-
tion that should be examined. At
any given moment, about 2,000
thunderstorms are raging in the
Earth’s atmosphere. These storms
produce nearly 100 lightning flashes
per minute on average. Yet the rate
of detection of whistler in the tem-
perate latitudes is only a few events
per minute. Why are these numbers
so drastically different? The answer
is that a receiver located at a par-
ticular site doesn’t “hear” most of
the whistlers. To detect a whistler,

a receiver must be located either
near the lightning discharge or near
its magnetically conjugated point.
However, thunderstorms are dis-
tributed very nonuniformly in the
Earth’s atmosphere. They mostly
occur in the equatorial regions, but
in these regions whistlers are not
observed due to the unsuitable ge-
ometry of the geomagnetic field (the
lines of forces are located too close
to Earth). There is another reason
for the low rate of detected whis-
tlers. Whistlers are generated only
when the electromagnetic pulse is
located near the magnetic line of
force (when it “sticks” to it). Some
special conditions are necessary for
this—conditions that are not always
met for any given lightning dis-
charge. “Sticking” occurs when the
plasma contains fluctuations run-
ning parallel to the magnetic field.
However, even in homogeneous
magnetically active plasma the di-
rection of energy flow of the helical
wave approaches the direction of B,
Calculations show that the limiting
angle of deflection of the group ve-
locity from this direction is about
20° when the frequency ® is much
less than the gyrofrequency o,
Nevertheless, this condition cannot
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Whistling atmospherics (above) and its spectrogram (below). At a moment t,
the lightning discharge simultaneously excites all the frequencies (in the low
frequency range), which is shown by a vertical line in the lower graph. At a
moment t. the whistler’s “nose” has arrived. After a certain delay At the signal
is detecteg, after being reflected from the magnetically conjugated point on the

opposite hemisphere.




ensure by itself the propagation of a
whistler along the geomagnetic line
of force. When whistling atmo-
spherics are detected by a satellite,
their number is much larger com-
pared to terrestrial observations,
because the apparatus on the satel-
lite detects all the signals and not
just those that were trapped in the
waveguide.

Measuring space plasma
cliaracteristics

A geomagnetic line of force (the
carrier of whistling atmospherics)
can extend far from Earth—up to
tens of thousands of kilometers, de-
pending on the geomagnetic latitude
of the observation point. This means
that variations in a radio signal con-
tain information about the charac-
teristics of the plasma at very high
altitudes. By calculating the signal
delay in heterogeneous plasma, we
can show that the dispersion D is
integrated (accumulated) along the
entire track of the pulse, and the
contribution of those portions of the
trajectory with small B, is particu-
larly large. This becomes clear if we
remember that, in the formula for D,
the frequency ®_ stands in the
radicand’s denominator, so

5

Although it’s not possible to deter-
mine the plasma density at various
altitudes directly according to the
dispersion D (since only an integral
concentration along the entire track
can enter into the equation), this
relationship can be used to check
one or another model describing the
dependence of N, on altitude. It is
particularly important that, due to
the drastic decrease in B, with dis-
tance from Earth, the main contri-
bution to dispersion is made by val-
ues of N, near the apogee of the
trajectory (that is, at the highest al-
titudes).

Whistling atmospherics have
played and continue to play a no-
table role in investigations of near-
Earth space. Data obtained from
such research led to a revision of
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4 5 R/R Earth

A drastic change in the electron concentration (“knee”) at the boundary of the
inner layer of the magnetosphere (shaded region). The data points were obtained
by means of whistlers. The distance from Earth is measured in Earth radii.

views about how far Earth’s iono-
sphere extended (the consensus had
been a few thousand kilometers at
most). The conclusion that high
concentrations of electrons exist at
great distances, which resulted from
the analysis of whistlers, was di-
rectly confirmed later by the mea-
surements made on board rockets
and satellites.

The history of the discovery of the
so-called “knee” (a drastic decrease in
electron density at altitudes of
15,000-25,000 kilometers—see figure
5) is another example of fruitful re-
search involving whistlers. The
boundary of the inner region of the
magnetosphere, full of relatively
dense plasma (N, > 108 m™) and rotat-
ing together with Earth, is located at
these altitudes. Evidence for the exist-
ence of such a vast plasma shell
around Earth was obtained from the
measurements made by a Soviet
rocket in 1959 and by the American
satellite Explorer I in 1963. The re-
sults obtained with the whistler tech-
nique also confirmed the existence of
the “knee” and make it possible to
record regularly the shell’s boundary
with an accuracy of 0.1 Earth radius.

I have illustrated the usefulness
of whistlers by the example of elec-
tron concentration measurements.
In doing so, I used equation (13)
which is valid, as you recall, in a
limited range of frequencies—about
1 to 7 kHz. At higher frequencies the
condition ® « ®_, is violated (we
used it when we deduced the ap-
proximate equation (12) for n,(w),
while the lower frequency limit is
due to the fact that we neglect the
motion of ions at the very outset.

If the frequency range for recording
whistlers is made broader, new pos-
sibilities arise. I'll just make note of
a few. Often whistlers are observed
that have a minimal arrival time at a
certain frequency. These are called
“nose” whistlers (at the frequency f,
in figure 4). Two branches appear in
the spectrogram at higher frequen-
cies: an increase with an abrupt stop
at some frequency f__, and a de-
crease that enters the region we have
been analyzing. In this frequency
range, where o < ®_, the influence
of the magnetic field is manifested

CONTINUED ON PAGE 37
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Squaring the hyperbola

A different approach to logarithms and exponents

by Andrey Yegorov

N SCHOOL, THE EXPONENTIAL

function x — a@* is usually intro-

duced after several generalizations

of the operation of raising numbers
to powers. First, powers with natural
exponents are defined, then powers
with rational exponents, and finally,
powers with irrational exponents. At
this point, the logarithm is defined as
a function that is the inverse to the
exponential function.

This article will take the opposite
approach: we'll start with a definition
of the logarithm, and then we’ll pro-
ceed to its inverse function, “the ex-
ponent.” The definition we are going
to give brings to light many of the
basic properties of these functions
and allows one to find estimates that
are useful in physics. It also illustrates
a frequently used mathematical
method for producing new functions
from those already known.

We'll be applying this method to
the function x — 1/x, whose graph
v = 1/x, as you know, is a hyperbole.

DerNniTION. Let b be a positive
number. Denote by In b the real
number whose absolute value is
equal to the area of a figure bounded
by the graph y = 1/x, the positive x-
axis (y = 0), and the lines x = 1 and
x = b. We take the sign of this area
to be positive when b > 1 (fig. 1a) and
negative when b < 1 (fig. 1b). Ifb=1,
we put In b = 0. We call the function
b — In b the natural logarithm.

For those who are familiar with
the notion of integrals, I'll rewrite
our definition as follows:

def
Inb =

1
[=dx, ifb>0.
| X

Now, if you are eager to follow all
of our reasoning in all its rigorous
detail and solve all the problems
(which are an important part of this
article), you’ll need a solid under-
standing of real numbers and their
properties. However, the article is
written in such a way as to make all
the basic properties of logarithms
and exponents understandable to
anyone familiar with only the “na-
ive” concepts of limit, real numbers,
continuity, and so on, but not famil-
iar with all the details involved in a
rigorous definition of these con-
cepts. At least, that was my aim.

a
YA

0l

Figure 1
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One of the notions that require a
rigorous definition is that of area.
Indeed, we must explain what we
mean by the phrase “the area of a
curvilinear trapezoid” (see figure 1).
In school one hears about the area of
a polygon, or the area of a circle and
its parts, but our “trapezoid” is
bounded by a hyperbola on one side.

Here I'll confine ourselves to the
remark that area is a function defin-
able for a rather large class of figures
(this class includes all the polygons,
all the convex bounded figures, and
our “trapezoid” as well). This func-
tion must satisfy the following con-
ditions:

1. The area of any figure is a positive
number.

2. Equal figures have equal areas.

3. If we cut a figure into two parts

Y}}

Y
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such that the area is defined for
both of them, then the sum of
these areas is equal to the area of
original figure.

4. A rectangle with sides a and b has
area ab.

I won't describe the class of fig-
ures for which such a function §
exists, but I'll show that the area of
a “curvilinear trapezoid” a < x < b,
0 <y < 1/x (fig. 2) is uniquely defined
by the above conditions 1-4.

To this end, we’ll divide the seg-
ment [a, b] into n equal parts and
construct two “stairways”—that is,
steplike figures composed of rect-
angles with bases (b - a)/n on the
positive x-axis. One of these figures
will contain the “trapezoid,” while
the other is contained in it (fig. 2).
Let S and S.” be the areas of these
stairways. These areas are well de-
fined by conditions 3 and 4. It’s clear
that S < 8<S,".

On the other hand, we can show that

b-a(l 1
(O P s L |
s Car S

Indeed, if we let (b - a)/n = k, then
this difference is the sum of the dif-
ferences

YA

x\}

0! A B

Figure 3
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1 1 1 1
Il = — -
[a a+k]+k(a+2k a+kj
1 1
+k[a+3k_ a+2kj+m+

L1
a+nk a+(n-1)k/

This sum “telescopes” (most of the
terms cancel out), and the result fol-
lows from the fact that a + nk = b.

Equation (1) shows that when n is
big enough, the difference between S/
and S is arbitrarily small. So there
exists only one number S lying be-
tween S/ and S, for all 1 (it also fol-
lows from this that both sequences S/
and S approach § as n increases—
that is, S is their common limit).

This clarifies the concept of the
area of the “curvilinear trapezoid”
and along with it our definition of
the function y = In x.

The natural logarithm

The fundamental property of the
natural logarithm is expressed by
the formula

Inxx,=Inx, +Inx (2)
1% 1 2

(for x; > 0, x, > 0). This means that
the natural logarithm of a product is
equal to the sum of the natural loga-
rithms of the factors.

Before we prove equation (2), let’s
establish one important property of
curvilinear trapezoids formed by the
function y = 1/x. Let S[A, B] denote
the area of a curvilinear trapezoid
with vertices A and B (fig. 3). Then,
if b > a >0 and k is an arbitrary posi-
tive number, we have (fig. 4)

S[a, b] = S[ka, kb]. (3]

YA

yop--o-- \
y/k peo--ni---

0 x  kx
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Figure 4

To prove this statement, consider
the transformation of the plane that
maps the point (x, y] into the point
(kx, y/k). (You can think of this as a
combination of two mappings, the
first expanding all the distances from
the positive y-axis by the factor k, and
the second constricting all the dis-
tances from positive x-axis by the
same factor (fig. 4)). We can sce that
this transformation turns the trap-
ezoid over the segment a < x < b into
that over ka < x < kb] (fig. 5). In fact,
if the point (x, y) belongs to the first
trapezoid, thena <x<band0<xy<1.
But this means that ka < kx < kb and
0 < |kx)y/k < 1—that is, the point
(kx, y/k) belongs to the second trap-
ezoid. Conversely, if (kx, y/k) is a
point of the second trapezoid, then
the point (x, y) belongs to the first.

Note that this mapping does not
change the area of the trapezoid (or
any other figure). Indeed, since rect-
angles whose sides are parallel to the
axes do not change their areas (their
bases are multiplied by k and their
heights by 1/k), the areas of the stair-
way figures associated with a curvi-
linear trapezoid do not change ei-
ther. Thus the areas of curvilinear
trapezoids will remain the same.

Therefore,

Sla, b] = S|ka, kb].!

Now it’s not difficult to prove
that S[a, b] = In b - In a. Figure 6
shows the different cases, depending
on the sign of the area representing
In g and In b. But then

Inb-lna=Inkb-Inka. (3)

b kb
IThat is, J—dx = j—dx.
a X kaX
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Figure 5
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Although this formula has been
proved so far only for b > g, it is true
for all positive numbers a and b,
since for a > b we have

Ina-Inb=1Inka-Inkb,

which is equivalent to equation (3’).

Now the fundamental property of
the logarithm follows directly from
equation (3’). It suffices to take
b=x,,a=1, k=x,. In particular,
when x, = 1/x, = x, we get

1nX=—1nl. (4)
X

The following equations can be de-
rived without much trouble from the
fundamental property (equation (2)):

Inxx).. x,=Inx +Inx,+...+Inx_, (5)

X
In—L=Inx; -1
nX2 nx; —Inx,, (6)

We'll be using these equations
below.

Graph of ¥ — In ¥

Equation (2) allows us to learn
more about the behavior of the func-
tion y = In x. First, let’s check that In
x grows indefinitely as x increases. In
fact, since In 2 > 0, and by virtue of
equation (5), In22=In(2-2-...-2)=
In2+In2+-+In2=nln2, thenln 22
grows without limit as n increases,
and this implies unlimited growth of
y =In x. (Indeed, In x > n In 2 for
x> 27—Tleave it to the reader to prove
that In x increases monotonically.)

Now let’s examine the logarithm’s
behavior as x approaches 0. Since

lnin =-In2" =-nln2,

we see that Inx < -nln2 for
0 < x < 1/2°—that is, if x is small
enough, the logarithm can be arbi-
trarily large negative number.
Now we're ready to draw an ap-
proximate graph of y = In x (fig. 7).

The exponent

We can prove that each real num-
ber is a value of the function we
examined above. In addition, this
function takes each value only
once—that is, for each real x there is
only one solution y of the equation
x = Iny. The real number y that sat-
isfies this equation is denoted by

Y = exp X.

Thus we have obtained a new func-
tion x — exp x that is inverse tox —
In x. It’s called the exponent. Note
that the very definition of the expo-
nent implies the identity

exp(lnx)=In(expx)=x. (7)

The graph of the functiony = exp
x is symmetric to the graph of y = In
x with respect to the line y = x. In-
deed, since the equality y = exp x is
equivalent to Iny = x, we can obtain
the exponent’s graph from that of
the logarithm by means of a trans-
formation that maps the point (x, y)

YA

y=Inx
o %
Figure 7

A 4

into the point (y, x). And this map-
ping is simply the symmetry with
respect to the line y = x (fig. 8).2
Thus the exponent is an increas-
ing function, defined on the number
line —e < x < +o0 and taking positive
values. In addition, it takes arbi-
trarily large values as x increases and
tends to zero as x approaches —oo.

\ts fundamental property

The fundamental property of the
exponent is expressed by the follow-
ing equation:

exp (x; + X, | = exp x; - exp x,. (8)

To prove equation (8) we'll use the
fundamental property of the natural
logarithm and equation (7). Since
Iny,y,=Iny, +Iny,, thenfory, =expx,,
v, =€xpx, wehavelnyy, = x, +x,—
thatis, y, - y, = exp (x, + x,), orexp x; -
€xp X, = €xp (x; + X,). From the funda-
mental property of the exponent (or
from the corresponding property of the
logarithm), we can derive the equalities

1
expx

exp(—x) =

2To verify that this figure is correct,
prove that In x < x for all x > 0.

YA
Y = exp x

y=Inx

b ¥

Figure 8
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and
exp (x; + X, + ... + X,
=eXp X, -€XpX, - ... eXp X,.

We'll use the symbol e for the
number exp 1. In other words, e is
the solution of the equationIne = 1.

Using the fundamental property
of the exponent, we’ll prove that for
all rational x = m/n, exp x = e*. First
of all, for natural m,

expm=exp(l+1+..+1)
=expl-expl-expl=e™

and

—L:e_m

exp(—m) - expm - e™

So exp m = e™® for every whole num-
ber m. Moreover, for natural num-
bers n,

(3] el
exp—| =exp| —+—+-+—
n n n n

=expl=e

—that is,

exp=eila,
n

For any rational x = m/n (where
n>0, andn and m are integers) we get

m 1 = o\ m/n
exp;=[€XpEj :(\fe‘) =€

—that is, exp x = ¢* for all rational x.

If o is an irrational number, it's
most convenient to regard the equa-
tion e = exp o as a definition of e*.
So, for all x,

exp x = %, (9)

This equation, together with the
equation (7), means that for any posi-
tive x, its logarithm is such a number
that e raised to this power gives x:

er*—explnx=x.

Arbitrary bases

Now we can define y = a* for any
a>0,a#1,and all x, setting

a¥ = exp (xIn a) = exIn g,

as well as the logarithm of x > 0 with
base q, setting
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One can show that these func-
tions satisfy the same fundamental
properties:

Xy

X|+X X
1 2 — 1
=da j

a -a

log, x;x, =log, x; +log, x,.
(for x;, > 0, x, > 0, and that

alogﬁ X _x

We leave it to the reader to check
that the definitions given above cor-
respond to the traditional ones. In
what follows, however, we’ll prima-
rily be interested in those properties
of logarithms and exponent for
which it is essential that the base is
e and not any other number.

Derivatives

Up to this point we’ve been dis-
cussing properties of logarithms and
exponential functions that you
might already know from your high
school studies. But now we’re going
to look at properties connected with
the rates of variation of these func-
tions. These properties are very im-
portant for physics. Let’s begin with
some definitions. We'll call the dif-
ference Af = f{x,) - f(x,) the incre-
ment of the function x — f{x) on the
segment [x,, x,], and the difference
Ax = x| - X, the increment of the ar-
gument. It’s natural to call the quo-
tient

Af _ fx) - fxo)
Ax X — X

the mean velocity of variation of the
function x — f(x) on the segment
[xo, x,]. Indeed, if x is time and f(x]
is the distance traveled by a moving
body up to the moment x, then
Af/Ax is the average speed during the
interval [x,, x,]. Suppose that x is
fixed and x, approaches x. If the
quotient Af/Ax tends to some limit,
we'll call this limit the derivative of
function x — f[x) at the point x; and
denote it by f/(x,). (We can regard
this as the instantaneous rate of the
function’s change at the moment
x,.) The derivative describes the

Figure 9

function’s behavior near x,,.

The derivative has a simple geo-
metric meaning. Let M, be a point
on the graph y = f{x), corresponding
to x = x,—that is, the point with co-
ordinates (x,, f(x,)); M, is the point
(x, fix;)). Draw the line M M,. The
slope of this line—that is, the tan-
gent of its inclination to the positive
x-axis (fig. 9)—equals

ano < B = fx0)
X; — Xg

As x, approaches x, the secant line
tends to a limiting position—the
tangent drawn to the curve y = f(x)
at the point x,. Thus the derivative
at X = x, is equal to the slope of the
tangent to the graph x — f{x) drawn
through the point (x;, f(x,)).

Let’s try to calculate the deriva-
tive of the function f(x) = In x. Its
increment on the segment [x,, x,]
equals

X
Inx, -lnxy, =ln=L

Therefore,

Inx; -Ilnx 1 In(l+h
1 0_ ( )’(10)
X; — X xy h

where
s

X0
As x, tends to x,, h approaches 0. So
we just need to find how the quotient
[In (1 + h)]/h behaves for small h.

The definition of the logarithm
given above will soon allow us to



make some simple evaluations,
from which it will follow that
[In (1 + h)]/h approaches 1 as h tends
to zero—that is,

In (1 + h) = h (for small k).

This equation is very important for
making estimates. We can rewrite it
as

(11)

exph =1+ h (for small h). (12)

From these we obtain basic equa-
tions for the derivatives of loga-
rithms and exponents:

(Inx)’ :é (13)

and

(exp x)' = exp x. (14)

Evaluating the natural logarithm near 1

Here is one of the most important
properties of the logarithm:

X2 X

x-——=——<In(l+x)<x. (15)
x+1 x+1
In order to prove these inequali-
ties for x > 0, we need only compare
the area of the curvilinear trapezoid
ABCD with the areas of rectangles
AD’CB and ADC’B (fig. 10). The
trapezoid’s area is In (1 + x), while
the area of AD’CB is equal to

AB~BC=X-L/
x+1

and the area of ADC'Bis AB - AD =
x - 1 = x. Readers are invited to check
this estimate for—1 < x < 0 on their own.

Inequalities (15) allow us to evaluate
the average rate at which a logarithm
changes (see equation (10)). Let
X =[x, —X,)/x,in equation (15). We get

YA

Figure 10

(XI_XO)/XO _
(x) - x0)/x¢ +1 x5
I+x-x5  x;—xg

<ln < ,
Xp X0

_X17%g

or

L<1n(1+(X1—X0)/X0) i
X X1~ Xp X0

(for x; > x,). When x, tends to x,,
this rate converges to 1/x,, thus
proving equation (13) for the deriva-
tive of a logarithm. So we have
shown that there exists a tangent to
the logarithm’s graph at every point,
and that its slope is equal to 1/x, for
X = X,

To find the slope of a tangent
drawn to the exponent’s graph, we
recall that this graph is symmetric
to the logarithm’s with respect to
the line y = x. As you can see in fig-
ure 11, o + B, = n/2, and since o, is
the inclination of the tangent drawn
to the logarithm’s graph at the point
(X, ¥,), we have tan o = 1/x,. Finally
we obtain the following:

1
tano

T
tanf3, = tan(a — ocoj =
=X = e’o

—that is, the slope of a tangent
drawn to the exponent’s graph for
each x equals the exponent’s value
at x, thus proving equation (14).

For arbitrary bases, without much
difficulty we obtain

ro1
1 =—1 ?
(logsx) =—lna, (13
(@¥) = a*ln a. (14')
YA
y=expx

Figure 11

Note that both these equations
are valid for natural logarithms and
exponential functions with base e.
For other exponential functions, the
instantaneous rate of change is pro-
portional to (not equal to) the value
at point x,,.

Consider the bounds of equation
(15) once more. We see at once that
the approximate equality (11) and,
therefore, its equivalent (12), follow
directly from them. In fact, when
|x| < 1, the quantity x? is negligibly
small compared to x. For example
when |h| « 0.1, the relative error of
equations (11) and (12) is not greater
then 1%—that is, the difference be-
tween the quotient of their left and
right parts and 1 is not greater than
one hundredth.

We can also derive from the same
bounds of equation (15) the follow-
ing remarkable equation for the
number e:

e= lim(l + l)
n—oo n

and more generally, the following
equation for the exponent:

exXpXx = hrn(1+§j (16)
n

(see problem 1 below).

Series representation of 2"

Equation (16) is rather cumber-
some to use in calculations, because
we must take very big n if we want
to achieve good precision. In this
section, we'll look at another expres-
sion for the exponent, one that rep-
resents it as the sum of an infinite
series:

2 k
=l xS
1-2 1.2-...-k

+ (17)

just as the geometric progression
l+x+x*+ ..., |x] <1, represents the
function y = 1/(1 - x).

This decomposition is conve-
nient for two reasons. First, if you
want to calculate the exponent, you

CONTINUED ON PAGE 56
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N THIS ARTICLE WE'LL DERIVE

several formulas for finding vol-

umes without the use of integrals.

We'll rely heavily on a principle
formulated by a pupil of Galileo in
1629.

Tetrahedron

This method for finding the area
of a tetrahedron employs neither in-
tegrals nor limits. It does, however,
make use of an intuitive proposi-
tion, the similarity principle, that
masks the integral.

SIMILARITY PRINCIPLE. If all the
edges of a tetrahedron are multi-
plied by the factor k, its volume will
be multiplied by the factor k3.

In particular, if all the edges are
multiplied by 2, the volume will be
multiplied by 8.

Before we prove the formula for
the volume of a tetrahedron, let’s
recall two formulas for the volume
of a trihedral prism. Suppose that S
is the area of its base and h is its al-
titude (fig. 1). Then its volume is

o}

i
1

Figuure 1

V = Sh. We can also express the vol-
ume of the prism using the area of
its lateral face Q and the distance d
from this face to the opposite edge:
vV =1/,Qd (fig. 2).

Figure 2

Now let’s look at the tetrahedron
ABCD, in which the area of ABC is
S and the altitude drawn to this face
is h (fig. 3). Let V be the volume of the
tetrahedron. Denote the midpoints
of the tetrahedron’s edges by the let-
ters K, L, M, N, P, T as in figure 3.
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Figure 3

Decompose the tetrahedron into
four polyhedrons: two tetrahedrons
DKML and LNTC whose edges are
half those of the of the original tet-
rahedron, and two trihedral prisms
APNKML and PMBNLT. According
to the similarity principle, the vol-
umes of the tetrahedrons DKML and
LNTC are both V/8. Let’s express
the volume of each prism using their
corresponding formulas. The vol-
ume of the first prism is

S h_

—=—8h,
4 2

1
8

and that of the second is

We obtain the following equation
for the volume V-

V=K+l5h.
4 4

From this equation we obtain the
formula we seek:

vl
3

Sphere

To derive the formula for the vol-
ume of a sphere, we'll use another

KALEIDOS

Volumes witho

Call in the Cavalie

Figure 4

sphere of radius R, a cylinder circum-
scribed around the sphere, and two
perpendicular cones. The vertices of
the cones coincide with center of the
sphere, and their bases coincide with
those of the cylinder. Figure 4 shows
a section of this solid, formed by a
plane passing through the axis of the
cylinder. We will use this picture to
illustrate how the formula for the
sphere’s volume can be derived from
Cavalieri’s principle, if we know the
formulas for the volume of a cylinder
and a cone.

Let’s consider the sphere and the
cylinder separately, and think of
both cones as removed from the cyl-
inder. (The sections of these two
bodies are drawn separately in the
figure 5. The sphere lies between the
bases of the cylinder.)

Take any plane parallel to the
bases of the cylinder such that the

well-known principle.

N

CAVALIERI'S PRINCIPLE. TWO
bodies lying between two
parallel planes have the
same volume if their cross
sections cut off by any plane
parallel to these planes have

N

equal areas.
Consider four solids: a

Figure 5
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/alieri principle!

distance between it and the sphere’s
center is x. This plane cuts a circle

of radius VR* — x* from the sphere.
The area of this circle is n{R2- x2).
The intersection of the plane and
the second body is a round ring with
external radius R and internal radius
x. It’s clear that the area of the ring
is also equal to w(R?- x?). According
to Cavalieri’s principle, we can
equate the volume of the sphere to
that of the cylinder minus the vol-
umes of the two cones:

V =2nR? —%nRg = iTcR3.
3 3

Intergecting cylinders

Let’s solve the following problem:

Calculate the volume of the com-
mon part of three infinite cylinders
of radius R such that their axes lie in
one plane, pass through one point,
and form equal angles with each
other (fig. 6).

Solution. Consider a sphere of ra-
dius R whose center is at the point

Figure 6

Figure 7

where the axes of the cylinders in-
tersect (fig. 7). Draw an arbitrary
plane parallel to the one where the
axes lie. The section of the common
part formed by this plane is a regu-
lar hexagon circumscribed around a
circle that is a section of the sphere.
The ratio of the areas of these sec-
tions does not depend on the plane
chosen and is equal to 2~/3 /n. Thus
the ratio of the volumes of the com-
mon part and the sphere is the same.
So the volume we seek is (8+/3 /3)R3.

This notion allows one to solve a
similar problem, when the number
of cylinders is not three but an arbi-
trary integer n (that is, the axes of
the cylinders lie in one plane, pass
through one point and the angle be-
tween adjacent axes is nt/n).

A rotation problem

Cavalieri’s principle can help us
solve the following problem as well:

Given an isosceles triangle with
base a and altitude h drawn to the
base. Let the altitude belong to the
lineI. The line m intersects ] and lies
in the plane perpendicular to that of
the triangle, so that the angle be-
tween m and [ is o Find the volume
of the body that arises as a result of
the triangle’s rotation about m (fig. 8).

Figure 8

Using Cavalieri’s principle, we can
show that the volume we seek is equal
to that of a cone with a circular base
of radius a and altitude h cos a. To
check this, let’s project the altitude
of the triangle onto line m. We’ll
obtain a segment of length h cos o.
Construct an isosceles triangle in
which this segment is the altitude
and the base is equal to a. (The ver-
tex opposite the base in this triangle
is the projection of the correspond-
ing vertex of the original triangle.) If
the constructed triangle is rotated
about m, the outcome will be the
aforementioned cone. A plane per-
pendicular to m cuts the solid whose
volume we seek along a ring, while a
cone cuts it along a circle. Now it suf-
fices to show that the areas of these
figures are equal, and we find

3 na*hcosa
12 '

Vv

A distance problem

And, to conclude the article,
here’s a simple problem whose solu-
tion is based on common sense:

A plane convex figure is given,
with area S and perimeter L. Find the
volume of the body consisting of all
points in space whose distance from
the figure is less than or equal to a
given positive number d.

This problem is easy to solve when
the given figure is a plane polygon. In
this case, the volume we seek con-
sists of two prisms of height d and
bases of area S, a number of half-cyl-
inders of radius d and total height L,
and several segments of a sphere of
radius d whose union is the whole
sphere (these segments adjoin the ver-
tices of the polygon and their surfaces
consist of spherical 2-gons and two
semicircles). Thus for a polygon we
can write the following formula for
the volume:

V = 05 s Pl S,
Gl 3

In fact, it can be shown that the
same formula holds for an arbitrary
convex figure.

—1. F. Sharygin
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PHYSICS
CONTEST

Mars or bust!

‘I've always wanted to see a Martian,” said Michael.
“‘Where are they, Dad? You promised.”
“There they are,” said Dad, and he shifted Michael on his
shoulder and pointed straight down.
—Ray Bradbury, The Martian Chronicles

by Arthur Eisenkraft and Larry D. Kirkpatrick

AVE YOU EVER WANTED TO

go to Mars? Mars is the next

frontier. Those of you who are

too young to have watched the
Herculean efforts to send the first
humans to the Moon may be able to
participate in the next big space ex-
ploration. You may be an astronaut,
an engineer, or a computer analyst
helping with the mission. Thousands
of people will be required. Recently
the public’s interest in Mars was
heightened by NASA’s announce-
ment that scientists may have found
evidence for the existence of primi-
tive life on ancient Mars.

Sending humans to Mars will re-
quire a lot of preparation. The work
has already begun. Besides the crucial
work on studying how humans live
in space for long periods of time, two
recent launches have sent satellites to
our nearest planetary neighbor.

On November 7, 1996, NASA
launched the Mars Global Surveyor
(MGS), which will reach Mars on
September, 12, 1997, to begin a two-
year survey of the atmosphere and
surface of Mars from orbit. The
MGS will require 309 days to make
its journey. (You can learn more
about the Mars Global Surveyor
mission on the Web at http://mgs-
www.jpl.nasa.gov.)
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On December 4, 1996, NASA
launched Mars Pathfinder on a tra-
jectory so that it will land on the
surface of Mars on Independence
Day, a trip of 212 days. Mars Path-
finder contains a microrover that
will be used to deploy scientific in-
struments and explore the terrain
around the landing site. (You can
learn more about Mars Pathfinder at
http://mpfwww.jpl.nasa.gov.)

It’s interesting that the satellite
that was launched last arrives at
Mars first. We can get some under-
standing of this by looking at a sim-
plified orbital problem.

Let’s assume that we have a sat-
ellite in a circular orbit around the
Sun with a radius equal to the aver-
age radius of the Earth’s orbit. Let’s
fire rockets in the forward direction
tangent to the orbit. If we increase
the speed of the satellite by the cor-
rect amount, the satellite will be
placed into an elliptical orbit that
has its greatest distance from the
Sun equal to the average radius of
Mars’s orbit. If Earth and Mars are in
the proper relative positions, this
would allow the satellite to orbit or
land on Mars. In our calculations,
we neglect the gravitational effects
of Mars and the Earth and consider
only the Sun’s gravity.

We can find the required speed of
the satellite using conservation of
energy

)  Gmmyg
—mvg =_—mvy —
2 T 2 1
E M

lI’HV2 _Gmmg 1

and conservation of angular mo-
mentum

mvgry = mvyIy

where m and mg are the masses of
the satellite and the Sun, respec-
tively; ry and r,; are the orbital radii
of Earth and Mars, respectively; and
vy and v, are the orbital radii of
Earth and Mars. Note that these two
velocities occur at the ends of the
ellipse—that is, when r = r; and
r = 1, respectively, and that the ve-
locities are perpendicular to the radii.
Solving these two equations for v,
we obtain

25

Vg =V
E 0 ’

where

VO =
Iy

is the orbital speed of the Earth.
Using r, = 1.53 r, we find that
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vg = 1.10 v,. Knowing that G =
6.67-10"' N-m?/kg?, m=2.0-10¥kg,
and r; = 1.5 - 10! m, we obtain nu-
merical values of v, = 29.7 km/s and
vg = 32.7 km/s. Therefore, we must
increase the satellite’s forward speed
by 3.0 km/s.

We can do a similar calculation

at the other end of the ellipse to find -

out how much we need to acceler-
ate the satellite to match the orbital
speed of Mars. Conservation of an-
gular momentum tells us that
vy = 21.4 km/s and that Mars’s or-
bital speed is 24.1 km/s. Therefore,
the satellite needs to speed up by
2.7 km/s.

Because Kepler’s laws are appli-
cable for any object orbiting the Sun,
we can use Kepler’s third law to find
out how long it takes the satellite to
reach Mars. Let’s compare the circu-
lar orbit of the Earth to this transfer
ellipse connecting Earth and Mars
with a major axis equal to r + ry:

3 2_ Iy + Iy ’
Ty 2rg '

Therefore, T, = 1.42 Ty = 1.42 years.
Because the satellite only executes
one half of the elliptical orbit, the
time is 0.71 years = 260 days. Longer
and shorter periods can be obtained
by using different ways of leaving
Earth orbit and entering Mars orbit.
For a better calculation, we also
need to take into account the gravi-
tational fields of Mars and Earth.
Our problem this month is based
on a problem that appeared on the
second exam used to select the mem-
bers of the 1995 US Physics Team,
which won four gold medals and one

direction
of thrust

Figure 1
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silver medal at the International
Physics Olympiad in Australia.

Let’s assume that the Mars Glo-
bal Surveyor is in a circular orbit
about Mars at the designed height of
367 km above the surface. We also
assume that we can neglect the ef-
fects of Mars’s atmosphere and that
Mars has a radius R = 3,400 km and
a surface gravity g = 3.72 m/s>.

A. Find the speed of the satellite
in its circular orbit about Mars in
terms of the values given above.

Although the Global Surveyor is
not designed for this purpose, let’s
assume that we want to send the
satellite down to the Martian sur-
face. The satellite could reach the
surface by firing its rocket engines
for a short period of time. We will
consider two special cases.

B. In the first method, the retro-
rockets are fired at point X tangent
to the orbit to slow the satellite. The
circular path becomes an elliptical
path that brings the satellite to a
landing strip on the Martian surface
at point A on the side opposite to
point X, as shown in figure 1.

(i) Determine the speed of the sat-
ellite immediately after the retro-
rockets have been fired.

(ii) Determine the speed of the
satellite as it reaches Mars’s surface
at point A.

C. In the second method the rock-
ets are fired at point X perpendicu-
lar to the orbit, giving the satellite a
momentum directed toward Mars.
The circular path becomes an ellip-
tical path that brings the satellite to
a landing strip on the lunar surface
at point B one quarter of the way
around Mars, as shown in figure 2.

(i) Determine the speed of the sat-

direction
of thrust

Figure 2

ellite as it reaches Mars’s surface at
point B.

(ii) Determine the velocity of the
satellite immediately after the rock-
ets have been fired.

D. How do the magnitudes of the
changes in velocity at point X com-
pare for the two methods?

E. How do the speeds of the sat-
ellite at Mars’s surface compare for
the two methods?

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

The bombs bursting in air

In the September/October issue
of Quantum we asked our readers to
analyze the paths of fragments emit-
ted in a fireworks display. Specifi-
cally, we asked at what time is the
frequency of fragments hitting the
ground the greatest? To simplify the
problem, we assumed that there was
no air resistance and that the explo-
sion was isotropic. We will follow
the solution given a few years ago by
Tainan Wang, an undergraduate stu-
dent at SUNY Stony Brook and
former member of the Chinese
Olympiad Team.

Assuming that all the fragments
have the same speed relative to the
center of mass, then the fragments
will form a sphere with the center of
mass as its center. The radius of this
sphere will increase in proportion to
the time, as the entire sphere de-
scends toward the ground with ac-
celeration g.

Figure 3 shows the expanding
sphere at times t and ¢ + At. During
the time interval At, all fragments

y

y t+ At

/
N
0+ A0

Figure 3
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within A6 have hit the ground.

The motion of the fragments is
described by the following simulta-
neous equations:

y(t)=h- %gt2 +Vot,
r(t)=vit,

where v, is the initial velocity of the
center of mass and v, is the speed of
the expanding sphere.

Since

rcosb=y,

1
h+v0t—5g7:2

cosf =
vt

the fragments within A6 can be
found by comparing the area of this
surface fragment with the total sur-
face area of the sphere. The area of
the surface fragment is the product
of the circumference of the surface
and the arc length of that fragment
(rAB), assuming that At is very small.

The number of fragments is
therefore

(2mrsin6)(rA6) .

4nr?

= 1 N'sin6AS,
2

where N is the total number of frag-
ments.
The frequency can now be found:

p= 10 y;r,, A
T dt a0 At
= lim Esineﬁ

At—0 2 At
=leine@
2 dt
_ 1. dcos8
2 dt

1 g h1
= — _—t .
2 \2v; v t?

The graph of this equation is shown
in figure 4. In the figure, t, is the
time at which the first fragment hits
the ground and is the time where the
frequency of particles hitting the
ground is the greatest.

frequency

fmax -

t 2 time

Figure 4

As a check on our work, the area
S beneath the curve must equal the
total number of particles N:

Tf dt = Jdn = I%smede - N.

4

Does this make physical sense?
Imagine a limiting case where the
velocity of the fragments is very,
very large. We can see that the par-
ticles that were shot downward will
have a small difference in their ver-
tical velocities and will all hit the
ground at almost the same time.
The particles that were shot straight
up will also have a small difference
in vertical velocities. This small dif-
ference will lead to a large lag time
due to the long time in flight.

We also asked the more provoca-
tive question about whether it makes
a difference if we learn to solve pro-
jectile problems using sports and res-
cue planes or morter shells and
bombs. We now wonder why most of

our readers did not bother to express
their opinion on this pedagogical/so-
cial question.

“WHISTLING IN SPACE”
CONTINUED FROM PAGE 25

very strongly, and whistling atmo-
spherics play the role of natural
“magnetometers.”

At very low frequencies, so-called
“jonic whistlers” can be observed.
Their spectrogram contains infor-
mation about the masses of ions,
which makes it possible to do a
chemical analysis of cosmic gas at
distances of tens of thousands of ki-
lometers from Earth! Not only that,
the strict formulas for n (o) include
the dependence on electron tem-
perature, so whistlers can also be
used as remote “thermometers”. . .

Isn’t it wonderful that, with the
help of physics, we can penetrate far
into outer space without ever leaving
the planet! This is not to take any-
thing away from those who build
rockets and the sophisticated equip-
ment they carry—they are monu-
ments to human ingenuity. But it’s
significant that nature itself has pro-
vided us with the possibility of carry-
ing out remote measurements of the
cosmic phenomena. It has laid thou-
sand-kilometer-long waveguides
along the geomagnetic lines of force
running from one hemisphere to the
other in outer space. They have ex-
isted as long as the Earth has, but it
wasn’t until the advent of radio that
it became possible to use such a won-
derful “instrument.” (o

7

QUANTUM

makes  periect graduation it

Use the response card in this issue to order Quantum for your
child, grandchild, nephew, niece, mother, father, friend . . .
whether or not they’re graduating! Six colorful, challenging,
entertaining issues—3$17.70 for full-time students, $23.70 for
nonstudents. You can also order by phone: 1 800 SPRINGER.

N

j

QUANTUM/PHYSICS CONTEST 37




FIGURE?

Challenges in physics and math

Math
M196

Not 1997. Find a positive decimal
number (which may not be an inte-
ger) that will increase by a factor of
1996 if you exchange the digits in
the first and fifth decimal places.
(D. Averiyanov)

M197

Switch and square. Find all pairs of
natural numbers x and y such that
both x + 3y and y? + 3x are squares
of whole numbers. (I. Sharygin)

M198

Conservative estimate. Find a rela-
tion betweena, bandcifa=x+1/x,
b=y+1/y,c=xy+1/xy(wherex, y
are variables). The relation must not
contain any radicals.

M199

Hands-on politics. In the parlia-
ment of Illyria, each member
slapped the face of exactly three
other members of this prominent
body. Several parliamentary com-
mittees are to be organized so that
each member of the parliament
works in one (and only one) of them.
To avoid conflicts within a commit-
tee, it’s necessary to fill it with depu-
ties who have never slapped one
another in the face. Prove that if the
number of committees is greater
than or equal to 7, this condition can
always be met, but that if there are
fewer than seven committees, the
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task may sometimes prove impos-
sible. (A. Belov)

M200

Circular reasoning. A trapezoid
ABCD (in which AD and BC are
bases) is inscribed in a circle. Its diago-
nals intersect at point M. Let a
straight line perpendicular to the
bases of ABCD meet BC at K and
meet the circle at L (where L is the
point of intersection for which M lies
on line segment KL). Let MK = a
and LM = b. Express in terms of a and
b the radius of the circle tangent to
segments AM and BM, and also tan-
gent internally to the circle circum-
scribed about ABCD. (L. Sharygin)

Physics

P196

Elbow in motion. Two rigid rods of
length L, and L, are connected by an
articulated joint at point A. Their free
ends move away from each other uni-
formly with the corresponding veloci-
ties v, and v, directed along the same
line (fig. 1). Find the acceleration of
point A at the moment the rods make
an angle of 90°. The rods are moving
in the same plane. (B. Bukhovtsev)

Figure 1

P197

Heating a planet. The planet “E” is
very similar to Earth, but on this
planet the anti-ecologists won the
last planetary parliamentary elec-
tions. They built huge nuclear
power stations all over the planet,
including the seas and oceans. When
they are in operation, 1,000 W of
power is dissipated per square meter
of the planet’s surface. How soon
after energy production begins will
the atmospheric temperature rise by
1 K? Assume that the planet itself is
not heated and that energy is dissi-
pated into space at a constant rate.
(S. Varlamov)

P198

Discharge in a gas. The dependence
of the current I flowing in a gas dis-
charge tube on the voltage V supplied
between the tube’s electrodes for the
case of a non-self-maintained gaseous
discharge is given in figure 2. A tube
with a series load resistance R = 3 - 108
Qis connected to a source with a con-
stant emf € = 6 kV. Find the steady-
state current flowing in the tube and

I(pA)

A

10 +----- :

st/

0 L2 3 ywv)
Figure 2



the voltage drop across the tube. Ne-
glect the internal resistance of the
emf source. (V. Mozhayev)

P199

Magnetized spiral. A plane helix
with a large number of turns and an
external radius R (fig. 3) is placed in
a homogeneous magnetic field that
is normal to the helix’s plane and
varies according to the formula
B = B, cos wt. Find the emf induced

Figure 3

in the spiral. The distance between
adjacent turns is constant. (I. Slobo-
detsky)

P200

Photojournalism. A page from a
newspaper was photographed twice
with a camera whose objective has a
focal length of 50 mm. The first photo
was made at the minimum distance
(for this objective) a = 0.5 m. Before
the second photo was taken, from the
new minimum distance, a spacer ring
of thickness h = 25 mm was attached
to the camera. Find the ratio of the
sizes of the images on the film for
these two cases. (V. Deryabkin)
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A planetary air brake

Viscous drag and the slowing of the Earth

D. C. Agrawal and V. J. Menon

ET’S SEE IF WE CAN CALCU-
late the slowing of the Earth’s
rotation due to the viscous drag
of its atmosphere. Most stan-
dard textbooks quote Newton’s for-
mula for the viscous force as
dv
F=-nA T (1)
wheren is the coefficient of viscos-
ity, A is the area of the surface un-
der consideration, v is the stream-
line velocity of the layer at a height
x, and dv/dx is the velocity gradient
at that height. Let’s first consider a
laboratory example before extend-
ing these ideas to the Earth’s rota-
tion.

A latioratory example

Consider a tub containing wa-
ter of depth h. Let’s move a rect-
angular piece of glass horizon-
tally with velocity v while
keeping its lower surface just in
contact with the upper surface of
the water. The no-slip condition
between the solid and the liquid
requires that the water in con-
tact with the glass move with
the same velocity v. Because of
the viscosity of the water, suc-
cessive layers at progressively
increasing depths will acquire
smaller and smaller velocities
until the velocity becomes zero
at the bottom. Assuming that
the motion of the plate causes

AoueA| Aeblag Ag 1y
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only streamline flow, the velocity
gradient becomes dv/dx = v/h,
where the vertical coordinate x has
been measured from the bottom of
the tub. Therefore, the external
force required to keep the glass plate
moving at this uniform velocity be-
comes, by virtue of equation (1),
v
F=nmA 7

where A is the area of the plate.

Some interesting aspects of this
equation are worth emphasizing.
The force is inversely proportional
to the depth of the water, which
implies that a larger force is re-
quired when the water is shallow
than when it is deep. This idea can
be roughly generalized to the mo-
tion of a boat in a still pond pro-
vided we ignore the extra resis-
tance offered by the water due to
a sizable portion of the boat being
submerged.

The Earth's rotation

It is well known that the Earth
has a rotational kinetic energy due
to its spin about its axis. This en-
ergy is about 2.2 - 10*° J. The pe-
riod of this rotation is experimen-
tally known to decrease at a rate of
1 ms per century. This implies a
continuous loss of the rotational
kinetic energy of 1.1- 102 W. The
major reason for this loss is attrib-
uted to the tidal friction in the
Earth-Moon system, but there
should also be a contribution from
the viscous drag on the Earth from
the presence of its atmosphere.

Let’s estimate the effect of the
atmosphere using a simple model
with minimal mathematical labor.
Assuming that the Earth has a ra-
dius R and an angular velocity o
about the North-South axis, a
point P at a latitude 8 (see the fig-
ure) will have a linear velocity
v = or = ®R sin 0. The point P is
situated on a narrow circular strip of
radius r = R sin 6, width Rd6, and
area dA = 2nR? sin § d6. The atmo-
spheric layer in contact with this
strip moves with velocity v, but the
higher layers have gradually de-
creasing velocities, vanishing at

some height h above the ground.
Since the velocity gradient is v/h,
the viscous force on the strip un-
der consideration is

dF = n(2nR2 sin® de)%.

The power consumed by the vis-
cous drag on the strip is then

2
dP = vdF =n(2nR? sin® de)%.
The net power lost by the Earth

due to the viscous drag is given by
the integral

P 2p4
P dP_Snnm R
0 3h

Putting in the average numeri-
cal values

R-637-106m,
n =18.1 107 poise,
®=7.29.10% s,
h=10°m,

we obtain
P-13-100W,

which is only about 1% of the
power lost due to the tidal fric-
tion. Of course, the value we
obtained is to be regarded only as
a representative number illus-
trating the direct application of
Newton’s formula. There are fur-
ther complications, such as the
change of n with altitude, uncer-
tainty in selecting h, and the
presence of water vapor and dust
in the atmosphere.

D. C. Agrawal is a reader in the Depart-
ment of Farm Engineering at Banaras
Hindu University in Varanasi, India.
V. J. Menon is a UGC Research Scien-
tist in the Department of Physics at the
same institution.
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The long road o longitude

How we finally became “coordinated”

HE POSITION OF A POINT

on the Earth’s surface is deter-

mined by two coordinates: the

geographic latitude and longi-
tude. Do you know where these con-
cepts came from? In the second cen-
tury A.D. the Greek astronomer and
geographer Claudius Ptolemaeus
(Ptolemy) introduced the concepts
of length and width to measure the
extent of the countries bordering on
the Mediterranean Sea, which
stretched from east to west. Mea-
surements along the length of the
Mediterranean he called “length,”
and those in the transverse direction
he called “width.” Later these con-
cepts, which could be applied to any
object, were modified to describe the
position of an object on the Earth’s
surface. So special terms were
coined: latitude and longitude. Al-
though these notions, clearly illus-
trated on a globe, are known to all,
many are unaware of their strict
definitions.

It’s often said that the latitude ¢
is the angular distance of a particu-
lar point from the Earth’s equator,
and that the longitude A is the dihe-
dral angle between the plane of the
given meridian and the one conven-
tionally designated as the zero (or
prime) meridian. Thus the network
of meridians and the parallels of
latitude drawn on the globe’s sur-
face make it possible to indicate the
geographic coordinates of any place
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by A. A. Mikhailov

on the Earth. Naturally a knowledge
of coordinates is necessary. But how
do we determine our own geo-
graphic coordinates? We do it by
performing some astronomical ob-
servations. Let’s assume we've cal-
culated the latitude and longitude of
our location. Can we be sure that
the point on the globe with these
coordinate is the actual place where
we are on Earth? The answer is an
emphatic “no”—even if we know
our coordinates with the utmost
precision.

This is because the Earth is not a
true sphere, while the globe—a sim-
plified and greatly reduced model of
the Earth—is. It is the irregular
(nonspherical) shape of the Earth
that causes the deviation between
the geographic coordinates obtained
by astronomical observations and
those given on a map or globe for a
particular location.

If the Earth were strictly a sphere,
any plumb line dropped from the
Earth’s surface would pass through
the Earth’s center, and the equator
and meridians would be circles of
the same radius, equal to that of the
planet. In that case, the geographic
latitude could be measured as the
meridianal arc drawn from the equa-
torial plane to the given site, and the
geographic longitude as the equato-
rial arc stretching from the conven-
tional prime meridian to that of the
given point.

The true shape of the Earth
(geoid) is rather complicated, al-
though it is close to that of an ellip-
soid of revolution, flattened in the
polar regions. This shape results
from the heterogeneous distribution
of mass inside the planet and on its
surface—in particular, from the ex-
istence of continents with high
mountains and oceans with deep
hollows in their troughs.

Due to the ellipsoidal shape of the
Earth, a plumb line doesn’t necessar-
ily pass through the center of the
planet, and the irregularities of the
geoid shape results in additional lat-
eral deviations of the plumb line, so
it might not even intersect the
Earth’s axis. These factors lead to
the so-called plumb line devia-
tions—that is, the “anomalous”
(from the spherical point of view)
variations in its direction for differ-
ent locations on the Earth’s surface.
Taking into account that the practi-
cal method of determining latitude
and longitude uses the plumb line as
a basic direction to orient the astro-
nomical tools, the discrepancy be-
tween the true geographic coordi-
nates of a point on the Earth’s
surface and that shown on a globe
becomes quite understandable.

Now it’s time to strictly formu-
late the definitions of latitude and
longitude. Latitude is the angle be-
tween the local plumb line and the
equatorial plane. Notice I didn’t say
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“the plane of the Earth’s equator.”
Due to deviations of the plumb line,
the Earth’s equator (that is, the line
whose points all have zero geo-
graphic latitude) does deviate from
the plane cross section of the Earth
by the value of the plumb line’s in-
clination, reaching 10” or more (pat-

ticularly in mountainous regions), -

which corresponds to a linear dis-
tance of approximately 300 m. This
is true not only for the equator but
for the parallels of latitude as well
(that is, the lines of the same lati-
tude), which are not plane curves for
the same reasons.

The strict definition of geo-
graphic longitude is as follows: lon-
gitude is the dihedral angle formed
by two planes parallel to the Earth’s
axis of rotation, one of which in-
cludes the plumb line at a chosen
reference point and the other a
plumb line in the location to be de-
termined. Rather than measure lon-
gitude in degrees, we could use time
units. The necessary calculation is
simple: a full rotation of the Earth
about its axis (that is, 360°) takes 24
hours, so 1 hour corresponds to 15°;
1 minute of time corresponds to 15
(“15 minutes”) of arc; 1 second of
time corresponds to 15”7 {“15 sec-
onds”) of arc. We know that noon (or
midnight) occurs at different mo-
ments at locations with different
longitudes. It’s not hard to see that
the time difference between noon-
time at a given place and noontime
at the reference location (whose lon-
gitude is taken to be zero) is simply
the longitude of that place.

According to an international
agreement ratified in 1884, the refer-
ence (zero) longitude corresponds to
the location of the Greenwich obser-
vatory near London, which was
founded in 1675. Before the agree-
ment, the national observatories of
various countries served as reference
locations: in Russia, it was the obser-
vatory at Pulkovo, near St. Peters-
burg; in France, the Paris observatory;
and so on. In previous centuries, lon-
gitudes were counted from Ferro in
the Canary Islands—the westernmost
point of the Old World (which in-
cluded the continents of Europe, Asia,
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and Africa). At that time all the lon-
gitudes were counted in the same di-
rection (the values had the same
sign)—eastward from Ferro.

Due to plumb line deviations, all
the meridians (lines of equal longi-
tude) are likewise not plane curves
obtained from a cross section of the
Earth by the planes containing the
planet’s axis, but rather are slightly
curved lines shifted up to several
hundred meters to either side of the
plane cross sections.

How accurate are the geographic
coordinates determined from astro-
nomical observations? It basically
depends on how these measurements
are made. The most precisely deter-
mined coordinates are those of astro-
nomical observatories: their latitudes
are known with an accuracy of 0.1,
and their longitudes to within 0.01
second of time. Note that 1” of a me-
ridian arc corresponds to 31 m on the
Earth’s surface, while 0”.1 second of
time corresponds to 46 m at the equa-
tor (and about half that in the middle
latitudes). Thus the aforementioned
values correspond approximately to 3
m on the Earth’s surface. Now we see
that it is not enough to say that the
Paris observatory is located at
48°50"11” North latitude, 009™202.93
East longitude. We need to indicate
the spot on the observatory’s grounds
that has these coordinates! (In this
case, it’s the location of a device for
measuring the coordinates of heav-
enly bodies.)

Now let’s see how latitude and
longitude can be determined from
astronomical observations. Latitude
can be obtained very simply: you
just measure the angular altitude of
the celestial pole! above the horizon
(fig. 1). Since the celestial pole isn’t
marked by a star or planet in the sky,
astronomers use either a star with a
known angular distance from the
pole or the Sun, whose angular alti-
tude is given for any day of the cur-
rent year in the Ephemerides.?

1See the “Commentary” on page 46.

2The Ephemerides are tables in
which the positions of heavenly
bodies are given for any given moment
of time (sometimes for many years
into the future).
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Figure 1

The geographic latitude of a given
point (the angle between the
plumb line at the location and at
the equatorial plane) is equal to
the angular altitude of the celes-
tial pole above the local plane of
the horizon.

The plane of the horizon is
determined in practice by the free
surface of a liquid in a vessel, by a
bubble in the tube of a level, or by
the direction perpendicular to the
plumb line at the given location.
The other direction—that is, to the
celestial pole—is determined from
astronomical observations. The
celestial pole is located in the
middle of the points of the upper
and lower culminations of any
circumpolar star.

A precise determination of the
longitude at a given place on the
Earth’s surface is equivalent to
determining the local time.
Having chosen by convention the
reference location of zero longi-
tude, one notes the local time at
the reference location, which is
being kept by a chronometer or
other timekeeping device. Then
the local time is determined for
the given point on the Earth’s
surface from an observation of the
Sun or other heavenly body. Then,
by comparing the local time with
the reference time, one can obtain
the longitude of this place.



The altitude measurement is per-
formed when the heavenly body
passes through the celestial merid-
ian (that is, when this altitude is
maximum). Special devices were
invented for this purpose that can
measure angles with a high degree
of accuracy. The first primitive an-
gular device, called a Jacob’s staff,
was used in the Middle Ages, and in
the 1730s the sextant was invented
in England (fig. 2), which is still
used for measurements at sea or in
the air. As the visual sightings are
being made, the sextant is held in

Figure 2

(a) The images of two objects whose
angular distance is to be measured
are superimposed in the sight (3) by
means of two mirrors (1, 2). Mirror 1,
attached to a stationary frame (4), is
covered with silver only to half its
height; the other half is transparent.
The frame ends with a limb (5),
which is a circular arc of 60° (this
explains the name of the device).
Mirror 2 is attached to the movable
part of the frame—the so-called
alidade (6), which can turn about the
axis passing through the limb’s
center perpendicular to its plane. (b)
This figure shows how the limb helps
one find the angle o formed by the
two mirrors. This angle is related to
the angular distance 6 between the
observed objects by the formula
6=B-vy=2(/2-7?2) =20

the hand to lessen the effects of
pitching and rolling. Usually the
image of the Sun (or a star at night)
is lined up with the horizon in the
eyepiece. With some experience one
can measure the angular altitude
above the horizon with an accuracy
of one minute of arc or less. When
measuring the angles on land,
where it’s possible to fix a device
firmly on a tripod, one uses more
precise instruments—for example, a
goniometer. It can measure angular
distance with an accuracy of 1” or
better.

In principle, it’s very easy to de-
termine longitude: the difference
between the longitudes of two
points is equal to the difference in
the local times at the same in-
stant. However, before the inven-
tion of radio it was very difficult in
practice to determine longitude.
Indeed, with no means of direct
communication, how could one
know the precise time at a given
moment in Greenwich (the refer-
ence location for counting longi-
tudes) if one was hundreds or
thousands of kilometers away? In
the old days, one approach was to
use an astronomical phenomenon
visible simultaneously from both
of these places and which occurred
at a certain Greenwich time
(known beforehand)—for example,
eclipses of the Moon or Jupiter’s
moons. (The possibility using Jo-
vian eclipses to find longitudes
was suggested by Galileo, who dis-
covered Jupiter’s moons in 1610.)

Unfortunately, these events do
not occur instantaneously, but can
last for a number of minutes, so they
can be recorded only with a corre-
sponding error. One minute of time
corresponds to 28 km at the equator,
so this method of longitude determi-
nation has an intrinsic error of hun-
dreds of kilometers. There were
other drawbacks: it was almost im-
possible to observe the eclipses of
Jupiter’s satellites from the deck of
a rolling ship; days would pass be-
fore the next eclipse occurred; and
the planet couldn’t be seen for sev-
eral months in the year. Lunar
eclipses are far rarer events, occur-

ring two times a year at most. Trav-
elers would have to wait days or
even weeks before they could make
several observations (and one
needed to make several to obtain
control values and improve the ac-
curacy of the measurements).
Clearly it wasn’t possible to use
such a method of longitude mea-
surement for navigation at sea.

In the 16th century another way
of determining the local time on the
standard meridian, the so-called “Iu-
nar displacement” method, was
found, although its practical applica-
tion wasn'’t possible until the inven-
tion of the sextant. The Moon
makes its way around the Earth like
the hand of a clock moving on the
stellar “dial.” However, this hand
rotates very slowly—at 1/55 the rate
of the hour hand of an ordinary
clock. Now, obviously one can de-
termine time by looking only at the
hour hand, but due to its slow move-
ment such “measurements” will be
very approximate. Since the lunar
“hand” moves even more slowly,
one can'’t expect to obtain precise
data from the lunar clock.

But the situation isn’t as bad as it
seems, because the “face” of this
clock was created with great accu-
racy: the positions of the stars are
known, so the “divisions” of this
face are very fine and precise. One
need only determine the position of
the Moon relative to the stars very
accurately by means of precise
goniometric (angle-measuring) de-
vices. During the course of an hour
the Moon shifts relative to the stars
by a distance equal to its diameter,
which is visible from the Earth at an
angle of about 30’. Fixing the
Moon’s position relative to the stars
with an accuracy of 1’ results in an
accuracy in time measurement of
two minutes.

To apply this method, one must
know the minute details of the
Moon’s motion. Only then can the
apparent lunar position provide
the local time at the standard me-
ridian and thus the difference be-
tween the local time at the
observer’s location and at Green-
wich (that is, the longitude). This
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Gommentary

IF YOU OBSERVE THE NIGHT sKY over the course of several
hours, you can see that the constellations change their
position relative to the horizon. For example, in the
eastern part of the celestial sphere, the stars ascend
above the horizon and move to the right. In the north-
ern part of the sky, most stars trace their daily concen-
tric circles. We may say that the entire firmament (the
celestial sphere) revolves about some line called the
celestial axis. The points where the celestial axis in-
tersects the celestial sphere are called the celestial
poles (North and South). The North pole is the one
where an observer on the outer side of the firmament
watches the celestial sphere rotate in the clockwise di-
rection. Of course, this rotation is only an illusion—
in reality, it’s the Earth that rotates about its axis in
the counterclockwise direction. It’s clear that the ce-
lestial axis is parallel to the planet’s axis.

In addition to the celestial axis and poles, there are
anumber of characteristic points and lines on the ce-
lestial sphere (fig. A). The plane SWNE is the plane
of the horizon—that is, the plane tangent to the
Earth’s sphere at the point C where an observer is

meridian

Figure A

located. The line NS is the midday line (at midday
vertical objects cast shadows along this line). A
plumb line drawn through point C intersects the ce-
lestial sphere at the zenith point Z. The plane that
passes through the points S, Z, P (the celestial North
Pole) and N is the celestial meridian plane. The ce-
lestial equator is the line where the celestial sphere
intersects the plane that is perpendicular to the ce-
lestial axis and passes through the observer (point C).

Each star crosses the celestial meridian twice a day
(these “culminations” are their corresponding posi-
tions). When a star is at its upper culmination, it as-
sumes the highest position above the horizon. Cor-
respondingly, the lower culmination is the lowest
position of a star relative to the horizon (fig. B).

Both the lower and upper culminations can be ob-
served for stars located near a celestial pole. Rising
and setting stars, on the other hand, have only an
upper culmination (the lower one occurs below the
horizon). The moment of the Sun’s upper culmina-
tion is called true midday, and its lower culmination
is true midnight.

zenith

Figure B

method imposed heavy demands
on celestial mechanics, which de-
veloped the theory of the rather
complicated motion of the Moon.
The accuracy of the lunar dis-
placement method wasn’t mark-
edly better than that of the previ-
ous one, but it could be applied at
any time when the Moon was vis-
ible, so it’s clear why it was very
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popular among travelers, espe-
cially sailors.

However, the lunar displace-
ment method didn’t satisfy the old
salts entirely, because of its com-
plicated calculations and poor ac-
curacy. Long voyages of sailing
vessels depended greatly on the
force and direction of the wind,
and very often the ships were out

of sight of land for long periods. So
it was extremely important to
know the ship’s location (that is,
the latitude and longitudel. In
1713 the British government, tak-
ing a keen interest in secure navi-
gation (at that time Great Britain
had the largest and most devel-
oped fleet of ships in the world),
offered a huge prize of £20,000 for



the invention of a reliable method
to determine longitude with an ac-
curacy of 1/2 degree. A portion of
this prize was awarded (posthu-
mously, alas) to the German as-
tronomer Tobias Mayer for his
tables of lunar motion, which
made it possible to improve preci-
sion when measuring longitude by
the lunar displacement method.
Half of the prize was given to the
English clock maker and inventor
John Harrison, who in 1735 had
constructed the marine chronom-
eter.3

The marine chronometer is a
spring-driven clock much like a
modern pocket watch. The chro-
nometer had three hands—hour,
minute, and second. The second
hand would jump forward every
half-second with an audible click
that could be heard several meters
away. What made the chronom-
eter so convenient was that it
could be transported at sea with-
out affecting its accuracy. It was
mounted in a box with a gimbaled
suspension along two perpendicu-
lar axes, so that the clock main-
tained its level position even if the
box was tipped.

Soon this method of transport-
ing chronometers became wide-
spread for work on land. Scientists
undertook expeditions to deter-
mine the longitudes of populated
areas for map-making purposes
and to refine the longitudes of the
various national observatories. For
example, the first director of the
Pulkovo observatory, V. Y. Struve,
organized a special expedition in
1843, equipped with 60 chronom-
eters, to determine the difference
in longitude between Pulkovo and
Greenwich.

The problem of longitude mea-
surement was solved in a quite un-
expected way when the telegraph
was invented in the middle of the
last century. Now it became pos-
sible to transmit Greenwich mean
time (GMT) and thus determine

3For a fascinating account of John
Harrison’s achievement, see
Longitude by Dava Sobel (New York:
Walker and Company, 1995).—Ed.

the difference between local time
and GMT with the previously
unachievable precision of frac-
tions of a second. Of course, the
given location would need a tele-
graph link for this to be possible,
which made the method useless
for ships at sea. Nevertheless, tele-
graph cables laid on the ocean floor
connected the continents and made
it possible to determine the longi-
tude of Washington’s observatory
very accurately. In Russia, the stan-
dard time was that of St. Petersburg
(strictly speaking, Pulkovo mean
time). It was transmitted by wire
from the Pulkovo observatory to the
central telegraph office in St. Peters-
burg, and from there to telegraph
and railway stations all over the
country. At noon Pulkovo time, a
gun fired from the Peter and Paul
Fortress.

As you may guess, the invention
of the wireless telegraph (that is,
radio—see the May 1990 issue of
Quantum, p. 39) provided the final
and universal solution to the old
longitude problem. As early as 1921
the radio station Novaya Gollandia
in St. Petersburg began transmitting
(several times a day) thythmic time
signals consisting of 61 ticks per
minute, resulting in a time interval
between ticks of 1/60 s. By timing
the ticks of one’s chronometer with
the ticks transmitted by radio, one
could tune one’s timepiece to
Greenwich mean time with an ac-
curacy of several hundredths of a
second.

The procedure wasn’t perfect,
though. The faulty operation of an
observatory’s clock and other
technical difficulties in broadcast-
ing the radio signals might cause
an error of a fraction of second.
However, this error could be cor-
rected later, after the signals were
received at the observatory and
the times of current astronomical
events were recorded. Special as-
tronomical bulletins were pub-
lished monthly for this purpose,
giving the precise moments of
transmission of past signals and
thus providing a way to correct a
chronometer later. Of course, such

high accuracy was necessary only
for determining longitude with the
utmost precision. For practical
navigation, where an accuracy of
1 s is more than adequate, such
published corrections had no value
at all. Nowadays, due to the inven-
tion of quartz clocks and then
molecular and atomic clocks,*
which keep time for many months
with an accuracy of several thou-
sandths of a second, corrections of
the transmitted radio signals have
been practically reduced to zero.
At long last the age-old problem of
finding the geographic longitude
was solved with the utmost preci-
sion.

I'll conclude our account with
an example. Imagine a person who
knows the astronomical tricks for
tinding one’s geographic coordi-
nates. Send that person to an arbi-
trary place—a desert island, the
mountains, an uncharted wilder-
ness—anywhere. And to compli-
cate the problem, let this person
not know which country, or even
which hemisphere, he or she is in.
Let that person lose track of time,
becoming unaware of what day or
month it is. However, give that
person a copy of the astronomical
annual with logarithmic tables, a
theodolite or goniometer, a chro-
nometer showing an arbitrary
time, and a radio receiver (for hear-
ing the time ticks only). All that
person will need is to observe the
stars on a clear night and the Sun
the next morning in order to deter-
mine (after the necessary calcula-
tions) the month, day, latitude, and
longitude. Looking at a map, the
person could point out her or his
location and the route to the near-
est town or any other place. In other
words, an educated person can
never be lost on planet Earth. (0]

4The role of the pendulum in a
quartz clock is played by a slice of
quartz cut in a certain way. Electro-
magnetic oscillations are excited in
this crystal, the frequency of which do
not vary for a long period of time. The
operation of molecular and atomic
clocks is based on the natural
oscillations of certain molecules and
atoms.
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Art by Sergey Ivanov
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BLACKBOARD Il

Three physicists and one log

Then, we were young and strong. Now, we know physics . . .

NCE UPON A TIME THERE
were three physicists carrying
logs to build a house (fig. 1).
Their shoulders ached, but no-
body complained. However, physi-
cists are physicists, even if they're
doing a backbreaking job. One of
them raised an interesting question:
which position under the log—front,
middle, or rear—bears the brunt?
They stopped to draw the statics dia-
gram (fig. 2) on the ground. The log
was considered a straight, uniform
beam. Three supports (the shoulders
of the carriers) were assumed to be
equally spaced (a distance L apart),
and the middle support was exactly
under the beam’s center of gravity.
The log was assumed to be horizon-
tal, so that the forces F,, F,, and F,
at the supports are vertical.
The fundamental equations for
static equilibrium could be written

CaE
A

Three physicists carrying a log. They
look similar, but they aren’t (see
below).
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Statics diagram representing a
statically indeterminate problem:
three unknowns and only two
equations.

in the form
F,L=F,L
(because the torques about the cen-
ter of the log are equal), or
F, = F, (1)
and
Fl+F,+F,=W (2

(the weight W of the
beam equals the result-
ant of the forces F,, F,,
and F;). The physicists
arrived at two linear
equations (1) and (2)
with three unknowns.

Q25w

Figure 3

Jeff’s model: a log consisting of two similar pieces.

The number of possible solutions in
such a case is infinite. For ex-
ample, F, = F, = 0, F, = W (that is,
one person works hard, the others
rest), or F, = F; = W/2, F, = 0 (where
the previous situation is reversed).
Of course, the “fair” solution
F, = F, = F, = W/3 also holds true.

Later the physicists learned, af-
ter looking in some textbooks,
that such a problem is called stati-
cally indeterminate. I should also
mention that the physicists were
quite young. In fact, they were just
first-year students of physics, and
the author was one of them.

“Well,” said Jeff, “I know what
to do. Let’s consider the log as be-
ing cut in half. Now we have two
similar logs. Let Roman and Peter
support the outer ends, and I'll
stay in the middle, carrying the
inner ends” (fig. 3).

“The problem has only one solu-
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Figure 4

Roman’s model: springs are put in
play instead of people.

tion,” Jeff continued. “Each of you
two creates a force of W/4, and I
have to withstand a load of
2(W/4) = W/2, because I carry two
ends simultaneously. Am I right?
Certainly! So the only solution is
F, = F, = W/4, F, = W/2. The guy in
the middle has to work harder. Oh,
well—I guess the ‘middle way’ isn’t
always the best!”

“Give me a break!” Peter ob-
jected. “I've been both in the middle
and in the rear, and I felt no differ-
ence. I think your model may be
flawed, Jeff! Maybe it’s not such a
good idea to ‘split’ the log. What do
you think, Roman?”

“I'm not sure,” Isaid. “But I think
we need to derive some additional
equations that allow for the defor-
mation of the log and the carriers. It
won'’t be easy . . .”

Here’s what we managed to come
up with.

Since wood is stiffer than a hu-
man body, we assumed that the
log is absolutely rigid (it undergoes
no deformation at all]. On the
other hand, the carriers were mod-
eled as simple springs with spring
constants k,, k,, and k, (fig. 4).
From the viewpoint of mathemati-
cal physics, the model strikes me
as pretty true to life: the stronger
the carrier, the bigger his spring
constant.

If all the springs were initially
the same height, their deforma-
tions x,, x,, X, after loading are lin-
early related:

(3)

(see figure 5). Such a simple rela-
tionship holds because the log is
considered straight and rigid, and

Figure 5

Linear relationship of spring deforma-
tion.

the middle support is the same dis-
tance from the front and rear sup-
ports. The deformations x,, x,, and
x, were assumed to be small to
prevent the log from tilting signifi-
cantly. In this case, the horizontal
components of the forces are rela-
tively insignificant and can be ne-
glected without grave conse-
quences.

Using the well-known spring
equation F, = k.x, (where i = 1, 2, 3)
and equation (3), we got

b _ Fl/kﬁ‘Fs/ks_

a 3 4)

After solving the system of three lin-
ear equations (1), (2), and (4), we ar-
rived at the final solution:

2kik
R=F= 3 w
L T ARk + Ry (R + k)
7 ky(k; +kj) (5)
PT Ak + ky(k +ky)
The expressions obtained

looked a bit cumbersome and so in
need of further analysis. As a start,
we briefly reviewed the simplest
situations.

?5=a5w

If the springs are identical
(k, = k, = kj), our equations give
F, = F,=F,=W/3. Thus the load
is equally distributed among “uni-
form” carriers. But what if one of
the carriers has fallen?

Let’s consider the situation when
the middle carrier falls out of the
picture (fig. 6). Now k| = k;, k, = 0.
It follows from equations (5) that
F,=0andF, = F, = W/2. (By the way,
in the case of two carriers, the prob-
lem is statically determined and can
be solved without using equation
(4).) So the load on the front and rear
carriers becomes 50% greater than
in the three-carrier case.

If the front carrier falls (fig. 7), so
that k, = k; and k; = 0, the result ob-
tained from equations (5) seems para-
doxical: F, = F, = 0, F, = W. Heaven
help the person in the middle! All the
weight is now on his shoulders. If the
rear carrier tries to help by pushing up
that end of the log, a torque is created,
rotating the log clockwise. So the log
would move out of the equilibrium
position . . .

Naturally, a similar scenario un-
folds if the rear carrier falls down.

At this point Peter and Jeff recalled
that they were not “uniform.” Jeff
was twice as strong as each friend (he
was a weightlifting champ).

“Okay!” Peter said. “Let one of
the spring constants be twice that of
the other two. You're a giant of a
man, Jeff, and we both admire you
greatly!”

We analyzed two cases: (1) with
Jeff in the middle and (2) with Jeff in
the rear. In the first case, k, = k, and
k, = 2k,. Applying these relation-
ships in equations (5] we got

H=v

Figure 6

Loss of middle carrier.
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Figure 7

Loss of front carrier.
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Jeff in the middle: he’s twice as strong
and bears twice the burden.

F, = F, - W/4, F, - W/2 (fig. 8).
“Hey, that looks familiar!” Jeff ex-
claimed, smiling. “My initial model
proved to be incorrect, but I'm still in
the middle, bearing the brunt!”
“Well, not only you,” said Peter.
“Look, in the second case (fig. 9) we
have k, = k, and k; = 2k,. As a result,
F, =F,=*/;;W, andF, =3/, W.Sowhen
I moved from the rear to the middle, I
felt no significant difference, because
3/, W=0.27Wis only a little bigger than
0.25W. Jeff experienced a more signifi-
cant change: 4/;;W = 0.36W rather
than 0.5W. So, we were both right,
Jeff! That’s why you felt a difference

ot 0 36W ot 0 36W

WM 0LFW

A

Figure 9
Peter in the middle now: he feels no
difference (but Jeff and I did).

between the rear and middle posi-
tions and I didn’t. Once again we see
the importance of learning physics!”

“And the importance of having
good friends,” I said.

This happened long ago. Now
we’re able to solve any statically
indeterminate problems, but as for
carrying logs . . . (@

Roman Vinokut is a physicist specializ-
ing in mechanics. A graduate of the
Moscow Physico-Technical Institute,
he works as a test engineer at Valeo En-
gine Cooling in Jamestown, New York.
(This article is based on an actual oc-
currence.)
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MATH
INVESTIGATIONS

The equalizer of a triangle

A clever line that does double duty

ET I BE A LINE IN THE PLANE

of AABC. We will say that I is

an equalizer of AABC if it cuts

the triangle into two parts
whose areas and perimeters are
equal. For instance, if in the figure
shown below,

area(CPQ) = area(PQAB)
and
CP+PQ+QC=PQ+QA+AB+BP,

then we say that PQ is an equalizer
of AABC. My first challenge to my
readers is: Prove that there is an
equalizer for every triangle. I recom-
mend a carefully executed continuity
argument to accomplish this task.
One can also observe that some
triangles can have as many as three
equalizers. However, on the basis of
some computer experiments con-
ducted by my friend and former col-
league Professor Emeritus Herb
Bailey, it seems that there are no tri-
angles which have exactly two equal-
izers. Hence, my next challenge is:
Prove or disprove this claim. More-
over, L hereby challenge my readers to
prove or disprove that no triangle can
have more than three equalizers. On

by George Berzsenyi

the basis of the figure above, it may
seem that some triangles can have as
many as six equalizers. For example,
if CP < CA and CQ < CB, then one
can reverse P and Q (that is, reflect
them in the bisector of ZBCA), and
the same may be done when P and Q
are located on the other two pairs of
sides. However, I strongly believe
that three is the upper limit for the
number of equalizers.

To analyze the situation via fur-
ther computer experiments, let a, b,
¢ be the lengths of sides BC, CA, AB,
respectively, and assume that
a<b<c=1.Then there is a one-to-
one correspondence between these
“scaled” triangles and the points (a, b)
of the plane that lie in the region
bounded by the linesx+y=1,x=1,
and y = x. Consequently, by introduc-
ing a fine mesh in the x-y-plane, one
can plot those points whose corre-
sponding triangles have one, three, or
any other number of equalizers.

To simplify our further discus-
sion, let PC = p and QC = q. Then
the requirements for PQ to be an
equalizer can be expressed by the
conditions

1
=—ab
pq 5

and

p+q=%(a+b+c),

where the first condition comes from
1/,pg sin C =1/,(}/,ab sin C) and the
second one from ¢ + (a - p) + PQ +
(b-q)=p+ g+ PQ. Therefore, one

may recognize p and g as the two so-
lutions of the quadratic equation

r? —l(a+b+c)r+lab:0.
2 2

Letting s = (a + b + ¢)/2, it follows
that

T
=2 (s++s? -2 b).
p,q 2(5 VS a

Clearly, one must have s? > 2ab, as
well asp<a and g <b. Similar analy-
sis applies to the other potential
equalizers as well.

The present investigation was
prompted by a nice problem posed in
the 1988-89 Scottish Mathematical
Challenge. For more information
about this wonderful program the
reader is referred to my “Problems,
Puzzles, and Paradoxes” column in
the Spring 1997 issue of Consortium.

In closing the present column I
wish to point out that there is also a
three-dimensional analogue of the
equalizer. Hence my final challenge
is: Prove that for any tetrahedron
there exists a plane which cuts the
tetrahedron into two parts with equal
volumes and surface areas. Surely,
many of the questions asked about
the equalizers of the triangle have their
appropriate analogues for the tetrahe-
dron, and should keep my readers busy.
Please send your findings to me c/o
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000. Perhaps
they will generate further discussion
in a future column. Q
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Stirring up bubbles

Vapor cones and vortices in a boiling liquid

by T. Polyakova, V. Zablotsky, and O. Tsyganenko

HERE’'S NOTHING EXOTIC
about a boiling liquid. You en-
counter this phenomenon just
about every day. It may seem
that nothing new or surprising could
occur when ordinary water boils.
But actually this is a rather compli-
cated and multifarious process, one
that is still not fully understood.
This article deals with boiling
water that is rotating. We’ll begin
with the description of a very
simple experiment anyone can do at
home. Heat up some water in a cy-
lindrical vessel with a radius of
about 10 ¢cm and a height of
25-30 cm. Just when the water be-
gins to boil, stir it vigorously to set
it in rapid rotation. The surface of
the water will take on the shape of
a paraboloid of revolution, and the
angular velocity will decrease
gradually as time passes due to the
friction between the water and the
vessel wall. However, if we apply
heat in a small area at the center of
the vessel’s bottom, we’ll see a very
strange picture. Boiling will take
place only at the center of the bot-
tom, and a large number of bubbles
will quickly ascend along the axis of
revolution. Then a column of vapor
bursts through the surface of the
water, and the characteristic noise
and splashing of a boiling liquid oc-
cur. Immediately after this the wa-
ter level near the cylinder’s wall
drops, and the velocity of rotation
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increases. Then the angular velocity
decreases and, after aperiod of 1-2 s,
the cycle is repeated. The time de-
pendence of the angular velocity of
rotation of a boiling liquid is indi-
cated by curve A in figure 1. The
other curve B shows the angular
velocity of a nonboiling liquid.

If you tried to do this experiment
yourself and failed, don’t give up.
Try it again, changing the intensity
of the heat or altering the water level
in the vessel. This phenomenon is
very sensitive to the heating condi-
tions. The experiment is easier to
perform if the heat is supplied by a
gas burner.

At least two questions arise
when we compare curves A and B.
First, why does the boiling liquid
have an oscillating angular velocity
in contrast to the nonboiling one?
Second, what does the period of os-
cillation of the angular velocity de-

T T T 1

10 12 tle)

oo -

pend on? To answer these questions
and understand the nature of the ob-
served phenomenon, let’s first ex-
amine the main features of the boil-
ing process in a liquid heated from
below.

Boiling is the process of intense
vapor formation, characterized by
the continuous generation and
growth of bubbles inside the liquid,
which ascend to the surface due to
the buoyant force. A very important
parameter that affects how the boil-
ing proceeds is the so-called thermal
head AT = T, - T,, where T, is the
heater’s surface temperature and T
is the liquid’s boiling point. There
are three types of boiling, which de-
pend on the value of AT: nucleate,
transitional, and film boiling. In addi-
tion, if all parts of the liquid have the
same temperature T, which is equal
to the boiling point, such boiling is
called saturated. When T, < T, and
the boiling takes place only near the
heater, this is nonsaturated (or
underheated) boiling. ‘

Nucleate boiling is usually di-
vided into four basic stages. For wa-
ter being heated in a metal vessel,
the first stage is observed at
AT = 10-16 K, which is referred to as
the region of separate bubbles. This
stage is characterized by the exist-
ence of individual active centers of
bubble generation. Bubbles of vapor
sticking to the bottom of the vessel
do not interact with the other

t by Vera Khlebnikova
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bubbles heading upward. Every ac-
tive center is surrounded by its own
“zone of influence” whose radius r
is equal to.the diameter of the
bubbles when they break away from
the bottom (d,). Similarly, the influ-
ence zone of the rising bubbles is a
sphere of diameter 2d,. The number
of active centers on the vessel’s bot-
tom increases with AT, while the
distance between the neighboring
centers decreases. When the average
distance between adjacent centers
approaches (approximately) 2d,, the
second stage of boiling begins.

In this stage, continuous chains
of bubbles (rather than individual
ones) are generated at some active
centers—that is, the vapor columns
arise from the interaction of indi-
vidual bubbles. A further increase in
AT causes bubbles to merge not only
within the same column but in ad-
jacent centers as well. Several col-
umns produce a unified structure
called the “vapor cone,” which
marks the beginning of the third
stage of boiling. Now a large
amount of vapor is rising from the
heated surface. Usually the vapor
cones are connected to this surface
by a large number of vapor stems.
When a vapor cone grows large
enough, it breaks away from the
bottom and rises.

The fourth stage of boiling begins
at AT = 22 K for water and lasts un-
til burn-out occurs. At this stage the
cone’s stems merge to produce a
vapor cloud that touches the heat-
ing surface. Thus at this stage of
boiling there are some regions of
film boiling.

Now let’s return to the enigmatic
oscillations of the angular velocity
of boiling water. Let the liquid rotate
as a whole (that is, like a solid body)
with an angular velocity o. It’s easy
to show that in this case the free
surface is described by the following
equation:

2
0"
Zi—Z 23 Ty (1)

where g is the acceleration due to
gravity, z is the vertical coordinate,
z,, is the value of z along the axis,
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Figure 2

and r is the radius of the bubble col-
umn (fig. 2). Since the pressure of the
liquid acting on the vessel’s bottom
is P = gz, equation (1) yields the de-
pendence of the pressure at the bot-
tom on the distance from the axis of
rotation:

P=PO+p‘”2r , 2)

where P, is the pressure at the cen-
ter of the bottom and p is the liquid’s
density. If a bubble of radius R is
formed in the rotating liquid, it can
grow only when the pressure inside
the bubble (P, ) is larger than the sum
of the external pressure (equation
(2)) and the extra pressure under the
curved surface of the liquid (the
Laplace pressure). The latter is equal
to 26/R, where 6 is the coefficient of
surface tension. It follows from
equation (2) that if the temperature
of the bottom surface is the same
throughout, the bubbles generated
at the center of the bottom enjoy the
best conditions for growth. In addi-
tion, the linear velocity of the rotat-
ing liquid increases at larger dis-
tances from the axis of revolution,
which is also unfavorable to bubble
growth. If any bubble appears at
some distance from the center, the
buoyant force pw?rV (where V is the
bubble’s volume), which is directed
toward the axis of rotation, it will
move to the center.

We've come to the conclusion
that in a rotating and boiling liquid
all the bubbles should concentrate
near the axis of rotation. Now let’s
examine in greater detail the condi-
tion leading to growth for a bubble

located at this axis. To characterize
the degree of vorticity of a fluid flow,
a special physical parameter is intro-
duced—the circulation I'. In the vi-
cinity of the bubbles under consid-
eration, the circulation is not
zero—it equals

I = 2noR2.

The presence of a nonzero circula-
tion means that the bubble (strictly
speaking, its “equator”) is affected
by the negative pressure from the
liquid, which is related to the circu-
lation by the formula
02 R? o2

Pr=- == ;

2 8n’R>

The condition for bubble growth is
met when P, > P,, where

2
h=hK+ 270 - % (3)
8n°R

Taking different values for the
circulationT as a parameter, we can
derive the set of functions P (R)
shown in figure 3. The curves indi-
cate that an increase in the circula-
tion provides better conditions for
bubble growth.

It’s interesting that the pressure
from the liquid caused by its rotation
about a bubble acts counter to the
Laplace pressure. For example, in ro-
tating water the influence of the wa-
ter on the boiling process is entirely
counterbalanced at T > 1.5 cm?/s.
This means, in particular, that one can’t
superheat water that has vortices
with this value for the circulation.

P, - P, (atm)
A
3_

%

1/2 3 4 R{mm)
e
-9,
3
Figure 3




From our previous discussion and
from figure 3, we can conclude that
a vortex with an arbitrary value for
the circulation can be a possible cen-
ter for bubble generation. Such cen-
ters do appear in our experiment
with rotating water. As the tempera-
ture of the water in the cylinder
T, < T, (that is, we're dealing with
underheated boiling), boiling centers
can be formed only near the bottom,
where the circulation is greatest.
Since the boiling point is deter-
mined by the condition Py(T,) = P,,
then in accordance with equation (3)
and figure 3 the boiling point is
lower at sites where T # 0 than at
sites where T = 0. This means that
the value (T, - T,) can be much
larger at the center of the bottom
than elsewhere.

If the thermal head at the center
of the bottom reaches AT = 16-20K,
the second or third boiling stages
begin, depending on the value of T.
In our experiment the third stage
most likely occurs. The vapor cones
generated at the bottom rise along
the axis of rotation and merge, pro-
ducing rather large vapor cavities
that ascend to the surface. When
such a vapor column breaks at the
center of the liquid’s surface, the
surrounding “cold” surface water
(T, < T,) rushes into the hollow cav-
ity. The water moves downward,
swirling like water going down the
drain in a bathtub. At this moment
the angular velocity of the water’s
rotation increases, because the mo-
ment of inertia for the system de-
creases when water moves from the
wall toward the axis of rotation.!
Cold water entering from the sur-
face is quickly heated inside the cyl-
inder to a temperature that allows
the vortex to again become the ac-
tive center of boiling. Large vapor
cavities form anew at the axis of ro-
tation, which push the water to-
ward the wall of the vessel, thereby
increasing the moment of inertia for
the system and decreasing the

1You may recall
conservation of
from reading “A
in the July/August 1996 issue of
Quantum.—Ed.

the law of
momentum

angular velocity of the water before
the vapor column breaks through
the surface.

Thus we can provide a very
simple answer to the first question
posed at the beginning of this article.
The angular velocity of a nonboiling
liquid decreases monotonically due
to friction with the vessel’s wall—
just like figure skaters who don’t
change the position of their arms
during a spin. On the other hand, the
angular velocity of a boiling liquid
does vary, as with spinning figure
skaters who periodically spread
their arms and draw them in.

It remains to explain who coordi-
nates the motion of the figure
skater’s arms—or, in other words,
what determines the period of oscil-
lation of the angular velocity of the
boiling liquid. According to our pro-
posed mechanism for the oscilla-
tions, their period is equal to the
sum of the time ¢, of vapor bubble
ascent and the time ¢, it takes for
water to drop from the surface to the
bottom. It’s known that large
bubbles (R > 0.1 cm) rise in water
with a velocity v = 30 cm/s. So the
time it takes for a bubble to ascend
ist, =z,/v=0.7s. It isn’t so easy to
find the value of t,, because the wa-
ter moves downward along a com-
plicated path. However, we can ob-
tain a rough estimate using the
formula H = gt?/2 for free fall. At
H = 25-30 cm, this equation yields
t,=0.3 s. Thus the period of oscilla-
tion is

T=t +t,=1s,

which is in good agreement with
experimental data.

It’s also interesting to see how
boiling of underheated water occurs
when the circulation in the vortex
is small. To do such an experiment,
the water needs to be rotated rather
slowly before boiling begins, and
the phenomenon should be ob-
served by illuminating the water
with a lamp. If the rate of heating
isn’t very high and the heat source
is small enough, a separate active
center of bubble generation may
arise near the axis of rotation. In
this case, the second stage of boiling

can be observed when the bubbles
merge in the vertical direction,
forming a vapor column. Naturally,
when the vapor rises to the surface,
no change in the angular velocity of
the entire system occurs, because
both the vapor source and the boil-
ing mass of water are too small.
However, a tiny eddy can be seen at
the center of the water’s surface,
which casts a shadow on the bot-
tom of the vessel. (The whirlpool
produced on the surface forms a lens
that scatters the light from the
lamp.) This means that after the va-
por column breaks through the sur-
face, the cold water runs downward.
Indeed, about 0.5-1 s after the eddy
appears, the boiling center stops its
activity, but in a few moments the
whole process begins again.

In this article we considered only
a few aspects of nucleate boiling, but
they were enough to help us draw a
number of important conclusions
about the nature of this remarkable
phenomenon. Q]

a N
What's happening?

Summer study ... competitions ... new
pooks ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

What's on your mind?

Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more
of? And, yes—what don'’t you like about
Quantum? We want to make it even bet-
ter, but we need your help.

What's our address?

Quantum
National Science Teachers Assoc.
1840 Wilson Boulevard
Arlington VA 22201-3000
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“SQUARING THE HYPERBOLA”
CONTINUED FROM PAGE 31

need only take a comparatively small
number of terms in the equation
2. n
be X
efzl+x+—++
2!

n!

(this is important for work with com-
puters). Second, this representation sug-
gests a more insightful approach to the
exponent—for example, it allows one to
prove that e is an irrational number
(see problems 11 and 12 below). We'll
prove equation (17) for x > O only.

Set
7,(0)=( 14 %j

and
2 n

SH(X)=1+X+X—+~~+
1.2 n!

We need to show that
lim §,,(x) = expn.
n—oe

The binomial theorem gives us

n _ 2
(Hz] X 00o) X
n n 12 p?
_ _ _ k
+m+n(n 1)(n 2)...(n k)X_
k! 2
Xn
+ "+—;
n
-3
=1l+x+ a x?
1.2
[1_1}..[1_E)
A" 1 1 Jyk
k!
XH
+ +—H
n

All the numbers in parentheses on
the right are less than one. If we re-
place all of them with 1, the right
side will increase, and therefore

Tn(x)=(1+ijn<s(n). (18]

n

56 MARCH/APRIL 1887

On the other hand, if we get rid of
all but the first k terms on the right
side of this inequality, we get

x )" 1) x?
I+=| >l+x+|1-—|—
n n)2!

T

If k is constant and n grows to infin-
ity, the right side of this inequality
converges to S, (x), since every factor
in parentheses tends to 1, while
(1 + x/n)” approaches exp x. Finally,
we have

exp X > §;[x)

for all k—that is, the sequence S (x]
is bounded above and (for x > 0) in-
creases. Therefore, it has a limit, so
that

2 X3
lim Sp(x)=1+x+——+—
n—eo 2! 3!
+...+§+ o K
T < expx.

From equation (18) we find (proceed-
ing to the limit for n — o) that

lim S,,(x) > expx.
n—oo

It follows that
2 n

x
expx=l4+x+—+-+—+--.
2! n!

Problems

1. (a) Prove the inequalities

<nln(1+§j<x
n

n+x

(x > —n, where n is a natural number).
(b)Use them to verify the equation

exXpXx = lim(l— Ej .
n

2. Find the following limits:
(a) lim¥n;
(b) lim —;

n—eo Q01

(c) limln—n;
n—e 1

(d) lim 122
n—ee /N
3. Find the areas of the curvilin-
ear trapezoids defined by the func-
tions y = a* and y = log,, x.
4. Find following limits:

. 1 1 1
(a) lim| ——+ ot —
nse-\n+1 n+2 2n

(b] hm(

n—oe

1 1 1
+ +e i
n+x n+2x n+nx
5. Prove that

1 1 1 1 1
—t—=+-t+—<Ilnn<l+=+--+—.
2 n 2 n

6. Prove that the sequence

+l—ln(n+l)

1 1
a, =l+—+—+--
2 3 n

converges.
7. Prove that

T N
273 4

8. Find the slopes of the tangents
to the curves y = a* and y= log, x.
9. Find the limit

lim n(% - 1).

n—oo

10. Use the geometric definition
of the logarithm to verify the in-
equalities

2x
2+x

x(x+2)
2(X + 1)

for x > 0 and use them to show that

<In(l+x)<

2 2
X—X—<1n(1+x)<X—X—+X3.
2 2

11. Prove that

2 n
O<eX —| 14 x4 bt
2 n!

o x"e*
(n+1)!

forx > 0.

12. Use problem 11 to prove that
number ¢ (a) is irrational, (b) is not a so-
lution of any equation ax*>+ bx + ¢ =0
with whole coefficients (a > 0). (@



Fractal Mania

Software and book

by Phil LaPlante

McGraw-Hill, Blue Ridge Summit,
PA 17294-0850

$29.95 (PC]

The beauty of fractals is in the
images created. In print and on the
computer, LaPlante has produced
many of the basic images students
usually use to study fractals and
chaos theory. Test material concisely
defines terms and discusses concepts
of fractals and chaos theory by using
examples effectively. The program-
ming and math code used to produce
the computer images are printed in
hard copy. Given the proper com-
puter tools and a sufficient back-
ground in math and computer pro-
gramming, a user can manipulate the
programs. This leads to an under-
standing of a basic concept of
fractals—slight changes in initial con-
ditions iterated many, many times
lead to dramatic differences in out-
put. This sensitive dependence on
initial conditions is a theme that
unites unstable systems, fractals, and
chaos. Chapters in the text include
“Foundations of Chaos and Fractal
Theory,” “Chaos and Fractals in Na-
ture,” and “Simulated Fractals and
Chaos.” The appendixes include an
explanation of Turbo Pascal graphics.

As suggested by the author, the
text and software can be used to
supplement courses in Pascal pro-
pre: alculus geometry,
hics. The software
ctively by a teacher
or math exper-
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tise o demonstrate fractals an
theory. The msthematical basis for
the produocsiomoif dhe feartall Tmases is
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ming code, et anserdives mot meoes
sarily need to et sieam o
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benefit from this material. Under-
standing the formulas can help un-
lock some of the mysterious beauty
of the fractal images. A strength of the
materials is that a user can explore
the “what if” possibilities by chang-
ing the algorithms used to generate
fractals. Users will certainly enjoy the
many Julia sets produced.

For the science teacher, the ex-
amples are a bit weak. However, the
study of chaos theory and fractals as
it applies to science is a new study
with great possibilities, as can be seen
in the chapter “Chaos and Fractals in
Nature.” An explanation of self-simi-
larity using a coastline does not
clearly illustrate the concept. A wolf-
caribou relationship is graphed with
the aid of a Lotus 1-2-3 spreadsheet.
A user can manipulate some vari-
ables, but, as in any natural system,
not all Vanables affecting population
can be factored in.

It is intriguing to use a re
simple mathematical co
duce an image from nature
ample, a fern—] is
DNA is all about? Several images of
nature are produced with some suc-
cess, but it takes a bit of imagination
to see the images in other scenes.
The problem of accurately predict-
ing the weather is discussed, as are
problems in predicting stock prices
and fluid dynamics.

Programs are written using
Borland’s Turbo Pascal 5.5 compiler,
and they require an IBM-compatible
PC with an Intel 80286 processor
and an EGA or VGA monitor. Users
with Turbo Pascal 5.5 can modify
the programs and discover that
Lhanomg one line will lead to vastly

itferent results. This provides great
spportunities for interaction and

tandin

which is very useful for introductory
work in fractals and chaos theory.

—Carol Houck

Broward County Schools

Fort Lauderdale, Florida

Entomological CyberTeasen

Sometimes the long way around is
the shortest way there. At least, that
was the case with the March/April
CyberTeaser (brainteaser B200 in this
issue| posted at the Quantum Web
site. Here are the first 10 respondents
who submitted a correct answer:

Matthew Spencer (State College
Pennsylvania)

A. S. Sudheesh (Bangalo

Robin Damion (Nottin ngland

Bob Lind (Potosi, Wi

Simona Nikolova Reg

Oleg Shpyrko (Cam

Jonathan Devor Jeruszlem
Peter DiFiore |]

awircl 3o
Laroiina

Charles Kehoe (Wichita, Kansas
Jim Paris (Doylestown, Pennsylvania)

These folks will receive a Quantum
button and a copy of this issue. All
those who submitted a correct an-
swer were eligible for a drawing to re-
ceive a copy of Quantum Quanda-
ries, our collection of brainteasers.
One person almost slipped
through a loophole in the statement
of the problem as posted on the Web
(we closed it in the print version).
While most of our entrants assumed
that one ant would walk to the other
ant, this contestant took advantage
of our loose wording and assumed
that the ants could fIy (and some
ants do fly—for a while, anyway).
But he made the fatal mistake of not
explicitly stating the actual dis-
tance—he just described the path.
Let’s hope our current CyberTeaser
is airtight. You'll find it at http://
www.nsta.org/contest.
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Briss <

Across

1 Shady mountain
side
5 703,149 (in base 16)

10 47,821 (in base 16)

14 Brazilian novelist
Joao Guimaraes ___

15 Cosmologist Sir
Hermann ____

16 Nautical attention-
getter

17 Mathematician ___
Artin

18 699,818 (in base 16)

19 Placed

20 Ordinate’s compan-
ion

22 Quality of sound

24 Western Indian

25 __ -Einstein
statistics

26 Worked hard

29 Geologic period

33 Happen

34 Varnish ingredient

35 Reciprocal ohm

36 The thing here

37 Type of acid

38 60,141 (in base 16)

39 Billion years
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u
GI‘"ss sclenna by David R. Martin
1 2 3 4 5 6 7 8 9 10 |11 |12
13 14 15 16
17 18 19
20 21 22 123
24 |25 26
27 128 |29 30 31 32 |33 |34
35 36 |37 38
39 40 41
42 43 44
45 46 47 |48
49 50
51 |52 |53 54 |55 56 |57 158 |59
60 61 |62 63
64 65 66
.W 68 69
40 Type of equation 6 Anthropologist 38 Like some motors
41 Aquatic plant Franz ___ 40 Bird nostril’s

42 Like some iron

44 Horses

45 Middle East country

46 And so on: abbr.

47 Seed proteins

50 Cyclotron-reso-
nance maser

55 German title

56 Fuming sulfuric
acid

58 ___ Descartes

59 Leave ___ Beaver

60 Sodium: comb. form

61 Interested in

62 British archaeolo-
gist ___ Garstang

63 Biological stain

64 Anthropologist
Carleton ___

Down
1 Carbamide
2 Exploding device
3 Ad phrase
4 Math. course
5 Degraded

997

7 Journalist Carr Van
8 Computer language
9 Simple molecular
form
10 __ series (of
spectroscopy)
11 Moby Dick charac-
ter
12 Coconut husk fiber
13 Unit of force
21 Roman road
23 Book’s ID
25 Alkaline
26 Type of pole
27 Biochemist Severo
28 Cake topping
29 __ oxide (CeQ,)
30 Real or virtual
follower
31 In front
32 Points of minimum
disturbance
34 Large thrush
37 Methyl ethyl
ketone

covering
41 10718: pref.
43 CN,(C H,),CH
44 Sunday speech
47 Alphabet run
48 Apollo’s mother
49 Norse goddess
50 Obtains

51 Soviet cosmonaut
__ Gagarin

52 Gambling town

53 Aware of

54 Element 10

57 __ -tzu (Chin.
philosopher)
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Math
M196

It’s clear that in the number we
seek all the digits to the left of the
decimal point are zeros, as is the
digit in the first decimal place (oth-
erwise the number could not grow
so much when we exchange the dig-
its). Let x be the number we seek,
and a the digit in the fifth decimal
place—x = 0.0***a*.... If we ex-
change the digits in the first and fifth
places, we obtain the number

a a
.
10 10°

Thus we obtain the equation

+ 29 _1996x%,
10 10°

from which we get

99992 3333 .
1995-10°  665-10°

= (0.0000501...)a.

But a is the fifth decimal digit of x.
If we look at how the multiplication
indicated above is actually ¢ ]

out, this means that the number 5a

M197

Certainly, #ix"+3y—p" thenp>x
SO WE Can wiliex + 3y —(X = m fox
some positive imreg m. S
we can write 7 = 3z = v = &
some positive integerm Fomnm these

ANSWERS,
HINTS &
SOLUTIONS

relations we find that

_ Drrrrr® 4 8ar*
"~ 9-4mn
_ 2n’m+ 3m>
"~ 9-4nm

But x, y, m, n are all natural num-
bers. Thus 9 —4mn >0, mn = 1, or
mn = 2. In the first case, m=n =1,
from which we get x = y = 1. In the
second case, either n =2, m =1
(which gives us x = 16, y = 11), or
n=1,m=2(x=11,y=16).

M198

We have
a+b=x+y+X+y
Xy
1
=(X+y)—Xy+1. ( )
Xy
Also,
1 x vy
ab=xy+—+—+=—.
Xy y X
Thus
Theretore
2
(x+y)

ab-c+2=
Xy
Let’s square equation (1) and divide
he result by equation (2). We get

Thus

or, after simplifying,

a’>+br+c?=abc+4.

M199

First we'll construct a case in
which six committees are not
enough. Consider a group of seven
deputies. We can number them 1, 2,
3,4,5,6,7. Assume that the first
deputy slapped deputies 2, 3, and 4.
We can write thisas 1 — 2, 3, 4.
Continuing on in this fashion, we
have2 —3,4,5;3 = 4,5,6; 4 = 5,
6,7;5—)6,7, 1;6‘4)7,1,2;—/
9, 3.

We can express this

— 1,

graphically, as in figure 1. The verti-
ces denote the deputi he ar
rows the relations am hem. It’s
clear that no g f deputies can be
appointed to th me committee.
ach deputy apped or been
ped in the face by every other

ow let’s prove that seven com-
mittees are enough. We'll do it by
induction on the number of deputies.

Figure 1
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Suppose that it’s true for any par-
liament of n deputies. We must
show that it must be true for any
parliament of n + 1 deputies. Take
any such parliament. Then there
must be a deputywho was slapped
no more than three times (otherwise
the number of blows received would
be greater than the number of blows
given). According to the inductive
hypothesis, the remaining n depu-
ties can be appointed to seven com-
mittees, and thus the condition of
the problem is satisfied. (The fact
that some of them perpetrated fewer
than three slaps can only make our
task easier.) But since the last
deputy slapped three others and was
in turn slapped no more than three
times, there must exist a committee
to which he can be appointed.

M200

Let O be the center of the circle
circumscribed about ABCD, Q the
center of the circle we seek, N the
point diametrically opposite to L,
and F the point where the smaller
circle touches BM. Suppose that
NK = c and x is the radius we're
looking for. We have

BK?=BK-KC=NK:-KL=cla+D).

Applying the Pythagorean theorem
to triangle BKM, we get
BM? = BK? + KM? = c(a + b) + a2.(1)

We know that BC is parallel to MQ
(since MK and MQ are bisectors of
angles that are adjacent and supple-

\

Q
,O
A D

Figure 2

60 MARCH/APRIL 1997

mentary). From this it’s not hard to
see that triangles BKM and MFQ are
similar right triangles. Therefore, we
can write QM = (BM - QF)/MK. Sub-
stituting QF = x, MK = a, and the
value of BM found in equation (1),
we find

QMZEWﬁ@?5+ﬁ. (2)

We now write down the Pythagorean
theorem for triangle QMF, using the
fact that OQ = (a + b + ¢)/2 - x,
OM=IML-OL|=[b—(a+b +c)2|=
Ujla + ¢ - bl, and the value of QM
we’ve found above (see equation (2)):

[a+b+c jz
— X
2

a-b+c) x2 (3)
:———( 4+) +a—2[c(a+b)+a2].

After a tedious but straightforward
simplification of this equation, all the
terms containing ¢? drop out. Then,
if we collect terms with ¢ and with-
out ¢ separately, we find

clla + b)x® + a®x — a®b]
+a¥|(a + b)x - ab] = 0.

The first quadratic trinomial factors,
and we get

clla + b)x — ab](x + a)
+ a[(a + b)x - ab] = 0.

Then the whole left-hand expression
factors:

[(a + b)x - ab][c(x - a) + a?] = 0.

Setting each factor equal to zero, we
find that

Physics

P196

Decompose the vector a of the
total acceleration of point A at the
moment the rods form a 90° angle
into the sum of two accelerations a,
and a, directed along the corre-

Figure 3

sponding rods (see the figure accom-
panying the problem). To calculate
a, and a, we use the fact that the
acceleration does not vary when one
inertial system of reference is substi-
tuted for another.

Let’s switch to a reference frame
moving to the left with velocity v,. In
this system the left-hand end of the
left rod (point B) is at rest, and the
right-hand end of the right rod (point
C) moves to the right with a veloc-
ity v, + v,, while point A describes a
circle of radius L, (fig. 3). Thus the
acceleration a can be decomposed
into centripetal and tangential com-
ponents. The components corre-
spond to the accelerationsa, anda,,
respectively.

The magnitude of the centripetal
acceleration a, = v2/L,, where vis the
linear velocity of point A’s motion
along the circle. At the moment the
rods form a 90° angle, the velocity
vector v is directed along the right-
hand rod. At that very instant the
right-hand end of rod AC has a veloc-
ity v, + v, directed to the right. Since
the rod is rigid, the projections of the
velocities of its ends on the rod itself
must be equal (otherwise its length
would vary). Thus (see figure 3)

(vi+vy)Ly

v=(v;+v,)cosay =

Therefore,

V2 (V1+V2)2L%
Gy =—=~— =/
L (BB,

Similarly, switching to a refer-
ence system moving to the right
with a velocity v,, we get

(v, + VZ)ZL%

q:(ﬁ+@ﬁ{




The total acceleration is

) (W+Wf
a=.\a +ay = ——S—
(2} + B )L,

The angle § formed by vector a and
the rod AC is characterized by the
formula
\3
tanf = b (L—] .
a Ly

P197

When heated, the air will expand
at constant pressure, determined by
the weight of the air column above
it. The air is considered a mixture of
two diatomic gases, oxygen and ni-
trogen (we neglect all other gases).
The molecular heat capacity of this
gas when heated at a constant pres-
sure is 2.5R + R = 3.5R. We need to
find only one more value: the total
number of moles n of gas in the at-
mosphere. The pressure at the
planet’s surface is determined by the
weight of the entire atmosphere.
Because the thickness of the atmo-
sphere is far less than the radius of
the planet, we can neglect the de-
crease in the acceleration due to
gravity with altitude.

If m is the mass of the atmo-
sphere, S is the area of the planet’s
surface, and M is the mean molar
mass of the gas, then for pressure
P =1 atm we have

_mg _nMg
S S

and

PS

n=-—.

Mg
The time 7 that it takes to raise the
temperature of the atmosphere 1 K

can be found from the heat balance
equation:

3.5RnAT = NS,

which gives us

= 3.5RPAT
MgN

=10%s.

SIS IE .

P198

Figure 4 shows schematically
how the gas discharge tube is con-
nected. Let’s find the minimal value
of emf that saturates the current in
the tube:

Enin = Vs + LR,

where V=103 Vand I, = 10 A (see
the figure accompanying the prob-
lem). Inserting these numerical val-
ues we get € . =4 KkV.

In our case, the emf of the source
€ > ¢_. . Thus the current in the
tube equals the saturation current.
The voltage V across the tube is de-
fined by the condition € = V + IR,
from which we obtain

V-¢-IR=3kV.

The current in the tube could be
determined in another way. Let’s
assume that the current in the cir-
cuit is less than the saturated cur-
rent. In this case, Ohm’s law can be
written as

€ =1IR, +R),

where R, is the tube’s internal resis-
tance. It can be determined by the
slope of the linear portion of the
volt-ampere curve for the tube (see
the figure accompanying the prob-
lem):

R-=£=1089.
I

1
s

Thus

f=

=15pA.
R, +R H

This value is larger than I_. There-
fore, the initial assumption that
I < I was wrong. This means that
the current flowing in the tube is
saturated.

Figure 4

P199

The emf induced in a turn of ra-
dius 7, is equal to

AD

At

1
/

where A®, is the change in the mag-
netic flux through the area encircled
by a turn during a short time inter-

val At:
A®D, = SAB
= nriZBo(cos[m(t + At)] - cos (nt)
= -2nr?B, {sin co(t + gj sin® ﬁ}
2 2

= —nr? ByoAtsin ot.
Since At is small,
. At .
sinw| ¢+ = =sinwt,

At At
sino—=mw—.
2, 2

The total emf induced in the entire
helix is the sum of all the electromo-
tive forces induced in the turns:

g-%% =% 25
At

= Byosinot Xnr?.

The value TI:Z’IZ can be considered to be
the volume of a cylinder of unit height

havinga base of areanr?. Then X rtz2 is

the sum of the volumes of such cylin-
ders. Since the difference between the
radii of adjacent cylinders is small (the
number of turns is large), the total vol-
ume of all these cylinders is approxi-
mately equal to the volume of a cone
of height n and base area nR? (fig. 5):

Xur?=V= énR‘zn.

A
Figure 5
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Thus the total emf induced in the
helix is

€= % nRanom sin wt.

P200

First we apply the lens formula

1 1 1

—_—t = ,

d f F
where d is the distance from the
photographed object to the camera’s
objective, f is the distance from ob-
jective to the image, and F is the fo-
cal length of the objective (fig. 6).

When the newspaper is photo-

graphed in the first instance (without
the spacer ring) where d, = g, a sharp
image will be formed at a distance

aF

In this case the linear size of the
image (see figure 6) is
F

a a-F

When a spacer ring of thickness h
is used to increase the distance be-
tween the film and the objective, a
sharp image will be formed at a dis-
tance

aF
a-F

from the objective. In this case, the
minimum possible distance be-
tween the newspaper and the objec-
tive is

hF _ [aF + h(a-F)|F

dy = :
? F? + h(a-F)

fi—F

\4

Figure 6
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The corresponding size of the image
is

I F h
L=L2=1—+=|
2=, T a-F  F

Thus the ratio of the sizes obtained
on the film in the two cases is
1 h(a -F )

7 :T+1=5.5.
1

Brainteasers

B196

We could expand out and find
that x = 1. Or we could guess at the
beginning that x = 1 (it's easy to see
that this works), then note that the
equation is linear and cannot have
any more solutions.

B197

The children poured water into
the jar. The ball floated up and they
took it out.

B198

The answer to the question is yes.
There is a result in geometry that
guarantees that for any two figures
on the plane, there is a line that di-
vides both in half. If you don’t be-
lieve this theorem, look at figure 7.

Figure 7

A. K. Peters, Ltd.
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B199

The cooled oil has less volume
than the heated oil. The “vacant”
space had been occupied by air. So in
the evening the scales showed a
higher value than in the morning.

B200

Suppose one ant, in walking to-
ward the other, tries to go toward the
barrier rather than around it (along
the edges of the square). Certainly, its
path should be symmetric with re-
spect to the barrier: if it follows two
different paths, then one must be
shorter than the other, and the longer
path wastes time. Also, when it gets
to the base of the barrier, the shortest
way over is a path perpendicular to an
edge that is not on the ground. If we
fold the barrier flat against the origi-
nal square, we get the diagram in fig-
ure 8. Since ABCD is a square, we are
comparing a + bto b + ¢. Since a > ¢,
the path along the edge of the original
square is the shortest.

50
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man

ELCOME BACK TO

Cowculations, the column

devoted to problems best

solved with a computer algo-
rithm.

It’s getting harder these days to
make ends meet by selling milk in
bulk 10-gallon cans to the creamery.
The price of milk last year took a big
tumble, with the corresponding dev-
astating effect on our income. Every
year for the past 10 years we’ve been

COWCULATIONS

Bottling milk

by Dr. Mu

paid a smaller percentage of the re-
tail cost for a quart milk. It’s down
now to about 34% of what you pay
in the store. Since the price of milk
has not gone up noticeably, the
small Wisconsin dairy farmer is be-
ing squeezed. Naturally, I am famil-
iar with the feeling.

Farmer Paul, my boss and a mem-
ber of the Wisconsin Institute for
New Entrepreneurs, has decided to do
something drastic to raise the family

Let them count the whey

income. He’s going to distribute our
milk himself. He plans to put the
milk in bottles, as he did years ago
when he started farming, and deliver
it door to door. All those beautiful
glass bottles he carefully stacked
away in crates 40 years ago will spring
back into service once again. In the
good old days we had long-necked
glass milk bottles. The cream that
collected at the top was poured off
and put on your hot cereal. And
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across the side in red, was printed our
proud name—Progressive Dairy.
The other day, Farmer Paul took
a 10-gallon can of milk and started
pouring it into some bottles he had
lying around the barn. (Remember:
2 pints = 1 quart, and of course
4 quarts = 1 gallon.) When he was
done, he had the distribution of
milk-filled bottles shown in the fol-

there is only a finite number, other-
wise devise an algorithm to generate
a generous supply.

Mathematica solution to COW 2a

We begin with the list of 1-digit
primes which, of course, are all
superprimes:
superPrime[1l]={2,3,5,7}
{2, 3, 5, 7}

lowing table: The 2-digit
Size 2 gal 1 gal 1/2 gal quart pint 1/2 pint superpﬂnjesare
constructed

Number 1 3 2 13 s 6 from the 1-digit

Hmmm, I thought, this is interest-
ing. How many ways is it possible for
Farmer Paul to distribute a 10-gallon
can of milk among the bottle sizes
that we have displayed above? Two
distributions are the same if they fill
exactly the same number of bottles of
each size. I want to know the number
of unique ways. But if you can solve
the problem for 10 gallons, surely it
would be just as easy to solve it for 20
or 30 or even N gallons. So that’s it—
that’s your “Challenge Outta Wis-
consin,” or COW, for this issue:

COW 3. Find an efficient algo-
rithm to cowculate the number of
ways of pouring N gallons of milk
into bottles of the sizes found in
farmer Paul’s milk cooler.

You can e-mail your cowculations
to me, Dr. Mu, at drmu@cs.uwp.edu.

Our milk is exceptional, of
course, and we guarantee:

You can whip our cream,
But you can’t beat our milk.
—Dr. Mu

Solution to COW 2a

In the last issue, we introduced
the idea of a superprime. A
superprime is a prime number that
remains a prime number when any
number of digits are deleted from
the right-hand side of the number.
For example, 59393 is a superprime,
because 59393, 5939, 593, 59, and 5
are all prime numbers.

Farmer Paul needs all the
superprime numbers he can find to
identify his growing herd of
superprime cows. Your job was to
find all the superprime numbers, if

64 MARCH/APRIL 1987

superprimes by
multiplying each digit by 10 and add-
ing one of the four odd single digits {1,
3,7,9). All primes larger than 5 must
end with one of these digits. We add
all possible combination of elements
from superPrime [1]*10 with (I, 3,
7,9} in Mathematica as follows:

Outer [Plus, superPrime[1] *10,
{1,3,7,9}]

{{21, 23, 27, 29}, {31, 33,
37, 8393, {Bl, B3, 87, 859},
{71, 73, 77, 79}}

The output of the most recent com-
putation is denoted by %. We then
flatten this output to one list:

Flatten([%]

{21, 23, 27, 29, 31, 33, 37,
39, 51:- 53, 57; B9, Tl: 73,
77, 79}

These are all the possible 2-digit super-
primes. Now we select out those that
test positive for being prime (in other
words, PrimeQ[x] is true):

Select [%,PrimeQ]
{23, 29, 31, 37,
71, 73, 79}

Voila! We have the 2-digit super-
primes. Use the same technique to
generate the 3-digit superprimes.
This suggests a recursive relation-
ship between superPrime[n] and
superPrime [n-11. Here is the defi-
nition that combines into one func-
tion what we developed step by step
above:

53, 59,

superPrime[1]={(2,3,5,7};

superPrime[n_]:=

Select [Flatten[Outer[Plus,
superPrime[n-1]*10,
{1,3,7,9}11,PrimeQ]

Now let’s try out our new function:

superPrime[3]

{233, 289, 293, 3ll, 313,
317; 373.; 379, 593, 599,
719, 733, 739, 797}

OK, let’s print them all in a table:

Table [superPrime[n], {n,1,8}]
{{2, 3, 5, 7}, {23, 29, 31,
37, 53, 59, 71, 73, 79},
{233, 239, 293, 311, 313,
317, 373; 379, 593, 599,
719, 733, 739, 797}, {2333,
2339, 2393, 2399, 2939,
3119, 3137, 3733, 3739,
3793, 3797, 5939, 7193,
7331, 7333, 7393}, {23333,
23339, 23399, 23993, 29399,
11938, 31379, 37337, 37339,
37397, 59393, 59399, 71933,
73331, 73939}, {233993,
239933, 293999, 373379,
373393, 593933, 593993,
719333, 739391, 739393,
739397, 739399}, {2339933,
2399333, 2939999, 3733799,
5939333, 7393913, 7393931,
7393933}, {23399339,
29399999, 37337999,
59393339, 73939133}}

It turns out that there are no super-
primes with more than eight digits:

superPrime[9]

{1

The primeQ function in Mathe-
matica 3.0 is very fast and known to
be correct for anyn < 2.5 - 1019, which
is far beyond the number of all the
cows that ever lived. For those pro-
gramming in C or Pascal, you'll need
to write your own primeQ function.

Solutions in C

Kenny Brazier, a 10th grader at Pin-
ewood School in Woodland Park, Colo-
rado, submitted the following primeQ
function, called chkPrime, in C. It’s
good ton £2,147,483,647 = 23L_-1:

int chkPrime(long n)

{
long i;

for (i =3; i*i <= n;i += 2)
if ((n % i) == NULL)
return 0;
return 1;

}



His complete short and sweet pro-
gram can be seen on the
Cowculations Web page given at the
end of this column.
Superprime graph

How many superprimes are there
for each value of n? We will
cowculate that number and graph
the results. In Mathematica, Length
is used to measure the size of a list.
For example, there are 8
superprimes with 7 digits:
Length[superPrime[7]]
3

Figure 1 is a graph of the number of
superprimes for each digit size from
1to 8:

ListPlot[Table[Length
[superPrime[n]],{n,1,8}]1,
PlotJoined->True,
AxesLabel->

{"digits", "superprimes"}]

superprimes
16
14

Solution to COW 2k

There is more than one way to
slice a prime beef, and some of my
left-footed bovine companions let
me know about it. They asked,
“What about primes that remain
prime when any digit on the left is
cut off?” They were called
repusprimes, and COW 2b asked
you to generate them.

Mathematica solution to COW 2b
Begin with the set of 1-digit

Prime[1]1={2,3,5,7}

Aswednd b nv digit from

25, 27, 32, 33, 3b, 3V, 42,
43, 45, 47, 52, BB, 55, 57,
62, 63, 65, 67, 72, 73, 75,
77, 82, 83, 85, 87, 92, 93,
95, 97}

(Note: I decided not to add a zero in
front of a digit to avoid getting a
number such as 007.) Now select
out the primes:

Select [%,PrimeQ]
{13, 17, 23, 37,
53, 67, 73, 83,

As before, we define the repusPrime
function recursively:

43,
97}

47,

repusPrime[n ]:=
Select[Flatten[Outer
[Plus, 104 (n-1) *Range[9],
repusPrime[n-1]11],
PrimeQ]

Let’s try it out:

repusPrime[3]

{113, 137, 167, 173, 197,
223, 283, 313, BLT, 331,

34 353, 367 B73: 383,

397, 443, 467, 523, 547,

613, 617, 643, 647, 653,

673, 683, 743, 773, 797,

823, 853, 883, 937, 947,

953, 967, 983, 997}

What happens at 8 digits?
Length[repusPrime[8]]

Unlike superprimes, repusprimes are
growing. Let’s check it out by graph-
ing the number for each digit size:
ListPlot[Table[Length
[repusPrime[n]], {n,1,8}]1,
PlotJoined->True,
AxesLabel->
{“digits”,”"repusprimes”}]
Figure 2 shows the plot of this
function. It appears as if the left-
handed farmers are going to have all
the repusprimes they will ever need.

repusprimes
500

L digits
8

Other solutions

Benjamin Mathews, a 10th grader
at St. Mark’s School of Texas in
Dallas, submitted an impressive,
high-precision C solution to both
the superprime and repusprime
problems. It’s posted along with
Kenny’s solution on the Cow-
culations Web page at http://
usaco.uwp.edu/cowculations.

A big superprime “thank you”
goes to two other cowhands for sub-
mitting Pascal solutions: Po-Shen
Loh, a 9th grader at James Madison
Memorial High School in Madison,
Wisconsin; and Noam Zeilberger, a
10th grader at West Windsor-
Plainsboro High School in West
Windsor, New Jersey.

Finally, it was pointed out by Ben
Mathews that 1997 is a repusprime
year. Officially, 1 is not a prime,
which is the only thing that pre-
vents 1997 from being a superprime
year. But in Wisconsin, nothing
could prevent 1997 from being@i
Super Bowl Champs year.

Howto bie a

QUANTUM
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Have you written an article that
you think belongs in Quantum!?
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us and we’ll
send you the editorial guidelines
for prospective Quantum con-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a
level appropriate for Quantum’s
target readership of high school
and college students.

Send your inquiries to:

Managing Editor
Quantum
1840 Wilson Boulevard
Arlington VA 22201-3000

24

N




What does the future hold
for Earth’s climate?

Earth’s climate has
developed over
billions of years—
enabling plant and
animal life to evolve
and thrive. How
does climate affect
life on Earth? How
does climate
change? Do humans
have an impact on
it? What is the
evidence?

Cut through the
hype and confusion
to address the vital
subject of climate
change ina
scientific manner
with Forecasting the
Future. This new
publication from
NSTA and the
Scripps Institution of Oceanography offers
educators and students a multi-science route for
exploring all aspects of climate and climate
change. Fifty pages of background information
and 14 classroom activities help students
understand climate change through animal
biology, chemistry, geology, meteorology, physics,
and plant biology. The concepts are tied together
by a sophisticated timeline that shows climatic
changes, major extinctions, and other key events
in Earth’s history.

m curriculum and acti

Explore the evidence for global climate change with
Forecasting the Future—order your copy today!

Written by the Education Department of the
Stephen Birch Aquarium-Museum, Scripps
Institution of Oceanography

Grades 6-10, 1996, 160 pp.
#PB118X $21.95

To order, call 1-800-722-NSTA

Highlights include:

beautifully illustrated
narrative of the
components of climate
14 activities and more
than 40 extension
activities

activities from six
disciplines: chemistry,
geology, physics,
meteorology, plant and
animal biology
innovative timeline of
Earth’s natural history
glossary of terms
extensive annotated
bibliography
procedural drawings
that illustrate activities
time estimates and a
teachers section for
each activity

Learn about Earth’s natural

climate cycle and the effect

humans have on global climate

with Forecasting the Future—new

from NSTA.

Fish scales can be used as
indicators of changing
environmental conditions

simplified Fish Scale

Speleothems offer a layered

record of
Earth’s past
climate

Quantum




