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The Look of Amber (1929) by Yves Tanguv

HIS PAINTING ACTUALLY HAS LITTLE TO DO WITH

outward appearance of the fossilized resin called “amber”
in English. Even if Tanguy was unaware of its name in Greek
(elektron), he clearly understood the role amber played in the
history of electricity. The objects hovering in his dreamscape ed, it becomes “negatively charged.” When
are charged with this mysterious force. 1 he fluid ﬂoxx s from the glass into the amber until a

Around 600 s.c. the Greek philosopher Thales noted that am-  neutral balance is achieved. As Isaac Asimov notes in his guide
ber gains the ability to attract feathers and other objects whenitis  to science ‘If we substitute the word electrons for Franklin’s
rubbed with a piece of fur. Centuries later William Gi ‘fluid’ and reverse the direction of flow (actually electrons flow

coined the word “electricity,” found that &l : i 1e amber to the glass), his guess was essentially correct.”

capacity when rubbed. In 1733 the French Wu,.h the eighteenth century was full of electrical research
de Cisternay Du Fay discovered that two ding Franklin’s famous kite experiment), it wasn’t until 1785
repel each other, as do two charged pieces o arles Augustin de Coulomb took the first step in quan-
amber attracts charged glass; and if ﬂ‘*"‘ ying electmcm/ In his honor the Kaleidoscope in this issue
their charge. This led him to speculate okindsof  offers an assortment of shocking facts and electrifying problems.

ranklin thought otherwise.
¢ wl\ ed. ‘.\ hen glass is rubbed,
ged” [electricity flows into it); whereas
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Sometimes an invention is slightly BEI"W ahsnlme LErD

ahead of its time. At least, that’s the by Henry D. Schreiber
tongue-in-cheek premise of “The First
Bicycle” (page 44). This vehicle was de-
signed and built, so the story goes, by

the “great inventor Nga-Nga.” Theonly  [JEPARTMENTS

problem was, the wheel hadn’t been in-
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The creative eap

N NOVEMBER 25, A COLLEC-

tion of 400 letters and papers

from the Albert Einstein estate

was offered at auction by Chris-
tie’s in New York City. Before the
event, media attention focused on
Einstein’s “love-hate” letters to his
first wife, Mileva Maric. But it was a
manuscript documenting his search
for empirical proof of his theory of
relativity that exceeded the expecta-
tions of the auction house (bringing in
$398,500), while the
Maric correspondence
fell short. Somehow
the media missed the
point.

One interesting pa-
per has never made it
to the media’s atten-
tion. A few years be-
fore his death in 1955
Einstein got a letter
from a lifelong friend,
Maurice Solovine.
Solovine wasn'’t a sci-

a
creatve
beay

Einstein’s science

explained that the lower, horizontal
line represents the “real world.” The
curved line on the left signifies the
creative leap somebody makes in at-
tempting to explain a phenomenon.
The leap is intuitive, and although
it may be very insightful, it is not
scientific. Many people take many
leaps—not all are the beginning of a
scientific insight. The scientific pro-
cess begins, Einstein explains, when
the scientist takes the idea, or

é‘“..

tists is brought into the process, and
the original work is often modified.

There is beauty in science. If an
idea is very general, having many
consequences, it can replace many
separate ideas and it’s seen as more
fundamental and thus more appeal-
ing. It’s possible to construct a differ-
ent explanation for each observation.
For example, a scheme could be cre-
ated to explain the disappearance of
water from an open container, and an-
other, unrelated idea
could be employed to
account for the fluidity
of water, and so on. An
idea about the structure
of liquids (not just wa-
ter) that could be used
to explain these phe-
nomena and many oth-
ers would be a highly
valued replacement for
the collection of sepa-
rate ideas. The simplic-
ity of an idea also influ-

entist, but apparently
enjoyed discussing
science with his fa-
mous friend. In this exchange,
Solovine wrote that he had trouble
understanding a certain passage in
one of Einstein’s essays. The next
week Finstein wrote back. First, he
apologized to his friend for the confu-
sion: it had to do with his friend’s
misunderstanding the structure of
science and that it was his—
Einstein’s—fault for never having
explained it carefully.

Einstein included a diagram with
his explanation, which I've redrawn
with labels in English.

In the text of his letter, Einstein

2 JANUARY/FEBRUARY 1987

the "real wortd."

axiom, and develops consequences
based on it. These consequences are
illustrated by a number of smaller
circles connected to the axiom with
lines. The next task in this process
is to test these consequences against
the material world. In Einstein’s
drawing these tests are vertical ar-
rows returning to the world. If there
is no match between the predicted
consequences and the real world,
the idea is (scientifically) worthless.
If there is a match, the idea might
have merit. With the publication of
the idea, the community of scien-

ences opinions about
its worth. If more than
one is proposed to ex-
plain the same phenomena and if they
all predict the experimental results
equally well, the most appealing idea
is the simplest one. (In philosophy,
this is known as Occam’s razor.)
Einstein said it so much more
succinctly in his diagram! And luck-
ily, one doesn’t need thousands of
dollars to benefit from the wisdom
this curious, fellow human being.
—Gerry Wheeler

Gerald F. Wheeler is the Executive Di-
rector of the National Science Teachers
Association and the Publisher of Quan-
tum.
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(uestioning answers

In every ending is a beginning . . .
by Barry Mazur

AN YOU FIND ALL THE ROOTS OF A CUBIC
polynomial in one variable, if someone gives you
two of them? For example, can you find the third
solution of the equation

-9x2+20x-12=0

when you know that x = 1 and x = 2 are solutions? If so,
you have all the background you need to read this ar-
ticle. (If you need a bit more background, see the chap-
ter on “synthetic division” in any precalculus textbook.)

All of us who are fascinated by mathematics have the
faith that math answers questions and solves problems
like the one I have just asked. We work hard on some
problem in mathematics because we are pursued by cu-
riosity for the answer. Or, for the lesser reason that it
was a problem that someone posed for us, perhaps as a
challenge, perhaps as a test. We work hard, and then
when we get “the answer” we might imagine that we
can relax. I'd like to turn this picture upside-down and
suggest that much of the art of mathematics only be-
gins once we have “the answer.” If we can manage, at
that point, to ask the right questions of the answer that
we have obtained, we may be led to even more interest-
ing things.

Let’s start with a frivolous-sounding question about
numbers and think about new questions that its solu-
tion “invites” us to investigate. I won't try to prove
things systematically, but I'll call upon you to make a
tew calculations at various times.

Question. The number 210 is both the product of two
consecutive integers (210 = 14 - 15) and the product of
three consecutive integers (210 = 5 - 6 - 7). How many
other numbers have this property of being expressible
as both the product of three consecutive integers and the
product of two consecutive integers?

Before I begin dealing directly with this question, let’s

For Grace and Nick.—Auth.

POLYNOMIAL PURSUITS

think a bit about its nature. Why did I choose it? What
do I have up my sleeve? Before reading on, try to find
some other numbers that are the products of two and
of three consecutive integers.

Our question, of course, can be rephrased as an alge-
braic problem. Think of our number N as the product
of three consecutive integers. Let X be the middle one
of those three integers, and we have

N=(X-1) X - (X+1)=X*-X.

Now think of N as the product of two consecutive inte-
gers. Let Y be the smaller of those two integers, so we get

N=Y (Y+1)=Y2+Y.

We have a solution “N” to our problem, then, every
time we can find a pair of integers [X, Y] having the prop-
erty that

Pe¥=F_%

We're faced, then, with an equation in two variables
X and Y whose highest-degree term is a cube, and we're
looking for solutions to this equation in whole numbers.
We can visualize the real solutions to this equation as
a curve C in the (X, Y)-plane (fig. 1). The graph of our

YA

v2,v=-Xx3-X

I

<Y

Figure 1
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Figure 2

equation consists of two disjoint pieces. Nonetheless,
we'll consider it a single “curve” (this is how mathema-
ticians speak) and name the curve C (this is how math-
ematicians write).

We must remember that the graph we have just drawn,
falling into two pieces as it does (the left-hand piece be-
ing oval-shaped and looking somewhat like a cartoon
drawing of an eggplant, and the right-hand piece looking
like an unstrung, infinite bow), traces out all real solutions
to our equation. But we’re looking for points on the
curve C with integral (X, Y)-coordinates. So let’s super-
impose onto this graph the infinite array of points in
the (X, Y)-plane that have integral (X, Y)-coordinates
(these points are drawn as “big dots” in figure 2).

Having drawn this graph, we already “see” six solu-
tions. But to “weigh” the problem confronting us, I
want to pause to compare this equation with a much
simpler equation that is the “standard fare” of high
school algebra and is familiar to all of us.

The quadratic equation in one variable

Find the values of the variable X that “solve” the
quadratic equation

a-X>+b-X+c=0.

We all know the gambit here—an idea that has come
down to us from Babylonian times: if we want to find
numbers X that solve this equation (and we might be
interested in integer solutions X, or rational numbers X,
or real numbers, or complex numbers), we “complete
the square” by rewriting this equation as

2 2
a(X+£j +[ —b—]=0.
2a 4a

Problem 2. Check that this version of the equation
is equivalent to the first.

This rewritten equation visibly has (at most) two
beautiful solutions given by the quadratic formula.
Of course, if we are specifically interested in integer
solutions, or rational solutions, we must check
whether the answers given by our quadratic formula
are integers, or rational, and so on. I said “of course”

B JANUARY/FEBRUARY 1887

in the last sentence, but I should remind you that this
issue of whether or not the answers “given by our qua-
dratic formula are integers, or rational” was histori-
cally, at least, not such a humdrum affair. For example,
the fact that X2 — 2 = 0 has no rational solution in X
(that is, the fact that the square root of 2 is irrational)
was viewed as devastating by the Pythagorean math-
ematicians who initially made this discovery. The ir-
rationality of the square root of 2 was considered such
a dark secret about the universe that when one of them
revealed it to outsiders, the story goes, he was murdered
as a betrayer.

This may be so, or may not be so, but one thing is cer-
tain: for the quadratic equation there are at most two
solutions, and for any polynomial equation in one vari-
able X of degree d there are at most d solutions.! One
of the fascinations of the type of problem posed by the
equation Y2 + Y = X — X that we’re considering is that
we don’t even have any idea how many solutions to ex-
pect!

How many solutions have you found?

Let’s start with the six “easy” solutions to Y2 + Y =X3-X
that are so modest, you might have overlooked them
at first, if we hadn’t discovered them by drawing our
graph:

X=0,Y=0
X=0 F=-1
X=%1,Y=0;
X=%1,Y=-1.

Y
All of these solutions give N = 0:
0=0-1-2=0-1
—0-1-2=(-1]-0.

Did you get this relatively modest answer to our ques-
tion 1? We’ll come back later to the issue of exactly how
modest or immodest these solutions are.

Did you also discover

X=0 ¥=-3
X=27=2
These solutions give N = 6:
6=1-2-3=(-3)(-2)
-1-2.3=2-3.

And then there are the solutions that were given in
the statement of the problem itself:

X=6,Y=-15
X=6Y=14.

These solutions give N = 210:

210=5-6-7=(-15) - (-14)
=5.6-7=14-15.

IThis statement can be proved, for example, by
induction on the degree of f{x] and by using the “long
division of polynomials.”



Figure 3

Did you find any others? Suppose you had tried out
all numbers under a million and had found no further
solutions. Would you then be confident that there were
no others? Now, although “confidence” is a precious
virtue that counts for a lot in mathematical work and
in life, my recommendation in exactly this sort of cal-
culation is that you should not be confident that you
have found all the solutions. Let me illustrate why by
bringing up a slightly different problem.

Problem. Find the integer solutions to the equation

Y2=X3+24.

That is, find the perfect squares (“Y?”) that are 24 more
than a perfect cube (“X3”). Now, you’ll surely guess a
few of the solutions quite easily. For example, X = -2,
X =1, and X = 10 give solutions to this problem:

42 = (-2 + 24
52 = 13 + 24
322 = 10% + 24.

But these are not all: there is one missing value of X that
solves the equation, and if we wanted to plot the value of
X on the graph in figure 3, we’d have to extend the “wing-
span” of the graph?>—from the three and a half inches it
takes up on this page to a diameter of over half a mile!

A "liasic Symmetry”

The first thing that jumps to the eye, given the solu-
tions of Y2 + Y = X3 — X that we have already found, is
that these solutions come in pairs, each pair giving the
same value for N. In fact, the entire curve C is mapped
onto itself by the “symmetry”

X->X,Y->-Y-1
(see figure 4). In other words,

P=[X, Y] P=[X,-Y-1]

ZNote that the axes are not the usual ones in figure 3.
We have chosen the y-axis to be horizontal and the x-axis
vertical.

YA

Y=-1/2

X—-X
Y->-Y-1

Figure 4

The “basic symmetry.”

and so we have

[1,0] <> [1, -1}
[2/ 2] N [2/ _S]i
[6, 14] < [6, ~15];

and so on.

Using this symmetry, we can manufacture new so-
lutions of our equation from old ones: given the solu-
tion [1, 0] we can apply the symmetry to “discover” the
solution [1, -1], and so on. These discoveries are not too
exciting, since the symmetry [X, Y] < [X, -Y - 1] is so
elementary. But are there other geometric properties of
the graph of our equation that we can use to force “old
solutions” to somehow lead us to new ones?

Collinear points

I now want to use a geometric property of our curve
C that is much subtler than the symmetry we have just
discussed:

Any line L in the (X, Y)-plane intersects the curve C
in at most three points.

The proof of this is easy: plug into our equation

Y24+Y=-X3-X

the equation Y = mX + b of the line L and solve for X.
This gives us a cubic polynomial in the variable X that
can have at most three solutions (see figure 5)!

YA

L

R %
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Here now is a strategy that might potentially produce
new solutions from old ones. It has some pitfalls, but
first I'll try to formulate it. There will be time to criti-
cize it later.

Let P=[X,, Y,] and Q = [X,, Y,] be two rational solu-
tions of the equation Y2 + Y = X3 - X. Let L = PQ be the
straight line passing through P and Q. For obvious rea-
sons we'll call L the chord to the curve C passing
through P and Q. Consider the intersection of the line
L and the curve C. There is at most one other intersec-
tion point R of L and C. Solving for R gives a “new”
solution R = [X;, Y,] of our equation.

Problem 3. If P and Q have integer coordinates, must
R have integer coordinates?

This strategy gives us a new solution, but it seems
to depend on having two distinct solutions P and Q
so as to be able to produce a chord L passing through
them.

Question. Without reading ahead, can you dream up
a “natural” way of extending this strategy of “finding a
third point of intersection” to make it work even when
“the two points P and Q are equal”?

A bit of thought will suggest that yes, there is a natu-
ral extension of our strategy that allows us to work with
one point “P = Q”: take the line L to be simply the tan-
gent line to the curve C at point P (fig. 6). This strategy
of getting new solutions from old, by the way, is some-
times referred to as the chord-and-tangent process.

Let’s look into this strategy in a little more detail. If
we have the points P and Q in hand, we can very easily
calculate R. Let’s try an example. Take as our two points
P=]1,-1]and Q = [2, 2]. The line L passing through P
and Q has the equation Y + 1 = 3(X - 1). So, plugging this
equation for Yinto our equation Y? + Y = X3 - X, we get
a cubic equation in X:

V2+Y=-X3-X%,
(BX -4 +3X-4=X3-X

or
X3-9X?+20X-12=0.

Now, X = 1 and X = 2 are solutions of this equation

YA

Figure 6
If P = Q, then L should be chosen to be tangent to C at P.
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corresponding to the intersection points P and Q on the
line L. If you answered the question at the beginning of
this article, you have solved this cubic equation and
know that its third solution is

X =6.

Then, since Y = 3X - 4, we get Y = 14. That is, our third
intersection point R of the curve C with the line L is

R =16, 14].

The moral here is that, if we had not discovered this
solution [6, 14] “on our own,” we might perfectly well
have been led to its existence by this strategy of find-
ing new solutions from old . . . if we had previously
obtained the solutions [1, 1] and [2, 2]. To put it another
way, the chord-and-tangent process is a strategy that
forces “old” solutions to “work for us” to possibly pro-
duce other solutions.

But there are a few tricky things about this strategy.
The first tricky thing, which is minor, is that for some
choices of P and Q there is no third intersection point
R. This happens if and only if the line L is vertical. This
is the same as saying that the X-coordinate of the points
P and Q are equal. And this is the same as saying that
P and Q are brought to each other by the symmetry of
the curve C.

The second tricky thing, however, opens up a whole
new issue: sometimes the point R does not have inte-
ger coordinates, but only has rational coordinates. That
is, sometimes the X- and/or Y-coordinate of the new so-
lution is a fraction rather than (what we want!) a whole
number. You don’t have to go far to run into this. For
example, take P = [1, 0] and Q = [6, 14]. Then the line
passing through P and Q has the awkward equation
5Y = 14(X - 1), which gives us a denominator of 5 when
we solve for Y:

14

5

Y="1(X-1)

When we proceed as before and finally get the third
intersection point of L and C, we find this point

R to be
257 125

In a word, our strategy does not preserve integrality
of the solutions that are found, but does preserve ratio-
nality. Let’s examine our arguments to see that in fact
R has rational coordinates whenever P and Q have ra-
tional coordinates. Indeed, where can an irrationality
creep in? It’s easy to see that the slope and Y-intercept
of the line through P and Q are rational (as long as the
line isn’t vertical, of course). Then we can express this
line in the form y = mX + b and plug this expression into
the equation of our curve to get a cubic equation in X.
We already had two (rational) solutions to this equation.




If you examine the division process that allows you
to calculate the third root, you’ll see that it involves
only the operations of addition, subtraction, multipli-
cation, and division. If we start with rational numbers,
these operations can only give us rational answers. So
the X-coordinate of the point R is rational. Since R lies
on the line Y = mX + b, its Y-coordinate must then also
be rational.

If we are going to make any systematic use of this
strategy, we are curiously led to consider all rational
solutions of the equation Y2 + Y = X8 — X and then to
think of the integral solutions (which we were origi-
nally after!) as a particular subcollection of rational so-
lutions. You might think that this is a step backward
in that there are, very likely, many more rational solu-
tions than there are integral solutions, and therefore our
chore is much, much harder. We'll follow this path to
see where it leads. By a rational solution P to the equa-
tion Y? + Y = X3 — X we just mean a pair of rational
numbers P = [x, y| that “solve” that equation. If we
want to think geometrically, we can also call P a ratio-
nal point on C.

A theorem

Here is the surprising answer to the question: “What
are all the rational solutions to Y2 + Y = X3 - X?” There
are infinitely many rational solutions. Nevertheless,
don’t despair! The magic here is that you can get all
rational solutions if you start with the single solution

= [0, 0] and then go on to produce “new solutions from
old” just by systematically applying the basic symme-
try P— P and the chord-and-tangent process to all pairs
of points you get along the way.

“Nothing will come of nothing,” according to King
Lear, but as for our problem, the modest “double-zero”
solution [0, 0] to the equation Y2 +Y = X2 — X generates
all the infinitely many rational solutions by the chord-
and-tangent process. I know of no better or more pleas-
ant way to get a feeling for the mathematics behind the
chord-and-tangent process, and to learn how effective
it is in generating rational solutions to cubic equations
in two variables, than to start reading the book Ratio-
nal Points on Elliptic Curves by J. Silverman and]. Tate
(Springer-Verlag, 1992).

You might imagine that constant application and re-
application of our chord-and-tangent process to the so-
lutions of a cubic equation in two variables will lead to
some unholy mess of solutions with disorganized heaps
of them generated by our process, which works away
with a sorcerer’s apprentice-like zeal. But no: the end
result of this process is amazingly “organized”—a mi-
nor miracle! Going back to our equation Y2 + Y= X3 -X,
I'll restate it as a theorem (whose proof is, I must admit,
not elementary!).

THeoREM. There are infinitely many rational solu-
tions to the equation

Y2+ Y=X3-X

The “double-zero” solution P, = [0, 0] generates all ratio-
nal solutions via the chord-and-tangent process. There is
a unique way of “listing” all these rational solutions by
labeling them in a one-to-one correspondence with the
set of all nonzero (positive and negative) integers

1P, =[0,0]

HHp11= Xn’ yn]

such that this one-to-one correspondence has these
properties:

A. Pn is brought onto P_, by the “basic symmetry.
That is,

x,=x andy, =-y -1

B. Three rational points P, P, and P (whose indices
are distinct nonzero integers n, m, and r) lie on a straight
Iine L in the (X, Y)-plane if and only ifn + m + r = 0.

Here is the beginning of this listing for positive val-
ues of n (to get the listing for the corresponding nega-
tive values, just apply the “basic symmetry”—that is,
replace the Y-coordinate with —-Y - 1):

B =
P, -

P, -

P, - [2 —3]

P, = [1/4,-5/8]

P =16, 14]

p =[-5/9, 8/27]

p = [21/25, -69/125]

P, = [-20/49, -435/343]

P10 [161/16, ~2065/64]

Py, = [116/529, -3612,/12167]

P,, - [1357/841, 28888/24389]

P, = [-3741/3481, -43355/205379]

P, = [18526/16641, ~2616119/2146689)

P,. = [8385/98596, ~28076979/30959144]

P, = [480106/4225, 332513754/274625]

P, _[ 239785/2337841, 331948240/3574558889]

P, = [12551561/13608721, —8280062505/50202571769]

P,y = [-59997896/67387681, -641260644409/553185473329)

p - [683916417/264517696, ~18784454671297/4302115807744]

5

You can check my arithmetic,® because there are
quite a number of miraculous constraints on this list of
numbers: they are all solutions to Y2 + Y = X3 - X, but
also if you take any pair of distinct integers n, m, by part
B of the theorem we formulated we find that P, P_, and
P, nmust lie on a straight line in the (X, Y)-plane.
For example, since 3 + 5 + (-8) = 0, the three points
P, =[-1,-1], P, = [1/4,-5/8], and P_, = [21/25, -56/125]
had better be collinear. Otherwise I made a mistake in
compiling my list!

I'd like to pause a minute now to squint at the list of
solutions P_ above. If we are to be as attentive as we

31 confess that this was not done by hand. I used the very
convenient computer package PARI to compile this
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possibly can be to the answers we get to the questions
we ask, there’s something about that list—its general
shape—that shouldn’t escape our notice! Do you see a
wiggly profile of a parabola hidden in it? To bring this
out more clearly, let’s compact our data a bit and con-
sider this slightly more extensive list, where I give only
the absolute values of the numerators of the X-coordi-
nates of P, for odd values of n, beginning with n = 9:

20

116

3741

8385

239785

59997896

1849037896

270896443865

16683000076735

2786836257692691

3148929681285740316

342115756927607927420

280251129922563291422.645

804287518035141565236193151

743043134297049053529252783151

3239336802390544740129153150480400
2613390252458014344369424012613679600
12518737094671239826683031943583152550351
596929565407758846078157850477988229836340351
2385858586329829631608077553938139264431352010155
56186054018434753527022752382280291882048809582857380
2389750519110914018630990937660635435269956452770356625916
65008789078766455275600750711306493793995920750429546912218291
8633815035886806713921361263456572740784038065917674315913775417535
43276783438948886312588030404441444313405755534366254416432880924019065
593076045469642658948956761739794324482729234687114512318727773285876671389

Now take another look to check out the clean shadow
of a parabola formed by the mere digits of our solutions.
This shadow is a vivid indication that the rate of growth
of the size of our solutions seems to be following a regu-
lar pattern. Can we prove this? Can we “question our an-
swers” so rigorously as to get (heaven help us!) the equa-
tions of that parabola? Will doing this lead us to an even
deeper understanding of the arithmetic behind our origi-
nal problem? The answer to all these questions is yes, and
following their lead would bring you into intimate con-
tact with a good deal of the exciting work in number
theory that has been taking place in this half-century!

Rational vs. integral Solutions

Somehow we have wandered into the dazzling infinite
array of rational solutions to our equation Y2 + Y = X3 -X,
when at the outset of our investigation we had intended
to study only the integral solutions. We did this because,
infinite or not, the rational solutions to the problem have
a certain orderly structure that was not in evidence when
we focused only on integral solutions. Can we now go
back and pick out the jewels—the integral solutions—in
our infinite list? What, in fact, is the actual answer to our
original question? That is, what are the numbers N that
can be written both as a product of two consecutive and
of three consecutive integers?

The answer to the first question is yes. It was appar-
ent to Mordell half a century ago that we can indeed find
all the integral solutions, and there is an elegant way to
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Figure 7

do this by “picking them out of” the infinitude of ratio-
nal solutions. The answer to our original question is
that N = 210 is the largest number that can be written
as a product of two consecutive integers and also as a
product of three consecutive integers.

Although the steps in the proof of this last statement
are more involved than the mathematics of the rest of
this article, I feel compelled to provide the bare bones
of the argument. To clinch our problem, there are three
things that we need to calculate.* Let’s return to the
graph of our equation in the (X, Y)-plane, which breaks
into two pieces: the oval on the left and the piece “go-
ing off the page to infinity” on the right (fig. 7).

1. First check that the only integral points on the oval
are the four integral points P, = [0,0], P_, = [0, -1],
P,=[-1,-1],and P, = [-1,0].

2. Check that the points P, with odd index n lie in
the oval on the left, while the points P, with even in-
dex n lie in the piece going off to infinity on the right.

3. Check that any prime number dividing the de-
nominators of the X- and Y-coordinates of P_ also divide
the denominator of the X- and Y-coordinates of P, .

Suppose you have done these three chores, and suppose
you know the theorem we formulated earlier and the list
of P_ for small n. Equipped with all these facts, you are
now in a position to prove the following theorem.

TueoreM. The only numbers N that are both the
product of two consecutive integers and three consecu-
tive integers are N = 0, 6, and 210.

Proof. We'll search among the infinite list P_ of ratio-
nal solutions to Y? + Y = X3 — X to see which of these is
integral—that is, which has the property that neither the
X- nor the Y-coordinate has a denominator greater than
1.If asolution P is integral, then its image P, under the
“basic symmetry” is also integral, so in searching for all
integral solutions we can just try to determine all posi-
tive values of m for which P_ is integral. Writem = 2¢- m,,
with m, odd and e > 0. Use fact 3 to see that if P has

CONTINUED ON PAGE 27

4The first of these you might try to do right now. The
second and third would be something you’d naturally try
your hand at while reading Silverman and Tate’s Rational
Points on Elliptic Curves.
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WWobhling nuclear drops

“But if within your heart there should remain
The smallest drop of pity formy pain . . .”
—from Tatyanas letter to Onegin
(Eugene Onegin, Alexander Pushkin)

by Yuly Bruk, Maxim Zelnikov, and Albert Stasenko

HEN WE THINK ABOUT

drops, we usually think about

rain, or fog, or the leaky faucet

in the kitchen. However, the
“liquid-drop model” is applied in
physics to describe the life of atomic
nuclei. You may find this surprising.
What can droplets in a fog have in
common with the nucleus of a ura-
nium atom? Quite a lot, actually. The
liquid-drop nuclear model developed
by Niels Bohr, John Wheeler, and Y. L.
Frenkel is very similar to the model
of a drop of an ordinary liquid. On the
basis of this model we can understand
how nuclei oscillate, and we can also
determine the masses of the nuclei. In
this article we'll talk about the oscilla-
tions of drops, and we'll begin in a fog.

Drops ina fog

Assume that spherical drops are
suspended motionless in the air. This
experiment would be more accurate,
of course, inside a spacecraft where
the drops are weightless and don’t fall
to the ground. However, the small
droplets dispersed in the Earth’s at-
mosphere can be viewed as almost
motionless because their weight is
practically counterbalanced by the
resistance (viscosity) of the air, and so
the drops fall with a very small and
constant velocity. In addition, the
flows of air (for example, caused by
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convection) can slow the droplets and
even cause them to stop falling (they
can also force the droplets to move
faster, and not only downward but
upward as well).

We'll let our droplets “hover” in
the air and have a spherical shape.
Why must they be spherical and not,
say, cubical, pyramidal, or flat as a
pancake? Because of surface tension:
any attempt to change the shape of
the drop generates forces that try to
restore its original shape. For our pur-
poses water can be treated as an in-
compressible liquid. Since nature
tries to do everything on a rational,
economical basis, a droplet at equilib-
rium must have minimal energy as-
sociated with its surface tension. As
a droplet is deformed (its volume re-
mains constant due to incompress-
ibility), its surface area varies. The
minimal surface area for a body with
constant volume is achieved when it is
a sphere. Thus we come to the conclu-
sion that a deformed droplet, when it
tries to restore its equilibrium spherical
shape, is striving to achieve the mini-
mal surface (potential) energy.

Surface ension

Now let’s recall how surface ten-
sion is defined in physics. Consider
a light wire frame (fig. 1) with side
CD that can move under the action

MACROLAWS IN MICROWORLDS

Figure 1

of force F. Assume that the area
ABCD is filled with a liquid film (a
soap solution can be used to conduct
such an experiment) and that the
frame lies on the surface of a jar
filled with liquid. Moving the wire
CD in the direction of force F, we per-
form work and increase the film’s sur-
face. The additional soap solution
comes from the jar under the frame.
The surface tension can be defined
either by the ratio of the force F to the
wire’s length 1, or by the ratio of the
change in the film’s energy in the
rectangle ABCD to the change in the
area of this rectangle (caused by mov-
ing the side CD); or, in other words,
the potential energy of a unit area of
film. This is also confirmed by the
dimensions for surface tension:

o)== =

m m- m-

Art by Vasily Vlasov



el %




t=0

Figure 2

Now assume that initially the drop-
let was deformed due to, say, a clap of
thunder or the shock wave produced by
a supersonic jet. What will happen
next? The drop begins to oscillate (fig. 2.
But why does it “slide” through and
past the equilibrium point—that is, the
spherical shape shown by the dotted
line? Evidently this is caused by the in-
ertia of the moving particles in the drop-
let: after they acquire a velocity due to
the action of surface tension, they just
can’t stop at the moment the drop as-
sumes a spherical shape. They continue
their motion and thus transform the
drop from a stretched one to a squashed
one. These oscillations persist until the
water’s viscosity and the resistance of
the surrounding air transform the en-
ergy of the initial deformation into heat.

Frequency of a drop$s oscillations

Now we're ready to estimate the
frequency v of a drop’s oscillation and
the corresponding period T'= 1/v. To
this end we use our favorite tool of
dimensional analysis! with SI units.
The radius r of a drop is measured in
meters, and its mass M = */;ur’p, in
kilograms (where p, is the density of
water in kg/m?). The dimensions for
surface tension are J/m? = N/m =
kg - s2. We see that the frequency v
measured in s~ must be expressed in
terms of o and M as

1See “The Power of Dimensional
Thinking” in the May/June 1992 issue
of Quantum.—Ed.
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This is the only possible formula for
our problem. Dimensional analysis
cannot produce the dimensionless
numerical coefficient in the fre-
quency formula, so instead of the
equal sign we use the proportional-

ity symbol. In principle, we could
write this formula in another way:

(9

——
Pol

V o<

Physicists usually take a risky
step next—they assume that the nu-
merical coefficient is equal to one.
(In many “reasonable” cases it is in-
deed close to 1). Now we can obtain
an estimate for the frequency of the
oscillations. A typical size for a drop
inafogisr~0.1 mm =10"*m, the co-
efficient of surface tension for water
6=70-10° N/m=0.07J/m?, and the
density of water p, = 10° kg/m?. These
values yield v ~ 10* s7! = 10 kHz.

One can’t help noting an interest-
ing comparison. Let’s rewrite our for-
mula for the oscillation frequency
using the relationship T2 = 1 /v2:

T2 & M
c

!

or

T2 _po

P o

Because p, and ¢ are constant for a par-
ticular liquid, we have the relationship
T2 = const - r3. Considering two drop-
lets of the same liquid with different di-
ameters, we can say that the ratio of the
squares of the periods of their oscilla-
tions is equal to the ratio of the cubes
of their radii. Sounds familiar, doesn’t it?
Of course—this is Kepler’s third law,
which describes the motion of plan-
ets around the Sun! True, this law
deals with the orbits of the planets,
not their radii. Use your gray cells, as
the legendary Monsieur Hercule
Poirot taught us, and perhaps you'll
find something useful in this analogy!

Nuclear droplets

Now let’s turn our attention to
drops of nuclear liquid. The nuclei of
atoms consist of nucleons—that is,
protons and neutrons. Denoting the
masses of protons and neutrons by
m, and m_, respectively, the electric
charge and mass number (that is, the
total number of nucleons in the
nucleus) by Z and A, the nuclear
mass by M(A, Z), and speed of light
by ¢ = 2.998 - 10® m/s, we come up
with the relationship

AW = (Zm + (A - Z)m, - M(A, Z)e?,

known as the nuclear binding energy
for the nucleons forming a nucleus.
Nucleons are held tightly in the
nucleus by the strong interaction. If
we want to break apart a nucleus, we
must expend energy equal to AW.
Dividing AW by the total number of
nucleons A, we get the binding en-
ergy per nucleon that keeps the
nucleons in a nucleus: ¢ = AW/A. For
most stable and rather heavy nuclei
the value of ¢ is approximately the
same. More precisely, ¢[A) increases
sharply from ¢ =0 at A =1 to
e =8 MeV at A = 16, then passes
through a maximume __ =8.8 MeV
at A ~ 60 (*8Fe and %2Ni), and finally
decreases slowly to € = 7.6 MeV for
uranium. We'll be dealing with heavy
atoms only, so let’s take the average
binding energy per nucleon to be
€ = 8 MeV. (Recall that 1 MeV =
106 eV = 1.6 - 10713 ). So for our first
approximation we can assume that

AW =€A =8A MeV.



This accuracy is quite sufficient for
the estimates we'll be making below.
The atomic nucleus is in some
respects similar to an ordinary lig-
uid. Just as with many liquids, the
nuclear liquid is almost incompress-
ible. This means that the density of
the nuclear matter is practically
constant in all kinds of nuclei. The
fact that AW is proportional to A can
be compared with the linear depen-
dence of the energy needed to vapor-
ize a drop of ordinary liquid on the
drop’s mass. The approximate con-
stancy of the binding energy per
nucleon in all nuclei also recalls a
similar property of ordinary liquids.
The mass of any nucleus, and
therefore its mass number A, are
proportional to its volume. If R is
the nuclear radius, A o R3. Experi-
mental data for different nuclei
show just such a dependence
R o< A3, where 1, = 1.5 - 1071° m.
Qualitatively, such a dependence
can be understood by assigning a
“radius” r, to the nucleon; then for
the nucleonic “balls” that are tightly
packed within a sphere of radius R we
get R3 = rOSA. The concentration of
nucleons in anucleus isn = A/(*/,nR3)
~ 10** nucleon/m3; the mass of a
nucleonis m_ ~m_~1.67 - 107 kg;
and the density of the nuclear matter
isp=nm_~2-10" kg/m3.

At this point we should warn you
that one can speak about the “radius”
of elementary particles only with cer-
tain reservations, and that we
mustn’t treat these terms too liter-
ally. The “size” of nucleons, elec-
trons, and other elementary particles
cannot in principle be correctly deter-
mined within the framework of clas-
sical physics. This doesn’t prevent us
from obtaining estimates using “vi-
sual” notions from classical physics.
Still, when we say certain words we
mustn’t forget that they must be jus-
tified by the more correct nonclassi-
cal considerations. For example, the
sizes of atomic nuclei are deter-
mined by experiments in which el-
ementary (and compound) particles
are scattered in thin metal foils (re-
call Rutherford’s experiments,
which resulted in the planetary
model of the atom).

When we think about how to de-
termine the surface tension in a
droplet of nuclear matter, we first
should note that this droplet (the
atomic nucleus) must contain many
nucleons—otherwise the notion of
surface energy becomes pointless.
This is why our reasoning holds true
for heavy nuclei (A » 1, Z >» 1).
Some nucleons (protons and neu-
trons) are located at the surface of
the nuclear droplet, so their bonds
with other particles are weaker than
those of nucleons located deep in-
side the nucleus.

The nuclear forces acting on
nucleons are similar to the forces
affecting particles in an ordinary lig-
uid in one other aspect. Both kinds
of forces have the property of satu-
ration. This means that each par-
ticle in a liquid interacts only with
its neighbors. It is this property that
causes the proportionality between
AW and A. Were it not so—that is,
if each nucleon interacted with all of
its siblings in the nucleus—the total
binding energy would be propor-
tional to A(A - 1) ~ A2, The satura-
tion of nuclear or molecular forces is
related to their short ranges.

Along with nuclear forces, there
is another kind of interaction within
atomic nuclei. This is the familiar
electric (Coulomb) repulsion be-
tween positively charged particles
(protons). The forces of repulsion
decrease the total nuclear binding
energy. These electric forces act at
large distances and do not become
saturated. In other words, each pro-
ton interacts with all of its siblings,
so the Coulomb contribution to the
total binding energy is proportional
to Z(Z - 1) ~ Z2. Keep in mind that
the Coulomb interaction of protons
in atomic nuclei differs from that of
charged particles in plasma or a solid
body, because the atomic nucleus
contains only positively charged
particles (protons), while plasma and
metal have charged particles of both
kinds (protons and electrons, posi-
tive and negative ions). The opposite
charges interact in such a way as to
“screen” each other. This is why the
electric interaction operates over
relatively short distances in metals

or plasma. As for protons within an
atomic nucleus, they have no
screening countercharges, which is
why the nuclear interaction oper-
ates at greater distances there.

Laplace pressure

We're still two steps short of ob-
taining the expression for the sur-
face tension of a nuclear droplet.
First let’s look at the Laplace pres-
sure. This additional pressure is pro-
duced by the forces of surface ten-
sion under the curved surface of a
liquid. To understand where this
pressure originates, imagine a small
solid angle whose apex is at the cen-
ter of a sphere of radius R, which
“cuts” a tiny piece of the sphere’s
surface (fig. 3). The forces of surface
tension are tangent to the sphere at
each point of the circle cut into the
surface. Summing all these forces
(that is, integrating them) yields the
total resultant force directed toward
the center of the sphere. We can see
now that the surface tension in a
sphere results in an additional pres-
sure AP within the liquid.

Now we recall that the surface
tension ¢ can also be interpreted as
the density of the surface energy.
This means that the total surface
energy of a spherical drop is 4nR%c.
Let’s assume that the Laplace pres-
sure produced a very small sym-
metrical deformation of the drop
and decreased its radius to R — 8R.
(How can this be done with an in-
compressible liquid? Here’s where
mathematics helps us: it works with
any small value, so we just suppose
that the deformation is much
smaller than the radius of the atom.)
The surface energy of the deformed

Figure 3
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drop becomes 4nc(R — 8R)?. The
corresponding energy change is
(4nR% - 4mR -8R)})o=4n-2R -8R - G,
because 8R « R. On the other hand,
the work performed by the pressure
during the “shrinking” of the drop
by 8R is AP - 4nR? - 8R. Making the
change in surface energy equal to
the work of the pressure forces gives
us the result for our first step—a for-
mula describing the additional pres-
sure under a curved surface:

xp=22,
R
This surface pressure must be coun-
terbalanced by an internal pressure,
if we want the drop to be in equilib-
rium or near it (the latter case is
called the quasi-equilibrium state).

(uantum pressure in atomic nuclej

Our second step is to obtain an
estimate of the pressure that “re
sists” the Laplace pressure. At this
point we must admit that nucleons
in the atomic nucleus are somewhat
different from the particles of ordi-
nary liquids. As we know, pressure
in an ordinary fluid is determined
by the mean kinetic energy of its
particles and by the energy of their
mutual interaction. In macroscopic
physical systems, the kinetic energy
of the particles is determined by the
temperature. The most obvious ex-
ample is the classical ideal gas. Its
pressure equals nkT, where n is the
number density of the molecules
(that is, their number per unit vol-
ume), T'is the absolute temperature,
and k = 1.38 - 1023 J/K is Boltz-
mann’s constant. Expressions like
this are absolutely useless in de-
scribing the behavior of nucleonic
liquids. Nucleons obey the laws of
quantum mechanics, so their veloc-
ity, pressure, and energy are practi-
cally independent of temperature.
So to evaluate the pressure in the
nuclear system, we’ll try a round-
about way and again use dimen-
sional analysis.

When dealing with a quantum
system, we naturally expect the
pressure to depend on Planck’s con-
stant £ = 1.05 - 107347 - s. We'll
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assume that the pressure also de-
pends on the concentration of par-
ticles n and the particle mass m. By
the way, this dependence on n
“hides” the influence of internucle-
onic distance (and mutual nucleonic
interaction) on nuclear pressure.
Here are the dimensions of the cor-
responding values: [#] = kg - m?/s7!,

[n] = m3, [m] = kg, [P]=kg - m™ s 2,
Let’s start with the formula
P < £%mbPny.

Comparing the dimensions on the
left- and right-hand sides yields
three equations used to find the
numbers «, B, ¥:

1=0+0p,
-1 =20 - 3y,
-2 = —qQ.

It follows that

SO

PocZ_n3

m

This formula can be used to esti-
mate the pressure of protons P_and
neutrons P_, and the total quantum
nucleonic pressure Py=P,+P.In
calculating these Values we assume
that the number of protons in a
nucleus is Z and the number of neu-
trons is A — Z, neglecting the differ-
ence between the masses of the pro-
tons and neutrons: m_ ~ m_ ~ m.
Here are the resulting equations:

n = z  Z 3127

P %TERS %nrsA 4x 03’A
A-Z A- 3 1A-Z

TSR T imgA dmg A
3 3T To
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If we assume 6/R o< P—that is, the
Laplace pressure counterbalances
the nucleonic pressure—we get (in

order of magnitude, of course)
52 AV3 ([ 7\I3 p_ 7\
gl A _j +[_j .
m ISL (A A

The expression in the large paren-
theses is of the order of 1. It turns
out that more rigorous calculations
don’t improve the numerical coeffi-
cients in our formulas very much. In
addition, more accurate (and far
more complicated!) calculations
confirm that our estimates are quite
reasonable.

Electric pressure

Is the nucleonic pressure Py the
only counterforce that neutralizes
the Laplace pressure AP? The cre-
ators of the liquid-drop nuclear
model thought that the surface ten-
sion could also be offset by electri-
cal pressure on the surface. This
kind of pressure is produced by pro-
tons that have been pushed apart
and equals the product of the elec-
tric field strength at the drop’s sur-
face and the surface density of the
electric charge. We can estimate it
as follows. At the surface of the
nucleus (at a distance R from the
center) the nuclear charge Ze gener-
ates an electric field with a strength
of about (Ze)/(4ne,R?), where
g,=28.85-10712C%/[m? - N} is the per-
mittivity of free space. If all the pro-
tons were located on the nuclear
surface, the surface charge density
would be (Ze)/(4rnR?). Thus the elec-
trical pressure P, is of the order of

(ze)’
(4r)’eoR*

Ze Ze
4me, R 4nR*

If P, were larger than P, we could
estimate the surface tension as fol-
lows (again without numerical coef-
ficients):

or
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Nuclear oscilation frequencies

In the general case both the quan-
tum pressure Py and electric pres-
sure P, contribute to the total pres-
sure inside the nuclear droplet.
Therefore, the condition of nuclear
equilibrium looks like this:

(¢}
E=C1PN+C2P€/

where C, and C, are numbers that
could be written explicitly if we
took into account all the numerical
factors in our estimate. The value of
such a “precise” calculation isn’t
very great, however, because the
model described is rather rough (for
example, it neglects the possibility
that the nucleons are unevenly dis-
tributed within the nucleus). Never-
theless, this simple model captures
the qualitative dependencies and
even produces reasonable numerical
estimates.

Finally, we have arrived at our
long-sought estimate for the surface
tension:

2 5/3 5/3
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Since in this article we're interested
only in rough estimates, we assume
that both C, and C, are of the order
of 1.

There is another way to deter-
mine the nuclear surface tension if
we suppose that an atomic nucleus
is kept from disintegrating by the
forces of surface tension alone. In
this approach we have

4nR%G_ o< AE = AW,
from which we get

gAYS

=
4rry

Ag
b 4nr02A2/3

For A ~ 200 (say, for isotopes of ura-
nium with atomic mass 235 or 238),
this formula yieldso_~2- 1017 J/m?.

Compared to the surface tension of
water, this is a prodigious force.

Let’s assume that the value o
doesn’t differ much from the value
of o obtained when we supposed
that the main source of pressure was
Py
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As expected, the numerical value €
is about 10 MeV, which is close (for
the accuracy accepted here) to the
value of € = 8 MeV mentioned
above.

Now all that’s left is to estimate
the characteristic frequencies of
nuclear droplet oscillation by means
of the formula v « (6/M)!/2, where
M = Am is the mass of the nucleus.
We'll do it for two limiting cases:
(1) when Py > P, and (2) when
P, > Py. In the first case we have

he 1
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while in the second we have
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Since the expression in the large
parentheses in the first formula for
v, is approximately equal to one, we
can simplify the formula:

vy o< izA‘V 3
mr,

In the general case, the frequen-
cies of nuclear oscillation are esti-
mated to be about 1022 s7! and are
called nuclear frequencies. A more
rigorous analysis shows that for the
heavy nuclei we’ve considered, the
pressure values are characterized by

Py > P.. As in an ordinary liquid, the
collective character of the motion of
the nuclear particles in the incom-
pressible nuclear liquid leads to os-
cillations of the droplet’s shape (the
volume of the nucleus doesn’t
change). In quantum mechanics the
oscillating motion is quantized. The
change of energy during the transi-
tion of a nucleus from one state to
another AE = s®, where ® = 2ntv and
s is an integer. So we can estimate
the possible values of the energy
corresponding to the modes of
nuclear oscillation. (The simplest
examples of such modes are quadru-
pole and octapole oscillations. In
the first case the excited nuclear
droplet assumes an ellipsoidal
shape, while in the second case it
looks like a pear.)

Summing up

A common feature of the oscilla-
tory motion of drops in a mist and
atomic nuclei is that the square of
the frequency of oscillation is pro-
portional to the ratio of two charac-
teristic values: the surface tension
and the mass of the droplet. We have
seen that the oscillation of droplets
of two completely different incom-
pressible liquids can be described
within the framework of the so-
called liquid-drop model. We find it
very significant that simple analo-
gies and straightforward reasoning
can lead us to the very depths of the
atomic nucleus and even provide us
with reasonable qualitative and
quantitative estimates of its charac-
teristic frequencies and energies.

Still we must remind our readers
again that we were working with a
model. In nuclear physics there are
dozens of models, but still there is
no united and completely consistent
theory. So when you come up
against other nuclear models, be at-
tentive. Don’t be in a hurry to find
contradictions in the different ap-
proaches, but also don’t avoid them.
Of course, experimental results will
have the final say. But alas, no one
has yet incorporated into any physi-
cal model that tiny drop of love and
sympathy that Pushkin’s Tatyana
sought.

QUANTUM/FEATURE 17




A revolution absorhed

How non-Euclidean geometry entered the mathematical mainstream

by E. B. Vinberg

HE DISCOVERY THAT
Euclid’s geometry is not the
only possible geometry, which
was made in the beginning of
the 19th century by Gauss, Loba-
chevsky, and Bélyai, had the same
sort of effect on the world view of
humanity as great discoveries in the
natural sciences, such as the
heliocentric system of Coper-
nicus or Darwin’s theory of
evolution. However, there are
very few non-experts who
know that non-Euclidean ge-
ometry, along with Euclidean,
has been one of the tools of
modern mathematics since the
end of the last century, despite
the fact that “the space where
we live” is, as far as we know
it today, more Euclidean than
non-Euclidean.

It is the nature of math-
ematical theories that their
basic notions (in geometry,
these are points, straight lines,
transformations, and so on)
can be interpreted in many dif-
ferent ways and applied to dif-
ferent kinds of objects. In par-
ticular, geometry may be
applied not only to “the space
where we live” but also to
other spaces that appear in math-
ematical and physical theories. The
geometries of these spaces may be
of various types—in particular, they
may be non-Euclidean.

If we let the expression “non-
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Euclidean geometry” denote any
geometry whose axioms differ from
those of Euclid, there would be infi-
nitely many such geometries, and
we could hardly be expected to say
anything that would be true of all of
them. In this article we’ll use the
term “non-Euclidean geometry” in

a rather narrow sense, confining it to
either Lobachevskian geometry or to
geometry on a sphere (as we will see,
these two geometries are in some
sense equivalent). These two geom-
etries, together with the Euclidean,

THEQRY¥ AND PRACTICE

occupy a special place among all the
geometries that include the notion
of distance between points. They
could be described as geometries of
maximum mobility, or as geom-
etries of constant curvature.

The first applications of Loba-
chevskian geometry were made by
Lobachevsky himself, who
used it to calculate several
integrals. They were rather
particular results, and they
were not developed further.
However, some of Lobachev-
sky’s integrals still appear in
many tables.

At the end of last century
Poincaré and Klein estab-
lished that Lobachevskian
geometry is closely con-
nected to the theory of func-
tions of a complex variable
and to number theory (more
precisely, to the arithmetic of
indefinite quadratic forms).
Since that time, Lobachev-
skian geometry and its meth-
ods have become indispens-
able parts of these branches
of mathematics.

The importance of Loba-
chevskian geometry has in-
creased even more during the
last 15 years due to the work of the
American mathematician William
Thurston (recipient of the 1983 Fields
Medal), who discovered its connec-
tion with the topology of 3-manifolds.
Every year dozens of papers in this
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field are published. So it would be rea-
sonable to say that the “romantic
period” in the history of Lobachev-
skian geometry, when the efforts of
researchers were largely aimed at its
interpretation from the point of view
of the foundations of geometry, is
over. Modern investigations demand
more and more practical knowledge
of its methods.

In this article I'll give several ex-
amples of theorems in non-Euclid-
ean geometry and formulate a prin-
ciple that allows one to obtain
theorems in Lobachevskian geometry
from those in spherical geometry.
After this we’ll examine some prob-
lems in non-Euclidean geometry that
play a central role in its applications.

The spherical equivalent of the
Pythagorean theorem

Spherical geometry can be mod-
eled within Fuclidean geometry.
That is, we can find objects that act
like those of spherical geometry. In
fact, this is easy to do: spherical geom-
etry coincides with geometry on the
surface of an ordinary Euclidean
sphere (hence its name!). Choose any
sphere and regard its great circles as
straight lines and the lengths of their
arcs (or the corresponding central
angles multiplied by the radius of the
sphere, which is the same) as dis-
tances. Thus, if one changes the ra-
dius of the sphere, all distances will
be multiplied by a common factor, so
there is no essential difference be-
tween geometries of spheres of differ-
ent radii. Therefore, it’s convenient to
put the radius equal to 1. Unless
stated otherwise, we’ll assume that
this condition holds.

Let’s find an analogue of the
Pythagorean theorem on the
sphere—that is, a formula that ex-
presses the hypotenuse of a right
spherical triangle in terms of its legs.

Figure 1 depicts a right triangle
ABC (C is the right angle!) on a
sphere with center O. Put

IBC|=a,|CA|=b, |AB|=c. (1]

ITwo great circles are said to form a
right angle if the planes they
determine are perpendicular.—Ed.

Figure 1

(Here we understand the length of a
segment in the spherical sense—
that is, as the length of the corre-
sponding arc of a great circle.)

We make some constructions in
the Fuclidean space containing our
sphere. First we draw line AK from
point A perpendicular to radius OC.
Since the planes AOC and BOC are
perpendicular, AK is perpendicular
to the plane BOC (the “equatorial
plane” in figure 1). From point K we
draw line KL perpendicular to radius
OB. Since AK is perpendicular to
plane BOC, plane ALK, which con-
tains it, is also perpendicular to plane
BOC. Now BO is a line perpendicu-
lar to plane ALK, so BO must be per-
pendicular to line AL as well.

Let

a=2/BOC, b=2COA,
¢ = ZAOB. (2)

Then from right triangle AOK we
have OK = cos b. From right triangle
AOL we have OL = cos ¢, and from
right triangle KOL we have OL =
OK cos a = cos a cos b. Comparing
the two values of OL, we find that

COS ¢ = cos a cos b. (3)

This is the Pythagorean theorem in
spherical geometry.

For a sphere of arbitrary radius R
we have the following formula:

c a b
COS— =COS—COS—. (4)
R R R

As R — « the sphere becomes flat-
ter and flatter, and its geometry ap-
proaches the Euclidean. Let’s as-
sume that g and b are constant and

use the approximate equality

COSX=1—X2—2+O(X2), (5)

which is true if x is small.2 (Here o(x?)
stands for some polynomial in x
whose terms are of degree 2 or higher.)
Then from equation (4) we obtain

RESNEY [N

a* +b? ( 1 ]
=1- +0| — 6
2R* R* o
Thus
c2=a2+b%+0(1/RY, (7)

and as a limit as R — o we get the
ordinary Pythagorean theorem:

c?=a%+b? (8)

as we might naturally expect.

The principle of equivalence

We now turn to Lobachevskian
geometry. We can describe this ge-
ometry by saying that the Lobachev-
skian plane is just a “sphere of ra-
dius i” (where 1 is the imaginary
unit). What might this outrageous
statement mean? Essentially, all it
means is that Lobachevskian geom-
etry is the geometry derived from
spherical geometry by taking all its
formulas and dividing the linear val-
ues that appear in them by 1. While
there are other ways of describing
the Lobachevskian plane, we will
take this “principle of equivalence”
as our starting point.

For all the functions we will be
dealing with, it turns out that the al-
gebraic formulas we already know for
real numbers still hold true for com-
plex numbers (this is guaranteed by
the “principle of analytic continua-
tion” for complex functions). It is also
true that the sine and cosine of a com-
plex number satisfy the following
equations:

2This approximation comes from
the Taylor series for cos x, which is
studied in calculus.—Ed.
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cos ix = cosh x,
sin ix = sinh x, (9)

where the hyperbolic sine (sinh x)
and hyperbolic cosine (cosh x] are
defined by

e
coshx =

10
sinhx =2 110}

These formulas can be written as

cosi =coshx,
i
(11
sini = l,sinhx. )
i1

Thus, when we turn a formula in
spherical geometry into one in hyper-
bolic geometry, we need to replace all
the trigonometric functions of linear
values with their hyperbolic equiva-
lents (imaginary units that appear
from sines will automatically van-
ish). Readers unfamiliar with the
theory of functions of a complex
variable can regard this last state-
ment (with a few additional details
described below) as a formulation of
the principle of equivalence.

In particular, formula (3) in
spherical geometry thus yields the
following hyperbolic equivalent of
the Pythagorean theorem:

(12)

On a “sphere” of radius iR, this for-
mula becomes

cosh ¢ = cosh b cosh a.

cosh% = cosh%cosh%. (13)

Letting R — 0, as we did above in
the case of an ordinary sphere, we
obtain the “usual” Pythagorean
theorem at the limit.

The circumfgrence of a circle

A set of points on a non-Euclid-
ean plane, lying at a fixed distance r
from a given point, is called the
circle of radius r and center at the
given point, just as in Euclidean ge-
ometry. It’s readily apparent that a
circle of radius r on the unit sphere
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is simply a Euclidean circle of radius
sinr. Therefore, its circumference C
is given by the formula

C=2rnsinr. (14)

Applying the principle of equiva-
lence formulated above, we obtain a
formula for the circumference of a
circle of radius r on the Lobachev-
skian plane:

C =2nsinhr. (15])

A glance at equation (10) will show
that the function sinh r grows very
quickly as r approaches infinity. So
in Lobachevskian geometry the cir-
cumference of a circle is not propor-
tional to its radius, as it is in Euclid-
ean geometry, but grows much
faster. Accordingly, a circle on
Lobachevskian plane is much more
spacious than a Euclidean circle of
the same radius.

The area of a triangle

All the non-Euclidean formulas
that we've been discussing have
Euclidean equivalents. However,
there are many formulas in non-
Euclidean geometry that have no
equivalents in Euclidean geometry.
The formula that describes the area
of a triangle using only its angles is
one such.

Let’s find an expression for the area
of a spherical triangle (fig. 2). Spheri-
cal triangle ABC can be thought of as
the intersection of three hemispheres
P, Q, and R whose boundary circles
contain sides BC, CA, and AB, respec-
tively. (In figure 2, P is the “upper”
hemisphere, Q is the “front” hemi-
sphere, and R is the “right” hemi-
sphere.) The surface area of a sphere
of radius r is given by 4nr2, so if the
sphere has radius 1, a hemisphere has
area 2x. It turns out that the “sliver”
formed by the intersection of two
hemispheres has an area twice the ra-
dian measure of the angle between
their boundary circles. Thus the in-
tersections of Q and R, R and P, P and
Q have areas 2a, 2, 2y, respectively.
(Here o, B, v are the angles of our tri-
angle—see figure 2).

The union of hemispheres P, Q,
and R is the whole sphere minus the
“polar” triangle A’B’C’. Let S be the

Figure 2

area of triangle ABC. Then the area
of A’B’C’ is also S, and we see that
the area of the union of P, Q, and R
is equal to 4m - S.

There is, however, another way to
calculate this area: add up the areas
of the three hemispheres, subtract
the areas of their three mutual inter-
sections (since each of them ap-
peared in this sum twice), and add
the area of triangle ABC, which was
not taken into account so far (we
added it three times while summing
the areas of hemispheres, but later
we subtracted it three times, when
we subtracted the areas of the mu-
tual intersections). Finally we have

Ar—-S=2n+ 2w+ 2n - 20

—B-2y+S, (16
from which we get
S=o0+B+y-m. (17)

We now see that the sum of the
angles of a spherical triangle is al-
ways greater than n, and that the
excess is equal to its area. If the tri-
angle is very small, then the sum of
its angles is close to &, because this
triangle is almost Euclidean.

According to the principle of
equivalence, if we want to obtain an
expression for a triangle’s area on
the Lobachevskian plane, we must
divide all linear values in equation

- (17) by i. The right-hand side of this

expression contains no linear values
and will not change (radian measure
is dimensionless). The area will be
divided by -i=-1. Multiplying both
sides by -1, we obtain

S=n—{o+p+7). (18)



Thus the sum of the angles of a
hyperbolic triangle is always less
than o, and the shortfall is equal to
its area. The sum of the angles of a
very small hyperbolic triangle is al-
most equal to 7.

Generally speaking, the geometry
of a small domain in non-Euclidean
space is in every respect very much
like the Euclidean—the smaller the
domain, the closer the approxima-
tion. That is why, if the “space where
we live” is Euclidean, we can never
prove this experimentally. Indeed we
always deal with only a finite part of
the space (although it may seem very
large to us), and our measurements
have only finite precision. Even if we
find that the geometry in this part
doesn’t deviate from the Euclidean,
we can still suppose that our space is
non-Euclidean but that the domain
we're exploring is too small (com-
pared to the size of the universe) for
us to discover non-Euclidean effects,
taking into consideration the preci-
sion of our measurements.

(In reality the situation is even
more complicated. According to the
theory of relativity, space cannot be
viewed as an entity apart from
time—that is, one deals with some-
thing called space-time. So a ques-
tion about “Euclidean space” is in
need of some refinement.)

Parallel lines in Lobachevskian
geometry

In order to understand what hap-
pens with parallel lines on the
Lobachevskian plane, we first need
to consider the matter on the Euclid-
ean plane, although the reader might
think it’s trivial.

Two straight lines on the Euclid-
ean plane are called parallel if they
do not meet. It’s well known that
for any point A on the Euclidean
plane that does not belong to a line
L there exists a unique line m con-
taining A and parallel to I. This is
known as Euclid’s Fifth Postulate.
The line m can be regarded as the
limiting position of a straight line
AB connecting A and a point B on
I, while point B approaches infinity
in a fixed direction. In fact, let’s

A m

C B B/ B//

Figure 3

draw the perpendicular AC from A
to I and watch how the angles ABC
and BAC change. Let B’ be the posi-
tion of point B as it moves away
from C (fig. 3). Angle ABC is exter-
nal for triangle ABB’ and so is equal
to the sum of angles BAB and AB’B.
(This is equivalent to the statement
that the sum of the angles of triangle
ABB’ is equal to n.) Therefore,

ZAB'C < ZABC. (19

Moreover, if |[BB’| = |AB|—that is, if
ABB’ is an isosceles triangle—then
ZBAB’ = LAB’'B, and consequently

AB'C= %LABC. (20]

From here it follows that as point B
moves to infinity, angle ABC ap-
proaches zero.

Further, since the sum of the
angles of triangle ABC is equal to T,
then

/BAC= g - ZABC. (21

Therefore, angle BAC approaches
nt/2. This means that the limiting po-
sition of AB is the line m perpendicu-
lar to AC. The same line appears
when B approaches infinity in the
opposite direction. The line m is the
only line parallel to! that contains A.

Now let’s make a similar con-
struction on the Lobachevskian
plane, where (as we noted above) the
sum of the angles of a triangle is less
than nt. Inequality (19) only becomes
stronger, and equality (20) turns into
the inequality

ZAB'C< %LABC. (22)

Therefore, our final conclusion
about the way angle ABC changes

remains true: this angle monotoni-
cally approaches zero. Equality (21)
becomes the inequality

/BAC< g ~-ZABC, (23]

and the difference between its right
and left sides, which is equal to the
area of triangle ABC, can only in-
crease. Thus angle BAC tends to
some acute angle 8. The limiting
straight line m, which forms an
angle & with the perpendicular AC,
does not intersect the line 1. In Eu-
clidean geometry, we call a line par-
allel to I if it doesn’t intersect 1. In
Lobachevskian geometry, we agree
that of those lines passing through
point A, only the straight line m will
be called parallel to I, although there
are other lines through A that don’t
intersect 1.

If point B moves in the opposite
direction, the line AB approaches
another limiting line m’, which also
forms an angle 8 with the perpen-
dicular, although this time the angle
lies on the other side of AC. The line
m’ is also called parallel to ], but “in
the opposite direction.” This situa-
tion is schematically shown in fig-
ure 4 (we say “schematically” be-
cause it’s not possible to depict a
non-Euclidean figure in the Euclid-
ean plane of a magazine page).

Thus, for any point A that does
not lie on a line I, there are exactly
two lines passing through A and par-
allel to / in the Lobachevskian plane.
None of the lines that lie between
them intersect I (but they are not
called parallel to it).

The angle 8 is called the angle of
parallelism. It depends only on the

distance |AC| = d. More precisely,
§ = 2 arctan (ed). (24)

You may wish to derive this formula
on your own. To do it you need to use

Figure 4
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the methods we used to demonstrate
the spherical equivalent of the
Pythagorean theorem and prove cer-
tain relations between the sides and
angles of a right spherical triangle.
Then you can, with the help of the
principle of equivalence, obtain the
corresponding relations for a right
hyperbolic triangle ABC (see figure 3}
and pass to the limit.

Tilings of a plane with regular polygons

Graph paper and honeycombs are
examples of tilings of the Euclidean
plane with congruent regular poly-
gons (squares in the one case, hexa-
gons in the other).

Since the sum of the angles of a
Euclidean p-gon is (p — 2)xn, each
angle of the regular p-gon is equal to
(1-2/p)r. If g polygons meet at each
vertex of a tiling, we must have

2 n
I-—|t= - (25)
m q
from which we obtain
Lt
p g 2

This equation has only three solu-
tions in positive integers:

(p/ Q) = (3/ 6)/ (4’/ 4)/ (61 3) (27}

The last two solutions correspond
to the tilings with squares and regu-
lar hexagons mentioned above. The
first solution corresponds to a tiling
with equilateral triangles.

The formula for the sum of the
angles of a p-gon in the Euclidean
plane is derived from the corre-
sponding formula for a triangle via
the polygon’s decomposition into
p -2 triangles by diagonals emerging
from one of its vertices. It’s possible
to prove in the same way that the
sum of the angles of a spherical (hy-
perbolic) p-gon is equal to (p - 2)n
plus (or minus) its area.

So it’s clear that the angle of a
regular spherical p-gon is greater
than (1 - 2/p)r, and that, in contrast
to the Euclidean case, it depends on
the radius of the circle circumscrib-
ing the polygon. If the radius is
small, the polygon is very much like
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a Euclidean polygon, and the differ-
ence between its angle and (1 -2/p)r
is very small. As the radius ap-
proaches m/2 (the greatest possible
value), the polygon itself approaches
a hemisphere, and its angle ap-
proaches . Thus the angle of a regu-
lar spherical p-gon can be equal to
any number from (1 - 2/p)r to 7.

Therefore, a tiling of the sphere
with congruent regular p-gons, such
that g of them meet at each vertex,
exists if and only if
L
p q 2

This inequality has five solutions:

(p/ Q) = (31 3)/ (Sr 4)/ (3/ 5)/
(4, 3); (5, 3). (29)

These tilings bijectively? corre-
spond to the regular polyhedrons in
Euclidean space. That is, if we
project the surface of a regular poly-
hedron from its center onto a cir-
cumscribed sphere, we get a tiling of
this sphere with regular polygons
(images of the facets of the polyhe-
dron). Conversely, each tiling of a
sphere by congruent regular poly-
gons defines a regular polyhedron,
whose vertices coincide with those
of the tiling.

So the result obtained above
means that there exist only five
regular polyhedrons. They are the
tetrahedron, octahedron, icosahe-
dron, cube, and dodecahedron (all of
them known since antiquity).

Similarly, the angle of a regular
hyperbolic p-gon is less than
(1-2/p)n. It’s very close to this value
if the radius of the polygon is small,
and it approaches zero if the radius
tends to infinity. Thus the angle of
a regular hyperbolic p-gon can be
equal to any (positive) number less
than (1 - 2/pr.

And so we have the following in-
equality that describes tilings of the

3A mapping is bijective if it is
injective (that is, “one-to-one”) and
surjective (that is, “onto”). (For a
primer on functions and mapping, see
A. N. Kolmogorov’s article “Home on
the Range” in the September/October
1993 issue of Quantum.—Ed.)

Figure 5

Lobachevskian plane with regular
polygons:

(30)

Solutions of this inequality are all
pairs (p, g), except for those eight
mentioned above that comply with
equation (26) or inequality (28). Fig-
ure 5 gives a schematic representa-
tion of the tiling that corresponds to
the solution (3, 7). We see now that
at least as far as tilings are con-
cerned, the Lobachevskian plane of-
fers many more possibilities than
the Euclidean plane or the sphere.
Even more possibilities present
themselves if we eliminate the con-
dition that the polygons in the tiling
be regular (an artificial condition in-
deed), but retain the condition that
they be congruent. Applications of
Lobachevskian geometry to number
theory and the theory of functions of
a complex variable, mentioned in the
beginning of this article, are con-
nected with just this sort of tiling.
One can likewise investigate
tilings of space with congruent poly-
hedrons. In the case of Euclidean
space, such investigations are
closely related to crystallography,
and in the case of Lobachevskian
space, to the topology of 3-mani-
folds. As to the latter, the theory of
such tilings is still far from com-
plete, although in 1954 Coxeter gave
a description of all tilings of Loba-
chevskian space with congruent
regular polyhedrons. O)



Below absolute zero

EXTREME BEHAVIOR

They say you couldn't get there if you tried.

But maybe if you didn't try so hard,

or came at it from a different direction . . .

by Henry D. Schreiber

HE COLDEST TEMPERATURE
is absolute zero—that is, zero
on the Kelvin scale. Accord-

ingly, if zero is the lowest pos- 4
sible value, absolute temperatures
are always positive. Negative tem- 300
peratures on the Kelvin scale would e
seem to be impossible. After all, the 919,
obvious avenue to get to negative T 290
temperatures would be to keep de- T

creasing temperatures until they’re
below zero. But nature has another, 32

more creative, way to get below ab- —0

solute zero—and, once there, it ex-

hibits even stranger properties! s

Temperature _ 00
If asked to define temperature,

most people equate it with the de- . a0

gree of hotness or coldness of sub-

stances. As such, temperatureisthe =~ -400

factor determining heat flow. When 460

two objects are in contact, heat flows -

from the hotter object (the one at a Figure 1

higher temperature) to the colder
object (the one at a lower temperature). The two objects
eventually reach equilibrium when they achieve the
same temperature.

There are three scales that measure temperature: Fahr-
enheit, Celsius, and Kelvin, as shown in figure 1. Fahren-
heit and Celsius are relative scales, defining temperatures
with respect to certain reference points. In both cases,

e
. ‘ 500
200 ,
450
150 '
400
gl e s water boils
350
50
300
v B water freezes
250
=50
200
-100
150
-150
100
-200
50
—-250
273 0 absolute zero

these values fix the freezing and boiling temperatures of
water. Arbitrarily chosen by the developers of these scales
are 32°F and 212°F versus 0°C and 100°C, respectively, for
these reference points. Kelvin temperatures originated in
order to explain Charles’s law for gases, which states that
the volume of a gas varies directly with its prevailing tem-
perature. Upon plotting the volumes of various gas
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samples as a function of their temperatures in °C, as
shown in figure 2, all lines extrapolated back to zero vol-
ume at -273°C. Absolute zero on the Kelvin scale then
defined this temperature—temperatures lower than that
were not possible, because volumes of substances are al-
ways positive. Thus, there is a 273-degree offset relat-
ing the Kelvin scale to the Celsius temperature. The
Kelvin scale provides absolute temperatures, because its
reference point of absolute zero is a fixed value for all
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substances. Absolute zero on the Kelvin scale is accord-
ingly the coldest conceivable temperature.

One of the tenets of the kinetic molecular theory of
gases (the principles describing gases as particles in con-
stant motion) is that the kinetic energy of gas molecules
depends only on their temperature when measured on
the Kelvin scale. With decreases in temperature, mol-
ecules possess proportionally lower energies. Thus, an
alternative way to envision absolute zero in this classi-
cal, albeit not quantum mechanical, approach is the
temperature at which all molecular motion ceases.
Temperatures can consequently approach absolute zero,
but never quite get there. Temperatures as low as
0.00001 K have been recorded, but all motion or energy
can never be withdrawn from a system.

With such perspectives on absolute zero and Kelvin
temperatures, it seems reasonable never to imagine nega-
tive absolute temperatures. After all, you can’t have less
than zero volume for a substance, nor can you have less
than zero motion. However, suppose you take an excur-
sion into the molecular world—in particular, to see how
molecules partition among themselves their available
energy. You can then travel to the extremities of the ab-
solute temperature scale—not just to the very cold but
also the very hot. Surprisingly, you'll discover that nega-
tive absolute temperatures exist in certain systems. Not
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only that, you'll find that there is a certain symmetry of
the positive and negative temperatures about absolute
zero, but not in the way you might have expected. Such
is the life of molecules “below” absolute zero.

Energy distribution among molecules

Every molecule possesses a certain amount of energy.
Suppose you consider a system in which the molecules
have a choice of being in just one state of energy or an-
other—a ground state or an excited state. An example
is a magnetic system where some molecules align with
the magnetic field, and so are in a low-energy or ground
state; while other molecules align in opposition to the
magnetic field, and so need more energy to enter the
excited state. That is, at a given temperature some
molecules have enough energy to go “against the grain,”
as molecular orientation defines the energy state. Fig-
ure 3 schematically illustrates such a system with only
two energy states—a ground state with energy e, and an
excited state with energy €,. For convenience, consider
the reference energy for the ground state to be zero, re-
sulting in an energy of separation of €.

The Boltzmann distribution law, which uses statis-
tics to place molecules in energy levels, describes the
number of molecules in each energy state at equilib-
rium. Applying this distribution law to the simple sys-
tem with only two energy levels results in the equation

n g
I _ ekt
g

where n) and n, are the populations of molecules in the
respective energy levels, € is the separation between the
two energy levels, T is the temperature in kelvins, and
k is Boltzmann’s constant. Boltzmann’s constant is a
per-molecule version of the ideal gas constant and is just
the ideal gas constant divided by Avogadro’s number.
Its numerical value is 1.380658 - 1023 J/K.

An examination of Boltzmann’s distribution law
shows that as the energy level separation e increases,
less of the molecular population exists in the excited
state for the same temperature. Fewer molecules have
sufficient energy to overcome the larger requirement of
energy to get to the excited state. As also shown by this
equation, the value of n, increases with respect ton as
the temperature increases. The energy available to the
molecules increases with temperature, so that the num-
ber of the molecules in the excited state increases with
respect to the ground state. Figure 4 plots n,/n; as a
function of the absolute temperature as described by the

excited g, =€
R state
§ (e, —gg)=¢
S
ground gy=0
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Figure 3
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Boltzmann distribution law for a system with two en-
ergy levels at constant separation. This graph shows that
as the temperature approaches absolute zero, n,/n also
goes to zero. This seems reasonable, because at absolute
zero there is no energy available for distribution to the
molecules, so that the entire population drops to the
ground state. At the other extreme, as the temperature
gets very high, the mathematical expression for the dis-
tribution law states that n,/n, approaches ¢, or unity.
Consequently, at the limit of infinitely high tempera-
tures, n, = n,, and molecules populate the excited and
the ground states equally. Figure 5 shows the tempera-
ture dependence for 10 molecules distributed between
the two levels. Interestingly, there’s a limit to the por-
tion of molecules that exists in the excited state when
at equilibrium.

excited ead 93339
State
oround QIIIIIIAIPD Fecesees QAR
State

T = O R T > O T — oo
Figure 5

Gonsequences of population inversions

It appears that no more than half of the molecules can
exist in the excited state, even at infinitely high tem-
perature. Is this limit real or artificial? A little of both!
At equilibrium, there is indeed a limit, as quoted by the
Boltzmann distribution law. On the other hand, can
systems exist temporarily where enough energy has
been absorbed by the molecules to put more in the ex-
cited state than in the ground state—that is, n, > n,, or
n,/n, > 1? For example, suppose you pump energy into
a system such that you excite the molecules to the
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higher level faster than they can decay back to the
ground state. In a sense, you trap the molecules in the
higher energy state. Or alternatively, suppose you have
an equilibrium distribution of molecules exposed to a
magnetic field. Then you switch the direction of the
magnetic field. What had been the excited energy state
is now the ground state, and vice versa, at least momen-
tarily. Figure 6 shows such occurrences, called popula-
tion inversions.

What are the consequences of population inversions
(which are admittedly not equilibrium situations)? First,
taking the natural logarithm of both sides of the previ-
ously stated Boltzmann distribution law, we get

n €
o€
1, kT
or, upon rearrangement,
1 k, n
—=-=ln—-L.

This equation describes the absolute temperature of the
system by the relative populations of the two energy
levels. But if n,/n, is greater than unity, then 1/T is
negative, as is the absolute temperature. There we have
it: a negative absolute (Kelvin) temperature!

Going further, we can define fractions of the molecu-
lar population in each level—that is, x; = n,/N and
X, =1,/N, where Nis n, +n,, or the total number of mol-
ecules in the system. The previous equation then be-
comes
L By, N By
T & ny/N ¢ x

in terms of population fractions instead of actual popu-
lations. Because the population fractions of the two lev-
els must add to one (x, + x, = 1), we can then rearrange
this equation into

Figure 7 is a plot of 1/T versus x;,, the fraction of mol-
ecules in the excited state. Note that the sign of 1/T is
positive as long as x; is less than 0.5—that is, the excited
state is less populated than the ground state as previ-
ously described. On the other hand, the sign of 1/T, and
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thus of the absolute temperature, becomes negative
when x, is greater than 0.5—that is, when population
inversions occur.

The total energy E for this system with two available
energy levels is the sum of each level’s population times
its individual energy, or

E=ng, +nyE,=ne+ny0) =ne.
Dividing by N (the total number of molecules) results

in the expression

E n
—=—¢E= XIE,
N N

or, if E’ is the average energy per molecule (E/N),

B
€

X.

This equation shows that the energy of the system in-
creases as x, increases. Thus, the x-axis in figure 7 also
measures the energy of the system. This means that
negative absolute temperatures represent much higher
energies than do positive temperatures. This fact, of
course, seems “reasonable,” because more energy must
be available to get a greater percentage of molecules in
the excited state. In other words, curiously, negative
absolute temperatures are hotter than positive tempera-
tures.

Figure 8 (on the next page) plots T versus x,—a rear-
rangement or modification of the previous figure. As
expected, the left-hand side of the graph refers to posi-
tive temperatures; as more of the overall population
goes into the excited state, the temperature systemati-
cally increases until defining an asymptote when x, ap-
proaches 0.5. Then the mathematical equation describes
the mirror image of the function above x, = 0.5. Thus
you get to negative absolute temperatures not by going
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below absolute zero but by going past infinite positive
temperatures. When x, = 0.5 (the two energy levels are
equally populated), the temperature flips from positive
to negative infinite temperatures as simply a math-
ematical quirk of the function relating the temperature
to the population ratio. Once again, the x-axis also rep-
resents increasing energy to the right. Consequently, the
coldest temperature is approaching absolute zero from
the positive side (that is, as x, goes to zero, or when all
molecules go to the ground state), and strangely, the
hottest temperature is approaching absolute zero from
the negative direction (that is, as x, goes to unity, or
when all molecules go to the excited state).

Arg negative absolute temperatures real?

Paradoxically, you don’t attain negative absolute
temperatures by the obvious route, by cooling from the
positive temperatures and going through absolute zero.
You can only get there by going through infinite tem-
peratures. Furthermore, the hottest temperature is right
below absolute zero, not very far numerically from the
coldest temperature right above absolute zero.

Does this excursion into strangeness have any physi-
cal significance, or should you relegate it to the world
of imagination, seeing it as a theoretical curiosity? Popu-
lation inversions are real—they form the basis for the
operation of lasers, in which more molecules populate
the excited state than the ground state. One conse-
quence is that the extremely high energies of the lasers
impart properties describable by the world of negative
absolute temperatures. Likewise, this concept of nega-
tive absolute temperatures has been verified experimen-
tally in magnetic fields for nuclei whose energies are
defined by their orientations.

Such phenomena, however, are not occurrences that
are measured by ordinary thermometers. Thermometers
are useful only for the positive absolute temperatures.
Absolute temperatures are negative only under excep-

tional circumstances, when the molecular system wan-
ders into the strange world of population inversions.
Mathematical equations, such as the one relating the
absolute temperature to the population ratio of the en-
ergy levels in the system—

_ €

__k1n<X1/XO)

—are the best way to assess the properties of a system
with negative absolute temperatures. Mathematics,
despite its abstract nature, is sometimes able to de-
scribe what is inherently harder to envision conceptu-
ally. Mathematical equations bring to science much the
same understanding that poetic verses bring to litera-
ture. Both look at the real world from a different van-
tage point, lending beauty to what is being described
and exposing hidden meanings.

Henry D. Schreiber is a professor of chemistry at the Virginia
Military Institute in Lexington, Virginia. His e-mail address
is hs@vmi.edu.

“QUESTIONING ANSWERS”
CONTINUED FROM PAGE 10

integral (X, Y)-coordinates, then foreachj=e—-1, e -2,
..., 0, the point P,; iy also has integral (X, Y)-coordinates.
In particular, P,, has integral (X, Y}-coordinates. Since m
is odd, fact 2 tells us that my is either 1 or 3. Now let’s
consider the cases m; = 1 and m, = 3 separately.

(a) If m, =1, then m is 2¢, and we saw above that Py
has integral (X, Y)-coordinates for all j < e. But, quoting

C
1)23 ZPg = 21_ 6)_
257 125

from our list,

does not have integral (X, Y)-coordinates. Therefore,
<2, and m is either 1, 2, or 4.
(b) If m, = 3, we use a similar argument, noting that

5
o

57 28
P, =p, = 135 / 28888
- 841 " 24389

is not integral. This tells us that m is either 3 or 6. [@

Barry Mazur is a professor of mathematics at Harvard Uni-
versity. This article is based on a lecture given in the spring
of 1996 as part the series of Arnold Ross Lectures sponsored
by the American Mathematical Society.
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Service at 1 800 777-4643.
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“The mutual attraction of the electric fluid ¢al
called negative is inversely proport/'dna
—Charles Augustin de C

S YOU MIGHT GUESS, COU-
lomb wasn't the first investiga-

tor who tried to find the law

describing the interaction of
charged bodies. His predecessors
proposed interesting hypotheses,
drew far-fetched analogies, and
made fine experiments. Many out-
standing scientific personalities
took part in this scientific assault,
among them Daniel Bernoulli, Jo-
seph Priestley, Franz Aepinus, and
Henry Cavendish. However, it was
Coulomb who managed to complete
the independent, careful, and con-
vincing studies that laid the ground-
work for quantitative electrostatics.
The odd and predominantly qualita-
tive mosaic of electric phenomena
suddenly became united and harmo-
nious. Now it was possible to speak
of a unit of electric charge and ex-
plain the vast majority of accumu-
lated data. Even more importantly,
Coulomb’s breakthrough helped in-
troduce the well-developed ideas
and methods of theoretical mechan-
ics into the theory of electricity. Up
until that time physics practically
could not explain electrical demon-
strations (it would be hard to decide
whether to call them experiments or
amusements). The law discovered
by Coulomb paved the way for rapid
and spectacular progress in the
study of electrical phenomena.

Questions and problems

1. Given the (comparatively) vast
spaces between elementary particles,
and between atoms, why don’t we
simply fall through the floor?

2. What is the net force from two
identical charges on a third charge
located halfway between them?

3. A charged ball attracts a piece
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Figure 1

of paper (fig. 1). How does the attrac-
tive force change if a metal foil en-
velops (a) the ball, (b) the piece of
paper?

4. How does the attraction be-
tween the ball and paper in the pre-
vious problem change if the sphere
around the ball is grounded?

5. All other conditions being
equal, when will the force of electric
interaction between two metal balls
situated near one another be larger—
when their charges are the same or
the opposite?

6. A positively charged ball A is set
near a metal ball B (fig. 2). Measure-
ments detected no force of electric

Figure 2

interaction between them. Is ball B
charged or not?

7. Can two conductors with like
charges attract each other?

8. Two small weightless balls are
suspended separately from a com-
mon point by thin nonconducting
strings of the same length. What will
happen if the balls are charged with
like charges?

9. The charges of two identical
small metallic balls located at some
distance from each other differ by a
factor of four. Will the force of their
interaction change if the balls are
briefly connected by a wire?

10. Two point charges ¢, and ¢,
of equal strength but opposite polar-
ity are fixed at some distance from
each other (fig. 3). In which region (I,
II, or III) can a third charge be in
equilibrium with them? How will
the answer change if the charges ¢,
and g, have the same sign?

11. Two opposite point charges
are attracted to each other with
some force. Will the force affecting
each charge change if a glass ball is
placed between them?

12. An electron with a velocity v
and located at infinity moves di-
rectly toward another electron that
is free and at rest. What will happen
to each electron?

Figure 3
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al to the square of the distance . . .”
> Coulomb (1736-1806)

13. A thin wire ring carries a
charge g. A like charge Q is placed
at the center of the ring. What will
result from the interaction of these
charges?

14. A soap bubble connected with
the atmosphere via a thin vertical
tube shrinks and after a certain time
turns into an almost flat film at the
end of the tube. Will this time
change if the bubble is (a) negatively
charged, (b) positively charged?

15. Why can’t the o-particles
emitted by radioactive substances
induce nuclear reactions in the
heavy elements?

Microexperiment

Try to place a metal needle on the
surface of water in a glass so as to
make it float. Take a plastic comb
and charge it with static electricity
by running it through your hair. Put
the charged comb near the needle.
How does the needle behave? Why?

It’s interesting that . . .

. an analogy with the New-
tonian theory of gravity helped the
German scientist Franz Maria
Aepinus (who worked in St. Peters-
burg at the end of the 18th century)
construct his own theory of electri-
cal phenomena. Proceeding from the
“harmony and economy” in Nature,
Aepinus hypothesized that both
electric and magnetic forces are in-
versely proportional to the square of
distance.

... the law of interaction of elec-
tric charges was first established
experimentally by Henry Caven-

dish.! Like many of his discoveries,
however, this was something he did
“for his own enjoyment”—he didn’t
publish his finding. It was James
Clerk Maxwell who made this dis-
covery public in the middle of the
last century.

. . according to the theoretical
views held before Coulomb, electric
interaction existed only in a special
“atmosphere” immediately sur-
rounding an electrified body.

... Coulomb called the device he
built “to measure the minutest de-
gree of force” a “torsion scale” and
used it to study friction. The discov-
eries that immortalized his name
were actually by-products of his main
line of work—up to that time Cou-
lomb hadn’t been particularly inter-
ested in electricity and magnetism.

... repeating Cavendish’s experi-
ment, Coulomb found that electric-
ity was distributed along the surface
of conductors. Using the law of in-
verse squares he proved this prop-
erty theoretically.

... Michael Faraday, convinced
that all natural forces are intercon-
nected, tried to find experimentally
the interrelation between electricity
and gravitation.

.. . although there is a formal re-
semblance between Coulomb’s law
and Newton’s law of gravitation, a
very deep gulf lies between them. All
other conditions being equal, electric
forces are much stronger than gravi-

ISee “The Modest Experimentalist,
Henry Cavendish” in the January/
February 1991 issue of Quantum.—
Ed.

tational attraction, and gravitational
repulsion has yet to be discovered.
The existence of electric charges of
two kinds and the strong interaction
between them results in so precise a
balance of these charges in any mate-
rial body that it’s not an easy thing to
observe electric forces. The slightest
disturbance of the bodies’ neutrality
induces the charges to restore it with
all their indomitable might.

... scientists were able to explain
(at least partially) the origin of elastic
forces and friction only after they had
come to understand the nature of the
electric forces between neutral sys-
tems—that is, between molecules.

. . in high school physics, and
practically always in technology,
electric and magnetic forces are
handled separately. However, the
question of which force—electric or
magnetic—arises during the motion
of free charges depends entirely on
the system of reference.

... the phenomenon of supercon-
ductivity? can be explained by the
coupling of free electrons in pairs
that can move in metals without
triction. In spite of Coulomb repul-
sion, the interaction of paired elec-
trons with the crystal lattice re-
verses the sign of the force and
results in their attraction.

. electrostatic experiments
with conducting spheres have con-
firmed that the exponent in
Coulomb’s law is equal to 2 with an
accuracy of 10713,

—Compiled by A. Leonovich

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

2See “Meeting No Resistance” in
the September/October 1991 issue of
Quantum.—Ed.
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PHYSICS
CONTEST

Do you promise not o tell?

“‘Everything that happens is the message. you read an event
and be one and wait, like breasting a wave, all the while knowing

by living, though not knowing how to live.’

William Stafford

by Arthur Eisenkraft and Larry D. Kirkpatrick

AN YOU KEEP A SECRET?

On the television show Seinfeld,

George refused to tell his fiancé

his code number to withdraw
money from his bank with his ATM
(automated teller machine) card.
“They told me not to tell anyone.”
It’s only when a person’s life is in dan-
ger that George finally blurts out his
secret code—Bosco. During World
War II, the public was constantly re-
minded that “loose lips sink ships.”
It was through the work of Alan
Turing (of computer fame) and oth-
ers that the British were able to
break the code of the Axis powers
and win the war for the Allies. In the
Pacific, the Japanese met defeat be-
cause they thought their code could
not possibly be broken.

As we have more conversations
electronically by e-mail or electronic
bank transactions through the
Internet, we assume somebody has
successfully dealt with the question
of security and secrecy. When the se-
curity is breached, we read about it in
the newspapers and wonder how safe
the whole system is. New interest
has surfaced in the areas of random
numbers and quantum properties of
matter in hopes that more secrecy
can be maintained.

How would you go about sending
a message so that only one recipient
can understand it? Although code
books and number sequences have
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been somewhat successful in the
past, we can look at the properties of
waves for our secret transmissions. Is
it possible to send a signal out so that
one person will receive the signal but
another will not? Let’s rephrase the
question as a physicist might: can we
emit a wave that will be localized?

All waves emanating from a point
source diverge from that source. A
light bulb can be seen from all direc-
tions. We know that it is possible to
send out a beam of light that is direc-
tional because we have used flash-
lights or observed the beam from a
lighthouse. A collimated beam is pro-
duced by the careful placement of a
lens or a mirror. If all the light ema-
nates from the focal point of a lens,
the transmitted beam will be parallel
to the principal axis. Similarly, if the
light is emitted from the focal point
of a concave mirror, all of the light
reflected from the mirror will emerge
parallel to the principal axis. In both
of these cases, the light that moves
away from the lens or mirror without
reflection will diverge, and spies
could pick up our weaker signal from
other positions.

What happens if we send out two
signals? Two signals will produce
places of constructive and destructive
interference. If we know the location
of our ally and the location of our
enemy, we can, in theory, set up our
pair of emitters such that our ally gets

constructive interference of the two
signals and our enemy gets destruc-
tive interference of the two signals.

As an example, we can look at a
simple version of Young’s double
slit experiment. If the light emerges
from two sources, we can calculate
the positions of the constructive in-
terference (antinodes) and the de-
structive interference (nodes). The
conditions for the antinodes are that
the distances from the two sources
must differ by an integral number of
wavelengths. The nodes must have
distances that differ by an odd inte-
gral number of half-wavelengths
(1,2, 3/, and so on).

Many people have experienced the
destructive interference of radio
waves when they are stopped at a red
light near a large building and notice
that the car radio now has lots of
static. The direct signal from the
transmitter and the reflected signal
from the building produce the un-
pleasant static. Moving a short dis-
tance forward can bring your car to an
antinode and away from the node so
that you can hear your tunes.

In both of these examples, the two
sources are in phase. When we send
our secret messages, they needn’t be.
This gives us more flexibility in the
placement of our transmitters.

This month’s contest problem is
adapted from one used at the XVI In-
ternational Physics Olympiad held

rt by Tomas Bunk
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in Portoroz, Yugoslavia, in 1985.

A young radio amateur maintains
a link with two friends living in two
towns. The two antennas are posi-
tioned such that when one friend,
living in town A, receives a maxi-
mum signal, the other friend, living
in town B, receives no signal, and
vice versa. The two antennas trans-
mit with equal intensities uni-
formly in all directions in the hori-
zontal plane.

A. Find the distance between the
antennas and the orientation of the
antennas such that the electrical sig-
nals provide a maximum signal for
one friend and no signal for the
other. Assume that the two anten-
nas transmit the signals in phase.

B. Find the parameters of the ar-
ray (that is, the distance between the
antennas, their orientation, and the
phase shift between the signals sup-
plied to the antennas) such that the
distance between the antennas is a
minimum.

C. Find the numerical solution if the
radio station broadcasts at 27 MHz
and the angles between north and the
directions to town A and town B are
72° and 157°, respectively.

Please send your solutions to Quan-
tum, 1840 Wilson Boulevard, Arling-
ton VA 22201-3000 within a month
of receipt of this issue. The best solu-
tions will be noted in this space.

Boing, boing, boing . ..

The problem of the ball bouncing
elastically down the inclined plane
produced a very good response from
our readers. Excellent solutions were
submitted by Noah Bray-Ali from
Venice High School in Los Angeles,
California; Richard Burstein from the
Commonwealth School in Boston;
André Cury Maiali and Gualter José
Biscuola, physics teachers in Sio
Paulo, Brazil; Mary Mogge, a profes-
sor at Cal Poly Pomona; and Charles
Thiel, a student at Montana State
University—Bozeman.

Dr. Mogge points out that the
problem is easiest to solve if we use
the standard coordinate system for
solving inclined plane problems, the
x-axis pointing down the plane and
the y-axis normal to the plane. She
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then writes that we should think of
the problem as the projectile motion
we all know and love, with the ex-
tra twist of an x-acceleration. We
can then solve the problem in gen-
eral and do not need to consider each
bounce separately.

The motion in the y-direction is
that of a ball bouncing with totally
elastic collisions with the “floor” and
a constant acceleration equal to the
component of g perpendicular to the
plane, g/+/2 . Therefore, the time for
each bounce is always the same. Be-
cause of the symmetry of the motion
in the y-direction, the time for each
bounce is twice the time it took the
ball to hit the plane the first time—
that is, t, = 2t,, where t, = y/2g/h as
calculated in the article. Likewise,
the magnitude of the y-component of
velocity just before each bounce is
always the same—it is the compo-
nent of v, perpendicular to the plane,
v, = v/ 2, where v, = J2gh from
conservation of energy. If we usen to
denote the bounce number, counting
the initial bounce as number zero, we
can write this as

The motion parallel to the plane
has a constant acceleration equal to
the component of g along the plane,
g/N2 . Therefore, the x-component
of the velocity is given by

_ 8t

V_I
)

where t is measured from the time
the ball is dropped. The zeroth
bounce occurs at t = t,, the first
bounce at t = 3t,, and the second
bounce at t = 5t,. Therefore, the
x-component of the velocity just be-
fore (and after) each bounce is

2n+1)gt —
Vin = (v% =(2n+1),/gh
(2n+1)v,

V2

This immediately tells us the speed
of the ball at each bounce:

) [(Zn +1)% + I]V%
vy, =

! 2

It’s easiest in this coordinate sys-
tem to calculate the tangent of the
angle with respect to the plane. Just
before each bounce, we have

jrw. 1
tan(j)n:ﬂ: :
14 2n+1

Xxn

Note that both the tangent and the
angle approach zero. As the x-com-
ponent of the velocity increases, the
ball hits closer and closer to parallel
with the plane. You can obtain the
tangent of the angle relative to the
true vertical by rotating the coordi-
nate system by 45° using the trigo-
nometric identity

tanx —tany

tan(x - y) - l+tanx tany’

with x = ¢ and y = 45°, yielding

n
tan@, :—1.
+

The coordinate of the ball along
the plane is given by
2
8t~
X =
22

and

Therefore, the distance traveled down
the plane during each bounce is

= 8n—h = HL1

N2

n~Xn-1

Noah points out a nifty demonstra-
tion as an extension of this problem.
Release a frictionless puck at x = 0 at
time ¢ = 0. Every time the ball hits the
plane, the puck will be directly under
the ball. If you cover the ball with ink,
there will be no marks on the plane!
Noah goes on to point out that the phys-
ics behind this demonstration is the
same as that of the “monkey-shoot”
described in most textbooks. (@
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Just for the fun of it

B191

Two friendly shadows. Two friends—one tall, the other not so tall—walk
away from a lamppost in opposite directions at the same speed. Whose shadow
moves faster?

B192

Spiral squares. Look at squares in the picture. Suppose
the black one is a unit square. How long are the sides of
the squares with the red and blue markings?

B193

Water and ice. One hundred grams of water at a temperature of
10°C is poured into a jar containing 50 g of ice at a temperature of
-10°C. What will the equilibrium temperature of the water in the
jar be? Neglect the heat capacity and heat conduction of the vessel.

B194

Big fish, Iittle fish. The fish on sale at a certain market come in two
sizes: big and little. Today you can buy three big fish and one little fish
for the amount you would have spent yesterday on five big fish. On
the other hand, two big fish and one little fish cost today as much as

) three big fish and one little fish cost yesterday. Which is more expen-

” sive: one big fish and two little fish today, or five little fish yesterday?

Nail and magnet. A nail like the one pictured on the right lies on
a table. How should you maneuver a horseshoe magnet so that the
head and the point stick to the magnet simultaneously?

ANSWERS, HINTS & SOLUTIONS ON PAGE 53
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AT THE
BLACKBOARD |

From  Roman myth
1o the isoperimetric problem

What to do when you have a chance to become
‘master of all you survey”

N ROMAN MYTHOLOGY

there is a legend about Dido (or

Elissa), daughter of the Phoeni-

cian king Belus of Tyre. She was
married to Sychaeus (or Acerbas),
the priest of Hercules, who was in-
credibly rich. Pygmalion, Dido’s
brother, killed Sychaeus in order to
seize his wealth, and Dido had to
flee from her motherland with part
of her husband’s fortune. At last she
and her numerous fellow-travelers
arrived in Africa, where she bought
some land from the Berber king. The
condition of this trade was that she
could take as much land as a bull
skin covered. So Dido cut that skin
into several narrow strips and used
them to fence in a large plot. There
she founded Bursa, a stronghold of
Carthage (the Greek word Bupoa
means “(bull)skin”|.

That was the legend. Now here’s
a well-known puzzle.

Is it possible to make a hole in a
sheet of 81/,-by-11-inch notebook
paper such that an adult can easily
walk through it!

The similarity between this
puzzle and the problem solved by
Dido is obvious. Despite the added
restriction that you cannot cut the
paper into pieces, you can still use
Dido’s method here. By the way, it’s
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by I. F. Sharygin

quite possible that Dido herself
solved the very same problem, but
later the story was misinterpreted or
misunderstood. Mythologists, histo-
rians, and translators generally pay
very little attention to the exact
wording of problems. (If this puzzle
is still too difficult for you, turn to
page 54 and you’ll find one possible
solution.)

Although from the mathe-
matician’s point of view the puzzle
is formulated more rigorously than
Dido’s challenge, it still lacks the
precision it needs to be called
“mathematical.” In general, the
business of “posing problems” is the
primary task of mathematical mod-
eling, the main question addressed
by applied mathematics. In a certain
sense, the ability to pose problems
correctly is even more important
than skill in solving them.

Before we proceed to the math-
ematical part of this article, let’s re-
call another topic, one that can be
found in folk tales and literature. The
story “How Much Land Does a Man
Need?” by Leo Tolstoy illustrates it
very well. Briefly put, the hero of this
story is offered as much land as he can
walk around in one day.

We might invent a whole series of
problems based on these mythologi-

cal and literary plots. Here’s one of
the simplest.

Problem 1. Find a triangle with
the greatest possible area among all
triangles in which the length of one
side and the sum of the lengths of
the other two sides are fixed.

Solution. Let 2a be the given
length and 2b the sum of the two
other lengths. (Note that the Tri-
angle Inequality assures us that
a < b.) We'll denote one of these un-
known lengths as b + x, and so the
other will be equal to b — x (fig. 1).
Hero’s formula gives us

S%=(a+b)(b-ala+x)a-x)
= (b* - a*)(a* - %)

(since the semiperimeter is a + b).
Now it’s clear that the maximum
area is attained when x = O—that is,
when the triangle is isosceles.
Note that the correct choice of
parameters has greatly helped us

Figure 1

Art by Dmitry Krymov
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Figure 2

solve the problem. In particular,
when the sum of two quantities (here
2b) is given, we can introduce some
symmetry into the situation by de-
noting them as b + x and b - x.

Problem 2. Prove that of all tri-
angles with a given perimeter, the
equilateral triangle has the greatest
possible area.

It’s important to note that we'll
use in our proof the fact that such a
triangle exists.

Proof. Consider a triangle with
the given perimeter and the greatest
possible area. Suppose that it is not
equilateral. This means that at least
two of its sides do not equal each
other (fig. 2). Let’s denote their
lengths asa and b (a # b) and let c be
the length of the third side. It fol-
lows from the previous problem that
the triangle with sides (@ + b)/2,
(a + b)/2, c has a greater area and the
same perimeter a + b + ¢. But this
contradicts our initial assumption.

Further, we can prove in the same
way that the regular n-gon has the
greatest area of all n-gons with the
same perimeter. If we now let n in-
crease to infinity (as one does to find
the formula for the circumference of
a circle), we'll reach a circle as the
“limit” of this process. So we see that
the circle bounds the greatest area
among all closed curves of a given
length. However, we won't take this
long and cumbersome route, but rather
proceed directly to the basic problem.
First let’s formulate it correctly.

Problem 3. Among all closed
curves of a given length on the plane,
find the curve that encloses a figure
with the greatest possible area.

This is the famous isoperimetric
problem. (This comes from the Greek
tcoc—"equal” and mweplueTpeo—
“measuring around.” We know what
the term “perimeter” means, when
applied to polygons, but it can be
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extended to an arbitrary figure as
well.) It’s also called “Dido’s Prob-
lem.”

Once again we'll base our reason-
ing on the existence of such a figure,
as we did above. In other words, we
suggest that among all the lines of the
given length, there exists one that
encloses the greatest area. (This is
easy to accept if we think of all the
possible areas of figures with a given
perimeter and note that the set values
this area takes on are bounded.) Below
we reproduce the solution found by
the outstanding Swiss geometer Jacob
Steiner (1796-1863).!

Solution. First of all, we note that
the desired figure must be convex
(that is, for any two points lying
within it or on its border, the seg-
ment connecting them must also lie
within this figure or on its border).
Otherwise we would be able to con-
struct a figure with the same perim-
eter and a greater area (see figure 3.

Figure 3

ITo learn more about Steiner, see
the Quantum article “From a Snowy
Swiss Summit to the Apex of
Geometry” (November/December
1993, p. 35).—Ed.

We note further that if a line di-
vides its perimeter in half, then it
must divide its area in half as well. In-
deed, let AB be a line that divides the
perimeter of our figure in half (A and
B lie on the boundary—see figure 4).
Suppose one of the parts created has
a greater area than the other. If we
now replace the part with the lesser
area with the part having the larger
area, reflected with respect to the line
AB, we see that the area of the figure
has increased, while its perimeter re-
mains unchanged. So a line bisecting
the perimeter of a figure with the larg-
est possible area must bisect its area
as well.

Let’s look at figure 4 more closely.
Suppose point M is taken on the
boundary of our figure, different from
A and B (fig. 5). We'll prove that
ZAMB =90°. Suppose this isn’t true.
Draw the segments AM, MB, and
AB. They cut our figure into four
sectors, labeled I, II, III, and IV. Con-
struct a new figure in the following
way: draw the right triangle A, M, B,
in which A\M, = AM, M,B, = MB,
and ZA,M,B, = 90°. Attach sectors
equal to I and IT on its legs. Finally,
reflect all this with respect to the
hypotenuse A, B,. We obtain a figure
with equal perimeter and greater area,
since the area of triangle A/ M B, is
greater than that of triangle AMB.
Thus we have shown that for any line
AB dividing the circumference of a
figure with the greatest possible area
in half, having M as an arbitrary point
on its border different from A and B,
then ZAMB = 90°. But this means
that M lies on a circle with diameter
AB. Therefore, the circle is the solu-
tion to the isoperimetric problem.

Lest you think this is an isolated
puzzle with no real consequences, I

Figure 4



Figure 5

should point out that the isoperi-
metric problem essentially gave
birth to one of the most important
branches of modern mathematics—
the calculus of variations.

At this point it would be reason-
able to conclude our discussion, but
we'll take just one more step (I don't
even know whether it’s a step for-
ward or backward.) As I mentioned
above, the route from polygons to the
circle seemed most natural. Yet the
method we used to solve the isoperi-
metric problem doesn’t rely at all on
the properties of polygons with maxi-
mal area. Quite the contrary, some
properties of these polygons can be
derived rather easily from this general
result, while proofs of these qualities
that do not rely on this general result
are very unwieldy. Here’s an example.

Problem 4. Consider all possible
polygons with given sides in a given
order. (One can imagine a polygon
whose sides are connected by
hinges. We consider any polygon
that is the result of deforming such
a polygon.) Prove that among them
there exists one inscribed in a circle,
and that it has the greatest area.

Solution. Consider a circle that is
large enough that if we draw chords

equal to the polygon’s sides one after
the other, in a fixed direction starting
from an arbitrary point A on the
circle, the sum of the corresponding
arcs is less than the whole circle. Let
B be the end of the last chord (fig. 6).
Reduce the radius of this circle until
points A and B coincide. Now we've
got the desired polygon (fig. 7a). Let’s
prove that it has the greatest area.
Consider an arbitrary polygon with
the given sides. Construct on its
sides sections equal to those on the
corresponding sides of the inscribed
polygon (fig 7b). The length of the
border of these sections is equal to
the length of the circumscribed
circle. Thus, because of our last re-
sult, the area bounded by the arcs of
these sections is less than that of the
circle in figure 7a. Removing the
sections, we see that the area of the
inscribed polygon (fig. 7a) is greater
than the area of any other polygon
with the same sides (fig. 7b).

Now let’s recall our basic iso-
perimetric problem (problem 3). The
very fact that a solution exists—a
fact evident enough for 2 mind un-
spoiled by mathematical truisms—
allows one to find it. In connection
with this, we'll tell you a story that

belongs to the folklore of modern
mathematics.

Once upon a time, a difficult scien-
tific problem was assigned to a group of
scientists, which included a mathema-
tician and a physicist. When they met
again some time later, the mathema-
tician happily told the physicist that
he had managed to prove the exist-
ence of a solution to this problem.
The physicist remarked that if he had
ever had the slightest doubt that a
solution existed, he would never have
bothered with such a problem!

Problems

1. In a triangle, one side is equal
to a and the opposite angle is equal
to o. Which such triangle has the
largest area?

2. Consider an arbitrary triangle
whose area is 1. What is the least pos-
sible perimeter of such a triangle?

3. Let AB be chosen on a fixed
circle. Find points K and M on minor
arc AB such that quadrilateral
AKMB has the largest possible area.

4., For any figure with perimeter I
and area A, prove that I2 > 12.5A.

5. A set of segments is given. Con-
sider all possible polygons whose
sides are equal to these segments,
taken in an arbitrary (but fixed) se-
quence. Prove that the greatest pos-
sible area of such polygons does not
depend on the sequence chosen.

6. Consider all n-gons with n - 1
given sides. Prove that the greatest
area is that of the n-gon that is in-
scribed in a circle whose “free” side
coincides with the diameter of the
circumscribed circle. Q)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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The green fash

IN THE OPEN AIR

An unusual spectacle at the close of day

OMETIMES AT SUNSET YOU
can see a wonderful phenom-
enon—the so-called “green
flash.” When the disk of the
Sun is almost entirely hidden be-
yond the horizon, suddenly a bright
green light flashes out for a few sec-
onds. The edge of the Sun becomes
a startling bright green instead of the
usual yellow-reddish color, and it
emits green rays in every direction.
One, two, three seconds . . . and the
beautiful sight disappears.

This green light is a rare guest in
the heavens. It's usually seen on eve-
nings when the Sun shines brightly
up to the very moment that it sets
and doesn’t change color, remaining
yellow or yellow-orange. The Rus-
sian astronomer G. A. Tikhov stud-
ied this phenomenon for many
years. He wrote: “If the Sun at sun-
set is red and it is easy to look at it,
then one can say with certainty that
there will be no green flash. On the
other hand, if the white-yellow color
of the Sun does not change markedly
and the Sun sets in full brightness,
one can expect the green flash to ap-
pear. It is important that the horizon
be a clear-cut line without any varia-
tions in height (trees, buildings, and
so on). These conditions are most
readily encountered at sea, which is
why the green flash is quite familiar
to mariners.”

The physics of the green flash is
based on three phenomena: (1) the
refraction of light in an optically
nonhomogeneous medium (here,
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by Lev Tarasov

the Earth’s atmosphere); (2) the de-
pendence of light refraction on
wavelength; and (3) light scattering
in the atmosphere (or, to be more
precise, the weakening of this effect
in clear, calm air). Let’s look at these
factors one by one.

When a light beam passes
through the atmosphere, it deviates
in such a way that the curvature of
its trajectory is always directed to-
ward layers of air that are less dense.
This is why the setting Sun seems a

bit flattened in the vertical direc-
tion—its vertical diameter is seen at
an angle of 26’, which is 6’ less than
the angular measure of its horizontal
diameter. What causes this discrep-
ancy? The density of the atmosphere
decreases with altitude, and this leads
to a corresponding diversion of the
light beams (that is, refraction). When
we see, while admiring the sunset at
the seashore, the lower edge of the
Sun’s disk touch the horizon, we usu-
ally don’t realize that the observed

394 Lu Rarao

Courtesy of Lu Rarogiewicz and the Mount Wilson Observatory

Readers with Internet access can find photographs (like the one above)
and additional information on the “green flash” and related phenom-
ena at the Mount Wilson Observatory’s Web site:

http://www.mtwilson.edu/Tour/Lot/Green_Flash
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edge of the Sun is actually 2°35” be-
low the horizon at this point (which
means that the entire disk is already
well below the horizon). The number
2°35’ consists of two parts: the 2° por-
tion is explained by the time it takes
for sunlight to arrive at the Earth (a
little more than 8 minutes), and the
35’ portion is due to the refraction of
light in the atmosphere. Note that,
because of refraction, the upper edge
of the disk “rises” less than the lower
one: not by 35" but only by 29’ (refrac-
tion decreases with altitude). This is
why the setting Sun looks like a flat-
tened disk. Figure 1 illustrates our
reasoning (A is an observer, AB is the
horizon).

Now let’s take into account point
(2): the shorter the wavelength, the
larger the refraction. This relation-
ship explains how “white” light is
split into a spectrum of colors when
it passes through a prism. Green-
blue rays are refracted more than red
rays. For simplicity, imagine that
sunlight consists of only two colors:
green and red. In this simplification,
the “white” disk of the Sun can be
considered as a combination of two
disks (green and red), one placed on
top of the other. Atmospheric refrac-
tion “lifts” the green disk above the
skyline higher than the red one.

As a result, an observer sees the
setting Sun just as shown in figure 2.
The upper edge of the disk is green,
and the lower edge is red. The cen-
ter is composed of both colors and
looks “white.”

This scenario is correct as long as
there is no scattering of light in the
atmosphere. In reality, the atmo-
sphere does scatter light. This means
that rays with shorter wavelengths
are more likely to be absent in the
light coming from the Sun. (This law

atmosphere

Figure 2

was formulated by Sir John Rayleigh:
the intensity of scattered light is in-
versely proportional to the fourth
power of its wavelength.) So we won’t
see the green edge on the upper part
of the Sun, and the entire disk won’t
be “white” but reddish.

But imagine that almost the en-
tire solar disk has disappeared below
the horizon and only a tiny upper
edge can still be seen. If the weather
is clear and calm and the air clean,
the scattering of light will be rather
weak. These are the conditions that
can produce a marvelous spectacle:
a setting Sun with a bright green
edge, casting a fan-shaped splash of
green rays.
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IN LAB

The “water worm™

“lo appreciate how excellent it is
[ leave to those who have acquired
a deep understanding of it.”

HE EARLY DEVELOPMENT
of physics is closely connected
with the invention of various
mechanisms to make difficult
tasks easier. Using very primitive
methods and materials, and apply-
ing the basic principles of geometry,
mechanics, and hydraulics that they
had developed in solving practical
problems, the engineers of antiquity
devised a variety of machines that
impress us even today with their
clever design and sound construc-
tion, and reflect a profound under-
standing of the problem at hand.

One of the most brilliant inven-
tors in ancient times was Archi-
medes. Though nowadays his name
is usually linked with the buoyant
force acting on an object immersed
in a fluid, Archimedes devised a vast
number of remarkably clever inven-
tions. The greatest of them is the
device know through the centuries
as “Archimedes’ screw.” In one of
his papers Galileo wrote that this
invention “was not merely beauti-
ful, it was simply miraculous, be-
cause we see that the water rises in
the screw while continuously flow-
ing downward.”

Indeed, at first glance it’s hard to
imagine how the water flowing
down the screw’s blade manages to
ascend at the same time. Galileo
described the working principle of
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—Q@Galileo Galilei
by M. Golovey

this water pump in great detail and
called it the “water worm” of
Archimedes. It actually does look
like a worm from a distance.

But how does the water worm
work? Look at figure 1. It shows a
cylinder AKCB whose side surface
has a spiral channel AEOPXTHC.
Water can flow down this channel
without spilling out. A ball can like-
wise roll down the channel. If we
incline the cylinder, immerse the
end A of the helical channel into
some water (fig. 2), and begin to ro-
tate it around the supporting pivots
M and M’, water will run up within
the spiral channel and pour out of
the upper end C. Paradoxically, dur-
ing the entire time water indeed
runs down relative to the surface of
the spiral channel—but nevertheless

Figure 1

it rises up to point C as a result!
Let’s try to understand how this
is possible. Let the segment AE of
the spiral channel form an angle o
with the cylinder’s bottom AB. In-
cline the cylinder at an angle that is
larger than o. Water now fills the
segment AFE and also part of EO.
Now begin to rotate the cylinder
about its axis. All the points in sec-
tion AE (except point A) start to rise,
while all the points in section EO
(except point E) drop, and water
gradually flows from the “flooded”
section farther on along the channel,
dropping down relative to it but as-
cending relative to the ground. Dur-
ing rotation the different parts of the
spiral channel, continually replacing
one another, are positioned relative
to the water in just the same way as

Figure 2

Art by V. Ivanyuk






section AE was, so the water simul-
taneously runs down the channel
and rises up due to the channel’s ro-
tation. Finally, it rises from point A
to point C.

Some readers are perhaps ready to
pose a natural question: “Doesn’t this
device violate the law of conservation
of energy, making it a kind of per-
petual-motion machine?” It may
seem that way at first. We rotate the
cylinder, and due to its own weight
the water runs down the conduit as if
it were on an inclined plane, acquir-
ing velocity and rising to the upper
outlet of the worm (that is, its poten-
tial energy increases). We need only
turn the extra energy from the water
into the rotational energy of the
worm to create a perpetuum mobile!

If you were asked in physics class
to solve this problem, you might
refer to the law of conservation of
energy and point out that the reason-
ing above does indeed contradict it.
You might even go further and add
that the water rises in the conduit
due to energy taken from some other
source and expended on rotating the
worm, such that the potential en-
ergy of the water is always less than
the energy used to lift it.

This is all true enough, but it’s
too “theoretical” and doesn’t ex-
plain the details. How does the con-
duit transfer energy to the water?
Where does it occur? Where is the
force acting on the water directed?
Try to answer these questions your-
self. To simplify the problem, you
can replace the motion of water
with the movement of a small ball
in the spiral channel.

A simple model of the Archi-
medean worm can be made at home.
Take a piece of tubing 3-5 cm in di-
ameter and 20-30 ¢cm long, or a
round wooden rod of a similar size.
The conduit can be made of any rub-
ber or PVC (polyvinyl chloride) tube
a few millimeters in diameter (the
larger the diameter, the better). It
would be best if you use a transpar-
ent flexible hose—then you can see
the motion of the water or ball in-
side the Archimedean worm.

Wind the hose around the rod in a
spiral and fasten its ends with wire or
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string near the upper and lower ends
of the rod. That’s it—your model is
ready to use. Immerse one end into a
jar of water and tilt the worm at an
angle larger than that formed by the
spiral and the cylinder’s base. Now
rotate the worm as if you were driv-
ing a screw into the water, holding it
at a constant height. After a dozen
turns, water will run out of the upper
end of the worm. Instead of water you
can put ball bearing inside the hose at
its lower end. The ball will be lifted
to the upper end of the worm and will
drop out of this unusual conduit.

In much the same way you could
make a real pump driven by wind
powet, say, or a gas engine. Compared
to a piston pump, which only works

with clean water, the Archimedean
worm has an important advantage: it
can pump water with particles (dirt,
metal shavings, etc.) suspended in it.
Compared to centrifugal pumps,
however, the Archimedean worm is
sadly outdated and cannot compete.
It’s very rarely used to pump water
nowadays. But you can still come
across a working specimen of the
Archimedean worm in some develop-
ing countries.

The type of device shown in the
figures is also called a “spiral con-
veyer” in engineering parlance, and
it’s widely used in many machines
to mix liquid, dry, and doughy sub-
stances. One example is the rotor of
the common meat grinder. (@
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David Castro, a student at
Macalester College in Minnesota,
e-mailed us to correct a misstate-
ment on page 29 of the Novem-
ber/December issue (in the article
“Billiard Math"”):

The question whether there exists a
polygon with mirrored walls and inter-
nal points A, B such that a light at A
will not illuminate B has been settled
in the affirmative. The solution was
published by George Tokarsky in the
December 1995 issue of the American
Mathematical Monthly (“Polygonal
Rooms Not Illuminated from Every
Point,” pp. 867-79). In this article,
Tokarsky shows how a class of such
polygons can be constructed by taking
mirror reflections of a certain set of tri-
angles in the plane.

The problem in the Quantum article

Gorrections

w

was pointed out to me by my profes-
sor, Stan Wagon, because I researched
the question of illuminating polygons
in his Geometry class (Spring 1996). In
his article, Tokarsky shows a 26-sided
polygon with the desired property; I
saw that his example could be modi-
fied to produce a 24-sided polygon (see
the figure below).

(Editor’s note: the original Rus-
sian version of “Billiard Math”
appeared in the November/De-
cember 1995 issue of our sister
magazine Kvant.)

Professor Mario Velucchi e-
mailed us from Pisa, Italy, to sug-
gest that the figure for exercise 1
in the September/October Toy
Store is problematic in a way not
intended. The diagram as printed

has “two solutions: 1.
Kb3 and 1. Bd6, and
this is bad for a chess
problem.” He suggests
that the correct initial
position for the white
king is c3, “with the
only right solution
1.KDb3.”

We thank Mr.
Castro and Prof.
Velucchi for their

feedback.
),




HOW DO YOU
FIGURE?

Chiallenges in physics and math

Math
M191

Star qualities. An operation * is de-
fined on a set S in such a way that
(i) for any three elementsa, b, c of §,
a*(b*c)=b*(c*a)li)ifa*b=
a * ¢, then b = c. Show that the op-
eration * is (a) commutative—that
is, for any two elements a, b of §,
a*b=>b"* a;(b)associative—that is,
for any three elements a, b, c of §,
a*b*c)={a*b)"c.

M192

FErase and replace. A set of n positive
numbers is written on a blackboard. A
student is allowed to choose any two
of them—say, a and b; erase them;
and replace them with the number
(a + b)/4. This operation is repeated
n -1 times, until a single number re-
mains on the blackboard. Show that
that if the n original numbers were all
equal to 1, the single number left is no
less than 1/n. (B. Berlov)

M193

Onesy-twosy. Show that for any
natural number n, there is a number
whose decimal representation con-
tains n digits, each of whichis 1 or 2,
and which is divisible by 22.

M194

Dividing in half. A quadrilateral
ABCD can be inscribed in a circle.
Let straight lines AB and CD meet
at M, and let BC and AD meet at K,
so that B lies on the segment AM
and D on the segment AK. Let P be
the foot of the perpendicular from M
to line AK, and let L be the foot of
the perpendicular from K to line
AM. Prove that LP bisects BD.

M195

Yes or no. A detective must question
a witness about a crucial detail of a
particular crime. The detective has
concocted a series of at most 91
“yes/no” questions whose answers
will guarantee him knowledge of the
detail, provided the witness does not
lie (the particular question asked
may depend on an answer to one or
more previous questions).

But suppose the witness lies no more
than once. Show that the detective can
revise his plan of questioning to in-
clude at most 105 “yes/no” questions
and still ferret out the crucial detail.

Physics

Sleigh onice. Along sleigh glides on the
surface of very smooth ice, drives onto
astretch of asphalt, and stops after trav-
elingless than halfitslength. The sleigh
is given a push so that it again acquires
the same initial velocity, travels a dis-
tance, and stops for the second time.
What is the ratio of the braking times
and the braking distances in the first
and second cases? (S. Krotov)

P192

Two metal bars. Two bars made of dif-
ferent metals with coefficients of linear
expansion o, and o, have practically
equal lengths (I, I,) and cross-
sectional areas (S, S,) at 0°C. At what
temperatures will the bars have equal
(a) lengths, (b) cross-sectional areas,
and (c) volumes? (B. Bukhovtsev)

F1e3

Three charged plates. A capacitor is
formed from two large square plates

of area S placed a small distance d
apart. A third plate of the same ma-
terial carrying a charge Q is located
midway between them. The outer
plates are connected via a resistor
with a high resistance R. The central
plate is quickly moved toward one
of the outer plates, to a distance of
d/3 from it. How much heat will be
dissipated by the resistor after this
shift? (A. Zilberman)

P194

Solenoid and cylinder. A constant cur-
rent I flows through a long solenoid of
radius r that has N turns per meter. It is
known that outside such a coil the
magnetic field is weak, while inside the
coil it is practically uniform. On the
same axis with the solenoid there is
a long (though not as long as the coil
itself) paper cylinder of radius R and
length L whose surface is uniformly
charged with a total charge Q. The
current in the coil is decreased by a
factor of three, which causes the cyl-
inder to spin about its axis. What is
the direction and angular velocity of
this rotation? (A. Zilberman)

P195

Shifted lenses. Find the distance
between a light source S and its im-
age in the optical system shown in
the figure below. Both lenses have
the same focal length F. (V. Serbo).

2R F
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AT THE
BLACKBOARD Il

The first hicycle

It needed a little refinement . . .

BOUT TWO MILLION YEARS
ago [according to the Elders),
the great inventor Nga-Nga
constructed the first bicycle,
without knowing that the wheels
should be round . . . Well, how could
he know? Since that time many
questions have arisen in bicycle
theory. For instance, how much
power is expended in its motion?
What is the most efficient way to
ride a bike? How can one make it
more stable? And so on. This article
will address only a few of them.
First, let’s look at a “wheel” from
the first bicycle—two sticks lashed
together (fig. 1). Let’s measure the
angle of the wheel’s rotation from
the vertical axis OY to the right. Po-
sition 1 corresponds to the angle
¢, =-n/4, and position 2 corresponds
to the angle ¢, = +n/4. In moving
from position 1 to position 2, the
“axle” describes the quarter-circle
0,0, of radius R = a/+2 with the
center O (we assume that the wheel
does not slip at all). Denoting the
linear velocity along the arc by v,,
we get the following formulas for
the horizontal and vertical projec-
tions of the velocity of the wheel’s
center:

vV, =V, Cos ¢,

V,=—$ sin ¢. (1)

¥ ¢
The dependence of these projections
on the angle ¢ is shown in figure 2.
We can see that after each quarter-
turn the vertical velocity changes
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by Albert Stasenko
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<

Figure 1

abruptly—it heads in the opposite
direction {that is, changes sign) but
preserves its magnitude.

If the bicycle travels with a con-
stant linear velocity v,, the angle ¢
will be directly proportional to the
time. In this case, figure 2 shows the
oscillations of the projections of ve-
locity versus time. Of course, these
oscillations can’t be called “har-
monic” even though they’re de-
scribed by the trigonometric func-
tions (1)

Starting
from position 1,
the  wheel’s

O,, it rises to the height

=2(v2-1)

5 a
2 2

=R-

max

However, one wheel does not a
bicycle make, as the people said in
the time of Nga-Nga. Looking at fig-
ure 3, the great inventor guessed at
once that at least two modes of op-
eration are possible.

A. T both wheels are set initially in

VA

center will
reach the high-
est point, lo-
cated a distance

R from the
ground, after
one eighth of a
turn. So, with
respect to point

=Y




a
9 9
b
Figure 3

the same position and there is no slip-
page, the rotating “diameters” will
always form the same angle ¢ with
the vertical. Their centers will always
be at the same height (which of
course, depends on time). As the great
Nga-Nga liked to say, the centers will
oscillate synchronously, or coher-
ently. In this case all the points of the
bike and the cyclist will also oscillate
vertically. The center of mass of such
a bike will periodically rise to the
height b, which we found earlier.

B. If the wheels are not set in the
same position at the outset but are
turned as in figure 3b, their centers
will move with a phase shift of 45°.
During this ride Nga-Nga’s back-
bone will oscillate in a circle (y(t)),
but at the same time the center of
mass can move strictly horizontally.

Let’s consider mode A. To lift the
center of mass of the entire system
to the height h ., we need to per-
form the work

W =mgh,,,, = mg%(x/i - 1).

If the velocity v, is kept constant,
this work will be performed in the
time required for a one-eighth turn

of the wheel:

1 2nR n a

==
8 Ve 42 v,

So the average power developed by
the cyclist in that period is about

242
%=T\F(«E—l)mgv¢. (2]

What velocity v, can a cyclist

generate on this bicycle out of her or
his own energy resources? We know
that a person used to physical labor
(and Nga-Nga was no softy) needs
about 5,000 kilocalories per day, and
the efficiency of human labor is ap-
proximately 25%. So the power of a
“human machine” is about

P,, =5000-10° cal/day
4.2]/cal
3600s/h-24h/day
=60W.

Estimating the total mass of the bike
and bicyclist as m ~ 100 kg, we de-
rive the velocity from equation (2):

P.,m

=—23  _=15cm/s.
Vo, mglx/i(\/f—l) 5S¢ /
However, this is true only for the
first one eighth of the wheel’s rota-
tion. After reaching the heighth___,
the biker can take a rest. Neglecting
any energy loss, the rider drops from
the height h ___in a time

2h

max

g

Ty ~

Vg = D)y .

If the shock from this velocity is too
great, the cyclist can use reverse pres-
sure on the pedals to descend more
smoothly, but this mode requires ex-
tra work. Also, the period of oscilla-
tion will be increased, so the bicycle
will go slower. This isn’t a very com-
fortable mode of bike riding.

Mode B is certainly more attractive
from the energy standpoint: one doesn’t
need to keep raising the center of
mass and then slowing its fall. But all
the same, this rumble of square
wheels, this scrambling of thebrain . ...
This is why Ngo-Ngo, Nga-Nga’s son,
improved the design and made an oc-
tagonal “wheel.” Nga-Nga’s grand-
child Ngi-Ngi went even further—her
bicycle had 16-gon wheels. And so it
went, until Archimedes himself
proved that this succession of wheels
tended to a circle. (But now we're get-
ting into mathematics . . .)

It turned out that round wheels
required roads, while the first bicycle
of Nga-Nga could ride over stones and
tree trunks. Could it be that the great
Nga-Nga was a lot more clever than

with a vertical velocity we give him credit for? Q
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MATH
INVESTIGATIONS

Revisiting the A-cluster problem

With thanks again to the creators and contributors of Math.Note

ET NBE A POSITIVE INTEGER,

and let C(N) be a set of N

points in the plane with inte-

ger coordinates, so that no 3
of the points are on a line and no
4 of them lie on a circle. We will
say that C(N) is an N-cluster if the
distance between each pair of its
points is an integer. We will say
that C(N) is a primitive N-cluster
if it cannot be obtained from an-
other N-cluster by scaling—that
is, by multiplying each of the co-
ordinates of its points by a positive
integer. Clearly, the property of
being an N-cluster is invariant un-
der translations (that is, adding the
same integer X to the x-coordinate
and the same integer Y to the
y-coordinate of each of its points)
under reflections in the lines
y = £x and under rotations of 90°.
Furthermore, one can define the
size of an N-cluster either by the
longest distance between any two
of its points or as the radius of the
smallest circle centered at the

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.

by George Berzsenyi

origin that contains a translate of
the N-cluster under consideration.
Using the latter criterion, Stan
Rabinowitz (who was the origina-
tor of the Math.Note file at DEC)
found that the “smallest” 5-clus-
ter (of size 56) is {(0, 0J, (56, 0),
(-16, 30), (16, 30), (0, -33)}, and the
“smallest” 6-cluster (of size 1275)
is {(0, 0), (1155, 540), (546, -272),
(132, -720), (960, ~720), (546, 1120)}.
(For more information about
Math.Note the reader is referred to
page 38 of the September/October
1996 issue of Quantum.) Earlier, the
originators of the concept of N-clus-
ters (Bell and Chongo, whom I
couldn’t track down), found the
5-cluster {(0, 0), (0, 153), (136, 102),
(~136, 102), (224, 207)}, which is defi-
nitely larger than Stan’s.

Clearly, 3-clusters can be con-
structed from Pythagorean and
Heronean triples. A triple (a, b, ¢) is
said to be Heronean if g, b, ¢ are in-
tegers and if the area of the
(Heronean) triangle with sidesa, b, ¢
is also an integer. My first challenge
to my readers is to prove that all
Heronean triangles can be obtained
by juxtaposing (putting together)
two Pythagorean triangles. My sec-
ond challenge is to prove or disprove
that there are no other 3-clusters.

When N = 4, the construction of
4-clusters is complicated by the fact
that the points should not lie on a
circle. Nevertheless, one can con-
struct infinitely many different

primitive 4-clusters by starting with
Heronean triangles, which are not
Pythagorean, and reflect them along
their sides. My next challenge to my
readers is to find 4-clusters which
cannot be split into two Heronean
triangles in the manner indicated.

There are many other open
questions concerning N-clusters.
Some of these were already consid-
ered by Stan Rabinowitz and his
colleagues at DEC, but they have
made no further advances on
them. For example:

¢ Are there N-clusters for N > 6?

e Are there infinitely many primi-
tive 5-clusters and 6-clusters?

¢ Is there a way to generate an
(N + 1)-cluster from a given N-
cluster?

e What if we move our consider-
ations to the 3-dimensional lat-
tice?

¢ What is the situation in higher di-
mensions?

* What if we change to the triangular
lattice structure in the plane, where
the pre- and post-Pythagorean tri-
angles! take the place of the Pythag-
orean triples?

Please send your findings to me
c/o Quantum, 1840 Wilson Boule-
vard, Arlington VA 22201-3000. Per-
haps they will generate further dis-
cussions in a future column.

IDiscussed in my March/April 1992

and September/October 1996
Quantum columns.
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A summer PROMYS

The Program in Mathematics for
Young Scientists (PROMYS) will
soon be accepting applications for
its 1997 program at Boston Univer-
sity, June 29 to August 9. PROMYS
offers a lively mathematical envi-
ronment in which ambitious high
school students explore the creative
world of mathematics. Through
their intensive efforts to solve a
large assortment of unusually chal-
lenging problems in number theory,
the participants practice the art of
mathematical discovery—numeri-
cal exploration, formulation and
critique of conjectures, and tech-
niques of proof and generalization.
More experienced participants may
also study group theory, dynamical
systems, and combinatorics. Prob-
lem sets are accompanied by daily
lectures given by research mathema-
ticians with extensive experience in
Prof. Arnold Ross’s long-standing
Summer Mathematics Program at
Ohio State University.

PROMYS is a residential program
for 60 students entering grades 10
through 12. Fifteen college-age
counselors live in the dormitories
and are available to discuss math-
ematics. Each participant belongs to
a problem-solving group that meets
with a professional mathematician
three times a week. Special lectures
by outside speakers offer a broad
view of mathematics and its role in
the sciences.

Admission to the program will be
based on applicants’ solutions to a
set of problems, teacher recommen-
dations, high school transcripts, and
student essays. Tuition costs are
still to be determined. Financial aid
is available—PROMYS is dedicated
to the principle that no student will
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be unable to attend because of finan-
cial need.

Application materials can be
obtained by writing to PROMYS,
Department of Mathematics, Bos-
ton University, 111 Cummington
Street, Boston MA 02215, or by
calling 617 353-2563. Applications
will be accepted from March 1
until June 1, 1997.

The dirt on germs

How could a young woman catch
tuberculosis just by breathing the air
in her high school classroom? You
will find the answer in The Race
Against Lethal Microbes, the latest
report published by the Howard
Hughes Medical Institute (HHMI)
and available free of charge to teach-
ers. The beautifully illustrated re-
port describes recent progress in our
struggle against myriad bacteria, vi-
ruses, and parasites that cause infec-
tious diseases. It tracks the ominous
spread of drug-resistant microbes
and shows how scientists are fight-
ing these invaders with the aid of
molecular biology.

A fold-out poster in the center of
the publication highlights 29 bugs
that cause disease, explaining how
such microbes enter our bodies, how
they injure us, how we fight them,
and how microbes fight back (for
example, by sharing drug-resistant
genes).

HHMI is a scientific and philan-
thropic organization that conducts
medical research. Previous titles in
this series include Finding the Criti-
cal Shapes, Blazing a Genetic Trail,
and Blood.: Bearer of Life and Death.

Copies of the report can be re-
quested by writing to Howard
Hughes Medical Institute, Office of
Communications, 4000 Jones Bridge
Road, Chevy Chase MD 20815-9864.

A cazy CybierTeaser (8192)

To win a Quantum button in the
CyberTeaser contest at our Web
site, you not only have to be smart—
you’ve got to be quick. These ten
people were both:

Oleg Shpyrko (Cambridge, Massachu-
setts)

Pasquale Nardone (Brussels, Belgium)

Matthew Wong (Edmonton, Alberta)

Ken Wharton (Berkeley, California)

Leo Borovskiy (Brooklyn, New York|

Gary Sega (Oak Ridge, Tennessee)

Jim Grady (Branchburg, New Jersey)

Steve Hunter (Ascot, Berkshire, UK)

Graeme D. MacDonald (Wheaton, I1li-
nois)

Joyce Bossom (Lincoln, Massachusetts)

In addition to making it into the
top ten, veteran CyberUnTeaser Leo
Borovskiy sent a nice ASCII graphic.
And Jonathan Devor of Jerusalem,
Israel, enhanced his entry with a
handsome JPEG, which can be seen
on the solution page at the Cyber-
Teaser Web site.

Most of the answers, whether

from Croatia or Connecticut, were
pretty straightforward (and correct,
we might add). But one correspon-
dent had more than little squares on
his mind:
After doing extensive research on anti-
entropic, polymorphic, isotropic, splatter-
colored squares, I have come to the con-
clusion that the red must have 4-unit
sides and the blue, 16-unit long sides.

If you say that this is not the correct
answer, you are wrong and will never be
accepted into our very prestigious
Quasi-Scientific Society. You will walk
the halls of ignorance forever and be for-
gotten by history.

Ouch!

A new CyberTeaser awaits your
anti-entropic efforts at www.nsta.org/
quantum. Good luck!



Across
1 Mild oath
5 699,325 (in base 16)

10 Soft-walled cavity

13 Venetian magistrate

14 Talus

15 Unit of pressure

17 Charles ___ (Blood
researcher)

18 Robber

19 60,334 (in base 16)

20 Shout

21 Brain graph: abbr.

22 Micalike clay
minerals

24 Row

26 After deductions

27 Conic section

31 Like uranium

35 Singer Frankie ____

36 Separates

38 Threading device

39 Doesn’t exist

40 Receiver

41 Group of organisms

42 Earn with great
effort

43 Taped movie

44 Qise tributary

Briss

]
GrOSS SGIeNce oy Devi R, Marin
10 i1 |12 .
15 16
19
64
=B
45 ___ map (of genes) 5 Herbaceous plants 51 Aug. time

47 __ phase (ofa
liquid crystal)

49 Samuel’s teacher

50 Dry single-seeded
fruit

51 ___lens system

54 Honest ____

56 Town on Stewart
Island

60 Croat or Czech, e.g.

61 Repeat

63 Surgeons William
James and Charles
Horace __

64 French director
Jacques ___

65 Unpaid

66 Large wading bird

67 Bathroom sign

68 Donkey

69 Retina cell

Down

1 Type of current

2 Blood and guts

3 Gebang palm fiber

4 Condensation starts
here

6 Pain
7 Prison at sea
8 Flying insect
9 ___integral
10 Makes metal
11 Both: pref.
12 Talk
16 Exclamation of
surprise
23 Minus
25 Primate
27 Architect ___
Saarinen
28 British political
scientist Harold __
29 Type of closet
30 Lyric poem
31 Refrigerant
321 e, in full
33 Lake: comb. form
34 978,668 (in base 16)
37 Chemical suffix
40 LED predecessor
41 Like H, or HCI
43 Dale
44 Unit of mass: abbr.
46 Temperature unit
48 Force times istance

52 Stanislaw ___

53 Top of the head

54 Electron pair
acceptor

55 Kind of retaining
wall

57 Chemist Lambert
_ (1818-1899)

58 Hebrew letter

59 Facial feature

62 Female lamb

SOLUTION IN THE
NEXT ISSUE

SOLUTION TO THE
NOVEMBER/DECEMBER PUZZLE
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First we will demonstrate commuta-
tivity. Take any elementsa, ¢ in S.If we
let a = b in condition (i), we find that
a*{a*c)=a*(c* a). From condition
(ii) we can conclude that a * c=c * a.
Associativity follows from condition (i)
and commutativity. Indeed, for any
a,b,cwehavea*(b*c)|=b*(c*al=
¢*(a*b)=(a* b)* ¢|(thislast from com-
mutativity of the elementscanda * b).

We have seen that condition (i),
together with commutativity, im-
plies associativity of *. Certainly if
* is commutative and associative,
then condition (i) must hold. How-
ever, it is not true that associativity
and condition (i) imply commutativ-
ity, so that condition (ii) is necessary
in this problem. For example, let
S=1{0, 1, 2, 3}, and the operation * is
defined so that 1 * 2 = 3, while
a * b =0 for any other choices of a
and b (and in particular 2 * 1 = 0).
The reader is invited to check that
this operation is associative and
obeys condition (i), but is certainly
not commutative, and also to give an
example to show that condition (i)
alone does not imply associativity.

M192

We can show that the sum of the
reciprocals of the numbers on the
blackboard can only get smaller.
Since the sum of the reciprocals of
the original n numbers is n, the re-
ciprocal of the single remaining
number must be less than or equal
to n. But this means that this num-
ber is at least 1/n.

To show that the sum of the re-
ciprocals of the numbers cannot in-
crease, suppose the numbers that are
erased are a and b. Since a square
cannot be negative, (a - b)> > 0, or
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HINTS &
SOLUTIONS

a’> + b = 2ab, or a* + 2ab + b? =
(a + b)> > 4ab. Since both a and b are
positive, so are their sum and prod-
uct, and we can divide this inequal-
ity by abla + b) to get

4
a+b’

a+b
ab

1
=—43
a

S| =

This completes the proof.

M193

Let’s call a number whose deci-
mal representation consists only of
1’s and 2's an “appropriate” number.
We will show that no two appropri-
ate numbers with n digits can have
the same remainder when divided
by 22. Then, since there are 22 such
appropriate numbers, and also 2”7
remainders when a number is di-
vided by 27 (including the remainder
0J, one of these appropriate numbers
must be divisible by 27,

Our proof that distinct appropriate
numbers have distinct remainders
proceeds by induction. For n = 1 we
can check this directly: there are four
numbers to check, and four remain-
ders. Suppose now that if two (n - 1)-
digit appropriate numbers have the
same remainder when divided by
27 -1 that they must in fact be the
same. We will show that the same
holds for any two appropriate n-digit
numbers. Call these number a, and
b,. If they have the same remainder
when divided by 27, then they are
both even or both odd, so their last
(units) digits must be the same. Thus
we can write a, = 10a, , +1, b, =
10b,, , +1, whereiiseither 1 or2, and
a, ,andb, _, are appropriate (n-1)-
digit numbers. Now a, — b_ is divis-
ible by 27, s0 10(a, ,-b, ,)is also
divisible by 2. It follows that a, | -
b, _, is divisible by 22-1, or equiva-
lently, that a, , and b, | have the
same remainder when divided by
27-1. By the induction hypothesis,

then, they must be equal. So all the
digits of a, and b are the same, and
these two numbers are equal. This
completes the proof.

M194

Without loss of generality, we
may assume that Z/KBA < 90°, and
therefore that L lies on AB. Then
£ZMDK = ZKBA < 90°, and P lies out-
side AD. Draw a line parallel to AM
through D, and let it meet LP at E
(fig. 1). We will prove that DE = BL.
This will show that DEBL is a par-
allelogram, and the conclusion fol-
lows from the fact that diagonals of
a parallelogram bisect each other.
First note that triangles PED, PLA
are similar (because DE || AL), so
DE/PD = AL/PA. We can write this
as DE = (AL - PD)/PA = (AL/PA) - PD.
Now triangles AKL, AMP are both
right-angled and have a common
acute angle at A, so they are similar,
and AL/PA = KL/MP. So we can write
DE = (KL/MP) - PD = KL - (PD/MP).
Finally, we consider triangles ALB,
MPD. They are also both right-
angled. Since quadrilateral ABCD is
inscribed in a circle, ZCBA is
supplementary to ZCDA, which
means that ZCBA = ZCDP. So tri-
angles ALB, MPD are also similar,
and PD/MP = BL/KL. Now we can
write DE = KL - (BL/KL) = BL, and
the proof is complete.
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The detective can ask, after any
question or group of questions, “Did
you lie in answering any of the pre-
vious group of questions?” Observe
that if the witness answers “no” to
this test question, then he must be
telling the truth. For if he answers
“no” and is lying, then he must have
also told a lie also in answering the
previous group of questions and thus
would have exceeded his quota of
lies. So this question is indeed a test
of the veracity of the witness for any
give set of questions.

With this in mind, the detective
can proceed as follows. He follows
his original line of questioning for
the first 13 questions. For the 14th
question, he gives his test question.
If the answer is “no,” he proceeds
with the next 12 questions, asks his
test question about these twelve,
then the next 11, asking his test
question about these eleven, and so
on, until he asks his final original
question (this makes 13 + 12 + 11 +

.. + 1 =91 original questions].

Note that the witness must give
exactly one answer “yes” to a test
question. If he lies in an answer to
one of the original questions, he can-
not also lie on a test question, so he
must answer “yes” for the test ques-
tion of the group that includes his
lie, and for no other test question. If
he saves his lie for a test question,
then, as we have seen, he must an-
swer “no” to all the other test ques-
tions, and he is not lying for in an-
swering any of the original
questions.

So the detective’s plan can be to
wait until a test question is an-
swered “yes” and repeat the series of
questions to which it refers. The
witness must now answer all these
questions truthfully (he has used up
his lie, whether it was for the test
question or one of the original ques-
tions). If the second set of answers
contains one that differs from the
first set of answers, the detective
knows that the second set is correct.
If the two sets of answers are the
same, he knows that the witness
lied on the test question. In either

case, he now has the information he
needed.

After a test question is answered
with a “yes,” the detective need not
ask further test questions, since he
knows that their answers would
have to be “no.”

How many questions has he
used? If the kth test question is an-
swered “yes,” then there are
k + (14 - k) = 14 "extra” questions
that the detective must ask, so he
has gotten the truth after 105 ques-
tions.

In the general case, if the
detective’s original plan involved N
questions, this method will give the
truth after N + g questions, where g
is the smallest natural number such
that N < g(q - 1)/2. (A. Andjans,
I. Solovyov, and V. Slitinsky)

Physics

Let the sleigh have length I, mass
m, and initial velocity v, and let the
coefficient of sliding friction on as-
phalt be u. From the moment the
sleigh drives onto the asphalt, the
equation of its motion (see figure 2
will be

Zx
T

This is the equation for simple har-
monic motion, which gives the de-
pendence of distance on time as

mx” =-Ug

(1)

x(t) = X, sin o,

where o, = /ug/] and X| is the co-
ordinate of the sleigh at the moment
it stops (this corresponds to the am-
plitude of “oscillation”). At that mo-
ment all the initial kinetic energy of
the sleigh will have been dissipated

Y

in working against the frictional
force. The value of X, can be ob-
tained by the law of conservation of

energy:
mv% _ 1 mX X = umgX;
2 2T 1T

(/,ugmX /1 is the average force of
friction), from which we obtain

VHE O

The period ¢, from the moment
the sleigh slides onto the asphalt to
the first time it stops is a quarter of
the period of oscillation with fre-
quency w;—that is,

po2n L
: 4o 2\ug

In the second case, when the
sleigh is again given a velocity v,
the equation of its motion will be
the same (see equation (1)). The
time-dependence of the x-coordinate
(x > X,) will be

x(t) =X sin oy,

where X, is the sleigh’s coordinate
at the moment it stops for the sec-
ond time (the new amplitude of os-
cillation).

To find the braking time and the
braking distance in the second case,
we assume that the sleigh comes
onto the asphalt with a velocity u,,
and after sliding a distance X, trav-
els at a velocity v,,. So, according to
the law of conservation of energy,

mu} 1

2 2

mX, %, = umgX; ,
I 21

from which we get

Vg  og
The velocity u, can be obtained
from the equation

S
mX;

7 /
1

2 2
mu;  mvy,
D P

1
Zz.ué’

which reduces to
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uO = VO \/—E
Thus

% =203
®g

The distance the sleigh has slid
between the first and second times
it stopped is equal to

&:&-&=£%ﬁ—u

and the ratio of the braking dis-
tances is

X, : X, =1:(v2 -1).

Given an initial velocity of the
sleighu, = VO\/E , it travels a distance
X, in a time #; defined by the condi-
tion v, = Voﬁ cos m,f;—that is,

. n |1
t1=z —
ug

Before it stops for the last time, the
sleigh moves for a period

n |1
tlz— —
2\ ug

(keep in mind that the period of os-
cillation does not depend on the ini-
tial velocity). Thus the time during
which the sleigh moves after it is
pushed until it stops again is

~ T |1
752=f1—751=z g’

and the ratio of the braking times is

tit,=2:1.

P192

Since the lengths, cross-sectional
areas, and thus the volumes of the
bars at 0°C are almost equal, the
temperatures we seek obey the in-
equality ot « 1. Under this condi-
tion the coefficient of volume ex-
pansion = 3q, and the coefficient of
surface expansion = 2.

The temperature at which the
bars are the same length can be
found from the equation

02 JANUARY/FEBRUARY 1997

Ll +oyty) =1 (1+oyt,).

Consequently, to find the tempera-
ture t, at which the bars have the
same area, we use the following
equation:

S,(1 +204t,) = S,y(1 + 2a,t,),

while temperature ¢, at which the
bars have identical volumes results
from

VUL + 3ayts) = V,(1 + 3o,t,).

Therefore,
L Bk
£ = S1-5
e N
2((’«252 —(Xlsl)
b AV

3o Vy — o)

P193

Because the outer plates are con-
nected, the total force acting on the
middle plate at the initial position is
zero. By the statement of the prob-
lem, this plate is shifted very
quickly, so the charges carried by
the outer plates have no time to
change. Therefore, the force remains
zero, and no mechanical work is
performed.

One thing should be noted: there
is an electric field around the capaci-
tor, because the total charge of all
the plates is not zero. However, the
intensity of the outer electric field
does not vary as the middle plate is
moved, so the energy of this field
can be neglected in our reasoning.
Thus the amount of dissipated heat
is equal to the difference of the field
energy within the capacitor at the
tinal and initial positions of the
middle plate.

The field strengths on both sides
of this plate can be found from the
condition of the absence of a poten-
tial difference between the outer
plates. This yields the formula for
the total energy:

~ QZX(I = X/d)
- 2e,8

7

U(x)

where x is the distance between the
middle plate and one of the outer
plates. Calculating the difference
between the energy values at x = d/2
and x = d/3, we get

_ @
72€,S

P194

A change in the current flowing
in a solenoid generates a vortex
electric field that spins the cylinder.
The rotating charged cylinder pro-
duces a magnetic field inside itself
just like the solenoid with current
running through it. The correspond-
ing formulas for the magnetic fields
are rather simple, but we can man-
age without them if we recall that
a magnetic field is proportional to
the value of the current produced—
that is, to the product of the charge
and the angular velocity of the cyl-
inder.

By the statement of the problem,
the cylinder is very light, so the
change in the magnetic flux through
it generated by the solenoid must be
offset by the flux of its own mag-
netic field. From this we can derive
the formulas describing the two dif-
ferent cases: (1) when cylinder is lo-
cated completely inside the coil and
(2) when its radius R is greater than
that of the coil r:

0)1=M for R<1,
3Q
4NIL(r*/R?)
0wy =———=forR>r.
3Q

If the charge Q is positive, the cyl-
inder will rotate in the same direc-
tion as the current in the coil.

P195

The image S; of the source S pro-
duced by lens A is located to the
right of the lens at twice the focal
length (fig. 3). Indeed, the lens for-
mula yields

1 1

a3
2F f, F’



Figure 3

from which we get f, = 2F. This
means that lens B receives a conver-
gent light beam. This beam will be
collected at point S,, which is the
final image of the source.

For lens B the point S, is a virtual
source. So, according to figure 3,

I S 4
d f F'

where d, = F. Therefore,
F
h=s-

The distance I = SS, between the
source S and its image S, in this op-

tical system is] = v SK? + h?, where
SK = 3.5F. The distance h can be
found by the similarity of triangles
Q,8,E, and 8,S.E
h_F-f,
a

, h=05a

Finally we have

1=88, =+12.25F +0.254% .

Brainteasers

B191

Let L be the height of the lamp-
post, h the height of the person, d
the distance from the person from
the lamppost, and s the length of the
person’s shadow. By similar tri-
angles, we have

or

RS

Calculating the speed for a small
movement of the person, we have

as__ 1 ad
At 1+L/h At’
Therefore, the taller person’s

shadow moves faster.

B192

Let a be the side of the square that
adjoins the black one on the left
(fig. 4). Then, moving clockwise, we
find the sides of the other squares
touching the black one, one after the
other. We find that the side of the
red square is a — (a — 4) = 4. The side
of the blue square can be found in a
similar fashion. It’s 15.

B193

In order to warm 50 grams of ice
from -10°C to 0°C, one needs

Figure 4

0.43 cal/lg - °C) - 50 g - 10°C =
215 cal, plus an additional
80 cal/g- 50 g = 4,000 cal to melt this
ice. Cooling 100 g of water from
+10°C to 0°C gives only 1 cal /(g- °C)
- 100 g - 10°C = 1,000 cal. So not all
of the ice will be melted, and the jar
will contain a mixture of ice and
water at a temperature of 0°C.

B194

Let x be yesterday’s price for big
fish and y the new price. Let a and b
be the corresponding prices for little
fish. The statement of the problem
can be writtenas3y + b =5x,2y +b =
3x+a.Sowesee thatb =5x-3y,a =
2y +b-3x=2y+5x-3y-3x=2x-y.
We have to compare y + 2b and 5a.
If we express a and b in terms of x
and y, we’ll find that y + 2b =
v+ 10x -6y =10x -5y =5a. So one
big fish and two little fish cost ex-
actly as much today as five little
fish did yesterday.

B195

See figure 5.

center of gravity

Figure 5

Kaleidoscope

1. The force keeping us from fall-
ing through the floor or ground is the
electric repulsion between the at-
oms of the surfaces that come into
contact.

2. The force is equal to zero.

3. (a) The force will not change;
(b) the force on the paper will be
zero, but the charged ball will attract
the foil by induction.

4. The ball and paper will not in-
teract.

5. The force of interaction will be
larger for the oppositely charged
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Figure 6

balls, because electrostatic induc-
tion results in the redistribution of
charges on the balls, after which the
like charges are located at greater
distances from each other than are
the opposite charges (fig. 6).

6. Ball B is charged and its charge
is positive, because if the ball were
neutral, it would be attracted to A.

7. Yes. For example, when the
charge of one ball is far greater than
that of the other.

8. The ball will jump away to a
distance equal to twice the length of
the string.

9. If the ball were oppositely
charged, the force of attraction would
be replaced by a smaller repulsion. If
the balls had the same type of charge,
the force of repulsion would increase
after the brief electric connection.

10. In the first case, the third
charge can’t be at equilibrium in any
region. In the second case, it can be
at unstable equilibrium in region I
(midway between g, and g,).

11. The force will increase. Con-
sider the polarization of the glass ball
(fig. 7) and estimate the resultant
force acting on, say, the charge g,.

12. The electrostatic interaction
of the two electrons slows one of
them and accelerates the other. The
electrons approach to a minimum
distance, then the electron that ini-
tially was moving will stop, and the
other one (initially at rest) will fly off
with a velocity v.

13. The charged ring will be

+ -

[ ] [

d, “p)
Figure 7
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stretched, and the force affecting the
charge Q will be equal to zero.

14. The time increases in both
cases, because the forces of surface
tension are opposed to the force of
electric repulsion of like charges on
the outside shell of the bubble.

15. The energy of a-particles isn’t
large enough to overcome the force
of electric repulsion of a heavy
atomic nucleus and penetrate it.

Microexperiment

The needle will move away from
the combD, because the comb attracts
both the needle and the water. A
hump is formed under the needle,
and the needle will start “surfing”
downward.

Roman myth

Puzzle. One of the possible holes
is shown in figure 8.

1. Suppose the required triangle is
ABC, with BC =a, ZBAC =o. Then,
if we fix points B and C, the possible
positions for A lie on an arc of a
circle with endpoints B and C. The
area of AABC is then half the prod-
uct of BC and the perpendicular dis-
tance from A to line BC. This is larg-
est when A is the midpoint of the
arc, so the largest area is attained

when the triangle is isosceles.

2. We can show that the least pos-
sible perimeter is attained if the tri-
angle is equilateral. Suppose it is
not, and that it has two unequal
sides. Let AB be the third side and C
the opposite vertex. Then, if C
moves along line m parallel to AB,
the area of AABC remains un-
changed. Let M be the point on line
m such that AAMB is isosceles. We
will show that the perimeter of
AMB is smaller than ABC (if C does
not coincide with M). To show this,
take point B’ to be the reflection of
B in line m. It’s not hard to see that
A, M, and B’ are collinear (for ex-
ample, by showing that ZLZAMB’ =
180°). SOAB’=AM + MB < AC + CB’
= AC + CB for any other position of
point C.

This argument shows that if two
sides of our triangle are unequal, the
perimeter can be made smaller with-
out changing the area. It follows that
the minimal perimeter occurs when
the triangle is equilateral.

3. We can show that points K and
L must trisect arc AB. Suppose, for
example, that K is closer to A than to
L. Then AAKL is not isosceles. Let K’
be the midpoint of arc AL. Then the
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Art by Mark Brenneman

COWCULATIONS

Superprime beef

Grading up the dairy herd

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE

second column in a new series devoted to prob-

lems best solved with a computer algorithm. (I say

“welcome back,” but if this is your first visit, I

should tell you that I live in Wisconsin, the Dairy State,

and much of my ruminating revolves around the work of
my colleagues—and the humans who attend to us.)

Any farmer trying to make a living milking cows has

to pay attention to good breeding. Just as race horses are

bred for speed, cows can be bred for milk production. By

“grading up the herd,” as we say in Wisconsin, the

average yearly production of milk has climbed to the
current level of 12 to 15 thousand pounds per cow.
Betsy, a purebred Holstein and barnyard companion,
produced a record 44,000 pounds of milk one year: now
that’s a lot of butter.

Superprimes

Farmer Paul, my boss, and a member of the Primeville
Organization for Outstanding Purebreds, takes great pride
in raising some of the best purebred Holstein cows in Wis-
consin. He calls them affectionately his superprime beef,
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and to distinguish them from the rest of the herd, he
brands them with a very special prime number—a super-
prime. A superprime is any prime number that remains
a prime when any number of digits are deleted from the
right side of the number. For example 5939333 is a super-
prime because 5939333 and 593933 and 59393 and 5939
and 593 and 59 and 5 are all prime.

Itested the sample list with the Mathematica™ func-
tion PrimeQ[p], which is True if and only if p is prime.
Of course, all the numbers in the sample list are also by
definition superprimes.

sample={5939333,593933,59393,5939,593,59,5};
PrimeQ[sample]

{True, True, True, True, True, True, True}

Farmer Paul has been in the business for some time
now and has seen his herd of superprime beef grow con-
siderably. Predictably, he is running into difficulty com-
ing up with new superprimes and has asked me for some
assistance.

This past month, between holiday shopping and all
the barnyard parties, I've been ruminating about this
problem. Of course, it has been known since the time
of Euclid that there are an infinite number of primes.
And the famous Prime Number Theorem asserts that
the density of prime numbers, as measured by count-
ing the number of prime numbers < n (denoted in
Mathematica by PrimePi[n]), grows like n/Log[n].

For example, there are 78,498 prime numbers be-
tween 1 and 1,000,000, as shown in the Mathematica
cowculation:

PrimePi[10°]
78498

Let’s plot the growth of the number of primes up to
and including 500 (see figure 1}:

Plot [PrimePi[n], {n,1,500},
AxesLabel->{“N”, “Number of primes up to N”}]

So we are confident there are plenty of prime num-
bers to brand a herd of any size. But farmer Paul wants
to use only superprimes. Will there always be enough
numbers? What does your intuition tell you? OK, now
go to your cowculator and find some, maybe all,
superprimes. If you cowculate in Pascal or C/C++, you'll
need to build a fast PrimeQ function, which is best con-
structed with the well-known sieve algorithm. (Look for
it in almost any programming book.)
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56 JANUARY/FEBRUARY 1987

Repusprimes

Superprimes have a built-in right-handed bias. There
are left-handed farmers, too, who prefer to knock off
their digits from the left side. If they remain prime down
to the last digit, they are called repusprimes. (Read repus
backwards to understand why.) Let’s check to see if
5939333 is a repusprime:

sample2={5939333,939333,39333,9333,333,33,3};
PrimeQ[sample2]

{True, False, False, False, False, False, True}
Nope, it fails. But don’t despair here’s one:

sample3={739397,39397,9397,397,97,7};
PrimeQ[sample3]

{True, True, True, True, True, True}

What can you say about the number of repusprimes?
Will there always be enough repusprimes for the grow-
ing herds of purebred Holsteins belonging to our left-
handed friends in the business?

COW 2a. Find an efficient algorithm to generate
superprimes.

COW 2b. Find an efficient algorithm to generate
repusprimes. Will both right-handed and left-handed
farmers always have the option of “grading up the herd”?

Note: COW 2a was used as a problem at the training
camp of the 1994 USA Computing Olympiad final round.

You can e-mail your cowculations to me, Dr. Mu, at
drmu@cs.uwp.edu. Visit our home page at http://
usaco.uwp.edu/cowculations to read the contributions
that other cowhands have sent in concerning all previ-
ous problems. Stop off at the first part of the address if
you want to check out the latest happenings at the USA
Computing Olympiad.

OK cowhands, it’s time to fire up your iron and pro-
duce the special primes I need—and pronto! With all the
chores to be done around here, farmer Paul has no time
to waste on poky algorithms. Speed counts!

In fields where we lay,
My bovine friends say,
“I can cowculate that!” And they do it.
So I say to you now,
Go after the COW,
Good luck and success—you can do it.

—Dr. Mu

Solution: COW 1

In the last issue, I told you about the weird feeding
game farmer Paul played with the herd. The “Challenge
Outta Wisconsin” or COW 1a, asked you to find an ef-
ficient algorithm that I could use to always win at chow
time, assuming I have the advantage of going first. Here
is the algorithm sent in by Catalin Drula, a 10th grader
at the Bucharest High School of Computer Science in
Bucharest, Romania:

My cowculation is simple. Initially the feed pails look like



feed ={O, E, O, E, ..., O, E}, where O are the pails with odd
indices (1, 3, 5, ..., p— 1) and E the ones with even indices
(2,4, 6, ..., p), where p is the number of pails.

The game starts, and Dr. Mu can take an even pail at p or
the odd pail at 1. Let’s say Dr. Mu takes the odd pail at the
first position:

Dr. Mu={0}

feed={E,0,E,O,...,E}

Once Dr. Mu makes a selection, the opponent must take an
even pail, since that is all that is showing at either end. Dr. Mu
can force the opponent to stay with the even pails by always
taking the odd pails. Thus if the sum of the odd pails is equal
to or larger than the sum of the even pails, Dr. Mu will win.
But if the situation is reversed and the sum of the even pails
is larger than the sum of the odd pails, then switch Dr. Mu’s
strategy and tell the Doctor to take the even pails instead,
which forces the opponent to get only the odd pails. Since
Dr. Mu has the option of going first, have the Doctor make
the initial calculation to compare the two sums and stay with
the larger sum, cither the evens or odds. That will guarantee
a win for Dr. Mu.

Note by Dr. Mu: Catalin also submitted a dynamic pro-
gramming cowculation that maximizes the amount that I
can eat depending on the choices of the second cow. It ap-
pears on the web page at http://usaco.uwp.edu/
cowculations. One can imagine how, using the same
strategy explained above, I could maximize my total
chow. Instead of making one computation of the sum of
the evens and the sum of the odds at the beginning of the
game, I should redo the computation at each stage of the
game when it’s my turn and switch from evens to odds,
or vice-versa, if it’s to my advantage to do so. That happens
when the sum of the remaining evens is larger than the odds,
or vise versa. The best the second cow can do is to play the
Greedy algorithm, since I am in complete control.

A cowculation was also submitted by Tony Capra
from White Station High School in Memphis, Tennes-
see. The complete program listings for all cowculations
submitted can be found on the cowculations Web page.

In COW 1b I asked for a cowculation of my chances
of winning over Betsy if we both follow the Greedy al-
gorithm. What I expected was a simple simulation
where I play Betsy a few times—say 1,000—and the pro-
portion of wins for me are recorded. I carried out these
cowculations for the number of pails from 4 to 100. As
you might have expected, the chances of winning go
down as the number of pails increases. Figure 2 is a

graph of the results, done in Mathematica. Q
2
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perpendicular distance from K’ to AL is greater than the
perpendicular distance from K to AL, so the area of
AK’AL is greater than that of AKAL. Thus if K is not
the midpoint of arc AL, the area of the quadrilateral can
be increased. Similarly, L must be the midpoint of arc
KB, so that K and L trisect arc AB.

4. For any given value of ], the figure with the larg-
est area is the circle. For a circle, 1% = 4n%r2 = 4n(nr?) =
4mA > 12.5A. For any other shape, then, 12 must be
greater than this quantity.

5. Consider an inscribed polygon each of whose sides
is equal to each segment in sequence (as we know from
problem 4 in the article, it has the greatest area). Change
the order of two of its adjoining sides. The polygon is
still inscribed, its area is unchanged, but the sequence
of the sides has altered. By changing the order of one pair
after another, we’ll obtain inscribed polygons with all
possible sequences of sides. They all have the same area.

6. Take an arbitrary polygon of the given type and
attach to it its image after a reflection with respect to
the varying side. We obtain a polygon with fixed sides
and twice the area of the original. Now we can apply the
result of problem 4.
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