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The Fall of Phaeton (c. 1605) by Sir Peter Paul Rubens

VERY CULTURE, IT SEEMS, HAS MADE A GOD OF

the Sun at some point in its history, or has created a story
that places it squarely at the center of our lives—at the in-
tersection of our hopes and fears. The power and stability of
that fiery orb are supremely important for life on this planet.
One can easily understand the panic our ancestors felt when
the Sun inexplicably disappeared in the middle of the day.
Even today we shiver during a solar eclipse, and not just
because of the temperature suddenly drops several degrees.

The story of Phaethon (sometimes spelled Phaeton)
deals to some extent with an ancient fear that the Sun will
do the harm it seems so capable of. But like most Greek
myths, it resonates on many levels. Phaethon was the son
of the sun god Helios and the sea goddess Clymene.
Taunted with illegitimacy, he appealed to his father. Helios
promised to prove his paternity by giving Phaethon what-
ever he wanted. Phaethon asked that he be allowed to drive
the chariot of the sun through the heavens for just one day.

Full of misgivings but bound by his oath, Helios agreed.
Phaethon set off, but was unable to control the horses of
the sun chariot. He swerved too close to the earth and
began to scorch it. The mighty Zeus was displeased and
struck Phaethon down with a lightning bolt to prevent
further damage.

Readers may be familiar with another Greek story in-
volving the Sun. The legendary architect and sculptor
Daedalus fashioned two marvelous sets of wings that
would allow him and his son Icarus escape the island of
Crete, where Daedalus had fallen out of favor with King
Minos. Icarus, however, flew too close to the Sun. The wax
holding the wings together melted, and Icarus fell into the
sea and drowned. “This is what comes of our vain aspira-
tions,” some would conclude. “Better to stay put.”

But, of course, we don’t stay put. We fly off into space,
or send our machines where we can’t go ourselves. Turn
to page 16 to learn what it really takes to “fly to the Sun.”
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The game of billiards has so often been
associated with the study of physics, it
has become a cliché to speak of them in
the same breath. This relaxing pursuit
has provided a metaphorical anchor for
discussing the collision of particles, the
reflection of light rays, and undoubtedly
other topics as well.

But the game also appeals to others
with a more purely mathematical turn
of mind. The Kaleidoscope in this issue
exposes some of the math behind the
fancy shots. It also experiments with
some new and, at times, bizarre shapes
for the pool table itself. (In rural Wiscon-
sin, somewhere between Milwaukee
and Madison, there is a pool hall that in-
vites passers-by to play on its L-shaped
and Z-shaped tables. Could the propri-
etor be a mathematician manqué?|
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Lunar miscalculation

How | got stranded on a remote,
rocky bluff in pitch darkness

N THURSDAY, SEPTEMBER

26, 1996, there was a lunar

eclipse. I live on the southeast

edge of Las Vegas, in an area
called Green Valley. The eclipse was
to begin at 6:15 p.m. PDT, which was
shortly before sunset.

At about 4:30 p.m. I loaded my car,
packing a digital camera that uses
no film, but rather stores images in
memory on a PCMCIA card. You
can then download the shots to a
computer and use them however
you wish. I also loaded my 8mm
video camera and tripod. Then I
drove off toward Lake Mead, trying
to get away from the city lights—of
which there are plenty in Las Ve-
gas—and find a suitable observation
spot.

I drove to the Lake Mead Na-
tional Recreational Area and along
the North Shore Road some 20
miles or so until I found a stop-off
that had a trail leading to the top of
a very rocky and rugged hill. It
would be a great vantage point for
observing the eclipse.

Remembering the horror stories
of people in the desert dehydrating
and dying for lack of water, I always
carry water in my car. So I carried a
bottle with me as I made my way up
the very difficult trail, stopping fre-
quently to catch my breath, since I
don’t get enough exercise. The fol-
lowing pictures show one view from
the top of that hill. The first was
taken with my digital camera; the
second is a frame from the video I
took and shows the surrounding ter-
rain more vividly.
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Iset up my equipment and aimed
my video camera toward where I
expected the moon to rise in the
east. Unfortunately there were some
clouds on the horizon in that direc-
tion, so I would be unable to record
the earliest part of the eclipse.

At about 6:30, I still hadn’t ob-
served anything, and the Sun had not
yet set. A backpacker walked by, said
hello, and headed for the interior of
the park. A few minutes later a
woman by the name of Marcia
Palmer hiked up to my location—she
was also there to see the eclipse. Later
she would be joined by a friend,
Darlene Guadalupe, and Darlene’s
14-year-old son Kevin. We all sat on
the rocks, waiting for the eclipse to be
visible. At about 7:15, we began to sce

the eclipse, and I began to photograph
it. A little later, the video captured
the image printed below. As you can
see, the eclipse had started, and we
had a nice view of it.

All was going well until the
eclipse became full. At that time, I
had expected it would last 10 or 15
minutes and be over with. Then I
would pack up and go home. But I
hadn’t done my homework. I was
confusing lunar and solar eclipses. A
solar eclipse doesn’t last more than
about 10 minutes at any one loca-
tion, whereas a lunar eclipse lasts for
more than 3 hours, and for an hour
and forty minutes of that time, the
eclipse is total!

The following frame from the
video shows what my camera was
able to record during totality:




Note that the camera didn’t pick up
the peculiar illumination of the
moon most of us observed with our
eyes. It was pitch black out there on
that mountain!

We waited, and we waited. But
the total eclipse seemed never to
change! It was then that I realized
that this thing would last awhile. So
I thought I'd pack up and go home.
But then I looked around for the
trail. I could see nothing! None of us
had a flashlight. We didn’t even have
matches. There was nothing we
could do. We simply had to wait
until there was enough moonlight
that we could see the trail, so that
we could make our way down the
mountain.

At 9:30 p.m., the crescent of the
moon began to appear, and it pro-
duced enough light that we could
make out the trail down the moun-
tain. We all moved slowly and care-
fully, trying to be sure we didn’t dis-
turb some rattlesnake basking in the
moonlight on the trail. I got home at
10 p.m., so T had been gone some six
hours—not quite the one-hour jaunt
I thought I would be taking!

Here is the picture I captured
right before packing up and heading
down the mountain. This is the
source of our light for the return trip.

Next time I go to observe a lunar
eclipse, I'll try to remember a few of
the “Eclipse Rules of Thumb” found
in The Moon Book by Kim Long
(Johnson Books, 1880 South 57th
Court, Boulder CO 80301]. These
rules involve information like the
length of an eclipse and the fact that
they always occur in pairs: “A solar
eclipse is always followed or pre-
ceded by a lunar eclipse within an
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The advent of radio

How and why the wireless telegraph was invented 100 years ago

by Pavel Bliokh

Y THE MIDDLE OF THE 19th

century the telegraph had be-

come a common method of

communication. Wires ran be-
tween towns large and small, and in
1866 a special cable was laid on the
floor of the Atlantic Ocean—the
telegraph now connected two conti-
nents. Messages could be quickly
and reliably transmitted over huge
distances (to and from anywhere on
Earth), but only if one indispensable
condition was met: before you could
send a signal from one place to an-
other, someone had to have traveled
the entire distance, stretching an
electric wire behind. This was no tri-
fling problem, and it was actually in-
soluble when it came to moving
objects (such as ships).

It’s easy to imagine the great at-
tention devoted to the problem of
wireless transmission over large dis-
tances by scientists and engineers at
the end of the 19th century. You
might think this problem could
have been solved quite easily on the
basis of well-know physical prin-
ciples that had been discovered
more than 100 years ago. Some
simple methods of transmitting sig-
nals were indeed available, and we
begin our story with them.

4 NOVEMBER/DECEMBER 1906

Ghost invention No. 1

The “electrostatic” wireless tele-
graph could have been invented as
early as the end of the 18th century.
It’s known that any electrically
charged body generates an electric
field with intensity

k,

1,2

E:

(1)

This formula is true when the body
is “pointlike”—that is, when its size
is very small in comparison with the
distance r from it. Here Q is an elec-
tric charge and k_ is a proportional-
ity factor, which depends on the sys-
tem of units. It’s very important that
the electric field arises around a

Vi(t)

TIMETABLES OF SLIENEGE |

charged body without any wires,
even in a vacuum. One can detect
this field by the electric force
F=qB=k, 24
2

2)

acting on a test point charge ¢,
which is either attracted to the
source of the field (when the signs of
Q and g are opposite) or repulsed
from it (if the signs are the same).
The simplest diagram for a wire-
less telegraph that uses the force Fis
shown in figure 1. The “transmit-
ter” is a body whose charge Q(t) var-
ies according to the transmitted sig-
nal V(t). The “receiver” is made of
two opposite charges +g fixed on a
small rod that is suspended on an

.
EEn I
O,

Qe -Vt Mg

Figure 1
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Simplified diagram for an “electrostatic” wireless telegraph.
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Figure 2

Actual diagram for an “electrostatic” wireless telegraph.

elastic string. In principle, the re-
ceiver needs only one charge, but
then it would be less sensitive. The
electric force F produces a torque
that turns the rod by some angle o(t)
proportional to Q(t). By registering
that angle on a chart recorder, we
can reproduce the source signal
V(t)—so the device works!

The receiver described (known as
the Cavendish torsion balance) was
actually used more than 200 years
ago by the French physicist Charles
Coulomb. Using this balance, he
measured the force of interaction F
between two charges Q and ¢, and
discovered the fundamental law of
electrostatics (formula (2)), which
was named after him.

Since the design we’ve looked
at seems quite workable, the ques-
tion arises: why wasn’t it suitable
for transmitting signals over large
distances? First of all, remember
that the field strength E fades with
distance as 1/r2. Skipping ahead a
few steps, I should point out that
the field strength of a radio wave
in free space decreases much more
slowly—as ~1/r. This is a rather
significant difference, but in real-
ity it’s even more drastic, as we
see below.

The problem is, figure 1 con-
tains a fundamental mistake. In
reality the electric charge cannot
increase or decrease by itself, be-
cause charge is conserved. For an
object’s charge Q to change, it
must be connected to a voltage
source, which always has two
poles and simultaneously pro-
duces charges of opposite sign. So
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an actual implementation of an
electrostatic wireless telegraph
would look like figure 2.

We see that the work of a trans-
mitter composed of two pulsating
charges +Q(t) will be less effective,
because the two generated electric
fields E,_ and E_ partially cancel
each other (the resulting field is
the vector sum E_ + E_). We'll sim-
plify the corresponding calculation
and consider the case when the re-
ceiver is located along the line con-
necting the two charges +Q. Then
E, =k,Q/r?andE_=-k,Q/r? where
r,=r-df2,r =r+d/2, and d is the
distance between the charges. In the
case we're considering, the vector
sum becomes algebraic, so

ey 3

n

2k,Qrd
(IZ - d2/4)2

It’s reasonable to consider the size of
the receiver d to be very small com-
pared to the distancer (d <« r). So the
term d?/4 can be ignored in the de-
nominator:

Bk, 2 3)
r

where p, = Qd is referred to as the
electric moment. Thus the real elec-
tric fields generated by a dipole
transmitter decrease very quickly
with distance (~1/r3), which makes
them unsuitable for transmitting a
signal over great distances.

We have found the electric field
along the dipole axis. In any other di-
rection E depends also on the angu-

lar coordinates, but the 1/r° depen-
dence on distance remains the same.

Now, one might imagine a more
complicated transmitter consisting
of three or more charges arranged in
such a way that the decrease in field
strength obeys a different law. In-
deed, one can do this (the corre-
sponding fields are called multipole)
and obtain a different function for
the decrease in field strength: 1/r2.
However, in each case n > 3, so the
multipolar fields are even less suit-
able for wireless telegraphy than the
dipole fields.

Ghost invention No. 2

The “magnetostatic” wireless
telegraph could have appeared in
the early 19th century. The attempt
to use an electric field came to
naught, but maybe a magnetic field
will do the trick? The basis for such
an experiment is the Biot-Savart
law, discovered by the French physi-
cists Jean Biot and Francois Savart
in 1820. According to this law, an
electric current I flowing in a
straight conductor of length I pro-
duces a magnetic field around the
wire given by

B==2—, 4

where r is the distance from the
conductor and k  is a proportional-
ity constant. The observation point
is assumed to lie far away (r > 1) in
the plane perpendicular to the con-
ductor and through its center. For
all other directions formula (4] be-
comes a little complicated, but the
general dependence B ~ 1/7r* remains
true.

In the plane considered above, the
magnetic field lines are circles (fig.
3). The existence of the magnetic
field can be demonstrated with a
magnetized needle, which comes to
rest along a magnetic field line. The
overall setup looks very similar to
our first electrostatic project (see fig-
ure 1).

To transmit a signal V(¢), the cur-
rent I(t) must be changed in a certain
way. Accordingly, the magnetic field
will vary and so will the torque act-



Figure 3

Simplified diagram for a “magnetostatic” wireless telegraph.

ing on a needle suspended from an
elastic string. The needle’s deviations
are traced by a chart recorder, thereby
reproducing the signal.

Everything seems to be in order,
and the decrease in the magnetic
field (B ~ 1/r?) is much slower than
that of the electric dipole field
(E ~ 1/73). But alas—here we made
the same mistake that forced us to
substitute figure 2 for figure 1. The
problem is, electric current exists in
the conducting wire only if the cir-
cuit is closed—that is, when it con-
nects two poles of a voltage source.
So the correct diagram looks like the
one in figure 4.

However, in a closed circuit any
portion of it can be compared with
another portion whose current flows
in the opposite direction. In figure 4
these portions are labeled I and II.
The fact that we've drawn our cir-
cuit in the shape of a rectangle
makes no real difference. The es-
sence of our reasoning will be the
same for a circuit of any shape.

The magnetic fields produced by
the opposite currents partially can-
cel each other, so the resulting field

will be determined by a formula that
is very similar to formula (3):

BEZ](IHZZ—I;, (5)

where p_ = IS is the magnetic mo-
ment of a closed loop of current en-
compassing an area S. In our case
S=Idandp,  =IId. Formula (5)is valid
for an observation point located on
the frame’s axis and sufficiently far
from the frame (r > I, r > d). In any
other direction B depends on the
angular coordinates, but the law
B ~ 1/r3 remains true.

Once again we've bumped up
against the disagreeable dependence
~ 1/13, which is indeed enough to
bring our project to a standstill. Of
course, we can “trick” formula (5) by
placing the second wire at so large a
distance d that its magnetic field
would hardly affect the field pro-
duced by the first wire. However, to
do this we would need a “transmit-
ter” (that is, a loop of wire) of ap-
proximately the same length as the
distance to the “receiver.” So much
for a “wireless” telegraph!

Figure 4

Actual diagram for a “magnetostatic” wireless telegraph.

One and indivisitl

In the middle of the 19th century
it had been established that the al-
ternating fields E(t) and B(t) form a
single electromagnetic field. It is
this field that made it possible to
solve the problem of wireless teleg-
raphy.

When we considered the two
modes of communication above, we
used formulas for electrostatics
(Coulomb’s law) and magnetostatics
(Biot-Savart’s law). It was tacitly
assumed that the same relationships
would be valid even during the
changes in the charge or current that
are required to transmit a signal.
However, something was wrong in
our reasoning, and this can be
clearly seen if we think about how
quickly a signal is sent from the
“transmitter” to the “receiver” in
the systems considered above.

Since the fields E(t) and Bt)
mimic the changes in Q(t) and I{t) at
any distance (only the amplitudes of
E and B vary with distance, not the
times involved), we come to the
conclusion that the signals are trans-
mitted with infinite velocity. How-
ever, this inference runs counter to
a very important postulate of the
theory of relativity, which says that
no signal can travel faster than the
speed of light. So something impor-
tant fell out of our reasoning—
namely, the fact that the electro-
and magnetostatic formulas cannot
be applied to varying charges and
currents. (It’s not for nothing that
we put the words “electrostatic”
and “magnetostatic” in quotes
when naming our devices.)

When we're dealing with variable
E and B fields , we can’t consider
them in isolation from each other.
Their interrelations are so tight that
they form a single indivisible elec-
tromagnetic field. The basic propo-
sitions of the modern theory of the
electromagnetic field were formu-
lated in 1860-65 by the English
physicist James Clerk Maxwell,
whose work grew out of the ideas
and experiments of his precursor
Michael Faraday. Faraday’s name is
linked with the phenomenon of

QUANTUM/FEATURE 1




Figure 5
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Experiments demonstrating Maxwell’s first and second equations.

electromagnetic induction, and
Maxwell’s famous equations play a
role in electrodynamics as funda-
mental as Newton’s laws in classi-
cal physics.

I'll illustrate the essence of
Maxwell’s equations with two
imaginary experiments (they can
easily be reproduced in a lab). The
left-hand side of figure 5 shows a
capacitor connected to a source of
variable voltage V(t). The capacitor’s
charge varies constantly, as does the
electric field between the plates.
According to Maxwell’s first equa-
tion, a varying electric field E(t) gen-
erates a magnetic field B(r,t). The
two variables r and t show that the
magnetic field varies with time and
with position. The magnetic field
lines are circles encompassing the
electric field lines.

Notice that in the “empty” space
between the capacitor plates there
are no wires carrying electric cur-
rent. Nevertheless, a magnetic field
exists there! This means that a vary-
ing electric field is a source of mag-
netic field just as a flow of current is.
To distinguish these two sources,
they are referred to as conduction
current (the motion of electric
charges in a conductor) and dis-
placement current (a varying elec-
tric field in the “empty” space of a
dielectric). It was Maxwell who in-
troduced the concept of displace-
ment current in physics.

Now look at the right-hand side of
figure 5. It shows a solenoid with an
“empty” core. An alternating current
flows through the winding and gener-
ates a varying magnetic field between
the poles. Its field lines circle around
the poles in just the same way as the
electric lines do around the capacitor
on the left-hand side. According to
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the Maxwell’s second equation, a
varying magnetic field B(t) induces
an electric field E(r, t), which can be
detected with a coil and a voltmeter.
You can see the symmetry of the
properties of the E and B fields in the
figure.

Our story of imaginary experi-
ments is purely qualitative. We
didn’t use any calculations (they’re
rather complicated), but Maxwell’s
equations can be numerically solved
to yield detailed quantitative de-
scriptions of these experiments.

Electromagnetic waves and radio

Figure 6 shows a radio transmit-
ter with an antenna. The transmit-
ter has a high-frequency generator
that operates under the control of
the signal to be transmitted. The
antenna consists of two wires con-
nected to the transmitter’s output.

Let’s look at how the antenna
works. The arrows in figure 6 show
the currents, but there’s something
puzzling here—how can current ex-
ist in an open circuit? Everything be-
comes clear, however, when we re-
alize that the two arms of the
antenna are the “plates” of a kind of
capacitor. The gradual transfigura-
tion of a common capacitor into an
antenna is shown on the left-hand
side of figure 7. The alternating cur-
rent supplied by the transmitter is the
charge-and-discharge cur-
rent of the antenna’s ca-
pacitor, shown by the bro-

the antenna. In other words, the an-
tenna has a distributed capacitance.

The charge-discharge cycle of the
antenna’s “capacitor” caused by the
electric current I(t) produces two
opposite charges +Q(t) in the arms of
the antenna. In the space around an-
tenna the current generates a vary-
ing magnetic field B(t), and the
charges induce a varying electric
field E(z).

But as I mentioned above, the
varying fields E(t) and B(t) are inter-
twined and can’t be considered indi-
vidually. For example, look at point
1 in figure 7. A change in E(t) will
induce the formation of a field Bt
not only at point 1 but also at point
2 nearby (compare this with the left-
hand side of figure 5). The varying
magnetic field B at point 2 produces
an electric field at point 3 (compare
this with the right-hand side of fig-
ure 5), and so on. Thus the electric
and magnetic fields do not originate
simultaneously at every point
around the antenna, but propagate
from one point to another with a fi-
nite velocity. This set of interlinked
E and B fields moving off from the
antenna is known as an electromag-
netic wave, or radio wave.

The speed of radio waves can be
calculated from Maxwell’s equa-
tions. The calculations show that
this speed is the same as the speed
of light ¢ = 300,000 km/s. It turns
out that light waves and radio waves
are basically the same phenom-
enon—electromagnetic waves of dif-
ferent frequency. According to the
modern terminology, the frequen-
cies of radio waves range from sev-
eral hertz to several gigahertz
(1 gHz = 10° Hz). However, our sys-
tems of mass communication (radio
and television) only use high-fre-

ken lines in figure 6. The : 5 hich

. . o contro igh-
dlagrqm has been s1mph | device | Pegenc
fied, in that there is no Vi) generator
single capacitor connected :

to particular points along
the wires, but rather many
“capacitors” distributed
along the entire length of

radio transmitter

Figure 6

Radio transmitter with antenna.




Figure 7

Transformation of a capacitor into an antenna and the generation of

radio waves.

quency oscillations in the range of
10°-10° Hz.

The frequency, in fact, is what
sets the “electrostatic” transmitter
apart from the radio transmitter. It
makes no particular difference that
the charges in figure 2 are concen-
trated at the ends of the wires, while
in figure 6 they’re distributed along
the entire length of the wire. What's
important is that in the first case the
charges vary in the same way as the
transmitted signal V(t), but in the
second case the charges and currents
oscillate at a very high frequency—
higher by far than the frequency of
the transmitted signal. The trans-
mitted signal merely regulates
(modulates) the oscillations gener-
ated by the transmitter.

If we take the simple case of
transmitting a telegraph signal (in
Morse code), the transmitter is just
turned on and off by the operator’s
key. When audio or video signals are
transmitted, control of the transmit-
ter is much more complicated, but
the antenna radiates only high-fre-
quency radio waves, not the low-fre-
quency oscillations of the transmit-
ted signal V(z).

The theoretical prediction of elec-
tromagnetic waves called for an ex-
perimental proof. It was provided in
1888 by the German physicist
Heinrich Hertz. Now the path to
wireless telegraphy was wide open,
but it still took several years to turn
the idea into an apparatus. When, in
the spring 1896, Alexander Popov
demonstrated his radio telegraph,

the first words transmitted over a
distance of 250 m were “I'enpux
Fepus” (“Heinrich Hertz” in Rus-
sian).

After Hertz’s experiments, the
invention of radio was “in the air,”
so to speak. Independently of Popov
and at virtually the same time, a
similar radio device was constructed
by the Italian physicist Guglielmo
Marconi, who was working in
England. The range of wireless teleg-
raphy steadily increased, and in
1901 Marconi successfully transmit-
ted radio signals across the Atlantic
Ocean. Radio communication now
connected the continents.

As our story draws to a close, we
need to explain why the transmis-
sion of information by electromag-
netic waves proved to be more effec-
tive than the “electrostatic” and
“magnetostatic” approach. Let’s put
a transmitter and an antenna at
point O (fig. 8). At t =0 the transmit-
ter is turned on, and after a time At

r+ Ar

e

Figure 8

Volume of space containing electro-
magnetic energy at the times At
(sphere) and t + At (spherical layer).

it’s turned off. While the transmitter
is active, a radio wave spreads from
the antenna to a distance Ar = cAt.
Assuming that the intensity of the
radiation doesn’t depend on its di-
rection, we conclude that a sphere of
this radius is filled homogeneously
with electromagnetic energy AW =
PAt, where P is the radiating power.
After the transmitter is turned off,
the radio wave spreads farther, and
after time ¢ the same energy fills a
spherical layer limited by the radiir
=ctandr + Ar = ¢(t + At). The volume
of this layer at the moment t > At is
AV = 4nr’Ar, so a unit volume lo-
cated at a distance r from the an-
tenna contains the energy

AW AW P
W = == B = 5 .
AV ApricAr  4dnric

So the volumetric density decreases
with distance as 1/72.

Now we recall that the volumet-
ric density of electric field energy is
wy = g,E%/2 = E*/8nk, (its average
value per unit time is one half as
large), and that the energy of the
magnetic and electric fields in the
electromagnetic wave are equal.
Thus

E* P
8nk, 4nric’

and the amplitude of the electric
oscillations is

E:l\/ZkeP,
r C

This formula shows that the de-
crease in the electric field strength is
proportional to 1/r. The same is true
of the magnetic field. So here’s why
the transmission of signals over large
distances by radio waves is incompa-
rably more effective than the “elec-
trostatic” or “magnetostatic” modes
(actually, it’s the only way we know).
Assume, for example, that at a dis-
tance of 10 m the intensities of an
electrostatic field and a high-fre-
quency electric field are equal:
Ey=E_=E.Then, at a distance of, say,

CONTINUED ON PAGE 14
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VARIATIONS ON A THEME

Inscribe, subtend, circumscrine

“Or draw a triangle inside a semicircle
That would have no right angle.”
—Dante, The Divine Comedy (Heaven)

by Vladimir Uroyev and Mikhail Shabunin

HE TRIANGLE THAT DANTE

writes about (fig. 1) is impos-

sible. The author of the immor-

tal poem gives this fact to-
gether with a number of other scien-
tific truths that apparently were
considered to be universally known
to his educated contemporaries. It
would be appropriate here to recall
when the great Dante Alighieri lived
(1265-1321) and to take note of the
fact that he wasn’t a mathematician.
He made his mark in history as a
poet and philosopher, the creator of
the Italian literary language.

In this article we’ll deal with tri-
angles inscribed in semicircles as
well as other configurations that are
based on this well-known theorem:

THeoREM 1 (Inscribed Angle Theo-
rem|. An inscribed angle is equal to

C

hS
=

Figure 1

A B

Figure 2

half the central angle subtended by
the same arc.

This theorem is often encoun-
tered in the following equivalent
wording:

Let o be the central angle sub-
tended by the arc AnB of a given
circle (fig. 2). Then from any of the
points on the arc AmB, the chord
AB subtends the angle /2.

According to this theorem, an
angle subtended by a diameter is al-
ways a right angle, so “a triangle
inside a semicircle” is necessarily a
right triangle. This fact turns out to
be useful, for instance, in the follow-
ing problem.

Probleml. In a circle C, con-
structed on a segment AB as diam-
eter, a chord DB is drawn. A circle

C, touches AB at A and DB at K.
Prove that AK bisects angle DAB
(fig. 3).

Solution. Let point O, which lies
on AB, be the center of C,. The ra-
dius drawn from O to the point of
tangency K is perpendicular to DB
and so is parallel to AD, because the
angle ADB is subtended by a diam-
eter. It follows that angle DAK
equals angle AKO. Finally, we no-
tice that angle AKO equals KAO,
because OA = OK, and ZDAK =
ZOAK.

However, the following simple
consequence of Theorem 1 is used
even more often:

Inscribed angles subtended by
the same or congruent arcs are con-
gruent to each other.

As arule, when we want to solve

D

Figure 3
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C

Figure 4

a problem with circles and polygons
inscribed in them, we search for
equal inscribed angles or try to cre-
ate them by drawing various chords.
The more inscribed angles we find,
the clearer the path to a solution.

Problem 2. The diagonals of a
quadrilateral ABCD inscribed in a
circle intersect at P. Another circle,
drawn through A, B, and P, meets
BC at E. Prove thatif AB = AD, then
CD = CE (fig. 4).

Solution. Draw the chord AE and
find equal inscribed angles. In one of
the circles there are the angles DAC
and DBC; in the other, PAE and
PBE. Therefore, ZDAC = ZCAE. In
addition, the angles DCA and ACB
subtended by equal arcs are also con-
gruent. From here it follows that the
triangles DCA and ECA, and so their
corresponding sides DC and EC, are
congruent.

Exercise 1. Prove the Intersecting
Chords Theorem: If the chords AB
and CD of a given circle intersect at
M, then AM - MB = CM - MD. In
other words, the product of the seg-
ments into which the point M di-
vides an arbitrary chord through it
does not depend on the chord. (This
product is called the power of point
M with respect to the given circle).

The Inscribed Angle Theorem
can be generalized to the case of an
angle whose vertex lies inside or
outside the circle.

Exercise 2. (a) Suppose that an
angle whose vertex A lies outside a
given circle intercepts the arcs BmC
and DnE on it (see figure 5). Prove
that the measure of this angles is
half the difference between the mea-
sures of the central angles subtended

12 NOVEMBER/DECEMBER 1098

Figure 5

by these arcs—that is, ZDAE =
/(£DOE - ZBOC). (b) Formulate
and prove a similar statement for
the case where the vertex A is inside
the circle.

Often it’s convenient to use the
Inscribed Angle Theorem in the fol-
lowing stronger form:

TueoreM 2. The locus of the
points from which a given segment
AB subtends a certain fixed angle
consists of two arcs with endpoints
A and B (the points themselves ex-
cluded) symmetric about AB (fig.6).

Proof. The fact that the segment
AB subtends the same angle from
any point of the two arcs immedi-
ately follows from theoreml. So we
have to prove the converse statement:
Any point P such that ZAPB= o lies
on one of the arcs. But this statement
follows from exercise 2: if point P lies
outside the figure bounded by the
arcs, then ZAPB < o; if P lies inside
this figure, we have ZAPB > o. This
completes the proof.

The most obvious class of prob-
lems where theorem 2 can be ap-
plied are construction problems.

Figure 6

Figure 7

Exercise 3. Construct a triangle
given an angle, its opposite side, and
(a) the altitude, (b) the median to this
side.

Problem 3. A point C runs along
an arc AB of a circle S. Find the path
of the incenter P of the triangle
ABC.

Solution. The incenter lies at the
intersection of the bisectors of the
triangle ABC (fig. 7). Therefore, we
have the following equations:

ZAPB = 180° - (1/,/CAB +1/,ZCBA
- 180° — 1/,(180° - LACB)
- 90° + 1/, ZACB.

By theorem 1, the measure of ZACB
is constant, so the measure of ZAPB
is constant as well. Then by theo-
rem 2, point P sweeps out the arc AB
of a certain circle. We'll see later
that the center Q of this circle is the
midpoint of the arc AB of circle S.

Theorem 2 can be used to deter-
mine whether a certain set of points
belongs to a circle. In particular, it
implies the following important cor-
ollary:

The vertex of the right angle of a
right triangle lies on the circle con-
structed on the hypotenuse as diam-
eter.

Exercise 4. The diameters AB and
CD of a circle of radius R make an
angle of o.. From an arbitrary point M
of the circle, the perpendiculars MP
and MQ are dropped on the diam-
eters. Prove that the length PQ does
not depend on M and express it in
terms of R and o.

Exercise 5. The vertices A and B
of the acute angles of a fixed right
triangle slide along two perpendicu-
lar lines. Find the trajectory of the




triangle’s third vertex C.

When you do the next two exer-
cises, take into account the fact that
the bases D.and E of the altitudes
DB and CE of a triangle ABC lie on
a circle with diameter BC.

Exercise 6. From the vertices B
and C of a triangle ABC the altitudes
DB and CE are dropped and the per-
pendiculars DE and CG to the line
DE are drawn. Prove that EF = DG.

Exercise 7. Prove that the alti-
tudes of a triangle ABC are the angle
bisectors of the triangle DEK formed
by the feet of the altitudes of AABC.

Problem 4. Prove that the four
circles constructed on the sides of a
quadrilateral as diameters cover the
entire quadrilateral.

Solution. If the quadrilateral con-
tains a point outside all four circles,
then each of its sides subtends an
acute angle at this point. But this is
impossible, because the sum of
these angles is 360° (for a convex
quadrilateral) or more (if the quadri-
lateral is not convex).

Theorems 1 and 2 immediately
lead to the following criterion for in-
scribed quadrilaterals:

A guadrilateral can be inscribed
in a circle if and only if the sum of
its opposite angles equals 180°.

Problem 5. Three circles pass
through a point P and intersect in
pairs at points A, B, C. The lines
drawn from an arbitrary point M of
the circle PBC through B and C
meet the other two circles at S and
T (fig. 8). Prove that the line ST
passes through A.

Figure 8

Solution. From the inscribed
quadrilaterals MBPC, BPAS, CPAT,
we derive the equations

ZBPC = 180° — ZM,
ZBPA = 180° - /S,
ZCPA = 180° - /T.

Adding them up, we get

360° = ZBPC + ZBPA + /CPA
=180°-3 (LM + £S + £T),

or
LM+ £S + £T = 180°.

This means that the quadrilateral
MSAT is in fact a triangle—that is,
LSAT =180°.!

In the next problem the criterion
for inscribed quadrilaterals must be
supplemented by the following ex-
tension of the Inscribed Angle Theo-
rem:

Turorem 3.The angle between a
chord and a tangent at its endpoint
equals half the angular measure of
the arc subtended by the chord.

Exercise 8. Prove this theorem.

Problem 6. Two circles intersect
at points A and B. A line through B
meets the circles at C and D (fig. 9).
Prove that the points A, C, D, and
the intersection point P of the tan-
gents to the circles at C and D are
concyclic (lie on the same circle).

Solution. Draw the chord AB and
notice that, by theorems 1 and 3,
4BAD = /BDP, ZCAB = Z/BCP. It
follows that /CAD = ZBAD + ZCAB
= ZBDP + ZBCP = 180° - £ZCPD. So

'Actually, this solution relies
rather heavily on the specific
arrangement shown in figure 8. For
instance, if M were taken on the
minor arc BP of the circle BPC in that
figure, we'd get /BPA = Z/BSA rather
than 180° — ZBSA, and so on.
However, after we make all the
necessary corrections, things
will fall into place and we’ll
have either ZSAT = 180° or
LSAT =0°.

The complete solution
requires an exhaustive search
through all possible cases, but
this tedious work can be
avoided by using the notion of
oriented angles, which reduces
the number of cases to one.
The careful reader may have
noticed a similar situation in
problem 2—Ed.

Figure 9

the quadrilateral ACPD can be
inscribed in a circle by the criterion
given above.

Exercise 9. Lines I, and I, touch a
circle at points A and B. The dis-
tances from a point M on the circle
to the lines equal a and b. Prove that
the distance from M to AB is +/ab .

Exercise 10. Two circles touch each
other externally at D. A line touches
one of them at A and intersects the
other one at B and C. Prove that A is
equidistant from BD and CD.

Exercise 11. From a point A out-
side a circle a tangent AP and a se-
cant meeting the circle at B and C
are drawn. Prove that AP2= AB - AC.
(Compare with exercise 1.)

Exercise 12. Prove that the center
of the circle around which the point
P in problem 3 moves is the mid-
point Q of the arc AB (fig. 7).

Problem 7. Let the center O of a
circle S, lie on a circle S, and let A
and B be the intersection points of
the two circles. Draw a chord AC in
S, meeting S, at D (fig. 10). Prove
that OD is perpendicular to BC.

Figure 10
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Solution. The angles BAD and
BOD are inscribed in S, and sub-
tended by the same arc, so they are
equal; angle BAC is inscribed in S,
s0 ZBAC =1/,BOC. Consequently,
Z/BOD = /BAD =/, /BOC—that is,
OD is the bisector of the angle BOC.
It remains to notice that the bisec-
tor OD of the isosceles triangle BOC
coincides with its altitude.

Problem 8. In a trapezoid ABCD
(AD Il BC), the angle ADB is half the
angle ACB; BC = AC = 5; AD = 6.
Find the area of the trapezoid. (Hint:
the problem can be solved in a stan-
dard way, using, say, the Law of
Cosines. But a much shorter solu-
tion emerges if you notice that by
theorem 2 point D lies on the circle
through A and B centered at C. The
answer is 22.) (o

“THE ADVENT OF RADIO”
CONTINUED FROM PAGE 9

100 km, the strength of the electro-
static field decreases to 10~'2E, while
that of the electromagnetic field de-
creases only to 10™%E. In other
words, the electromagnetic field is
stronger than the electrostatic field
by a factor of 10% at 100 km! At
greater distances (100 km is a trifle
for radio communication), the pre-
dominance of E_over E; is even
greater.

There is another advantage of ra-
dio waves that we didn’t discuss
here. These waves can propagate in
any medium as long as its electric
conductivity isn’t too high. True, in
this case E_is subjected to some ad-
ditional attenuation, but a constant
field E, can’t pass through such a
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“PUBLISHER’S PAGE”
CONTINUED FROM PAGE 3

interval of 14 days.”

Perhaps our readers can provide
us with a calculation showing why
a lunar eclipse can last 3 hours 40
minutes, with totality lasting up to
1 hour 40 minutes.

Get out your “cowculatorg”!

No, I'll not revisit the subject of
my previous Publisher’s Page, “So-
lar Calculator.” I just wanted to alert
our readers to a new feature that
makes its debut in this issue of
Quantum. It’s a column called
“Coweculations,” and its author is
the esteemed Dr. Mu of the Univer-
sity of Wisconsin-Parkside. This
addition to our magazine comes as
a response to requests from readers
for a column devoted to computer
science and programming. We hope
you enjoy the algorithmic chal-
lenges Dr. Mu offers, beginning with
the one on page 37.

Thanks for your company
This will be the last Publisher’s
Page I'll write, although I may return
to this spot occasionally with a guest
editorial. Dr. Gerald F. Wheeler, the
executive director of NSTA and an
outstanding teaching physicist, will
become the publisher of Quantum.
He will write the next column, and
I look forward to reading what he
has to say.
—Bill G. Aldridge
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BRAINTEASERS

Just for the fun of it

B186

Cutting a thick EI. Cut the L-shape in the figure into two pieces and make
a square out of them so that the colored squares form a pattern that is
symmetric in the same lines as the large square itself.

'‘B187

Lost weight. A set of weights have masses 1g,2¢g,3g, ..., 101 g.
The 19-g weight was lost. Is it possible to divide the remaining
100 weights into two groups with the same number of pieces and
the same total weight? (V. Proizvolov)

B188

Physics of safety. It is safer to
jump from a precipice onto sand or
onto firm ground. Why?

B189

Cutting a thick Tee. Cut the T-
shape in the figure into four equal
pieces along the gridlines so that
each piece contains exactly one
marked square.

B190

Logic of chess battles. After the end of a one-round chess tournament in which every
two participants played each other once, the players A, B, C, D, and E, listed here in
the order they finished, shared their impressions. 1 would never have imagined that
I'd be the only one who'd finish without a single loss,” player B said. “And I'm the
only one who didn’t win a single game,” E sighed. Based on this information, try to
restore the entire table of the tournament: how each of the five participants played
against all the others. (In a chess tournament, the winner of each game gets one point,
and if the game is a stalemate (a tie) each player gets half a point. In this particualr
tournament, no two players got the same number of points.) (S. Guba)
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ANSWERS, HINTS & SOLUTIONS ON PAGE 53
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A flight to the Sun

An article from April 1986 whose speculations

would soon become reality

by Alexey Byalko

HERE IS A SAYING: “THE

most interesting surface is the

human face.” But is there a sur-

face in Nature that rivals the
human face in its pithiness and
unpredictability? Yes, indeed—the
surface of the Sun.

Look at the images of the Sun in
figure 1. Unfortunately they can’t
give a complete picture of the
beauty and complexity of the Sun.
Its surface is very heterogeneous—
no two places on it are alike—and all
this variety is constantly changing.
In addition, the appearance of the
Sun’s surface varies depending on
the wavelengths of radiation being
recorded. This occurs because solar
radiation of various wavelengths is
produced at different altitudes in the
Sun’s “atmosphere.”

The variety of phenomena at play
on the Sun’s surface—solar flares,
solar prominences, the spasmodic
appearance, movement, and disap-
pearance of sunspots, and so on—all
reflect the complicated processes
going on in the depths of our
daystar. Scientists understand
what’s happening in the Sun on the
atomic scale. For example, it’s
known how light affects the indi-
vidual atoms and how the atome
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flame, have
ed

interact with one another (atomic
hydrogen and helium account for
99.9% of the Sun’s mass). However,
there is a huge gap between atomic
distances (about 10 m~19) and the
size of objects discernible on the
Sun with a modern telescope—that
is, of the order of 10° m. Scientists
devise hypotheses, trying to explain

FROM THE KVANT ARCHIVES

theoretically what goes on within
this interval of 16 orders of magni-
tude. There are hypotheses dealing
with the hydrodynamics of the
Sun’s interior, the mechanism of
energy transfer from the interior to
the surface, and the structure of its
magnetic fields. But we still have a
long way to go in reaching a real un-
derstanding of solar physics. At
present we still lack a complete ex-
planation of solar flares, sunspots,
and many other phenomena on the
surface of the Sun.

A question naturally arises: what
keeps us from getting a closer look
at the Sun? And not only a look, but
a chance to study it with all the
means at our disposal?

Maybe the high temperature pre-
vents such a project? Electronic de-
vices are designed to work at ordi-
nary terrestrial temperatures
(around 300 KJ, but an apparatus
passing near the Sun would endure
far more intense heat. However, this
technical problem can be solved—
one can construct a refrigerated
compartment in a space vehicle fly-
ing to the Sun and keep it at room
temperature.

Of course, it might be harmful for
instruments in a space probe to pass



directly through the Sun’s corona
and the upper strata of the solar
atmosphere not only because of
overheating but for other reasons as
well. For example, powerful streams
of charged particles can cause radia-
tion damage in electronic devices.
Such streams of electrons and ions
are emitted during solar flares. Para-
doxically, a flight near the Sun at a
minimum distance of 4-5 solar ra-
dii is relatively safe, because a space
probe passing near the Sun at a dis-
tance less than 10 solar radii will
not remain there for longer than a
tew hours. The time is so small be-
cause the spacecraft’s speed is so
large. At a distance of four solar ra-
dii from the Sun’s center, the
probe’s speed will reach 300 km/s.
This value shows how powerfully
the Sun’s gravitational field acceler-
ates a body.

The primary reason we have
never sent a probe to the Sun is
completely unexpected at first
glance. It turns out to be very diffi-
cult to place a spacecraft into a tra-
jectory that passes near the Sun.
This seems rather strange: the Sun

July 14, 1995

Figure 1

The changing face of the Sun. These images were taken
from two sources, the joint ISAS/NASA spacecraft Yokoh
(top) and the National Solar Observatory at Sacramento
Peak in Sunspot, New Mexico (bottom). The images
fromYokoh are all in soft x-rays, and the ones from NSO

August 1, 1995

is the major source of attraction in
the solar system, so one might
think it would draw any massive
object to itself all on its own. How-
ever, the planets revolve around the
Sun and do not fall into it. Such a
fall is prevented by the velocity of
each planet, which is directed per-
pendicular to the line connecting
the planet and the Sun. And that’s
the point: to come near the Sun, one
must compensate for the initial ve-
locity, which for a rocket launched
from the Earth is equal to the veloc-
ity of the Earth’s revolution around
the Sun.

This velocity is known to be
about 30 km/s. If we could stop the
rocket in its tracks by giving it a
velocity of 30 km/s opposite the
Earth’s velocity, then the fall into
the Sun would be inevitable. How-
ever, 30 km/s is a very large veloc-
ity. (The orbital speed for satellites
near the Earth’s surface is about
7.9 km/s.) Up to now no rocket has
been accelerated to such a speed.
Certainly it’s possible in principle:
one can construct a multistage
rocket, but then the payload—that

August 18, 1995

is, the mass of the probe—would be
too small. Nevertheless, let’s calcu-
late the time necessary for such a
flight from the Earth to the Sun
(we'll need it below).

The trajectory of a fall to the Sun
(a straight line segment) is the lim-
iting case of an elongated elliptical
orbit whose semimajor axis is equal
to half the radius of the Earth’s orbit.
According to Kepler’s third law, the
squares of the periods of revolution
of bodies are related as the cubes of
the semimajor axes of their orbits.
So the time ¢ of a fall to the Sun (that
is, half the period of revolution along
an elongated orbit with semimajor
axis R;/2) can be found from the
equation

(20)° _(Re/2)’

T R}

7

where Ty and R; are the period of
revolution and the radius of the
Earth’s orbit, respectively. Since
T, =1vyear, t=1/4/2 year=0.177 year.

The period of a flight straight to
the Sun turns out to be not very
long, but the necessary initial veloc-

August 29, 1995

are the K emission line from Ca II. The images in each pair
were taken on the same day, though not necessarily at the
same time. (From the National Space Science Data
Center’s Photo Gallery on the World Wide Web:
nssdc.gsfc.nasa.gov/photo_gallery/photogallery-solar. html)
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ity for such a flight is still unattain-
able. How, then, can we set up a
flight to the Sun with minimal en-
ergy expenditure—that is, with a
minimal launch velocity? The most
economical flight uses Jupiter’s
gravitational field to decelerate the
spacecraft in its orbit around the
Sun. To carry out such a maneuver,
the probe must approach Jupiter
with a specific velocity. And to en-
sure this, the probe must overcome
the Earth’s attraction and be placed
in orbit with an initial velocity rela-
tive to the Sun of v, = 40.5 km/s.
Consequently, relative to the Earth,
the probe’s velocity must be equal to
10.5 km/s. Therefore, the flight be-
gins with an acceleration of the
rocket in the direction of the Earth'’s
orbital velocity. What velocity must
be imparted to the rocket?

To overcome the Earth’s attrac-
tion, a body must be given kinetic
energy of no less than gR;. This ki-
netic energy corresponds to an escape
velocity v, = w/m =11.2 km/s. Pay
attention, now! Don’t add this num-
ber to the previously calculated
value of 10.5 km/s to obtain the ini-
tial velocity! It’s the law of conser-
vation of energy that gives the initial
starting velocity for a rocket
launched from the Earth:

|
|
|

2
Ve =+(Vo—ve) +28Re
=155 km/s.

Jupiter
©

the Earth at the moment
of maximum approach
of the spacecraft to the Sun 7

~ P

Figure 2

Trajectory of a flight to the Sun with

minimal starting velocity. The numbers
along the trajectory show the flight time in

years. When the spacecraft crosses

Jupiter’s orbit after a 1.35-year flight, it

approaches Jupiter and the planet reduces
the probe’s velocity to zero relative to the
Sun. At this point the probe begins to free

fall to the Sun.
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By the way, do you
know where the best
launch location is on
Earth (taking into ac-
count only the energy re-
quirements of the launch
itself)? It’s Mt. Kiliman-
jaro in Tanzania, the
highest mountain in Af-
rica (alt. 5,900 m), which
is located almost at the
equator. Due to the
Earth’s flattened shape,
the top of Mt. Kiliman-
jaro is the point on Earth
that is most remote from
the Earth’s center (farther
than Everest!). Here the
acceleration due to grav-
ity is the smallest on
Earth. The mountaintop
is always covered with
snow, however, and as yet
no one is planning to
build a launch facility
there.

Let’s continue our flight. The
spacecraft passes along part of an el-
liptical orbit, crossing the orbit of
Mars and approaching that of Jupiter
(fig. 2), the largest planet in the so-
lar system and the probe’s interme-
diate goal. Jupiter will decelerate the
spacecraft relative to the Sun, and
then the probe begins its fall toward
the Sun. For Jupiter to be at the in-
tersection of its orbit and that of the
probe, at the time of launch Ju-
piter must be located at the
point marked with zero time
in figure 2. We also have to
make sure that the probe is far
enough from Mars when it
crosses that planet’s orbit so
that its trajectory isn’t affected
by the gravitational field of the
red planet.

After the spacecraft enters
the gravitational field of Jupi-
ter, it continues to travel
along a hyperbolic trajectory
around this planet (fig. 3). As
aresult of the law of conserva-
tion of energy, the velocities
of the flight to and from Jupi-
ter at symmetrical points
along the hyperbola are iden-
tical in magnitude, but their

VI=13.il<m/s\\\ b

Figure 3

Trajectory of the spacecraft near Jupiter in the
planet’s reference system. A diagram of the
velocities (a) before approach and (b) after
approach is given on the right.
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directions might differ drastically.
So the probe must be placed in a tra-
jectory around Jupiter such that its
speed (relative to the planet) u, is
equal to Jupiter’s orbital speed (rela-
tive to the Sun) v, =13.1 km/s. The
direction of this fly-by must be such
that, as it moves away from Jupiter,
the spacecraft’s velocity at the point
symmetrical to the starting point of
the fly-by is directed counter to
Jupiter’s orbital velocity. At this
point the spacecraft’s velocity rela-
tive to the Sun is approximately
zero and, under the influence of the
Sun’s attraction, however small it is

at this distance, the spacecraft will

begin its slow approach to the Sun.
These conditions are met when the
station’s speed relative to the Sun at
the initial moment of the flight
around Jupiter is equal to
v, = 14.3 km/s (see figure 3). This
value in turn determines the start-
ing speed of the spacecraft relative
to the Sun: 40.5 km/s.

Thus, in the reference frame of
Jupiter, the probe’s trajectory (near
the planet) is a hyperbola. In the
Sun’s reference frame, this part of
the trajectory looks more compli-
cated (fig. 4 on page 20).

Art by Ula Likhtman
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Figure 4

Trajectory of the spacecraft during its
approach to Jupiter in the Sun’s
reference system. The numbers along
the curve show the times relative to
the moment of the probe’s closest
approach.

What is the duration of such a
flight to the Sun? Earlier we esti-
mated the duration of the fall to the
Sun along a straight line. In the
present case, when free fall begins
from Jupiter’s orbit, we must use the
period of Jupiter’s revolution around
the Sun, which is T; = 11.86 years,
rather than an Earth year (although
we continue to measure the time in
Earth years). This yields a free-fall
time of TI/4\/§ = 2.1 years. This
value is added to the time it takes to
travel along the elliptical part of the
trajectory (before the “meeting”
with Jupiter), which is equal to
1.35 years. The total time necessary
for the flight to the Sun is almost
3.5 years.

Looking at the trajectory of such
a flight (fig. 4), we might think that
it is Jupiter that sends the probe to
the Sun. In reality, it is people who
direct the spacecraft. As the probe
approaches Jupiter, it is necessary to
make a correction to the trajec-
tory—even a small error in the
choice of the altitude of the fly-by or
the speed of approach to the planet
could ruin the entire solar research
effort. One other correction must be
made after the fly-by to eliminate
residual deviations and to precisely
assign the distance at which the
probe will approach the Sun.

One of the key concepts in this
method—using the attraction by an
intermediate planet to change the
velocity—has already been used in
actual space flights. One example is
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the flight to Venus by the Vega-1
and Vega-2 spacecraft, which, after
flying past the morning star, headed
off toward Halley’s comet.

We need to understand the physi-
cal phenomena occurring in the Sun.
We cannot predict all the conse-
quences of the knowledge we will
acquire. But by way of comparison,
recall the heroic era of the great geo-
graphical discoveries, when we be-
came familiar with our own planet.
It’s quite possible that our times will
someday be called the era of the
great space discoveries. The first
flight to the Sun will surely be one
of its shining achievements.

Addendum

While Alexey Byalko was writing
this article, plans were underway at
the National Aeronautics and Space
Administration (NASA) and the Eu-
ropean Space Agency (ESA) to
launch a probe to the Sun, which
came to be called Ulysses. Launched
by the Space Shuttle Discovery in
October 1990, Ulysses indeed flew
by Jupiter in February 1992, as the
author prescribed above. The space-
craft entered a polar orbit of the Sun,
passing over the south pole in 1994
and the north pole in 1995.

As described by NASA, the
Ulysses mission

explored for the first time the high lati-
tude heliosphere away from the plane of
the ecliptic. The primary results of the
mission have been to discover at these
high latitudes the properties of the solar
corona, the solar wind, the heliospheric
magnetic field, solar energetic particles,
galactic cosmic rays, solar radio bursts
and plasma waves. Other investigations
include study of cosmic dust, gamma
ray bursts, and studies of the Jovian
magnetosphere obtained during the Ju-
piter fly-by.

Ulysses has completed the first
phase of its mission and has now
embarked on a second orbit of the
Sun. A wealth of information about
the project is available on the World
Wide Web. Good places to start are
the NASA Ulysses home page
(http://ulysses.jpl.nasa.gov) and the
ESA Ulysses home page (http://
helio.estec.esa.nl/ulysses).
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" HOW DO YOU
FIGURE?

Challenges in physics and math

Math

From corner to corner. Nine checkers
are placed in the lower left corner of
an ordinary 8 x 8 chessboard to form
a3 x 3 square. A checker a can jump
over any other checker b onto a
square symmetric to a about b if this
square is free. Is it possible to jump
the entire 3 x 3 square of checkers
into the (a) upper left, (b) upper right
corner of the chessboard following
this rule? (Y. Briskin)

M187

Circumscribed cutoffs. Prove that of
the n quadrilaterals cut from a con-
vex n-gon by its diagonals (subtend-
ing triples of consecutive sides) no
more than n/2 can have inscribed
circles. Give an example of an octa-
gon that has four such quadrilater-
als. (N. Sedrakyan)

M188

Battleship strategy. The game of
Battleships is played on a 7 x 7
“ocean.” What is the smallest num-
ber of shots that must be made to hit
(at least once) a four-square ship if (a)
itis a I x4 rectangle of unit squares,
(b) it is a “tetramino” piece of un-
known shape (that is, it consists of
four squares connected across their
sides)? (A. Kholodov)

M189

Fibonacci function. Prove that the
Fibonacciseries 1, 1,2,3,5, 8,13, ...,
each of whose numbers is the sum
of the two preceding numbers, con-

tains no less than four and no more
than five m-digit numbers for each
m2>2.

M190

Distribution of arc lengths. Twenty-
one points are marked on a circle.
Prove that at least 100 arcs with
these points as endpoints have de-
gree-measures not exceeding 120°.
(A. Sidorenko)

Physics

P186

String on a ball. One end of a string
of length I is at-
tached to the top of
a sphere of radius R
(fig. 1). At a certain
moment the string
is released. Find its
acceleration at this
moment. (Ignore
the effect of fric-
tion.) (A. Bytsko)

P187

Falling charge. A point mass M car-
rying a charge Q is placed at a dis-
tance L from an infinite conducting
plane and then released. How long
will it take the particle to reach the
plane? The force of gravity is absent.
(Hint: use the method of mirror im-
ages.) (A. Bytsko)

P188

Cooking under pressure. A small
amount of water is poured into a
pressure cooker, which is then
closed tightly and set on a hot plate.

Figure 1

By the time all the water has evapo-
rated, the temperature of the pot is
115°C and the pressure inside is
3 atm. What portion of the volume
of the pressure cooker was occupied
by water before it was heated? The
initial temperature was 20°C. (A.
Sheronov)

P189

Sunlit plate. One side of a thin metal
plate is illuminated by the Sun.
When the air temperature is T, the
temperature of the illuminated side
is T}, while that of the opposite side
is T,. What would be the tempera-
tures of the both sides if this plate is
replaced by another that is twice as
thick? (E. Ponomarev)

P190

Fresnel prism. When light strikes a
Fresnel prism at a right angle (fig. 2),
it’s split into two beams that are re-
fracted by

each .half of —

the prism and =

then interfere —>

with each — 3 S
other. At what

maximum

distance from —>

the prism will

the interfer- )

ence pattern rigure 2

will still be
observed? The distance between the
apexes of the prism S = 4 cm, the re-
fractive index of the glass n = 1.4,
and the prism angle o = 0.001 rad.
(V. Deryabkin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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AX by sea

GIDESTO: B O B b TS

Actually, ax + by = c—a problem genre that's 1,600 years old

by Boris Kordemsky

HE PLOT AND THE NOTA-

tion of the problem kept chang-

ing, but its essence remained

the same: find integers (usually
positive integers) x and y that satisfy
the equation

(1)

with given integer coefficients a, b,
and c.

Perhaps c is the Thousand and
One Tales of the Arabian Nights,
and we want to know how many
nights Scheherazade will be able to
spin them if she tells five stories a
night for x nights and three stories a
night for the other y nights. Clearly,
her stock of stories will suffice for
x + y nights, where x and y are the
positive integer roots of the equation
5x +3y =1,001.

Or maybe c is 10 rubles and 1 ko-
peck (1/100 of a ruble) spent by
someone for x bus trips (at 5 kopecks
per trip) and y streetcar trips (at 3
kopecks per a trip).! Then the an-
swer to the question of how many

ax+by=c

IThis certainly doesn’t matter for
the mathematics, but you may be
interested to know that due to inflation
and the increase in prices, a bus trip in
Moscow is currently 30,000 times as
expensive, and for the street car you
have to pay 50,000 times more than
when this article was written.—Ed.

YA

5%+ 3y = 1001

=2 4

trips were made is given by the same
equation 5x + 3y = 1,001.

The solutions to this equation
also tell us something about the
points on the line 5x + 3y = 1,001
(see the figure above) whose roots
are both positive integers (or just
integers, perhaps, in some other
problem).

Equations in integers are often
called Diophantine equations after
Diophantus of Alexandria, the fa-
mous Greek mathematician of the
2nd and 3rd centuries A.D.

The conditions for the existence of
integer solutions to equations of the
form ax + by = ¢ can be found in the
article “Divisive Devices” by V. N.
Vaguten in the September/October
1991 issue of Quantum (see also “Go
‘Mod’ with Your Equations” in the

January/February 1992 issue). We
won’t dwell on the theory here.
Rather, we’ll simply take up the par-
ticular equation 5x + 3y = 1,001 to
demonstrate various techniques for
solving equations in integers.>

The method of the “ingenious Student”

Divide both sides of the equation
5x + 3y = 1,001 by the smaller coef-
ficient:

5 .. 1001
3 XtV =g

extract the integer parts on the right
and on the left:

X+%X+y=333+%,
3 3

or

Z(X - l)
X+y+ 5 =333. (2)
Since x and y are integers, the num-
ber (x - 1)/3 must be an integer as
well. Denote it by t. Thenx = 3¢t + 1.
Plugging this into equation (2], we

2Recall only that the existence of a
solution to equation (1) is ensured by
the condition GCD(a, b) = 1 (where
GCD is the greatest common divisor),
so the equation 5x + 3y = 1,001 does
have an integer solution.
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get 3t + 1+ y + 2t =333, and so
y =332 - 5t.

In “Divisive Devices,” it is
proved that these expressions for x
and y form the general solution to
our equation—that is, they run
through all its integer solutions as ¢
ranges over the set of all integers.

Assigning the values 0, 1,2, ..., 66
to the parametert, we'll find 67 pairs
of possible positive integer roots of
the equation.

Now suppose additionally that
Scheherazade wants to spread her
thousand and one tales over as many
nights as possible.? That is, we have
to find max(x + y)—the maximum
sum of the pairs of roots of our equa-
tion.

Since x + ¥y = 333 - 2t, max(x + y)
is attained for £ = 0. So Scheherazade
can spread the tales over at most 333
nights (by telling three stories a
night for 332 nights and five stories
only once). She can shorten her
“work” to 201 nights (which is
hardly in her best interests) by relat-
ing five stories a night for 199 nights
and two stories a night only twice.
This solution results if we take the
largest possible t—that is, t = 66.

An additional questicn to mull over

Suppose that, solving a certain
equation in integers by the “inge-
nious student” method, you arrive
at the equation

X+y+4y3_1:77.

What should your line of reasoning
be, and what should you do to prop-
erly express x and then y in terms of
an integer parameter t?

The method of the “ingenious
mathematician”

For the general equationax + by =¢
(with, say, a > b), the procedure* is as
follows: find the remainder m of a
when divided by b and the remainder

30f course, under the condition
that she relates either three or five
tales each night.

4The inventor of this method, L. F.
Taylor (Numbers, London, 1970),
didn’t give any special name to it.
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n of ¢ when divided by b. If n = 0,
then we immediately get

where t =0, £1, 2, ... If n 20, we
successively multiplymby 1, 2, ...,
b - 1 and write out the sequence of
the remainders of these products
when divided by b. This sequence
will contain the number n (other-
wise, the equation has no integer
solutions). Then one of possible val-
ues of x is simply the number of the
position of n in the sequence.

For example, let’s apply this method
to our equation 5x + 3y = 1,001. We
havem =2, n=2. Multiplym =2 by
each of the numbers 1,2 = b -1 to
obtain 2, 4. Divide these by 3 and
write out the remainders: 2, 1. The
number n is in the first position
here, so we can take x = 1. This de-
termines the corresponding value of
y:y =332.

And there we have it: an easy and
completely general method of solv-
ing linear indeterminate equations
in two integer variables!

But the “ingenious mathemati-
cian” method, unlike the previous
method, gave us only one pair of
roots: (1, 332). Is this a defect of the
method? Not at all! Consider the
general solution of the problem ob-
tained by the “ingenuous pupil”
method: x = 1 + 3¢, y = 332 - 5¢.

The partial solutions x, = 1,
¥, = 332 are the same in both cases,
while the coefficients at ¢ (3 and -5)
are determined by the coefficients of
the equation in question: 3 = b,
-5 = —a. And this isn’t just a matter
of chance. On the contrary, it’s a
general rule: if (x,, y,) is a solution to
the equation ax + by = ¢, where a
and b are relatively prime riumbers,
then all of its integer solutions are
given by the formulas x = x, + bt,
y=y,—at, where t =0, £1, £2, ....

The method of congruence

This is a pleasant way, and often
the quickest way, to find integer so-
lutions to the equation ax + by = c.

It will suffice to recall that the

notationa =b (mod m) (read as “a is
congruent to b modulo m”) means
that a — b is divisible by m; or,
equivalently, that a = b + km (m is
a positive integer, and g and b are ar-
bitrary integers).

Further, if a = b (mod m), then
a=b + km (mod m) for any integer k.
For instance, let 3x=2 (mod 5). Then
we have 3x =2 +2 - 5 (mod 5,
3x =12 (mod 5), and, finally, x = 4
(mod 5). (It should be noted that the
division of both parts of a congru-
ence modulo m by their common
factor g is legitimate only if g and m
are relatively prime numbers.)®

A preliminary example. Suppose
we want to solve the congruence
11x =2 (mod 23). It would be im-
practical to keep adding 23 to the
right-hand side until we get a mul-
tiple of 11. Let’s look for a more el-
egant procedure. For instance, we
note that 22x =4 (mod 23) and sub-
tract 23 from the left side. This
yields —x = 4 {mod 23), and, finally,
x =19 (mod 23).

In the case of our initial equation
5x + 3y = 1,001, the congruences
work as follows: 3y = 1,001 — 5x;
3y = 1,001 (mod 5). Since 1,001 -
200 -5 + 1, we have 3y =1 (mod 5,
or 3y = 6 {mod 5). So y =2 (mod 5),
which means that y = 2 + 5k (k = 0,
*1, 2, ...). This solution is clearly
equivalent to the one obtained
above:y =332 -5t (t=0,£1,£2, ...).

The method of continued fractions

This method involves transform-
ing an ordinary fraction a/b, com-
posed of the coefficients of the equa-
tion ax + by = ¢, into the continued
fraction

a
which is written briefly as

%s[ao;al,aZ,...an].

SMany interesting facts about
congruence can be found in the two
articles mentioned in the first section
of this article.



The numbers

p—kz[ao; a,ay,...,a;,k=0,1,...,n
Qk
—called the convergents of the con-
tinued fraction—can be calculated
by an inductive process using the
recurrent formulas

Py =Pty + Py
Qk+1 = Qk.ak+1 + Qk—l’
where Py=a,, Q,=1,P,=qa,-a, +1,
and Q, =a,, k=0,1,2, .... Having
computed the numerator and de-
nominator of the next-to-last con-
vergent P, _,/Q, , directly or using
the recurrences above, we can com-
plete the solution of the equation by
applying the ready-made formulas®
representing its general solution in
terms of these numbers:

x=(-1)""c.Q,, +b-t,
y=(-1)" ¢ P -a-t,

) e Py N
t=0,£1,%2

Let’s return to the equation
5x + 3y = 1,001 for one last time. Per-
form the transformation of the num-
ber 5/3 into a continued fraction in
detail:

B _a_,
Q I 7
P 1 2
~ =dt—=—;
Q aq
P, 1 5
—==ay+ g
Q a +—
ay

®These formulas are derived in
most books on the elementary number
theory. See, for instance,
Mathematical Excursions by H. Merril
(Dover Paperback, 1957).

(Actually, we don’t need the last
convergent. Besides, it always
equals the given fraction. We give
this formula only to recall once
again how the convergents are cal-
culated directly from the definition.)

Since we have here n = 2, the nu-
merator P, | and the denominator
Q,_, of the next-to-last convergent are
P, _,=P =2

Qn—l = Ql =ls
Now we’re in a position where
formulas (3) can be applied:

x=-1-1,001-1 +3t,
y=1-1,001-2-5¢

and, finally,

x =-1,001 + 3t,
y =2,002 - 5¢,

where t =0, £, +2 ...

The answer looks different again,
but you can easily verify that it’s
equivalent to its preceding forms.
Here the particular solution x = 1,
y = 332 emerges for t = 334.

Now let’s solve one final problem.

Atter a shipwreck

Five sailors disembarked on an is-
land and gathered a pile of coconuts
before it got dark. They postponed
dividing them up until the next
morning. One of the sailors woke up
at night, counted what they had col-
lected, gave one coconut to the mon-
key they had with them, and took
exactly 1/5 of the rest for himself.
Then he went back to bed and was
asleep in a minute. Some time later
a second sailor woke up and re-
peated all these actions. Then, in
turn, so did the other three. None of
them had the slightest idea of what
the others had done. In the morning
they divided the remaining coconuts
in equal parts, but this time the
monkey got nothing. How many
coconuts did the sailors gather?

Solution. Denote by x the un-
known number of coconuts. We can
write down the transformations that
the number of the coconuts in the
pile underwent as the following chain
of equations: x = 5a + 1; 4a = 5b + 1;
4b=5c+1;4c=5d + 1;4d = 25y + 1.
(Ileave it to the reader to tease out the

sense of these equations.)

This system of simultaneous
equations reduces to one indetermi-
nate equation:

256x =2,101 + 15,625y.

A quick solution of this cumbersome
equation will be a nice reward for
your patient work on the four meth-
ods presented above. You can choose
the method that’s most efficient for this
particular problem. The smallest (posi-
tive, of course) answer is x = 3,121.
In Mathematical Puzzles and Di-
versions, Martin Gardner describes
this problem as one of the most fre-
quently attempted yet least mastered
Diophantine puzzles. After this prob-
lem appeared in The Saturday
Evening Post in 1926, letters contin-
ued to arrive for some 20 years, either
requesting or proposing a solution.

Exercises

1. Find integer solutions of the
equation 10x + 21y = 23 using each
of the four methods described in this
article.

2. Find a two-digit number such
that the digit in the ones place times
eight is 13 less than the digit in the
tens place times three.

3. A number of tourists were
brought by bus to a railroad station
in five equal groups. (Each bus holds
no more than 54 persons.) Seven
other persons joined them there, and
they all were evenly distributed in
14 railroad cars. What was the total
number of tourists?

4. Are there any integer points on
the line 13x - 5y + 96 = 0 whose co-
ordinates do not exceed 10 in abso-
lute value?

5. Letn be a positive integer. Find
all integer solutions to the equation

nx + (n+ 1)y = 2n + 1.

6. Fifteen liters of a liquid must be
poured into bottles of volumes 0.5 1
and 0.8 1 so as to fill all the bottles
completely. How many bottles of
each kind will be needed?

7. Prove that for any odd x the
congruence x? = 1 (mod 8) is true—
that is, the square of any odd integer

yields a remainder of one when di-
vided by eight. (@
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IN THE LAB

In Foucaults footsteps

A simple experiment demonstrating the Coriolis force

by M. Emelyanov, A. Zharkov, V. Zagainov, and V. Matochkin

HE FIRST EXPERIMENT
proving that the Earth rotates
on its axis was done by Jean
Bernard Léon Foucaultin 1851.
This article describes a simple ex-
periment that also demonstrates the
Earth’s rotation quite clearly.

Imagine a large cylindrical vessel
with a funnel at the bottom (fig. 1).
The vessel is filled with water and
suspended from the ceiling by a long
cord. Initially the funnel is closed and
the vessel is at rest relative to the
Earth. What will occur when the fun-
nel is opened at the bottom? For sim-
plicity let’s imagine we're conducting
our experiment at the North Pole.

At the point where the vessel
joins the funnel, the water flowing
out has not only a vertical but also
a horizontal velocity. Let’s denote
the horizontal projection of the
water’s velocity relative to the ves-
sel by v,. This value v, depends on
both the height of the water column
above this level and the distance
from the vessel’s axis.

The presence of a nonzero hori-
zontal velocity v, gives rise to a
Coriolis force. Figure 2 shows the
counterclockwise direction of the
Earth’s rotation, the velocity v, and
the Coriolis force F acting on a cer-
tain layer of water. This force affects
every bit of the water and produces
a torque relative to the cylinder’s
symmetry axis. This causes the wa-
ter to rotate. Since there is friction
between the water and the wall of

26 NOVEMBER/DECEMBER 1906

Figure 1

Experimental setup: (1) cylindrical
vessel; (2) funnel; (3) soft rubber with
a stiff base; (4) cord; (5) string from a
badminton racket.

the vessel, the vessel will also ro-
tate, and the direction of this rota-
tion coincides with that of the Earth.

As the water pours out of the fun-
nel, the velocity v, decreases, as
does the Coriolis force (because F ~
v,). How will the water move under

the influence of this variable force
F.? The angular acceleration pro-
duced by this force decreases, but
the angular velocity of the water
increases, though more and more
slowly.

The rotation of the vessel causes
a winding of the cord that holds it.
This produces a restoring torque,
which increases with the angle of
winding. Since the Coriolis force
(which eventually causes the water
in the vessel to rotate) decreases
with time, there will be a moment
when the torque due to this force is
canceled by the increasing torque of
the elastic force due to the cord.
Then the torque due to the cord be-
comes greater than that produced by
the Coriolis force. As a result, the
angular velocity of the vessel is
slowed, although the cylinder still
rotates in the same direction as the
Earth.

At a certain point the vessel stops
and begins to rotate in the opposite

Figure 2

Top view of the whirlpool in the
vessel.
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direction due to the torque of the
cord acting on it. The cylinder’s an-
gular velocity increases, and the re-
storing torque decreases as the cord
unwinds. The torque due to the Co-
riolis force (which decreases as be-
fore) acts counter to the rotation of
the vessel and slows its acceleration.
At a certain moment the decreasing
torque due to the cord becomes less
than the torque due to the Coriolis
force, and then the angular velocity
begins to decrease. Then the cycle
repeats itself.

When we did the experiment, we
used a cylindrical vessel 25 cm in
diameter and 30 cm high (fig. 1). At
the bottom of the vessel we attached
a funnel with an opening at the bot-
tom that was 8 mm in diameter. We
then attached a sleeve on the spout
with four symmetrically placed
screws. Using a string wound
around each pair of opposing screws,
we rigged a piece of soft rubber that
had a stiff backing so that it closed
the spout. We knotted the string on
one of the screws.

To hang the device from the ceil-
ing, we used a string from a badmin-
ton racket (about 2.5 m long). (You
could use two strings, wound in op-
posite directions, to eliminate
sidewards motion during the rota-
tion.) We filled the vessel with wa-
ter almost up to the rim, and after
the system settled down we burned
the knot on the thread. In every case
we observed the same phenomenon:
as the water flowed through the fun-
nel, the suspended vessel rotated
first counterclockwise, then clock-
wise.

You can also do this experiment
with a glass funnel suspended from
a pair of fishing lines. It turns out
that the angle of the vessel’s rotation
depends very much on the diameter
of the funnel’s spout. On the one
hand, the smaller the hole, the more
pronounced the effect from the Co-
riolis force. On the other hand, the
role of viscosity increases as the di-
ameter of the opening decreases. We
managed to observe a significant
amount of rotation using a funnel
containing 1 1 of water that had a
5-mm opening at the bottom.  [@)
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Art by Dmitry Krymov

HE POPULAR GAME OF BIL-

liards requires not only a sharp

eye and a sure hand, but also

accurate-calculation. The leg-
endary hero of the Civil War in Rus-
sia, Marshal Semyon Mikhailovich
Budyonny, used to say, “When I play
billiards, I take lessons in physics
and mathematics.”

The art of playing billiards in-
cludes many fine tricks involving off-
center strokes. These make the ball
spin and, due to the friction against
the cloth covering the table, curve its
path. Effects of this sort were de-
scribed by the well-known French
engineer and physicist Gaspard Co-
riolis in his book The Mathematical
Theory of the Phenomena of Bil-
liards, published in 1835.

Here we'll consider only the sim-
plest rectilinear motion of a billiard
ball and the trajectories that result
from collisions with the bumpers of
variously shaped tables. After each
collision the ball is reflected accord-
ing to the familiar law of optics: The
angle of incidence equals the angle of
reflection (fig. 1). So the path of the ball
coincides with the path of a ray of light.
Note, by the way, that a photon can
be regarded (in problems involving re-
flection) as a small billiard ball.

Figure 1 |

Let’s begin with this problem:
Given the location of the ball on a
billiard table, determine the direc-
tion in which it must be struck so as
to hit a bumper and reflect into the
pocket at a given corner.

To solve this problem, imagine
that the bumper is replaced by a mir-
ror (fig. 2). Then the motion of the ball
in the mirror after it hits the bumper
(mirror) will continue the straight
motion it had before the collision.
Draw the image of the billiard ball as
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Figure 2

reflected in the given bumper and join
the initial position of the ball with
the reflection of the chosen corner
(fig. 3). Now the required path of the
ball is obtained by reflecting the seg-
ments of these lines about the corre-
sponding bumpers.

Figure 3

The next problem is a bit more diffi-
cult. Two balls are on the table, one red,
the other white. Strike the red ball so
that, after reflecting from the bumpers
AB and BC, it hits the white ball.

Here again mirror reflections are
helpful. First we reflect the table
about AB and let C, be the image of
C. Next we reflect the table’s reflec-
tion about BC,. Then we join the re-
flection of BC about AB. Now we
join the second reflection of the
white ball with the red ball and “fold
back” the line thus obtained. It will
give the required path (fig. 4).

And how will the ball move on a cir-
cular billiard table? It’s clear that all the

Figure 4
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chords traced by the ball between two
collisions with the bumper are the
same length. Therefore, the ball’s
path will either be a regular convex
polygon or a regular star polygon, or
it will never close and the ball will
sweep out a certain ring (fig. 5).

It’s very interesting to watch the
motion of the ball on an elliptical bil-
liard table. The boundary of such a table
can be defined as the locus of points M
the sum of whose distances from two
fixed points F, and F, (called the foci of
the ellipse| is constant: F;, M + F,M =2d,
for some number d (fig. 6).

M

F\M + MF, = 2a
Figure 6

The ellipse has a remarkable prop-
erty: a ball started from one of the foci
will pass through the other after reflec-
tion on the table. This is called the op-
tical property of the ellipse. One of its
consequences is the fact that a ball that
starts inside the ellipse, on a point on
line F, F, but outside the segment F, F,,
will never cross the segment (fig. 7).

Mathematicians have long
sought a polygon that would have
two points M, and M, inside it such
that a ball that starts at M, could
never reach M, (fig. 8). At present

most mathematicians believe that
such a polygon is impossible, al-
though this has not been proved.
At the same time, it’s not difficult
to devise a curved “billiard table”

Figure 8

with this property. One example of
such a table is shown in figure 9. The
arc AD here is half an ellipse with foci
at points B and C; the arcs AB, BC,
and CD are semicircles. As was men-
tioned above, a ball that starts from a
point M, in one of the smaller semi-
circles will never cross the segment
BC, so it will never hit any point M,
in the bigger semicircle.

Figure 9

Mathematicians study the trajec-
tories of a ball in even more intri-
cately curved billiard tables. Why?
Solutions to these types of problems
help us understand the laws of mo-
tion of gas molecules or beams of par-
ticles in closed volumes, and these
laws are useful in many areas of phys-
ics—in particular, in quantum elec-
tronics. The molecules are reflected
off the walls exactly like a ball from
the bumper of a billiard table. (@
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PHYSICS
CONTEST

The nature of hight

“The invisible influences of gravitation and electromagnetic fields
remain magic; describable, but nevertheless implacable,
nonhuman, alien, magic."—B. K. Ridley

by Arthur Eisenkraft and Larry D. Kirkpatrick

IGHT PLAYS SUCH A CRUCIAL

role in our lives that it’s very

hard to imagine a universe with-

out light. Almost all of the infor-
mation that we receive from outside
our solar system comes to us in the
form of light. Observations of the
heavenly bodies and attempts to
find regularities in their motions led
to tremendous advancements in sci-
ence and the modern-day scientific
method. Studies of light and color
revolutionized painting and the fine
arts. The invention of the electric
light allowed us to work and study at
night. More recently the invention of
lasers has had profound effects on our
abilities to understand the world
around us and to make great advances
in technology used in such areas as
surgery, cutting, welding, surveying,
communication, the arts, advertising,
and manufacturing.

But what is light? How do we de-
scribe its behavior? We have two
basic models that we can use to de-
scribe light—particle behavior and
light behavior. The debate over the
best way to describe light has been
waged for centuries. Newton felt
that light was composed of tiny par-
ticles that traveled very fast. He
used this idea to predict that light
would travel faster in transparent
materials like water and glass than
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in air. By the time the speed of light
in water was measured by Jean Fou-
cault in 1862 as slower than in air,
the particle model for light was al-
ready out of favor. By 1801 Thomas
Young had demonstrated the inter-
ference of light, a uniquely wavelike
effect, and the wave model for light
dominated for the next century.

As we discussed in the May/June
1995 issue of Quantum, Albert
Einstein reintroduced the particle as-
pect of light in 1905 to explain the
observations of the photoelectric ef-
fect. Einstein said the light can be-
have like a particle (known as a pho-
ton) that has an energy E = hf, where
h=6.63-10"3*]-sis Planck’s constant
and f is the frequency of the light.

Additional verification of these
revolutionary ideas was provided by
Arthur Holly Compton, the son of a
Presbyterian minister. Compton
was “turned on” to the study of X
rays by his older brother and friend
Karl. It was known that X rays are
another form of electromagnetic ra-
diation similar to visible light and
radio, infrared, and ultraviolet
waves. Therefore, the puzzle of light
was the puzzle of X rays.

Compton’s investigations began
with the study of the angular distri-
bution of X rays from crystals, for
which he was awarded a Ph.D. from

Princeton University in 1916. In his
research Compton learned about
Bragg scattering and was able to
measure the wavelengths of X rays
rather accurately. He discovered
that the wavelengths of some of the
X rays scattered by matter were
lengthened.

After rejecting classical explana-
tions for these observations, Comp-
ton combined Einstein’s ideas about
photons and relativity and emerged
with a simple explanation for his
observations. He assumed that X
rays consisted of photons with en-
ergy E = hf and momentum p = E/c.
When a photon undergoes a colli-
sion with an electron, some of the
energy and momentum of the pho-
ton is transferred to the electron,
reducing the energy of the photon
and consequently increasing its
wavelength. Using the relationship
M = ¢ for electromagnetic waves,
where X is the wavelength and ¢ is
the speed of light, Compton was
able to calculate that

AM-A= i(1— cosf),
mc

(1)
where X’ and 8 are the wavelength and
scattering angle of the scattered pho-
ton and m is the mass of the elec-
tron. Compton verified this effect
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experimentally and it is now known
as the Compton effect. It is interest-
ing that Compton was the one who
suggested the name “photon” for
light when it acts like a particle.
Compton shared the 1927 Nobel
prize in physics with Charles Wil-

son, the inventor of the cloud cham-

ber.

Later Compton studied cosmic
rays and helped to establish that
cosmic rays are charged particles
rather than high-energy electromag-
netic waves. After working on the
Manhattan Project during World
War II, Compton became the chan-
cellor of Washington University in
St. Louis. His brothers became presi-
dents of the Massachusetts Institute
of Technology and Washington
State University, both alma maters
of one of your authors (LDK).

By the way, how does the debate
about the nature of light come out?
We now believe that light exhibits
both particle and wave aspects de-
pending on the types of measure-
ment that we make. This is known
as wave—particle duality and is a
property of all particles at the sub-
atomic level, including electrons
and protons.

One of the problems on the semi-
final exam used to select the 1996
US Physics Team was a one-dimen-
sional, nonrelativistic derivation of
the Compton effect and is the basis
for this month’s contest problem.

A. Consider the one-dimensional
collision of a photon with a free elec-
tron initially at rest. Assume that
the energy of the photon is much
less than the rest energy mc? of the
electron and the photon recoils in
the backward direction with fre-
quency f. Write expressions for the
conservation of energy and linear
momentum.

B. Neglecting additive terms of
order v2/c?, show that

W = [;mvz j{%mcz j, (2)

where v is the electron’s speed after
the collision.

C. Show that equation (2] can be
written in the form
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o
mc’

A=A

in agreement with the formula for
the Compton effect. Note that the
change in wavelength does not de-
pend on the original wavelength.

The quantity h/mc is known as
the Compton wavelength and has
the value 2.43 - 107> m = 2.43 pm—
a very small change. This change is
difficult to measure unless A is also
small. Compton used X rays with a
wavelength of 71.1 pm.

D. What is the energy of these X
rays? Can the electrons in matter be
treated as if they were free? Does the
recoil energy of the electron satisfy
the condition for a nonrelativistic
treatment?

E. If you would like to work more
with this effect, try obtaining the
two-dimensional result given in
equation (1). Let 0 be the angle of the
electron leaving the collision. Write
down the equations for the conser-
vation of energy and the two compo-
nents of momentum. Use these
three equations to eliminate ¢ and v.
You will need to use the fact that the
collision is nonrelativistic to neglect
small additive terms. (Most text-
books on modern physics give the
relativisitic derivation.)

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Moving matter

Two readers sent in excellent so-
lutions to the May/June contest
problem. Congratulations to Noah
Bray-Ali, a junior at Venice High
School in Los Angeles, California,
and Wolfgang Wais of Tiibingen,
Germany. We will follow along
with Noah as he describes his ap-
proach.

A. There are three parts to this
problem: the jump, the collision,
and the upswing. Conservation of
energy during Tarzan’s {mass M)
swing from height b gives his speed
v, at the bottom of the valley:

Mgh, = %Mv%,
(1)
vy =2gh,.

During the ensuing perfectly inelas-
tic collision with Jane (mass m),
momentum is conserved, and we
can solve for the couple’s final veloc-
ity v

Mvy =(M+m)v’,

, My,

v = /
M+m

or, with equation (1),

2
2, M~ b
v i=—— v

(M+m)l
M? (2)

=2gh
° (M+ m)2

We can now find the height h to
which they rise using conservation
of energy during their upswing:

%(M +m)v’* =(M+m)gh’. (3)

Solving for b’ using equations (2} and
(3) yields

2
W=—2 h-a4am

(M+m)

Alas, Tarzan and Jane end up more
than half a meter short of the crest
of the hill they had hoped to reach.

B. When the bullet (mass m) and
pendulum (mass M) collide, mo-
mentum is conserved:

mv, = (m + M)V,

where v, is the original velocity of
the bullet and v’ is the velocity of
the system after the collision. Thus

9,
2 m 2

vVi=———vp.

(mem) oW
After the collision, the bullet-pen-
dulum system rises to a height h,
which we can find from the given
parameters: the length L of the cord
and the horizontal distance s trav-
eled by the system. If we denote by



0 the angle the cord makes with the
vertical, we have

6=sin"! = =3.44°,

o

h=L-Lcos®=L(1-cos6)=0.009 m,

From conservation of energy we can
solve for the bullet’s speed:

(04 )y = (M + m)gh.

Replacing v’2 using equation (4), we
get

2

M+
doagnrm g
P
or
v, =420 m/s.

C. If the spring of force constant
k is initially compressed a distance
d, from conservation of energy dur-
ing compression we can solve for the
speed v, at which the ball (mass m)
is ejected:

l]<d2 = lmv%,
2 2

K g

m

2 _
VO—

All of the work in part B is still true,
so we can combine equations (6) and
(5) and solve for h, where M is the
mass of the pendulum:

h_kd2 m

28 (M+ m)3

To solve this for the relative masses
that optimize h, we take the deriva-
tive of h with respect to m, set it
equal to zero, and solve for m in
terms of M. Noting that the term
kd?/2g is constant and can be fac-
tored out, this reduces to

0- dh _ 1 __2m
dm (M+ m)2 (M + m)2 ,
and finally

M=m.

D. This question can be broken
into two parts: the collision and the

upswing. From the conservation of
angular momentum about the pivot
point of the rod, we can calculate the
final angular speed o of the system
after the collision in terms of the
ball’s speed v, after ejection, which
we know from part C:

2.
mv,L =T,

where m is the mass of the ball, L is
the length of the rod, and I’ is the
moment of inertia of the system af-
ter the collision. We can calculate I
by the superposition principle,
knowing that I for the rod is !/,ML?:

I'=I+mI? =%ML2 +mlI?.

Replacing and solving for 8 gives

(lM + mJL
3

During the upswing, the rotational
kinetic energy from this collision is
converted into gravitational poten-
tial energy. The ball rises a height
L — L cos 6, and the center of mass
of the rod rises L/2 — L/2 cos ©, where
0 is the final angle we're trying to
find. So conservation of energy gives

m=

%I'w2 = (m + %ng(l —cos8).

Replacing I’ and o and solving gives

3m*v}

1-cosb= ;
(M +2m)(M + 3m)gL

Equation (6) is still valid, so we can
replace and solve:

=] 3kd2m
0=cos |1- j
SL(M +2m)(M + 3m)

which expresses the final angle in
terms of the masses of rod and ball.

E. From equation (6) we know the
velocity v, of the marble is propor-
tional to the compression d of the
spring. This horizontal velocity is
constant during the flight, so the fi-
nal distance traveled in the x-direc-
tion will simply depend on the time
of flight, which is the same for both

trials: the time it takes to fall from
the table to the floor. The distance
traveled in the x-direction without
air resistance is thus directly propor-
tional to v, and, therefore, to the
compression distance. If we denote
the values of the first attempt by d,,
and x, and those of the second at-
tempt by d and x, this proportional-
ity gives

d=d,==111cm.
Xp
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Stiady computations

Clearing up a paradox at the boundary of dark and light

by Chauncey W. Bowers

HE SPEED OF LIGHT AS AN

upper limit arises as the result

of specific ramifications of the

special theory of relativity. In
particular, the mass/energy equiva-
lence (E = mc?) requires an infinite
amount of energy to accelerate any
mass to the speed of light. In addi-
tion, to maintain the notion of cau-
sality, nothing can influence events
faster than the speed of light. How-
ever, the limits imposed by the laws
of physics permit certain measur-
able attributes of our everyday world
to exceed the speed of light. Specifi-
cally, the movement of a shadow’s
edge can greatly exceed the speed of
light. In fact, shadows can exhibit
behavior normally prohibited by
common sense—for example, they
can arrive at a destination before
leaving their origin.

Consider a shadow cast by a wall
AB of height Y. The angle of the in-
cident light with the ground is 6.
Figure 1 shows that this situation
results in a right triangle that can be
analyzed simply with basic trigo-
nometry rules. To this end, the light
is assumed to hit the wall as paral-
lel rays, as would occur if the light
source is very far away—for ex-
ample, the Sun. It follows that the
length of the shadow on the ground
is AC=Y cot 0. If the wall is lowered
a distance Ay (from point B to B’),

AoueA| Aebies Ag Uy
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the shadow on the ground will
move Ax (from point C to C’), such
that Ax = Ay cot 6. For example, if
6 = 30°, the cotangent = 1.73, and
Ax = 1.73Ay. The average speed of
anything, including the edge of a
shadow, is simply the distance trav-
eled divided by the time taken to
travel that distance. For the
shadow’s edge, the average velocity
is Ax/At, where At is the time it
takes for the shadow to move Ax.
Because Ax = Ay cot 6, all that remains
is to calculate Az for the shadow. The
time for the shadow to move from
point C to C’ is a function of how
quickly the wall is lowered. The
wall cannot be lowered faster than
the speed of light, so we will denote
the speed of the wall as ac, where ¢
is the speed of light and a < 1.

If the wall is lowered at a speed
much lower than ¢ (exactly how
much slower will be shown later),
the speed v, of the shadow’s edge
will simply be

v, = ac cot 6. (1)

This is because the movement of the
shadow’s edge can be considered in-
stantaneous with that of the wall—
that is, the time it takes for the
shadow to move can be approximated
as the time it takes for the wall to
move, but the distance the shadow
moves is cot 6 times that of the wall.

In fact, there is a delay between
the time the wall begins to move
and the time the shadow begins to
move—the shadow will not move
until light has had time to travel the
distance BC = Y/sin 6. This time
delay equals

Y
Aty =
17 sin® 2)

—that is, the distance traveled by
the light divided by its velocity.
When does the shadow complete
its movement, stopping at point C’?
If the wall is lowered Ay at a speed
ac, then the time it takes the wall to
complete its journey is simply

Ay

At,,
ac

Figure 1

The shadow will not “arrive” at point
C’until the wall has arrived at B’ and
light has traveled from B’ to C’. This
distance B’C’ is (Y — Ay)/sin 6, and
the time for light to travel that dis-
tance is

Y-Ay

csin®

We now have everything needed
to calculate the average speed of the
shadow’s edge. The time At, for the
shadow to move from C to C’ is
equal to the time At for the wall to
move from B to B’ plus the time At,
for light to move from B’ to C’ mi-
nus the time At, it takes light to
move from B to C, or

Ay Y-A Y
ac c¢sin®

_& sin@—a
c |\ asin® |

At

s csin®

The speed of the shadow is therefore

” _&_(accose
* Aty \sinB-a) 13)

8

Equation (3) is the general equa-
tion for the speed of the edge of a
shadow cast by a wall at an angle 6,
where the wall is being lowered at a
speed ac. As one would expect, the

speed of the shadow is independent
of the wall’s height and the distance
the wall is lowered. The shadow’s
velocity is only a function of the
velocity of the wall and the incident
angle of light. As expected, for small
values of a (a <« sin 8),

_[accos8
sin®

j =accoto,

which is equation (1).

The behavior of the shadow de-
scribed by equation (3) is somewhat
surprising. For an angle 8 of 30° and
awall being lowered at 0.4c (a = 0.4),
the speed of the shadow is 3.5¢! In
tact, the shadow can be made to
travel as fast as one likes until
a = sin 0, at which point there is a
singularity in equation (3). The
speed of the shadow is undefined
mathematically at this singularity,
and this correlates with the behav-
ior of the shadow. When a = sin 9,
light will appear instantaneously
over the region C to C’. Thus the
speed of the shadow’s edge is physi-
cally, as well as mathematically,
undefined. If the speed of the wall is
increased so that a > sin 6, the sign
of the shadow’s velocity changes.
Again, this correlates with the
physical behavior of the shadow.
When a > sin 0, light will appear at
point C” before the edge of the
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speed of shadow (c)

Figure 2

shadow has moved from point C.
The light will then proceed from left
toright in figure 1 (rather than right
to left) with the velocity calculated
from equation (3]. The shadow will,
in effect, arrive at its destination (C’)
before leaving its origin (C). Not
only does increasing the velocity of
the wall past the singularity cause
the direction of the shadow’s veloc-
ity to reverse, but the speed of the
shadow decreases as the wall speed
increases after this point.

Graphs of equation (3) for various
angles 0 are shown in figure 2, dem-
onstrating more clearly the singular-
ity and its relation to 0 . Decreasing
6 decreases the wall speed required
to produce the singularity. For 6 = 5°,
the wall only needs to move at 0.08¢
to produce a shadow velocity greater
than 10c.

It is left to the reader to verify
that the ability to produce shadow
speeds greater than ¢ can be accom-
plished only by lowering the wall,
not by raising it. Indeed, even if the
wall could somehow be raised in-
stantaneously, the velocity of the
shadow’s edge would only equal
c cos 6.

This derivation of the shadow’s
behavior indicates why the mass-
energy equivalence is not a factor
for shadow velocity. Simply put,
there is no mass moving in the di-
rection of the shadow’s edge. Its
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movement is the result of the tim-
ing of light traveling to the ground
as the wall is lowered. Further-
more, the shadow cannot be used
to influence events faster than the
speed of light. In this regard, it
should be remembered that the
shadow does not begin to move
from point C until after light has
traveled the distance BC. The sub-
sequent movement of the shadow
at speeds exceeding the speed of
light cannot then influence other
events faster than this built-in de-
lay (fora < sin© ). For a > sin 6, light
will appear at point C” ahead of the
delay expressed by equation (2), but
after light has traveled the distance
B’C’. Thus any influence is slower
than the speed of light, since we
must also wait for the wall to move
from B to B’.

Poets have often alluded to the
boundary between light and dark as
an area of strange and paradoxical
behavior. Scientists must, in this
case, agree that the poet has seen an
aspect of verifiable truth. While the
edge of a shadow is easily defined
and measured, its movement is not
limited by the velocity of the light
that creates it.

Chauncey W. Bowers is a researcher in
the Division of Neurosciences at the
Beckman Research Institute of the City
of Hope. His e-mail address is
cbowers@coh.coh.org.
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COWCULATIONS

Feeding rhythms and algorithms

The true subject of bovine ruminations

by Dr. Mu

UMANS HAVE NO IDEA WHAT WE COWS

think about. You see us resting peacefully under a

shady tree, contented, unconcerned with the wor-

ries of the world, chewing our cud, and assume that
nothing is going on between our ears.

But you're sadly mistaken. We think a lot about prob-
lems that interest us—Ilike our next meal. Let me say
up front, I love my chow. Try producing 60 pounds of
milk a day (on average) on an empty stomach or two.
Being a cow who always likes to get its fair share, I've
been doing some cowculations along this line.

My boss, farmer Paul, has been playing a weird game

lately. When we come in for milking he’s been setting
out a row of eight pails, each filled with varying
amounts of feed. (It looks to us as though they are ran-
domly filled.) Two cows are assigned a row of pails and
given the following instructions:

Each bucket is numbered with the number of scoops
of feed inside. Going one at a time, pick a pail from
either end of the row, eat the contents, and remove the
pail from the row. Take turns (waiting for the other to
eat and remove the pail) until all the food is gone.

Some of my casual bovine mates take a cavalier ap-
proach to this task. No matter who goes first, they flip
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a coin to decide which side to pick. They’re easy to
beat—I just pick the end with the highest numbered
pail. (I call this my Greedy algorithm.) This usually
works, but every once in a while they get lucky and beat
me.

For example, the other day farmer Paul placed the
following row of feed pails {1, 2, 3, 2, 4, 2, 15, 6} for Bessie
and me to select from. I went first and took 6, leaving
{1,2,3,2,4,2, 15}. Bessie picked 15, so it was clear I
wasn’t going to overcome her lead, and I went a bit
hungry that day.

Hunger may bring out the best in us, but I want to
make sure it doesn’t happen again. I want to be certain
that I get an equal share or better—no matter what! In
other words, when farmer Paul places an even number
of pails and fills each with a random amount of feed and
when I pick first, I never want to end up with less than
half the chow.

So here’s your “Challenge Outta Wisconsin,” or
COW, as we say around the dairy state: With your
cowculator, write a program that will fill p pails (p is
even) with random amounts of feed (integers between
1 and s) and, by picking first, always win against any
cow—or human (they think they’re so smart!).

My cowculator uses the highly advanced software
Mathematica™. I like Mathematica because I can easily
examine a wide range of computer algorithms in a very
high level language that reads like a mathematical ex-
pression. You see, Mathematica is a functional language
in which programs are all mathematical expressions. It’s
also easy to learn for beginners who have never pro-
grammed before. But you can use Pascal, C/C++, or
BASIC if you prefer. However, it’s the algorithm that I
intend to focus on and not the language. If you use a
different language, you can implement my algorithm

DR. MU SEZ. 10 ERR IS5 HUMAN,
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using your own language’s syntax.

Here is a look at my cowculations.

First I defined a function that picks out p random
integers from 1 to s. This is done by defining a function
feed[p, s] that generates a “Table” of p “Random In-
tegers” between 1 and s:

feed[p_,s_1:=
Table[Random[Integer, {1,s}], {p}]

Try out the feed function for p = 8 and s = 25 and place
the feed in a row.

p=8;s=25;
row=feed[p, s]

{18,19,1,11,25,12,22,14}

Bessie and I start with nothing, which is represented by
empty lists “{}”” assigned as follows:

Bessie={};
DrMu={};

Using the Greedy algorithm, if the “First” pail in the
row has more (or possibly the same) amount of feed as
the “Last” pail, then “Append” this to my feed list and
“Drop” it from the row. Otherwise, pick the “Last” pail,
“Append” it to my feed list and “Drop” it from the row.

Suppose Bessie goes first, and we “Do” this p/2 times,
which exhausts the feed. To display the results, we
“Print” it. Here is the Mathematica code that translates
what I just said in a very precise and exact manner.
Comments such as (*then*) and | *else*) were added for
your ease of reading and are not required for the pro-
gram.

row
Do[If[First[row] >=Last [row],
(*then*)
AppendTo [DrMu,First[row]];
row=Drop[row, 1],
(*else*)

AppendTo [DxrMu, Last [row] ] ; row=Drop [row, -
111;

Print["Dr Mu eats ",Last[DrMul], " leav-
ing ",row];

If[First[row] >=Last[row],
(*then*)
AppendTo[Bessie,First[row]];
row=Drop[row, 1],

(*else*)

AppendTo [Bessie,Last [row] ] ; row=Drop [row, -
111;

Print ["Bessie eats ",Last[Bessie], "
leaving ",rowl], {p/2}]1:;

Here is the output when you run this program:




{18,19,1,11,25,12,22,14}

Dr Mu eats 18, leaving
{19,1,11,25,12,22,14}

Bessie eats 19 leaving
{1,11,25,12,22,14}

Dr Mu eats 14 leaving {1,11,25,12,22}
Bessie eats 22 leaving {1,11,25,12,}
Dr Mu eats 12 leaving {1,11,25}
Bessie eats 25 leaving {1,11}

Dr Mu eats 11 leaving {1}

Bessie eats 1 leaving {}

Time to add up the chow. Do this by “Apply”ing the
“Plus” operation to my selections and Bessie’s:

DrMuTotal=Apply[Plus,DrMul;
BessieTotal=Apply[Plus,Bessie]l;

Print[DrMu, " = Dr Mu’s picks for a
total of ",DrMuTotall]
Print[Bessie, " = Bessie’s selection

for a total of ",BessieTotall]

{18,14,12,11}= Dr Mu’s choices for a
total of 55
{19,22,25,1} = Bessie’s selection for a

total of 67

Holy cow! I came up short again! Can you help me
avoid this? I don’t like to go hungry. Discover an algo-
rithm that wins every time.

Your turn to feed at the trough.

COW l.a. Find an efficient algorithm I can use to
always win at chow time over Bessie. Your solution
should run within a few seconds, winning quickly even
with 100 pails. Remember, I have the advantage of go-
ing first.

COW 1.b. Do some cowculations to estimate my
chances of beating Bessie if we both use the Greedy al-
gorithm. (Ties are considered a win for me.)

You can e-mail your cowculations to me, Dr. Mu, at
drmu@cs.uwp.edu. I'll maintain a home page of some
of the best cowculations at http://usaco.uwp.edu/
cowculations. By the way, if you happen to like com-
puter programming a lot, check out the USA Comput-
ing Olympiad at http://usaco.uwp.edu.

To COWCULATE...RoVINE/"
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If you're interested in doing your cowculations in
Mathematica and don’t currently own a copy, consider
the offer available to students from Wolfram Research
at  http://www.wolfram.com/mathematica/info/
students.html. The student version is no different than
a regular version of Mathematica—except, of course, for
the price (~$109).

I need to see your cowculations before December 1,
my deadline for the next column. If you have any ques-
tions, come out to the farm and I'll try to answer them
after milking time. I check my e-mail daily.

Note: This problem originally appeared (unbovined
of course) at the International Olympiad in Informatics
in Veszprem, Hungary, July 25-August 1, 1996. The
home page for IOI'96 is http://frey.inf. bme.hu/contests/
10196.

Now it’s time to do your bit and e-mail those bytes
to drmu@cs.uwp.edu.

Dr. Mu is the Bovine Professor of Cowculation Science at the
University of Wisconsin-Parkside and resides in Paulsbarn.
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MATH
INVESTIGATIONS

In memoriam; Paul Erdas (1913—1996)

May he enjoy seeing his proofs faithfully recorded in The Book

by George Berzsenyi

T THE AWARDS CEREMO-
nies for the eight winners of
the 1980 USA Mathematical
Olympiad, I was especially
happy to see Michael Finn and Eric
Carlson among the honorees,
since they were also two of the
winners of the year-round compe-
tition I had been conducting
through the Competition Corner
of the now defunct journal Math-
ematics Student (MS) of the Na-
tional Council of Teachers of
Mathematics. Since my major aim
with MS was to popularize cre-
ative mathematical problem solv-
ing among high school students, I
was fully aware that the problems
posed there were not challenging
enough for Michael and Eric.
Hence I suggested to them that
they should switch their attention
to more demanding problem sec-
tions, like those in The American
Mathematical Monthly and Math-
ematics Magazine. Michael’s an-
swer was “I do them also,” while
Eric reminded me of the saying
that “practice makes perfect.”
And thus I continued to receive
beautiful solutions to the MS prob-
lems from both of them, through-
out their high school years.
Time and again when I receive
various reactions and contribu-

: This image of Paul Erdés is based on a painting by Ray Paul in the possession
tions to the present column I of the University of Cincinnati’s Mathematics Department Library.

40 NOVEMBER/DECEMBER 18986



think of Michael and Eric, and I
want to suggest to my readers to
turn their attentions to more wor-
thy tasks, -more serious math-
ematical investigations. While
many of the topics covered in this
column may be attractive and
even fascinating, they are often
lacking in depth and seriousness,
which are the hallmarks of real
mathematical investigations.
While I am capable of devising ap-
propriate problems for competi-
tions and assisting in the discovery
and development of mathematical
talents, I am not an expert in prob-
ing the frontiers of mathematics.

These were my thoughts when I
recently learned about the death of
Paul Erdds, who devoted his life to
probing those frontiers, posing and/
or solving some of the most impor-
tant problems of this century. Hence
I want to recommend that my read-
ers learn more about the legacy of
Erdés, follow in his footsteps, and
emulate his attitude toward math-
ematics. To whet your appetite, I
reproduce below three of his prob-
lems. They were communicated to
me in 1994, in response to my trib-
ute to him in the May/June 1994 is-
sue of Quantum.

Problem 1. Let f{n) be the largest
integer for which there is a set of n
distinct points, S ={x., x,, ..., x_}, in
the plane with the following pro
erty: for every x, in § there are at
least f{n) points in S that are equidis-
tant from x.. Determine f(n) as accu-
rately as possible. Is it true that
fin) = o(n?) for every € >0?

Erdés offered $500 for a proof and
“much less for a counterexample.”

Problem 2. Let seven points be
given in the plane. Prove that one

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.

can always choose three of the
points so that the three distances
determined by them are all different.

Erdés went on to say that for six
points the above claim is not true,
and wondered whether the only
counterexample is provided by the
vertices and the center of a regular
pentagon. He also wanted to know
how many points are needed to en-
sure that one can always choose
four of the points so that the six
distances determined by them are
all different. Clearly, one can also
relax the conditions on the four
points and/or extend the problem
to more points. Moreover, the
smallest counterexamples may be
of interest too.

Problem 3. An old conjecture
states that 10! = 6!7! is the only non-
trivial solution of n! = a!b!. (If n = k!,
then (k!)! = (k! — 1)!k! is a trivial so-
lution—for example, 24! = 23141}
Try to represent n! as the product of
smaller factorials (for example,
8!'=7121212!) and prove that the den-
sity of n’s for which this is possible
is 0. :

I last saw “Pali Bdcsi” in the
summer of 1994 at the Second
Congress of the World Federation
of National Mathematics Compe-
titions (WENMC) in Bulgaria. I
was hoping that he would manage
to attend the 8th International
Congress of Mathematics Educa-
tion held in Seville, Spain, this
past summer, where I was honored
by the WENMC's “Erdds Award”
for my contributions, but he
couldn’t come. And now I will
never see him again! We will all
miss him, not only as one of the
greatest mathematicians, but also
as one of the most gentle, thought-
tul pillars of the society of math-
ematicians. One hopes there is in-
deed a “Great Book in the Sky”
containing the most elegant proofs
of every theorem in mathematics,
and he is there to enjoy it. (@)

George Berzsenyi is a professor of math-
ematics at the Rose-Hulman Institute
of Technology, 5500 Wabash Avenue,
Terre Haute IN 47803-3999. His e-mail
address is george.berzsenyi@rose-
hulman.edu.
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AT THE
BLACKBOARD Il

Not all is revealed

On the Uncertainty Principle and other forms of indeterminacy

HAT COULD BE MORE
trivial from the geometric
viewpoint than a square with

a diagonal, or a circle with a
diameter? Any child can draw them
by hand (fig. 1). And yet so much has
been written about these figures,
one could fill an entire encyclope-
dia—for example, about the irra-
tionality of the numbers m and /2.
What would it have cost the Cre-
ator to construct Nature in such a
way that the ratio of the circle’s
length to its diameter is exactly
equal to 3, or even exactly 3.14, or 3
and a hundred (too small? let it be a
million!] digits after the decimal
point—just so that it were strictly
equal to something! But no—schol-
ars have proved that the number ©
contains an infinite number of dig-
its after the decimal point. (This
property is referred to as the incom-
mensurability of the circumference
and the diameter.) Students and

1
d
a
1
—=n= 3.1415926536...2
4 _3-1414..1
a
Figure 1
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by Albert Stasenko

teachers through the years have de-
vised sayings to help them remem-
ber the first dozen digits. Others
have found algorithms to calculate
as many digits as we want and have
translated these procedures into
computer language. Even before the
computer age there were devotees of
science who spent their entire lives
calculating a few hundred digits—
such was the overwhelming desire
to discover what was over the hori-
zon. But however long one may cal-
culate—even to the end of the time
allotted to humankind—there will
be no end to the sequence of digits
in the number T.

Why is the world constructed this
way? What mystery lurks in the
cross-section of a spruce log, or a
Corinthian column? Isn’t it outra-
geous that modern science in all its

power cannot precisely say how
many times the circle is larger than
its diameter? It’s a wonder math-
ematicians can even sleep at night!

Well, so much for mathematics.
Is everything in physics nice and
precise? No. Everyone now knows
that physics is always an approxi-
mate model of the real world. Every
measurement has an error, but as
the years and centuries pass, the
measurements become more and
more precise. Perhaps we can hope
that someday (albeit in the distant
future) we will be able to say in prin-
ciple where at a given moment a
material point is located on the
x-axis, and what its speed v is. After
all, this is nothing more than the
ABCs of kinematics.

Unfortunately, it is in principle
that this is impossible—forbidden,
in fact! Mathematically this is for-
mulated in Heisenberg’s famous
Uncertainty Principle:

Ax - Ap = h, (1)

where Ax is the uncertainty in the
measurement of the coordinate (in
meters), Ap is the uncertainty of the
momentum (in N -s),andh ~ 1034J s
is Planck’s constant.

So according to the Uncertainty
Principle, we can’t determine in the
(p, x)- plane (that is, momentum ver-
sus position) the location of the cen-
ter of mass C of the object under
consideration. The more precisely
we try to measure the position x of



the point (that is Ax — 0), the worse
will be our simultaneous measure-
ment of its momentum (Ap — oo},
and vice versa. We can only say that
p and x of a point C are located
somewhere within a figure whose
area is not less than Planck’s con-
stant h (fig. 2). Now, this area is so
small, it doesn’t bother us when
we're analyzing the motion of air-
planes, projectiles, discusses, and
Ping-Pong balls. But doesn’t it put
you on guard, doesn’t it bother you
that this kind of restriction exists in
principle? As someone once said:
“T'll probably never go to Australia.
But if you forbid me from going
there, I'll be unhappy forthwith.”

Let’s modify inequality (1) and
apply it to a photon. Since a photon’s
momentum is p = hv/c, where c is
the speed of light and v is its fre-
quency (corresponding to the
photon’s “color”), then Ap = hAv/c
(since h and c are constants, any
uncertainty in the photon’s momen-
tum can only be related to that of its
frequency). Dividing both members
of the equation by h we get

gAv =],
o

or

At -Av = 1. (2)
Here we took into account that
Ax = CAt.

So it turns out that the shorter
the duration of the photon emission
(At — 0), the greater the uncertainty
of its frequency (Av — ). For ex-
ample, we see the red light of a neon
sign, which is the result of radiation
by excited neon atoms. The fre-
quency of the emitted photons
Vy ~ 5 - 101 Hz, while the emission

pl}
Ap-Ax > h
N R~ = 6 R
Figure 2

Figure 3

time for each atom At ~ 107 s, so the
uncertainty of the frequency is no
less than Av ~ 1/At ~ 10° Hz, which
is billions of cycles per second! But
even this value isn’t that large com-
pared to the photon’s frequency—
it’s smaller by a factor of a million:
Av/vy ~ 1075, Still, it means that the
emitted light isn’t exactly “red,”
but rather a combination of an infi-
nite number of other frequencies,
mainly in the interval we found
(fig. 3).

The same relationship (2) is also
valid for musical notes (in this case
c is the speed of sound in air): how-
ever hard a musician tries to pro-
duce an absolutely pure pitch—say,
the note A—she can’t do it. The re-
sulting sound will in principle con-
tain a large number of frequencies,
even if the musician could force the
string to keep vibrating for days, or
for a whole year.

It looks like we need to go back to
the beginning and look for
determinacy under the canopy of
mathematics. Why not start with
Euclidean geometry? Isn’t that a
classically pure, almost marmoreal
example of strictness? Not at all!
Even Euclidean geometry has its
own brand of uncertainty. It’s not
because the people who created and
developed geometry formulated the
tifth postulate (on the parallelism of
straight lines) in a rather irritatingly
awkward way, which provoked the
appearance of the non-Euclidean
geometries named after Lobachev-

sky, Riemann, and others. No, the
problem is that people attempted to
construct other deductive sciences
similar to Euclidean geometry, and
tried their best to give them the
same degree of “strictness.”

It seemed that all that was needed
was to formulate a set of assertions
(an axiomatic system)|, then all other
assertions (which use the same
terms as the axioms) could logically
be either proved or disproved. Such
a good system of axioms is referred
to as complete and consistent (two
qualities of “goodness” ).

To illustrate these properties of
an axiomatic system, consider a
simple example. Any vector in the
plane can be viewed as the sum of
two components—its projections on
two coordinate axes:

(3)

where the vectors e, and e, are of
unit length and perpendicular to
each other. If you try to “broaden”
this basic system of vectors by add-
ing yet another vector e,, you'll hear:
“Excuse me, but you can’t do that in
two-dimensional space” (fig. 4) The
new vector e, can be broken down
according to equation (3), so in this
sense the system of vectorse, ande,
is complete. If you insist, then go
ahead and add your e, but this will
mean that you're passing into an-
other kind of space—three-dimen-
sional space (or, analogously, you're
constructing another axiomatic sys-
tem).

So what has developed in the
space of assertions (if you can imag-
ine such a space)? In 1931 Godel’s
theorem was proved, which said in

a=ae +ae,

Figure 4
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effect that a simultaneously com-
plete and consistent axiomatic sys-
tem does not exist. (Doesn’t this
sound a lot like Heisenberg’s Uncer-
tainty Principle (1)—not in the (p,
x|]-space, of course, but in the space
of “completeness—consistency”?) If
you fix the number of axioms, then
sooner or later you come to an asser-
tion that can neither be proved or
disproved. If you still want to deal
with this particular assertion, you
must enlarge the initial axiomatic
system.

Let’s take a break from our heavy
thoughts and recall an old story. A
certain John took a certain Benjamin
to court, complaining that the defen-
dant (Benjamin) had stolen his only
cow. “You should know this cow,
your Honor once drank some of her
milk,” said John. “Of course I re-
member, the cow is yours,” an-
swered the judge. “But your Honor,
you know that I have fourteen chil-
dren, and all of them drink milk—
this should be my cow,” Benjamin
implored. “You are also right,” the
judge declared, after thinking it over.
“But your Honor, they both can’t be
right—there is only one cow!” the
court clerk chimed in. This time the
judge thought long and hard, and
then he told the clerk: “You are also
right.”

This story is an illustration of a
case where the judge decided to
move into another space (he con-
structed the vector e, and thereby
enlarged the axiomatic system). He
left behind the standard formal
logic, where the law of the excluded
middle is valid (that is, either one or
the other must be true), and moved
from dialectics to trialectics, which
doesn’t set white against black,!
friend against foe. As a result there
is no need for judges, or “permanent
revolution,” or concentration
camps. It’s a place where the ancient
Vedic trinity (Indra, Agni, Surya),

ITake the Sun, for example. It
illuminates our days with white light,
but from the point of view of
thermodynamics and quantum
mechanics, it’s almost an ideal
example of an absolutely black body—
and this isn’t just wordplay!
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the Hindu trinity (Krishna, Shiva,
Vishnu), or the Christian Trinity
reigns.

But what does the value of &, the
Uncertainty Principle, and Godel’s
theorem have to do with all of this?
Simply this: these concepts (and
many others] contain, it seems,
some inner meaning that frees us
from the iron grip of Necessity, but
not completely (total uncertainty
would likely be chaos)—a kind of
hint of freedom. Something like the
little “window” through which
Pyotr Florensky tried to peek into
the “other side” of our world. Or the
testimony of St. Paul: “Now we see
only puzzling reflections in a mir-
ror, but then we shall see face to
face. My knowledge now is partial;
then it will be whole, like God’s
knowledge of me.” (1 Corinthians,
13:12)2

“There are theoretical calcula-
tions that imply a universe that con-
sists, perhaps, of two worlds laid one
on the other, very weakly linked,

2As rendered in The New English
Bible (New York: Oxford University
Press, 1971). Readers may be more
familiar with the King James Version:
“For now we see through a glass,
darkly; but then face to face: now I
know in part; but then shall T know
even as also I am known.”

almost invisible to each other. .. . It
is completely possible that in our
neighborhood, in the very same
space and time, a hidden parallel
world exists, exactly like our own,
or perhaps completely different.”
(V. A. Barashenkov, as quoted in The
View from Nowhere by A. S. Kuzov-
kin, MNPP “Yanga-center,” 1991,
p. 31)

“The world is continually split-
ting into innumerable copies of it-
self. . . . According to a theory of
Everett’s, the observable universe is
only one instance of the infinite va-
riety of actually existing universes.”
(P. Davis, The Accidental Universe,
Moscow: Mir, 1985, p. 149)

So where have we come to—a
place where any clever student,
pointing to principles of indeter-
minacy, has the right to study sub-
jects only very approximately, say-
ing: “Well, that’s the Divine
Plan”? Far from it! The inquisitive
reader should try to learn the de-
tails with the maximum precision.
That is the only way to approach
any threshold in Nature, where we
have the feeling of an ineffable
mystery. And we wonder: why is
the threshold there, and what’s be-
hind it—the possibility of taking an-
other step, or an insurmountable
prohibiting principle? (ol
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FUNDAMENTALS

A prelude o the study of physic

Some guiding thoughts for novices
on the construction of models
and on their role in science

O PHYSICIST OR ENGINEER

ever solves a real problem. In-

stead she creates a model of

the real problem and solves
this model problem. The model
must satisfy two requirements: it
must be simple enough to be solv-
able, and it must be realistic enough
to be useful—that is, it must be both
conceptually understandable and
empirically fruitful.

The theories and “laws” of phys-
ics are also models. Whether in solv-
ing a particular engineering problem
or searching for the wide ranging
laws of physics, the art of scientific
analysis consists in the creation of
useful models of reality. The model
is the interface between reality and
the human mind. As such, the
model must be expressed in human
terms; it is cast in terms of concepts
that we create from the data of our
experience. Our models speak as
much about us, our experience, and
our modes of thought as they do
about the external reality being
modeled.

I prefer to speak of models where
others might speak of theories be-
cause the word “model” empha-
sizes the criterion of usefulness. We
tend to think of a theory as a candi-
date for some absolute, objective
truth; a model is used to convey
useful information without the

by Robert J. Sciamanda

pretense of being unique, complete,
or ultimate. As an example of the
conception, gestation, birth, and
growth of a model in physics, let’s
consider the history of the “ideal gas
law” PV = o.T, which you undoubt-
edly have studied in your physics or
chemistry classes.

The history of a model

Despite the voluminous abstrac-
tions of philosophers over many
centuries, no useful understanding
of gas behavior emerged in ancient
times or the Middle Ages. The pos-
sibility of a useful model awaited
the creation of the thermometer and
the manometer. Fach of these de-
vices uses a thread of mercury em-
bedded in glass in order to generate
anumber (the length of the mercury
thread) that varies in value as the
device is subjected to varying condi-
tions. Boil, Charles, and Gay Lussac
investigated the behavior of these
devices when connected to a gas
under controlled conditions.

To condense a very long story,
their experimentation resulted in
the creation of the empirical rela-
tion PV = oT, the variables P and T
representing the readings of the
manometer and thermometer, re-
spectively; o is a constant for a fixed
quantity of gas. If we then define P,
V, and T to be measurements of

properties of the gas, PV = oT be-
comes a useful model of gas behav-
ior, even though P and T, at this
point, have no deeper meaning—
they are merely numbers generated
by the specified devices.

That there should exist any rela-
tion (let alone such a simple one)
among the numbers generated by
these (or any other] devices is not at
all to be expected. Such serendipity
can only be gratefully contemplated
when it appears. It is an instance of
the profound meaning in one of
Einstein’s most famous quotations:
“The most incomprehensible thing
about the world is that it is compre-
hensible.”

The creation of the model PV = oT
was a giant leap forward. Note that
the crucial beginning step consisted
in the free creation of a set of con-
cepts in terms of which meaningful
questions might be put to nature so
that nature might respond in a
meaningful way. These concepts
are not lying in nature awaiting dis-
covery by some passive act of look-
ing. They must be actively created.
This is how the properties of matter
come to be. This is how we define
into existence those measurable prop-
erties of reality that we find useful.
They are human constructs in terms
of which we might ask meaningful
questions, read nature’s answers, and
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organize our understanding into use-
ful and testable models.

Each of these concepts is quanti-
tative in nature: the number gener-
ated by a measuring device. Our
empirical gas law is simply a rela-
tion (and a very useful one) among
the numbers (P, V, T) generated by
our measuring devices. It is an em-
pirical model. The numbers gener-
ated by measuring devices have no
deeper meaning except within the
notion of a conceptual model of the
system being measured and its effect
upon the measuring devices.

Boyle did his experimentation in
the 1600s, while the Pilgrims were
colonizing America. It wasn’t until
the mid-1800s, while Americans
were fighting over slavery, that Joule
brought together the theories (mod-
els) of Newtonian mechanics and
atomism (then hotly contested) to
create a conceptual model of the
ideal gas as a system of randomly
moving point particles. In this
model P is quite naturally associated
with the Newtonian force concept
and accounts for the behavior of the
mercury manometer. However,
there is no a priori mechanical asso-
ciation for the empirical quantity
T—the “temperature” of the gas as
generated by the thermometer.

Herein lies a wonderfully simple
instance of the incredibly awesome
power of an empirically based ana-
lytical science: the fruitful interac-
tion of experimental and theoretical
physics. Newton’s laws drove
Joule’s conceptual model to a very
illuminating result: the numerical
value of the product PV for Joule’s
gas is proportional to the total ki-
netic energy of the randomly mov-
ing gas particles. Thus Joule’s con-
ceptual model bestows upon the
empirical temperature T, in PV = /T,
a deeper meaning as a humanly in-
vented property of the gas. It be-
comes a measure of the energy of
random motion of the gas particles.

A model of models

Thus it is that the mathematical
model PV = oT has foundations as
both an empirical model and a con-
ceptual model. I present it as a para-
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digm to illustrate the properties of
the model in physics:

1. It is a human construct, the off-
spring of both our experience and
our imagination.

2. It is quantitative and speaks of
freely defined, measurable proper-
ties of matter.

3. It has both an empirical and a con-
ceptual usefulness: it presents a
testable numerical equality in-
volving the numbers generated by
specified measuring devices, and
it offers a conceptual framework
for associating a deeper meaning
with these numbers.

4. The empirical usefulness of a
model is a matter of experimental
verification, and once verified
this usefulness will remain, Fu-
ture models of a wider scope will
include it as a special case.

5. The conceptual usefulness of a

model can be a cultural matter, a
matter of institutional and per-
sonal taste (more of this later).

Conceptual limitations

Our conceptual models are of
course produced from the data of our
experience. Every now and then I
close my eyes and carefully feel an
object such as a piece of fruit, a table,
or my own face, and try to imagine
what it might be like to have never
had the sense of sight. What sort of
conceptual models might I fashion
as I explore reality using only the
sense of touch? (Try to form the con-
cept of the shape of an object with-
out invoking a visual image.) How
could I appreciate the language of a
sighted person? There is no way that
a sighted person could convey to me
his conscious experience of light vs.
darkness, let alone red vs. green. Our
conceptual models could communi-
cate only through shaky analogies
and metaphors, but our empirical
models could unambiguously com-
municate regarding the numbers
generated by measuring devices.

Conceptual models are observer
dependent and observer limited. As
the physicist probes into the behav-
ior of reality, she strives to create

meaningful conceptual models of
that reality, using as raw materials
the concepts fashioned from human
experience. As she probes deeper she
finds that she has to become ever
more creative and imaginative, gen-
erating abstractions and cross-fertili-
zations of her ideas in order to con-
ceptually model the behavior of
reality in human terms.

There is no reason to expect that
this process can be extended indefi-
nitely. It seems reasonable to antici-
pate that beyond a certain level of
analysis the behavior of reality can-
not be conceptually modeled in lit-
eral human terms, even though we
may continue to be clever enough to
create numerical equalities involving
the readings of our instruments. Af-
ter all, our instruments operate on the
same superficial level as our senses.

We are already on the doorstep of
this conceptual barrier. The math-
ematical models of quantum theory
defied even the imagination of Albert
Einstein. He was never able to con-
ceive a satisfactory conceptual model
of the reality behind these equations.
As regards creative “weirdness,”
modern art and music are poor sec-
onds to modern physics, even though
the arts operate completely free of
any constraints, whereas physics op-
erates under the severe constraint of
empirical usefulness!

Standards, taste, and heauty

Suppose that you are shipwrecked
on a desert island and, with nothing
better to do, decide to create the sci-
ence of physics from scratch. You
decide that your first task will be to
choose (or design|) standards for your
measurements of space and time in-
tervals. How should you choose a
standard measuring rod and a stan-
dard clock? This is a “catch-22.” ques-
tion: one would like to have these
standards available a priori, so that
one can perform experiments (both
physical experiments and thought ex-
periments) to ask questions of nature,
read her answers, and be guided to-
ward a theory about the behavior of
matter. Yet one’s choices of a stan-
dard clock and measuring rod already
presuppose considerable understand-



ing about the behavior of matter! For
example, the choice of a standard
clock already presupposes a theory
that will be committed to the conclu-
sion that this particular mechanism
ticks at a constant rate. Logical con-
sistency will force the theory to this
conclusion. Choices among theories
and choices among standards are in-
extricably intertwined.

The dilemma exposed in the
above paragraph is not debilitating.
We need only replace the word
“theory” (a candidate for an abso-
lute, objective truth) with the word
“model” (a useful way of describing
reality in human terms). In this
view, the choice of a ;‘;‘\ simply
defmes into existence a measur -able
parameter “t” that will be used 2
linear time base for the descriptic
of the evolution of phenomu,_
will be comparing the course of

of ticks of this clock.

Clearly the choice of standards is
a matter of free definition. The cx
terion is not one of truth; it is sim-
ply one of usefulness: which choices
lead to the most “desirable” empiri-
cal and conceptual models of real-
ity? Put another way: how “weird”
does the conceptual model have to
get in order to be empirically useful?
The words “desirable” and “useful”
must be defined by you and/or the
current scientific culture; they are a
matter of taste. Historically, and
logically, this is an iterative process,
as we see more and more details of
where the model is leading.

Let me tease you with a famous
example (which T hope you will
study in detail later). Einstein, in his
1905 relativity theory, was the first
to capitalize on this freedom of
choice (of rods and clocks) in a radi-
cal way. His definitions of “desir-
able” and “weird” were not main-
stream. To him the desirable model
must preserve the invariance
(sameness) of physical law (in particu-
lar, Maxwell’s equations of electrody-
namics) for al nonaccelerated observ-
ers. But conventional wisdom said
that the velocities appearing in
Maxwell’s equations must be mea-
sured from an absolute frame of

reference (the “aether” frame). This
was “desirable” to many—they found
it satisfying that the laws of physics
should be simple only to an observer
at absolute rest. In fact, any deviation
of your experimental results from the
laws of physics would then furnish
you with sufficient data to measure
your own absolute velocity They had
been disappointed that Newton's
model of mechanics did not allow us
to measure our absolute velocity by
mechanical experiments (Newton
himself must have been disap-
pointed). They were overjoyed that
now Maxwell’s model of electrody-
namics (which includes light) would
allow us to measure our absolute ve-
locity using optical experiments.
Einstein conceived a completely
different conceptual model for
Maxwell’s electrodynamics. He
sought a model in which these equa-
tions could be used with equal valid-
ity by all nonaccelerated observers,
each using the numerical values of
all quantities (for instance, veloci-
ties) as measured from her frame. He
i red to redefine the measurement
Ot space and time intervals to make
this so It is to be expected that such

1 ruld expect that we w1ll
e~1 gn new clocks and mea-
rods, with exotic “relativis-
tic ;‘ff“‘i‘ties The remarkable re-
has been that the new weirdities
v cultural—that ordinary
nd meter sticks behave rela-
ly, and that a vast scope of
a have become more sim-
ble, even phenomena far
om Maxwell’s equations.
d acceptance did not
come qi;;:‘.\ v or easily, but today
relativity is not only accepted as
empiric 'C.M_\’ and conceptually useful,
it has become beautiful!

The search for beauty in our mod-
els has always been a driving force
and sometimes, as with Einstein’s
relativity, it seems to have been the
sole motivation. Today many, like
Einstein, are disappointed in their
search for intuitive beauty in the
quantum aspects of modern physics.
Unlike relativity, the beauty of

quantum theory still eludes visceral
human appreciation. Perhaps with
time we can acquire a taste, but it
must begin with an adjustment of
our expectations—toward models
rather than “theories.” Physics does
not offer any quieting and ultimate
answers.

Your personal physics

Physics has not been idle. There
is much for you to learn. To learn
means to make your own; it is an
active process that only begins with
listening and reading. You must re-
turn often to listening and reading,
but meaningful learning comes only
from contemplation. Each person
must construct his own models and
his own philosophy of what physics
is. These will grow and develop—
construction is never complete.
What I have said here is subject to
criticism by scientists, philoso-
phers, students, and even myself, as
my appreciation of physics contin-
ues to develop. These words should
be taken as providing only a begin-
ning for discussion and contempla-
tion. T have tried to express my cur-
rent philosophy to you. Over the
years you will build your own
unique and personal version. Even
more than the appreciation of a
symphony or a painting, the undez-
standing of physics is a unique and
personal encounter of a conscious-
ness with reality. (0]
Robert J. Sciamanda is an associate pro-
fessor of physics at the Edinboro Uni-

versity of Pennsylvania. His e-mail ad-
dress is sciamanda@edinboro.edu.
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StudyWorks! by MathSoft

Word processors have made great
strides in recent years, allowing us-
ers to format equations and print
them accurately and elegantly. But
they won’t do any computing for
you, and they certainly can’t recal-
culate every formula in your docu-
ment that uses a factor you just
changed. If you’re looking for a
single, integrated software package
that will allow you to incorporate
“live” equations in your homework
or lab report, StudyWorks!™ for
Math or StudyWorks!™ for Science
may be just the thing for you.

The StudyWorks! CD-ROMs in-
clude a wealth of reference material,
including common formulas that
can be dragged and dropped directly
into a document. StudyWorks! for
Math supports algebra, geometry,
precalculus, calculus, and statistics.
StudyWorks! for Science supports
physics, chemistry, Earth science,
biology, and statistics.

Users can visit MathSoft’s World
Wide Web site directly from the pro-
gram and open StudyWorks! files
that others have uploaded. There is
also a unique forum called the
Collaboratory™, where users can ex-
change ideas, work collaboratively
on a problem, or get help on home-
work problems. (A brief visit to the
Collaboratory reassured this re-
viewer that the MathSoft folks pro-
vide helpful hints and guidance, not
the answers outright.)

Space is lacking here to list all the
features of this powerful program,
developed by the company respon-
sible for the popular Mathcad soft-
ware. The Math Palette allows you
to do calculus, create “live” graphs
(that is, graphs that automatically
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change when new data are intro-
duced), and even animate these
graphs. The StudyWorks! multime-
dia tutorial is more than adequate to
get the user up and running. The
“user’s guide,” however, is just
that—a slim 44-page booklet (iden-
tical for the math and science ver-
sions of the software], not the
“manual” that some might expect.
Clearly the StudyWorks! developers
expect users to be comfortable with
online help, which is abundant and
well organized.

One aspect of the software that
may cause some frustration is the
way text and math are handled as
separate “regions.” This allows
StudyWorks! to perform its compu-
tational wizardry, and to know what
to work on (math) and what to leave
alone (commentary). But it also pre-
vents the program from stretching a
region when you add more text to it.
If your text now overlaps an equation
that comes after it, you must move
that equation (and everything below
it, if the equation now bumps into the
next region). This “cut-and-paste”
approach should be fine for short as-
signments, but could cause head-
aches if you’re working on a long,
complex document. StudyWorks! is
not a true “word processor,” as we
now understand the term, but its
emphasis understandably lies else-
where.

StudyWorks! for Math and
StudyWorks! for Science each carry
a retail price tag of US$39.95, plac-
ing it well within the reach of most
students and teachers. It’s relatively
easy to learn, and the computation
engine is powerful and fast. For more
information, visit the MathSoft Web
site at http://www.mathsoft.com.

—TMW

Weighty CyhenTeaser

The November/December Cyber-
Teaser (brainteaser B187 in this is-
sue) proved a light task for most of
those who responded to the contest
at our World Wide Web site. Some
used reasoning much like that of the
problem’s author. Others came up
with ingenious approaches of their
own. And some left a challenge for
our CyberJudge: “Find my method
(if you want to avoid a lot of tedious
arithmetic verification)!”

Here are the first ten respondents
who provided the correct answer
(and an explanation):

Jean-Baptiste Legros (Fontainebleau,
France)

Steve Hunter (Ascot, Berkshire, UK)

Oleg Shpyrko (Cambridge, Massa-
chusetts)

John J. Drozd (London, Ontario)

Leo Borovskiy (New York, New
York)

Ted Lau (Fenton, Michigan)

Kiran Raj (Berkeley, California)

Iljong Lee (Berkeley, California)

Clarissa Lee (Perak, Malaysia)

May T. Lim (Quezon City, Philip-
pines)

Each of them will receive a Quan-
tum button and a copy of this issue.
Also, everyone who submitted a cor-
rect answer is eligible to win a copy
of Quantum Quandaries, our col-
lection of the first 100 brainteasers
from Quantum magazine. Con-
gratulations to all our winners, and
thanks to all who entered.

Now, who'd like to take a crack
at the latest CyberTeaser? (Let’s not
always see the same hands . . .) Go
to http://www.nsta.org/quantum,
click on the “Contest” button, and
keep on going!
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Math
M186

In both cases the answer is no. To
see why, color the chessboard hori-
zontally: the first rank black, the
second white, the third black again,
and so on (fig. 1]. We can see that

Figure

after a jump any checker lands on a
square of the same color, so after the
rearrangement the 3 x 3 square must
cover the same number of, say,
black squares as before. But this
number for the bottom square is six,
and for either top square it’s three.

M187

If we could cut off more than n/2
circumscribed quadrilaterals, at
least two of them would be consecu-
tive—that is, would have two com-
mon sides. Denote them by ABCD
and BCDE (fig. 2). If both have in-
scribed circles, then each of them
has equal sums of opposite sides:

AB + CD = BC + AD,
BC + DE = CD + BE.

Tt follows that
AB + DE =AD + BE.

Since the given n-gon is convex, its

50 NOVEMBER/DECEMBER 1896

ANSWERS,
HINTS &
SOLUTIONS

A N\45°

and will be in-
sufficient. Figure
5 shows that 12
shots is always

enough.
(b) The an-

A

Figure 2

diagonals AD and BE intersect at a
certain point P. Then, by the Tri-
angle Inequality we have

AD + BE=AP + BP + PD + PE
> AB + DE,

which contradicts the previous
equation.

To construct the required octa-
gon, consider a circumscribed isos-
celes trapezoid ABCD with base
angles of 45° and turn it into a sym-
metric octagon by adding congruent
trapezoids, as shown in figure 3. A
similar construction yields an n-gon
from which n/2 circumscribed quad-
rilaterals can be cut.

M188

(a) The answer is 12. Figure 4
shows that we can fit 12 non-over-
lapping ships of the given shape in
the 7 x 7 square, so fewer than 12
shots might leave one of them intact

Figure 3

swer is 20. Fig-
ure 6 shows how
20 squares on
the 7 x 7 board
can be marked so
that no four of
the unmarked
squares form a connected tetramino
piece. On the other hand, we can
place four 3 x 4 non-overlapping
rectangles on the 7 x 7 board (fig.4).
A direct verification, which is left to
the reader, shows that the minimum
number of shots needed to hit a
tetramino ship hiding in a rectangle
of this shape is five, so the total
number of shots for the entire board
that ensures detection of such a ship
isno less than 4 - 5 = 20.

M189

Denote the Fibonacci numbers by
o
f0= 1’fl = 1’}[11—1 =fn+ n-1° (]‘)

We'll need the following simple esti-
mate for the ratio r, = f, , ,/f, of the
neighboring Fibonacci numbers:
starting with f,/f, = 3/2, this ratio is
no less than 3/2 = 1.5 and no greater
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than5/3 = 1.66... < 1.7. We can arrive
at this estimate from the well-known
fact that the ratio of consecutive Fi-
bonacci numbers approaches the
“golden ratio” t = (1 + /5 }/2 = 1.618.

These inequalities can easily be
proved by induction. From equation
(1) we have

ﬁz—l _

I =

—thatis, 2/3>1/r, | 23/5—then r,
is evaluated from above by 1 + 2/3 =
5/3 and from below by 1 + 3/5 = 8/5
> 3/2. Since equation (2) is true for
n =3, which can be checked directly,
it is true for all n > 3.

Now let f,. be the smallest m-
digit Fibonacci number, m > 2. Then
f210m=1 f, | 2 1.5f,, and, further,

fisr=feo1 * i 2 2.5,
fk+3 >(2.5 + 1.5)f1< = 4fk,
frr a2 4+ 2.5)f, = 6.5,

and sof, , - 210.5f, > 10" and has at
least m + 1 digits. Thus, there are no
more than five m-digit Fibonacci
numbers.

On the other hand, f, _, < 10m-1,
fi < L.7f, _1, and, following the lines
of the argument above, we can show
that f, ;< 7.1f, _ , < 10™. Conse-
quently, there are no more than four
m-digit Fibonacci numbers. (N. Vasil-
yev)

M190

Any time we find three points on
a circle, two of them can be chosen
that define an arc that is at most 120°.
So if we join each pair of given points
that define an arc that is less than
120° with a segment, we obtain a
graph in which at least two of any
three points are joined. This property
suffices to prove the statement of the
problem—that is, in terms of the
graph, to prove that the graph we con-
structed has no fewer than 100 edges.

Let A, be the vertex of our graph
that has the smallest number of edges
issuing from it. Denote these edges by

Figure 7

A Ay AA, ..., A A, Fach of the k
points A, i=1, ..., k, is an endpoint
of at least k — 1 edges, so the total
number of edges with one or both
endpoints among these points is no
less than k(k - 1)/2 (we divide by 2
because each segment can be counted
twice, since they each have two end-
points). Any two of the remaining
21 - k points must be joined by an
edge. Indeed, if two of these points, B
and C, are not joined, then there will
be no edges at all between the points
A,, B, and C, which contradicts the
property of the graph established
above. This yields no fewer than
(21 - k(20 - k)/2 additional edges. So
the total number of edges is at least

Kk-1) (21-K)20-K)

2 B
=k?>-21k+210>100

(for integer k). The minimum is
achieved at k = 10 and &k = 11. This
estimate cannot be improved, as is
demonstrated by the arrangement of
points in figure 7, where 10 points
are grouped near one point of the
circle, 11 points near the diametri-
cally opposite point.

In the general case of n points on
a circle, the number 100 must be
replaced with n(n - 2)/4 for even n
and with (n - 1)2/4 for odd n. The
proof remains the same. (V. Dubrov-
sky, A. Sidorenko)

Physics

The only force that accelerates
the string is that of gravity. So we
must find its component acting

Figure 8

along the spherical surface.

Divide the string into small seg-
ments of length Al (fig. 8). Let the
angle between the radius drawn to
one such segment from the sphere’s
center and the vertical be ¢. Then
the component of gravity acting tan-
gentially along the sphere for this
segment is

AF = Amgsin¢ = %A]gsin(p,

where M is the string’s mass. Figure
8 shows that

Alsin ¢ = Ah,

where Ah is the difference between
the heights of this segment’s ends.
Thus

AF = %gAh.

The total accelerating force we seek
is

N N
F= :E:‘AJ% ::zggég:E:Zth :;z%{é;}f’

i=1 i=1

where H = 1 - R(n/2 - 1) when
I>nR/2. Therefore, the acceleration

18
F Rim
=—=g1-2| Z_1]|
Y. ‘{ 1(2 H

Note thata — g as] — e as expected.
In the case where the string’s length
equals, say, one quarter of the cir-
cumference—that is, I = wR/2,
H = R—the initial acceleration of
the string is
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P187

A charged particle induces a dis-
tributed surface charge on the con-
ducting plane, which attracts the
particle. The effect of the distrib-
uted charge is equivalent to the at-
traction of an image charge equal to
—Q and located at the same distance
L from the plane, but on the other
side (see figure 9). The force acting
on a particle located a distance x

from the plane is given by
Coulomb’s law:

kQ* kQ?

(2x)  4x*

Rather than trying to solve this
equation for the time, let’s convert
it to a familiar problem that we al-
ready know how to solve. Imagine
that the same force acts on the par-
ticle, but the source of the force is
gravitational attraction of a mass M
located at point O on the plane.
Equating the forces

po GmM _ kQ?
x? 4x*’

we find the size of the mass

Ao B _kQY
Gm 4mG

Now the motion of the particle can
be described by Kepler’s third law.
As a preliminary calculation, let’s
consider a circular orbit of radius L
centered on O and find the period of
revolution T, of the particle around
the mass M. We equate the centrip-
etal force F, = mv?/r to the gravita-

Figure 9
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tional force:

2
E = mﬂz—L =G mi\/I,
by L
which yields
LT
Ty=2mn, | —.
oM eMm

The trajectory of the particle can
be considered a very elongated el-
lipse with semimajor axis a = L/2
and semiminor axis b <« a (the foci
are at the point O on the plane and
at the particle’s initial position). To
find the period T of an elliptical or-
bit with semimajor axis a = L/2, we
use Kepler’s third law to compare it
to the period of the circular orbit
with a, = L:

a
g L 5.4/0

It’s clear that the time it takes the
particle to reach the plane is equal to
half the period of revolution:

lT— 1 T = T ’FZ:T
27 42 Y a2 \GM

_ L |Lm
\/EQ k '

P188

We can neglect both the vapor
pressure and the water’s volume in
the initial state. So the entire vol-
ume of the pressure cooker V was
initially occupied by air at atmo-
spheric pressure P = 1 atm and tem-
perature T, = 293 K. In the final
state the pressure inside the cooker
3P, consists of the air pressure and
the pressure of completely vapor-
ized water. Denoting by p, v and M
the density, initial volume, and
molar mass of water, respectively
(p =103 kg/m3, M = 18 g/mole), then
for the air pressure P, and vapor
pressure P in the final state we
have

p =l g P

a ! v

T, MV

By the statement of the problem,
P, +P, =3P,
From these formulas we finally get
the ratio of the water’s volume to
that of the pressure cooker:
v BM(3-T/Ty)
vV PRT

=107°.

P189

Heat is given off by each side of
the plate. The total radiated power
is

P=a(T, - Ty +alT,-T,),

where a is a proportionality factor.
The same power is obtained by the
plate from the Sun. For a plate of
double thickness we have

P =a|T,- Ty + a[T, - T).

At thermal equilibrium heat is
transferred from the illuminated
side to the dark side in such a way
that the thermal flow is the same at
any perpendicular cross section of
the plate and equals the heat carried
off by the air from the dark side—
that is,

where k is a proportionality factor
and d is the plate’s thickness. For a
plate that is twice as thick, the cor-
responding equation is

T, T,
a(T, -Ty)=k=2——%.

(T ~To) 2d
Algebraic manipulations give us

<T1 +T, - ZTO)(ZTl T — To)
AL -Tp)

’TS = TO + 7
(Tz - Ty )(TI +T, - 2To)

T,=TH +
e BT — T

P190

Consider the path of the ray in
the prism (fig. 10 on the next page).
At its back side the ray is refracted
according to



Figure 10

sino. 1
sinf n

from which we get
sin B = n sin o.
Because the angles are very small,
we can write
B = no.
It’s clear from the geometrical con-
struction that
Yy=PF-oaz=(n-1o

The interference pattern can be
observed in the overlapping region
of the refracted rays leaving both
halves of the prism (fig. 11). The

Figure 11
maximum distance where overlap-
ping still occurs is

s S s
L= =—z=
tany 2y 2(n-l)o

Brainteasers

B186

See figure 12.

B187

Yes, the required partition is pos-
sible. For instance, consider the 18
pairs of weights “equidistant from

=50 m.

Figure 12

the ends”: 1 + 101, 2 + 100, ..., 18 +
84; and 32 similar pairs for the re-
maining 64 weights: 20 + 83, 21 + 82,
22 +81,...,51 +52. If we take any 9
pairs from the first set and 16 pairs
from the second set, we obtain the
required partition.

B188

When you jump onto sand, your
velocity is decreased to zero over a
longer period of time, which is what
we mean when we say that your fall
is “cushioned.”

B189

See figure 13.
X

X[ X

Figure 13

B190

The table is given in figure 14.
Clearly 10 games were played, so the
total number of points is 10. The
winner, player A, lost at least one
game and so couldn’t win more than
3 points. But neither could A re-
ceiver fewer than 3, because other-
wise the sum of the scores of all the
players would be at most 2.5 + 2 +
1.5+1+0.5=7.5<10. Therefore, A
lost one game and won all the rest.

A|lBlc|D|E
Toli]1]1
ol
Ipf 1|
Iplop |1
15115 0

muam‘b
|||~

Figure 14

Since B had no losses,
A lost to B and beat
the rest of the players.
Notice that 3 + 2.5 + 2
+ 1.5+ 1 =10; it fol-
lows that the respec-
tive scores of B, C, D,
and E were 2.5, 2, 1.5,
and 1. This is possible
only if, besides the
win, B had three draws—with all the
players except A. Subtracting the
draws with B from the results of C,
D, and E, we find that their scores in
games among themselves are 1.5, 1,
and 0.5. Clearly this is possible only
with the results in the table.

Toy Store

1. (a) All seven possible strategies
are shown in figures 15a-15g. (b)
Shifting the 4 x 4 squares of each of
the seven strategies in part (a) up and
to the right four squares, we obtain
a multitude of strategies for the
10x 10 board. However, only two of
them (not including equivalent rota-
tions and reflections) are optimal.
They consist of 24 shots each
(fig. 16 on the next page—compare
this with figures 15a and 15b). The
reader may want to show that all
optimal strategies for an arbitrary

a x b X
X X
X x
X X
C X d X
x X
X x
X X
e X f X
X b
X x
X b
g X
%
X
X
Figure 15
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X X b3 X
X X X X
X X X X X X
X X b3 X X X
X X X X
X X X X
X X X X X X
X X X X X X
X X X X
X b3 X X

Figure 16

n x n board are obtained from trans-
lations of a certain 4 x 4 optimal
strategy.

2. By the rules of the game, any
two ships must be at least one
square apart. Surround each ship
with a frame 1/2 of a square wide

Figure 17

(fig. 17). The rectangle thus ob-
tained will be called the inflated
ship. It’s easy to compute the total
area of the seven inflated ships
that we have to destroy—it’s 36
unit squares. On the other hand,
the area of the entire inflated
board is the same 36 squares. So
the inflated ships cover the in-
flated board without gaps and
overlaps. In particular, it follows
that all four corner squares are oc-
cupied by ships (otherwise the
quarter-square at one of the
board’s corners would remain un-
occupied). Now it’s not difficult to

Figure 18
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list all essentially different (up to ro-
tations and reflections) possible ar-
rangements of the ships. There are
only five such positions, as shown
in figure 18.

This analysis suggests a remark-
able endgame. The first four shots
are made at the corners of the 5 x5
portion of the board still in play. As
we know, all four will find their tar-
gets. If any of these shots hits a sub-
marine, that ship will be completely
destroyed, and our opponent will
have to announce this. Depending
on the number of such shots, we’ll
find ourselves either in the position
of figure 18a (three destroyed ships);
18b or 18¢ (two ships); or 18d or 18e
(one ship). In fact, the first case, af-
ter the sunken submarines are de-
leted, will include two positions:
the one in the figure and its reflec-
tion about the main diagonal. To
distinguish between them, we
shoot at a3 and c1 and find which of
these squares holds the submarine.
This will define the position
uniquely and we can infallibly com-
plete the “battle.” In the second
case, after positioning the board so
as to have the two de-
stroyed corner subma-
rines along its left side,
we'll have to choose be-
tween figure 18D, its re-
flection about the hori-

MathSoft

Gorrection

On page 2 of the last issue, a
factor inadvertantly fell out of
the equation in column 3, line
4. The expression should read
“M = 4n2R3/GT2.”

zontal midline of the board, and fig-
ure 18c. This can be done by shoot-
ing at a3, cl, and c5. This will tell
us which two of these three squares
hold submarines and thus deter-
mine the position uniquely. Finally,
in the third case we actually have
four possible positions (provided the
only corner submarine is at the bot-
tom left corner): those in figures 18d
and 18e and their reflections about
the main diagonal. We shoot at a3
and cl. If this destroys only one sub-
marine, we identify the position
uniquely, as figure 18d or its reflec-
tion, depending on where this sub-
marine is. If both these squares are
submarines (fig. 18¢), we make one
more probe by shooting at b5 and e2
to determine which of the two ships
at the top left and bottom right cor-
ners is the cruiser. After this—that
is, after no more than eight shots—
we'll have all the information we
need.

This example shows that some
positions in the game of Battleships
require a high degree of artfulness and
self-control.
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TOY STORE

The game of Battleships

Achieving naval superiority on a paper sea

T'S HARD TO IMAGINE A PER-

son who has never played the

well-known pencil-and-paper

game of Battleships. In one ver-
sion, each of the two players draws
two 10 x 10 boards on graph paper.
One of them is a “map” of the ocean
area where you deploy your “fleet”;
the other is used to discover your
opponent’s deployment. Each of the
two fleets consists of ten ships: one
4 x 1 battleship, two 3 x 1 cruisers,
three 2 x 1 destroyers, and four 1 x 1
submarines. The ships may occupy
any squares on the grid, but they are
not allowed to touch one another,
not even at the corners.

After the fleets take their initial
positions, the battle begins. The
players take turns “shooting” at the
opponent’s vessels—that is, calling
out the squares of the board—a3, b7,
ij9, and so on (the rows are denoted
by the numbers 1 to 10, and the col-
umns by the letters a through j, as in
chess—see figure 1). After each of
your shots, your opponent tells you
whether you've hit one of the enemy
vessels (if the square you called is
occupied by a ship); sunk it (if that
was the last untouched square of a
ship, and all its other squares have
been hit before); or missed (if the
square was empty). In the first two
cases you're allowed to shoot again,
and so on until the first miss—then
it’s your opponent’s turn. Victory is
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by Yevgeny Gik
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Figure 1

gained by the player who sinks all
ten enemy vessels.

Usually a shot in Battleships is
denoted by a dot; if it hits a ship, the
dot turns into an X (and a rectangu-
lar frame is drawn around the de-
stroyed vessel]. Of course, a player
will automatically place dots in
squares that must be free of ships by
the rules of the game—that is, the
squares on a diagonal from a hit
square, or all the squares adjoining
a sunk ship. It goes without saying
that the players can change the tra-
ditional shape and size of the board,
as well as the shapes and number of
ships—chess players, for example,
might prefer to play on an 8 x 8
board.

Clearly success in Battleships de-
pends, to a certain extent, on sheer
luck. You might shoot at the
“ocean” at random and destroy all

your opponent’s ships without a
single miss. But it’s not very reason-
able to rely on chance alone. On the
other hand, if you know that your
partner has a habit of placing the
fleet at the center of the board or
perhaps at the edges, your chances of
winning increase.

If we talk about the “art” of play-
ing Battleships, two questions arise:
(1) How do you shoot so as to raise
the probability of hitting an enemy
vessel? (2) How do you place your
own ships so as to make it more dif-
ficult for your opponent to sink
them?

Suppose we want to hit the en-
emy battleship. If we consecutively
shoot first at the squares of the first
row (from left to right), then at the
second row, and so on, it may hap-
pen that we’ll hit the battleship only
on the 97th shot (if the vessel occu-
pies the squares from g10 to j10).
However, if we fire only at the
squares marked in figure 1, we'll
definitely hit the battleship no later
than the 24th turn.

It’s interesting to consider a more
general situation. Suppose a k x 1
ship is hiding on an n x n board. The
sequence of shots that guarantees
hitting this ship will be called a
strategy; the strategy with the least
possible number of shots will be
called optimal.

One of the optimal strategies for
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detecting a 4 x 1 battleship on the
4 x 4 board is highlighted at the bot-
tom left corner in figure 1 (it con-
sists of four shots). Optimal strate-
gies for the n x n board are obtained
by shifting this strategy four squares
up and to the right. In particular, the
strategy in the figure is optimal for
the 10 x 10 board. It’s clear that to
hit a k x 1 vessel on the n x n board,
our shots must be spaced k squares
apart in both directions. This means
that each row (and each column)
must contain approximately n/k
shots in the optimal strategy. So the
total number of shots is approxi-
mately n?/k; for the battleship, this
number is n?/4.

Problem 1. (a) What is the number
of optimal strategies for hittinga4 x 1
battleship on a 4 x 4 board? (b) On a
10 x 10 board? (Strategies that differ
only by a reflection or rotation of the
entire board are considered the
same.)!

Here’s the modus operandi of expe-
rienced players. First, using a strategy
similar to the one in figure 1, they
detect the enemy battleship. When
they’ve finished with it, they start
looking for the cruisers. Shots are
fired at intervals of three squares
rather than four. After sinking both
cruisers, they turn to the destroyers.
When only the submarine is left, the

Figure 2

1Problems 1 and 2 were devised by
V. Chvanov. See also challenge M188
in this issue, where you'll find another
question about optimal strategies in
Battleships, and M169 in the March/
April issue, which explores the
problem of the feasibility of arranging
the ships in the “ocean” one by one
but in a fixed given order.
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Figure 3

unexplored squares are checked at
random. Of course, the smaller ships
might have been detected earlier, dur-
ing the hunt for the larger vessels.

Thus the most difficult task is to
sink the submarines. Essentially
there’s no strategy at all for detect-
ing them. So in deploying their
fleets, players must arrange their
larger vessels as densely as possible,
leaving the maximum amount of
free space for the opponent to search
for submarines. From this view-
point, the most advantageous place-
ment is shown in figure 2. Even if
the opponent has destroyed all six of
the larger ships (to the left of the
vertical divider), the submarines
must be sought in the largest pos-
sible search area (the 60 squares to
the right of the divider).

Of course, chance plays a sub-
stantial role in the game of Battle-
ships, and it’s hard to avoid misses.
The most interesting situations are
those where a single miss spells the
loss of the entire game. Let’s con-
sider one endgame of this sort.

It’s shown in figure 3. At this
point in the game both fleets—ours
(fig. 3a) and our opponent’s (fig. 3b)—
have suffered equal casualties. Qur
deployment is already known to our
opponent, and our fleet faces the
danger of a continuous series of
strikes that will completely destroy
it as soon as it’s our opponent’s turn.
Fortunately, it’s our turn to shoot,
and the fate of the game is in our
hands. In this “mortal combat” we
have to destroy one by one all seven
enemy ships concentrated in the
square al—-el—-e5-a5. The combina-
tion that wins this tense battle

b.

XiX] o [X[X[X]e|o|o|e
olXjeo oo
o[X]eo|e
o|X]|e oo
o IX oo

emerges from the following prob-
lem.

Problem 2. Prove that for any de-
ployment of a cruiser, two destroy-
ers, and four submarines ona 5 x 5
board, they can be sunk without a
single miss.

There are many variations on the
game of Battleships.? For instance, a
move may consist of a number of
shots rather than a single shot—the
two sides exchange salvos, so to
speak. In this version of the game
the players inform each other of the
general results of each move with-
out specifying which ship was hit
and on which square. The rest of the
rules are the same. Each move gives
a player some information about the
deployment of the opponent’s fleet
that must be somehow processed to
derive at the optimal next step.

In another version of the game
each player is permitted to take as
many shots simultaneously as she
or he has ships “afloat” (the first
move consists of ten shots at once).
Again, the players exchange only
general information about the dam-
age done: the number of hits,
misses, and sunk ships. When all of
a player’s ships have been sent to
the briny deep, that player loses the
right to shoot (that is, has zero
shots) and the game as well. (@]

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

’In one of them the game is treated
as a puzzle (a “one-player game,” as it
were). A sample of such a puzzle can
be found in the Quantum article “The
World Puzzle Championship” (July/
August 1996).—Ed.
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