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Right and Left (1909) by Winslow Homer

OUR IMMEDIATE RESPONSE TO THIS PAINTING IS

probably to wonder at the bizarre postures of the two
ducks. Only after careful inspection do we notice the red
flash in the background, the boat, the hunter. Then the
drama becomes clear, and the scene takes on a chilling poi-
gnancy.

Why “Right and Left”? It’s more customary in English
to name the directions in the reverse order (perhaps be-
cause that’s the direction of our written language—from
left to right). Winslow Homer seems to be emphasizing the

fact that we're observing the scene from the “other” direc-
tion. Just as we are often compelled to say, “The person
on my left,” or “The chair on your right,” Homer says:
“Here’s how it looks from their point of view.”
Physicists often deal with shifting frames of reference.
Sometimes the transition is easy and intuitive, sometimes
not. Several articles in this issue will test your ability to
keep your bearings in a world where “everything is rela-
tive.” You might want to begin with the Kaleidoscope,
which is devoted entirely to the subject of relativity.
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Solar calculator

The easy precision of microelectronics
can be too much of a good thing!

S ELECTRONIC CALCULA-

tors have become common-

place and so inexpensive that

they are sometimes given away
as an advertising promotion, their use
has become extensive. Where I once
prided myself on the speed with
which I could add a column of num-
bers without use of a calculator, I
now find myself resorting to a calcu-
lator to be reassured that my check-
book balance is correct. But there is
a problem with the use of such cal-
culators, one more serious than just
my own loss of a skill.

Calculators are available that ex-
press numbers to ten, twelve, or
even sixteen places. If ever there
were an important distinction be-
tween mathematics and the engi-
neering and sciences, it is with the
use of these decimal places.

Mathematics doesn’t care about
precision or accuracy. It is con-
cerned only with correct logic. Pre-
cision and accuracy is the domain of
measurement. The theory of mea-
surement is mathematical, but its
application is the real world of sci-
ence and engineering. You probably
recall that accuracy is how well a
given measurement instrument
compares with a standard. If it’s a
meter stick, how closely do the
marks on the meter stick match the
marks on a platinum-iridium sec-
ondary standard meter at standard
temperature? Precision is concerned
with the fineness of the subdivisions
on the instrument, or how narrow
the distribution of a set of measure-
ments is when made by the same
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instrument. A measurement can be
very precise, but terribly inaccurate,
as would be the case for a meter
stick actually constructed to be 120
cm long, instead of 100 cm long.
Now, what has this to do with
decimal places? When you make a
measurement, each decimal place that
you show in the result represents ten
times more precision! Those extra dig-
its are very difficult to come by, and
often they reveal much more science
as we try to improve the precision.
This was made apparent to me
most recently when I tried to com-
pute the apparent diameter of the Sun
for every day of the year. As you prob-
ably know, the Earth-Sun distance
changes only very slightly over the
year. The Sun is closest to Earth on
about January 1. (Many people errone-
ously believe that the Sun is closest
in the summer and wrongly attribute
the seasons to this change in distance.
But actually the seasons are a conse-
quence of the orientation of the Earth
relative to the Sun, due to Earth’s
231/, degree tilt in its rotation axis.)
As a first approximation, the
Earth’s orbit around the Sun can be
treated as a circle. So, as long as you
want only one or two significant fig-
ures, you can make this assumption.
You can then use the following val-
ues: 2 - 1030 kg for the Sun’s mass;
1.4 - 10° m for the Sun’s diameter;
1.5 10" m for its distance from Earth;
and 6.7 - 10-''kg-m3/kg-s? for the
value of G from the Law of Universal
Gravitation. These quantities can be
used to determine the length of the
year; or, alternatively, given the

length of the year, two of these quan-
tities can be used to find the mass of
the Sun. That is how planetary
masses are determined (M = 472R3/T2,
where R is the orbital radius and T'is
the period of an orbiting satellite, like
the moons of a planet). Under this as-
sumption, it’s easy to figure out the
apparent size of the Sun. The image
size isjustd = A(D/R), where A is the
distance from aperture to image, D is
the diameter of the Sun, and R is the
distance from Earth to the Sun. Alter-
natively, using the image size and
known distance to the Sun, you can
calculate the Sun’s diameter. In this
approximation, the Sun’s apparent
diameter stays the same all year. But
we know that, to two significant fig-
ures, the apparent diameter does not
stay the same.

When you examine images of the
Sun carefully, you find that, in fact,
its apparent diameter does change
over the course of a year. At apogee
it’s about 97 % of its apparent diam-
eter at perigee.

Earth does not travel around the
Sun in a circle. It travels in an el-
lipse, whose general equation is
given by 1/R = C[1 + e cos (6 - )],
where C and 6, are constants asso-
ciated with the conic section in-
volved and its characteristics, and e
is the eccentricity, which for an el-
lipse has a value of less than one.
When I made my calculations, I
wanted to be as precise as possible,
so I sought precise values for the
various quantities needed. I used the
best value for the eccentricity—
namely, e = 0.0167044 (Julian date




8280.5). Then I started by using the
apogee position as my starting point
for the motion (setting the angle
equal to zero and getting the constant
C in terms of a and cos (6;), where a
is the semimajor axis of Earth’s orbit
(which is also equal to 1 AU). ThenI
could look at perigee, where the angle
was equal tom, to evaluate 6, as equal
to -7 I could also evaluate C as being
1/a(1 - €?). The resulting equation

[-¢*

R:a1+cos(9—ﬂ:)

was then used in a computer program
to determine R and then the apparent
size of the Sun for each day of the year.
The best values for these quantities that
I could locate are as follows:
M=1.9891-10kg, D=1.393-10°m,
a = 1.4959787066 10Mm, and
G = 6.67259 - 10 1kg-m?/kg-s*. My
result shows the apparent diameter of
the Sun at apogee to be 96.714% of
that at perigee.

The problem with using these
numbers is that with five or six sig-
nificant figures, all kinds of problems
crop up. For example, Farth’s eccen-
tricity isn’t constant. It changes over
the years. The distance from Earth to
the Sun is not the distance that
should be used. Earth has a moon, and
the center of mass of the FEarth-Moon
system is really what is moving about
the Sun. Thus Earth itself wobbles
somewhat, and its distance changes
with that wobble. Then there are the
other planets. If all or most planets
were on the same side of the Sun as
Earth, the center of mass of the solar
system would be shifted slightly, and
the Sun’s center would not be the
center of the orbit.

The whole point here is that deci-
mal places on calculators are mean-
ingless unless you know the preci-
sion of the measurement for the
number being entered. I use my cal-
culator extensively, and have no in-
tention of giving it up. But calcula-
tors need to be used properly. Since
almost no common measurements
you will ever make have more than
three or four significant figures, you
seldom need even six decimal places
except as place holders.

—Bill G. Aldridge
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The muHtidimensional cube

An introduction and a quick tour

by Vladimir Dubrovsky

HIS YEAR MARKS THE 400th

anniversary of the birth of the

great French mathematician

and philosopher René Des-
cartes. One of his greatest math-
ematical achievements, shared with
Pierre Fermat, is the foundation of
analytic geometry. In the course of
its development, this branch of
mathematics brought mathemati-
cians to the notion of multidimen-
sional space, which soon became per-
haps the most popular mathematical
abstraction among the general public,
not without various mystical and
spiritualistic misinterpretations. We
decided to celebrate this anniversary
with a series of articles about the sim-
plest of multidimensional objects—
the cube—and its applications. Al-
though all these articles are, in
principle, self-contained, you may
want to start with this one, where
we build the n-dimensional cube
from scratch and try to explore its
geometric structure.

Step by siep

The easiest way to understand the
multidimensional cube is to “grow”
it from the simplest of all cubes, the
point (which can be viewed as a zero-
dimensional cube), step by step, add-
ing one dimension at a time.
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n=0

[ ]
Figure 1

Let’s take a point (fig. 1a) and move
it a unit distance. It sweeps out a seg-
ment, or a one-dimensional cube
(fig. 1b). We can think of it as the seg-
ment0<x<1 of the x-axis. Now let’s
shift the segment perpendicular to
itself through a unit distance (fig. 1c).
It sweeps out a square—the two-di-
mensional cube. We need two coordi-
nates, x and y, to describe it: in the
frame shown in figure lc, it is given
by the two pairs of inequalities
[0<x<1,0<y<1}. Shifting the square
perpendicular to its plane (fig. 1d), we
obtain the three-dimensional cube
{x,v,2:0<x<1,0<y<1,0<z< 1)L

Now let’s do the next step and
consider the figure traced by our
three-dimensional cube when it is
dragged a unit distance. It’s no prob-
lem drawing this figure on the
plane—see figure 2. What is really
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perplexing is to imagine that the
cube is shifted “perpendicular to it-
self.” Some people claim that they
have managed to develop the ability
to see this fourth dimension. Those
who have not reached this degree of
perfection can, as a first step, rely on
the power of analogy, the step-by-
step “dragging” construction, and,
of course, the formal algebraic defi-
nition. Taken together, this will be
quite sufficient for exploring even

.
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Figure 2
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represents one square
face of our cube in
space). Then we drag
the parallelogram along

A e
\ \;¥%-“nip;,,__.

a third (say, blue) seg-
ment, which gives the

image of an ordinary
cube, and so on. This

job is easy and even
pleasant, because tak-
ing different directional

coordinates

o
S
S
S

vertex number 0

— 0001

segments we can pro-
duce diverse patterns
(compare figures 2 and
3a and the symmetric
portrait of the tesseract
in figure 4). It’s inter-

b esting that no matter
5 how the guiding n seg-
_ ments are chosen (ex-
4 .\ cept when they lie on
\\ \ \ \ \ A ﬂl -!!E%Z‘ég——‘rv‘i%‘?i the same line) they pro-
2 3 P mlﬂ‘ég%%jﬁ@[‘l‘ AAQA duce the drawing,
g (e | which is a really pos-
T\ \dAeder e i T sible paralel pojcrion
<! %\ R of the n-cube on the
S ‘)"A%‘( #“_A;vé,é%!iii-‘“; AN plane. It correctly con-
|\ e as 2wl veys the mutual ar-
"v‘ rangement of vertices
0 A‘ . and edges and shows
coordinates 3525858 S85S585S5852585228525850  pich edges are paral
S0~ —=00 00~~~ 0000 A=A~ —0OOD0 D —~ — — — el to one other. But the
EEEESE88885555553833=2=2222282-0--sons drawings in figure 3
vertexnumber 01 2 34567 8 910111213141516171819202122232425262728293031  have some additional
properties and were
Figure 3 made by a special rule.!
Let’s consider them in
more detail.
such an unearthly object as the four- system of n double inequalities for
dimensional cube and cubes of even  the coordinates x;, x,, ..., x,, defines
higher dimensions. the n-dimensional cube. Although
So, by shifting the ordinary cube strictly speaking this definition de-
we get the four-dimensional cube. (It scribes only one particular (unit)
was considered so important that it cube in any given coordinate frame,
received two special names: “hyper- the generality is not lost, because for
cube” and “tesseract,” from the any cube we can choose a frame
Greek tessera, “fours,” and aktis, with respect to which it will satisfy
“ray of light.”) The four-dimen- the same inequalities. (Can you ex-
sional cube generates the five-di- plain how?)
mensional cube, and so on. Performing the “dragging” pro-
In coordinates, the nth step of this  cess on the plane yields a portrait of
construction amounts to appending the n-dimensional cube. We draw a
a new, nth coordinate varying from segment from the origin (say, the
Otoltothen-1oldones. Thusthe green one in figure 3a or 3b), then Figure 4

hypercube is defined as the set of
number quadruples (x, y, z, u) speci-
fied by the inequalities 0 < x < 1,
0<y<1,0£z<1,0<u<]. Asimilar

draw another segment (say, the red
one) from the same point and drag
the first segment along the second
to obtain a parallelogram (which

IDescribed by N. B. Demidovich in
“How to Draw the N-dimensional
Cube?” (Kvant 8, 1974).
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Drawing and counting

From the definitions above it’s
clear that the coordinates (a,, a,, ...,
a,) of any vertex A of the n-cube are
zeros and ones. Compute two num-
bers: x(A) = a,27 + a,27-1 + ... g 20
(that is, the number whose binary
representation is a,a,...a,) and
ylA)=a, + a, + ... + a_ (the number
of unit coordinates, called the rank
of vertex A). Draw an arbitrary, not
necessarily rectangular, coordinate
system on the plane, and for each
vertex A mark the point with coor-
dinates (x(A), y[A)). All these points
are nodes of the integer grid (with
respect to the chosen coordinates).
Now join with a segment each pair
of points A and B whose x-coordi-
nates differ by a power of two
(x(A) — x(B)] = 2%). T leave it to the
reader to verify that the resulting
diagram is indeed a drawing of the n-
dimensional cube. One way to draw
this cube step by step is to start with
a segment connecting the origin to
the point (1, 29) and shift this seg-
ment in the direction of the segment
connecting the origin to (1, 21, then
(1, 22), then (1, 23), and so on. The
final shift is along the segment con-
necting the origin to (1, 22~ 1). One
curious feature of this drawing is
that all the vertices lie on integer
linesx=k, k=0,1, ...,2% -1, one
on each. “Horizontally,” they lie on
then+1linesy =0, 1, ..., n, each of
which contains all the vertices of
the same rank. So this method of
drawing comes in handy whenever
the notion of rank is used, and such
situations arise repeatedly in the
problems about the n-dimensional
cube considered in this issue. By
way of example, we'll use these fig-
ures in counting the elements (ver-
tices, edges, faces) of the n-cube.

First of all, we see that the num-
ber of vertices V_ is equal to 27, sim-
ply because they can be enumerated
with the numbers from 0 to 22 -1,
as in figure 3. Or we might notice
that each step of the “dragging” con-
struction duplicates the number of
vertices of our cubes: to the vertices
of the initial cube we add those of its
shifted copy. We can also investigate
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how the number of edges E, changes
at each step. To the edges of the ini-
tial cube we add their shifted copies
and the edges traced by the vertices
while the cube is dragged. We can
express this by the formula

E,, =2E+V, (1)

n+1l

where E, and V,_ = 2" are the num-
bers of the edges and vertices of an
n-dimensional cube.

Exercise 1. Derive a formula for
E_ as a function of n.

Alternatively, imagine that we
paint all the edges parallel to one an-
other their own color as in figure 3
(forn =4 andn =5). There are as many
colors as edges issuing from the ori-
gin, because these edges are all col-
ored differently. At the same time,
edges of any given color can be
thought of as traced by the vertices of
a cube of one dimension less when it
is dragged, because the order in which
the directional edges appear in our
construction is irrelevant. Now, can
you tell in ten seconds how many
edges there are altogether?

This coloring can also be used to
calculate the number of vertices of
a given rank k. Starting from the ori-
gin, we can reach any of them by
following a path of k edges, and all
the edges we pass on the way are a
different color, because the “swell-
ing” cube in our construction is
moved in a new direction at each
step. The color of the first segment
can be chosen in n ways, that of the
second in n — 1 ways (one color has
been used), that of the third in n -2
ways, and so on. So the total number
of such pathsis nin-1)....n -k + 1).
To pass along a segment of a certain
color means to move a unit distance
along the corresponding coordinate
axis— that is, to replace the corre-
sponding zero coordinate with one.
Therefore, the coordinates of the
endpoint of a path depend only on
the set of colors of its segments
rather than on their order. So the
number of paths leading from the
origin to the same vertex of rank k
is equal to the number of permuta-
tions of their k colors—that is, to
kl=k-(k-1)-...-2-1,and the num-
ber of rank-k vertices is equal to

n(n—l)...(n—k+1) n!

k! (n—K)!k!’

which is denoted by (#). These num-
bers are the well-known binomial
coefficients. (This will come as no
surprise to readers familiar with the
combinatorial use of these coeffi-
cients. In counting vertices of rank
k, we are choosing k out of n coor-
dinates to have the value 1, and the
rest to have the value 0.) By the way,
since the total number of vertices is
22, we get the relation

(n]j{n\_w_ HJ=2H~
0 1) 1

The one-dimensional skeleton of
the n-cube formed by its vertices and
edges gives only a rough idea of its
structure. The edges must be joined
by two-dimensional faces, and those
by three-dimensional faces, and so
forth, up to the (n - 1)-dimensional
faces that constitute its boundary.
Each face is a cube of a certain dimen-
sion. Figure 5, another portrait of the
hypercube, can help us understand
the arrangement of its three-dimen-
sional “hyperfaces.” In fact, this fig-
ure is a two-dimensional drawing of
a three-dimensional configuration—
the central projection of the hyper-
cube on three-dimensional space. A
similar projection of the ordinary
cube on the plane is shown in figure
6. In figure 5 we can also clearly see
the 24 two-dimensional faces of the
tesseract. But can you imagine the
four-dimensional interior enclosed by
the eight cubes (six of them in the
shape of a truncated quadrilateral
pyramid) seen in this figure?

In our step-by-step construction
the k-dimensional faces of the
n-cube appear as those of the (n-1)-

Figure 5



Let’s calculate the
radius of the sphere
inscribed in an n-
dimensional cube.

assume that the edge

\ For convenience, we

length of the cube is

2, and we place the
origin of our coordi-
nates at its center.

Then any coordinate
of any vertex is either

Figure 6

dimensional generating cube and its
shifted copy and those swept out by
its (k — 1)-dimensional faces as it
moves. This yields a recurrent for-
mula for calculating the number
F, | of k-dimensional faces similar
to equation (1).

Exercise 2. Show thatFn, =2F, 1k
+F, 10 for <k<n-1withF, =1,
F, o=V, =2" Detive a formula for
F, 1 as a function of n and k.

In coordinates, a k-dimensional
face consists of points whose n-k co-
ordinates are fixed and are each
equal to 0 or 1, while the other k
coordinates vary from 0 to 1. From
this description, the formula for F 5k
can be obtained directly.

Building up one's fyperintuition

It would be very difficult to imag-
ine a multidimensional cube without
diagrams like those in figure 3 or 5.
But on the other hand, they are rather
deceptive. For instance, looking at fig-
ure 5, can you conceive of a sphere
(hypersphere!) that passes through all
the vertices of the hypercube, or the
spheres that touch all of its 32 edges
or 24 square faces? It’s even more dif-
ficult to picture the inscribed sphere
that touches all the three-dimen-
sional faces at their centers so that
the faces themselves stay outside
the sphere. Nevertheless, all these
spheres do exist, and we can calcu-
late their radii using the familiar
definition of the (Euclidean) distance
between the points (x, ..., x,) and
(yy, .-, ¥,) given by the formula

S =)+ (g = )

1 or -1, and its dis-
tance from the center
equals 12 +---+1% =
Vn . So all the vertices lie on the
sphere given by the equation
xP+x}+ ...+ x2=n. Now take an
(n-1)-dimensional face—say, the one
given by the equation x, = 1. Its cen-
ter—the point (1, O, ..., 0)—is a unit
distance from the cube’s center,
whereas any other of its points
(1, x,, ..., x,) is a greater distance

away, since \/12 +X3 4+ +xE > L
This means that this face, and simi-
larly any other face of the cube,
touches the unit sphere centered at
the cube’s center—that is, this sphere
is inscribed in the cube.

Exercise 3. For any n and &, find
the diameter of the sphere touching
all the k-dimensional faces of the n-
dimensional unit cube.

The radius of the sphere inscribed
in the unit cube is the same (1/2) in
any dimension. On the other hand,
the argument above, when applied
to a cube of unit edge length, shows
that the circumradius +/n /2 grows
indefinitely with the growth of the
dimension n.

I want to demonstrate one para-
doxical fact about the n-dimensional

a

Figure 7

cube and its spheres. Take a cube of
edge length 2. In each of its 27 cor-
ners inscribe a sphere of diameter 1
(see the diagram in figure 7 for di-
mension 2). Any two of these
spheres that are adjacent along an
edge touch each other, and their cen-
ters form an n-dimensional cube
with edge length 1. Now consider
the sphere centered at the cube’s
center that touches all the corner
spheres. Our intuition tell us that it
must lie inside the cube. But look
again: its diameter is equal to the
distance between the centers of two
opposite corner spheres minus their
radii—that is, to v/'n - 1. And this is
greater than 2 forn > 10. So for large
enough n this sphere bulges out of
the cube!

Our attempts to visualize the
multidimensional cube are similar
to what inhabitants of Flatland,? an
imaginary two-dimensional world,
would have tried to do in order to
understand the structure of the ordi-
nary cube. They could try to draw its
projections on the plane, which is
like the approach we used so far. But
they could also try to construct and
examine cross sections of the cube.
To get a more detailed picture, they
might have drawn a series of
tomograms (“CAT scans”), so to

Figure 8

2Flatland: A Romance of Many
Dimensions by the English scholar,
theologian, and writer Edwin A.
Abbott (1838-1926). The book has
been reprinted by Dover Publications,
Inc., and is widely available. It has
also been digitized as part of Project
Gutenberg. (A copy of the Gutenberg
text can be downloaded from
Quantum’s FTP server—ftp.nsta.org/
pub/quantum/flat10a.txt.}—Ed.
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speak, of the cube—that is, sections
by a plane moving in a fixed direc-
tion, say, perpendicular to the cube’s
main (longest) diagonal. One such
section is shown in figure 8. If our
Flatlanders were intelligent enough,
they would probably find an easy
way to draw the projections of these
sections on the cube’s base: they can
be obtained simply as the intersec-
tions of the base with a strip of width
w = /2 /2, half the diagonal of the
base, perpendicular to the diagonal.
We can see this immediately from
the figure. The Flatlanders could
derive it algebraically.

Indeed, the coordinate equation of
a plane perpendicular to the cube’s
diagonal drawn from the origin takes
the form x + y + z = ¢. The points of
the section satisfy the additional in-
equalities 0 <, y, z < 1. The projec-
tion of the point (x, y, z) on the base—
that is, on the (x, y)-plane—is simply
(x, v, 0. So, in (x, y)-coordinates, the
projection of this section is given by
the inequalities 0 £ x<1,0<y <1,
andc-1<x+y<c|(sincex+y=c—-z
where0<z<1). The first two double
inequalities specify the base of the
cube, while the third defines the
strip.

Notice that under this projection
the number of sides that a figure has
does not change. Thus the Flat-
landers will find out that the mov-
ing section is a growing triangle
(which in this case is equilateral). At
a certain moment its corners get cut
off, and it gradually transforms into
a regular hexagon. Then the whole
process is reversed.

Like the Flatlanders, we can sub-
ject the hypercube to three-dimen-
sional tomography, cutting it with a
moving hyperplane—that is, 3-
space—perpendicular to its diago-
nal. The sections are certain three-
dimensional polyhedrons, and their
projections on the hypercube’s base
can be found as the solids cut out
from the base, which is an ordinary
cube, by the layer between two par-
allel planes perpendicular to this
cube’s diagonal, 1/3 of the diagonal
apart from one another (fig. 9). You
can prove this using coordinates in

8 SEPTEMBER/OCTOBER 1996

Figure 9

exactly the same way we did above.
To obtain an exact copy of a section
from its projection, we must stretch
the latter by a factor of two perpen-
dicular to the layer. Thus, the sec-
tion starts as a point; it turns into a
growing regular tetrahedron; at a
certain moment its corners are cut
off; and the truncated pieces keep
growing until the cuts reach the
midpoints of the edges of the tetra-
hedron. At this moment the section
passes through the center of the
hypercube and turns for an instant
into a regular octahedron (see figure
10, which shows it shrunk by half,
according to our construction). From
this point on the movie is repeated
in reverse.

Another way to think of our
“tomograms” is to represent the (or-
dinary) cube as the intersection of
the two trihedral angles formed by
the triples of faces at its two oppo-
site vertices. At any moment, each
of these angles cuts an equilateral
triangle out of the moving plane,
and the section of the cube is the
intersection of these triangles
(fig. 11), one of them inflating, the
other deflating. I leave it to the
reader to look at the sections of the

Figure 10

Figure 11

hypercube from this point of view.
The main difference will be that the
triangles will be replaced with regu-
lar tetrahedrons. Also, you may
want to draw the hypercube’s
“tomograms” taken in other direc-
tions, or investigate what polygons
can emerge when the hypercube is
cut by a two-dimensional plane.
It’s clear that we can apply the
above considerations to cubes of an
arbitrary dimension n. In particular,
the cutting hyperplane can be drawn
through the vertices of a given rank
k (they all satisfy the linear equation
X, +X, +... + X, = k|. Thus we arrive
at the following curious fact:3 the
section of the n-dimensional cube
by the hyperplane drawn through its
vertices of rank k “coincides” (up to
contraction) with the layer of the
(n — 1)-dimensional cube between
the two sections drawn through the
vertices of rank k- 1 and k. As a con-
sequence of this, by counting the
vertices of all these sections and
comparing the results, we get the
familiar formula for binomial coef-

ficients: (i) = (ij) + (Hz: 1).

Applications

It’s no wonder that the multidi-
mensional cube appears in the re-
cent, sensational disproof of the 60-
year-old Borsuk Conjecture (which
you can read about in the article by
A. Skopenkov in this issue]. The
very wording of the problem in-
volves n-dimensional figures. One
remarkable thing about it is that the
cube’s vertices in the construction
are identified with subsets of a finite
set! This link between geometry and
combinatorics proves to be helpful

30Observed by the Moscow
mathematician D. Ryzhkov.




in some purely combinatorial prob-
lems, too.

Another reincarnation of the cube
is found in information theory,
where its vertices are viewed as
points of the simplest binary “code
space” (see, for instance, “Errorproof
Coding” in the March/April 1993
issue of Quantum). Our calculation
of the number of vertices of a certain
rank is used there to estimate the
greatest possible size of a “k-error
correcting” code.

Some uses of the multidimen-
sional cube are really “puzzling.” In
“Nesting Puzzles” (see the January/
February and March/April issues)
you would have encountered the
remarkable sequence

121312141213121...

that solves the famous Tower of
Hanoi and a number of similar
puzzles. If we start at the origin and,
reading this sequence digit by digit,
move along the edges of the
n-dimensional cube, choosing the
edge parallel to the ith coordinate
axis whenever the next digit in the
sequence is i, we'll visit all the
cube’s vertices without walking the
same edge twice. (Check this!) Thus
we solve, for the case of the n-di-
mensional cube, another puzzle—
one created by the outstanding Irish
mathematician W. R. Hamilton as
an illustration of some of his find-
ings. It is simply this: to visit all the
vertices of a given polyhedron (origi-
nally it was a dodecahedron) so as to
trace any edge no more than once.
Such paths are called Hamiltonian
walks.

In conclusion, let’s look at an al-
gebraic rather than combinatorial
application of the cube. We'll prove
the well-known Cauchy inequality
for arithmetic and geometric means.
We'll do this for the case of three
numbers, but it will be clear how
the proof generalizes.

Let’s begin with this “oldie but
goodie”: cut the cube into three
equal pyramids. The solution, if you
don’t know it, is not so easy to find.
We must take the three quadrilat-
eral pyramids that have three of the
cube’s faces with a common vertex

ZA
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Figure 12

as their bases and the opposite vertex
of the cube as their common apex.
Placing the cube in the coordinate
system as we have done throughout
this article, we can call them x-, y-,
and z-pyramids, according to which
coordinate axis is perpendicular to
the pyramid’s base. The y-pyramid is
shown in figure 12. We can see that
the volume of each pyramid is 1/3
that of the cube.

Cauchy’s inequality says that for
any three positive numbers x, y, z,
we have

+y+
%23/@2.

So let’s take three positive numbers
x,y, z. Without loss of generality we
may assume that x>y > z. Then set
Ix =a, 3y =b, Yz = c. The num-
bers a, b, ¢ are also positive, and
azbzc. Consider a rectangular par-
allelepiped with edges a, b, and c,
running along the x-, y-, and z-axes,
respectively (fig. 13). From the ori-
gin, draw a ray along the cube’s di-
agonal. The ray will first meet the
face z = ¢ of the parallelepiped at
point Cc, ¢, c), then the extended
facey=batB(b, b, b), and thenx =a
at Ala, a, a). Consider the three cubes
with diagonals joining the origin to
the points A, B, and C. Take the

ZA
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Figure 13

x-pyramid in the first of them, the y-
pyramid in the second, and the
z-pyramid in the third (see figure 13).
These pyramids cover the parallelepi-
ped, and their volumes are equal to
a®/3, b3/3, and ¢3/3. Since the volume
of the parallelepiped is abc, we have
abc < (a® + b3 + ¢3)/3. Taking x = a3,
y = b3, z = ¢3, we can rewrite this in-
equality as

X+y+z
3

with the arithmetic mean on the left
and the geometric mean on the
right, which is the inequality we
were going to prove. In the case of n
variables, the n-dimensional cube is
cut into n equal n-dimensional pyra-
mids whose bases are its (n — 1}-
dimensional faces coming together
at a vertex, and the number 3 is
everywhere replaced by n. (@

>3[xyz,
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BRAINTEASERS

Just for the fun of it

Cowboy math. A farmer has a cow, a horse, a goat, and a stack of hay. His
son calculated that this hay would suffice to feed the horse and the goat for
a month, or the goat and the cow for 3/4 of a month, or the cow and the
horse for 1/3 of a month. The father told his son that he must not have
been too good at math in school. Did the father have grounds for his acid
remark? (G. Kukin)

B182

Little house circumscribed. An equilateral triangle ABE is constructed on
the top of a square ABCD (see the figure). Find the radius of the circle
drawn through C, D, and E if the side length of the square is a. (A. Savin)

B183

Cutting kerosene. You have two large, opaque vessels. One contains
kerosene, the other contains kerosene and water. How can you tell the one
from the other using a spring scale and a weight on a string?

B184

With squares and circles. Mark six points on the plane such that any five
of them can be covered with two squares whose diagonal length is 1, but
all six can’t be covered with two circles of diameter 1. (V. Proizvolov)

B185

Indelicate bureaucrats. A hundred officials were invited to the annual
meeting at their Ministry of Affairs. They were seated in a rectangular hall
with ten rows of chairs, ten chairs in each row. The opening was delayed,
and the officials could find nothing better to do than compare their salaries.
To consider oneself “highly paid,” an official had to determine that no
more than one person seated to the left, right, front, or rear or at a diagonal
was paid as much or more. What is the greatest number of officials who
could count themselves as “highly paid”? (A. Shapovalov)

Asnuiay) |ened Aq uy
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N-DIMENSIONAL PHYSICS

Resistance in the multidimensional cube

First you'll need to overcome your resistance to
the multidimensional cube!

by F. Nedemeyer and Y. Smorodinsky

POPULAR SUBJECT IN MATH-
ematics clubs! in Moscow at the
end of the 1940s was the prob-
lem of the electrical resistance
of a wire cube. We don’t know who
thought it up or found it in an old
book. It was very popular, and soon
everyone knew about it. Later it be-
came a common question on exami-
nations, and the problem came to be
considered almost trivial.

We can formulate it as follows:
calculate the resistance R, between
points A and B in the circuit in fig-
ure 1 if all its resistors have a resis-
tance of 1 Q.

A

Figure 1

“What's so interest-
ing about that?” a

skeptical reader may
ask. “We only have to
undertake a rather long
and boring calculation
using Kirchhoff’s laws
and everything will
emerge all by itself. Ba-
sically, it’s just another
dull physics problem.”

Asked to count the
resistance R, between
nodes A and B of the

circuit in figure 2, this
reader will probably get

really angry—what a
strange idea even to

think of such cumber-
some calculation!

However, these prob-
lems conceal some
beautiful geometric and algebraic re-
lations (it’s not without reason that
this problem was discussed in math-
ematical circles) that will allow us to
solve it without any “boring calcula-
tions” and will lead to an unexpected
generalization.

Figure 2

IThis form of extracurricular
advanced mathematical education for
high school students—"“mathematical
circles” in Russian (MaTeMaTHuecKue
kpyxku)—was developed in Moscow,
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Leningrad (St. Petersburg), and other
Russian cities, big and small, and
helped launch the careers of many
prominent Russian mathematicians of
today.—Ed.

()
\&/

In dimensions three and four

Let’s start with an obvious geo-
metric observation: the circuit in
figure 1 is simply the network cor-
responding to the edges of an ordi-
nary cube (compare figure 1 and fig-
ure 3a). As a model for our cube,
consider the standard unit cube in
coordinate space with nodes A and
B represented by the cube’s vertices
(0,0, 0)and (1, 1, 1), and each of the



Figure 3

cube’s edges thought of as a 1-Q re-
sistor. Notice that all the coordi-
nates of the cube’s vertices (and
only these coordinates) are ones and
zeros. Let’s define the rank of a ver-
tex as the sum of its coordinates. If
we apply a voltage difference be-
tween points A and B, then the ver-
tices of the same rank will have the
same potential (this is clear from
the symmetry of the configuration).
Therefore, we can short-circuit such
vertices without changing the over-
all resistance of the circuit. As a re-
sult, we get a circuit consisting of
three groups of parallel resistors
connected in series, as shown in the
right-hand side of figure 4). And for
this circuit the problem can be
solved in your head: resistance R,
equals 5/6 Q.

To compute the second resis-
tance (fig. 2), we notice that this

b AZ
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circuit can be interpreted as the net-
work of edges of the four-dimen-
sional cube (see the introductory
article “The Multidimensional
Cube” in this issue). This is a less
obvious geometric observation.
However, you can check that it is
true by comparing figure 2 to the
portraits of the four-dimensional
cube in that article. Now the calcu-
lation is done the same way we did
it for the ordinary cube—see figure
5 on the next page. Again we use the
fact that the vertices of the same
rank are all at the same voltage and
so can be short-circuited without
changing the total resistance be-
tween A and B. The answer is
R,=2/3Q.

Exercise 1. Find the resistance R,
for the five-dimensional cube be-
tween its diagonally opposite vertices
if the resistance of each edge is 1 Q.

Resistance of te /+dimensional cubg

It’s only natural to generalize our
problem to cubes of dimensionn =5,
6,7, 8, and so on. This could be done
along the same lines as forn = 3 and
n = 4. (By the way, what is the an-
swer R, for n = 27) However, we
couldn’t rightfully consider our-
selves mathematicians if we were
unable to compute the resistance R
between two opposite vertices of an
n-dimensional cube for all n at once
(the definition of the n-dimensional
cube can be found in the article
mentioned above).

You may wonder whether such a
setting of the problem is legitimate
at all, because the n-dimensional
cube for n > 3 is only a mathemati-
cal abstraction—it doesn’t exist “in
reality,” and it isn’t clear whether
there’s any point in calculating its
resistance. But it turns out there is!
This problem is an absolutely “real”
physical question. While the n-
dimensional cube itself for n > 3
can’t be imbedded in our three-
dimensional space, its “two-dimen-
sional skeleton”—the framework of
its edges—fits into our space with-
out any problem. Figure 2 (or
figure 5) shows how this can be done
for the four-dimensional cube. It pre-
sents no difficulty in the general
case either. In fact, it can be proved
that any graph (not only that of the
cube’s edges) can be embedded in

three-dimensional

space without self-
intersections. This

is a rather simple
mathematical theo-
rem and we won’t
dwell on its proof.
It is interesting

that the graph of the
edges of the three-

dimensional cube
can be embedded

without self-inter-
section not only in
space (where it re-
sides by definition)

rank b rank
number of 4 number of
vertices vertices
number of 4 number of
edges edges
circuit circuit
resistances 1 resistances
Figure 4

but in the plane as
well (fig. 1). How-

ever, such an em-
bedding is impos-
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number of
vertices

16

number of
edges

32

circuit

resistances

Figure 5

sible for the four-dimensional cube,
to say nothing of higher dimensions.
This follows from the general
Kuratowski theorem on planar
graphs (see, for instance, “Graphs
and Grafs” in the November/De-
cember 1995 issue of Quantum).

It must certainly be clear to you
that the computation of R can be
done in essentially the same way as
for R, and R,. You can follow it by
referring to figure 6. The answer is

-1

=]

1
O(H-k)@l (1)

where the numbers (7] are . . . well,
let’s say (%) is the number of the
rank-k vertices of the n-dimensional
cube. (Of course, many of our read-
ers know that the notation (7) is used

b -

n
k

for binomial coefficients given by
the formula

-

And of course we used this notation
deliberately, because the numbers in
equation (1) are indeed binomial co-
efficients—for details see the intro-
ductory article, page 6. But here this
connection is, in fact, irrelevant.)
To prove equation (1), we must
again use the fact that the vertices of
the same rank are equipotentials, so
the whole problem reduces to count-
ing all the edges joining vertices of
two successive ranks. The number of
the vertices of rank k is (}), and each
of them is joined ton —k vertices of rank
k + 1 (namely, to the vertices whose
coordinates are obtained by replacing
one of the n — k zero coordinates of

rank

number of
vertices

number of
edges

resistances

Figure 6
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the rank-k vertex with a one). So the
number of edges in question is
(n - k)(3). They can be regarded as
connected in parallel, and their total
resistance equals 1/[(n - k|(})], which
leads to equation (1).

Exercise 2. Prove that equation (1)
can be rewritten as

-1

1
-1

1n
R, == .
k

This exercise should pose no se-
rious difficulties for many of our
readers. And here are two other
beautiful formulas for R . It won't be
difficult for you to derive them from
each other, but to prove that either
of them gives a correct value for R |
is a real challenge.

Problem 1. Prove that

”z‘lt 1
Rn = P (3)
k=0 (H - k)z

Problem 2. Establish the recur-
rent relation

1 1
Rn :E-{_ERH_I

algebraically (using equation (3)) and
geometrically. Check our calcula-
tions for small values of n using this
relation and the initial value R, = 1.

Extensions

The method we used to calculate
R_ can be applied to other prob-
lems—for instance, to this one.

Exercise 3. Find the resistance
between two adjacent vertices of a
wire three-dimensional cube if the
resistance of each edge is 1 Q.

Rather than change the points
where the ohmmeter is attached, it’s
more interesting to change the con-
figuration of the circuit. Here are
some more examples that can be
calculated in the same manner.

Exercise 4. Assuming that the re-
sistance of all the wires that form
the circuits defined below is 1 Q,
find the resistance between two ad-
jacent nodes of a wire (a) m-gon,
(b) tetrahedron, (c) circuit with m



Figure 7

nodes any two of which are con-
nected, (d) octahedron (fig. 7a),
(e) hexagon with its opposite verti-
ces joined to one another (fig. 7b).
Now we have a surprise for you: all
the formulas in the last two exercises
are particular cases of one general for-
mula. Before we write it out, you may
want to derive it yourself. Just one
little hint: for all these circuits the
resistance in question can be ex-
pressed in terms of two numbers: the
number of nodes m and the number
of edges s issuing from each node.
Problem 3. Suppose a circuit has
m nodes and each node is connected
with wires of resistance 1 Q to s
other nodes. Suppose also that all

the wires are “equivalent” in
the sense that for any two
edges AB and CD we can es-
tablish a one-to-one corre-
spondence between the
nodes of the circuit such that
nodes A and B will corre-
spond to C and D, respec-
tively, and any pair of nodes
will be connected if and only
if their corresponding nodes are con-
nected. Then the resistance between
any two adjacent nodes equals?

R:%(l—é]. (4)

’In the original Russian article,
published in our sister magazine Kvant
a while back, the authors erroneously
omitted the requirement of edge
equivalence. Without it the formula
becomes inapplicable: even in the same
circuit the resistance through different
edges may be different (consider, for
instance, a wire triangular prism). In all
likelihood, this additional requirement
suffices for the formula to be true;
however, we did not verify this.—FEd.

Applied to the main character of our
story, the n-dimensional cube
(m=27 s = n), this formula gives the
resistance through its edge

R= %[1 - i] .
n 27

Try to verify this on your own. It’s
interesting that the formula works
as well for infinite circuits.

Problem 4. Prove equation (4) for
the infinite grids of squares (s = 4,
m = o), triangles (s = 6, m = =), and
hexagons (s = 3, m = =) in the plane.

Even more interesting (but, unfor-
tunately, not at all elementary!) is
the problem of computing the resis-
tance between two diagonally adja-
cent nodes of the infinite square grid
of 1-Q resistors. The answer turns
out to be equal to 2/r Q, although
nothing in the problem suggests any
connection with the circle! Q]

ANSWERS, HINTS & SOLUTIONS
ON PAGE 63
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Borsuks problem

“Io cherry blooms | row,
But the oar froze in my hand:

Willows on the shore.”

—Basho

by Arkady Skopenkov

N 1933 THE POLISH MATHE-
matician Karel Borsuk proved the
following theorem:

THEOREM. Any bounded plane
figure can be divided into three
pieces of smaller diameter.

(The diameter of a figure is the
maximum distance between its
points.)

He also offered the following gen-
eralization of his result, which for
years has been one of the most in-
triguing problems in combinatorial
geometry:

Borsuk’s coNJECTURE. Any bounded
n-dimensional figure can be divided
into n + 1 pieces of smaller diameter.

This is obviously true for n = 1.
Also, it’s not difficult to find n-
dimensional figures that cannot be
divided into n pieces of smaller di-
ameter. For n = 3 the simplest ex-
ample is the regular tetrahedron: its
diameter equals its edge length, and
no matter how it is cut into three
pieces, one of them will contain two
of the four vertices—that is, it will
have the same diameter as the entire
solid. This example readily general-
izes to any dimension: the corre-
sponding n-dimensional polyhedron
with n + 1 equidistant vertices is
called the n-dimensional simplex.

Exercise 1. Write out the coordi-
nates of the vertices of a four-dimen-
sional regular simplex.

For dimension three, Borsuk’s
conjecture wasn’t proved until 1955
(by the English mathematician H.
G. Eggleston!). Later the conjecture
was proved for the n-dimensional
sphere and for centrally symmetric
convex bodies, then for all smooth
solids (those that have no “sharp
points”). The complete solution
seemed to be a stone’s throw away.
But in 1993 two Israeli mathemati-
cians, D. Kahn and G. Kalai, follow-
ing an idea of Erdds, Larman, and
Boltyansky concerning the use of
combinatorial considerations to
construct a counterexample, found
a counterexample to Borsuk’s hy-
pothesis! They showed that a cer-
tain set of vertices of the n-dimen-
sional cube can be broken into
pieces of smaller diameter only if
the number of pieces increases with
n at an approximate rate of 1.2V7.
This is, of course, greater thann + 1
for sufficiently large n.

The hypothesis simply fell apart!
Well, such disasters are not so rare
in mathematics.

The construction of this counter-
example is one of very few significant
results in modern mathematics that

1A simplified version of the proof
can be found in Results and Problems
in Combinatorial Geometry by V.
Boltjansky and I. Gohberg (Cambridge
University Press, 1985).

N-DIMENSIONAL MATH

don’t require a half-year special uni-
versity course (after a two-year regu-
lar course) to be understood, though
not in all its details. The main goal of
this article is to describe this remark-
able application of combinatorics to
geometry. But before we come to
grips with it, we'll make a few digres-
sions intended to clarify the ideas
behind the construction and to cap-
ture the spirit of the problem.

Borsuks protilem on the plane

I'll start with a sketch of the
problem’s solution in the two-dimen-
sional case. It has practically nothing
to do with the counterexample per se,
but it’s useful in itself and demon-
strates the wide range of ideas con-
nected with the problem.

Notice that a regular hexagon can
be cut into three pentagons of
smaller diameter (fig. 1). Therefore,
it will suffice to show that any plane
figure @ can be covered by a regular

Figure 1
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hexagon of the same diameter
d = diam ®—that is, with the distance
d between its opposite sides. The con-
struction of this hexagon is based on
“considerations of continuity.”?
Let’s fix a directed straight line / on
the plane. Circumscribe the (smallest
possible| parallelogram P, = ABCD
about the given figure ® with
ZBAD = 60° and such that the angle
from Ito AB is o (fig. 2). Pull apart the
opposite sides of P parallel to one an-
other to a distance d so as to transform
itinto arhombus R , with the same cen-
ter. Cut off the greatest possible equi-
lateral triangles from the two 60°
angles of the rhombus so that @ is still
covered by the remaining hexagon H
and denote by h, (o) and h(c) the al-
titudes of the two equilateral tri-
angles (as shown in figure 2). When
the direction of the side AB makes a
half-turn, we obtain the same paral-
lelogram and rhombus as we had ini-
tially (P, , 190: = P, and R, 150- = R,)
except that the labels A and C (and
B, D) exchange places. This means
that h,(o + 180°) - h (o + 180°) =
h(o) - h,(a). Since the difference
fiX) = hy(o) — b (o is a continuous
function of o, we can apply the In-
termediate Value Theorem and con-
clude that h (o) = b (o) for a certain
angle oy, 0. < 0y < o0 + 180° (because
either fla) = flo. + 180°) = 0, or flar) and
floe+ 180°) have different signs). The
distance between the cuts for o + o,
is no greater than d, so we can pull
the cuts apart, if needed, to make
this distance exactly equal to d and
thus obtain the required hexagon.

Figure 2

2See the article with this title in
the May 1990 issue of Quantum,
where you can find many other
interesting applications of this
powerful method—Ed.
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Geometry of the et of Subisets

The Kahn-Kalai construction is
based on an estimate of the number
of certain subsets of a finite set. So
we'll start by establishing the connec-
tion between these subsets and the
vertices of a multidimensional cube.

Let’s represent the subsets of the
finite set X ={1, 2, ..., n} as points on
the plane. We'll arrange these points
inn + 1 “floors”—that is, horizontal
lines numbered 0, 1, ..., n from the
bottom to the top. The empty set &
will be placed on the “ground” (ze-
roth) floor; the one-element sets {1},
{2}, ..., {n} will be placed on the first
floor; and so on. The last (nth) floor
will be occupied by a single “ten-
ant”: the entire set X. The number
of points on the kth floor is

[nj_n(n—l)...(n—k+1).

k) k(k-1)- 21

(See “The Multidimensional Cube”
in this issue.)

Join with a line each pair of points
in our diagram that correspond to sets
differing by a single element—these
points always reside on neighboring
floors. Figure 3 shows the graphs thus
obtained forn =0, 1, 2, 3.

Exercise 2. Draw the graph for
n=4.

So what do we get? Yes, these are
n-dimensional cubes—more ex-
actly, the graphs of their vertices and
edges. This is clear for small values
of n. As for n > 4, refer to the article
mentioned above, where you can
find a detailed presentation of these
sophisticated objects. However, for
our purposes the “trimmed” version
of the cube that involves only the

¥ X={1,2)
. {1} 2}
@=X
@
n=0 n=1 n=2
Figure 3

vertices will be quite sufficient. In
fact, we’ll deal only with the verti-
ces of the “standard” unit cube—
that is, n-digit sets of zeros and ones.

Geometrically these sets are viewed
as coordinates of points (the cube’s
vertices) in n-dimensional space. The
distance between any two of them,
o= (OLy Oy, ..y a‘n) andB = (Bl/ BQ/ oy Bn)/

is defined by the familiar formula

o =By (g =By)* + -+ (0 —B,)-
Qur goal is to choose a subset of
these points that cannot be parti-
tioned inton + 1 pieces whose diam-
eter is smaller than that of the entire
subset. It will be more convenient to
talk about the squares of distances
rather than the distances them-
selves (this doesn’t change the prob-
lem). But for the points in question
(with o, and B, equal to 0 or 1),
(o, — Bj)z =|o; —B,|, so we can measure
distances by the formula |o;, — B,| +
lo, = B,| + ... +]or, — B, |, which defines
what is known as the Hamming dis-
tance. This distance can be de-
scribed as the number of “differ-
ences” between o and f—that is, the
number of digits in one of these
strings that differ from their coun-
terparts in the other.

Combinatorially, any of our
points (o, ..., 0, can be associated
with the subset A of X that consists
of all the numbers 7 such that o, = 1.
Thus we get a one-to-one correspon-
dence between the cube’s vertices
and the subsets of X. Notice that in
terms of subsets the Hamming dis-
tance equals the number of points
that belong to exactly one of the two
subsets. The set of all these points is
called the symmetric difference of
the subsets.

X={1,2, 3} 3rd floor




See how it works

To get used to this correspon-
dence, let’s solve the following
problem.

Best in their own ways. Each
participant in a mathematical olym-
piad received a personal special
prize, because it was impossible to
compare their results: none of them
solved all the problems solved by
anybody else. What was the greatest
possible number of competitors, if
the total number of problems was n?

Each competitor is characterized
by the set of problems he or she
solved. None of these sets is con-
tained in another. If we call incom-
parable any collection of sets with
this property, our problem can be
reworded as “find the largest size of
an incomparable family of subsets in
an n-element set.”

Notice that all k-element subsets
of the set X = {1, 2, ..., n} (that is,
“points on the kth floor”| form an
incomparable family. The size of
this family is (2).

Exercise 3. Prove that (¥ is maxi-
mal for k = [n/2], where [a] denotes
the integer part of a.

Thus there exists an incompa-
rable family of ([1111/2]) subsets. We'll
prove that this number can’t be in-
creased. Let’s use our representation
of subsets as vertices of the n-dimen-
sional cube. A subset A contains a
subset B if A can be obtained from
B by adding a number of elements
one by one. This gradual transforma-
tion of B into A corresponds to a
path on our graph consisting of a
continuous series of edges always
going upward and joining B to A.
Any such path from the lowest

X

Figure 4

vertex @ to the highest vertex X (fig.
4) will be called a chain. So B c A if
and only if the corresponding points
(we identify them with the subsets)
lie on the same chain, B under A. It
follows that any chain passes
through at most one point of an in-
comparable family, which in its turn
leads to the following relation:

the total number

the size of of chains

any incomparable <
family

the smallest number
of chains passing
through a point

Let’s count the numerator and
denominator on the right-hand side.
Any chain @ c {ij} c{i}, i, ... c
{1}, ..., 1} = Xis uniquely determined
by the order in which the numbers
1,2, ..., n are included as we move
from & to X—that is, by the permu-
tation (i, ..., 1 ) of the set X. It’s well
known that this number equals
n!=1-2- ... n;and this is the nu-
merator. Now consider the chains
passing through a fixed point A on
the kth floor. Each of these chains is
divided by the point A into a lower
and upper part (fig. 5). Since A has k
elements, its subsets form a k-
dimensional cube, which contains
the lower part of any chain through
A. So the number of lower parts is
k!. Similarly, any subset that con-
tains A is obtained from A by adding
a subset of the set difference X\A.
Since the subsets of the (n — k)-ele-
ment set X \ A form an (n - k)-dimen-
sional cube, the number of the upper
parts of the chains through A equals
(n — k)!, and the total number of
these chains is k!(n — k)!. This num-
ber is the smallest for k = [n/2]

X nth floor

.

(compare with exercise 3). There-
fore, the size of any incomparable
family is no greater than

n! _( n ]
[n/2]i(n-[n/2])! \[n/2])

which completes the solution.

Exercise 4. Prove that if the sub-
sets A, ..., A_ of an n-element set
form an incomparable family and
consist of a,, ..., a_, elements, re-
spectively, then

Counting common points

The Kahn-Kalai counterexample
is a very intricate “multistoried”
structure involving sets, sets of sets,
and even sets of sets of sets. So I
tried to invent problems in which
some of its basic ideas appear in a
more tangible, if not mundane,
shape. It’s only natural that the for-
mulations turned out to be rather
unnatural (these are artificial prob-
lems), but I hope they’ll help you
understand the main points of the
subsequent construction. The first
problem, by the way, was used in a
training session of the Russian team
before the International Mathemati-
cal Olympiad.

Baker’s dozen. A hostess can
bake k different kinds of cakes.
Once she invited 66 persons to a big
reception, and each group of 36 per-
sons ate a cake. It turned out that no
two groups that ate cakes of the
same sort had exactly 18 persons in
common. Prove that the hostess’s
baking skill will suffice to invite 12
guests and treat each group of 6
guests to a cake in such a way that
no two groups that will eat cakes of
the same sort will have exactly 3
persons in common.

Solution. Divide the 66 guests at
the reception into eleven groups G,
..., Gy, of six persons each. Number
the guests at the party 0, 1,2, ..., 11.
Give to each group (i}, 1,, ..., 1}
(0<i, <i,<...<i,<11)acake of the
sort that was eaten at the first party
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by the group G; VG v UG if

i, #0, or by the group G;, U UGy,
(that is, the guests not included? in
any of the groups G; VUG, |
if i, = 0. It is directly verifiable that
with this distribution of cakes the
condition for the party will be satis-
fied. (For instance, if we suppose that
two groups, {i;, i,, ..., i} and
{fy) 7y - g withi; 20, j, #0, had three
persons—say, 4, b, and c—in com-
mon, then the corresponding groups
at the reception, G; U---UG;, and

G, v--UG;,, would have 18 per-
sons—the union G, U G, U G —in
common, contrary to the assump-
tion of the problem.)

Exercise 5. Prove that the state-
ment of the problem remains true if
we replace the numbers 66, 36, 18
and 12, 6, 3 by (4n - 1)k, 2nk, nk and
4n, 2n, n, respectively.

The solution given above was
found by the olympiad team mem-
bers. However, this problem in fact
emerged as a consequence of the fol-
lowing problem. It will shed some
light on the origin of the rather un-
usual numerical values in both of
them.

Protruding edges. Each of two
points of a 12-point set are joined
with an edge. Let’s say that an edge
protrudes from a given subset of
these points if exactly one of its end-
points belongs to this subset. Prove
that any two 6-point subsets have at
least 18 common protruding edges.

Solution. Consider two 6-point
subsets A and B. Let y be the num-
ber of their common points. Any
edge protrudes from both A and B if
and only if either one of its end-
points belongs to both subsets (that
is, to A N B) and the other to neither
of them (it lies in A m B), or one of
the endpoints belongs to A but not
to B (it lies in A n B) and the other
to B but not to A (it liesin A N B).
The number of edges of the first kind
is y? (see figure 6a), and the number
of edges of the second kind is (6 —y)*
(fig. 6b). So the total number of

3The notation A means the
complement of the set A.
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Figure 6

“double-protruding” edges is

2
v +(6-y) z—<Y+(62 7) =18
(because, as you may want to demon-
strate to yourself, a> + b2 > (a + b)*/2).

Notice that the value 18 is attained
only for y = 3, so if the number of
edges that protruded from two 6-
point sets simultaneously is not 18,
then the number of common points
of these two sets is not equal to 3.
Notice also that the number of all
edges joining 12 points is (1} = 66 and
the number of edges protruding from
any 6-point subset is 6 - 6 = 36. Now
compare these numbers to those in
the “baker’s dozen” problem!

Exercise 6. Solve the “baker’s
dozen” problem using the “protrud-
ing edges” problem.

The meaning of all these combi-
natorial exercises with regard to
Borsuk’s conjecture becomes clear if
we introduce the Hamming distance
between sets of edges. If we confine
ourselves to the 36-element sets of
edges that protruded from 6-point
subsets of a 12-point set, as we did
above, then the Hamming diameter
of this family of sets is 36 (any two
such sets have at least 18 common
elements, so their symmetric differ-
ence consists of at most (36 — 18) +
(36 — 18] = 36 elements—see figure
7). Not only that, we have a descrip-
tion of the sets that are most distant
from one another: they must be gen-
erated by 6-point sets with exactly
three common points. It is this con-
struction (for the case of dimension
n = 66) that refutes Borsuk’s conjec-
ture. Now we'll describe it more for-
mally and generally.

The consiruction

For any even
m, consider an
m-element set S
(called “points”
above) and the
set of all its sub-
sets viewed as
an m-dimen-
sional cube gq.
Then consider
the set P of all
pairs of the elements of S (P consists
of m(m - 1)/2 elements—called
“edges” above) and the set of all sub-
sets of P viewed as an m(m - 1)/2-di-
mensional cube Q. Take the largest
“incomparable family of subsets” in
S—that is, the points on the (m/2)th
floor in g. The required set X is the
image of this family under a certain
map f of g into Q. More exactly, for
each subset A of S (a point of g) we
define f{A) as the subset of P (a point
of Q) that consists of all the pairs
each of which has exactly one ele-
ment in A. (So f{A) is the set of pairs
that “protruded” from A in the ter-
minology of the previous section.)
This map is illustrated in figure 8.

Exercise 7. Prove that the set X
lies on the (m?/4)th floor of cube Q.

Let’s find the diameter of X with
respect to the Hamming distance.
For the sake of diversity, we'll do it
a bit differently from the way we did
it earlier. As we saw, the (Hamming)
distance between the subsets f(A)
and f(B) of the set of pairs P equals
the number of pairs in the symmet-
ric difference of f{A) and f(B), which

intersection

symmetric difference

Figure 7




“floor” m/2 of cube q

“floor” m2/4 of cube Q

(1,2} {1,3) {1,4) 2,3} 2,4] 3,4}

123 4

0011 f
1100 >
0101

1010 >
0110

1001 >

Figure 8

The 0-1 sequences on the left represent all the (m/2)-element subsets of the
m-element set {1, 2, ..., m} (for m = 4): for instance, 0011 denotes {3, 4}. On the
other hand, these sequences can be thought of as coordinates of the vertices of
the m-dimensional cube that lie on its (m/2)th floor. The meaning of the digits
on the right is similar, except that the set here consists of m(m - 1)/2 (rather
than m) elements—the pairs {1, 2}, {1, 3}, ..., {m — 1, m}. The arrows join each
subset on the left to the set of pairs that “protrude from” this set.

includes (1) the pairs in f{A) but not
inf{B) and (2) those in f{B) but not in
flA). A pair belongs to flA) if exactly
one of its elements belongs to A4; it
doesn’t belong to f{B) if either both
or none of its elements belong to B.
In other words, either one element
of this pair must belong both to A
and B and the other to B but not to
A (the number of such elements is
equal to y(m/2 — y), where y is the
size of the intersection A N B), or
one element belongs to A but not to
B and the other neither to A nor to
B (the number of such elements is
(m/2 - y)y). So the number of pairs
of type (1) is 2y(m/2 — y). Clearly
there are equally many type (2) pairs,
so the distance between f{A) and f(B)
is 4y(m/2 —y). This value is maximal
for y = m/4; the maximum equals
m?/4. So if X is split into parts of
smaller diameter, then for any two
points f(A) and f(B) in the same part,
the number of common points in A
and B is not equal to m/4.

Deus ex machina

All our constructions were in-
tended to fit into the conditions of
the following theorem, which was
proved by Frankl and Wilson long
before and then found an unex-
pected application in the solution of
Borsuk’s problem.

THEOREM. Let F be a family of dis-
tinct (m/2)-element subsets of an

m-element set such that no two of
them have exactly m/4 common el-
ements. If m = 4p% where p is a
prime greater then 2 and o is a non-
negative integer, then the number of
subsets in F is no greater than

Lot

Exercise 8. Check this theorem
form =4.

This theorem tells us that if our
set X is divided into pieces of
smaller diameter, then the pre-im-
age f~1A) of each piece A consists of

-1
at most 2( = ) elements. So if
m/4-1

there are N pieces, then the number
of elements in the pre-image of the

entire set X—that is, in the (m/2)th
“floor” of cube g—is no greater than

-1
ZN( " j But this number is
m/4-1
equal to (1’2/2), sO
()
NZLZI,
of M7
m/4-1

It remains to estimate the value
on the right. This can be done by
using the well-known asymptotic
Stirling formula for n!, which says
that n! is approximately equal to
V2nne™n® for large enough n.

Exercise 9. Show that

m(m-1)
2

N > +1

for large enough m.

Thus our construction supplies a
counterexample to Borsuk’s hypoth-
esis if m is a large number of the
form 4p®,

I'd like to thank Nikolay Dol-
bilin, from whom I learned about
the solution of Borsuk’s problem;
the students of the Kolmogorov
school and school 57 in Moscow,
who learned about it from me; and
Vladimir Dubrovsky, for valuable
discussions and suggestions about
this article.
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HOW DO YOU
FIGURE?

Challenges in physics and math

Math
M181

Triple quadratic. s it possible to
find three quadratic polynomials
flx), glx), h(x) such that the equation
flglh(x))) = 0 has the eight roots 1, 2,
3,4,5,6,7,and 82 (S. Tokarev)

M182

Third circle. Let A be one of the in-
tersection points of two circles in
the plane. In each of the circles a
diameter is drawn parallel to the
tangent to the other circle at A.
Prove that the endpoints of the di-
ameters lie on a circle. (S. Berlov)

M183

Sum of polynomial shifts. (a) Prove
that for any nonzero polynomial f{x)
of even degree there exists a positive
integer k such that the polynomial

Filx) = flx) + filx + 1) + flx + 2
+.. +flx+k

has no real roots.

(b) Prove that if the degree of a
polynomial f{x) is odd, then for a
certain k the polynomial F,(x) de-
fined above has exactly one real
root. (S. Berlov, K. Kohas)

M184

Sisyphus’s pay. Sisyphus was given
anew job: he must carry stones, one
at a time, from one of three piles to
another. For each stone Zeus gives
him a number of coins equal to the
difference between the number of
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stones in the pile to which this stone
is added and the number of stones in
the pile from which the stone was
taken. (The stone being moved is
not counted in this calculation at
all, so that if Sisyphus moves a stone
from a pile of a stones to a pile of b
stones, he receives b — a — 1 coins.)
If the difference is negative, Sisy-
phus returns the corresponding
sum to Zeus. (If he’s short of
money, magnanimous Zeus al-
lows him to drag the stone on
credit.) At a certain moment all
the stones are in the same piles they
were in initially. What is the great-
est amount of money that Sisyphus
could have made up to that point?
(I. Izmestyev)

M185

Divisibility of partial sums. Does
there exist a sequence of positive
integers containing each positive
integer exactly once such that the
sum of the first k terms of this se-
quence is divisible by k for any
k=1,2,3,...2(A. Shapovalov)

Phiysics

Gymnast on a trampoline. A gym-
nast falls from the height H=12m
onto a horizontally stretched elastic
trampoline, which bends a distance
h =1 m. Estimate how much greater
the maximum force acting on the
gymnast from the trampoline is
than the gymnast’s weight if the

trampoline is much larger than h
and its mass is much less than a
person’s. (A. Izergin, S. Manida,
V. Saulit)

P182

Capillary tube. An Tl-shaped capil-
lary tube with two sides of length
I=10 cm and diametersd, = 0.1 mm
and d, = 0.2 mm is lowered into wa-
ter with its open ends down. The tube
is submerged so that the level of the
water in the narrow side is the same
as that in the vessel. Find the height
of the water in the thick side. Neglect
the volume of the horizontal part of
the tube. The atmospheric pressure is
standard. The coefficient of surface
tension of water is ¢ = 0.070 N/m.
(B. Bukhovtsev)

P183

Circuit with diodes. A circuit com-
posed of two capacitors with capaci-
tance C, > C, and two ideal diodes D,
and D, (see the figure below) is fed by
an alternating current v = V,, cos ot.

How does the voltage across each ca-
pacitor vary with time in the steady-
state regime? Draw the correspond-
ing functions. The resistance of an
ideal diode is zero when the electric
field is applied in the conducting di-
rection, and infinity in the opposite
case. (V. Skorovarov)



THE-RIGHTS OF BDIBCOVERERS

The name game of the elements

Chemistry and politics don’t mix

by Henry D. Schreiber

UESTION: “WHAT DO THE

elements with atomic num-

bers 104 and 106 have in

common?” Answer: “Both
are named rutherfordium!” But
how can that be? Doesn’t each el-
ement have a unique name? Even
more astounding is that the same
question can be asked

the fundamental building blocks of
substances, this arrangement of el-
ements is a central organizing con-
cept in science. What makes an ele-
ment unique is that it consists of a
multitude of characteristic, and
identical, atoms; accordingly, ele-
ments cannot be broken into any

simpler chemical components. For
example, lead is made up of indivis-
ible lead atoms, while carbon is
made up of only carbon atoms. At-
oms of one element are distin-
guished from the atoms of another
by the number of protons possessed
by that atom. Thus, the element

of the elements with Tgple 1
atomic numbers 105
and 108, in that both Discoverer's IUPAC's
are named hahnium. Atomic o . Compromise
Table 1, which gives the number proposed L nenm provisional provisions: slate
{ 1 o nationality provisional symbol
names for e ements.102 name iy (1994)
through 109, provides
the answer to this appar- 102 No
ent paradox. The actual
names for elements 104 103 fawrencium American = L =
through 108 depend on
who’s doing the naming! 104 dubnium Db dubnium
But how did the nomen-
clature of these most re- s _— , ) ;
. 106 unriipentium joliotium Ji jotiotium
cently discovered ele-
ments fall into such o B o
. 106 rutherfordium Rf seaborgium
disarray? g
107 nielsbohrium German unnilseptium bohrium B
“Rules” of the name game -
Figure 1 summarizes 108 hassium Germar unniloctium hal Hn hahnium
the elements, as repre- _ - o ) , ‘
. 109 German unnilennium meitnerium Mt meitnerium
sented by their symbols,

that have been discov-
ered up to 1995. As
chemical elements are
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Names for some of the transfermium elements. IUPAC stands for the International Union
of Pure and Applied Chemistry. The compromise slate was proposed by selected IUPAC
representatives from the United States, Germany, and Russia in 1995.
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Figure 1

Periodic table of the elements—1995. (From a figure in Physical Chemistry by John S. Winn,

New York: Harper Collins, 1995)

with atomic number 104 is made up
entirely of atoms each with the
characteristic 104 protons. The ele-
ments are systematically organized
by increasing atomic number (incre-
ments of one with each additional
proton) in a periodic table, as shown
in figure 1.

A student of science would as-
sume that the naming of these fun-
damental units, the elements, is an
established process. In fact, the dis-
coverer of a new element has, by
custom, the honor of suggesting a
name for it. The only real guideline
governing the naming process is that
new metallic elements must end in
-fum. ITUPAC—the International
Union of Pure and Applied Chemis-
try—then reserves the right to select
an official or definitive name for that
element for use in the international
community of scientists. However,

IUPAC historically has selected transfermium element, specific tar-
names that do not deviate signifi- get atoms are bombarded with a
cantly from those suggested by the beam of other atoms until they fuse
discoverers. The “trick” was usually  together. For example, just one atom
to determine who was the first to of element 112 was recently pro-
discover, if more than one legitimate duced by bombarding a lead target
claim for discovery was made for with high-energy zinc atoms for two

that element. weeks.
; More than two thirds of the
TIIE lI‘aIISfEI'IIlIlIIII fiame !]ﬂlllﬂ known isotopes of elements 101
The transfermium elements— through 109 have half-lives less than
those with atomic numbers higher a minute, and many are in the milli-
than that of fermium (element 100}—  second range. So not only is the dis-

have all been discovered within the covery of these elements plagued
past 30 years. But the discovery of with very low production rates, the
each of these new elements was of- atoms decay to those of another el-
ten based on the isolation of only a ement in a matter of seconds or min-
few atoms of a short-lived radioac- utes at the longest! How long does
tive isotope. Furthermore, only a a group of atoms have to “exist”
few laboratories in the world can before they constitute a new ele-
manufacture these synthetic ele- ment? Further, the evidence that
ments and, as such, replicate the ex- atoms of a new element were
periments of others. To prepare a present is often indirect and based
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on postulated nuclear decay
schemes, not on classical chemical
separations. To isolate and identify
a new transfermium element is a
difficult, not to mention an often
controversial and contested, process.
What happens if two or more
groups of researchers make (or
claim to make) the discovery of a
new element more or less simulta-
neously, and each group suggests a
different name for the element?
More than one name is operation-
ally applied to the same element,
as shown in table 1. For example,
element 104 is known as ruther-
fordium or as kur-
chatovium depend-
ing on whether the
suggested Ameri-
can or Russian
name is used.
Surely there
must be a process by
which an arbiter de-
cides on the priority
of discovery and
thus on the official
name of the ele-
ment. The Trans-
fermium Working
Group—a  joint
committee of
IUPAC and IUPAP
(IUPAC'’s sister or-
ganization for phys-
ics)—acts as the
judge to assign pri-
ority for disputed
discoveries of these
elements. Some-
times the judge ad- C
mits that assigning
credit for the dis-
covery could very
well be a toss-up.
CNIC (the TUPAC
Commission on
Nomenclature of
Inorganic Chemis-
try) thenactsmuch g7 88 89
like a jury to rec- ‘ ‘ }
ommend a suitable
name to the TUPAC 1 2 3
governing board,
which finally de-
fines the official
name. However,
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CNIC selects the recommended
name primarily on the basis of pre-
vailing usage and practicability, and
makes no judgment regarding prior-
ity of discovery. It even reserves the
right to come up with a name differ-
ent than those suggested by the dis-
coverer. Confusion runs rampant if
yet a third name is proposed by
IUPAC for the element. Again re-
turning to element 104, IUPAC ig-
nored the two names proposed by
the discoverers and came up with an
entirely new name: dubnium. Ruth-
erfordium, kurchatovium, and dub-
nium subsequently all join with
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unnilquadium (the TUPAC interim
name—un = 1, nil = 0, quad = 4, and
ium = metal) in the element 104
“name game” sweepstakes.

Name games rom the past

Is this confusion over element no-
menclature, as illustrated in table 1
for the transfermium elements, un-
usual? Surprisingly enough, it’s actu-
ally common! Similar games in nam-
ing an element have erupted many
times in the past, with disputes last-
ing decades and in at least one case
over a century. The disputes are usu-
ally traced back to determining who

e}
(@]

2 3 4 5 6 7 0

Periodic table of the elements—1920. (From a figure in Principles of Chemistry
by Joel H. Hildebrand, New York: MacMillan, 1920)



rightfully discovered the element
and, thus, whose suggestion for the
name should have priority. However,
in the past it was often the chemical
isolation and identification of the el-
ement that was uncertain. With
many decades of chemical under-
standing at our disposal, it is now
very easy for us to assign priority of
discovery in retrospect. But it’s very
different when one is involved in the
heat of a dispute.

Many people believe that the
chemical elements have “all” been
known for some time and that only
recently more elements—artificially
produced elements with high
atomic numbers—have been added
to the end of the periodic table.
However, “all” the elements have
not even really been known for such
a long time. For example, compare
two periodic tables of the elements,
one from 1995 (fig. 1) and the other
from 1920 (fig. 2). These seventy-five
years represent a span of only one
generation.

The 1920 periodic table has many
discrepancies, apparent now in ret-
rospect. First, there are elements not
yet discovered and named. Uranium
(element 92) is the heaviest element,

Table 2

so that all elements of greater
atomic number are not yet known.
In addition, elements 43 (techne-
tium), 61 (promethium), 72 (haf-
nium), 75 (rhenium), 85 (astatine),
and 87 (francium) had not been iso-
lated and identified. Second, there
are some inconsistencies in chemi-
cal symbols with A (instead of Ar)
for argon, Sa (instead of Sm) for sa-
marium, and UX, (instead of Pa)
for protactinium. Finally, some par-
ticipants in the name game being
played in 1920 are apparent: element
41 was then Cb for columbium (in-
stead of Nb for niobium), and ele-
ment 86 was then Nt for niton (in-
stead of Rn for radon]. It’s also
evident that the modern periodic
table was just developing in the
1920s—for example, there are too
many rare earth elements and no
place for hafnium.

A compilation of the elements in
1933 still listed columbium as ele-
ment 41, even though the modern
name for element 86 (radon) was
established by this time. But this list
also identified alabamine as element
85 and virginium as element 87. Re-
cently discovered elements an-
nounced at this time were illinium

and masurium. Most
of you have probably

Atomic
number

Official name | Symbol

Competitive usage

never heard of these
ill-fated elements!
Many of these on-

going battles in the
name games of the

41 nichium Nb

b columbium (US)

elements in the main

43 technetium Te

masurtum

portion of the peri-
odic table were not

61 promethium F

m Hinium, florentium

resolved until 1949.
Table 2 lists the deci-

71 lutetium Lu

lutecium (US),

cassiopeium (Germany)

sions of IUPAC at
this time—it was al-

72 hafnium Hf

celtium

ways an either/or de-
cision for IUPAC,

4 woifram W

which would choose
one name that was

alabamine

already in common
use for that element.

virginium

In fact, since the
claimed discovery of

91 protactinium Pa

protoactinium

“columbium” in the

Acceptance of new official names for the elements,

circa 1950.

early 1800s, the
battle between nio-
bium versus colum-

bium had raged for over 100 years.
This name game was very national-
istic—columbium was the favored
name for many years in the United
States (Columbia was an early name
for America) and niobium else-
where. But it was not always the
United States against the rest of the
world. Glucinium was the favored
name for element 4 in Prance, and
cassiopeium for element 71 in Ger-
many. Each nation and its neighbors
tend to use the name suggested by
its favorite son, the purported dis-
coverer of that element from that
country. It’s not unexpected, then,
that for the past twenty years ele-
ment 104 is rutherfordium in
American and English texts but
kurchatovium in Russian and Scan-
dinavian textbooks.

As another example of a name
game from the past, the search for
the missing alkali element—ele-
ment 87, or eka-cesium—was in full
gear in the 1920s and 1930s. The
various names suggested by those
who believed that they had isolated
the element were russium, alcal-
inium, virginium, and moldavium,
before final credit in 1949 was given
to the one who provided the name
francium. The not very subtle na-
tionalism in most of these names
identifies the location of the claimed
discoverers. Is this really that much
different from the four current
names for element 104?

Figure 3 (on the next page) shows
the steady progression in the discov-
ery of elements over time. All the el-
ements through atomic number 112
have now been discovered. The only
new elements can be those ap-
pended to the end of the periodic
table. The linear extrapolation of fig-
ure 3 would indicate that scientists
will continue to manufacture and
discover new elements. Is there any
limit to incrementally adding pro-
tons to the atoms to synthesize
more and more transfermium ele-
ments? Some scientists actually pre-
dict a sea of more stable atoms as
analogs of thallium, lead, and bis-
muth follow on the periodic table.
So scientists will continue naming
the elements, and probably continue
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Discovery of elements versus time.

disagreeing about what the names
should be!

Fastiions in naming

Much of the wisdom in naming
new elements has relied on the dis-
cretion of the discoverer. But over
the course of the last three hundred
years, there have been subtle but
dramatic shifts in the nomenclature
of the elements.

One way to illustrate these shifts
is to group the element names into
several classifications. The first
group contains those elements
whose names were constructed
from words portraying a special
chemical or physical property of the
element, or from words indicating a
unique mode of discovery. Typi-
cally, the root words for such names
have a Greek or Latin basis. Ex-
amples include chlorine from the
Greek khloros, meaning yellow
green, the color of the gas; lantha-
num from the Greek Ianthano,
meaning to hide or to escape notice,
as it had been “hiding” in a mineral
that had been previously used to iso-
late cerium over 30 years prior; and
radium and radon from the Latin
radius, meaning ray, both being ra-
dioactive. The second group consists
of those elements named after celes-
tial bodies or mythological figures.
For example, elements 93 and 94 are
named neptunium and plutonium
respectively, after the planets
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Neptune and Pluto. Just as these
two elements are beyond uranium
(element 92, named after the planet
Uranus)| on the periodic table, their
respective planets are beyond Ura-
nus in the solar system. From my-
thology, vanadium is named after
Vanadis, the Norse goddess of
beauty, to signify the beautiful col-
ors imparted by the compounds of
vanadium. A third group of ele-
ments has names representing
places or locations—whether the
place of discovery, the homeland of
the discoverer, or the location of the
mineral from which the element
was isolated. Americium, cali-
fornium, and berkelium were all
synthesized in laboratories in Berke-
ley, California. Erbium, terbium,
ytterbium, and yttrium are all
named for Ytterby, a quarry near
Stockholm containing the rare-earth
minerals from which the elements
were extracted. The final group con-
tains elements named after indi-
viduals, such as curium after Marie
and Pierre Curie, and einsteinium
after Albert Einstein.

Several elements have been
known since antiquity. Names such
as carbon, iron, lead, and tin among
others simply represent those mate-
rials. Of the next twenty elements
discovered, from 1699 to 1802, three
quarters of them had constructed
names, primarily originating from
Latin or Greek root words describing

some unique property of the ele-
ment. Most of the remaining ele-
ments in this time frame were
named after heavenly or mythologi-
cal figures. Likewise, the next
twenty elements isolated (1803
through 1829) had names that could
be placed in the same groups with
about the same percentages. Of the
next twenty elements discovered
(1830 through 1886), about half still
had constructed names, but now
about 40% had names signifying
places or locations. The same distri-
bution was followed for the names
of the next twenty elements in chro-
nological order. Through these first
two centuries of modern chemistry
there appears to be a subtle shift
from constructed names with Latin/
Greek roots or with planetary ori-
gins to names representing places
and locations.

Even more surprisingly, of the
first 93 elements discovered, only
two were named for individuals—
albeit indirectly as quirks of fate.
The elements were actually named
for the minerals from which they
were isolated. However, the miner-
als happened to have been named
after an individual. Thus, the Finn-
ish chemist Gadolin became the ori-
gin for gadolinium; and Col. Samar-
sky, a Russian mine official, was
elevated to a status probably never
envisioned by him with the naming
of samarium.

When the last 16 elements were
discovered, from 1944 to the
present, about three quarters of their
names honor a certain individual.
Most of the rest identify a certain
place or location. But such are the
trends or fashions in the elemental
name game—several centuries ago,
the fashion was to construct a name
for the discovered element based on
some property described with Latin
or Greek root words. More recently
in the late 1800s and early 1900s,
there was a trend toward using
names that represent locations, of-
ten very nationalistic names. Re-
cently, there has been a very dra-
matic shift toward using the
proposed name of an element to
honor a distinguished individual.



What, oh what, to niame a transfermium
element?

When it comes to naming artifi-
cial elements past uranium, it’s
hard to argue against names such as
curium, einsteinium, or men-
delevium—in honor of great scien-
tists, regardless of nationalities.
However, of the names of the
transfermium elements listed in
table 1, many of the individuals be-
ing honored through such names
are not as immediately recognizable
to the average scientist. For ex-
ample, an American scientist would
probably not have direct knowledge
of the individuals after which
kurchatovium and flerovium are
named; likewise, a Russian scientist
would not easily recognize the indi-
viduals behind lawrencium or
seaborgium. Because the discovery
of new elements currently relies on
nuclear chemistry and physics for
preparation, isolation, and identifi-
cation, the proposed names for
transfermium elements honor pri-
marily those who worked in these
fields. The scientists Davy and
Ramsey, who discovered 11 ele-
ments between them in the 1800s,
never had their names immortal-
ized in an element name. Such was
not the fashion in naming in those
years.

Element names constructed from
Latin or Greek root words express-
ing some characteristic property of
the element are not so nationalistic,
and thus would not be so offensive
and controversial among groups
claiming priority in an element’s
discovery. But then how do you
name an element whose most dis-
tinguishing feature is that it does
not exist very long? Brevium,
formed from a root word indicating
that it was only observed for a brief
period of time, was initially sug-
gested for the name of element 91
(protactinium) by its discoverers.
Unfortunately, there are only so
many appropriate Greek and Latin
words indicating radioactive and
short-lived, especially for the most
recently discovered transfermium
elements.

Perhaps the name game of the el-
ements has shifted to honoring in-
dividuals by default. For the
transfermium elements it’s difficult
to prepare meaningful, constructed
names. The planets out to Pluto
have already been used; the signifi-
cance of mythological comparisons
is lost when not much is known
about the element; and most of the
relevant locations have pretty much
been taken already. The three major
locations for work on synthesizing
transfermium elements involve
laboratories directed by American,
German, and Russian scientists.
Americium, californium, and ber-
kelium already signify the Ameri-
can work; germanium was taken
many years ago; and ruthenium
(from the Latin for Russia) was also
previously employed as an element
name.

What else can the American,
German, and Russian teams employ
for names based on locations? Even
the name hassium, suggested by the
German discoverers to honor
Hassia (the Latin name for the state
of Hesse in Germany) for element
108 was ruled unacceptable by
TUPAC in its recent decisions. It ra-
tionalized that such a name would
not be readily recognizable or be as-
sociated with Germany. But then
how many scientists know hafnium
and lutetium were named for
Copenhagen and Paris, respectively,
after their Latin names? How many
American scientists would realize
that dubnium, the IUPAC alterna-
tive name for element 104, honors
the location of Dubna in Russia?

Using the provisional IUPAC
name of unnilquadrium for element
104 is also unacceptable to most sci-
entists. The name lacks the charac-
ter and the flavor of other element
names. Besides which, it is custom-
ary for the discoverers to suggest a
name! So the discoverers may only
be left with names of individuals
after which to name elements.

The arguments over naming the
elements have grown more passion-
ate because the discoverers chose to
honor individuals whom they ad-
mire. It is much easier to fight or to

take up a cause for a person or a
country than for a chemical prop-
erty! Naming an element after
someone is the highest honor that
can be paid to that person. The ele-
ments contribute to the foundation
of modern science—the elements
will be here forever. This name will
be said in the same breath as ele-
ments such as carbon, iron, and oxy-
gen. Nobel prize winners can be for-
gotten after a few years or a
generation. Whereas a certain level
of confusion in the name game of
the element has always been
present over the years, the passion
and fervor associated with the game
has been elevated to new heights
with the names of the transfermium
elements.

Politics s usual

Intense national rivalry exists in
the discovery of a new element. It’s
obviously much more impressive to
be the discoverer than to be the sec-
ond and simply confirm that indeed
someone else had made the element
previously. When others are unable
to repeat the claimed discovery,
problems result with defining who
should receive credit for the discov-
ery. Often years pass before conclu-
sive and unbiased judgments are
forthcoming. IUPAC commendably
provided compromise choices for
the element names that tried to al-
leviate the nationalism, pride, envy,
and politics.

In trying to please some of the
scientists some of the time with
their choices, IUPAC actually only
succeeded in alienating, disappoint-
ing, and angering most. As outsiders
to the heavy-element community,
its members didn’t realize the sen-
sitivities of the groups involved.
They essentially disenfranchised
the discoverer of the element from
the honor of naming the element. In
fact, they further aggravated the
situation by playing musical chairs
with the names for the trans-
fermium elements. As recently as
1949, when IUPAC made decisions
on the element names summarized
in table 2, it selected either one or
the other suggested name. Now, as
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shown in table 1, TUPAC developed
new names, such as dubnium, and
also scrambled names from one el-
ement to another.

To take one example, the Ameri-
can community of scientists feels
very strongly about naming ele-
ment 106 seaborgium in honor of
Glenn Seaborg, a pioneer in this
field and codiscoverer of 10 ele-
ments. The discovery of this ele-
ment by the American group was
not contested by others. However, it
would also have represented the
first naming of an element after a
living person. Despite the absence
of rules to the contrary, IUPAC de-
cided to rationalize that it was inap-
propriate to do so because that
person’s accomplishments cannot
be assessed from the perspective of
history. It choose to recycle ruther-
fordium—the suggested name for
element 104—as its choice in the
name game.

IUPAC wanted to resolve the
name game confusion of the
transfermium elements rapidly,
since it had only become more
confusing in the past 30 years. In
doing so, it created more confu-
sion than was resolved. After all,
it took over 100 years to clear up
the niobium-columbium battle,
so what’s the hurry? TUPAC
sought to force everyone to accept
its decisions for the definitive
names of elements 104 through
109 in 1994. By 1995, in an un-
precedented move, it reconsidered
and downgraded its slate of names
back to provisional status.

Especially troublesome for
TUPAC is that others may usurp its
authority by ignoring or disregard-
ing its decisions. For example, in
1949 TUPAC defined wolfram (W) as
the official name for element 74 (see
table 2). How many science texts,
however, use wolfram instead of the
commonly accepted name tung-
sten? Likewise the American
Chemical Society in 1995 decided
that it will adopt the names recom-
mended by its committee on no-
menclature (basically those names
proposed by the American and Ger-
man discoverers) for use in their
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journals and abstracts. Thus
IUPAC, unless it goes along with
the American Chemical Society,
will find its names of the trans-
fermium elements ignored by a
major segment of scientists.

Scientists take pride in being
recognized for their accomplish-
ments, one of which is their
“right” to name their discoveries.
It’s truly incredible that others
would remove or transfer such
names from one element to an-
other without consulting the dis-
coverers. Stay tuned for the next
few years, guaranteed to bring
much more confusion, attempts to
compromise, anguish, and just
plain bickering. The current status
of the transfermium elements puts
me in mind of a cartoon I saw a
while back. The character Ziggy is
driving along and passes a sign
telling him he is leaving one town,
and up ahead is another sign tell-
ing him the name of the adjoining
town. The first road sign says
“LEAVING CHAOS,” and the sec-
ond says “ENTERING UTTER
CHAOS.”

Much as the best way to coach a
football game is on Monday morn-
ing after the game has been played,
the best way to say what was right
in this new period of the elemental
name game is several decades from
now. Perhaps thirty years in the fu-
ture, a new generation of scientists
will be scoffing at this confusion, or
perhaps it will be just an obscure
footnote in the overall history of
chemistry—much like our current
knowledge of the niobium-colum-
bium controversy in the not too re-
cent past. After all, Shakespeare
once penned:

... that which we call a rose
By any other name would smell as sweet.

Element 104 has 104 protons and
will always have the same nuclear
and chemical properties, whether it
is called rutherfordium, kurcha-
tovium, dubnium, or just #104. [@]

Henry D. Schreiber is a professor of
chemistry at Virginia Military Institute
in Lexington, Virginia. His e-mail ad-
dress is hs@vmi.edu.
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n an |. The Earth is the center of the

universe.

ll. The Earth is stationary.
[l. All the heavenly bodies move

around the Earth.

—_Ptolemy’s postulates,
2nd century A.D.

-~ “Offto sea from port we ventured,
/< The land and the towns receded.” ,
e R

S YOU SEE, THE CONCEPT
of relativity has intrigued
many of the outstanding
minds of the past—Chinese as-
tronomers, Roman poets, and natu-
ralists of many countries. It was a
challenging problem in ancient
times, in medieval times, and in
modern times. This notion is related
both to very ordinary earthly phe-
nomena and to the basic structure of
the universe as a whole. Once it
arose in attempts to describe the
simplest forms of motion, it “incor-
porated” itself into the most funda-
mental problems of modern science,
forcing a reconsideration of many
concepts that had seemed unshak-
able cornerstones of science. One
can surely say that relativity runs all
through the history of physics. And
you must admit there aren’t many
such concepts.
Now let’s see how deeply the
concept of relativity has become
rooted in your mind.

Questions and problems

1. So, which is it: does the Earth
revolve around the Sun, or vice versa?

2. What shape is the Moon’s tra-
jectory?

3. What is the trajectory of a point
on an airplane’s propeller relative to
(a) the pilot; (b) the ground?

4. The figure below shows the tra-
jectory of a raindrop on the window

Epooooql
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of a train car. Can we deter-
mine the direction of the
train’s motion?

5. A stone tossed upward
slows during the first half of its
trip and picks up speed during the
second half. Does this mean that in
the first half its acceleration is nega-
tive, and in the second it’s positive?

6. Smoke is coming out of smoke-
stacks. Carried by the wind, the
smoke forms long plumes. Can two
of the smoke plumes intersect?

7. When is it possible for the pi-
lot of a fighter jet to see an artillery
shell flying nearby?

8. An up escalator moves with a
speed of 0.75 m/s. How fast must a
person walk on the up escalator so
as to move downward at the same
speed as persons standing on the
down escalator?

9. A ball is tossed up with a veloc-
ity v,. When it reaches the top of its
trajectory, a second ball is thrown
upward with the same velocity.
What is the relative speed of the two
balls?

10. Can two points A and B move
along parallel lines in one reference
system and along intersecting lines
in another?

11. A boat and a raft float side by
side down a river. What would take
less effort for the rower—to row 15 m
in front of the raft or 15 m behind?

12. Why do airplanes almost al-
ways take off and land into the
wind?

13. There was an airplane race
from New York City to Washington,
D.C., and back. All the while a stiff

KALEIDOS

- Are you relat

i
The great minds of fhe

“If we impart some movement to

 the Earth, this motion would manifest
1it“se~lf' also in everything that is outside the
~ planet, but only in the opposite direction,

asifitwere passingby .. ." .
—Nicolaus Copernicus | 47
(1473-1543)

wind blew from New
York to Washington.
Will the flight times be
better or worse because
of the wind?

14. A round hori-
zontal platform ro-
tates about its axis
as shown in the fig-
ure below. An ob-

server A stands on the plat-
form and another observer B
stands on the ground. The
distance OB is twice the
distance OA. At the
moment depicted in
the figure, A moves to-
ward B with a velocity
of 1 m/s. What is the
velocity of B relative
to A?

15. A boy standing
on a railway flat-
car moving
with a ve-
locity of




OSCOPE

alively sure?

fthe past were, too!

. +In esserice, 0
absolute space is related to
~ nothing external and is always
the same and stationary.”
—lsaac Newton (1642-1727)

30 m/s shoots
a pneumatic
rifle. The veloc-
ity of a pellet as it
leaves the rifle is also
30 m/s. Will the pellet
have any kinetic en-
ergy?

16. A load suspended
from a long string (a pendu-
lum) is attracted not only to

the Earth, but also to the
Sun. Will it lean a little to
the east in the morning
and to the west in
the evening?

17. When two
combs whose
teeth are spaced
differently move

relative to each
other, an observer
can see the shifting
dark and bright bars.
Can the bars move with
a speed greater than the
speed of light?
18. Quasars are among
the most distant objects in
outer space. One of them
is moving away from
the Earth at half
the speed of
light. It radi-

ates light that can be detected on the
Earth. What is the speed of this light
relative to us?

Microexperiment

While traveling in a railway car,
look at the train coming in the op-
posite direction. Why does it seems
that your motion is drastically
slowed just as this train goes by?

It’s interesting that . . .

... observing the heavenly bodies,
Ptolemy himself pointed out that
their diurnal motion could be ex-
plained either by the Earth’s rotation
or by the rotation of the entire uni-
verse.

... the Copernican system was a
revolutionary step not only with re-
spect to the Church (the Earth and
human beings were no longer the
center of the universe), but also from
the viewpoint of mechanics—up to
that time the relativity of motion
wasn’t used in solving concrete
problems.

... Galileo’s classical principle of
relativity was his answer to the criti-
cism of the Peripatetics (followers of
Aristotle). They considered the
Earth stationary because flying birds
do not lag behind it; the range of
catapults aimed toward the west is
no greater than their range to the
east; heavy objects fall vertically;
and so on.

. . in an elevator accelerating
upward, a horizontal beam of light
acquires a parabolic curvature as if
affected only by the gravitational
field. This is just one example of the
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phenomena that raised doubts about
the universal applicability of Euclid-
ean geometry and led to the creation
of the theory of relativity.

... according to the special theory
of relativity, the angle between the
diagonals of a square moving in the
direction of one of its sides with a
velocity of 270,000 km/s becomes
48Y due to the shortening of this
side.

... Hendrik Lorentz, the author of
equations that form the basis of the
special theory of relativity, never
could agree with Einstein’s basic
notion of the relativistic nature of si-
multaneity. To the end of his life he
tried to prove the possibility of the
existence of absolute time.

. a striking example of time
slowing down is the disintegration of
muons arriving at the Earth from
outer space. (The muon is a nega-
tively charged particle whose mass is
207 times that of the electron.) Their
lifetime in the laboratory frame of
reference is several times longer than
in their own reference frame.

... Michelson and Morley used an
optical interferometer in their fa-
mous experiment. This device was
so sensitive that it could detect the
time difference corresponding to
light traveling just a few meters—a
mere 1071¢ s. Keep in mind that the
experiment was conducted in 1881,
when no electronic devices or com-
puters existed! (@

—Compiled by A. Leonovich

ANSWERS, HINTS & SOLUTIONS
ON PAGE 62
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PHYSICS
CONTEST

The bombs bursting in air

“Education is the art of

making man ethical.”
—G@Georg Hegel

by Arthur Eisenkraft and Larry D. Kirkpatrick

S EDUCATION INTENDED TO

expand our horizons or to make

us conform? Can the knowledge

we acquire be a tool to maintain
the status quo and instill specific
values in us?

When we learn arithmetic, we
assume that the information is
value free. What hidden message
could be sheltered in the equation
3 +4 =77 In some children’s books,
this problem is illustrated with
three apples and four apples. We can
imagine another primer illustrating
the problem with three machine
guns and four machine guns. Does
the choice of illustration promote
values?

There is such a history in physics
texts, as well. As we peruse the in-
troductory physics texts on our
shelves, we find the following trajec-
tory problems:

A rescue plane is flying at a constant
elevation of 1200 m with a speed of 430
km/h toward a point directly over a per-
son struggling in the water. At what
angle of sight ¢ should the pilot release
a rescue capsule if it is to strike (very
close to) the person in the water?
(Halliday, Resnick, and Walker, Funda-
mentals of Physics, Wiley, 1993)

In the 1968 Olympics in Mexico City,
Bob Beamon shattered the record for
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the long jump with a jump of 8.90 m.
Assume that the speed on takeoff
was 9.5 m/s. How close did this
world-class athlete come to the maxi-
mum possible range in the absence of
air resistance? The value of g in
Mexico City is 9.78 m/s2. (Halliday,
Resnick, and Walker, Fundamentals
of Physics, Wiley, 1993)

A golf ball hit with a 7-iron soars into
the air at 40.0 degrees with a speed of
54.86 m/s. Overlooking the effect of the
atmosphere on the ball, determine the
range and where it will strike the
ground. (Hecht, Physics, Brooks/Cole,
1994)

In contrast, the predominant
problems in the older texts appear to
be illustrated by these examples:

A bomber is flying at a constant hori-
zontal velocity of 820 miles/hr at an
elevation of 52,000 feet toward a point
directly above its target. At what angle
of sight ¢ should a bomb be released to
strike the target? (Halliday and Resnick,
Physics, Wiley, 1966)

The projectile of a trench mortar has
a muzzle velocity of 300 ft/s. Find the
two angles of elevation to hit a target
at the same level as the mortar and
300 yd distant. (Sears and Zemansky,
College Physics, Addison-Wesley
Press, 1948)

The angle of elevation of an anti-aircraft
gun is 70° and the muzzle velocity is
2700 ft/s. For what time after firing
should the fuse be set, if the shell is to
explode at an altitude of 5000 ft? Ne-
glect air resistance. (Sears and Zeman-
sky, College Physics, Addison-Wesley
Press, 1948)

All of these problems have simi-
lar solutions. We can analyze the
trajectory of any object (without air
resistance) by recognizing that the
horizontal and vertical motions are
independent of one another. The
horizontal motion has a constant
velocity and the vertical motion has
a constant acceleration. The stan-
dard kinematic equations for mo-
tion in one dimension—

s=v,t

s="Y,at® + vit,

vE =2as + v,
vi=at+v,

—permit us to find the time in the
air, the range of the projectile, or
whatever else is required in the
problem.

As an example, let’s solve the res-
cue plane problem given above. The
initial velocity of the capsule is the
same as that of the plane. That is,
the initial velocity v, is horizontal

Art by Tomas Bunk






and has a magnitude of 430 km/h.
We can find the time of flight of the
capsule:

1 o
y_YO=VOyt_5gt ’

{ _ T
/2(y° ) =\/2 (1200m3 1 S,
\« 8 98 m s

=

The horizontal distance covered by
the capsule in that time is

X — XO = VOXt
- (430 km/h)(15.6 sJ(1 h/36005s)
= 1,860 m.

The angle of sight can be calculated
by comparing the horizontal and
vertical displacements:

X
=arctan—=>57.2°.
¢ =arc anh

The pedagogical/social question is
more difficult than the physics: is
the selection of examples and prob-
lems of concern? Does it make a dif-
ference if we learn to solve projectile
problems using sports and rescue
planes or mortar shells and bombs?
What is your opinion?

As the second part of our contest
problem, we ask you to solve a dif-
ficult projectile problem. A fire-
works aerial display is shot into the
air and explodes isotropically (uni-
formly in all directions) into a very
large number of fragments. At some
time t,, the first fragment(s) will
begin to hit the ground. At some
later time t,, the final fragment(s)
will hit the ground. Neglecting the
effects of air resistance, at what time
will the frequency of fragments hit-
ting the ground be the greatest?

We pose the problem with a fire-
works display. One can easily imag-
ine how the same problem could have
military applications in terms of
bomb fragments or interference with
ground radar. There is an answer to
the second part of our contest prob-
lem. As students and instructors of
physics, we should reflect and discuss
the first part as well.

Please send your responses to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. They
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will serve as the basis for a continu-
ing discussion in a future issue of
Quantum.

Sea sounds

In the March/April issue of
Quantum, we asked our readers to
analyze the propagation of sound
waves in the sea. A very good solu-
tion was jointly submitted by André
Cury Maiali and Gualter José
Biscuola, who are physics teachers
in Jundiai, Sad Paulo, Brazil. We will
follow their reasoning in our solu-
tion.

A. We can show that the sound
rays follow circular paths by utiliz-
ing a spreadsheet or resorting to cal-
culus. Knowing that the general for-
mula for a circle in the xz-plane is
given by

(x-x+(z-z)2=R% (1)

where the center of the circle is lo-
cated at (x, z ) and R is the radius of
the circle, and recognizing that
Snell’s law is given in terms of the
angle 6, we decide to find the coor-
dinates x and z as functions of 8.

Let’s restrict ourselves to an up-
ward-pointing ray in the region
above the minimum sound speed
(that is, z > 0 and 6 < ©t/2). From the
symmetry of the problem, we will
obtain the same results forz < 0. We
substitute the relationship for the
variation of the sound speed into
Snell’s law—

sinf, sin®  sin6
vy +bz

o v )

—and solve for z to obtain

;- Yofsin® )
b {sinB,
Anticipating that we will eventually
need the derivative, we have

dz _ vy [ cos®
de b |sind, | 3]
Let’s now look at the slope of the
curve:

E—tan E—G =cotb = GagY
dx 2 sing (4

We can also use the chain rule to
write
dz_dzdo
dx dedx’
Substituting equations (3) and (4)
into equation (5), we obtain

(5)

cosb _ vy cosf do
sin® b sin@, dx’

We now solve for dx—

dx =—29 _sinede
bsin6,

—and integrate:

_ —Vycos8

= +C.
bsing,,

For x = 0, 8 = 6,. Therefore, C =
v,/b tan 6, and finally

Vo coso
X= 1- : (6)
btan®, cos 8,

In a similar fashion we obtain

Vo[ sin®
=— -1
T [smeo j (7)
Moving the constant terms to the
left-hand sides of equations (6) and

(7), squaring them, and adding them
together, we find that

2 9 2.

P + (z + V—O) o |l |
btang, b bsin®,

which has the form of equation (1).

Therefore, the path is that of a circle
of radius

bsin6,

centered at

Vo —Vo
btan8, b |
B. The smallest value of 6, that
can occur without the sound ray hit-
ting the surface is obtained when

the circular path is tangent to the
surface of the sea. This requires that

R=z +]|z |,

ol il

¥
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or

. 14
sinf=—29 .
bz, +v,

C. In the figure above we have
drawn four possible paths (including
the direct path) the sound rays could
take from S to X. For each case the
length of the chord of the circle
must be X/n. Therefore,

2RcosB, = X =2%
1L sin@,

yielding a series of values for 6:

tan@, :n%, =123, 0

bX

D. For the given data we have

8, =86.19°forn =1,
8, = 88.09° forn = 2,
8, =88.73°forn = 3,
8, = 89.05° for n = 4.

Note that the limiting value is
8, = 90°, as expected.

E. For the axial path, we simply
divide the distance by the speed to
obtain the time taken:

At = S =6.667s.
Vo

For the circular arc we need to
add up the times for a large number
of small pieces of the path. This can
be done using a spreadsheet or by

integrating. Let’s do the latter:

\4 v .

dt

Rather than simply plugging in
the expressions for R and v, we note
that

__ Vo __V
~ bsin®, bsin®’

according to Snell’s law (equation
(2)). Therefore,

de

dt = )
bsin®

To simplify the integration we take
advantage of the symmetry and only
integrate to the top of the path and
then multiply by 2.

Y - T )
! 6, bsin® b 2 8
2 0
=-ZIntan—2.
b 2

This gives a time At; = 6.6546 s,
which is a shorter time than for the
direct ray.

e best ffiing :
te il camp did for Jimmy Ry
was make him feel like a kid.

Imagine being born with spina bifida and having 10 operations by the time you're
10 years old. It’s enough to make anyone forget what it’s ike to be a kid. That’s why Easter
Seal camp was the perfect thing for Jimmy. It gave him the opportunity to do all the
things that the average kid takes for granted. And according to Jimmy, who’s WQ}
now 27, it was the chance of a lifetime. That's the kind of chance Easter
Seal quality rehabilitation programs give people with disabilities every m
day. So give to Easter Seals. GIVE THE POWER TO BECOME. Ue

America Can’'t Compete
Unless She Can

But in school, girls are dis-

couraged fromtaking the

- science and math. courses

they’ll need for America to_
compete in the future. Girls
hear that math is too tough
for them. Girls get called
on less than boys in the
classroom. Even tests and
‘textbooks stereotype and

ignore women and girls.

Don’t let anyone tell
her she can’t compete.

For your free copy of “Ten
Tips to Build Gender Fair
Schools”; call 1 800 326-AAUW.

When we shortchange girls,

we shortchange America.
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MATH
INVESTIGATIONS

Embeding triangles in lattices

With thanks to the Math.Note enthusiasts of the ‘80s at DEC

WELVE YEARS AGO I SENT

the following problem to my

friend Stanley Rabinowitz,

who was working for DEC
(Digital Equipment Corporation). At
that time, Stan and his colleagues
maintained a file named Math.Note
at DEC, through which they shared
with one another interesting prob-
lems and their deliberations on
them. Later Stan sent me a hard
copy of this file, which is the source
of much of the information below.
Here is the problem I sent: Are there
three points in the three-dimen-
sional lattice (of points with integer
coordinates) that form a triangle
with integer sides and a 120° angle?

The answer to this question turned
out to be negative, and I hereby chal-
lenge my readers to rediscover the
elegant proof devised by Stan’s col-
leagues. Before doing so, they may
wish to treat the same problem in the
two-dimensional setting, which
should be somewhat easier.

When Stan posed the problem to the
participants of Math.Note, he remarked
thatif A = (0,0, 0), B = (1, 1, 10),
C=(4,1,15), then AABChas a 120°
angle (at C), though none of its sides
are of integer length. Hence one may
also ask: Are there triangles with a
120° angle in the three-dimensional
lattice such that one or two of their
sides are of integer length?
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by George Berzsenyi

Interestingly, the answer in
the four-dimensional lattice is
positive, as exemplified by the tri-
angle with vertices A = (0, 0, 0, 0),
B = (101 O/ O/ O)r C-= (_31 5/ ]-/ ]-)/
which has a 120° angle at the
origin. It should be noted that
the angle enclosed by two vec-
tors u and v is given by

cos™! (u e v/[u|lv|]), where u e v
is the dot-product of u and v.
The question remains: Are there in-
finitely many such triangles in the
four-dimensional lattice? Moreover:
Is it possible to realize all of the
post-Pythagorean triangles in the
four-dimensional lattice? If the an-
swer is no, can one succeed in higher
dimensional space? More specifi-
cally: Is there a minimum value of
d such that the answer is yes in the
d-dimensional lattice? For more in-
formation on such triangles, the
reader is referred to the author’s col-
umn in the March/April 1992 issue
of Quantum, where triangles with
integer sides and an angle of 120° were
called post-Pythagorean. To generate
all post-Pythagorean triangles with
sides a, b, ¢, one can use the formula
(a,b, ¢)=(m?-n?, 2mn—nm?, m? +n*—mn),
where m and n are positive integers
with n < m < 2n.

Similar questions need to be
asked about pre-Pythagorean tri-
angles, which were defined in the

column referenced above as tri-
angles with integer sides and an
angle of 60°. One can generate the
pre-Pythagorean triangles by adding
equilateral triangles to the post-
Pythagorean ones; this can be done
in two different ways, as shown in
the figure above. Stan’s colleagues at
DEC didn’t consider pre-Pythag-
orean triangles, so all of the above
questions are still open.

In conclusion it should be men-
tioned that in addition to the
Pythagorean triangles (which have
integer sides and an angle measur-
ing 90°, only the post- and pre-
Pythagorean triangles have integer
sides and an angle measuring an in-
tegral number of degrees—hence the
special interest in them.

Please send your findings to me
c/o Quantum, 1840 Wilson Boule-
vard, Arlington VA 22201-3000. Per-
haps they will generate further dis-
cussion in this space. Q)

T
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IN THE OPEN AIR

The ashen lignt of the Moon

The how, when, and why of a faint lunar glow

VERYONE IS FAMILIAR WITH

lunar radiation—that is, the

sunlight reflected by the Moon’s

surface. But have you ever no-
ticed the weak light given off by a
new moon on a clear night? This
“ashen” light can reliably be seen for
only two or three nights around the
time of a new moon, when the little
lunar crescent is sufficiently narrow
and its radiance doesn’t keep us
from seeing the weak light from the
other part of the lunar disk. Under
these conditions the disk gives off
some light, and the entire disk is
outlined against the black back-
ground of the sky. What causes this
radiation?

As you know, every month
(strictly speaking, every 29.5 days)
the relative positions of the Sun,
Earth, and Moon almost repeat
themselves. The word “almost” is
due to the fact that the Moon’s or-
bit is tilted a bit (by just 6°) relative
to the plane of the Earth’s orbit and
isn’t exactly circular. However, this
imprecision will not be important
here.

Look at the figure: the Sun illumi-
nates the Earth and the Moon,
which revolves around the Earth
(the rotation of the Earth and the
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by Alexey Byalko

revolution of the Moon proceed in
the same direction). The Sun is far
away, so it isn’t pictured here, and
the sunbeams are shown as parallel
rays. One hemisphere of the Earth
and of the Moon are illuminated—
it is nighttime on the dark half of the
Earth. Naturally, the Moon is better
viewed at night, and if there are no
clouds, light in the Earth’s atmo-
sphere will have practically no effect

s
7

!
new moon @

third quarter (P ~

4 “ »
/" ({ “old” crescent \
/

on our observations. Looking at the
figure, you can see why every month
the phases of the Moon change: new
moon, first quarter, full moon, third
quarter.

By the way, do you know how to
determine quickly, just by looking
at the Moon, whether a crescent
moon is waxing or waning? (This is
admittedly child’s play, but the
hardest questions to answer quickly

A morning

e .
the Sun day night
e
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and correctly are often those that
have only two possible answers.)
The Russians have a mnemonic de-
vice based on the Cyrillic alphabet:
one of the lunar crescents looks like
the letter “c,” which could stand for
crapeiit (“old”); and if you add a ver-
tical stroke to the other crescent,
you get “p” for pamuii (“early”).

To invent an analogous device in
English, we need to find a word be-
ginning with “c” that reminds us of
“waning” (say, “crumbling”) and a
word starting with “p” that relates
to “waxing” (“plumping”?). The
physicist Lev Landau invented an-
other mnemonic device: “If you feel
like petting the Moon, it’s young”’—
that is, waxing. (Clearly Landau
wasn't left-handed!)

Keep in mind that these mne-
monic devices are not universally
applicable—they were invented by
people in the northern hemisphere.
In Australia, for example, the mne-
monic devices would work in re-
verse (if one could get them to
work); and in the tropics no such
devices are suitable at all, because
there the horns of the crescents
point up and down. Still, there is a
rule that can be used at any latitude
on the Earth: if you see the Moon in
the Morning, it is Waning; and when
it shines in the Evening, the crescent
is Enlarging. Here the capital letters
form a kind of symmetry, as shown
at the table below:

Morning | Evening

Wane Enlarge

In the Russian variant, the first let-
ters exactly coincide:

YTpo Beuep

Yo6rniBaer

Bozpactaet

If you refer to the figure, you'll see
why this occurs. The figure presents
a view of the Earth-Moon system
from the North Pole (from the North
Star, really). You need to look at this
figure in a mirror to see how it looks
from the South Pole (or from the
Southern Cross).

This figure also helps us under-
stand that the extra illumination
from the Moon (its “ashen light”) is
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caused by sunlight reflected from
the Earth. This radiance is particu-
larly strong in the new moon phase,
when the Moon is dark and when
the entire globe of the Earth as seen
from the Moon is illuminated by the
Sun. Let’s estimate how much
weaker this ashen light is than the
Moon’s usual radiation.

To do such an estimate, we need to
know how light is reflected by the
Earth and Moon. Their surfaces dif-
fuse the incident light, but not evenly
in all directions. So in order to calcu-
late the relative luminance of simul-
taneously observed lunar ashen light
and the reflected sunlight of a thin
crescent, we need to know how the
diffused light propagates in different
directions. This is not a simple prob-
lem. However, we can obtain the rela-
tive luminance quite easily when the
Moon is full, because in both cases
the light is diffused in a similar way
(predominantly backward). Thus in-
stead of luminance we can compare
total amounts of light.

The fraction of sunlight reflected
into space by a heavenly body is
known as its albedo. The Earth’s
light is reflected by its atmosphere—
by clouds in particular, which cover
about a half of the Earth’s surface.
On average the Earth’s albedo is
about A; = 30%, although this value
changes slightly depending on
whether it is day or night over the
Pacific Ocean, which occupies al-
most an entire hemisphere. The
Moon, on the other hand, has no at-
mosphere, and its soil is rather dark,
so it absorbs most of the incident
light. On average the lunar albedo is
Ay = 8% (when the Moon is full).

The illuminating power of lunar
light coming to the Earth depends
on the phases of the Moon. At full
moon, the entire hemisphere illumi-
nated by the Sun can be seen from
the Earth; at the first and last quar-
ters, only half of the illuminated
hemisphere is seen; and at new
moon, we see the Moon as dark—
seen only by its ashen light.

The energy flux of the solar radia-
tion at the distance of the Earth is
S, = 1,360 W/m?. Since the distance
between the Earth and the Moon is

far less than the distances between
these two bodies and the Sun, we can
assume that equal fluxes of solar light
hit the Earth and the Moon. Let’s es-
timate the total power of the sunlight
reflected by the Moon and the Earth.
If R, is the radius of the Moon, then
the Moon receives an illuminating
power SynR %, and the corresponding
reflected power will be

Prg= Ay SR

Similarly the total power of the sun-
light reflected by the Earth is

P, = A StR2.

Now let’s consider the Earth as a
point source that evenly radiates its
reflected light into a hemisphere
(there is only a small inaccuracy
here). Then the energy flux striking
the Moon is S, = Py/2na,%, where a,,
is the distance from the Earth to the
Moon. The total illuminating power
of the lunar ashen light is then

AA 212
Pup = Ay SRS = __M__E§02“Rﬂ_
Lay
Comparing this value with the
illuminating power of the Moon at
full moon yields a simple formula:

B R 1

Py T2dy 24000°

Since the geometry of the reflection
is identical in both cases, the rela-
tion deduced for illuminating power
will be correct for luminance as
well: the ashen light of the Moon is
weaker than its reflected sunlight by
a factor of about 24,000.

Our eye is made in such a way
that, if we squint, we can look briefly
at the blazing Sun. We can also ob-
serve the sunlit Moon, whose illumi-
nating power (AyR3/2a,%) is weaker
by a factor of 2.5 million. And we can
even discern the ashen light of the
Moon, which is weaker still by a fac-
tor of 24,000. Yet even this is far from
the limit of the eye’s sensitivity!

So why is it that we so rarely (once
in a blue moon!) see the ashen light
of the Moon? The background glow of
the Earth’s atmosphere prevents us
from seeing this light clearly. If we



make our observations in the morn-
ing or in the evening (not very late),
the atmospheric light is the result of
the diffusion of sunlight at high alti-
tudes. In the dead of night the sky
shines due to the lights in urban ar-
eas. The lunar crescent makes its
own contribution: during the first or
third quarter it is big enough to out-
shine the ashen light of the dark part
of the Moon—the part not illumi-
nated by the Sun. Also, the radiation
of the sky is drastically increased by
a light cloud cover or haze. So the
ashen light of the Moon can be seen
only on very clear nights and when
the crescent is rather thin. (0
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HOROLOGICAL
SURPRISES

Gonfessions of a clock lover

The cosmic consequences of switching hands

by V. M. Babovi¢

ANY PEOPLE HAVE HOB-

bies, and their hobbies can be

quite diverse. My hobby is

clocks. Simply put, I adore
everything that measures time. My
friends know about my passion, and
yet many of them are astonished to
see my collection when they visit
my apartment. I have wrist watches,
pocket watches, wall clocks, alarm
clocks, cuckoo clocks, factory
punch clocks . . . all different sizes
and designs. You can even find a
variety of hourglasses on my
shelves.

As you know, the minute hand of
a clock is always longer than the
hour hand. I don’t really understand
why. Sometimes a person only
wants to know approximately what
time it is. Wouldn’t it be nice to
have a wall clock whose longer hand
points to the hours? Then you could
easily see that the time is now, say,
between ten and eleven o’clock,
which may be all you need to know
at the moment.

Well, I ordered a clock with just
such a feature. The clock maker was
a little confused by my request, but
he did a professional job with the

strange dial and delivered the device -
on time. I have placed this clock— g

<
whose long hand indicates hours o0
and whose short hand indicates 3
minutes—in a prominent place in 2
my living room. I call it the inver- 3
sion clock. 3
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Figure 1

My inversion clock is a beautiful
thing to look at. The bluish face,
with the main shaft right in the
middle, has been overlaid with a
map of the world. Vertical lines in-
dicate the Earth’s time zones, and
these lines will play a prominent
role in the story I am about to tell.

I soon discovered that the inver-
sion clock possesses some peculiar
features unknown in the world of or-
dinary clocks. One day I noticed the
tips of the hands were touching the
same vertical line (vv’ in figure 1).
This fact piqued my curiosity, and
from then on I would stare at the
clock, estimating when this coinci-
dence would occur again.

I figured out that, for a clock
whose small (minute) hand has a
length r = 1 cm and big (hour) hand
has alength R = 5 c¢m, this event can
occur only in the time interval
At = 46 min around the hours of
12:00 and 6:00. Watching outside

AB = QAL

Figure 2

these two intervals is a waste of
time—the vertical arrangement of
the tips of the hands is impossible.
Figure 2 shows why. The top of the
hour hand goes from the left outer-
most position L to the right position
D in the time interval

At=l 7 — 2arccos— ; (1)
Q R

where Q = 2n/T) is the angular ve-
locity of the hour hand. Here T; is
its period of rotation. Since we have
T, = 12 h, equation (1) gives the
quoted result of 46 min.

My next discovery came to me
when I noticed that, in a cycle last-
ing for the interval At, only one ver-
tical coincidence occurred, in con-
trast to the previous cycle, which
consisted of three events. I won-
dered what law gov- 20¢
erned these events. '
Was it possible to L.5¢
have a cycle consist-

The following function shows what
happens after that:

f=R cos (B,—Qt) -1 cos oty —t). (2]

Here Q and o are the angular veloci-
ties 21/T, and 2n/T_, respectively.
The term R cos (B, — Qt) is the pro-
jection (on the x-axis) of the R hand.
The second term r cos (o, — wt) is the
projection of the r hand. Conse-
quently, fis the difference of the two
x-projections, and whenever f = 0,
the tips are located one above the
other. The first such moment is the
initial position at t, = 0 s. From fig-
ure 3 we see that the next positions
occur at t; = 75 s and t, = 262 s. So
this first cycle contains three in-
stances where the tips align verti-
cally.

About 5,500 s will pass before we
again have f = 0 (fig. 4a). The new

. 1.0¢
ing of two events?
As I prepared to 0.5F
ponder these ques- 100 200 300 400
tions, and possibly t(s)

others, I came up
with a nice analogy.

Full of excitement, I -LO¢
returned to my  _j5f
clock maker and or-

dered another inver-  ~20"
sion clock, but with Figure 3

the following speci-
fications: r = 1 cm,
R=96cm, T, =365s,and T} =
10,759 s. (Eventually T'll tell you
why I chose these numbers, and
what the analogy actually was.) The
clock maker fulfilled my odd re-
quest, and I proudly hung this new
clock in my office. This particular
inversion clock I have named
Copernicus.

When Copernicus began func-
tioning, the angle of the smaller
minute hand relative to the x-axis
was o, = 200° (refer again to figure 1).
The tip of the larger hour hand lies
on the same vertical line vv/, so

Bo = arccos[% cos cxo) =95.6°.

QUANTUM/HOROLOGIGAL SURPRISES

4 b
-0.5F

cycle has that one point only—no
others. Again we have to wait—this
time until ¢t = 10,900 s, when an-
other cycle begins, again with only
one event (fig. 4b).

Finally, after about 16,000 s, a
cycle begins that contains three
events, as with the first one (fig. 4c).
Thus the periodicity of this phe-
nomenon is T = T,/2 = 5,380 s. The
“fine” structure of a cycle is deter-
mined by the second term in equa-
tion (2). Whether the time axis
crosses the curve at one or three
points depends on the initial condi-
tions—that is, on the values of o,
and B,. There is also the possibility
that the t-axis could appear as a tan-
gent to a local extreme.

4%




move around the
Sun.

In addition to its
moons, Saturn pos-
sesses a beautiful

t(s) set of rings. The

5600

5400

plane of Saturn’s or-
bit around the Sun
is approximately
the same as the
plane of the Earth’s
orbit. The inclina-
tion of the axis of ro-
tation of each planet
to the plane of the
planet’s orbit
around the Sun is al-
ways  constant.
Therefore, the plane
of Saturn’s rings

L | L
5800

t(s)

10850 10875 10900

P 1 '
10925

maintains its orien-
tation in space (due
to the law of conser-
vation of angular
momentum). In fig-
ure 1 the plane of
the rings cuts the
plane of the planets’
orbits along the line
vv’. This line must
always be parallel to

L "
10950

t(s)

16000 16200 16400

Figure 4

Well, the time has come for me to
reveal the secret about Copernicus
(the clock, not the person). Imagine
that the length r represents the dis-
tance from the Earth to the Sun. The
Earth moves around the Sun in a
nearly circular path at an average
distance of about 150 million kilo-
meters—that is, r = 1 AU (astro-
nomical unit). Let R be the distance
between Saturn and the Sun—this is
known to be 9.6 AU, on average.
We'll designate T = 365 days (one
Earth year) and T, = 10,759 days (one
Saturn year—about 29.5 Earth
years). Then figure 1 can serve as a
model showing the mutual posi-
tions of the two planets as they

48 SEPTEMBER/OCTOBER 1886

the y-axis, regard-
less of where Sat-
urn moves (this is
ensured by our
choice of reference
system).

Viewed from
Earth through a
telescope, Saturn’s
rings look like a stretched ellipse.
When the two planets are on the
same vertical plane, however, a rela-
tively rare astronomical event oc-
curs (it happens once every 15 years).
The Earth crosses the plane of
Saturn’s extremely narrow rings
(they’re about 290,000 km in diam-
eter and probably no more than 1.5
km thick). We see the ring system
“edge on,” as it were—that is, in pro-
file. The ellipse degenerates—in-
stead of seeing the rings in all their
splendor, we can hardly make out a
faint line. If viewing conditions are
bad, we may not see anything at all.
One might say that the celestial
“emperor” has no clothes! And this

16600

lasts for several months.

Saturn suffered this embarrass-
ment quite recently. During almost
all of 1995 the rings were oriented in
profile as viewed from Earth. The
rings disappeared on the night of
May 21-22, 1995. Actually, that
night began a nine-month cycle of
three disappearances, in qualitative
agreement with figure 3. (We need
only assert that every second there
represents one day.) You can learn
more about this phenomenon in an
article that appeared in Sky and
Telescope (May 195<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>