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GALLERY O

AView of the Mountttin Pttss

C alled the N otch o;f the White Mottntttin s ( C r asdot' d -\otcli, 1 S-l 9

by Thomas Cole

I F THOMAS COLE (1801-1848), ONE OF TFm FOLNDERS
! of the Hudson Valley school of American painting had
rendered this scene 3O years later, he might have lncluded
the cog rallway that was built from Crawford Notch to
Mt. Washington, about eight miles (13 km) to the north-
east. Mt. Washington is the highest peak in the Presidential
Range of the White Mountains and is noted for its extreme
weather conditions-winds of 231 mph(372 km/s) were re-
corded there inl934. Much of the surrounding area now lies
within the White Mountain National Forest. Crawford

Notch rtseliis a sraie -rark ;::i:l..;,r --:-:; :..:..:--- :..:;:r-
Colc foLLn.l th.r. ha- 1-.-r- 1':'--.:-.'r.:'. '..'-i i'r':-:i.i -.:.

The nearbr- pe ak deprctr.l herr r'.rta:lir.l Lilc'r a lr:rqui1
landscape, is not berng battele 

'1 
b,r hrgh liu1cs. Br,Lt CoLe has

oiiered us a vierr of a cliiierenr sort oi meteorological phe-
nomenon. He was obviousl)'stnrck by the rval,the clouds
have massed on one side of the peak, while the sky is clear
on the other. Is this a common occurrence in the moun-
tains? Why does it happen? Turn to "Smoky Mountain"
on page 38 {or some answers.

Aadtew W. Mellon Fwd @ 1995 Boud of Tn
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Cover afiby Dmitry Ktymov

Our cover gives a whole new twist to
the notion of a "candlelight dinner"!
The {are isn't particularly appetizing-
aruzorblade, a light bulb, a pen . . . And
besides, everything seems to have been
burnt to a crisp!

What's being cooked up here? Maybe
we have it backwards, and the objects
were already black before they were sub-
jected to the flame. Clearly there's more
here than meets the eye (which we can
assume is actually a small percentage of
the incident light.) The article that be-
gins on page 4 will certainly shed some
visible radiation on the matter.
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r N MY FIRST YEAR OF HIGH
I school teaching, back in 1g57, I
I had a l4-vear-old student who
| *r, remaikable in his abilities.
He came to me frustrated because he
could not understand some of the
math in electronics. I agreed to help
him. I gave him a college algebra
text (Richardson, Prentice-Hall) and
asked him to work every problem in
the book. He did so, coming back to
me often to discuss problems. Then
I gave him a book on calculus and
analytic geometry (George Thomas,
Addison-Wesley) and asked him to
do the same thing. He didl Within a

short time he had prepared his first
mathematical paper (a general trino-
mial theorem), and when he was 15

years o1d he was working at Mid-
west Research Institute doing math-
ematical modeling of the chest cav-
ity using potential theory-the
ultimate goal was a better method of
interpreting electrocardiograms.

The student's name was Michael
C. Mackey, an only child. AJter some
time I realized he did not belong in
high school, so we talked his parents
into allowing him to cluit high school
before graduating. He did so and at-
tended the University of Kansas for
his undergraduate work and com-
pleted his Ph.D. in biophysics at the
University of Washington in Seattle.
He is now a pro{essor of biophysics at
McGill University. Mike has pub-
lished extensively, and I have three of
those publications: Ion Transport
through Biological Membranesi

BridUinu the Uap

Between classical and quantum mechanics,
between teaching and being taught

From Clocks to Chaos: The Rhythms
of Lde (with Leon Glass); and a very
special article published in Reviews
of Modern Physics (Vol. 61, No. 4,
October 1989, pp. 981-1015), "The
Dynamic Origin of Increasing En-
tropy."

What makes this article so special?
That will take some explaining.

tooking ful' connections
When I was first trying to leam

quantum mechanics, I found myself
constantly faced with questions for
which no answers were likely to be
provided by my professors. I wanted
to under stan d quantum mechanics,
and I had just completed the very
solid grounding in classical course
work in mec,hanics (Goldstein), elec-
trodynamics (|ackson), thermody-
namics (Callen), and statistical me-
chanics (the classical portions of
Huang). I was particularly disturbed
by this assertion: "It is quite clear
that no deductive reasoning can lead
us to [the Schrodinger wave equa-
tion]. Like all equations of math-
ematical physics, it must be postu-
lated and its only justification lies in
the success of the comparison of its
predictions with the experimental
result" (Quantum Mechanics,
Vol. I, Messiah, p. 51 ). My professors
were impatient with cluestions
about the fundamental assumptions
underlying the quantum mechanics.
They wanted to get on with apply-
ing it to all of the various problems
for which it was so enormously suc-

cess{ul. Like other graduate stu-
dents, I therefore dutifully pursued
those applications in solid-state
physics and in atomic and nuclear
physics. I also found the enormous
utility of quantum mechanics in
properly explaining chemis tn-.

It was onl1, years later rrhen I
was no longer a student ald m1-in-
terest was again prqued br-those iun-
damental questions, rha: I returned
to examine the unde r-r rrq hypoth-
eses of quantum maa:a:rlcs. Regret-
tably, this rras al'.- -,':ars after my
mind was at its :-ak 1n terms of
mathematical ki,:-'riedge and skill,
and I found it le:r' iiiiicult to work
through the de lar's oi various math-
ematical derrvations-like those
you probabh- encounter in Quan-
tum,b:ut,I assure yout at a much
higher lcr cl oi abstraction.

My iirst interest was the simple
matter of Planck's constant. A clas-
sical tre atment of blackbody radra-
tion leads to a disastrously wrong
distrrbution lsometimes referred to
as the ultraviolet catastrophe).
Planck rr,as able to derive the correct
distribution only by postulating that
the energl' exchange between mat-
ter and radiatron can occur not con-
tinuously as required by classical
theory, but discontinuously, in
quanta o{ size }v, where h was an
empirically determined constant
{which we now call Planck's con-
stant). What was this h, and where
does it come from? Can it somehow
be derived from other consider-

ltl0IltltlBtR/[ECtlllEtR l9g8



ations? Or is it some kind of univer-
sal constant like the G in the 1aw of
universal gravitation?

I was fascinated to find that
Shin'ichiro Tomonaga (who shared
the Nobel Prize in physics in 1955
with Richard Feynman and fulian
Schwinger for developing quantum
electrodynamics) had, in his own
mind, raised and answered some of
my questions in his text on quan-
tum mechanics. I was particularly
intrigued by the classical phenom-
enon of adiabatic invailance, in
which he provides first a simple
and, later in the text/ an elaborate
and general proof that establishes
the fact that the energy E and the
frequency v are proportional, and
that the ratio Efv equals the adia-
batic constant. Here's an example:
if you pass the string of a simple
pendulum over a pulley and very
siowly pull the string, shortening
the length of the swinging pendu-
1um, the frequency increases and
the amplitude, and therefore the
energy/ increase as well (since the
energy is proportional to the scluare
of the amplitude). But the ratio of
energy to frequency of this pendu-
1um remains constant. The value of
the constant doesn't come out of
the derivation, since it results as a
constant of integration. This adia-
batic invariance, so long as the
changes imposed are done infinitely
slowly, is always correct (Ehren-
fest's adiabatic hypothesis), but if
the change is sudden or over a short
time, there is a transition, and the
new state differs from the initial
state by hv.

The other area that gave me a
better connection between quantum
mechanics and classical mechanics
was Hamilton-|acobi theory (Gotd-
stein, Classical Mechanlcs, see espe-
cially pp. 307-BI4l. This theory can
make the solution of complicated
problems in mechanics much easier,
but there is an inverse relationship
between making the solution simple
to do and the mathematical sophis-
tication required {or that simple so-
lution. The idea of Hamilton-|acobi
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Less hsal and lnore liUhl

ls the answer to high-efficiency illumination
hiding inside the "ideal black body"?

by Y. Amstislavsky

HE STUDY OF HOW HEATED
bodies give off light (heat or
thermal radiation) played an
important role in the develop-

ment of physics. Suffice it to say
that it was the study of thermal ra-
diation that marked the beginning
of the quantum era. One of the ba-
sic laws of this phenomenon was
formulated by the German physicist
Gustav Kirchhoff in 1859. And this
law is the subject of our story.

Can ilack [s ll'igltl?
First, a word about "black." In

physics this notion has to do with
the properties of physical bodies that
allow them to absorb incident radia-
tion (in the visible or any other re-
gion of the electromagnetic spec-
trum). The blacker the body, the
more incident radiation it absorbs.
T}e ideal black body (which we'll
abbreviate IBB) absorbs all the inci-
dent radiation-and it does this for
all regions of the spectrum. The op-
posite ol "black," as we all know, is
"white." The more a body reflects,
the less it absorbs and the less black
it appears.

Now, a word al:out "bright" bod-
ies. A bright body is assumed to ra-
diate appreciably (in the visible or
any other region of the spectrum).

The more the body radiates, the
brighter it is. The opposite of
"bright" is "dark." A bright body
radiates a 1ot, while a dark one radi-
ates only a little.

So "black" and "bright" (as well
as "bLack" and " datk"l are notions of
a different "order." They describe
different properties of bodies. An im-
portant question is whether these
properties are related to each other.
If such a relationship exists and is
universally applicable, we could use
our knowledge of a body's absorp-
tion characteristics to predict how
that body will radiate under various
conditions.

Common experience tells us that
bodies radiate light differently at
various temperatures. We need only
reca11 how drastically the visible
radiation of an electric lamp's fila-
ment changes with increasing cur-
rent-from a barely noticeable red
glow at T = 800 K to a dazzling
white incandescence atT:2,800 K.
And you've undoubtedly seen (per-
haps without really noticing) the
transformations of a smoking flame,
caused by changes in a body's tem-
perature. Heated to high tempera-
tures (of the order of 1,800 K), the
"black" carbon particles (soot) glow
brightly and together produce

yellow tongues of flame (here L.,1ack

becomes bright), but the selisarne
particles of soot, which h;r'e n't
burned completely and h.:r-c had
time to cool, produce re:--.',iack
tongues of soot (here black i:comes
dark). Clearly we must corr:are the
absorption and the radratr,rl charac-
teristics of various bo.ir.. at the
same temperature.

In our everyday liie r',-; ursually
observe bodies at roolrr :-mpera-
ture, and in so doing \\ , ircn see

black ones (in the r rs-bLt range of
the spectrum or even rer trnd it]. It
may be a black cloth a ire ce oi coal,
something covered rr'rth soot, a

bird's plumage, tl-re opening of a

cave or burrow, a ne st tucked in the
{ace of a ciiff, and so on. Comparing
a black body with nonblack bodies
nearby, we see that rt rs dark, while
the bodies nearbl- are much
brighter. So we might subcon-
sciously come to the conclusion
that black is ahval's dark, and the
blacker something is, the darker.
But we would be rnistaken.

This paradox can be easily ex-
plained when two circumstances are
taken into account. First, we always
compare different bodies illumi-
nated by electric light or daylight
(nobody does it in a dark room or in
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the dead of night), and the light per-
ceived by our eyes is by no means the
thermal radiation of the bodies them-
selves, but rather the reflected light of
some high-temperature source-the
Sun or an electric lamp. Unlike black
bodies, nonblack bodies dissipate this
incident radiation strongly, and so
they look like bright objects. Second,
we usually observe the obiects around
us with the naked eye. This wonder-
ful device is indeed sensitive, but only
to visible light-that is, to a very
smali range o{ electromagnetic radia-
tion. In this region of the spectrum/
the amount of radiation given off by
any object at room temperature is
practically ni1!

Analysis of the relation between
the radiation and the absorption prop-
erties of bodies led Kirchhoff to an
important conclusion, now known as
Kirchhoff's 1aw. It can be expressed as

follows: the more radiation a body
absorbs at a given temperuture, the
more it radiates (that is, the brighter
a black body is).

To write this law in mathemati-
cal notation, let's formulate the
concepts of absorptivity and inten-
sity. The absorptivity Ax, is the
fraction of the incident radiation of
wavelength )" that is absorbed by a
given body at absolute temperature
7. The absorbtivity is a dimension-
less value varying from 0 to 1 for dif-
ferent bodies. For the absolutely
white body,1 A = 0, and for the IBB
it is 1. The intensity per unit wave-
length 1^,, is the power radiated by
a given body in a unit interval of
wavelength2 near ), from a unit area
of the body's surface at a tempera-
ture 7.

Imagine that we have a number of
1Or for the perfect reflecting body

(the ideal mirror). The absolutely
white surface dissipates all the
incoming rays homogeneously in all
directions, while the ideal mirror
reflects them according to the angle of
incidence.

2To avoid confusion, keep in mind
that "in a unit interval of wavelength"
doesn't mean Al" is equal to, say, I m.
The point is that the radiating power
is proportional to Afu-that is to say/

^E/(ASAI) 
= 1, y'X, where AE is the

energy radiat6d in the wavelength
interval A), from an area AS in time At.

1^ (w/-3)

4.1012

u Exr 'z a),(mu)

Figure 1

bodies, the IBB and ideal white body
among them, with differentA^ ,. Let
all the bodies be heated to the same
rather high temperature 7. Kirch-
hoff's law tells us that these bodies
will radiate differently: the brightest
will be the IBB, and its opposite will
be absolutely dark. Let's denote by
special symbols the absorptivity and
intensity per unit wavelength of the
IBB: AffiB = a = |,ffi : ;^,r. It's very
important that the radiation of the
IBB not only is the most intense at
a given temperature, but in addition
is characterizedby a strictly deter-
mined spectral composition. In
other words, i, , is a universal func-
tion of )" andT.In view of the afore-
mentioned formulation and these
definitions, Kirchhoff's law can be
written as

Ix,r: Ax,fx,r' (1)

Many attempts were made to find
the function i^,, theoretically, and
finally the German physicist Max
Planck found it in 1900:

Znhc2
ltt I

^s 
1u7"r;'Lr - 1) 

' \2)

where c = 3 ' 108 m/s is the speed of
iight in avac;.turr,,h:6.62 ' 10-34 J. s
is Planck's constant, and k =
1.38 . 10-23 |/K is the Boltzmann
constant.

When the temperature T of a

body is held constant, the functions
A, I, andi depend only on ),. In this
case they are denoted by Ay, I^, and
i^, respectively. Figure I shows a

graph of Planck's functions for two
temperatures, 7, : 2,000 K and
72:3,000 K.

Can l'ed [ecome ilue?
The most convenient model of

the IBB is a small opening in a closed
container made of a tefractory or
fireproof material. The body's tem-
perature is changed by an electrical,
gas/ or other sort of heating device.
The shape of the container is of no.
consecluence.

Let's consider an IBB model in
the form of a hollow sphere made of
a re{ractory metal with a black in-
ner surface lfig.2l. A pencil of light
falls on the opening S from outside,
passes into the container, and
quickly becomes very weak after
many reflections inside the sphere.
Consequently, such a beam practi-
cal1y does not leave the sphere. This
is true for any spectral interval and
for any temperature. Thus, the hole
S in our model behaves just like the
IBB. It may seem that, absorbing
everything, the opening radiates
nothing. But it isn't so. True, the
opening returns none of the original
radiation. But, absorbing a1l the in-
coming radiation and "processing"
it completely, the IBB generates its
own radiation corresponding to the
given temperature 7. Kirchhoff's
law says that, compared to the ra-
diation of any other body heated to
the same temperature 7, the radia-
tion of the opening S will be the
strongest. Kirchhoff himself was the
first to think of using a hole in a

closed container as an ideal black
radiator (in 1859). However, it
wasn't until many years later that
experimental studies of thermal ra-
diation with this model of the IBB
became traditional.

Let's look at three examples that
illustrate Kirchhoff's 1aw.

Figure 2
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1. Suppose the outer surface of
the sphere (fi1. 2l is polished bril-
liantly and has the properties of a
mirror across a wide spectral range.
What will an observer see, looking
at the side of the sphere where the
hole S is located, in the following
two cases: (a) at room temperature
(7 = 300 K) and (b) at the tempera-.
ture of white incandescence
(7:3,000 K)?

(a)To exclude the masking effect
of the initial radiation, we'Il con-
duct the experiment in a darkened
room. However, at room tempera-
ture we can't see anything with the
naked eye, because according to
equation (2), Planck's function r^ at
7 = 300 K is negligible in the visible
range of the spectrum (0.4 . 10-5 m
<)"<0.75. t0-6 m). Nevertheless, a
body heated to T: 300 K does radi-
ate, and its radiation is maximal in
the spectral interval where the func-
tion i, is maximal-that is, at the
wavelengthl"-: 10. 10-6 m (10pm),
which corresponds to the infrared
region of the spectrum. Based on
Kirchhoff's law, we can conclude
that the opening S should "glow"
brightly in the infrared range
against the dark background of the
rest of the sphere's surface. How-
ever, such a picture could be "seen"
only by eyes that are highly sensi-
tive to the 10-pm region of the spec-
trum or equipped with a suitable
converter of infrared rays into vis-
ible light.

(b) When a body is heated to
white incandescence, the function i^
increases sharply in the visible
range. As follows from equation(21,
when 7 changes from 7, to Tr, the
intensity per unit wavelength of the
IBB in the given spectral region)" in-
creases by alactor of

ix^ lnr( r 1)l
____i___:_ = expl _l ___ I l.ir,r, Lft ( E r, ))

(This follows directly from equation
(2)when we take into account that
explhcl?,kT) ,, 1.)For the middle of
the visible range (). = 0.55 . t0-6 m)
at T2 = 3,000 K and T1 = 300 K
(T2lTr = 10), we get

1--),,,12 
= e78 =1034.

ir,r,

Clearly no converter is necessary in
this case, and we'll see with the na-
ked eye a bright opening S against
the dark background of the body's
surface ("the blacker, the brighter!").

2. Imagine that we have a colored
refractory mineral that looks red
when light passes through it (fig. 3a)
because it absorbs virtually all of
the light-blue, blue, and violet rays
(for whichA, = 1), but is translucent
for the orange-red part of. the spec-
trum (A, = 0). For the sake of defi
niteness, we'll assume also that the
region of intense absorption practi-
cally does not shift along the spec-
trum as the temperature varies. Will
this stone shine when heated to,
say, T = 3,000 K? If so, will the radi-
ance be colored? How?

At 7: 3,000 K, Planck's function
i, in the visibie range is high
enough, and according to Kirchhoff's
law the heated mineral must radiate
strongly at the absorption regions of
the spectrum, where Ax= l,

I?\: Axix'

As the sftong absorption relates only
to the short-wave region of the visible
spectrum, this radiance should be
colored light-b1ue and blue (fig. 3b).

The American physicist Robert
Wood performed an interesting ex-
periment with fused qlrartz at the
beginning of the 20th century. Fused
qlrartz is transparent in the visible
range of the spectrum/ where ab-
sorption is practically absent-that
is, A^ : 0. So a column of fused
qlJartz heated on a gas burner re-
mains dark notwithstanding the
high temperature. Wood "colored"
the fused qlrartz by adding some
neodymium oxide and prepared a
homogeneous melt. Solutions of
rare elements (including neody-
mium) are known to have narow
spectral regions of strong absorption
in the visible range. So it wasn't
unexpected that the colored fused
qtlartz acquired some absorption
bands. For neodymium they are 1o-

cated in the red, orange/ and green

regions of the visible range. If a col-
umn of such a melt is heated by the
same burner, it will radiate strongly.
Wood studied this radiation with a

spectroscope and found that it in-
deed consisted of bright bands in the
red, orange, and green regions.

3. Some crystals are known to ab-
sorb light polarized differently in
various planes. This means that the
parameter A, is larger for light oscil-
lations in one direction and smaller
for oscillations in the other (for the
same values ), and Tl. A classic ex-
ample of such a crystal is Iceland
spar3-a one-axis colored (green

Figure 4

3See "A Polarizer in the Shadows"
in the |anuary/February 1994 issue of
Quantum.-Ed.

Figure 3
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most often) refractory crystal, which
predominantly absorbs the ordinary
oscillations ltig. aal. A crystal of Ice-
land spar several millimeters thick is
a natural polarizer: it transmits light
with oscillations lying practically in
the same plane. The problem is: how
is the radiation from a heated crystal
of Iceland spar polarized?

The parameter Ardiffers for ordi-
nary (O) and extraordinary (Eloscil-
lations. So, O- and E-oscillations
will radiate differently as well.
Kirchhoff's law says that the radia-
tion from heated Iceland spar must
be partially polarized with a marked
prevalence of O-oscillations (fig. 4b).
And this is what Kirchhoff himseif
observed during a qualitative inves-
tigation of the radiation from heated
Iceland spar in 1859. Later quantita-
tive studies at the beginning of the
20th century confirmed the relation-
ship AElAo = IEIP.

Can 3|il squal 100 ltll?
One of the most important appli-

cations of heated bodies is using
them as light sources. Think of the
filaments in incandescent light
bulbs, which continue to be a major
source of artificial illumination.
Turning now to practical applica-
tions of Kirchhoff's law, we should
note that avery small fraction of the
total radiant energy of the IBB corre-
sponds to the visible range o{ the
electromagnetic spectrum (the
shaded portion of the graph in
figure 1)-only 0.3o/o at 7 = 2,000 K.
At T: 3,000 K this value increases
to 3o/o, but it is still rather small. For
a source made of tungsten/ as we'll
see below, the situation is a little
better. However, because of inevi-
tabie additional losses due to heat
conductivity and heat convection,
the actual efficiency of modern
tungsten filament lamps does not
exceed 2-3%. This means that in
the best case, about 97"/" of the sup-
plied power goes "out the window."

Now let's turn our imaginations
loose. Assume that a rehactory,
electrically conductive material is
found (with a melting temperature
T : 3,000 K) that absorbs light
strongiy in the visible range (A^ = 1)

Figure 5

at high temperatures and absorbs
practically nothing in other regions
(Al = 0). Kirchhoff's lawpredicts that
filament lamps made of such a ma-
terial would save huge amounts of
energy. Indeed, the illuminating
power of such a lamp consuming
several watts would correspond to
that of a modern 100-W lamp.

One problem that naturally arises
in this context is to determine what
form the function A^ must take to
give the maximum possible illumi-
natingpowerwhen one of the follow-
ing conditions is met: (1) the bright-
ness of the source is maximum at a
given temperature Tt l2l the bright-
ness is maximum and the color com-
position of the emitted light is the
most comfortable for the human eye.

Let's denote these sources by S,
and Sr. The functions A^ we are in-
terested in are shown in figures 5a
and6a, and the corresponding inten-
sities are given in figures 5b and 5b.
According to Kirchhoff's law, both
sources are economically ideal since
they emit only visible light (A^: 0
outside the visible range of the spec-
trum). But source S, is brighter at a
given temperattJret because it emits
light as an IBB. However, this light

0

Figure 6

-,+:+r 1, (mu)

1i (w/m3)

3.1012

). (mu)

has a red tint caused by the preva-
lence of warm colors-this is be-
cause 1, increases sharply with ),.
On the other hand, the warm colors
are inhibited in the light emitted by
source S, by the decrease of A^ in
the long-wave portion of the spec-
trum/ so the energy distribution is
similar to that of sunlight. The light
emitted by source S, is "whiter" and
thus more comfortable for the hu-
man eye. (Note that the functionA^
in figure 5a has been chosen in the
simplest way-perhaps the reader
can propose a better source. Some
knowledge of visual perception and
biophysics wil1help in this regard.)

Clearly the invention of lamps
like S, or S, would bring revolution-
ary engineering changes in their
wake. But to make such alarnp, a
preliminary revolution in technol-
ogy is necessary-one must know
how to produce materials with the
theoretically necessary characteris-
tics: light absorption, melting tem-
perature/ and so on.

Unfortunately, the thermal light
sources that currently exist differ
greatiy from the ideal super-
economical sources S, and Sr. Yet we
can find some elements in c-ommon.

1r (w^n3)

3.1012
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Figure 7

It's worthwhile to recall in this con-
text the good old Auer burner. At
the beginning of the 20th century
this burner became widely known
as a source of visible light and mid-
range infrared rays, but now it's pri-
marily of historical interest. Never-
theless, the properties of this light
source arcrather curious. Thebasic
component of the burner is a

mantle, heated by gas flame to
1,800 K. The grid is made of tho-
rium oxide with a small amount of
cerium oxide (0.75-2.5%1. Cerium
oxide provides the strong absorption
(practicaliy like that of the IBB) in
the entire visible range of the spec-
trum and absorption of mid-range
infrared waves comparable to the
IBB, with almost no absorption in
the near infrared region. Thus, the
most energetic part of the IBB spec-
trum at 7: 1,800 K is absent in the
radiant light of the Auer burner, and
so this burner radiates visible light
and mid-range infrared rays strongly
(almost like the IBB), while its total
radiation is low.

Now Iet's turn to incandescent
lamps. The basic material used as
the working element of the modern
filament lamp is tungsten. The A^

b r,' {w/rrr3 )

1.1012

0.5

3 r (,^r)

and 1, curves for tungsten heated to
T :2,450 K are shown in figure 7.
We can see that at the same tem-
perature tungsten radiates far less
than the IBB across the entire spec-
trum. A1so, it emits half as much in
the visible rar,get which is not so
good, of course/ for a light source.
Flowever, in the infrared region
tungsten radiates at Il3 to 1/5 the
output of the IBB, which is a good
feature in a light source/ because it
translates to a drastic decrease in the
amount of power consumed. Sum-
ming up, we can say that the tung-
sten filament lamp, while not as
bright a source of light as the IBB
heated to the same temperature, is
somewhat more comfortable to the
eye and certainly more economical.
However, its efficiency is very low-
as we noted above, it doesn't exceed
37o. Increasing filament lamp effi-
ciency by even a few percentage
points while retaining its advanta-
geous features would be a significant
achievement in lighting design.

In closing, I leave you with an easy
cluestion to check your undestanding.
Figure 8 shows A^and/^ curves {or a
certain heated body. What can you
say about its radiation? O

t" (w/*3)

3. 1 012

Figure B

7. (mu)

lJ0tltlllBtB/[tctltilBER I SS5

-]I

I

l- |

tffitI Hffiffi ,I

Craters!
A Multi-science Approach
rv vr4L!r,s5 4[u uul,4L!

try Williaru K. Har.*annn

tr{ake an impact in your classroom
'.I -l' ' - t. . t. . rguide to

5

i ,Etr',ffi

How have impacts

affected Earth s histon'
and the history of lifei
Craters! includes20
ready-to-use, hands-
on activities that use cratering
t0 teach key concepts in phvsics,

astronom). biologr. and Earth
sciences. Speciai features include a .

custom CD-ROM packed with
supplemental images For classroom
activitjes, a specially-written summary
oF research on Shoemaker-Lew 9's

encounter with Jupiter, and a detailed
background section for teachers.

W4rether used as a stand-alone

Grades 9-12, 1995, 184 pp.,
includes Mac/W'indows CD-ROM

curricuium unit or mined lor
individual activities, you'll
agree that this book is right
on target:

#PBI20X $24.95

3@ Affi&S&" SA&&;

{SSe} 399*H$YA
\1SAu I lasterCrrd, Discor er

and purchase orders accepted

r.

f



This is something more than new technical

calculation software with added features and

functions. lnstead, it

is the first complete

problem+olving

environment that

lets you explore,

analyze, model,

test, refine and

notation. (hoose from hundreds of built-in

functions. Graph in 2-D and 3-D. ftange vari-

Pmgramming Operators

in PLUS 6.0 kt yr ttrite

.finiinttl prograrr to solu

colrltlex ltrob/uns uitg a
langtage 1,at knott - nath.

drop into your Mathcad worksheet.See for

yourself. 0nce you experien(e Mathcad 6.0,

you'll never look at math the same way again.

Mat$cad
#t."5s.s,.

lor a tree Wo*ing l{odd, call us toll-free at

l-800-827-1265 or download a copy from the

World Wide Web at http//uw.mathsoft.com.

0r visit your local software reseller today.

Matbcacl 6.0 solws the ruost cornplex problem, frorn rart
ta finislt, in an intuitiu and bighll, asable intefare,

ables and instantly

update answers. Then

print your work in

presentation-quality

documents. Allwith

unmat(hed ease and

usability. (hoose

You can access. share

and interact u itb
"lire" Marbcad

u,orksheets an the

WorldWideWeb.

others using E-mail,

Lotus Notes@ or the

World Wide Web. One

that lets you enter

equations anywhere on

the screen in real math

document even the most complex problems.

The only one that lets you (ollaborate with

Mathcad@ 6.0 Standard Edition, now with anima-

tion, statistics and more data analysis tools. 0r

PLUS 6.0 Professional Edition with additional

power, including live symbolics, differential

equations, and unique programming operators

that let you program in a language you already

know - mathematia. And, there are a number

of Electronic Books with thousands of useful

formulas and (onstants, ready to drag and wtrdosoFflsift ffi)1ffi{ii:ri,l GillPIEi

-!/1@

$e r.di.tPd uowPr .nr on b. _'r ' -- I / ,

expresed rn d3! a6forro$: 
_ 

l

cfum==ndlo,

/:r/ r ll
P t) . Fbc\- 

I
Io plorrhis exp'esron as a rutrdhn d azimdh aid;, deffie . Enqe
and $e nep ste! dl, lo ro uosd ln lh. plor. ror ihe elhple cass oran
wlrh6 olemenb 6n..od t, aDan,the ailariddorapp€a6.stortos:

irs rva v.risie.i or a n.ry
aor!ers4n is rc..ss.d dre.lly
iirn lialnso,l's WYlil S ie

a:& saiqh.&dm ron"

Math Sof t

Circle No. 10 on Reader Service Card A78AO

lntroduci
It's not ju

Itts a

acncad 6.O.
new version.
Yision.

ng M
st a
new



=lnlern
olionul P

wffiffiffi
hysirs

ffiffi
ffi

A\4EFiiffi
INSTITUT€
gEPl-{'/51C5

lfs whot the

Physics 0lym

Series is lo hoseboll ond the Acodemy Awords ore lo ocling. h's the lnternotionol

lPh0)+ globol compelition open to physics $udenls in grodes 9-12.

Eorh yeor the lPhO hrings logefier quolified physics students from over 50 counlries

oround the world lo compele for recognilion ond medols. The U.S. Physics Teom,

orgonized by the Americon Associotion of Physics Teochers (MPT) ond the Americon

lnslitute of Physics (AlP), hos eorned 3l medols since ioining the lPh0 in I986.

ln I995 the U.S. Teom ploced second in the world ol fie 0lympiud in

(onberro, Austrolio-the leom's best finish to dote, ocquiring four gold

medols ond one silver medol.

ffi
World

piod (

Nol only do teom members hove fie
opporlunity lo compele wilh sludents

from oround the world, but fiey olso

experience o different culture ond

how it reloles to fie world communily.

We wont you on our leom!

For more informolion, coll

AAPI ot 301-209-3344, or

relurn the form below.

Kfuw ffi.ffi. Wwwre ffiwwffiw Wrew€

epp*$cm$$mm ffiwqwffiffi# ffiwwre
For o complele pocket of lPh0 informolion ond o U.S. Ieom opplicotion (deodline Jonuory 19, 1996), pleose fill out this form

ond relurn il lo MPT. The 1996 lPh0 will be held in 0slo, Nonruoy.

Student TeocherNome

School

Addres (School or Home)

Phone

tAx _

Return completed form lo: AAPT, U.S. Physics Teom, ()ne Physics [llipse, (ollege Pork, MD 20740-3845 r FAX: 301-209-0845



BRAINTEASERS

Jusl lol' Ihe lun ol it!

8156
Two equations. Solve two simultaneous equations in integer unknowns
T,W, O:

T-W-O=T+W+O=2.

(Y. Alenkov)

8157
Financial dealings. The little tycoon |ohnny says to his fellow capitalist
Annie, "If I add 7 dollars to 315 of my funds, I'11 have as much money as
you do." To which Annie replies, "So you have only 3 dollars more than
me." How much money does each have? (N. Antonovich)

8158
Experiment in the abyss. Two very
long copper tubes are immersed in
the ocean. One tube is hermetically
sealed at both ends, the other has one
end open. What wili happen to the
tubes in the depths of the ocean?

8159
Playing with uiangles. Two isosceles right triangles are placed one on
the other so that the vertices of each of their right angles lie on the
hypotenuse of the other triangle (see the figure at left). Their other four
vertices form a quadrilateral. Prove that its area is divided in half by the
segment joining the right angles. (V. Proizvolov)

8160
Don't complete rtl Two players take turns coloring squares in a 4 x 4 grid,
one at a time. As soon as aplayer forms a completely colored 2 x2 square,
he or she loses. Who can force a win: the player who begins or the second
player? (S. Tokarev)
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HEN TWO PEOPLE HAVE
an unhurried conversation,
the words of either of them
are usually absolutely clear

to the other one. They rarely ask
each other to repeat or clarify an in-
comprehensible word. But if the
same conversation is conducted by
telephone, each person may find
some of the words hard to catch, es-

pecially if the line is noisy because
of a bad connection. Sometimes the
missing words lead to a loss of com-
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Assuring clear communication by a variety of transmitters

by A. Futer

lN me uroRlrwo the phone rang. I leaped up out of bed, grabbed the
receiver, and yelled:

''Hello!"

The receiver replied:
''Why are you grunting?'
"What do you mean, 'grunting'? l'm not grunting," I sa d
'Stop grunting! Speak human!' Mishka cried.
"But I am speaking human! Where do you get this gt -''.'?'
"Come on, stop fooling around! Anyway ljust can: 5e =.e ;'ou'd

brrng a piglet to your room."
*NikolaY Nosov. 'T-= :erePhone"
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prehension. And if we try to trans-
mit by phon e arbitrary sequences of
letters, llke rptf ff sk77a a a am..., rather
than intelligible words, we'11 see
that some letters often get mixed
up-for instance, f and s, m and n,
and so on.

Practically any means of commu-
nication-telephone, radio, binocu-
lars-corrupts the signal. There are
various ways to combat this phe-
nomenon/ but they all impair the
efficiency of communication. For
instance, instead of separate letters
sent by telephone, we can send en-
tire words that begin with that let-
ter-for example, sending b as Bill,
g as Gregory, and so on. But then
instead of one letter we'd have to
send 4 or 7letters. Alternatively, ev-
ery signal can be repeated many
times, which was the case when the
first photographs of the far side of
the Moon were transmitted to Earth
in 1959. But the time it takes to do
this increases by the same factor.

In this afticle we'l1 consider one
economical method of noise control.l
The idea behind this method is quite
simple: since we know which signals

lThis problem was first explored by
the prominent American
mathematician Claude Shannon.

can be mixed up/ we can send only
one signal from each such group and
ignore all the rest. For instance, of the
three sounds f, s, and x, we can send
only one by phone-say/ s.

El'l'ol' Unaphs
Any message usually consists of

separate " elementary" signals:
words (in a telephone conversation),
letters (in semaphore), or other signs
(the dot and dash in telegraphy).
These elementary signals constitute
the set S, called theinput alphabet.
Let's picture each signal from S as a
small circle and foin every two
circles whose corresponding signals
can be confused with each other
during transmission. In general, if
you have a set of points and some of
them are joined by lines, you have
a graph. The points are called the
graph's nodes, and the lines be-
tween them are the graph's edges.
Two nodes, v and w, joined by an
edge are said to be adiacent-this is
denoted v - w. The graph on the set
S constructed above is calied the
error graph of the transmitter in
question.

By way of example, consider an
electric clock with the minute hand
changing its position in leaps-as

soon as a full minute ends, the hand
jumps to the next division on the
dial. If the clock is far from us, we
can't exactly determine the position
of the minute hand. But suppose our
error isn't too great-s ay , rrot greater
than a minute. Then the input al-
phabet will comprise 50 elements-
50 possible positions of the minute
hand (each of which corresponds to
a certainpoint on the dial's circum-
ference)-and the error graph G will
be a regular 50-gon: every point is
joined to its two neighbors.

Now let's try to understand what
should be done to correctly identify
the greatest number of different
readings of the minute hand. Adapt
the clock so as to make its minute
hand leap over every two minute
divisions-that is, so as to indicate
only an even number of minutes.
Then we'll never mix up any two
indications of the clock, because we
don't al1ow for the errors of two or
more minutes. So if we agree to con-
fine the set of transmitted signals
only to 30 even numbers from 0 to
58, they will always be correctly re-
ceived. On the other hand, thirty is
obviously the maximum number of
faultlessly distinguishable signals:
any 3l nodes in our graph G will
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contain at least two adiacent nodes
(prove thisl).

In this example, we've con-
structed a subset M of the graph's
nodes with the following property:
any two nodes from M are not
joined by an edge. Any subset with
this property is called an indepen-
dent set of nodes. In our example,.
any set of even indications of the
minute hand-say, 12, 8, 34, 52,
55i-or the set of indications divis-
ible by five-{O, 5, 10, ...,55}-are
independent/ as are many others.

If the number of nodes in an inde-
pendent set M is the greatest among
all independent sets in a graph, we
cail this set M a greatest indepen-
dent set (GIS), and its number of
nodes cr(G) is called the indepen-
dence number (IN) of the graph.

The graph G considered above
has many independent sets, but only
two greatest independent sets (the
set of all even numbers from 0
through 58 and the set of odd num-
bers from 1 through 59), so o(G) = 30.

If G is the error $aph of a certain
transmitting device I then u(G) is
the maximum number of signals
that can be transmitted through this
device without mixing them up.
Therefore o(G) is also called the
throughput of the device ?.

Problems
1. Find the GIS and IN for the

graphs in figure 1.

Figure 1

14

2. A number n of points are plot-
ted around a circle. Each of them is
connected to 2k points (consisting of
the k nearest points on either side).
Find the independence number of
this graph.

An alphatfi $qttar'Ed

Any transmitter ? can be de-
scribed in terms of its input alphabet
S, the error graph G, and the inde-
pendence number of the graph G (or
the throughput of 7) u(G). But what
should we do if the transmitter T is
given and fixed once and for all, but
its throughput is insufficient for us?

For instance, what if T is a telegraph,
which can send only dots and
dashes, but we want to send letters?
The solution is no secret-it's the
well-known Morse code. We have to
send packs of several signs (dots and
dashes) through T and consider any
such pack a single signal.

Let's first try to send pairs of suc-
cessive signals from S through the
same device T and see by how much
this will increase our possibilities.
We can assume that now we've got
a new transmitter T2 whose input
alphabet 52 consists of two-letter
signals (v1, v2l, where v, and v2are
elements of S (for convenience, from
here on we'll refer to the elements of
any alphabet as "letters").

Let's try to determine the through-
put of the transmitterTz. To this end

we must draw its er-
ror graph, denoted by
G2. when can a sig-
r,al (v1, v2) be con-
fused with lw' wrl?
Clearly, if (and only
if) one of these condi-
tions is satisfied:

(alvt=w1,v2-w2i
(b)rr - w21v2=w2i
(c)r, - w'vz-wz.
So two nodes

(v, v2l and lwr, w2l
of the graph Gz are

ioined by an edge if
the graph G has
edges Yrwr (or
vr: w1l andvrwrlor
vr-- w2l.

For instance, tf a

graph G has only two vertices joined
by an edge, then G2 is a square with
diagonals (fig.2l.

Problem 3. Draw the square
graph G2 f.or each of the graphs G in
figure 3.

So G2 can be thought of. as a "fi-
ber" graph, in which every vertical
or horizontal"fibe{' is the graph G,
and each edge ab of G corresponds to
a square with diagonals in G2.

Now let's try to find an indepen-
dent set in Gz.If M is such a set in
graph G, then no elements of M are
mixed up with one another when
transmitted by the device 7. Then
none of the letters from M is cor-
rupted when pairs of these letters are
transmitted, so in the alphabet 52

the pairs (a, bl, with a e M, b e M,
aren't mixed up. The set of pairs
(a, bl, where a e M, b e M, is de-
noted by M2. Obviously, the number
of elements in M2 is p2, where p is
the number of elements in M.
Therefore, the throughput of ,42 is
not less than the square of the
throughput of the deviceA-that is,
in terms of graphs,

a(Gzl>@[Gllz.

However, it should be noted that
this increase in the throughput isn't
gratis-it/s achieved at the expense
of the transmission speed failing by
ahalf..

In actual telegraphy, letters are
transmitted somewhat differently.
There are three, rather than two, el-
ementary symbols in the telegraph
alphabet (Morse code)-dot, dash,
ar.dblank (an increased interval be-
tween signals). So it's not necessary
to use the same number of signs
(dots and dashes) for all letters-it's
reasonable to denote more frequent
letters by shorter strings of symbols,
reserving longer strings for rarer

(2, t) 12,2)
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letters. For instance, there are 33 let-
ters in the Russian alphabet. If they
were all to be represented by the
same number of symbols, we'd have
to use 6-symbol sets (because there
are only 2s = 32 sets of five dots and
dashes). In fact, no more than four
symbols suffice to denote almost all
Russian letters: 2L + 22 + 23 + 2a :
2 + 4 + 8 + 15 : 30. Of the remaining
three letters, two are simpiy identi-
fied with certain pairs of letters out
of the thirty, and one letter-the rar-
est one-has a S-symbol code. The
sets of more than four symbols are
used for figures and punctuation
marks.2

lfings on a tortl$
Let's make the "linear" graph Gu

in figure 3 a little more complicated
by gluing together its endpoints 0 and
n. This gives ann-gon0 12 ...|n- 1lr.

Denote itby Pn. The square Pr2 of
this graph is obtained from the
square of the linear graph (which is
a grid of n x n squares with diago-
nals) by gluing together its opposite
sides. But this operation turns a

square (a normal, genuine square)
into a torus! (See the Kaleidoscope in
the March/April 1994 issue of
Quantum.l So Pr2 can be viewed as
a grid on a torus consisting of n2
"unit scluares" with diagonals (the
red grid in figure 4).

The vertices of these squares can
be identified with the centers of the
squares of an n x n toroidal chess-

2"IJniform" codes, with equally
many symbols per letter, have their
own advantages and are also used in
telegraphy, perhaps even more often
than Morse code.-Ed.

1 board (shown in black in
figure 4). Then adjacent

2 rtodes of Pnz wTll corre-
spond to chessboard
squares connected by a

3 chess king's moves. So
the independence num-
ber for Pr2 is equal to the
maximum number of

--H kings not attacking one
n-l n anotheronthe nxntor-

oidal chessboard. This
number is studied in
problem M155 in this is-

sue of Quantum.
To get a cLearer idea of the struc-

ture of GIS for the graph Pr2, solve
the following problems.

Problems
4. Let M be the greatest indepen-

dent set forP] (or the toroidal chess-
board). Prove that (a) tf n = 2a, then
M can be chosen in the form Ml,
where M, is any GIS f.or Pn, and
a(P*l = s2; (b) if n : 4s + 1, then there
are exactlys nodes (kings)
from M in each horizontal
or vertical file of the
board; (c) ifz:4s + 3, then
each vertical or horizontal
file contains either s or
s + I elements of M.

5. Define acyclic shiftof
thegraphPr2 on a torus as a

"translation modulo n,"
which takes any potnt(x, yl
into (x + s, y + t) (mod n)
with certain fixed s and t

-that is, into the point
l1,J/),where d andy' are
the remainders of x + s and
y + t when divided by n.
Prove that any GIS for P!
can be reduced to the form
shown in figure 5 (on the
next page) by way of an ap-
propriate cyclic shift and,
perhaps, a line refiection of
the board.

Up lhe dimsltsionalily laddel.
Let's develop our trans-

mitter further: consider
the device Tk f.or an arbi-
trary natural k. That is,
we'1l use the transmitter
7 to send packs of k 1et-
ters at a time from the

original input alphabet S. By anal-
ogy with the case k :2, we can con-
struct the error graph Gk of the
transmitter ?k. The set of its nodes
is the alphabet Sk consisting of alI,k-
Ietter sets (v1, v2, ..., vpl, where al1

v, e S. It's also clear which nodes in
this set are adjacent-that is, which
signals (vy, ..., vp) ar.d lwr, ..., wpl
can get mixed up. This happens
when the letters in each "coordi-
nate" can be confused, which
means that for any i (1 < i < 7<) one
of the two conditions listed above
must be satisfied: either vr: wror
vi-wifitvr:wrfor alli, the two sets
coincide).

It's rather difficult to find the
throughput of the transmitter ?k
exactly in the general case, but we
can estimate it from be1ow.

Problem 6. Prove that o(Gk) >
(o(G))k.

As for further improvements . . .

Even in one of the simplest cases/

n- I

G
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where the error graph is ann-gonP,,
we don't know much about o;lP*|.
Now I'11 summarize the results ob-
tained up to now.3

A scluare or a chessboard with its
opposite sides glued together is a
two - dim ension al toru s. Similarly,
the kth power of the n-gon (the
$aph Pf) can be called a k-dimen-
sional torus of size n. The nodes of
the graph P! can be represented as

sets of k integers (x, x2, ..., ,p)
where eachxrvaries from 0 ton - 1.

Problem 7, Find the number o{
nodes in Prk.

By definition, fwo sets (x, x, ..., xpl
and ly, y2, . . ., ypl are adjacent in the

3That is, at the time of the original
publication of this article rn Kvant,
about 15 years ago. It's very likely that
many of the blank spaces in the table
of results given here have been filled
in by now.-Ed.
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l0

graph P! if each pair of coordinates

lx, yrl are "neighbors" in Pr-that is,
differ by no more than 1 (mod n): for
any i,lx,- y) " {0, 1} (mod n). For
instance, in figure 6 you can see all
the neighbors of the set (0, l,2l for
thecasek:3,n:5.

Problems
8. Find the number of neighbors

of each node on the k-dimensional
torus.

9. Prove that alPfl < llrlzlk],
where [x] is the integer part of a

number x.
10. Find o(Pj) for an even n.
For odd values of n the following

inequality holds:

/n-1\k
I

[z ) = 
*(p,i). 

[[;)-],

and sometimes even the exact value
of o;lP!l can be found.

TnroREm. If n - 1 is divisible by
2k,k>1,then

/-r\ n-1 k-1ulPl l= 

-. 
fl"\ tlI 

2R

A complete proof of this theorem
is rather long, so I'11 only present an
independent set with o(Pf) ele-
ments. Take an arbitrary set of .val-
ues for the k - 1 first coordinates
lxr, x2, ..., xk - 1 ), 0 <.x, < n - 1, and
compute r = ln - I )/2k values for the
kth coordinate using the formula

xu:21 + rl2k- rxr+2k-'*r* ...
+ 2rxo_1) (mod n),

where l is any integer from 0 to r - l.
This gives nk- I .r nodes lxr, ..., xp,l

of P,ft that form an independent set.
If you draw the set of nodes

whose coordinates satisfy the last

Figure 7

formula for the case k : 2, you'll get
the answer to problem M156 for the
case of n - 1 divisible by four.

These results allow us to write
out a table of the values of a{P [)
(fig. 71. Some of the entries in the
table have been filled out "theoreti-
ca\ly"; the rest were obtained using
computers. You see that the propor-
tion of blank spaces becomes greatet
asnandkgrow.

Perhaps some of our readers
will manage to fill the gaps in this
table and solve the problem of cal-
culating the throughput of trans-
mitters. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 61
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The imrurlance ol sludyinU

the ily$ics ol sound insulation

A detective story told in the words of Dr, John Watson

by Roman Y. Vinokur

r TRY TO TAKE IT EASY, BUT
I ary in and dav out I have to hear
l, ar"-"rdous rumble when a

I .rr* passes by ,rry house. Nly
nerves are on edge, and besides, my
office is not the best place for curing
the sick. I have to insulate my unfor-
tunate patients from the traffic noise
entering the room from the street
below. The thick brick walls of the
house reflect all the sound, but the
window lets most of it through,
even if it is shut. To my deep regret,
I was not a diligent student when I
studied physics at the university.
That branch of science holds the
keys to many nettlesome problems
and mysteries.

Actually, why not take the advice
of the talkative glass-cutter who
called on me last night? I didn't in-
vite him-he came of his own ac-
cord, just to improve the sound in-
sulati.on of my window. He spent a
great deal of time standing at the
window. I believe he left ratherlate,
when the windows across the street
fell dark and my neighbors went to
bed. He recommended double glaz-
ing rather than the single pane now

instalied. Two panes , each 3 mm
thick, with an afu gap of 15 mm . . .

"I'm sorry to interrupt, but such
a recommendation is worthless,"
said Sherlock Holmes in an even
tone. "The thickness of the air gap,
in your case, needs to be much more
than 15 mm. Trust me."

I turned my head to look at him.
Holmes was sitting with his news-
paper at my study table. I had forgot-
ten he was there, because he seemed
deeply involved in his reading. He
noticed my questioning look and
shook his head with a kind smile.

"No, my dear Watson, I am not a
mind reader. I am just able to ob-
serve and analyze. By deduction, I
arrive at the correct conclusion.

"First of all," he continued, "T
knew that the constant noise com-
ing into your room drives yoltuazy.
When the tram passed a few min-
utes ago/ I saw that you were very
upset. Then, you began to poke
around the window, not merely
looking through it but touching it.
At the same time, I found in
yesterday's newspaper-utterly by
chance-the address of the glass-

Figure 1

cutter/s shop. You underlined it and
wrote a note about 'double glazing
to reduce noise: 3 + 15 + 3.' By my
lights, this solutionl is not correct.
That's all there is to it."

"Yes," I replied, "that sounds rea-
sonable. The glass-cutter came to
my place last night and urged me to
do as he advised. But why did you
reach such a sudden conclusion that
his recommendation was faultyT"

"I had taken it upon myself to
help you reduce the noise in your

E

:r=8i=
siE5Itr
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lSee figure l.-Ed.
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office. I have read some books on
acoustics and mechanics, and now I
am quite conversant with the cur-
rent thinki4g on sound insulation.
The same does not hold for the glass-
cutter, in my opinion."

My friend's words encouraged me
greatly. Holmes stood and walked to
the window. I watched him. He
seemed r ather enthusiastic.

"This problem seems difficult at
first, but you will soon get the hang
of things. Have you ever tried your
hand at differentiai calculus or vec-
tor analysis? No? WelI, perhaps loga-
rithms? Fine, Iet's leave it at that.
And what do you know about
sound?"

"I feel that my experience in this
field is close to ni1," I replied uneas-
ily. "Sound is . . . sound is wave
motion. It occurs when the particles
ol ait, for instance, are set in motion
by an oscillating body-what the
technical people call the 'sound
s6111gs/-2nd the movement gradu-
ally spreads to particles further from
the source. The most elementary
type of sound wave," I rattled on,
warming to my subject, "is one
whose particles vibrate at a single
frequency. It's called a'harmonic
wave."'

Holmes praised my answer. De-
spite its sketchiness, he was being
quite sincere. I know that he is not
keen on making a fool of somebody.
He just wanted to see how much I
aheady knew about acoustics.

"You could think of a sound wave
as being like a bullet," he began,
" arrd a wall as being like . . . a wall.
The image doesn't simplify the phe-
nomenon of sound transmission
through awall, but it's a crude me-
chanical analogy to simplify the ex=

planation. It goes without saying
that any analogy leads one astray if
one pushes it too far. Nevertheless,
analogies are useful when we seek to
illuminate complicated phenomena.

"If a bullet strikes a wall,"
Holmes went on/ "three things can
happen. One, the bullet might be
deflected (or, we might say, 're-
flected'). Two, it might embed itself
(that is, be 'absorbed') in the wal1.
Three, it might pierce the wa11 (in

other words, the bullet is 'transmit-
ted'through it). A similar situation
arises when a sound wave comes up
against a partition (say, awindow or
a wall), but the result is more exotic.
Both reflected and transmitted
waves form simultaneously, and on
top of that, acoustic energy is ab-
sorbed by the partition. Do you find
this scenario strange, my friend?"

"Well," I searched for a reply,
"it's certainly not obvious to me.
First of all, the idea of a wall being
punctured by a sound flying through
the air strikes me as highly improb-
ab1e. Otherwise the walls around us
would be full of holes, but I don't see
any such evidence . . ."

"Precisely! A world where sound
waYes could pierce a wall would not
be a very secure one/ now would it?
No, things happen a bit differently.
The incident and reflected waves
merely shake the walI. The wall vi-
brates and thereby radiates sound in
two directions. The radiated waves
are less intgnse than the wave that
struck it.

"By theway," Holmes continued,
"this phenomenon is not unique.
Experiments of this sort are actually
quite common. Whenyou strike the
prongs of your tuning fork, they vi-
brate and act on the surrounding air
particles. To make a long story
short, they radiate sound waves. The
role of the incident wave, in this
case, is piayed by whatever you use
to strike the tuning fork.2 Does this
make sense to you?"

"Not only does it make sense," I
said, "I find it cluite interesting. You
have a knack for teaching people,
Holmes. Now, what I'd iike to know

is, what kind o{ walls provide the
best sound insulation. I find this is-
sue more pressing than any theory,
really."

, . . I don't think I'd be able to get
by without Holmes in my life. A few
days ago, he ieft the hospital, and he
still looked rather weak. His health is
improving, thank God. He had tried
to defend a woman against three
young ruffians who were assaulting
her. Within moments, he looked
more dead than alive. The thugs
proved to be too much for him. Sud-
denly, a young man showed up and
tumed the tables on the three attack-
ers. His blows broke their jaws and
noses and knocked them to the
ground. This young gent might well
be thebestboxerin all of London, but
to everyone's surprise, he ran off just
as the police arrived at the scene of
the crime. They found four men lying
unconscious and a woman who
seemed more excited than frightened.
She admitted, though, that she was
not the only person who did battle
with the hooligans . . .

"Watson! You seem lost in
thought. Have you been following
what I've been saying?" He looked
at me narrowly.

"Yes, of course/ Holmesl Please,
go on. I'm all ears."

"Let's consider the simplest case

of airborne sound transmission
through a single wa11.3 The pressure
acting on the left side of the wall is
uniformly distributed over its sur-
face andvaries harmonically in time
as p sin (rot), where or is the angular
frecluency, t is time, and p is the
amplitude.
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"What is the pressure acting on
the wall? It's approximately twice
the sound pressure of the incident
wave. Why? The transmitted wave
propagating to the right from the
wall is weak compared to the inci-
dent and refiected waves/ which
have about the same amplitude.
This is not particularly surprising..In
the case of an elastic collision, for
instance, a light ball bounces off a
massive obstacle that is initially
motionless with approximately the
same speed it had before the coili-
sion. So the pressure exerted on the
wa1l is about twice the sound pres-
sure of the incident wave.

"Now, using Newton's second
law, we can find the acceleration of
the wall:

2zlSsin(or)
A = -:---.::-----:, (1)

M

whereM and S are the mass and arca
of the wall, respectively. For har-
monic motion,

where lvl and lal are the amplitudes of
the vibrational velocity and accelera-
tion, respectively. Substituting eclua-
tion (2) into equation (1), and atter a
little algebra, we finally arrive at

2olvl=L, (3)rrma

wherem = MIS is known as the sur-
face density of the wall and can be
expressed in kg/m2. This parameter
is very important for insulating
single walls against airborne sound,
but the insulation also depends on
the elastic and dissipative properties
of the waIIs. Nevertheless, surface
density is still the most important
parameter. The more massive a
single wall, the greater its sound in-
sulation.

"Do you have any questions,
Watson? Please, stop me if it seems to
you that I'm talkingrot. Personally, I
can't stand to take someone at his
word without probing the matter or
doing my own investigation . . ."

"Don't worry/ Holmes, I follow.
Actually, I'm quite pleased with my-
self that I'm understanfing you. The
only thing I'd like to know is the cor-
relation between the surface density
and the acoustical insulation of a

wall. I think you're aware . . ."
"Yes, certainly. I like your ques-

tions! We're successful, you see, be-
cause we pu1l together. A reasonable
question is sometimes more impor-
tant than the appropriate answer.
Researchers have come up with ap-
proximate relationships to correlate
the sound insulation of a single wall
with its surface density. For example,
the walls of my building are made of
brick and areO.75 m thick. The den-
sity of a brick is about 1,500 kgfm3,
so the surface density of the walls is
m = (0.7 5rnl(1,500 kg,/m3) : 1,200W r*.
In this case, my neighbors hardly hear
a thing when I take target practice
with my pistols. If. m = 500 kg/m2,
you cannot hear a loud conversation
on the other side of the wall. If
m : 200 kgl^', you can hear it as

noise/ but cluiet conversation is still
inaudible. If m <201<gfm2, you can
hear even a quiet conversation.

"Naturally, such rules of thumb
are applicable in practice only if
there are no holes or other openings
in the wall.

"One example of a material with
low sound insulation is a thin ply-
wood board. This is because of its
low surface density. . ."

"I see your point," I interupted.
"The density of glass is 2,500 kg/m3,
so the surface density of a 3-mm
pane is only 7.5 kg/m2 . . . Good
heavens! This is depressing. Is it
even possible to improve the sound
insulation of windows? "

"Calmdown, Watsonl Yes, itis,"
Holmes said, smiling. "Double par-
titions provide comparatively high
sound insulation. The same is true
of people: two heads are better than
one, isn't that so?"

"In my experience, it depends on
the heads. And besides, sometimes
people don't get along with each
other. But let's stick to the point.
Physics and psychology are two dif-
ferentthings..."

"You have a point. In fact, its

validity goes beyond psychology. It
holds for physics as well, despite
what you say. Two similar forces
can act in opposition. This situation
is not all that uncommon, even in
sound insulation. The point is that
double partitions afford good sound
insulation only if the air gap be-
tween the two sheets of material is
thick enough. The lower the masses
of the two sheets, the wider the
minimum air gap. Otherwise, you
may get poorer results than you
would with a single partition of the
same surface density."

"l'rrr soruy, Holmes, but you've
lost me there. Maybe I'm out of
shape, mentally. . . As I understand
it, the air gap is good for heat insu-
lation. A double pane protects a
room against cold much better than
a single pane. Naturally, the amount
of heat insulation increases with the
thickness of the air gap-the wider
the gap, the higher the insulation
level , . ."

"I fully agree, Watson," Holmes
interjected. "However, one of the
misconceptions inherent in many
proposed methods of sound insula-
tion is the erroneous assumption
that methods effective for heat insu-
lation are also effective for sound
insulation. Sometimes the analogy
seems very close, but it may be mis-
leading. Suffice it to say that your
overcoat/ which protects you
against the cold air, is ineffective
from the standpoint of sound insu-
lation. Its surface density is not high
enough. . . . Now let us talk about
resonance, which plays an impor-
tant role in sound insulation by
multiple partitions."

"My dear Holmes, I'm sorry to
interrupt you, but I fear the problem
posed has proven too complex for
me. I am not a scientist."

"Don't give up, my friend!"
Holmes exclaimed. "Buck up and
carry on for a few minutes more. We
have almost reached our objective!
I will simplify matters by means of
a vivid example: a trarrt.t'

" A traml Some friend you are. I'd
prefer to hear neither its infernal
rumble nor anything about it. You
know it is the bane of my existence!"
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Figure 4

"I trust i.n your courage/ Watson!
Structurallyt a tram can be envi-
sioned as a simple mechanical sys-
tem consisting of two masses and a
spring. Here, let me sketch it for
you.a The lower mass stands for the
chassis, and the upper one simulates
the coach with passengers and
driver. The spring plays the role of
the tram's suspension system. The
mechanical structure shown here
has a resonant frequency deter-
mined by the equation

where k is the spring constant and
M, arad M, are the masses. If ahar-
monic force acts on the first mass/
the ampiitude of the vibration of the
second mass depends fundamentally
on the frequency/ lf = alznl.If f .. f ,,
the spring does not protect the sec-
ond mass against the vibrational
motion caused by the force acting on
the first mass. If / >> f ,, the vibration
isolation is significant. This is why
a suspension system is used. The
amplitude of the vibration of the
second mass is comparatively small
and decreases still further with an
increase in the frequency.

"Now, a dangerous situation oc-
curs if / = f ,lthat is, if the frequency
of the induced vibration equals the
resonant frequency). The vibration
of the second mass may be greatly

aSee figure 4.-Ed.
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amplified, especially if the intemal
damping of the spring is low."

"Thank you, Holmes! It's a rather
straightforw ard and, I believe, true
analogy of sound transmission
through a double partition. The
masses are the individual partitions,
and the spring is . . . the air gap,be-
cause air is resilient!"

"Btavo, Watsonl You got it your-
se1f. Yes, you are absolutely right.
The resonant frequency of a double
partition is given by a similar equa-
tion:

"That would have been a disaster.
Thank you, Holmes, for setting me
straight. You have been a great
help-now I can calculate the cor-
rect ai-r gap. If it were i50 mm (a ten-
fold increase), the resonant fre-
quency/ as follows from our
equation, would equal approxi-
mately 80 Hz. This would suffice to
achieve the favorable condition:
f ,, f" It's so simple, Holmes!"

"It's as easy as pie, if you know
what you are doing. Your glass-cutter,
however, proved a little wet behind
the ears, which is strange: as a rule,
such specialists know the ropes be-
cause their lack of formal education
is compensated by their practical
experience . . ."

Holmes fell silent. He walked up
to the window and, after a long
pause/ asked me a few questions
about the glass-cutter (his appear
ance and manners). Shortly thereaf-
ter, he left.

He called on me atrrly office the
next morning. There was something
puzzlingin all this. Holmes saw the
question in my eyes and, putting his
fingertips together (as is his wont)
and his elbows upon his knees, he
explained the situation.

"You should be on gaard," he be-
gan ominously. "Your glass-cutter is
a remarkable man who has been to
Oxford. He has a sharp mind, he is
agreatboxer, and in addition, he is
of noble birth. Four years ago, how-
ever, he was found guilty of bur-
glary. Nobody understood why he
did it. Three years later, he escaped
from custody and, at present, he is
wanted by the police."

"You speak of danger, Holmes.
But there is no need to worry over
my safety. I regret to say my busi-
ness brings in 1itt1e money. I am not
a rich man. If that person is truly
intelligent, he will not choose me as

a victim. Besldes, he could have at-
tacked me a few days ago. I don't see
your point, my dear Holmes."

" As f"ar as you are concerned, I
agree with you entirely, Watson. In
this affair, you are free and clear. His
target is an apartment in the building
across the street. Your neighbor who
lives over there is a skilled jeweler,

11
-+_mr mz

where m, and m2 are the surface
densities of the partitions, d is the
width of the air gap, P is the atmo-
spheric pressure, and y = 1.4 is the
ratio of the specific heat at constant
pressure to that at constant volume.
Let's calculate the resonant fre-
quency of the double pane recom-
mended by your glass-cutter. Sub-
stituting nt = nz = 7.5 kg/m2 (in
accordance with your previous esti-
mate, Watson), P : 10s Pa, d =
0.015 m, and ru : 3.14 into our equa-
tion(4) ...weget

f,=250H2.
Now we must evaluate the most
'noisy' frequency of tram noise."

"But Holmes, we have no device
for measuring such a thing. As far as

I know, it could be done with
Helmholtz resonators. "5

"Worry not/ my dear Watson.
The best device available is my own
ears. You know me to be a good
musician, correct? To my ears, the
tram noise is high, in the frequency
range of 100 to 400 Hz. The aver-
age frequency of this range is
250 Hz. So I was right, Watson. If
you did what the glass-cutter rec-
ommended, you would create a

'resonant' window!"

sNowadays, special sound
ar,alyzers or sound meters with
frequency {ilters could be used.
Because of their great expense,
however, one would not expect to
{ind them in every home!-Ed.
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David Polack. Are'you acquainted
with him?"

"He is a patient of mine. A kind
and intelligent man. As I understand
it, he made a mark for himself cut-
ting and selling diamonds. He is
quite a marksman, I hear, though he
never served in the army. One more
thing-his ears are rather sensitive.
So he suffers from the noise ev'en
more than I!"

"Yery good, Watson! I would like
to mention as well that your neigh-
bor does not believe in safes. He
hides his most valuable diamonds in
'secret'places in his rooms. Some-
times he forgets to close the cur-
tains, and in the evenings, when the
lights are on in his rooms, he can be
observed from your window. I saw
him hiding his diamonds just yester-
day. Your so-called glass-cutter did
the same the day before yesterday."

"I see. It all seems plausible
enough." I patted my empty jacket
pocket. "WilI my army revolver
come in handy?"

"No, no, Watson! On no account
will you fire a shot. We'lltry to help
our'g1ass-cutter' mend his ways. Let
us hope we succeed . . ."

The guest came in a few minutes
later. He was so agitated, he didn't
seem to recognize the room. He
didn't even see me. He addressed
Holmes as if he were his last hope.

"Iread in the morning paper that
Mr. Holmes knows something
about a young woman named
Lillian Wiison. I am looking for her
because . . ."

"Because you are her brother,
Ronald Wilson," said Holmes in a
friendly manner. "Am I right?"

Our guest whirled around. I was
standing by the door, my hand in my
pocket. Wilson laughed, but without
mirth. He turned back to Holmes.

"Congratulations! Now I recog-
nize you. You're the gentleman I
saved. And this is the thanks I get!
Good work, Mr. Policeman."

"Fitst of all, Mr. Wilson, I am not
a policeman. Second, if you wish to
leave, you may. However, it wouid
not be beneficial to you for a num-
ber of reasons. So calm down and
listen to me carefully, Your sister

Lillian is married and lives in the
United States of America, at West
Chester in the state of Pennsylvania.
Her husband is a wealthy young doc-
tor. She is happy. He is happy as
we1l.

"Now, about the jeweler across
the way. I would not recommend
that you irritate Mr. Polack. He has
sensitive ears, and he is a sharp-
shooter. It would not be wise to visit
him uninvited, now would it, sir?"

Our guest was flabbergasted.
"You are a wizard, sir!"

"No," Holmes replied, "I am not
a wizard. My name is Sherlock
Holmes. This is my best friend and
associate, Dr. Watson, before whom
you may speak as freely as before
me. But you seem to be ill at ease.
You could do with a cup of coffee,
couldn't yov?"

Wilson was happy to learn that
his lovely younger sister was well
and happy. He told us that when his
parents died, they inherited nothing
but debts. The family jewels were
taken and sold at auction. The same
was true of their house and furni-
ture. Wilson worked hard to make a
living. He and his sister seemed to
be surviving against a1l odds, but he
was driven to get the family jewels
back, come hel1 or high water. And
so he {ound himself on the opposite
side of the law-he had broken into
the house of a banker who had
bought most of the Wilson family
jewels. He ended up in prison and
lost touch with his sister. He es-
caped and, not long before, read that
some of the family jewels had been
sold to Mr. Polack.

"I'm glad to know that my sister
is safe and sound," Wilson said with
feeling. "As for me," he added bit-
tetly, "I'm a criminal."

"Cheer up/ young rr,attt" Holmes
exclaimed. "The young lady you
saved from the ruffians is the daugh-
ter of that banker. She recognized
you. A woman's memory is an
amazing thing sometimes. She
promised me that she would talk
with her father.I believe your case
will be reviewed and you will be
found innocent.

"By the wly," he added, "she

would like to meet you. As far as I
canrccall, she is the type that tums
heads, but that's not my business."

"Thank you very much, Mr.
Holmes. I appreciate your friendly
support. But I am in hot water. It/s
rather difficult to find work at
present. And beside, I have been in
prison . . ."

"Well, in that case, I shal1 intro-
duce you to Mr. Polack. Yes, the
very same! He is going to South Af-
rica in search of diamond depositi,
and a companion such as yourself
would be a great boon to him. My
recommendation is sufficient in this
case./'

A year has passed, and we re-
ceived a letter from Wilson. His trip
with David Polack was a resounding
success. He has become a rich man.
In his letter he wrote that his new
house is in a quiet rural place.

"Dear Mr. Holmes and Dr.
Watson," he wrote, "I found that
David is really a great shooter. Not
only that, he studied acoustics, and
we discussed many problems, in-
cluding those of sound insulation.
Now I know r::ry'advice'to you, Dr.
Watson, was wrong/ because of the
resonance. On the other hand, that
error changed my life. By the way, I
believe the best sound insulation is
to go away from all sources of noise
(the farther, the better). I invite you
to see my quiet house, me, and my
wife. Sincerely, Ronald Wilson."

"Yery we1l," I said, "let's go to his
place next month. It would be con-
venient for me."

"Iregtet to say/ dear Watson, that
I cannot take you with me."

I was taken aback. "Why not,
Holmes?"

"Simply because you can't stand
noise."

He opened his newspaper. It re-
ported that the government had de-
cided to extend a rail line to Wilson's
vicinity, near his new home. This
stretch of railway is considered a
matter of priority for economic rea-
sons, so it must be built in the short-
est possible time . . . Oh, noise, noise!
You are everywherel C)
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Challeltues in phy$ics and malh
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M156
Politics on the chessboard. What
greatest number of chess kings can
be put on a toroidalnx n chessboard
so as not to attack one another? (A
toroidal chessboard is obtained by
gluing together the opposite edges of
the ordinary chessboard. A king on
the torus always attacks eight
squares-see figure 1.) (A. Tolpygo)

Figure 1

M 157
Sparce products. Prove that tor any
sequence of positive numbers a nthe
integer parts of the square roots o{
the numbers

b,, = (a, + ,t. +

are all different. (L. Kurlyandchik)

M 158
A bunch of cir cles and lines. Circles
S, and S, touch each other exter-
nal1y at point F. Line J touches S,

and S, at points A arrd B, respec-
tively, and the line parallel to l and
tangent to S, at C meets S, at points
D alad E. Prove that (a) points A, F,

C are on the same line; (b) the com-
mon chord of the circumcircles of
triangles ABC and BDE passes
through F. (A. Kalinin)

M159
Peilod of recollection. At the ver-
tices of a regular n-gon are placed
m chips l* , nl.A pair of chips at
the same vertex is moved to the
vertices next to it-one chip to
each of the adjacent vertices. Then
another pair is separated in the
same wayl and so on. After a num-
ber of such moves, the numbers o{
chips at each vertex are restored to
their initial values. Prove that this
number of moves is a multiple of n.
(I. Rubanov)

Ml60
Positive positions. Each square of
an infinite scluare grid on the plane
has a real number written in it.
Two figures consisting of a finite
number of grid squares are consid-
ered. The figures are allowed to be
shifted parallel to grid lines by any
integer number of squares. Prove
that if for any shift of the first fig-
ure the sum of the numbers it cov-
ers is positive, then there exists a

shift of the second figure such that
the sum of the numbers it covers
is positive. (9. Ginzburg, I. Solo-
vyov)

Physics

Pl56
Spinning bobbin. The end of a
thread wound around a bobbin is
passed over a nail in a wall (fig. 2).

i

Figure 2

The thread is pulled with a con-
stant velocity v. What is the veloc-
ity of the bobbin's center at the
moment the thread makes an
angle or with the vertical? The out-
side radius of the bobbin is R, the
inside radius is r, and assume that
the bobbin rolls without slipping.
(S. Krotov)

P157
Nitrogen bubble. A soap bubble is
inflated with nitrogen at room tem-
perature. At what diameter will the
bubble start to ascend? The surface
tension of the soap solution is
o: 0.04 N/m. Neglect the mass of
the soap film. (A. Sheronov)
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P158
Aircraft design. An inventor designs
the following " aircraft." The upper
surface of alarge flat plate is kept at
a constant temperature of 0oC,
while the temperature of the bottom
surface is 100"C. The inventor as-

serts that such a plate will be sus-
pended in the air like a dirigibl'e.
Explain the phenomenon. Estimate
the lift on such a plate (order of mag-
nitude) if it is 1 m2 in area. The air
temperature is 20"C.

P1 59
Curuent and fuame. A scluare frame
made of wire with a diameter d, is
placed r,ear a long straight wire car-
rying electric current 1o (fiS. 3).
When this current is turned off, a

momentum po is imparted to the
{rame. What is the direction of this
momentum? What momentum
would be imparted to the frame if
the initial cufient in the wire were
Ir : 310 and the diameter of the

,r1

Figure 3

wire d, :\do? (V. Mozhayev)

P160
Compound lens. A bar of width
h = 5 mm is cut from a convex lens
of diameter d : 5 cm and focal length
F : 50 cm. The resulting parts are
moved close to each other. A point
source of light S is placed at a distance
1= 75 cm from the compound lens
along the axis of s),,rnmetry. At what
maximum distance from this lens
can optical interference be observed?
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The lnealtualue ol aluncliun

An arithmetic concept is stretched and applied in unusual places

by Yury lonin and Alexander Plotkin

OU UNDOUBTEDLY KNOW
what the arithmetic mean of
finitely many numbers is. In
this article we'll extend this

notion to functions defined on a seg-
ment, circle, and sphere and show
its somewhat unexpected applica-
tions to geometry. In particular,
we'll explain how to measure length
by measuring width.

To read this article, you will have
to know a little bit about the geom-
etry of vectors. You will need to
know how to add vectors and how to
find their length (absolute value).
We will also be dealing with the pro-
jection of a vector onto a line, but
we'lI define this for ourselves. We
will also use certain terminology
and notation from the integral cal-
culus, but readers who don't know
any calculus at all will be able to
understand in other ways what is
meant. Only the last two or three
problems we discuss involve a direct
knowledge of the calculus.

0n a linite ssl
At an annual meeting of the Par-

ents Fund Committee of a certain
Business Mathematics School, the
Chairman addressed the audience
thus: "It is the honorable duty of
every palent to make a greater-than-
average contribution!" Apparently
the Chairman wasn't up on his

math. Let's think it through.
The average, or arithmetic mean,

of n numbersxl, X2t ..., xn, according
to the usual definition, is the num-
ber M = M(x1, X2t ... txr) given by the
equation

x. +x^ +...xM\x,xr,...,xn)=-.(rl

Heeding the Chairman's call, the
parents would have to simulta-
neously satisfy the inequalities
xs,, M, xz, M, ..., xn) M. Adding
them up and dividingby n we get a

contradiction to equation (1).

We note the following important
properties of the arithmetic mean:

l. M(x, + y1, xrt y2, ..., xn+ yrl :
M(x1, x2, ..., xrl * M(yt, yz, ..., ynl;

2. Mlax' axo . . ., ax,l = aMlxr, xr . . ., xn)i

3. min(x, x, ...,xrl<M(x1,x, ...,xnlS
max(x1, xr...,xnl.

Readers are urged to find their
own verbal descriptions of these
properties.

Exercises
1. Prove properties 1-3 above.
2.For any integern > 1, prove that

the inequal iry (':) > 22,- r/n (where

(2;) : tz"ltt(nl)2 is a binomial coef-

ficient). This can be done by induc-
tion, but also by using property 3.

Property 3 is often used to estab-
lish that one of the numbers Xy, X2t

..., x, is greater than a given d: it suf-
fices to check that the average
Mlx1, x2, ..., xnl > d. Look, for in-
stance at the following problem.1

Problem 1. There are fifty correctly
running watches lying on a round
table. Prove that ata certain moment
the sum of the distances from the
table's center to the tips of their
minute hands wi1l be greater than the
sum of the distances from the table's
center to the watches' centers.

Solution. Denoteby/(t)the sum of
the distances from the center O of the
table to the minute hands' tips at a
moment t (hours). Let dbe the sum
of the distances from O to the centers
of the watches. We have to prove that
fltl , d at a cefiain time t. We'11 show
thatM(fltol,f(to+ ll2ll > dfor acertain
to, which will mean that one of the
moments ts, to + | l2 is the one we're
looking for.

Denote by Ou A, and B, the cen-
ter of the rth watch, the tip of its
minute hand at a moment t, and the
same tip a half-hour later (at the
moment t+ ll2l, respectively. Since
all the watches are couectt there is

lProposed by S. Iomin at the 10th
All-Union Mathematical Olympiad
(Dushanbe, Tadiikistan, 19751. The
idea can also be traced in the solution
to M160 in this issue.
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Figure 1

a moment to at which the points O,
A, and B, are not on the same line.
Consider the triangle OAptand its
median OO, (fiS. 1).

Exercise 3. Prove that a median in
a triangle is less than the half-sum of
the sides drawn from the same vertex.

By exerciseS, OOr.(OAr+ OBr)12

at the moment to. For all the other
watches OO <lOAr+ OBi)12 (be sure
you understand why we must replace
the strict equality with "("). Adding
these 50 inequalities and dividing by
n/ we get M(flto), flto + ll2)l > d.

0n a seUmeltl
In problem i it sufficed to estimate

the arithmetic mean of two values of
a function. Is it possible to define the
average of all valu.es? To approach
such a definition, let's give some geo-

metric meaning to the average of n
positive numbers xL, Xz, ..., xn

Divide a segment la, b) into n
equal pieces of length (b - a)ln and
construct a "bar chart" consisting of
the rectangles with these pieces as

bases and the numbers X11 x21 .. . t Xn

as heights (fig. 21. The area of this
figure equals M(x, , x2t .. .r xrl . lb - al.
So M(x1, X2t ...t xr) is the height of
the rectangle with the base [a, b]
equal in areato our bar chart.

Now consider a continuous non-

Figure 3

negative function f on a segment
la, b).By its mean value on la, bl
we'll mean the height of the rect-
angle with base [a, b] whose area is
equal to the area of the "curvilinear
trapezoid" bounded by the lines
x = a ar''d x = b, the x-axis, and the
graph of / (fig. 3). This area can be ex-

b

pressed as the integral Jf@)a".

lNote (for reader, *Oo are not
'f amiliar with integrals,): Perhaps
you've thrown up your hands at this
point and are ready to quit. Hang in
there! Throughout this article the

b

formula l,f@)d" can simply be un-

derstood as a notation for the area
described above, where the integral
sign f means " area," theletters a, b,

and / designate its boundaries, and
dx indicates the argument (x) of the
function I to distinguish it from
other parameters on which f may
depend. The actual integration be-
gins when we have to compute this
area, but we'Il need only one nu-
merical result below, and you can
just take it for granted.-Ed.l

So the mean value of / on fa, b)is
defined as

rlM(f)=b_a)f@)dx. el

(This definition is goodfor any func-
tion on fa, blforwhich the right side
of ecluality (2) makes sense, but we'Il
deal only with continuous nonnega-
tive functions.)

The mean value thus defined has
properties similar to properties 1-3:

r'. M(f + s) = Mlfl + Mlsl;
2'. M(afl : uM(fl;

3'. min f(x)< ttt(f) < max /(x).
alxab a<x<b

Let's explain the first of these
properties in terms of areas. (A rig-
orous proof is based on a rigorous
definition of the integral.) Consider
the area between the graphs oIf and
/ + g (both functions f and g are as-

sumed to be positive-see figure 4a).

It can be approximated with any
desired precision by a set of bars as

shown in the figure. Shift all the bars
down on the x-axis (fig. 4b). Then
they'Il form a "bar chart" approxi-
mating the area under the graph of
g(x) (because their heights are equal
to the values of the difference
(flx) + g(xll - fl") = g(x) at the corre-
sponding points). Since the approxi-
mations can be made as precise as

we wish, the area between the
graphs of f and I + g is the same as

under the graph of g-that is,

bbb

l"(r t4+ s(x))dx - J,f @)a" = l,s(,)d,,

which is equivalent to property 1'.

Property 2'is proved similarly.
And property 3' is clear from figure 5
(the area under l lies between the
areas of the rectangles ABCD and
ABFE-that is, between lb - al minf
andlb - al maxfl.

Exercise 4. From properties 1'-3'

f(x) + g(x)

x.
x2
X.c
x1
x,+
X.

0
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max f
M(f)

min f

Figure 5

derive the following:

4'.If f(x) < g(x) for all x e fa, bl, then
rwlfl < u{s).

In the next problem the mean
value of a function is applied in a
setting that doesn't seem to bear
even the slightest relation to it.

Problem 2. The sum of four vec-
tors a/ b, c, d on the plane is zero.
Prove the inequality

lal +lbl +lcl +ldl >la+dl
+lb+dl +lc+dl (3)

(here lal is the length of vector a, and
so on).

The solution is based on the fo1-
lowing one-dimensional version of
this problem, which is left to the
reader as an exercise.

Exercise 5. For any real numbers
a, b, c, d with zero sum/ prove that

lal + lbl + lcl + ldl >la + dl
+lb+dl+lc+dl. (41

Solution to problem 2. Consider
the projections of the vectors a,b, c,
d on an arbitrary axis (directed line).
For our purposes/ we define the
projection ofa vector Zg on a (di-
rected) axis 1as the number *A'B',
where A' and B' are the projections
of A and B on l(fig. 6) and the sign
is chosen ac.cording to whether the
vector A'B'' is directed with (+) or

Figure 7

against (-) the axis-in other words,
it's eqlal toAB,cosQ.yfrere Q is the
angle between I and AE .

By exercise 5, if we replace the
vectors in expression (3) with their
projections on any given axis, we'Il
get a true inequality (because the
sum of the projections is equal to
the projection of the sum-that is,
zero). This suggests that we might
prove inecluality (3) by considering
all possible projections of the given
vectors.

Fix an axis 1o and for any vector
p define the functionp(cl) as the pro-
jection of p on an axis 7 that makes
an angle cr with 1o ffig. 7). If the angle
between 1o and p is Q, then p(cr) :
lpl cos (0 - o). Now consider the
mean vahe M(lpl) of the function
o -+ lp(u)l on the segment lO,Znl.By
property 2' , M(lpll = lp lM( Icos (0 - o)l ),

and

,2n
M(cos(o - ")) = f I .o'(O - u)da.

0

It's clear from figure B that the area
under the graph of lcos (0 - cx)l on the
segment [0,2n] is equal to the area
under the graph of lcos (nlz - ull :
lsin sl on [0, 2n] (or twice the area

under arL arc of the standard sinu-
soid). So

/ n 12! (n \,
ru(cos(o - ")) = i J cos[ ; - u ldao" ol \L '/

= M(sino).

The integral calculus tells us that
this area is in fact equal to 4, but the
really important thing for us here is
that it doesn't depend on Q and is
positive. So the mean value of the
function p(o) is proportional to the
length of p with a constant positive
coefficient k:

M(lpl) = klpl (5)

(using calculus, we can find that
k = M(lsin o,l):2ln). And the basic
property of this function used in our
argument was that the length of the
segment 10, 2nl over which it was
averaged is its period.

Now we're ready to finish the so-
lution.

As we mentioned above, for any
o e [0, 2n) the sum of the numbers
a(ul, b(a), clal, dlal is zero. There-
fore,

la(u)l + lb(cx)l+ lc(cr)l+ ld(o)l>
la(u) + dlo"ll + lb(o) + d(u)l + lc(cx) + d(cr)1.

Using properties 1' and 4' (see ex-
ample 4) to take the mean value of
both sides and expressing the mean
values according to expression (5),

we get

klal +klbl +klcl +kldl >kla+dl
+klb+dl +klc+dl.

A11 that remains is to cancel the fac-
tor k out.

0n lhe chde and sphem
Problem 3. Prove inequality (3) of

problem 2 for any four vectors a, b,
c, d in space with a sum of zero.

It would be nice if we could ex-
tend our "plane reasoning" to space.
To do this we have to somehow de-
fine the mean absolute value of pro-
jections of a vector on axes of all di-
rections in space. We'l1 see below
that this will amount to averaging a

function on a sphere. So iet's begin
with a simpler but similar case of

lcos (Q - o)l

Figure 6 Figure B
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Figure 9

functions on the unit circle (circle of
radius 1).

Let's take a function f whose do-
main is the set of points on the unit
circle and whose range is a set of real

lumbers. For any real cx define
f (ul : f(A"|, where Ao is the point on
the unit circle obtained by rotating
the point E(1,0) through an angle of
radian measure o about the origin
(fig. 9). This ailows us to extend an
arbitrary function l, defined on the
unit circle, to a function f defined
on the entire real axis. Clearly / is
a periodic function with period 2n.
Now we can define the mean value
of f on the unit cfucle as the mean
value of f on the segment [0, 2n]. Re-
call that the crucial point in the so-
lution to problem 2 above was the
fact that the mean M(lpl) was inde-
pendent of the direction of vector p.
This independence is a particular
case of the following general prop-
erty of the mean values of functions
on the unit circle.

5'.Letf andgbe two functions on
the unit circle that differ by the ro-
tation through a certain angle Q

about the circle's center-that is,
c@l = fkql{l for any point A on the
circle, where ra is this rotation.
Then M(g) : Mlfl.

Exercise 6. Prove this property.
Proceeding to problem 3, consider

the unit sphere centered at the origin
O. It is possible to define the mean
value for functions on this sphere so
that properties 1'-5'are satis{ied! (Of
coursg zQ in property 5' should now
by understood as the rotation of the
sphere throughQ about a certainaxis
passing through O.) We cannot ex-
plain here how this is done, because
arl acaJrate definition involves inte-
$ation over the sphere.

30

However, let's assume that the
mean value M(fl of a function on the
sphere with properties 1'-5'is some-
how defined. That is, for this discus-
sion we can take the existence of a
mean value tw(fl of a function obey-
ing properties 1'-5'as an "axiom." It
in fact tums out that the properties
1'-5' define the mean value of a
function uniquely.

Pick a pointA on the unit sphere.
Consider any vectorp and define an
auxiliary functionp(A) on the sphere
as the projection of p on the axis OA

[v:[h the same direction as vector
OA . Then the mean valueM(lpl) of
the function A -+ lp(A)l on our
sphere satisfies equation (5) for a
certain fixed k + 0 and any vector p.
To prove this, it suffices to show
that Mllpll = Mll qll whenever lpl : lql.

Exercise 7. Prove that this is in-
deed sufficient. (Use ptoperty 2'.1

Suppose lpl : lql. Then there ex-
ists a rotation z of space about some
axis through the origin O that takes
the ray oQ, where UrA- : q, to the
ray OP, where OP : p. It's clear that
ct[l: pklAllfor arry pointA on the
sphere. But then, in view of property
5', M(lqll = M(lpll.

Now the solution to problem 3 can
be completed by repeating the end of
the solution to problem 2 above.

lmUfi in lel'ms ottltidfi
The same idea can tell us some-

thing about the perimeter of a con-
vex polygon in the p1ane.

Let a r, a2t .. .t a, be its successive
sides. Fix an axis 10. Denote by W(o)
the "width" of the polygon in the
direction of an axis 1o that makes an
angle u with 1o (fig. 10). It turns out

that if we know this width in any
direction-that is, if we can calcu-
late the function cr -+ I4l(cr)-then
we can find the perimeter P of the
polygon. Let's see why this is so.

Denote by aJul the length of the
projection of side a, on the axis 1*.

Exercise 8. Prove that Wlal =
tlarlal + arlul + ... + a,(u)|.

Lr the solution to problem 2, it was
shown that the mean value of the
ftrnction a ) ai@l is proportional to
the length |a,l of the side a,. We've
also mentioned that the proportion-
ality coefficient k = Zln. Erom exer-
cise 8 and properties 1'and 2'ittol-
Iows that the mean value MlWl
equals half the sum of the mean val-
ues of the functions cx --> a rlal.There-
fore,

Recalling our definition of the mean
value of a function (equation (2)1, we
finally get

.2n
P = n. M(w) = r.fiJwp1au

0

Thus, the length of a polygonal path
(formed by the sides of our poiygon)
can be expressed in terms of the
function I4l.

Exercise 9. Prove that if the
lengths of all the sides and diago-
nals of a convex polygon are less
than d, then its perimeter is less
thannd.

Our expression for the perimeter
is valid for any plane closed convex
curve. The method described above
for calculating the length if the
width (in each direction) is known
was proposed by the well-known
Polish mathematician H. Steinhaus
in 1930.

CONTINUED ON PAGE 37
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HE TERM "GRAPH" (FROM
the Greek ypoQro-"I write" ) is
used in mathematics basically
in two senses. The more "clas,

sical" meaning relates to curves in
the coordinate plane that represent
functions or equations in two vari-
ables. But here we'lltalk about the
other meaning of " graph": in dis-
crete mathematics and topology it
means a diagram showing a number
of points, some of which are joined
by lines (not necessarily straight).
Diagrams of transportation sys-
tems, such as subway lines or net-
works of railroads depicted on geo-
graphical maps, are typical
examples of graphs (fig. 1).1

The points of a graph are called
its nodes or vertices, and the lines
joining them are its edges. The re-
ally essential thing about a graph is
the way in which its edges connect
its nodes. If there is a one-to-one
correspondence between the sets of
nodes of two graphs that associates
any two nodes connected in one
graph to connected nodes in the
other graph, then these graphs are
considered the same.

Figure 2 shows another example
of a graph-the "ascending" genea-
logical tree of the great writer
Count Leo Nikolayevich Tolstoy (in
Russian, " graf Lev Nikolayevich

Figure 1

lsee also "Signals, Graphs, and
Kings on a Torus" in this issue.-Ed

32

I. P. Tolstoy
-t726

P. M. Rtishcheva
-1748

Count I. A. Tolstoy
1 7s 7-1 820

Cottnt Nikolay llyiclt Tolstoy
t794-t837

Figure 2

Tolstoy").2 Here the vertices of the
graph are the members of this fa-
mous Russian noble family, and the
lines between them indicate the
parent-child relationship. The term
" tree" in graph theory means a
graph without cycles-that is, a
graph whose edges do not form any
closed paths. In other words, on a
tree you can't start from a node,
travel along a number of edges, and
arrive back at the initial node. Ge-
nealogical trees are trees in this
sense/ too, if there are no marriages

zThe same title was used in
German as well. Recall, for instance,
the Graf Zeppelin-the dirigible that
inaugurated transatlantic passenger
service. It was named after its
designer, Ferdinand, Graf von
Zeppelin.-Ed.

Volkov

1

Count A. L Tolstoy
1721 1803

i
I

I

Gorchakova
1 836

Princess

I
I
I

I
Princess P. N.

1762

KALEIDOS

Gl'aphs altr

Connecting with ancestors ala

A. I. Shchetl<inn

Prince S. F. M.D

/
Pfince N. S. VoTkonsky Princess E I -'

1753 1826

P ilnc es s Mafi a N ikolay evna V olkonskay a
1770-1830

%

1-7 -

between relatives
in the family.

It's easy to un-
derstand that a
graph-tree can a1-

ways be depicted
on the plane so
that its edges do
not intersect one
another. The
same property is
true for the graphs
formed by the
vertices and edges
of a convex poly-
hedron. Examples
of such graphs for
all five regular
polyhedrons are
shown in figure 3.

Count Lev Nikolayevich Tolstoy
I 828-1 9 10

N0l/tll4BtR/0tcEllllBrR 1SS5
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CSCOPE

nlld ural$
,fd avoiding one's neighbors

One of these
graphs-that of
the tetrahedron-
has the property
that any two of
its nodes are con-

nectedby
an edge.
A graph
with this property is called
complete. Another example
of a complete graph-for the
case of five nodes-is shown
in figure 4.Try to draw it so

as to get rid of intersections.
Have you tried? And what was

the result? No need to answer-
I knew in advance what you'd say!
This graph can't be placed on the
plane without self-intersection.
This is as impossible as to fulfil the
intentions of the three persons once
described by Lewis Carroll.

They lived in
three houses and
there were three
wells nearby-
one with water/
another with
butter, and the
third with jam.
They used to go
to the wells by
the pathways
shown in figure
5. But one day

Figure 5

decisive significance in determining
whether a given graph is planar-
that is, whether it can be drawn on
the plane without self-intersection.

Figure 6

The Polish mathematician Kazi-
mterz Kuratowsky and the Russian
mathematician Lev Pontryagin inde-
pendently proved that a graph is pla-
nar if and only if it contains neither

baginning
of work ,

of these two graphs (the complete 5-
node graph and "houses-and-we11s")
as a subgraph.3

We find graphs in the block dia-
grams of computer programs and in
network models for construction
work, where the edges correspond to
different kinds of work and their ar-
rangement shows the secluence in
which the tasks must be com-
pleted-that is, which parts of the
entire process must be finished be-
fore other parts can begin (fig. 7).

Graphs are very helpful in solving
puzzles.In our Toy Store articles we
have used them many times (see, for
instance, "A Manual for the Math-
ematical Gambler" in the previous
issue or "The A-maze-ing Rubik's
Cube" in the September/October
1991 issue).

Graph theory is a part of topology
as well as combinatorics. Its topo-
logical nature stems from the fact
that the properties of a graph in itself
are independent of the position of its
nodes and the shape of its edges.
And the "langtage" of graphs turned
out to be very well suited for formu-
lating combinatorial problems,
which made graph theory a power-
ful tool in combinatorics. O

Anatoly Savin

3In more recent literature, this
graph is called the "utility" graph,
since it illustrates the problem of
connecting three houses to sources of,
say, water, gas, and electricity,
without any lines crossing.-Ed.

' .iltaadaevtt
f

*' Trttbetsknya'---t7gg

/A'..w
Figure 4

these persons quarrelled
and decided to create
new pathways so that
they wouldn/t intersect.
Figure 6 shows one of
their attempts to do this.

The graphs in figures
5 and 6 proved to be of Figure 7

N_____Z oH lt-,
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-Howard 
Nemerov, " Druidic Rimes"

by Arthur Eisenkraft and Larry D. Kirkpatrick

S WE VIEW THE STATE
trooper ticketing a speeding
motorist, our mind retums to
those lectures in physics class

where Doppler shifts and radar filled
the board. The same type of. radar
that catches speeding motorists
records the speed of pitches in base-

ball and serves in tennis. At this
year's US Open ChampionshiP,
Monica Seles and Steffi Graf both
served at speeds in excess of 100 mph,
while Pete Sampras recorded serves
faster than 120 mph.

The classic example of the Dop-
pler shift is the change in pitch of a
train whistle. As the train ap-
proaches us/ our ears record a higher
pitch, which drops as the train
passes us. By measuring the change
in pitch of the whistle, we can deter-
mine the speed of the train.

Doppler shifts occur for all t1pes of
wave. Because atoms and ions near
the surfaces of stars emit spectral
lines characteristic of each element,
Doppler shifts are a Yery important
tool in astronomy. For instance, the
shi{t in the frequency of the emission
spectrum from a star (or galaxy) tells
us how fast the star is approaching or
receding from Earth.

PHYSICS
CONTEST

"lmpulses irom what scarce was matter
Bounced off a shallow platter
lnto the realm of number pure

Et'auitalioltal rgd$hilt

Because electromagnetic radiation
can propagate through a vacuum, the
Doppler shi{t formuia for electromag-
netic radiation is simpler than for
sound waves. The size of the shift
depends only on the relative velocity
v of the source and the detector,
rather than the velocities of each of
these relative to the air. If we use the
notation 9 =rlc, where c is the speed

of light and B is positive when the
fistance between the source and the
detector is increasing, the shi{ted fre-
quency f is given by

f F_F
-l t

fo 1/ t*P

where/o is the frequency emitted by
the source. When lpl << 1, we can
use an even simpler expression that
can be obtained by approximating
(1 l pf 

= 1 +np. Therefore,

l = o- B)'/'(r * p)-"'
h

= ('-i)('-l)

=1-p,

where we've dropped the term in B2.
(The formula used by the police is
actually | - 28, because the radar
wave is shifted twice. You can think
of your car as the first detector and
the police car as the second.)

Edwin Hubble showed that most
stars (and galaxies) are receding
from Earth, which led to the theory
that the universe began with a big
bang. Because of the expansion, the
frequencies of the spectral lines
from the stars are shifted to lower
values-that is, the light is red-
shifted. However, this not the only
redshift that occurs. A photon leav-
ing a star is also redshifted as it rises
in the gravitational field of the star.
The gravitational redshift for our
sun is too small to be detected accu-
rately, but the redshifts of photons
leaving white dwarfs can be mea-
sured and are ecluivalent to the red-
shifts corresponding to speeds
around 20 km/s.

One of the problems given at the
XXVI International Physics OIym-
piad in |uly (see Happenings on page

53 for a report) combines the ef{ects
of these two t)?es of redshift. We
use part of this problem for this
month's column.

t
j
C
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Although gravitational redshifts
are normally calculated using
Einstein's theory of general relativ-
ity, we can,develop a feeling for the
effect by performing a semiclassical
calculation. A photon with a fre-
quency f has an effective inertial
mass determined by its energy

mcz=hf.

Let's assume that the photon's gravi-
tational mass is the same as its in-
ertial mass and that the photon is
emitted from the surface of a star. As
the photon travels upward, it loses
energy in the form mc2 as it gains
gravitational potential energy.

A. Show that the frequency shi{t
A/ of the photon at an infinite dis-
tance from the star is

CM

Rc2'

where G is the gravitational con-
stant and M and R are the mass and
radius of the star.

Let's now imagine launching a

probe to a distant star to measure
both the mass and radius of the star.
Photons emitted from He* ions on
the surface of the star are monitored
through resonant absorption by He*
ions in the probe. Resonance ab-
sorption only occurs if the ions in
the probe are given a velocity to-
ward the star that compensates for
the gravitational redshift. As the
probe approaches the star radially,
the velocity v of the He* ions rela-
tive to the star is measured as a
function of the radial distance d
from the surface of the star. The ex-
perimental data are given in the fol-
lowing table:

9: rl" d
(x 10i) (x 108 m)

month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Tlts fir$t Rholon
Our contest problem in the May/

|une 1995 issue described our ex-
perimental determination of the par-
ticle properties of light. The problem
was well received, and excellent re-
sponses came from Christopher
Rybak (a junior at the Prairie Schooi
in Racine, Wisconsin), |onathan
Devor (who represented Israel in the
Internationai Physics Olympiad in
Australia this past summer), Aaron
Manka (a student in Huntsville, Ala-
bama), and Lori Sonderegger and
Arthur Hovey (a student and
teacher, respectively, at Amity Re-
gional High School in Woodbridge,
Connecticut).

The first part of the problem re-
cluired readers to interpret data from
a photoelectric experiment. The
equation relating the kinetic energy
of the electron and the frequency of
the light is

K,,,o: ftv - 0.

We can substitutev = c/I, where c is
the speed of light in a vacuum and
l" is the wavelength. This yields

hc

/"

If we plot K-"* or the y-axis and
1/), on the x-axis, the resulting
graph should be linear; the slope is
hc, and the y-intercept is the nega-
tive of the work function Q (see the
figure below). The slope of this line
is AK-,,/A(1/)'), which is equal to
1,242 eY. nm. Therefore,

hc = 1,242 eV.nm,

K-r, {eV)

where c = 3 . 108 m/s = 3. 1017 nm/s
andh:4.14. l}-ts eV. s. The work
function for lithium is ec1ual to
2.32 eY.

Part B asked for a proof that a
free electron cannot completely
absorb a photon. We can assume
that absorption can take place,
apply conservation of momentum
and energy, and then arrle at a
paradox.

Momentum conservation re-
quires

Energy conservation requires

hv:Yzmv2.

Dividing these ecluations recluires
that the electron's velocity be equal
to twice the speed of light-an im-
possibility.

Part C(i) asked how far away a

50-W bulb would need to be placed
so that a human eye, sensitive to
single photons, would detect an av-
erage of one photon per second.

Given a wavelength of 500 nm for
the light, the individual photons
will have a corresponding energy of
hcl), = 3.97 . 10 1e I. Therefore, a
50-W light bulb emits on average
| .26 . lo2o photons/s. These photons
spread out isotropically and will in-
tercept the human eye. Since the pu-
pil has a given diarneter d of 0.5 cm,
its area is nldl2lz :0.0525n cmz.

The ratio of the surface area of the
eye to the surface area of the light
sphere is equal to the ratio of the
number of photons hitting the eye to
the total number of photons. The
distance at which one photon hits
the eye every second is

1

0.0525n crr.' 1 photonls

hv

C

^f_f

3.3s2
3.279
3.195
3.O77

2.955

38.90
19.98
L3.32
8.99
5.67

4nR2

Thus,

1.25 .l}2o photonr/,

R: 14,000 kml

Part C(ii) asked for the distance at
which this light source would have
to be placed if the density of pho-
tons were to be I photon/cm3 on av-
erage. If we imagine a spherical shell

B. Utilize these data to determine
the mass and radius of the star.

Please send your solutions to
Quantum, 1 840 Wilson Boulevard,
Arlington YA2220l-3000 within a

30 lll0lltlllBtR/0tctll,lBtB lsgS



1 cm thick/ we can assume it is
made of 1-cma cubes. The density
stated requires one photon to be in
the cube at arry time. Since the pho-
tons travel at 3 . 1010 cm/s, they will
each traverse the cube in
3.33 . 10-11 s. Therefore, 3 ' 1010 pho-
tons will have to travel through the
cube in 1 s for the density to lre
I photon/cm3.

This is identical to having afl area
density at the shell of 3 . 1010 pho-
tons/cm2/s. Applying the same pro-
cedure as in part C(i), we can solve
for the distance R:

1.26 .l}2o photons/s

4"R-

= B. 1o1o photons/c-2/s,

and

R=lB3m,
which is considerably smaller than
the previous answer. O

,, MEAN VALUE" CONTINUED
FROM PAGE 30

The hnUllt olthe sum
Problem 4. The sum of the

lengths of vectors a17 a2r . . . t a, on the
plane is eclual to 1. Prove that we can
choose a number of these vectors
such that the length of their sum is
not less than 1/rc.

Solve this problem following the
plan we give below.

Define the pseudoproiection of
vector p on axis 1 as the ordinary
projection if the angie between p and
1 is acute, and zero otherwise. Fix a
certain axis lo. If the angle between
p and 1o is Q, then the pseudo-
projection of p on axis 1o that makes
an angle cr with 7o can be written as
lpls(Q - cr), where

if cosx > 0,

if cosx < 0.

Exercise 10 (for readers who know
some calculus). Check that

for any Q. (If you don't know any cal-
culus, you can assume this fact and
still work on the last few problems.)

Now denotebVf,o.l the sum of the
pseudoprojections of vectors tt, a2,

..., aoonTo.
Exercises
11. Prove that the mean value o{

/ on the segment lO, Znl equals 1/n.
12. Prove that the sum of pseudo-

projections of the given vectors on a
certain axis 1* is not less than I ln.

13. Prove the statement of problem 4.
The constant 1/r in problern 4 carr-

not be replaced by any greater number.
This becomes clear i{ you take a suffi-
cienttry largen and the vectors drawn
along the sides of a regular n-gon.

Forvectors in spacg the statement of
problem 4 tums out to be true even i{
the constant l/n is replacedbv tla. Q

ANSWERS, HINTS & SOLUTIONS
ON PAGE 62
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AT THE
BLACKBOARD

$molu lnoultlain

Why the air is always warmer on the leeward side

by lvan Vorobyov

HEN CROSSINGAMOUN-
tain ridge in the direction the
wind is blowing-that is,
from windward to leeward-

travelers immediately notice a

change in the weather. As they climb
the peak, they find themselves in
cloudy conditions, if not rain or snow,
but beyond the ridge the weather is
fine-not a cloud in the sky, and the
wind is gentle, warm, and dry. (Such

a wind is called a foehn.) Why does
such a drastic change in the weather
occur? And is the air "warmed"? To
answer these cluestions, let's see what
happens when a high mountain ridge
stands in the way of a wet wind.l

After colliding with the mountain,
the air stream climbs up the slope.In
so doing, any given portion of the air
mass moves to a region of lower pres-

sure. This results in an increase in the volume occupied
by this air mass. As a first approximation we can disre-
gard the heat exchange between the particular portions of
the air mass and consider the air expansion to be adiabatic.
In this case the work is performed at the expense of the air's
intemal energy/ which causes a drop in the air temperature.

Now let's see what happens with the humidity as the
air ascends the mountain. We know that the saturated
vapor pressure decreases with temperature. The greater
the altitude, the more moisture condenses, resulting in
the appearance of a great number of small droplets sus-
pended in the air-that is, a cloud or fog.

The process of condensation proceeds with the release

of the latent heat of vaporization. This energy is by no
means negligible: at 18"C each kilogram of vapor

lSee also "Cloud Formulations" in the lanuaryfFebntary
1995 issue.-Ed.

condensed into water releases about
2.5 - 106 |. Due to this release of en-
ergy, the temperature of the rising
humid air decreases less quickly than
it would for dry air. If wind-borne
clouds crossed the ridge without los-
ing a single drop, then during the de-

scent along the leeward slope, as the
temperature increases, the drops of
water would evaporate, which would
require the same amount of energy as

was previously released. At the foot of
the leeward side of the mountain, the
airwouldhave the same temperature
and humidity that it had at the foot
of the windward side.

However, if the wind is wet and
the ridge is high enough, a great
amount of water will drop out as fog,
rain, or snow. The air descending on
leeward side willbe somewhat drier,

and its temperature during its descent will increase
more cluickly than it decreased during its ascent as wet
air. (Of course, the ridge must be high enough to produce
a temperature decrease sufficient for condensation.) So,

at the same altitude the air temperature is higher on the
leeward side than on the windward side.

Now let's estimate the temperature difference quan-
titatively. We'lllook at a curved layer of air with sides
parallel to the wind and ends located on opposite sides of
the mountain ridge. In a short interval of time a certain
mass M of this layer will leave a volume V, on the wind-
ward side at the foot of the mountain, where the tempera-
ture is 7, and the pressure is Pr. As for the leeward side,

the same air mass will descend and occupy a new
volume V, at a temperature T, and pressure Pr. (We

assumehere that at anyfixedpoint the airtemperature, pres-

surg and velocity do not vary with time. In particular, this

o
C
C)
C
o
C
oY

f

_o

$8 il0lltllllBtR/[tcEllilBtfl I ss5

"lr'rl er A LovELY DAY tomor-
row," tsaid.

The captain made no reply
and pointed to a tall mountain
which rose up directly before
US.

"What's that?" I asked.
"Gud-Gora."
"Oh yes, what about it?"
"Look at the way it's smok-

ing."
Gud-Gora was indeed smok-

ing. Light wisps of cloud crept
along its sides, and on its sunr-
mit lay a cloud so black that it
seemed a blot on the dark sky.

*Mikhail Lermontov.
A Hero af Our Time
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means that in eclual time intervals the same amount of
air passes through any cross section of the layer.)

The internal energy of one mole of monatomic gas

at temperature 7is (3lzlRT. Air consists predominantly
of diatomic molecules of oxygen and nitrogen. For a
diatomic gas, the internal energy per mole is (5/2)R7.
The change in the internal energy of our layer of air is

ru =!4a(rr-rr),
2 'p'

where p is the molar mass of air and Ml1t" is the number
of moles of air.

Now let's calculate the work performed against the
forces of external pressure. Coming down on the lee-
ward side, the wind performs positive worl< PrVrby
displacing air thatpreviously occupied a volume V, at
a pressure Pr. On the windward side, the air leaves a

volume V, at a pressure P, performing the negative
work -P,Vr. The total work performed is

w = Pzvz- Prvy

Using the ideal gas ecluationPV : lMlltlRT, we express

the amount of work performed in terms of the tempera-
tures 7, and 7r:

w =Aa(rr-rr).
tl

(Since the volumes V, and Vrare at the same altitude,
the potential energy of the air is the same in both the
initial and the final states.)

We'll assume that the mountain is rather high, so

during the ascent on the windward side, almost all the
moisture condenses and falls as rain. If the mass of the
precipitation isAm, the heat Q liberated during conden-
sation is IAm (where I is the heat of vaporization). It is
this heat Q that causes the change in the air's internal
energy AU and performs the work I4l:

Q=LU+W.
Let's estimate the value of Q. The specific heat of vapor-

tzationvaies wealdywith temperaturg so we'll considerit
to be constant. Let the humidity of the air on the windward
side correspond to the partial vapor pressurep at pressureP'
The air of mass M andvolume V, carries a mass of water
vapor equal to Lm. According to the equation of state,

PV::YRTI, PlVr=!P7r,
l-ro t.r

where po is the molar mass of water. From this we obtain

L*= MvoP .

ppr

Thus,
u^P

Q= LM' "
ltPt

In our previous reasoning we considered the entire
mass M of air occupying the volume V, to cross the

ridge-that is, we neglected the change in mass due to
the rainfall. The expression obtained forAm shows that
this simplification is acceptable: po : 1B g/mole,
1t:29 glmole, P <<Pr(for example, if thehumidityis 50%,
the temperature is LS.C, and the pressure Pt : 10s Pa, the
vapor pressure is P = 0.01 ' 105 Pa); therefore, Lm << l.

Now let's write out the expression we obtained ear-

lier, Q = A,tl + I4l, in its final form:

LM+ = *4 oe,r- q ) + A a1r, - rr1,p4 21t P'-

which simplifies to

Lvo! =ln1r, -r,1.
42

This yields the formula for the temperature increase:

Tr-Tr=?4C- 7RP.
Inserting the numerical values P, = 105 P4 P:0.01 ' 105 P4
L = 2.5 . 106!lkg, R = 8.3 |/mole . K), and I.r0 =18 g/mole
into this formula shows that Tr- Tr = 15'Cl That's the
difference in the air temperature on the leeward andwind-
ward sides of a high mountain!

Highlanders and mountain climbers can readily con-
firm this estimate. O
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MATH
INVESTIGATIONS

Losl in a lol'o$l

A problem area initiated by the late Richard E Bellman

HE FOLLOWING PROBLEM
was posed by Richard Bellman,
one of the most outstanding
applied mathematicians of our

erat as problem 6 onpage 133 ofhis
1957 classic Dynamic Program-
ming, a RAND Corporation Re-
search Study, published by Prince-
ton lJniversity Press:

We ara lost in a fotest whose
shape and dimensions arc pre-
cisely known to us. How can
we g,et out in the shortest time!

Bellman, who not only coined the
term "dynamic programming" but
was also the major contributor to that
field, was mainly interested in a
mathematical formulation of this
problem, so as to apply the theory of
dlmamic programming to its general
solution. Unfortunately, as far as I
know, no general methods were de-
veloped for the solution of this prob-
lem, and there are only a few scat-
tered results in the literature
concerning special cases. For ex-
ample, the problem was resolved for
the case of a forest occupying the re-
gion between two parallel lines (by O.
Cross-see problem 7 on the same
page of Bellman's book). The optimal
solution was also found (bV I. R.
Isbell-see pp. 357-59 of the 1957
volume ol the N av al R es aar ch Logis -
tics Quarterly), in the case where the
forest occupies a half-plane and one
knows how far one traveled from its
boundary. This problem, along with

by George Berzsenyi

the case of a circular forest, was fea-
tured in part 2 of volume II of the
USSR Olympiad Problem Book,
which was, unfortunately, never
translated into English. Even volume
I, which was seemingly translated
twice, was unavailable until its recent
publication (ISBN 0-486 -277 09-7 ) by
Dover Publications, Inc.-I highly
recommend it to my readers.

The only other reference I found
to Bellman's problem is an article by
G6bor T6th in Hungary's high
school mathematics journal, Kdzd-
piskolai Matematikai Lapok, which
recently celebrated its 100th anni-
versary. The article appeared in1982
(pp. 53-55, volume 65), when T6th
was still a high school student. In
addition to verifying Isbell's result
and dealing with the circular forest,
T6th also managed to find the short-
est paths for forests shaped like regu-
larpolygons with an even number of
sides, and for rectangles whose
longer side is less than JB times its
shorter side. My initial challenge to

The purpose of this column is to direct
the attention oI Quantum's readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes andf
or free subscriptions.

my readers is to resolve all of the
aforementioned special cases.

It seems the answer is not known
even for equilateral triangles. More-
over, nothing seems to be known
about three-dimensional extensions
of the problem. So there is a 1ot of
ground yet to be covered-especially
by one who is truly lost in a forest!

tEsdhack
I am happy to report wonderful

progress on the problems featured in
my May/fun e 199 5 column in Quan-
tum. One of my readers, Professor Les
Reed of Southwest Mlssouri State
University, managed to prove that
the value of G(3,k), the maximum
value of the greatest common divisor
of n3 +k and (n + 1)3 + k, is 27k2 + L

if k is even, and (27k2 + l)la il k is
odd. This result was also obtained by
Carl Bosley, a high school student,
during his stay at our NSF-supported
Young Scholars Summer Program.

In response to another question,
Stavros Sainidis, who is a civil en-
gineer in Greece, proved that if m
is even and if n = 2m - lk, then
2-k + I is a common divisor of
n* + k and (n + 1)- + k. He also
showed that for odd m,2- - | dl-
vides both (2^ - 3l* + 1 and
(2- -21- + 1. One should be able to
extend his second result to the case
of arbiftary k, andhence prove that
G(m, k) is not equal to 1 for any val-
ues of m and k. Unfortunately, I
haven't yet managed to do so. O
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A uiscotl$ l'iuel' rult$ IhrotlUh it

A study of the engine-saving properties of motor oil

OU CHECK TTIE OIL IN YOUR
car's engine. The dipstick indi-
cates the oi1 1eve1 is low. Off
you go to buy a quart of oil.

Shelves are fu1l of Pennzoil, Quaker
State, Valvoline, Amoco, and other
brands as well as generic brands.
Each brand has selections of 10W40,
5W30, and SAE30, among others.
The various sales promotions extol
the merits of each: this one provides
"outstanding resistance against vis-
cosity breakdown," another one has
"excellent fluidity at low tempera-
ture and maintains protection at
high temperattJre," and another is
"multiviscosity and stands up to hot
engine operating conditions."
Which one are you to buy? Does it
matter what brand or type or grade
of oii? What do the numbers mean?
Do you need to just add more oil or
change the oil? Maybe a check o{ the
owner's manual will help . . . Maybe
you should have gone to a service
station and iet them do it . . . Arrgh!

Perhaps it would first help to
know why oil is needed in car en-
gines. Oil's primary function is 1u-
brication-to circulate through the
engine to various rubbing surfaces
and to form a film between these
surfaces to keep them from touch-
ing. The oil has to be thin enough to
flow into these locations when the
engine is cold but thick enough to
stay between the surfaces when the
engine is hot. However, the oi1 can-
not be too thin or it will leak from

by Henry D. Schreiber

the clearances, resulting in surfaces
that grind; nor too thick, requiring
the engine to exert excessive power
to overcome the drag between the
rubbing surfaces. Other functions of
motor oil include transfer of heat
from the hot engine parts to the oil
pan/ removal of wear particles from
the rubbing surfaces, and cushioning
the shock of combustion.

Oil in the engine needs to be re-
placed periodically because it be-
comes ineffective in its primary
role-that is, lubrication. Its proper-
ties, especially thickness, change
upon prolonged exposure to the op-
erating temperature of the engine.
According to its design, aparticular
engine requires oil of a certain thick-
nessi thus/ changing the oil means
first getting oi1 of the specified
thickness, or " grade."

Ulscosily otliquids
"Slow as molasses in winter" re-

fers to the rate of flow of molasses at
low temperatures. It flows slower
thaflwatet, and much slower when
cold. Flow properties are a function
of the type of liquid as well as its
temperature. To quantify flow, we
use the term yiscosrty. Viscosity is
a fluid's internal friction, which
makes it resist a tendency to flow.
Viscous or thick liquids have a cohe-
sive and sticky consistency.
Whether a liquid has high or low
viscosity at room temperature re-
sults from its molecular structure:

are the molecules able to move past
one another easily, are they inter-
twined, or are they attracted to each
other?

Consider a liquid between two
plates as shown in figure J. The bot-
tom plate is stationary, while the top
plate is moving at a velocity vr. The
layer of liquid next to the moving
plate also moves at velocity vr, and
that next to the stationary plate has
zero velocity. Between these two ex-
tremes there is a velocity gradient
that changes linearly from top to bot-
tom-that is, perpendicular to the
direction of the top plate. This rate of
change of velocity with distance
dv*ldr is measured perpendicular to
the direction of liquid flow. How fast
this gradient drops off depends on the
viscosity of the liquid, which in tum
depends on the molecular attractions
of the liquid layers. In order to move
this top plate relative to the station-
ary bottom plate, a shearing force F
must be applied to the system. The
magnitude of this force can be related

->
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OUA[ITU]t/l/I[I TIII I.AB 43

IN THE LAB

-.€
V,



to the velocity gradient by

dvF=-\4, 11)dv

where 11 is the index of viscosity (or
just the viscosity) and can be viewed
as a proportionality factor analogous
to the coefficient of friction for the
motion of objects. The relationship is
negative because v, decreases with
the distance away from the plate with
the applied force. An q of I poise
(0.1 Pa ' s) is obtained when a shear-
ing force of 1 dlme/cm2 results in a

gradient dv,ldr of I cm/s per centi-
meter perpendicular to the shearing
plane.I Most licluids have viscosities
that are measured in centipoise
(0.01 poise).

Aithough equation (1) defines the
viscosity 1, experimental measure-
ments of the applied force and veloc-
ity gradient are not easy to obtain in
the laboratory. Usualiy one mea-
sures the viscosity indirectly by
monitoring a property of liquid flow
that depends on the viscosity. For
example, classical methods measure
the time it takes for a liquid to flow
through a caplllary tube or out of an
orifice in a container bottom, the
torque needed to turn a crank in a
lic1uid, or the time for a ball to drop
through a column of a liquid.

To understand the effect of tem-
perature on the flow of liquids, con-
sider the fact that vacancies (defects)

exist in the structure of liquids. That
is, open space exists between adjacent
molecules making up the liquid.
Molecules are continually moving
in and out of the vacancies to permit
the liquid to flow, but such move-
ment requires energy for the mol-
ecules to enter or leave the vacan-
cies. This energy is called the
activation energy E. Because more
energy is available at high tempera-
ture, the molecules constituting the
licluid can {low more easily at the
high temperature. Accordingly, the
viscosities of most liquids decrease
with increasing temperature. Math-
ematically, the fluidity of a licluid is

1,{ dyne is the force unit in the
centimeter-gram-second system. One
dyne: 10-5 N.

related to the absolute temperature T
by an exponential Arrhenius function

'I

fluiditY =!= A"-'lo', 
12)

n

whereA is a constant specific to that
liquid andR is the ideal gas constant
(8.31 |/mole . K). If the natural loga-
rithm is taken of both sides of this
ecluation and the terms rearranged,
we obtain

E

lnq=----lnA' (3)
R7

A plot of the natural logarithm of the
viscosity versus the reciprocal tem-
perature is linear with a slope equal
to the activation energy for {low di-
vided by the ideal gas constant.

Ulsrosily oloil
Viscosity is oil's most important

property in lubricating a car's engine.
The ideal oil has low viscosity at low
temperatures so that it flows between
the engine's rubbing surfaces when
cold, even though licluids have a ten-
dency to thicken at low tempera-
tures. On the other hand, the ideal oil
does not have too low a viscosity at
high temperatures-otherwise, the
layers between the rubbing surfaces
are too thin. Al1 oils thin as they get
hot, as shown by equation (2). Expo-
sure to the high temperature of an
operating engine tends to break
down the oil with time. In a sense/

the oil burns or oxidizes in the hot
engine, which leads to a different
molecular structure for the 1ic1uid.

The oi1 thickens or becomes more
viscous under this long-term expo-
sure to high tempetatutet no longer
providing the correct lul:rication.

All motor oils are graded accord-
ing to an SAE (Society of Automo-
tive Engineers) number that pro-
vides a viscosity range. The oils are
classified by their performance at a
low temperature (7 = 0'F) followed
by the letter W, which at one time
indicated a winter grade of oil, and
at a high temperature (7: 210"F).
Figure 2 provides these viscosity
ranges for the different grades of oil.
Note that the ranges for the different
grades of oil are quite wide, allowing
variability of motor oils within each
classification. The grading scale pro-
vides that SAE30 oil falls only into
that one classification at the operat-
ing temperature of 2l0F;20W20 fits
into the 20 weight classification at
both hot and cold temperaturesi
while 10W40 meets different classi-
fications at the two extremes of
temperature. Oils classified as

10W40 and 5W30 are examples of
multigrade oils, for which the effect
of temperature on viscosity is quite
different than straight oils such as

SAE30. This effect is shown sche-
matically in figure 3.

txRet'imental lnsa$tlrelneltl ol uiscosily
Industry measures the viscosity of

oi1 with the Saybolt viscometer,
which determines the time recluired
for the oi1 to flow through an orifice
at the bottom of a standard container.
However, the falling-ball method can
more readily be adapted to simple

units: cp = centipoise, cs: centistokes
cp : cs x density of oil at temperature

Temperature (oF) SAE number Viscosity (q)

0 5W
10w
20w

-1,200 cp
1,200-2,400 cp
2,400-9,500 cp

zto 20
30
40
50

5.7-9.6 cs

9.6-12.9 cs
12.9-15.8 cs
16.8-22.7 cs

44 ilottElilBtR/nlcttrtBER r ssE
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laboratory equipment. The goal of
this experiment is to determine and
compare the temperature dependence
of different brands or different grades
of motor oi1.

Suppose a spherical ball is
dropped through a column of a liq-
uid as shown in figure 4. The force
causing the ball to settle in a liquid
is the ball's effective mass times its
acceleration due to gravity g. The
effective bail mass is the mass of the
ball minus the mass of the liquid
that it displaces. If r and p are the
radius and density o{ the ball, re-
spectively, and po is the density of
the liquid, then

effective mass = ln u 
(o - oo), $l

J

which is simply the spherical vol-
ume times the difference in densi-
ties. Then the downward force of the
ball is

L^
Fdo*n = , nr" (o _ po )g. (5)

3

measlte Lt fot bnll to
f all Ly front 90 to 0 ml

An inherent assumption is that the
radius of the ball is small enough
with respect to the column radius
so there are no turbulence or edge
effects.

The force retarding the motion of
the falling ball equals the frictional
coefficient I of the liquid times the
velocity v of the ball:

Fur= fu (6)

This frictional coefficient is related
to the liquid's viscosity, and in fact
Stokes showed for spheres that

f :6nqr. (7)

But the velocity of the falling ball is
simply dy I dt, or on average Ly f Lt, so
that

Fup = 6rqr9. (8)
Lt

Equating up and down forces when
the bail achieves a constant settling
ratel we obtain

.Lv4,
6n1r 1!- = !rr" (p - po )S, p)Lt3

or

where the subscript s indicates the
standard liquid. A good approxima-
tion for the viscosity of oil is ob-
tained by measuring times for a ball
to fall a specified distance in the oil
with respect to a reference liquid.
The relative viscosity is propor-
tional to the ratio of the times:

nar
n,Af, (13)

In order to determine the viscosities
more accurately, we also have to con-
sider density differences between the
reference liquid and oil.

The experimental apparatus is
quite easy to construct, as shown in
figure 4. FilI a 100-m1 graduated cyl-
inder with the licluid to the i00-ml
mark. With a pair of tweezers place
a plastic bead or a Teflon ball (about
3-4 mm in diameter) at the center
of the surface. Time (to the near-
est 0.1 sec) the bead as it falls from
the 90-ml mark to the bottom. (The
first 10 ml is a sufficient distance to
achieve a constant settling rate.)
The standard must be relatively
viscous in order to give measur-
able times and a good reference for
motor oi1. A cooking oi1 for which
the viscosity car. be found in the
Handbook of Chemistry and Phys-
ics, or a viscous liquid such as glyc-
erol or ethylene glycol, is a good
standard.

Take several measurements us-
ing a sample of motor oil at room
temperature to get a good average
time. The motor oil can be gently
warmed in a container of hot water
and subsecluently cooled in a con-
tainer of ice water. The reference liq-
uid need only be measured at room
temperature.

These data can be used in equa-
tion (13) to provide values of the oil's
viscosity as a function of the tem-
perature. Further, the natural ioga-
rithm of the viscosity can be plotted
against the reciprocal of the tem-
perature (in kelvins) according to
equation (3) to obtain the activation
energy for the oi1 as well as the vis-
cosities at the reference tempera-
tures (0"F and 210"F). An example o{
some typical experimental results is

:..10h\ti;b 
.

2tl=-z
9

rAt-(p - po )s-
Ly

,n.
AI

s

(10)

However, to measure the absolute
viscosity accurately, we need to
know the radius of the ball and the
densities of the ball and liquid rather
exactly. Usually the viscosity is
measured with respect to a standard
(a liquid of about the same density)
in the same apparatus with a ball of
the same dimensions and density. In
such a case/ we could simply say

\ = k\t, (1 1)

where Ar is the time for the ball to
fall a certain distance and k is the
proportionality constant, which is
determined by measuring the time
required for the bali to fall the same
distance in a standard liquid of
known viscosity:

Figure 4
ltz)
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shown in figure 5. In your experiment
you might be able to determine the
differences among several brands of
motor oil of the same grade-
for example, 10W40 from Amoco,
Pennzoil, Quaker State, and other
manufacturers. Or you can ascertain
the differences between the various
grades, such as SAE30, 10W30, and
10W40, of the same brand.

Characlerhlhs ol motnl' oil
Advertisements promote indi-

vidual brands of motor oil and their
resistance to changes from their
claimed viscosities. In order to be
classified as a certain grade, the oil
only has to hit the right ranges of vis-
cosity at one or two temperatures/
and these ranges are quite wide.
About 20% of the volume of the mo-
tor oil may be additives to inhibit
oxidation of the oil so that it retains
its viscosity, to inhibit rust and cor-
rosion of the rubbing surfaces, to
clean deposits within the engine, to
keep particles dispersed in the oil
until filtered, and to neutralize acids
produced during combustion. Such
additives rein{orce the oil's properties
and also provide new beneficial prop-
erties. But the additives may not be
compatible from one brand to an-
other, so when you add oi1 to a car
engine, use the same brand and grade
to minimize the chance of conflicting
or countereffective additives.

As oil circulates in the engine, the
oil deteriorates due to exposure to

3 3.1 3.2 3.3 3.4 3.5

reciprocal temperature (1/K 10-3)

3.73.6

the high temperature of the engine.
The hot oil reacts with oxygen,
breaks down, and forms oxidized
deposits in the engine. Dirt, coolant,
and sludge from various sources also
contaminate the oil over time.
When the oil no longer possesses the
proper viscosity, it needs to be
changed before it loses its effective-
ness. The development of synthetic
motor oils has resulted in more stable
oils that are less subject to oxida-
tion. As a result they don't thicken
under long-term high-temperature
use. Research in this area has also
produced lighter oils, which trans-
lates into less engine friction.

Here are a few more tips. Always
use the motor oil grade specified in
the owner's manual for that engine.
Use the same brand of oi1 if you are
adding to what's aheady present in
the engine. Unfortunately, there is
no viscometer or other instrument
to determine the oil's viscosity
while it is in the engine to see
whether the oil has deteriorated
enough to be changed. We now rely
on the rather general prescription:
change your oil every few thousand
miles. Perhaps one of our readers can
devise a monitoring sensor or gauge
to replace this rather unscientific
rule of thumbl O

Henry D. Schreiber is a professor of
chemistry, sp acializing in teaching gen-
eral as well as physical chemistry, at
the Virginia Military Institute in Lax-
ington, Vtuginia.
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theory is to find a transformation of
the position and momenta (the six
coordinates in phase-space) at some
time , to the initial time f = 0. Then
the latter becomes the solution for
the system. When this theory is ap-
plied in a certain way, you find that
there can be wave fronts of the prin-
cipal functionSlq, P, t)propagating in
phase-space much like a water wave
moves across the surface of water.
These wave fronts are mathematical
descriptions of the mechanical par-
ticle under consideration. By means
of mathematical derivations, with no
reference to cluantum principles, this
analysis leads to an equation
(vw)z = 2mlE - V), where S = W - Et
defines I4l. This equation is identical
to the eikonal equation of geometri-
cal optics. In the final application to
optics, it can be shown that E and v
must be proportional, leading ex-
actly to the Schrodinger wave equa-
tion, except that the constanth isn't
determined.

Filling this gap gave me a great
sense of satisfaction that there was
a cleav connection between classical
physics and quantum physics, and
that the constant ft, determined by
Planck empirically, was just as rea-
sonabie to me as finding G in the
Cavendish experiment to provide
the constant in the law of universal
gravitation, which Newton didn't
express when he developed his law.

Still I wondered about the origins
of h, and I wondered about the fun-
damental aspects of quantum be-
havior. Instead of using hypotheses
in an axiomaticway, could there be
some kind of logical deduction lead-
ing to quantum mechanics?

Enter my former student, Mike
Mackey.

T]ts $udeltl a$ tgacher
Mike came to see me once sev-

eral years ago, and I discussed with
him my curiosity about the under-
lying ideas of cluantum mechanics.
We talked about "hidden variable
theory" and about the peculiar



connection to thermodynamics in
the adiabatic invariant. I expressed
dismay that my mathematical abili-
ties were,never good enough, and
that what I did know was now so
rusty I could not seriously pursue
something like this. Knowing his re-
markable mathematical ability I
urged him at least to consider some
of these matters theoretically. "The
Dynamic Origin of Increasing En-
tropy" was the result of his efforts.

Mike's paper addressed the funda-
mental question of why entropy ap-
proaches a maximum value in a sys-
tem, since ali of the laws of physics
are formulated as reversible dynami-
cal systems. What Mike found sug-
gests that "all currently formulated
physical laws may not be at the
foundation of the thermodynamic
behavior we observe daily." He fur-
ther observed that either "physical
laws are incorrect and that more
appropriate formulations in terms of
irreversible semidynamical systems
await discovery," ot "otherphenom-
ena may mask the operation of these
reversibie systems so they appear to
be irreversible to the observer."

What this paper said to me was
that if the second law of thermody-
namics is a correct and universal
Iaw, then there must be "hidden
variables" requiring new laws of
physics, or there must be other phe-
nomena with which we are unfa-
miliar or whose mechanisms are
unknown. In either case these con-
clusions of f er exciting opportunities
for our best young minds to create
new knowledge as theoreticians, or
to make new discoveries as experi-
mentalists.

I was frustrated and saddened by
my inability to follow Mike's math-
ematics in the paper, lTke Frob enius -
Peruon operatorc (a Markov opera-
tor) or the forward Kolmogorov
equation. But I was cheered by the
realization that the intensely curi-
ous young man I first encountered
when he was 14 years old now did
have that remarkable knowledge
and could cteate such beautiful
work. This is surely one of the most
precious rewards of teaching!

-Bili G. Aldridge
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LOOKING BACK

Eeoru Canlor

"No one shall expel us from the paradise
that Cantor has created for us."-David Hilbert

by Vladimir Tikhomirov

ARCH 3, 1995, WAS THE
150th anniversary of the
birth of Georg Cantor. The
outstanding Russian topolo-

gist Pavel Sergeyevich Alexandrov
said: "I don't think there was a

mathematician in the second half of
the 19th century who had a greater
impact on the development of
mathematical science than the cre-
ator of abstract set theory, Georg
Cantor." This opinion won't be
shared by everyone-af.ter all, the
great Henri Poincar6 lived and
worked at the same time. But one
cannot deny the tremendous, in-
comparable influence of Cantor's
work on all the mathematics that
followed. He enriched our science
with fundamental new concepts,
profound results, substantial theo-
ries, fruitful methods . . .

Cantor's ideas were received ini-
tially with a healthy dose of scepti-
cism, then-by many mathemati-
cians-with admiration. Later they
were criticized, and the repercus-
sions of this criticism are still to be
heard. But here's the opinion of one
of the greatest mathematicians of
all time, David Hilbert: "I think
that [Cantor's theory of sets] is the
highest expression of human genius
and one of the greatest achieve-
ments of human spiritual activity."
And some time later, when the
paradoxes of set theory had plunged

many thinkers into doubts about its
significance, Hilbert uttered the
words cluoted in the subtitle above.

So what was Cantor's contribution
to mathematics? Let me start simply
with an inventory. Essentially, Can-
tor brought forth the idea of buiiding
an entire body of mathematics on the
basis of set theory. He introduced the
fundamental notions of the theory of
sets and topology, laid the founda-
tions for the theory of sets itself, cre-
ated one of the constructions o.f the
real number system/ invented the di-
agonal method, proved that the con-
tinuum is uncountable and spaces of
different dimensionality have the
same cardinality, proved the exist-
ence of transcendental numbers, con-
structed Cantor's perfect set and
Cantor's staircase, proved the nonex-
istence of the "highest" cardinality,
proved the fundamental uniqueness
theorem for a trigonometric series,
and posed the continuum problem.

Cantor's contribution was so ba-
sic and fundamental that its main
concepts can be explained to just
about anyone. (In his speech at the
Paris congress of mathematicians,
where he formulated his famous set
of problems, Hilbert said, "A math-
ematical theory can be considered
perfect only if , . . it can be explained
to just about anyone." All of
Cantor's creations bear this sign of
perfection.)

I'11try to tell you about almost all
of Cantor's most substantial
achievements (and in sufficient de-

tail, too) in a few pages of a rr.aga-
zine intended primarily for high
school students. This article will, I
hope, attest to the fact that the
depth of mathematical results need
not always be measured by the
length of the text and the difficulty
of the proofs!

Now, let's move on and review
Cantor's legacy. We'lIbegin with his
most fundamental achievement.

Sels and the structut,e 0l malhematics
It is Georg Cantor who deserves

the credit for introducing the notion
of the "set" lot "collection") in
mathematics. It belongs to the cat-
egory of primary undefined notions.
It can only be interpreted, explained,
and illustrated by examples.

A set, wrote Cantot, is a collec-
tion of definite, distinguishable ob-
jects of perception or thought con-
ceived as a whole. P. S. Aiexandrov
and A. N. Kolmogorov write in one
of theirbooks: "For example, we can
speak of the set of all persons in a
given room, or the set of geese swim-
ming in a pond." You can easily con-
tinue this list of possible sets.

Kolmogorov said, "At the basis of
all of mathematics lies the pure
theory of sets." This statement re-
flects a view of the structure of
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mathematics that was professed by
many mathematicians of his genera-
tion. Basicaily, this ideology is a
brainchild of Cantor. It was dis-
tinctly formulated by Hilbert and
Weyl, and later consolidated and
developed in the fundamental lvork
of the group of French mathemati-
cians united under the nom de
plume oi Nicolas Bourbakr.

In the essar- '' The -\rchitecture of
Mathernatrcs, " Bourbaki vr,rites:
"The intrinsic er-olutron oi math-
ematical science . . . srrengthened
the unity oi its parrs. . The end
result was the trend usually called
the 'axiomatic rne i1-rod."' lMany
prominent marhtrt"tl arllrans reject
Bourbaki's assertion anci believe that
the axiomatic me thod rs a dead end
in the history of mathematics. But
this interesting subiect lies outside
the purview oi an arricle dedicated
to Ceorg Cantor.) According
to Bourbaki, mathematics
falls into stzuctwes of ever in-
creasing complexity-that is,
sets supplied with algebraic
operations, systems of sub-
sets, and so on.

This notion takes us back
to the main character in our
story, Cantor, who developed
the theory of one of the most
widely known structures-
the real number system.

T[e lheory ol l'eal ttrln[Er$
From the axiomatic stand-

point, the system of real num-
bers is a complete, ordered
field. An ordered field is a set
with two operations-addi-
tion(a + bl andmultiplication
(abl-and an order relation
(o . bl that obey all the basic
properties (axioms) we learn
about in school: a +b:b + a;
a(b + cl : ab + ac; "if a <b and
b < c, then a < c" i "the sum of
any two positive numbers is
positive"; and so on. Most au-
thors use fewer than 20 such
axioms, and they can be cho-
sen in various ways. The
term "complete" means that
this structure satisfies one
other very important axiom

(a topological one)-th e complete-
ness axiom.

In Cantor's time the formulation
of one or another completeness
axiom constituted the theory of the
real number system per se/ because
the aforementioned algebraic prop-
erties of addition, multiplication,
and order were implied. Such axi-
oms were introduced (or introduced
in effect) by all the eminent math-
ematicians who laid the rigorous
foundations of calculus-Cauchy,
Bolzano, Dedekind, Weierstrass, and
Cantor.

THe CeNroR coMpLETENESS AxroM
(axiom of nested intervals). Any se-
quence of nested segments whose
lengths approach zero has a unique
common point.

Now we have the complete list of
axioms for the real numbers. It can
be shown that a set defined by this

Ceorg Cantor v,os born jn 1845 to the t'ttmily of a
Gernttut diplomttt in St. Petersburg. He went to
school in Berlin and studied mathematics in
Zttrich, Gotttngen, and Berlin, where in 1867 he
recejved ltis ntaster's degree. After thut lte settled in
Halle and taught matltetntttjcs at the local univu-
sity ttntil 1913. From 1879 he was the head of the
mothentatics departntent at the university. Hls very
productive cLlreer was cttt short in 1897, when he
fell seriously ill. He died in Httlle in 1918.

system of axioms is, in essence,
unique (up to isomorphism). This
means that any two objects satisfy-
ing all these axioms can be placed in
a one-to-one correspondence that
preserves the two algebraic opera-
tions on them and the order. The
object (unique in the stated sense)
thus described is called the real
number system, or the real line.

Cantor faced the problem of con-
structing the real number system
when he tried to appiy his set theory
to a particular question in algebra
and number theory-the problem of
the existence of nonalgebraic num-
bers (we'1l return to this later).

It should also be noted that Can-
tor gave another definition of real
numbers-as classes of equivalent
fundamental sequences. In fact, he
coined the term "fundamental se-
quence."

But let's proceed to the
next topic.

T[e hasics nl set ileory
The most important no-

tion in the theory of sets is
undoubtedly Cantor's notion
of the cardinality (or cardinal
number) of a set. It general-
izes the notion of the number
of elements in a set. Two sets
are called ecluivalent if there
exists a one-to-one correspon-
dence between them. So the
cardinality of a set is defined
as the common feature of all
sets that are equivalent to one
another. Cantor wrote: "The
cardinality of a set is what is
left in our mind after we ab-
stract ourselves from the
qualitative nature of its ele-
ments and their order." The
smallest infinite cardinality
is that of the natural num-
bers. Cantor designated it as
No ("aleph nu1l"). Any set of
cardinality No is ca1led counr-
able-its elements can be
enumerated. The cardinality
of the set of real numbers
forming the segment 1: [0, 1]
is called the cardinality of the
continuum and is sometimes
denoted by c.
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Cantor proved the following theo-
rems that form the core of set
theory. He showed that the integers
are countable by listing them as 0, 1,

-1,2, -2,3,-3, .... Any set that can
be arranged in a list like this is cer-
tainly countable, since we can say
that the first element corresponds to
the natural number 1, the second to
2, the third to 3, and so on.

THeoRE^ l. The set of pairs of
natural numbers is countable.

Indeed, any natural number is
uniquely factored into the product of
a power of two and an odd integer. So

the formula (m, nl <+ 2- - tlZn - tl
defines a one-to-one correspondence
between the pairs (m, n) (with natu-
ral m, n) and the set of all natural
numbers.

Another method of enumeration
is illustrated in figure 1.

CoRorrenv. A set consisting of the
union of countably many countabie
sats is countable.

As we've noted, a countable set
can be arranged as an infinite "list."
So think of the first countable set as

written down in a horizontal list, and
second written down as a list under
it, the third under the second, and so
on. The diagramwill look something
Iike figure 1, and the enumeration il-
lustrated there works once more.

THsoR.r^ 2. The continuum is
uncountable.

Proof. Let's suppose that the con-
tinuum can be enumerated. Each
point of the segment 1is represent-
able as an infinite decimal fraction
({or uniqueness, finite decimal frac-
tions wil1be written with a periodic

(I,1)>(1,2) {1,3)>(1,4) (1,5) =...
////(2,t)' lz,z)' lz,3l- lz,4l' lz,5l

\t/ / /
{3,1) 13,2) (3,3) (3,4) (3,s)

//
l4,tl 14,21 14,31 14,4) 14,5)t/v
{s,1) ls,2l (s,3) 15,41 (s,s)

Figure 1

A sketch of the diagram drawn on the
memorial plaque dedicated to Cantor
in Halle.

9-tor instance, 0.25 = 0.24(91 :
0.2499...9...1.

If the numbers in the segment 1

are countable, then let's list them
vertically:

x, : 0.xrrxr 2...xrn
xr= O.xrrxr2...x2,

::
wherex, is one of the digits 0 through
9 and none of these infinite decimal
fractions ends in a solid row of zeros
starting from a certain place. Con-
sider the decimal a : 0.yry2...yn...,
where yi: l, if. xu+ 1, and yi= 2, lf.
x,i : 1. (It is this construction that was
termed the C antor diagonal process.l
By our assumption, the number cr

must have a certain number in our
enumeration-say/ o(: Xlr. But then
cr : O.xrrxrr...XNN..., which is impos-
sible because, by construction, the
Nth digit in cx is h. # xrr. This con-
tradiction proves the theorem.

The diagonal process has become
an important and widely used tool
in mathematical proofs. For in-
stance, proofs of two remarkable
theorems-Sousline's theorem
about the existence of a new class of
sets (A-sets) and Godel's incom-
pleteness theorem-are based on the
Cantor diagonal.

Now we'll derive an important
coroilary to this theorem. A real
number is called algebraic if it is a
root of a polynomial with integer
coefficients. One example is the
number Jz -the root of the equa-
tion x2 - 2 = 0. Nonalgebraic num-
bers are called transcendental.

THEons 
^ 

3. Transcendental num-
bers exist,

A polynomial of zero degree
(with integer "coefficient") is an
integer, and this set of polynomials
is certainly countable. A polyno-
mial of degree i looks l:ke ax + b
and is specified by the ordered pair
la, bl of integers. So the set of first-
degree polynomials is countable (by
theorem 2).

A polynomial of degree 2 looks
llke a* + bx + c and so is specified
by the ordered triple (a, b, cl ol in-
tegers. Or, we can say it is specified
by a number a and a first-degree

polynomial bx + c. So the set of sec-
ond-degree polynomials is specified
by ordered pairs, each of whose ele-
ments (an integer and a first-degree
polynomial) come from countable
sets. We can thus arrange them as in
figure 1, and the scheme in that fig-
ure shows that they are countable.

In the same way, we find that the
polynomials with integer coeffi-
cients of degrees 3, 4, 5, ... are all
countable. So the set of polynomi-.
als with integer coefficients is a

union of countably rrrarry countable
sets and is therefore (by the corol-
lary to theorem 1) countabie.

Cantor's own proof of this theorem
was somewhat different. Suppose the
algebraic numbers were countable
and we could arrange them in a list.
Take the first number. Find a seg-
ment that doesn't contain it. Take the
second number. Find a segment in-
side the first segment that doesn't
contain the second algebraic number.
Thenproceedinthe sameway to con-
struct a sequence of nested segments
whose lengths approach zero. By the
Cantor axiom they have a common
point, which must be a transcenden-
tal number.

In the same way (without the di-
agonal process) the uncountability
of the continuum can be proved.

The first "explicit" construction
for a transcendental number was
given by Liouville in 1844. He
showed that the number 16-t * 16-zt

+ 10J! + ... is transcendental. Many
mathematicians erroneously con-
trasted Liouville's "constructive" so-

lution with Cantor's "pure exist-
ence" theorem. However, this is a

false contrast. Cantor's method is
perfectly constructive. It is possible to
make a computer program that will
" calculate" a transcendental number
step by step. Details can be found in
the article "Georg Cantor and Tran-
scendental Numbers" by Robert
Gray (American Mathematical
MonthJy, November 1994, 819-321.

The next theorem created a sensa-

tion at the time. Isn't it obvious that
there are "rrrore" points in a square
than in a segment? For a long time
Cantor also thought that the cardinal-
ity of a square was greater than that

50 ilottrirBtR/[tcIl,tBER lssE



of a segment. But later, to his great
astonishment, he discovered that
this isn't so. He expressed his shock
in a letter to Dedekind. The letter-
written, naturally, in German-has
a French exclamatiort: "le 1e vois,
mais je ne crois pas!" (I see it, but I
don't believe it!).

TneonrM 4. The set I of the points
of the segment [0, 1] is equivalent to
the set 12 of the points of the squaru
{(x, il l0 Sx t 1,0 <y < 1}.

Proof. Split the decimal notation
of a number inlinto blocks consist-
ing, by definition, of a significant
(nonzero) digit with all zeros imme-
diately preceding it. (We adhere to
the same agreement about the rep-
resentation of finite decimals as in
theorem 2.) For instance, the num-
ber 0.0032050007... is partitioned
into the blocks {003}{2}{0s}{0007}....
Blocks will be labeled brandcr. This
establishes a one-to-one correspon-
dence between decimal fractions
and sequences of blocks. Take a pair
(x, yl from.I2. Suppose its first coor-
dinatex = ]-xrxr... is associated with
the sequence of blocks O.b rbr..., and
the second coordinate y I6.yf2...
with the sequence of blocks O.crbr... .

Now consider the mixed sequence of
blocks 0.b rcrbrcr..., which corre-
sponds to a unique number z in L

Conversely , for any z in 1 the inverse
process of "separating blocks" al-
lows us to find the corresponding
point (5 y) in the squareP. Thus, we
have a one-to-one correspondence
between the square and the seg-
ment, which completes the proof.

THEoRpvr 5. The cardinality of the
set of all subsets of any given set is
greatil than the cardinality of the
given set.

First of all, I have to explain what
is meant by the phrase "the cardi-
nality of set Y is greater than the
cardinality oIX." It means thatXis
equivalent to a subset of Y, but no
subset of Xis equivalent to Y. (Can-
tor very much wanted to prove that
if X is equivalent to a subset of Y
and Yis equivalent to a subset of X,
then X and Y are equivalent. He
found a proof; but by that time the
theorem had already been proved by
Fe1ix Bernstein. Now it's called

F. Bernstein's theorem.)
Now let's prove theorem 5. Let X

be the given set and S the set of all its
subsets. SetXis equivalent to the set
of all one-point subsets of X, which is
a subset of S. So it remains to show
that S is not equivalent to X.l

Suppose the two sets are equiva-
lent. Then there is a one-to-one cor-
respondence between elements of X
and the subsets of X. Denoteby A(xl
the subset corresponding to element
x. Now x is an element, and A(x) is
a set, so either x is an element of
Alxl or x is not an element of Alxl.
Let's call x a " good" element if x e
A(x), and let's callx a ttbadt' element
otherwise. Then each element of X
is either good or bad.

Now we consider the subset of X
consisting of ali the ttbad't elements
of X. This subset must correspond
to some element (. Is this element
good or bad? Well, if it's good, then
\e A(l), which says thatE is bad. So
( cannot be good. Can it be bad?
Well, if it's bad, then ( e A(0. But
this says that \ is good! So our as-
sumption that there is a one-to-one
correspondence between elements
o{X and subsets ofX ieads to a con-
tradiction.

Let's look at a few more notions
introduced by Cantor and some of
his constructions.

[Ulogy altd coffill'ttcliolt$
Cantor laid the foundation of gen-

eral topology. He defined its most
important notions for the case of a
straight line, but it wil1be more con-
venient for us to consider them in
the most general setting.

Let X be a set and t a certain sys-
tem of its subsets. The pair (& t) is
called a topological space if the in-
tersection of a finite number and the
union of any number of sets from t
all belong to t. The sets from t are
called open setst and any open set
that contains the point x e X is
called a neighborhood of x. (The con-
cept of topological space crystallized
at the beginning of this century and
took its final shape in the work of
Hausdorff.)

lHere F. Bernstein's theorem is
implicitly used.

Figure 2
The set A = {1/n I n > 1}, whose limit
point is 0. The derivative set consists
of 0 alone; A v {0} is closed.

Here are the definitions of some
basic topological concepts.

A pointx in a topological space is
a limit point {or set A (fig. 2l if. any
neighborhood of x contains a point
of A fistinct from x. A set that con-
tains all its limit points is closed.
The set of all limit points of A is the
derivative set of A. A set that coin-
cides with the set of its limit points
is aperfect set. The set consisting of
the points of A and its limit points
is the closure of A. A set such that
the intersection of its closure with
some open set coincides with that
set is said tobe everywherc dense in
it. And a set that is not everywhere
dense in any open set is said to be
nowheru dense.

Mathematicians master these
concepts at the very beginning of
their mathematical education, and
this can create the illusion that
they've always been there. But no,
they all came from one person-
Georg Cantor.

Now I'11 describe two remarkable
Cantor constructions.2

Take the unit segment l and cut
out the middle interval of length 1/3
(in other words, the interval
lI13,zl}lllTwo segments [0, 1/3] and
1213, L)will remain. Subject each of
them to a similar operation (deleting
of the middle third). This will leave
four segments, and we'll do the
same with each of them. This pro-
cess is continued forever. What is
left in the end? It turns out that the
le{tover is both big and small. The
remaining set is perfect, nowhere
dense, and has the cardinality of the
continuum. On the other hand, it
can be covered with finitely many

2These constructions have alreadv
appeared in Quantum-see "Sma1e's
Horseshoe" in the May/|une 1995
issue and "Bushels of Pairs" in the
November/December 1993 issue for
additional discussion and applications.
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v = cl")
7t8

314

s/8

r12

3/8

rl4

1/8

0 tle zle tl3 213 7le gle

Figure 3
Tlte first. four steps in constructing the Cantor set. C(x) is Cantor's stLtircasc.
The sttm of the lengths of all the deleted segments is equal to the lertgth of the
entire segment: 113 * 219 * 4127 + ... = (113)l(1 - 2/3) : 1.

A number of times he thought he'd
reached his long-sought goal, only to
realize he was mistaken. The solu-
tion of the continuum problem (the
first in the list of problems posed by
David Hilbert as a challenge to
twentieth-century mathematicians )

by Godel and Cohen is one of the
most important achievements of our
century. It turned out that within
the framework of the existing axi-
oms of set theory, this problem can.
be neither proved nor refuted.

Several factors, including the in-
tensity of his work regimen, the fail-
ure of many mathematicians to see

the significance of his results, and his
inability to solve the continuum
problem, brought Cantor to a state of
severe depression. He died in a neu-
rologicai clinic in Halle on |anuary 5,

1918. Let this be a lesson to young sci-
entists-take care of yourself!

Cantor didn't live to see the time
when his ideas would become uni-
versally recognized. This occurred
in the 1920s. The upsurge of math-
ematics after World War I, the de-
velopment of topology and func-
tional analysis, and, in general, the
revision of the essence of math-
ematics itself in the works of Hil-
bert, Weyl, Bourbaki, and many oth-
ers-all these were consequences of
the Cantor revolution. O

0iuinU gilts? 0iue

OUANTUM!
Use the response card in
this issue to order Quan-
tum for your child, grand-
child, niece, nephew,
mother, father, friend . . .

anyone who loves math-
ematics and quantitative
science! Or call I 800
SPRTNGEPt (777-46431.
Give them six colorful,
challenging, entertaining
issues of Quantum-a
year's worth of reading
pleasure!

intervals of arbitrarily small total
length (sets with this property are
said to be of measurc zerol. The re-
markable set thus constructed is
called the Cantor set.

For some time such sets had been
considered freaks that could not
arise in classical calculus. But it
turned out that this isn't the case.

Such sets emerged in the most clas-
sical problems of mechanics and
even in the works of Poincard him-
self! (Nowadays many are convinced
that "freaks" are all that one en-
counters in "reaI life." But that's
another subject, one that I can't
touch upon here.)

On the next two intervals ("of the
second rank"l we set Cl"l: Il4 and
C(xl :314lseefigure 3); on the inter-
vals of the third rank the function
takes the values ll8,3l8,5lB, 7l8i
and so on. This defines our function
on all the deleted intervals. In the
Cantor set itself, the function is ex-
tended so as to preserve continuity.
The function C(x) is called Cantor's
staitcase. It's a monotonic function
and (if you know this concept from
calculus) has a derivative on all de-

leted intervals, whose total length is
one (in {act, the derivative is zero
inside each deleted interval).

Of course, we're far from exhaust-
ing the legacy of this extraordinary
scholar. (One theory we haven't
even touched is the theory of trans-
finite numbers. You can read about
it in any book on set theory.) None-
theless, I think this article has cov-
ered the most significant areas of
Cantor's work.

[oncludinU relnailts
I'd like to advise you, if you

haven't done it yet, to look through
Cantor's volume on set theory. I
want to quote P. S. Alexandrov
again. He wrote that Cantor's works
were among the very first math-
ematical texts he read in his youth.
They made an indelible impression
on him. Alexandrov expressed the
hope that these works would be en-
thusiastically studied "and would
help bring forth young people
[among its readers] who have an in-
terest in and talent for mathemat-
ics." My sentiments exactly.

Georg Cantor's life was tragic in
many respects. At the very beginning
of his research he posed the con-
tinuum problem: he wanted very
badly to prove that there are no inter-
mediate cardinalities between N o and
the cardinality of the continuum.
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HAPPEN INGS

"Calt-do" colnpelilul's in Canhgrra

US Physics Team wins four golds and a silver

HE US PHYSICS TEAM RE.
ceived four gold medals and a
silver medai at the XXM Intema-
tional Physics Olympiad held in

Canberta, Australia, in |uly. This is
the first time in its ten-year history
that all five members of the US Phys-
ics Team have won a meda1. The
Chinese team was the only team to
win more gold medals, winning five
for the second straight year. The Ira-
nian team won two golds and three
silvers, whiie the teams from Ger-
many and Russia each earned two
golds, two silvers, and a bronze. Great
Britain took home two golds and
three bronzes. The remaining gold
medals were eamedby students from
Hungary, Italy, the Netherlands,
South Korea, Turkey, and Vietnam.
Australia, the host country/ won two
silvers and three bronzes for its best
medal count ever/ and the Canadians
gamered two silvers and two honor-
able mentions.

In terms of the total points eamed
by the five members of a team, the US
students placed second among the 51
nations at the Ol),rnpiad. This was an
improvement over their third-place
finish last year in Beijing, China.

The US Physics Team was led by
gold medal winner Rhiju Das, who
attained the second highest score.
Rhiju graduated from the Oklahoma
School of Science and Mathematics
in OklahomaCity, where he studied
with Xifan Liu. Paul Lujan placed in
the top ten in the world and wi1l be a
senior next year at Lowell High

by Larry D. Kirkpatrick

School in San Francisco, where Rich-
ard Shapiro is the physics instructor.
Ben Rahn won a gold medal after
graduating from Thomas |efferson
High Schooi of Science andTechnol-
ogy in A-lexandria, Virginia. He stud-
ied physics with John Dell, as did his
schoolmate )ooh Pahk, who will re-
turn to Thomas |efferson for his se-
nior year and may compete for an-
other gold medai next year. The silver
medalist is Daniel Phillips, who
graduated from Concord Carlisle
High School in Massachusetts. His
physics teacher was William Bames.
The three seniors are now attending
Harvard University.

The success of this year's team can
be attributed to four factors: (1) the
group leaming and friendly cornpetition
at the ffaining camp held at the Univer-
sity of Maryland; (2) the very intense
studying by
the five team
members dur-
ing the five
weeks be-
tween the
training camp
andtheOlym-
piad (they are
asked to solve
all of the prob-
iems from the
previous 25
Olympiads);
(3) the three-
d^y training
camp held at
California

Dwight Neuenschwander, looh Pahk, Paul Luian, Rhiiu Das,
Daniel Phillips, Ben Rahn, Lary Kirkpatick, and Beruard
Khoury enioy a sightseeing tour of Sydney.

State Polytechnic Universiry-Pomona
just before leaving the US; and (4) the in-
tensity of the team members in their
group study during the trip.

m$mafia
It is a l4-hour flight to Sydney

from Los Angeles, one of the longest
nonstop routes in the world. The
team spent three days in Sydney ad-
justing to the time change and thor-
oughly enjoying an introduction to
the "land down under." lJpon arriv-
ing at 6 am, the team cleared cus-
toms, collected luggage, and traveled
to the hotel to leave off the luggage.
A late breakfast and a two-hour walk
around Darling Harbor got us back to
the hotel in time to claim our rooms
and take hot showers. Then it was off
for a harbor cruise to the zoo, so that
we didn't fall asleep and could use the
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sunshine to help reset our biological
clocks. Shortly after dinner, it was off
to bed and a very long night's sleep,
solving most of the jet-lag problem.
The next two days were occupied
with some sightseeingmixed inwith
study sessions.

Then it was off to Canberra for
the Olympiad. The Olympiad orga-
nizers consisted of Prof. Rod |ory
(normally director of the Australian
Physics Team) and approximately
90 of his students and former team
inembers. Even the coaches of the
Australian Team were former team
members. The organization was
very professional and the hospitality
well beyond anything that could
have been expected. The Austra-
lians made all of us feel very wel-
come and special. And it was very
interesting to encounter the new
flora and fauna. It was a strange ex-
perience having your noon-day
shadow point south, seeing many
new constellations in the night sky,
and having winter in |uly.

The problems are the heart of the
Olympiad competition and were
very well prepared by teams of
physicists from the major cities of
Australia. Several of these problems
will provide inspiration for Physics
Contest problems rn Qu antum dur -
ing this next year. (The first appears
in this issue.)

Ihe 1005 tam
The other members of the US

Physics Team (with their physics
teachers and high schools) are: Mat-
thew Ahart, North Ho1lywood, Cali-
fornia (John Feulner, Harvard-
Westlake School), |ames Belk,
Endicott, New York (Mitchell
|ohnson, Union-Endicott High
School), Franz Boas, La lolla, Califor-
nia (Martin Teachworth, La lolla
High School), Michael Emanuel,
New Rochelle, New York (Anthony
Soldano, New Rocheile High School),
Chris Holleman, Durham, North
Carolina (HuSh Haskill, North Caro-
lina School of Science and Mathemat-
ics), Yoon-Ho Lee, Wallingford Con-
necticut (Lawrence Stowe, Choate
Rosemary Hall), Chen Ling, Cleve-
land Heights, Ohio (Robert Quail,

Cleveland Heights
High School), Edward
Miller, New Orleans,
Louisiana (Tony
Asdourian, Isidore
Newman School),
Vivek Mohta,
Northville, Michigan
(Robert Sharrar,
Northville High
School), Chris Norris,
Andover, Massachu-
setts (|. Peter Watt,
Phillips Academy),
Mark Oyama, Hono-
lulu, Hawaii (Carey
Inouye, Iolani
School), Brian Patt, Birmingham,
Michigan ()ames Bedor, Seaholm
High School), Casey Rothschild,
Northfield, Massachusetts (Boris
Korsunsky, Northfield Mt. Herman
High School), Ari Turner, Los
Alamos, New Mexico (|ulia Wangler,
Los Alamos High School), and Daniel
Wesley, Rosemont, Pennsylvania
(Robert Schwartz, Harriton High
School).

The US Physics Team is coached
by Larry Kirkpatrick-academic di-
rector (Montana State University),
Dwight Neuenschwander-senior
coach (Southern Nazarene Univer-
sity, now with the American Insti-
tute of Physics), Ted Vittitoe-senior
coach (retired from Libertyville High
School in Illinois), Hugh Haskill-
coach (North Carolina School of Sci-
ence and Mathematics), and Mary
Mogge-coach (Cali{omia State Poly-

Rhiiu Das, who had the second-highest scorc in the
competition, canies the US flag during the closing
cetemonies.

technic University-Pomona). The US
Physics Team is organized by the
American Association of Physics
Teachers under the direction of Ber-
nard Khoury andwith the invaluable
assistance of Maria Elena Khoury and
her staff. Financial support is orga-
nized by the American Institute of
Physics with help from its member
societies.

The next International Physics
Olympiad will be held in Oslo, Nor-
way, from |une 30 to |uly 5, 1995.
Teachers who have not received ap-
plication materials by mid-December
should contact Maria Eiena Khoury at
AAPT (30t 209-33441. o
Larry D. Kirkpatrick is a professor of
physics at Montana State University
and a field editor for Quantum. He has
completed his eighth and final year as
academic dtuector of the US Physics
Team.

Bullelin Boal'd

The Socisty 0l Physics Sludenls . . .
. . wants your. The Society of

Physics Students (SPS) is the profes-
sional society that engages all col-
iege and university students who are
interested in physics. Membership is
through the local chapter. Chapters
are found in nearly 700 coileges and
universities. Although some high
school students join SPS through a

nearby chapter, and many graduate
students are SPS members, the ma-
jority of the members are under-
graduates.

The purpose of the SPS is to help
transform students from course-
takers into contributing members of
the community of professionals.
Through undergraduate research,
presenting papers at regional meet-
ings, "takingphysics on the road" in
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science outreach programs in loca1
schools (K-12), chapter colloquiums
with guest speakers, tours/ and so-
cial events, the SPS chapter sharp-
ens the student's professional devei-
opment/ communication skills, and
leadership qualities.

The only requirement for mem-
bership is interest in physics. Stu-
dents majoring in physics, engineer-
ing, chemistry, mathematics,
computer science, pre-med, geology,
and other fields will be found within
the SPS. The annual dues are $13.

Each member receives the SPS
Newsletter, the rnagazine Physics
Today, and The lournal of Under-
gr aduate Research in Physics. In ad-
dition, by being an SPS member, the
student has the option of member-
ship at reduced rates in many other
more specialized physics profes-
sional societies and reduced sub-
scription rates to various magazines
and journals.

The physics honor society, Sigma
Pi Sigma, is housed within the SPS.
Students who have demonstrated
high standards of scholarship in
physics are eligible for election into
the local Sigma Pi Sigma chapter.
The SPS and Sigma Pi Sigma govern-
ingboard is the SPS Council, which
consists of 18 elected student mem-
bers and 1B elected faculty mem-
bers. Sigma Pi Sigma, founded in
1921, is a member of the Associa-
tion of College Honor Societies.

For more information about the
Society o{ Physics Students, contact
the SPS National Office, One Physics
Ellipse, College Park MD 2074O.The
phone number is 301 209-3007, and
the e-mail address is sps@aip.org.

-Dwight E. Neuenschwander,
SPS Director

lnlel'na[ional 0lympiad in lnful,maflis$
Four high school students repre-

senting the United States won med-
als in the 1995 International Olym-
piad in Informatics, heid in
Eindhoven, the Netherlands, from
lune26 to |uly3. The US team com-
peted against 2i0 students from 51
countries.

Russell Cox, 16 (Delbarton High
School, New Providence, New |er-

sey), ranked 1lth in the contest and
won a gold medal. Hubert Chen, 1B
(Upper Dublin High School, Fort
Washington, Pennsylvania), ranked
23rd and received a silver meda1.
Daniel Adkins, 15 (McKinley High
School, Baton Rouge, Louisiana),
ranked 58th, and Valentin
Spitkovsky, 17 (Latayette High
School, Williamsburg, Virginia),
ranked 100th, which earned them
bronze medals. Erika Hoff eld, L7
(Montgomery Blair High School, Sil-
ver Spring, Maryland), also com-
peted for the US team.

In the medal rankings, the USA
team ranked 6th behind Czechoslo-
vakia, China, Russia, Hungary, and
Romania.

Don Piele, professor of mathemat-
ics at the University of
Wisconsin-Parkside and leader of the
United States team, reported that the
Eastern European countries are ex-
tremely strong in algorithmic com-
puter problem solving because of the
many competitions held in this re-
gion. "They are consistently in the
top ranked teams at IOI," Piele noted.
"To be ranked in the top six with
these teams is a great achievement for
our team. We continue to improve
eachyear as we develop our training
program at UW-Parkside. "

During the IOI comperirion, stu-
dents compete on two separate days
where they are given five hours to
use logic, mathematics, and com-
puter programming skills to create
original computer programs that
solve three difficult problems.

Since 1992, when the US first
entered the IOI, participating US
teams have won four gold medals,
four silver medals, and six bronze
medals and have always ranked in
the top 10 countries.

Rob Kolstad (deputy team leader),
president of Berkeley Software De-
sign, Inc., Colorado Springs, Colo-
rado, accompanied the team to the
international event.

Financial backing for the United
States of America Computing
Olympiad (USACO) is provided by
USENIX, a UNIX user group head-
quartered in Berkeley, California,
and an anonymous donor.

The USACO home page (http://
usaco.uwp.edu) on the World Wide
Web contains information and pic-
tures of aII USACO competitions
including this year's IOI. For more
information on the competition,
contact Don Piele at (414lr 595-2231.

Cylel'tasen ttuiltmr$
The following visitors to

Quantum's home page on the World
Wide Web were the first ten persons
to electronically submit a corect an-
swer to the CyberTeaser they found
there (brainteaser B157 in this issue):

Leonid Borovsky (Brooldyn, New York)
Chris Rybak (Racine, Wisconsin)
Daniel E. Sealey (Freeland, Michigan)
Steve VanDeBogart (Reno, Nevada)
Scott Bilker (Barnegat, New fersey)
Brian Platt (Woods Cross, Utah)
Douglas E. Norton (Havertown,

Pennsylvania)
Galina Yakovenko (University Park,

Maryland)
fohn-David Rusk (Dahlonega, Georgia)
Richard Krueger (Sherwood Park,

Alberta)

Galina was our youngest winner
(she's eight years old), and no one
knows who the oldest was. Each
winner will receive a Quantumbut-
ton and a copy of this issue of the
magazine. Congratulations !

We received corect answers from
many others, and we thank them for
taking part in our contest. The new
CyberTeaser is posted soon after
each issue oI Quantum goes to
press. Maybe it's there already-give
it a try! Go to http://www.nsta.org/
quantum and follow the links.

ltllhflfl$ fiappening?
Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ,.. free samples ... contests ...

whatever it is, if you think it's of interest to
Quantum readers, Iet us know aboui it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

fax: 703522-6091
e-mail: quantum@nsta.org

snail mail: Quantum
.1840 Wilson Blvd.
Arlington VA 22201 -3000
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by David R. Martin

Amoss

1 Pigment
5 Astronomer George

_ (1858-1938)

9 God of war
13 Swedish botanist

_ Aizelius ( 1750-
1837)

14 Threadlike structure
15 _ number {ratio of

speeds)

16 Study of certain
solids

19 Sense organ

20 Type of current
21 10-18: pref.
22 Sailing
23 Bustle
25 

-law 
of refraction

28 Fabry-Perot 

-31 Leg bone
32 Living room item
34 Wager

36 

- 
process (of

making German
butter)

37 Yapoizes
38 Berry with a hard

rind
39 Retina cell
40 Liquid foods

41 Monochromatic
radiation source

42 P oly tetr alhtoroethene

44 Units o{ volume
45 For fear that
46 Microbiologist 

-Dubos {1901-1982)
47 lr'diar'
49 44,714 (in base 16)

50 Intrinsic FORTRAN
function

I 2 3 4 5 6 7 10 11 l2

13 14 15

l6 t7 18

19 20 2t

25 ).6 27 28 29 30

3i 32 34 35

36 37 38

39 40 4t

12 43

7 48 49 50 51 52

53 54 55 56

\7 58 )9

50 1 2

xcr0$$$GrEIlcE
vi,
.92
-C5

53 Afterglow 12 Bashful
57 Hyperbolic function 14 Wanes

58 Engines' air 17 Unit of magnetic
controller flux

59 Ten: pre{. 18 Ship detector
60 Engaged 22lnter 

- 
lamongst

61 Medulla oblongata to other things: L.)

midbrain connector 23 Fresh water ducks

62 Surgeon 

- 
24 Elevator nar,

Wangensteen ( 1898- 25 Large plasma ball
1981) 26Bgyptran

ooum 1;?:i'*' 
(in base 15)

1 Frilly threads 30 8.586 decibels

2 

- 
martini (2 wds.) 32 Enumerate

3 Comedian 33 Waist
Danny 

- 
35 Rocky hills

4 Printer's measures 37 Sounds from an

5 Poet Doolittle audience
(1886-1961) 38 Top of the head

5 Competently 40 Unconscious state
7 German explorer 41 Linear accelerator

- 
Frobenius 43 Corporeal

(1873-1938) 44 Rental contract
8 Unit of energy 46 Stinks
9 Ammonium nitrate 47 Chinese dynasty

and trinitrotoluene 48 Biologist
10 Engrossed _ Harrison
11 Reverberation 11870-1959)

49 French sociologist
Raymond 

-{ 1905-1983)

50 Afresh
5t 48,334 (in base 16)

52 Connery or Penn

53 Plastic ingredient:
abbr.

SOLUTION TO THE
SEPTEM B ER/OCTOB ER PU ZZLE

54 Type of sphere
packing: abbr.

55 Exclamation of
triumph

56 Former name o{

Tokyo

SOLUTION IN THE
NEXT ISSUE

E B I M R R R M N

E E N I L I E B E

D I R T C F B D N o N E T

L G E B R I D E T R

C E o C R I C O

D R E T C o N I C S I
o R C S E D I S o N

E x E L L I P S E E L I

B I N R Y N T L E I S

R C H E L B o N D I

Z I N C c) U S P E R

E T L B L E N C E

T M E D B o S N o o N

L U R E L G S T S P N

S o R E R E R N E Z E E S
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ANSWERS,
HINTS &

SOLUTIONS

tUlAIh

M156
On the torus the centers of eight

squares attacked by a king always
form a square measuring 2xZwith
sides parallel to those of the chess-
board (see figure 1). Two kings-are
not attacking each other if and only
if their surrounding 2 x 2 squares do
not overlap by more than a line seg-
ment. So our problem reduces to the
following question: what is the
greatest numbu N of 2 x 2 squares
described above that can be placed
on the n x n torcidal chessboard so
as not to overlap with one another!

Figure 1

For convenience, let's shift all the
2 x 2 squares up and to the right by
a half diagonal of a unit chessboard
square lfig. 2) so each of them will

Figure 3

cover exactly four chessboard
squares. Now it's obvious that in the
case of an evenn :2s the chessboard
can simply be covered by s2 non-
overlapping 2x2 squares, so in this
caseN=s2=n2f4.

If n is odd, any arrangement of
2 x 2 sq,tarcs will leave at least one
unit square in each horizontal file
uncovered, so the number of the
covered squares is no greater than
n(n- ll, andN< No = [(", -nllalfthe
square brackets denote the integer
part of a number). We'11prove that
N = No, that is, we can always piace

A{o non-overlapping 2 x 2 squares on
our chessboard.

Again consider two cases.
Suppose n : 4k + 1. Then it fol-

lows that A{o = kn. Let's leave uncov-
ered then squares obtained from one
another by the chess knight's move
in a fixed direction (fig. 3-don't for-
get that we're on a torus!). It's not
difficult to see that the remaining
area car, be split into 2 x 2 squares.
The required arrangement of kings
can be obtained by placing them,
sayt at the left bottom corners of
these squares.

Finally, if n= 4k + 3, we can show
that \ = (k * 1)(n - 1). This many
2x2 squares can be arranged as fo1-
lows: separate a one-square-thick
frame around the chessboard, fill its
interior square of size 4k + | as
above, and then fill the frame leav-
ing four of its scluares uncovered as
shown in figure 4.

Ml57
It will suffice to prove a somewhat

stronger aqsertign: each term of the
sequence 1",81 is greater than the
previous te:rm U'v no less than I:

F;>fi, +1. (t)

Using the notation

At*"'+An=Al

11
-I... 

L-- v
-w,al an

Ar*1=X)0,

we have to prove that for any x > O,

> ^l ac +t.
,' 

-' 

1\
.i(a+x)l c+- 

I! \ x)

I

I
l

I

Figure 2 Figure 4
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Using the fact that the geometric
mean of two numbers never exceeds
their arithmetic mean/ we get
afx + cx > 2Jac, which leads to

Now inequalitv (1) foilows by taking
the square root of both sides.

M158
(a) This statement is true for any

tangent I to circle S, (not necessarily
touching the second circle-see fig-
ure 5). One of the simplest ways to

Figure 5

prove it is to use the fact that two tan-
gent circles are homothetic to each
other relative to their point of con-
tact. Here, the dilation relative to F
that takes circle S, to circle 52 takes
the tangentl to S, to the parallel tan-
gerrt I to Sr; so it takes the point of
contact A on the first circle into the
point of contact C on the second
circle. But this means thatA and C lie
on the same line through F.

(b) Notice first that ZABC :
ZBFC: 90' (see figure 6), because
B and C are diametrically opposite
on the circle Sr. So the circum-
center O of. LABC is the midpoint

ld

Figure 6

58

Figure 7

of AC (ZABC = 90") and, as we'll
show below, the circumcenter of
LBDE is pointA.It follows thatBF
is the perpendicular dropped from a

common point B of the two
circumcircles on the line AC
through their centers. But this just
means that F lies on the common
chord (fis.71.

So it remains to prove that A is
the circumcenter of LBDE, or that
AE : AD = AB. The first of these
equalities is easy: ED is a chord of S,
parallel to the tangent at A, so
AD = IE.As for the second, notice
that the right triangles ABF and
ACB are similar (they have a com-
mon acute angle at A). So AFIAB =
ABIAC, or

AB2: AF.AC

(actually, this is a particular case of
the well-known theorem on a tan-
gent and secant drawn to a circle
from the same point). We now show
that LAFD and LADC are also
similar. Indeed, they have a com-
mon angle at A, and IAFD ecluals
IAED (they both intercept D ),
which in turn equals IADE (as

noted above). From this similarity
we get AFIAD = ADIAC, or

ADz: AF.AC = AB2,

completing the solution. (V. Dubrov-
skv)

M159
Let's number the vertices of the

n-gon 1,2, ..., n irt, say, the clock-
wise direction. Denote by a, the
number of moves made from theith
vertex. Then the number of chips
that leave this vertex is 2a, and the

number of chips that arrive there is
ai_t + a, * ,. So we have

^ _an+a)
"r- 2 ,

a,+a.tou) --t-2
:

an_7 + al
u"= 

2

Assume for definiteness that a, is
the largest of the numbers ar. Then
the equality a, = (an + arllL is pos-
sible only il an= az: ar. Now the
eqttality ar: (ar * aslf2 gives a3= a1t

and so on. Thus, at: az: ... = an, so
the total number of moves is nar.

M160
Fix certain positions P and Q of

the first and second figures on the
grid and the center O of any grid
square. LetP1, ...,PnandQ1, ..., Q*
be the centers of the squares consti-
tuting figures P and Q, respectively.
Consider the sum of mn numbers
written at the endpoints of the vec-

tors o{ . oE drawn from o
(i = 1, ..., n; i : 1,..., m)-some num-
bers in the sum may be repeated.
This sum is positive, because it can
be obtained by adding the sums in
tt.e m copies of figure P (perhaps
overlapping-see figure B) obtained
by the shifts through the vectors
odr, ..., od^ But it can also be

obtained by adding the sums in the
n shifts of Q by Oir, ..., OF,.
Therefore, at least one of the sums
in the copies of Q is positive. (N.
Vasilyev)

, .( 1\
(a+x)l "*a l) ac+l+Z^Fac

\ x/

=("6" *t)' '

/ a

P / I
r//

JJ/
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Plrysics

P156
I{ the thread is pulled as shown in

figure 9, the bobbin rolls to the right
and rotates clockwise about its axis.

Figure 9

For point B the sum of the projec-
tions of the velocity vo of the trans-
lational motion and the linear veloc-
ity due to the rotation with angular
velocity ro along the direction of the
thread is

vo sin a"- ar : vt

where vo is the magnitude of the ve-
locity we seek. As there is no slip-
ping of the bobbin, the sum of the
corresponding velocities for point C
is zero:

vo-olR:0.
The above equations yield

R
vo-v-.

Rsincr - z

Clearly, when Rsincrc = r (which
corresponds to the c.ase when points
A, B, andC are on the same line), the
formula obtained for vo is no longer
valid. It should also be noted that this
formula describes the bobbin's mo-
tion both to the right (if point B is 1o-

cated to the left of AC andR sino > r),
and to the left {when point B lies to
theright of.AC andRsino< r).

Pl57
Neglecting the mass of the soap

film means that a soap bubble will
start to rise when the density of the
nitrogen inside it equals that of the
surrounding air:

The equations of state for nitrogen
and air yield

^ Po!"
p, _-

RT
and

(zo +so d)uN

momentum of a molecule colliding
with the bottom surface changes by

Pu=
RT

Here Po is the atmospheric pressure/

Iry and lr^ are the molar masses of
nitrogen and air, R is the gas con-
stant, 7 is room temperature, and d
is the diameter of the bubble. Equat-
ing the densities yields

, 8[r*o

ro(u, - ILN)

For Po : lOs Pa, pN: 28 g/moi and
p^:29 g/mol, the diameter we seek
is

d=9.10-5 m.

P158
The air molecules striking the

plate have a root-mean-square speed

va-a

where 7 is the air temperature and
m is the mass of an air molecule.
The average value of the projection
of the molecular velocities onto the
OY-axis set perpendicular to the
plate is

- - vr-. 7l'*r" 
^lz 1-

A-fter the molecules collide with the
plate, their "temperature" becomes
equal to that of the plate. So, at the
bottom surface of the plate the ve-
locity projection after collision is

/T4
Vyb = 

^i- 
r\m

while that at the top surface is

Lpyr. = fr ET)
tr;)

and that on the top surface by

/ 11- 1, 
- 

\I tKt lKl- I

Lp* = ml "i- + .i----r l.' \\m \m)
In a time interval At each surface.

is struck by molecEles located at a
distance less than vyAt. The num-
ber of such molecules is
N = nTysAt, where n is the number
of molecules in a unit volume and s
is the area of the plate.

In accordance with Newton's sec-
ond and third laws, the plate is af-
fected vertically by forces having
magnitudes equal to the changes in
the momentum projections of the
molecules per unit time. So, the bot-
tom surface experiences an upward
force (see figure 10)

_ NApvb
lrr=-

AT

(i
= mnvvsl .l\!

(W
l.l_+
[!-

,trT).\';l,q
m

BET
\ m'

Lt ( FI kr)
= tTlI1V l.S ---! .u

[\ - \ * )

Tlrr-
-I 

L
v \fi - -l-.\m

As a result, the projection pu of the Figure 10

and the top surface experiences a
downward force

E_at -
NAPyt

Since To , 7,, the resulting force R
is directed upward and its magni-
tude is

PN: P,
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R=4-4
(@: mr. )

=fi1flV''Sl / u - I ' I

'[\- \*)
= nskJf(.,E; _ rq)

The number of air molecules in.a
volume Vat pressureP and tempera-
ture 7 is Nr: vNo, where v is the
number of moles of air in a volume
V and No is Avogadro's number. On
the other hand, v = Mlp = PV f RT, so
the number of molecules in a unit
volume is

P
n = _Ne.

R7

Thus,

PL/^ s-k -,R= ""A""niT(,8 -iT)RT \\

=ot (,7.-"7.).
t7t'" 

\ tl

Inserting the numerical data into this
formula (and assuming P : 10s N/rn2)
yields

R=1.5.104N.

Pl 59
As the current decreases, the

frame is infused with a varying
magnetic fiux O(t) that is propor-
tional to the electric current 1(t) in
the wire:

@(tl - r(tl.

The resulting emf produces a cur-
rent in the frame:

.,.\ t ao(t)
,{f I - ---,\L/ 

- |

RAT

where R is the resistance of the
frame.SinceR -lld',

., \ aI(r)
t1t1---=!42'

At

The left side of the frame is affected
by the magnetic field of the straight
wire with an Amperian force (see
figure 11)

Figure 11

4 - I(r)j(t) - t1t1!\4 6z'Lt
a(1'z(t))

:I )L
--U.

Lt

Clearly, a similar force Fracts on
the right side of the frame. The re-
sulting force is

r(r'z(t)) ,
F= 4 - rz-;--La'

and is directed to the left.
In an infinitely small time inter-

va1 At the frame is acted on by an
impulse

Lp = FLt - t(P(tl)d2. ,i
The total impulse imparted to flie
frame during the change of electric
current in the wire from the initial
value l down to zero is

p - 12d2.

In the first case this impulse is
equal topo and is directed to the left.
In the second case the frame receives
the impulse

P160
Each part of the compound lens

forms its own image of the source S.

These images (S, and S, in figure 12)

are located at a distance H from the
system's axis. The rays passing
through both parts of the lens and
forming the images overlap, and in
the overlapping region one can see
the interference. We must find the
boundaries of the overlapping re-
gion-that is, the distance x in fig-
ure 12.

First let's find the positions of the
images S, and Sr-that is, the dis-
tance f from the lens and the dis-
tance H from the axis. Using the
lens formula and taking into ac-
count that the focal length of both
parts of the compound lens is F, we
get

F1f=_=3F.
1-F

The optical axes of the new lenses
are at a distance hl2 from the
system's axis and are parallel to this
axis. This means that the source S is
at a distance hf2 from the optical
axis of any lens, and its image is
formed at distance H -h12. The for-
mula for the linear magnification of
the lens is

H-hl2 _f
hlz 1'

from which we get

h(1+ f\ h(]+ 3F\H- ' " =1.5h.
21 21

Now it's easy to find x. The similarity

r ',2I t.d. \

Pr =l -* lPs=35Pu'
\todo )

A
1t1t)

80 lll0IIrll,lBtR/Dtttll/lBtB 1 SS5

Figure 12



of triangles AOB and BSrK result in
AO OB

and
S,K

(d-h) t2
H

BK

Figure 13

quadrilateral AECA is equal to
YIAC .EF . sin cr and the area of
EBDC isVzBC. ED . sin B. Now we
notice that AC = BC, EF = ED and
sin cr = sin F, because cr + B :
360" - (IACB + ZFEDI = 180'.

8160
The second player can win by ,p-

plying the following "symmetric
strategy": the grid is divided in half
(say, horizontally) and each move of
the first pl.ayer is exactly repeated in
the other half. In other words, the
second player should always color
the square with the same number
(in the numbering shown in
figure 14) as that of the last square
colored by the first player. This
strategy ensures a win for the sec-
ond player, because if this player
completes a colored 2 x 2 square
with numbers a, b, c, d, then the
other four unit squares with these
numbers would have to be already
colored. So seven of these eight unit
squares would have been colored
after the previous move by the first
player, and they necessarily contain
a2x2square.

Another winning strategy is
based on the following approach.
Imagine that the entire grid is di-
vided into fsu 2x 2 squares. If each
of these squares has a colored unit
square not on a diagonal of the grid
(which the second player can easily
ensure in the first few moves), and
the total number of colored squares
is less then 12, then one more unit

square can be colored in accordance
with the rules of the game. (Check
this!) So the game will continue
until the second player colors the
tweifth square. Then the first
player wili be unable to make the
next move/ because it will neces-
sarily complete one of the four
corner 2 x 2 squares. (S. Tokarev,
V. Dubrovsky)

lffnus olt a lol'us
(Answers supplied by the editors)
1. cr(G,) = 1, GIS : {ll,l2}, or {3};

u(G2l:3, GIS : {1,3, 4}; u(Grl = 2,
GIS = {i, l}, wherei e {1, 2]1, i : {5, 6}i
alG+l:4, GIS = |13, 6,7, B) (or four
other similar sets).

2.lnlft + rll.
4. These statements follow from

the solution to math challenge
Ml56 in this issue.

5. By problem 4b each file of the
board must contain exactly one
king. Any GIS can be cyclically
shifted so as to bring one of the kings
to the central square (2, 2l of the
board (see figure 5 in the article).
This will leave only 12 possible
squares for the remainingfour kings:
the three squares (0, 0), (0, 1), and
(1, 0), and three similar triples at the
other corners of the board. Obvi-
ously there must be exactly one king
in each of these triples of squares,
and it's easy to see that the square
(0, 0) must be free (because the king
in (0, 0) attacks or is in the same file
with all the squares in the top left
and bottom right triples). We can
assume that there is a king in (0, I );
otherwise apply reflection in the
(0, 0l-14,4) diagonal. Then the last
three kings are positioned uniquely:
ll,4), (3,0), and (4,31.It remains to
shift this arrangement one square
down.

6. Any different sets (v,, ..., vtl
with all coordinates from a fixed GIS
for the given graph G arc nonadja-
cent in Gk. Since eachvrtakes o(G)
values, the total number of such sets
is (o(G))k.

-1-/. n^.
B.3L-1.
9. The graphPf can be viewed as

01

f-*'
from which we get

.. f (d - ttt 3Ftd - h)

d-h-)H d-2lt
= 112 cm.

Bl'ainlea$Er$

8156
From the second equation,

T : zWO . Substituting into the first
weget2WO-W-O=2,or

wlo - r) + olw - tl :2.
Now, neither O nor W canbe zero
(since the problem statement asks
us to divide by them) or negative
(they're digits), so the two addends
on the left of the displayed equation
are nonnegative. If either is equal to
1, then O = I orW = l.If O = 1, then
W :3 andT:6.If W : l, then O :3
and T = 6. It's not hard to see that the
two addends on the left of the dis-
played equation cannot both be 1

(and if either were greater their sum
couldn't be 1). Thus, the only two
solutions are(6,3, 1) and (6,1,}lt.

8157
If we add 7 and then 3 dollars to

315 of. |ohnny's funds, we get his
entire holdings. So 215 of his total
equals 10 dollars. It follows that
fohnny has 25 dollars and Annie has
22 dollars.

8158
At great depths the tube with

both ends sealed wil1be flattened by
the tremendous pressure of the wa-
ter. The open tube, however, will
not be deformed.

8159
In figure 13, the area of the Figure 14
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a k-dimensional grid cube consist-
ing of nk unit k-dimensional
cubes: the vertices of these cubes
are the nodes of the graph and two
nodes are adiacent if and only if
they are vertices of the same unit
cube. In the case k = 2 this inter-
pretation was discussed in the ar-
ticle; the case k = 3 is also easy to
imagine. High-dimensional cases
are more difficult to visualize, but
you can take a more form al ap-
proach: the 2k vertices of any one
unit cube can be written as
(v, + h' vr+ h2, ..., vkt h1), where
(v1, v2, ..., vpl is fixed andh,= 0 or I
for all I < i < k). Each node of Pf is
a common vertex of 2k unit cubes
surrounding it; two nodes are non-
adjacent if and only if the sets of
unit cubes surrounding them are
disjoint. So an independent set can-
not have more than nkfTk nodes.

10. For n = 2s, a(P*l = sk. In this
case the k-dimensional "cube
neighborhoods" of nodes considered
in the previous solution (the sets of
2k unit cubes surrounding a node)
can be chosen so as to fill the big
n x n x ... x n cube without gaps.
Their centers form the largest inde-
pendent set consisting of sft nodes.

[yStol'e
1. One twisted ring.
2. Two linked, twisted rings.
3. (a) Three interlaced rings; (b) a

three-ring chain.
4. Two linked rings-one large,

the other smaIl, neither twisted.
6. A three-ring chain, with no

rings twisted.
7. A five-ring chain. But if you

vary the instructions, intentionally
or otherwise, you'Il get some other
configurations of rings. Some of
these are interesting and useful in
further experiments.

[llleantlalug
(Answers supplied by the editors)
1. These properties are not dif-

ficult to prove by means of the
definition of M and some algebraic

manipulation.
2. For afly n, we can show that

('") *('"\ * ... *('n) = r,,[0, Ir/ \2")
(for example, by writing out the ex-
pansions of (x + yl2" and setting
x= y = 1). So the number 2zn-tf nis
themeanvalue of all thebinomial co-

efficients ('f) a"r.rrring the ratio

(zn\
IrJ _ r*r

( z"\ Ln-k
[t + t.J

with I, we find ,hr, (';) is the great-

est of these coefficients, because this
ratio is greater than 1 for 0 < k < n
and greater than I for n < k <2n.It
remains to use property 3.

3 . Let AMbe a median in a triangle
ABC. Using the construction in fig-
ure 15, we get zAM = AD < AB + BD
=AB+AC.

a. Mkl : M(fl + Mls - fl > M(fl,
because g-f >0.

Figure 16

5. If any of the numbers a, b, c,
d are 0, the proof is easy (in tact,
the inecluality of the statement be-
comes an equality). So we can as-
sume that none of them is 0. Then
at least two of the numbers a, b,
c-sayt a ar,d b-are of the same
sign. Without loss of generality,
we can assume this sign is positive
(otherwise/ we can reverse the
signs of all the numbers). Substi-
tuting d = -la + b + cl,we rewrite.
the inequality in question as
lcl + la + b + cl 2lb + cl + la + cl, or

la + (b + c)l- lb + cl2la + cl -lel.
Consider thefunctionflx) = Ia +xl - lxl.

Plotting its graph (see figure l7l, we
see that l(x) is nondecreasing. Since
b + c > c, f(b + cl > flcl.But this is
exactly our reworked inequality.

5. If we construct f and g as in
the paragraph just preceding the
statement of this problem, we find
that the graph of g is a shifted graph
of the 2n-periodic function . So we
can again use the argument given in

Figure 17
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the article for the case of the sinu-
soid.

7. Take an arbitrary unit vectoru
{rom the unit sphere, and let
k = M(lul| Then for any p we have
p = lpl . M(M(lvlll, wherev is the unit
vector with the same direction as p.
But M(lvl) = M(lull = k.

B. The projection of the given poly,
gon on the linelo is a segment 1. Any
perpendicular to l drawn through a
point insidelmeets theboundary o{
the polygon exactly twice (because
the polygon is convex). So the seg-
ment /will be covered by the projec-
tions of the polygon's sides in ex-
actly two layers at eyery point,
which means that its length is the
half-sum of the lengths of all sides'
projections.

9. If segment 1is a projection of
the polygon (see the preceding solu-
tion), then the endpoints of l are the
projections of certain vertices. So 1

is the projection o{ a side or diagonal
and has a length of no greater than
d. In other words, W(al < d for alI a,
MlWl < d, ar.d so the perimeter,
equal to nM(I4l), does not exceed nd.

10. The value of 'Jr(r-*)r,
0

does not depend on Q (see solution
61, al;.d for Q : nf 2 it takes the form
IC-

J 
sina dcr = 2. The value of this inte-

0

gral is 2.
11. For any vector a, look at the

function a -+ u(al, where cr(a) is the
pseudoprojection of a on u (as in the
text). The mean value of this func-
tion is

Now, the function / is the sum of
the functions o(ar) for our given vec-
tors. The conclusion follows from
property l' and the fact that the
lengths of our given vectors add up
to 1.

12. The sum in question is a con-
tinuous function of cx, 0 < cr < 2n. So
it attains its maximum value S (this
is proved in a calculus course, but is

not hard to guess without a formal
proof ). But S is no less than the mean
value of this function, which is
equal to Ilnby exercise 11.

13. Choose the axis lo from exer-
cise 12 and all the vectors arthat
make acute angles with 1,. their
sum is not less than its projection on
1o, which is equal to the sum of their
projections onlo or to the sum of the
pseudoprojections of all vectors a,
onu. Bythe choice oflo,itis greater
than 1/n.
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TOY STORE

Hand$-on topolouy

The Mobius strip and linked rings

by Boris Kordemsky

one end of a rectangular paper strip
and glue it to the other end. You'll
get a model of a surface that doesn't
have two sides l"intter" and
"ourter"l. And-just like that-
you've created a Mobius strip.

To convince yourself that the
Mobius strip has only one side, take
a marker and draw a line on the strip
without iifting the marker from the
surface or crossing the edge. When
you come back to the starting point,
you'Il see that the line travels along
the entire surface of the strip, even
though you never crossed the line
that seems to separate the "two
sides."

Now get a few sheets of flexible
paper (newsprint will do), tape or
glue, and scissors. It's time to do
some practical exercises with the
Mobius strip and other models made
of rectangular paper strips.

Let's begin with two rather weil-
known tricks.

Experiment 1. What do you get
when an ordinary (nontwisted)paper
ring is cut along its midiine?

Clearly, two narrower rings, each
with the same circumference as the
original ring. But if you cut the
Mobius strip along its entire mid-
line, you'llobtain

Do it and see what happens!
Experiment 2. Make another

Mobius strip, rather wide this time,
and cut it with scissors, keeping the
slit 1/3 of the way between the two
(apparent) edges. The thing you've
created is 

-.
You'llget a similar result if, be-

fore gluing the ends to form the ring,
you twist one of its ends by 350" and
then slit the model along its mid-
line.

Now let's engage in some more
advanced paper surgery.

Experiment 3. Slice the ends of the
strip as shown in figure 3. (a) Tape or
glue together A andD. Pass B under
A alnd E over D, and tape B ard E
together. Then pass C under B arrd
over A. Pass F over E and under D
(note that C and F are treated some-
what differently here). Tape C andF
together. Tape all the ends directly,

HE SURFACE OF A RING
such as we wear on our finger
has two sides (fig. 1). One side
touches the finger, the other

faces out. These sides have two bor-
ders (that is, two edges), each of
which is a circle. If a bug decides to
travel from the outer side to the in-
ner side, it will inevitably have to
cross one of the borders.

It's easy to make a simple model
with a completely different set of
properties-a one-sided surf ace
(fig. 21, as opposed to the ring-
shaped, two-sided surface described
above. The first to describe this sur-
face was August Ferdinand Mobius
(in 1853).1 Give a half-turn twist to

Figure 1

1A biographical note about Mobius,
as well as a lot o{ interesting things
about the topology of two-dimensional
surfaces, can be found in the article
"Flexible in the Face of Adversity" in
the September/October 1990 issue o{
Quantum.-Ed.

04 ilottEttBER/[tctritBtn tssE
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liat tra Ar r\,urv -

without twists. Norv contrnue all
the cuts you/ve begun all along the
strip. You get _. (bl Tape or glue
together A and D. Pass B r:ncler ,{
and E over D, arrd tape B and f ro-
gether. Pass F orrer E and under D,
but this time tape it directll- to C,
without doing anything rvith C. As
before, tape all the ends dircctlr-,
r'r''ithout fivists. Then, after ti-rc cuts
are made r.or-r'11 have _.

Experiment 4. Frepare ani,the r
strip 5]1;.-3 ar the entls as be iore
(fig. .l Hrtil-:r. isr rhe encl I irrs top
side arri:r- -:,.,1-L r-Ll-rl and glue rt to C.
Half-trr'rst :hc r-nl ,r the sarle rr'a1.
and glr-i.- it :,.' i. Pl:: -- urtller B and
glue it rl -l i,,r-1,-.1-i ri\ isting. Now
contin,.rr .rli ;,rc cr-ir-. all thc way
along rh. ::r -el r',,1'r.rirr

Experiment 5. This idea comes
from ,\1, BrL,okc and I. Maclachy.)
Cotr-rJ.l' rh. r.rllorr'ing curious
problerl: rlahc- a paper-strip model
frorn rthrch a link oi n rings {that is,
an ordinarl chain) can be obtained
by a srngle unbroken closed cut.

The secret here is to prefold the
strip lengthwise before curting it
and to slice and glue together the
ends of the folded strip in a special
way.

Begin with a strip creased once
(fig. a). Make one fu11 1360'1 nr ist oi
one end and tape the ends together
crease to crease. Then siit this

gltte

Figure 6

clor-rble layered band along its mid-
line : the resuit is three twisted
linke d rrngs (each pair of rings is
linkecl together).

Experiment 6. Crease the strip
and cut rt at the ends as sholvn in
iigr-rre 5. lThe strip is shortened ior
clarity, br,rt should actLrally be as
long as the one in iigure 4.1 Withor-rt
twisting the ends, glue them to-
gcthcr as shown in [igure (r. Note
that E remains behindA, and that C
E;oes L\vcr both on the left etnd under
both on the right. Continue the cut
along thc entire double-layered strip.
If you do it exactly as I told you,
you'11 get 

-.
Expedment 7. To obtain a chain

of rings by a single closed cut, take
a sufficiently wide strip and give it
an accordion crease (tig. 7-again,
the strip has been shortened). Slice
the ends as shown in the figure,
bend the folded strip into a ring, and
glue together the pairs of ends Ia-
beled the same in the following or-
der: ends C, D, and E directly (no
twist); ends B after passing one of
them under the rings CC and DD;
the ends A after passing one of them
under the rings CC arrd EE. Now
complete the cut through a11layers
to obtain

The answers to the questions and
experiments above are given on page
62. But I don't want to supply hints
to the following six experiments.
You'Il have to search for ways to
tackle these problems on your own.
I set only one condition: you must
make do with a single slit around
the model/ constructed from a
prefolded paper strip whose ends
were properly sliced, interleaved,
and glued together.

Experiments
8. Make a chain of four rings.
9. Make two separate chains of

two and three rings.
10. Make a three-ring chain with

the fourth ring hooked through the
middle ring of the chain.

11. Make a nine-ring chain.
12. Make three separate chains of

three rings each (out of one paper
strip!).

13. Make two separate chains-
one of four rings, the other of five
rings (out of one strip). CI

ANSWERS, HINTS & SOLUTIONS
ON PAGE 62

You can't buy the Consumer
Information Catalog anyi;vhere.
Butyou can get it, free! It'syour
guide to more than 200 free or iow-
cost government publications about
getting federal benefits, finding jobs,
staying healthy, and more.
The Catalog is free. The information
is priceless. Write:

Ccnsumer
lntormation Center
Departmcnt BESI
PueDlq CC 8lCC9Figure 5 Figure 7



If you like meeting challenges, the Air Force wants you. We need officers and leaders for

tomorrow's Air Force. Make a difference in your future. Earn a bachelor's degree, and we'll

help you pay for it.

The Air Force Academy Air Force ROTC

The Air Force Academy offers a quality If you attend another school, the Air

education plus the physical conditioning Force Reserve Officer Training Corps
t... 

and leadership training you'll need to be offers scholarships at more than 700

ta. an Air Force officer. After you graduate,

\.. you'll begin life as a leader in the
YES \ \ 2lst century Air Force.
Send me more \
about the U.S. \
Air Force Academy \
Nur", \.

colleges and universities. After //
graduation, you'lIbegin an exciting ,//,/ YES
career as an Air Force officer. .,// Send me more

./ about Air Force

AqMHreffi
,/ aotcschotarships.
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