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Gift of Mtl lolnW. Simpso

Soap Bubbles 1173311734) by fean Sime on Chr;-:-

NECOUNTING A FORMATiVE EVENT FROM HIS OWN
llchildhood-glimpsing an undersea "monster" at the age of
seven-the naturalist Edward O. Wilson writes:

A child comes to the edge o{ a deep water with a mind prepared

for wonder. He is like a primitive adult of long ago, an acquisi-
tive early Homo arriving at the shore of Lake Malawi, say, or the
Mozambique Channel. . . . The child is ready to . . . explore and

learn, but he has few words to describe his guiding emotions' In-
stead he is given a compelling image that will serve in later life
as a talisman,'transmitting a power{ul energy that directs the
growth of experience and knowledge.

And he quotes from Rachel Carson's bookThe Sense of Won-
der "Il {acts are the seeds that later produce knowledge and

wisdom, then the emotions and the impressions o{ the senses

are the iertile soil in which the seeds must grow.//

A friend of |ean Sim6on Chardin'

[o]ne day, an artist was making a blg sh(
to purify andper{ect his colors. Monsieu:
so much idle chatter, said to the arrist, "l
paints with colors? " "Iilith what then? " t

supercomputers, but one doe s sa:all:. "\':ijl :a--rnr' -\s c}-riidren

we watch soap br-rbbles rrrth irscin:i-ln ;ni ironl out oi our
hazy, pleasant \\-ondenrenr, questr.ns reglrl to iorm: Where do

the ralnbou. colors cotne iromi Horr brg can a bubble get? Why
does it always popi One can't help but u'onder how many sci-

enti{ic careers began r,vith soap bubbles. Alexander Mitrofanov
wondered about bubbles in puddles, and he grew up to write an

article about them-it begins on page 4.
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The Greek hero Achilles was knocked
off his {eet by Zeno's paradox, which
says that if he gives a tortoise a head
start, he can never overtake it in a foot-
race. Why? Because every time he
reaches the point where the tortoise
was, the tortoise will have moved on in
the meantime. Conceding the field to
his plodding opponent, Achilles has be-
come a tortoise himself, flipped on his
back, dole{ully watching the clouds
race by as he flalls helplessly on the
ground.

Little does he suspect that his prob-
lem is all in his head, and that the key
to his escape is on his wrist. Turn to
page 1 6 for a clockwork counterproof of
the pesky paradox.
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Cul'iosily,s nalural exlension

That's what science is, one reader says,
and we're all born curious

Roderick Ford at Arizona State Uni-
versity:

I think that students can learn the
concepts of all categories of science in a
general form early in their grade school
years. They cannot [then] understand for-
mal operations but the interest due to
science's applicability would aid the de-

velopment of their mathematical skills.

From a theoretical physicist at
Los Alamos National Laboratory,
Dr. Lea{ Turner:

I have always been in {avor of treat-
ing everyone, and especially children,
with the highest respect for their poten-
tial. . . . [A]s a young student, I always
wanted to know what physics and
mathematics were about. . . . About the
only thing I recall from my high school
physics course was Ohm's law and how
to convert from Fahrenheit to Centi-
grade. . . . WhenI hit physics as a sopho-
more at Cornell University . . . I chose
to take the "macho" course. . . . The year
was 1960 and the "teaching assistant"
was Professor Hans Bethe. He met with
us three times a week. . . . I am currently
[in] the Theoretical Division here at Los
Alamos. It was because

(a) my potential for leaming physics and
mathematics was always there,
though untapped by my own experi-
ence as a high school physics student,

(b) I was unable to realize this potential
until my fortuitous taking of a phys-
ics course as a prerequisite for medi-
cal school, and

(c) the flavor of physics that I received
at Comell was so different from that

received in high school

that I took advantange of [an invitation to
teach AP physics at Los Alamos High
School] in order to attempt to convey the
style of physics that I love to the still-
idealistic high-school-aged students. . . .

I think that teachers with high stan-
dards and expectations who are thor-
oughly excited about their discipline
and love to communicate their feelings
can inspire consistently remarkable re-
sults in students, results that affect the
students far beyond the discipline stud-
ied. The students {eel great because they
ate aware how much they themselves
have achieved as a result of their own
spirit and effort.

And from a high school student
fiom Mclean, Virginia, |eremy Sher:

The ability to use science words in
the right context depends on being able
to understand those contexts, other-
wise it amounts to nothing more than
memorization.

|eremy expressed well one of the
fundamental facts about science and
the ability to learn it with the fol-
lowing statement:

Nobody has an inherent ability to do
science, at least not more so than any-
body e1se. We are all equipped from birth
with curiosity, and science is curiosity's
natural extension.

And from Mark Meyerson, a
math professor at the US Naval
Academy:

Teaching children things like the
words, effects, and history of science

Y LAST PUBLISHER'S PAGE
entitied "Raising the Boats or
Lowering the Water," elicited
numerous responses from

Quantum readers. The point I was
trying to make was that all students
can learn science at substantially
greater depths than now occurs or is
now expected. Others in the science
education community are trying to
increase participation in science by
broadening it so that it becomes more
literacy oriented, and not to expect
any significant level of understand-
ing, especially of the quantitative as-

pects of science or technology.
Here's what some of our readers

think.

fosdlacft
The letters I received on this topic

were mostly supportive. We heard
from teachers, college professors,
and students at both the high school
and college level, and their com-
ments were very interesting.

From Steve Blood, a college stu-
dent in physics at Williams College:

I think that anyone and everyone is
capable of excelling in science. Some
obviously are more inclined than others,
but I think this is mainly a function of
their upbringing. If only science were
taught in an intuitive, exploratory way,
in which the student is encouraged to be

curious about different phenomena and
encouraged to try and figure them out,
students of all ages would love it.

From a college studentin chemistry

JllI.Y/AUSUST 1OO5



instead of teaching them the concepts of
science not only fails to teach them sci-
ence, but misleads them into thinking
that science consists of boring lists of
terms and dates to memorize.

From an e-mail message copied to
me/ but directed to someone else,
from Bettye Anne Case, Florida
State University:

Of cowse Aldridge is right!

From a professor of math at
SUNY at Stony Brook, Professor
Chih-Han Sah:

I totally support your position that
young people can leam science at a sig-
nificant level. Scientific "literacy" has
no meaning. One cannot fiscuss the rel-
evance of science to immediate personal
or societal problems without having
some deeper understanding of science
on a quantitative level. The assumption
of educators that scientific methodology
would enable a person to solve such
problems without quantitative under-
standing of science is flawed.

From Richard Askey, professor of
mathematics at the University of
Wisconsin:

There is one group in the United
States which is pushing for suf{iciently
high standards for high school gradu-
ates. This is the Natioaal Urban League.
See their publication ot The State of
Black America 1993 for an article on
what they propose. . . . [T]hey want all
students to graduate from high school
with the ability to . . . know mathemat-
ics through calculus. . . . There arc far
too many people who believe that most
students cannot learn much of arry-
thing, and they are cheating our stu-
dents. Sometimes I think this is because
they don't know much themselves.

I received ayery nice, long letter
of response from Bernice Kastner,
who earned her undergraduate de-
gree in physics and mathematics
and taught grades 7-9 in math and
science:

[T]here have been fundamental diffi-
culties in this country's mathematics
and science curricula in that the intel-
ligence of the learners . . . has consis-
tently been underestimated and conse-
quently lowercd. . . . [W]e have taught

CONTINUED ON PAGE 14
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In their appearartce, all the bubbles
are alike. The bubble's shell looks
like a hemisphere with a well-defined
thin rim near its base. Each bubble is
like a transparent round bonnet with
a dark, narrowbrim. Let's take a look
at what this "bonnet" is and how its
"britn" was made.

As you probably know, the mol-
ecules at the surface of a liquid have
a certain potential energy, referred to
as the surface energy. The value of
this energy is proportional to the sur-
f .ace ar ea-the prop ortion ality f actor
is called the coefficient of surface ten-
sion, and it's different for different liq-
uids. At equilibrium, any system is in
a state that corresponds to the mini-

mum energy. For our bubbles, this
means that their area should be mini-
mal. A free soap bubble assumes a

spherical shape because for a given
volume (that is, the volume of air in-
side the bubble), the spherical surface
has the minimum area; the role of
gravity is negligible for a bubble be-
cause it is very light. If the bubble is
deformed slightly (say, by blowing on
it), it will regain its spherical shape
when the deforming force is removed.

However, the shape of bubbles on
the surface of water is different: a

large bubble looks like a hemisphere
and not a sphere. The shell of a
bubble is convex due to the extra
pressure Ap of the air inside. Since
the vaiue of lp is constant inside the
bubble (the equilibrium condition),
the "bonnet" of the bubble is curved
uniformly-in other words, the wall
of the bubble that is in contact with
the air has the same curvature and
forms partofa sphere. But what por-
tion of this sphere is located above
the water's surface?

Let's consider the base of a bubble
(that is, its "bottom," which is the
surface of the pond) to be flat. This
assumption, of course, isn't always
valid, but the bigger the bubble is, the
closer the assumption is to the truth
(we'll retum to this later). It's not hard
to see that for a given volume of air,

such a bubble takes the iorm of a

hemisphere (a hernLsphere has the
least surface area in thrs case).

Now let's consrder the "brim"
that encloses the "bonnet" of the
water bubble. \\-hat is it? It certainly
shouldn't be too hard to guess.

You nrav rccali that water rises in
a thin capillary tube if its walls are
wetted. It s "beneficial" from the
energv r-rervpoint. The smaller the
radlus oi the capillary tube, the
higher the level of the liquid in it.
Due to the same capillary forces,
\{'ateI rises slightly near the surface
oi a body oi any shape (for example,
a flat vertical plate) provided that its
suriace has been wetted. Lower a

small wet plank or clean pane of glass

into water such that it strcks out of
the water. If the lighting is adequate,
you can see the narro\{ rim created by
an increase in the water level due to
capillary action near the boundary of
the object (see figure 1 on page 6).

This is quite similar to the bubble's
brim. It is capillary action near the
bubble's walls that creates a "brim"
on the cunred surface.

Those who are interested in cal-
culations and physical estimates are

invited to examine in more detail
the problem of capillary action near
a smooth vertical wall that has been
thoroughly wetted.
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BuhhlesinUddles

On the shape, size, and longevity
of these rainy-day visitors

by Alexander Mitrofanov

URELY YOU'VE OBSERVED
these iively bubbles. They
form on the surface of pools
and ponds during a shower,

when the water looks like it's boil-
ing from the large drops falling on it,
Sometimes you can see these
bubbles even after the rain has
stopped, when drops are still falling
from the boughs of trees. The
bubbles are wonderfully stable-not
only can you photograph them, you
can also watch them swimming on
the surface of the water. The
bubble's lifetime is anywhere from
seconds to tens of seconds. Sooner or
later, though, they pop.
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Figure 1

Let's estimate the maximum in-
crease in the water level H near the
wail of the plate and find the depen-
dence of H on the coefficient of sur-
face tension o. We'll use dimen-
sional analysis to do this.

The equilibrium of a liquid raised
by capillary action is determined by
surface tension and gravity. So H
can depend only on o, the density of
the licluid p, and the acceleration
due to gravity g. We'll look for a

function H: flo, g, p) of the form

H= const .o1.{r.p".

(Of course, the physical magnitudes
determining a phenomenon are not
always linked by a power depen-
dence, but very often this is the
case.) In order to obtain the math-
ematical formula for the dependence

of H on o, g and p, we need to find
the values of. 1, m, and n.

It's clear that the left- and the
right-hand sides of the display equa-
tion above have the same dimen-
sions. Let's write down the dimen-
sions of the variables in this
equation:

lHl= L,lcl= MTz,
lsl= LTa,ld= MLa,

where L, M, and T arc the units for
length, mass, and time.

The corresponding equation is

L = IMT-zY(LT2y^(ML-31".

This gives us a system of linear
equations for the unknown param-
eters 1, m, and n:

1+n:O,1+m:0,m-Bn:1.
The system has a single solution:

l:l12,m=-lf2,n=-112.
Thus,

.FI = ColSt.

OI

H-

It's not possible to find the un-
known constant in this formula by
dimensional analysis. However, in
physical formulas obtained by calcu-
lation, the numerical coefficients
are usually close to unity-in any
case, they don't influence the order
of magnitude of the result. The ex-
act value of H differs from our esti-
mateby Ji:

H_

Now we can estimate how high
water rises near a wet vertical wall.
Inserting the numerical values
o =73. 10-3 N/m, p = 103 kg/m3, we
have H = 4 mm. Water near the base
of a bubble's spherical surface rises
to approximately the same height.
Here the curved water surface looks
like a dark rim under certain light-
ing conditions. The rim's width is of
the same order of magnitude as H for
all iarge bubbles-that is, several
millimeters.

An attentive reader will have ob-
served that the bubbles in the photo
are not exactly hemispheres-it
looks as if the bubble are slightly
sunken-and that the inner and
outer rims are different (it's hard to

2o

p8

o

p8

o

p8
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see such a difference when you
watch bubbles form while it's rain-
ing). Why is this? Once again, air
pressure plays the lead role: the air
pressure under the shell is greater
than outside. So the water level is
lower under a bubble (in the center
of its base) than outside it.

Let's estimate how much .a

bubble is submerged in the water
relative to the water level in the
pond. The extra air pressure inside a
bubble is Ap = 4o I R.Inthe surround-
ing water this extra pressure (in ad-
dition to the atmospheric pressure)
is created at some depth Afi under
the surface. Clearly, it is this value
Lh that equals the "draught" of a
bubble (fig. zal. From the equality
4olR: pC. Lh we get

-4o
LI7= 

- 
'

p8R

For the bubbles in the photograph,
the value was about 1 to 3 mm. Thus,
a largebubble looks like a hemisphere
that is slightly submerged in water
and is bordered by curved inner and
outer edges. By "large" we'll mean a
bubble that satisfies the expression
R >>.Fr= JoM

Andwhat would a smallerbubble
look like? Try to investigate this
question yourself-it's not a simple
one. I'11 just mention here that if we
"prepare" too small a bubble (with
a radius of about 1 mm or less), it
won't come to the surface at all-it
will stay submerged close to the sur-
face as if stuck to it. Small bubbles
are spherical. Figure 2 shows how dif-
ferentbubbles look: (a) a large bubble

satisfyingR r, .,6/pg; (b) a medium-
sized bubble satisfying R = {offi;
and (c) a small (spherical) bubble
satisfying R * JohS

Think about why the shape of a
bubble depends on its size-the big-
ger it is, the more it looks like a
hemisphere. And why is it that ba-
sically large and mid-sized bubbles
appear when it rains?

Let's move on to one final prob-
lem. It has to do with the stability of
a water bubble. We need to figure
out why bubbles enjoy such a long
life only if it's still raining or the sky
is overcast.

Someone will say that it's be-
cause there are so many bubbles
when it rains that they seem to be
long-lived. There is a grain of truth
to that assertion. But if you watch an
individual bubble, you'll see that the
problem is not far-fetched. Indeed, in
rainy or cioudy weather bubbles live
far longer than on a dry, sunny day.
(They live such a short time in dry
weather that no one pays much at-
tention to them.)

There are many different reasons
why a bubble is destroyed. Its shell
can be torn by a gust of wind, it can
be "pierced" by alargeraindrop, and
so on. The shell can also evaporate
or become very thin and nonuni-
form because of water flowing
downward along the bubble's walls.
Then again, the presence in water o[
so-called surface-active substances
(for instance, soap) can prolong the
lifetime of bubbles by a factor of tens
or hundreds. (Think of the foam
you've seen in a tiver, which is re-
markably persistent.)

There is another interesting point
in this story-the evaporation of liq-
uid from the bubble's walls. There's
a saying in Russian: "Bubbles in
puddles, the rain will keep rairring."
This is because the relative humid-
ity is close to 100% when it's rain-
ing hard, or if a good shower is im-
minent or just past. At such times,
evaporation from the bubble's walls
is negligible. It is precisely this fac-
tor that prolongs the life of the large
bubbles that are so abundant in a
good summer downpour. When the
humidity is lower, water evaporates

With the invention of photography,
p articul arly high - sp ee d photo gr aphy,
many details of the events occurilng
when a raindrop sftikes the water's
surface became known. A larye
raindrop falls on the glasslike surface
. ., a deep crater forms . . . the crater
collapses . . . and now there is a quiet
bubble with air "imprisoned" inside
it, floating on the surface of the water,

In the beginning of our century,
one of the ffust who rccorded such
wondert'ul transt'ormations on a
photographic plate was A. Worthing-
ton, professor of physics at the Royal
Naval Engineering College in
Devonport. The series of photos
Worthington made long ago became
classics and have been repinted in
Beyond Vision: A Collection of
Scientific Photographs by lon Dailus
(Oxford University Prcss, 1984).

Smaller drops are destined to
anothu fate. They also make dents in
the water's surface, but the indenta-
tions aren't very deep and they don't
" collapse." Sometimes water " spikes"
can be observed-small, thin vertical
fountains ilsing out of the center of
the indentation. These water spikes
look particularly impressive during a
heavy rainfall at night when there is a
bright flash of lightning.

quickly. In dry air the thin water
wall of a bubbie disappears practi-
cally at once. If you have a hygrom-
eter/ you can make your own quan-
titative estimates. fust pour some
water in a saucer and note how
quickly it evaporates. The result
correlates with the reading on the
hygrometer, which you've placed
some distance away so it won't be
influenced by the more humid air
near the saucer. oFigure 2
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l(nuls, links, and lheir polynomials

A topological approach to a tangled subject

by Alexey Sosinsky

NOTS CAME INTO BEING IN
prehistoric times, together with
the first threads and ropes. Per-
haps they even predated these

works of human hands-after all,
vines can be knotted. The skill of
knotting reaches far back in our his-
tory: knots were indispensable to
the first navigators, weavers, and
builders. But it wasn't until rela-
tively recently that scientists began
to study knots-at the end of the last
century.l It seems that the rigid
framework o{ traditional geometry
was too restrictive for these thin and
flexible objects. Progress in the
theory of knots became possible
only with the deveioprnent of topol-
ogy-the branch of science con-
cerned with the deepest properties
of shapes and their position. There
it took its modest but respectable
place. Modest at first, aayway.

Recently knot theory has stopped
being merely away for a small num-
ber of specialists to amuse them-
selves. It has unexpectedly turned
into one of the most fashionable of
mathematical activities, and physi-
cists (both "classical" and "quan-
tum") and even geneticists have
joined in the fun.

lYou may find it useful to look into
the introductory article by the same
author in the fanuarylFebruary 1995
issue o{ Quantum. However, the
present article can be understood
without doing so.-Ed.

But we'll get to that later. First,
let's look at knots from a mathe-
matician's point of view, and let's ask
the most natural question . . .

Can any lfloil [s ttrt.fluelod?
For instance, car! we unravel the

knots shown in figure 1? A quick
glance at the knot K, will certainly
suffice for you to see that it can eas-
ily be smoothed out into a circle. But
you'll hardly see at once how to dis-
entangle the knots K2, Ks, Ko, and
Kr. Our intuition tells us that K,
can't be unraveled without cutting
it. As for knot Ku, it's simply baf-
fling: you can't tell from the figure
how the knot is arranged in space.

Cq

Figure 1

Examples of knot diagrams: K,-a tivial knot (that is, it can be converted into
a simple loop): Kr-the "figure 8" knot: K.-the tabulaLed knot 8,; K,-!; K,-
the tabulated knoL 8,,; Kn-an illegal porirait of a knot (not a dia'gram).

In order to move from an everyday
discussion of knots to a serious math-
ematical treatment/ we need exact
definitions. We start with a definition
ol a knot. A knot is a closed polygo-
nal path in space that does not inter-
sect itseU and is connected (it consists
of a single whole piece) and oriented
(supplied with a certain direction in
which it is traced). Knots are depicted
on the plane in a special way-by dia-
grams. A diagramstarts as a projection
of a knot onto a plane. In performing
such a projection, self-intersections
may occur. These self-intersections
are recorded as isolated double points
(the intersection of only two seg-
ments) with a blank space indicating

o
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but it's much more difficult to dis-
entangle than the knot K,.

Have you guessed which knot it
is? Right! The other trivial knot is
Ko. But a person with a normal
three-dimensional imagination usu-
aLIy can't discover a method of un-
raveling it immediately: it requires
a certain amount of work with a

pencil, eraser, and paper (or chalk
and blackboard).

Exercise 1. Draw the unraveling
process for knot Ko.

Now the following general ques-
tions will sound cluite natural.

l.The problem of unraveling.Find
an algorithm that can determine for
any knot whether it is trivial, judging
from any of its diagrams.

This question is a particular case
of an even more general one.

2. The problem oi comparison.
Find an algorithm that determines
whether tu,o gir,en dragrams depict
equivalent knots. lThe problem of
unraveling is the probierr .-i com-
paring a knot u,ith the rrr-;::.1 knot.)

How can we tackLe r::-.t prob-
lems? There is a tor-l a: --::-: . . .

Reidemeislel' tnouo$

Let's ana11-;e h,:'.'; -.'.'. s.:,ir-ed the
problem of unrar-e --:. ::= ..::--t.( . As
seen in figurc i -r- ir.: rr ,::s of un-
raveling, the s::.:. - : :ie knot
changes subs:.-:::=--. :-r rvhen
there is a ctan:a -r :.: :::mber or
allangeme:: -: :- *---. :OrntS. A
double J,oi:r: :--r :-::::-ar $'hen a
smal1 locr -:--.:r-,".-r:i:r ... 3el; when
a pair .'r : *:-. : ---:: 

t 
=appears af-

ter a Saa:-:-l ,i ill: :ll-lli slides off
another :::: -: -. =: --::Jr', when
'^':- '-: - --:-::-..'lsacross
a:ll-I.: -:-=: -:-::-::: lniigUfe
: :---,.::-.:- :--.-:: l: l---::i Opefa-
i-rlllS :I; ::l - 

-.', :- -."--::-: l-eilOW

v
^(\*

Figure 2
ETementary moves and equivalence of knots: (a) replacing the segment AB by a
two-edge path ACB (and vice versa) under the condition that triangle ABC has
no points in common with the knot (except, of course, the points of the seg-
ment AB); (b) removing a loop by one eTementarl mova; (c) shifting the portion
ACDEB of a knot into a new position ACDE'B by means of a sequence of six
elementary moves.

the lower segment of the knot. Also,
for the sake of appearance/ a polygo-
nal diagram is often drawn as if it
consists of smooth curves.

In figure I there are only five
genuine diagrams.The projection of
Ko isn't a knot because it has a triple
point (A), a double point without a
blank (Bl, ar'd an entire segment of
(non-isolated) double points ( C). The
direction of circumnavigation is
shown on the diagrams by arrows.

Two knots are consideredequiva-
lent lthatis, the same) if one of them
can be transformed into the other by
moving, shrinking, and stretching it
(without cutting and pasting).2
These transformations al1ow the
knot K, to be turned into a trivial
knot-that is, simply into a circle
(fig. 3). There is one more trivial
knot in figure 1 (try to guess which),

2A stricter de{inition: two knots are
equivalent if it's possible to pass from
any of them to the other by a finite
chain of elementary moves (replacing
segments of the first polygonal path,
one after another, by two-segment
paths and vice versa-see figure 2).

Figure 3
(Jruaveling knot Kr: (a) slidiny one bend of the knot off another b:r* '
cafiylng over a segment of the path auoss a double point, lc ,.1:-j:::-.- '
anothu bend; (d) contracting a loop; (e) untwisting tlro ,(iltr-',' - - -. 

i
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Figure 4
R eidemei st er mov es : Qf-untwis L ing
(and twisting) a loop: Aj-sliding one
bend of a knot off anothler and
invertingthe "slide ofi" rrTova; Q.-
carrying the segment of a knot oier a
double point. The moves marked with
a plus sign decrease the number of
double points and thus simplify a
knot's diagram; the moves marked
with a minus sign inuease this
number; and the move d)rleaves it
unchanged.

circles. All three types of moves are
reproduced separately in figure 4.
They are called the Reidemeister
moves after the German mathemati-
cian Kurt Reidemeister, who intro-
duced them in the 1920s and proved
the following theorem.

Tuponru. Two knots are equiva-
lent if and only if their diagrams can
be converted into each other by
means of a finite number of moves
of, ai, a.

Reidemeister's theorem reduces
the difficult three-dimensional
equivalence problem for knots to a
simpler plane problem on convert-
ing one knot diagram into another
using the three given moves Qf, Q2t,

O (fig. 4). I'm not going to give a
proof of this theorem here-that
wouldn't be very interesting.

Exercises
2. Unravel the knotl(, using only

Clr* and Of moves.
3. Show that the moves C)r* and

Oj cannot be applied to knot Kr.
Our success in solving these two

exercises inspires the hope that the
unraveling problem can be solved.
Applying the Reidemeisrer moves
C)r* and Ai that reduce the number
of double points, as long as this is

possible, we can simplify the dia-
gram step by step until the knot is
unraveled. If we arrive at a situation
where these moves canlt be applied,
we conclude that the knot can't be
unraveled.

Unfortunately, this idea is falla-
cious . . .

Exercise 4. Show that the moves
C)r* and {lf can't be applied to the
(trivial!) knot Ko.

We've reached a dead end. To un-
ravel a knot, we may have to increase
its number of double points, and only
alter thatit becomes possible to sim-
plify the diagram. Notice that the
problem is not that we don't know in
advance how many new double
points must be added-we have
nothing that's even close to being an
algorithm. Why? Regardless of how
many systematic attempts to un-
ravel a knot using the Reidemeister
moves have failed, we can't be sure
that this is really impossibie-that
is, that the knot is nontrivial. Our
failure could just as well be ex-
plained by an insuf{icient number o{
additional double points.

And so our naive geometric ap-
proach has been compietely unsuc-
cessful. At this point we don't have
a proof of nontriviaLity for even a
single knot! Perhaps any knot can be
unraveled . . . In any case/ we need
some new ideas.

A reader who has participated in
math olympiads will immediately
suggest a promising line of inquiry . . .

Inual,ianls

We need to find an invariant that
obstructs the unraveling. Now,
what does that mean? Each knot dia-
gram must be coupled with a certain
algebraic obfect-an invariant-
such that invariants of diagrams of
equivalent knots are the same.3
Then no two knots with different
invariants will be equivalent. If a
knot's invariant isn't equal to the
invariant of a trivial knot, then the

sApplying invariants to olympiad
problems was discussed in "Some
Things Never Change" (September/
October 1993); see also the Toy Store
in the first two issues of this year for
invariants in puzzle-solving.

given knot is nontrivial. We can say
that the invariant "obstructs" the
unraveling of a knot. At any rate, it
can provide a proof of nontriviality
for a given knot.

So, if the invariants of two knots
are different, the knots themselves
are different. If the converse is also
true (the equality of invariants im-
plies the equivalence of knots), then
the invariant is said to be complete.
The problem of comparison for
knots is very complicated, and a
simpie eomplete invariant for this
problem is not known. However,
we'd like to have a sufficiently
subtle invariant-that is, an invari-
ant that discerns rrratty, if not all,
types of knots.

How can we find such an invari-
ant? We'llhave to enlarge the class
of objects under consideration: we'll
study not only knots, but also more
generalstructures...

tilt16
Alink is a finite set of closed, dis-

joint, oriented polygonal paths in
space (fig. 5). A knot is a particular

o"o
<-

Figure 5
Examples of links: L,-the simplest
right-handed link of-two loops, Lr-
the Borromean rings: L.-the pieiced
" figure 8" : Lo-a link e-quivalent to
the Borromean rings (check it!); Lr-a
chain knotted into a trefoil; L,,-ai
unstable chain (it falls apat-if the
fuont and rear curves at point A are
exchanged).
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case of a link (a set of one path).
Equivalence of links is defined in
the same way as for knots.

The presence of several disjoint
polygonal paths rather than iust one
creates radically new knotting ef-
fects. For instance, two loops (trivial
knots) can be combined into a pair
that will never come unhooked (Ir').
The Boruomean dngs (Ir) are even
more interesting: three circles no
two of which are linked, but all
three together can't be disentangled.
Linking small loops one by one/ we
can build up long chains and even
knot them (Ir). A chain of more
tricky loops (16) is also amusing: af-
ter the leftmost "lock" is cut (that is,
its left double point is replaced with
the opposite), the entire chain suc-
cessively comes loose. This effect
resembles a nylon stocking or
woolen sweater coming unraveled.

Exercise 5. How are the upper and
lower threads in a sewing machine
linkedwith each other? Try to draw
a picture showing this link.

I'm not going to dweli any further
on geometric games with links.
Let's pass directly to the construc-
tion of the invariant we need. It's
named after the British mathemati-
cian |ohn Horton Conway . . .

Tle Conuray rulynomial
In the scientific literature this

polynomial is more frequently called
the Al ex an d er - C onw ay p oly no m i al.

James W. Alexander, an outstanding
American topologist, invented his
polynomial before Conway, in 1933
(the Conway polynomial di{fers from
Alexander's only by a simple change
of variable). But Alexander's con-
struction-exquisitely beautifu 1 !-is
by no means elementary. And, of
course/ Conway's contribution
doesn't come down to a change of
variable-he discovered a compietely
elementary axiomatic construction of
the polynomial. And this is the con-
struction I describe below, leaving the
polynomial only under the name of
Conway, one of the brightest and
most versatile mathematicians of
this century, the creator of the Game
of Li{e, surreal numbers, several "spo-
radic monsters" (certain important

t'Jr.lxl - ttr(xl: x' Pr,(xl

Figure 6
The skein relation (axiom (3)) for the
Conway polynomial

examples of groups), and many other
clever constructs.4

Conway postulated that each
knot or link diagram I is associated
with a polynomial in x with integer
coefficients denoted by P.(x). This
correspondence must satisfy the fol-
lowing three axioms:

l. The polynomials coruespond-
ing to equivalent diagrams L and L'
are equal to each othet:

Pr(x) = Pr,(x).

2. A trivial knot is associated
with the zercth-degree polynomial
equal to 7:

Pok)= 1'

3. (The skein relation.l The poly-
nomials coruesponding to three
links Lt, L-, and Lo that coincide
with one another everywherc except
in a small circle, wherc they appear
as shown in figwe 6, are related by
the equation

nr.(x)- er(x) = x'Pf (x).

At this point I'm not going to dis-
cuss the question why the polyno-
mial P.(x) exists for any I and why
it is uniquely determined by the axi-
oms. Instead, let's leam how to com-
pute the Conway polynomials based
on the axioms above.

Figure 7a shows how to get the
Conway polynomial of a pair of un-
linked loops. We start with a dia-
gram L* of a trivial knot with one
double point. By axioms (lland (2f,

P, (") = 1. RePlacing the double
p6int with the opposite one and

alohn Conway has rvritten a number
of articles lor Quantum: see the
Mathematical Surprises department in
the May 1990 pilot issue and ln all {our
issues of volume I j990-1991).-Ed.

removing it (in accordance with the
skein relation (3))yields another dia-
gram of a trivial knot I- and a pair
of unlinked loops Io. Applying
axiom (3), we get

er.(x)- t',(x) = x'Pto(x)

-that is, 1- 1 = x'Pro(") . It follows

that Pro(r) = 0-thatis, aPait of un-

Iinked loops has the Conway poly-
nomial equal to zero.

Now let's compute the Conway
pollmomial for a pair of linked loops.
First we note thaq because we con-
sider oriented paths, there are two
kinds of pairs : right-handed pa::s and
left-handed pairs. If I'm going to ex-
plain how they differ, we'll have to
keep the loops straight in our minds
(so to speak), so choose one of the two

t'r-lx) x. Pr"lx)

Figure 7
The Conway polynomialsfor (a) a pair
of unlinked loops L0 (P." (x) : 0); (b) the
left-handed patu (fig. 8)'of linked loops
L-, (c) the trefoil L r p, tyt = x,, tdt the
"[ig,ure 8" knot L : tet'the "ptctced

figure 8" link; (f) the other modifica'
tion of the "pierced iigure 8. '

Prlxl

P1ixl
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9o
right-handed pair

Figure B
The simplast left-handed and right-
handed links of two loops,

loops in a pair and call it the "fitst,"
and call the other one the "second."

If the second loop pierces the
plane of the first loop in the direc-
tion defined by the "right-hand
rule" (which is the direction of your
right thumb when the fingers of
your right hand are curled in the di-
rection of the first loop), then this
linked pair is right-handed; other-
wise it's left-handed (see figure B).

You can verify that a right-
handed (left-handed) link remains
right-handed (left-handed) if we re-
number the loops, but that it be-
comes left-handed (right-handed) if
the directiorL orL one of the loops is
reversed. In figure 7b, L* is a left-
handed pair of linked loops. Apply-
ing the skein relation to its right
double point, we get/ successively,
the diagram I- (equivalent to an
unlinked pair) and a trivial knot
(with one double pointlI0. By axiom
(1) and our previous calculation,
t'r(x) = 0. Then, by axioms (1) and

l2l, PLo(")=t. Now, substituting
into axiom (3), we find P.. (r)= r-
that is, the Conway polynomial of
the simplest left-handed link of two
loops is equal fo x. For the right-
handed link the polynomial equals

-x. We can see this if we reverse the
anows on the upper loops in figure
7b-then links I* and L- exchange
roles with respect to the skein rela-
tion (and, in addition, the trivial
knot Io changes its pattern).

Figure 7c shows the calculation of
the Conway polynomial for the tre-
foil knot. Notice that the applica-
tion of the skein relation here cre-
ates a link lLol-the knot falls into
a left-handed pair of linked loops.

This is why we were forced to con-
sider links rather than just knots.

Exercises
5. Using figure 7d, compute the

Conway poiynomial for the "figure
8" knot.

7. Compute the Conway polyno-
mials for the left-handed and right-
handed modifications of the
"pierced figure B" link in figures 7e
and 7f . (Reminder: don't forget to
distinguish between the simplest
right-handed and left-handed links.)

To go on with our calculations,
we'll need a certaingeneral property
of the Conway polynomials . . .

T[e rulynomialotan ult[oolted li]lk
We say that a link is unhooked if

it consists of two pieces that aren't
linked with each other.

TrnonEM. The Conway polynomial
of anunhookedlinkis equalto zero,

To prove this assertion, imagine
that we enclosed the two pieces of
the given unhooked link Io in two
disjoint boxes and put the boxes not
far from each other. Draw a small
piece of the string from each box and
lay the pieces near each other, as
shown in figure 9a. Applying the
skein relation/ we obtain two new
links I* and L- (fig. 9b, 9c). Then

trr.(x) = Pc(r).

Indeed, a 350' clockwise rotation of
the upper box about its vertical axis
turns I* into Z-, so the above equal-
ity follows from axiom (1). Then, by
the skein relation,

P 
ro 

(x) = *' (P r @) - P r(")) = o,

and we're done.

Figure 9
A proof of the theorcm on unhooked
links (when the upper box is rotated
360', the link L* turns into L-).

Exercises
8. Verify that the Conwaypolymo-

mial of the Borromean rings is equal
to *.

9. Compute the Conway polynomi-
als for the link and knot in figure 10.

0
Figure 10
A toroidal link and torcidal knot
(these can be viewed as windings of a
torus).

10. Show that the Conway poly-
nomial isn't a complete invariant-
that is, find dif{erent knots with the
same Conway polynomials. Hint:
the simplest example is provided by
the trefoil and its mirror image. To
prove they aren't equivalent, we can
modify the Conwaypoll,nomial into
thelones polynomial defined in the
same way except for the skein rela-
tion, which takes the form

. 1 t+Jx3.' ,-P,- -lxP,- =----7-P,0.
4 x r,/x

Summinu up

|ust from the few calculations
we've carried out you can see that
the Conway polynomiai is quite a
fine tool, enabling us to identify
knots and links and establish their
nontriviality. Having calculated,
say, the polynomials for the trefoil,
"figure 8," and Borromean rings (to
see that they are neither 0 nor 1), we
gave a strict proof that they can't be
unraveled. Or, having counted the
corresponding polynomials, we
could have proved that the links in
figures 7e and7f aren't equivalent-
which, after all, is not that obvious.

Of course, all these proofs are le-
gitimate only if the fact of the exist-
ence anduniqueness of the Conway
polynomial for any knot and link
has been established. Merely by stat-
ing axioms we can't guarantee that
an object satisfying these axioms
actualiy exists (what if they contain

OU[]iTlllil/IEAIUflI I3

+ (L. : L-l



internal contradictions?). How can
such a guarantee be obtained? Only
by proving the existence and
uniqueness of the Conway polyno-
mial. But the elementary proof I
know is very cumbersome, so I
won't give it here.

ttllhal$nexl?
I hope you liked the transparent

and elegant constructions described
above. It should be said that there
arett't many actively developing
fields in modern mathematics
whose essential ideas could be ex-
plained to a high school student. As
a rule, contemporary mathematics
relies on a vast body of knowledge
that goes far beyond the scope of the
high school (and even college) cur-
riculum. But the part of knot theory

that I've presented here is almost
elementary, though relatively new
(the Conway polynomial, for in-
stance/ was devised in the l97Osl.
But we mustn't delude ourselves.
Despite all its attractiveness, what
I've managed to describe wouldn't
have sufficed to cause the increased
interest in knot theory that I men-
tioned at the beginning of this ar-
ticIe.

The cause lies elsewhere. First, it
has to do with the deep connections
between polynomials of knots, sta-
tistical physics (specifically, the so-

called Potts model for ice), and
quantum physics (the so-called
quantum groups) that were discov-
ered by the British mathematician
Vaughan F. R. |ones. Second, knots
have appeared in molecular biology

(the knotting of the DNA double
helix). And the third important re-
cent advance in knot theory was the
solution of its fundamental prob-
lems (of comparison and unraveling)
based on the profound geometric
work of the German mathemati-
cians W. Haken and H. Waid-
hausen.

Today you can find a description of
the algorithms for comparing and
unraveling knots in the mathemati-
cal literature. But these algorithms
are still too complicated for computer
reahzation. Also, there is a complete
invariant for knots invented by the
Russian mathematician Sergey
Matveyev. But its practical calcula-
tion is also beyond the reach of exist-
ing computers. Research in this area
continues. O
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children not to use their intelligence in
school. Of course our students can learn
quantitative science. . . . but we have to
teach science and mathematics hon-
estly, and in developmentally appropri-
ate ways.

Not all responses were supportive
of my position. One e-mail message
comes from hmliu@ao1.com, who
said, among other things:

I don't think so. There are some who
I truly think cannot leam the stu{f (and
they are all in Sth period . . .). And some
who could spend a lot of time pounding
away, and eventually get it, but what is
the point?

IsuaI
The position I have expressed in

these pages does not imply that
there are not great differences
among young people, and I certainly
agree that there are exceptional
people who learn very quickly the
kinds of material found in the quan-
titative sciences. There are others
who must work much harder, and
they can learn such material well,
but only with great effort. The prob-
lem is that our existing methods for
identifying such talent are so faulty

that we do not select, and give the
necessary resources to, the most tal-
ented who should be going on to ca-
reers in science and technology. Our
present system rewards and provides
resources to large numbers of young
people who succeed on conventional
tests, who memorize well, who con-
form and follow directions, or who
have unusual advantages. As a con-
sequence of our deficient system of
discovering talent in young people,
we fail to identify from among the
very best and brightest large num-
bers of young women and minori-
ties. We lose the benefit of the best
of these groups, while providing
many resources and advantages in-
stead to aLarge number of mediocre
young white males, as we necessar-
ily select the best but then move
down in that distribution to fill the
need.

Providing good science for all stu-
dents solves the problem of early
identification, while simultaneously
providing the kinds of solid science
people need to live in our complex,
technological society. The best and
brightest will, if aII are kept in sci-
ence, become recognizable at the
right time, irrespective of their
ethnicity, gender, or economic sta-
tus. Also, if our science requires

depth of understanding and some
measure of creatir-ity and thought
instead of memorj.zation of facts,
information, or algorithms, we will
identify the real talent needed for
science and engineering careers.

I want to thank our readers for re-
sponding, most of whom did so
through the Intemet. Please continue
to send us your views on these and
other matters in math or science edu-
cation in which you have an interest.
I have tried to respond to each mes-
sage or letter that I have received.

-BillG. Aldridge

0n fie lllleb!

We've opened up a site oir the
World Wide Web, so stop by if
you can. As with most Web
sites, we're still growing. But al-
ready you'Il find an index of
Quantum articles, a directory of
personnel and services, back-
ground information on Quan-
tum and its sister magazine
Kvant, and more. Recent visitors
will have found a preview of this
issue, plus a Brainteaser contest.

Point your Web browser to
http://www.nsta. org/quantum
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BRAINTEASERS

Ju$lorlhelunol it!

8146
A 1995 problem. How many numbers end in the four digits 1995 and
become an integer number of times smaller when these digits are erased?
(V. Dubrovsky)

8148
Rock density. How can the density of a rock be measured without measur-
ing its volume? (Archimedes)

8149

8147
Number diamonds, Natural numbers are grouped in diamonds as shown in
the figure. The sums of numbers in the diamonds obey a certain law. Guess
the law and prove your conjecture. (V. Proizvolov)

Match figures.It's not difficult to make two regular pentagons from ten
matchsticks. But it's not that easy to arrange the same number of matches
so as to form one regular pentagon and five regular triangles. Try it! And
what about two regular pentagons and ten isosceles triangles? (A. Abbasov,
V. Dubrovsky)

8150
Tfuough a median's midpoint. The line BK bisects the median AM oI a
triangle ABC.Inwhat ratio does it divide the side AC? (y. Chichin)
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convergence of an infinite series

by Gordon Moyer

A clockwork proof of the

ROBABLY FEW OF US AD-
vance to second-year calculus
without learning the names of
Newton, Leibniz, and, strangely,

Zerro o{ Elea. If the first two are the
names of the great founders of the
subject, the last is surely the name of
its great confounder. This ancient
Greek philosophet, who predates
higher mathematics by over two mil-
lennia, cunninglyinsists on the com-
plete impossibility of integration.

In the most famous of his para-
doxes, Zeno asserts that the swiftest
Greek warrior could not beat even a
tortoise in a footrace, for to do so

would involve, in effect, the sum-
ming of an endless series of inter-
vals. Un{ortunately, the original text
of this paradox no longer survives,
but Aristotle, in a chapter of his
Physics,r cites the hero Achilles as

the favored contestant, a much later
commentator onZeno tells us that
Achilles' challenger was a tortoise.2

Fair-minded as he is fleet-footed,
the brassy young hero in the tale

lsee Aristotle, The Physicsl trans.
P. H. Wicksteed and F. M. Corn{ord,
vol. II, Loeb ClassicalLlbrary no. 255
(Harvard University Press, Cambridge;
and William Heinemann Ltd., London,
1980), Book VI, Chap. IX, p. 180.

2Simplicius of Cilicia, a
Neoplatonic scholar, who wrote about
Zeno's paradox in the 6th century A.D.,
fully a thousand yearc alterZeno.

gives his dawdling adversary a head
start. With ease, Achiiles reaches his
opponent's starting-point, but, in
the interim, his hard-shelled chal-
lenger has moved on. Dashing
Achilles continues toward the
tortoise's new position, but by the
time he reaches it, the animal has
once again crept ahead. And so it
goes, with our hero constantly gain-
ing ground on his lowly competitor
only to {ind his reptilian rival, mean-
while, has moved on. Exasperated,
Achilles concedes the race; he never
finds himself so much as neck and
neck with the tortoisel

Common sense, of coursg dictates
a different winner. And, in light of the
theory of limits, most calculus teach-
ers are quick to show students the
errot ofZeno's ways. Nevertheless, as
historian G. ). Whitrow has pointed
out, calculus professors have not con-
vinced everybody. Philosopher-
mathematician Bertrand Russell, for
one, argued that there arc physical
implications/ core problems involv-
ing the structure of space and timg
thatZeno aimed at and yyhigfu lirnit
theory does not resolve. Russellbe-
lieved that oneway to escapethepara-
doxis to assumethaq unlikeanumber
line, actual space and time are com-
posed, not of dimensionless points or
instants, but of discrete segments that
cannot be infinitely subdivided.

Such a theory may resolve the
paradox, but it does so bv calling
into cluestion the legitirnacr oi us-

ing calculus to treat bodies in mo-
tion. Others har-e offered similar
"quantum" atguments, and for
many logicians the -\chi11es paradox
endures. A conundrum that seemed
to philosopher Charles Sanders
Peirce as nothrng more than a "silly
little catch pre s.nrmg no difficulties
to a mind trained in mathematics"
remains for:r-rars orher scholars just
as Russeii sa\r lt, ' all immeasurably
subtle and:rotound."

Drscor-eling that the resolution of
Zeno s ;aradox might not be so cut
and dned ma,v shake a student's con-
irjerce in limits and infinite series,
cr at least rn the applicability of
those concepts to Achilles' chase.3

Jr lourse. rvhether space or time, or
:Facc-iime. " actuallr- constitutes a

:According to H. G. Zeurhen, a

it:stLrrLan,.i arcient na:hematics,
/ -- \\';-. ar. .'i.- \ ::::---2I \\':th
::ri.:.r :l:- --::' .I .r"r :ri:nrIL
i;' IIrIIl, :cll;:. Zc-lth-:l ."l1tt:1i:
tha: Z;no nar- rrell have been
que stroning rhe laliditl' oi using
inirnrte serres at al1 to solve a problem
involr.ing rea1, physical distance: if the
rvorld is composed of indivisible bits
o{ matter, then a physical distance on
a racetrack cannot actually be broken
up into an i.nfinite array of points
corresponding to the mathematical
points of an in{inite series.
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continuum and is therefore truly
integrable is a matter that need not
hold up anyone in Calculus I. Yet,
Russell's contentions aside, there
are other "little catches" tnZeno
that may confound and divert a

learner.
Could one expect even an epic

hero, not to mention a tortoise, to run
a perfectly straight course at a precise
uniform velocity? The scrupulous
among us have been known to pick
at such nits. What about initial
acceleration-do Achilles and his
inhuman challenger achieve their
respective speeds instantaneously?
Simultaneously? These more mun-
dane physical considerations also
complicate attempts to describe
Zeno's race using strict geometric
series. No doubt such problems are

"r',ll.r1"Yfd b, granting ideal-

ized motion to the contestants, but
how much the contest aheady
stretches belief! Since infinite series
already seem "unreal" to many of
us, the topic could better be intro-
duced in an example which is a good
deal more plausible, and decidedly
less controversial, than the paradox
of Achilles and the tortoise.

An ordinary mechanical clock
provides such an example. Here,
another Zenonian race is run, but
instead of a tortoise and a hero out
of Homer, we have two far more
convincing figures: clock hands.
Unquestionably, the big, leaner
hand outstrips the little one, com-
pleting a lap around the dial in ex-
actly afi hour. In comparison, the
"little hand" takes twelve times as
long to go around-exactly twelve
hours. With the hour hand running

only /t, as fast as the minute one,
the latter quite visibly overtakes it.

We can actllally see whete, and
when, the faster hand overruns the
slower. The point at which the two
hands coincide marks the limit of a
convergent series. From the outset/
we get an intuitive sense of the ac-
tual location of a limit in time and
space. If the time is one o'clock, for
example, it is clear that the minute
hand will catch up to its mate just a
bit beyond five after. There, as the
one hand gradually closes in on the
other, the "convergence to a limit"
concept becomes palpably real.

The truth of limit theory reveals
itself in the time ticking away. At
precisely one o'clock, the hour hand
has a 3O-degree "head start" on the
swifter minute hand. The latter,
starting at the twelve, makes up this
distance in exactly five minutes, but
the hour hand, in the interim, will
have moved on a bit. How far? Since
it runs only /12 as fast as the minute
hand, it will have crept on only y'r,

of its 3O-degree lead, or 2 f degrees.
The minute hand covers tftis dis-
tance in very short order, less than
half a minute; of course in that brief
interval its slower mate will have
once more moved on. Little further
thought, though, is required to real-
ize that the pair in this "Achilles-
and-tortoise" race will be running in
a dead heat right around five-and-a-
half minutes passed one.

The face of a clock is a perfect, yet
physically real, analogy to Zeno's
legendary racecourse/ complete with
precisely paced runners on a conve-
niently numbered track. The foot-
race is now a "handrace," the clock
hands providing grounds for believ-
ing that a continuously diminishing
geometric series indeed converges to
a limit. Seeing that this limit really
exists-at a point a little past 1:05/
for example-may give us confi-
dence in the so-called "sum to infin-
ity" formula for the limit sum of a
geometric series:

as=__1 (1)
1

(where , . l), which confirms, as

1tOUAlllIlllll/IIAIURI



we'll see below, that one piace
where the hands converge is indeed
found a few degrees beyond the five-
minute mark on the clock-that is,
a bit beyond five minutes after one.

If our great clock-hand chase be-
gins at one o'clock sharp, we can
represent each distance that the
minute hand closes in on the hour
handby the constantly diminishing
series

30.+{*!1* t" *..., 0lz 24 2BB

where the first term equals the hour
hand's head start. Each of the hour
hand's subsequent leads is always

/r, of the previous one. This stands
ioieasorr, since it moves only /12 as

fast as its running mate. A11 of this
is more succinctly given as

:30'\-Lw (3)
n=U

Measured clockwise from the
twelve-hour mark, the precise posi-
tion where our pair of runners will go

"hand to hand" is readily found by
substituting the appropriate values
into equation (1), where a, our first
term in the series, represents the hour
hand's initial head start; and r, the
common ratio of our series, is the rate
at which the hour hand runs com-
pared to its swi{ter mate:

30'
'=;i =32%f . WlL /1r,

Starting on the twelve, the
minute hand will sweep through
32%t" before it exactly coincides
with the hour hand. What time does
this arc distance represent? Since
the minute hand travels 350 degrees
in 50 minutes, it covers 1 degree
every /6 of a minute; to cover
32 %t degrees, then, it must take
exactly 5 s/, mitutes, or 5 minutes
27 %, seconds. These, demonstra-
bly, are the limits in space and time
upon which the swifter hand con-
verges in order to "catch" the
slower.

There are, oI course/ otherplaces
on the clock where the minute hand

overruns the hour hand. At first
glance it might seem obvious that
twelve different places exist, but a

little experimentation wili show
that the number is really eleven.
This horological fact can actually be
used to verify the limit we obtained
in equation (4) by infinite series: if
the minute hand overtakes the hour
hand eleven times during the latter's
350-degree circuit, then each point
where it does so must occur at
consecutive intervals of 350'/1 1-
that is, 32%r'.

We can wind the clock hands
manually and locate each of the
eleven limit points for ourselves,
checking the spacing of these points
with a protractor. Although oniy an
expensive vernier protractor can
come close to confirming the
328/y degrees found by equation (4),

the measurements/ if taken care-
fully with an ordinary protractor,
will prove significantly close to
what the theory of infinite series
"predicts."

In this way, Zerto's mythic foot-
race becomes a credible laboratory
exercise for students ofbeginning cal-
culus. It gives a real sense of the loca-
tion of a limit in both space and time.
Adfitionally, the clock-hand analogy
shows that there is very good reason
for trusting the formula for the sum
o{ a geometric series (equation (1))-
it scluares precisely with the division
of 350 degrees by 11, furnishing an
empirical check on our mathematical
theory, whichwouldbe impossible to
do with any pair of runners on a

straight "ortr". 
O

Gordon Moyer is a Washington, D.C.,
writer whose workhas appeared inSci-
entific American and other publica-
tions.
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HOW DO YOU
FIGURE?

Challeltue$ in phy$ics and lnalh

tUlath

M146
In the summ er tim e. Mary wlll spend
all her 90 days of vacation in the
country. She's very well organized
and she decided to strictly follow this
daily routine: every other day she's
going to swim in a lake, every third
day she's going to wash and clean,
and every fifth day she'll do math
problems. (On the first day Mary tried
to do the first, the second, and the
third, and got very tired.) How many
of the 90 days willbe "pleasattt"-
that is, she will only have to swim?
And how many "boring" days-with
no planned activities-will Mary
have? (N. Vasilyev)

Ml47
Zero cyclic sum of products. Each of
the numbers x1, X2t..., x,, equals one
or minus one. Prove that the equality
xtx2+ x2x3+.,. * Xr_rX, + XrX, :0 iS

possible only if n is divisible by four.
(A. Leontovich)

M148
Factorial numeration. (a) Prove that
any integer a > O car be uniquely
represented in the form

a = ann! + a,- r(n - llt
+ ... + a2. 2l + ar' l!,

where the coefficients d1, k: l, ...,
nt are integers, 0 a op< k, ar> 0.

(b) Prove tlnat arry ratiotal b,

0<b < 1, canbeuniquelywrittenin
the form

, b" b1 .bnA-u=-T-T"'T-r
2t 3l nt

where O < bk < k for 2 < k 4 n, b n, O.

M149
Triangles around a pentaSon. Each
diagonal of a convex pentagon cuts
off a triangle from it (fig. 1). Prove

Figure

that the sum of the areas of these tri- D

angles is greater than the area of the
pentagon. (N. Vasiiyev)

Ml50
Taking roots in iterations. Prove
that there exists a function l(x)
whose nth iteratior. flf(...f(")...)l
(with / applied n times) is equal to
lal2x+ I forallx, (b) I +x+2,12 (or

all x > 0, lcl xl$ + l) {or x > 0.
(O. Izhboldin, K. Kohas)

Physics

P146
Fox and hare. A fox pursues a hare by
heading straight for it. The hare hap-
pens to be cross-eyed, so it doesn't run
along a straight extension of the line
between the fox and itself-its veloc-
ity at any moment makes an angle of
60o to this line. The initial distance
between the fox and the hare is I,
and their speeds are v. How long will
it take the fox to catch the hare?
How far from the fox's starting Po-
sition will that occur? How does the
answer change if the hare becomes
even more crossed-eyed, making an
angle of 90"? Or if it wears eye-

glasses so that the angle is only 40"?
(o. Shpyrko)

P147
Oscillation of a parallelogram. The
construction shown in figure 2 con-
sists of four light rigid rods of length
l and a light spring of lengh 2l.The

Figure 2

rods are connected bv srnal1 identical
massive ba11s The rods are hinged so

that their angle s are iree to change.
The system is iired at pointA. In the
system's equihbrium state the rods
form a square. Find the period of
small oscrllattons of this system
when point C mor-es along a vertical
line. {S. Klotot-'

P1 48
Heat engtne, The cr-cle carried out
by a heat e nginc using a tttonatomic
rarefied gas conststs oi two isochores
(constant r-olumel and two isobars
(constant pressure). Find the maxi-
mum eificiency of such a cycle.
(Y. Krementsova)

P149
Variable capacitor. A variable ca-
pacitor oi initial capacitance Co is
charged to a voltage V and con-
nected to a resistor R (fig. 3). How
must the capacitance be varied to
keep the electric current constant?

2ll Jtl[Y/AllEU$I ls$E



Figure 3

What power must be deveioped by
external forces to change the capaci-
tanceT (P. Zubkov)

P150
Microscope and glasses. While ad-
justing a microscope, a Quantum
reader found that she saw the image
of an object clearly with both eyes
when it was placed at a distance
d:5.5 mm from the objective. The
length of the microscope tube is
I = 100 mm. The focal length of the
objective is /r : 5 mm, and that of
the eyepiecefr=26 mm. What is the
prescription {or the glasses worn by
this reader? (A. Yudin)
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But it would be inconvenient in prac-
tice to assign a symbol to every num-
ber we use. Even i-f we didn't need to
make any calculations beyond the
first thousand, we'd have to memo-
rize a thousand special symbols. So
it's only natural that long ago people
chose one or another set of "key"
numbers, and only those were given
special signs. Take, for instance, the
Roman numeral system-it's based
on the key numbers

I,5,10,50, 100, 500, 1,000,

which are denoted by the Latin letters
I, Y X, L, C,D, and M, respectively.

Some of these notations arose out
of pictures that once represented
these numerals (the Roman numeral
I looks like an upraised finger, V
looks like a hand with the fingers
spread apart, X looks like two of
these stylized hands in a mirror im-
age|, some came from the first let-
ters of the corresponding Latin
words lcentum means one hundred,
demimille means five hundred,
mille means one thousand).

Since we'need the Roman nota-
tion only as an example, we'll
consider its older, simplified ver-
sion, where the number "four" was
written as IIII rather than IV, "four

five-ruble notes paid and include the
term 0 . 5 in our sum. Then the en-
tire process of payment will be writ-
ten as

499=4.100+1.50+I.25+
2.10+0'5+1.3+1.1.

Now let's try to generalize these
considerations, taking as key num-
bers (the basisl an arbitrary increas-
ing sequence of natural numbers

Let's see how an arbitrary numberN
can be written in the numbet sys-
tem with the basis given in expres-
sion (1).

Find the largest key number q,
not exceeding N and divide Nby q,
to obtain the (incomplete) quotient
arand the remainder rn_l

N: AnQn* rn-t,

whereOsrr_t<er.
Now divide the first remainder

r n _ rby the next key number en _ |
rn-l= an-lQn-rl rn-z,

where O 1tn_r, or

N = anQr+ an_tQn_t* In_2

(we don't exclude the caserr_, : 0-
in this case all the subsequent quo-
tients and remainders will be zero).
Now we divide the new remainder
rn_zby er_r, which gives us

In-2: An-2Qn-Zt In-a

lllumher $y$Eln$

Mayans, Romans, Babylonians-
lend us your calculators

by lsaak Yaglom

E DESIGNATE THE FIRST
nine natural numbers by the
special symbols

1,2, 3, 4, 5, 6, 7, B, g.

hundred" as CCCC rather than CD,
and so on. In this old Roman system
the number 3,477 is written as

MMA4CCCCL)O(UI
=3' 1,000+4. 100 + 50 +2. 10+5 +2.

The same rule of representing
numbers is used by a cashier who
has bank note of the denominations
100 rubles, 50 rubles, 25 rubles, 10
rubles, 5 rubles, 3 rubles, and 1

ruble. For the cashier, the key num-
bers are

100, 50, 25, L0,5,3, l.
In order to payt say, 499 rubles, she
first gives out as many hundred-
ruble notes as possible so as not to
give more than is required:

499:4. 100 + 99.

Then she gives out as many fifty-
ruble notes as possible without ex-
ceeding the amount remaining to be
pard (99 rubles):

499:4.100+1.50+49,
and so on. Sometimes the remainder
might be less than the next key
number. In our example, this will be
the case after two ten-ruble notes are
given:

499 : 4. 100+ I . 50+ I. 25 +2. 10+4.

The next key number is 5, but since
4 . 5, five-rub1e notes need not be
given out. However, for consistency
we can assume that there were zero

OUAI[IlJit/f IIIllRE 2I



whereO3rn_,<en_21 or

N: aoQn+ An_tQn-t
t an_2en_2t rn_3,

and so on.
Finally, dividing the penultimate

remainder rrby e, we obtain

N = anQr+ an-tqn-t + ...
+ a2Q2 + arqt + rot

where 0 . ,o . qr. (Since eo = l, it's
redundant to divide the last remain-
der ro by es-clearly, ro: aoqo = ao.)

A cashier might write this re-
peated division as one long column.
I'11 demonstrate this with the ex-
ample of the sum of 499 rubles we
encountered above:

499+lO=4
400
99-50:r
50
49+25=l
2l
24+lO=2
20
4+ S:0
0
4+3=1
ao
T*1=1
I
0

{Here the quotients en, en_ 1r ... are-

printed in red and the number N to-
gether with the remainders r, - ,,
r n _ 2r . . . are printed in blue. )

Posilional rullll8r $y$[slll$

I guess you must have figured out
by now that the basis

Qo= l, Q1: lO, Q2:102, ...,

Qn= lon' "'
generates the usual de cimal number
system. But instead of writing, say,
4. 10s +0' 10a+3' 103 +0' 102+
f i0 + 7, we simply write 403,017.

An absent-minded cashier/ or one
who is overly meticulous, could pre-
pate afl expense sheet for writing
down her payments, where the
number of paid bank note of each
denomination would be recorded in
a separate column. Here's how the
payment of 499 rubleswouldlookin
such an expense sheet:

We can say that in the "cashier's
number system" the number 499 is
written as 4ll20ll.

Number systems like those we
considered in the last two examples
(that is, the decimal system and the
cashier's system) are called positional
(I'll explain the meaning of this term
later).Instead of the cumbersome ex-
pressionN = anQn+ an_tQn_t + ... a2Q2

+ a1e1+ aoin the positional number
system with the basis (1), it's conve-
nient to use a more compact nota-
tion consisting of n + 1 "digits":
" onon _ t...azaraott (note the quota-
tion marks around the string of vari-
ables). Of course, we assume that
the "digits" ao ate obtained by the
method { 

algorithm) described above.
It follows from this description

that every natural number N has a
unique notation for a given basis.
Further, since the "leading drgit" a,
is obtained by divifing Nby qn, where
57 < er* 1 (because otherwise we'd
begin with dividing N by en * rrather
than q 

nl, w ehav e a n. e n * t I en There-
Iore, Tf A is the (unique) integer satis-
tytns A -1 < en*rlerlA, then the
"digit" a, is no greater than A - 1-
that is, it can take A values: an = O,

!,2, ...,A - l. (For the leading digrt
of a number the value ar, : 0 also has
to be excluded.) Similarly, the digit
an_ris obtained in the process of di-
viding the first remainder rn-t by
4, _ ,. But since z, - r < en,the in-
equality an-r < qnlq,-, holds. This
reasoning can be extended to all the
other digits as well. In particular,
since the last digit ao coincides with
the last remainder zo, obtained after
division by q, this digit can take q,
values ao= 0, 1,2, ...,or c1r- I.

It took some time for people to
come up with the idea of a posi-
tional number system. One of the
difficulties on the road to this dis-
covery was the absence of the num-
ber zero-and, of course/ a special
sign for it. The use of a sign f.or zero
was pioneered by the Babylonians in
their sexagesimal (that is, base-50)
number system. In Babylonian texts

written in their peculiar cuneiform
characters (see figure 1), the numbers
from 1 to 59 were denoted according
to the decimal system. But the main

Y=rY=lY(=tW=z
{=ro((=so

Figure 1

number system of Babylonian math-
ematics was sexagesimal-with the
basis 1, 60, 502, ..., 60',.... Mathema-
ticians who used cuneiJorm arrived at
the idea of having a

special character for
zero rather late (but
certainly not later
than the third century
r.c.). This character is
shown in fisure 2.

Tigure 2

After these explanations, you'l1 be
able to read the notation in figue 3
yourself.

{r{ w'ew
Figure 3

Yes, it denotes the number
12. 503 + 0 . 602 + 2l' 60 + 32 =

2,593,292. The number system of
the ancient Mayan civilization was
very close to the Babylonian system.
The creation of this system dates
back to the first century e..n. While
the Babylonian system combined
the features of the decimal and
sexagesimal systems, the Mayan
system combined the bases 5 and
20. The first 19 numbers were writ-
ten using bars, denoting fives, and
dots, denoting ones (fig. a).

,
a 3. :.. -j- r8.

:*
,o ,2

Figure 4

But the main role was played by a
"distorted" system in base 20. The
"digits" were written one under the
other, the most signi{icant one on top
and the least significant one on the
bottom. Here's what the distortion

.-.L.

--
16

trrt:
/9

i00 5U z5 10 5 3 1

499 4 1 1 2 0 1 1
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Figure 6

was: the third key number (after I and
20) was 18 . 20 = 360 rather than
202 = 400, and it was followed by
18 . 202,18 . 203, 18 . 204. There was

also a special charac-
ter for zero, which
resembled a half-
closed eye (fig. 5).

Figure 6 shows several examples of
Mayan numbers.

The numbers depicted are L . 20 + 0
= 20; 19 '360 + 13 .20 + 13:7,113;
10.360+7:3,607.

The main difference between the
Babylonian and Mayan number sys-
tems, on the one hand, and the Ro-
man system, on the other, consists of
the positional principle of the first
two systems: while Romans always
understood the letter I as one and V
as five regardless o{ where these letters
stood, for Babylonians and Mayans the
value of a digit significantly depended
on its position. This is why number
notations of this kind, which include
our decimal system (created in India
in the 8th-9th centuries or a little
earlier) are called po sitional.

Exercises
l' In the "complete cashier sys-

tem" (based on the key numbers
10,000, 5,000, 2,500,1,000, 500, 300,
100, 50, 20, L5, rO,5,3,2, and l,
which express in kopecks the values
of all bank note and coins used in the
Soviet Union 10 to 15 years ago),
write the sum of 233 rubles 87 ko-
pecks.l Write down the operation of
converting 23,387 kopecks into the
cashier system using continuous di-
vrsion (see the end of the first section).

2. Read the number written in the
Babylonian system in figure 7.

w Yr@r'w
Figure 7

=:
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3. Read the num-
ber written in the
Mayan systeminfig-
ure 8 (the largest
number found in
Mayan texts).

Numlel' $y$lnln$ to a

Uiuen lase
That's what we

call systems of nu-
meration with the
basis

Qs: do = l,
Qv: dr = d,
q;: d', ez: d3, eq= d4, ..., (21

where d is any integer greater than
one. Thenumberdis called thebase
of this number system.

Such systems include the familiar
decimal system to the base d = i0;
the Babylonian sexagesimal system
(d : 60l; and the binary system
ld = 2l1, widely used in computers.
The system to an arbitrary base d is
referred to as d-nary system.

As before, we use the notationN:
" onrn _ r...atao" in a d-nary system
(with quotes around the variables) to
mean-that N = andn + ao_rdn-1 + ...
+ ard2 + ardl + an. Clearly, any digit
ao in this notation can take d values
0, 1, 2, ..., d - 1. In particuLar, witt, d
= l0-that is, with the basis eo = l,
ey:10, qz: 10O,...-we arrive at the
common decimal system (counting
by ones, then by tens, hundreds, thou-
sands, and so on); in this system, no
digit ever exceeds 9.

The simplest d-nary system is the
binary system o{ numeration with
the basis eo= L, er = 2, ez= 4, es= 8,

ea = 16, . . . . There are only two digits
in this system/ 0 and 1. Here's a list
of the first 15 natural numbers in the
binary notation (as you may recall,
a subscript indicates the base of a
number):

610 = 1102

7rc=rll2
810: looo2
910: 10012

1010: 10102

In this system/ calculations are
rather long but extremely simple. If

we always used this system, pupils
would have to memorize only this
"multiplication minitable // 

:

0.0=0,0.1=1 0:0,1.1:1
(and an "addition table" that re,
duces to the equality I + 1 : 10, be-
cause 10, is 2ro!).

Exercises
4. Rewrite the decimal number

N = 123,456 in the (al7-nary number
system, (b) duodecimal ( |2-nary) sys-
tem, which involves 12 digits: 0, l, 2,
..., 9,X = 10, Y = I 1; (c) binary system.

5. What is the decimal notation
for the binary numbers P = 100100,
Q: 101010101?

6. Write out the addition and
multiplication tables in the ternary
(base-3) system of numeration.

lllumtel' $y$tsln$ tltlith othsr ha$B$

Number systems with bases that
are not geometric sequences l, d, d2,
d3, ...do not have many applica-
tions. But they can sometimes prove
useful in solving certain mathemati-
cal problems.

Let's consider some examples of
such systems.

I. Mayan system. As you aheady
know, thebasis of theMayannumber
system has the form 4o = l, qr: 20,
e2=l8qr= 18.20, fu=20qr= 18.202,
4a=20c1r= 18'203, ...'

This system is similar to 2}-nary
system in ali respects but one: in the
Mayan notation N = " anan _ r. . . ararao"
of m arbitrary number (which we write
horizontally rather than in the genuine
Mayan verti cal w ayl, the second digit
(from the right) takes 18 values-

o.or..Qz =18,
Qr

whereas all the other digits take 20
values 0, I,2, ...,19.

This is how matters stand in any
number system with a basis for
which 4n *, is exactly divisible by q,
for all n: O, 1,2, ...:

eo: l, e1: ds, e2= dfl1: dtdo,
Qs: d242, Qa= dsQ3, ..., (3)

where ds, d1, d2, d3, ... are any inte-
gers greater than one-they can be
identical or different. In this number
system the notation

-llll-

-l-.Jtlt-
--rll-rr-

rrrlr

-Ir

-
a

Figure B

lro = 1z

2ro = 102
3ro : 112

4io: 1002

510 = 1012

1110 = 10112

1210: 11002

1310 : 11012

1410 = 1i102
15ro:11I12.

iOne ruble equals 100 kopecks.
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N ="anan_r...ararao"

has the first digit from the errd, as,

taking do values O, l, ..., do - 1; the
next digit, a' takingd, values from
0 to d, - 1; the next digit/ a, takin1
values from 0 to dr- 1; and so on.

Not only that-iust as {or a d-nary
system (which occurs in the case

dn= dr= dz= ... = dl, in the number
system with basis {31 any expression
N = " aran-r...ararao" with nonnega-
tive integers a6r a1t . . .t a, less than do,

d1, ..., dr, respectively, has meaning.
Indeed, it's easy to see that convert-
ing the number N = arQn+ an_LQn-l
+ ... + a1e1+ ao into our number sys-

tem by the "continuous division"
method,2 we'll successively obtain
the digits an,ar-1t ...r a2t all ag.

Howevei, such a smooth state of
things isn't the general ruIe, as we'll
see in an example of one very simple
"number system."

II. Even-number system. Letts
take as the basis the number qo = 1

and all evenntmbers: {o = l, et= 2,

Qz:4,4e:6, 4+= 8, ..' '
T}ner, qrlq, = er : 2, and

en+t _2(n+1) _n+t =r*!.2qn2nnn
foralln>1.

So this number system, like the
binary system/ knows only two dig-
its-O and 1. Printing the numbers
written in this " even" system of
numeration in boldface, we come uP

with the following representations:

2 = 10,3 : \1,4: 100,
5=101,6=1000,7=1001,

8=10000,9:10001,

and so on. And in general, all num-
bers are represented either as a one
with several zeros (if the number is
even) or as two ones separated by a
string of zeros (odd numbers).

Thus, in the even numeration any
number is written in the form
N = " anan- r. . .ararag/' where each of
the digits an,an_1r ...r a2t att aocan
only take one of the two values 0 or 1.

But the overwhelming majority of

of number system is discussed in math
challenge M148 in this issue.-Ed.

28 JtlIY/[ttGU$T tsss

0-1 sequences do not express any
numbers in "even" numeration, be-

cause the "meaningful" sequences
can have ones only in the first and,

sometimes, the last places.
And the last example.
III. Seller's system. The standard

set of weights for a pan balance usu-
ally included a set of 12 weights: 10

g,20 g(two oi these), 50 9 100 g, 200
g (two of these), 500 g 1 kg, 2 kg (two
of these), and 5 kg.3 A seller uses
these to weigh out any multiple of
10 g much as a cashier uses bank
notes. Weighing a certain item-say,
a piece of meat-the salesperson
puts on the balance the heaviest
weight that doesn't outweigh the
meat, then adds the heaviest of the
remaining weights, and so on. For
instance, if the meat weighs 3,460 g,

the following weights will be used:
one 2-kg weight, one 1-kg weight,
two 200-9 weights, one 50-g weight,
and one t0-g weight.

This system of weights was very
familiar to tradespeopie and their
customers in many parts of the
world until recently. To generahze
this to a mathematical representa-
tion of numbers (weights), we add
three smaller weights (l-g,2-g, and
5-g) to get a numeration system with
the basis

L, 2, 5, 1O, 20, 50, 100, 200,
500, 1,000, 2,000, 5,000,

in which the weight 3,450 gis writ-
ten as 11020101000.

The digits in the expression N =

" aoan_r...ararao" olan arbirary num-
beiNin this system can take the fol-
lowing values: the last digit ao can be

equal to 0 or 1 (since h = 2l; the next
one, alrtakes thevalues 0, 1, or2 (since

2. qzlqr < 3); the thkd digrt from the
errd, a2, again is either 0 or 1 (since

Lelaz=2li aris also 0 or l,btttaocan
take three values, 0, 1, or 2 (since
2. qslqq < 3). In general, in the
"seller's numeration" the digits a,
a4, a7, algt ...r a1k * | can take the
three values 0, 1, and 2, while all the
rest can only equal 0 or 1. (This is
why our seller, using the set of

slet's not hear from the physicists,
who insist that "grams" designate
mass only, and not weight!-Ed.

weights originally described, can
manage with oniy one l-kg and one
5-kg weight, but needs two 2-kg
weights.)

Exercises
7. Write the numb ers X, Y, Z in deci-

malnotation rtblX = 1000000001 in
the even notation; (b) Y = l2ll2l in
the seller's slstem; {cl Z :20120 in
the seller's system.

8. Describe all possible sequences
of digits "ooon_r...ararao" that can
be read as a certain number written
in the seller's system.

9.In a number system with basis

{1) two numbers are represented as

N = 1021 1004, M : 10210437. can
you tell which of them is greater?

10. The system of weights de-

scribed above is more convenient for
weighing on a pan balance than the
decimal system would be, but it isn't
the most economical in terms of the
number of weights. To see why, solve
the following problems. (a) What
smallest number of weights is nec-
essary to weigh out any integer
number of kilograms from I through
30 on a pan balance i{ the weights
are aliowed to be placed on only one
pan? (You can choose any weights
you like.)(b) Answer the same ques-

tion, assuming you're allowed to Put
weights on both pans. (c) Answer the
same questions (with both assumP-
tions (a) and (b)) if you have to weigh
out any integer number of grams
from 1 to 1,000.

11. Prove that in the temary system
(which has the basis (2) with d:31arry
number N can be represented as A - B,

where all the digits in the temary rep-

resentations of A, B, xrd A + B are onlY
zeros and ones. Prove that such a repre-

sentation is always unique. For in-
stancg 2:2=10-1,7 = 21 = 101 - 10,

28 : 1001 : 1001 - 0 (the numbers in
boldface arctemary).4

12. Prove that the condition
" en * | is divisible by c1n{or all n = 0,

!,2, ..." is necessary tor any expres-
sion N = "aran-r...ararao" with
as<chl qo, ay<Q2l Q1, ..., anlQr*tl Qr,
to make sense in the numeration sys-

tem with basis (1).

4This is the balanced temary
system, which was used in some

' computers.-Ed.



13. What conditions must num-
bers of the basis es, e1, e2, ... satisfy
such that the notation of any num-
ber consists only of the digits
0 and 1? What additional require-
ment must be imposed on the basis
so as to eliminate any notations
with two ones in a row?

14. Recall that the Fibonacci series is
defined as eo= l, er:2, ez= 3, es: 5,

4q=8, Q5= 13, Qn*t= Qn+ Qr-r, ... .t
Prove that the "Fibonaccian number
system// satisfies all the require-
ments of the previous problem. Find
the following sums in Fibonaccian
notation:

(a) 100...00+100...00,
\ / L-J,

k1
(b) r0r01...0r+t;

-

2m+l

(c) rorot...oI+roo...oo.

--

2m+1 2m+l

15. Is it possible to split all natu-
ral numbers into two increasing se-
qUenCeS At, AZ, AA, ,.. and br, b2,
b., ... such thatbo- ak: k for any
k = 1,2,3, ...?

After some thought
you'll of course under-
stand how to choose
these sequences (this
can be done uniquely-
see figure 9). But it's not
very easy to figure out
the rule for generating
the pairs (ap, bol. How
can we learn, for ex-
ample, which of the
two sequences-dft or
bo-contains 100, what
the corresponding
number k is, and what
number makes a pair
with 100 without writ-
ing out all the preced-
ing ar ar;Ldbo?

It turns out that this rule can be
formulated in terms of the Fibo-
naccian rather than the decimal repre-
sentation of the number in question.
Try to find andprove this rule. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60

sQuantum ran an article devoted
to this famous sequence-see the
|uly/August 1992 issue, p.15.-Ed.

Figure 9

Call for
manuscripts

NrNrrrrN NrNEry-stx marks the 25th anniversary of The
CIub of Rome's study The Limits to Crowth. To provide
its young readers with both information and current
perspectives on this study, Quantum invites the
submission of papers for a special issue on The Limits to
Crowth and its 1992 sequel, Beyond the Limits.

Several authors have already expressed an interest
in writing for such a special issue. Victor Corshkov of
the St. Petersburg Nuclear Physics lnstitute will
prepare a paper that presents ideas from his recent
book Physical and Biological Bases of Life Stability
(Springer, 1995). Kurt Kreith will show how a

spreadsheet investigation from "Look, Ma-No
Calculus!" (Quantum, November/December 1 994)
illustrates "the four generic ways in which a
population can approach its carrying capacity."

We seek additional papers that analyze this study and
its implications from a variety of points of view. Such
papers might address the changes (and growth!) that
have occurred since the publication of The Lirnits to
Growth. They might also address the advances in
computer technology that make such models ("state of
the aft" in 1970) accessible via desktop computers
available at most American high schools and in many
secondary schools around the world. Or they might
review both the study and its critics, shedding light on
the ways in which science and public opinion interact in
the search for solutions to the environmental challenges
confronting the current generation of students.

Prospective authors are invited to send a query to

Managing Editor

Quantum
1840 Wilson Boulevard
Arl ington V A 22201-3000

Fax:703 522-6091

E-mail : quantum@nsta.org
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AT THE
BLACKBOARD I

Cil'cuil$ and sylnlnolry

hack through the algebra behind the diagrams

HE CONCEPI OF SYMMETRY
is very useful in many physical
situations. Many fundamental
physical laws express symme-

try in their formulation-for ex-
ample Newton's law of universal
gravitation or Coulomb's law.
Other physical laws are derived ex-
plicitly from the recluirement of
symmetry. For example, the laws of
relativity-whether Galilean rela-
tivity or Einstein's special relativ-
rty-are based on the symmetry of
the observed physics for different
observers.

The remainder of this article will
deal specifically with electrical cir-
cuits where there is a syrnmetry evi-
dent in the circuit diagram. (See, for
example, problem P39 in the Novem-
ber/December l99l issue of Quan-
tum ard the article by S. N. Lykov

Figure 1

28

An eye for symmetry can help your hand

by Gary Haardeng-Pedersen

and D. A. Parshin in the same issue.)
A classic example of an arrange-

ment of resistors that is difficult to
analyze using standard techniques-
but which is very simple using the
evident symmetry-is a set of iden-
tical resistors along the edges of a
cube (fig. 1). If each of the 12 resis-
tors has resistance R, what is the
equivalent resistance between two
corners that are diagonally opposite?

By way of review, let's consider a
system where two identical resis-
tors, each of resistanceR, are placed
in parallel with a curent l entering
(and leaving) the combination (fig. 2).

The symmetry makes it obvious that
half of the current passes through
each of the resistors so that the volt-
age across the system is

y = fIR,

and the equivalent resistance is

Also, when two identical resis-
tors are in series (fig. 3), the current
through one must be the same as the
current through the other. The volt-
age drop across the pair, from the
symmetry of the situation, must be
twice the voltage drop across each
individual resistor. Hence a voltage
drop V = 21R occurs across the pair
of resistors, so that the ecluivalent
resistance of the pair is

=2R.

A standard textbook problem is to
determine the equivalent resistance
for the system shown in figure 4a.

Five identical resistors, each of resis-
tance R, are connected in a simple
symmetrical arrangement that can-
not be further reduced using series
or parallel equivalences. No two of
the resistors are in series and no two
of the resistors are in parallel.

Nevertheless, the qrmmetry of the
circuit is the key to its solution. La-
bel the four junctiofrs a, b, c, d as rn
figure 4a and assume that a current r
flows from b to c through the resistor
that joins these two junctions.

#
Figure 3

nvn ccl
1

K
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Figure 4

Now redraw the circuit as shown
in figure 4b-the only difference is
the interchange of the upper and
lower branches (and consequently
the junctions b and c). In this modi-
fied circuit, the current i flows from
c tobbecarse of the equivalence be-
tween the original and the modified
circuit, but flows hornb to c accord-
ing to our original assumption. The
only solution to this conundrum is
that the current I must be zero-
only thus can it fulfill both condi-
tions.

Once it has been determined that
the current between b andc is zero,
we can see that the branch between
b ar.d c can be deleted without alter-
ing the flow of curent in the circuit.
After this deletion, the two remain-
ing resistors joined
at b are in series,
with an equivalent
resistance 2R;
those joined atc are
in series with an
equivalent resis-
tance 2R. These
two equivalent re-
sistors are in paral-
le1 between junc-
tions a and d, so
that the equivalent
resistance between
a and d is 2Rl2 : R-
In{act, it is now ap-
parent that arly
value of the resis-
tance between b
and c will carry a
zero current when-
ever the resistances

c3

Figure 5

Rob : Ro" and Roo = R"d,where Rr,
is the resistance between points a
ar.db, and so on.

Now let's retum to the problem
illustrated in figure 1: the set of 12
identical resistors along the edges of
a cube. Assume that a current 1en-
ters one corner (Iabel this corner A)
and leaves the corner diagonally op-
posite (label it D). Of the remaining
six corners, we'll1abel the three that
are one resistor from A as 81, B, and
Br. Label the remaining three cor-
ners that are one resistor from D as
C1, C2, and C, (see figure 5).

From the symmetry/ it's apparent
that the current l splits at the junc-
tion A into three equal parts. One
third of lgoes fromA to B, one third
from A to Br, and one third from A

5f)

12V

b

Figure 6

to B' Again, from the symmetry, at
the junction 81 the current (from A)
splits equally. One sixth of l goes
from B, to C, the other one sixth of
l from B, goes to C.. |unction C.
also receives a current of one sixth
of 1 from Br, so the total current
from C, to D is one third of 1. By any
path from A to D, the total voltage
drop is

v =!a*lR* 1R= 5IR,

3636
and the single resistance that would

have this voltage
drop while carrying
the same current 1

is

, 
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Nowconsiderthe
circuit infigure 6a. It
has four junctions,
labeled a, b, c, d.It
has a pair of equal
batteries, a pair o{
5-O resistors and a
pair of 7-C) resistors,
so there is a certain
amount of symme-
try. Once again re-
draw the circuit, in
the hope that it may
appear simpler when

L--,-...-.**--.*-,'
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redrawn. Place the battery and the re-
sistor in the branch betw eenb and d
on the left of the diagram, with b
and the negative terminal of the bat-
tery near the bottom. Two other
paths connect b to d. One path is
through c, so in the redrawn circuit,
put c midway between b and d, with
the 7-A resistor in the branchdc ar..d

the 2-Cl resistor in the branch bc.
Place a to the right of c. |unction a

is connecte d to b through a 7 -eL re-
sistor, to d through a 20-Q resistor,
and to c through the 5-o resistor and
the 12-V battery.In the branch ca
the positive terminal of the battery
is connectedto a.

It's obvious that the redrawn cir-
cuit (fig. 6blisn't any simpler than the
original circuit; on the other hand, it
isn't any more complicated. In fact, it
appears at first glance to be exactly
the same as the original circuit. But
there are two important di{ferences.
Assume that a current i, flows from
b to c in the original circuit-down-
ward through the 2-Q resistor. Then

in the redrawn circuit, a contradiction
appears. Since the circuit is the same
as the original circuit, the current
should {low downward through the
2-Q resistor; but this would be a cur-
rent not froIJI b to c but from c to b!
The only way to avoid the contradic-
tion is for the cunent through the 2-Q
resistor to be zero. kr exactly the same
fashion, the current through the20-Q
resistor can also be shown to be zero.
A11 of the current actually flows
through the path that has the two
batteries, the pair of 5-f) resistors, and
the pair of 7-Q resistors. In fact, the
curent strength is 1 A. The symme-
try argument used depends on the
equality of the battery voltages and
the matching of the two pairs of re-
sistances. The actual values taken
for the other two resistances are im-
material.

So-look for symmetry in physi-
cal situations. When you find it, use
it to reduce the amount of algebra
you need to solve the problem.

I leave one final problem for you

Figure 7

topuzzle out. Consider the afiarLge-
ment of the 12 identical resistors
that make up the edges of a cube.
What is the equivalent resistance
between two corners that are on the
same face, diagonally opposite each
other (fig. 7)? CI

Gary Haardeng-Pedersen i s an associate
professor of physics at Sir Wilfred
Qenfell College (a campus of Memorial
Univ er sity of N evrfoundland), loc ated
in Corner Brook, Newfoundland,
Canada.

MffiffiN
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By Clifford E. Swartz

Send orders to:
American Association of Physics Teachers

One Physics Ellipse
College Park, MD 20740-3845

Used Math by Clifford E. Swartz
is not a math iext. It is a physics
teacher's tutorial on all the math
for the first two years of
university physics. Instead of
rigorous proofs, there are
ol-ausibilitv exolanations and
^applied ex'am1iles. The book
emphasizes approximation
methods. Topics are: error
analysis, units and dimensions,
the s-imple functions of applied
math, statistics, analytical
geometry/ series, corrunon
differential equations, and much
more. (264pages)

OP-59..... ....$22 per copy

Phone: 301-209-3300
FAX: 30L-209-0845
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Math-Iust for the Fun of It!
from NCTM

Helaman Ferguson: Mathematics in Stone and Bronze
by Claire Ferguson

This museum-quality art book dramatically features the extraordi-
nary mathematical sculptures of Helaman Ferguson. It includes 85

full-color photographs and descriptions of the artistic and mathe-
matical origins of his sculptures. 1994,9" x 12" hardback, Tg pp.,

ISBN 0-639 1 2t -0 -0, #602B.2, $39.95x.

Exploratory Problems in Mathematics
by Frederick W. Stevenson

Presents open-ended problems that introduce students to the creative side of mathematics. Offers you
specific problems that are strictly for intellectual enjoyment and excitement yet have ample room for
proper mathematical exploration. Guidelines are given on how to begin, but the solutions are up to you.
L992,6" x 9" soft-cover, 168 pp.,ISBN 0-87353-338-0,# 49582, $16.00*.

Fractals for the Classroom
by Heinz-Otto Peitgen et al.

Part One: Introduction to Fractals and Chaos
Part Two: Complex Systems and the Mandelbrot Set

An exciting, dynamic view of chaos theory and fractal geometry and how they relate to each other, to
other aspects of mathematics, and to natural phenomena. Both contain beautiful color photographs. Each
7" x9ll2" hardback. Part 1, 1992,450 pp.,ISBN 0-387-97041-X,#44082, $29.00x. Part2,1992,500pp.,
ISBN 0-387 -977 22 -8, #50782, $29.00*.

Fractals for the Classroom: Strategic Activities, Vols. 1 & 2
by Hartmut lilrgens et al.

These hands-on activities will show you the underlying mathematical principles, characteristics, and
beauty of fractals. Each 8 ll2" x 11" soft-cover. Vol. 1 includes nine color slides, 1991, I28 pp.,

ISBN 0-387 -97346-X, #48282, $19.95x. YoL2,1992, 187 pp., ISBN 0-387 -97554-3, #483P.2, $19.95't.

SPECIAL PACKAGE PRICE for all four fractals books...
NOW ONLY $80't ($97.90 if purchased separately), ISBN 0-87353-370-4, #58982.
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KALEIDOSCOPE

lazy-day antidules

Some things to quicken your mind in the good ol' summertime

I T HAS BECOME A TRADITION
I in ou summer issues to pubiish

I collections of recreational prob-
I lems that you can use in a math
competition at summer camp/ or just
solve yourself when you don't have
anything better to do (like the charac-
ter in problem M\46 on page 20).
Here's another set of such problems,
along with five games that have win-
ning strategies for one of the players.
Have fun solving the problems and
finding the winning ways!

Problems
1. Ten coins are arranged in a tri-

angle as shown in the drawing at
right. What smallest number of coins
must be removed so that the centers
of no three of the remaining coins are
the vertices of an ecluilateral triangle?

2. Think of four integers whose
sum and product are both odd.

3. A clock reads B:20. What is the
angle between the hands?

4. Count the fingers on your left
hand in the following order: the
thumb will be 1, forefinger 2, middle
finger 3, ring finger 4, little finger 5;
then reverse yourself: the ring finger
is 5, middle finger 7, forefinger 8,
thumb 9; now reverse
yourself again:
forefinger is
10, and so

line? forest. Rex r{shed home,
5. Seven candl were burning, but when helencoun-

and three of them re blown out. tered Harry
he immedi-
ately turned
around and
ran to Sal1y,

How many were leit?
7. The side lengjths of a triangle

are 1.7,35, anci 18. lVhat is its area?

i

will get the of all odd ,rr'r-L.r, irom 1 to 99.

es exist such
9. When Saily waiked out of the

{orest wrth her dog Rex and headed
home, her brother Haruy left the
house to take a walk in the

on. Whichf
number I

5. Do tri
that the mid

titudes are on
nts of their al-
same straight

8. Find the last digit of the product

1
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only to turn around again and run
back to Harry. He kept running to
and fro until Harry met Sally. What
distance did Rex cover if Sal1y
walked at a speed of 3 km/h, Harry
walked a little faster at 5 km/h, and
Rex sped along at 8 kmih? The dis-
tance from the {orest to the house is
4 km.

10. Two spaceships are flying to-
ward each other. Their speeds are
15,000 km/h and 21,000 km/h, and
their launching sites are 1995 km
apart. How far apart will the space-
ships be one minute before they
meet?

I 1. What number is exactly divis-
ible by all numbers?

12. The titles of three famous ad-

venture novels begin with the num-
bers 2, 20, and 20,000. Do you know
what they are?

13. The base o{ an isosceles tri-
angle is twice as long as its altitude.
Find its angles.

14. An angle of 1'
is viewed through a

lens with 4x magni-
fication. How big
will the angle appear
to be?

Games
1. Two players

take turns removing
pebbles from two
piles-one pile has
13 pebbles, the other
has 10. Each player
is allowed to do
one of two things:
{a) take any num-
ber of pebbles from
either pile or (b)

take the same

number of pebbles from both piles. The
player who takes the last pebble wins.

2. Two players take turns remov-
ing one, two/ or three pebbies from
a piie of 25 pebbles. The player who
ends up with an even number o{
pebbles wins.

3. Two players have two piles of
candies, 9 candies in each pile. A
move consists of moving a candy
{rom one pile to the other and eating
two candies from either pile. The
players take turns moving and eat-
ing candies. The piayer who can't
make a move loses.

4. One of two players puts a

white checker on any square of a

chessboard, the other puts a black
checker on any other scluare. Then
they move their checkers in turn,
each time onto an adjacent square
(horizontally or vertically). The
player who manages to put his or
her checker on the opponent's
checl<er wins.

5. A chess knight is set on a cor-
ner square of a chessboard. Two
players take turns marking squares
(say, with a piece of chalk)-one
square at a time-in such a way that
the knight can reach any unmarked
square without hitting a marked
square. The player who can't make
a move loseJ. O

-Compiled 
by A. Savin

ANSWERS IN THE NEXT ISSUE

.-.1,J -_\_..
,'.n" --*1\t./ ./ \. lj

.' \,r

l

I

I
I

I
I
I

I

I

o
-tr
t!)
(D

C)
fo
f
Ca-

c



PHYSICS
CONTEST

Pins and spin

"Nay, sometimes,
Like to a bowl upon a subtle ground,
I have tumbled past the throw ."

-The 
Tragedy of Coriolanus, Act V Scene 2

by Arthur Eisenkraft and Larry D. Kirkpatrick

LTHOUGH ISAAC NEWTON
probably never bowled a per-
fect 300 game, his physics can
be used to analyze the sport of

bowling. The collision of the bali
with the bowling pins (and the col-
lisions of the pins themselves) must
obey the conservation laws. If we
ignore the friction of the ball and
pins with the floor during the im-
pact, linear momentum in the hori-
zontal directions must be conserved
during these collisions. As the pins
fly through the ai.r, they conserve
linear momentum, angular momen-
tum, and mechanical energy. The
path of each center of mass between
collisions is the same as those of the
profectiles we've all studied in class.

In this contest problem, let's con-
centrate on the interaction of the
ball with the surface of the lane.
Those of us who throw a " cr:.ve
ball" know that this interaction is
very important. Let's imagine that
we throw a ball parallel to the fourth
board in from the right-hand gutter.
This bail would obviously not pro-
duce a strike as it will miss the head
pin and probably only take out the
three pins (6-9-10) on the far right-
hand side.

At the time of release, we right-
handers can lift our fingers to put

spin on the ball so that it curves to
the left and hits the "pocket" be-
tween the I and 3 pins. The curve
changes the ball's angle of approach
toward the pins and yields a higher
percentage of strikes than a "straight
ball." This pocket is also more for-
giving in that it yields fewer splits.

Analyzingthe curve ball involves
looking at two rotati.ons: the spin
and the rotation down the lane. As
we usually do when faced with a
problem in physics, let's begin with
the simplest case-the straight ball.
We assume that the ball of radius r
and mass m is thrown horizontally
with an initial speed vs, with no ini-
tial rotation, and at a negligible height
above the floor. The ball starts with
no rotation, loses speed, and picks up
rotation due to the friction with the
floor, and at some point it rolls with-
out slipping. We are interested in how
long this process takes.

Because there is no acceleration
in the vertical direction, we know
that the force of gravity on the ball
is canceled by the normal force of
the floor on the ba11. Therefore, the
net force is due to the frictionai
force / with the fioor, which we as-
sume to have the standard form
f : $mg, where p is the coefficient
of kinetic friction. Theref ore,

Newton's second law tells us that

f : ma: -pmg
or the linear acceleration a of the
ball is

a = -pg'
The frictional force also exerts a

torque 1 = fu on the ball about its
center. According to Newton's sec-
ond law for rotation we have

r,=Iu=fr=pmgr,
where I = 215 mP is the moment of
inertia of the ball about its center.
The resulting angular acceleration is
given by

5trg

2r
From the kinematics equations

{or translational and rotational mo-
tion, we have

v:Yo+ at:vo-ll9t
and

0) = (D0 + c,(t = 
51St 

.

2r

Using the condition for rolling
without slipping, v = 0)r, we can
solve for the time when this first
occurs:

Yc
=c0
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At the instant the ball starts roll-
ing without slipping, the speed of
the ball ts 5vol7 and the ball has
traveled a distance

6 =r2v2o
49pr9

down the alley. Furthermore, we
can use the final speed to calculate
that the ball loses 217 of its initial
kinetic energy. However, it is very
interesting to note that the loss in
kinetic energy is not equal to fd.
How can you reconcile this?

Let's now return to the curve
ba1l. The ball is initially spinning
sideways without any sideways
translational motion. This is the
inverse problem and leads us to this
month's contest problem. Let,s use
a cylinder instead of a baii to sim-
plify the numbers as we did when
this problem was given on the semi-
final exam to select the 1995 US
Physics Team. Besides, if the cylin-
der is long enough, bowling would
be a 1ot simpler!

Assume that a uni{orm cylinder of
mass m and radius r has an initial rota-
tional velocity rrto about its axis, which
is horizontal. Assume further that we
drop the spinning cylinder onto the
floor from a negligible height.

A. How long is it before the cyl-
inder rolls without slipping?

B. What is the translational speed
of the cylinder at this time?

C. How far down the aliey does
this occur?

D. Use the speed of the cylinder
to calculate the fraction of the initial
rotational kinetic energy that is lost.

E. Show that this loss of energy
can be explained using the work-
energy theorem.

We leave it to you to apply the
ideas in these two problems to the
motion of the curving bowling baIl.
And we hope that your analysis im-
proves your score!

Please send your solutions to
Quantum, I 840 Wilson Boulevard,
Arlington YA2220I-3000 within a

month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Cloud turmulations
The clouds certainly cleared for

Alex Lee, a student at Choate Rose-
mary Ha1l, as he solved the contest
problem in the lantaryfFebruary is-
sue. We will follow aiong with Alex
as the problem unfolds.

A. The first part o{ the problem
asked readers to determine the tem-
perature T, at M1, where the cloud
forms.

Since the air is streaming adia-
batically, we have two equations
that hold:

PVv = constant/

PV
? = constant.

We can combine these two equa-
tions to get

, rl- 
I

q -f P, ) ",

--t-ro [r..,J

Therefore,

Tr= 279.4K = 5.4.C.

B. Consider the pressure di{fer-
ence betweenMoandMr. This must
be caused by the extra ihunk of air
belowM, and aboveMo. Consider an
imaginary cylinder with base areaA
and height ft, from Mo. Then we
have

-PrA + PA: *9,
where m is the mass of air within
the cylinder. Since the density of air
varies linearly, the mass is

m = Ar Ppi&
2'

where p is the density of air. The
density is calculated from the equa-
tion of state:

Po 
=P,

Po% P,.Tr'

Pr = 1.054 kg/m3.

Solving for h, we get

h - f,-4
' .(P,t+Pr )

"[))

fir = 14'08 m'

C. At M, rhe air again strearns
adiabatically up the slope. In this
morrement, we must also take into
considcration that there is an addi-
tional temperature change due to
the condensation of water:

Ta: T, + LT,

where t is the temperature from the
adiabatic process. From this we get

z /p.t' )

rr [4,
f = 2.6,1.8 K.

As ior -\f. rre knorr. that the latent
heat is

(l:;li.:Coll
i2.45 g'i1 500 liT kgl : i1,000 J/kg Kl^r,

_\r = 6.1 K,

I. : l(r-{.S K * (r.1 K = 270.9 K.

D. The precipitation scparated
from the ascending column of air per
sqliare meter per second is

12,000 kg/rnr)i2.;1s g/kgl{10 3 kg/g)(1/1,500 s)

:3.3 l0rmlsr,
i3.3 t0 3 rn rs 1113 hrl(3,600 sihr)

= 35..3 kg/mr.

Since I kg/m2 results in a precipita-
tion level of 1 mm, the depth of the
precipitated water is 35.3 mrn.

E. Whatever air that has passed
over the mountain r,r,il1 probably
descend adiabatical lr :

T. = 300.0 K=26.9"C.

If there were no condensation and
rain from the air, 7, should be equal
to ft. Because of the rainfail, the air
at M. is coider and less moist than
at Mo. e

- . ,- 1
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MATH
INVESTIGATIONS

ReuisilinU lllapoleon'$ Iheoreln

"The last thing we want from you, General,
is a lesson in geometry!"-Pierre-Simon Laplace

by George Berzsenyi

I N THE FIRST F]GURE BELOW,

I -^ra rs arllltf ilry ittlo ps'111r,-r,
I g' ,r-rd C'are chosen ,.r that the
L,r*,a, mxrl(eo tne sarxe way are

ecluaf to one another.
The same is true in the second

fi.gure; however, it shoulcl be notecl
that in the two figLrres we reqrtire
the equality oi dif f er ent pairs of
angies. In lts simplest iorur, the

theorem attribr-rted to Napoleon
B Bonalr:lrte claims that ii

each of the angles
marked is 60",

and i{

A*,
B't ,

and C*
are the
centers of
the out-
wardly con-
structed equi-
lateral triangles,
then LAxB*C); I A

calierl the ottlcr Nri-

L)olL(t11 ttirttl?lt of
LABC, is also ecluilateral .

For more iniormatton on the his-
tory artd variotts cxtell 5iol')\. cun-
verses, and other ilspccl\ ol
Napoleon's theorem the reader is
referrcd to Iohn E. Wetzel's recent
article in The American Math-
entttticttl Monthly (volurne 99, num-
bcr 4, pp.339-351) and thc reier-
ences cited there.

My own interest in Napoleon's
theorem rvas rekindled by a couple
of messa5les that appeared in one of
the geometr). Ile\t,sgroups on the
Internet I geometr.v.pre-college or
gcometr)..pr-r:zles ) and were called
to m\- attention b1'my friend and
forme r co11e ague, Bradley Brock.
One oi these tnessages (by Michael
de \'111ie rs oi Sor-rth Africa) dis-
cussed generahzations to the con-
Irguratrons shorvn in the figures,
rt1-irLe another message {by John
Conrr-ar- oi Princeton Universrty)
\\-enr on to claim that i{ the out-
\\ ardh- drarr n triangles are similar to

some irre cl triangle T lthat is, 7-
shaped, rather than equilat-

e ra1l, and ii thc word
C , -,'r+^ttt i. -^'-1 ^--,1"center" is rcplaced

by any {ixed
point P of

der the similar-
ity transforma-

tion, then these
three images form

'C another triangle
similar to 7. Conway

conjectr-rres that in the general cases

depicted in the two figures, the lines
AA'.', BB.', CC' also concttr in a

point F, and that at F , rf it is interior
to 1:ABC, the three sicles of LABC
all subtcnd the same angles as the

angles subtended by the sides of 7at
the point P.

My challenge to my readers is to
verify the above claims, extend them
by constructing the triangles con-
gruent to 7 inwardly, and ioin the

fun of similar explorations in the
Internet's Geometry Forum

B (http://fomm.swarthmore.edtt)
and on other electronic

platforms. You should
take advantage of the

unique opportunities
for observrng the

rnusings of
Conway

:rncl AA

C other out-
standing practi-

tioners of mathematics, and learn
how to follow in their footsteps.

In closing, I want to thank mY
readers for their responses to the prob-
lems posed in the last two columns.
Most of my next column willbe de-

voted to their findings. O

\ Tand
r- \ itsinr-

i !4

)''- ages-

>/ say, A':',
'B 3)', {l't', un-
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LOOKING BACK

The Uiants

"A giant is like a hill rising up in the middle of a plain."

-Kozma 
Prutkov

VERYBODY KNOWS THAT
Isaac Newton was one of the
greatest geniuses in the history
of science. And it was he who

flatly disagreed with the "esteemed"
KozmaPrutkov.l "If I have seen far-
ther than others," wrote Newton,
"it is because I have stood on the
shoulders of giants." Who were
these giants? Kepler, certainly, and
Galileo, and Copernicus. But what
of the others-the giants who lived
before them?

The first scientist we know by
narne, Thales o{Miletus (5th century
n.c.), made a contribution to as-
tronomy. Legend has it that he pre-
dicted the solar eclipse of May 28,
584 s.c. However, there are reasons
to suppose that he used the method
developed in ancient Babylon. The
Babylonian method was purely em-
pirical: the observations of many
years made it possible to discern a
regularity in the repetition of heav-
enly phenomena.

The first "theoretical" postulate,
which marked the beginning of a
scienti{ic description of the uni-
verse, was probably the notion that
the Earth is spherical. There were
two dogmas underlying the first as-
tronomical systems describing the
universe: the apparent immobility

1A l9th-century Russian writer
lactoally, the pseudonym of three
writers) whose aphorisms are more
quotable than deep.-Ed.

by Vladimir Belonuchkin

of the Earth and the uniform circu-
lar motion of the Sun, Moon, and
planets around the Earth. The fact
that the second dogma was incorrect
was known even to the ancient as-
tronomers/ but nevertheless it was
this dogma that survived for two
millennia-until Kepler's time.

Even if it seems that a heavenly
body moves nonuniformly along a

noncircular path, it nevertheless
moves uniformly about a point,
which in turn revolves uniformly
about another center, and so on,
until finally there is a point revolv-
ing uniformly about the Earth. The
ancient Greek astronomer Eudoxus
was the first to construct a complete
model based on this reasoning, in
the 4th centuryB.c. His scheme con-
sisted of 27 circLes (spheres), and it
accounted for the motion of the Sun,
Moon, and the five known planets
with an accul;racy quite impressive
for that period.

In the course of time the accuracy
of the observations improved, and
this led to the need for more and
more spheres. Callippus, a pupil of
Eudoxus, needed 33 spheres.
Aristotle brought the number to 55.
This system o{ circles and spheres-
improved by the hard work of many
astronomers (Hipparchus first
among them), perfected by Ptolemy
(and named after him), and sanc-
tioned by the authority of Aris-
totle-was the only accepted

scheme of the universe even for
such a great scientific revolutionary
as Copernicus, who "r-Jerely"
shifted the center of the universe
from the Earth to the Sun once and
for all. Only Kepler managed to fi-
nally discard the idea of the circular
uniform motion of the planets.

As you probably know, Kepler was
prompted to reject the old postulate
because of an eight-minute deviation
in the position of Mars from its pre-
ficted location. Tycho Brahe, whose
observations Kepler used, had
achieved such accuracy in his mea-
surements that these eight minutes
could not be attributed to observa-
tional error. If the truth be told, one
and a half centuries before Brahe, the
$eat Muslim astronomer Ulugh Beg
achieved the same-and even
higher-accuracy. But Samarkand is
far from Europe, and Ulugh Beg also
fell victim to his own religion: the
upholders of Islam attempted to erase
the memory of this heretic, even
though he was the ruler of a great cen-
tral-Asian state.

The accuracy achieved by Eudoxus
was about 0.5o; Tycho Brahe man-
aged an accuracy of about 2', whlle
Ulugh Beg's accufiacy w as of the order
of l'. With the invention of the tele-
scope/ the accuracy of measurements
was $eatly improved. But does this
mean that the results of ancient and
medieval astronomers no longer have
any signi{icance for us? Of course not.
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"Despite the railway, keep your
horse-drawn cart," advises the in-
imitable Kozma Prutkov. The
records of ancient scientists-
Greek, Egyptian, Babylonian, Chi-
nese, Inca-help establish the long-
term regularities in the motion of
the Earth, planets, and " stationary"
stars. Here is an example.

Problem 1. The world largest re-
flecting telescope (in the former So-
viet Union) has an objective mirror
with a diameter D = 6 m. How long
must a star be observed with this
telescope in order to find its veloc-
ity more accurately than can l:e
found using the data of Eudoxus?
What about the data of Tycho Brahe
and Ulugh Beg?

To calculate the velocity of a star
we must determine its position at
least two times. The accuracy of tele-
scopic measurement of the coordi-
nates of heavenly bodies depends on
the resolving power of the telescope,
which is fundamentally limited by
diffraction phenomena. The mini-
mum angle that can be measured
with an objective of diameter D is
approximately )vlD, where l" is the
wavelength of the radiation used in
the observations. For example, the
wavelength of yellow light is

PRIMA PARS.
Hoc S.t.fJ d. nod, r.,c,.m .rrst6hofi6.

A proo;f that the Earth is spherical
(;front tr handbook for ntaking sundi-
ttls, 1531). The text reads: "This
drttwing shows that the Earth is
rottnd." And fwther: "If tlte Earth
were square, triangttlar, or hexagonal,
we would see a shadow with the
corresponding shape during a lunar
eclipse. "

?"=6.10-7m,
which means
that the maxi-
mum measure-
ment acaJracy
f or the Soviet
telescope is
about 10-7 radi-
ans. I leave the
remaining calcu-
lations to the
reader (you can
check your an-
swers in the back
of this issue).

The struggle
against the dogma
postulating the
immobilityof the
Earth began in
the 3rd century e.c. The first as-
tronomer to do battle on this front
was Aristarchus of Samos. Although
even Pythagoras and Heracleitus
considered the Sun the center of the
universe, Aristarchus was the first
to try to substantiate this notion.
Comparing the relative sizes of the
Sun and the Earth (which he had cal-
culated himself), he came to the
conclusion that since the Sun was
much larger than the Earth, it
should be the center around which
the planets, including the Earth, re-
voived. And this was eighteen hun-
dred years before Copernicus!

Let's try to foilow the calcula-
tions of Aristarchus in the next ex-
ample.

Problem 2. The Sun is located
much farther from the Earth than
the Moon is. The angular sizes of the
Sun and the Moon are practically
the same, which means that the
Moon's shadow on the Earth is a
point. The Earth's shadow at the
Moon's orbit is approximately twice
the Moon's diameter (the precise
value is 2.67 ). How much larger than
the Moon is the Earthz. Calculate
this ratio using modern data.

To determine the size of the Sun,
Aristarchus measured the angle be-
tween the Sun and Moon at the
Moon's first and last quarters-that
is, when exactly half of the moon is
illuminated. But he made a serious
blunder at this point: according to

"The Skeptic, or Pilgrim on the Edge of the Earth"-a
19th-century woodcut by Camille Flammarion.

his observations, this angle differed
from a right angle by 3" while the
correct figure is 8.6'. It is difficult to
measure this value in general, in
part because of the "ashen" charac-
ter of the light coming from the
Moon: the Moon re-reflects solar
light that the Earth scatters in its
direction. This is why Aristarchus
arrived at a result so different from
the solution to the next problem.

Problem 3. Determine the ratio of
the diameters of the Sun and Moon
using data from Aristarchus. What
will the result be when modern data
are used? (Hint: Aristarchus consid-
ered the angle between the lines
connecting the Earth and Moon and
the Moon and Sun to be an exact
right angle.)

The relative sizes of the Earth and
the Sun obtained by Aristarchus was
not doubted for more than two thou-
sand years. Not until the middle of
the 17th century did the founder of
the Paris Observatory, Giovanni
Domenico Cassini, make direct
measurements of the distance be-
tween the Earth and the Sun and
"increased" the size of the Sun.

As for the Earth, its circumference
had been measured with good accu-
racyby Eratosthenes of Cyrene long
before-in the 3rd centuryn.c. (do you
remember the "sieve" of Eratos-
thenes, used to obtain prime num-
bers?). He knew that once a year in
Syene (modem Aswan) obiects do not

S' rE..rd,krE.n*! ih,. quoo !.nr3onr
Itnrr 
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Thales o{ Miletus (f1. c. 580 u.c.)-Greek philosopher,
{ounder of ancient Greek philosophy.

Pythagoras {c. 580-c. 500 s.c.)-ancient Greek mathema-
tician and philosopher. Created an astronomlcal system
positing a central fire around which the celestial bodies re-

volve, including the Sun, the Earth, and a "counter-Earth."
He is said to have invented the "harmony of the spheres"

and to have recognized that the morning star and the
evening star are in fact one and the same object {Venus).

Heracleitus (c. 540-c. 480 n.c.)-Greek natural philosopher
who exerted a great influence
on the scientific thought o{
his time. He believed change
to be the only certainty oi the
universe and fire its main
principle. He held that al1

men have a universal soul.
He was known as the "u'eep-
ing philosopher" for his pes-

The Aslronolnical 0iants

Apanlial rusler

Ptolemy {{1. 2nd cent. a.o.}-ancient Greek astronomer,
creator of the geocentric system of the universe. He devel-
oped a mathematical theory o{ the motion o{ planets about
a stationary Earth, which made it possible to calculate the
future positions o{ the planets in the sky.

Roger Bacon lc. 122o-1292)-Franciscan philosopher and
naturalist. Wrote about optics/ astronolny, geography,
mathernatics, and chemistry.

Ulugh Beg (1394-1449)-central-Asian statesman, scien-

tist, and enlightener. Built one of the most significant ob-
servatories o{ the Middle
Ages. Compiled an original
catalogue of the positions of
1,018 fixed stars determined
with unusual precision.

Nicholas of Cusa {1401-
1464}-German clergyman,
natural philosopher. One o{
the precursors of the Coper-

simistic vierv of life.

Eudoxus oI Cnidus ic. 400-c. 350 e.c.l-Greek astronomer
and mathematician. He considered the motion of planets
a combination ol27 concentric spheres uniiormly circling
around the Earth.

Callippus {f1. ath cent. B.c.)-Greek astronomer, student o{

Eudoxus. He corrected and improved his mentor's theory of
concentric spheres to account {or the movement oi the Sun,

Moon, and planets.

Aristotle 138 4-322 s.c.)-Greek philosopher and scientist.
His works cover all branches of ancient knowledge. In as-

tronomy Aristotle's interests were concentrated mainly
on the structure o{ the universe. He also made some ob-

servations of celestial phenomena, comets, and shootlng
stars.

Aristarchus of Samos (11. c.270 e.c.)-ancient Greek as-

tronomer. He was the first to maintain that the Earth re-

volves around the Sun, which he stated was fixed and 1o-

cated at the center of the sphere of the fixed stars.

Eratosthenes of Cyrene |c.276-c. l94a.c.l-ar.cient Greek
scientist who worked in many {ie1ds of knowledge. In
mathematics, for example, he invented a way of finding
prime numbers. He was the {irst person known to have
measured the Earth's circumference. He worked out a cal-
endar that included leap years and tried to {ix the dates of
literary and political events since the fall o{ Troy.

Hipparchus l[1. 146-127 n.c.)-ancient Greek astronomer,
one of the founders of astronomy. He determined the dis-
tance to the Moon, calculated the length of a year, and

compiled a catalogue o{ 850 stars, which he subdivided
into six classes according to their brightness.

Poseidonius of Apamea ic. 135-c. 51 e.c.)-ancient Greek
philosopher. His scientific wor]<s covered a1l the fields o{
knowledge and gave ancient natural philosophy its final
form. He ascribed tides to the combined action o{ the Sun
and Moon and recognized the connection between tides
and the phases of the Moon.

nican cosmology and experi-
mental natural science. He suggested that the Earth might
rotate on its axis, and that observers on the Sun would see

the Earth revolving about them.

Nicolaus Copernicus 11473-1543)-Polish astronomer, cre-

ator of the heliocentric system of the universe. He made a

revolution in science by rejeeting the dogma of the central
position o{ the Earth, which was accepted {or centuries. He
explained the apparent motion of celestial bodies by the ro-

tation of the Earth about its axis and the revolution of the
planets, the Earth included, around the Sun.

Tycho Brahe {1546-1601)-Danish astronomer, reformer
o{ practical astronomy. For more than twenty years he
made astronomical observations in Uraniborg, in the large
observatory he bui1t. The obsewations were made with the
highest precision possible for his time. Using his data,
Kepler {ormulated the laws of planetary motion.

Francis Bacon ll56l-16261-English philosopher and
statesman, forerunner of the English materialist school of
philosophy. Formulated general principles of experimen-
tal investigation.

Galileo Galilei 11564-1,6421--:Italian scientist, founder of
modern physics and telescopic astronomy. His scientific
activity was of great importance {or the victory of the he-
liocentric system of the universe.

|ohannes Kepler 11571-1630)-German scientist, one of
the founders of modern astronomy. He discovered the laws
of planetary motion {known as Kepler's laws) and on this
theoretical basis calculated the planetary tables.

Giovanni Domenico Cassini {1625-17 l}j-Italian astrono-
mer. He became the first director of the Paris Observatory
in 1671. Cassini discovered the rotation of ]upiter and
Mars, two o{ Saturn's moons, and a dark fivision in its ring
that now bears his name.

Ole Rsmer 11644-17 l})-Danish astronomer. Determined
the velocity o{ light by observing the eclipses of }upiter's
moons.
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cast shadows. Eratosthenes traveled
to Syene and confirmed this. Thus he
realizedthat during the summer sol-
stice the Sun in Syene was at the ze-
nith. In Alexandria, where Era-
tosthenes lived, the Sun at the
surnmer solstice fell short of the ze-
nith by 1/50 of a circumference. The
distance between Alexandria and
Syene is about 5,000 stadia (a stadium
was a Greek unit of length), and the
towns are located on virtually the
same meridian. It was a simple prob-
lem for Eratosthenes, and it is now
being offered to you.

Problem 4. Find the Earth's cir-
cumference using the data given
above.

A solution in stadia can be ob-
tained at once: 250,000. But how
does it look in kilometers? Those
who want to flatter Eratosthenes
choose a value of 157 m for one sta-
dium. This gives "astronomical"
acaJracy-less than 2o/"-for the
ancient astronomer's data. How-
ever/ two points remain unclear.
First, Syene is not located exactly at
the tropic of Cancer; second, it's
strange that a century and a half
later, Poseidonius of Apamea mea-
sured the Earth's diameter with an
even larger error: he obtained a value
of 240,000 stadia-that is, the error
worsened threefold in a century and
a half. The most probable value for
a stadium seems to be about 190 m.

Let's return to Aristarchus. He
was the first to suggest the idea of
heliocentrism, but he failed to sub-
vert the evidence in favor of the ex-
isting dogma. So for another two
thousand years/ the Earth was stuck
in place. As time went b, however,
the accuracy of the measurements
increased, and it was more and more
difficult to reconcile planetary mo-
tion with Ptolemy's scheme.

In this long story of how the geo-
centric system of the universe was
overthrown, one particular cardinal
of the Catholic Church, Nicolaus of
Cusa, is worthy of mention. His ar-
guments were completely theologi-
cal: as the almighty Lord is omni-
present/ any point in the universe
must be equidistant from Him and
can claim the role of the center of

the universe. But one mustn't think
that the merits of this scholar can be
boiled down to that one sentence.

Roger Bacon in the 13th century,
Nicolaus of Cusa in the 15th, and
Francis Bacon at the beginning o{
the 17th century laid the ground-
work of the modern scientific
method, whose main idea can be
expressed in the dictum: "Experi-
ment is the criterion of truth." Some
may ask: Isn't that a bit meager-
one thesis for four centuries? But we
should recall that for more than a
thousand years the criterion of truth
was that it be in accord with the
Bible and with Aristotle. Indeed, as
early as the 17th century one could
readily fall into the clutches of the
Inquisition just for counting the
number of legs on a spider. Aristotle
wrote that a spider has six 1egs, but
if you tried to count them yourself,
you'd certainly obtain eight (pro-
vided the spider isn't an invalid)-
and this would be a great sin. But it
was Nicolaus Copernicus who man-
aged to strike the death blow to the
geocentric system.

At the beginning of the 17th cen-
tury, the Dutchman Hans Lippershey
built a telescope, fulfiliing a predic-
tion made by Roger Bacon iong be-
fore, and the news spread like wild-
fire. Two years later, on lan:uary 7 ,
1610, Galileo pointed his own im-
proved model at Iupiter and found
that this huge planet had four
moons. Now we know that |upiter
has more than a dozen moons, but
the four largest are still called
|upiter's Gaiilean moons. By 1670
Cassini had obtained a realistic
value for the radius of the Earth's
orbit. Five years later Ole Rsmer
realized Galileo's dream and mea-
sured the velocity of light, using
|upiter's moons and Cassini's data.
Let's solve the same problem,
though in a somewhat di{ferent way.

Problem 5. The period of time
between two successive eclipses of
)upiter's satellite Io changes during
a yeat from the minimum value of
42h28 min 21 s to a maximum of
42h28 min 51 s. Find the velocity
of light.

Since fupiter's orbit is much

Iarger than the Earth's, and fupiter's
velocity is far less than the Earth's,
we can assume that in the course of
ayear the relative positions of these
planets do not change significantly.
The apparent variations in the pe-
riod of rotation of Io are connected
only with the change in the direc-
tion of the Earth's velocity. The
value {or this velocity is constant
and equal to 29.8 km/s.

As time passed, more data accu-
mulated, acc:utacy increased, and
empirical laws were obtained. The
time has come to explain them.
However, this exceeds the limits of
the present article. The reader is in-
vited to explore previous articles in
Quantum, such as "The Fruits of
Kepler's Struggle" (l anuary f F ebraary
19921 ar;.d "The Universe Discov-
ercd" lMayflunel992l. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 61
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MATHEMATICAL
SURPRISES

Dn [Ulall'ix on lhe wondor$ ol I
MS found in a file cabinet

by Martin Gardner

DITOR,S NOTE:THE NARRATIVE THAT FOL.
lows is based on a manuscript discovered by the
managing editor while cleaning out his files. It
bears the date fuly 28, 1988. As Quantum was but

a gleam in a Soviet 6migr6's eyes in the summer of
eighty-eight, it is not at all clear how the manuscript
came to be lodged in this particular file cabinet. It is of-
fered to our readers as a serendipitous bit oi fuly/August
reading matter.

Mv cooo FRTEND Dr. Irving |oshua Matrix, the world's
greatest numerologist, was not killed by a Russian KGB
agent in 1980 as I once reported. He is alive and well in
Casablanca, as I shall reveal in my book From Penrose
Tiles to Trapdoor Ciphers.

I had occasion to see Dr. Matrix at a recent confer-
ence on superstring theory. The centennial celebration
of the American Mathematical society (AMS) will be-
gin on August 8 of this year. The date can be written
8/8/88, a pattem of digits that I was sure would interest
my friend. When i asked him for comment about the
numbers 8, 88, and 888, he smiled slightly, put his finger-
tips together, and spoke for almost an hour. Here are some
of his remarks that I managed to jot down while he talked.

Eight, he began, is one of the most interesting of dig-
its. From the standpoint of pure arithmetic, it is the
second cube, the sixth Fibonacci number, the sum of the
first three digits of pi, and so on, but these he consid-
ered dull and trivial facts. Applied to the outside world,
B takes on more glamour as the notes of an octave, the
arms of an octopus/ the 8-cylinder motor/ stock market
eighths, the figure-B knot, the skater's figure 8, the B-

hour workday, the eight Beatitudes, the predicament of
being behind the S-ball, old Spanish pieces of 8, and the
eighth wonder of the world.
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Turning to his specialty,bizarrenumerology, Dr. Ma-
trix called 8 both the holiest and the largest of the dig-
its. It is the holiest, he said, because it has two holes.
The other hole digits-}, 5, 9, and sometimes 4-have
only one hole. It is the largest because, given a quarter
turn, it becomes infinity.

0U[ilIUl't/illtTlltl'lITlCll.SUnPRl$tS 43

{-
a- .t,'t t (



Half of B is 0 or 3, depending on whether you slice it
horizontally or vertically. Dr. Matrix credited his friend
Gerald |. Cox with noticing that three fourths of 8 is 9
or 6, depending on which of its four arcs you remove/
but since 6 actually is three fourths of 8, the fact is of
no numerological interest. Written as a Roman nu-
meral, VIII is half of XIII, at least the top ha1f, and we
should remember that B leads the list when all the En-
glish names for numbers are alphalretized. Ofcourse, he
added, 8 is the past tense of " eat." At this point Dr.
Matrix leaned back in his chair, his emerald eyes twin-
kling, and recited the following line from Finnegans
Wake, which he said, so help me, I could find on page
142,line 2, of the Viking edition: "And who eight the
last of the goosebellies . . ."

When I asked Dr. Matrix for some number problems
involving B, he at once proposed a set of seven tasks, all
involving the insertion of plus or minus signs into the
ascending sequence 123456789 or the descending se-
quence 98765432I to produce sums of B, 88, and BB8.
He began with 88, the last two digits of the year 1988.
There are, he assured me, six ways to insert plus or
minus signs into the ascending sequence to obtain a
sum of 88. Here is one:

I-2-3+4-5+6+78+9:BB.
Can the sum be achieved with as few as four signs?

Yes, this the minimum number, and the solution is
unique. Can you find it without writing a computer
program?

The descending sequence has sixteen solutions, but
only one with as few as five signs. Can you work it out?

If a minus sign is permitted in front of a sequence,
Dr. Matrix continued, other solutions are possible.
With a minus sign in front of the ascending sequence,
there are eleven ways to make a sum of BB, but none is
unique for a specified number of signs. However, if a
minus sign is put in front of the descending sequence,
there is just one solution. Hint: it uses eight signs,
counting the minus sign in front.

If the desired sum is 888, there is no solution for the
ascending sequence/ either with or without a minus sign
in front. For the descending sequence there are three
ways to obtain BB8 with signs inside the sequence, and
one way to do it with a minus sign in front. Hint: it uses
five signs altogether.

Now for the digit B as the sum. There are, said Dr. Ma-
trix, eight solutions for the ascending sequence without
the minus sign in front, but none is unique for a given
number of signs. With the minus sign in front, there are
ten solutions, but only one with as few as five signs. Can
you find it?

There are three ways to obtain 8 for the descending
sequence with no minus sign in front. One is unique for
seven signs-the maximum. The descending sequence
with the minus sign in front has six solutions. The
smallest number of possible signs is five. The solution
is unique, but not easy to find.

l'z-r/d
l/./1"11

Figure 1

Dr. Matrix drew a 3 x 6 matrix on my notepad. First
he penciled six 8's in the cells (fig. 1a) to produce a sum
of 1776, the most famous date in US history. He added
five more 8's (fig. lb) to raise the sum to lBBB (the year
the AMS was founded). Then he erased all the 8's and
asked: "Can you place eight 8's in the cells (fig. lc) to
make the sum exactly 1,000?

"Here's an elegant little problem," Dt. Matrix contin-
ued. "It involves the location of 8 in a 3 x 3 magic square.,,
He sketched on my notepad (fig.zal the ancient 1o shu,
or Chinese magic square/ and ca11ed my attention to the
B in the iower right comer. Alongside it he drew an empty
matrix of nine cells, then penciled 8 into the top middle
cell (fig. 2b). The problem: add eight whole numbers, no
two of the nine numbers alike, to the vacant cells to form
a magic square with the lo shu's constant of l5-that
is, the sum of each row, each column, and the two main
diagonals is 15. The solution is unique.

Figure 2

"Would you say that the centennial of the AMS is a
special occasion?" Dr. Matrix asked.

"Of course," I replied.
"If you own a New Testament, King fames version,,,

he went on, "you might check the eighth book, the
eighth chapter, the eighth verse, and the eighth word.
Note also that the word has eight 1etters."

Before we parted, Dr. Matrix asked me to divide
987654321by 123455789. I took out my pocket calcu-
lator and punched in the numbers. The quotient blew
my mind! O

Martin Gardner vwote the Mathematical Games column in
Scientific Am erican for 25 years. Among his many books, The
Magic Numbers of Dr. Matrix (Prcmetheus Books) contains
all of Gardner's interviews with the notorious numerclogist
before his apparent death in a pistol duel near Istanbul.
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IN THE LAB

Canopies and hotlum{lowinu sll'ealn$

Physics in a spoonful of water

by lvan Vorobyov

initial stream meets the water sur-
face in the spoon, as well as to the
angle and cleanliness of the spoon.
Sometimes several streams form,
which quickly break down into
droplets.

A strong stream/ however,
spreads as a thin layer from the point
where it hits the spoon, and the
water flows off the edge of the spoon
as a broad canopy fringed from be-
low with thin streams and drops
lfi1.zl.It's pretty clear why the wa-
ter forms a thin film as it splashes
out. The falling water has enough
energy to run up the brim with a

nonzero velocity. Then in the course
of its free fall the small streams
come together to form a thin curved
surface.

Consider the trajectories of differ-
ent parts of the water as independent,
each of them parabolic-that is, the
water particles move under the action

of gravitation only. Then it's easy to
evaluate the horizontal velocity v at
the top of the canopy of water (fig. 3).

During the time r that the particles
travel between the spoon's brim and
the top of the canopy, the horizontal
displacement is x = vt and the verti-
cal displacement is y: g*12. Having
measured x arrd y, we can now find
the velocity:

l;IAv=x l-.
\zv

In a set of typical measurements, the
values obtained were x : l0 cm,
y=4.5 cm, andv= 1m/s.

In order to clarify whether the
energy lost during impact and due to
the friction between the stream and
the spoon is essential for our reason-
ing, it's appropriate to compare the
velocity v with the velocity u of the
original stream at the same level as

the parabola's apex. Measuring the
time it takes to fill a glass (whose
volume is 200 m1), we obtain the
flow per second e = nPu, where r is
the stream's radius. Thus,

Figure 3

OUANTll1lll/II{ IIII ITB

I F YOU'RE EYER ASKED, "\A/HAT
I ti"a of a stream fills a spoon

| *or" quickly: a weak stream or a
I strong s1s?tt-v121ch out! It's a

trick question. In a strong stream of
water a spoon stays virtually empty,
while a weak stream fills the spoon
completely----even "more than com-
pletely"! But-first things first.

SFeams udt til sFoltu
You can do the following experi-

ment and see for yourself that the
weak stream results in an almost
horizontal water surface that curves
at the brim, where the water then
flows along the outer surface to the
middle of the spoon's bottom and
again forms a stream (fig. 1). This
lower stream isn't particularly
stable-it's sensitive to where the

Figure 1 Figure 2
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Figure 4

The steplike transition from rapid
flow in the thin water film to almost
stationary water behind the steep
wall can be observed more easily
when the surface involved is simpler
than that of a spoon. You could use a
hand mirror with a low rim created
by the frame. In this case the radius
of the water depression-that is, the
region of rapid flow-varies smoothly
with the sftength of the stream. The
height H of the water wall almost
coincides with that of the rim and is
much greater than the thickness fr of
the incoming thin layer of rapidly
flowing water in front of the wall
(fig. 5). The velocity v of the rapid
water decreases in the narow region
of the steep ascent (you can see the
turbulence in the water there).

Let's consider the portion of the
water delimited by the vertical faces
Hl and hl and apply Newton's sec-
ond law. Water of mass pvhl (where
p is density) enters this fragment per
unit time, and at some distance be-
yond the wall the velocity of the
water drops almost to zero. Thus,
some force is decreasing the mo-
mentum by pvzhl every second.
What is this force?

It turns out that it's the pressure
from the almost stationary water.

(Friction against the bottom is ne-
glected due to the small horizontal
distance in the region where the
water rises. The forces that arise in
the turbulent water at this step are
internal and don't aff.ect the total
momentum. The forces of surface
tension are also insubstantial.)

The pressure at depth H is greater
than the atmospheric pressure by
pgH, but to calculate the force we
must take the mean excess pressure.
Thus,

E - 
pgH ut - PgHzl

, - 

- 

t tl

22
It is this braking force that is equal
to the rate of decrease in the mo-
mentum. From this we obtain the
important relationship

2t gHz
V n=-

2'
which can be viewed as the condi-
tion whereby the boundary of the
water wall stays put. So what hap-
pens if the faucet is opened wider-
or if the spoon or mirror is lowered?
Then vzh increases and becomes
greater than gH?12, the water wall
yields to the pressure of the rapidly
flowing water, andthe step starts to
move in the direction of the flow.
We can calculate the velocity of the
step using Newton's second law
again and the law of conservation of
mass, If, however, the pressure of
the water wall is greater than the
pressure of the incoming water
kU2l2 r*hl, the step will move to-
ward the flow and the region of al-
most standing water will increase.
(In the same way/ for example, the
tidal rise of sea water "locks" a
river's estuary and produces an
abrupt tidal wave that runs counter
to the river's flow.)

fiadius olile canou
Under our experimental condi-

tions, it's not easy to verify the rela-
tionship

z, gHz
V n=-

2

In the case considered above, we get
u = 1.4 m/s. The velocities aren't
identical, but they're close. So for
the purposes of our rough estimates,
we can neglect the energy losses due
to the initial impact and the friction
of the water against the spoon.

Now let's return to the weak
stream. Paradoxically, in this case
the energy of the falling water is also
more than enough for the water to
fly off the spoon, but this doesn,t
happen. What is it that slows the
water almost completely, if the
losses from the impact and friction
aten't responsible? There is a good
reason to consider carefully the tran-
sition from the quiet stream flowing
over the brim to the arching film
that sprays out from the spoon.

Bnaking alfie wall
Experience has shown that, even

if one is careful in opening a faucet,
the splashing is unpredictable. So
it's advisable not to touch the faucet
once you open it up to produce a
moderate stream/ but instead slowly
lower the spoon to the bottom of the
sink. It's interesting that the results
depend strongly on preconditions. If
you achieve the splashing mode of
flow and then raise the spoon a few
centimeters, the water will continue
to spray over the spoon's brim. But
as soon as water fills the spoon/ you
won't be able to restore the canopy
simply by lowering the spoon to the
initial position-you need to lower
it still more.

If the spoon is rather flat and if
you are attentive/ you can observe
an interesting phenomenon: the fall-
ing stream makes a depression in
the water down to the surface of the
spoon. This depression is bounded
by a steep wall of water. The water
is calm behind the wall, and the sur-
face of the water behind the wall is
a little bit higher than the spoon,s
brim (fig. a). The srream is strong
enough to push away the water near
the point where the stream meets
the spoon, but it isn't strong enough
to empty the spoon entirely.
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Figure 6

-the thickness ft is too small, and
the velocity v is hard to measure. So

let's choose anotherway. Let's try to
measure as accurately as possible
the stream's diameter 2t at tts nar-
rowest part (its "neck")-that is, at
a height of about H from the hori-
zontalplatform, and also the radius
R of the circular wall (fig. 5). We'll
assume that the velocity of the wa-
ter is unaffected by friction and the
small difference in the heights
where the smooth overflow occurs.

The same amount of water flows
through the neck as through the cy-
lindrical boundary of the wall,

which has a height h and diameter
2rcR. Thus,

Q=Nrzv=2nRhv.

From this we get the velocity

qv= 
2llr

and the thickness of the layer of.

spreading water

2

h='
2R

Substituting these values into the
relationship tPh = gH212 gives us the
radius of the spreading water:

l( ., \2
-R=-l - l.

slnrH )

Using measured values of q :
52 ml/s, r = 3.5 mm, and H : 6 mm,
my calculated value of R was 9 cm,
while the directly measured R was
5 cm. My calculation was off by

50Yo.I suspect that this is due pri-
marily to our allowing the velocity
of the water to be considered con-
stant as it travels the rather long dis-
tance in the narrow layer. Assuming
a decrease in velocity of 40% results
in a passable numerical agreement.
I hope your experiments confirm
this conclusion.

But no matter how interesting the
phenomena in the spoon/ and no
matter how instructive it is to delve
into the fine points of the shape of
the surface and its effect on the flow,
certain "kindred" phenomena that
lie well beyond the spoon's brim are
even more interesting. I'11 give you
just one example. In rapidly flowing
mountain streams, the ruggedness
of the riverbed can cause the water
to stop almost completely and dam
up. Such a wall of water can prove
hazardous to a person negotiating
that stretch of river in a kayak or
river ratt, due to the steepness of the
water and the abrupt change in the
velocity of the current. O
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too) should be embraced and welcomed. Its relatively low

Share the OUANTUM experience!
To order, call I 800 SPRINGER (1 800 777-4643)

On the World Wide Web: http//www.nsta.org/quantum

subscription price makes it a bargain for the wealth of
knowledge and recreational materials its readers
receiv e." -fournal of Negro Education

"Translations are in excellent and easily understandable
English; English-language articles are similarly well
written. This wonderful magazine should be in every
secondary school library and in college and public
libraries as well."-Magazines for Libraries

"It should be in every high school library [and] in most
public libraries . . . we owe it to our students to make
Quantumwidely available. "-Richard Askey, Professor
o[ Mathematics at the University of Wisconsin, Madison
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AT THE
BLACKBOARD II

ll'reuular reuulal' rulyuolt$

A problem owed to Noah Webster's successors

by Eric D. Carlson and Sheldon L. Glashow

AVE YOU EVER FOUND A
math problem in a dictionary?
We have. A regular polygon,
according to the American *++

Figure 2

demand that none of its sides touch
except at vertices and that all its ver-
tices be distinct. Thus, the polygons
in figure 2 are disqualified. The 5-
sided star has sides that intersect,
and the 9-sided symbol suggesting
radioactivity has several coincident
vertices at its center. Indeed, there
are no IRPs with fewer than 10 sides.

The least IRP is the unique 10-
sided polygon shown in figure 3. It

top and the bottom. Since we have
added two wiggles, and each wiggle
has two sides, the total number of
sides 5 + 4 : 10. We can add wiggle
pairs to build larger IRPs with 6 + 4n
sides, where n is any positive inte-
ger. In figure 4, you can find an IRP
with 46 = 5 + 4. 10 sides built this
way. The trick works because 2 di-
vides 5. Any number of wiggle pairs
can be added in a symmetrical pat-
tern without spoiling the closure of
the polygon. Of course, 3 also di-
vides 5. Thus, we can add wiggle
triplets to the hexagon, rather than
pairs, to make new IRPs. Figure 4
also shows (5 + 5n)-sided IRPs for
n = 1,2, and 3.

These tricks can be combined to
build IRPs with 6 + 4n + 5m sides.
Figure 5a is a 30-sided IRP made this
way withn = 3 and m = 2. O{'course,
1 and 5 also divide 6. One is not a
helpful divisor: you can't add single
wiggles to a hexagon symmetrically.
But you can add 5 wiggles to build

IRPswith6+lZn
sides. Figure 5b is the
30-sided IRP made
this way withn = 2.

Thus far, all our
IRPs were built by
adding sides to a regu-
lar hexagon. We have
shown how to build
IRPs with any even
number of sides not
less than 10. What

Heritage Dictionary, is a polygon
"having equal sides and equal
angles." Really? Consider the two
polygons in figure 1. For each, the
sides have equal lengths and the
vertices form right angles. Accord-
ing to the dictionary, both are regu-
lar polygons.

__tL
L-r L'

Figure 1

Polygons like the square, for
which all inteilor angles are the
same/ are truly regular, while those
like the Swiss cross on the right, for
which some interior angles are
supplement ary | w e shall call irregu-
lar regular polygons (IRPs). Regular
polygons are a cinch. Aside from
size and orientation, there is one
such polygon for every N > 2. The
IRPs to which our dictionary led us
are much more interesting.

First, we should clarify what is
and is not an IRP. It's reasonable to

Authors' note'. Ou research on
irregular regular polygons was
supported in part by the National
Science Foundation under grant
number PHY-922-18167.

Figure 3

is made from a regular hexagon by
inserting an extra wiggle at both the

oA
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Figure 5

abor-it IRPs rtth an odd number of
sidesl The technique used ior the
hexagon can be applied to a larger
regular polygon-sa-v, one rrith 15

sides. Because 3 divides 15, rr-e can
add triplets of wiggles to get IRPs
with 15 + 6n sides. Because 5 dir.ides

Figure 6

15, we can add quintuplets of wiggles
to get IRPs with 15 + 10n sides. Fig-
ure 6 shows 21- and 25-sided IRPs
made with 15 + 6 and 15 + 10 sides,
respectively.

As for the initial hexagon, the
two methods can be combined to
buildIRPs with i5 + 6n + 10m sides.
Figure 7 is a 3l-sided IRP made in
this way with n : rr7 : 1. It is the
least IRP with a prime number of
sides. Two variations on the design
can be obtained by replacing one or
two portions with the lines shown
in color.

Of course, one need not start with
a l5-sided regular polygon. Begin-
ning with a regular pentagon, we can

\..\-
Figure 7

buildlRPs with9 + 6n
sides. These starting
points,withn=1,
yield two different
IRPs with 15 sides.
They are shown in
figure 8, along with a
third l5-sided IRP.

For what values of
N are there IRPs?

Even values of Nhave already been
dealt with. Beginning with a regular
15-sided regular polygon, and ex-
tending it as we have described, we
can obtain all integers of the {orm
\5 + 6n + 10m. These include 21,25,
and 27, as well as all odd integers

greater than 30. Hav-
ing already con-
structed three different
1S-sided IRPs, we are
left IRPless for only 15

values of N:forprimes
less than 30 and for
any integer less than
10. In fact, none of
these IRPs exists.

Figure 9

For any N, how many different
IRPs are there? This is a tough ques-
tion. The least IRP with 10 sides is
unique. For N = 12, there are three
distinct IRPs. Two of them appear
previously in this article-can you
find the third? For largerNthe num-
ber of IRPs grows rapidly. We be-
lieve there to be 19 different IRPs
with N = 18. These are depicted in

figure 9. (Four of these IRPs are dis-
tinct from their reflected versions.
I{ both handednesses are counted,
there are 23 eighteen-sided IRPs.)
This is the first instance for which
the number of IRPs exceeds the
number of sides.

Smaller IRPs possess some level
of rotational symmetry. Larger ones,
like two of the l8-sided and one of
the 3l-sided IRPs, can be completely
asymmetric. The least completely
asymmetric IRP is shown in figure
10. It has 15 sides.

In all the examples given so far,
it is implicitly assumed that IRPs
are planar figures. Suppose we re-

Figure 10
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move this restriction and allow the
figures to be drawn in three dimen-
sions? This additional dimension
permits IRPs to be constructed with
any number of sides except 1,2,3,
and 5. Basically, the freedom al-
lowed by the additional space is so
great that for large N it's very easy
to make an IRP. It's obvious that
there cannot be any IRPs with fewer
than 4 sides, but the absence of a 5-
sided IRP is intriguing.

For a less tractable and more in-
teresting ptzzLe, let's demand that
three-dimensional IRPs satisfy a
more stringent criterion. Suppose
that not only the angles between
adjacent sides but also those be-
tween next-to-adjacent sides are
equal. What do we mean by the
angle between next-to-adjacent
sides? The angle 0 between two vec-
tors a and b is given by the relation

a.b
cose - _.

Iallbl

If the cosines of the angles between
next-to-adjacent sides are all equal,
then we've shown that IRPs exist for
all even Nexcept 2. We have no idea
whether they exist for any odd value
of N. If we further demand that next-
to-next-to-adjacent sides make
equal angles, then all the even IRPs
persist and there are no odd IRPs.

Plenty of unsolved IRPish ques-
tions remain for you. For planar
IRPs, how does the number of dis-
tinct species grow for large N? Can
you prove that 31 is the largest value
of N for which the number of differ-
ent IRPs is less than N? Is there a
systematic way to find all IRPs? In
three dimensions, with next-to-adja-
cent angles equal, are there any odd
IRPs? Irregular regular polygons in
more than three dimensions are also
worth studying, but ail we have
done so far is find a S-sided IRP in
four dimensions. O
Eric D. Carlson is an associate professor
of physics at Harvard (Jnivercity, spe-
cializing in particle theory and particle
astrophysics. In August he will ioin the
physics department at Wake Forest
University. Sheldon L. Glashow js
Higgins Prcfessor of Physics at Harvard
University and a founding editor of
Quantum.
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HAPPENINGS

Jllaking seltse oloil' sglt$B$

How do we recognize a friend, dis-
tinguish colors, respond to smelIs? A
full-color report from the Howard
Hughes Medical Institute takes a

fresh look at recent scientific findings
in the area o{ sensory perception.

The 59-page publicatior', Seeing,
Hearing, and Smelling the Woild,
reports on new research about the
sensory receptors and the intricate
pathways in the brain that let us
perceive what's around us. It shows
that, even within the visual system,
the brain has separate pathways for
color, shape, and motion. After a

stroke, for instance/ one woman
could no Ionger see motion.

The beautifully iliustrated report
also shows how some of the brain's
assumptions shape what we see and
hear. For example, we assume that
light comes from above, like sunlight,
and are fooled when light actually
comes from below. The publication
covers new findings about the genes

that determine what colors we can
recognize and about pathways that
are activated as we see these colors.
It explains why very young children
need to use both eyes correctly, or
lose their sight in one eye.

A central section features new
brain-imaging techniclues that allow
scientists to observe the brain in
action as volunteers look at faces or
obiects or hear different kinds of
sc, ;::is. -bother section reports on
tht a.: - -::.-:-ng1v sensitive bundles
oi :---= ,: :---= : : ti "hair cells" in
the -:::.: ::. ' ':- :: ',-ttrating mo-
tion .-- - : -: -. . --,.,.:' . -' :nds. It
shorrs :rr:r--rr-:r -: -r., --,:-: :''.'1s
thata:=::'--: --- r"-
locate r.:'=::.

Some c: - .
eries inr-c--.'.

Bullelin Board

which was almost a total mystery
until a few years ago. The report de-
scribes how scientists identified the
genes and proteins that enable us to
distinguish some 10,000 odors. And it
raises the question of whether there
is a secret sense in the human nose
that brings social or sexual messages
from people around us.

This report is the fifth in a series
that began withFinding the Critical
Shapes in 1990 and continued with
Blazing a Genetic Trail (l99ll, From
Egg to Adult (19921, and Blood:
Bearer of Life and Death (1993).

For a free copy of Seeing, Hearing,
and Smelling the World, write to
the Howard Hughes Medical Insti-
tute, 4000 |ones Bridge Road, Chevy
Chase MD 208 15-6789. Teachers
who subsequently wish to order ad-
ditional free copies for classroom
use can do so by retuming the reply
card enclosed with the publication.

tisenlouler [llational Cleat'inuhouse

Although it is intended primarily
as a resource for teachers, the
Eisenhower National Clearinghouse
(ENC)for Mathematics and Science
Education is open to the public,
which means that interested parents
and students are free to explore its
vast holdings. One quick way into
ENC is via the Intemet. By telnet or
gopher, the address is enc.org; ENC's
World Wide Web address is http://
www.enc.org. You can also dial in
directly at 800 362-4448 or 614292-
9040. ENC also offers print materials
to users who lack the computer tools
for electronic access.

ENC is located at Ohio State Uni-
versity and is funded by the US De-
rartment oi Education. Its purpose is
.- :::r:rc\-e access to mathematics
:'-- ::-;:]ae reSOUICeS available tO
.:. -:::r ::*:-:1:S :afents affdOthefS.

The Clearinghouse will collect and
create the most up-to-date and com-
prehensive listing of mathematics
and science curriculum materials in
the nation. The list or catalog of ma-
terials, the text of some of the mate-
rials, and evaluations of them will be
made available in a data base in a va-
riety of formats, including print, CD-
ROM, and electronically online.

Formore information on ENC, e-

mail info@enc.org; write to Eisen-
hower National Clearinghouse for
Mathematics and Science Educa-
tion, The Ohio State University,
1929 Kenny Road, Columbus OH
43210-1079; or call800 621-5785 (in
Ohio,614 292-77841

[yterma$ff tll,ir]ler$
The following visitors to the

Quantum home page on the World
Wide Web submitted correct solu-
tions to brainteaser B146 posted
there in advance of publication in
this issue:

Matt Nehring (Boulder, Colorado)
Denis E. Baker and {riends Cheng-

Chih and Don (Columbus, Ohio)
CarI Bosley (Topeka, Kansas)
Cyrus Hsia (Scarborough, Ontario)
Robert Au (Stanford, California)
Arnd Roth (Heidelberg, Germany)
Paul Grayson (Urbana, Illinois)
Francis Trudeau (Montreal, Quebec)
Sean Mclennan (Calgary, Alberta)
Louis Smadbeck (Edgartown,

Massachusetts)
Hal and Matt Harris-father and

son (St. Louis, Missouri)
Yakov Kronrod (Marietta, Georgia)

Congratulations to the winners,
and our thanks to all who submitted
entries.

To take a crack at the next Quan-
tum cyberteaser, aim your browser
at http : I I www.nsta. org/quantum
and follow the hyperlink.
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Arithmetic on Graph Paper (planar
numbers, gnomons/ Pythagorean
triples, and triangular numbers),
Semyon Gindikin, MarlApr91, p49
(At the Blackboard)
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Raskin, Sepf Oct94, p4 (Feature)

Generalizing Monty's Dilemma
(whether to stick with a choice or
switch), |ohn P. Georges and Timothy
V. Craine, MarlApgi,pl5 (Feature)

Geometry in the Pagoda (classic
problems of the gteatlapar,ese ge-
ometers), George Berzsenyi, lanf
Feb95, p48 (Math Investigations)
The Giants (on whose shoulders

Newton stood), Vladimir Belonuch-
kin, |u1/Aug95, p38 (Looking Back)
The GreatArt (controversial origins of
"Cardano's formula"), Semyon Gindi-
kin, May/|un95, p40 (LookingBack)
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Acnoss

1 Liability
5 764,876 (inbase 15)

l0 52,140 (inbase 16)

14 Agent: su{f.
15 Admire
16 Vagrant
17 Talipot palm fiber
18 Mountain ash tree
19 Actress _

Perlman
20 Like some com-

puter files
22 Like some ocean

cufients
24 Element 10

26 Unit o{ mass
27 Like a Bishop's move
31 Pacific and Atlantic
35 Seed coverings
36 Number part
38 Abraham's nephew
39 British archaeolo-

gist _ Kathleen
Mary Kenyon

lte06-19781
40 Extracted ore
4l Motion picture

xc!'0$$$cis[G8

42 Devoured
43 More like 24A
44 Not drunk
45 British efficiency

apartment
47 AgAsS,
49 Underground stem
51 Type of gin
52 Equation's answer
56 _ radius (gyromag-

netic radius)

60 Rice: comb. {orm
61 |ournalist Herbert

_ (1859-1930)

53 60,138 (in base 16)

64 _'s law (o{

opposition)
65 962,030 (in base 15)

65 Dark: comb. form
57 Religious views
68 Winter vehicles
69 New Mexico resort

0onn

I 55,995 (in base 16)

2 Decorative case

3 German physicist
Max t1882-l971l

4 Isosceles or right

5 Heavy particle
6 Bustle
7 Dish
8 British actor Edward

Gordon _(L872-
19661

9 Middle point
10 Element 24 alloy
11 Danish physicist

Niels {1885-19621

L2 44,010 (in base 16)

13 Decomposed
vegetation

21 Old cars
23 Diplomacy
25 Point opposite

zenith
27 896,427 (in base l6)
28 Angry
29 Pointed
30 Shortest paths

between points
32 Pretext
33 Musical group of

nine
34 Unit of volume
37 Growth sources
40 Arrays of numbers
41 Like laser light

by David R. Martin

43 Uproar
44 Greek portico
46 SCSI

48 Hungarian poet
Gyula _ (1902-1983)

50 Good
52 Vended
53 A cookie
54 Wild cat

55 Point of minimum
disturbance

57 Yucatan Infian
58 Environment:

comb. form
59 Rodents
62 Display light: abbr.

SOLUTION IN THE
NEXT ISSUE

4'.2EC5

SOLUTION TO THE
MAY/JUNE PUZZLE

1 2 3 4 5 6 7 8 9 10 11 t2 13

t4 15 t6

t7 i8 I9

20 2t 22

27 28 29 30 31 32 34

35 36 11 38

39 40 41.

42 43 44

45 46 47 48

52 53 54 55 56 57 58 59

60 5t 62 63

64 65 66

67 68 69
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M 146
The answer to both questions is

24.
Let S, C, M be the sets oi "swim-

ming," " cleaning," and "math" days
and s, ct m the complements of
these sets (s is the set oi the days
when Mary isn't going to srrim, and
so on). Denoting the intersection o{
setsA andBbyAB (omitting iorthe
sake of brevity, the srgn ^', \re can
write the sets we have to count as

P = Scm (pleasant days) and B = scm
(boring days). In figure 1, the set P is
shaded blue and B is shaded green;
the b1ue, red, and black circies de-
pict the sets S, C, .\I, respectir,ely,
and the entire big circle is the set of
all 90 days. The iigure suggests that
the number o{ elemenrs corespond-
ing to any of the eight areas bounded
by these circles can be erpressed in
terms of the numbers oi e lements rn
the sets S, C, 1I and their double and
triple intersections. For in>tancc ro
find Pl = Scrrr there X is the num-
ber of elements in X), we must sub-
tract from S the number of days
when Mary plans to swim and do
something else. So we subtract lSCl
and lSMl. But then ISCMI is sub-
tracted twice, and we must add one
ISCMI back:

lPl = lSl- lscl- lsMl + lSCMl. (1)

ANSWERS,
H INTS &

SOLUTIONS

(This is actually an application of
the inclusion-exclusion theorem,
discussed in "The School Bus and
the Mud Puddles" in the lanuaryf
February 1995 issue.)

Number all the days 1, 2, ...,90.
Then the days in S are l, 3, . . ., | + 2k,
..., 89i C =ll, 4, 7, ..., 1 + 3k, ..., 88);
M=1I,5, ..., | + 5k, ..., 86]. These sets
can be described as the sets of num-
bers that give the remainder 1 when
divided by 2,3, S, respectively. Since
90 is divisible by all these numbers,
we have

90rct- - 30,
aJ

90
lMl= _ = lg.

5

A11 the intersections are described
similarly: each consists o{ the num-
bers 1 + Nk, k = 0, 1, ..., [89/N],
rr-here Nis either 2. 3 = 6,3 . 5 = 15,
) . 5 = 10, or2. 3 . 5 =30 forthein-
tersections SC, CM, MS, SCM, re-
spectrvely lsince 2, 3, and 5 are
coprime). As before, we get

SC=

lCMl=5,

lMSl=9,

ISCMI=3.

So, by formula (1),

lPl=45-15-9+3=24.
lBl can be counted by direct applica-
tion of the inclusion-exclusion theo-
rem for the triple union S u C u M

(using lscml =90 - lS u C u Ml). But
we can save some work by noting
that

lSu C v Ml=lS\ (C u Ml + lC v Ml
=lScml+lCl +lMl-lCMl
=24+ 30+ 18 -6=66,

andso lBl=9O-66=24. (L. Limanov,
V. Dubrovsky)

M147
Since the sum xix2 + xzxa + ...

+ x,{t - 0 consists of equallY many
positive ones and negative ones, the
number n of terms in this sum is
even. The product of these terms
equals

1 xrx2ll x2\1.. .( x,{tl = (xrxr...xnlz > 0.

Therefore, the number of negative
terms (equal to nlLl is also even. So
n is divisibleby 4.

Ml48
(a)We'll prove by induction over

n a slightly modified statement,
which clearly is equivalent to the
one in the problem: any nonnegative
integer a . (n + 1)! is uniquely rep-
resentable as

a= an' n! + an-r' (n- 1)! + ... + at' l!,

with 0 < ao<k f.orallk = l, ..., n (here
we allow antobe zero but fix n).

The case n = I is obvious. Let's
prove the statement for a < (n + lll
assuming it's true for all numbers
less thann!. Dividinga bynlwe get
a = ar. n! + rn, where 0 a on< n (be-
cause (n + llnl = ln + 1)! > al and
0 1 r o < n!. By the induction hypoth-
esis, r, = an_r.(r - 1)! + ... + ar.l!
with 0 1ak<k, so the numbera can
be represented as required. To prove
uniqueness, notice that the number
of sets lan, an_tt ...t arl of coeffi-
cients in our representations is
(n+ll.n. .... 1=(n + 1)l.Each of these
sets has been made to correspond to

;5;= 29 = 45,
2

90
=1(

6

Figure 1
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one of the (n + I )! nonnegative inte-
gers less than (n + 1)1. This corre-
spondence goes both ways, since
formula (1) restores the number a
from any given set lar, an_1, ..., a1l.
Thus each set corresponds to an in-
tegert and the correspondence is
one-to-one.

Using the terminology of the ar-
ticle "Number Systems" in this is-
sue, we can say that formula (1)
gives the representation of a number
a in the "factotial" number system
(with the bases 1, 2 ,3!,4!,...). This
can be generalized to any base of the
form q, = l, ez= d2e1, es= dse2, ...,
Qo= drQn-1, where dt ,I, k=2, ...,
n. That is, any nonnegative integer
a, a 1 en,is uniquely representable
in the form

a = an-tQn-t + an-2qn-2+ ...
+ a2q2+ art Q)

with 0 S ak. dk * 1, k = l, ..,, n - I.
The proof above remains valid with
just a slight change-substituting qo
fork! and dolork. (See also exercise
12 in "Number Systems" and its
solution.)

(b)As in part (a), it suffices to prove
that any fraction b = pl q, O < b < !,
whose denominator q is a divisor o{
n!, is uniquely representable in the
form

b=!=L*!r*...*!o
q213! nt

with 0 < bk < k, 2 <k <n (we allow
for bo = 91.

Multiply this equality by nl.It
takes the form

pn!
a = :---- = bze, _ t * b ae, _ zq

+...+bn_1er+bret,

where a is an integer less thann! and

?t = l, Q2 = d2Q1 = 17, Qz = dzQz =
(n - lln, ..., er_r= dr_fln_zJ 3-. 4
' ... . (n - l)n (that is, do= n-- L * 2
fork = 2, ..., fi- t ). Replacing the co-
efficients b2, b3, ..., bn in this for-
mula urilh an_rt an_2t.../ ,1/ respec-
tively, we arrive at represeni ation(21
discussed at the end of the previous

solution, which exists and is unique
for 0< ak. dk * r= fi -k+ 1, which are
equivalent to 0 < b, _k *, < n -k + I
(k = l, 2, ..., n - I ). This completes the
proof. (V. Dubrovsky)

M149
We'll show that the problem can

be reduced to the case of a degener-
ate pentagon two of whose vertices
coincide. In this case the statement
is obvious-see figure 2.

A=B E

C

Figure 2

The reduction is based on the
simple but very useful fact that can
briefly (if not quite correctlylbe for-
mulated as follows: the area of a tri-
angle changes linearly as one of its
vertices moves along a straight line
while the other two stay put. To
give a stricter wording, we'll create
coordinates for the given line 7 by
arbitrarily choosing the origin and
the positive direction on it. Then r.he
area of a uiangle ABC with vefiex
A on l is a linear function of its co-
ordinate xo as long as A stays on
one side of the fixed base BC.

Indeed, if 1 is parallel to BC,
the area is constant. If l meets
the extension of BC at P (fig. 31,
then the area of LABC is equal
to BC. (PA sin ZBPA\12, which is
a constant multiple of PA, and
PA=xo-xp on one side of BC and
xp-Xeon the other side. So the area

C

Figure 4

depends linearly on xA (on either
side of BC).

Now let's draw aline / parallel to
BE through the vertex A of the given
pentagon ABCDE (tig. al. Let P and
Q be the points where it meets the
extensions of CB and DE. When A
moves along the segment PQ the
area of LABE, and so of the penta-
gon, remains constant, the areas of
triangles ABC and ADE vary hn-
early; and triangles BCD and CDE
are left intact. So the total area of the
five triangles in question changes
linearly (as the sum of linear func-
tions). Therefore, the minimum
value of this area on segment PQ is
attained at one of its endpoints-
sayt at P. So if we replace Awith P,
we'll get a convex pentagonPBCD4
of the same area as that of ABCDE,
but with a smaller sum of the areas
of the five triangles cut off by its di-
agonals. (The triangle ABC in this
"pentagon" degenerates into seg-
ment PC.) Then we apply the same
argument to the yertex B of the new
pentagon. This yields a penragon
that actually coincides with the
quadrilateralPCDE, with one of the
verticesP or C counted twice. As we
mentioned at the beginning of the
solution, the statement of the prob-
lem is true for this pentagon. It {ol-
lows that it's true for the initial pen-
tagon, because it has the same area
and a greater sum of the areas of the
five triangles.

It's evident that the total area s
of our five triangles is never
greatil than twice the area a of the
pentagon (see the figure accompa-
nying the problem statement). Fig-
ure 5 shows that both bounds in

h:PAsino"
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Figure 5

the estimate a < s < 2a ate exact.
(N. Vasilyev, V. Dubrovsky)

M150
(a) The answer is l(x) - 2tln* *

2rl" - I.It's natural to seek a solu-
tion in the form of a linear function
f(*l = a* + b. The second iterate of
this function is

ftzt(xl = flfkl) = a(ax + bl + b

=aLx+b+ab.
We can find (andprove by induction)
the expression for thenth iteratefl")'

,l n f\
n o\a -L)

-U AT
a-I

Setting this equal to the given func-
tion 2x + 1, we find the coefficients
a andb given in the answer above.

This "method of undetermined
coefficients," which includes a
lucky guess at the general form of
the answer and finding particular co-
efficients from the corresponding
equation, can be applied to parts (b)

and (c) as well. But there is another,
more direct approach that allows us
to write out the unknown nth "it-
eration root" straightaway. We'll
first illustrate it by means of the
simpler problem in part (a).

Our given function y= dxl =2,x + I
can be viewed as a mapping of the
number axis onto itself that takes
anyx into 2x + L Since this mapping
doubies all distances (lS(/)- g(xll =
Zld - xll, it must be a dilationby 2
relative to a certain center/ which
can be found as its fixed point from
the equationZx + 1 = x (yielding
x = -1). Indeed, let's shift the origin

to the centerx
= -1 (fig. 6).
Then the new
coordinate
(with respect
to the new
origin) z* of
any point x is
equaltox+1,
and f or the
inagey=fu1a1

of point x under our mapping we
have

zy=y+1=Zlx+ll=22*.
So in the new coordinates/ our map-
ping is actually the dilation by 2rela-
tive to the origin: z -+ 22. The "nth
root" of a dilation by afactor ofk > 0
is the dilation by k1/" relative to the
same center. kr our case/ we get the
mapping z -+ 2rl"z (in the new coordi-
nates). Retuming to the initial coordi-
nates, this yields x a I a ),tln(x + ll =
y + l, or y =flxl =ltln, + 2rl" - l.

This second solution may seem
too sophisticated for such a simple
problem, but, stripped of all the
hints and explanations, it's even
shorter than the first, displaying the
core of the problem (taking the "nth
root" of a dilation) and allowing us
to solve parts (b) and (c) in a few
lines.

(b) The given function can be rewrit-
tenasy=(i *Jil'or,!y =Jx +i.So,
introducing a new "coordinate t t 

-gy,better put, "parameter"-on the posi-
tive half-axis by the formulaz*= ,l x ,

we can represent the mapping of the
half-axis defined by our function in
a simple form: z --> z + I (in terms of
the new parametrizationl-the
point with parameter z goes to the
point with pararrreterz + 1. We have
to perform this mapping in n iden-
tical steps, so in each step we can
simply increase the parameter by
lf n: z -+ z + lln.Inthe initial coordi-
nates the required function y = f(xl

is defined by Jn = ,FA
^[i 

+ lln, or /(x)= (J; + llnl2.
(c) Here we have y = xllx + 1)=

[(x + lllr]-'= (1 + x-1)-1, or y-t -
1 + x-1 We can repeat the previous
solution replacing Jx withrl. So
we don't have to do any calcula-
tions to write the answer:

(V. Dubrovsky)

.l" (1 r[f(x)=; +-l
\x n.)

f'") (") = an x + b(t+ a+ "' + r" -')

-li O 
i" 

Zx+l x

0lZr2rrz

Figure 6 Figure

Physics

P146
The simplest part of the problem

is determining the timet it takes the
fox to catch the hare. We need only
consider the projections of their ve-
locities on the straight line connect-
ing them. The relative velocity of
the fox and hare along this line is

vr"r= v(l - cos cx,),

from which we obtain

LL
v rcl v(l - cos cr)

This formula is correct for al1 three
cases.

To find the distance to the point
where the fox catches the hare, let's
construct a regular hexagon
with sides of length I (fig. 71. Let
point A, move directly to point A,
(as the fox pursues the hare), let
point Armove to point A, and so
on. Clearly, this hexagon will rotate
and shrink but remain regular, so
that the point where the animals

7
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meet coincides with its center,
which is located at a distancexfrom
the fox's initial position. If the hare
becomes cross-eyed by 90", we will
have a square instead of a hexagon,
but if it corrects its eyesight to 40o,
a regular nonagon will result. In all
these cases, the distance we seek is

L

2sin9
2

P1 47
Superimpose the origin of the co-

ordinate system with pointA and di-
rect the x- and y-axes as shown in
figure B. Now write the equations
(in projections on the x- and y-axes)
for the motion of masses C and B:

macx= mg - ZT, cos u, ( 1 )

maBx= mB - Tt cos o( + T, cos a, (21

paBy= F"l".t - 7, sin cr- 4.in o, (3)

where F"lrrt = k(21 - 2l sin o) =
k . 21(l - sin cr) is the elastic force.
Combining equations (1) through (3)

yields

COS C[
macx+maBx-maBy

= 2mg- F"rrr, TP
SlNO(

(This equation is true for any u.) Let's
convert the left-hand side of equation
(4). Keep in mind that the changesAx,
and lx" of the B and C coordinates
are linked by the relationship

1
AXo = -Lxcoz

(in other words, this relationship
describes the shifts of masses B and
C from the equilibrium position).
The velocities and accelerations of
masses B and C obey the same rela-
tionship. Thus,

1
aB*=-:acr.

')

When the deviations from equilibrium
are small (that is, when As << ftl = 45o),

the changes in the coordinates of the
masses can be found using calculus
or some identities from trigonom-
etry. For instance/

Ys=lsino(

and

Arr = 1(sin (o + Aa) - sin o)

= /(sin cx, cos Acr + cos u sin Acx - sin o)

= 
/(sin o + (cos olAo - sin o)

= J(cos o) Ao = ](cos cro)Ao.

Likewise,

xc=21 cos a

and

Mc= -21(sin cr)Ao 
= -21(sin go)Ao.

There{ore,

,t-, -- &c 
--&.Q2tanuo 2

Thus,

aBy 1
2tano"o

Thus, when the oscillations are
small, the left-hand side of equation
(41can be written as

11
ma-.. + :ma--- +:macx=2mac.ux2tr2

Now let's convert the right-hand
side of equation ( ). In the equilib-
rium position with a"o = 0, this
equation becomes

cos c[,0
2mg=Felasto..::-

sinoro

We write down the right-hand side
of equation (4) in the following form:

from which we get

2mg=ro,fr-tr). (s)
[ 2) '

^[.o.o ) .oro coscro - -Acr
-[sinao 

J sino sino,o sin2 cxo

r cos 0,0 
D

'elast0--]--1e1ast
s1n0,0

COS CT

s1nc)(

sino

= 2kt(r- sinao )!9!gq
s1n o(o

-zkh(I- sina)!9!g
sln0

/\
-.rr-rl 

cosc)(o coso 
I

I sinoo sina.J

+ 2kl(coso - cos0o).

Because L*c= 21(cos g - cos 610)/

the last term is iust kAx". When
the deviations from equilibrium are
small,

Lx"= - 2i(sin clo)Acr'

Therefore,

(41.

cos g0

sin cro

COSO(

sino,
= Ao _ -Axc

sin2 oo 21sin3 oo

Thus, when the oscillations are
smalI, the right-hand side of equa-
tion (4) can be written as

COS C[2mg-F.r".r.
sln0,

( I )
= -ft.ax"l -, -1 I

\srn 0(0 )

=-k.^xc(zJ, -t).

Taking into account thatFigure B
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m 1,. . ,=t(r-Jr)
;=-(1-sincxo)=k I 8[ 2 )

(see equation (5)), we have the final
form of the equation for small oscii-
lations:

s(zJ, -r\a^ - ---)------------- L)<.ux t(z_ Ji)

Thus, the period is

T =2n

P1 48
The gas (n moles) acquires heat

during phases l-2 and 2-B of. t}rre
cycle (fig. 9):

Q=lna(rr- q)* or(B - r)v

The work performed in the cycle
1-2-3-4-1 is

w=la-l)(B-1)PY.
Thus, the engine's efficiency is

(cr-t)(B-t)

= [i,* - 1)+ cr(B -,1]r,

One can see that the efficiency
increases with cx and B, and at very
large values of u and B it approxi-
mates to n - 215 =0.4 = 40%.

P149
The electric current in the circuit

is determined by the value oi the
voltage across the resistor, which is
just the voltage of the capacitor:
I = VlR. As the current must be
steady, the voltage across the capaci-
tor is also constant-that is,

4o -Qo-Lqcoc
where e6 is the initial charge on the
capacitor, Lq = It = VtlR is the
charge flowing through the circuit in
time r, and C is the capacitance at
moment t. It follows that

( mt t )C=Cn,I- ' =C -- .

I q, RCo)

To find the porverP of the extemal
forces, we use the larr of conservation
of energy and consider the change in
the energl' oi the s\':rem in time t.
The change rn the sr-stem's energy is
equal to the rr-ork performed by the
extemal forces:

C\- L i-
* I)Rt = Pt.

lt
Then, taiung lnto account the depen-
de nc. .'r rhc cafacirance on time, we
ge t the por\-er oi the external forces:

Pl5A
If an object is placed at a distance

d (d, f ,l from the microscope's ob-
jective, its real image will be formed
at a distance d' from the obiective.
The lens formula yields

which gives us

d' = df, 
= 78 mm.

d_ f,

The object's image in the objective
should be considered a real source for
the eyepiece, since the rays coming
from the objective to the eyepiece
diverge. This source is placed at a
distance dr = L - d' = 22 17;1rn l< f ,l
from the eyepiece, so the virtual
image in the eyepiece will be formed
at the distance

dl = dl' 
= 143 mm.' fr- d,

This is the image that will be ob-
served, so di must be the best view-
ing distance for the human eye (we
assume that the eye is placed close
to the eyepiece).

Wearing eyeglasses, a person
should be able to clearly discern ob-
jects at a distance do= 25 cm from
the eyes-that is, at the optimal
viewing distance for the normal eye.
(We assume here that the lenses are
located close to the eyes.) The
glasses must therefore produce vir-
tual images of objects at a distance
dlfuomthe eyes. Thus, we can write

1 - I =] -.',di do- fo- "'

where /o is the focal length of the
glasses andD is the optical power of
the glasses when the focal length is
expressed in meters. So we obtain
the result

D = 3 diopters.

Thus, our reader is far-sighted and
should wear glasses with 3-diopter
lenses. Sometimes a physicist can
help herself without the services of
an optometrist!

Braintea$Br$

8146
Any number in question can be

written as A. l}a + 1995. Clearly, it
is exactly divisible by A rf and only
ifA is a divisor of 1995. Since 1995

=3 . 5 .7 .19, any divisor of 1995 is
a product of some of its four prime
factors taken no more than once
each. So the number of divisors is

W
11 =-=

o
i,", - I)+ a(B - 1)

111I- --+
=cx0ciP51 3

r zl_ti

1DLA

111
d d' fr'

01
Il2

ap F-----

zpZuF

Figure :

t(t -"8)
s(z.li -t)
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equal to the number of subsets of a
four-element set (including an
empty subset, which corresponds to
the divisor 1). So the answer is2a =
15. To put it slightly differently, all
the divisors are formed by choosing
or not choosing the factor 3, choos-
ing or not choosing the factor 5, and
so on, and then multiplying all the
chosen factors. The number of
choicesis2.2.2.2.

8147
The sum in the nth diamond is

n3. To prove this, we note that for
any | <k < n the kth row (from the
top) in the nth diamond consists of
k numbers ft and the kth row from
the bottom consists of k num-
bers 2n -.k, so the sum of the num-
bers in these two rows is
klk + 2n - kl = 2nk. Summing these
numbers for I < k < n - 1 and adding
the sum in the middle (nth) row,
which is n2, we get

znlt+2+...+(n-1)]+n2

^ n(n-l) )=)n. --:--------:- 1n'
2

3
-tf -tt

3
-It

+n

8149
The first required arrangement

can be achieved by "going off into
space" and constructing a regular
pentagonal pyramid (fig. 10); the sec-
ond is shown in figure 11.

Flgure 10

Figure 11

8150
Let P be the midpoint o{ AB

(fig. 12). Then MP and BN are medi-
ans in AABM, so their intersection
point Q divides PM in the ratio
PQIQM=L12.BatPMis a midline in
AABC, so it's parallelto AC. There-
fore, triangles BPQ arrd BMQ are
similar to triangles BAK and BCK,
respectively, with the same coeffi-
cients of similarity BQIBK = l12.
Now we can conclude that AKf KC =
PQI QM = 1/2, which is the answer to
the problem.

We can avoid the reference to the
property of medians by noticing
that triangles AKN and MNQ are

congruent (by the ASA property ap-
plied to sides AN and NM), so QM
= AK = 2PQ PQ is a midline in
LABK). Then we proceed as above.
By the way, this argument can eas-
ily be developed into a proof of the
property of medians (in the triangle
ABMI, which adds another proo{ to
the collection presented in "The
Medians," anarticle in the Novem-
ber/December 1994 issue of Quan-
tum.

lllumler $yslelns
1. 201011011100010.
2.ll24 . 60 + 2150 + 321 . 60 + 42 =

5,193,162.
3. t(t(9 . 20 + 61. 20 + r4l. 20 + 13)

. 18 + 15] .20 + | =26,889,78L.
4 (al 1022534; (b) 5Y540,

(c) 1 I I 10001001000000.
S.p= 25 +22=BZ+4=B6i e=28

+ 26 + 2a + 22 + I =256 + 64 + 15 + 4
+ I =341-or Q = ([(a + 1)4 + t]a + tla
+l=341.

5. See the tables below:

7. (alX= 18 + I = 19; (b)the string
of digits Y can'tbe obtained accord-
ing to the sel1er's system (see the
answer to exercise 8l; lcl Z = 2 . 20
+5+2.2=49.

B. The sequences anan-t...atao
in question can be described as
those in which the digits a,k * t,
k = 0, l, 2, ..., take any of the va1-
ues 0, I,2 and all the other digits
take either of the two values 0 and
1, and in addition the digit 2 is
never followed by 1. Check yourself
that these conditions are necessary
and sufficient for the inequalities

(V. Dubrovsky)

8148
Here's one of many possible so-

lutions. Take a container of water
filled to the brim and weigh it.
Then put the rock in the container
(some of the water spills out) and
weigh it again. Then take out the
rock and weigh the container for
the third time. Let Wy,W2, andW,
be the three readings of the scales,
let p, and p* be the densities of the
rock and the water, and let V be
the volume of the rock. Then
Wt = Ws + p*VB, Wz= Wz + prvg.
Therefore,

P, =wr-wr.P* wr-W,

(V. Dubrovsky)

+ 0 I 2

0 0 1 2

1 I Z 10

2 2 10 11

x 0 1 2

0 0 0 0

1 0 1 2

2 0 2 11
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4k*t, rp= ApQp+ Af-t4p-1 + ... + d0

to be true for all k > 0.
9. Clearly, 

^/ 
> M (this follows

directly from the definitions).
10. Consider the general situa-

tion. Suppose we haven weights and
they can be put on only one pan.
Since any set of n elements has 2"
subsets (including the empty sub-
set), these weights can be combined
in 2" ways to yield at most 2" - |
different nonzero total weights. On
the other hand, taking the powers o{
two 1, 2, 4, ..., 2 1 to be thevalues
of n weights/ we can torm any
weight 14/ between 1 and 2" - 1 by
representing the number W in the
binary system and choosing the
weights whose values enter this rep-
resentation.

If the weights can be put on both
pans, there are three possibilities for
each u'eight: to be put on the le{t pan,
to be put on the right pan, or not to
be used at all. Thrs amounts to 3r1

possibilities for r rvelghts, and at
most (3" - 1l I positir.el weights that
could be measur.e d this way (every
weight can be ot,tarne d on the left or
right panl Thr ic: .: :r porvers of
three-1, 3, 9, 1r: - 

-can be used
to obtain anr- rr'.:.h: irom 1 to
,3" - l)12 b1'r-nears --: :he i.i:J.:lced
ternary represen;.r:r :: ,--: tl-ie desired
weight (see the s,-'r-.:l :r: - irtrcr:e i 1 .

Now r,r-e cJir r::.* :--: ,:-:'..::':. : i
(since2--1. : - -. .' - :-:.-,
(33-1rl<-la.:--- - : --.:l:-

r L. .L :tt. f r . --.,::: ,::. .- _ :' :. _ .--.

indu.t; r. I: -. :r : :-;:-- *-: r -.r':-:L

Out thc Ic.lUrr cd Ief Ic:c11Idi1. ,I'l: I, 1

say, the numbers 1, ), and 3. Assume,
ior N > 3, that all the nurnbers less
than N can be written as required.
Then let A = " ana, _ l. . .alao" and let
Ar= " ar-,an-t...atl'we can then write
A as " Arao," and we can defineB and
Bo similarly. If l/ is divisible by 3,
then N/3 . N, so N/3 can be written
as Ar- B, for some strings A' B, ol
digits 0 and 1. Then it is not difficult
to see that N = "Atj" - "8r0." If N
leaves a remainder 1 when divided by
3, then we represent (N - 1)/3 as

A,. - B ,..Then N can be represented by
" A,.\" - " 8 ,.0." Similarly, if N leaves
a remainder of l, we can write
(N + 1)/3 as A, - 8,. Then l,/ can be

represented by "Ar0" * "8r1." This
completes the induction.

12. Let bo be the greatest integer
strictly less than ex * rl ep, 0 < k < n.
Consider the number

B = ,,b 
nb n _ r. . .b rbo.,,

Since it hasn + 1 digits, B < er* t- l.
On the other hand,

B = bo + brq, + bre, + ... + b nen

= qr-l+ Qz %+ Qt- Qz

*... + en+l_ e,

= 4rr*t-l'

This means thatB = en * t_ 1, which
is possible only if b x= ep * tl qt - l-
that is, if et * t is divisible by qe.

13. 2q,.,2 e,.t * t) e,, _ t + ena en * t.
14. The prool that the Fibonacci

numbers satisfy the conditions of
Froblern 13 can be done, for ex-
anlle br-inductron.

.: 1- rl-!_! 1r_l--:'2r,

Ll. t-t r:--.--=l

10010 . O, rt A = -. > i;
l5

10+10=101;

1+1=10.

(b) Ioo...o.\__
1m+ /

(c) toro...1o.
Znt+2

15. Writing the sequence of natu-
ral numbers in the Fibonaccian
number system, we notice that (a1)

is the sequence of all natural num-

bers that end (in this numeration)in
an even number of zeros or one (no
zeros), andlb*l are the numbers end-
ing in an odd number of zeros; in
addition, bo is obtained from ao by
adding one zero at the end. We leave
it to the reader to rigorously prove
this observation.

Since the number 100 = 1000010100
in the Fibonacciansystem/ it belongs
to the sequence api the corresponding
bk = 10000101000 :L44 + 13 + 15 

=
152, so k = 5Z-that is, lO0 = aur.

Toy $tol'e
For the solution to the Packing

puzzle, see figure 13. For the solu-
tion to the Checkerboard puzzle, see

figure 14.

, e,-t*l', -,1r, *[', -,lr,
[s, ) \q, )

(r,*., .)+...+l--rlq"
[q" )

Figure 13

Figure 14

The $ialtl$
1. In order to do better than

Eudoxus, one needs 5 days; to do bet-
ter than Tycho, 25 days; and to best
Ulugh Beg's measurements, one
would have to collect datafor almost
70 days (more than two months).
Even these values should be consid-
ered low, because the resolving power
of diffraction, which was taken into
account/ is an unattainable idea1.
Optical devices are considered perfect
if they can resolve an angle that is
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twice the resolution.
2. Aristarchus calc,ulated that the

Earth is three times the size of the
Moon. The modern value is 3.67.

3. Calculation based on data co1-
lected by Aristarchus results in a
ratio of the sizes of the Sun and
Moon of 19 : 1 . According to modern
data, this value is 400. The data of
Aristarchus himself indicate that
the Sun's diameter is at least six
times that of the Earth, which
means the Sun's volume is almost
250 times that of the Earth. It would
strain credulity that such a giant
"dances" around the tiny Earth.

4. According to data recorded by
Eratosthenes, the Earth's circumfer-
ence is 47,500 km; data from
Poseidonios gives 45,600 km; and
the modem value is 40,000 km. Tak-
ing a stadium to be 157 m means
that Eratosthenes obtained a value
of 39,250, while Poseidonius came
up with only 37,680. This decrease
in accuracy can't be understood un-
til one realizes that Eratosthenes
measured the height of the Sun,
which has an angular size of about
0.5", while Poseidonius determined
the height of a star (Canopus).

5. As it moves toward |upiter, the
Earth receives the information about
the imminent eclipse of Io earlier.
This time difference is vrtolc, where
v, is the Earth's velocity, to is the pe-
riod of rotation of Io around )upiter,
and c is the speed of light. When the
Earth is moving away from |upiter,
the signal is delayed by the same
amount. Therefore,

* -tt*t2"o- z

and

tr-tr= v,

This gives us

t^ +t.c=vrU=30.4 '10s km/s.
tz-tr

Error of the order of l% is natural,
because we have "measured" the
time difference between the eclipses
with just this accuracy.

tz-tt
c
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I N THE SUMMER OF 1994, FOR

I the s".orrd time in my liie I found
I -yseir rn the company ot the
I ".i.r.r.rt people in ihe world"-
at least, that's what their families
and friends say about them. For the
organizers and participants it was
the t 4th Internation al Puzzle P arty
(IPP).1 This club of mechanical
ptzzle lovers and collectors was cre-
ated in 1978 by the American engi-
neer |erry Slocum, whose books
abortpuzzles have made him popu-
lar a1l over the world. Aiter the first
seven meetings in the United States,
the ciub, which had become intema-
tional by that time, began to alter-
nate the sites of its annual parties
among the US, Europe, and |apan.

On August 19, 1994, puzzle lov-
ers gathered at the Hilton Hotel in
Seattle, Washington. The meeting
was organized and hosted by
Dr. Gary Foshee. Surprises and
puzzles began right at the entrance
to the hotel's banquet hall. Charm-
ing Chelle Foshee gave each partici-
parnt a card with arl arLagrarrt of their
name on it. My own name was re-
worked into "a lion ain't lanky."
Since I am, in fact, rather lanky, I
translated this phrase into Russian
for myself as "Anatoly Kalinin ain't
a lion." But there was another rea-
son why I couldn't consider myself
a lion in thepuzzle gathering. Ayear

lYou can read about the previous
IPP in the |uly/August 1994 issue of
Quantum.

TOY STORE

A party ol ulise Uuy$

by Anatoly Kalinin

earlier, at the 13th IPP in Amster-
dam, David Singmaster of London
presented me with the "Yery
Nasty" pazzle ball. About two
inches in diameter, the ball was
neatly cut into seven pieces, one of
which was taken out and handed
over to me separately. I had to take
the ball apartt insert the center
block, and put everything back to-
gether again.I've been struggling
with this puzzlefor ayear now, but
without success.

To take revenge on David I had to
invent aptzzle of my own, which I
brought to Seattle with me. After all,
I've been active in the ptzzLe world
f.or 25 years now. I've written a lot
of articles about them, and my col-
Iection remains the biggest within
the borders of the former Soviet
Union. I called my toy "Decapus's
Puzzle." It's a metal cube that rather
easily disassembies into ten pieces.
The tricky thing is to put it back to-
gether-it can't be done piece by
piece. You have to arrange the
pieces in the proper position in
space and then move them together.
But this seems to require more than
two hands! So Prof . Singmaster will
have something to rack his brains
over, I think.

The tradition of giving puzzlepre-
sents to one another is perhaps the
most interesting part of the Puzzle
Parties. Each participant brings N- 1

identical puzzles, where N is the
number of participants, and gives

them to colleagues, receiving
equally many przzles from all over
the world.

The toy is older than the book.
This simple fact, which requires no
proof, in my opinion, revealed a new
aspect to me in Seattle. |erry Slocum
suprised all of us with his gifts-ex-
act copies of a puzzle that is more
than 100 years old (because a book
was written about it in 1893). This
puzzle has the shape of an antique
cannon loaded with a cannonball.
You have to extract the cannonball
from the gun's muzzle without us-
ing any tools. Watching others
struggle unsuccessfully with this
problem, you ask yourself if the av-
erage person has really become clev-
erer over the last 100 years.

At the other pole of the vast uni-
verse of intellectual toys-a universe
that is hardly known to most of us
(and to our children as welI, unfortu-
nately)-is the Levitron toy, which I
also saw for the first time in Seattle.
Levitron is a wooden box without any
buttons, lamps, wires, or any other
traces of a complex interior afianlge-
ment. You take a simple chiidren's
top (but heavier than usual) and spin
it on the upper face of the box. After
twirling for a couple of seconds, the
top suddenly takes off into the air and
hovers over the box, spinning on and
on for more than a minute. A fantas-
tic and mysterious show that special-
ists declared impossible in their ar-
ticles a {ew years ago!

A report from the 14th lnternational Puzzle Party
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In Seattle I was given several
puzzles that at first sight seem im-
possible like Levitron. Gary Foshee,
the hospitable host of IPP '94, in-
vented one such-the "Pickled
Nickel." In this puzzle, a lock made
of a bolt and a nut prevents you from
removing a coin. If you draw its de-
sign and show it to a teacher of tech-
nical drawing, you'll most probably

get the lowest grade: the teacher will
immediately say that because of se-
rious errors it's impossible to either
assemble or disassemble it. How-
ever, Gary Foshee's mechanism
stands on my desk, and I can take it
apart and put it together.

Since the trip to Seattlg my collec-
tion has grown by more than a hun-
dred new puzzles.It wasn't easy to

make a selection for this article. I
tried to choose items that could give
an idea, if only in the slightest degree,
of the variety of the mechanical
puzzles. A1so, the ptzzles you see in
the figures are not very difficult to
make with your own hands. I hope
they'1l help Quantumreaders join the
world of such clever and enigmatic
things-you won't regret itl O

one pTece nine pieces cttbe

Figure 1

Decapus's Puzzla by Anatoly Kalinin (Russia). The pieces of this
puzzle are made from empty soda cans. The closed piece on the left is
a flattened and appropriately bent "belt" cut out from a can.

/7j-=71v t__'_a| ,I lil i i l.r')za Z L l,,l . i tl/3,) *r,, l/ = ) t, t, l'
Figure 2
The Packing puzzle by O. C. Iudd (US). This was the easiest
puzzle of IPP '94. You have to make a 3 x 3 x 3 cube out of
three unit cubes and six 2 x 2 x 1 blocks. Tty to solve it in your
head-then check tha answer on page 61.

Figure 3
A sliding-block puzzle by [ean-Claude Constantin (Germany).
Shifting and rotating all five movable blocks (including the one
with the clock hands), restore the coruect aruangement of the
figures on the dial. You'rc not allowed to lift the blocks.

Figure 4
The Scissors puzzle by W. G. H.
Striibos (The N etherlands ). Remove
rings 1-, 2, and 3.

i
;
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ffiffi!d!d
Figure 7
Checkerboard puzzle by Les Barton (US). Les Barton is the author ol the most
complete inveitigation of checkerboard puzzles. He says tltat they-often may
,rrri nut1, nt firsi, but after a few pieces ate in place, it becomes clear that they
cfte Ien- difficuk So before you set about to make a normal checkerboard from
the eight lrl.css oll the left, try to solve the easier problem of making the figure
on the rrgirr. -lit-srr-er on page 61.1

Figure 5
No-Knot by Howard R. Srv:ft tlS). Llruavel the knot

Figure 6
Key Rit'tg,bt, Richard 1. Hess (US). Remove
the fing and the l<et'.

Figure B

Swap by Nob Yoshigahara
(lapan). Tftis is one of the
most di't'ficult puzzles of
today. To convince
yourself of this, iust try to
make a rectangle out of its
seven pieces. And if you
manage to make 14
diff er ent conv ex p oly gons

from them, you can count
yourself among the puzzle
grandmasters,
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