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La conditionhumatne i1933Ibv Rene -\Iagntte

I UST AS IN MAGRITTE'S "THE BLANK SIGNATURE, "
Uwhich inaugurated Gallery Q in the May 1990 issue,
thete's no mystery abott what is being depicted here.
Once again, Magritte has fused the ordinary and the ex-
traordinary, raising a flwry of questions with an "impos-
sible" representation of everyday things.

On one level, "La condition humaine" exposes the
fallacy that art "captures a moment." One would have
to be a fast worker indeed to produce the painting within
the painting. Unlike a photographer, who truly works on
the scale of fractions of seconds, a painter synthesizes

impressions scattered in trme. Ii u'e're deeply aiiected by
this work, perhaps it's because it stirs a resonance in that
part o{ us that cries out, in a moment of pure happiness:
"Oh, moment, stayl" Such is the human condition: to be
able to imagine timelessness and to be helplessly caught
in the flow of time.

Our ability to imagine {or at least, to name) such abso-
lutes as "tnftnity" and "perfection" sometimes impels us
forward, sometimes leads us astray. On page 48, Gennady
Myakishev wrestles with the concept of a "most inertial"
frame of reference.
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Cover aft by Tomas Bunk

All we can say about our cover this time
is: "No comment!"

Well, actually . . . we'd just like to
point out that, although Quantum is a
serious magazine {ull of important
ideas, challenging problems, and sophis-
ticatedaft, we are not above having a bit
of {un. In fact, in every issue Tom Bunk
has regaled us with his irreverent style
of scienti{ic illustration in the Physics
Contest department. But this month, we
offer our readers some April Tomfoolery
right up {ront-on our hallowed cover.

Sir Isaac Newton, beaned by a legend-
ary apple on our cover for the umpteenth
time, would probably scowl at such
horseplay. But we have a sneaking suspi-
cion that Albert Einstein would have got-
ten a kick out of it. Then again, you don't
have to be a genius to enioy slapstickl

As {or fooling around, we wonder if
any of our readers will notice anything
fishy in the Kaleidoscope . . .
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PUBLISHER'S
PAGE

HEN THE PREMIER ISSUE
of Quantum appearedback in
lanuary 1990, rnany of our
current readers were stil1 in

middle school. Chances are they
didn't see that issue and so were de-

nied the opportunity to read the very
first Publisher's Page. There they
would have leamed wherc Quantum
came from and what its aims are.
They also missed the wonderful Let-
ters from the Editors-words of wel-
come and advice hom Quantum's
founding editors: Yuri Ossipyan,
Sheldon Lee Glashow, and William P.

Thurston.
For the sake of these readers, who

are now finishing high school or
completing their first year in col-
lege, I'd like to revisit these topics.
The discussion may give them a

deeper appreciation of Quantum,
and it may calm any fears and frus-
trations they might have when read-
ing it. As for the rest of our teaders,
they may find it interesting to hear
what it is we think we're doing.

In 1989, the Russian-language
Kvant, beloved at home and re-
nowned abroad, had been around for
almost 20years, and there was noth-
ing remotely like it in this country.
It was a product of a Russian educa-
tional culture that encouraged top-
notch scholars to teach and write for
students at the pre-university level.
The question was: would an English
version work? I had been impressed
by the seriousness of Kvant, and also
by its whimsy and cluirkiness. The
illustrations were a perfect match, I

ltUol'daltdimaue

Hints on how to read Quantum

thought, for the profound play that
filled its pages. I was convinced that
US students could handle such a

magazine-that they d e s erv e d sach
high-quality material.

The founding editors knew that
Quantum would make certain de-
mands on its readers. Mathemati-
cian and Fields medalist William
Thurston felt moved to "post a

warning" at the outset:

Science writing, and math writing in
particular, tends to be dense and full of
hazardous turns and treacherous
sandpits. When I was a child I took
pride in how many pages I read in an
hour. In college I learned how foolish
that was. When reading mathematics
ten pages a day can be an extremely fast
pace. Even one page aday canbe quite
fast. . . .

Quantum articles aren't written like
articles in scientific joumals, but some
of the same reading habits still apply.
Don't be afraid to stop in midparagraph
or midsentence when something sur-
prises or puzzles you. Speed isn't the
issue. Don't assume something is obvi-
ous just because an author treats it that
way. What you work out on the side,
even though it takes much more time,
will have immensely more value than
what you read straight through.

Thurston was saying: Slow down!
But students-especially those who
excel-are unlikely to take such ad-

vice. They like to go fast! One of the
brilliant ideas embodied in Kvant rs
to intersperse the words and equa-
tions with illustrations that are at-
tractive and unusual-sometimes

even a little confusing! The goal is to
do with art what you can't do by
edict slow the impatient reader down
a bit. As a side benefit, you also en-
liven the numbing march of column
after column of text, but that isn't the
main purpose of the art.

The presence of high-qrality art
in Quantum is an outgrowth of our
belief that a good science and math
magazine should nourish the com-
plete person; that good art will train
the visual imagination, which is im-
portant in these disciplines; and that
if Quantum art helped students be-
come comfortable with (and even
welcome) confusion and learn to
"question their way out of it," such
a habit of inquiry might catry over
into their reading of scientific and
mathematical t€xts.

Thurston used a lovely image in
his piece in that premier issue of
Quantum. He wrote:

With the modern emphases on test
scores/ on "basics," on mathematics as

a competitive sport/ on getting " ahead"
in math, and so on, it often seems that
the diversity, richness, liveliness, and
depth of mathematics has been pruned
away from the school experience.
Mathematics isn't a palm tree, with a

single long straight trunk covered with
scratchy formulas. It's a banyan tree
that has grown to the size o{ a forest, in-
viting us to climb and explore.

(I doubt that many of our readers
have actually seen a banyan. You
can find a picture of one in the 15th
edition of. the Encyclop aedia Biltan-
nica.ltsays there: " Aerialroots that
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develop from its branches descend
and take root in the soil to become
new trunks. The banyan reaches a
height of 30 metres (100 feet) and
spreads laterally indefinitely. " )

As I reread the 1990 Letters from
the Editors, I find it curious that
both Thurston and Yuri Ossipyan, a
physicist and former advisor to S.o-

viet President Mikhail Gorbachev,
were bored at school. (Palm trees
rather than banyans in their class-
rooms? ) "Whether you have aheady
developed an interest in math and
sciencer" Ossipyan wroter "orhave
gathered from school courses that
these subjects are boring (as I did in
my early teens), I hope Quantum
will help you discover the excite-
ment inherent in mathematics and
the natural sciences." And Thurston
says, "As a child, I often hated arith-
metic and mathematics in school.
Pages of exercises were tedious and
dull. They weren't fun or challeng-
ing, they were just a chore.t'With-
out actively encouraging such be-
havior, I feel compelled to report
that he would sometimes read
books under the desk, or stare out
the window, working through men-
taLpuzzles of his own devising!

I join Thurston in having " great
hopes that Quantum wIII open up a
road to some of the breadth, wonder,
and excitement// of mathematics and
the quantitative sciences. Physicist
andNobel laureate Sheldon Glashow
wrote in |anuary 1990: "I wish
Quantum had been around when I
was a student-it would have made
it a lot easier for me to have found
fulfillment as a physicist." But even
if you have no intention of being a
scientist or a mathematician, I be-
lieve Quantum can give readers of
all ages great pleasure. You just
have to earn it. It seems like a fair
deal to me. As Ossipyan said, "Few
experiences are as intensely exhila-
rating as the feeling'I've got it!' that
comes as a flash when you've solved
an intricate problem or grasped a
profound idea." It goes without say-
ing that sometimes youwon't getit.
That's what makes it so much fun
when you do.

-Bilt G. Aldridge
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tlludUing our ulay Io a pl'ool

Using the method of small perturbations

by Galina Balk, Mark Balk, and Vladimir Boltyansky

MATHEMATICIAN TESTING
geometrical statements for
plausibility or trying to con-
struct a counterexample often

follows this line of reasoning: "I'll
take the case where this statement
is true and nudge one point (or seg-
ment, or some other figure). By do-
ing this, can I obtain a case where
the statement becomes invalid?"

As a first example, look at the fol-
lowing simple question.

Problem 1. A point P inside a
convex polygon is orthogonally pro-
jected on its sides or their exten-
sions. Let's say that such a projec-
tion is " pleasant" if it belongs to the
corresponding side and "unpleas-
ant" Tfit belongs to the side's exten-
sion. Is it true that at least two of
these projections are always pleas-
ant?

Solution. Consider first a point in
a triangle ABC.If the triangle is
acutet then all the projections of any

of its interior points are pleasant. In
an obtuse triangle ABC, it's easy to
find a point with exactly two pleas-
ant projections. (It can be chosen
close to one of the acute angles-see
figure 1.) Now we can construct a
convexquadrilateral and a point on
its perimeter that has only one
pleasant projection. Take, for in-
stance, the quadrilateral MNCB in
figure 2, where MN is an arbitrary
line throughP separating the proiec-
tions of P on AB arrd AC from the
side BC. Point P has only one pleas-
ant projection with respect to this
quadrilateral (point P itself). But it
doesn't lie strictly inside the quad-
rilateral. So let's slightly "pertlrb"
the diagram by moving point P
slightly inside MNCB. If the shift is
small, the prof ections of P will shift
just a little, and we can make their
displacements so small that the un-
pleasant projections will remain on
the extensions of the corresponding

sides-that is, they remain unpleas-
ant. Thus, we come up with a point
P' that has a single pleasant projec-
tion (on the side MA{, to be exact).

Problem 2.It's well known that
the altitudes of a triangle (or their
extensions) meet at a point. Is it true
that all four altitudes of an arbitrary
tetrahedron (that is, the perpendicu-
lars to its faces through their oppo-
site vertices) also meet at a point?

Solution. Draw two altitudesAM
and DN in an arbitrary tetrahedron
ABCD (fig. 3). Now let's perturb it
by moving the vertex D into a new
position D' in the same plane BCD.
The altitude from A in the new tet-
rahedron is the same line AM lbe-
cause the planes BCD andBCD' co-
incide). At the same time, the

=o
U
3

x
3
o

A

Figure 1 Figure 3
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altitude DN can be moved into any
new position D'M parallel and close
enough to the original one. Now it's
clear that by properly moving point D
we can make the altitudes AM and
D'N' of the new tetrahedron disjoint,
even if they originally intersected. So
the Aititude Theorem for triangles
can't be extended to tetrahedrons (at
least, not to all tetrahedrons).

Problem 3. (A. Kuzminykh)Does
there exist a convex polyhedron
whose orthogonal projection on any
plane is a 1995-gon?

Solution. Instead of considering a
fixed polyhedron and various planes
on which it is projected, it would be
more convenient to fix a plane cx and
vary the position of the polyhedron.

Suppose a polyhedron satisfying
the requirement of the probiem ex-
ists. Let's position it so that one of
its edges, AB, is perpendicular to the
plane c,. Then the vertices A and B
are projected onto the same vertex
P, of the polyhedron's projection on
a-a 1995-gon PrPr...Prrrr. Now
1et's nudge the polyhedron so as to
slant the edge AB and make its pro-
jection a new edge of the polygon in
the plane s. If the perturbation is
sma1l enough, the different vertices
P2, ..., Prrru wiii remain vertices (that
is, they won't be absorbed into the
body of the projection) and they'll re-
main different. This means that the
new projection is at least a 1996-gon,
which contradicts our assumption.

So a polyhedron with the require-
ments of the prohlem doesn't exist.

These simple examples suffice to
show the essence of the "small per-
turbation" technique we applied.
The properties of a geometric object
fall into two classes: stable proper-
ties, which are preserved under any
(sufficiently small) perturbations of
the figure, and unstable properties,
which can be violated under certain
small perturbations. For instance, in
problem 1, "to have its projection on
the extension of a side" is a stable
property of a point in a polygon, while
"to lie on the boundary of a polygon"
is an unstable property. In problem 3,
the property "the projections of two
vertices are distinct" is stable, while
the property "the projections of two

vertices coincide" is unstable. Clas-
sify the properties involved in prob-
lem 2 yourself.

Thus, in order to find a figure
with a certain set of properties, we
first try to achieve the desiredstable
properties and then perform a small
perturbation that removes unstable
properties that we don't need.

Now let's solve a more compli-
cated probiem.

Problem 4. Is it possible to make
a hole in a regular tetrahedron that
would let another congruent tetra-
hedron go a1l the way through it?

It will be better to reword it (we'11

see below that both problems are
equivalent):

Problem 4a. Is it possible to ar-
range two congruent regular tetrahe-
drons T and T' in space in such a way
that the orthogonal projection of one
of them on a given plane lies entirely
inside the projection of the other tet-
rahedron on the same plane?

Solution. Attach the tetrahedron
T'beneath the plane so that its face
A,: A'B'C' lies in the plane (fi1. q.
Put the other tetrahedron above the
plane with the proiection of its face
ABC exactly fittingA. Now we'Iltry
to move T so as to squeeze its pro-
jection completely inside A. First,
turn 7 about the edge AB until the
edge CD becomes perpendicular to
our plane (fig. 5). Then the projec-
tion of T becomes an isosceles tri-
angle A'B'C, with C, inside A.

Next we make the projection of
the edgeAB shorter thanA'B' = AB.
This is done by slightly rotating ?
about the line through the mid-
points M and K of AB and CD. The

D'
Figure 5

projection of Ttums into an isosceles
trapezoid AzBzC2D2 (fig. 5l whose
base ArBr lies on the segment A'B'.
The other base, CrD, willlie com-
pletely inside A for a sufficiently
small angle o{ rotation.

B'
,82

D'
Figure 6

Finally, we can translate T by a
sufficiently short distance along the
line MI( so as to bring the vertices A,
ar;ld Brinside A without moving C,
andDrout of A (fig. 7).

Figure 4
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And this gives a positive answer
to our auxiliary problem 4a.

Coming back to problem 4, itre-
mains to note that if we remove the
part of tetrahedron T' that consists
of all the points directly beneath the
projection of T on A, make the hole
thus obtained just a little wider, and
let tetrahedron 7 fall from the posi-
tion we achieved (shown in figure 7),
it will drop all way through this hole
in 7 without hindrance.

Another situation where small
perturbations prove useful arises
when you have to choose (or con-
struct, or find) a figure from a given
set of figures that is the "best" in
one sense or another (has the small-
est perimeter, the greatest area, and
so on). The main difficulty in these
problems is often to guess the right
answer. And this is just where the
method of small perturbations can
help: we take any figure from the
given set and try to improve it by a
small perturbation. If we fail to do it,
then it's quite plausible that the fig-
ure we've taken is the desired one.
(Of course, the guess must be fol-
lowed by a strict proof.)

Problem 5. Through a point P
given inside an angle, draw a line that
cuts the triangle with the smallest
possible perimeter off the given angle.

Searching for a solution. The pe-
rimeter of a triangle ABC canbe ex-
pressed in terms of the tangents
drawn from, say, the vertex C to the
circle touching side AB (on the out-
side) and the extensions of CA and
CB (fig.8). Using the fact that two
tangents from the same point to the
same circle are the same length, we
derive that the perimeter 2s is equal to

2s=CA+AB+BC
:CA+AT+TB+BC
:CA+AM+NB+BC
=CM+CN
= zCM,

where T, M, andNare the points of
tangency of the circle in question.l
This circle is one of the three
escribed c,ircles-that is to say, one
of the excfucles of the triangle,

We can think of this triangleABC
as being cut of{ from the given angle
(with vertex Clby a lineAB through
P. If we contract the circle toward C
so that it remains inscribed in the
given angle and correspondingly
turn the lirre AB so that it remains
a tangent to the circle, then the tan-
gent length CM andthus the perim-
eter of LABC will become smaller.
This perturbation decreasing the
perimeter is possible as long as point
P remains outside the circle. As
soon as point P gets on the circle,
we're no longer able to continue the
process. So it's quite plausible that
the smallest perimeter is achieved
for the trianflrcABC whose excircle
in IACB touches AB at P. Now an
accurate solution can be derived
without too much effort.

Draw any circle inscribed in the
given angle. Let P' be the point of
intersection with line CP that is
closest to C. The dilation relative to
center C by the factor CPf CP'takes
this circle into a circle O through P
inscribed in the given angle (with P
on the arc f.acingvertex C-see fig-
ure 9). Let A ar,d B be the points
where the tangent to the circle O
through P meets the sides of the
angle. ThenABC is the required tri-
angle.

Indeed, consider another triangle

C

Figure 9

1 This not-so-obvious relation is
certainly the nicest point in the
solution that follows and it can hardly
be discovered by means of the small-
perturbation method. However, once
you become so lucky-or so smart-
that the relation reveals itself to you,
the method will help you use it
properly.-Ed.

A'B'C cut off from the angle by a line
through P. Since lineA'B'is not tan-
gent to the circle O, they have an-
otherpoint of intersection Q. So the
excircle of LA'B'C is farther from
the vertex C than the circle O; there-
fore, LA'B'C has a larger perimeter
than LABC.

You can check through the solu-
tion once again to make sure that
the triangle with the smallest perim-
eter is unique.

The method of small perturba-
tions is useful in areas other than
geometry/ as the following example
shows.

Problem 6. Three friends, Art,
Billie, and Carmen, ,orgatized a
chess tournament among them-
selves in which each played the
same number of games with the oth-
ers. After the tournament Art de-
clared himself the winner because
he had fewer defeats than the other
two participants; Billie said she
should be awarded first place be-
cause she had the greatest number of
wins; and Carmen noted that her
score was the highest (a player is
given 1 point for a win, 1/2 point for
a draw, zero f.or a defeat). Is it pos-
sible that all three friends were right,
or did some of them miscalculate
the results?

Solution. Let's try to construct a
toumament satisfying all three condi-
tions that the friends had formulated. It
will be convenient to "assemble" it
from separate rounds-that is, sets of
three games between each of the tlrree
different pairs of players. A pair of
rounds willbe called a We-A (for Art)
double rcund if (a) Art plays all four
of his games to a draw and (b) Billie
defeats Carmen in the first round and
loses to Carmen in the second round.
This double round, and any number
of such rounds as well, satisfies Art's
condition: he has the smallest num-
ber of defeats (no defeats at alU. At the
same time, in a type-A double round
all three friends get the same score,
Art has the smallest number of wins,
and the other two players have the
same number of wins and defeats
(one win and one defeat). The same
will be true for a toumament consist-
ing o{, say, 100 type-A double rounds.

0lJIt'IItl]tl/ttlTURt
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Now 1et's perturb this big touma-
ment by adding a comparatively
small number of rounds (not neces-
sarily type-A double rounds). Art's
condition will remain true (because
Art will have only a small number of
defeats-no geater than the number
of added rounds-while Billie and
Carmen will have at least 100 defeats
each). In other words, this condition
is stable. Let's try to choose a pertur-
bation that satisfies Billie's condition.
Consider a type-C double round (in
which Carmen achieves a draw in all
games/ while Art and Billie win once
against each other). It retains the re-
sult of equal scores among all the
players, but gives Billie an advantage
over Carmen in the number of wins.
So after 100 type-A double rounds and,
say, 10 type-C double rounds, Art,
Billie, and Carmen will have 10, 110,
and 100 defeats, respectively, and 10,

110, and 100 wins, which means that
both Art's and Billie's conditions are
fulfilled. But the score of a1l the play-
ers is the same (220 points), so
Carmen's statement isn't true yet.

So let's perturb this last tourna-

ment a bit more by adding another
round (which certainly won't violate
the first two conditions) chosen in
such a way that Carmen gets the
highest score. For instance, we can
assume that in this additional round
Carmen wins against Art and Billie,
who play their game to a draw. This
completes the construction of the
required tournament.

Exercises
1. A quadrilateral AB CD has congru-

ent and perpendicular diagonals and a
pair of congruent opposite sides (AB
: CDl. Does it have to be a square?

2.In a convex pentagon all sides
are oongruent. Is this pentagon nec-
essarily regular?

3. Does a convexpentagonwith con-
gruent diagonals have to be regular?

4. A convex hexagon has parallel
opposite sides and congruent diago-
nals joining opposite vertices. Is it
necessarily regular?

5. A quadrilateral circumscribed
about a circle has congruent diagonals.
Does it necessarily have parallel oppo-
site sides? (Hint: start with a square!)

6. 2n points A1r ...t Ar,81, ..., B,

are given in the plane. Prove that
these points can be moved an arbi-
trarily small distance so that no two
of the segments ArBr, ..., ArBrare
parallel and no three of them have a
common point.

7. Prove that anyn points in space
can be moved an arbitrarily small
distance so that no four of them are
in the same plane.

B. Prove that n - 5 vertices of a
convex n-gon (n , 5) can be nudged
so that no three of its diagonals in-
tersect at one point.

9. Prove that the constant term a" of
the polynom ial xn + a r*n 

- I + d. x't' - l
+ ... + an_ rx + ancanbe changedbl, an
arbitrarily small amount so that there
are no multiple roots. (A multiple root
is a root corresponding to turo or more
identical factors of the pol1'nomial.)

10. Draw a line through a pornt P rn
a grven angle so as to cut off the n'iangle
with the smallest possible area.

I 1. If a quadrilateral is conver, the
sum of its diagonais is greater than
its semiperimeter. Find a counter-
example showing that the converse
statement is wrong. O
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BRAINTEASERS

JusIlol'lhelunol it!

8136
Color logic. Four girls, Babs, Grace, Parr,, and Winnie, are standing in a
circle and chatting. The girl in the green dress (neither Babs nor Grace) is
standing between the girl in the blue dress and Winnie. The girl in the
white dress is standing between the girl in the pink dress and Grace.
Which dress is each girl wearing?

8137
Dissection on graph papet. The shape in the figure at left is to be divided
into six congruent parts by cutting it along the grid lines. What shapes
can the congruent parts have? (M. Komanl

8139
Geometry on graph paper. Three ruys AB, AC, and AD are drawn from
a node A on graph paper as shown in the figure. Using the square grid,
prove that the angles BAC and CAD are equal. (M. Koman)

,,

,M

8138
Run or walk. A group of hikers came upon a stream. A log stretched {rom
one bank to the other. The first hiker started walking slowly across the log
bridge and fell off, but managed to swim the rest of the way. Then the
leader of the group ran across the log bridge. The rest of the group also ran
across. Why is it better to run along the log rather than walk? (S. Krotov)

8140
RedundantrooJ<. Fifteen rooks are set on a chessboard such that there is at
least one rook in each rank and file (that is, horizontal and vertical rows).
Prove that it's possible to remove one rook so that the remaining rooks still
satisfy the same property of no empty ranks or files. (V. Proizvoiov)
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Thehi$ot'yol alall

"You will look into our souls, and I beg that you remember that
we are people too, that we love and we suffer like everyone else
on the earth! I have given you the idea of the play. Now you be
the judge of how well it is worked out. And now, let us begin!"

-Prologue 
to Leoncavallo's opera I Pagliacci (The Clowns)

by Leonid Guryashkin and Albert Stasenko

ERE BEGINS OUR LITTLE
tragedy, in six acts with an epi-
logue.

Acl 1: lllotan eilsy [iflr
It would seem that there is noth-

ing easier in the world than to make
a drop of nitrogen. You iust pour some
liquid nitrogen into a tin can with a

small hole in the bottom and drops
will fall out one by one like water
from a leakyfaucet. Well, we tried it,
and it didn't work-the nitrogen
poured out in a thin stream, sliding
along the layer of nitrogen vapor that
had formed on the walls of the tin
can. You see, these walls-which
were pretty much at room tempera-
ture (7 = 300 K)-were like a white-
hot oven compared to the liquid ni-
trogen (T' = 77 K). We could wait until
a fur coat of condensed water vapor
and carbon dioxide {rom the air grew
on the outside of the can, but in the
meantime too much nitrogen will
have poured out. To prevent thag we
could have invented some kind of valve.

Or we could have . . . Well, what we
did was put a vertical tube, about
1 cm long, in the hoie and filled it
with aporous substance that quickly
assumed the temperature of liquid ni
trogen and let the licluid nitrogen flow
through it with an average speed of
two drops per second (fig. 1).

Falling freely through the air with
an initial diameter of about 2 mm,
these drops passed between a strobe
light and some photographic iilm,

leaving shadow pictures on the film.
The duration of the light flashes was
very short-just one-millionth of a
second. This explains why the pic-
ture looks quite clear-during such
a short period of time the drop itself
and the picture of its streamlined
flow changed hardly at all.

Figure 2 (on page 12) shows one of
many pictures of nitrogen drops, and
figure 3 shows a " colortzed" version.
We can clearly see the drop's " tail,"
which is due to the sharp difference

in density between the sur-
rounding air and the cold
mass of gaseous nitrogen
evaporating from the surface
of the drop. (A similar tail can
be seen with the proper iight-
ing when you dissolve a lump
of sugar in a glass of water.)

Experiments were also
- tz) conducted with drops of wa-

ter of the same size-abso-
lutely no tails were left on the
film by the drops. The reason
is clear. The temperatures of
air and water are almost the
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same and arc f.N from the boiling
point, so the evaporation rate f.or a
drop of water at room temperature is
very small. And in humid weather
the drops don't evapotate at all-in
fact, they may even grow due to
condensation. (You've probably no-
ticed how long the drops of dew or
rain hang on the trees and grass, and
you could take your own sweet
time observing a drop of water on a

vlt0lmls)

, 
z (mm)

microscope slide.) It
should be noted that
air is an alien " gas" for
a drop of water, while
it is almost a bosom
buddy for a nitrogen
drop (becausenitrogen
is one of the basic
components of air).

So, what can we
leam about the life of a
nitrogen drop from its
"portrait"? First, the
portrait makes it pos-
sible to measure the
size of the drop (its av-
erage radius r), and
consequently its mass
m = lal3lrr3p6 (po :
800 kg/m3 is the den-
sity of liquid nitrogen)
and its surface 4re4 s =
4nr2. Second/ since we
know the periodAtbe-
tween flashes of the
strobe, we can easily

find the drop's velocity v = Ly f Lt from
the distance between successive pic-
twes of the same drop. Andby chang-
ing the height of the dropper, we can
determine the radius and the velocity
of the drop experimentally as func-
tions of y during the fall: /yl andv(yl.

The resuits of measurements are
shown in figure 4 as little circles. We
can see the scattering of experimen-
tal points, which results from the
limited accul;tacy of measurements
in any experiment (the errors in the
velocity y are shown by horizontal
bars). The measurements show that
the size of a drop decreases mono-
tonically, whereas its velocity in-
creases at first, then decreases after
passing through a maximum.

Now it's time to theoretically
explain the results obtained. This
will enable us to describe the char-
acteristic periods in the life of a fall-
ing drop.

Acl 2: [l|on$op accelet'ation
It's clear that the air resistance act-

ing on a moving body depends on its
relative velocity. In any case, it's ab-
sent at zero velocity, and while the
newbom drop is still moving slowly,
the air resistance can be neglected.

Therefore, its movement is influ-
enced only by the force of gravity, so
the drop will be uniformly acceler-
ated, and you know all about that
kind of motion (we hope!):

v(o) = gt =

-'(o) - 8f2v ---
2

The superscript zero here indicates
that this estimate is based ofl zero
air resistance. In figure 4 this depen-
dence of velocity on height is shown
by the green line, which describes
the experimental curve o{ the initial
section OA.

ftt 3: lneuilalle hnaling
As the drop accelerates, the air

resistance becomes more and more
appreciable. How can this force be
described?

Over and over you've heard it said
that the air resistance a{fecting a

moving body (that is, the aerody-
namic force) is proportional to the
density of afu, the square of the
object's size (or its cross-sectional
area), and the square of its velocity:

F^: -C^pxPtfl.

This formula can be obtained from di-
mensional analysis. The minus sign
accounts for the force being directed
opposite to the velocity; the dimen-
sionless coeffi cient C 

^, 
broadly speak-

ing depends on velocity, but this de-
pendence is weak and canbe obtained
from experiments or other more com-
plicated theoretical considerations.

We could also apply the following
reasoning. The flow of an air mass
moving inside a cylinder whose cross
section is equal to that of the round
drop br?l is pvnP. But a unit of mass
carries themomentummvfm: y, so
the total flow of momentum in this
cylinder is pwt?v : pTcP*. Of coursg
the flow lines of gas curve somewhat
as they {low around the drop, so a
catch-all factor C, appears in the for-
mula, accounting for every feature of
the flow we can't consider here.

So, taking this aerodynamic force
into account, the equation for the

v{m)

Figure 4
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drop's movement (Newton's second
law) can be written in the form

dv
-a = c^mT- pv2v2. (1)

dt

Dividing both sides of the equation
by the mass of a drop m: $lSlxfpo
yields

d'=o-1" P 
"dt- E-i"^i; l2l

-that is, the acceleration of a drop
consists of two parts: the accelera-
tion due to gravity g and the nega-
tive acceleration (braking) associ-
ated with the aerodynamic force.

We can write equation (2) in an-
other way. Let's recall that the time
intewal dt can be obtained by divid-
ing the distance traveled dy by the
velocity v: dt = dyfv.Thts,

dv dv d (v2\
tl.dt dy dv\z)

But this is the change in kinetic en-
ergy per unit mass with distance. So

equation (21can be written as

and it seems that this would be a
snap to integrate. But now is just the
time to remember that the size of a
drop also changes with distance. So

as not to forget it, we've even writ-
tenr(yl on the right-hand side of the
equation. The iast equation can be
read in this way: the change in the
specific kinetic energy of a drop is
due to the work performed by the
force of gravity and the aerodynamic
force over an elementary displace-
ment dy.

Acl4: Continmu$ $el[sacl'ilice and I[e

pinnach ol Ulol'y

It's clear that the radius of a drop
is nonnegative and doesn't increase
with time. This means that by in-
creasing the velocity and decreasing
r(yl, the second term on the right side
of equation (3) may become equal in

,t f I =f r-i.. o 
"']ar,,.,\2)[ 4 "par(y\) r"I

absolute value to the first term, and
at this point in the drop's traiectory
the velocity will stop changing:
dvldy = 0. This point is marked with
the letter B in figure 4. Now we can
determine the value of the coefficient
for the air resistance Cr, which was
unknown when we obtained the
aerodlmamic force by dimensional
analysis:

2 pvza
o= 8_:c^4 pors

u

n -4 ^P rz
u, __E_1.

c Qo v-s

Inserting the values po : 800 kg/*3,
p = I kg/m3, and g = 10 m/s2, and
taking the values for the veiocity
and radius from figure 3-r" =
0.9 mm =9.104 mtvB=S m/s-we
get C^=O.2.

What happens after point B? Well,
the velocity of the drop must de-
crease/ and maybe you've aheady
guessed why. The force of gravity is
proportional to the drop's mass-
that is, to the cube of its radius (l),
whereas the aerodynamic force is
proportional to the drop's cross-
sectional area-thatis, to the square
of its radius (r2). So the force of grav-
ity decreases faster than the aerody-
namic force as the radius decreases.
This means that after point B the
drop slows down.

Nowwe should discuss the change
in the drop's radius. First of all, the
reason for its decrease is absolutely
clear: the thermal energy of the air
flowing around the drop evaporates
its outer layers. Let's turn this
thought into some formulas.

First let's determine the energy
transferred to the drop. The air mass
flowing past the drop is about pvn&.
It is this mass of air that continu-
ously transfers thermal energy to
the drop. A unit mass of any sub-
stance carries energy consisting of
the kinetic energy of chaotically
moving molecules and the potential
energy of their interaction. If we as-
sume the surrounding air to be an
ideal gas, its energy per unit mass
will be crT (the energy of molecular

interaction is zero for an ideal gas;
the subscript p on the heat capac-
ity indicates that the pressure is
held constant). A unit mass of gas
just after it evaporates from the
drop, characterizedby the tempera-
ttJre T', has energy coT, while in the
condensed state (thht is, in a liquid
drop) the corresponding value is
coT' - L(T'1, where LIT'l is the heat
oI vaporization, which includes the
potential energy of molecular inter-
action.

Figure 5 shows the qualitative
dependence of the energy per unit
mass on temperature for gaseous ni-
trogen (the straight line cnT corre-
sponds to an ideal gas) anil also for
nitrogen in the licluid state (the bot-
tom curve). If necessary, these
curves can be drawn from empirical
data. But for now it's enough to have
the values of cn and I shown in the
figure, which will prove useful for
numerical estimates.

So, during th e time dt thermal en-
ergy of about pvnrzc.(T - T,) is trans-
mitted to the dropl fhis energy is
spent on evaporating a mass dm,
which can be written as

-Ldm = CopvnPcp(T - T'ldt. l4l

This is the same approach we used
earlier to estimate the flow of mo-
mentum (that is, the aerodynamic
force F"): we introduce a dimension-
less coefficient C.,-,, whose exact
value we don't knoiv, but surely it
"conceals" fine details of the process
that aren't essential for us at
present).

"pT

"rT
0

13

energy pq unit mass

liquid state

co = 103I/(ks ri
LIT)= 2.10sJ/kS

Figure 5
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Substitutingtheformtiasdt = itresemblestheslowsinkingof a , ,/ o\ tt- m,\

/y,1".^:!dm:4nflpodrinequation pelletinhoney. ,!=+lLl=-^\'-' /=corst,
(a) yields So, after point D we get dt dt\ Z ) Lpo

dr 
=_Cq 

p cr(r-r')
dy 4po L

Thus, the rate of change of the ra-
dius relative to distance is constant,
which is confirmed by the straight
line in figure 4. Measuring its slope,
we find the dimensionless coeffi-
cient Co. As a matter of fact, that
was the point of the experiment: we
needed to make our theoretical con-
siderations more exact-otherwise
we need not have bothered! The
solid curves rlyl ar.d v(y) in figure 4
were drawn to create the best fit
with the experimental data.

flut5:A ct,gopiru Iitu

The aforementioned equations
describe the dynamics of a drop's
heat exchange and mass exchange
for a great part of its trajectory, but
not all of it. Beginning from some
point (denoted by D in figure 4), the
Iaws governing the drop's life vary.
Its further biography could be told in
greater detail and with more exacti-
tude than previously, but it would
require that we introduce such com-
plicated concepts as coefficients of
viscosity (n) and thermal conductiv-
ity (k). We could also pass over this
portion of the drop's life in discreet
silence, citing the fact that every
hero's life must have its mysterious
periods. As a compromise between
these two possibilities we'Il give a
mere outline of the main events of
this period.

The most important fact is that
after point D the drop becomes so
light and small that the value
m(dvldt) on the left-hand side of the
equation stops playing any notice-
able role, whereas the force of grav-
ity mg is balanced by air resistance.
But the latter also varies, and now it
becomes proportional to the radius
and velocity, and also to one more
value-the viscosity coefficient.
This new force Fn = Srqrv is known
as the Stokes forie, and the motion
is referred to as "creeping," because

l4

(5)

0=-6tr\rv+m8,
from which we obtain

.. _2 pog
v - _: rz. (6)911

Here is another point where we
need to stop and think. You see,
judging from figure 4, the drop's ve-
locity continues to decrease, so
dvl dy + 0 and dvl dt = v(dv I dyl + O,

and the mass also isn't zero yet-but
we've written 0 instead of mldvldtl.
What's up?

Let's recall that, iI we really wind
up/ we can throw a stone pretty fat,
while the fluff from a dandelion
wouldn't go very far despite our
greatest efforts. The fluff immedi-
ately slows to zero velocity (pro-
vided there's no wind). Any physi-
cist will tell you that the relaxation
time for the fluff's velocity to equal
the air velocity is very small due to
its negligible mass (which in tum is
the measure of inertia). A gust of
wind would take this fluff away,
while some period of time is needed
to accelerate a sailboat. Likewise,
when our drop becomes small
enough, it will very quickly " get
used to" the changing conditions of
the flow and adapt to them almost
without a time lag. (These conditions
vary only because of the decrease in
the drop's mass-otherwise the drop
would fall with a constant velocity.)
All this goes to show why the inertial
properties of a drop become irrelevant
at the end of its trajectory, and this
allows us to drop the term mldvldtl
from the equation.

After point D the addition of heat
to the drop will be determined basi-
cally by the process of heat transfer.
In a time dt the drop will acquire ther-
mal energy of about ar.Pkl(T -T'llrl,
which will be spent on evaporating a
mass dm-that is,

-Ld* -4nrkT-Tdtr'

which leads to

,3-r'-t-tn.
(Here k is the aforementioned coef-
ficient of thermal conductivity.)

This law, which says that the
surface areaol the evaporating drop
decreases proportionally with time,
was formulated in 1883 by the Rus-
sian scientist B. I. Sreznevsky on the
basis of dimensional analysis as
well as many experiments with sta-
tionary drops of different sub-
stances. Comparing the last equa-
tion with equation (6) shows that
the velocity of the drop decreases
linearly with time, which corre-
sponds to a quadratic law for the
drop's coordinate (much like what
takes place with uniformly acceler-
ated motionl:v - 

^pj, 
where y.

is the point of complete evaporation
(if further motion were described by
this law, needless to say). So then
r - 1Pr:V

"Hey, wait a minutel" the
thoughtful reader will say. "The
drop's velocity has to be zero at the
very beginning. So why didn't we pay
attention to that in Act 2?" Well, it
was okay, we rep1y, because as soon
as the drop left the dropper, its veloc-
ity was aheady greater than zero,
while it was so large that the mode of
creeping motion in air wasn't ob-
served from the very moment of its
birth. Also, stillleft open is the deli-
cate question of the in{luence of the
close proximity of the dropper itself
(in our reasoning we assumed all the
bodies were "infinitely" distant from
an isolated drop).

ArtE: The Ia$ miu'osecoltd
And now the pivotal moment in

the drop's life arrives, when its size
becomes equal to and then smaller
than the mean free path I of the air
molecules (that is, the mean dis-
tance between successive collisions
of the molecules), which is approxi-
mately equal to 10*7 m. This means
that now the drop is immersed not
in a continuous medium but a rar-
efied one, which modifies the rules

iltlBcfl/[PRil.1095



of the drop's life. Speaking of which,
how much longer does the drop have
to live?

At this point approximately
(Il6ln\u) molecules strike a unit sur-
face per unit time (where n is the
density of the molecules and (u) =

fERrtrNl is their average velocity).
Each molecule carries energy of the
order of (3l2lkT (actually, (5lzlkr if
one recalls that the air consists of di-
atomic molecules-but this correc-
tion isn't crucial for our order-of-
magnitude estimate). Thus, the
entire spherical surface of the drop
acquires per unit time an energy of

_ ^l ,,sRT
4fir" -p\u) 

- 
.

6"2M

Making this energy equal to (in order
of magnitude, as you might have
guessed) to

-dm . dr_L_ =_L4Tcr,pn , ,dt '" dt

we get the approximation

It's true that some of the energy
is carried away by the evaporating
mass, and that the value for the la-
tent heat of vaponzation (given in
reference books) should be reduced
by the value of the work per unit
mass performed against the pressure
of the continuous medium (which is
now absent)-but these two fine
details wouldn't change the order of
magnitude of the time we seek: tr.
It's clear that the rateofevaporation
is constant-therefore, r decreases
proportionally with time, and

wherer. is the drop's initial radius at
this stage of its life in the rarefied
gas. So, the drop's disappearance
time (r -+ 0) is of the order of

Tr - -----------L's 5 RT p,,'
t2 LM po\u)

Inserting here r, = 1= I0-7 m, T =
300 K, M = 29. 10r kg/mol, and (u)
= 500 m/s, we get r < 10-5 s : 1 mi-
crosecond. Alas, the last period of a
drop's life turns out to be very short
indeed. When time runs out, noth-
ing is left of the almost stationary
drop but one last molecule, and who
can say which it belonged to-the
drop or the air? (Perhaps the mystery
could be solved by incorporating an
atom of a radioactive isotope of ni-
trogen into the molecule.)

Well, the time has come to lower
the curtain. And as the audience
leaves, deeply affected by the trag-
edy, it has much to mull over. Was
it an accurate portrayal? And if so,
what was the point?

Hilo$B
It goes without saying that our

play, The History of a Fall, didn't
cover everything. For example, as
we mentioned above, one might
examine such processes as the mo-
lecular transfer of mass (diffusion),
momentum (viscosity), and energy
(heat transfer). To do this, one
needs the corresponding coeffi-
cients to describe the portion of
the drop's trajectory from point D
to point S, after which the mode of
free molecular flow begins. Fur-
ther, the influence of atmospheric
oxygen wasn't discussed at all.
One can expect that this " alierr"
gas (from the nitrogen drop's point
of view), like any other substance,
would try to diffuse into where it
wasn't-that is, inside the drop. In
any case, it does meddle in some
way in the process of nitrogen
evaporation. Another point wasn't
taken into account: the drop isn't
necessarily spherical-it osciliates
during its fall, as you can see in
figure 5. Also, we considered the
drop's temperature at alny period
in its life to be equal to that of the
saturated vapor at atmospheric
pressure over a flat surface of liq-
uid nitrogen-and this may well
be incorrect.

Finally, who on earth would be
interested in this drop and its
tragic story? Well, sometimes it's
necessary to know the behavior of

Figure 6

individual drops and entire clouds
o{ drops. For example, if you need
to visualize the flow around a
model of a proposed aircraft, you
can iniect drops of liquid nitrogen
into the flow and direct a beam of
light on the area of interest-all
the air vortices around the model
l:ecome visible due to the scatter-
ing of light in the fog consisting of
these drops and the particles of
water and carbon dioxide that con-
dense in their tracks. Liquid nitro-
gen is injected in cryogenic aero-
dynamic tunnels to cool the flow,
and it's important to know the
rate of evaporation of different-
sized drops. In many industrial
chemical processes/ in gas "scrub-
bing" in factory smokestacks, and
in many other instances, one
needs to understand the behavior
of an individual drop (of any sub-
stance) whose mass changes.

And for us, the audience, this
Iittle tragedy of a nitrogen drop ex-
posed the workings of certain physi-
ca1 processes and showed how the
experimental and theoretical ap-
proaches to a problem complement

dr

dt

dr _r" _ 1e-i-i'

one another. o
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0enul'alizinU tUlonty3 dilemlna

Strategies for dealing with a wily game-show host

by John P. Georges and Timothy V. Craine

EVERAL YEARS AGO, MONTY'S DILEMMA-
alternatively known as the "problem of the car and
the goats"-generated controversy in the pages of
the popular press and stimulated lively discussions

in classrooms throughout the US. Widespread interest
in this problem resulted from the fact that alter Parade
magazine columnist Marilyn vos Savant published her
solution, she received thousands of letters, including
many from mathematics professors, disputing her
analysis. It turned out that in a sense, Marilyn was right,
much to the surprise of many mathematicians with
Ph.D.'s. In this article we consider generalizations of
Monty's dilemma.

First, let's review the original problem. Monty Hall,
a game show host,1 asks a contestant to select one of
three doors behind which areprizes. There is one goat
behind each of two doors and a carbehind the third. Af-
ter the contestant selects a door, the host reveals agoat
behind one of the unchosen doors. (In the event that
there is a car behind the contestant's door, Monty may
choose to open either of the other doors. We assume
that each of these doors is chosen with probabllity Il2.)

Monty then asks the contestant whether she wishes
to switch her choice to the remaining door. The contes-
tant, who we assume prefers to win the car, has two
strategies: "stick" with the original door or "switch" to
the remaining door.

What would you do? Do you figure your odds are
f:dty-flfty, so it doesn't matter what you do at this point?

Well, contrary to the intuition of many people, the
switching strategy is superior to the sticking strategy.
By switching, the contestant will win the car with prob-

lHis game show, "Let's Make a Deal," is no longer on
the air (to the best of our knowledge). Monty Ha1l himself
took a great interest in the dilemma named after him-see
the front-page article in the New York Times of luly 2L,
t99t.-Ed.

ability 2f 3, whereas by sticking, she will win the car
with probability 1/3. Here is one explanation. Assum-
ing that the contestant's initial choice is random, she
will select the car with probability ll3 and a goat with
probability 213. By using the sticking strategy , which is
essentially the same as ignoring the information given
by Monty, the contestant should expect to win the car
1/3 of the time and to win a goat 213 of the time. If, on
the other hand, the contestant uses the switching strat-
egy, then for the 213 of the time when she initially se-
lects a goat, she will switch to the car, and the 1/3 of
the time when she initially selects the car, she wiil
switch to a goat. In other words, under the switching
strategy the events of initially selecting a goat and even-
tually winning the car are equivalent.

0ne cil lnalty Uoal$
Now 1et's suppose Monty decides to make the game

more interesting by providing more doors. Consider the
situation where there are n doors with r > 3, behind
which appear n - 1 goats and one car. A{.ter the contes-
tant has chosen a door, Monty opens one of the remain-
ing doors behind which is a goat. (Again he chooses with
equal probability from among those doors that have
goats behind them.)

The contestant cafl either stick with her original
choice or switch to one of then - 2 remaining doors. The
contestant will have chosen the correct door L f n of the
time and an incorrect door (n- llln of the time. As a
result, the sticking strategy will be successfui with prob-
abllity lln.

On the other hand, if the contestant adopts the
switching strategy, the probability of success is com-
puted by multiplying two probabiiities, as we sha1l ex-
plain. The computation involves the concept of condi-
tional probability. The notation described in the box
below wil1be used throughout our discussion.

o
a
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P(Al is the probability that event A occurs

P(B I Al is the probability that event B occurs
given that eventA has occurred. Read this as

"probability of B gpven A"
P.,r"o indicates the probability of winning the car

if the contestant adopts the sticking strategy

Pswitch indicates the probability of winning the
car if the contestant adopts the switching
strategy

and that P.,ritch S P.ti"k.
Consequently, when Monty reveals a goat, the prob-

ability of success for the switching strategy will be
greater thaniln (the probability of success for the stick-
ing strategy|; however, when Monty reveals a car, the
probability of success for the switching strategy will be
less than i/n. Based on these results, we can conclude
that the contestant should adopt a strategy based on
what is behind the opened door: switch if it's a goat;
stick if it's a cx.

[t|lany mns, lnmy Uoal$, tlnctmitt rettelatiolt$

In the previous examplg Monty has decided in advance
to reveal either a goat or a car. Suppose instead he tells
the contestant, "yll show you a goat with probability p
and a car with probability 1 -p. But before I open a door
you must decide whether to stick or switch."

Once again, when she sticks, the contestant is suc-
cessful with probabllity i ln- When she switches, she is
successful with probability

Ps*i,ch =rlTE-).;(#)l

+(1-p)[n-rf4).1f+l] 
(3)

'[ , l"-z)' "1"-z))'
Note that expression (3 ) is derived from expressions ( 1 )

and (2) above.
Problem 2. Suppose there are eight doors with 5 goats

and 3 cars. Monty tells you that he will ro11 a die to de-
termine which door to open. If he rolls a multiple of 3
he wili reveal a car. Otherwise he will reveal a goat. You
must commit in advance to sticking or switching. What
should you do?

Now suppose thatp = (n - illn.Then 1 - p = i ln, and
expression (3)becomes

n-ifn-;/ ; \ ;f ;-t.1l
Pswi,ch = -;l:l J. ;l-, _ ) )

Monty reveals a car,

P,*i,cr, =T(=).:(#)

.:lT(#)+(#)l
(" - i)' + 2(n -l)(l - 1) + (l - 1)'

n(n-2)

l2l

The probability of two events occurring is equal to
the probability that the first occurs multiplied by the
conditional probability that the second occurs given
that the first occurs-that is, PIA and B) = P(AIP(BlAl.
In this case the probability that the contestant chooses
the car is found by multiplying the probability that the
original choice is incorrect , (n - llf n, and the probabil-
ity that she chooses the car from the remaining n - 2
doors, Il@-21.

Using our notation,

P,*itch = P(lst pick goat)P(znd pick car I lst pick goat)

- n-t( t )= rrl)1 ,1= P
n l"-z)-["- z)n', -'stick'

We conclude that the switching strategy is superior to
the sticking strategy in this generalization.

[t|lany cans, lnary Uooh
But what if there is more than one car? Does it still

pay to switch? Suppose there aren doors behind which
there are i cars andn - i goats, for a suitable vaiue of i. This
time Monty may reveal either a cat ot a goat without giv-
ing away his secret. If he reveals a goat, then we must have
| <i3n- 2.If he shows a car, then 2<i <n- 1. In either
case the probability of success is iln for the sticking
strategy. For each variation the switching strategy is
successful whenever the contestant either first picks a
goat and then switches to a car or first picks a car and
then switches to another car-that is,

P.*itch = P(lst pick goat)P(2nd pick car I lst pick goat)
+ P(lst pickcarlPl2ndpick car I lst pick car).

In the case where Monty reveals agoat, the probabil-
ity of a successful switch is given by

p . =!1(--t-\.1fj1)'switch- n l"_Z)' "1"_Z)
_il@-r)+(i-1)l_ i ( n-l)_ I _, (1)

-;l 
"1 l-;1."J )'--'stick'

Problem l. Show that in the second case, where

-1

l- i

l-;
-11)'

-1
,2
I

l_

I
t-7

(n

(n

;I

;I
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Consequently, whenever p : (n - illn, it doesn't matter
whether the contestant decides to stick or switch.

Problem 3. Show that If p, (n - i) I n, then P 

"*rr"6 
> i I n,

and if p . (n - illn, then P.*rr.6 < l/n.
To appreciate the result demonstrated in problem 3,

note that the extreme cases where p = I and p = 0 cor-
respond to situations in which Monty's behavior is to-
tally predictable, and the probability of success for
switching is given by expressions (1) ar,d (2l, respec-
tively, in the preceding section.

lttlany l'euelalions
Here is yet another generalization of the original

problem. Monty opens not just one doorbut rather some
subset of unpicked doors. Assume, as before, that there
are n doors with I cars. Monty will now reveal to the
contestant k cars and zn - k goats with 1 3 m < n - 2 and
0 < k < m. Once again, the probability of success for the
sticking strategy is l/n. The probability of success for the
switching strategy is

P.*it"r, = P(lst pick goat)P(Znd pick car I 1st pick goat)

+ P(l st pick car)P(2nd pick car I I st pick car)

n-i( i-k ) r/,-k-r)= -l l+-l 

- 

l (4)n \n-m-l) n\n- m-l)

_ ni-nk-i
n(n- m-I)

Problem 4. Show that expression (4) is equal to iln
when k/m = i f n, is greater than i I n when ft /m < i f n, arrd
is less than i ln when kf m > i ln.

Here is another way to view the result of problem 4.
If the relative frequency of goats in the revealed set is
greater than the relative frequency of goats in the origi-
nal collection, the contestant should adopt the switch-
ing strategy. If this relative frequency equals that in the
original collection, it doesn't matter which strategy is
adopted, and if the relative frequency of goats in the re-
vealed set is less than that in the original collection, the
contestant should stick with her original choice.

lttlany dilht'ettl U{m$
Suppose that the prizes available to the contestant

aren't restricted to cars and goats but contain a wide
variety. For instance, there may be six doors with two
sports cars, each worth $30, 100, two motor boats, each
worth $15,100, and two goats, each worth $100. In this
case, by sticking with her original choice, the contes-
tant can expect to win $30,100 with probabllity l13,
$15,100 with probability ll3, and $100 with probabil-
ity I l3 . The expected value of her prize is

11ao,roo;* 11rr,roo;* 11roo) = 11+s,aoo; = $r5,r00.3 3' 3' 3'

Again the question becomes, will she do better if she
switches?

Suppose Monty decides to open a door with a sports
car. Then the expected value of the prize the contestant
wins by switching is determined by what lies behind the
door she originally chose and the remaining four un-
opened doors.

If the prize behind the door she chose is a car, her
expected value will be

?1rs,roo; * 2 
lroo; = $z,doo.4' 4'

If it is aboat, her expected value will be

llao,roo;* 11rs,roo;* 21roo) = $1r,350.4 4', 4'

If it is a goatt her expected value will be

11r
1(30,100)+ a(ts,tOO)+ -' (I00) = $15,100.
4' 4' 4'

Each of these possibilities is equally likely, so overall
her expected value for switching is

!1t,eoo1* 11r r,aso;* 1 
lrs,roo; = $t r,Bso.

o ' a' ' a'ooo

Since the expected value for the switching strategy is
less than the expected value for the sticking strategy, if
Monty reveals a car, she should stick with her original
choice.

Problem 5. Again suppose there are six doors with
two sports cars, each worth $30,100, two motor boats,
each worth $15,100, and two goats, each worth $100.
This time, Monty decides to reveal a goat. Find the
contestant's expected value for switching and determine
what she should do.

Problem 6. In the same situation as in problem 5,
suppose Monty reveals a boat. Compare the expected
values for the sticking and switching strategies. What
should the contestant do?

In order to generalize the problem with multiple
prizes, we need some additional notation relating to ex-
pected vaiue (see the box on the next page). In general,
expected value E is found by multiplying the probabil-
ity that each event occurs by the value of that event and
finding the sum of all such products. If there are m
events/ this is often represented as

E =f n,r,,
j=i

where p, is the probability that event I occurs and v, is
the value of the prize associated with event l.

Now suppose there are m types of prize, valued at v,
v 2t . . . t v *. For I < i < m, there ate nrprizes with value vr.

OUAIIIUil/IIITlJRt I g



I rrr"rrr, "take the sum of"

m
E =\P,v,

i=1

Ertt"k is the expected value oi the prize with the
sticking strategy

E.*it.h is the expected value of the prize with the
switching strategy

Er*,,"n( 1st value : vr) is the expected value of the
prize with the switching strategy given that
the value of the first pick is v,

We note that the total number of prizes is

n=ir,.
i=I

The contestant strives to maximize the expected value
of her prize.

The expected value o{ a prize for the sticking strat-
egy is now given by

2n.
E'titk = L t'"

i=l fr

where nrf n is the probability of picking a prize with
value vr. If we let

t =f n,r,

denote the total value of the prizes, then

E ., =L.StlCK n

After the contestant makes her original selection,
Monty reveals aprize with value vr. Presumably nr> 2,
so there remains the possibility that theprize chosen by
the contestant also has valuevr. Now the expectedvalue
for the switching strategy is given by

E-
"swrtch

)z(tst pick value = v;)E.*it"n(lst pick value =
i=1

Given that a prize with value v, was behind the first
door picked, the expected value of the prize obtained by
switching is the average of the n - 2 prizes available.
This average is found by taking t, subtracting vr+ vr(the
sum of the values of the prizes behind the first door
picked and the one opened by Monty), and then divid-
ing the result by n - 2. Thus,

Problem 7. Show that E.,r"o : E.*."n whenever vr: tf n.
Also show that when v, > tf n, tlrre sticking strategy is bet-
ter, and when v, < tf n, the switching strategy is better.

Problem 7 demonstrates that the contestant should
base her decision on how the revealed prize compares
to the aYetage value of the prizes.

What happens if Monty chooses to reveal more than
one prize to the contestant in this multiple-prize situa-
tion? Suppose that s prizes are revealed with a total
value of x. Equation (5) now becomes

tn-t - xn

n(n-s-t)

Problem 8. Use equation (5) to show that the ex-
pected values for sticking and switching are equal
whenever xls = tln.

The criterion for determining the better strategy is a
comparison of the average value of the revealed prizes
x/s with the average value of the entire set of prizes t f n.
Whenever the former is greater than the latter, the con-
testant should stick. Whenever it is less, she should
switch.

This last generalization encompasses all the previous
cases that we have considered. For the situations in
which the prizes consisted only of goats and cars, we can
assign the value 0 to a goat and the value 1 to a car. Then
the expected value associated with a strategy is equal
to the probability of winning a car. Recall that in the
previous section, in which the host opened m doors to
reveal ft cats, we determined that the criterion is to
comparekf m and the original ratio of cars to doors. This

E*,,"r,=i[?)[-*)
l=I'

T

=1 'Int-in,v,n n-ZlL I=r

E =$[",][r-v,-x'1'\\ltcn at,n/t, n_s_l )t= I

fn,-l
- 1 1 

-lrr,-tn, -n
Lr=ll

L( n-l ) x='l " l-- (6)
n\n-s-ll n-s-l

I
-nv I

'.]

_ nt-t _ flv,

n(n-Z) n(n-z)

_ t (n-t) v,-;l"r)- 
"J

(s)
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is an instance of the more general criterion we iust es-
tablished.

Finally, the generalizationin which Monty reveals a
goat with probability p and a car with probability | - p
can be analyzedin terms of expected value by using the
above approach. In this case there arenr= I cars valued
at v, = | and n, = n - i goats value d at vr= 0. The total
value of the prizes t is the number of cars l, and the
expected value of the revealed prize vris the probabil-
ity of winningacar I -p. Substituting into equation (5),

we have

E , =$[t)['-",-','1"switch -il 
",( n_z )

_ i I i -r-(1- p)1, "-il i -o-(r- p).1-;t"rf;l"r)
i(i + p)*2i + n(i + p)*i(i + p)- n+i

n(n*2)

ry +np-n-l
n(n-2)

Problem 9. Show that expressions (3) and (71 are
equivalent.

An allel'nale apu'oac]t
Equation {6) can be derived by using an alternative

method. Instead of viewing the contestant's behavior as

a conscious decision to stick or switch, Iet's consider it
as entirely random. After the host has opened s doors
to reveal prizes with a total value of x, the contestant
is left withn - s doors, including the one that she origi-
nally chose.If she chooses from these doors randomly,
she will stick with probability I l@ - sl and switch with
probability (n - s - lll.z - s). The expected value of the
prize she wins is the average of the prizes that remain
unrevealed: (t - xllfu - s). Now, since we know that the
expected value for the sticking strategy is tf n, we have

F _ I E _n-s-l,
ranoom stlcK swltcn.n-s fl-s

implying that

t-x_ I t n-s-l-
-.-+-Es*itch. (g)

n-s n-s n fl-s

Solving equation (8) for Eswitch, we obtain equation (5).

Let's return to the original three-door problem for a
moment. Immediately after Monty has revealed a goatt
the contestant must decide whether to stick with origi-
nal choice or switch to the remaining door. If at this
point the contestant were to toss a fair coin to determine

17l

her behavior, she would expect to win the car Il2 ot the
time-in other words, Prr.do- = 112. If one accepts the
fact that the contestant initially has a I l3 chance of
selecting the correct door (that is, P.tick = | l3), then equa-
tion (8) shows that

| =p =Lp . *lp , =[f)l,f)*l, . .

2 ranoom 2 strcK 2 swltcn [Z/[a) 2swncn,

which implies that P"*rr"n= 2f 3.
Many of the people who objected to Marilyn's solu-

tion of the original problem intuitively assigned I 12 tq
the probability of selecting the correct door under the
switching strategy. They had confused the random and
switching strategies. In fact, the random strategy is a
mixture of the pure strategies of sticking and switching,
as shown in equation (B).

Conclusion

At first glance Monty's dilemma resembles problems
that are best explained through conditional probability.
As a result, most of the early discussions about Monty's
dilemma were presented in this context. Indeed most
of our generalizations were described in these terms-
we compared the probability of success between the
sticking strategy and the switching strategy.

In mathematical game theory, strategies are tlpically
compared with respect to expected value-the bilinear
combination of payoffs and probabilities. Our last gener-
alization points out the true nature of the problem: should
a person randomly select an altemative from a set of op-
tionsA, or should she randomly select an altemative from
the set of options A - B, where B is a given subset of A?
The answer is quite simple: if the average value of the
elements inA is strictly less than the average value of the
elements in B, then the contestant shouid randomly select
an element fromA (sticking strategy); if the average value
of an element of A is strictly greater than the average value
of an element of B, then she should opt to randomly se-

lect an element of A - B (switching strategy). Finally, if
the average values of the elements in A arrd B are eqra1.,

then it does not matter which strategy is employed.
In conclusion/ we note that other generuIizations of

Monty's dilemma can be given to include the notions of
risk and utility. Risk involves the question of how will-
ing a person is to take a chance. A "risk take{'will tend
to prefer an altemative with high expected value, even if
the probability of winning a large prize is quite small. A
person who is "risk averse," on the other hand, may pre-
fer a small pize that is highly probable to a much larger
prize that is much less probable, even when the expected
value of the second option is greater than that of the first.

Utility extends the concept of value to include per-
sonal preferences. Not all outcomes can or should be
measured in dollar terms. A{ter all, a goat may have
greater value to a Tibetan monk than does a car! O
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[UlaUnEIic leuilaliolt coltte$ ol aue

Reducing friction and increasing efficiency
in vehicles and machines

by Thomas D. Rossing and John R. Hull

I MAGINE, IF YOU WILL, FLY-
I wheers that store megaloures or

| "r".gy, 
magiev vehrcies that fly

I on elevated guideways, motors
that spin at more than I0s rpm.
These are just some of the applica-
tions of magnetic levitation that are
presently being developed in labora-
tories around the world. By providing
us with a way to eliminate mechani-
cal friction, magnetic levitation
opens up new horizons in machin-
ery design and transportation of
people and goods at high speeds in
an energy-efficient way.

$upmconductor'$ altd leuilatiun

In 1911 the Dutch physicist
Heike Kammerlingh Onnes reported
that the electrical resistance of mer-
cury suddeniy disappears below
4.2K1-269"C)-the boiling point of
heiium. Even Kammerlingh Onnes,
who was awarded the Nobel prize in
1913, could scarcely have dreamed
of the many important technologies
that would result from the use of su-
perconductors. Magnets of super-
conducting wire cooled with liquid
helium are now essential parts of
high-energy particle accelerators
and magnetic resonance imaging
machines in hospitals, for example.

Another milestone occurred in
1985 when Alex Muller and Georg
Bednorz (Switzerland) reported that

superconductivity could occur in
lanthanum-barium-copper oxide at
30 K. Their discovery led to a flwry
of interest in high-temperature su-
perconductors with ever increasing
transition temperatures, some of
them above the boiling point of ni-
trogen (77 Kl. Not only is liquid ni-
trogen much cheaper and easier to
use than liquid helium, but these
new materials belong to a class
called Type II superconductors,
which retain their superconductiv-
ity much better in the presence of
magnetic fields than do Type I su-
perconductors (such as mercury/
lead, tin, and other elements).

The availability of materials that
are superconducting at the boiling
temperature of liquid nitrogen has
made the levitation of a small magnet
over a superconductor (or vice versa)
a familiar demonstration in physics
lectures.l This demonstration, which
depends on Faraday's law or the
Meissner effect (depending on how
the experiment is done), was first
done in L945 by V. Arkadyev, who
levitated a magnet over a concave
lead plate in liquid helium.

lThe article "Meeting No
Resistance" in the September/October
1991 issue of Quantum contains a
photo of this phenomenon. See also
the Physics Contest in the November/
December 1994 issuq-Ed.

If a magnet is lowered onto a su-
perconductor, shielding curents are
induced on the surface of the super-
conductor (Faraday's law : a changing
magnetic field induces a voltage in
a conductor). These supercurrents
create a magnetic field that repels
the magnet and thus levitates it at a
height such that the repulsive force
equals the weight of the magnet.
Supercurrents are possible because
of the zero resistance of the super-
conductor.

If, on the other hand, a magnet
aheady rests on the superconductor
as it is cooled through its transition
temperature and becomes supercon-
ducting, the magnet will mysteri-
ously rise (but not quite as high as

before) due to the expulsion of mag-
netic flux from the superconductor.
This remarkable property of super-
conductors was discovered in 1933
by W. Meissner and R. Ochsenfeld
and is called the Meissner effect.

In some discussions of magnetic
levitation, both of these phenomena
are attributed to the Meissner effecg but
properly this term should apply only
to the case in which the superconduc-
toris cooled in amagneticfield (that is,
field-cooled). Two important proper-
ties of a superconductor are its perfect
conductivity (resistance R = 0) and its
perfect diamagnetism (magnetic per-
meability ;r = 0, which means that

o
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Figure 1

magnetic flux cannot penetrate into b
a superconductor).

In Arkadyev's experiment with a
lead superconductor, a concave sur-
face was recluired to give the magnet
Iateral stability (see figure 1a)-in
other words/ to prevent it from wan-
dering off the edge of the supercon-
ductor. Nowadays the levitation of
a magnet over a superconductor is
usually demonstrated with oxides
that are superconducting at 77 K
(the boiling temperature of liquid
nitrogen). Due to a phenomenon
called flux pinning in these materi-
als, a concave surface is not needed
for lateral stability as was the case
with the metallic lead samples used
by Arkadyev (see figure 1b). A mag-
net floating over a Type II supercon-
ductor, such as yttrium-barium-cop-
per oxide (YBCO), can be pushed
nearly to the edge of the superconduc-
tor without loss of lateral stability.
Furthermore, the magnet will float at
different heights above the supercon-
ductor. Both of these remarkabie
properties are due to flux pinning.

|ust what is flux pinning? Here's
a brief description. Lead and other
Type I superconductors expel mag-
netic flux (and thus the magnetic
flux density, or B-field, goes to zero)
until a certain critical H-field H" is
reached, at which point they iose
their superconductivity arrdB : Ss"H,

as shown in figure 2a. (To avoid a
rather complicated discussion of the
difference between a rnagnetic B-
field and H-field, suffice it to say
that the H-fie1d describes the mag-
netic field applied by the levitated
magnet, while the B-field includes
the effect of supercurrents in the
superconductor as well.) Type II su-
perconductors/ on the other hand,
have two critical values of H-field,

Hrl Hrl,

Figure 2

H., and H"r. Below H., the entire
specimen is superconducting, but
lretween H", and H", some parts o{
the material are superconducting
and others are flott leading to the
situation shown in figure 2b. Mag-
netic flux lines penetrate the "nor-
ma1" or nonsuperconducting regions,
and if the sample is sufficiently
" duty" they become pinned in place
in these regions. This accounts for
the lateral stability of a magnet
floating above a sample of Type II
material even if it has a flat surface.

In a Type I superconductor the
magnet will always levitate at the
same height, whether the supercon-
ductor was field-cooled or zero-fieId-
cooled. Not so with a Type tr super-
conductor. Due to flux pinning, the
levitation force on a magnet over a
Type II superconductor is different
when the magnet approaches than
when it is moving away (fig. 3). As the
magnet is brought flearert the lower
critical field H", is reached, and more
and more flux penetrates the super-
conductor. When the magnet is
moved away, the trapped flux lines
tend to stay in the sample, causing an
atluacti-ve force that reduces the net
repulsive force. (Under some condi-
tions, the net magnetic force may

Figure 3

actuallybe one of attraction.)
In figure 3 the repulsive force

equals the weight of the magnet mg
at points A andB or at any point on
the line connecting them. Point B
represents the levitation height for
a magnet lowered onto the super-
conductor. If the magnet is pushed
down onto the superconductor and
then released at point C, it will
move to the stable point A. Like-
wise, if the magnet rests on the su-
perconductor when it is cooled
through its transition temperature/
it will rise to point A.

ltlagnetic $ffi[ersiolt
It is impossible to suspend one

permanent magnet below another
sta.bly without applying other forces.
At some separation distance, the
attractive force equals the weight of
the lower magnet/ so the net force
on the magnet is zero. However, this
is a case of unstable equilibrium,
because if the magnet moves the
least bit above this equilibrium po-
sition, the attractive force increases
rapidly and the magnet moves rap-
idly toward the other magnet. By the
same token, if the spacing increases
ever so slightly, the weight of the
magnet exceeds the attractive force
and the suspended magnet {al1s
away. Stable equilibrium is actually
impossible in a system with only
inverse-squ are-Iaw electrostatic or
magnetostatic forces.

If, however, the current in the elec-
tromagnet is carefully controlled by
means of feedback, it then becomes
possible to suspend a permanent
magnet or a ferromagnetic (ironlike)
sample below an electromagnet.
Likewise, an electromagnet can be
suspended below a sheet of steel if the

distance
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Figure 4

current in the electromagnet is care-
fully controlled. In fact, this is how
the electromagnetic suspension
(EMS) system in one type of maglev
vehicle works. We'll take a closer
look at it later in this article.

Another way to achieve stable
suspension is to insert a supercon-
ductor between the magnet and the
ferromagnetic material-a soft iron
cylinder in the arrangement shown
in figure 4. The magnet's field mag-
netizes the soft iron sample, which
is then repelled by the superconduc-
tor. Stable suspension of the iron is
possible due to a balance between
the attractive force of the permanent
magnet and the repulsive force of
the superconductor. Lateral stability
is supplied by flux pinning in the
superconductor.

Such an arrangement was used by
Loren Passmore, a summer student
at Argonne Nationai Laboratory, to
demonstrate the ievitation of a soft
iron cylinder using a permanent
magnet and a superconductor. Once
levitated, such a cylinder could be
rotated at high speed with negligible
friction. Passmore found that adding
a second magnet-superconductor
pair below the cylinder improved
the stability of the levitation.

It's also possible to suspend a
magnet below a Type II supercon-
ductor (or vice versa) if the flux pin-
ning is sufficiently strong. The mag-
net is generally placed next to the
superconductor as it's cooled
through its transition temperature.
Much of the magnetic flux is then
trapped within so-called flux vorti-
ces in the superconductor, causing
them to act as smal1 magnets/ which
together supply at attractive force
for the permanent magnet. At the

same time, the rest of the supercon-
ductor repels the magnet, so that a
balance of attractive and repulsive
forces is achieved over a range of
separation distances. Later al stabil-
ity is again supplied by the flux pin-
ning in the superconductor.

A neuu lfind d leaninu
One byproduct of superconduc-

tivity research is the magnetic bear-
ing, which uses magnetic levitation
to suspend rapidly rotating devices
without mechanical friction. A1-
though various types of electromag-
netic bearings are now in use, the
simplest type uses permanent mag-
nets and superconductors. This
bearing can be made stable without
an active feedback system and is
under development at several labo-
ratories. If the rotor starts to drift
away from its center position, flux

digital tachometer.

7-voh input BNC
scope output BNC

runfcoast switch

superconductor inside
suspension chamber

mylar bottom

superconductor in
levitation cup

bearing magnet

pinning provides the force needed to
restore its previous position. This
ability to restore the rotor to its de-
sired position is known as the mag-
netic stiffness of the bearing.

Superconducting magnetic bear-
ings offer several advantages over
other types of bearings, including
long life, high efficiency, and 1ow
maintenance. Melt-textured YBCO,
which promises high magnetic stiff-
ness and large levitation pressure in
magnetic bearings, is a particularly
promising material. Melt-textured
samples are prepared by heating
YBCO to its melting temperature/
cooling it slowly, and then anneal-
ing it in oxygen. This process helps
eliminate nonsuperconducting
phases and leads to large levitation
forces.

Figure 5 shows a schematic of a
simple motor constructed by

styrofoam lid

ramovable liquid
nitrogen suspension
chamber

field cooling
positioner

rcmovable liquid
nitrogen levitation
cup

'optical commutator

light hole for optical feedback2-pole drive magnets

Figure 5
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Argonne summer student Christo-
pher Gabrys (University of Vermont)
using magnetic bearings. The ends
of the rotor have cylindrical NdFeB
magnets that can either be sup-
ported by repulsive Ievitation over
two high-temperature superconduc-
tors or by attractive levitation un-
derneath the same superconductors.
(To achieve attractive levitation,
flux from the bearing magnets is al-
lowed to penetrate the superconduc-
tors prior to cooling. Field-cooling
allows an attractive force.) The rotor
can be driven above 10,000 rpm by
three magnetic coils controlled by
optical feedback to turn the coils on
and off at iust the right time. This
demonstration motor was a prize
winner in the 1992 apparatus com-
petition of the American Associa-
tion of Physics Teachers.

Magnetic bearings promise to be
one of the first practical applications
of high-temperature superconduc-
tors, since they don't require that
the superconducting material be fab-
ricated in the form of wires, as many
other applications do.

lowtss llywheels
Another promising superconduc-

tivity application marks an im-
provement on a device that made its
first appearance with the steam en-
gine at the dawn of the industrial
age. Flywheels store energy in the
form of rotational kinetic energy in
many devices, including buses and
commuter trains. A large magneti-
cal1y levitated flywheel, spinning in
a vacuum chamber, could store large
amounts of energy with little or no
loss due to friction. Such flywheels
are particularly attractive to electri-
cal power companies for storing off-
peak energy to meet peak load de-
mands in order to make more
efficient use o{ their power plants.
Flywheeis could also be used to
store energy for making short trips
in small automobiles. Their storage
capacity is comparable to batteries
of the same size, and they wouldn't
have to be replaced periodically, as

batteries must l:e. Like batteries,
they wouldn't contribute to urban
air pollution.

motorf generator

magneLic
beiring ve'sse t

Figure 6

Figure 5 shows a small flywheel
levitated by a magnetic bearing in a
vacuum chamber. The bearing con-
sists of a ring-shaped magnet levi-
tated over superconducting disks of
melt-textured YBCO. In experi-
ments at Argonne National Labora-
tory, flywheels of this type have
achieved coefficients of friction of
iess than 10{. In our tests, the fly-
wheel is accelerated to high speeds
with an electric motor or an air jet
and then allowed fo " coast" while
we observe the rate of slowing
down.

Leuilation hy induced eddy cunl'ents

According to Faraday's law, when
a magnet moves over a conductor,
the changing magnetic field induces
a voltage in
the conductor,
which causes
eddy currents
to fiow. These
eddy currents
in turn gener-
ate a magnetic
field that op-
poses the
change in field
due to the mo-
tion of the
magnet. The
induced eddy
currents flow
in loops under
the moving
magnet. When
the magnet

moves at a moderate speed, eddy
currents will flow in one direction
under the leading edge of the magnet
and in the opposite direction under
the trailing edge, as shown in figure
7a. When the magnet moves at a
very high speed, however, there will
be only one set of loops, as shown in
figure 7b. The renowned English
physicist |ames Clerk Maxwell sug-
gested that a model using images of
the moving magnet could help us
understand the eddy currents in a
conductor under a moving magnet.
According to Maxwell's model,
when a magnet passes a point on the
conducting plane, it induces first a

"positive" image, then a "regative"
image of the magnet. These images
occur in the conductor much as an
image occurs when one stands in
front of a mirror.

The eddy curents in the conduc-
tor generate both a lift force and a

drag force on the moving magnet. At
low speed, the drag force predomi-
nates. You can easily demonstrate
this by letting a disk magnet slide
down a smooth aluminum plate
(fig. B). The magnet slides very
slowly due to the eddy-current drag
force. Another way to demonstrate
eddy-current drag is to let a magnet
drop through an aluminum or cop-
per tube and note its slow speed of
descent. As the speed of a moving
magnet increases, however, the drag
force decreases (approximately as

b

28 ]tlARI1l/APRII 1 Og5

Figure 7

electricity
in/out



Figure B

"lvl, and a lift force comes into
prominence.

At sufficiently high speed, the lift
force becomes essentially equal to
the repulsive force between the
moving magnet and an equal and
opposite image magnet below the
plane of the conductor. We men-
tioned above that bringing a magnet
rtear a superconductor induces su-
percurrents whose magnetic field
opposes the field of the magnet. The
eddy currents induced in an ordinary
conductor by a rapidly moving mag-
net show a striking similarity to the
supercurrents induced in a super-
conductor. The major difference is
that rapid motion isn't required with
the superconductor.

lvlagleu uefiicles
It now appears feasible to con-

struct with present technology a
high-speed ground transportation
system using magnetically levitated
vehicles operating at 500 km/h (300
mph). A national maglev system
would do much to relieve conges-
tion on highways and at airports.
Such a system would be more en-
ergy efficient than most short-haul
(100- to 600-mile) flights that oper-
ate in and out of major airports.
Maglev vehicles could also be used

vehicle

at gap
approx,

guideway

Figure 9

to connect major cities with large
international airports located away
from congested urban areas.

Although maglev vehicles may
resemble trains, in many ways their
design is more closely related to air-
planes. Consideration must be given
to lift, drag, and guidance forces and
to pitch, ro11, and yawt asinaircraft.
One type of maglev system even
uses "landing wheels" to support
the vehicle at low speeds. Operation
of high-speed magnetically levitated
vehicles is sometimes referred to as

"magnetic flight."
Magnetic flight can make use of

either attractiye or repulsive forces
to levitate the vehicle. Electromag-
netic suspension (EMS) depends on
the attractive force between electro-
magnets and a steel guideway
lfig. 9al, while electrodynamic sus-
pension (EDS) depends on repulsive
forces between moving magnets and
eddy currents in the guideway
(fig. 9b). EMS systems are inherently
unstable, since the attractive mag-
netic force increases rapidly with
decreasing spacing between the
magnet and the guideway; EDS sys-
tems are more stable because the
force of repulsion decreases with
increasing spacing. In an electro-
magnetic (attractive) system, the
magnet currents must be carefully
controlled to maintain the desired
suspension height; in an electrody-
namic (repulsive) system/ retract-
able wheels support the vehicle at
low speeds and at rest.

Although research on maglev sys-
tems was pioneered in the United

alr gap
apptox.4"

States during the late 1960s, support
for this work was terminated in
I97 5 arad did not resume again un-
til about 1990. Research continued
in |apan and Germany, however,
and full-scale vehicles have been
tested in both countries. A system
based on the electromagnetic tech-
nology being planned for Orlando,
Florida, will be the first public
maglev system in the US.

The potential energy savings
{rom a maglev transportation sys-
tem are substantial. Flights of less
than 500 miles tend to be very inef-
ficient, because the aircraft spend a
large fraction of time taxiing, climb-
ing, and descending, and modern jet
aircralt operate most efficiently at
high altitudes. Maglev trains, on the
other hand, could carry short-haul
passengers to their destinations in
less total time with far less energy.
As our finite energy sources
dwindle, we have every reason to
hasten the development of maglev
technology and intensi{y research in
superconductivity. O

superconducting
magnets
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HOW DO YOU
FIGURE?

Challoltue$ in phy$irs and lnalh

tlllalh

M136
Unknown natural powers, Solve
each of the following equations in
natural numbers xt yt z: (al xr + I =
(x + ll2; (bl Zr + I : 3'. (D. Fleishman)

M137
Distances to a trapezoid. Prove that
the sum of the distances from an arbi
trarypoint in theplane to three vertices
of an isosceles trapezoid is always
greater than the distance from this
point to the fourth vertex. (S. Rukshin)

M138
H appy kangaroo r eunion Ten kanga-
roos set out jumping in tums along a
straight road from a point A to point
B in the following order: the first kan-
garoo jumps wherever it wants, the
second iumps over the first twice the
distance to the first (so that the first
kangaroo fi nds its elf exactly halfw ay
between the takeoff and landing
points of this iump), the third jumps
over the second leaving it halfway
behind, and so on, until the tenth
jumps over the ninth, after which the
first kangaroo again jumps at will,
starting a new series of jumps. (a) Can
all the kangaroos gather atB after ten
series of jumps? (b) Can they gather at
B earlier than that? (S. Eliseyev)

M139
Coprime-recycling cubic. Let f(xl :
t' -x + 1. Prove that for any natural
m > I the numbers m, f(ml, f(f(mll,
f(l(llmlll, ... are pairwise coprime.
(A. Kolotov)

M140
Divisors of divisors. Let d1, ..., dnbe
all the divisors of a positive integer.A,{,

and let 6, i = 1, ..., nbe the number
of divisors of dr. Prove that the num-
bers 51, ..., 6, satisfy this relation:

(5, + 5, + ... + 6r)2 = 6r' * 613+ ... + 613.

For instance, the number N = 5 has
four divisors: 1,2,3, 6. The corre-
sponding numbers 6, are l, 2,2, 4,
and we indeed have

(l+2+2+412 = 81= 13 +23 +23 +43.

(V. Matizen)

Physirs

Pl36
Horse runs in a circle, A horse runs
with a constant speedv in a circle of
radius R. A person stands at a dis-
tance r from the circle's center.
What is the maximum speed at
which the horse and the person ap-
proach one another? (A. Bytsko)

P137
Charged droplet. A charged droplet is
suspended in the air by an electric
field. At the moment ro : 0 the elec-
tric {ield begins to decrease and be-
comes zero at t = tr. Figure 1 shows
the droplet's acceleration versus time
in relative units. Using this graph,
find the droplet's maximum accel-
eration. Consider the air resistance

0

Figure 1

tL 456
t Qelative units)

to be proportional to the droplet's
velocity. (A. Sheronov)

P1 38
Lifeof a soapbubble.Takea short tube
of small diameter D and blow a soap
bubble of radius Ro >> D. Now open the
end of the tube and wait for the soap
bubble to collapse. Evaluate the life-
time of such a bubble from the mo-
ment the tubeis opened if D = 2 mm
and Ro = 2 cm. The surface tension of
water is o = 0.07 N/m. (V. Drozdov)

P139
Set of conductors. Several electrical
conductors are located far from other
physical bodies. The electrical poten-
tial of one of them is Q1. This poten-
tial becomes zero when the charges
on all the otherbodies are changed to
exactly the opposite ones. What will
the potential of the first conductor be
if its charge is now increased by a fac-
tor of four? (A. Zilberman)

P1 40
Sun screen. An image of the Sun is
formed on a screen by means of con-
centric spherical mirrors (fig. 2). The

5,
o

Figure 2

radii of the mirrors are R, = 12 crn
and R, : 30 cm. What is the focal
length of a thin lens that would give
a solar image of the same size?
(E. Kuznetsov)
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IN THE LAB

BohhinU lol, lrnuurledue

Five experiments with a hollow plastic ball

by Pavel Kanayev

I N SPORTTNG GOODS STORES

I yo, can find a simple item that

! lou'll need if you want to go fish-
I ing. It's a hollow plastic baII with
two eyelets for attaching the fishing
line and a little hole with
a slightly protruding lip
(fig. t).tlt's calleda "bob- W
ber," and we can do @

some interesting physics Figure 1

experiments with it.
Before you start, you should learn

how to {i11the bobber quickly with
water (or some other liquid). You
can do this with a syringe (without
the needle) or a medicine dropper, or
you can rig up something with ma-
terials at hand (for instance, art
empty ink tube from a ball-point
pen and a smal1 squeeze bottle).

Experiment 1. Dissolve several
crystals of potassium permanganate
in a small amount of hot water to
obtain a dark-crimson solution. Fill
the bobber with this solution, sus-
pend it on a thread, and lower it into
a glass jar filled with water at room
temperature. (To make the bobber
stable, tie a small "sinker"-which
you can also get at the sporting
goods store-or other weight to the
bobber's lower eyelet. )

A colored stream will immediately
begin to ascendfrom the opening and
its diameter is the same as the hole's
(fi1. 2lr. The stream eventually reaches
the "ceiling" (that is, the surface
layerl, and then it trickles downward

1If you can't find a bobber with
such a ho1e, simply drill a hole.-Ed.

in several smaller
streams. This goes on
for a quite some time.

Now let's change the
experiment sfuht1y. Pre-
pare the potassium per-
manganate solution at
room temperature and
drop the bobber into wa-
ter at the same tempera-
ture-no colored
stream wilt emerge Figure 2
from the opening.

As a third variant, add several
drops of ethyl alcohol to the solution
and repeat the experiment. The col-
ored stream will rise up as before,
and it will persist for a long time.

Why is the colored stream gener
ated in the first and last cases, but
not in the second!

In the first and third experiments,
the densities of the hot water and of
the water-alcohol mixture are less
than that of the room-temperature
water, so a buoyancy force arises. In
the second experiment, the densities
of the water inside and outside the
bobber are the same/ so there is no
buoyancy.

Experiment 2. Fill the bobber
with water up to the rim of the
opening. Then, using a pipette, re-
move some water (about three
pipettesfull) and add the same
amount of ethyl alcohol. Finally,
seal the hoie with modeling clay.

In about 20 minutes an airbubble
(about the size of a pea)will form in
the upper part of the bobber. Replac-

ing the ethyl alcohol
with a boric or acetic
acid solution yields the
same result. However,
if the water is mixed
with glycerin, no
bubble will appear.

What is the explana-
tion for this!

The kinetic theory of
molecules says that
there are gaps between
molecules. When water

is mixed with alcohol, the resulting
volume of the mixture is less than
the sum of the individual volumes
of water and alcohol, so a bubble
appears in the mixture. The same
phenomenon can be observed when
water is mixed with boric or acetic
acid, but the total volume does not
decrease when water is mixed with
glycerin.

Experiment 3. Take the bobber
and touch the edges of its opening to
the surface of the water. The open-
ing is covered with film, but in 30-
40 seconds it breaks (with a little
"pop") and then a drop of water ap-
pears near the lip of the opening.

Cover the hole with a film again,
but this time insert a needle in the
middle of the film and hold it there.
Now the film remains intact for a
very long time.

Why is the film so short-lived in
the first case and so stable in the
second!

The water film that forms over
the opening is thicker near the lip
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than at the center, because the wa-
ter "wants" to wet the edge. So if the
film plane isn't strictly horizontal
(which is quite probable), the water
moves downhill and the fiim be-
comes thinner. At some point the
film breaks and the water forms a

drop.
The long life of the film in the

second case is due to the fact that
the needle is wetted, which causes
the water to shift from the lip to the
point where the needle makes con-
tact with the water. The film be-
comes thicker and stronger.

Experiment 4. Fill two 0.S-liter
glass iars up to the brim with water
at room temperature. Using a pi-
pette, add a few drops of shampoo
diluted with water (in the ratio 1 : 4)

to one of them.
Fill thebobberwith pure water and

carefully immerse it in the jar with
the shampoo solution. The bobber
immediately drops to the bottom.

Now wash off the bobber and im-
merse it carefully in the jar with
clean water. Even though it's almost
completely submerged in water, the
bobber doesn't sink, despite the fact

that the force of gravity is somewhat
greater than the force trying to push
it out of the water.

Why does the bobber filled with
watu sink in one jm but not in the
other! Will the bobber sink in a

weak sugar solution!
The result depends on the surface

tension of the fluid and also on
whether this fluid wets the surface
of the bobber. The coefficient of sur-
face tension of pure water is almost
twice that of the soap solution. It's
also important that plastic is weakly
wetted by water. That's why the

bobber doesn't sink in pure

ri,1l:';1;t water.
.iiiiil Sugar increases the surface

.:,ii tension of water, so the bobber
i:j}$' will not sink in a weak sugar
*"IJ}I1 solutioneither.
t## Experiment 5. Take a wire
tqit$ 2-3 mm in diameter and
';,,:i:i about one meter long. File
';;?;1 down one end of the wire,
iliiii bend it at a right angle, and
t stick it into the eyelet nearest
:,i;.H the opening. Now submerge
i'' the bobber slowly in a tank or

ii.'-. pail full of water and then
,kili$ (slowly!) lift it to the surface.

Jr:$ You'll see air bubbles coming
. i$ out of the hole when the bob-
if{.it ber is ascending. The deeper
',..,ff you submerge the bobber, the
r,lrc more bubbles come out of it.
4*rli Why do the atu bubbles
il}* form and break away as the
lj* bobber rises!
l..t: When the bobber descends,
:;i.1;y::; the air inside is compressed and

ffi water enters the bobber. As the
F.i# bobber rises, the extemal pres-

ffill! sure decreases, the air in the
bobber expands, and bubbles
form at the rim of the opening.

+llXii The bubbles grow larger, but a
;E Il collar forms around the open-

ffiii ing, making the opening ever
liit:i nalrower. As this happens, thet brroyant force acting on the

bobber (directed upward) in-
''. , creases/ while the surface ten-

'.,.i ' sion restraining the bubble de-
':i:,: t creases. When these forces

{ become equal, the bubble
, , breaks awayt assuming a

T- spherical shape. O

44\
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KALEIDOSCOPE

The musl lnyslel'ious shape ol all

SPIRAL IS A CURVE ON THE
plane traced by a point that
winds around a certain fixed
point {the spiral's polel, ap-

proaching or receding from it depend-
ing on the direction of motion. The
word "spiral" means a coil and
sounds almost the same in Greek
(onerpo) and in Latinlspiral. Spirality
can be regarded as a tlpe of symme-
tryr essentially dif{erent from the
symmetry of a snowflake, atomic
nucleus, or chessboard, which couid
be called spherical symmetry. While
spherical symmetry is characterized
by the constancy orc the radius drawn
from the center as the figure is tumed
to fit onto itself, spiral syrnmetry al-
lows the radius to change. Spirality is
thus a more fundamental property of
matter/ whereas spherical symmetry
is a particular, exclusive case of
spirality.

Mathematically, spirals are best
described by means of polar coordi-
nates. Let r be the distance from the
pole O to a point M on a spiral, and
let 0 be the angle between OM and
the fixed axis OA (the polar axis)
(fig. 1). The interesting case of a

lThat is, away oI making an object
fit onro itself using a certain transfor-
mation.-Ed.

A spiral primer

spiral that reaches its poie oniy in the
iimit as 0 -+ *4-rrt is, after an infi-
nite number of windings-can be
given by the equation 0 =kr-n, where
k, 0, n > 0 are constant, r > O,

0 < 0 < -. Spirals with equations of
this form are called algebraic. This
form can be regarded as the first term
in the expansion of a more general
function 0 = 0(z) in powers of 4 the re-
maining terms are smaIl near the
spiral's pole, but may play the main
role far away from it. Depending on
the exponent nt we recognize three
types of algebraic spirals.

A spiral is called hyperbolic if
n = L. The equation then takes the
form 0 = k/r. As 0 -+ 0, the distance
from a point on such a spiral to the
polar axis stabilizes, since it's equal
to r sin 0 = r0 : k.It follows that a hy-
perbolic spiral has an asymptote-
the straight line it approaches as
0 -+ -. The hyperbolic spiral was de-
scribed by the French mathemati-
cian Pierre Varignon (1654-1722).

If. n > I, then z sin 0 = rQ = 1171- n

for smal1 e-that is, in this case the
asymptote coincides with the polar
axis OA. For n = 2, this kind of spi-
ral is called thelituus, which means
" crook" (in the sense of a shepherd's
staff). The term was used by Colin
Maclaurin in 1722, but the curve
was first described by Rodger Cotes
in 1714.

For n < 1, an algebraic spiral has
no asymptote; the distance {rom the
spiral to the polar axis increases ap-
proximately as krl -o (as z -+ -1.

Another kind o{ spiral is the
pseudospiral. In equations for
pseudospirals 0 isn't expressible as a

power of r. An example of a pseudo-
spiral is the logarithmic spir al delined
by the equation 0 = -ftlnr. The angle
0 here varies from -- as r -+ - to -
as r -+ 0 (fi1.2l. A remarkable property
of the logarithmic spiral is that it
meets afly ray from its pole at the
same angle o (try to prove this your-
self). That's why it's often called the
equiangular spiral. This curve was
described in 1638 by the great French
philosopher and mathematician Ren6
Descartes 11595-1650lr. It has a lot of
applications in engineering: rotating
knives, milling cutters, and gears are
often made in this shape.

If a logarithmic spiral is dilated A
times and at the same time is rotated
by an angle of -k ln A, the spiral fits
onto itself (because the equation re-
mains valid). This is only one of the
"reproductive" properties of this spi-
ral. Many others were foundbylacob
Bernoulli (1654-1705), who was so
deeply impressed by his discovery
that he asked that the curve be chis-
eled on his tombstone with the Latin
inscription Eadem mutate resurgo
("Though changed, I shall arise the
same" in E. T. Bell's translation).

\
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Figure 1
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Figure 3

A spiral can have an in{inite num-
ber of coils not only in the neighbor-
hood of its pole, but also in the
"neighborhood of infinity"-that is,
as a point tracing it recedes from the
pole to infinity. A few examples of
this are theArchimedean spiral0 =kr,
the Galilean spiral 02 = kl, - 16), and
the parabolic spiral 0I/2 = ft(z - ro). It's
also possiblethat aspiral winds infi-
nitely many times about a certain
curve approaching it in the limit as
0 -+ -. For instance, the spiral
e(r - zo) = .k coils around the circle
I:IO.

On a molecular level, we find spi-
ral (or helical-see next page) struc-
tures in DNA molecules, and on a
galactic scale there are giant spiral

Figure 4

galaxies. As to our own world,
nestled between these two/ we come
across spiral structures at every
turn. An acceleration eddy forms at
the end of an oar thrust into the wa-
ter; it gains strength during the
stroke and moves behind the stern
as the stroke is finished. Spira1 ed-
dies are intricately shaped. They can
be both algebraic (fig. 3) or logarith-
mic near the po1e. A logarithmic
spiral with a small value of k is
shown in figure 4: its coils are prac-
tically invisible, because the radius
r decreases sharply (in mathematical
terms, exponentially) with the
growth of 0. The photographs in fig-
ures 3 and 4 were taken in a hydro-
dynamic tunnel as an accelerated

stream of water flowed symmetri-
cally around a plate, with pigment
fed onto the plate's edges.

Spiral whirling occurs not only
when a liquid flows around an ob-
stacle, but also when it flows out of
a slot. In figure 5 you see a photo
of . . . an atomic explosion? No, it's
oniy the leading edge of a jet issuing
upward from a narow slot. Initially,
the liquid above the plane of the slot
was colored with ink. The flow
started from the steady state, where
spiral structure is hardly seen. But it
immediately reveals itself as soon as
any pigment (for instance, our ink)
is fed onto an edge of the slot. (See

figure 6, where the slot has only one
edge; the other one is replaced bya

solid wal1 that
can be consid-
ered the slot's
symmetry, so
it's a portrait of
the flow out of a
"ha1f-slot.")

, Nature, both
organic and in-
organic, is ful1
of spiral shapes.
Wefindthemin
the shells of
most ordinary
snails and in an-
cient fossils-
the ammonite
in figure 7 (on
the next page) is
about 180 mil-
lion years old.
SunJlower seedsFigure 5 Figure 6
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Figure 7

in their pod form two families of op-
positely twisted spirals. In botany,
the tendency to spirality is called
phyiotaxis. This phenomenon often
manifests itself in helical arrange-
ments/ too. A helix is a kind of
three-dimensional spiral-it's the
curve traced by a point rotating
about a certain axis and moving
along this axis at the same time.
More exactly, this is a cylindrical
helix (fig. B). Branches on a stem of-
ten grow along such a curve. If the
point that traces a helix, in addition
to moving around and along the
axis, recedes from (or approaches) it,
we get a curve on a circular cone-a
conical helix (fig. 9). This curve is
found in the arrangement of scales
on a fir cone.

A helix can be twisted like the
letter S (fig. 10) or Z (fig. I I ), where
the middle elements of the letters
are thought of as lying on the visible
side o{ the imaginary cylinder
around which they wind. S- and Z-

Figure B

helices are mirror
images of each
other, as is seen

quite clearly in the horns of ante-
lopes and other horned creatures
(fig. 12). The helical shape is taken
by various lianas-flowering or fern
plants unable to keep thei.r stem
erect on their own, without prop-
ping it up against a rock, building, or
other plants. Hops, ivy, wild grapes,
and blackberries are all lianas. They
developed their knack for winding
over the course of evolution as apart
of their struggle for light. First a
sprout, having emerged from the
ground, stretches upward, then its
tip begins to perform circular move-
ments (in what direction?-make
your own observations!)to find sup-
port. If a support isn't found, the
plant leans back on the ground,
grows up a little more, and resumes
its "roundabout" exploration.

So far we've been consi.dering
curves. But there are surfaces wind-
ing about a certain, generally curved,
axis (the dotted curve in figure 13)
such that their transverse sections

Figure 9

(with respect to the axis) are spirals.
These are called spiral surfaces. Spa-
tial spiral structure is found in certain
atmospheric phenomena, such as cy-
clones and tornadoes. Figure 14
shows a cyclone over the Indian
Ocean photographed by the Kosmos-
144 satellite. A waterspout over a
lake is seen in figure 15. This destruc-
tive column sweeps away everything
it meets. In 1905 the oceanographer
W. Eckmann discovered spatial spi-
ral underwater currents character-
izedby abalance between Coriolis
forces and frictional forces. The
Eckmann cuffent is often observed
in the notorious Bermuda Triangle.
Similar spiral motions in the upper
layers of the atmosphere were inves-
tigated by the English scientist
|. Taylor in 1915. These ocean and
atmospheric spirals result from the
Earth's rotation about its own axis.

\

Figure 10 Figure 12
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Figure 13

Spiral forms are encountered so
frequently that it's impossible even
to name the variety of their mani-
festations. A charged particle in a

Figure'14

magnetic field (o{ the Earth, afl ac-
celerator, or a thermonuclear reac-
tor) moves in a helix whose axis co-
incides with the direction of the
field (the blue curves in figure 16).
Spiral waves are generated by some-
thing called spin detonation. They
are also observed in the fundamen-
tal Belousov-Zhabotinsky chemical
reaction. A theory of this reaction

Figure 16

7".#,*

has yet to be formulated/ even
though thousands of specialists are
working on the problem. Many bi-
ologists think that spiral waves are
responsible for heart arrhythmia and
other biological phenomena.

Perhaps this is where certain fun-
damental philosophical theories of
spiral development of the spirit and
of nature should be mentioned.
What, indeed, is the world around
us? Is it expanding? Infinite? Eleven-
dimensional? Random? Protein?
These questions have not yet been
answered by scientists. As for
spirality, the examples given here
provide weighty proof that our
world is spiral. However, we have a
long way to go in explaining the
mystery of how spirals emerge and
persist. O

-Submitted 
bv N. BourbakiFigure 15

VnraiATe Kaanrl.
Have you met our sister magazine?
We're alike, but we're not identical.
There are things in Kvant that aren't
in Quantum, and vice versa.

You can order our Russian-lan-
guage sibling Kvant through Victor
Kamkin Bookstore, 4956 Boiling
Brook Parkway, Rockville MD 20852
(phone 301 881-5973). The cost of a
one-year subscription (six issues) in
the US is $60.
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PHYSICS
CONTEST

WeiUhing il asll'onaut

"The earth before us /rs a handful of soil, but it sustains mountains
without feeling ther weight and contains the rivers and seas

without thei r leaki ng away. "-Qspfuci us

by Arthur Eisenkraft and Larry D. Kirkpatrick

9.80 m/s2, the reading will be 588 N,
or an ecluivalent value in pounds,
stones/ or kilograms. It seems that
only physics teachers' scales are
calibrated in newtons!

How much would you weigh if
you had been a resident of Skylab in

1973? The
orbit of

Skylab
had

tude of 386 km above the
Earth's surface, or a radius of.6,378
km + 386 km = 5,764 km. Since
gravity is an inverse-square force,
you can calculate the force of grav-
ity on you in Skylab:

tt2rt2

u=el o ] =6**)[ 6'378km]
"[n .,/ '1, G,764km )

= 523 N,

where the subscript E refers to Earth
values. Therefore, you expect a scale
reading of 523 N.

However, when you step on the
bathroom scale in Skylab, it reads
zero! In the vernacular of space, you
are weightless. What does it even
mean to "step on a scaLe" in azero-
gravity environment? We get into
trouble because we have used
weight to mean two different
things-the force of gravity and the

reading on the scale. This does
not cause complications if

you are in an inertial sys-
tem-that is, a system
that is not accelerating.
We assume that your
bathroom on Earth is an
inertial reference system.

(It is not really an inertial
system because the Earth is

rotating on its axis and revolv-
ing about the Sun, but it is approxi-
mately an inertial system.)l When
you stand on the bathroom scale,
you have no acceleration and
Newton's Second Law tells us that
there is no net force acting on you.
Therefore, the downward force of
gravity must be equal in size to the
upward force of the scale acting on
you, and it does not matter which

lSee "The 'Most Inertial' Reference
Frame" on page 48.-Ed.

NE DAY SOME OF US WILL
be living for extended periods
of time in a space colony. What
health problems might arise?

Will we lose weight, or will our
bones weaken in "zero graYity"?
Medical questions were very impor-
tant during the Skylab mission from
May 1973 until February 1974. At
the most basic level the scientists
wanted to know if the astronauts
would lose weight during pro-
longed stays in space. Let's begin
by taking a closer look at the
concept of weighing an astro-
naut.

When you want to know your
weight in the morning, you sim-
ply step on a bathroom scale and
read your weight. But how does the
scale "know" yorlt weight? You are
actually measuring the amount of
stretch or compression of a spring
inside the scale. If we assume that
the spring is ideal (that is, it obeys
Hooke's Law), we know thatF: -kx,
where F is the force of the spring, k
is the spring constant (a measure of
the stiffness of the spring), and x is
the extension of the spring. In this
case, the applied force is just the
force of gravity acting on you. Since
the force of gravity is given by mg,
if you have a mass of 50 kg and the
Iocal acceleration due to gravity is

=o
--l
o
3
A)a
w
C
f
x-
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force we measure.
Problems arise when your refer-

ence system is accelerating. Because
Skylab is in orbit about Earth, it has
a centripetaL acceleration of v2fR.
And so do you-you are also in or-
bit. The force of gravityprovides the
centripetal acceleration needed to
keep you in orbit and there is no
need for the scales to hoid you up (or
anything else, for that matter).

We can create a similar situation
on Earth. Some amusement park
rides take you to the top of a struc-
ture and drop you over the edge. If
you were to stand on a bathroom
scale during this free fall, it would
readzero. Both you and the scale are
in free fall and the scale does not
need to support you. For this reason/
many physics teachers carefully dis-
tinguish between the force of grav-
ity and the weight. Weight is the
reading on the bathroom scale, or
the support force needed to keep you
at rest in the noninertial reference
system. Other teachers use the term
" apparent weight" to refer to the
scale reading and use weight to refer
to the force of gravity.

Let's return to the elevator and
cause it to accelerate upward
at 9.80 m/s2. What will you weigh?
The net upward force on you must
be mg to give you an upward accel-
eration of g. Because the force of
gravity is mg downward, the spring
in the scale must push upward with
a force of Zmg. Therefore, the scale
would read2. 5BB N = 1,176 N.

We could have avoided our weight
problem by realizingthat the NASA
scientists were really concemed with
the mass of the astronaut. But how do
we measure the mass of an astronaut

in space? We obvi-
ously cannot
-- ask the astro-

' naut to stand
on a scale. An

easy way to do
this is to use New-
ton's SecondLaw,
apply a known
force to the astro-

naut, and measure the resulting accel-
eration. NASA accomplished this by
designing a Body Mass Measuring De-
vice (BMMD for short). It is basically
a chair mounted on a pair of leaf
springs. Whenever a mass m is at-
tached to a spring with a spring con-
stantk and displaced a small di.stance
from the equilibrium position, it ex-
ecutes simple harmonic motion with
a period 7 given by

T =2n

In practice, an astronaut sits in the
BMMD and measures the period of
oscillation to obtain the mass. This
brings us to this month's contest
problems.

A. The BMMD was calibrated by
loading the chair with a known
mass and measuring the correspond-
ing period of oscillation. Graph the
following data suppliedby NASA to
find the combined spring constant of
the leaf springs and the mass of the
empty chair for the BMMD:

Mass (kg) Period (s)

0.00
t4.o5
23.93
33.80
45.02
56.08
67.0s

0.90t49
t.24979
1.44379
t.61464
r.78780
1.94442
2.08832

B. One of the crew members in
the second group of three astronauts
to live in Skylab was electrical engi-
neer Dr. Owen K. Garriott. He mea-
sured periods of 2.012 s and 1.981 s
while sitting in the BMMD at the
beginning and end of a 58-day inter-
val. How much weight (read mass)
did he gain or lose during this time?

C. Assume that you ride a skate-
board down an inclined plane that

makes an angle0 with the horizontal.
A scale has been mounted on the
skateboard in a horizontal position as
shown in figure 1. There is no friction
between the skateboard and the in-
clined plane and you have a mass of
60 kg. What does the scale read? (A
version of this question appeared on
the preliminary examination used to
select members of the 1995 US Phys-
ics Team that will compete in the
International Physics Olympiad in
Canberua, Australia, in fuly.)

Figure 1

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Bhing $ar
In our problem in the September/

October issue, the radio receiver
records maxima and minima. This is
our clue that some interference ef-
fect is occurring. The insight that
solves the problem comes from the
description of how the receiver is
placed on an island near the shore.
The interference is probably a result
of the electromagnetic wave arriving
directly from the star and a second
electromagnetic wave arriving after
reflecting from the surface o{ the wa-
ter. Figure 2 shows these two rays.

The problem can be solved by rec-
ognizing that the reflected wave has
traveled a longer path and has under-
gone a phase change at the surface

Figure 2
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Figure 3

eqralto1"12. The total path difference
must be equal to an integral number
of wavelengths for constructive inter-
ference (producing maxima) and an
odd half-integral number of wave-
lengths for destructive interference
(producing minima.)

The geometry, though not diffi-
cu1t, is unfamiliar. By drawing re-
flections of the reflected ray and the
radio receiver/ we are reminded of
Young's double slit experiment, in
which light emerging from a pair of
slits forms an interference pattern
on a distant screen. Figure 3 shows
Young's double slit geometry for
comparison. Young's double slit ge-

ometry is analyzed in all physics
texts covering optics. By drawing a

line perpendicular to the line-of-
sight to the star as shown infigure 4,

we see that the path difference 6 is
given by

6=2ftsin0,

where 0 is the altitude of the star, ft is
the height of the radio tower, and we
have assumed that for small 0 the tri-
angle is approximately a right triangle.

In our radio receiver problem, the
conditions for maxima and minima
(remembering the phase shift upon
reflection from the water) are

Figure 4
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and

6-ir, = kf,,

where -k is an integer 0, | , 2, 3, . . . .

Part A of the problem asked for the
altitude of the star when maxima
and minima are observed:

(. 1)

sino = 
6-o 

= [o* r)n."^--"max 2h Zh '

Part B asked whether the inten-
sity increases or decreases as the star
rises over the horizon. The star just
peeks over the horizon when 0 = 0.

Since this corresponds to a mini-
mum/ the intensity of the star will
increase until it reaches its first
maximum.

Part C asked for an investigation
of the intensities of successive
minima and maxima given that the
ratio of the incident and reflected
tays at the water's surface is

n - sin0

n + sinO

where n = 9.
The maximum amplitude can be

found by adding the incident and
reflected electric fields. Assuming
that the incident electric field is E,

the amplitude would be

amplitude^o = E *, n - sino

n + sinO

Figure 5

Since intensity is proportional to the
square of the amplitude,

Similarly, the minimum amplitude
can be found by subtracting the in-
cident and reflected electric fields.
The corresponding intensity is:

intensiLv - [[ zrl' 
)r-l'z'mrn 

L[2"], +)'k) )

Relative numerical values can now
be computed. They are summarized
in the spreadsheet chart in figure 5.

Cmt'efiion
If you are having difficulties with

Part D of the contest problem on the
"superconducting magnet" that ap-
peared in the November/December
issue, it's probably due to our error.
The last part of Part D should read:

"However, we will destroy the
switch if the current through the
switch in the normal state exceeds
0.5 A. What steps can you use to shut
the magnet down?" The parentheti-
cal remark about large cuffents caus-
ing the magnet to switch states is cor-

intensitv [[ -" 
'l,1'

lntensitvmax 

ll;;44 1'1

I r[0.1')
l,_ \ z)

=E+EI ,2h .| ilr*1]
ln* \ z)
Iza

4nh

z"n*x(**!)

k 0,.i. emax lntensltynin intensity^^,

0 0 1.50' 0 3.9758
1 3.01" 4.52" 0.000135 3.9309

2 6.03' 7.54" 0.000532 3.BB5B

3 9.05' 10.59" 0.00118 3.8415

rect, but totally misleading



MATH
INVESTIGATIONS

Dislinct $llln$ ol ttnlo$olne$

by George Berzsenyi

challenge to my readers is to provide
the reasoning needed.

At that time I was fortunate to
have seven of the eight winners of
the 1980 USA Mathematical Olym-
piad and many other super-talented
students among the participants of
my program, and most of them did
not settle for 35 as the best possible
answer/ especially since I first posed
the problem with67 as the intended
solution. So a number of them came
up with various improvements. I'11

sketch some of these below in order
to whet my readers' appetites for
even more ambitious attempts, and
to indicate the variety of possible
approaches to the problem.

One student observed that if the

The purpose of this column is to direct
the attention oI Quantum's teaders to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science proiects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes andf
or free subscriptions.

even more limited, and hence pushed
the lower bound to 45. Several other
participants went even further by ob-
serving that at least 55 of the differ-
ences d - b, with a, b e N, must be
distinct. To see this, observe that for
a, b, c e N it is possible tohave c - a
= b - c if c is not the smallest or larg-
est element of .A{, and so there may
only be 55 - l0 distinct differences.
Their reasoning led to arr> 56.

Other students managed to come
up with better examples of N, like

11, 2, 3, 5, B, 13, 21, 30, 39, 53, 67, B2l

and the even better

11, 2, 3, 5, 12, 19, 35, 42, 49, 5L, 69, 7 4\,

but clearly the gap is stil1 too large.
Therefore, I hereby challenge my
readers to narrow the gap.

The answer is not even known for
sets of n < 12 elements. Unfortu-
nately, there doesn't seem to be any
recursion present/ hence no way to
construct an (n + 1)-elementNfrom
an n-element N. It's true that if N is
such a set of n elements, then so is
{k + 1 - nl n e N}, but this fact
doesn't seem to be very helpful, ex-
cept possibly to suggest that the
smallest members of Nneed not be
closer together than the largest ones.

At this point, some computer-
generated data might also be he1pfu1,
and one might even consider select-
ing the members of N randomiy at
first and then making replacements.
I fully believe that it is time to make
further advances on this problem, and
I encourage my readers to do so. O

3g

Revisiting an old problem from the "Competition Corner"

I N THIS ISSUE I WANT TO RE-

I vive an old problem that was pro-

I posed 1as Problem 5471 in my
I "Co-petition Corner'i in the
December 1980 issue of the now de-
funct journal Mathematics Student.
At that time I was not aware of the
fact that a simpler version of the
problem was already attempted in
The Fibonacci Quarterly, or that a
somewhat related problem was also
posed in the 1979 British Math-
ematical Olympiad. Had I been
aware of these, I would have been
less ambitious in my original formu-
lation thereof:

Let N be a set of twelve positive
integers such that for distinct a, b,
c, d inN, a + b + c + d. Prove that
the largest element of N is greater
than 67.

At that time 67 seemed a reason-
able lower bound, since the best N
that I could construct was

11,2, 3, 5,9,21,29,37, 46, 60,71, B3].

Unfortunately, there was a flaw in
my solution, so I had to repLace 67
with 35 in the problem to make it
more reasonable. The choice of 35
was prompted by the observation
that there are 56 distinct sums, the
smallest of them being greater than
or equal to 3 = | + 2, hence they
could-ideally-range from 3 to 58.
Since 68 must be the sum of the two
largest members of N, it is immedi-
ately clear that the largest member
of N must be at least 3 5, andit takes
only a bit of reasoning to show that
it must be larger than 35. My {irst

elements of Nare ar< a2< aB< ...
< arr, then at most two of the differ-
ences dl2 - Afit Afi- Ap1 Ap- A9t ...t
az- arcan be the same, and from this
he could deduce that ar, > 37. An-
other student took a closer look at
these differences, and (by considering
whether 1 appears once, twice, ornot
at all as a difference) managed to
prove that their pairwise equality is
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MATHEMATICAL
SURPRISES

lewis Cal'roll3 sleepless niuhts

Two probability problems for insomniacs

by Martin Gardner

now the chance of drawing a white
counter?

As Carroll writes, one is tempted
to answer l12. Before the white
counter is withdrawn, the bag is as-
sumed to hold with equal probabil-
ity either a black or white counter,
or two white counters. If the
counters in the bag are black and
white, a black counter will remain
after the white one is taken. If the

counters are both white, a white
counter will remain after a white
one is drawn. Because the two states
of the bag are equally probable, it
seems that after a white counter is
taken, the remaining counter will
be black or white with equal prob-
ability.

Carroll claims correctly that the
above argument/ though intuitively
plausible, is deadwrong. LetA stand
for a white counter in the bag at the

EWIIS CARROLL WAS THE PEN
name of Charles Dodgson, who
taught mathematics at Christ
Church, one of the Oxford Uni-

versity colleges in England. He is
best known, of course, as the author
of two immortal {antasies about
Alice and a long nonsense ballad
called The Hunting of the Snark.

In 1893 Carroll published a little
book of seventy-two original math-
ematical przzles, many of them not
easily solved, The book's title was
P illow- P r obl em s Thought O ut Dur -

ing Sleepless Nrgftts. For the book's
second edition he changed the last
two words to "wakeful hours" so
readers wouldn't think he suffered
from chronic insomnia. A new pref-
ace was added to the fourth edition
(1895). Carroll intended the book to
be part II of what he cailed Curiosa
Mathematica. Partl, A New Theory
of Parullels, was too serious to be
called recreational even though it
was written with the usual
Carrollian humor.

The most interesting p r;zzles in
P illow - P r ob I ems concern prob-
ability. The first one, problem 5,
is simple to state but extremely
confusing to analyze correctly:

A bag contains one counter,
known to be either white or b1ack. A
white counter is put in, the bag
shaken, and a counter drawn out,
which proves to be white. What is

o
ao
(o

-
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f
o
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outset/ B for ablack counter, andC
for the added white counter. After a
white counter is taken, there are
three, not two, equally possible
states:

1. C has been taken, leaving A.
2. Ahas been taken, leaving C.
3. C has been taken, leaving B.

In the first two cases a white
counter remains in the bag. In the
third case, the remaining counter is
black. The somewhat surprising an-
swer, theref ore, is 2f 3.

The probability of first drawing a
white counter is 314, and the prob-
ability that the remaining counter is
white is also 314. Of course, as soon
as you see that the counter taken is
white, the probabilities alter. If
black, the other counter is white
with certainty. If white, the other
counter is white with a probability
of 213, and black with a probability
of Il3. A11 this can be made clear
with an inverted tree diagram (see
the figure below).

The fractions represent probabili-
ties. The probability of each of the
four outcomes (bottom row) is 1/2
times If 2, or ll4. The diagram
shows that three times out of four
a white counter will be drawn, and
three times out of four a white
counter remains in the bag. If draw-
ing a black counter is not consid-
ered-assume that if this happens
the black counter will be replaced
and drawing continued until a
white counter is taken-the re-
maining counter is white two times
out of three.

The problem is easily modeled
with playing cards. Shuffle a deck,
spread it face down, and remove a

card without looking at its face. Be-
side it place face down a card you
know to be red. Turn your back
while a friend mixes the positions of
the two cards. Turn around and put
a finger on one card. The chance that
it's red is 314, and the chance the
other card is red is also 3f 4.Turn
over the card you're touching. If it's
black, the other cardmustbe red. If
it's red, the probability the other
card is red goes down to 2f 3.

The book's last problem, Na 72,
has been the subject of much contro-
versy.

A bag contains 2 counters, as to
which nothing is known except that
each is either black or white. Ascertain
their colours without taking them out
of the bag.

Here is Carroll's surprising an-
swer:

We know that, if a bag contained 3
counters, 2 being black and one white,
the chance of drawing a black one would
be2l3i and that any other state of things
would not give this chance.

Now the chances, that the given bag
contains (a) BB, lil BW, lyl tNW, are re-
spectively Il4, l12, ll4.

Add a black counter.
Then the chances, that it contains

lu) BBB, lgl BWB, (yl WWB, are, as be-
fore, lf 4, L12, 114.

Hence the chance, of now drawing a
black one,

= tl4 . | + Il2. 213 + tla . r13 :213.

Hence the bag now contains BBW
(since any other state of things would
not give this chance).

Hence, before the black counter was
added, it contained BW, i.e. one black
counter and one white.

The proof is so obviously false

.J
-Y *\
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A is taken,
B remains

\/,
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B is taken,
A remains

OCLlTe c
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A is taken,
C remains

x
C is taken,
A remains

4l

that it's hard to comprehend how
several top mathematicians could
have taken it seriously and cited it
as an example of how little Carroll
understood probability theoryl
There is, however, not the slightest
doubt that Carroll intended it as a
joke. He answered all thirteen of the
other probability questions in his
book correctly. In the book's intro-
duction he gives the hoax away:

If any of my readers should feel in-
clined to reproach me with having
worked too uniformly in the region of
Common-place, and with never having
ventured to wander out of the beaten
tracks, I can proudly point to one Prob-
lem in'Transcendental Probabilities,-
a subject in which, I believe, very little
has yet been done by even the most en-
terprising of mathematical explorers. To
the casual reader it may seem abnormal,
and even paradoxical; but I would have
such a reader ask himself, candidly, the
question "Is not Life itself aParadox?,,

It was characteristic of Carroll
that he ended his book with a choice
specimen of Carrollian nonsense. Ql

Thet'et lnls olUood $ttlll
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INNOVATORS

The leuacy ol lllol'herl UUiener

Part lll: From feedback to cybernetics

it. An everyday example of a feed-
back loop is the one connecting a

fumace to a thermostat. The fumace
puts out heat, raising the tempera-
ture of the room. The thermostat
senses the temperature, and i{ it gets

too low, the thermostat completes a

circuit and ignites the furnace. The
furnace then continues to pump out
heat until the temperature gets too
high, at which point the thermostat
breaks the circuit, and the furnace
shuts down. In this way, the output
of the furnace is fed back into the
input.l What fascinated Wiener
were unstable feedback mecha-
nisms. Most of us know the diffi-
culty of carrying a too-fuil bowl of
soup to the dinner table: the soup
begins to slosh and any attempt to
settle it by tilting (negative feed-
back) only makes matters worse.
Wiener and Rosenblueth proposed
to model certain muscle spasms {in-
tention tremors) using an unstable
feedback loop. Later they used the
same principles to study the heart
muscle.

With the outbreak of WorldWartr,
Wiener had to defer these investiga-
tions. Confronted by what appeared
to be the imminent collapse of Eu-
ropean civilization, Wiener, like

I N 1933 WIENER BECAME AC-
I ouainted with Arturo Rosen-

I Ut.r.tt, a Mexican physiologist
I who was leading a series of inter-
disciplinary seminars at the Harvard
Medical School. They hit it off well
and began a long association during
which Wiener's ideas on the reia-
tionship between mechanical and
physiological systems-particularly
in regard to the role of feedback-
came to fruition. It appears that his
interaction with Rosenblueth also
set in motion the train of thought
that would evolve into cybernetics.
Thus, from an intellectual and sci-
entific standpoint, their collabora-
tion was an enormous success. In
addition, judging from the warmth
with which Wiener writes of him,
Rosenblueth became the closest
friend of his adult life.

The concept of a feedback loop
was already familiar to James Watt
in the l8th century, and today it is
so deeply embedded in our thought
processes that we hardly recognize

Parts I and II appeared in the
November/December 1994 and
fanuary/February 1995 issues,
respectively. Reprinted from the
program booklet for The Legacy of
Norbert Wiener: A Centennial
Symposium in Honor of the 100th
Anniversary of Norbert Wiener's
Birth, October 8-14, 1994, preparedby
the MIT Department of Mathematics
with the assistance o{ Tony Rothman.

lThis sort of {eedback is called
negative {eedback because the
thermostat reverses the action of the
furnace.

many scientists, searched for away
to contribute to the war effort. The
problem he eventually chose was
that of aiming anti-aircraft guns.
This was a much more sophisticated
problem than the ones he had
worked on in World War I. Airplanes
had become much faster and more
dangerous, and so the human gunner
had to be assisted by a machine.
Moreover, it was no longer sensible
to aim directly at the plane-by the
time the shell got there, the plane
would have moved on. The problem
was one of prediction. That is, one
had to determine the plane's posi-
tion by radar signals and predict rts
future trajectory. Since it was clear
that there was no hope of making a

perfect prediction, Wiener decided
to adopt a statistical approach. In
other words, he devised a statistical
model in which he could formulate
precisely what it means to maxi-
mize the probability of success.

A central difficulty addressed by
Wiener's statistical model was that
if one tries to control the action of
the gun too closely from the radar
data, measurement errors can cause
the gun to go into wild oscillations.
Human gunners have no trouble
adjusting to imperfect measure-
ments, but a machine had to be de-
signed specifically to prevent insta-
bilities. Wiener compensated for the
imperfections of the radar databy

ll/lIRCII/APRIt



ln lhe lal urith lllorlel'l Wieltgr

The MIT Radiation Laboratory was founded in 1940 for the purpose of de-
veloping radar.In 7946, the Rad Lab was incorporated into thi new Re-
search Laboratory of Electronics (RLE). the following passage is taken
from an L992 essay by |erome Wiesner, president emeritus of MIT, that
appeared in RLE Curuents.

At the start the RLE had two quite separate tracks: on what he called communications. He was launch-
physics, in which researchers set out to exploit mi- ing his vision of cybernetics in which he regarded
crowave tools in search of information about the signals in any medium, living or artificial, as the
physical universe, and the communications option, sarne; dependent on their structure and obeying a
which primarily involved electrical engineers at the set of universal laws set out by Shannon. i" tfr.
beginning, then quickly broadened to include spring of 1948, Wiener convened the first of the
speech and linguistics, weekly meetings that

disciplines' " ' ,,.,.,,,,,,,.,,..;,iiiffiilrii*ii,iilri;1,ffi;',t$ lieved ihat good food
Much or the commu- i:rli.ill. lilir.,il'l.,ll,.,.li.,,iiirllilillllre;liliiffiffililtilillllrutiffiffi was an 

"r.".,tirl 
ingredi-

nicationsworkwasin-ilffi'l'llll:lll;ll:.l:.l;lll;l:l:lllili;ffis${]lil$$lil*ftl*tffientofgoodconv"ersa-
spiredbyNorbertWiener.lx*ffiii]:l'1li|]iil]i]i]]]:i;lill;iiI]*:;ffii}*'*xil$iil#illiHliiirution,sothedinnermeet-
and his exciting ideas ili]ffi i,;ffi ings were held at ]oyce
about communications ffi"ffiillllfi1i$l ' cien,s original restau-andfeedbackinmanand[I]iilfrMtr-'......'l.Wrant/nowthesiteofan
machines'Wiener,stheo-!lffiffi,l....l.l.ffi:...ffiMITdorm.Thefirst
ries,andthoseofClaudeffi.].l.ffi:i.mmeetingremindedmeof
Shannononinformationffi1KthetowerofBabe1,asen-
theory,spawnednewvi-ffi11.l.l.:w.:-.l!*i$Mgineers,psycho1ogists,
sionsofresearchforev-ffi......:l,1l1.1ffi1l..l:.'l:1,:::'..ffipi,ito.opi"rs,acoIusti.
eryoneinterestedincom- r.,t .ffi1 ..,.:.,,..t iiarrr, doctorr, math-
munications, including . l , Qil;:.ii:f ..,., ematicians, neurophysi-theneurophysiology,ffiffi.Xll...:..,il$ffi$iill*ffiologists,phi1o,oph...,
speech, and linguistics ffi#fliiltr.f3i$ffi[, ., , , ,i,,.G!fllii{;iili[illiil, anfl othe, inteiestedl
investigations. The work reffiffilli$il,ffillliiiliiij j1l,.ii.:r;::;, lnirl;r|,,, peopte tried to have theirwasboththeoreticalandffiffi#lll[illl*ffi**:llllllll',y.e{t"'thefirstmeet-
experimenta1aswe11asWffiffiffi#i{ffiffii*tli.ll,lling,oneofuswouIdtake
basicandapp1ied'For.ex-ll*illth6leadeachtime,giv-
ample, Tany early ideas reffiffi1*ii*iill!: ing a brief sr*mari of
about coding were devel 

Norbert Wiener and lercme wiesner with the ,,utr thEir research, usually

:fl,T^*,. ItI j:::1" 'i;;;Z;',;;i;;;,, 
buitt in tne aiiiiicn'i,iilk l,:i',r accompanied by a run-

I ii i : ^ ^ 
uuttL ttt Lt Lc I\Cn(UILll LUUUIULUL y UlDroaoDano communlca- Electronics. ning commentary by

tions systems and the Wiener, to set the stage
much earlier work about digital systems, as well as for the evening's discussion. As time went on, lie
the interesting and exciting new ideas, such as the came to undersland each other,s lingo and to under-
use of correlation functions to enhance weak sig- stand and even believe, in Wiener,s view of the uni-
nals, and the use of noise to measure system func- versal role of communications in the universe. For
tions. This mix of the exploration of new ideas and most of us, these dinners were a seminal experience
their reduction to practice remains a hallmark of the which introduced us to both a world of new ideas and
present-day RLE. new friends t mafly of whom became collaborators in

In the winter of 1947 , Wiener began to speak lateryears. Wiener's themewas that the organization
about holfing a seminar that would bdng together of symbols, not their physical embodiment, bonded
the scientists and engineers who were doing work us together, whateveiour disciplinary origins.
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averaging them to remove noise
(random measurement errors).
When the data are aYeraged over
time, the oscillations are dampened.
His ideas were closely reiated to
those he had about stabilizing un-
stable feedback loops. Of course, one
has to be careful lest the averaging
obliterate useful information. The .

whole point was to make a judicious
choice of averaging procedure that
retained as much information as
possible.

ln 1942 Wiener's collaborator
|ulian Bigelow2 built a prototype to
track an airplane for ten seconds
and predict its location twenty sec-
onds later. Sad to say, Wiener and
Bigelow's efforts did not hasten the
end of the war. It was only after the
war that improvements in the speed
and accuracy of airplane ardradar
equipment made systematic filter-
ing and prediction devices very im-
portant. On the other hand, Wie-
ner's ideas had ramifications far
beyond their original motivation.
On being confronted with a stream
of data embedded in noise, the anti-
aircralt predictor is faced with the
same problem as the communica-
tion engineer, who must send or
extract a message from a noisy chan-
nel. In both cases it is possible to
design a filter to exclude the noise,
which is the engineer's term for
what Wiener did. Filtering is any
strategy to filter out the effects of
random vibration or static from a
mechanical or electrical system. Fil-
ters are needed in all sorts of devices,
from stereo equipment to afucraft
instrumentation.

Under the assumptions he made,
Wiener's solution to the prediction
and filtering problems was the best
possible in a sense that is math-
ematically precise. Independently,
at essentially the same time, A. N.
Kolmogorov, the great Russian
probabalist,3 came up with a simiiar

2Bigelow was subsequently hired by
fohn von Neumann to build the first
programmable computer, the ENIAC.

3A. N. Kolmogorov was the
cofounder (along with the physicist
I. K. Kikoyin) ol Quantum's Russian-
language predecessor and sister
magazine Kvant.-Ed.

mathematical theory. Thus, Kolmo-
gorov and Wiener developed the first
systematic approach to the design of
filters. However, their assumptions
are not realistic in many applica-
tions. In technical jargon, their strat-
egy is designed for random distur-
bances that are a linear function of
white noise; it does not do a good job
when the disturbances are nonlinear
functions of white noise. Later on,
Wiener addressed nonlinear prob-
lems with what he called the theory
of. homogeneous chaos, but neither
Wiener nor Kolmogorov nor anyone
else has achieved the kind of com-
prehensive success with nonlinear
fiitering that he did in the linear
case.

Wiener wrote up his results in a

1942 report entitled The Interpola-
tion, Extrapolation of Linear Time
Seiles and Communication Engi-
needng. The book was dubbed "the
yellow peril" because of its yellow
covers and its frightening math-
ematics. Wiener spend over a year
working intensively on this report,
only to have it be classified. Given
Wiener's irrepressible urge to talk
about his work and his desire to pur-
sue it further, the classification was
intolerable. From then on he fre-
quently railed against miiitary se-
crecy and proclaimed its incompat-
ibility with free scientific inquiry.

hr the mid-forties Wiener began to
focus on neurophysiology. He advo-
cated an interdisciplinary approach in
which physicists, electrical engi-
neers, and biologists could combine
forces. He and |ohn von Neumann
started a series of conferences on
"Circular Causal and Feedback
Mechanisms in Biological and Social
Systems."4 Wiener also disseminated

aln November 1945 von Neumann
wrote Wiener a detailed letter
suggesting that current laboratory
technique was too primitive to yield a
detailed picture of the brain and that it
would be more worthwhile to develop
electron microscopes and to per{orm
X-ray crystallography on large organic
molecules like proteins in viruses. As
often happens in the history of
science, this prophetic letter had no
discernable influence on the brilliant
course o{ molecular biology in
subsequent years. Wiener's many

his ideas through a seminar associ-
ated with the Radiation Laboratory
at MIT, which was {ounded during
World War II to develop radar. To re-
fine his ideas, Wiener coined " cyber-
netics" from the Greek word
kub etnetes, "helmsman. " Webster's
dictionary defines cybernetics as

"the study of human control func-
tions and of mechanical and electri-
cal systems designed to replace
them, involving the application of
statistical mechanics to communi-
cation engineering."5 Wiener says in
I Am a Mathematician that the
word was the best he could find "to
express the art and science of con-
trol over the whole range o{ fields in
which this notion is applicable."

The 1949publication of Cybernet-
ics, or Control and Communication
in the Animal and the Machine
tumed Wiener overnight into some-
thing of a scienti-fic superstar. At first
glance this is puzzlir.g. The book
leaps between apparently unrelated
meditations on time, entropy, and
computers, interspersed with ad-
vanced mathematics. As Hans
Freudenthal writes in The D ictionary
of Scienffic Biography: "Even mea-
sured by Wiener's standards, Cyber-
netics is a badly organized work-a
collection of misprints, wrong math-
ematical statements/ mistaken for-
mulas, splendid but unrelated ideas,
and logical absurdities. "

Nevertheless, Cybernetics had a

strong impact. In his inJormative ar-
ticle "Cybernetics" in The Study of
Information, Murray Eden lists doz-
ens of books and journals that took
over the word "cybernetics" in the
1950s and 1960s: Philosophy and
Cyb eruetics; Cyb ernetic Principles of
Learning and Educational Design;
Cyberuetic Modelling: The Science of
Art; The Cybernetic ESP Break-
through Even this short list

ideas conceming computer design
seem to have suffered a similar fate.

sWiener's f.ather, the philologist
Leo Wiener, would have had a field
day studying the way cybernetics has
entered popular culture through words
llke cybercpace and cyborys. But
Arnold Schwarzenegger {ans and
detractors alike would be hard-pressed
to say just what cybernetics is.
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President Lyndon B. [ohnson presents the 1963 Nationa] Medal of Science
to Norbert Wiener and fottr other scientists, Tohn R. Pierce, Vannevar Bush,
Cornelius B. Van Niel, and Luis W. Alvarez. At the t'ar laft is lerome
Wjesner, on aide to President lohnson at the time.

cheerful." In short, she made her
husband's life possible. Wiener dedi-
catedEx-Prodigy to his wife "under
whose gentle tutelage I first knew
freedom." After Norbert's death she
remarked, "It was like caring for
triplets."

There atet ol course/ the anec-
dotes. The most famous is the story
of the day Wiener moved from a
two-family house in Belmont to a
quieter single-family house a few
blocks away.When he left for work
that morning his wife reminded
him that he should return to the
new house that evening. But by
evening he had forgotten, and as he
walked up to the o1d house he sud-
denly realized his mistake. He
turned apprehensively to a child
nearby and asked, "Little girl, do
you happen to know where the
Wiener family has moved?" And
the girl replied, "Yes, Daddy,
Mommy sent me to get you."

This story is not true, but many
others are. For example, one day
Wiener went to a seminar at Brown
University in Providence. When he
returned to Boston's South Station,
he telephoned his wife to pick him
up. "But Norbert," she said, "you
drove to Providence." After an en-
counter with a friend outside
Walker Hall on the MIT campus,
Wiener asked, "By the way, which
way was I going?" "Why, Norbert,
you were heading to your office."
"Thanks," replied Wiener, "that
means I have finished lunch." David
Cobb, a formerMIT student, reports
seeing him walking across campus
in his tie and jacket "unaware of the
snowstorm raging around him."
Cobb also tells of the time Wiener
walked into class, wrote alarge " 4"
on the blackboard, and disappeared.
Later the students discovered he was
to be out of town for four weeks.
There was the time Wiener garre a
copy of Cybernetics to a famous col-
league and, when this colleague had
not looked atitby the following day,
declared, "You are unworthy to read
it." Several years later, Wiener asked
his junior colleague Gian-Carlo Rota
whether he had read Wiener's newly
published novel, The Tempter. Rota

leaves the impression that there was
some confusion about what the word
meant. Wiener himself never closely
defined it, but his general train o{
thought is evident. As Eden notes,
philosophers have always compared
iife to the dominant mechanical
paradigm of the age. From Wiener's
association with Rosenblueth and
his work on communication theory
and on anti-aircraft fire, he became
convinced of the importance of
feedback in diverse circumstances,
physical and biological. From this
point it is not a large leap to suppose
that autom ata and living systems
are governed by the same "laws."

But Wiener went {urther. Com-
munication, he wrote, "is the ce-
ment of society." And since "sociol-
ogy and anthropology are primarily
sciences of communication[, they]
therefore fall under the general head
of cybernetics. That particular
branch of sociology which is known
as economics . . . is a branch of cy-
bernetics." Here is where Wiener
perhaps got himself into a bit of
trouble. On the one hand, |erome
Wiesner recalls how Wiener's ideas
fired up his MIT coileagues and re-
sulted in research and courses whose
descendants still exist. The view-
point of cybernetics has been inter-
nalized in biology, where it has
proved fruitful in many neurological
and physiological studies, and the
basic idea that information can be
quantified has by now permeated

our entire culture. On the other
hand, in extending cybernetics to
sociology, anthropology, and eco-
nomics, Wiener exposed his idea to
the kind of misuse evident in the list
of titles above. As Dirk Struik says,
Wiener was not pleased with some
uses of cybernetics:

There is a big idea behind it-control-
which can be extended and overex-
tended to society, which was not his
idea. He was very worried at the time
that there were people who saw in it
some kind of universal panacea. He used
to say to me/ "I'm not a Wienerian."
There was Deutsch for example at
Harvard who made a whole social
theory on that, and Wiener was very
uneasy about these things. He had a feel-
ing that the whole thing was {lattened
and became a little ridiculous. He may
have had . . . himself some exaggerated
ideas occasionally because he was al-
ways playing with ideas, but with all his
fantasies he always had his heavy legs
planted firmly on the ground.

Tlte liumr side and fie darkm side
InI926 Wiener married Margaret

Engemann, who had emigrated at
the age of fourteen from Germany
and who had studied Russian litera-
ture with Leo Wiener. Finding a
match for Norbert was no easy task.
Her duties, as Norman Levinson re-
calls, were to "humor her husband
when depressed, to allay his fears
and anxiety and to tolerate him in
his unbounded flights of fancy when
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replied that he had. Wiener paused
and said, "Then tell me what hap-
pens in the section called '1908."'

Everyone who remembers Wie-
ner remembers his habit of walking
up and down the long MIT corridors
and buttonholing his colleagues
with his latest theories. "sometimes
he would spout the most complete.
nonsense," says Struik. "At other
times it would be almost pro-
phetic." Fagi Levinson, Norman's
widow, recalls how, on seeing
Wiener, one colleague would liter-
ally hide under his desk. Her hus-
band writes that another colleague
found such Wiener-encounters so
taxing that after one of them he
would rush off to see his psychia-
trist. Gordon Raisbeck, Wiener's
son-in-law, remarks that this is in-
sufficient information to identify
the colleague uniquely. Neverthe-
1ess, Bose remembers these encoun-
ters as reconnaissance missions.
"He had calibrated certain faculty in
political science-or whatever areas
he wanted to be up-to-date on-and
he made his daily rounds. He'd talk
to them for five or fifteen minutes/
and he'd be up-to-date on every-
thing."

Wiener did not mind interrupt-
ing. Donald Spencer, a student of
Littlewood who came to MIT as an
instructor in 1939, remembers that
Wiener bounced into his office one
day and announced, "Spencer, tell
me what size animal can fall out o{
an airplane and survive. Is it a rat or
a mouse? We should be able to do a
Dedekind cut6 on that." Spencer
also recalls another day when he and
Wiener were in the middle o{ a con-
versation in the hallway. Wiener
needed to write, so he walked right
into the nearest office and proceeded
to use the blackboard, while the oc-
cupant/ a physics professor, looked
on incredulously. Wiener was con-
cerned that eventually he would

6This is an insider's ioke. A
Dedekind cut is a term used in the
formal mathematical construction of
the real number system. Each cut
splits the numbers into two halves,
the ones below the cut and the ones
above the cut.

lose his sight completely, so he prac-
ticed being blind by burying his face
in a book and walking the halls by
following along with his finger. If he
reached the open door of a class-
room, he would simply forge ahead
and circumnavigate the room while
the entire class stared.

Wiener made forays into fiction.
In 1952 Wiener pitched a movie
script to Alfred Hitchcock. foseph
Kohn, the sole undergraduate in
Wiener's graduate course on Fourier
analysis the followingyear, said that
Wiener would occasionally take
time out from lecture to describe the
plot of his latest pseudonymous de-
tective novel.

Here is Hans Freudenthal's en-
capsulation of the public Wiener:

In appearance and behavior, Norbert
Wiener was a baroque {igure, short, ro-
tund and myopic, combining these and
many qualities in extreme degree. His
conversation was a curious mixture o{
pomposity and wantonness. He was a
poor listener. His sel{-praise was playful,
convincing and never offensive. He
spoke many languages but was not easy
to understand in any of them. He was a
famously bad lecturer.

Wiener was extraordinarily solici-
tous of junior colleagues. He show-
ered attention on new instructors in
the mathematics department/ invit-
ing them to lunch and dinner and
dropping by their offices' frequently
over the first few weeks. Norman
Levinson writes:

He would actually carry on his research
at the blackboard. As soon as I had dis-
played the slightest comprehension, he
handed me the manuscript of Paley-
Wiener for revision. I found a gap in a
proof and proved a lemma to set it right.
Wiener thereupon sat down at his type-
writer, typed my lemma, affixed my
name and sent it off to a iournal. A
prominent professor does not often act
as secretary for a young student.

Amar Bose recalls that when he ar-
rived in India as an unknown post-
doc, he was treated like royalty-
given special editions of books,
chauffeured to plays, invited to be a
delegate to UN functions. It turned
out that Wiener, who had spent the
previous year in India, had paved the

way for him by making weekly vis-
its to the director of the Indian Sta-
tistical Institute. Wiener also ex-
erted strenuous efforts on behalf of
refugee mathematicians during
World War II. For example, he per-
suaded the MIT administration to
pay the trans-Atlantic fare for the
well-known Polish Fourier analyst
Antoni Zygmund, and he acted as a
clearinghouse for Zygmund's job
offers in the United States.

On the darker side, Levinson
adds:

I{ this picture o{ extreme kindness and
generosity seems at odds with Wiener's
behavior on other occasions, it is be-
cause Wiener was capable of childlike
egocentric immaturity on the one hand
and extreme idealism and generosity on
the other. Similarly, his mood could
shift from a state of euphoria to the
depths oi dark despair.

Wiener needed constant reassur-
ance. He sought it from his col-
leagues, the loyal janitor down the
hall, and the new crop of freshmen
and graduate students who arrived
eachyear. Everyone at MIT remem-
bers his repeated lament, "Am I slip-
ping?" and describes his hypersensi-
tivity and dramatic mood swings.
Paley said that whenever he needed
a break from his intensive collabo-
ration with Wiener, he would say
that what they were doing was not
working. This would plunge Wiener
into a state of despair, and Paley was
free to go off to his favorite night-
club, the Texguinan in New York.
On his return/ Paley would say that
he had seen his way around the dif-
ficulties, and Wiener would spring
back to life, confidence restored.
Some family members suggest that
his condition was a manifestation of
mental illness, and that today it
might be treated with proper medi-
cation/ at potential risk to his cre-
ativity.

Cybernetics marked the high
point of Wiener's fame, but it also
marked the beginning of the end of
his serious mathematical work.
Much of his later career was occu-
pied by the application of his earlier
discoveries to diverse fields-for
example, the application of the
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autocoffelation function to electro-
encephelography. He became in-
creasingly involved in literary ef-
forts: his autobiographies, the
semipopular treatments of cyber-
netic themes (The Human Use of
HumanBeings andGod and Golem,
Inc.l, alad a novel, The Tempter.In
these works he comes across as a
humane, even passionate man who
saw perhaps more ciearly than his
contemporaries the impact of tech-
nology on society. He was a iiberal
in the best sense of the word with
deeply held moral principles. He
spoke out on issues that concerned
him until the end of his life, and in
this sense he was the antithesis of
the cloistered academic.

As a prelude to cybernetics,
Wiener had envisioned new kinds of
prosthetic devices to replace the
functions of vision and hearing by
making use of the information chan-
nels of unimpaired senses. The best-
known photograph of him on the
"Infinite Corridor" at MIT shows
him hooked up to what looks like a
collection o{ pushbuttons, but is
actually a device to receive mes-
sages through the sense of touch. In
his last years, one of his favorite
projects was the "Boston Arm," an
artilicial arm controlled by electrical
signals from the user/s upper arm
muscles.

Norbert Wiener died of aheart at-
tack on March 18, 1964, after giving
a lecture in Stockholm. His scientific
legacy is well documented and as-
sures him a place in history. What
distinguished him from other great
contributors to twentieth-century
mathematics was his ability to har-
ness the power of abstract reasoning
to practical matters. His colleagues
and students have kept alive his
memory as a teacher by recount-
ing and embellishing the comical
and eccentric aspects of his per-
sonality. But they also remember
his inspiring enthusiasm for all rig-
orous intellectual activity. Amar
Bose says:

I could never have paid for the education
Wiener gave me. More than anything,
he gave me the belief in the incredible
potential everyone has. CI
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IN YOUR HEAD

The "lnu$l inerlial" relel'gltce ll'ame
ls there such a thing?

N INERTIAL FRAME OF REF-
erence is a system where free
bodies move with uniform ve-
locities. Any frame that is usu-

ally assumed to be inertial is,
strictly speaking, not inertial. One
can speak only of systems that are
ap p r oxi m a t ely iner tial.

The geocentric system is not in-
ertial due to the circular movement
of the Earth around the Sun and,
even more important, the motion
about its axis of rotation. The corre-
sponding acceleration is maximal at
its equator-only 3.4 cm/s2. This
value is much less than the accelera-
tion due to gravity: g = 980 cm/s2.
The ratio of the centrifugal inertial
force to the force of gravity is about
0.4%. Thus, in a great many cases
the Earth can be assumed to be an
inertial reference frame.

The Coriolis acceleration due to
movement in the rotating reference
frame does not exceed 0.1%. How-
ever, the Coriolis inertial force is of
importance for movement over long
periods of time.

The heliocentric reference frame is
inertial to averyhigh degree. No con-
ceivable experiment at the present
time, or in the future, can detect the
noninertial character of the heliocen-
tric reference frame. But strictly
speaking, it's not an inertial frame.
Our sun is located at the outskirts of
the galaxy and makes one revolution
around its c,enter every 200 million
years. Perhaps, then, it's impossible
to find afrarne of reference "more in-
ertial" than the one centered on the

by Gennady Myakishev

Sun (or the center of the galaxy).
WeIl, recently it became quite

clear that this isn't so. Keep in mind
that we're not talking about any
practical need for such a "most in-
ertial system of reference," but it is
a matter of theoretical importance.

It's generally accepted that 15 bil-
lion years ago there was a "big bang "
and from that moment on the uni-
verse has been expanding. At first the
temperature of the universe was ex-
tremely high, but as it expanded the
velocity of its component particles
decreased and the universe began to
cool down. At a temperature of lOe K
neither atoms nor atomic nuclei can
exist. The kinetic energy of the par-
ticles exceeded the binding energy of
nucleons-when they formed, they
were immediately destroyed by the
next collision. Thus all the par-
ticles-protons, electrons, photons,
and neutrons-were in dytramic equi-
librium. The number o{ particles that
emerged from collisions was equal
on average to the number o{ par-
ticles that disappeared in collisions.
Only when the temperature de-
creased further did atomic nuclei
appear-helium nuclei first of all.

This went on for about a hundred
thousand years, until the temperaflre
fell to 3,000 K and the first hydrogen
atoms were formed. An atom is an
electrically neutral system/ and so it
interacts with the electromagnetic
field-that is, photons-only slightly.
Therefore, a "tlft" occurred between
radiation and matter at this time. The
existing photons cooled gradually as

the universe expanded, independent
of other types of particles. The tem-
perature of the equilibrium electro-
magnetic radiation dropped. This
"telict" (or background) ra&ation is
still present and can be detected ev-
erywhere in the universe.

The existence of the relict radia-
tion had been predicted theoretically
by the American scientists Al{er and
Herman. In 1954 this radiation was
discovered experimentally with a
rafiotelescope by Pensias and Wilson.
The relict radiation comes to the
Earth from every direction. It's an
equilibrium thermal radiation with a
maximum energy at a wavelength
l, : I mm, which corresponds to a
temperature o{ 3 K.

By means of the Doppler effect it's
possible to detect the movement of
the Earth relative to this background
radiation. The wavelength of the ra-
diation is shorter when the source
and detectot are approaching each
other than when they are receding
from each other. It's not possible to
detect the movement of the Earth
relative to the hypothetical ether or to
a physical vacuum/ but it's quite pos-
sible relative to this background ra-
diation. It tums out that our solar sys-
tem moves toward the constellation
Cygnus at the unusually high speed
of 200 km/s.

It is this relict radiation that
forms the basis of a reference frame,
and a "more inettial" frame is in-
conceivable. Such a system moves
with a uniform velocity relative to
the background radiation. O
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AT THE
BLACKBOARD

Al'ithlnslic olt Ul'aph paper

Or graph tablets, or graph papyrus . . .

by Semyon Gindikin

r N SOME COUNTRIES, MATH
I notebooks are routinely made of

I ; t';x}:?,il' ;i:,'""; #:l#:r:
in those countries are always asking
why this is. They find it rather in-
convenient to write their numbers
in the teeny 1itt1e boxes. Later they
discover that graph paper is very
good for drawing geometric dia-
grams. I'11 try to show you that we
can also learn a lot of interesting
things about arithmetic by drawing
various figures on graph paper.

Representing numbers as certain
figures on a square grid has its roots
deep in antiquity-in the math-
ematics of ancient Babylon, Eglpt,
and Greece. Of course, at that time
mathematicians didn't scratch lines
in their clay tablets or draw squares
on their papyrus-they made figures
out of dots.

In ancient Greece the product of
two natural numbers was calledapla-
nar numbet: it was associated with
dots forming a rectangular grid (fig. 1).

Here we'1l depict aplanar number as
a rectangle on graph paper and count
how many squares it contains.

=o
o
3
=
x
3
oFigure 1
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{1+3)x(2+4)= -
: lx2+ lx4+3x2+3x4-

Figure 2

The properties of multiplication
can now be neatly illustrated with
diagrams. For instance, the distribu-
tive law (the rule for removing pa-
rentheses) corresponds to cutting a
rectangle into smaller rectangles
(fis. 2). The name "planar number"
has now been forgotten, but the
word "sc1uare" in the sense of a prod-
uct of two equal factors still persists.

Squanes altd Ultotnolt$
In ancient Greece, odd numbers

were depicted as dotted right angles
with equal iegs, calledgnomons.On
our graph paper these will be angu-
lar shapes made of unit grid squares,
one square thick (fig. 3). The first ar-
gument I want to present involves

Figure 3

gnomons and squares. It is attributed to
Nicomachus of Gerasa (ca. 100 e.n.).

Draw a number of gnomons and
squares in succession (fig. a). Doesn't
it look as if each gnomon wants to be
completed by the matching square?
And this will result in the nert square
(fig. 5). This observation leads imme-
diately to the following conclusion:
every odd numbu is the difference
of two successive squares.

Now let's fit a number of gno-
mons one inside the other, starting
with the smallest. We get a square
(fig. 5). So, the sum of successive odd
numbers stafting with the ffust is a
squarc of an integer: 1 + 3: 4, 7 + 3
+ 5 : 9, 1 + 3 + 5 + 7 = 16, and so on.

Pyt[aUonas and fie Pffiagoneans
The half-legendary sage Pythag-

oras (ca. 500 n.c.)liked to travef and
much of his teachingwas culledfrom
the wisdom of the East (that is to say,
Eglpt and the Near East). One char-
acteristic of the Pythagoreans was
their mystical attitude toward num-
bers. They collected all kinds of nu-
merical curiosities, which were re-
garded as manifestations of divine
powers. The Pythagoreans would
express their thoughts and feelings
through numerical images. Odd
numbers were called masculine,
even numbers feminine. The num-
ber i0 = I + 2 + 3 + 4 lIiS. Tlwas par-
ticularly vaiued by the Pythag-
oreans. They called such a tetrad
excellent, and swore by "those who

put the tetrad-the source
and root of eternal nature-
into our soul."

Numbers that are equal
to the sum of their proper
divisors (that is, excluding
the numbers themselves),
like 6 : I + 2 +3, were called
pefi ect. Nicomachus knew

four perfect numbers: 6,28, 495, and
8, 128. Friendship was symbolizedby
pairs of amicable (or friendly) num-
bers-each number of such a pair
equals the sum of the proper divisors
of the other. For instance, the num-
bers 284 and 220 are amicable: 284 :
I +2 + 4 + 5 + 10 + 20 + ll + 22 + 44 +

55 + 110 and22O=l +2+4+71 +142.
But since there are "good" num-

bers, there must be ttbadt' numbers,
too. A number that has no virtues is
"bad," but a bad number surrounded
by interesting numbers is even
worse. Now, we a1l know that the
number 13 brings bad luck.1 But
there used to be other numbers that
struck fear into one's heart. Here's
what Plutarch has to say: "The
Pythagoreans have an aversion to the
number 17, because 17lies halfway
between the number 16, which is a
perfect square, and the number 18,
which is a doubled square. These two
numbers are the onlyplanarnumbers
whose perimeter (of the correspond-
ing rectangle) equals the area." In
other words, it's asserted that if the
product of two numbers (positive in-
tegers/ of course) is equal to twice
their sum, then these numbers are 3
and5or 4an.d4 (why?).

Pyilauol'ean tniples
Legend has it that Pythagoras cel-

ebrated one of his discoveries by sac-
rificing a bull. (Or was it one hundred
bulls? It depends on which version

Figure 6

lThe superstition involving the
number 13 has managed to survive to
the present day. A visitor from ancient
times might be startled by a modern
device like an elevator, but wouldn't
be surprised to go from the 12th to the
14th floor, with no 13th floor in
between.-Ed.Figure 4
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Figure 7

of the legend you hear.) Vitruvius
asserts that it was the discovery of
two squares whose sum is a third
square that seemed so important to
Pythagoras.2 It has to do with the re-
lation 32 + 42: 52. Nowadays the
triples of natural numbers a, b, c
such that a2 + b2 = c2 are usually
called Pythagorean triples. It turns
out that they were known in an-
cient Babylon. Gradually the Greek
mathematicians found them, too.

Let's try to understand how one
can find Pythagorean triples. Recall
that any odd number can be repre-
sented as the difference of two suc-
cessive squares. Then an odd square
together with the squares producing
that odd square as a difference form
a Pythagorean triple. For instance,
32 :9 = 2. 4 + I = 52 - 42 (fig. B). Thus
we get the triple 3, 4, 5. Similarly,
52 = 25 :2 . 12+ I = 132 - 122, or
L22 + 52 = 132, 72 = 49 = 2 . 24 + | :
252 - 242 or 242 + 72 : 252; and so on.
In this way we can obtain all the
Pythagorean triples a,b, c such that
c: a + l. Their general form is

2.)_m -r . m-+l
J=-, u=il7t L=-

22
(m is odd!). Prove this. And how can
all Pythagorean triples be found?

T[e Uenel'al prohhm

The experience we've acquired
suggests that the difference of any
(rather than suscessive) two squares
c2 - a2 (c, ol needs to be examined.
What we get is a "thick gnomon"
c - d squares thick (fig. 9). The prob-
lem has thus been reduced to a descrip-
tion of all possible transformations of

2other sources/ however, point to
other reasons. And some are of the
opinion that there wasn't any
sacrifice at all-Pythagoreans didn't
believe in them.

Figure B

a b x b square into a "thick gno-
mon" without changing the num-
ber of unit squares in it.

The first observation is that a
thick gnomon can be reshaped into
a rectangle (aplanar number!) with
side lengths ftt = c - a and fl = c + a
(fig. l0). This yields, by the way, a
geometric proof of the formula
c2 - a2 : (c + al(c - al. Clearly, the
numbers rr7: c - a andn = c + a zrl-
different and are either both even or
both odd, without any other limita-
tions. So, a rectangle that is not a
square/ whose side lengths m and n
are of the same parity, can be trans-
formed into a thick gnomon that is
the difference of the squares

n (m+n\z
c- =l- 

|[z )

and

n (m-n\z
n 

-l- 
l

[z )

(under our assumptions, the num-
bers m + n and m - nare even and
nonzero).

Thus, the problem of
firdirrs Pythagorean triples
has been reduced to trans-
forming the s quare* into a
rectangle with side lengths
m and n of the same par-
ity(m+n). How? Letr+b
be a divisor of the number
b2 (but not necessarily of
the number b itself) such
thatb2f rhas the samepar-
tty as r. Then r must have
the same parity as b, a7-

though this condition
alone is insufficient. (Can
you explain why?)Then a
rectangle measuringm x n

Figure 9

with m = rt rr: bzf r can be trans-
formed into the thick gnomon that
represents the difference of the
squares

" (b'l,*r\'
^'_t 

I I

[z )
and

" ( b'lr-r\'
n'-l ' I

[z )

Notice that r can be equal to I and
that we can confine ourselves to the
divisors r ofbz less than b.

Finally, this is how an arbitrary
Pythagorean triple can be written:

b2-r2 , b2+r2
u=-, ur w=-t

2r 2r

where r,I 1r < b, is a divisor of b2
such thatr andb2f r are the same par-
ity (which is the parity of b). Using
this ru1e we can automatically write
out Pythagorean triples. Try to do it
on your own. To make sure you're on
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b I a c

3 1 4 5

4 2 J 5

5 1 t2 13i
6 2 8 10

7 1 24 25

8 2 15 17

8 4 6 10

9 1 40 4t

9 J t2 15

10 2 a/1 26

the right track, you can check your
results against the tablebelow, which
lists the Pythagorean triples a, b, c
based on the first ten values of b.

Since the numbers a ar,d b rn a

Pythagorean triple a, b, c are inter-
changeable, pairs of triples differing
only by a transposition of a and b
occur in the table. We also notice
that there is no triple for b :2: in
this case the number b has no suit-
able divisors (on1yr = I satisfies the
conditionr .b:2, but thisris odd).
For any other b there is at least one
Pythagorean triple. If b is odd, we can
taker: 1, which yields a and c differ-
ing by one (we looked at this case at
the beginning of the article). As for an
even b + 2, we cal p.ut r : 2: this yields
triples with c - a = 2 (why?).

TnianUulal' ruln[ol'$
Babylonian cuneiform tablets

contain a method for computing the
sum of the first n natrral numbers
I + 2 + ... + n. These sums received
the name triangulfi numbers be-
cause the dots depicting the terms in
the sums can be arranged in a tri-
angle (fig. 1i). On graph paper, it's
more convenient to draw a staircase
shape (fig. 12) in which every row
except the top one has one square
more than the row above it. To
count the number of unit squares in
such a staircase, which is equal to
the sum in question, dtaw another,
inverted staircase and move both
staircases together (fig. 13). The
steps of one staircase will fit those of

Figure 11

Figure 12

the other, thus formingannx(n + 1)

rectangle. It consists of. n(n + 1) unit
squares. The staircase has half that
many-that is, nln + 1)/2. So

!+z+3+...+ n=n(n+l) .

2

Problem 1. Using staircases, {ind
the sum 1 + 3 + 5 + ... + (2k + 1) of
oddnumbers, the sum 2 + 4 + 5 + ...
+ 2k of even numbers, and the sum
l+4+7 +...+ (3k+ 1)of thenum-
bers of the form 3i + 1. (The first of
these sums has already been found
by using gnomons.)

The next problem is based on an-
other interesting observation by
Nicomachus.

Problem 2.Yerify that the gno-
mon equal to the difference of the
squares of two adjacent triangular
numbers is a cube-more exactly,

.,2 .,2
fn(n+l) I In(n-l) ] .3

l-r -r-t =i7.[zrl,z)
From this relation, Nicomachus

derived a formula for the sum of suc-
cessive cubes:

..2
13 +2r +...+r. =[ "("*t) I .[z )

Figure i3

This becomes evident after we put
together all the gnomons corre-
sponding to adjacent triangular
numbers.

Editor's note: Some of the topics
covered in this article have been vis-
ited in previous issues of Quantum.
For more on " amicable numbers"
see "Kith and Kin" in the lantary
1990 issue. Another method for de-
riving Pythagorean triples can be
found in "Genealogical Threes"
(November/December 1990). And
for some more interesting facts
about "shape-numbers" see "An
Old Fact and Some New Ones" (Sep-

tember/October 1990). O

TT
l+2 -
tt

TTT
l+2+3
ltt

TI
l+2+3+4

I

lt
l+2+3+4+5

s s

Ul'Up us a line at Quantum,
1840 Wilson Boulevard,
Arlington VA 22201-3000
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ilp .r. ,r, electron or two at
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ADDENDUM

]lollotnl lnolecules

Auloniahexagona

level of impurities included in them. Daedalus calcu-
lates that a substance made of hollow molecules 0.05
micrometres across would have a bulk density of about
0.04 g cmj, about half-way between the densities of
liquids and gases, and should constitute a vague fifth
state of matter. These enoflnous molecules (molecular
weights up to 100 million!) could hardly evaporate, but
would interact so weakly at their few points of contact
as not to be solid or even liquid. They should behave
as tenuous fluids, retainable in open vessels but with-
out any definite surface, and if heated would expand
steadily, without boiling, into a gas-like state.

Such fascinating materials would find a host of uses,

Editor's note'. These speculations by David E. H. fones (aka
"Daedalus") were originally intended as an insert in "Follow the
Bouncing Buckyball" (May/fune 1994)brt did not appear due to
delays in obtaining the required permissions. Readers may wish
to remove this page and insert it at page 10 of that issue.

T HERE IS A CURIOUS DISCONTINUITY BETWEEN
I the density of gases (around 0.001 g cm*3) and that
of liquids and solids (from 0.5 to 25 gcm-B). Daedalus
has been contemplating ways of bridging this
gap, and has conceived the hollow mol-
ecule. This would be a closed spheri-
cal shel1 of a sheet-polymer like
graphite, whose basic molecule
is a flat sheet of carbon atoms
bonded hexagonally rat}r'et
Iike chicken-wire. He pro-
poses to modify the high-
temperature synthesis of
graphite by introducing
suitable ill-fitting foreign
atoms or molecular units
into the sheets to warp
them (rather like "doping"
semiconductor crystals to
introduce discontinuities).
The curvature thus produced in
the sheet will be transmitted to its
growing edges so that it wili ultimately
close on itself. The radii of the molecules
thus produced would be controlled by the

Illustration reprinted with the permission of Cambridge University press.

in novel barometers and shock-absorbers and fluidiza-
tion-systems and so on, they might even be ideal as

low-drag lubricants, where the rolling contact of the
molecules would lower the friction even further in ball-
race fashion. Daedalus was worried that they might de-
form under load until herealizedthat if synthesized in
a normal atmosphere they would be {ull o{ gas and re-
silient like little footballs. So he is seeking ways of in-

corporating "windows" in their structure so
that they can absorb or exchange inter-

nal molecules, thus acting as super
molecular-sieves capable of en-

trapping hundreds of times
their own weight of such
smal1 molecules as can en-
ter the windows.

-New Scientist,
3 November 1955

Fl'om DaedalffiS ltolshook

. . . Euler's Law states that
for any polyhedron, (no. of

corners) + (no. of faces) -
(no. of edges) : 2. This pre-

vents any poiyhedron being
made up entirely of hexagons, a

networkof whichhasC +F-E =0.In
that wonderful book Growth and Form
(Cambridge University Press, pp. 708 and

738), W. D'Arcy Thompson discusses this problem in
connec.tion with radiolaria, those microscopic sea-
creatures whose silica skeletons are frequently made
up of hexagonal meshes. Even the beautifully sym-
metrical Aulonia hexagona (which is almost a perfect
100,000-fold scale enlargement of a | ,200-atom hollow
graphite molecule) has some non-hexagonal faces.

FromThe Inventions of Daedalus: A Compen-
dium of Plausible Schemes by David E. H.
|ones (San Francisco: W. H. Freeman and Com-
pany, l9B2)
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Nnw ARtvII siE
The American Regions Math

League announces the opening of a
third site for its annual high schooi
competition. The host for this new
westem site wil1be the University of
Nevada at Las Vegas. The competition
will be held on lune2 and},1995.

The ARML competition is the
largest on-site high school contest in
the US. It currently draws students
from 34 states and two Canadian
provinces to its two other sites-
Pennsylvania State University and
the University of Iowa. The Las Ve-
gas site will permit access to the
event for teams from the westem and
Pacific states. A11 three sites will be
linked by video communications to
form a single national competition.

Among the unique features of
this event is the teamwork involved.
Teams of fifteen students typically
represent an entire state, city, or
geographical area, rather than a

single school. Team members coop-
erate in solving a power question (a

single long-answer question) and a

team round (ten short-answer ques-
tions to be worked on by the whole
team). Contest materials are typi-
cally taken back to home schools
and form the basis of exploration
and independent study.

For more information about
forming an ARML team or joining
an existing team, please contact

Mark Saul
711 Amsterdam Ave.
New York NY 10025
phone: 212 666-5188 (voice & fax)
e-rnail:7 3047.3 1 5 6@compuserve. com

OI

Steve Adrian
55 Mill Plain Rd., IJntt2g-5
Danbury CT 06811
phone: 203 792-5828.

HAPPENINGS

Bulletin Buard

T[inlfiru colnumr$?
The results from the fourth annual

Loebner Prize Competition are in,
and once again, the computers lost.

Pitting humans against computers/
iudges "conversed" with ten termi-
nals on December 16, 1994, at the
University of Califomia-San Marcos.
Some of the terminals were con-
trolled by computer programs/ some
by hidden human "confederates."
(|udges and confederates were all
members of the media.) Conversa-
tion at each terminal was limited to
a single topic. After the judges had
conversed with all the computers,
they rank-ordered the terminals
from "Ieast human" to "most hu-
man" and then tried to guess which
terminal was which. While two hu-
mans were mistaken by some judges
for computers/ no computers were
mistaken for humans.

A prize was awarded to the pro-
grammer whose terminal achieved
the highest median rank. Prizes
were also awarded to the "Most
Human Computer" and the "Most
Human Human." Spectators were
able to view each conversation as it
unfolded, try their hand at a "mys-
tery termi.nal," and complete their
own rating forms.

when a computer passes a test
with unrestricted conversation, a
grand prize of $100,000 will be
awarded, and the contest will be dis-
continued.

Software is available that plays the
conversations in real time exactly as

they occurred in the last four compe-
titions. To purchase this software,
contact the Cambridge Center for Be-
havioral Studies, 675 Massachusetts
Ave., Cambridge MA 02139t phone:
617 491-9020; fax: 517 491-1072; e-

maLI: /655 /.I I /5@compuserve.com.
Programmers interested in com-

municating with other programmers

planning submissions to the
Loebner Prize Competition or wish-
ing to get involved in team program-
ming efforts should contact Ms. Kim
Binsted {kimb@aisb.ed.ac.uk}.

Slay al[ome-ahroad
American-International Home-

stays, Inc. (formerly American-Soviet
Homestays) offers travelers a unique
opportunity to form friendships
while experiencing history in the
making. You stay in the private
homes of English-speaking families
and find out firsthand what the
people are thinking and feeling dur-
ing this time of great change in their
nations. Among the locations of-
fered are Moscow, St. Petersburg,
Kiev, Siberia and Lake Baikal,
Mongolia, Uzbekistan, Prague,
Budapest, Krakow, the Baltics, and
Beijing. This year, American-Inter-
national Homestays is expanding its
program to India and Australia.

Travelers live one week each
with two different families, in two
cities, or five days each with three
families in three cities, enjoying
their warmth and hospitality, eating
home-cooked meals, and entering
their hosts' circle of friends and fam-
ily. You have a private room/ and the
hosts will be off from work during
the visit in order to spend time with
you and introduce you to the daily
life and sights of their culture.

Each scheduled group trip includes
round-trip airfare from New York or
San Francisco, internal transporta-
tion, all meals, and lodging. Other
special packages are avallable. Most
scheduled trips are 14 days iong with
prices beginning at $2,090.

For a brochure call toll-free: 800
875-2048. From outside the conti-
nental US call 303 542-3088. Or
write to American-International
Homestays,Inc., PO Box 7178, Boul-
der CO 80305.
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42 Austrian biologist
Paul 

- 
(1880-1926)

44 Sex glands

45 Geologic time
periods

45 Long inlet
47 Bird's respiratory

feature
50 Element 81

55 Reverberation
56 Oat
58 Pigment
59 Anthropologist

Carleton _lt9o4-
1981)

60 1000 kilograms
51 German river
62 Finishes
63 Keyboard word
64 _ cone (missile

section)

Ioum

1 Type of canned

meat
2 Blood: comb. form
3 _ group {chem.

group)

4 1956 cherl:.. Nobelist

by David R. Martin
4'vl,

I-

-C5

lcl,oss

1 Hypocritical act
5 Billiards shot

10 Closed
14 South American

country
15 Hearing: comb.

{orm
16 Infatuation (sl.)

l7 
- 

group (chem.

group)

18 Provide with
weapons again

19 Shortest distance
20 Pressure unit
22 mcz
24lapanese statesman

Hirobumi _
{ 1841-1909)

25 Snicker--
26 Yerbalized
29 A plane cuwe
33 Written research

report
34Tree dwelling

primate
35 Perish
36 Ireland
37 Source o{ feelings
38 Prophetess (Scand.

myth.)
39 Unit of mass: abbr.
40 Roman garments
41 More sensible

5 Diamond element
5 Plant: suff.
7 Lion's sound
8 Belonging to us

9 Mass times velocity
10 Blood-forming organ
11 Dead keratinized

cells
12 Military branch: abbr.

13 Those people

21 Roman road
23 

--do-well25 Greek island
25 Talk
27 Cleveland suburb
28 A narcotic
29 Immunologist _

Milstein
30 Turkish city
31 Angered
32 Units o{ time
34 Theater boxes

37 Pyroelectric mineral
38 

- 
radiation belt

40 1012: pref.

4l Podzol or cher
nozem, e.g.

43 Fundamental
particles

44 Kitchen tool
47 44,750 (in base 16)

48 Computer screen

image
49 Red: comb. form
50 Hue
51 Sharpen

52 Villain in Othello
53 Hawaiian instruments

54 Simple
57 Wear

SOLUTION IN THE
NEXT ISSUE
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Ml36
(a) The answer ts x = 2, y = 3. The

ecluation is quickly reduced to the
formxy :* +2x orxY-L -x:2 (since
x , 0). It follows that x is a natural
divisorof2. Thevaluex= 1 doesnot
fit, so x = 2, and therefore y: 3.

(b) This equation has two solu-
tions: (y, zl :1,1) and ly, zl : (3,21.
The second solution amounts to the
same number relation as in (a):23 + 1

= 32. The casey = 1 is clear. Suppose
y > l; then the equation can be re-
written as

2Y -3-l
=(3-1N3,-t *32-2 +... + 1).

Since y > l, the product on the
right side must include more than
one factor of.2.It follows that the
second f.actor on the right side
must be even, and so z must be
even. Let z = 2k. Then we have
2v : 32k- 1 : (3r.- 1)(3ft + 1). So
3k - 1 and 3k + 1 are powers of 2 dif-
fering by 2, which is possible only
for k = 1 or for z:2, y = J.

Originally, the author of this
problem proposed the much more
difficult and general equationxr + 1

= (x + ll'in natural numbers x, y, Z.

Try to prove that it has only the fol-
lowing solutions: (x, l, ll for arry x,
ll, y, ll for any y, and12,3,2l. (Hint:
use thebinomial formula and consid-
erations of divisibility.) Equations (a)

and (b) are the particular cases f or z = 2
andx:2. (V. Dubrovsky)

M137
LetABCD be the given trapezoid

(fig. 1). Using the observation that

ANSWERS,
HINTS &

SOLUTIONS

AD
Figure 1

its diagonals AC and BD are the
same length, and the Triangle In-
equality for triangles MAC ar,d
MBD, where M is the given point,
we get

MA<MC+AC
=MC+BD
<MC+MB+MD.

It remains to note that at least one
of these two inequalities must be
strict, because the first of them be-
comes an equality only if point M
lies on the extension of AC beyond
C, while the second only for M on
the segment BD.

A nice, purely geometric solution
is iliustrated in figure 2: fitting the
side BD of the triangle BDM to the
side AC of triangle ACM, we obtain
a quadrilateral whose side lengths are
equal to the distances in question,
which makes the statement of the
problem self-evident. It is left to the
reader to investigate what happens

when point Mis not on the plane of
the trapezoid ABCD.

M138
This is a typicalproblem that canbe

solved "from back to front." We'lI even
begin the solution with the second
question, the answer to which is no.

Denote by N, the number of the
ten-jump series in which the rth
kangaroo kjli:1,2, ..., L}l finally
arrives at B-that is, jumps to point
B from some other point to stay at
B forever, perhaps hopping in place
if the jumping is continued. Then
Nro . Ns . ... . N, because to finally
arrive at B,kangaroo ft, has to iump
over k, _ 1, which is not at B yet (i =
2,3, ,..,10). So the total number of
jumping series is not less than N, >
N, * 1 > +AI, +2> ...>Nro * 9> 10.

It is almost obvious that at any
time the next series of jumps can be
organized so as to drive a chosen
kangaroo\ onto pointB. If our kan-
garoos sit initially at points K1, K2,
..., KLo, then, moving from the end,
we find that kr_ I must be driven
onto the midpoint M, _ , of the seg-
ment KrB (to make k, jump onto B;
see {igure 3 for i = 4), so \_, must be
driven onto the midpoint Mr_rof.
Kr_rMr_1, and so on up to k, which
will have to jump onto the midpoint
M, of the segment KrM, determined
by the above consideration.

Now, using this construction, we
can send kro to B in the first series
of jumps, then send k, to B in the
second series (kro hops in place),

Kr K2K3Mr M2K4M3B

Figure 3

C
D

5 0 tllRc[/APmr. rsss

Figure 2



then send k, to B in the third series
(k, and ftrn hop in piace), and so on.
In the last (tenth) series, k, jumps
onto B and all the other kangaroos
hop in place. So it's possible to orga-
nize the required "migration" of the
entire herd in ten series.

An algebraically minded reader
may find it interesting to trace this
"mi.gration" in coordinates. This
will involve Pascal's triangle and
binomial coefficients. However, this
isn't really necessary for our prob-
lem as it is. (V. Dubrovsky)

M139
Put/,(x) :fkl =* -x+ 1, and, for

a[y n:2,3, ...,
f"lxl = flf"-r1x11.

Then /,(0) = f tlll = 1, and so (by in-
duction) /,(01 = f "lll 

: 1 for alin. This
means that the constant termlr(0) of
each of the polynomials lr(x) with
integer coefficients is equal to 1. So,
for any natural a the number f ,(al
yields a remainder of 1 when divided
by a.Itfollows that for any integers
m, k, and 1, k > I > 0, the number
f x@l = fp-lfl-ll yields the remain-
der 1 when divided bylr(m)-that is,
f e@l and f lml arc coprime numbers,
completing the proof.

Now, it's only natural to try to find
ail polynomials f(xl with integer coef-
ficients with the same propertyi for
any natural m the numberc m, f(m),
f(f(m)), ... are patuwise coprime.

The solution above shows that
anylsatisfying/(0) =fl1) = l-that is,
having the form f(xl = x(x-l)r(x) + 1

(where z(x) is a polynomial with in-
teger coefficients)-will do. Notice
that the construction in the problem
generates infinitely many infinite se-
quences of natural numbers inwhich
any two numbers are coprime. (For
instance, f.or m : 2: f ,(21 = 7, f2l2l = f t|l: 337, ..., f ,(2l1, ... .) The existence of
such a sequence implies that the set
of prime numbers is in{inite (why?).

M140
First, consider a number N: pk

for a prime p. The divisors of N are
the k + 1 numbers l, p, p2, ..., pk,
and the numbers of their divisors
are equal, respectively, to !, 2, 3, ...,

k + 1. So we have to prove that

ll+2+...+(k+1)12
=13*23+...+(k+1)3.

To do this, we denote the sum
(I + 2 + 3 + ... + nlzby s,. Then, us-
ing the formulas for the difference
of squares and for the sum of an
arithmetic sequence we obtain

sft*t-si.
: (l< + 1)[2(1 + 2 + ...+k) +ft + 1]

= (l< + 1)[/<(/< + 1) + k + 1]
: (k + 1)3.

So

sL*1=(k+1)3+so
= (ft + I)a + ka + so_,

=(k+1)3+k3+...+13,
because sr : 1.

This establishes the result if
N = pk for prime p. Now suppose
that N = AB, where A and B are
coprime numbers with the divisors
a1t ..,t arandbl, ..,, b-, respectively.
Leto,, i = l, ..., n, and!;, i = l, ..., m,
be the numbers of the divisors of a,
andb,. Since A and B have no com-
mon divisors, the divisors of AB arc
all the products arb i, i = l, ..., fi, i : l,
..., frj notice that the number of
these products is nm. For the same
reason/ the number of divisors of arb,
equals urB,. The sum of all these!
numbers can be written as

crrBr+orPr+...+orp-
= (cr, + ... + sr)(Fr + ... + a"-1,

SO

(arB, + orB, + ... * c;'n9^12

= (a, + ... * or,l2(Fr + ... + a^l2.

Similarly,

(cr,F1)3 + (d1P2)3 + ... + (o,F-)'
= (o,3 + ... + u,3)(pf * 1.. i Bj).

It follows that if the statement of the
problem holds for A and B, it holds
for AB as well (because both sides of
the relation in question f.or AB are
equal to the products of the respective
sides of the relations for A and B).

Now the proof can be completed
by induction over N. Suppose our
relation is true f.or any number less
than N. We can always represent N
as N = pkA, wherep is prime and A

is not divisible by p. The case A : 1

was considered separateiy, and in
the case A , l, the coprime factors
pk ard A satisfy our relation (they
are less than N), so it's true for their
product N as well.

It appears that the statement of
this problem was first proved by the
well-known French mathematician
|. Liouville.

Plrysics

Pl 36
Let the horse and the person be at

pointsA andB, respectively (see fig-
ure 4). Denote OA : R, OB : r,

BO
Figure 4

IOBA =q, andZBAQ = y. The speed
at which the horse approaches the
person is the component of the veloc-
ity v along the direction AB: v^o,, =
v sin y. We must find the positioln of
point A where angle y is the greatest:

sind siny r r,;_,, Slny__SlnQ<_.
RrRR

So when 0 = 90', the relative veloc-
ity yields a maximum of

v =vL.appr max 
R

P137
First of all we should carefully

work with the curve for the droplet's
acceleration and use it to graph its
velocity versus time (again in rela-
tive units). To do this, let's recall
that the increase in velocity per unit
time is equal to the area under the
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(1)

,|
r-.
R"l

dR

dt

The air resistance Fr, which is pro-
portional to the droplet's velocity,
counterbalances the force of gravity
mg. So the acceleration of the drop-
let at time t, (that is, the maximum
acceleration) is

ms-F- (. 4 )a= " r =gl l- 'lm \ ms)

r)
=gl 1- ' l= 6mf s2.

I ur)

curve for the acceleration in that
period. We need the velocity curve
to determine how much smaller the
velocity v at the time t, of field
shutoff is compared to the maxi-
mum velocity vu. The author ob-
tained the value bf

v : O.4vr.

P1 38
Let's begin with qualitative con-

siderations. Evidently, the time 7
that we seek is longer when the
bubble's radius Ro and the density of
the gas inside are greatet (for ex-
ample, if the bubble is filled with
hydrogen, it collapses more quickly
than a bubble filled with air). On the
other hand, this time is shorter
when the surface tension of the
soapy film o is higher (a different
type of soap can be used) and the
tube's radius is smaller.

Now let's do some numerical cal-
culations. According to the law of
conservation of energy, the sur{ace
potential energy of the bubble
changes during shrinkage into the
kinetic energy of the escaping air
(the kinetic energy of the bubble it-
self can be neglected, as we'll show
later in our calculations). Thus, one
can write

-"2dmd(2os)=t,

where dm = -p^rrdV is the mass of
the air escaping the bubble in a short
tirne dt; p6 is the density of the air,
and dV is the decrease in the

bubble's volume. The factor 2 in this
formuia is due to the fact that a

bubble has two surfaces, and each
surface has oS surface energy (of
course/ we neglect the thickness of
the soap film and consider the radii
of these surfaces to be equal). Since,
on the one hand, dV :4xR2dR and,
on the other, dV = -+Pvdt, we have

Now let's compare the bubble's
kinetic energy Ek= M(dRldtlzlz
with its surface energy E, = 2oS :
8noR2 at the moment, say/ when its
radius is decreased by a half. As the
mass of the bubble's shell is M =
p*4nRzh, where p* is the density of
water and h is the thickness of the
soap film, then

1= P* 'o!.EBoR5s rall

lf r = lmm, R : Rolz= 10 mm, h :
0.01 mm, P* = 103 kg/*3, and P,,, =
1.29 kglrrr3, we get

E,K -10-"<<l
E,

-that is, the assumption we made
above is corroborated. To finish our
solution, let's separate the variables R
and t in formula (1) and integrate it,
taking into account that 0 < R < Rr:

rtt--@r pz6p."'--.rl - )\i o r'

where C, are some factors (the so-
called mutual electrical capacities of
the conductors). When the electrical
charges were replaced by the oppo-
site charges, this equation became

o=L-$gi" q i",i
from which we get

Thus, the desired potential is

q^ =!% -i.lr= 34, 
= 

3 
0,.t+ 2^- ct ic,, ct 2'

Pl40
We can solve the problem by two

methods.
1. The image of the Sun that ap-

pears in the focal plane of the first
mirror (of radius Rr) serves as an
object for the second mirror (of ra-
dius R2). Given an angular dimen-
sion of the Sun cr, the diameter of
this image is I : crF, : o"Rrf 2, and its
distance to the second mirror equals
dr: Rr- Rrlz The magnification of
the second mirror is I, : F2l@2- Fzl

= RzlRz-R1). The size of the image
produced by the two mirrors is
equal to

- cxRl, =ll^=------!m12

R,&
= C(_. :__= , .

z(&-4,)

A thin lens forms in its focal
plane a solar image of the size Lr:
crFr. To get an image of the size Lr:
L- orre must choose a lens with a

focal length

F,= && =rocm.'2(&-&)
2. One of the rays parallel to the

optic axis of the mirror system is
shown in figure 5 (see lineAB). Point
M is the intersection of. ray AB and
ray DF, which leaves the system.

lo
2o.r alr

$9.-q
t c,,- c,

&
&-&

f=?
7

*,=t.+t,

w* =0".Xo rz

The result obtained confirms the
initial qualitative considerations
and correlates rather well with ex-
perimental observations.

Pl39
To solve the problem, let's use

the principle of superposition. At
first,
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the L- andZ-shapes are possible (ex-
amine the filling of the top extreme
right square). Two corresponding
dissections are shown in figure 6
(other arrangements of these shapes
are possibie).

8138
A person running along the

"bndge" and starting to fal1 ends up
not in the water but on the opposite
side of the stream, since it takes
more time to fall than to run.

8139
We can see immediately from fig-

ure 7 that AD = 1az a 32 :5, where
the unit length is the side length of a
grid square). So AD = AE lby the

Figure 7

choice of pointE), andCD = CE = Ji .

Therefore, AAEC: AADC, which
implies the required equality.
(V. Dubrovsky)

8140
A rook can be removed without

violating the given property if there is
another rook in its rank and another
rook in its file. Such a rook necessar-
ily exists. Otherwise, for each of the

15 rooks either the rank or the file in
which it sits contains only this rook.
This means that there are ranks or
files each of which contains only one
rook. Therefore, eight of them must
be of the same kind-say, a rank
(horizontal). Then each rank contains
only one rook, and the total number
of rooks is eight, which contradicts
the statement of the problem. The ar-
rangement of 14 rooks in figure B

shows that the number 15 in the
statement cannot be reduced.

Toy $lot'E
1. All the n-move processes (n >

3) in question fall into two classes:
(1) those in which the last rotated
face is perpendicular to the previous
one and (2) those in which the last
two rotated faces are parallel. Any
process of the first class can be speci-
fied by choosing its firstn - I moves
(S, _ , possibilities), then the last
face, perpendicular to the (n - 1)st
face {four ways), and then the angle
of its rotation (three ways). This
amounts to 3 . 4. Sr_, processes in
the first class. To specify a process of
the second type/ we choose an
(n - 2l-rnove process (S, _, ways), a
pair of faces perpendicular to its last
rotated face (two ways), and the
angles by which these two faces are
rotated (3 . 3 = 9 ways ). This
amounts to 2 . 9 . Sr_z processes.
The calculation for n = 2 is similar:
18.4.3+3.9=243.

2. The reasoning is similar to that
for edge flips.

3. Verify and use the following
fact: if two processes applied to a
certain cube state produce different
patterns, they will produce different
patterns after being applied to any
other state.

tlllonlys dilemma
1. See equation 1 in the box on

the next page.
2. p : 213,n = B, andl = 3. Substi-

tute into equation (3) in the article
to obtainPrwitch = 551144 > 541L44 =
3/8 = Psti"k. You should switch.

E
-, aa

'L rr;\ lvr,
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I
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Figure 5

Let's place a thin lens of focal length
Ft: lKFl in the plane NM, which
passes through pointM and is perpen-
ficular to the optic axis of the system.

The ray AB that enters the lens
(without mirrors) passes point F af-
ter refraction-that is, the path of
this ray would be the same as when
it leaves the mirror system. There-
fore, the solar image formed with
the lens will be the same size as that
produced by the mirror system.

One can easily calculate the focal
length of the lens to be F, = 10 cm.

Braintea$EF$

8136
Babs wears the white dress, Grace

is in blue, Pam in green/ and Winnie
in pink. The first condition immedi-
ately implies that the gful in green is
Pam. Then, from the second condi-
tion we derive that Grace is in blue
(neither white nor pink-nor green, of
course). Since Winnie is Pam's neigh-
bor, she stands opposite Grace, so she
wears a pink dress. (V. Dubrovsky)

8137
It's clear that each of the six

pieces must consist of four squares.
We see that they can have one of five
'different shapes (I-shape, L-shapg T-
shape, Z-shape, or a2x2 square). A
bit of trial-and-error shows that onlv

D
/i

,u -C
A B E

Figure 6 Figure B
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Pswitch = P(lst pick goat)P(znd pick car I 1st pick goat)

+P(tst pick car)P(2nd pick car I lst pick car)

_ "-i ( i -r\ _ i ( i -z)_[i-t')( n-i ),(r.)( i-z )
n \"-z)' ,[, -z) [ " .J["-2.1 ["J[ "-z)

.(L\(lL* i -' 
) =l-=p..., .- 

[;.,1(." - 2 
- 

" I )- - - rstick'

,l+(*). :(=)l .,, - rlT(#) + (=)l

= ol,i -, I. rr - orl 
i" - i - ll - [p * (r - p)](i" - it - (r - p)"

[n(n-z)] -'L n(n-z) I n("-2)

ni+np-n-i

1.

2.

n(n-2)

3. Let p = ln - illn * x. Substitut-
ing for p in equation (3) we get
Pswitch = i I n * *l @ - 21. rf p, ln - il I n,
thenx > 0; thus, Pswitch > iln : P"ti"v.
If p . ln - illn, then x < 0; thus,
Ps*itch < iln = P"ti"a.'

4. Consider the equation kn =

im + y.If klm: if n, then y = O; if
klm . if n, then y < O; and if. klm >

if n, theny > 0. Now, substituting for
kn in equation (4) we have

1
D _t
'switch -

n

The result now follows.

5. E.*it"h = $iB,B50 > $15,100 :
8.,,"0. The contestant should switch.

6. E.*it"h = $15,100 = Er,,"1. The
contestant can use either strategy.

7. Let v, = tf n + x. Substitute for
v, in equation (5) to obtain Eswitch :
tln - xl@ - 2l.If v, = tf n, then x = 0;
it v, > tfn, then x > 0; and 7f v, < tfn,
then x < 0. In all cases, the result
follows. Note the similarity to the
solution for problem 3.

B. If x/s = tln, then xn = st. Sub-
stitute fior xn in equation (6).

9. Combining tems in equation
(3), we get equation 2 in the box
above.

n(n- m-r)
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Brainteaser 8131 in the last issue is
(hopelessly, we fear) flawed. I{ you can
find a valid solutioq send it to us and
we'll send you a handsome Quantum
pin with ow thanks.

Due to a copyediting error, the first
sentence in the solution to brainteaser
8134 says the opposite of what it
should (as the rest of the solution
makes clear). A tip of the foolscap to
Andy Liu {or bringing this to our at-
tention. Andy also pointed out that
this problem is closely related to prob-
lem 1 in the 1975 USAMO, which
dealt with 4x7 and4 x 5 rectangles.
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"LAST PROBLEM OF THE CUBE"
CONTINUED FROM PAGE 64

other i{ and only if their three invari-
ants take the same values. In par-
ticular, accessible states xe charac-
terizedby F(S) = flS) = 0', P(S) = EVEN.

This fact is far from obvious. Its proof
virtually amounts to completing an
algorithm for restoring the cube.
Since there are 2 . 3 . 2 : 12 triples
of possible values of the invariants,
all conceivable states of the cube fall
into 12 classes such that by rotating
faces we can reach any state within
the class where we arel but we can't
get into any other class.

Problem 3. Show that there are
equally many states in all the
classes.

This problem makes it clear why
we had to divide the number No bv
12 to obtain the number of acces-
sible states. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59

Readerstlll'i[0...
M. Douglas Mcllroy o{ Ber-
nardsville, New |ersey,
writes:

When I clapped my eyes on the
cover olQuantum for November/
December L994, I recognized
Norbert Wiener instantly. The
likeness is uncanny: the pose,
scrunched in a ship's wheel, is al-
most exactly as I first saw him
forty years ago. There he sat in
the faculty lounge, a goggle-eyed
Humpty Dumpty enfolded low in
an orange batwing chair, two
short legs dangling over the edge.

That ridiculous position only
served to emphasize his authori-
tative presence. Thank you,
Sergey Ivanov, for the memory.

lnduol

Ailuel'lisens

QUESTIONS ABOUT YOUR
SUBSCRIPTION?

CALL 1 BOO SPRINGER
(1 800 777-4643)



rITHE UNPRECEDENTED FAS-
I cination with Rubik's cube that
| ,.rr"o rne worlo some r 5 years
Lgo playeo a Dao trcK on rne

best puzzle of our century. Shortly
after its appearance it fell prey to
mathematicians, who jumped at a
rare chance to demonstrate the
power of their science to the general
public. They eagerly subiected the
toy to minute scrutiny and ex-
plained to one and all what could
and couldn't be done with it. Puzzle
inventors all over the world also
took advantage of Rubik's idea and
replicated it with numerous modifi-
cations. Soon the cube-too difficult
to be solved by laypersons/ com-
pletely chewed over by "cubolo-
gists," and stripped of its freshness
and uniqueness by imitators-
turned into a pretty knick-knack for
some and a wonderful visual aid in
group theory for others.

However, one important question
about the cube remains unanswered,
awaiting its . . . well, computer:
what is the smallest number of
moves (quarter- or half-turns of the
cube's faces) sufficient to restore the
original position of the cube from
any scrambled state? This number is
usually referred to as the "length of
God's algorithm," an imaginary al-
gorithm that always yields the
shortest solutions.l In principle,

lThis term and most of the other
"cubological" terms in this article
were introduced and no doubt created
by David Singmaster, the British

Ihe Iowsr hottltd

It's very easy to estimate from
below the number of states of the
cube that can be produced by a se-
quence of n moves. The first move
can be made in 6 . 3 : 18 different
ways: we can turn any of the six
faces by any of the three possible
angles (90", 180', and270"l. So one

mathematician who can truly be
called the "leading force in cubism" (a

kind of Picasso o{ the Rubik's cube!).

move generates 18 different states.
The second and each subsequent
move can be chosen in 5 . 3 = 15
ways/ because there's no sense in
rotating the face used in the previ-
ous move again. So the number of
two-move sequences is 18. 15, the
number of three-move sequences
is 18 . 152, and so on. Adding the
"no move" sequence/ we get
M,: l+ 18 . (1 + 15 + ... + 15"-1)
sequences consisting of no more
than n moves. These moves pro-
duce no more than M, differcnt
states of the cube-fewer than Mn,
in f act, because diff erent sequences
can generate the same state, even if
they are very short. For instance,
two successive rotations of parallel
faces can be performed in any order
with the same effect.2

Now suppose the total number of
cube states is N. Then we can be
sure that {or any n such that M, < N
there exists a state that can't be ob-
tained from a given one (and can't be
unscrambled) inn or fewer moves-
n moves simply can't produce as
many as N states.

To obtain a concrete lower
bound, we have to calculate N. In
accordance with cubist convention,
we'll call the small cubes that form

2Or a more interesting example:
two successive half-turns ol adiacent
faces repeated six times bring the cube
back to its initial state. So all thirty o{
these l2-move processes are in fiact
equivalent to the //no move" process
and should not be counted at all.

TOY STORE

The lasl pl'ohlem ol lhe ctlhu

52, 44, 42, 35, . . . , 21 ?

by Vladimir Dubrovsky

such an algorithm can hardly be
much different from a giant table of
all patterns on the cube with their
unscrambling processes obtained by
a more or less economically orga-
nized but exhaustive search. Theo-
retically, it's no problem to write a
computerprogram that would com-
plete this task, though that wouldn't
be very interesting. The problem is
that the variety of patterns and pro-
cesses turns out to be too great for
such a program to be run in real
time, even using the state-of-the-art
hardware.

But human curiosity knows no
bounds, and severai cube addicts
keep working on algorithms that are
both realizable and close enough to
their long-sought goal. Recent years
have brought a considerable advance
in this area. But to appreciate the
latest achievements/ we must un-
derstand how the closeness to God's
algorithm can be estimated and re-
view what's been done in this re-
spect before.

Ol|AIITlJ1ll/TOY STORI O I



corner cubie

Figure 1

the large Rubik's cube "cubies" (see

figure 1). There are B! = I '2' ...'B
rearrangements of the eight cubies
in the corners of the big cube and,
similarly, LZl rearangements of the
edge cubies. Now we must take into
account the different orientations of
cubies in their "nests": a corner
cubie can be turned in its place in
three ways, which makes a total of
38 possibilities, and an edge cubie
can be "flipped" {rotated 180'),
which gives 212 possibilities for all
12 edges. So we come up with the
product No = B! . l2t .38 ' 2r2.

Actually, this is the number of all
"conceivable" ways in which the
entire cube can be reassembled a{ter
being taken apart. But only some of
these possibilities can be realized in
accordance with the rules of the
game-that is, by rotating faces.
Like many other transformational
ptzzles (for instance, the triads, dis-
cussed in the Toy Store in the last
issue), Rubik's cube has a set o{ in-
vailants that place certain restric-
tions on the possible patterns. We'il
talk about them in the last section
below. For now I'll iust give the re-
sult: to obtain the numberNof cube
states produced by all possibie pro-
cesses starting from a certain fixed
state, we must divide N0 by 12:
N: No/12 = 4.3 ' I}re.

You can vertfu that Mru < N < My7,

so the length of God's algorithm is no
less than 17 moves. This estimate can
be slightly improved by noticing that
the processes that contain three con-
secutive tums of parallel faces arere-
dundant. LetR andl stand{or clock-
wise quarter-tums of the right and left
cube faces, respectively, and let the

double move RR be denoted as R2.

The three-move sequence RlR, for
example, can be replaced by R2L or
LRz, so these three secluences should
be counted as one. One can find the
number S, of n-move processes tak-
ing into account redundancies of this
kind-that is, ignoring processes that
include three successive tums of par-

allel faces and counting all processes

that diJfer from one another only by
the order of successive "parallel
moves" as one process.

Problem 1. Show that S, = 12S,_1
+ 18Sr_, forn> 3 with So = 1, Sr : 18,

Sz= 243. Check that, for T, = So + S,

+ ... + Srr 717 < N< ?18.

It follows from this problem that
some states of the cube can't be un-
scrambled in fewer than 18 moves.

0n [ll8 way to Godt algonit[m
The "golden age" ofRubik's cube

produced a plethora of restoring al-
gorithms. However different they
were, almost all of them could be
characterized by two words: "geo-
metric" and "manual." They were
manual because they were created
"by hand" and could be performed
"by }r,and," and geometric because
the order of restoration depended on
the cube's gqometry. In most of
these algorithms you had to drive
cubies to their destined positions
one-by-one/ except for the last
stages/ in which you worked on two
or three cubies at a time using spe-
cially devised, tricky processes. Cor-
ners and edges, as well as locations
and orientations, were usually
treated separately, and as you
moved along the lines prescribed by
the algorithm/ you could see each of
the cube's faces taking on a single
co1or.

The reported lengths of such a1-

gorithms ranged from several hun-
dred to about 70 moves. (I don't
think, though, that many of these
figures ever were scrupulously veri-
fied by anybody except the authors
of the algorithms, so I'll refrain from
citing more exact numbers.) In his
Notas on Rubik's "Magic Cube"
(one of the classics of cubology),
David Singmaster writes that atu
other famous cubologist, Morwen B.

Thistlethwaite, invented an algo-
rithm of at most 53 moves that first
set edges to rights, then corners.
This is the shortest geometric,
manual algorithm I've heard of.

Perhaps it shouldn't be called
"rrrarrval": its author made exten-
sive use of his computer in solving
the cube, so I guess at least part of
this algorithm shouid be attributed
to the machine. And it was Morwen
Thistlethwaite with his computer
who made areal breakthrough in
the pursuit of God's algorithm. In
1980 he (or should I say they?) cre-
ated a 52-move algorithm that was
neither geometric nor manual (in
the sense specified above).

The algorithm consisted of four
stages. As they were defined, the
stages didn't give an explicit idea oi
how cubies should be rearranged. It
was simply postulated that in the
first stage you could use all face
turns, in the second stage two paral-
lel {aces (say, front and back) were
allowed to be turned only by 180"
and the other four by any angle; in
the third stage the same restriction
was additionally imposed on an-
other pair of parallel faces (say, right
and left); and in the fourth stage the
rotations of the third pair of faces
were similarly restricted-only
"square tums" were permitted. Add-
ing f or convenience the " fifth
stage," where no turns at alI are al-
lowed, we can formulate the goal of
stages 1 through 4 as bringing the
cube into a position from which it
can be unscrambled using only the
processes of the next stage. So the
fourth stage is intended to complete
the solution.

One of the aspects of this ap-
proach that makes it well suited for
computer treatment is that all
achievements of each stage are auto-
matically saved in subsequent
stages (think why!). Figures 2-5 give
geometric illustrations of what is
done at each stage in this algorithm
(see also the last section). However,
the illustrations won't be much help
to you in solving the cube by this
method. You'llhave to look up the
current states of your cube in exten-
sive tables with hundreds of entries

02 rilARct/APRr. lssE
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Figure 2
If this were the original colorution of
the cube, then it will be rustored after
the ftust stage of Thistlethwaite's
algorithm.

Figure 3
If this werc the original coloration
of the cube, the second stage will
restore it.

Figure 4
The third stage of Thistlethwaite's
algorithm must (1) restore the oilginal
colotation in figwe 4 and (2) put the
corner cubies in an arrangement such
that after ioining ofiginally opposite
corne$ we get one of the four patterns
of lines shovvn infigures 5a through
5d (the oilginal patteru is 5a).

all positions proposed to it in no
more than 21 moves!

It should be made very clear that
this does not mean that the length
of Kociemba's algorithm is 21.
There's no guarantee that some un-
known pattern won't require more
moves/ even with this program. But
so far it hasn't been found.

A few words about the program.
Kociemba eliminated both the sec-
ond and fourth stages of Thistle-
thwaite's algorithm. So the aim of
his first stage is to restore the color-
ing shown in figure 3 (assuming
that, before it was scrambled, the
cube was colored this way), and the
second stage restores the original
coloring using any turns of the hori-
zontal faces and only half-turns of
the other four faces. The total num-
ber of variants to be examined ac-
cording to this scheme still exceeds
the capacity of modern computers.
So instead of making an exhaustive
search, Kociemba's program treats
each given pattern individually,
checking if the processes it gener-
ates allow the current stage of the
algorithm ({irst or second) to be com-
pleted in a certain prescribed num-
ber of moves. So the solutions it
finds are "short enough" (they really
are!) rather than the shortest (itrr,ay
find a shortest solution, of course,
but it wouldn't tell us).

Although they're flar hom defini-
tive, Kociemba's results make it
very plausible that the length of

to find appropriate processes. I don't
think there are many enthusiasts
who would wish to do this, though
perhaps it's still within human
("manual "I capabilities.

But let's return to the history of
record cubing. In 1982 a group of
Donald Knuth's students confirmed
Thistlethwaite's conjecture that the
last stage of his algorithm can be
done in 15 rather than 17 moves and
proved that this number can't be
reduced further.

The record of 50 moves held on
for seven years as a new generation
of computers entered the scene. In
1989 the Dutch cubist Hans Kloos-
terman, the "last of the Mohicans"
(or at least, one of the precious few),
published a description of his 44-
move algorithm in Cubism for Fun
lCFFl, a newsletter of the Dutch
Cubists Club. (These are perhaps the
only cubist newsletter and club that
survived after the cube craze died
away.) It took him about a year to
improve that by two moves. Basi-
cally, Kloosterman follows in
Thistlethwaite's f ootsteps. He
spends the same number of no more
than seven moves for the first stage,
but reduces the previous 13 moves
in the second stage to 10 (as was pre-
dicted by the method's originator).

More importantly, he eliminates the
irreducible fourth stage, instead of
which the third stage is "geometri-
cally" subdivided (within the same
set of allowed moves) into (1) put-
ting the cubies of the up and down
faces into their respective layers and
(2)putting all the rest in order. This
stage requires at most 25 moves al-
together. Kloosterman asserts that
these three numbers (7, 10,251 are
the best possible for the chosen
scheme.

However, a short time later, from
a letter from David Singmaster to
the editors oI Quantum, I found out
that in 1991 someone in the Neth-
erlands-presumably Klooster-
man-had got down to 35 moves (he
must have improved the scheme)l
Since then, there has been no con{ir-
mation of this result (not in theCFF
newsletter, at any rate). Nor have
any other improvements been re-
ported. So at this point we definitely
know that the length of God's algo-
rithm is a number between 18 and
42, perhaps between 18 and 35. We
can only guess about more exact es-
timates. But there's something to
base our guesses on: in the April
1992 issue of CFF Herbert Kociemba
of Darmstadt, Germany, described
an algorithm that had been solving
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God's algorithm is somewhere in the
low twenties/ as group theorists con-
jectured back in the cube's heyday.

Tlm inual'ianls olHulilrt cuhe

Now, I suppose some math
should be added to " Quantumrze"
this article. I mentioned above that
only some of all the conceivable
states of the cube can be obtained
from the original regular state by
rotating faces. These states-1et's
call them accessible-can be de-
scribed in terms of invariants. In-
variants are certain values that de-
pend on the arrangement of the
pieces and are preserved under face
rotations. The cube has three invari-
ants-they restrict accessible orien-
tations of edge and corner cubies and
their permutations.

Let's begin with edge orienta-
tions. Consider the coloring of edges
shown in figure Z-the reference
edge coloring. Suppose that all the
edge cubies were initially colored
according to this pattern. Now
scramble the cube (but memorize
the reference coloring). Define the
flip of each edge cubie as 0o or 180o
depending on whether its colored
facelet coincides with the reference
colored facelet on its edge. Thetotal
flip FlSl of a state S is the sum of all
12 individual flips counted modulo
360" (as we usually do with angles of
rotation)-that is, F(S) :0" or 180" if
the number of flipped cubies is even
or odd, respectively, The total flip is
our first invariant.

Indeed, consider a quarter-turn of
any face.It can only af{ect the flips
of the edge pieces in this face. But it
clearly doesn't change these flips if,
say, the up face is rotated, because
this rotation takes the reference col-

oring of this face into itself. The
same argument applies to the down,
right, and left faces and to half-tums
of the front and back faces as well.
As to quarter-tLlrfis of the front (or
back) face, we can argue as follows.
Suppose we alter the reference col-
oring on the two vertical edges in
this face (fig. 5). Then the flips of
exactly two edge pieces (on the al-
tered edges) will change by 180', so
the total flip with respect to the new
coloring will stay the same as it was
initially. But now the argument
used above shows that front turns
preserve the modified total flip and
so preserve the original {lip (which
is equal to it) as well.

For accessible states, F(S) : 0",
because initially all edges are
unflipped. There are 2r2 conceivable
ways of flipping the cube's edges,
but this restriction leaves only half
of this range of possibilities for ac-
cessible states. As follows from the
proof above, all the processes al-
lowed in Thistlethwaite's algorithm
after the first stage leave invariant
not only the total flip but the flips of
all individual edgepieces. So the aim
of the first stage can be formulated
as "to unflip all edge cubies" (with
respect to the reference coloring in
figure 21, and there are 2rr = 2,048
essentially different variants to be
considered in this stage.

The comer-orientation invariant is
defined in much the same way. Here
the reference coloring is the one in
figure 7.In a scrambled state each
comer cubie must be turned 0o, 120o,

or -120o about the corresponding di-
agonal of the cube to match the ref-
erence position. This angle of rotation
is called the tuzst of this cubie. The
sum of all eight twists mod 360' is

the totahr4zs, 
"(S) 

of the given state
S; it takes three values: 0o, 120o, and

-120' (or 24O, if you prefer).
Problem 2. Show that T(S) is in-

variant under face rotations and all
eight "individual" twists are invari-
ant under the processes of the third
and fourth stages of Thistlethwaite's
algorithm.

For accessible states, 7(S) = 0",
and the number of possible
"twistings" of corners is 37.

the third invariant concems only
the locations of the 12 + 8 :20 mov-
able cubies rather than their orien-
tations, or/ to put it mathematically,
the permutation of the cubies. Any
permutation of any objects can be
represented as a number of succes-
sive pair exchanges. The parity of
this number is called the parity of
the given permutation. It can be
shown that the parity of a permuta-
tion is well defined (that is, does not
depend on the representation in
terms of pair exchanges) and that the
parity P(S) of the permutation of our
20 cubies in a given state is invari-
ant under face rotations. Taking the
first of these facts for granted, you
can prove the second as an exercise
(by representing a cluarter-turn of
any face in terms of pair exchanges).
The first fact also has an elementary
proof, but it's too long to be in-
cluded here. (Details can be found in
"Some Things Never Change" in
the September/October 1993 issue
of. Quantum.l

The invariant P(S) takes two val-
ues/ EVEN and ooo, and the states of
either kind constitute exactly half of
the total number 12! . 8! of the
cubies'permutations (not 20!, be-
cause corners and edges don't mix).
Accessible permutations are even,
because the original identity permu-
tation is representable as an even
number (zero) of pair exchanges.

The three invariants F(S), T(S),
and P(S) {orm a complete system.
That is, any two of the A{o conceiv-
able states (obtained by taking the
cube apart and reassembling it at
random) are convertible into each

CONTINUED ON PAGE 60
Figure 6
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TAKE IT HIGHER
As one of the brightest and best math and science

students in the nation, you're capable of reaching
the top. And you want to attend a college or
university that can help you do it. Consider the
Air Force Academy. It's a college and more. It's a
special place for students who seek excellence in

full four-r,ear scholarship, plus room and board.
You'11 graduate rvith a bachelor of science
degree in one of 26 majors. Cadets u.ho take
honors courses build an excellent foundation tor
graduate studies.

Selection for the Air Force Academv is based on
academic, athletic and extracurricular perfor-
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all that they do. Ieadership abilities
At the Air Force through school and

Academy, you can "The higher the climb, the broader the view.'t community activities.
"take it higher." The American proverb You should also
Academy offers a prepare physically

by taking part in group and individual strength
development and endurance programs.

The Academy's outstanding academic, athletic
and leadership programs can prepare you to be
an air and space leader in the 21st century.

For more details, call (719) 472-2520. Or write:
HQ USAFA/RRS,2304 Cadet Drive, Suite 200,
USAF Academy, Colorado 80840-5025.

h{v

science courses you've already taken, we
recommend that you complete a solid college
prep program, including four years of English,
three years of social studies, two years of foreign
language and one year of computer science.
In addition, we suggest that you develop your
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A unique opportunity awaits high school students and teachers: the Russian-American
Mathematics and Science Summer Institute will be held from )uly 2 to July 22,1995, at
Moscow State Universitv' This exciting progra1w 

-:ffi advanced crasses in
mathematics, physics, and biology taught
jp English by prominent Russian professorst
Eips to the scientific laboratories of the
Russian Academy of Sciences

Cultural and recreational activities

Following the two-week academic program in Moscow will be a one-week cultural
program in St. Petersburg, the capital of Russilunder the tsars.

fnolurrt",ips are available

For more information, please fill out the coupon below and send it to Dr. Edward Lozansky,
President, American University in Moscow, 1 800 Connecticut Ave. NW, Washington DC 20009,
Phone: 2O2 986-601 0, Fax: 202 667-4244, E-mail: lozansky@aol.com

Please send me 

- 

brochures to distribute among interested high school teachers and students.

Last name First name

State _ Zip code Phone number

City

I am a teacher a student
Circle No. 1 on Reader Service Card

Address


