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GALLERY O

Another Time (19731by Kenneth Noland

T HE SMART ALECK \A/ILL HAVE A FIELD DAY WITH
I this painting. "Are you sure the right end is up?,,
"H"y, that would make a nice flannel shirtl " "I like it,
but-could you do it in red?" And who's to say these
ar en' t legitimate responses ?

Lr past visits to Gallery Q we've had occasion to remark
on the special challenges presented by abstract art. When
it seems that an artist is exploring the mefium for its own
sake, or solving certain technical problems, we are cer-
tainly within our rights to ask: "What's the point?,, This
is the same cluestion sometimes posed to relearchers in
pure mathematics. Are the answers the same?

A fundamental question arises: where does the urge
to abstraction come from? Is appreciation of the abstract
innate or learned? Perhaps you have produced doodles
that you found beautiful. They depict nothing, yet
they're pleasing. Is "Another Time" a kind of doodle?
If so, what are the limits of our appreciation of doodles-

our own and others'? Whose doodles get to hang in the
museums of the world?

What we seem to appreciate in abstract art is form,
texture, balance-qualities that are difficult to talk
about. Some would find "Another Time" both evoca-
tive and elegant. It might remind you of the grid of city
streets. Infact, it looks a bit like Quantum'sbirthplace,
Washington, D.C., which is a very green city laid out in
a diamond, and whose x- and y-axes (passing through the
Capitol) are off-center. Perhaps a reader who is charmed
by the painting will look for instances of the "golden sec-
tion" (see thelanuaryfFebruary 1991 Gallery Q) or find
some other explanation for its design.

Turn to page 34 for an exploration of "elegance" in
mathematics. As in art, mathematicians "know it when
they see it." And for an exercise in "nonpure" math-
ematic,s involving networks of streets, ,"" l'Th" School
Bus and the Mud Puddles" onpage24.
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While cross-country skiers may dream
of a roaring fire in the middle of their
trek, our planet generally keeps its inner
heat to itsel{. Hot springs, geysers, and
lava flows are relatively rare on the
Earth's surface. It's not so hard to figure
out why the hot stuff stays bottled up in
the planet's interior, or how it occasion-
ally leaks out through cracks in the
Earth's crust.

You may have a harder time explain-
ing where the heat comes from. In "Tak-
ing the Earth's Temperature," Alexey
Byalko explores this question, and along
the way he uncovers some interesting
{acts about the Earth's thermal history
and its present structure. In a compan-
ion piece, A. G. W. Cameron presents a
theory for the creation o{ the Earth's
little sister-the Moon,

We hope our readers in the northem
climes have ample opportunity to engage
in winter sports and outdoor activities in
the coming months, whether or not they
enjoy the amenity depicted on our cover.
And we wish all our readers everywhere
a healthy and happy New Year!

Cover art by Leonid Tishkov
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The significance of symbols in math and science

E USE ALL KINDS OF SYM-
bols. I remember the confu-
sion this first caused me as a

novice student, and I wonder
if our readers have had similar expe-
riences. Physicists and mathemati-
cians use symbols so routinely, they
seldom give them a second thought.

Consider the kinds of symbols we
typically use. We use figures like 1,

2,3 as number symbols to represent
specific natural numbers. Then we
introduce azero and a minus sign in
iront of some them to expand this
set to form the integers'. -3, -2, -1,
0, l, 2,3 ... . Now, keep in mind that
the minus sign used here doesn't
mean the same thing as the minus
sign used for the binary operation
called subtraction. Can you see how
a kid might get confused?

Here's another example. We use
letters like a, b, c, d, or x, y, z, to
represent numbers. Unless we make
it clear when we define them, they
could be any kind of numbers, even
complex numbers. Sometimes we
use symbols like A, B, P, E to repre-
sent a point along a line, a location
on a surface, or the presence of some
object. At other times, the symbol
may represent a physical quantity,
like E for energy.

On top of the letters themselves,
we sometimes add a t)?ographicfea-
ture. Take vectors and tensors-
they require something extra if
they're to be understood. Vectors are

written as bold letters, or they carry
arows on top. A tensor might have
a double arrow or a subscript of
some sort. In fact, subscripts can be

considered the "adiectives" of scien-
tific discourse.

So scientists and mathematicians
have, by mutual agreement/ created
a host of symbols for numbers, ob-
jects, points, surfaces, volumes, and
physical cluantities. It's a lot to keep
track of. But wait-there's more.

We need symbols to express the
relationship between other sym-
bols: less than, equal to, more than,
proportional to, and so on. Then we
have operatozs-things that change
one thing or quantity into another.
All of these have their own rules of
operation-for instance, the associa-
tive and commutative laws may or
may not apply to a particular opera-
tion for certain kinds of quantities.

To further compLicate things, many
symbols in the sciences represent not
only a number but a unit associated
with that physical quantity. This
makes science more difficult than the
corresponding mathematics.

I remember when I first had to
leamsymbols.
I had trouble
transf erring
from math-
ematics to
physics. The
same equation
in physics
didn't look the
same in math.
The symbols
were different.
I was espe-
cially troubled
by Greek let-
ters, and for

some reason, if I couldn't pronounce
the name of the letter, I had trouble
with what it meant. \\'hen an equa-
tion used Greek letters, e specially
some of the more obscure ones, I had
even more trouble u'tth the ph1-sics.

To top it all off, a srudent soon
finds that there is no re al consis-
tency in the choice or use oi s1'mbols
as one moves from te st to text. You
read something rr-here t is a time
interval and T is temperature; then
you read something else where 7 is
absolute temperature, t is time, and
0 is Celsius temperature.

My point is simply that science
and mathematics overflow with sym-
bols of all kinds, and those of us who
teach or u-rite about science and
math should be careful when we de-

scribe what those symbols mean. We
need to recognize that the novice is
often slorr,ed by the effort to assimi-
late the connection between the syrn-
bol and the physical or mathematical
cluantit.v it represents.

: i i;li{l)i.E;iril::l
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Symbols arepart of a chain of rea-
soning. If we want young people to
learn more than the mere manipula-
tion of syrnbols, we need to give them
direct experience with the phenom-
ena tnderlying the concepts repre-
sented by symbols. Great scientists
have that deep understanding of what
the symbols represent, and when
they see a mathematical expression
like VV, they see it as a gradient-a
vector that gives the direction and
magnitude of the greatest rate of
change of the voltageV per centime-
ter or meter. They don't just see this
in terms of its defining unit vectors
and associated derivatives, although
they recognize that forming scalar
products along any direction will give
the rate of change in that direction.
Similarly, understanding symbols in
this deep sense allows one to see the
equation V.B : 0 as indicating that
magnetic fields have no sources. Such
field lines must close on one another.
There are no magnetic poles if this
equation is true.

It's a wondrous thing that a corre-
spondence exists between mathemat-
ics, with its symbols and operations,
and empirical laws of nature. But stu-
dents will grasp that only if their
teachers can impart a deep sense of
what each symbol stands for. Other-
wise, it's-1ike the title says.

Anduheuersa
"It's all Engiish to me!" That,s

what many potential readers of
Quantum around the world might
well say. So I'm pleased to announce
the publication of a Greek version of
Quantum. We hope this is but the
first in a series of foreign-language
editions.

The Greek-language Quantum is
produced by Katoptro Publications, a
publishing house in Athens devoted
almost exclusively to scienti{ic and
educational titles. In the words of
Alex Mamalis, the director of Katop-
tro: "We believe that Quantum is
exactly what not only Greek stu-
dents and teachers but also all the
students and teachers of the world
need-the ideal magazine." I couldn,t
agree more.

-Bill G. Aldridge
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TakinU lhe tarlht lem[Brillul'e

How hot is the heart of our planet?

by Alexey Byalko

HE EARTH'S CRUST IS MO-
bile. Everybody knows that it
shifts when an earthquake oc-
curs. These shifts are signifi-

cant, but random and localized.
Some earthquakes, though, are
caused by the directed, nonrandom
motion of the continents and the
ocean floor.

The physical mechanism that
leads to the directed motion of the
Earth's crust has to do with the re-
lease of heat stored in the Earth's
interior when our planet was
formed. That's what this article is
about: this heat, the thermal history
of the Earth, and the planet's inter-
nal structure.

Drilling lol' ltnowled[e
We gain some understanding of

the structure of our planet's interior
by means of deep wells. Wells are
primarily drilled to extract oil and
gas from the depths to the surface,
but even i{ a well comes up dry, we
can use it to study the interior of the
planet.

Here's how a deep well is created.
A drilling solution (water with salts
added to increase its density) is
pumped under high pressure to the
point near the well bottom where a

turbine drill rotates against the rock.
The drill bits reduce the stone to
fragments that are pushed to the
surface by the same drilling liquid.

Why not drill a hole all the way to
the center of the Earth? We would

learn something about the internal
structure of our planet, and maybe
we'd find something useful along
the way. Unfortunately, it's impos-
sible in principle. Let's convince
ourselves that we can't drill a well
deeper than l5 km.

First, we need some theory. As
you know, any solid material is de-
stroyed if the stresses placed on it
are sufficiently high. However, there
are two different kinds of stress o
(that is, force per unit area). One is
uniform stress-in other words, the
ordinary kind of pressure P. Accord-
ing to Pascal's law it compresses ma-
terial with forces that are equal from
every direction. Generally, nothing
happens with either liquids or solids
under pressure except an increase in
density. The other kind of stress is
nonuniform shaar stress. Applied to
liquids, shear stress leads to flows
with velocities that are roughly pro-
portional to the stress. Applied to
solids, it causes nothing at first. But
when the shear stress increases, it
causes small cracks; then the cracks
grow, which sometimes leads to the
complete destruction of the solid
sample, but generally it just reduces
the external forces. The maximum
shear stress that a material can sus-
tain without cracking is called its
strength o-r*. The strength of most
hard, crystalline rocks from the
Earth's crust does not exceed 0-r* 3
2-3 . 108 Pa.

Now let's return to our well. At

any depth H we know the pressure
of the surrounding rock: P = p,SH,
where p6 is the density oi the :ock-
generally in the range2.6).9 g cm3.

We also know the pressure o: the
drilling licluid inside the weli shaft:
P* = p*SH.If one could find a liquid
with a density p* = po that is chemi-
cally stable and does not interact u'ith
rock (and is also cheap enough), that
wouid be great. Unfortunately, our
choice of licluids is rather narrow. In
{act, only watert aqueous solutions
of salts, and thin suspensions of
minerals in water are ar-ailable to us,
but we can't increase the density p*
to more than about 1.5 g/cm3. Yes,
there are liquids rvith higher densi-
ties (for instance, sulfuric acid,
whose density is 1.84 g/cm3), and
not all of them are even as aggres-
sive as sulfuric acid. But the search
for the magic liquid described above
has been in vain.

The pressure diiierence between
the inside of the u'ell and the sur-
rounding waII causes shear stresses in
the rock. Naturally, they decrease
with distance lrom the well and reach
a maximum near the well wall, equal
to o = %lPo- P*) = %(po - p*)gH.
(I can't prove to you here that the
coe{ficient f ir'thrs formula is cor-
rect-it follows from a more compli-
cated investigation.)

Thus, at the bottom of a deep well
the shear stresses start to approach
the limit of the rock strength o-",,
and a deep well collapses under the

JAIJllARY/IIBBlJARY I S85
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pressure of the surrounding rock.
The maximum depth of a well
drilled in granite (po: 2.7 g/cm3) is

5P=(po-p*)gH(6_oi
H < 10-15 km.

The deepest well in the world (on
Russia's Kola Peninsula) reaches a
depth of 12 km-approximately
0.2% of the Earth's radius.

When oil wells are drilled or tun-
nels are cut through mountains, one
discovers that the temperature of
the rock increases with depth. This
temperature increase is not constant
with depth and depends on the loca-
tion of the well or tunnel. It's not
easy to measure it exactly. Seasonal
changes in temperature come into
play at shallow depths. Also, heat
flow is transferred not only by ther-
mal conductivity but by water flow-
ing slowly along the cracks in the
rock. At great depths the rock is
heated some more when the well
partially coilapses.

Since there is a limit to the drill-
ing depth, direct measurements of
the Earth's temperature are possible
only in a thin surface layer. On av-
eraget the increase in temperature
with depth is dTldz = 3 ' i0-2 K/m =
30 K/km. Local temperature gradi-
ents actually deviate from this aver-
age (the so-called geotherm). They are
minimal in old granites-for in-
stance, in the Ural Mountains (about
15 K/km) and maximal in regions o{
volcanic activity (up to 100 K/km).

The heat flux q is the power
emerging from the depths through
each square meter of the surface. It's
equal to the product of the coefficient
of thermal conductivity r and the
temperature grafient: q = rdTldz.II
the primary source of the inner heat
is deep down, it seems evident that
the heat {low is almost constant.
Measurements, however, do not pro-
vide much support for such a con-
stancy o{ the heat flow.

The increase in temperature with
depth doesn't correspond exactiy to
the equation for heat conductivity-
the heat flux sometimes varies un-
expectedly. The reason for such de-
viations is understandable in
principle. Imagine that in the past at

some depth there was a fracture or
movement of the layers, reducing
the stresses that had accumulated
there. Then the temperature around
it increases and the calculated heat
flux is not constant with depth. De-
viations from the average geotherm
that occur because of substantial
movement of the crust are preserved
for a long time. In fact, they provide
a historical record of past earth-
quakes.

There have also been direct mea-
surements of sudden jumps in tem-
perature. On December 7, 1988, the
day of the terrible earthquake in
Armenia, the temperature in the
deep Kola well increased at some
levels by 10-15 degrees. After a few
days it dropped to the previous level.
This shows that the jump was
caused by a partial removal of
stresses near the walls of the well.
But even more importantLy, this ex-
ample elucidates the mechanism it-
self: the rise in temperature is deter-
mined not only by heat flux but by
stresses in the rock as well.

Thus, we can only estimate the
heat flux in the Earth, assuming it to
be constant relative to depth at ev-
ery location. The coefficients of heat
conductivity of the most widely fis-
tributed deep rock-basalt and gran-
ite-are sufficiently close to each
other. We'll take r = 3 W/(m . K) for
our estimate. To find the total ther-
mal losses of the Earth-that is, its
thermal power-we multiply the
thermal conductivity coefficient r
and the near-surface temperature gra-
diett dTldz = 0.03 K/m by the
Earth's surface area. Such an esti-
mate of the total thermal power Q
of the Earth gives

4nR?rdT
Q=-_r.Pii-^=5.1013W,

dz

where Ru is the Earth's radius.
A more accurate summation based

on known wells shows that the
Earth's thermal power calculated in
such a way is equal to 4.2 . l0r3 W,
consisting of 1.1 . 1013 W from the
flow through the land surface and
3.1 . 1013 W from the {low through
the ocean floor. The contributions

of the land and ocean are approxi-
mately proportional to their areas,
which means that the densities of
the heat flux through the continen-
tal and oceanic crusts are virtually
the same.

The temperature must certainly
continue to increase with depth,
since the heat flux from the interior
cannot simply vanish. Here's away
to measure temperatures at depths
much greater than those of wells.

0iamonds and kimhel'lites
Sometimes rocks that were

formed at a very great depth can be
found on the Earth's surface-dia-
monds, for example. Diamond con-
sists of the chemical element car-
bon, but its crysta1 structure diifers
from other carbon forms-for in-
stance/ platelike graphite or amor-
phous carbon (coal, soot). Soot con-
sists of chains of carbon atoms of a
different length with double bonds
...:C=C=...; graphite consists of
bounded flat structures made up of
Cu-type benzene rings. Sometimes
carbon crystallizes in the even more
exotic Cuo icosahedral structure
called the fullerene.1 But in dia-
mond, the iour bonds of each carbon
atom are directed at the vertices of
a tetrahedron. This produces the
most compact structure its atoms
can attai.n. You can turn graphite
into diamond in a lab, but you need
to produce pressures and tempera-
tures close to those found at a depth
of at least 70 km.

Horv do natural diamonds end up
on the Earth's surface? They are
transported upward from the depths
by the rather rare expulsion of a low-
density rock called kimberlite
(named after Kimberley, South Af-
rica, where a large deposit of dia-
monds was found in a deep, narrow
vein of this mineral). Diamonds
aren't formed simultaneously with
kimberlites-they're swept along by
the rapidly rising mass of kimber-
lite.

In addition to diamonds, other
kinds of minerals are found in

lSee "Follow the Bouncing
Buckyball" in the May/|une 1994
issue of Quantum.-Ed.
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kimberlite veins. These stones can't
survive for long in a medium of
kimberlite at high temperatures.
They are called xenoliths, from the
Greek for "alien stones." The min-
eral composition and structure of
xenoliths tell us much about the
state of the Earth's crust at great
depths. The very existence of dia-
monds aheady gives us some infor-
mation about the Earth's interior,
since they couldn't be formed at low
pressures and temperatures.

If a mineral is compressed, its
crystal structure changes radically at
a certain pressure. The critical pres-
sures and corresponding tempera-
tures for various minerals are well
known from laboratory measure-
ments. Each mineral has its own set
of such transitions. Moreover, if two
grains of minerals come into close
contact/ the chemical composition
of each grain changes depending on
the pressure and temperature. All
this makes it possible to determine
both the pressure and the tempera-
ture of the medium where the xeno-
lith was formed. If the xenolith con-

sists of several mineral grains joined
together, this gives several pressure-
temperature data points. The pres-
sure data make it possible to find the
depth at which these processes took
place. Sometimes mineralogists are
able to determine how rapidly a xeno-
lith changed depth-in effect, they
can write its biography.

Figure I shows measurements of
temperature and pressure for several
xenoliths together with the average
near-surface temperature gradient of
the Earth. Pressures are recalculated
for depth on the other vertical scale.
The xenoliths whose ?-P graphs are
given were found in various loca-
tions. Notice that some graphs are
almost closed. This means that the
rock from which the xenolith was
formed first descended, then began
to rise to the surface.

What causes this heat flux from
the depths of the Earth? What is the
source of its energy?

T[e Eal'lfi$ heal sources
One of the sources of the Earth's

inner heat is energy released by ra-

dioactivity. Rock contains a small
but measurable amount of uranium.
It's especially significant in granite,
where it reaches several millionths
of the rock's mass. The most wide-
spread uranium isotope, 238U, is the
major contributor to the nuclear
heat released in rock. With each de-
cayt an alpha particle with an energy
of 4.2 MeV is emitted by the nucleus
of a uranium atom. After traveling
about l0-s m, it is stopped by the
rock and passes its energy to it, heat-
ing it up.

The half-life of uranium 238 is
T,,s = 4.47 . 10e years. The products
of its decay-even long-lived tho-
rium and radium-decay more rap-
idly than uranium. So immediately
after the first alpha decay the ura-
nium nucleus is transformed into
the lead isotope 2o6Pb by cluickly
emitting seven more alpha particles
and six electrons. The energy of all
these particles generated by the
nucleus of the decayed uranium is
equal to Eu:7.1 . 10-12 I.

Knowing this, we can easily de-
termine that granite with a Lr.a-
nium content of approximately
10{ by mass releases heat at the rate
of 1.8 . 10-11 W/kg, or 5 . 10-8 W*3.
In addition to the uranium isotopes
23sU and 238U, thorium (232Th) and
potassium (aOK) isotopes also release
heat, but their contribution is sig-
nificantly less.

If the concentration of uranium,
thorium, and radioactive potassium
in the granite of the continental land
masses didn't change with depth, it
would provide a significant portion
of the total heat flux from the
Earth's interior. This tempts us to
ascribe the entire heat flux to the
decay of uranium in low concentra-
tion (even lower than in granite) but
present everywhere, all the way
down to a depth of several thousand
kilometers.

But this isn't the case. First, the
heat flux at the bottom of the
oceans is almost the same as on the
continents, even though there is no
granite under the oceanic floor. In
the basalt under the sediment on
the ocean f1oor, the uranium con-
tent is approximately ll20 that in
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Figure 1

Increase in temperature with depth measured by the mineral changes of
xenoliths. The second vertical scaTe is ptessure. The anows on the cuwes show
how pressure and temperature changed with time. Most of xenoliths moved to
the surface (otherwise they would not have been discovered), but xenoliths
found near the boundaries of the continental plates recorded thefu submergence
as well. The average temperature gradient of the Earth near its sufiace is shown
by the dotted line. Submeryence occurs when the temperature gradients are
low and ascendance to the Earth's surface occurs when the temperature
gradients are high.

\J:Ao'
5

OUAlllTU1l/l/IIATUBI

o

o

o

100

r20



the continental crust.
Besides, we can get an independent

estimate of the total amorht of ura-
nium in the Earth's crust by looking
at the helium content of the atmo-
sphere. When each atom of 238U de-
cays to 206Pb, eight alpha p4rticles are
emitted. These particles capture elec-
trons to form eight helium atoms
aHe. Heiium-a light gas that doesn't
interact with anything-slow1y
works its way up from the depths
along cracks in the crust and is
ejected by volcanic eruptions. It
doesn't accumulate in the Earth's at-
mosphere, however-it ascends
higher and higher and finally escapes
into outer space. Every second the
Earth loses 20-30 g of helium. That's
the same rate at which helium is
formed in the Earth's interior. So the
helium flux tums out to be related to
the total mass of all the uranium in
the Earth. This mass is close to mu:
4-5 . 1016 kg.

The decay of this uranium pro-
vides thermal power in the Earth's
interior equal to 7 . 107 W. This
value is approximately l160 the heat
flux{rom the depths. Over the entire
history of the planet, all the radioac-
tive elements in its interior have
released energy of not more than
1030 l.This may seem like a lot of
energy, but it's not enough to ex-
plain the heat in the Earth's interior.

The main reason for the failure of
the radioactive explanation of the
Earth's heat is not the divergence of
estimates, but the existenc.e of an-
other, more powerful source of heat
in the Earth's depths: gravity.

The Earfi$ histony
A11 the planets were formed by

the collisions of smaller celestial
bodies. When two bodies of greatly
differing mass collide (for instance,
a smal1 asteroid and a planet), the re-
leased energy is transformed into
heat that is mainly distributed near
the impact point on the surface of
the larger body. This energy is
quickly removed by thermal radia-
tion into the atmosphere or into
outer space. When a bigger asteroid
hits, the crust is compacted to a
greater depth, but again, the greater

part of the released thermal energy is
radiated into outer space. Is it possible
to make a cold planet this way? No.
From seismic observations (recording
sound waves from distant earth-
quakes)we know the intemal struc-
ture of our planet (fig. 2). As you can
see, density in the Earth's core
reaches 13 g/cm3. This doesn't mean
that the Earth's core consists of lead-
it's iron, but it's compressed to such
a density by pressure from the upper
layers that exceeds 3 . 1011 Pa.

A hot interior leads to compression
for any planet in the process of accu-
mulating mass from smailer bodies.
However, the consensus of scientific
opinion today is that our planet has a
special history. The only way to ex-
plain the Moon's present orbit is to
suppose that our planet and its satel-
lite were created as a result of a giant
collision of two protopianets about
the sizes of Venus and Mars. Read the
article by A. G. W. Cameron in this
issue and look through the set of
pictures of such a collision-they
were obtained by means of huge
computer calculations.

Another argument supports this
idea as we1l. Look at figure 3. The
densities of all the planets in the so-
lar system (except the Earth) fit a
smooth curve, whereas the Earth's

4,000 5,000 6,000

density is significantlr- hishe r than it
"should" be relative to i:s distance.

The above hypothe srs is also at-
tractive for explaining rrhy the
Earth and Venus are sr- driierent de-
spite their similar nles:e s. Because
of a catastrophic coL-rsr'.n, the Earth
melted, whereas \-c:rus and the
other planets seei:i :: hare iormed
from multiple col-islors of a much
smaller scale. Thls me ans that the
separation oi marerral r.n the gravi-
tational field oi the Earth occurred
more deeplr-. A1so, the high tem-
peratures released water from the in-
terior, rvhere it can exist in crystal-
line form. Thus, we have oceans on
the Earth, but mere traces of water
in Venus's atmosphere.

We need now to evaluate how
rapidly a heated body cools when
heat is transported by thermal con-
ductrvity. The cooling time depends
on the body's size R [m], heat capac-
ity c. [J/1kg . K)], thermal conduc-
tivity x [l/(m . s . K)], and density
p [kg/m3] (the dimensions are given
in brackets).2 Only one combination
that isolates the time dimension can
be made out of these four values.

2For a re{resher course in
dimensional analysis, see "The Power
of Dimensional Thinking" in the May/
ltne 1992 issue o{ Quantum.-Ed.
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1,000 0
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Figure 2
Dependences of density p(r), gravitational acceleration g(r), and ptess.--:: i r on
radius, calculated from velocities of seismic waves.
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Figure 3
Average density of planets in the solar system plotted against their distance
fuom the Sun. The interpolation shov'm by the dotted liie is made for the
planets other than the Earth and results in a nontivial but smootit depen-
dence. The Earth's density proves to be much higher than its positionbn the
interpolation @.7 Slms), and the Moon's density is much low-er.

Thus, the typical time it takes a body
to cool an order of magnitude is

CO
, _ p, pz [s].

K

One should certainly be careful
making such an estimate for the
Earth, whose composition changes
with depth, but let's try:

R?c o
T* i _9-J- - 3. lOre s = 1012 years.-r

As it tums out/ we get a result that
makes no sense: the time far exceeds
the age of the solar system (4.5 billion
years) and is two orders of magnitude
greater than the age of the universe
(about 10 billion years). This paradox
can't be corrected by making the ther-
mal characteristics more precise.
This means that either the Earth's
interior is still very hot or our initial
assumptions are wrong.

Let's assume the first. We'llesti-
mate the depth h up to which the
Earth has cooled during its exist-
ence-say for to = 1617 s = 3 billion
years. We make the estimate by re-
working the above {ormula for the
cooling time:

tr ot^
fu = .l__t:__!t = 3. los m = 300 km.Vr

Three hundred kilometers consti-
tutes a mere 4%o of the Earth's ra-
dius. But it's a more realistic esti-
mate. It makes sense for the cooling
of ancient continental regions iike
Karelia (the Kola Peninsula). The
oldest rocks on the surface there
date back 3 billion years. For the
Earth as a whole, however, it's
physically wrong to suggest that
heat was removed from the upper
300 km only and that the Earth's
interior remained as hot as it was
when the planet was formed. The
cooling of the Earth's inner regions
occurred differently-not by ther-
mal conductivity but by convection.
(And it continues, to a lesser degree,
right to the present day.)

Due to thermal expansion, the
density of rock depends on tempera-
ture: it increases as the rock cools. So
the density of the upper, cooled lay-
ers of rock is greater in some locations
than that of lower layers with a simi-
lar chemical composition. In the
Earth's gravitational field this leads
to instability-it appears to be ener-
getically advantageous for cooled
rock to descend and for hotter, lower
Iayers to rise. In other words, con-
vection develops. With convection
the transfer of thermal energy by
conductivity is supplemented by

heat transferred along with the mov-
ing medium.

This convection-the ascent of
hot masses and descent of cold
masses-causes horizontal motions
on the surface of the Earth. Look
again on figure l-traces of some
xenoliths show that they descend
when their temperature gradient is
low (lower than the ayetaget shown
by the dotted line) and come back to
the Earth's surface when they hap-
pen to be in a region with a high
temperature gradient. When study-
ing this figure, remember that we can
atalyze only those rocks that succeed
in returning to the surface, so near-
circular traces are probably much
more common than in actuality.

The Earth's crust really does
move-slowly but surely. It's not
very noticeable, and it was hard to
believe it-the rates of displacement
were so slow, and people had gotten
used to the idea that they lived on
firm, stationary ground. But we live
on drifting continental plates, and
below, in the depths of the Earth,
lies a great store of thermal energy
that makes the Earth's surface move
and causes earthquakes and volcanic
eruptions.

As interesting as these phenom-
ena aret they fa1l outside the frame-
work of this article. Let's come back
to them some other time. O
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RAIDING AND KNOTTING

-is this really mathematics?
A diligent student usually

leaves high school with the con-
viction that mathematics deals with
abstract notions, whereas such mun-
dane things as braids and knots have
nothing to do with mathematics.

But that's a false impression. Nowa-
days mathematicians deal not only
with lofty problems-number theory
the calculation of space fiights, or the
study of poetic meters-but also with
earthly everyday matters like eco-
nomics or queuing theory.

And braid theory, too. This real
and living theory which dates back to
the 1920s, is not completeyett andits
applications haven't yet been ex-
hausted. And as to its beauty,braid
theory doesn't play second fiddle to
classical mathematics, which actu-
ally stopped leaming new tunes in the
in the 15th and 17th centuries and is
the only area oI rnathematics studied
in most schools.

I'lI begin my story with examples
of braids (fig. 1). This is how you can
imagine a braid: two rows of n nails
are driven in the top and bottom
edges of a vertical board (wh ere n rrray
be equal to L, 2, 3, . . .1, and each of the
top nails is connected to one of the

5 botto* nails with a string. The
€ strings are disjoint and alw-ays go
i dottm-that is, a string is not allowed

! to turn upward and head toward the
B top of the board. The things you see

{ in figure 2 are not braids.
g Two braids are considered
d equivalent (that is, the same) if one

with profound impl ications

B, B,

34 t234

Examples of braids on three and four sftands: B,-a "gfuL's braid"; B,-a trivial
braid; Br-!; Bo-a pure braid; Bu-a cyclic fuaid,

Bl'aids altd knuls

Homespun phenomena

by Alexey Sosinsky
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Figure 1

but you can't break it or glue it. An
example of such a transformation is
shown in figure 3.

of them can be turned into an exact
copy of the other by moving its
strings-usually called strands-so
that each of their points stays in the
same horizontal piane. In so doing,
a string can be stretched and shrunk,

Figure 2
Nonbraids (their strands have
ascending sections).

I

m
Figure 3
A geometric proof that B, is a trivial
braid (8, = 1). By moving its strands
"horizontally," braid B,is trans-
formed into a braid with four vertical
strands.
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Figure 4
Composition of bruids. The top of the
second braid is brougfit into conuct with
the bottom of the ftust, and the cone-
sponding strands are pasted together.

In figure 1 the top ends of the
strands are supplied with numbers
in the usual order-from left to
right. At the bottom you see the
numbers of the strands again-but
here their order isn't necessarily the
same. So every braid defines a cer-
tain permutation of its strand num-
bers. For instance, the permutations
associated with the braids B' 84, Bs

in figure I are, respectively,

-\J+pt

B.B-r=l

Figure 5
Inverse B-1 of a given braid B. It is
obtained as the mirror image of B in
the horizontal plane throug! the
bottom base of B. Each double point of
braid BB-1 has a mfurot counterpaft,
and all these pairs of double points can
be successively annihilated by
straightening strands, moving fuom the
center of the braid to its sides.

bers in a single cycle, as braid B,
does: 1 -+ 2 -;4 -+ 3 -+ 1.

Abraid is one of the simplest geo-

metric obiects. Braids easily yield to
algebraization by introducing an
operation of composition (or multi-
plication) on those that have the
same number of strands. This is
quite simple (see figure 4): you bring
two braids end to end, glue together
the corresponding strands, and re-
move the now unnecessary nails
(the bottom nails of the top braid
and the top nails of the bottom
braidl. This operation is similar to
the ordinary multiplication of num-
bers in several respects. It satisfies
the associative property:

BrlB2Bsl = lBp2lB|,
There is an analog of unity-the
trivial braid (B rin figure I for n = 3),

denotedby 1, such that

L.B:B.I:B
for any braid B. We can also find an
analog for the operation of division:
any braid Bhas aninversebraid B-1

such that

B-r.B=B.B-L:t.
This is not obvious, and I challenge
the reader to think of a construction
{or the braid inverse to a given one.
If you fail to do it yourself, look at

the answer in figure 5.
However, the composition of

braids rs not commutativ e: B C m.ay
be not equal to CB lan example is
given below).

The algebraic object thus ob-
tained-calIed the braid group on n
strandsr-is not very simple, but it
has been thoroughly explored. We'll
undertake our own investigation of
its properties. To this end we'll
make use o{ elementary braids Sr,'

52, ..., Sr-, onn strands (fig.6).
It tums out that any braid can be

rcpresented as the composition of
elementary braids and thefu in-
verses. For instance, it's clear that

B1 = S1StlSlSt1SlSt1SlStl.

Further,

B, = S2S,S;1S11SrS;1S,S3Si1Stl.

This becomes obvious after we prop-
erly nudge the strands of B, so as to
move the four double points on the
right down slightly (fig.7l.

Exercise 1. Represent the braids
BoandBuin figure 1 as compositions
of the elementary braids 51, 52, SB

and their inverses.

s1

1\L I I

:_,,,m
Figure 6
Elementary braids. The ith elemen-
tary braid S, (i : 1. 2, ..., n - 1)

consrsts of n - 2 vertical strands-all
except the irh and 1i - 1)st. which
form one uossing with the ith suand
above the (i + 1)st.

lYou can get acquainted with the
general notion of a group, diverse
examples o{ it, and applications in the
November/December 1991 issue of
Quantum.

(rzs\ft2
[, , ,.J, [, ,

234')
4 r 3)

3 4)rr
3 4)'\2

Our artist colored one of the
braids in figure l, Bo. The property
that sets it apart is that it defines the
identity permutation

(for Ba, n: 4l.In other words, this
braid preserves the order of its strand
numbers. Any braid with this prop-
erty is ca1led pure. A trivial braid-all
of whose strands are vertical lines-
is a particular case of a pure braid.

By the way, there are two, not
one, trivial braids in figure 1. Two?
Yes, indeed, two: the braid B, is
trivial because it can easily be trans-
formed (see figure 3) into a braid
with four vertical strands.

Another kind of braid that should
be singled out besides pure braids is,
in a certain sense, just the opposite.
These are cyclic braids. By defini-
tion, they teafiarLge the strand num-

1...1

s2nzs...n)
[r , , ... 

")
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s1
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.s, I
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s3

sr-,

sl
s"

s,-,
sa-t

Figure 7
Representation of braid 8.. in Lerms of
the elemenLary braids Sr,-5, S" and
their inverses.' By moviig the itrands
slightly, all tha double points are
moved to different levels; then an
algebraic formula for B, can simply be
read right from the picturc: B, =
s2s'st/s / 

lSrS;1S,srS;rs;i.

In braid theory, iust as in analyti-
cal geometry, algebraic notation a1-

lows us to replace geometric consid-
erations with absolutely mechanical
calculations based on the following
identities.

l. Trivial relations:

S,Si'=S11S,=1,
sr.1:I.Si:Sj
li:1,2, ...,n-ll.

2. Remote commutativity :

S,S, = S,S, whenever li - il >2
(i,'i, :1, 2, ..., n - ll.

3. Braid rclationg.

srsr*rs;:s;*rsrsr*,
li = l, Z, ..., n - zl.

These relations are almost self-
evident (fig. 8). And they can be used
to derive other relations-for in-
stance/ the following more general
form of remote commutativity.

Exercise 2. Prove that SiSi = S,l'S,l,I

for any u, v e ll, -ll, li - il > 2.

Let's examine one more example:
a proof of the relation B, = | (estab-
lished geometrically in figure 3) by
direct calculation. We have

B, : Sr(SrS;1 )SilS3St1S1(SrS11 )S;1

= srs;l(s,s11 )s3st1(s1sil )(s3st1 )

s1s2s1

Figure B

Proofs of the basic relations of braid
theory. (1) trivial relations (for fuaids
on two strands); (2) remote commuta-
tivity (for braids on fow strands); (3)
braid relations (for four sftands).
Proofs for greatu numberc of strands
arc similar.

=srst,.1.s3st1.1.1
: s2(st1s3)stl
: srst,
: 1.

Here we first used remote commu-
tativity, after which everything can-
celled out "by itself" (thanks to
trivial relations).

Exercises
3. Prove the identities

silsttsil = s;lsils;1,
s,srsrs;is11 = s3s1stlsils2.

4. Prove that SrS, * S2St for n> 3.

Why do our relations work so ef-
ficiently in solving exercise 3 (as

well as in the preceding calcula-
tions)? Is it because I happened to
pick the right problems, or because
there's a certain regularity behind
this efficiency? In other words, are
relations i-3 sufficient to prove aIJ

equalities in braid theory?
It turns out the answer is yes.

The creator of braid theory, the Ger-
man mathematician Emil Artin,
proved tn 1936 that any equality in
braid theory follows from relations
1-3. This remarkable theorem al-
lows the fundamental problem of
braid theory-the classification

problem-to be solved. That is, it is
possible to give an (infinite) list of
bruids (withoutrcpetitions) and an
algorithm that assigns to any braid
its number in this list.

Proofs of these facts are not el-
ementary/ so I won't go into them
here. I only want to point out that
they serve to transform the geomet-
ric theory of braids into a calcula-
tional science in which any concrete
question can be answered, in prin-.
ciple, by a computer.

I can almosthear the sceptical reader

say, "So what? And why do we need
to solve these 'concrete problems'?"

Well, the point is, braid theory
has a lot of applications in math-
ematics and in other fields. Here I'11

expand on only one application, one
that I especially value: the applica-
tion to knot theory.

Let's begin with a number of ex-
amples of knots (fig. 9 on the next
page). A knot is a closed curve in
space/ smooth orpolygonal, that can
be arbitrarily twisted and inter-
weaved. It's helpful to imagine that
the knot is made in a thin, flexible,
stretchable string. Two knots are
considered to be the same (equiva-
lent) if one of them can be trans-
formed into an exact copy of the
other by moving, bending, stretch-
ing, and shrinking the string with-
out tearing it apart. One important
kind of knot (actually, not agenuine
knot at all) is a trivial knot-an or-
dinary, unknotted circle (Kn in figure
gl.Inflact, there are two portraits of
the trivial knot in this figure: the
knot K, is trivial as well-it can eas-
ily be untangled and turned into a

big circle (do it in your mind or us-
ing a pencil and eraser!). Not only
that, there's yet another pair of
equivalent knots in figure 9.

Exercise 5. Find two nontrivial
equivalent knots in figure 9.

For mathematicians it's more con-
venient to have an exact definition for
the equivalence of knots rather than
a graphic description like the one
above. I'li give such a definition for
knots that are polygonal paths rather
than smoothly bending curves. (This
wiil a1low me to avoid some techni-

HM
sls-l = 1

,m
= s2s1s2

il
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Kt K3 we obtain in either case? Describe
the braids whose closure is one
curve-that is, a knot.

7. Find a braid whose closure is
the knot (^l \,lb) Ke,@l K* ldl K,
(see figure 9).

So a certain class of braids
(namely, cyclic braids, as readers
who have done exercise 5 must have
understood) yields knots after clo-
sure. But is it possible to obtain all
knots this way? Yes, as it turns out!

The remarkable American math-
ematician |ames W. Alexander/ one
of the first investigators of knots,
proved in 1925 that any knot is the
closure of a certain bruid. Rather
than prove it in detail, I'11 show the
two main techniques used in the
proof.

1. Unraveling. Draw a knot,
choose a direction on it, and take an
arbitrary point O not on it (fig. 12).
Call a segment of the knot positive
(with respect to O) if the direction
on it is viewed from O as from left
to right; for instance, in figure l3a aIl
the segments of the knot exceptAB
and FG are positive. A knot will be
calledpositive (with respect to O) if
all its segments are positive. For a
positive knot, a braid that produces
it under closure is easy to find-sim-
ply cut the knot at any place and
unbend it as shown in figure 12.

2. Alexander's trick. Negative
segments of a knot (fig. 13b, lScl are

Figure 12
Unbending a positive knot into a
bruid. The vertical half-plane a
duplicates itself, then opens like a
book, and the knot unbends into a
braid. This operation reverces the
closure of a fuaid shovm in figure 11.

o
g (gb

E x a m pl e s 
_o f knot s. K o-tr ivi al _kn o t : K.,-t r ef oil ; K r-f i gw e - e i gh t kn o t ; K r-knot S,: Ko-l: Kr-untitled; Ku-"Lurlian", Kr-!.-

cal details without a real loss of gen- one has to make an (infinite) list of
erality.) We'll de{ine an elementary knots (without repetitions) and an
operation as the replacement of a seg- algorithm assigning to any knot its
merrtAB of apolygonalknot-forin- number in the list. Although this
stance, the segmentAB in figure 10- problem has been solved in principle
with two segmentsAC and CB, or the by now, the solution is so cumber-
reverse transition hom ACB to AB, some that it can,t be used in prac-
performed under the condition that tice. Is it possible to reduce this
the knot doesn't contain interior problem to the aheady solved clas-
points of triangleABC. Two knots are sification problem for braids? The
equivalent if there exists a finite se- following idea suggests itself.
quence of elementary operations Take a braid, bend it, and glue its
that turns one o{ them into another ends together (fig. l1). We get a knot.
(fig. 10). Inspecting this figure, you'll But does such closure of a braid al-
understand without any difficulty ways produce a knot?
that this definition is really adequate
to the graphic description above. Exercises

Iust as with braids, the classifica- 6. Draw the closures of braids B,
tion problem can be posed for knots: and Bo(fig. 1). How many curves do

Figure 10
Elementary operations on a knot. A
segment AB is rcplaced by a two-
segment path ACB provided that the
knot does not intersect the triangle
ABC. A sequence of such operations
allows the knot to be deformed.

m
Figure 11

Closure of a braid. [oining the ends of
a very simple braid, we get a knot
(trefoil).
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Figure 13
Making a knot. positive. (a) The diagram of a knot with two negative edges with
respect to point O-AB and FC; (b) Alexander's trick-replacing a negative
edge AB with the polygonal path ASB-reduces the number of negative edgas
by one; (c) Alexander's trick applied twice turns tha knot ABCDEFGHIIA into
a knot that is positive with respect to point O.

replaced with pairs oi positive seg-
ments surrounding point O. After
eliminating all negative segments,
the first techniclue is applled.2

And that's how any knot can be
proved to be a closure of a certain
braid. But braids can be classified.
Can we use this to classify knots?
Alas, no. The trouble is, the closure
of different braids doesn't always
give different knots. For example,
the three-strand braid in figure 14
differs from the two-strand braid in
figure 1 1, but its closure is a trefoil
as well (check it!).

Thus, an attempt to reduce the
classification of knots directly to the
classification oi braids fails. But
Alexander's theorem is only the first
step in the elaborate train of thought
that links together the most beauti-
ful inhabitants of three-dimensional
space: braids and knots.

In conclusion I'11 try to answer
the question "Why do we need all
that?" for the sake of readers who
don't think that beauty per se can be
a sufficient reason for studying a

subject. To some extent the answer
is found in the very history of the
creation of braid and knot theories.

Braid theory was invented in the
1920s by the young German alge-
braist E. Artin at the request of a

2A captious reader rnay argue that a
knot can contain segments that are
neither positive nor negative. This
sort o{ nuisance can be avoided by
moving the "bad" segments slightly.

fabric mill. He was, as we would
now say/ a consultant.

The sources of knot theory go back
further in time, and the interesting
circumstances of its creation are aI-
most forgotten. The systematic study
of knot theory was initiated by the
great British mathematician and
physicist Wiliiam Thomson, 1st
Baron Kelvin. He came to the conclu-
sion that electromagnetic interaction
is carried by waves, and later he was
struck by an even more daring
thought: the interacting particles
themselves are waves/ too, but since
the particles (atoms) are very small
and the waves long, the atom-waves
must close in on themselves within
a sma1l space. So they form little
knots that capture all the physical
and chemical information about the
atom coded in the very same way a
knot is tied. Thomson and his stu-
dents set about to explore knots, be-
ginning their systematic classifica-
tion by listing them in special tables.

The relay baton in the investiga-
tion of knots was picked up by
mathematicians in the 20th cen-
tury, and not for any hope of mon-
etary gain-they were attractedby
the sheer beauty of the subject. The
subtle invariants they created (we
plan to devote a special article to
them in an upcoming issue) allowed
for a significant advance in knot
theory. However, for a long time
this field remained a peaceful back-
watet in mathematics, known
mainly to specialists in topology.

Figure 14
Closure of this braid also produces a
"trefoil" knot (comparu with figure
11). Check this!

In the meantime, braid theory
found quite serious applications-
for instance, in complex analysis,
mechanics, and the physics of ei-
ementary particles.

Not that long ago, after work by
the English mathematicians |ohn
Conway and V. |ones, the Russians
V. Turayev and A. Reshetikhin, and
the American L. Kauffman/ unex-
pected and deep connections be-
tween braid and knot theory, ab-
stract algebra, and physics have been
revealed. The peaceful backwater
seethed. Physics again! Not only its
classical branches (statistical phys-
ics, for instance, a model of . . . icel)
happened to be involved, but mod-
ern quantum theory as well. And
the idea of coding chemical in{orma-
tion in small knots (and braids!) re-
appeared in molecular biology in the
course of deciphering amino acids
and studying DNA. So-who
knows-perhaps there's something
to Lord Kelvin's old idea . . . O
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When a hody meels a hody

The Giant lmpact theory for the
formation of the Moon

by A. G. W. Cameron

HE MOON HAS BEEN AN
object of wonder, and some-
times of worship, throughout
the history of the human race,

recorded or not. But it is only during
the last century that scientists have
tried to formulate theories to ex-
plain how the Moon was {ormed.
The early theorists considered the
origin of the Moon to be a problem
quite isolated from the general
questions about the origin of the
solar system itself, and it is only in
recent years that the {ormation of
the Moon has been considered as an
element of the broader process of
the accumulation of the planets.

The eariy theories of the forma-
tion of the Moon can be divided into
three general types. The fission
theory postulated that the Earth
spun about its rotation axis so rap-
idly that it deformed into the shape
of apear, and that the material in the
smaller end then separated from the
rest of the planet and went into or-
bit about it. Such a system has far
more angular momentum than is in
the entire Earth-Moon system to-
day, and nobody succeeded in find-
ing a mechanism to get rid of the
excess angular momentum.

The comp anion theory postulated
that the Earth and the Moon were
formed together in mutual orbit. But

the Moon has a composition quite
dissimilar to the Earth, having very
little metallic iron in its composition,
and nobody could figure out an accu-
mulation mechanism that would put
most of the metallic iron into just one
of the two orbiting bodies.

Thecapture theory assumed that
the Moon had been formed else-
where in the solar system, that it
had wandered close to the Earth, and
that the Earth then captured it. But,
again, nobody could understand
how a planetary body could be
formed anywhere else that would be
so unlike the other terrestrial plan-
ets as to lack a significant iron core,
and those who tried to understand
the celestial mechanics of the cap-
ture experienced grave difficulties.

This was the situation at the be-
ginning of the i960s when the
United States government created
the Apollo program/ whose purpose
was to land men on the surface of
the Moon and return them safely to
Earth. There were several different
motivations for this decision, but
the scientific motivation was to de-
termine which of the above three
theories was the conect one.

During the Apo1lo program there
was a psychiatrist, Ian Mitroff, at the
University of Pittsburgh who repeat-
edly interviewed the "lunar scien-

tists" to determine their then cur-
rent views on the origin of the
Moon, hoping that he would be a
witness to a perfect demonstration
of the scientific method: data would
be obtained from analysis of lunar
samples and from instruments
mounted on the lunar surface, and
then the scientists, being logical
people, would change their views
and converge on the correct theory.

But it was not to be. As the data
were obtained, Mitroff noticed that
the views were not changing. There
was no convergence. Mitroff wrote
a book in which he concluded that
the lunar scientists were very obsti-
nate people and incapable of re-
sponding to scientific evidence. But
he did not tellus which of the theo-
ries was correct.

Mitroff's mistake was in assum-
ing that the correct theory of the
formation of the Moon had to be
one of the three classical theories.
A proper formulation of the situa-
tion would have added a fourth
category: "none of the above." A11
the objections to the three theo-
ries that had been raised before
Apollo remained objections, and
because of the large amount of
new data, some additional obfec-
tions were added. The lunar scien-
tists were very frustrated that the
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origin of the Moon remained a

mystery.
During the next few years the

stream of data from the instruments
on the Moon ceased, and the rate of
analysis of lunar samples continually
deciined.In 1984 a conference on the
origin of the Moon was held at Kona/
on the island of Hawaii. The organiz-
ers of the meeting found that a sur-
prising number of the abstracts sub-
mitted dealt with some aspect of the
idea that the Moon was formed as a

result of a collision between the Earth
and anotherplanetarybody at least as

large as the planet Mars. This was the
"Giantlmpact" theory.

I[o Gioltl lm[ad
As is so often true when a new

theory is developed, the basic ideas
involved in the Giant Impact theory
were either incorrectly or inad-
equateiy expressed at first. In the
middle of the 1970s two ideas were
independentiy developed that were
precursors of the Giant Impact
theory. At the Planetary Science In-
stitute in Tucson, Arizona, William
Hartmann and Donald Davis were
investigating the theory of planetary
accumulation, and they found that
as the planetary bodies grew in size,
a broad distribution of body sizes
developed, with just one body hav-
ing the largest size and with increas-
ingly larger numbers of bodies of
continually decreasing sizes. When
the largest body became comparable
in mass to the Earth, they noticed
that collisions with it would vapor-
ize the colliding body. So they sug-
gested that a major collision with
the Earth could produce an enor-
mous amount of rock vapor that
would be thrown high above the site
of the collision, and that possibly
much of this vapor could go into
orbit and condense into the Moon.
But they did not provide an explicit
method for putting the angular mo-
mentum of the Earth-Moon system
into this scenario, because when the
Earth and the Moon are close to-
gether in mutual orbit, most of the
Earth-Moon angular momentum
must be in the rotation of the Earth.

Meanwhile, in Cambridge, Massa-

chusetts, William Ward and I were
thinking about how to put the angu-
lar momentum of the Earth-Moon
system into the spin of the Earth.
We assumed that a massive body
(the impactor) struck the Earth tan-
gent to the equator with a velocity
equal to the escape velocity. The
mass of the impactor needed to be
about the mass of Mars (this is a
minimum mass, because if the im-
pact point is closer to the center of
the Earth, more mass is required).

It was also apparent to us that a

huge cloud of vapor would be created
in the collision. The cloud would be
formed of a mixture of impactor and
Earth materials, and so its center of
mass would move at less than escape

velocity and probably at less than or-
bital velocity. We presumed that pres-

sure gradients would cause the cloud
to expand, and we assumed that a part
of the cloud would be accelerated to
circular velocity in this way, thus al-
lowing the Moon to condense and ac-

cumulate in orbit (the mass of the
Moon is about one eighth of the mass
of Mars).

This scheme automatically ac'
counted for the angular momentum
of the Earth-Moon system in the
spin of the Earth and the motion of
the cloud. But we learned later that
gas pressure gradients are much less
effective than we assumed and that
gravitational torques do play a ma-
jor rolg and we had neglected them.

These ideas seemed to make little
impression on the workers in plan-
etary science at the time, but this
was deceptive, because, as we have
seen, when the Kona conference was
being orgatized, many abstracts
were submitted dealing in one waY
or another with the idea of a Giant
Impact. But Kona represented a tri-
umph of ideas over substance, be-
cause very little of a cluantitative
nature concerning the Giant Impact
was actually presented. People were
so delighted to have an altemative to
the three classical theories that they
were not too critical of the details. I
left the meeting with the conviction
that the next step must be numeri-
cal simulation of the Giant Impact
using supercomputers.
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$moo[r parlicle [yflt'oilynamins
A simulation of the Giant Impact

(or any other major explosion) re-
quires a computer code that treats a
problem in hydrodynamics-the
motion of fluids subject to external
forces such as gravity and pressure
gradients. The traditional means for
organizing such a calculation is to
divide space into a discrete set of
compartments (sometimes called a
mesh) and to follow the motion of
the fluid through the mesh as it is
acted upon by the external forces.
The pressures are so large and the
energy released is so high in a Giant
Impact that all material flows like a
fluid. Any material that flows out-
side the mesh is lost.

However, in recent years an alter-
native scheme for doing numerical
hydrodynamics has been developed.
This is called smooth (or smoothed)
particle hydrodynamics. In this
scheme the material is divided into
spherical particles that overlap one
another. The density distribution in
a particle resembles the shape of a

syaggs of a computu run modeling a collision of two protoplanets leading to
the formation of the prcsent Earth and Moon. The computir run has a
target-to-impactor mass ratio of 8 to 2 and a total mass slightly exceeding
the prcsent total mass of the Earth and Moon. The initial iogilo, momen-
tum is equal to 1.433 of the present angular momentum in the Earth-Moon
s.yllem (3.5 '-1Ga 

-kg 
m2/s), The collision stafied with zero velocity at

infinity, so that the impact occurrcd at escape speed. Excesses of mass and
momentum are removed by small fragments escaping the system.

- Each body was represented by s,000 interacting smooth-particles. Due to
the mass differcnce, the particles of the target are-about tw-o times larger
than those of the impactor, so you can follow their history. protoplanets
have iron cores and rock yvelope,s with a mass ratio cloie to thit given by
natural abundances of inhercnt elements. The initial surface te*pleratures
of b-oth cg\iding bodies were taken to be 2,000 K, which'is high inough
realistically to represent a histoty of collisional accumulatioi and low
eyoug!-to suppless thermal e,vaporation of matter from the surface. After
the collision, wherever u-ery-hot rcck appearc in a surface region, rock'vapor
evaporates and forms a bydrostatic atmosphere around thebody.

A restricted set of colors is used in the plots: for rock, the lowest
internal- energy @r temperature) is plotted in da,rk rcd, and with inueasing
i2ternal_energy tha colors change to light red or pink, yellow, and white.
The rock poiyt-s are plotted ffust, and ihen the iron points are plotted so
that thoy will be superposed on the rock points. Foi tuon, the iowest
internal en-ergy is dark blue, and with inireasing internal energy the colors
change to light blue, dark green, and light greei. One general f,h"nomunon
to notice is that where the collision leaves high internil eneryy rock at the
surface, white particles appeil and move awiy from the arei"These are
the rock vapor pafiicles that are evaporated and form the extended
atmosphere around the syst.em.

The whole time intewal ftom the ftust to the last picture is about 2.5
days. (These are cutrerrt Earth .days-the Earth's rotition was actually
much fastu at this moment of creation.) Immediately after this collision
the average distance from the Earth is iust a few Earih radii; then the Moon
gtadually withdrew to its present distance, and simuhaneously the Eath's
rcLation slowed.
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bell-nearly flat near the center/
then falling rapidly at a finite dis-
tance from the center. As the den-
sity of the material changes, the de-
gree of overlap of the particles
correspondingly changes, but the
collection of particles maintains a

nearly flat density to a good approxi-
mation. In this scheme the particles
themselves move in response to the
external forces.

Hesulls

There is a characteristic outcome
to al1of the new simulations. In the
collision, the Impactor (that is, the
body with the lower mass) becomes
distorted and elongated; the bulk of
it falls onto the Protoearth, includ-
ing essentially all the central iron,
which plunges right through the
rock mantle of the Protoearth. The
rock part of the Impactor farthest
away from the point of impact has a
general tendency to go into orbit
about the Protoearth as individual
particles (but sometimes as clumps
of particles).

However, the fallout of the iron
core of the Impactor initially accu-
mulates in a relatively small volume
on one side of the Protoearth core,
forming a rotating iron bar inside the
Protoearth. This can exert a power-
fu1 torque on clumps of particles
outside the Protoearth, in particular
that part of the Impactor that would
go into orbit.

The internal energy of the par-
ticles is indicated through the use of
four different colors each for rock
and iron. I have found this to be
much more useful than using many
colors in a pseudo-continuous distri-
bution. The iron is plotted on top of
the rock in order to see its behavior.
White is used for the highest inter-
nal energies for rock particles. It was
very striking to see/ wherever a col-
lision had heated the surface mate-
rial of a planetary body, that a cloud
of white particles arose above the
surface and spread out to surround
the planetary body. Even greatly
elongated configurations of the Im-
pactor were surrounded by a cloud of
white particles after the collision.

Because the Impactor particles

were plotted with smaller radii, it
was possible to see that most of the
particles (and a majority of the mass)
in the white cloud were originally
from the Impactor. Evidently when
the planetary surface was heated by
Impactor rock falling on it, the Im-
pactor particles would tend to be on
top of the Protoearth particles and
thus they would be the first to
evaporate. The white cloud was al-
ways densest next to the planetary
surface and thinned out away from
the surface, as would be expected for
an atmosphere. This phenomenon
was a maior departure from that ob-
served in the previous runs/ because
particle evaporation and the forma-
tion of an atmosphere could not be
properly simulated.

The final states of the Protoearth
following all of the collisions were
remarkably similar. For this reason
it is sufficient to show the results of
just one case, and I have chosen to
show those {or the a ratio of the
mass of the Protoearth to the Impac-
tor of B:2.

0hcussion
Thus we arrive at a new and quite

simple picture of the consequences
of a Giant Impact. Wherever the sur-
face of the Protoearth is hit hard by
the impact, a very hot magma is pro-
duced. From this hot surface, rock
evaporates and forms a hot extended
atmosphere around the Protoearth.
The mean temperature is in excess
of 4,000 K out to about eight Earth
radii and is in excess of 2,000 K out
to about twenty Earth radii. The
above description applies to iust
about any Giant Impact involving
an Impactor with at least ten per-
cent of an Earth mass.

A candidate Moon-forming Giant
Impact must also possess at least the
present value of the Earth-Moon an-
gular momentum, which places con-
straints on the Impactor. The Impac-
tor needs to have at least 14 percent
of an Earth mass in order for the Earth
to swallow up the Impactor iron core
and avoid getting too much iron in
the Moon. But apart from this con-
straint, it appears from the present
simulations that any division of mass

between the Protoearth and the Im-
pactor can produce a promising set of
conditions.

But how would the present set of
scenarios evolve as time elapses?
The computer code in these models
does not allow for radiation to be pro-
duced and transported. The rationale
for omitting it is that the time in-
volved in the simulations is only
some hours or a day or two. In reality
the scenarios would lead to cooling
of the rock vapor atmosphere and
precipitation of refractory materials
atfairly large distances in the atmo-
sphere.

The only scenario that might
work under these conditions would
be one in which most of the mate-
rial in the Moon comes from that
part of the Impactor that has been
torqued into high Earth orbit. A
number of geochemists have ex-
pressed dismay at the thought of
having to accept such a scenario.

The formation of the Moon as a
postcollision consequence of a Gi-
ant Impact remains a hypothesis.
Our work appears to have character-
ized the internal effects of a Giant
Impact on the Protoearth. It appears
to me that understanding the evolu-
tion of the extemal environment is
the arcawhere the more interesting
challenges lie ahead. O

El'a[ thatchain
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Did an article in this issue of Quan-
tum make you think of a related
topic? Write down your thoughts.
Then write to us for our editorial
guidelines. Scientists and teachers
in any country are invited to submit
material, but it must be written in col-
loquial English and at a level appro-
priate for Quantum's target reader-
ship of high school and college
students.

Send your inquiries to:

Managing Editor
Quantum

1840 Wilson Boulevard
Arlington VA 22201 -3000
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B1 31
Letters in digits. After replacing all the letters in a certain word with their
numbers in the alphabet, the number 2122122112122 emerged. What was
the original word? (A. Savin)

MoonaremuchdarkeithanontheEarth.Whymightthatbe?(S.Krotov)..",.ffi
I \-^SqS

,tj

ffilffiB1s2u;H, RtI- E 'J a-=

-

,' | 4,+.&..& Digits in letters. Solve this number rebus showing the long multiplication

^-l - 
( fp.io ,ltp 8, of a four-digit number by itself . 1L. Mochalov)

t*, I-eruuf*sflj 
s,ffi''

8133
It's known from the reports of American astronauts that shadows on the

8135
Rosette and cfucumference. Several circles of the same radius are drawn
through the center of a circle twice as big, forming a //rosette,, (colored
pink in the figure). Which of the two is greater-the perimeter of the
rosette formed by the smaller circles or the circumference of the big circle?
(V. Proizvolov)

8134
Colofing a grid. A grid consisting of 6 x2 squares has 2l nodes. Is it pos-
sible to paint the nodes in two colors so that no four nodes of the same
color form a rectangle?
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A unique opportunity awaits high school students and teachers: the Russian-American

Mathematics and Science Summer lnstitute will be held from )uly 2 to July 22,1995, at

Moscow State University. This excitinB program will feature

ffiro *""ks of advanced classes in

mathematics, physics, and biology taught
in English by prominent Russian professors

tE

ffiipr to the scientific laboratories of the
Russian Academy of Sciences

.. ltural and recreational activities

Following the two-week academic program in Moscow will be a one-week cultural
program in St. Petersburg, the capital of Russia-gnder the tsars.

f,nolurrt ips are available

For more information, please fill out the coupon below and send it to Dr. Edward Lozansky,

President, American University in Moscow, 1 800 Connecticut Ave. NW, Washington DC 2OOO9,

Phone: 202 986-6010, Fax: 202 667-4244, E-mail: lozansky@aol.com

oo

Please send me _ brochures to distribute among interested high school teachers and students.

Last name

Address

First name

State 

- 

Zip code

I am a teacher a student

Phone number

City

i&flf'.ii6,ffiii.,Er#



HOW DO YOU
FIGURE?

Challeltue$ in phy$ics and lnalh

tUlalh

M131
Intersection of parabolas. Two dis-
tinct quadratic polynomials l(x) and
g(x) with a unit leading coefficient
satisfy the equality f.ll * /(10) +

l(100) = g(1) + s(10) + s(100). Find all
the solutions of the equation /(x) :
s(x).(A.Perlin)

Ml32
Winning score. Eight hockey teams
compete for inclusion in the final
four. (Every pafu of teams meets
once; a. win scores two points, a
draw one, a loss zero.) What mini-
mal score ensures passage into the
final four? (S. Khodjiyev)

M133
Submafia. Each of an infinite number
of gangsters is chasing another one.
Prove that we can choose an infinite
subset of gangsters in which none of
them is chasing another gangster in
this subset. (V. Ufnarovsky)

Ml34
Numbers around decagons. A posi-
tive integer is written at each of the
twenty vertices of two given regular
decagons such that the sum of the
numbers around either decagon is 99.
Prove that it's possible to mark a
number of successive vertices on
each decagon (maybe one vertex, but
not all) so that the two sums of the
markednumbers are equal. (S. Berlov)

Ml35
What Napoleon failed to notice.r
(a) Three equilateral triangles ABC,,
BCA' and CAB, are constructed
externally on the sides of an arbi-
trary triangleABC; the midpoints of
the segments ArB1, BrCr, CrA, are
labeled C2, A2, B, respectively.
Prove that the lines AA2, BB2, CC2
meet at the same point or areparal-
1e1. (b) Prove this statement with
"equilateral triangles" replaced by
any similar isosceles triangles
ABCr, BCA,, CABrwith bases AB,
BC, CA. (N. Sedrakian, S. Tkachov)

Physics

P1 31
Car on ice. D:ue to the small coeffi-
cient of friction, a cat cart't move
along a road coveredwith ice with an
acceleration exceeding a = 0.5 mf s2.
According to the rules of a compe-
tition, the car must go from pointA

Figure 1

lWhy Napoleon? See page 39 in the
|uly/August 1994 issue ol Quantum.

to point B, which is located at right
angles to the initial velocity of the
car (fig. 1), as cluickly as possible.
What is the minimum time needed
for this if the distance AB: 375 m
and the initial velocity of the car
v = 10 m/s? What is the car's trajec-
tory? Answer the same questions for
the case when the finish line is 1o-

cated at point C, where BC is 200 m.
(A. Korotkov, E. Yunosov)

P1 32
Satellite of the Sun. Calculate the
minimum period of revolution of a
spaceship around the Sun given that
the angular size of the Sun as seen
from the Earth is a = 9.3 . 10-3 rad.
(M. Gavrilov)

P133
On a distant planet. The surface of
a lifeless planet is covered with a
thick layer of fuozen carbonic acid.
It is suggested that an atmosphere
can be created on this planet con-
sisting of pure oxygen obtained
from the decomposition of the car-
bonic acid into carbon and oxygen.
How long wiil it take if the decom-
position rate is 106 moles per sec-
ond? It is necessary to obtain a pres-
sure P = 0.2 atm. Consider the
temperature near the planet's sur-
face to be 7: 200 K, at which the
evaporation of the carbonic acid can
be neglected. The mass of the planet

CONTINUED ON PAGE 39
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Ihe school hus andthe mud puddles

An application of the inclusion-exclusion theorem

by Thomas P. Dence

ET'S START WTIH A PROBLEM
thathas made therounds. Maybe
you've seen it aheady. Even if
you have, it bears repeating.

Suppose you live in Tinytown.
The town has two east-west streets
and three north-south streets. A map
of Tinytown is shown in figure 1. Of
course/ there may be other roads
leading in and out of Tinytown. But
\Me are interested only in those
shown in figure 1, because they help
you get to school.

A

Figure'1

You live at pointA and, by walk-
ing along the streets, you must get
to school at pointB. The cluestion is,
alonghow many different routes can
you travel? In actuality you could
travel infinitely many different
routes by merely traveling around a
block as often as possible, but we
don't want to consider these redun-
dant routes. We want to make the
trip as short as possible.

There arereally only three routes
that arc considered acceptable. We
can keep track of these routes by
indicating which way you must tum

at each intersection (including the
intersection at Al. At each corner
you can choose to go north or east-
any other choice would make the
route longer than necessary. The
three possible routes are

Route 1: north, east, east;
Route 2: east, north, east;
Route 3: east, east, north.

Before reading further, try the fol-
lowing exercise.

Exercise 1. Find the number of
shortest possible routes for figures 2
and 3.

B

A

Figure 4

larger than Tinytown, let's start tak-
ing the bus from A to B instead of
walking. Second, we need to gener-
alize the above argument rather
than counti ng haphaz ar dly .

It's not hard to see that in Mid-
vale, the shortest possible trip will
last precisely seven blocks, and that
the bus will have to make three
turns to the east and four turns to
the north. So we can count the pos-
sible paths to school by arranging
these turns. This means that we are
choosing three out o{ seven turns to
be east turns and ietting the others
be north turns. But there is a for-
mula for such problems. The answer
is simply the binomial coefficient

Cl7,3l = (]) :35. (Try to list all35
possibilities-it's a good exercise in
keeping yourself or ganizedll

Exercise 2. Derive a formula for
the number of ways to get to school
by routes of minimal length in a

A

Figure 2
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A

Figure 3

Now suppose we look at alarger
town, Midvale. Its map looks like
figure 4. Again we ask: how many
(shortest possible) routes are there
from A to B? This is a little more
difficult. First of all, since Midvale is
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town that is m blocks wide and n
blocks long.

Delouns

Let's look at a town called
Mudville (iig. 5). Mudville is a 5 x 3
town, which means it's 5 blocks
wide and 3 blocks long. There hap-
pens to be a big mud puddle in the
middle of one road, located between
C andD, so that our school bus can't
get through. As before, we wish to
count the number of minimal-
length paths from the lower left cor-
ner (point A) to the upper right cor-
ner (point B). We can do this by

A

Figure 5

counting all the routes (including
those that go through the mud) and
subtracting from this number those
that definitely do not go through the
mud. For the first number, exercise
2 has already given us the answer.

rt's C19,3) : (3) : 84. To count the

paths that go through the mud, we
first count those that go from A to
C. Again, by exercise 2, this number

tr €) = €) = ,o similarly, the num-

ber of paths from C to B that pass
through the mud, which is the same
as the number of paths fromD to B,

must be (?) :, The produc, (:X?) :
30 thus counts the number of paths
from A to B that use segment CD,
and so the number of paths that
avoid segment CD is the difference

(il - 0(i) ='*
We note that this counting

strategy will work no matter
which street segment is puddle-
closed, be it a north-south afiery
or an east-west thoroughfare, al-
though the actual count will most
likely vary.

Exercise 3. Find the number of
bus routes trorn A to B that avoid
the mud in figures 5 and7.

@F

A

Figure 6

@M

A

Figure 7

lleauy rains
The nearby town of Sogdale is 1o-

cated on the river, and lots of puddles
form there after it rains. Figure Ba

shows the town alter a heavy rain-
storm, when two big puddles have
made two blocks impassable for our
bus. The drains were repaired, but
then another rair, caused two new
puddles, as shown in figure 8b.

A

Figure B

What can we say now about the
number of good paths for our trusty
school bus? We observe that routes
fromA to B now fall into one of four
distinct categories. They pass
through only the first mud puddle,
or they pass through only the second
mud puddle, or they pass through
both (which could happen in figure
Ba but not in figure 8b). As our
school bus starts out in this more
complicated setting/ we seek a more
general form of counting the num-
ber of routes. It's at this point that
we start to introduce the terminol-
ogy from the inclusion-exclusion

theorem. We recall that this theo-
rem gives a count of the number of
elements in the finite union of finite
sets. To begin, if we have two sets-
say, ArandAr-then the number of
elements in their union lArv Arl is
given by lArl + lArl - lA, n Arl.The
Venn diagram in figure 9 is typically
used to illustrate this situation.

A

Figure 9

Exercise 4. For a Venn diagram
with three sets (n = 3) the inclusion-
exclusion theorem states that

lArw Aru A.l : lArl + lArl + lArl -
lA, a Arl - lA, n Arl - lAra Arl

+ lA, n Ara Arl.

Verify, for example, that if an ele-
ment is in exactly two of the setsAl,
A2, 43, it is counted precisely once
in the above expression. What about
elements that are in exactly one set?
In all three sets?

This counting result generalizes
to n > 2 sets (and therefore a more
complicated Venn diagram), where
the number of elements in the union
of n sets is a function of the cardinal-
ity of the union of ali combinations
offt of these sets, ask ranges over all
values from 1 ton. SpecificaLly, i A'
A2, ..., A, denote n arbitrary sets,
then we have

lArv Aru ... u A,l
= lAll- lAraArl - lA, n Arl - ...

- lAn _, a Anl + lA, n A, n Arl
+ ... + (-l)"* tlAraArn ... nA,,l.

Returning to our puddle problem
illustrated in figure 8, if we define
the three sets U, A' Arby

U : all good routes hom A to B,
Ar= allgood routes fromA to B that

pass through CD,
Ar: all goods routes from A to B

that pass through EF,

thenA, andArare proper subsets of
U and, in figure 8a, A, 

^ 
42 = A,

while in figure Bb, ,41 a Ar+ O.By
the inclusion-exclusion theorem
(with n = 21, the number of good

C ffiw
D

D
4$M

ffiC EL

E

@
F

@L D
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routes Nfrom Ato B is givenby

lUl - lArl - lArl + lA, a Arl.

hr the case of figure Ba this reduces to

while in figure Bb the number of
good routes is

From the last term we see that there
are 12 routes from A to B that pass
through both CD and EF. Each of
these routes had already been
counted twice by belonging to both
A, and Ar.

l"o[s mnne wa[Br
We demonstrate the pattem more

fully with a hnalexample (fig. i0). In
this setting there are five street sec-
tions (numbered 1 to 5) that are
closed, and accordingly we define
five sets Ar:

Figure 10

Ar: {all routes from A to B that
pass through street section r)

for i = I,2, 3, 4, 5.It's possible that
a route from A to B passes through
as many as four of these mud-
puddled blocks. In particular, sets
A, n A, a Au and A, a A, a Ao a Au
are nonempty, with

le,a e,.41 = (?X?XIX?)= t

-4.
By the inclusion-exclusion theorem
the number of good routes NfromA
to B is given by

N=lul-Il+l*)l+ 
^41i i,i

-ZlA,a \ a Aul
i,i,k

. >14 ^4^eonA,l.i,i,k,1

I1o, ^ A, n Ar..= 14 
^ Ar.t A,

,=(3)-(i)(?)-(?)(i)=,-,', )

Simplification gives

>l+l = l+1. o,l* l4l * lql. l+l

= (?)(5).(?)(s). (t)(i)

.(r)(?).(0(?)

= 270,

I]4 ^ +l=l+^.q,1* 14 .,o,1

,=[3)-[i)(,)-(e](?l

. (?)(?)(?)

=120.

* 14 ., o-l*)4n4]* 14^ o,l

+)e, n eol+ler^ 4 + le, n e,

+leo a eul

= (?)(r). (?)(?)(i). (rxl)(r

. (?)(i)(?) . (i;1i) . (i;1?)

and

4n 4a Ao n4l= (?)(l)(l)(?)

+ 4^ Aro A)* 14 ., 1n e)

*14., AroA)*14., AoaA)

*l4..AroAr*l4..AoaA)

+ (all other terms equal to zero)

= (?)(i). (?)(?).(?)(i)(?)

. (?X?X?). (?X?X?). (iX?)

.(?)(?)

. (?)(?)(?). (r)(?). (r(?)

=177

(since Ara Ao= Al,

ffis
pWsffi &+ffi

e@z
tW

Space conhibuted by the publisher as a public ewice.

= 58,
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and

fanAaA.aA.21tkL

= Ar.\aA.aA-

* 4nAraA^oA,
+ (other terms equal to zero)

=8.

So the number of good routes N
from A to B must be

N = flP) - 270 +r77 - ss + B = 67.\+/
In closing, we note that even

though this method can be quite
cumbersome for many segments/
sometimes early simplification can
occur. This happens whenever a

large-puddled street CD can be
eliminated from consideration be-
cause the presence of the other
puddled streets would prohibit
travel on CD. In figure 1la we have

Circle No. 3 on Reader Service Card
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A

Figure 11

two streets with large puddles and in
figure 1lb we have only one, yet the
two figures are equivalent in the
sense that they yield precisely the
same set of good routes fromA to B.

You may enjoy finding other
tricks of counting in the following
exercises.

Exercise 5. Determine how many
good routes there are fromA to B in
figure 12.

A

Figure 12

These grid-type layouts provide
theframeworkfor avadety of inter-
esting extensions. It's possible, for
example, to develop a sensibie dis-
tance, or metric, function that
yields a rich geometry. For instance,
the distance between any two
points (xt, ytl, @2, y2l in the plane
can be given by the school-bus dis-
tancelxr-xrl + lyr-yzl. This name
is appropriate since distances are
measured just east-west andnorth-
south. The set of points that are 2
units from the origin is now not a
circle, but a square (fig. 13).

Exercise 6. Using this school-bus
distance, draw the locus of points
whose distances from the two fixed
points (1, 0)and (-1, 0) sum to 4. This
is a "school bus ellipse."

In closing, here is another appli-
cation of the inclusion-exclusion

Figure 13

principle-one that comes from the
field of number theory. Here we en-
counter one of the classic functions of
mathematics: the Euler Q-function,
defined as the number of positive in-
tegers less than or equal to n that are
relatively prime to n. We begin by
expressing n in its canonical prime
decomposition form:

a, a"n = pr, p2.... pff ,

arrd ar, a2t ...t amare positive inte-
gers. Set U = II, 2, . . . , nl, and for each
integeri, | < i< m,letA, be the sub-
set of integer multiples of.prthat are
in U. Each A, contains nf p, ele-
ments/ and if each of these elements
is removed from U-

m
U _UA,

j=1

-then it's possible that the count of
this set does not agree with

,_# t
?=, Pi

because this latter may count elements
common toA, andA, twice. So we have
to add back in this new tally-

,-$:r+! n

7=rP, i*,PiPi

-to account for a possible nonempty
intersection of A, and A,. But then we
have perhaps counted some elements
too many times-those that are mul-
tiples of three distinct primes p, p,,
p1. This means that the number ISI of
elements in S is approximated by

ul-Il4l*Il+ ^+l
-Ila. aaaA,l.21 1 lKl,

(z\(z\ (z\(z\
=(r)[rJ*[r,][r.l

/i\
\1z
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or, equivalently/

ZP,7iP,Pi ii**PiPiPx

The inclusion-exclusion principle
allows us to continue this line of
reasoning, concluding with

,-! n +I-l +.'.+) n(-l)^
- p, - piPi - PiPi"'P-

To illustratg with n = 50 = * . 3 . 5
we have

= 12,4,6,9, ...,60\,
: 13, 6,9, 12, ..., 50]t,

= {5, 10, 15, ...,60},

AL
A2
A ô

- I la. n,L aA,-2lll^l
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.s=r/-tA +rA.nA
2 i 2 i j

= " - hl+ lzrl+ larl)

* (+ .., 4l*lern Arl+ l+^ erl)

-14., 4.nArl

=50-(ao+zo+tz)

+ (to+ 5+ a)-2

=16.

Indeed, for the number 50,

s = {1, 7, II, 13, L7, 19, 23, 29, 31,
37, 4t, 43, 47, 49, 53, 59\,

and so lsl = 15 : 0{60).
I leave you with one last exercise.

It is similar in scope to the preceding
exercises, but it differs in its method
of solution. It's categorizedinthe lit-
erature as a "derangement."

Exercise 7. Grandma |ones re-
ceived Christmas cards from each of
her four sons, but in her haste in
placing the cards back in their enve-
lopes, she got the cards mixed up.
How many different ways could she
have replaced the cards so not a

single card corresponded with the
prop", envelope? O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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IN THE LAB

A lnauical lnu$ical lul'mula

Guitar-tuning for the tone-deaf

by P. Mikheyev

the correct dimensionality.) the
exact solution of the problem results
in

Now let's write the value of the
force. When tightened, the string is
stretched and deformed. Therefore,
an elastic force arises:

A1
T =YS*

L

where Ax is the elongation of the
string, Yis Young's modulus for this
material, and S is the cross-sectional
area of. the string. Since m = pV =
pSI, the angular frequency is

iVnx
0J = ii ,-.

V Pr'

An important feature should be
noted at once. By assumingm = pSL,
we've restricted ourselves to solid,
homogeneous strings-that is, the
first and second strings of the guitar.
The other strings have additional
windings to increase their masses.

Now we'll iook at the process of
stretching a string. The string is
wound up on a cylinder of diameter
d.The shaft of this cylinder has a gear

that we can rotate by tuming a tun-
ing peg linked mechanically with it
(fig.2l. Let Nbe the number of tums
the cylinder makes when the string is
stretched. Then Ax = Nnd.I checked
experimentally that one tum of the
cylinder corresponds to cx = 30 tums

Figure 2

of the tuning peg. So, to rotate the
cylinder N times, the peg must
make n : Ncr full turns. Therefore,
Lx : nxdla.Inserting this value into
the formula for the angular fre-
quency yields

Since the oscillation frecluency f is
directly related to the angular fre-
quency ro by the {ormula f = al2n,
then

Finally, we obtain the number of
turns of the tuning peg:

4pLsufz
= Bf1

nYd

where B = 4pL\alnYd.
Let's calculate the value of the

constant B. Substituting u = 30, p =
7,800 kg/m1, L = 0.7 m (for the first
string), d = 5' l0-3 m,Y : 2. lOrt Pa,
we get B : 10-4 Hz-2. Thus, knowing

O TELL YOU THE TRUTH,
my ear for music isn't perfect.
But sometimes I like to strum
on the guitar. And the hardest

thing for me happens before I even
start playing-I have to tune the in-
strument. To solve the problem
once and for all, I grabbed a pen and
sat down at my desk. And, 1o andbe-
hold-the physics of the thing
helped me! It turned out that I only
need to insert numbers into a certain
formula (to be derived later on), turn
the pegs of the guitar the calculated
number of times, and the instru-
ment is tuned. Now I can forget
equations and enjoy the music.

A{ter this little prelude, let's pass

from words to deeds and generate
the magic formula.

First of all we determine the an-
gular frequency of a string. Let's as-

sume that fundamental oscillations,
which contain only half of the wave-
length (fig. 1), play the major role.
Evidently the angular frequency de-
pends on the tension of the string T,
its length L, and its mass m. Using
dimensional analysis, we get the
formula

where A is some dimensionless co-
efficient (prove to yourself that only
this combination of T, L, andm has

Figure 1
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the frequency of the sound, we can
determine how many turns are
needed to tune the string. Now we
can start to tune the guitar.

The first string should be tuned
to E above middle C, or from the
physical standpoint, to the fre-
quencyf :300 Hz. This corresponds
ton, = 9 tums. The second stringpio-
duces B below middle C (f = 247 Hzl,
and the tuning peg should be turned
nz= 5.1 tums'

This looks fine, but only the first
two strings can be tuned this waY.
What about the others? Physics
helps here, too. From the theory of
oscillations and waves the word
"beats" may be familiar to you. For
those who are encountering this
word for the first time, I'11 explain
what it means. If two oscillations
with similar frecluencies are super-
imposed, a very intriguing picture
results. Let x, = A cos 6rt and x, :
A cos <rlrt be two oscillations of equal
amplitudes and zero initial phases.

Adding these oscillations together
yields a new one:

(D, - (r)" cD, + 0)n
x=ZAeoS-tCOS-t,

or

x = Ao cos (Dm ,/

where

(r), -(D"Ao=ZAcos_-t

Since ro, = cD2, then Arrr = or - ro, is a
very small value, which means that
the amplitudeAo varies slowly with
time. The graph of such an oscilla-
tion is shown in figure 3.

If these oscillations are acoustic,
we can hear the sound increase and
decrease in volume (the beats). They
will help to tune the other strings.
The unfretted second string should
have the same frequency as the third
string with one's finger on the fourth

fret. Plucking
both strings si-
multaneously,
we hear beats as

iong as the fre-
quencies are
close. If the tun-
ing is close, we
can measure the
period between
successive damp-
ings ofthe sound.
Let this time be
?. Then the error
in the string's
tuning is

where /, is the
standard fre-
quency. Evi-
dently, as T-> -
the error be-
comes negligibly
small. Thelonger
the period of the
beats, the better
the tuning.

Using this
method, we can

Figure 3

tune al1the strings. But there is one
pesky detail remaining: a string
can't be stretched too much or it
will break. What is the upper limit
for stretching a string? Suppose the
string is made of ordinary steel. The
breaking strength for this material
is o*r* : 5 . 108 Pa. Since

Ax
6 -Y--!!3x'max 

L

then
oLLx _ -max =2mmmax Y

-that is, we can make four turns to
obtain a maximum frequency f =

200 Hz. Because real strings are
made of a special alloy, their limit
is higher. This can be determined
experimentally by stretching a

string until it breaks. The calcula-
tions can easily be made according
to the formula

ndYn
max

Lf1
fo rfo

Breaking a couple of strings, I found
the value o-rr: 5 . 10e Pa, which is
an order of magnitude greater than
the value for strings made of ordi-
nary steel.

As you can see/ we can draw
much more out of a guitar than
just music-we can use it to Pro-
duce a suite of interesting physical
facts. And this theme is far from
being exhausted. The most inter-
esting remains before us-an in-
vestigation of the acoustic proper-
ties of the guitar's resonating
sound box. Maybe physics would
help here as well? Possibly it would
even suggest another shape-one
that would produce sounds even
more enchanting than those coaxed
out of the guitars we inherited from
the ages. CI
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a few ranges o{ this huge electro-
magnetic spectrum.

Problems
1. An electrically charged sphere

and a permanent magnet are placed
near one another. Is there an electro-
magnetic field in the surrounding
space?

Z.I/y'hy are automobile antennas
usually vertical?

3. Why are there so-called black-
out zones for short-wave radio com-
munications?

4. Why can radio stations trans-
mitting long and medium waves be
heard atfar greater distances at night
than during the day?

5. Why isn't radio communica-
tion with a submarine possible
when it's underwater?

6. How was radiolocation first
used in astronomy?

7. Why is stable reception of TV
signals possible only within line of
sight?

B. Why do the temperatures of ai1
bodies in a closed, unheated room
reach the same value?

9. Does a piece of iron emit red
light when it is white-hot?

10. Why isn't a glass prism suit-
able for obtaining the spectra of in-
frarcd and ultravioiet radiation?

11. Natural vegetation and the
artlficial kind used for camouflage
can be clearly distinguished in pho-
tos made by reconnaisance planes,
yet they are indistinguishable by

"The experiments
described-it seems to me,

at least-leave no doubt that

ARADOXICALLY, ELECTRO-
magnetic waves have been
known to humankind from
time immemorial. Peopie were

warmed by thermal rays long before
the term "infrared radiation" was
coined, and they got sunburnt with-
out knowing anything about the ef-
fects of ultraviolet rays on the skin.
And they had vision, after all! They
not only saw, they conducted ex-
periments with light as a wavelike
substance.

The suspicion that all these kinds
of radiation have a common electro-
magnetic basis led to the develop-
ment of a scientific theory. In 1865

|ames Clerk Maxwell generalized
the findings o{ his great forerunners,
above all Michael Faraday. Maxwell
predicted, among other phenomena,
the transmission of information
without wires.

Nowadays, when a little more
than a century has passed since the
creation of Maxwell's theory, electro-
magnetic waves do more than bring
us radio and television signals. People
have leamed to generate and receive
radiation in all parts of a strikingly
wide electromagnetic spectrum--from
low-frequency radio waves to gamma
radiation. These invisible waves-
microwaves, ultraviolet rays, infta-
red rays, X rays-made it possible to
"hear" the previously elusive "con-
versations" among atoms/ mol-
ecules, stars/ and galaxies. Of course/
in this article we can touch on only
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CSCOPE
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light, heat radiation, and
electromagnetic wave motion are
eq u ival ep[. "-ll si n ri ch H erz

direct observation. Why?
12. Why does the continuous X-

ray spectrum emitted by an X-ray
tube have a distinct boundary at the
short-wavelength end?

13. Can the X rays used for detect-
ing manufacturing defects be re-
placed with gamma radiation from
radioactive substances ?

Microexperiment
Observe the operation of an elec-

tric space heater composed of a spi-
ral filament and a well-polished con-
cave metal surface. What role do you
think this surface plays?

It's interesting that . . .
. . . according to pre-Maxwellian

opinion, electric and magnetic fields
should disappear atzero current (be-
cause it was accepted that the
changing electric field produced no
effect).

. . . the widespread opinion that
Herz perlormed his experiments to
confirm Maxwell's theory is mis-
taken. In the beginning Herz was
rather an opponent of this theory
and accepted it only in light of evi-
dence he himself obtained.

. . . the transition from an elec-
tric lamp with a heated carbon
filament to the modern tungsten-
filament lamps made it possible to
increase the filament temperature
by only 400 K. Nevertheless, it
more than tripled the portion of
the energy emitted in the visible

part of the spectrum-from O.5o/" to
1.6%.

. . . infrared and ultraviolet rays,
which are invisible to the human
eye, are widely used by animals. At
a distance of half arrretett some ser-
pents feel changes in temperature as
small as a tenth of a degree. And
bees "see" ultraviolet rays that
show the location of a flower's nec-
taries.

. the beginning of radio-
astronomy is connected with the
work of a Bell Laboratories engi-
neer, C. Yansky, who in 1931 con-
ducted experiments with a rotating
antenna to study the interference
hampering short-wave radio com-
munication. The noise he investi-
gated seems to originate at the cen-
ter of our galaxy.

. . . the parabolic antennas of
modern radio telescopes are ex-
tremely sensitive-they can detect
energy fluxes with densities less
thanl0-2eW.s/m2.

. . . to investigate the highest-en-
ergy gamma rayst astronomers use
optical telescopesl Why? As they
pass through the atmosphere, these
gamma rays produce high-energy
electrons, which excite Cherenkov
radiation, which finally is recorded
by an optical telescope.

-Compiled by A. Leonovich
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RUMINATIONS

What i$eleuance?

Mathematicians say: "l know it when I see it"

by Julia Angwin

lil',#'"?ffi:IYli*n,1Tl
I Greek temple. In fashion, a Chanel
I .r*. In *athematics, it's a terrn ap-

plied to the best, shortest, most in-
spired (and inspirational) proofs.

"An elegant proof just hits you
between your eyes and fills your
heart with joy," explains mathema-
tician Irving Kaplansky.

One of the most elegant math-
ematicians of all time was Carl
Friedrich Gauss. He lived in the pe-

riod following the rapid expansion
and development of mathematics
in the lBth century. However,
that century was not a period of
elegance, according to mathema-
tician Harold Edwards, who
studies the history of math. It
was Gauss in the 19th century
who collected and refined the
work done previously.

"He didn't publish anything un-
til it was completely polished,"
says Edwards, a professor at New
York University.

Gauss frustrated his peers by not
publishing his proofs until they were
perfect, but he thought that a cathe-
dral is not a cathedral until the last
scaffolding is down and out of sight.
His motto was Pauca sed matura-
"Few, but ripe."

Elegant proofs come from God, ac-

cording to the Hungarian mathema-
tician Paul Erd6s. His theory is that
God has a book containing all the

best proofs, and
he lets a mortal
one of them.
even need to
God, you just
lieve in the
book," he
said. "You
feel:'How
foolish
that

sometimes
glimpse
"You don't
believe in
need to be-

I didn't think of it myself."'
But, as in other things, elegance

is sometimes simply a matter of
taste.

"I like these combinatodal things
that my colleagues think are a

waste of time," laments
|ohn Conway,
professor at

Princeton Uni-
versity.

However, mostmath-
ematicians agree on the ba-
sics:

1. Any proof that in-
volves computer number-
crunching is not elegant.

(The proof of the Four Color
Theorem comes to mind.)

2. Elegant proofs are easilY
understandable.

, The classic exampie of el-' egance is Euclid's short
proof that there are an infi-

nite number of prime numbers.
A prime number is one that can be
evenly divided only by itself and the
number 1. Nonprimes are divisible
by primes and so are called compos-
ite numbers, since they are com-
posed of primes.

"lt's 2,300 years old and there's
no better proof," says KaplanskY,
director emeritus of the UC-Berkeley
Mathematical Science Research In-
stitute.

Euclid's proof is short and bypasses

the fact that there is no formula for
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determining prime numbers. With-
out his proof, one could flounder
around trying larger and largerprimes
without ever determining an upper
limit. Euclid simply assumed that
there is a final prime number and
proves that this assumption leads to
a contradiction. Here's the proof.

1. CaU the highest prime numbei Q.
2. Now multiply Q by all the

primes leading up to it: 2xZ x 5 x7
X...XQ.

3. Let P equal that sum plus l:
12xZx5x7x...xQ) +l:P.

4. Then P is not divisible by any
of the numbers 2, 3, 5, 7 , . . . , Q, be-
cause each divisor would leave a re-
mainder of 1.

5. But P must be divisible by
some prime because it is a compos-
ite number.

5. But that prime must be larger
than Q, because we have used up all
the smaller primes. This contradicts
step 1.

7. So the assumption must have
been false-there must be an infi-
nite number of primes.

Problem 1. Note that Euclid does
not claim that his number P is a
prime. Indeed, show that 2 x 3 x 5 x
7 x 11 x 13 + I is divisible by 59. Can
you find a prime divisor of 2 x 3 x 5
x7xlIx13x17?

Part of the charm of Euclid's proof
lies in the fact that the result is in-
credibly useful. Aside from their role
in pure number theory, large prime
numbers are used to make and break
government codes.

"If the thing you're proving is
useful or powerful and yet your
proof is simple, that is agreatthing,,,
says Conway. A short, concise proof
of a less important theorem might
not be called elegant, he says. It
would simply be cute or interesting.

But the most important quality of
an elegant proof is that it makes you
think, ".Nha! How sil1y that I didn't
think of that."

For example, consider a problem
posed by mathematician Ron Gra-
ham. Consider a sequence of 101
distinct numbers arranged in any
order you like. You can find a sub-
sequence o{ 1 I increasing or decreas-
ing numbers in that set, he says.

First/ to get a sense of it, think of
the first 100 natural numbers ar-
ranged as follows:

9L,92,93, ..., 100, 81, 82, 83, ...,90,
71, 72, 73, ...,80, ..., l, 2, 3,..., 10.

This is a sequence of 100 numbers.
We can pick one number from each
" deeade" to create a subsequence of
l0 decreasing numbers, such as 95,
85,75, 65, 55, 45, 35, 25, 15, 5. Or
you can pick 10 increasing numbers.
But it's impossible to find an in-
creasing or decreasing subsequence
of 11 numbers.

So intuitively you can believe
that with 101 numbers there will be
such a sequence of 11 numbers. But
how can we prove it? The unin-
spired approach would be to check
all cases. But we are going to use a
cute-ahem, elegant-trick.

We assign to each of the 101 num-
bers 41, 42, . . ., Ap, . . ., Atot a pair of
integers (i*, ixl as follows. Let io be
the length of the longest increasing
subsecluence ending in Ao. For ex-
ample, if the sequence is <l1,3, 5,l,
7, 2, ..., and k : 5, then the largest
increasing sequence ending inAo : 2
is <1,2> andiu=2.

Similarly, let 7o be the length of the
iongest decreasing sequence ending
h At.For our example, if k = 5, the
longest decreasing sequence ending
in Ar- 2 could be either 4I,5,2>
or < 1 1, 3, 2> ot 4L, 7 , 2>.In any of
these cases, iu:3. So for k = 5, we
have Ao= Q,3ll.

Now we can prove that no two
pairs of these integers can be the
same. For assume the contrary: sup-
pose that li*, i*l = U,, inl for some
subscripts m and n, with n > m.
Now if A, > A^, then surely io> i*,
because otherwise you could jusl
append A, to the end o{ an increas-
ing sequence measured by i-. Simi-
larly, if An< A*, then ir> i_.

Now suppose all of the values for
ioandioare between 1 and 10. Then
you would have 100 pairs. But you
have 101 pairs, so the pigeonhole
principlel guarantees that one of the
pairs must contain an 11. This pair

lSee "Pigeons in Every Pigeonhole,,
in the |anuary 1990 issue of
Quantum.-Ed.

"points" to a subsequence such as is
required in the problem.

Problem 2. Generalize this result
to a sequence of n2 + I different
numbers.

Problem 3. Provide a counter-
example to show that if the 101
numbers in the sequence are not dis-
tinct, then the result is false.

Don't worry if your proofs aret't
elegant-most proofs arerlt. But be
sure to keep your eye peeled for an
unexpected glimpse of God's book.

As |ohn Conway put it: "Some-
times mathematics is like wander-
ing around a strange town/ wander-
ing around some streets and
suddenly you turn the corner and
the view changes-you see the
beauty of the whole thing." O
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PHYSICS
CONTEST

Cloud lot'mulaliolt$

"Eternal Clouds, let us appear; let us arise
from the roaring depths of Ocean, our father;

let us fly towards the lofty mountains
[and] spread our damp wing

over their forest-laden summits . . ."-Aristophanes

by Arthur Eisenkraft and Larry D. Kirkpatrick

OW CAN YOU TAKE TEN
thousand gallons of water and
suspend them in mid-air?
Build a cloud! It seems almost

counterintuitive that wet air should
be less dense than dry air and float
in the sky. But the beauty of the cir-
rus and cumulus attest to this as we
gaze at the myriad shapes and forms
above us. Cloud formation reveals to
us properties of the environment as

well as properties of gases. As we
notice that the western slopes of the
Rockies are moist while the eastern
slopes are deserts, we deduce that
the air currents must be coming
from the Pacific Ocean.

Last year, I went into a varietY
store to buy a mylar balloon. When
asked what I wanted on the balloon,
I wrote down on a piece of paper:
PV = nRT.The employee was some-
what surprised and asked what the
expression meant. After she acknowl-
edged that she had studied high
school chemistry, I hoped that she
could now learn the ideal gas law
within the context of her job. I asked
her if anybody had ever bought a bal-
loon during the winter and retumed
a few minutes later to complain that

3$ JAlrtlAIY/tEBRttIRY lsss

the balloon had a leak. She said that
this had indeed happened, but that
she would explain to the consumer
that the balloon would re-inflate as

soon as they got it home. In fact, as

she was explaining this to the
doubting customer/ the balloon
would inflate before their eyes. The
mysterious equation on my balloon
could explain this phenomenon.

The ideal gas law, PV = nRT, de-
scribes the relationship between the
macroscopic properties of an en-
closed gas. In the ecluation, P is the
pressure/ V is the volume, T is the
temperature of the gas in kelvins, n is
the number of moles of gas, andR is
the gas constant. In the mylar bal-
loon example, the pressure of the
balloon is a constant-the pressure
of the atmosphere pushing on the
balloon. The balloon is fully in{lated
inside the store while the tempera-
ture of the gas is equal to the store's
room temperature. As the new bal-
loon owner steps outside into the cold
winter air, the temperature of the
helium gas inside the balloon de-
creases. Since the pressure remains
the same, the decrease in tempera-
ture is matched by a corresponding

decrease in volume and the mylar
balloon appears to be only partially
inflated. Stepping back into the
store, the balloon will magically
become fully inflated again as the
gas wanns up.

A second illustration of the gas

law occurs when a bicycie tire is in-
flated. In this example, the volume
of the tire remains constant. As
more and more gas is pumped into
the tire, the pressure increases and
there is a coresponding increase in
the temperature of the tire. Feel the
tire and it will be warm. Automobile
tires in the winter will be slightly
underinflated when you begin your
journey but wil1be just right when
the tires warm up from the friction
with the road and the flexing of the
side waIls.

The ideal gas law can also help our
readers understand how a pressure
cooker works, how our lungs inhale
through the movement of the dia-
phragm, and how a hot air balloon
rises and falls in the atmosphere.
Physicists and engineers often sum-
marizethe behavior of a gas on a P-V
diagram, where the pressure is plotted
on the y-axis and the volume is on
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the x-axis. For example/ processes
with constant temperatures are hy-
perbolas, since PV : nRT andnRTis
a constant.

Four processes are of special inter-
est. The first three are changes that
occur at constant temperature/ con-
stant volume, and constant pres-
sure. In the fourth process no heat is
transferred into or out of the system.
This adiabatic process occurs when
the change occurs very quickly*for
instance, when sound waves move
through the room. The changes in
pressure occur so quickly, anyheat
transfer can be neglected. An adia-
batic process also occurs when the
system is thermally isoiated from its
surroundings. hr this case the process
can be very slow. As an example, a

gas confined to an insulated container
can expand adrabatically if weight on
the piston is slowly removed.

When gases expand adiabatically,
we expect that the pressure, the vo1-
ume, and the temperature will all
change. Fortunately, there is a rela-
tionship between the pressure and
the volume during an adiabatic pro-
cess: PVY : const2rrt, where y is the
ratio of the specific heats for the gas

and is equal to 1.4 for diatomic
gases.

This brief introduction provides
the background for this month's
contest problem concerning cloud
formation on the side of a mountain.
The problem is adapted from the
XVIII International Physics Olym-
piad which was held in |ena, East
Germany, in 1987 (a few years be-
fore the German unification).

Moist air is streaming adiabati-
cally across a mountain range as in-
dicated in figure 1. Eclual atmo-
spheric pressures of 100 kPa are
measured at meteorological stations

Mo

Figure 1

30

Mo and M, and a pressure of 70 kPa
at station Mr. The temperature of
the air at Mo is 20'C.

As the air ascends, cloud formation
begins at locationM, where the pres-
sure is measured to be 84.5 kPa.

A quantity of moist air, with a
mass of 2,000 kg over each square
meter/ ascends the mountain. This
moist air reaches the mountain
ridse lMzl after 1,500 s. During this
time,2.45 g of water per kilogram of
air precipitates as rain.

A. Determine the temperature Tl
at M1, where the cloud forms.

B. Assuming that the atmospheric
density decreases linearly with
height, what is the height \(Mrl?

C. What temperature T, is mea-
sured at the ridge of the mountain?

D. Determine the height of the
water column precipitated by the air
stream in 3 hours, assuming a ho-
mogeneous rainfall between points
Mrand Mr.

E. What temperature 7, is mea-
sured on the back side of the moun-
tain range at station Mr? Compare
the atmospheric conditions at Mo
and Mr.

Hints: Assume that the atmo-
sphere is an ideal gas. Influences of
the water vapor on the atmospheric
density are to be neglected.

The atmospheric density for Po and
7o at station Mo ir po = 1.189 kg/-'.
The specific heat of vaporization of
the water within the volume of the
cloud is L, = 2,500 kl/kg.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA2220l-3000 within a

month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

]Ulirrol' full olwalen
In the contest problem in the |uly/

August issue of Quantum, we asked
our readers to find the image pro-
duced by a concave mirror filled with
water. The object is located along the
optic axis at a distance d = 3R12,
where R is the radius of the mirror.
We will model our solution after the
very complete solution submitted by
Prof. Anthony F. Behof of DePaul

University in Chicago, Illinois.
Webeginbyusing the lens maker's

formula to find the focal length/* of
the converging lens formed by the
water:

t _n-I _413-t _ |
f*RR3R

Therefore, f* = 3A.
Method A. We use the idea that

the effective focal length f' of. the
combination of optical elements is
the sum of the reciprocals of the in-
dividual elements. When we do this,
we must use the focal length of the
water lens twice because the light
passes through the lens, strikes the
mirror, and then passes through the
lens again. The resulting formula is

1111
f' f* f^ f*

r218
3RR3R3R

This effective focal length of 3R/8
can be used in the mirror formula to
find the image location:

This tells us that the image is 1o-

cated at d' = Rl2.
Thomas A. Davidson of Ama-

rillo, Texas, points out that a mirror
behaves the same whether it is im-
mersed in air, watert or a vacuum.
Introducing an airf water interface
in front of the mirror effectively
shortens the focal length of the mir-
ror by the ratio of the indices of re-
{raction. Thus, the effective focal
length is Rf 2n, in agreement with
the answer we obtained above.

Method B. An alternate method
of finding the effective focal length
of the water-mirror combination is
to look at atay parallel to the optic
axis as shown in figure 2, where the
angles and the thickness of the wa-
ter have been exaggerated for clar-
ity. Without the water this ray
would pass through the focal point
/of the mirror. However, because of
the refraction at the surface, the ray

111822
d'f'd3R3RR

M3
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Figure 2

intersects the optic axis at the effec-
tive focal poini l'. Snell's law telis
us that

lsing = sin0'.
oo

Ignoring the thickness of the watet,
we also know that

and

tan0'

Because the angles are actually quite
small, we use the small angle ap-
proximation that tan 0 = sin 0 and
tan 0'= sin 0'. Therefore, we have

4b b__=_
3f f"

or

^, 3.3, - - r - --R.I =-l --48
Method C. The top surface of the

water forms a virtual image at a dis-
tance

nd=

above the surface of the water. This
image acts like an object for the
mirror without the water. Using the
mirror formula with the {ocal length
f^= A1Z and d:2R,we obtain

111213_ _=___=_
d'fdR2R2R'

or t = 2R13.
The light leaving the water gets

bent once again to form an image at

d' _32R _l R.
n 43 2

Method D. Finally we can treat
the system as a combination of a
water lens, a mirror, and a water lens
by finding the image produced by
each one and using the image as the
object (sometimes imaginary) for the
next one. Applying the lens formula
to the water lens yields

11112t_-==_-
d:t f* dt BR BR 3R

Therefore, the image is virtual and
located a distance 3R above the sur-
face of the water.

This image acts as an object for
the mirror. Ignoring the thickness of
the water, the object distance for the
mirror is dr= 3R. Using the mirror
formula, we obtain

11I215
-=-_-=d2 f^ d2 R aR 3R'

and the image is located a distance
3R/5 above the mirror.

Since this image is located on the
"wrong" side of the water lens, the
new object distance dB = -BRls.
Thus,

1-52=-__=_3R 3R R,

and the final image is iocated a dis-
tance Rf2 above the surface as be-
fore.

Prof. Behof goes on to provide a
fifth solution using matrix optics
and a way of verifying the result
experimentally. To see how to
measure the effective focal iength,
1et's first consider the case with no
water and set the object and image
distances equal to each other-
that is, d = d'. We then find the
well-known result that d = Zf : R.
If we now add water, we find that
d=Rln=3R14.

Now hold a lighted target above a
mirror that has been filled with a few
millimeters of water. Adjust the
height of the target above the water
until the target/s image is in focus on
a screen held at the same height. This
height d is the effective radius of cur-
vature of the combination and the
effective focal length is dll. O

t^no=L
f

b

f'

!4=zn
32

-HOW DO YOU FIGURE!"
CONTINUED FROM PAGE 23

is M : 7.5 . 1022 kg (approximately
equal to that of the Moon) and its
radius R : L,750 km. (D. Mogilev-
tsev)

P134
Frame in the B-field. A fl-shaped
frame with equal sides made of thin
wire is suspended freely from an ar-
ticulated ioint in a vertical magnetic
field B (ti1. zl.What is the maximum

Figure 2

angle of deflection of the hame Lf. a
constant curent l flows through it?
The mass of a unit length of the wire
is p. (A. Kipriyanov)

Pl35
Two lenses. The real image of a
point source is formed at point A
(fig. 3) by a thin lens located near the
left-hand end of the line. After this

CBA

Figure 3

lens is replaced by another one po-
sitioned in the same place, one ob-
tains an image at point B. Then the
first lens is put 1zery near the second
one, and the image shifts to point C.
Determine the location of the
source geometrically. (A. Desh-
kovsky)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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NfA Executive Director Search
The National Science Teachers Association
search for an Executive Director to oversee

the largest organrzatron of science teachers

announces its
the affairs of
in the world.

The position requires

f-Exercising the powers and duties of a secretary of a corporation.

f-Administration of the national office of the Association and its staff,
and proper disbursement of its funds including supervision of the
budget and financial reports.

f-Execution of business transactions on behalf of the Association and
subject to the direction of the Board of Directors, contracts and agree-
ments including notes, bonds, deeds, mortgages,leases, and other legal
instruments without limitation.
f-Maintenance of records of the official business, actions, and meet-
ings of the Board of Directors and Executive Committee.

f-{arrying out the policies and programs of the Board of Directors
for presentment to the membership either through Association journals
or at the annual convention or both.

f-Action as public relations spokesperson, liaison, and representative
for NSTA to other orgaruzations, the press, business and industry
groups, and government agencies.

Deadline for Applications: February 1,1995

Qualifications: Science education back-
ground, teaching experience, management
skiIls, good verbal and written communica-
tions skills and experience, financial planning
abilities, negotiation skills, and sound leader-
ship abilities. Knowledge of and experience
working with the Washington,D.C., network,
including govemment and private agencies,
are extremely desirable.

Ptocedures: ( 1 ) Candidates submit applications
for review by the NSTA Search Committee.
(2) The Search Committee selects individuals
for consideration and interviews the best
potential candidates. (3)The top candidates
resulting from these interviews are then

proposed to the NSTA Executive Committee
for final interviews. (a) The NSTA Executive
Committee will make the final selection and
negotiate a cofltract with that individual for a

term of five years subject to annual review.
Interested candidates are invited to write for
an application to NSTA Search Committee,
1840 Wilson Blvd., Arlington VA 22201-3OOO.

Timelins Completed applications will be
accepted until February 1,1995. Final Candi
dates will be interviewed by the NSTA
Executive Committee. Appointment date will
be negotiated.

-Equal Opportunity Employer



INNOVATORS

The leuacy ol lllul'hert Wiener

Part ll: Brownian motion and beyond

I N 191e WtENER',S NOMADTC

! existence ended at last. He worked

I ii: xT,Y#'i)!i,ff ^xi*:ffi :::Finally, his father's friend Professor
Osgood at Harvard interceded and
obtained for Norbert an
instructorship at MIT.
In 1919, this was not a
notable appointment.
At the time, the math-
ematics department at
MIT was purely a ser-
vice department, valued
only for its contribution
to the engineering cur-
riculum. Thus it is re-
markable that MIT ac-
commodated young
Wiener, a man whose
past experience did not
recommend him as a
teacher. In addition, even
if MIT had sought prow-
ess in mathematical re-
search, Norbert Wiener in L9I9
would not have been a strong candi-
date. He had published fifteen undis-
tinguished articles on logic and noth-
ing at all in traditional mathematics.
But, whether MIT's decision to hire
Wiener was guided by phenomenal
insider information or was iust a for-
tuitous product of the "old boy net-
work," there can be no doubt that

Partl appeared in the November/
December 1994 issue. Reprinted from
the program booklet for The Legacy of
Norbert Wiener: A Centennial
Symposium in Honor o{ the 100th
Anniversary of Norbert Wiener's
Birth, October 8-14, 1994, preparedby
the MIT Department of Mathematics
with the assistance o{ Tonv Rothman.

Wiener's appointment was a gamble
that paid off for both parties. Wiener
remained at MIT until his retirement
lfl 1950, and during that period he not
onlyput MIT on the map mathemati-
cally, he also played a profound part

in the creation of the culture to which
MIT owes much of its present fame
and prestige.

At MIT the prodigy bloomed.
Perhaps his emergence was an ex-
pression of his having at last found
in mathematics his true calling;
maybe it was the sense of security
and self-esteem that came with a
steady job; or possibly it was simply
that, at age 24, the ex-prodigy had
caught up with himself andwas ready
to become a genius. In any case, dur-
ing his first dozen years at MIT,
Wiener made his most astounding
contributions to pure mathematics:
he constructed Brownian motion,
laid a new foundation for potential

theory, and invented his generalized
harmonic analysis.

The history of Broyvnian motion
has taken some interesting twists
and turns. The name honors the
nineteenth-century botanist Robert

Brown, who reported that
pollen and many types of
inorganic particles sus-
pended in water perform
a sffange St. Vitus dance.
Brown refuted some fac-
ile explanations of this
motion, although debate
still raged over whether
the movement was of
biological origin. It was
Einstein's famous 1905
article on the subject that
catapulted Brownian
motion into twentieth-
century physics. Einstein
showed that a molecular
(as opposed to a con-
tinuum) model of water

predicts the existence of the phenom-
enon that Brown observed. Interest-
ingiy, he predicted Brownian motion
before leaming about Brown's obser-
vations.l

1On page 17 of Dynamical Theoies
ol Brownian Motion (Princeton
University Press, 1967), Edward
Nelson remarks, "It is sad to realize
that despite all the hard work which
had gone into the study of Brownian
motion, Einstein was unaware of the
existence of the phenomenon. He
predicted it on theoretical grounds and
formulated a correct quantitative
theory of it." He quotes Einstein as
saying, "My major aim . . . was to find
facts which would guarantee as much
as possible the existence of atoms of
definite {inite size."

Norbert Wiener in 1926.
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Because it is virtually impossible
to solve Newton's equations of mo-
tion for anything like the number of
particles in a drop of water, Einstein
adopted a statistical approach and
showed that the evolution of the
distribution of Brownian particles is
governed by the heat equation. That
is, the density of particles at each
point follows the same physical law
as the temperature at each point.
Actually, from the physical point of
view, this description of Einstein's
paper throws out the baby with the
wash. A physicist cannot talk about
a one- size-f its - all h e at e qu ation any
more than a one-size-fits-all wave
equation; there are all-important
constants that enter any physical
equation. For the wave equation, the
essential physical constant is the
speed of light. br the case of the heat
equation, there is the diffusion con-
stant, arrd it was Einstein's formula
for the diffusion constant that won
his 1905 article its place in history.
Namely, Einstein expressed the diffu-
sion constant as the ratio of several
physical quantities, one of which was
Avogadro's number.2 It turns out
that, with the exception of Avoga-
dro's number, all these quantities,
including the diffusion constant it-
self, were either known or measur-
able experimentally. Thus, his for-
mula led to the first accurate
determination of Avogadro's number.

If one ignores physics ar.d ana-
lyzes Einstein's model from a purely
mathematical standpoint, what
Einstein was saying is summarized
by the following three assertions
about the way in which Brownian
particies move.

1. Brownian particles travel in
such a way that the behavior over
two different time intervals is inde-
pendent. Thus, there is no way to
predict future behavior from past
behavior.

2. The particle is equally likely
to move in any direction, and the

2Avogadro's number is a universal
constant measuring the number of
molecules in a gas per unit volume at
a fixed pressure. It can also be defined
as the number of atoms in one gram of
hydrogen.

distance traversed by a Brownian
particle during a time interval is on
average proportional to the square
root of the time.

3. The trajectories of Brownian
particles are continuous.

With reasonably standard results
from the modem theory of probabiliry
one c,an deduce from Einstein's three
assumptions the conclusion that the
distribution of Brownian particles
evolves according to a heat equation.
(The all-important diffusion constant
is determined by the proportionality
constant in assertion 2.) Of course, in
1905, a mathematically satisfactory
formulation of probability theory had
yet to be given. Thus, Einstein's deriva-
tion was, mathematically speaking
rather primitive. Moreover, implicit in
his model was an important math-
ematical challenge: the verification
that one can construct a distribution
on the space of traiectories so that as-
sefiions 7, 2, and 3 are satisfied.s

At the turn of the century, the
French school of analysis was hard
at work creating the subiect that we
now call measure theory (that is,
the theory by which we assign vol-
ume to sets).4 The French school,

3Actual1y, Einstein's 1905 article
was not the {irst one in which this
problem appears. Five years earlier,
H. Poincar6's brilliant student
L. Bachelier came to the conclusion
that the fluctuation of prices on the
Paris Bourse {ollow trajectories whose
distribution satisfies assertions 1, 2,
and 3. It was not until the 1970s that
the economics literature on this
subject converged with the
engineering and mathematical
literature. The result is a much more
sophisticated way to calculate risk in
large financial markets, which has
become an indispensable tool for loan,
investment, and trading companies.
Finally, one should remark that
Bachelier, as distinguished from
Einstein, really addressed the problem
o{ computing the probability of
nontrivial events that can be
{ormulated only in the path-space
context. The {irst physicist to address
such problems was M. Smoluchowski,
who used an approximation scheme
based on random walks.

aPrior to their efforts, the only
available theory was basically the one
introduced by Archimedes,
rediscovered by Fermat and Newton,
and now forced on every calculus

especially E. Borel and H. Lebesgue,
freed measure theory from its clas-
sical origins and made it possible to
consider the problem of assigning
probabilities to subsets of trajecto-
ries. However, in spite of their many
magnificent achievements, neither
Borel, Lebesgue, nor their disciples
Iike P. L6vy, S. Banach, M. Fr6chet,
and A. N. Kolmogorov had been able
to mathematically rationalize Ein-
stein's model of Brownian motion.
A11 of them were well aware of the
essential problem, but none of them
had been able to carry out the re-
quired construction. This was the
problem that Wiener solved.

In hindsight, Wiener's strategy
looks a little naive. In particular, he
completely circumvented the issues
on which more experienced math-
ematicians had foundered. In a mar-
velous demonstration of the power of
optimism, he supposed that the de-
sired assignment of probabilities
could be made and asked how this
assignment would look in a cleverly
chosen coordinate system. He then
turned the problem around and
showed that the coordinate descrip-
tion leads to the existence of the de-

sired assignment. (This general line
of reasoning is familiar to anyone
who has ever solved a problem by
saying "let x be the solution" and
then foundx as a consequence of the
properties that it must have.)
Wiener's Gordian-knot solution to
the problem enhances its appeal, and
the assignment of probabilities at
which Wiener arrived in "Di{ferential
Space" has, ever since, borne his
name. It is called Wiener measure .

The importance of Wiener mea-
sure is hard to exaggerate. It repre-
sents what we now dutifully call a
paradigm. For one thing, its very

student. Of course, that theory had
been tightened up by Cauchy,
Riemann, and others, but it was still
seriously deficient. For example, one
could not show that the whole is the
sum of its parts unless there were at
most finitely many parts. In addition,
although Riemann's theory served
quite well in finite dimensional
contexts/ there was no theory at a1l for
infinite dimensional spaces, like the
space of all Brownian trajectories.
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existence opened a floodgate and 1ed
L6vy, Kolmogorov/ and others to cre-
ate the theory of stochastic processes t
thereby ushering in the modern
theory of probability. In addition,
Wiener measure is/ in a sense that can
be made very precise, as universal as
the standard Gaussian (or normal)
distribution on the real line: it is the
distribution that arises whenever one
carries out a central limit scalingpro-
cedure on path-space valued random
variables.s This is the underlying rea-
son why Wiener measure arises as
soon as one is studying a phenom-
enon that displays the properti es !, 2,
and 3. It is also the reason why, again
and again, Wiener measure comes up
in models of situations in which one
is observing the net effect of a huge
number of tiny contributions from
mutually independent sources-as in
the motion of a pollen particle, the
Dow )ones ayerage, or, as Wiener
himself observed, the distortions in a
signal transmitted over a noisy line.

Although his construction of
Brownian motion was Wiener's pre-
miere achievement during the pe-
riod, it was not his only one. In a
sequence of articles frorn 1923
through 1925,Wiener also looked at
a fundamental problem in the
theory of electrostatics. The prob-
lem was to decide what shape elec-
trical c,onductor can carry a fixed
charge. Zaremba had shown that
certain conductors in the shape of
spikes are unable to carry charge-
they discharge spontaneously at the
tip. (The reverse of this phenom-
enon is what makes a lightning rod
work.) On the other hand, Zaremba
had shown that cone-shaped con-
ductors do hold their charge. In the
mathematical model spontaneous
discharge corresponds to an abrupt
change-a discontinuity-in the
voltage across the interface between
the conductor and the surrounding
medium. The electrical field has a
constant voltage on the conductor,
and the equilibrium is stable (no

5A full understanding of this
universality came only in the i950s
and was provided by P. L6vy, R. H.
Cameron, M. Donsker, P. Erdds,
M. Kac, W. T. Martin, and I. E. Segal.

sparks) if the voltage is continuous
across the interface.

Wiener described all shapes for
which instability occurs and estab-
lished a new framework for the en-
tire subject of potential theory. In
sharp contrast with many models in
mathematical physics, he showed
that the voitage in equilibrium is
well defined mathematically, re-
gardless o{ whether the conductor is
stable or not. He then formulated a
who1Iy original test, now known as
the Wiener criterion, that deter-
mines at which points the voltage is
discontinuous. A key step in
Wiener's approach was to extend to
arbitrary shapes a classical notion
known as electrostatic capacity.6 He
used a procedure that is analogous
to, but more intric ate than, the one
invented by Lebesgue when he as-
signed a volume to regions for which
there was no classical notion of vol-
ume. Indeed, Wiener's capacity is
closely related to, but more subtle
than, the measures used for fractals.T

Another topic that Wiener inves-
tigated during this period was what
we now call distribution theory or
the theory of generalized functions.
Not long after Wiener arrived at
MIT, Professor |ackson and other
members of the electrical engineer-
ing department at MIT asked
Wiener to develop a proper founda-
tion for the Heaviside calculus-a
calculus for solving differential
equations by means of Fourier and
Laplace transforms. Heaviside's cal-
culus transforms a differentiai equa-
tion into an equation involving
multiplication, as inAx = B. To solve
forx, we simply divide: x = B lA. The

6The electros tatic capacity of a
conductor can be defined as the total
charge carried by the conductor i.n
equilibrium when the voltage
difference between the conductor and
its surroundings is fixed atl say/ one
hundred volts.

TThere is an amusing irony
associated with Wiener's investigations
into potential theory. Namely, as
S. Kakutani discovered in the early
1940s, potential theory is related to
Brownian motion in deep and
wonderful ways. Wiener completely
missed this beautiful and useful
connection with his previous work.

di{ficulty is that this easy formula for
the solution then has to be trans-
formed back into a meaningful state-
ment about the solution to the origi-
nal differential equation. This
involves making sense of the inverse
of the Fourier-Laplace transform.
Wiener undertook the description of
how multiplication and division cor-
respond to the operations of differen-
tiation and integration. Laurent
Schwartz, the father of the theory oi
distributions, acknowledges that
Wiener's treatment in 1925 antici-
pated all others by many years.

|ust as the physics of Brownian
motion had stimulated Wiener to pro-
found new mathematics, so the prac-
tical problem of processing electrical
signals led him to a deep extension of
classical Fourier analysis. Fourier
analysis consists of decomposing a
periodic signal into a sum of pure sine
waves. The fundamental formula of
Fourier analysis-the Parseval for-
mula-says that the total energy of
the signal in each period is the sum of
the energies of its pure waves. The
collection of frequencies at which
these amplitudes occur is known as
the spectrum of the signal, and these
come from a discrete list of values-
the harmonics of a vibrating string.
There is a similar fundamental for-
mula due to Plancherel for the de-
composition of nonperiodic waves
that measures the total energy over
all time. The spectrum of the signal
is spread over the continuum of fre-
quencies, and the formula measures
the amount of energy of the signal
concentrated in a given band of fre-
quencies. Theproblem is that the sig-
nals that occur in practice in electri-
ca1 systems do not fit into the frame
of either of these theories. The signals
are not periodic and the spectrum is
not confined to a speciai list, so that
Fourier series are inadequate. On the
other hand, the total energy over an
in{inite timeperiodis infinitg so that
Plancherel's theory does not apply.
Wiener overcame this fifficulty with.
what he named generalized harmonic
analysis. Wiener took as his starting
place certain autocofielation num-
bers, which compare the signal to the
same signal with a time delay. These
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were precisely what could be mea-
sured in practice. Then, instead of
dealing with total energy/ Wiener
considered the average energy of the
signal over a long time interval. His
theory was flexible enough to encom-
pass both periodic signals and signals
composed of a continuum of frequen-
cies, such as "white noise."

One of the key. ingredients in
Wiener's generalized harmonic analy-
sis was a new method to calculate
limits of averages. His first step was
to rephrase the problem so that it be-
came one of determining when two
different weighted averages are .very

close to each other. The recast prob-
lem fit into the general framework of
so-called Tauberian theory-a theory
to which Hardy and Littlewood had
made several contributions. But in-
stead of using some refinement of
the techniques of his teachers,
Wiener introduced a new approach
that not only solved his own prob-
lem but revealed the fundamental
mechanism of all previous problems

of this type.8 In his monograph on
the subject, Wiener illustrates his
ideas with an elegant proof of the
Prime Number Theorem, one of the
most beautiful applications of analy-
sis to number theory.

With the publication of his work
on generalized harmonic analysis and
Tauberian theorems, Wiener's repu-
tation was at last established. In1932
he was promoted to Full Professor at
MIT with a saLary of $6,000. The fol-
lowing year,he was elected to the
National Academy of Sciences, and
he won the Bdcher Prizg a prize given
every five years for the best work in
analysis in the United States.

The major works outlined above
by no means exhaust Wiener's intel-
lectual activrty. Throughout the
1930s he continued to expand on
harmonic analysis, with the same

8Wiener's work led to I. M.
Gelfand's {ar-reaching formulation o{ a
notion of spectrum that can be used to
analyze multiplication and division in
any algebraic system.

engineering applications clearly in
view. He wrote an influential book
with R. E. A. C. Paley and a seminal
paper on integral equations with
E. Hopf. He made excursions into
quantum mechanics with Max Bom
and sorties into five-dimensional rela-
tivity (Kaluza-Klein theory) with
Dirk Struik. In the late 1930s Wiener
made a signi{icant contribution to the
mathematical foundations of statisti-
cal mechanics by extending G. D.
Birkhoff's 1931 ergodic theorem. His
1938 paper "The Homogeneous
Chaos," which undertakes to fathom
nonlinear random phenomena, has
descendants in constructive quantum
field theory, under the name "Wick
ordering."

The concluding segment of this cen-
tenary essay wiJl cover Wiener's work on
the conftoL of anti-atucraft fire duilng
World War II and his most famous
legacy-cybernetics.
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STICKING
POINTS

lmrurtanl colnponenls

You use vectors-but do you really understand them?

by Borls Korsunsky

ol learninU Golnpoltsil$

understand the idea while in fact he
or she does not, I have used unusual,
"tticky" problems that, as far as the

4
*.i

tl,I Iri I
!r

math is concerned, are accessible
even for an introductory high school
physics course. At the same time
they are so rich conceptually that
even college students find many of
them tough. If you're able to solve
these probiems, I can be sure (more or
less) that you really do know how to
play the game. In this article I'll oifer
some examples that are sure to dis-

appoint a "calculus person."
Problem 1. It's raining

(there's no wind, though). Will
a bucket be filled with water
more quickly if it's resting
on the ground or if it's

piaced on a hori-
zontally moving
platform?

The question is
purely qualitative and

yet can be solved easily
fl with a "quantitative" tool

like components. Since only
the vertical component of the

velocity of the raindrops mat-
ters here, the time needed to fill

the bucket doesn't depend on the
bucket's horizontal speed and will
be the same in both cases. This
problem is relatively easy but can
(and did!) provoke a nice discussion.

The next problem is also not that
hardbut looks weird to many students.

ROM MY TEACHINC EXPER-
ience (both in Russia and the
United States) I strongly believe
that many students have a hard

time understanding the idea of vector
physical quantities. In particular, the
concept of components is especially
hard for them. The worst of it is,
many of these students sagely leam
how to "follow the procedure" artd
are able to solve "standard" problems
involving the idea of vector compo-
nents without really understanding
them. It's funny-I have talked about
this topic in my school with stu-
dents taking Conceptual Physics,
Intro Physics, and
AP Physics C,
and they

iJ

naive ft."" k

questions! \'.l
(Although
the AP students
are less aggressive-
they rely on calculus . . .)

To prevent situations in
which the teacher and the

all ask ,#f
the same *i ',

student are both
convinced that
the student 

-..,,_*actually ,- y'
doe s t*r'/
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Ptoblem 2. A person is pulling a boat
with a rope as shown in figure 1. At a
certain moment the anglebe&veen the
u tope and the boat's

Figure 1

velocity is 0. (You
may say: "We11,
first of all, that's im-
possible!" Is it?)
The speed of the
boat is v. Find the
speed u at which
the person must be
pulling the rope at
this moment.

This problem also makes use of
the idea of components. The answer
is u = y cos 0. If you caught the drift
of the problem, you would say that
the component of the boat's veloc-
ity along the rope equals the veloc-
ity of the rope (we assume the rope
doesn't stretch-otherwise the prob-
lem would be pointless). Unfortu-
nately, from my experience many
students are totaLLy convinced that
in order to be able to deal with com-
ponents in a particular problem, you
musthave two perpendicular coor-
dinate axes. This problem clearly
says, "No, you don't."

The next problem looks different,
but it's actually quite similar to
problem 2.

Problem 3. A bar propped against
a wall begins to slide down (fig. 2).

Figure 2

The velocity of the bottom end of
the bar is given. Find the velocities
of the top end of the bar and the
middle of the bar graphically.

The way to solve this problem
(which is admittedly a bit harder) is
shown in figure 3. Since the bar is a
rigid body, the components of the

Figure 3

velocities of all points of the bar in
the direction along the bar are the
same. (Otherwise the distances be-
tween them would change.) If we
know the component of a vector
along a certain direction and the ac-
tual direction of the vector, we can
easily find the vector itself. The di-
rection of the velocity of the top end
is obvious. How about the middle?
Geometry tells us that as the bar
slides down, the distance OC re-
mains constant. This means that the
midpoint C moves along an arc, arrd
its velocity at all times is perpen-
dicular to OC. Now we can "con-
struct" the corresponding vector, as
shown in figure 3.

The next problem is really tricky
and I'm sure you'Il enjoy it. (That is,
unless you're too good at math,
which might cause problems!)

Problem 4. Four ninja turtles are
ready for battle, standing at pointsA,
B, C, D forming a square/ as shown in
figure 4. At the same moment they
start to chase one another: the veloc-
ity of turtle A (sorry-I can never
manage to remember their wonderful
names!) is directed at ail times toward
turtle B, whose velocity, in tum, is

directed toward turtle C, who is chas-
ing turtle D in the same manner. And
turtle D is chasing turtle A, of course.
They all have the same speeds, and
it's pretty obvious that, moving in
curved lines, they eventually come
together at the center of the initial
square ABCD. How long will it take
if the side of the initial square is I and
the speed of each ninja turtle is v?
(Bonus question: What's the point of
such a contest?)

Isn't this a greatproblem? We cer-
tainly can't analyze these beyond-the-
bounds-of-simple-math curves. Well,
if you can, too bad-you'll miss all
the funl And the fun is to exploit the
symmetry of the arrangement. At all
times the turtles will form a square
that decreases in size and simulta-
neously rotates. What a sophisticated
motion! But the centu of the square
obviously doesnot move. And this is
exactly where they meet-the point
that interests us.

Now the components come into
play. Although the di.rection of the
velocity o{ each turtle changes con-
tinually, the component of the veloc-
ity of each turtLe directed toward the
centu makes the same angle (45") at
all times with the velocity itself and,
therefore, retains its magnitude,
which is v(",/i l2l. Now we get the
answer right away. Isn't that great?
(The answer is indeed I/v.)

Of course, components come in
handy when we're faced with prob-
lems involving Newton's laws of
motion. Here are a couple of nice
examples.

Problem 5. The system shown in
figure 5 is allowed to move freely
from the state of rest with no fric-
tion. What will happen first: will
block t hit the pulley, or will block
2 hit the wall?

B

I

^,,'I
D

Figure 4
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What can we do here? The direc-
tion and the magnitude of the force
exerted on block 2 change continu-
ously! Ready for some horrible in-
tegrating? Guess againl

This is one not-so-easy olym-
piad-style problem whose solution
is amazingly short. Just consider
the horizontal components. The
force of tension of the string (which
is certainly the same for both
blocks)is the only one that contrib-
utes to the horizontal acceleration
of both blocks. Of course, the hori-
zontal component of this force is
greater for block 1 at all timesl Since
both blocks have the same distance
to go, block 1 will win the race. (The
horizontal component of its velocity
is at all times greater that that of
block 2.)

The next (and last) problem
brings in the idea of torques as well
as components. (There's your hint!)

Problem 6. A uniform bar leans
against a wail as shown in figure 6.

Figure 6

Given the fact that the wall is fric-
tionless and given the vector repre-
senting the force of gravity acting
on the bar, find the vector corre-
sponding to the force of friction be-
tween the bar and the floor graphi-
cally. (Can the floor be frictionless,
too?)

The solution is shown in figure 7.

Two important ideas are involved.
First, the net torque w"ith respect to
any point must be zero. Second,
since the normal force of the wall
and the force of gravity both "pass
through" point A, the reactive force
of the floor must also pass through
the same pointl

Figure 7

Now that we know the direction
of this force, it's a good time to recall
the fact that the vertical component
of the floor's reactive force Fu equals
the force of gravity (which enables us
to "construct" the vector corre-
sponding to the floor's force). With
this vector available to us/ we can
easily plot its horizontal compo-
nent-which happens to be the un-
known force of friction!

Tricky problems are a lot of fun
and usually help ts really under-
stand a concept. I'11 leave you with
a few exercises. I'm sure you'll
have a good time with them-
eventually!

Exercises
1. A group of

ants is pulling
a small stick.
At a certain
moment the
velocities of
the ends A and
B make the
angles o and B,
respectively,
with the stick
(fig. 8). The
speed of end A
is also given.
Find the speed
of end B.

B

Figure 8

2. When the ants are done with
the stick, they keep working hard.
Now they are pulling a square piece
of cardboard ABCD, At a certain mo-
ment it's known that the velocity of
A equals v and is directed alongAC.
The velocity of. C at this moment is

Figure 9

directed along CD (fi1. 9lr. Find the
velocities of B, C, and D.

3. When the ants finish this bit of
work, they take a break. (You're
welcome to
do the same!)
After their si-
esta they pull
a cardboard
equilateral
triangle ABC
(fig. 10). It's
known thatat

Figure 10

a certain moment the velocity of A
is v and is directed along AB,
whereas the veiocity of C is directed
along BC. Find the velocities of B
and C.

4. Why is it easier to pull a nail
out of a board if you turn it continu-
ously while pulling? (Hint: consider
the component of the force of fric-
tion, which acts against the force
you exert in pulling.) O

Boris Korsunsky teaches at Northfield
Mount Hermon School in Northfield,
Massachusetts.
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MATH
INVESTlGATIONS

Eeomelryinlhe pauoda

Classic problems of the great Japanese geometers

by George Berzsenyi

URINC ITS PERIOD OF ISO.
lation, which included most of
the l7th,18th, and 19th centu-
ries, fapan became a stronghold

in the development of geometry. Its
many skilled geometers recorded
their findings as beautifully colored
drawings on wooden tablets, which
were presented in the shrines and
temples as acts of devotion, to be
hung under their roofs. Many of these
have suryived, while others are known
only from their descriptions in hand-
written books or from books printed
from hand-carved wooden blocks pre-
pared later. These often featured the
solutions to theproblems a1so, while
the traditional tablets usually contain
only the final results in an attractive
visual form with the implicit chal-
lenge: "See iJyou canprove this!"

I {irst learned about the }apanese
temple geomeffy probiems lsan gakul
ln 1990, during the First hrtemational
Congress of the World Federation of
National Mathematics Competitions
(WFNMC) at the University of Water-
loo (Canada), where all participants
were given a copy of a recently pub-
lishedbook devotedto this topic. More
recently, at the Second Intemational
Congress of the WFNMC (held in
Potetz, Bufuaria in 1994) I had the privi-
lege of hearing a truly inspiring lecture
by one of the authors of this book,
Hidetosi Fukagawa. The problems
posed below are based on his lecture.

Problem 1. Prove that in any
LABC and for any circle O tangent
toAB andAC, the inscribed circle of
ABFC and the inscribed circle of
LABC are tangent to side BC atthe

B

Figure 1

CD

Figure 2

same point (fig. 1).

Problem 2. Prove that if circles O,
ar;:d Orare equal and tangent to each
other and to the sides of square
ABCD, as shown in figure 2, then
circle O. is of the same size.

Problem 3. Three circles, each of
radius r, are inscribed in a square of
base a, as shown in figure 3. Deter-
mine r in terms of a.

Problem 4. Four circles, each of
radius z, are inscribed in an equilat-
eral triangle of base a, as shown in
figure 4. Determine r in tems of ,.

hr addition to clever arrangements of
circles in squares, triangles, and lunar
regions, some of the tablets also dis-
play ellipses and spheres in similarly

Figure 4

pleasing and challenging ways. The
solutions presented in book form are
also instructive, since inversion and
other tools of modem geometry were
not known to |apanese mathemati-
cians in the 18th and 19th centuries.

For a more complete introduction to
san gaku, the reader is referred to the
English edition of Fukagawa's wonder-
ful book lapanese Temple Geometry
Problems, written with the cooperation
of Dan Pedoe and published in l994by
The Charles Babbage Research Centre
lPOBoxZ72, St. Norbert Postal Station,
WinrLipegR3V 1L6, Canada). O
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HAPPENINGS

Pl'ouralnlninu challeltue$

Problems from the 1gg4 lOl

3B
810
27 44
45255

Output data. The highest sum
is written as an integer in the
OUTPUT.TXT file. In our ex-
ample this file would contain the
number 30.

Day l-{l'ohlem 2
Figure 2 shows the map of a

castle. Write a program that calcu-
lates

1. The number of rooms in the
castle;

2. The size in modules of the larg-
est room,

3. Which walI to remove from the
castle (joining two existing rooms)
to make as large a room as possible.

The castle is divided into a gnd of
square modules rr? rows by n col-
umns (m < 50, n < 50). Each module
can have from zero to four walls,
inclusive.

1*

2* *

3*

4* * * *
*****************************

N

W+E
S

Figure 2
A string o/ *'s rs a wall.

Input data. The map is stored in
the INPUT.TXT file in the form of
numbers, one for each module.

. The file starts with the number
of modules in the north-south direc-
tion and the number of modules in
the east-west direction.

r In the following lines each
module is described by a number
(0 <p < 15). This number is the sum
of I (: wallto the west),2 (= wall to
the north), 4 (:waII to the east), 8 (:
wall to the south). Inner walls are
defined twice-a wall to the south
in module 1,1 is also indicated as a
wall to the north in module 2,l.The
module at position 1,1 has a west/
north, and south wall, so the sum is
I+2+8=11.

. The castle always has at least
two rooms.

INPUT.TXT for our example:

4

7

175|t5
1 9 6 13
1 10 12 l
13 tI 10 B

S PROMISED IN THE LAST
issue of Quantum, here are the
problems from last summer's
International Olympiad in

Informatics, held in Stockholm,
Sweden.

0ay l+l'olhm I
Figure 1 shows a number triangle.

Write a program that calculates the
highest sum of numbers passed on a
route that starts at the top and ends
somewhere on the base.

7

38
810

2744
4525s

Figure 1

. Each step can go either diago-
nally down to the ie{t or diagonally
down to the right.

. The number of rows in the tri-
angleis>lbut<100.

. The numbers in the triangle are
ail integers between O and99 inclu-
sive.

In the example above the route
through 7, 3, B, 7, 5 produces the
highest sum 30.

Input data.Dataabout the num-
ber of rows in the triangle are first
read from the INPUT.TXT file fol-
lowed by the rows of the triangle. In
our example, INPUT.TXT appears
as follows:

5

7

3

5

13
10

Output data. In the OUT-
PUT.TXT fi1e, the following are
written on three lines:

t. The number of rooms.
2. The area o{ the largest room

counted in modules.
3. A suggestion of which wall to

remove that will join two existing
room to make as large a room as
possible (first the row, then the col-
umn of the module next to the waIl,
and finally the compass direction
that points to the wall). There may

10 5

15 5

75
t2 13
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be more than one but you need only
choose one to display 1" 4 | E" is one
of several possibilities). In our ex-
ample:

5

9

41-E
The last line refers to removing the
wall pointed to below.

4* ->*

Figure 3
Removing the east waLl of modula 4,1.

Day l-{noilem $

Figure 4 shows a square. Each
row, each column, and the two di-
agonals can be read as a five-digit
prime number. The rows are read
from left to right. The columns are
read from top to bottom. Both diago-
nals are read from left to right. Us-
ing the data in the INPUT.TXT file,
write a program that constructs
such squares.

Ll3s1
33203
30323
L4033
33311

Figure 4

. The prime numbers must have
the same digit sum (11 in figure 4)

. The digit in the top left-hand
corner of the square is predeter-
mined (1 in figure 4).

. A prime number may be used
more than once in the same square.

. If there are several solutions, all
must be presented.

. A five-digit prime number can-
not begin with zeros-that is, 00003
is not a five-digit prime number.

Input data. The program reads
data from the INPUT.TXT file-first
the digit sum of prime numbers and
then the digit in the top left-hand

comer of the square. The file contains
two lines. There will always be a so-

lution to the given test data. In our
example:

L1_

t_

Output data. In the OUT-
PUT.TXT file, write five lines for
each solution found, where each line
in turn consists of a five-digit prime
number. The above example has
three solutions, which means that
the OUTPUT.TXT file contains the
following (the empty line between
the different solutions is optional):

7L
L4
30
53
13

There are nine different ways to
turn the dials on the clocks. Each
way is called a move. Each move is
selected by a number from I to 9.
That number will turn the dials
marked by a " 1" ninety degrees
clockwise. Those marked with a "0"
have no effect. The nine moves are
displayed in figure 6.

LL O 1LL 011
11000001L

351
033
323
2AL
313

000
Move 1

100
100
100
Move 4

000
1l_0
110
Move 7

330
222
212

000
Move 2

010
LL1
010
Move 5

000
c!c
7-1
Move B

000
Move 3

00L
007
001
Move 6

0c0
t11
011
l'{ove 9

1_

3

3

1

3

13
32
03
4A
33

33
30
23
a2
33

51
03
23
33
1_t

13
43
03
31
31

L

1

3

5

1

Day2+l'nblem 1

The nine numbers in the top por-
tion of figure 5 represent the posi-
tion of nine dials where each dial has
one of four positions: north, or 12

o'clock (0); east, or 3 o'clock (1);

south, or 6 o'clock (2)i and west, or
9 o'clock (3) (as shown in the bottom
portion of figure 5).

330
222
2L2

0

3 -+-1
2

Figure 5
Dial positions.

Figure 6

For example, the following se-
quence of moves has the correspond-
ing affect on the dials (they all end
LLp at 12 o'clock (0):

300
Move5 > 3 3 3

222

300
MoveS > 3 3 3

333

_t0

c33

000
--:-e 9 0 0 0

000

The problem is to write a pro-
gram that rvill take any starting po-
sition for the clock and find the
shortest sequence of moves that
puts all the dials in the 12 o'clock (0)

position.
I nput dat a. Read nine numbers from

50 JANUARY/TIBRUIRY 1gS5
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the INPUT.TXT file. The example
above will have the input data file

330
222
2L2

Output data.Write to the OUT-
PUT.TXT file the shortest sequence
of moves (numbers) that turns all
the dials to the 0 (12 o'clock) posi-
tion. In our example the OUT-
PUT.TXT file could look as follows:

5849

Only one solution is required.

Day2+l'ohlem 2
A man arrives at a bus stop at

12:00. He remains there from 12:00
to 12:59. The bus stop is used by a
number of bus routes. The man
notes the times of arriving buses.
The times when buses arrive are
given with the following rules:

1. Buses on the same route arrive
at regular intervals from 12:00 to
12:59.

2. Times are given in whole min-
utes from i to 59.

3. Each bus route has at least two
buses arriving at the station between
12:00 and L2:59-

4. The number of bus routes in
the test example will be < 17.

5. Buses from different routes
may arrive at the same time.

5. Several bus routes can have the
same time of first arrival andf or
time interval. If two bus routes have
the same starting time and interval,
they are distinct and are both to be
presented.

Find the fewest number of bus
routes that must stop at the bus stop
to satisfy the input data. For each
bus route, output the starting time
and the interval.

Input data. The input file IN-
PUT.TXT contains a number n(n3
300) telling how many arriving
buses have been noted, followed by
the arrival times in ascending order.

Our example:

L7
0351313L5212621
29 31 39 39 45 5L 52 53

If two buses arrive at the same
time, that time is listed twice.

Output data.Write a table to the
OUTPUT.TXTfilewith one line for
each bus route. Each line in the file
give the time of arrival for the first
bus and the time interval in min-
utes. The order of the bus routes
does not matter. If there are several
solutions, only one is required.

Our example gives

013
3L2
58

0ay 2+l'olhm 3
Consider the magic list of 5 num-

bers:

L31_025
Any two number that arenext to

each other are considered neighbors.
AIso, the two end numbers 1 and 5
are neighbors, as if the list formed a
circle of numbers. Starting with 2,
we can form an unbroken sequence
of integers frort 2 to 21 using a
single number in the list or by add-
ing neighbors. Here is how the se-
quence is formed:

2, 3, L + 3 = 4, 5,
5 + 1- = 6, 2 + 5 = '/,
2 + 5 + 1 = 8,
5 + 1 + 3 = 9, 10,
2 + 5 + 1 + 3 = LL,
1-0+2=12,3+10=13,
1 + 3 + 10 = 14,
3 + 10 + 2 = L5,
1 + 3 + 10 + 2 = L5,
10 + 5 + 2 = 17,
Ia + 2 + 5 + L = L8,
5 + 1 + 3 + L0 = 1-9,
3 + 10 + 2 + 5 = 20,
1 + 3 + 10 + 2 + 5 = 2L

You were given three numbers (n,
m, andk)where

n : the length of the list of numbers,
m = the starting number,
k = the smallest possible value for a

member o{ the list-that is, all
numbers must be greater than
or equal to k.

Your task is to choose n integers
for the magic list where an unbroken
sequence of all integets m, m + l,

m + 2, ...t max can be generated,
where maxis as large as possible.

Input data. The INPUT.TXT file
contains three integers (n, m, k). For
our example, the file would be

5

2

1

Output data. The file OUT-
PUT.TXT must contain the fo1low-
ing:

1. The highest number (maxl that
can be generated with the list of
numbers.

2. Alt arrangements of numbers
in a circle that produce a sequence
from m to max (one per line). Each
arrangement is a list of numbers
starting with the smallest number
(which is not necessarily unique).

Note: (2 10 3 1 5) is not a valid so-
lution, since it does not start with
the smallest number. (1 3 10 2 5l and
(1 5 2 10 3) must both be included in
the output. Note that (l l23l,lL 32t\,
(1 2 3 1) and (1 1 3 2) should all be
output.

The output for our example
would be

21
r3LA25
r52L03
24935
25394

o

USACO: The 3rd Annual USA
Computing Olympiadwill be held
from May 31 to )une 6, 1995

IOI: The 7th International Oiym-
piad in Informatics will be held in
the Netherlands from |une 26 to
luly 3, 1995

ICPSC: The 14th International
Computer Problem Solving Chal-
lenge will be held on Aprii 29,
199s

For more in{ormation about these
programs/ contact Donald T. Piele,
USACO Director, University of
Wisconsin*Parkside, Box 2000,
Kenosha WI 53141-2000; e-mail:
piele@cs.uwp.edu; phone: 414 595-
223r lol,4i4 634-0868 (H).
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A summen PR0IIIYS in Boston

The annual Program in Math-
ematics for Young Scientists
(PROMYS) will be held at Boston
University from )uly 2 to August 12,

1995. PROMYS offers a lively math-
ematical environment in which
ambitious high school students ex-
plore the creative world of math-
ematics. Through their intensive
efforts to solve alarge assortment of
unusually challenging problems in
number theory, the participants
practice the art of mathematical dis-
covery-numerical exploration, for-
mulation and critique of conjec-
tures/ and techniques of proof and
gener alization. More experienced
participants may also study abstract
algebra, combinatorics, and the Rie-
mann zeta function.

Problem sets are accompanied bY

daily lectures given by research
mathematicians with extensive ex-
perience in Prof. Arnold Ross's long-
standing Summer Mathematics Pro-
gram at ohio state University. In
addition, a highly competent staff of
1B college-age counselors lives in
the dormitories and is always avail-
able to discuss mathematics with
students. Each participant belongs
to a problem-solving group that
meets with a professional mathema-
tician three times a week. Special
lectures by outside speakers offer a

broad view of mathematics and its
role in the sciences.

PROMYS is a residential program
designed for 60 students entering
grades 10 through 12. Admission
decisions wili be based on the fol-
lowing criteria: applicants' solutions
to a set of challenging problems in-
cluded in the application packet;
teacher recommendations; high
school transcripts; and student es-

says explaining their interest in the
program. The estimated cost to par-

Bullelilt Boal'd

ticipants is $1,300 for room and
board. Books may cost an additional
$100. Financial aid is available.
PROMYS is dedicated to the Prin-
ciple that no student will be unable
to attend because of financial need.

PROMYS is directed by Prof.
Glenn Stevens. Application materi-
als can be obtained by writing to
PROMYS, Department of Math-
ematics, Boston UniversitY, 111

Cummington St., Boston MA 02215,
or by calling 6L7 353-2563. Applica-
tions will be accepted from March 1

until )une 1,1995.

I[e mosl rcl'$ottal colnrutsl,
Many of us know more about the

RAM, hard disks, and I/O devices in
our desktop computer than we do
about the neurons, blood vessels,
and sensory mechanisms at work
inside our own bodies. The same
goes for the software that runs the
two systems. If you're looking to op-
timize your mental performance, or
if you're curious about the effects of
certain chemical substances, or if.
you have trouble sleeping at night-
in short, if you have any cluestions at
all about the way your head func-
tions, you will probably find an afl-
swer in The Ovvner's Manual for the
Brainby Pierce |. Howard, Ph.D. Dr.
Howard has distilled the results of
current mind-brain research into a

readable, well-organized compen-
dium of tips and tidbits. And because
many of the topics covered are still
being studied, you will find the fol-
lowing tongue-in-cheek caveat scat-

tered throughout thebook: "Waming
to Reader: Swallowing everything in
this book hook, line, and sinker could
be hazardous to your health."

The book begins with a primer on
cognitive science, then goes on to
explore such topics as sex-based dif-
ferences, the aging process, nutrition,
chemical agents, sleep, left- and right-

handedness, emotions, temperament/
intelligence, motivation, ergonomics,
the senses, memory/ problem solving,
creativity, and communication (with
many subtopics in between). Each
chapter concludes with a list of
sources for {urther reading. The book
is fun to browse in, and it also offers
pointers to those who want to delve
into a particular subiect.

lThe Owner's Manual for the
Brain: Everyday Applications from
Mind-Brain Research by Pierce |.
Howard, Ph.D.400 pp., $19.95 pbk,

$29.95 hbk + $2 S&H for first book,
$1 per book thereafter. Quantity dis-
counts available. To order, call 800
945-3132, or write to Publieation
Setvices, 8870 Business Park Dr.,
Austin TX78759.l

But the way some kids treat her,
she might as well be from another
planet. Just because she has epilepsy

Epilepsy doesn't make her weird. It
doesn't affect her abilities, her sense
of humor, or her qualities as a friend.

Kids with epilepsy or any disability.
Let's count'em ia.

Get the facts. $fuite or call The
Epilepsy Foundation of America,
1-800-EFA-1000. Or contact your
Iocal EFA affiliate.
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-18 Shrrt part

50 Hldrated sodium
zrrconium silicate

52 Length unit
5J Han,aiian wreath
55 _ relativity
58 

- 
cycie {thermo-

dynamic cycle)

62 Birth control
advocate

- 
Guttmacher

63 Linear accelerator
65 Eye part

66 Fasting period

67 Atmosphere layer
68 Paper mulberry bark
69 Calculator display

lights
70 Nostrils
7I Large plasma ball

0own

1 _-dorvn trans-
{ormer

2 Medulla
3 Pretentiously

creatlve
4 Various fungi

by David R. Martin

vi,.2
-C5

[cnoss

1 Remove ovaries

5 Scorches

lO 60,362 (in base 16)

14 Exhaust
15 Fabry-- interfer-

ometer
15 Verse segment
17 Singer |ames
18 Moum{ul song

19 Egyptian river
20 Fundamental

science

22 

- 
collision (K.E.

conserved)

24 lnfant
25 Build
26 10-10 meter
30 Afternoon nap

34 10s pascals

35 Golden
37 Indian official
38 Employee
40 Aluminum or

copper/ e.g.

42 Or,e billionth: pref
43 Periodic 

-45 Band

47 Poet's amongst

5 Rangeoffrequencies

6 Conger and Moray,

7 Exist
8 Medical researcher

- 
Guillemin

9 Pistil portions
10 Great physicist
11 _-and-switch
t2 gsl
13 44,012 (in base 16)

21 Theta follower
23 Electron pair acceptor

25 Transistor part
26 Borders upon
27 Of the nose

28 Diving bird
29 Unrefined metals
31 Hindu teacher

32 Phoenician goddess

33 Battery terminal
35 

- 
Sagan

39 43A members
41 

- 
equation (for

electrostatic
potential)

44 Always
45 Ship's landing place

49 Parallel mirrors
51 Number parts

53 Girl's name
55 

- 
bladder

56 Gen. Robert 

-57 Logic operator
58 Rational

59 QED word
60 Palm tree

51 Russian ruler
64 Logrc operator

SOLUTION IN THE

NEXT ISSUE

SOLUTION TO THE

NOVEM BER/DECEM BER PUZZLE

1 2 3 5 6 1 8 9 10 11 12 13

t1 15 16

11 18 19

20 2t 22 23

26 27 28 29 30 3l 32 -1 -)

34 35 36

38 39 40 1
t1

13 +4 +5 16 47

48 49 50 5l

55 56 57 58 59 60 5t

62 53 51 65

56 51 68

59 70 71
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M131
The answer is x = 37. Putting

flrl = r' + ax + b, S&l : x2 + px + e,
from the condition we find that
llla + 3b = lllp + 3q, or37a +b =
37p + q. But this means that 37 is
the unique root of the (linear) equa-
tion l(xl = s(x).

We could as well consider this
problem for any three numbersxlt x2t

x. instead of 1, 10, 100. Then the an-
swer would bex : (x, + x, + xrl f }-the
arithmetic mean of the given num-
bers. This answer becomes clearer if
we notice that the problem on the
whole is "linear" rather than "qua-
dtatic" because the squares cancel
out in the equation we used to solve
the problem, and even in the
problem's given condition.

Ml32
The answer is 11 points. First let's

prove that this score is sufficient to
get into the final four. Suppose it is
not-that is, the tournament rnay
result in five teams scoring no less
than 11 points each. Then the total
score of these teams is no less than
55. On the other hand, their total
score in the 10 games between
themselves is 20, and their total
score in the games with the other
three teams is at most 5 .3 . 2 :30.
This is a contradiction: 20 + 30 < 55.

It's easy to design a tournament
in which 10 points don't guarantee
entering the finals. For instance, five
of the teams can all play to a draw
among themselves and beat the
other three teams. Then each of
them scores 4 + 5 = 10 points but
may not get into the final four.

In the same way it can be shown
that in a one-round tournament the

ANSWERS,
HINTS &

SOLUTIONS

minimum score that ensures get-
ting into the k best of n participants
(k.nlequals2n-k-1.

Ml33
If a gangster is chased by an infi-

nite number of his "buddies," we
choose this infinite set of "buddies."
This satisfies our requirement.

Suppose each gangster is chased
by a finite number of others. Take
any gangsterg, and send to prison all
those who want to rub him out and
also the one whom g, is chasing. In
the remaining infinite set choose
any gangsterg, send to prison those
who want to kill him and the gang-

ster he wants to kill {S, and 32 will
stay free), andproceed by induction:
after n gangsters 81, ..., S, are cho-
sen, we still have an infinite set of
gangsters none of whom is chased
by the first n, so we can choose 9,, * ,
from them. So the process can be
continued indefinitely to yield the
required set.

Ml34
Consider a circle of length 99 par-

titioned into 99 unit arcs. Mark ten
of the endpoints of these arcs such
that the lengths of the 10 arcs de-
fined by these points are equal in
order to the 10 numbers around the
first decagon. Similarly, construet a

second circle representing the sec-
ond decagon. Now lay the second
circle over the first so as to fit the
two initial fine partitions together.

Consider 99 rotations of the sec-
ond circle through multiples of
360"199. We will show that one of
these rotations makes two pairs of
marked points coincide. For if, after
each of the rotations, at most one
marked point on the second circle
coincides with a marked point on
the first circle, then there are no
more than 99 coincidences in all.

But that's impossible, because each
of the 10 marked points on one
circle must match each of the 10
marked points on the other circle
exactly once. So the total number of
coincidences must be 100. There-
fore, there is a rotation that brings
two pairs of marked points into co-
incidence. The arcs between these
points on both circles are the same
length, which means that the corre-
sponding sums of successive num-
bers are equal.

Ml35
We'Il give only a solution to the

more general problem (b). It will be
based on the following useful fact
that often helps prove the concur-
rency of straight lines.

CeRNor's rHEoRr,M. Three perpen-
diculars drawn thtough points A, B,

C to the sides BoC, CoA, AoB* re-
spectively, of a uiangJe ABC meet at
a point if and only if (AoC'- CBo2) +

BA2 - ACo2) * Gp2 - BAo2) : o.

To prove this, notice that, by the
Pythagorean theorem, for any point
P the difference of squares AoP' -
PBn2 is equal to the similar differ-
enceAoP12 -PrBr' for the projection
P, o{ P onto AoBo (fig. 1). Since the
position of point P, on line AoBo is
uniquely determined by the value of
the second difference (the proof of
this is left to the reader), it follows
that the locus of points P with a con-
stant value of AoPz - PBo'is a line
through P, perpendicular to AoBo.
Now, if the perpendiculars in the

Ao

Figure 1
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Figure 2

theorem do meet at a point O ltig. 21,

we can replace all the pointsA, B, C
in the equation with O without
changing the value of its left side,
after which all the terms there can-
cel out to yield zero. Conversely, i{
the equation is true and two of the
perpendiculars-say, through A and
B-meet at Q, then we can repiace
A and B with Q in the ecluation,
which yields AoC, - CBo, : AoQ, -
QBo2. But this means that Q libs on
the third perpendicular as we1l.

So our aim wi1l be to find a tri-
angle AoBoCo such that the lines in
the problem are perpendicular to its
sides and Carnot's equation is veri-
fiable.

Construct point Co such that
CAC, arrd C,BC, are right angles
and, similarly, points Ao and B, (fiS.
3). Let's prove that BoCo is perpen-
dicular to AAr. Extend CrAby aseg-
ment AD = C rA (fig. 41. Since ZB rAB o
= ZDAC, = 90", the 90" rotation

c1

Br',

Figure 4

about A takes points B, and D into
points B i and D' on AB o and AC o, re-
spectively. Of course, BtD L Br'D'.
But at the same timeB,D ll AAzlAA2
connects two midpoints in triangle
BtCrD), arrd BiD'll BoCo (because
ABol ABi = ABol AB r = ACol AC | :
AC ol AD = AC ol AD'\. So AA, L B oC o.
Similarly, BBrand CCrarc perpen-
dicular to the other two sides of tri-
angJe AoBoCo.

Now it remains to check Camot's
condition, which is trivial, because
points As, Bs, Co are equidistant
from the endpoints o{ the corue-
sponding sides o{ the given triangle;

(AoB, - BCozl + lc#, - ABo2l +
(BoCr-CAo2l=0.

(V. Dubrovsky)

Physics

P1 31
Let's consider the problem in the

reference frame where the car is at
rest initially and point B moves with
a constant velocityv. To reach point
B as quickly as possible the car must
move along a straight line with a
uniform acceleration a. The direc-
tion of the line is determined by the
condition that the meeting with
point B occurs at a certain point D.
For the triangle ABD (fig. 5), setting
AB = b, we obtain

,z , ,2D +\vt)

Zvz
I.l'

a

Since the optimal motion o{ the car
is uniformly accelerated, its trajec-
tory relative to the Earth will be a
parabola.

The strategy for reaching point C
as cluickly as possible is similar.
However, to obtain the time neces-
sary to reach pointE (fig. 5l,we must
solve a fourth-degree equation of the
general form

where c=BC,or

We can solve this equation ap-
proximately by an iteration method.
In essence, we must solve an eclua-
tion likel(t) : f. As a first approxima-
tion we take an arbitrary value t = to
and then compose the sequence

tr= f(tol, tz: fftrl, ..., tn: flt"_).
If this sequence has a limit S and the
function l(t) is continuous at the
point S, then S is the root of equa-
tion (1).

t z\2-o 1 I at Ib'+(vt*c)- =l 
- 

l,l2)\./

(1)

t .12lat'1
I

lo I

Figure 6

0 lJ A ilT rJ il/A [r $rY rR $,

,2 \+c) 
).

Figure 3 Solving the equation, we find

1lIliTS & S0r.Uil0ilS

llD

Figure 5
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If we begin with to : 0, we obtain
the following sequence of values:

tt = 4l'2 s'
tr:53.6 s,

tr: 57.5 s,

to: 58.7 s,

:

t_= 59.2 s.

Notice that a precision of I % is
achieved at n = 4, and that any two
successive steps (that is, calculating
the next two members in the se-
quence) improve the precision by a

factor of two.
If the end point is located arbi-

trarTly, there might be either a plus
or minus sign in front of c: BC.To
solve ecluation (1) in this case, the
iteration method must be applied
with caution as the result may be
ambiguous and depend on the
proper choice of the initial approxi-
mation.

And one more note. To drive
along a parabolic trajectory with a
constant vector acceleration surely
demands a good bit of driving skill.

P1 32
According to Kepler's third law,

T2
3 = constanti

a

and consequently, the smaller the
radius of the spaceship's orbit, the
shorter its period of revolution 7
around the Sun. The minimum pe-
riod of revolution corresponds to the
minimum orbital radius-that is,
the radius of the Sun:

a =R^=dR-min -s 
2 "sU

where Rr. is the distance between
the Sun and the Earth. Now let's
compare the motions of the space-
ship and the Earth around the Sun:

T,2. r?mln _ -ts

a3. nf-mln 5r

So, remembering that the period of
revolution of the Earth 7, :365.25
days, we obtain

= 0.1 15 day = 2 hr 47 min.

Pl33
If the thickness of the atmosphere

is small relative to the planet's ra-
dius (we should check this is at the
end of our calculations), we can use
the following formula for the mass
of oxygen:

4nR2Pm=-
I

The acceleration due to gravity g on
the surface of the planet is obtained
from the law of universal gravitation:

GM
da'

R'

Then

4nR4P
s1= ------ = 5.101 7 kg.

GM

This is approximately equal to
1.5 . 101e moles.

Decomposition of each mol-
ecule of carbonic acid yields one
molecule of oxygen, which means
that the process will take approxi-
mately 1.5 . 1013 s = 500,000 years.
Not so long . . .

For a rough estimate of the thick-
ness of the atmosphere, let's find the
density of the oxygen near the
planet's surface:

p =PM = 0.4 kg/mi
RT

With this density, the thickness of
the homogeneous atmosphere will be

h= *, 
= 30 km.

4nR'p

The thickness is in fact several
times greater (density decreases
with altitude), but even the cor-
rected value is still much less than
the radius of the planet.

P134

IBL+

Figure 7
axis of revolution (fi9. 7). Magnetic'
forces act on each conductor, but
only the force applied to the hori-
zontal conductor turns the trame
(the other forc,es try to deform it).
Let's label the angle of deflection cx.

Then the center of mass will be
raised by 2L(l - cos cr)/3. During the
horizontal displacement I sin cr, the
magnetic force IBL performs the
work IBLL sin cr. It is this work that
is equal to the change in the poten-
tiai energy of the frame:

ZpLzg(L - cos o,) : IBLL sin u.

From this the angle of deflection can
be found, but we need to recall some
trigonometry, particularly the half -
angle formulas:

sinor o( 2pg
-uul---ll-coss 2 IB

IBa- 2arctan-.
2Ps

P135
Let aray fromthe source strike the

first lens at point D (fig. 8). A{ter re-
fracting it passes through point A, so
we obtain the ray DA. Then we add
the second lens to the system/ and

1/
/cI.\-'t -'I,l I

'min -'El 
" I

The center of mass of the frame is
located at a distance 2Ll3 from the FigUfe B
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after refracting the ray DA becomes
the ray DC. This enables us to con-
struct the focal point of the second
lens. We draw an auxiliary line pass-
ing through point O parallel to the ray
DA-it intersects the extension of
DC in the focal plane of the second
lens, and hence point E lies in the
focal plane (in figure 8 point E is
directly above point A-it doesn't
really matter in principle).

Now, using the focal point for the
second lens, we can find the position
of the source. Let's remember the
reversibility of rays. We draw a ray
from point B to point D-after re-
fraction it must pass through point
S (the source). It's possible that the
source will be crossed not by the ray
itself but by its extension.

Let's construct point A+-the
left-hand focal point of the second
lens, which is symmetric to point
A-and draw an auxiliary ray
through point O parallel to the ray
BD. This ray will pass through point
E'belongrng to the focal plane, and
this point E enables us to construct
the further path oi the refracted
ruy-that is D;-' The source is 1o-

cated on the er:ersron of the re-
fracted ray.

Figure 8 sht-.-,.,-s ::]at :his is an
"imaginary'r scu:Jr-::: -:ltScS \r'e rq

struck by a bear --i ::.-;s :har ccr-
verged at point i L I ::.: -- 

'...::. iar-
ther from poinr: --- j:.- -: -.i= -.'. l-l
obtain an ordina:. r:,- i -::r.

Bl'aintea$Brs

81 31
The onl1- possi:-e letters are A

(thenumberl B I I i1, Iq12),S
(21), and T ll The .-,nlr meaning-
ful n,ord correspondrng to the given
number 1s 5 1-\ -L 1S i

81 32
The answer is 3,201 x 3,201 =

10,246,401. Since FIVE x V = 0, V = 0.
Since the products of FIVE by F, I, E
have four digits each, F < 3, and I, E
( 2. And since the product has eight
digits, FIVE > 3,200. Therefore, FIVE
= 3,201.

8133
Shadows on the Earth are less

sharp because/ as a rule, light scat-
tered by the atmosphere enters into
the shadows and makes them lighter.
As for shadows on the Moon, which
has no atmosphere, they can be illu-
minated only by rays that are re-
flected from other lunar objects. This
relatively weak source of illumina-
tion has almost no effect on our vi-
sual perception of the objects.

8134
The answer is yes. Our grid con-

sists of seven columns of three
nodes each. Such a column can be
colored in 23 : 8 ways (using two
colors). If two of the columns have
the same coloring, take either of
them. It contains at least two nodes
of the same color, and these nodes
together with the nodes on the same
lines in the other column constitute
the required {our. If any two col-
umns are colored differently, then
only one of the eight possible color-
ings is not used, so in one of the col-
umns all three nodes are the same
color-say, red. Since all the color-
ings except one have been used,
there is also a column with two red
nodes. These nodes, along with the
coresponding nodes in the first col-
umn, make up a one-color rectangle.
(V. Dubrovsky)

8135
The perimeter of the rosette con-

sists of arcs of the smaller circles.
Consider one of these arcs-say,ma-
jor arc AB in figure 9. Draw radli O A,
and OB, of the big circle through A
and B. The length of the arc ArB, is

equal to 2ru, where u: IAOB and
r is the radius of the smaller circles.
The length of the arc AB is 2ur, be-
cause this arc subtends the inscribed
angleAOB of measure o, and so the
corresponding central angle is 2u.
Therefore, the arcsAB andArBrare
the same length. Adding up all such
arcs/ we see that the perimeter of the
rosette is exactly equal to the big
circumference.

Note that the result does not de-
pend on how the smaller circles are
arranged within the larger one (so
long as they pass through point O)
nor on how many there are.

l(aleido$cope
1. No, because in this case the

electric and magnetic fields are con-
stant and not interconnected with
each other.

2. Usually acarradio receives the
direct signal from a broadcast station,
in which the electric field is verti-
cally polarized. To obtain the maxi-
mum power from the input signal,
the receiving antenna should also be
vertical.

3. The short waves propagate long
distances due to repeated reflections
from the Earth's surface and the con-
ducting iayer of the atmosphere-
the ionosphere. This results in areas
where the signal can't be heard.

4. In the absence of direct solar
radiation, the ionization of mol-
ecules in the ionosphere decreases.
This enhances the re{lectivity of the
ionosphere and helps the radio
waves propagate longer distances,
thus increasing the transmission
range of the radio stations.

5. Seawater strongly absorbs elec-
tromagnetic waves.

6. To determine the distance be-
tween the Moon and the Earth.

7. The ionosphere is transparent
for the ultrashort waves used in TV
broadcasts, and the waves do not di{-
fract very well around objects on the,
ground.

8. Due to energy exchange result-
ing from thermal radiation.

9. Yes, it does.
10. Glass absorbs both infraredFigure 9
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and ultraviolet rafiation.
11. The ultraviolet radiation of

natural vegetation and that of cam-
ouflage are different, so they affect
the photographic film differently.

12. The energy of X rays cannot
exceed the binding energies of the
electrons.

13. Yes, they can, because the
wavelengths of gamma rays are
even smaller.

Microexp efiment. It reflects the
infrared radiation emitted by the
spiral filament.

Toyslone
1. Any rearrangement of chips in

a triangle of size n can be represented
as a succession of swaps of adjacent
chips. Two adjacent chips a and b
can be swapped by an operation simi-
lar to the one shown in figures I and 2
in thearticle, but to apply it we must
first create an isolated six-chip tri-
angle containing chips a and b. This
can be done by detaching triads from
the given big triangle, one by one,
until there is enough empty space for
the required six-chip triangle with a

and b to be detached (perhaps via
the shift operation described in the
article-see figure 2 there).

As to shifts, we know that a triad
(the case n = 2) or a six-chip triangle
(the case n = 3) can be shifted into
any location on the grid. Figure 10a

shows that forn = 4 a triangle of size
n can be divided into two triads and
a four-chip "diamond," which can
be shifted by three spaces along any
grid line as shown in figure 10b. A
triangle of size n = 3k + 2 can be di-
vided into k horizontal three-row
layers (starting from its base) and a

triad on top of them. Each of these
layers can be divided into triads and,
perhaps, a six-chip triangie (fig. 11).

So we disassemble our big triangle
into triangles of sizes 2 and 3, move
these blocks apartt and then as-
semble them back on any desired
new place. The same procedure
works forn = 3k, except that the top
block of the assembly will be a six-
chip triangle rather than a triad. In
the case n:3k + 1 the top block is

a t7 i.7
A,A,A

Figure 11

Figure 10

a triangle of size 4, and we've seen
that it can be moved any number of
spaces divisible by three; so this is
true for the entire triangle as well.
Other shif ts in this case are
inpossible by the preservation of the
invariants s, and su {see the article).

2.For the triangle, Su: li for the
parailelogram, Sy = 0; so the answer
15 nO.

3. A proof that a triangle of any of
these sizes is indeed invertible can
bebasedonfigures 12-14. Figure 12

indicates how to invert a triangle

with four chips to a side la " 4-trr-
angle"). In figure 13 we show how a

3-triangle can be inverted with the
help of an auxiliary 4-triangle. A
"rhombus" with four chips to a side
can be split into a 3-triangle and a 4-
triangle in two different ways/ so

that the orientations of the triangies
of either size in these two partitions
are opposite. The 4-triangle can be
arbitrarily oriented and the 3-tri-
angle can be arbitrarily shifted to
join or part with the 4-triangle.
Note that a single 3-triangle can't be
inverted. Figure l4 indicates how
we can divide a triangle into "paral-

b r-7 A lelograms" and smaller invertible
AV/\ triangles.

l-\ / . \ 4-The answer is no. This follows

';ir,"f#:::1ff"'1"""'fJ,i#1,:T.',
5. The operation given in the ar-

ticle consists of a swap of two balls
(1 +r 3) and a S-cycle (4 -+ 5 -+ 9 -+
8 -+ 5 + 4). If we repeat it five times,

+ IAAAW, wegettheswapwithouttheS-cycle.
(l\A, If we repeat it six times, we get the
(W, S-cycle without the swap. We can
e, similarly obtain other swaps otedge

balls-say, 5 <+ B. Then, to obtain a

swap of two adiacent edge balls-for

opposite order) using the inverse of
our S-cycle.

ll- |

Figure 12

Figure 13

\*7 A Y-7 'ffi!?,?"t:;Tfn?'#1rg
A\.l + I \\l andStotheplaces8and5,wherewe

l.\V /.'.\' 1*swapthem,afterwhichwebringthem back to places 9 and 8 (in the

A-- A\ AGVan*vAE\..,,,'
t _-_____.

,, = s \"'.
Figure 14
Inverting triangles with 8, 9, and 7 chips to a side. The numbers in the figu,te
arc the iumbets of chips along the corresponding sides; in the case n = 7, the
parullelogram is shifted during the reanangement.
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Bus and puddles
1. 10, 84.

,.(-;)=(-;")

, (3)-(i)(i)= 84-tG=G8

4. Suppose, for example , that x e
A, a A, Then x is counted once
each for lArl and lArl and is sub-
tracted once for lA, a Arl, soits pres-
ence is counted exactly once.

5. The number N of ways is

ry= ul-Il+l +\e,a4)
i i,i

- >l+ a\aAol
7,1,R

= 210 -165 + 36

= 81.

6. The ellipse looks hke a hera-
gon (see figure 15).

7. Since 50 = 2. 5r, then

d(ros) = ro5 - (l!! * lqq * 4q)\ ' \3 5 7 )
(tos 1os tos) ros+t_+ + _ t__[15 21 3s) 10s

= 48;

since 105:3.5-7,then

since 210 = 2. 3. 5 . 7, then

0(2101 = zto -247 + 101 - 17 + t : 48.

8. Consider the collection of the
four sons-

S = {son 1, son 2, son 3, son 4}

-and 
let the universal set U repre-

sent the 4! permutations of the four
sons. Thus,

U = 1[i, j, k, 1l: I < i, i, k, ] < 4,
i+i*k*1].

The ordering in each quadruple is
important-for instance, li, i, k, 1l

corresponds to son i's card in the
first envelope, son 7's card in the sec-
ond, son k's card in the third, and
son l's card in the fourth.

Next, we define four subsets A,
i : l, 2, 3, 4, of U, where A, consists
of all permutations of sons with son
i's card located in the rth envelope.
Thus, for example, At = {}, i, k, 1l:
2 < i, k, I < 4, and i, k, 1 arc all differ-
ent]. We note that each set A, con-
tains 3! : 6 elements, and each inter-
section of two different sets A, n A,
contains 2! elements.

The set of derangements that
Grandma is interested in is precisely
the set Do:

Do: U -(Arv Arv Arw Aal.

For if (r, j, k, 1l e Do, then definitely
i + l, i + 2, k + 3, and I * 4. Thrs

means that each son's card is not in
its proper envelope. The question
asked in exercise B concerns the car-
dinality of Do. Referring to the the
inclusion-exclusion theorem, we get

lpol=lul ->Al*Il+ ^41

-o
Finally, note that the above ex-

pression

can be rewritten as

4tll - Ilrt + rl2t - | 13! + rla!1.

Extending this, we note that if
Grandma |ones had had five sons,
there would have been 5! (1 - 1/1! +

t lzt - I 13! + t I 4t. - | I s\ : 44ways to
replace the cards without a single
card in its proper place.

CompoltEltt$
1. Since the stick is a rigid body, its

length doesn't change. So the compo-
nents of v, and vo alongthe stickmust
be equal. This immediately leads to
the answer: ve: vAcos cr/cos B.

2. Since the square is a rigid body,
the distances between any two
points remain unchanged. The com-
ponent of v" along AC equals vo.

i i,i

- Sla n a n a ILri' '') ' '"/.1
i,i,k

+ Iia. aanA, aA,HlttKll
i,i,k,1

= + r- (f 
)a 

r* (t)r,-(f)'r- (i)' ,

+ r- (f 
)a 

+ (;),'-(i),,. (i)r,* Il4 n\nAnnArl
i,i,k,1

= (1') - [(?)(I). (flr) {r)(r)
.(rli)l

.(?)(r).(?I?Ir)

.(?)(3).0- o. o

-0+0

d(50)=so-fso*n9 -]9\z 5 10

=20i
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A

Figure 16

This fact, along with the given direc-
tion of v", enables us to reconstruct
vector v" (see figure 15).

Vector v, is directed along AB
(otherwise BC would change-look
at vctl.Its component along AB-
that is, the vector itself-equals the
component of vo along AB.Eor vo
we know its components along CD
(it's v6)and alongAD (it's the com-
ponent of vo along AD). Adding
them as vectors leads to the answer:
v, = v orl2 I Zi v 

" 
= v n^,li ; v o = v erES .

Note: "adding them as vectors"
usually works when you need to re-
construct a vector given its comPo-
nents. But it works onlybecause the
given components are usually per-
pendicular to one another. But we
can find (and work with) a compo-
nent of a given vector along any di-
rection! And if we have components
along directions that are not at dght
angles to one another, we need to
use a more general {but not more
difficult) method that would work
for any case (including the "tradi-
tional" one).

3. The answer is v" = v a; v, : 2v o.
It's easy to find v"-its component
along AC is the same as that of vA.

Finding v, is more interesting. A1-
though we know its component
along AB (it equals vol and BC (it

equals v 6,1, thereconstruction might
be a problem. Look at figure 17: v,
is not a vector sum o{ its comPo-
nents. We drawDE perpendicular to
AB, andFE perpendicular to BC (re-

call the definition of a component).
Vector BE (whose length can easily
be found, right?) represents vB.

4. The force of friction is always
directed opposite the velocity of an
object. If we tum the nail while pull-
ing it out, the velocities of each point
of the nall are directed at a certain
angle to the desired direction, and so

the component of the force of friction
acting against the direction of pulling
is smaller (see figure 18).

without with
turning turning

i <_5l-r

Figure 18

lllo ualctlltl$
(See "Look, Ma-No Calculus!"

in the last issue)
1. Consider the (parallel) rays of

sunlight as seen from Syene and Al-
exandria at noon on midsummer
day (see figure 19). Since cr: B, we
conclude that the ratio of AS to the
circumference of the Earth is equal

to 7 .5 1360-that is, 500 I C = 7.5 I 350,
or C = 48 . 500 =24,000 miles. With
n = 3, this leads to R =24,0001(2 

. 3l
= 4,000 miles.

2. Your spreadsheet calculations
are of the form

N(t + 1)-ru(t) = 0.1N(t)* 0.000sN(r)2

= o.ooosN(r)[2oo - N(r)].

This shows that N(t) is increasing
for 0 < N(t) < 200 and decreasing for
N(t)> 200.

l[UI0 U'ohleln$
(See the Happenings department

in the last issue)
1 . We can assume that a, > a2 > . . .

> a-.We claim that a, + a^ * , -r) n + |
for 1 < i<m. II ar+ am*L-r<ntor
some i, then ar. < ai + am < ai + am _l
< ... < ai t a- * r -r3 n. Hence each of
the i numbets ai+ an1, ai+ a^_1t ...t
ai + am* 1_ j is a different one from
a1t a2r ...t ar-r. This is impossible. It
follows that

2(q+ ar+..'+ a-)

=(o,,* r-)+(ar+ o^-r)

+...+(o-+ or)

>m(n+t),

m2
2. First, assume that OQ is per-

pendicular to EF (fig. 20a). Now
OEBQ and OCFQ are cyclic quadri-
laterals. Hence ZOEQ: ZOBQ =

ZOCQ : ZOFQ.It follows that
AOEQ = AOFQ and QE = QF. Now,
suppose that QE = QF. SupPose the
perpendicular through O to EF
meets BC at Q'* Q (fig. 20b)Draw
the line through Q'parallel to EF

such that it meets lines AB and AC
at E' andF', respectively. Then Q'E'
: Q'F'as before. Let AQ'meet EF at
N. ThenN+ Q andNE : NF, so that
QE * QF. This is a contradiction,
unless Q and Q'coincide-that is,
OQ is perpendicular to EF.Figure 17
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o
Figure 20

3. Note: the statement of the
problem contained an error. In the
first sentence, the last element in
the set should be 2k (not 3k, as
printed).

(a) Let g1 denote the number of
elements in the set {1, 2, ..., kl
whose base 2 representation has pre-
cisel.v three 1's. Clearly, /(7<) and S(k)
are nondecreasing functions, and/{k)
= g(zk) - gik'. Hence

l(k + 1l- i-\
=ct2k - I - : ^ - 1 t-[g12k)-g(k)l
=s(2k - I -. l^ -lglk * I)-c(l]1.

Now the binarr- representation of
2k + 2 : zlk - I :s obtained from
that of k + I sirnp.r- br- appending
a zero on the rrgh; s.cie oi the nu-
meral. Hence eithe r both 2k + 2 is
countedin g(2ft - I a:rd k + I is
counted ing(k + 1'. c: r:.e Lther is. It
follows thatl(k + I -'-< : 1 or0,
depending on whether l-< - 1 is
counted ing(2k + 21. In anr- case, 11k)

does not skip over an\-:. :-rivc inte-

gers.Notethatgi2-' = rl - I ={!)

so that fl2"l= g,2'-' - il'=
("J') - (:) = (;) Hence -^ is not

bounded {rom above. It foLlorrs that
the range of /(k)is the set ci a1l non-
negative integers. For anr positir-e
integer m, [1kl = m has at ,easr one
solution.

(b) Suppose l(k) = m has a unique
solution. Then /14 - I - -^ = I =

f(k) -f(k - 11. The iormer holds ri and
only i{ 2k + \ is counted in -t127< + 2).

Equivalently, there are precisely
two 1 's in the base 2 represe ntation
of k. The same holds for k - 1. This
is possible if and only if the last digit
of k - I is 1, the second-last digit is 0,

and there is precisely one other digit

that is 1. In other words/ k = 2 + 2
for some integer n > 2. Now

fl2 + 2l = g(2 *' * 4l - gl2 + 2l

:l+g(2.rlr-g(21
/n\:1*\z/'

It follows that the set of positive in-
teger m for which f(kl = m has a

unique solution is {1 + (;) t 
">21.

4. Note that mn - 1 and m3 are
reiatively prime. Then mn - I divid-
ing n3 + 1 is therefore equivalent to
mn-l fividingm3(n3 + 1) =m3n3 -l
+ m3 + 1, which in tum is equivalent
to fi1n - 1 dividingm3 + 1. If m = nt we
have (n3 + lll(nz - ll : n + rlfu - ll.
This is an integer if and only if n = 2.

We now consider the case m > n.If.
n = lt thenZllm - 1)is an integer.
This is so if and only if m = 2 or 3.
Suppose n > 2. Note that n3 + 1 =
1 (modn), whilemn- 1:-1(modn).
Hence if (n3 + lllmn - 1) is an in-
teger, then it equals kn - 1 for
some positive integer k. Now kn - 1

.(r3* tllln'- i)=n+ rlln-Ll,or
(k- 1)n < | + ll@- l). Hencek : 1,

so that na + | : lmn - 1)(n - 1). This
yields m = (n2 + lllfu- 1) : n + 1 +

zlb - 1), which is an integer if and
only if a = 2 or 3. hr either casg we have
m: S.In short, there are nine solu-
tions-namely, (2,2), (2, Ll, (3, ll, (5, 2l1,

(5,3), (1, 2l,ll,3l,(2,51, ar,d(3,5), the
last four obtained by symmetry.

5. Condition (ii) implies rhat flxl = x
has at most three solutions: one in
(-1, 0), one equal to 0, and one in (0, -).
Supposeflu) = u for someu in (-1, 0). Set-

ting x: Y = u in condition (i), we have

fluz + 2ul : u2 + 2u.Since 0 < u + I < 1,

u2 + 2u = lu + ll2 - I is also in (-1, 0).

Hence u2 +2u: u; but then u is not in
(-1, 0). Then flv) : v for some v in (0, +-)

leads to a similar contradiction. How-
ever, f(x + (l + xlflxll : x + { 1 + xlflxl for
allxinS. Wemusthavex+ (1 +x)/(x)
= 0, so thatflxl = -lxll + x)1. We now
prove that this function does have the
desired properties. Clearly, fkll" :
-[1/(1 + x)] is strictly increasing on S.

For all x andy in S we have

y+(1+ y)f(*)=r-*(r+Y)
1+x

_y-x
1+x

and

x-y
l+y

, x-y
l+y

=Y -'
1+x

6. Let A be the set of all positive
integers of the form e1e2...eq1,
where et < ez a ... < eqr are primes.
In other words,

A:12x3,2x5,2x7, .,.1

u {3 x 5x7,3 x 5 x 11, ...}
u {S x 7 xll x 13 x 17, ...1
u....

For any infinite set S = lpt, pz, ps, ...1
of primes with pr< pz < pz < ...,
we can satisfy the requirement
of the problem by taking k = pt,
m = PtPz...P7.r and n = PtPs...P** y

rA Ttre National
(32" erbor oay_lssrd4$e4

96,000 acres of irreplaceable
rain forest are being burned
every day. Join The National
Arbor Day Foundation and sup-
port Rain Forest Rescue to help
stop the destruction. Call now.

Call Rain Forest Rescue NO\ff.

1-800-255-5500
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TOY STORE

Tl'iad and trtls
An intrepid trooper in facing down puzzling invariants

by Vladimir Dubrovsky

HIS ARTICLE WAS WRITTEN
soon after the 1994 problem-
solving workshop of the Intema-
tional Mathematics Tourna-

ment of the Towns, which, like a year
before, again took place in Beloretsk,
Russia, last August. This is a very
special, perhaps unique event that
combines features of a summer
school, an oiympiad, and a "research
institute" for high school students.
(To get a better idea of what happens
there, read "A Tale o{ One City" in
the May/|une 1994 issug which cov-
ers the previous workshop at Belo-
retsk.) I was invited there as a mem-
ber of the jury and proposed an
extended problem that is known to
the readers of our Toy Store depart-
ment as the triads puzzle (see the
November/December 1993 and
lanuaryfFebruary 1994 issues). I ex-
pected that the problem would prove
sufficiently attractive-indeed, even
before I had time to finish the presen-
tation, I noticed the swirl o{ coins
modeling thepuzzle on some desks
in the class-but I didn't expect to
receive such wonderful results. The
first few warm-up questions (those
posed in Quantuml were answered in
practically no time (to be exact, in a

Figure 1

Basic triangle of six chips, their
numbering, and the corrasponding
grid.

day). And even much more difficult
and far-reaching extensions received
exhaustive andbeautiful, if not abso-
lutely impeccable, solutions. So I'd
like to share some of these remark-
able findings with you.

Let me remind you that the game
of triads, whose original version be-
longs to Sergey Grabarchuk, consists
in rearranging six round chips that
initially form a triangle with three
chips to a side by moving them in
small triangles of three chips touch-
ing each other ("triads"); a triad is
only allowed to be slid along the
board "parallel" to its initial positioq
after a ffiad affives at its new place,
new triads emerge/ and the process is
continued. We'l1 assume from the
beginning that the chips are num-
bered 1, 2, ..., 5 as in figure 1, and
consider only the arrangements in

which the centers of all chips fit on
the nodes of the triangular grid in this
figure. (This is convenient and, in
fact, nonrestrictive. )

Penmu[ations and $ifls
One of the first warm-up ques-

tions about the triads proposed at
the workshopwaswhether all of the
6! : 720 possible permutations of
the chips can be created by moving
triads. The answer-which is yes-
was already given in previous Quan-
tum issues. It was even shown that
we can obtain any permutation
without shifting the big triangle as

a whole. Another, much better solu-
tion was found by an American par-
ticipant in the workshop, |oseph
Shaeffer, a student at the Oak Tree
School in Charlotte, North Carolina.
His five-move operation, shown in
figxe}, swaps a comer piece with an
adjacent one, Ieaving the entire big
triangle in its initial location. A
proper rotation or reflection of this
operation can swap any comer piece
with any of its two neighbors. And it
is not hard to show that these swaps
su{fice to create any permutation.

Along with a number of other
participants, |oseph also found an
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"Shaeffer's swap." Triangular frames indicate the triads we're about to move
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to our readers, though. Such things
can often be proved by means of rn-
variants, the technique described in
"Some Things Never Change" in
the September/October 1993 issue.
Let's see what it means in this par-
ticular case.

Number the horizontal rows of
the grid ..., -2, -1,0, 1,2, ... as in
figure 4. Consider an arbitrary set of
chips on the grid and the sum of the
numbers of the rows on which they
sit. When a triad is moved, the three
numbers under it clearly all change
by the same amount, so the total
sum changes by a multiple of three.
This means that this sum
modulo 3-that is, its remainder
when divided by three-remains
constant. Such unchanging values
are called invariants, We'Il denote
our invariant su, reserving the nota-
tion s, for a similar invariant ob-
tained from numbering another,
slanting set of grid lines (fig. 4).

These invariants offer a clue to
the cluestion about shifts in exercise
l. If a set of N chips is moved hori-
zontally-s ay, by a vector a-its su

obviously doesn't change, but its s,
changes by N (mod 3). So the a-shift
is possible only for N divisible by 3;
otherwise, we can do only the shifts
by multiples of 3a. The same is true
for slanting shifts. Now complete
the solution yourself, and also try
the following exercises.

Figure 4
Numbering of grid lines and coloring
of nodes used to define invariants.

Figure 3
Unit shift.

operation (fig. 3) that moves the
whole big triangle horizontally by one
position-by the vector a = 45
(fig. 1)-between two neighboring
nodes of the grid. Reflecting this op-
eration in the bisector of the angle
146 of our triangle, we obtain the shift
by b = d . Irrrd, combining the two
operations and their inverses, the big
triangle can be shifted by any vector
na + mb with integer n and m. This
is an exhaustive answer to the ques-
tion about shifts that was left open
in the fanuary/February 1994 Toy
Store article. So the big triangle can
be moved ro any position on the
grid, and er.en rvithout changing the
relative order of its chips, because
any rearrangement accompanying a

can be erased using the swaps de-
scribed above.

An inual'ianl

Since whatever rearrangements
we wished to obtain so far turned
out to be possible, the impression
may develop that this will continue
forever-that is, any two arrange-
ments of equaIl,v many chips on our
grid (each contai.ning a trrad, of
course) can be transformed into one
another. Horvever, when we try to
reproduce our results for a bigger tri-
angle of chips (which is an obvious
generalization), we run into an ob-
stacle.

Exercise 1. Show that for a tri-
angle with n chips to a side any
permutation of chips is possible.
But the set of possible shifts de-
pends on n: for n of the form 3-k or
3k +2 (k = 1,2, ...)the triangle can
be moved by the vector ma + lb
with any integer m and 1, and for
n = 3k + 1 only by "triple" vectors
3ma + 3lb.

That some shifts are impossible
for some n seems to be a more diffi-
cult part of this problem. It requires
a new approach-one not unfamiliar
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Exercises
2. Is it possible to transform a tri-

angle of size 3 (three chips to a side)
into the " paral-
lelogram" in fig- a $\.&,
ure 5a? ( _,\,

3. For what val-
ues of n can a tti-
angle of size n be
inverted-that is,
turned upside
down?

4. Can a tri-
angle of size 3 be
transformed into
the configuration
in figure 5b?

S[apes
The last exercises illustrate a

third type of question that can be
asked about the triads: what shapes
can a triangular set of six chips take
after an arbitrary rearrangement by
triads? (The first two were about
permutations and shifts.) In fact, to
solve this third question means to
solve the ultimate problem, so to
speak, about the triads-that is, to
describe a1l possible arrangements of
the six chips of our initial triangle
that can be obtained within the
rules of our game. Indeed, such an
arrangement is determined by the
shape and location of the set of the
six nodes occupied by the chips and
by the order of the chips on these
nodes. But we know that any order
is possible, because any pennutation
in the initial triangle is possible. We
also know thatany achievable shape
can be arbitrarily moved over the
grid with respect to the initial tri-
angle, because this is true for the tri-
angle itself. So the only thing that
we don't know yet is what shapes
are possible.

By the way, did you actually try
to solve exercises 24? If you simply
skipped them, do try. Computing
the invariants s, and sr, you'll
quickly find that lhe answer to ex-
ercise 2 is no. It will be a little more
difficult to determine the values of
n for which a triangle of size n carr
be invqrted (exercise 3), and I guess
it will take considerable time and
effort to verify that the triangle is
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Figure 5
Can you obtain
these shapes
from a ui-
angle!

Figure 6
Shapes with a blocked tiad.

really invertible for these values. As
{or exercise 4, out invariants do not
distinguish between the six-chip tri-
angle and the shape in figure 5b. Yet
I'm sure you haven't found a desired
transformation so far. But the fact
that such a transformation is very
hard to find may not mean it doesn't
exist at all. It was hard in exercise 3
also, wasn't it? However, I have very
good reasons to be.sure. And maybe
you found them, too: there are in-
variants other than s, and s, that
prevent this transformation.

To describe them, color the nodes
of the grid as shown in figure 4. This
coloring can be defined algebra-
ically. Using the numbering of lines
in this figure, to each node we san
assign a pair of integers (x, yl-the
numbers of the slanting (x) and hori-
zontal (y) lines that pass through
this node (lx, yl are the coordinates
of the node relative to the Oth lines
as the axes). Then all the nodes with
the same difference x - y modulo 3
are colored the same: in figure 4 the
nodes with x - y = O (mod 3) are
black, those with x- y = 1 (mod 3)
are red, and with x - y = 2 (rnod 3l are
white. A triad on the grid always
covers one black, one red, and one
white node, so when triads are
moved, the numbers ds, d1, anddrof
black, red, and white nodes under all
chips remain invariant. (Turn back
now to exercise 4!)

So now we have five invariants:
sr, su, ds, dr, d2. They are not inde-
pendent, though: clearly, s*= do+ d,
+ d, + sr(mod 3), so we can use/ say/
only s,hnd forget s,. Well, is that all
now?"Can we be sure that arly ar-
rangement of six chips whose four
(and so, all five) invariants are the
same as for the six-chip triangle is
achievable starting from the triangle?
Again no! Look at figure 6: all the
configurations depicted there have
the triangle's values of invariants-

that is, dr: d, = dz= 2, sr= l, but
it's impossible to obtain the triangle
from them. Indeed, the only triad in
figure 5a lor 6b) simply can't
move-it's blocked by the other
three chips; and the two triads in
figure 5c car, only be shuffled all
over the plane. The only way to cre-
ate another triad is to fit them to-
gether as in figure 5d-and find out
that this new triad is blocked as
well. However, we'll soon see that
these configurations (along with all
other possible combinations of two
"inverted" triads) are the only ex-
ceptions from the general rule ac-
cording to which the equality of the
{our invariants ensures the mutual
transformability of two sets of chips.

Necessary and suflhienl
Now I want to formulate and

prove the theorem on the triads dis-
covered during the workshop by
Hugh Robinson, who came all way
down from Coventry in the United
Kingdom to Beloretsk to win {irst
prize f.or his investigation of this
pazzle.

Let's slacken the rules of our game
and allow a ftiad to be lifted off the
plane when it's moved to another
position. Then a configuration of six
chips on our grid can be obtained
ftom our original triangJe if and only
if it contains a ftiad andhas the same
values of the invariants do d,, d, s, as

the triangle (do= d, : dr: 2, sr: 1).

The "on1y if" statement (necessity)
follows from what was said above. A
sketch of a proof of the "if" part is
grven in the next paragraph.

Figure 7 shows how we carl re-
move a chip from a node and, at the
same time, bring another chip onto
an adjacent node of the same color:
we simply attach a triad to the first
chip to make a "diamond" of four
chips, and then detach the other triad
contained in this diamond from it.
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Figure 7

lumping a chip.

The triad we attach can be "pointing
up" or "pointing down," and each of
these two orientations give three of
the six possible "jumps" from a
node to one of its nearest neighbors
of the same color. In each case, the
triad is inverted alter ajump. It's not
hard to see, from the values of our
invariants, that any configuration
that satisfies the condition of our
theorem consists of a triad and three
chips on nodes of different colors.
We can use the triad to rearrange the
"free" chips so as to form the base of
the initial triangle-three chips in a
row, because such a ro-uv alrt,a.vs cov-
ers three differently colored nodes.
After that we can cornplete the tri-
angle bv attaching the remaining
triad to the base. To obtain the gir-cn
coniigr-rration irom r1-re triangle rte
simp11- re\-erse the rrhr,le tran-.ior-
mation.

I'11 confine mr"self to thrs outlrr-Le
of a prooi, thouqh rt ne eds ir ce rtarn
refinement: \\-e nust make sure that
all thc Stcf:,T ljtc ir,ln.rorrrratiun
can realh' be perrorme d. You can
restore all the derails using the
equahtl- oi the inr-ariants.

Note that the described rnethod
of transformation has to do only
with the shape {and location) of the
set of chips-that is, wrth the nodes
they occupy. But this is sufiicient,
because, as we know, the chips in
the triangle can always be permuted
as desired. Also, it was essential that
we could freely move the "working"
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triads, which might not be the case
if triads were only allowed to be s1id.
However, it's not very difficult to
examine all arrangements of a fiiad
and three chips to make sure that
the above proof can be conducted
using sliding alone except for the
cases shown in figure 6.

Thus, the transformations of the
six-chip triangle are completely de-
scribed. The same method can be ap-
plied to extend our theorem to any
two sets of chips on the triangular
gnd. And not only that. If the initial
set, besides a triad, contains at least
two chips on nodes of different colors
with respect to the coloration in fig-
ure4, anypermutation of its chips on
the same set of nodes is possible, too.
(To swap any two chips, we move
them and three other chips so as to
form a "trapezoid" like the one
formed by chips 1-5 in figure l, and
then use the operation shown in this
figure-chip 6 is unnecessarybecause
it's never moved there.)

Tetrads

I'11 end this story with a three-di-
mensional generalization of our
puzzle. Consider a pyramid made of
ten equal balls (fig. B). We are al-
lowed to detach 2 ttlslyzdtt-a four-
ball sma1l pyramid-and move it
without rotation into any new posi-
tion, then detach and move a new
tetrad, and so on. What configura-
tions can be obtained from the ini-
tial pyramid?

Figure B
Something to train your imagination'.

First of all, we don't have an under-
lying grid in this case: if a, b, and c are
the vectors drawn from the center of
one of the balls in a tetrad to the other
three centers, then none of the vec-
tors joining the same center to the
center of the ball touching any three
balls of the tetrad from the outside
has the formna + mb + kc with inte-
ger nt mt k. Not only that-the set of
all possible positions of the balls' cen-
ters that can arise in this game is ev-
erywhere dense in space. So we can't
define invariants the way we did on
the plane, and it's not clear how our
investigation of shapes and shifts can
be carried over to space.

But it's possibie to give a com-
plete description of the permuta-
tions of the baiis. Hugh Robinson
and a few other participants in the
conference found the simple three-
move rearrangement shown in fig-
ure 9. It turns out that we don't need
anything else.

Exercise 5. Using this operation,
show that we can swap any corner
ball with any adjacent one.

Clearly, these swaps suffice to
obtain any permutation of the ba11s
in the pyramid, even without shift-
ing it. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 58
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Figure 9
Kev tearuttngenlent in the tetacls puzzle, top view. (The totrt ball af the pytantid jsn't shown and isn't ntoved.)
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