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Afric an lungle Pictur e :

If the Ladies Had Knew the Snakes Wouldn't Bite Them They Wouldn't Hat,e Hwt the Snakes;
lf the Snakes Had Knew the Ladies Wouldn't Httrt Thent Thev Wouldn't Have Bit the Ladies

(1989)by Thomton Dial

llow rs rT possrBlE FoR TWo spECrES TO rN-
llhabit the same ecological niche andyet misunderstand
each other so fundamentally? Let's assume that snake
flanks are not a delicacy in these ladies' cuisine. We know
that snakes are not in the habit of eatingpeople. The irony
here, then, is that a nonpredator-nonprey relationship
plays out as a doublepredator-prey relationship: each par-
ticipant predator and prey bothl

Or perhaps we should say'. attacker and attacked.
For no good comes of this encounter. No one comes
away with a full belly. In the worst case, no one is left
alive.

We are left to wonder how such a pointless tragedy
could have been avoided. When the snakes reared their
heads in self-defense, why did the ladies interpret that as

aggressive? When the ladies screamed, why did the snakes
not understand the ladies were afiaid and simply slither
away? In the immortal words of the prison guard in the
classic movie Cool Hand Luke, "Whatwe have here is a
failure to communi cate."

Then again, maybe the ladies and the snakes were
communicating, but the noise arising from thelr instinc-
tive mutual fears drowned out the messages. Such
things have been known to happen, even among mem-
bers of the same species.

This topsy-turrry vision of predators and prey is righted
in the article that begins on page 15. And questions of
communication theory will arise in later installments of
the essay on Norbert Wiener (founder of the science of
cybernetics), which begins onpage 47.
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by Victor Ufnarovsky

The relaxed captain of the good ship Cy-
bemetics is NorbertWiener, who coined
the term for the study of control and com-
munication in organisms, automatic
machines, and organizations. (The word
comes from the Greek for "helmsman.")
He was a major force in the develop-
ment of this interdisciplinary science,
and his work on Brownian motion, Po-
tential theory, and generalized harmonic
analysis places him among the great
mathematicians of the century. His three
hundred publications range through phi-
losophy, quantum mechanics, neurology,
and religion, in addition to mathematics,
and include book reviews, science fiction,
and (rumor has it) pseudonymous detec-
tive novels.

Tum to page 47 for the first install-
ment of a commemorative essay on the
life and work of this innovative thinker.

(By the way, the chromatic binary
code in the ship's name contains a sec-

ond message the artist hadn't intended.
Can you guess what it is? See page22.l

Physical Attraction

loue and ltate ilt tfie moleculan w0nld
by Albert Stasenko

Methods in Math

[ook, IUIa-lto calctllr$!
by Kurt Kreith

Breaking the Rules

Beyond t[e rsooh ol 0[m's lnw
by Sergey Murzin, MikhailTrunin, and Dmitry Shovkun

DEPARTMENTS

l0

15

24

2 Pullisltsr'$ Pags

0 Bnainlea$8l'$

23 lloul [o You tiuune?

30 ln lhe 0run Ail'
Panting dogs, aromatic
blooms, and tea in a

saucer

12 l(aleidosuope
The medians

30 Plrysirs Contest
Sup er conducting m a gn et

40 At tfie Blaukhoand
What you add is what you
take

]ulath lnuesliUation$
Egyptian fractions

l[[0l,ators
Tha legacy of Norbert Wiener

lla[[enings
IJS Physics Team pTaces
third in Beiiing .,. American
team garners six gold medals
at 35th IMO ... Competitive
computing in Stockholm .,.
Bulletin Board

Cl'issrnoss $GiEltcB

[n$wgl'$, llirl$ & Solutions

Toy Stone
Strips on a board

45

4t

50

50

57

83

Cover drt by Serg,ey lvanov

0llII'lIlJ]tll/C0lllItllIs

n



PUBLISHER'S
PAGE

Thl'uulinu lhe houlr al lhem

Maybe we should be throwing it out

LMOST WITHOUT EXCEP-
tion, the science textbooks
currently in use are seriously
de{ective. No wonder students

decide they can't learn science/ or
that it's boring.

What's wrong? First of all, the
level of abstraction in these books is
unevenly distributed, and often it's
clumped at the very beginning. Sec-
ond, the material is sequenced ac-
cording to the logic of the discipline,
not according to how we learn sci-
ence. Third, the books tell us what
the authors know, but not how they
know it. Fourth, and most impor-
tantly, the books fail to distinguish
between empirical science, on the
one hand, and theories and models,
on the other.

Open any 9th or 10th grade biol-
ogy text-a book used by students
before they've taken chemistry. In
chapter 3 or 4 you'll encounter
structural organic chemistry that is
a condensation of what you would
find in an 11th grade chemistry
book. Physics textbooks typically
beginwith one of the most abstract
of physical concepts: vectors. In ad-
dition to a disregard for how and
when to introduce abstractions,
these books are an unnourishing
byproduct of the "layer cake" ap-
proach to science education in this
country. Rather than study all of
these subjects every year in an inte-
grated way, American kids are fed
disjointed textbooks, one per grade.

Have you ever noticed that a book
will give you a technical term and
then explain what it means? It should
rather be providing the experience (or
appealing to vicarious experience)

first, then giving the name. Experi-
ence first, names laterl But find a

book that actuaily does this.
And what about evidence? When

you studied photosynthesis, your
textbook probably gave an elaborate
explanation of the process, including
the light and dark reactions, the two
photosystems, and several dozen
names of organelles and molecules,
including complex organic mol-
ecules. But how many books describe
the evidence for the structure or func-
tion of the various parts of the tissues
or ce11s associated with photosynthe-
sis? Have you ever noticed that the
formula in some books uses six car-
bon dioxide molecules plus sixwater
molecules to produce a carbohydrate
molecule and six water molecules?
Other books show twelve water mol-
ecules going in and six coming out.
Now, why in the world would nature
take in twelve molecules of water,
only to give six back again as prod-
ucts? The answer is crucial: the only
way the process could split oxygen
from water (instead of from carbon di-
oxide) is by using twelve water mol-
ecules. How do we knowthe oxygen
comes from the water instead of from
the carbon dioxide? What is the line
o{ evidence that demonstrates this
fact? It's not enough to Learn what
happens-we need to know how it
happens, and how we know it hap-
pens in a particular way.

The most serious problem with
existing textbooks is the failure to
distinguish between (1) the observa-
tions and laws of empirical science
and (2) the theories or models we use
to account for that empirical knowl-
edge. For example, light is often called

"light waves," and the books say the
light waves do this or that. What
about water waves? We don't say
they "do" anything. Certain aspects
of water can be described in terms of
waves, but there are others where the
wave analogy falls short. For example,
water flow requires a different descnp-
tion. Likewise, light also behaves Like a
particle. Some phenomena (for in-
stance/ the photoelecrnc eftectl requrre
a particle model of light.

Some authors seem to enjoy cre-
ating the impression that there is
some kind of paradox in nature be-
cause "light must be both a wave
and a particle." This confusion is
caused by imposing the model on
the phenomenon. Light is neither a
particle nor a wave. Light is iight!
The paradox lies in our inability to
adequately describe or explain it.
Nature speaks with one voice-it
harbors no paradoxes. What we need
is a model that can explain both sets
of phenomena. (Actually/ a more so-
phisticated use of a statistical ver-
sion of quantum/ or photon, theory
can accomplish this unification.)

We must be able to fistinguish be-
tween a definition lD = mlv) and a law
(PV: constant). One is made up to rep-
resent a concept (in this case, density),
while the other describes a relation-
ship between two concepts expressed
symbolically. Observations and mea-
surements represent our appeal to na-
ture, and the results are sometimes
summarized in the form of empirical
1aws. When we want to explain those
observations or measurements/ we
create a theory or model.

For example, when we want to
explain Boyle's law, Charles's law,

It0t,tilBrR/[tcrltllBtR 1 ss4



and Guy-Lussac's law, we create a
theory called the kinetic theory of
gases. We apply Newton's laws of
motion to a set of particles, and we
work under a certain set of assump-
tions. When we're finished, we find,
to our surprise, that the temperature
of such a gas is ecluivalent to the av-
erage kinetic energy of the molecules.
Yet books ofuen define temperature
as the average kinetic energy of mol-
ecules-that is, a concept has been
defined in terms of a theoretical pre-
diction. (Actually, the temperature is
not the average kinetic energy of mol-
ecules. At very low temperatures-
below the lambda point for iiquid
helium-the temperature is more
nearly connected with the orienta-
tion of atoms and nuclei rather than
with the motion of atoms or mol-
ecules.) In a similar vein, Stephen |.
Gould has written elocluently in a re-
cent issue ofNatwalHistoryon the dis-
tinction betw een the f acts o{ evolution
and the theory o{r'atxd, selection.

One of the most enjoyable things
about leaming science is trying to ex-
plain what you've observed. You start
with an educated guess (hypothesis)
and, by testing it, you begin to create
a more elaborate framework (a theory
or model). This is the creative part of
science, and it's a shame to deprive
students of that experience, or to de-
ride their initial efforts because they
may not match the most current,
"cortect" explanation held by scien-
tists. Those same scientists went
through as many of the false starts as

the novice student who is trying out
his or her first hypotheses.

If you're a teacher, refuse to use
textbooks that don't measure up and
make sure your teaching matches
how we actually learn science. If
you're a student, insist on under-
standing the how's and why's, and
pay attention to the evidence. Be
skeptical of textbooks and of unsup-
ported assertions. There is only one
authority in science. It is neither your
textbook nor your teacher. It is nature
itself, and you appeal to that author-
ity only through careful observation
and measurement of natural phe-
nomena.

-BillG. Aldridge
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It isn't really our goal, but somehow we'll get there

by Victor Ufnarovsky

IT'S A SPECIAL DELIGHT TO
I wak "following your nose": you
I wander aimlessly, and all of a sud-
I o"n you encounrer somernrng aD-

solutely unexpected, something that
could never enter your head when
you started your walk. Let me invite
you to take such a walk along one
intricate mathematical path.

We'llset off from the well-known
criterion for divisibility by 9: a num-
ber n is divisible by 9 if and only if
the sum of its digits is divisible by
9. Or, to put it even more impos-
ingly:if the sumo(n) of the digits of
a numbu n is subtracted from n,
then the result is always divisible
bv 9.

But first let's take a seat and talk
about notation. The choice of nota-
tion, however strange it may seem/
determines a lot. That's why math-
ematicians are usually rather con-
servative in this regard. For instance,
the notation n will te1l any math-
ematician that we're talking about
integers, most probably positive in-
tegers. (By the way, what did we
mean by n in the preceding para-
graph?) The notation o wasn't
picked out of thin air either: from

I time immemorial the Greek letter
o "sigma," and its capital version I as

< well, have been used to denote sum-
E. mation. Our sum is small, so we'll
! ,r" the small letter.
H Let's look at notation from an-
? other angle. You probably know that

the Arabs write from right to left
rather than from left to right, as we
do. But did you ever consider the
fact that we ourselves treat numbers
in the Arabic way-from right to
left? Go ahead, don't believe me-
after all, we write down numbers
from left to right. True enough. But
how do we add them? What digit do
we begin with: the first or the iast?
And what about multiplication? |ust
try it the other way around! In f.act,
it would be more convenient to
write digits from right to left, but
there's nothing we can do about it:
this custom has become second na-
ture to us. To get around this habit,
let's write numbers in another
form-not as a string of digits, but as

an expansion in powers of ten-say,
not234,but 4 + 3 . 10 + 2. 100. Our
habit doesn't rebel against it, so let's
write our number n in this way:

n: ao+ ar' + ar'lO2 + ... + ao'lOk,

where co is the iast digit of. n, a, is
the next to last, . . ., and ao the first,
so that the total number of digits is
k + 1 and their sum is

o(nl= ao+ ar+ a2+ ... + ak.

Now it costs nothing to prove our
statement:

n - o(nl = (ao- ao) + a,(10 - 1)

+ar(loz - 1) *...+ ao(lOft- 1)

= 0 + 9 + 9ar99ar+ ... + 99...9ap,

which is, of course, divisible by 9.

(By the way, how many nines are in
the last coefficient?)

Now that we've admired the re-
sults of our labor to our hearts' con-
tent, Iet's continue our walk. What
else can we obtain just as easily,
without exerting ourselves too
much? We can change either the
problem, its proof, or the notation.
Let's not fiddle with the proof. Can
we change the problem? Sure, it's
not hard to think up and prove a cri-
terion for divisibility by 11-we
only have to consider the altemating
sum ao - ar + a2- az + .... And if we
dig into it deeper, we'll get some-
thing like a universal divisibility
criterion (prove it as an exercise):

Letmbe a natural number and let
Pt, Pz, ..., Ppbethe remainders of the
numbers lO, !02,..., 10k upon divi-
sion by m. Then the number

n-(ao+ ap1+ azpz+ ... + applal

is divisible by m.
For m = 9 we get the result proved

above. (And what about I 1?) Eor m : 7
we get the sequence of remainders 3, 2,
5, 4, 5, l, 3,2, and so or1 periodically.
Therefore, the remainder of 1994
when divided by 7 equals the re-
mainder of 4 + 9. 3 + 9. 2 + l. 5 = 55,
which in tum equals the remainder of
5 + 5' 3 = 2],which in tum . . . But
perhaps at this point we can stop and
say that it/s 5. Not too interesting . . .

Let's walk another way and try to
change notation. How? Those who

OUAIIIUll/l/IIATURI



zto n2 or{n) 6(n) :n-or(n)

0 0 0 0

I I 1 0

2 10 1 1

6 11 2 1

4 100 1 o

5 101 2 J

6 110 2 4

7 111 J 4

I 1000 1 7

9 1001 2 7

10 1010 2 8

11 1011 3 8

t2 I 100 2 10

are even slightly familiar with pro-
gramming will at once suggest that
we use another number system-for
instance, binary notation:

n:bo+br.2+br.2? + ... +b^-2-,

where the coefficients b, are ones
and zeros-for example, 25 = 1 + 0.
2 + O. 4 + I . B + 1 . 15. Wecanalso
compute the sum of binary digits
or(nl = bo+ b, + ... + b-. (The index
2, of course, alludes to the base of the
number system/ so the sigma we used
above was o1o.) The corresponding
theorem rcads: The numb er n - o p(n)
is diuisible by . . .Indeed, by what?
In the decimal system the corre-
sponding difference was divisible by
9 = 10 - 1, so here it must be divis-
ible by 2 - I = 1. This fact is true but
not very valuable. What if we try the
general case of p-nary notation with
an arbitrary base p? We write

fr: ao+ aLp + azp2 * ... + apf ,
where ai < p, and denote

onbl = ao+ ar + a2+ ... + ak.

Now we arrive at a beauti{rrl theorem.
Tnronrm l. The number n - 6 p(n)

isdivisiblebyp-1.
Let's prove it. Our reasoning re-

mains basically the same:

n - ooful - lao- aol + arlo - ll
+'arlpz - 1) * ... + ae{t' - ll

is certainly a multipie of p - 1, be-
cause for any positive integer m,
p^-l =(p-ll(p--t *rm-2 +... + 1).

For instance, in the octal system
the number n: I24 is divisible by 7
(becausen - or(n) : n - 7 is divisible
by 71. Care to check? Here goes:

4+2.8+1.64:84,
which is indeed divisible by 7. So
we've created a new criterion for
divisibility by 7 .lt's a pity we're not
used to the octal notation.

Where else could we go? What
else could be derived from divisibil-
ity? What if we . . . actually divided?
Actually, that's a Yery good ques-
tion: what is the quotient

equal to? Interesting . . . Why not
begin simply withp = 2-atleast we
won't have to do any work to divide
here. For starters, we'll fill in the
following table:

What do we see? The number 6(n)
doesn't change for odd values of n,
but does change whenevern is even.
By how much? Aha! Simply by the
number of zeros at the end of the
binary notation of n. And this num-
ber, as is clear, is the greatest power
of two that is a factor of r.1 For ex-
ample, n = 12 is divisible at most by
4 :22, and we make a step of magni-
tude 2 from 8 (n = 11) to 10 (n : 12).

So we can say that 6(n) "counts" how
many powers of two are contained in
the numbers L, 2, ..., nt or, we ought
to say/ intheproduct I . 2. 3. .... n,
which is called n factorial and de-
noted by n!. So, it looks as if the fol-
lowing fact is true: 6(n) : n - o(n) is
themaximum exponentof apower of
two that is a diuisor of n/. How about
its proof?

The technique of induction natu-
rally springs to mind. For smalln ev-
erything is ciear from the table. Let's

lThis is admittedly arather
slipshod expression, but we'Il allow
ourselves to use it at times for the
sake of brevity. To be accurate, I
should have said "the exponent o{ the
greatest power of two . . ." I hope this
shortcut won't mislead you-neither
here, nor below.

take the "inductive stqr." Suppose we
akeady know that our statement is
true for n - 1; that is, (n - Il - o r(n - Il
is the greatest power of two that is a
divisor of (n - 1)!. Consider the num-
ber n. To obtain n! we must multi-
ply (n - 1)! by n. In so doing we in-
crease the number of powers of two
in (n - 1|! by that inn-that is, by the
number of zeros at the end of the bi-
narynotation of n. Andwhathappens
to the differen ce (n - ll - orln - I )? The
minuend n - 1 increases by 1. How
does the subtrahend or(n - 1 ) change?

Suppose the binary notation of
n has k zeros (l< > 0) at the end:
n : ... 100...0. Then the binary nota-
tion of n - 1 ends with exactly k
ones: n - I : ...01 1...1 (it may con-
sist of nothing but these ones).
Therefore, the number of ones has
decreased by k - 1, and the total
change equals 1 - (-{.L - 1}} =k. This
completes the induction proof.

What next? We[ it would be inter-
esting to check if this is true in gen-
eral-that is, whether the number

n_o r(n)6-(n)=Y p-l

is the maximum exponent of a
power of. p that is a divisor of n!.

Exercise 1. Prove this forp:3.
Alas, we're going to be disap-

pointed in the case p = 4. The
number 6l is divisible by 42,b:ut
since 6 is written as 12 in base 4,
64{6} = (5 - 3ll3 = t + 2.I'11 tell you
the reason right away: p must be
prime.

Exercise 2. Prove the statement
for any prime p.

Fortunately, prime numbers suf-
fice to answer questions about di-
visibility. But what can we do with
factorials-where can we apply the
knowledge we've just acquired?
First of all, certainly, to binomial
coefficients Cf; = n! I klln- k|! (often

denoted uv (X)t.

The formula they are most
closely linked with is the Binomial
Theorem:

lx * yl": xn + Clx"-ry + Czxn-zyl

. +...*C|-rxyn-r*y'.
n- o (n\

6-(n)= P' '
Y p-l

il0l,titBtn/0tctitBtR 1 094



For greater symmetry we'll use the
formula

/1n _(m+ n)l
m+r ntmt

Thanks to what we've leamed, we're
able to compute the greatest expo-
nent with which a primep enters the
factorization of this binomial coeffi-
cient.It's exactly eclual to 6(m + n)-
6o@l - 6r(n), or

(m+n)-o (- +,) - (- - o,1-;)- (" - o,(")
p-L

or(-)*o,(r)-or(-*r)
p-t

Beautiful, isn't it? For instance, if
o o(m + n\ : o r(m) + o o@1, then C' *,
is not divisible byp, and vice versa.
And when does this happen? Well, at
least when there are no carries from
digit to digit as we addm andn in the
p-nary notation. For instance, add-
ing 23 and32 in base 7, we get 55
without carries. The conclusion:
since3 +2.7 =17 and2+3.7 =23,
then C][ is not divisible by 7.

What if there are carries? Suppose
the rth digits of m andn are r < p and
s < p/ respectively, and their sum I +

s > p. Then we'l1 have to carry I to the
next digit, and in theith digitr + s -p
will replace r + s. Therefore, the con-
tribution of this digit to o,(m) + o,{n)

-6Dlm +nl will bep- I. Br,it we divide
it 6y p - I. Remarkablel How could
we have failed to guess at once that
the following theorem is true?

TsroRpm 2.If p is aprime, thenthe
exponent of the greatest power of p
that is a divisor of Cfl*nequals the
number of carries when the numbers
m and n are added in the p-nary
numbu system.

Now that's some theorem we've
managed to reach! What could we
derive from such a nontrivial fact?
You don't know where to look firstl
For the sake of simplicity let's start by
studying Cfn, the largest binomial
coefficient among all that enter the
expansion of the binomial (, * y)2".
(By the wayt catt you prove that this
coefficient is indeed the largest?)The
greatest power of p into which it di-
vides is equal to the number of carries

when n is added to itself in the base-
p number system.

Suppose n < p < 2n. Thenthe p-
nary notation of n consists of one
digit (the digitn), and2n consists of
two digits-say, 2n = r + I . p. So
there is exactly ore cartyt and the
factor p enters Cln once. (You can
check this simple result directly.) It
follows that the product of all prime
numbercbetweenn and 2n does not
exceed Ci,. Can you imagine a
more attractive result? Let's do a
rough estimate of Ci,.

Setting x: y = 1 in the binomial
theorem, we get

1+ C|r,+ 4.n+ ...+ d;-r +I=22n ,

which implies

Ct,.4".

Similarly, the product of all
primes between nlZ and n is less
t}nan 412; between nl4 and nf2 it's
less than 4la, and so on. Then the
product of all primes between 1 and
n is less than

4n12 . 4nla . 418 . ... < 4n.

Thus, free of charge, we get the fol-
lowing fact, which is not at all obvi-
ous.

Turonpu 3. The product of all
prime numbers less than n does not
exceed 4'.

Exercise 3. Prove this strictly. (We
were too careless with division by
two, having "Iorgotten" that some
numbers may be odd. Perhaps the
best rigorous approach is to use in-
duction.)

Now suppose thatp < n. Then the
notation of n contains at least twop-
nary digits. If 2n is written with ex-
actly two digits, t}rren 2n < p2, and
there surely is no more than one
cafty. This proves the following
statement.

LEnne L. If p , "tm, then the
greatest powu of p that is a divisor
of Ct, has an exponent no greater
than L.

What if there is no divisibility at
all? Since 2n . p2, we can write n =
ao + alpt where as < p, a, < pf 2. To
have no carries, it's necessary that

ao < p 12. In particular, for a, we see
that C{, is not divisible by p If. ao =
n-p <p12. This leads to the follow-
ing lemma.

Lr,mma 2. If n 2 p > 2n/3, then Cl,
is not divisible by n (n > 2).

To prove this, it suffices to note
that the condition n, p < pl2 rs
equivalent to n < 3pf 2, or p > 2nf 3.

Now let's reckon what happens
with small values of p, p < "lZn.
Here several carries may occur, but
no more than ft, il 2n : ao + atp +

azpz * ... + appk. Since 2n 2pk, we
have log,2n > k, so the greatest
power of p that is a divisor of Cfl has
an exponent no greater thanlogo2n.
This means that for arbitrary prime
p the following lemma is true.

Lpume 3. If N : p* is a divisor of
C[,, then N !2n.

Indeed,

P- < Plo,"n:2n'
Well then, now we have a more or

less clear idea of the structure of the
number Cln.Its factorization into
powers of primes consists of three
types of factors:

1. Prime numbers greater than n
(and, naturally, less than 2nl-
each entering the factorization
exactly once;

2. Primenumbers less tharrLnf 3,but
greater than "l2n-each appear-
ing no more than once;

3. Prime numbers less than^t'Zn . Here
the divisibility by f with k > 1 is
possible, but al1the same the total
contribution pk of each o{ these
primes is no greater thanln.

Could it be possible that the first
group is absent-that is, that there
are no primes between n and2n? In
that case all prime factors must be
concentrated in the second and third
goups. Can we estimate their actual
contribution? The product of all the
numbers of the second group, by
theorem 3, is no greater than 42"13.In
the third group there are certainly
less than J2" - 1 primes, so their
contribution does not exceed
(Ln)J'"-t.To sum up: if there are no
primes between n and 2n, then the
inequality

OUAllTUll/l/IIATUftI



cL,.4'n,'.(zn)6-' (1)

must hold.
What a thought! If we prove that

this inequality is wrong, we'll prove
the famous postulate of Bertrand:
There is at least one prime number
between n and 2n.

Let's try to estimate Cfl. Since
it's the iargest of the binomial coef-
ficients in (1 + 1)2", and since there
arcZn + t < 4n of them in all, we can
be sure that Cl, > 4 f 4n. Along with
equation (1), this yields successively
({or large enough z)

/1n!_ a 4zn1 t . 12r112"-t ,
4n

4,t3 <2.(zn)ffi ,

' . dg logozn+!,
32

and finally

,E < Jts lo goZn+!
2

But thelogarithmis a siowfunctiorl
so that rE overtakes it sooner or later.
What we need to know is when. Let's
try n = 1,000. Clearly, {000 ,30,
while logo2000 <logo4095 : Io9o46 : 5.

Since30, JtS . 6 + | fZ,ourinequality
is violated for n:1,000 and {as you, I
hope, will prove on your own, using
derivatives2) for alln > 1,000. Thereforg
for these values of n the following theo-
rem is true.

CHesysFrev's THEoRrn ( BrRrRaNo's
Posruram). There is always at least
one pilmebetween n and 2n.

That's very nice, but what do we
do with small values of n? For them
inequality f2) seems to be correct.
Never mind-Bertrand's postulate is
also true for them. We assure our-
selves of this simply by searching
through a table of prime numbers, or
writing a tiny computer program. Or
maybe you're naturally punctilious

2This technique is explained in
"Derivatives in Algebraic Problems"
in the NovemberfDecelr,ber 1993
issue of Quantum.-Ed.

in making estimates and would like
to obtain a more exact inequality.
It's a matter of taste.

However, we've been "strolling"
{or quite a while now. It's high time
we rested, don't you think? But if
you want to take another stroll on
your own/ here are some problems
to get you started.

Problems
1. Prove that for any prime p and

integerx andy the number (x + y1n -
fl - yt is divisible by p.

2. Extend the previous problem to
the case of several summands and
derive Fermat's "Little" Theorem:
xP - x is divisible by p (for a pflme p t
of course).

3. Prove that if a binomial coeffi-
cient Cf is divisible by a power of a
prime N : p-, then N< n.

4. Prove thatforn > 5 there are two
prime numbers between n arrd2;a.

5. Let pk be the kth prime num-
ber. Prove that po * z < Zpk

6. Prove thatn! (forn > 1! is never
a power of an integer. O

(2)

Sometimesthe

before

Remembe4 a person with a disability is a person first.
Awareness is the first step towards change.

ffi
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BRAINTEASERS

Jusl lol' Ihe lun ol il!

8126
Sort it out.II the brainteaser you solved before you solved this one was
harder than the brainteaser you solved after you solved the brainteaser that
you solved before you solved this one, was the brainteaser you solved
before you solved this one harder than this one? (N. Rozov)

8128
Not too heavy. The mass of each weight in a set is no greater than 10 kg. If
the set is arbitrarily divided into two groups, the total mass of one of the
groups is also no greater than 10 kg. What is the greatest possible mass of
all the weights in the set?

8127
Making a rhombus. Cut a parallelogram along a straight line through its
center so that the two pieces can be rearranged to make a rhombus. (A. Savin)

8130
Midpoint squarc. Two isosceies right triangles are brought together as
shown in the figure. Prove that the midpoints of the sides of the nonconvex
quadrilateral they form are the vertices of a scluare. (V. Proizvoiov)

8129
Integer rectangJes, A rectangle measuring 5 x 9 is cut into l0 rectangles with
integer side lengths. Prove that at least two of them are congruent. (K. Kohas)
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Loue and hate in lhe moleculal' world

"Drawn by Love, they gather in a common order,
Then, by Hostility of discord, they are driven from one another,
Until, resigned to their fate, they become one entity."

-Empedocles
by Albert Siasenko

HE GREAT RUSSIAN \ATRITER
Anton Chekhov wrote in one of
his stories: "Now the door-
keeper of the State Chamber

piped up . . . He said that in St. Pe-

tersburg there was a frost of two
hundred degrees . . . The people, he
said, were terrified. But whether it
was in St. Petersburg or Moscow-
I don't exactly recalI." Chekhov, a

physician by education, had in mind
the Celsius temperature scale, of
course/ so a frost of two hundred
degrees corresponds to an absolute
temperature of 273 - 200 :73 K. If
we look in a reference book on phys-
ics, we can see that air becomes a

liquid at this temperature, so it
would be cluite a feat even to be
"terrlfied" in such weather.

Only in this century have scien-
tists managed to convert all the
gases into liquids-even those that
seemed to be incondensable, or
"true" gases. Indeed, the primary
feature of gases is that they strive to
occupy all of the available space, so
that molecules of gas in outer space/
for instance, would be able to fly o{f
to the ends of the universe.

What are the ties that keep mol-
ecules together in liquids? Might
they actually have some sort of
hooks and pegs, as the ancient
atomists imagined? From the per-
spective of the Greek philosopher
Empedocles, the condensation of gas

into liquid could be described like
this: attracted by Love, the mol-
ecules are drawn together, but then
Discord arises among them, trying
to separate them, and finally, the
equilibrium of these emotions cre-
ates the condensed phase.

But what is the quantitative mea-
sure of these molecular emotions-

or in the terminology of modern
physics, of the forces of attraction
and repulsion? Moreover, why do
these forces appear between electri-
cally neutral molecules?

First of all, neutrality of charge
doesn't imply the absence of electric
field. Let's consider two point
charges +q and-q a distance 1 apart
(see the left portion of figure I ). Such
a system is known as a dipole. At an
arbitrary point, the total electric
field of these charges is the vector
sum o{ the two fields E* and E_. Cal-
culating this sum at any point, one
can draw continuous iines of the

o
E

Y

=Eo
_o

10 lll0lltllllBER/[tCtll/lBtR I gg4

Figure 1
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electric field from the positive
charge to the negative charge (the
figure shows the cross section of the
field E with the axis of symmetry
passing through the charges).

The productp = ql (the vector I is
drawn from the negative charge to
the positive charge) is called the di-
pole moment. There are so-called
polar molecules rn which the "cen-
ters of gravity" of the positive and
negative charges do not coincide
(which, of course, doesn't prevent
them of being electrically neutral).
Such molecules have a marked di-
pole moment even in the absence of
an external electric field, and hence
they produce a dipole electrostatic
field. It's convenient to define a

"proper scale"-that is, a character-
istic value for the molecular dipole
moment. Let's take the elementary
charge of a proton, eo:1.6. 10-10 C,
as the characteristic charge, and a

distance of one angstrom (intro-
duced in physics as a distance scale
in the atomic realm) as the length of
the dipole: 1o : lg-to m. Then po :
eolo: 1.6 . l0-2e C .m. For example,
a molecule of water has a large in-
trinsic dipole moment of.p = O.62po.

Now we find the electric field of
a dipole at a distance r along its axis
(that is, in the direction of the vec-
tor l). To this end we must add the
electric fields of both charges:

E-
4neo(r - l2)'
qZil

q

 neo(r + 112)"

4neo (rz -q2)')'

Let's see how this field changes at
large distances from the dipole.
What do we mean by "large"?.
Surely, the distance should be large
in comparison with the size of the
dipole itself : r >> J. Then it's possible
to neglect the value (11212 relative to
12 in the denominator of equation
(1), and in this dipole approximation
we have

Obviously, the dipole field decreases
quicker (as the cube of distance)
than that of a point charge.

What will happen if another di-
pole with a dipole moment p1= el1
is placed in the electric {ield of the
original dipole (see the right portion
of figure 1)? For simplicity's sake,
let's assume that its center is on the
axis OB. As the field produced here
by the left dipole is directed to the
right, a repulsive force F* = qBr acts
on the positive charge, and an at-
tractive force F, : -eEz acts on the
negative charge (E, and E, are the
electric fields produced at these
points by the left dipole). Let the
dipole p, be rotated relative to the
axis OB by an angle cx. Then a
torque will arise that tries to turn
this dipole clockwise about pointB.
This rotational moment disappears
only when cr : O-that is, when p,
is parallel to the electric field of the
left dipole.

Let's find the resultant of the
forces F* and F_ when o = 0. To sim-
plify our investigation of the depen-
dence of this force upon the dis-
tance z between the centers of the
dipoles, we assume, as above, that
this distance is much larger than
the size of either dipole:r >> /, .Ir. For
example, at room temperature the
aYerage distance between mol-
ecules is tens of times greater than
molecular diameters.

In this case the electric field pro-
duced by the left dipole can be cal-
culated from equation (2), and the
net force is

F* - F_ = o(ar- ar)
/\2q'11 I I I

- 

-t 

- ^ I

areo [(r + 1.,t2)' (, - Uz)" )r)
zq\l -3r21,-til+ I

| .r l'
4reol ( ,z -(t. tz\'\" I

\'\ \r/ t ) )

Neglecting the smali terms in the
numerator and denominator yields

F _F =_ q' 9ll.+ - 4neo ra

From this it's clear, first, that the
force is attractive (notice the minus
sign); and, second, provided the
value of 7, is fixed, the force de-
creases as the inverse fourth power
of the distance between the dipoies.

So we have seen how polar mol-
ecules are mutually attracted. How-
ever, molecules exist that have no
intrinsic dipole moment (they are
called, naturally enough, nonp olar)-
for example, the familiar molecules
of oxygen and nitrogen. But under
certain conditions they also con-
dense to the liquid phase, which
means that the molecules attract
one another. Why?

To begin with, when a molecule
is placed in an external field E, it can
be polarized even if previously it
had no dipole moment. Let's con-
sider a simple model of a neutral
particle: a positive central nucleus
of charge q and anegatively charged
ring of radius a concentric rvith the
nucleus (fig. 2). The positive charge
is displaced in the direction of E,
and the negative charge is displaced
in the opposite direction. As a re-
sult, a nonzero ciistance 1, appears
between the "centers of gravity" of
the charges q and -q lthat is, a di-
pole moment arises). To come up
with a vaiue ior this dipole mo-
ment, let's iormulate the equilib-
rium condition for the Couloumb
force of attraction between the
nucleus and the ring and for the
force due to the external field.

For an arbitrary section of the ring
(1)

- 2ql
L=-=."= 4n%7' l2l

it0l,tit0tR/[t8ilr0En I 00{

(3)

Figure 2
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with a length ds : adQ carrying a
charge

,dsdq=-q- 
'2na

we obtain

-doE+ 
| qdq 

coSc,=o.- 
4nto o'*t

or, taking into account that

1,
COS0, =:'

Fi4',
canceling dq o:ut of the equation,
and using the condition that the de-
formation of our system in the exter-
nal field is small (lr2 << a2), we finally
have

Q\ = 4neoa\E.

It's particularly important that this
induced dipole moment is propor-
tional to the strength of the extemal
field and is directed along it.

Now, returning to the situation
depicted in figure I and using equa-
tion (2)-which quanti{ies the elec-
trostatic field of the left dipole-as
the external field, we see that a non-
polar molecule at a distance r ac-
quires an induced dipole moment

p1= e71= 4n;oa3:+ =2d4.+lEEor' r"

Then, according to equation (3) it
will be attractedby a force

z(qtf ea3

4neo 17 
.r7

How, then, does a nonpolar mol-
ecule acquire an initial dipole mo-
ment qL(fig. 1)? First of all, just be-
cause a molecule has no dipole
moment on average, that doesn't
mean it doesn't have one at any pat
ticular moment. Thus, the avetage
dipole moment can be zero 7f. calcu-
lated for a long period of time. For
example, you might run quickly in
the hallway from one wall to the
other, and get very tired o{ it, but
your coorditatex(tlt averaged for an

hour, a day, or a yeart would show
that your displacement is zero (on
average).

In the same way the dipole mo-
ment of a molecule canyary quickly
with time while being zero on aver-
age (such a situation is shown quali-
tatively in figure 3). Imagine, for

Figure 3

example, that the positive charge in
figure 2 oscillates with some fre-
quency/ moving from the ring's cen-
ter once to the left, then to the right.
The dipole moment will change cor-
respondingly with the same fre-
quency, and so will the electric field
quantified in equation (2)-if we
neglect the time lag resulting from
relativistic effects. If another mol-
ecule of the same substance were at
some point in space, the altematiing
field of the first molecule would
polarize this molecule at the same
frequency. Consequentlyt at any
time the molecules have dipole
moments of the same direction and
so are attracted with the force
shown in equation (3), and their
mean dipole moments are zeto.
(This is reminiscent of the interac-
tion of two tuning forks: strike one
of them, and the other responds at
the same frequency in what is called
a "sympathetic vibration. ")

The attractive force described
above, which increases sharply as
the distance decreases, was given
the name van du Waals force after
the scientist who offered a relatively
simple equation for a real gas that
differed from the well-known
Clapeyron equation for an ideal gas.

The existence of intermolecular
forces causes molecules to "Ieel"
one anothet at grcat distances and
not only when they collide, as is the
case with solid balls. When the mol-
ecules are cooled and their ayerage
kinetic energy and speed decrease,
they can be near one another for a
longer time, and the work of the at-
tractive forces (corresponding to po-
tential energy) at long last will
"wirt" over the kinetic energy/ re-
sulting in condensation.

Of course, as the molecules get
closer, attraction must give way to
repulsion l"Love" is replaced by
"Hate," in the terminology of the
ancient philosophers), because the
distance between molecules can't be
zerot as you know. The repulsive
forces depend more strongly on the
distance, as -l f r" , where n varies for
various substances from 9 to 15. At
a certain distance I = ro the atttac-
tion and repulsion become equal
(fig. a). This is simply the mean dis-

Figure 4

tance between molecules in the con-
densed substance-in a liquid or
solid body. It doesn't mean, of
course, that the molecules stopped
moving completely.

Now is the time to recall that
these are nevertheless microscopic
objects, and that only quantum me-
chanics can give a correct descrip-
tion of their interaction-a particu-
larly pleasant reminder when it
appears in the pages of Quantum

CImagazine!
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TAKE IT HIGHER
As one of the brightest and best math and science

students in the nation, you're capable of reaching
the top. And you want to attend a college or
university that can help you do it. Consider the
Air Force Academy. It's a college and more. It's a
special place for students who seek excellence in
all that they do.

At the Air Force
Academy, you can "The higher the climb,
"take it higher." The
Academy offers a

full four-year scholarship, plus room and board.
You'l1 graduate with a bachelor of science
degree in one of 26 majors. Cadets who take
honors courses build an excellent foundation for
graduate studies.

Selection for the Air Force Academy is based on
academic, athletic and extracurricular perfor-
mance. In addition to the math and laboratory

science courses you've already taken, we
recommend that you complete a solid college
prep program, including four years of Engfish,
three years of social studies, two years of forcign
language and one year of computer science.
In addition, we suggest that you develop your

leadership abilities
throush school and

the broader the view." .o^rriuoity activities
, You should alsoAmencan proverD 

prepare physically
by taking part in group and individual strength
development and endurance prograrns.

The Academy's outstanding academic, athletic
and leadership programs can prepare you to be
an air and space leader in the 21st century.

For more details, call (719) 472-2520. Or write:
HQ USAFA/RRS, 2304 Cadet Drive, Suite 200,
USAF Academy, Colorado 80840-5025.
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NVIRONMENIAICONCERNS
are finding their way into many
aspects of our lives. Even the
popular and entertaining book

lurassic Park features an enigmatic
mathematician who, after being
mauled by aTyrannosaurus tex, of-
fers some provocative views on the
environmental issues before us.
Noting that the Earth had existed
for billions of years before human-
kind entered the scene, he rejects
the notion that We should "save the
planet." Rather, his final words are:
"Let's be clear. The planet is not in
jeopardy. We are in jeopardy. We do
not have the power to destroy the
planet-or to save it. But we might
have the power to save ourselves."

In keepingwith this point of view,
population dynamics is a branch of
mathematics that deals with abstract
models for describing the growth, in-
teraction, and decline of "popula-
tions" (usually species of plants and
animals, but also including humans).
Since calculus had its roots in efforts
to explain "how things change with
time," the field of population dynam-
ics is often identi{ied with calculus-
based tools. However, in this article
I'11 show that it's possible to deal with
very important ideas from population
dynamics r,rzthout invoking calculus.

The possibility of bypassing calcu-
lus is the result of twentieth-century
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Using computer spreadsheets to study
population dynamics

by Kurt Kreith
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developments in technology that
make it practical to study "discrete
models {or change." Such models
are based on mathematical pro-
cesses that, while easy to under-
stand, can also be very time con-
suming. From a historical point of
view, calculus was important be-
cause it provided techniques for cir'-
cumventing the time-consuming
processes these models entailed.
Now, however/ computers enableus
to deal with many such models di-
rectly, including ones that describe
how populations change.

One reason for taking interest in
population dynamics is that it re-
lates to important changes likely to
occur during our lifetimes. The
world's (human) population stands
at about 5.5 billion, and it is cur-
rently increasing by almost 100 mil-
lion people every year. Within 50
years it's very iikely to exceed 10
billion. This raises questions such
as: What effect will future human
population $owth have upon other
species of plants and animals? What
effect will it have upon us?

While population dynamics does
not provide conclusive answers, it
does enable us to approach such
questions on the basis of rational
thought and calculation. And, given
access to a modest computer/ one
can develop powerful insights into
the underlying processes and
mechanisms without invoking cal-
cuius-based tools.

llmmoney0l'otll$
Although population dynamics

usually deals with animals and
plants, it will be useful to begin by
thinking instead about money. Con-
sider the familiar fact that money
deposited in a bank earns interest/
and that the amount of interest re-
ceived is a percentage of the amount
you have on deposit. Assuming (as

we shall) that you choose to let the
interest accrue to your account, the
growth of money in a bank is an ex-
ample of a " feedback loop." That is,
the amount of money you have on
deposit determines the amount of
interest you receive, which deter-
mines the amount you have on de-

posit, which determines . . .

Given a deposit of 100 dollars
eaming interest at 10 percent ayear,
you can calculate its future value as

follows. At the end of the first year
you will have your original $100
plus 10% of $100 = (1 + 1/10). 100:
$110; after two years you will have
$110plus IO"/o of $110 = (1 + 1/10).
1 10 : $121, and so on. These consid-
erations lead to the following table:

t234
110 tzt 133.10 146.4t

In this particular process we're
able to express the outcome by
means o{ a formula:thekth enfty in
this table can be obtained by mul-
tiplying 100 by (1 + 1 / 10) k times.In
functional terminology,

N(k): 100 . (1 + 1/10)k = 100 . 1.1r..

Many hand calculators provide a
dynamic way of representing this
process of change. My old Casio fx-
911 recluires that one enter 1.1 and
then push the multiplication button
twice. This programs the calculator
to do rcpeated multiplication by f . i.
Now entering 100 and pushing the
equal sign repeatedly, one obtains
the displays ll0, I2l, 133. 1, 146.4I,
and so on.

A more versatile way of doing
such repeated calculations is to use
a computer spreadsheet. In this ar-
ticle I'11 illustrate the underlying
ideas with a Microsoft spreadsheet
program called Excel. However,
other spreadsheet programs will also
enable you to follow along and to
work on the projects suggested be-
low, even though some of my spe-
cific instructions may have to be
modified accordingly.

To make a table representing the
value of $100 investedatlO% ayear
for k years, we'll use two columns
(fig. 1). The first column is labeledk
and the second N(k).

Our starting entries are k : 0 (in
cell A2) andN(0) = 100 (in cell B2). In
order to have k increase by 1 at each
downward step/ we must enter an
appropriate ruie (or formula) in cel1
A3. An entry preceded by an equal
sign signals to Excel that we are about
to enter such a formula. In this case
we enter "=.[,2+1" in cell A3.

By "copying down" (you'llhave to
read your software's instructions on
how to do this), the spreadsheet is
programmed to continue this rule
downward-thatis, to enter ":A3+l"
in cell,A,4, " =A4+L" in cellA5, and so
on. Similarly, entering ":(l.ll*82" it:r
ceil 83 and copying down establishes
the rules ":(l.l)*B3" in cell84,
" =(l.Ll*84" in cell 85, and so on. (The
asterisk is how one gets the spread-
sheet program to multiply. I'11 dis-
pense with it below, trusting that
you'll change the raised dot to an as-
terisk if need be. Later on we'lluse
the slash mark to indicate division in
the spreadsheet program. )

hr figures 2 andS I've copied these
two formulas downward for ten

A B
1 k N(k)
2 0 100
3 =42+1 =1 .1*82
4 =A3+1 =1.1*83
5 =44+1 =1.1*84
6 =A5+1 =1.1"B5
7 =46+1 =1.1*86
I =47+1 =1 .1*B7
9 =A8+1 =1.1*B8
10 =A9+1 ='l .1*B9
11 =A10+1 =1 .1*B10
12 =A11+'l =1.1*B11

Figure 2
places (in the
range of cells A3
to B12) and relied
on the spread-
sheet to calcu-
late the resulting
values of k and
N(k). (Usually
we print out
only the numeri-
cal values of the
entries, but in
figure 2 I show
the formulas.)

k N(k)

0 100
1

't 10.00
2 121 .00
3 133.10
4 146.41
5 161 .05
6 177.16
7 194.87
B 214.36
I 235.79

10 259.37

k0
N(k) 1oo

A B
1 k N(k)
2 0 100
3 =42+1
4
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A B c
1 f- 4

2
3 k Time N(k)
4 0 =A4lgBg1 100
5 =44+1 =A5/gBg1 =C4.(1+0.11$B$1)
6 =A5+1 =46/$8$1 =C5.(1+0.1/$B$1)
7 =46+1 =A7l$B$1 =C6*(1+0.1/$B$1)
8 =47+1 =A8/$B$1 =C7.(1+0.11$B$1)
I =AB+1 =A9/$B$1 =C8.(1+0.1/$B$1

10 =A9+1 =A10/$B$1 =C9*(1+0.1/$B$1

Figure 4

^ 300
o
L
G

= 
200

l,

a. 100
co
=0

Time (years)

012345678910

Figure 6

What do these tables have to do
with population dynamics? Well,
given a population of 100 rabbits
that grows at l1y" ayearr this table
would also give the number of rab-
bits after k years. The mathematics
of money and rabbits seems to be
the same.

Returning to our banking prob-
lem, suppose that a competitor to
the bank paying yott 107" ayear o{-
fers to pay you not only 10% annu-
ally but also to compound interest
quarterly. This means that, instead
of receiving 10% interest at the end
of the yearl you would receive2.SYo
interest four times ayear. Under this
plan you would have $100 (1 + 0.025)
= $102.50 after three months, $102.50
.(1 + 0.025) : $too .(1 + 0.025)2:
$105.05 after six months, . . ., and
$100 . (1 + 0.025)a : $110.38 after
twelve months. The extra $0.38 is
the result of quarterly, rather than
annual, compounding.

What would happen if we were to
continue quarterly compounding for
ten years? The answer can readily be
computed, either with a hand calcu-
lator or by means of a spreadsheet
model. By hand calculator the answer
would be N(a0) = 100 . (1+.029)+o =
$268.50. As expected, this exceeds
the amount one would receive with
annual compounding.

Now let's see how we can include
both of these examples (and morel)
in a single spreadsheet model. To do
this, we'Il let / denote the fr equency
of comp oun ding (w e' v e already con-
sidered the cases f = I andf = al ard
set up the spreadsheet so that f can
assume arbitrary positive values. In
this model, the year will be divided
into f equal parts at the end of each

of which the bank will pay (l\lfl%
interest on your current deposit.

Figure 4 shows what the formulas
for such a spreadsheet program
might look like for f = 4. The "dol-
lar signs" preceding the reference to
cel181 have the effect of "locking"
this reference. That is, when the for-
mulas in the table above are copied
downward and A4 becomes A5,
then A5, and so on, the $ preceding
the 1 in $B$1 will prevent the sec-
ond index from changing. With this
entry protected in this way, the re-
sult of continuing these {ormulas for
40 intervals (corresponding to 10
years)is as shown in figure 5.

If (like Excel 4.0) your spreadsheet
has a graphing capability, you will
also be able to generate graphs for
various values of / (see figure 6).

The reason for placing the value
tt4tt of/in a separate cell is that this
way of entering data makes it easy to
vary the frequency of compounding.
Simply changing the entry in cell Bl
from4 to 10leads Excel to redo its
prior calculation and even redraw the
corresponding graphl

Al'e tlle doing mlculus?
Before turning from money to

rabbits (and other populations),
there is a curious f.act that deserves
our attention. The $owth of money
is usually discussed in terms o{
compound interest and calculated
by the iterative methods described
above. By contrast, the growth of
rabbits tends to be discussed in
terms of differential equations by
people accustomed to using tools
rooted in calculus rather than
simple arithmetic. That is, the tra-
ditions of "population dynamics"

f- 4

K l'lme N(k)

0 0 100
1 0.25 102.50

0.5 105.06
3 0.75 107.69
4 1 1 10.38

5 1.25 113.14
o 1.5 1 15.97
7 1.75 1 18.87
8 2 121.84
I 2.25 124.89

10 2.5 128.01
11 2.75 131.21

12 134.49
13 3.25 137.85
14 3.5 14't.30
15 3.75 144.83
16 4 148.4a
17 4_25 1521e
18 4.5 1 55.97
19 4.75 159.87
20 5 163.86
21 5.25 167.96
22 5.5 172.16
23 5.75 176.46
24 6 180.87
25 6.25 185.39
26 6.5 190.03
27 6.75 194.78
28 7 199.65
29 7.25 204.64
30 7.5 209.76
31 7.75 215.00
32 8 220.38
33 8.25 225.89
34 8.5 231.53
35 8.75 237.32
36 9 243.25
37 9.25 249.33
38 9.5 255.57
39 9.75 261.96
4A 10 268.51

Figure 5
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are such that one would avoid mod-
eling the growth of populations by
the simple methods we have used
for money. Instead of iterating

N(k + 1)= (1 + U10)N(k), N(0): 100

to obtain

N(k)= 100(1 + 0.1)kN(O),

the growth of populations would
tend to be modeled in terms of a dif-
ferential equation

dN* ' 
= 0.1.N(t), N(0)= 1s6 (l)

dt

whose calculus-based solution is

N(t) = tO0ailio

and involves the Euler constant e =
2.7t828... .

That these techniques are some-
what different is refiected by the fact
that the compound interest ap-
proach yields

N(10): 100(1 + 1/10)10 =2s9.37,

while the calculus-based approach
yields

N(10)= 100e1 : 27t.83.

The key to reconciling these two
approaches is to consider a more fre-
quent compounding of interest. For
example, if the bank compounds
interest quarterly, then N(10) :
too.(1 + 0.025)ao = $258.51, which
is closer to the calculus-based an-
swer of 8271.83 than that obtained
by annual compounding. If the bank
were to compound interest ten
times a year for ten years/ the an-
swer would be given by N(100) =

100 (1 + o.ol)1oo : $270.48, which
is closer yet. Thus, we see that the
calculus-based answer seems to cor-
respond to a Yery frequent com-
pounding of interest.

It is, in f.act, easy to see the con-
nection between compound interest
and differentiai equations. If we
agree to measure time in discrete
units-

r : k, where k : 0, 1, 2, 3, ...

-and replace the symbol dNldt
("the rate of change of N with re-
spect to t") withN(k + 1 ) -N(k), then

the differential equation ( 1 ) becomes

N(k + 1) -N(l*) = 0.1 . N(k), N(0) = 100.

Transposing N(l<) to the right side,
this differunce equation becomes
identical to the scheme used to cal-
culate compound interest! The tran-
sition to calculus corresponds to
very frecluent compounding (for ex-
ample, reducing the duration of time
between successive compounding
from a year to a quarter of. a year, to
amonth, toaday,...l.

In making such changes in f it's
important to note that, while ten
years of annual compounding re-
quires only 10 iterations on our
spreadsheet model, quarterly com-
pounding requires 40 iterations.
More generally, increasing the value
of / will also increase correspond-
ingly the length of the spreadsheet.
This would be disconcerting except
for one fact. At some point, increas-
ing / will have very little effect on
the outcomes. For example, increas-
ing I from 10 to 100 or 1,000 would
change the value of your deposit by
a little more than a penny after 10
years. Once such a point is reached,
we can be reasonably sure that our
spreadsheet solution corresponds
very closely to the calculus solution.
Indeed, differential equations are fre-
quently solved by the very tech-
niques I've been describing.

llow rcolle gnow

People are neither dollars nor rab-
bits, and to suggest that our demo-
graphic future is determined by a
formula or differential equation is
clearly nonsens e. Diff erential equa-
tions provide good representations
of. deterministic processes. For ex-
ample, given the initial position and
velocity of a falling object, one can
effectively use differential equations
to predict its position at subsequent
times.

By contrast, we have the capacity
to influence our future numbers on
Earth through a variety of individual
and collective decision-making pro-
cesses. That is, our demographic fu-
ture involves free will, so using
mathematics to model human popu-
lation growth does not preclude our

ability to achieve a future different
from that predicted by apartictlar
model. Rather, by enabling us to
anticipate the outcomes of specific
courses of action, mathematics may
help us avoid the unpleasant future
predicted by a particular model.

Having said this, the fact remains
that human population growth is
determined by human birth and
death rates. Given specific estimates
for these rates in the present and'
future, one can use techniques from
population dynamics (the same ones
we used with dollars and rabbits) to
determine corresponding changes in
human population.

Starting with the biblical "three
score and ten" as an estimate for
human longevity, it's reasonable to
begin with an estimate of annual
death rate of lf 70, or about 14.3
people per thousand. To estimate
the annual birth rate, we note that
human population is currently dou-
bling every 40 years. This corre-
sponds roughly to a bank account in
which your initial deposit doubles
every 40 years. With annual com-
pounding, the interest rate required
to achieve such returns can be deter-
mined by solving

200 = 100(1 + r)ao

for

r:Lll+o_t=0.0174797.

With very frequent (continuous)
compounding, this rate would be
determined by solving

200 = lj)eao'

for

r = ]Ia]lLn(21= 0.0t73286.

Given the closeness of these an-
swers/ it seems reasonable to proceed
on the basis of annual compounding
and r : 0.0174, corresponding to an
increase of.17.4 people per thousand
per year. Recalling our prior estimate
of a death rate of 14.3, this corre-
sponds to approximately 31.7 live
births per thousand people per yeat.
Applied to the cunent human popu-
lation of about 5.6 billion, these data
correspond to an annual increase of
97.4 million people.
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It's difficult to develop a sense of
scale for such large numbers in and
of themselves. One approach to
grasping their implications is to use
some 2,000-year-o1d mathematics to
estimate the number of acres of
cropland on Earth, and then to di-
vide this number by 5.6 . 10e. The
Greek mathematician Eratostheires
estabiished R = 4,000 miles as ayery
accurate estimate for the radius of the
Earth (see problem 1 below). Also,
Archimedes discovered the formula
S : 4nRz for the surface area of a
sphere. An order-of-magnitude cal-
culation now yields S = 12 . 16.LO6,
or about 200 million square miles.
Noting that slighdy more than 70"/o of.

the Earth is covered by water and as-
suming rhat Il"/" of the land is arable,
we arrive at about 6 million square
miles of cropland.

To complete this calculation, we
need the fact that one square mile is
equivalent to 540 acres, leafing to a
final back-of-the-envelope estimate
of 54O. 6 million, or about 4 billion
acres of cropland.

During the 1920s (when the
world's human population stood at
about 2 billion) the American hu-
morist Will Rogers observed, "Real
estate is a good investment because
they aren't making it any more."
The fact that there is now less than
one acre of cropland per person on
Earth provides one basis for thinking
about the implications of human
population growth {or our collective
future.

We can, of course, use a spread-
sheet to represent these estimates
and project them, say, 100 years into
the future. The outcome is both
stark and graphic, indicating that
current trends are unlikely to be
maintainable. However, such pro-
jections are not in themselves likely
to encourage creative thought about
actually addressing the underlying
issues.

So what about free will? If we
want to achieve a different future,
one where human population stabi-
lizes at some preassigned goal (say,
10 billion), this would require that
the current tate of increase be re-
duced with time. Put mathemati-

cally, we would have to replace the
constant r :0.0174 with a function
r(t)-one that satis{ies r(0} = 0.O174
and decreases sufficiently quickly so
as to achieve a leveling off of N(t) at
some preassigned value. One ex-
ample of such a function is

r(tl = o.0t7al(1 + 0.001 . r2l. {21

This would correspond to solving
the differential equation

ff - */*\ lr,,*\, _,\"./.1v\1,/i N(o) = 5.6.
dt

and imposing the requirement

timN(r)= 10.

Working backward from the solu-
tion to determine a function appear-
ing in the differential equation itself
is a problem from control theory.

In f.act, however, we can use
spreadsheets to approach this prob-
lem in another way. Consider depos-
iting 5.6 units of money in a bank
that pays a v ariable interest rate rlkl
during thekth time period in which
interest is to be compounded. This
isn't completely fanciful. Interest
rates do change (though usually not
by formula), and banks also make
loans based on variable interest
rates. In this context/ it requires only
a small change in our prior spread-
sheet program to accommodate re-
placement of the parameter-r with a
function r(ft).

I. Population Futures Proiect

1. Define a function r(ft) for
which r(01 = 0.0L7a and r(ft) tends
to zero as k becomes very large (for
example, see equation (2)).

2. Develop a spreadsheet pro-
gram for calculating the future
value of N(0) dollars invested at
rlk)oh per year and compounded
annually.

3.Yary the function r(k) until
the solution corresponding to N(0)
= 5.6 levels off near N = 10.

4. Refine your model to corre-
spond to /'more frequent com-
pounding." Does N(k) still ap-
proach 10? If not, redefiner(k) and
repeat your calculations.

Tle logi$lic sqttation

While reducing the growth rate
provides a natualapproach to stabi-
lizing human population, there is
another model that occupies a more
prominent place in theoretical popu-
lation dynamics. The logistic (or
Verhulst) equation re{lects the as-
sumption that the growth of. a par-
ticular population will be damped
as it gets large, and that, unlike the
effects of an annual death rate of.
14.3 per thousand, such damping
will be proportionalto the square of
the size of the population.

The mechanism for such damping
is left to our imagination. Optimists
may see it as reflecting restraint or
economic forces, while pessimists
may see famines, plague, and pesti-
lence. The particular rule for damping
(proportional to the square of N) ap-
pears to be more of a mathematical
convenience than a representation of
any particular mechanism.

An intuitive way to explore the
resulting phenomena is again to for-
mulate the underlying mechanism in
terms of money. Consider a bank
(let's call it Murky Savings & Loan)
that offers you the attractive 10% rate
of interest we have studied before.
But Murky also imposes a //very

small" service fee ("only 0.0005"),
and it's applied to the square of the
amount of money you have in your
account. Including this fee in our
model, we would now have

N(ft + 1)=
N(kl * 0.1 N(kl- 0.000s .N(Ll'.

The spreadsheet program in fig-
ure 7 (on the next page) enables you
to compute future balances based on
annual deposits N(0) and various fre-
quencies of compounding. Problem
2 below will give you some insight
into why you're unlikely to become
very rich depositing your money in
this bank.

In the more common (calculus-
based) language of population dy-
namics, such models make use of
the differential equation

=a.N(t) -b.NO)2. (3)
dN

dt
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A B c D

1 4 N(0) = 100

2 k Time N(k)

3 0 =A3/$B$1 =$D$1
4 =A3+1 =A4l$B$1 =C3+(0. 1 

.C3-0. 0005.C3^2)/$B$ 1

Figure 7

Reading the symbol dNldt as "tate
of change," this equation corre-
sponds to a population having a

$owth rate a .N(t) and subject to a
damping factor of the form -b. N(t)2.
As in all such problems, the con-
straints a and b correspond to a spe-

ci{ic (but often unstated)unit of time.
If N(t) exceeds a certain critical
value (see problem 2), then dNldt
becomes negative, even though a is
positive.

"Ptllliltg oll unflil hIttomotlu. . ."
At this point, our spreadsheet ap-

proach has some decided advan-
tages over trying to solve the differ-
ential equation (3) directly, for one
way of making the logistic model
more realistic is to note that many
of the factors likely to damp the
growth of populations involve de-
lays. That is, toxic substances take
time to affect our health, while
poor farming practices take time
to deplete the soil. Thus, it is natu-
ral to ask, "What would happen if
we introduce a delay of duration d
units of time into the damping term
-b'N1P1zz."

For the differential equation (3)

this would correspond to solving

! = o N(r)- b.N(t- q2 .

dt

Such delay differcntial equations
have been studied only in the last 50
years, and there are no calculus-based
procedures for obtaining a specific
formula for a solution. Even with cal-
culus as a tool, one has to resort to
discrete methods, much like those we
have used to represent the workings
of Murky Savings & Loan.

However, in our spreadsheet con-
text, delays are easy to conceive of
and deal with. For instance, what
would happen to an initial deposit
of $100 if Murky informed its

long-standing customers that it
plans to "reduce their servic e fee" 7

Specifically, if after 10 years of de-
positing your money with Murky,
the service fee will be based not on
the square of the current balance
but rather on the square of the bal-
ance that existed dyears ago?

II. Delayed Damping Proiect

l. Set up the system

N(k + 1)= Mk)* 0.1N(l<)-
0.000sN(k)2; N(0)= 1oo

on a spreadsheet. Show that N(k)
never grows beyond 200.

2. Study the system

N(k + 1)= N(k)* 0.lN(k)-
o.ooosN(k - d)2, N(o) : 1oo

ford=4,5,and8.
Explain why the various out-

comes in problem 2 might be ex-
pected in a population dynamics
context.

lulnl'e olt dilfel'ential Bqualiolts

Before going on to another ex-
ample, it seems appropriate to ask
whether our banking analogies
(which are getting somewhat far-
fetched) are necessary for represent-
ing a differential equation on a
spreadsheet. The answer is an em-
phatic no, and I'11 now describe a

different computational approach
for dealing with differential equa-
tions.

As we've already noted, every dif-
ferentiai equation involving dNl dt
is formulated to a specific unit for t.
The fact that the constants a and b
in the logistic equation dNldt:
dN(t) - bNltlz represent " charrge p er
year" implies that t is to be mea-
sured in yearc.

In modeling compound interest,
we've aheady measured time in

discrete units-
t = k, where k : O, 1,2, ...

-and 
interpreted the symbol dN/dt

as "the change of N(t) in a unit of
time." The same procedure applies
to more general differential equa-
tions.

For example, replacing dNldt
withN(k + 1)-N(k), the logistic dif-
ferential equation (3) becomes

N(k + 1)- Mk) = aN(k) -bNlklz,
OI

N(k + 1)= (1+ a)N(kl-bN(k12,

which corresponds to the iterative
scheme underlying our spreadsheet
model.

Here's another example. The dif-
ferential equation

dN =r'*-ldt ,(4 $l

becomes

N(k + 1) - N(L) = k2 + l/N(k),

OI

N(k + 1) = N(k) + k2 + l/N(k).

Such equations can also be iterated
on a spreadsheet.

A word of caution (aleady noted
in the case of compound interest) is
called for when we set out to solve
equation l4l for a specific range of
values of t and then decide to in-
crease the frequency of compound-
ing. To solve

dNnl":-' =t'+:j-; N(o)= 166
dt N(r)

for 0 < t < 10 with annual com-
pounding, we would program the
spreadsheet to calculate

N(k + 1) = N(k) +lkz + t/ru(k)l;
N(o)= loo

for k = o, l, ...,9. If, however/ we
want to compound more often (say,

four times as often), the correspond-
ing calculation would be

N(k + 1) : N(L) + [k2 + tlNlklll{t
N(o)= 100

for k = O,l, ...,39. In this second
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representation it's necessary to con-
tinue N(k) down for 40 cells rather
than 10.

In the examples considered so far,
more frequent compounding didn't
change the outcome very substan-
tially, and for this reason com-
pounding once in each unit of time
was quite adequate. This may not
always be the case, however, and for
this reason one should always ex-
periment with at least one refine-
ment (corresponding to more fre-
quent compounding) to ensure that
the spreadsheet solution corre-
sponds reasonably well to that of the
differential equation. A good way of
doing this is to regard the frequency
of compounding as a parameter in
the spreadsheet program.

PmdatolHnoy ilttelactiolt
With this brief introduction to

translating differential equations
into discrete (spreadsheet) form, we
are ready to consider another inter-
esting example from population dy-
namics-namely, the predator-prey

systems introduced by Vito Volterra
(see "The World according to MaI-
thus andVolterra" in the |uly/August
1992 issue oI Quantum). Here it is
the interaction of two populations
that is to be modeled.

Consider a population of rabbits
and foxes on a grassy island. Left to
themselves, the rabbits would in-
crease at IOoh a month. Because
they do not thdve on grass/ foxes left
to themselves would decline atl0%
amonth. Infact,however, these two
species interact by occasional meet-
ings, events that are generally bad
for the rabbit and good for the fox.
The question addressed by Volterra
is how these populations would fare
together.

Ignoring for the moment the inter-
action of rabbits and foxes, we begin
to model such populations by letting
X denote the number of rabbits, Ythe
number of foxes, and setting

4=ox(t),L =-cY(t)dt d.t

with a = c = lll0. These can, of.
coursg be translated into spreadsheet
models by setting dxldt = X(k + 1)-
X(kl, andso on.

In order to include "interaction" in
this model, Volterra needed to quan-
tify the number of meetings between
rabbits and foxes. Here he reasoned
that tripling the number of foxes
should triple the number of meetings.
Likewisg halving the number of rab-
bits should halve the number of
meetings. This requires that the
number of meetings (in a unit of
time starting at t6)be proportional to
X(t ol 

. Y(tol. Introducing constants of
proportionality b and d relative to
this unit of time, Volterra was led to
the set of differential equations

Y= *O)-bx(t).Y(t),
dt

4 = -cy(t)+ dx(t).y(t)
dt

(see the aforementioned Quantum ar-
ticle). The sign preceding the second
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A B c D

1 x(0) 110 Y(0)= 100

2 a- 0.1 b- 0.001

3 0.1 d 0.001

4 f- 1

5 k fime x(k) Y(k)

6 0 =A6/gBg4 =$B$1 =gDg1
7 =A6+1 =A7l$B$4 =C6+($B$2.C6-$D$2.C6. D6)/$B$4 =D6+(-$B$3.D6-r-$D$3.C6.D6y$B$4

Figure 8

term on the right side of each equa-
tion reflects the effect of meetings
on the two populations-that is, it's
a form of interaction that's "badf"or
the number of rabbits and good for
the number of foxes."

To represent these differential
equations on a spreadsheet, we write
dX I dt : X(k + ll - Xlkl, and so on/ to
obtain

x(k+ 1) =x(kl+la.x(kl-b.x(kl Y(klllf ,
Y(k + 1 ) 

: Y(kl +l-c. Y(kl + d. x(kl.Y(kll f .

Heref canbe thought of as denoting
the number of times rabbits and
foxes are to be counted during each
unit of time (in our case, each
month). Figure 8 shows a versatile
way of programming such systems
on a spreadsheet.

If we now enterX(0) = 1i0, Y(0) =
l0O, a = c : I I I0, b = d = 1/1000, and

f = l, we obtain a graph of the nu-
merical outcomes (fig. 9). Increasing
/ from 1 to 10 leads to the graph
shown in figure 10. Note that the
two graphs are similar, but that the
growth in amplitudes has been re-
duced by increasing /.

III. Harvesting Proiect

Robinson Crusoe has landed on
this island and joins the foxes in
the occasional hunting of rabbits.
Use a spreadsheet to study the ef-
fects of harvesting an additionalh
rabbits per month over an ex-
tended period of time. Are there
any surprising results?

Prollems
1. The city of Syene was known

to Eratosthenes as a place where the
Sun shines directly to the bottom of
a well at noon on midsummer day.
In Alexandria, 500 miles to the
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north of Syene, the Sun makes an
angle of 7.5' with a plumb line at
noon on midsummer day. Era-
tosthenes also knew that the Earth
is spherical and that light from the
Sun forms parallel rays. How might
he have calculated the radius of the
Earth to be (about) 4,000 miles?

2. In the logistic equation, your
money i.s increasing or decreasing at

108 120

timet depending on whether 0.l{t)
- 0.0005N{t}2 is positive or negative.
For what values of N is N(t) increas-
ing? For what values of N is N(t) de-
creasing? Are the answers to these
questions consistent with the out-
comes of your model for Murky Sav-

ings & Loan? O
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HOW DO YOU
FIGURE?

Challeltus$ in phy$ics and malh

tUlalh

Ml26
Equation in reciprocals, Prove that the
equation I lx - | ly = l/n in positive in-
tegersx andyhas a unique solution for
a given positive integer n i{ and only if
n is aprimenumber. (A. Danielyan)

M127
Circular aruongemen. Nnumbers are
written around a circle such that each
of them is obtained from its counter-
clockwise neighbor either by adding 1

orbyreversingthe sign. Prove thatif N
is odd, then a1i the numbers are integers
and any number m is found among
them as many times as -m. (A. Veselov)

Ml28
Back after fwther rcflection. PointsA,
B, C, arrdD arec.hosen in the plane with
AB: BC = CD = 1. Thefourpoints are
repeatedly subjected to the following
transformation that leaves pointsB and
C {ixed and preserves the lengths of
AB, BC, CD, andDA.Fust, pointA is
reflected abottt BDi then D is reflected
about AC, where A is in the new, re-
flected positioq then the new point A
is again reflected abott BD (with the
new D); then D is reflected; and so on.
Prove that after a number of reflections
points A and C will return to their
starting positions (M. Kontsevich)

Ml29
Weird minority. Call a person with
fewer than I0 acquaintances unso-
ciable and a person all of whose ac-
quaintances are unsociable a wefudo.
Assume that the relation of "acquain-
tanceship" is symmetric-that is, if
pe6on X is acquainted with person Y,
then person Ymust also be acquainted
with person X. Prove that the number

of weirdos is smaller than the number
of unsociable persons. (F. Nazarov)

Ml30
A cfucle here, a cfucie there. The op-
posite sides of a convex cluadrilateral
are extended to intersect at two
points. A line is drawn through each of
these points. These two lines divide the
quadrilateral into four smaller quadrilat-
erals. If some pair of these quadrilater-
als that don'tsharea commonside each
has an inscribed circlg show that the
original quadrilateral also has an in-
scribed circle. (I. Sharygn)

Physics

Pl26
Long train. A train moving under its
own momentum goes up an incline of
angle o. When the train stops, one hall
of its length is on the incline (fig. 1).

Figure 1

What time elapses from the moment
the train begins to go up the incline
until the moment it stops? The
length of the train is I. Disregard the
friction between the train's wheels
and the incline. (A. Buzdin)

P127
Almost amatryoshka. Agreat number
of thin-walled cylindrical vessels of wa-
ter are submerged one inside another
such that each subsequent vessel floats
in the preceding one. The area So of the
bottom of the smallest vessel is far less
than that of the largest vessel. Addi-
tional water of volume Vo is added to
the smaliest vessel. How much does

this vessel sink relative to the ground?
(Al1 the vessels continue to float afteir
the water is added.) (S. Krotov)

Pl28
Ice on the lake. During a cold night
in autumn, ice begins to form on the
undisturbed surface of a very deep
lake, and after l0 hours it is 10 cm
thick. How thick will the ice be if
the temperature doesn't change for
1,000 hours? Consider the thermal
conductivity of ice to be far greatet
than that of water. (V. Skorovarov)

P129
lust a spoiled grid, Severul conduc-
tors are removed from an infinite
square conducting grid (fig. 2). The

Figure 2

resistance of each rib is r. Estimate
the resistance between the nodes A
andB; B andC; A ar,d C. (S. Krotov)

Pl30
Don't shake. A point of light is pho-
tographed from a distance of 1 m. The
photographer's hand shook, and in-
stead of a point, a sma1l spot appeared
on the film. Estimate the size of this
spot i{ the amplitude of the displace-
ment of any point of the camera does
not exceed I mm. The focal length of
the objective is 50 mm. The exposure
time is very long. (A. Zilberman)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 57
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Beyondthe reach ol 0hm3 laul

Where many useful phenomena are free to take place

by Sergey Murzin, Mikhail Trunin, and Dmitry Shovkun

I N MOMENTS OF BRAVADO
I or defiance. we sav that "laws are

l*rd" to be broken," but that's
l noa ,o* we actl now/ ls rti Espe-
cially when we're taking about
physical laws. Take, for instance,
Ohm's law, which tells us that cur-
rent is proportional to voltage. Na-
ture obeys the law, right? Well, not
always. Which is just fine. If this
law were observed at all times, we
would be deprived of many useful
electrical devices. Fortunately,
Ohm's law, like many other physi-
cal laws, has a limited range of ap-
plicability. Outside this range, in-
teresting physical phenomena arise
that underlie the operation of these
devices. Although these phenom-
erLa are interesting in their own
right, in this article we'll address
another question: why is Ohm's law
violated?

0hmt law
Let's connect a conductor in an

electric circuit and measure the
electric current 1 for different values
of the applied voltage V.In this way
we obtain the dependence I = IlVl-
that is, the current-voltage relation-
ship for the conductor. According to
Ohm's law, electric current / is di-

rectly proportional to the applied
voltage, which means that the cur-
rent-voltage relationship is a linear
function:

v
I(Vl= -,R

where the resistance R doesn't de-
pend on V. If this is not so, Ohm's law
isn't obeyed and the current-voltage
relationship is nonlinear.

The simplest example of a con-
ductor in which Ohm's law doesn't
hold is the filament in a light bulb.
The current-voltage reiationship for
a 40-W bulb is shown in figure 1.

The graph is linear only for V < 5Y
at higher voltages the current in-
creases more slowly than a linear

r (A)

0.10

0.05

0

Figure 1

function. It's not hard to guess why:
as the voltage is increased, the fila-
ment heats up and its resistance
increases. This example illustrates
the general rule: Ohm's law is valid
only for sufficiently small values of
I and V, and it's broken for large
values.

Let's write Ohm's law in another
form. To do this, we introduce the
current density I : /S, where S is the
cross-sectional area of the conduc-
tor. Then

i=I =v = v =lv =oE.s Rs (prls)s p L

Here p is the resistivity of the conduc-
tor, the inverse valueo: l/p is called
the conductivity, L is the length of
the conductor, and E = VIL is the
strength of the electric fieid. Ohm's
law implies a linear relationship be-
tween the current density i and the
electric field E. If for any reason the
conductivity o varies with the elec-
tric field, the dependence of i on E
becomes nonlinear and Ohm's law
is broken. To find out why Ohm's
law is broken, let's look at the move-
ment of electrons in the conductors
both with and without the presence
of an electric field.

E

Y

=Eo
-o
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llow elefir'on$ lnotte in a cmducton

Many substances that conduct
electric current are crystals. Their
atoms aren't located arbitrarily, but
form a periodic spatial structure-a
crystal lattice. In conductors some of
the atoms are ioruzed, and the elec-
trons that have been given up can
move through them. The concentra-
tion n of such electrons (known as

conduction electrons) depends on the
tlpe of conductor. In metals the con-
centration of conduction electrons
doesn't depend on temperature. For
example, in coppern = 8.4. 1028 m+.
On the other hand, in semiconduc-
tors n varies with temperature. In ger-

manium n =2.4. 101e m-3 at 300 K.
It may seem that the electron has

ahard time sclueezing through the
crystal-that it's continually running
into atoms. But that's not the case at
all. Quantum mechanics tells us that
because of the strictly periodic ar-
rangement of the atoms, the electrons
move in a straight path through the
ideal lattice. Lr this respect the con-
duction electrons are like free elec-
trons in a vacuum. And just as with
electrons in vacuum, the movement
of the conduction electrons can be
described by Newton's second law F
= m*ar but now m* (the "effective
mass") differs from the massm" of an
electron in a vacuum. This distinc-
tion reflects the interaction of con-
duction electrons with the crystallat-
tice. Insofar as the lattice structure
varies in different conductors, the ef-
fective masses mx of. the electrons
also vary. They can be either larger or
smaller than m".

Real conductors are never ideal
crystals. They always contain distur-
bances in theperiodic arrangement of
their atoms. For example, atoms of a
foreign substance can find their way
into some positions in the lattice.
When the conduction electrons come
upon such animpurity, they scatter-
that is, they change their paths. The
thermal oscillations of atoms in the
lattice (that is, their deviations from
the equilibrium position) disturb the
periodicity, which also causes scatter-
ing of the electrons. The mean time
between collisions, during which an

electron moves in a straight path, is
called the mean free timet. This value
depends on the electron's velocity.

In the absence of an electric field
the conduction electrons move in
different directions, which leads to
chaotic thermal motion. In semi-
conductors the movement of elec-
trons is similar to the thermal motion
of the molecules of an ideal gas. The
mean velocity vo of such motion can
be estimated from the condition
m*vo212 = kT", where k is the Boltz-
mann constant and 7" is the electron
temperature. In gallium arsenide
(GaAs)at 7"=300 K,vo=4.5. 105 m/s.

In metals, which have conduc-
tion electrons in much higher con-
centration than in semiconductors,
conclusions drawn from the mo-
lecular-kinetic theory of gases can't
be applied. Quantum theory tells us
that the ayerage velocity of the cha-
otic motion of electrons in metals is
vo = 100 m/s and is practically inde-
pendent of temperature.

Now let's see what happens when
an electric fieldE is applied. The force

-eE actingon the electron imparts an
acceleration a=-eEf m*, Let's denote
the velocity of theith electron imme-
diately after scattering as vr. At an ar-
bitrary moment the velocity of therth
electron will be v, - eEtrf m*, where t,
is the time that has passed since the
last collision. The mean velocity of N
electrons is

field, all the electrons acquire an ad-
ditional velocity ("drift velocity")
whose mean value is equai to u :
eEr,f m* and whose vector is directed
parallel to the field E.

Thus, in an electric field a drift is
added to the chaotic motion, result-
ing in the appearance of a dominant
direction of electron motion-that
is, an electric current. If the concen-
tration of electrons in the conductor
is n, the curent density is

. n"', ^I = enU=-8,
m*

On the other hand, we know that
i = oE. Therefore,

2ne 1,

--=-.
m*

This is known as Drude's formula.
Clearly Ohm's law is valid i{ none of
the physical values in this formula
depends onE. If the electron concen-
tration n, the mean free time t, or
the effective mass m* varies with
the electric field, Ohm's law is no
longer valid.

When h 0[m$ lauu ualid?

First of all, let's consider the con-
ditions when the value t doesn't
vary with the electric field E.

The time t depends on the veloc-
ity of the electrons. The drift veloc-
ity u = eEtf m* that ariqes in an elec-
tric {ield increases withE{hen the
electric field is weak and thq drift
velocity u is much less than-the
mean velocity of chaotic motion vo,

the value u can be neglected and t
can be considered independent of
the field strength E. On the other
hand, when E is so high that u is
comparable to vo, the drift velocity
must be taken into account. In this
case it turns out that the electron
velocity and hence the mean free
time t depend on the electric field.

Thus, for Ohm's law to be valid,
the following condition is necessary:

u << vo (11

-that is, the strength of the electric
field in the conductor must be far
less than E : m*vof et.

"=**(",-#")

=, $, -g(!. \
NA' --[t]"]

,Nls
The value - L', is the mean elec-lY.,

1=L

tron velocity immediately after scat-
tering. Since the velocity immedi-
ately after a collision canbe directed

IN
anywhere, we get ;I", :0. The

,Nt=tls
value -)ti : r is similar to the

]Y

mean free time encountered above.
Thus, under the action of an electric

26 il0lltlll8tR/[[ctltlItR I gg4



As we said above, in semiconduc-
tors yo - 10s m/s. To obtain a value
of u comparable to v61 nrr electric
field E - 106 V/m must be applied.
This is 

^ 
very high value, compa-

rable to the voltage in a lightning
bolt. Nevertheless, such a field can
be created in semiconductors.

There is another, even more se-
vere limitation on the velocity u: it
must be less than the speed of sound
in the conductor (v. - 103 m/s):

u.v". (zl

When the velocity u reaches the
value v., sound oscillations arise in
the crystal. This may lead to a de-
crease in the mean free timet and the
conductivity o, which is proportional
to t. This situation is analogous to
the drastic increase in aerodynamic
drag that occurs when an airplane
breaks the sound barrier. Thus,
when E"> m*v"f er, the conductiv-
ity begins to vary with E, resulting
in a violation of Ohm's law.

The effects of the electric field are
not confined to the emergence of
drift motion. Current flowing in a
conductor releases ]oule heat, and
the conductor heats up. Let's con-
sider this process in detail.

Any conductor can be thought of
as being composed of two sub-
systems: (1) the crystal lattice of at-
oms and (21 the gas of conduction
electrons that fills this lattice. Both
electrons and lattice can be charac-
terized by their own temperatures Q
and E. In the absence of an electric
field, the electron gas is in thermal
equilibrium with the lattice and the
surroundings (4): T"= Tr: {. The
electric fieldE acts on the conduction
electrons and heats them first. Only
then is the heat transmitted to the
lattice and finally to the surround-
ings. Thus, when an electric field is
present, the thermal equilibrium is
disturbed such that 4, 4, 4.

When heat transfer from a conduc-
tor to the surroundings is less than
that from electrons to atoms and
hence \-{ .. 4 - {, the lattice and
the electrons are heated as a whole.
(This takes place in the filament of an
electric light bulb.) The opposite case
is possible, too, where the electron

temperature is far greater than that o{
the lattice: T"- Tr- 4 - 4.

As we mentioned previously, in
metals the average velocity of the
chaotic thermal motion of the elec-
trons is practically independent of
temperature. In semiconductors,
however, the increase in Q induced
by an electric field leads to an increase
in the electron thermal velocity vo-
that is, a decrease in the mean free
time. If the change Avo in the veloc-
ity vo is small-that is, Avo << vo-
the dependence of vo on E and hence
of t on E can be neglected. The con-
dition Aro .. vo is equivalent to the
condition that the heating of the
electrons A[ be small relative to the
equilibrium state:

44.. 7". (3)

Thus, the condition that the
mean free time be independent of
the field strength, which is neces-
sary for Ohm's law to be valid, leads
to the following limitations on the
applicability of this law:

1r << vst (1)

77 l vrr ela4<<4=4. (3)

A violation of any of these inequali-
ties may lead to deviations from
Ohm's law. We'll see later that
when the inequalities u << vo and
A4 << T. are vidlaled, the electric
fieldE can also affect-bther values in
Drude's f ormula : ttre ef f eciire-tnas5
m* and the electron concentration
n. The dependence of m* and n on
E can drastically change the
current-voltage characteristics in
semiconductors.

SemirfliluGfil.s in siFong BHmh fislffi
The power released in a sample

where curent l flows is given by

P: PR = 6E2LS.

Here we took into account that 1=
lS : oES, R = pI/S =LloS. Thepower
released per unit volume is Q = 6f,2.
With the same value of Q, the elec-
tric fieldE : Jat; is mucir stronger
in semiconductors than in metals,
because the electron concentration
in semiconductors and hence the
conductivity 6 are far less. Conse-

quently/ in semiconductors the con-
ditions u <v"attdu << y0 are violated
much more readily than in metals.
In addition, the power per electron
is higher in semiconductors than in
metals. The electron gas is heated
more, so the inequality Af << [ is
also violated more easily in them.

Whichviolation- of condition (1),
(21, or l3l-leads to a stronger devia-
tion from Ohm's law as the electric
field increases depends on the type of
semiconductor. For instance, in CdS
the confition u < rzs is violated first.
When this takes pl.ace, a break ap-
pears in the current-voltage relation-
ship l(E) at Es:1.4 . 10s vlmlhg.2l.

I x 10-6 (A/-2)

3

2

I

o o.s

Figure 2

When E > 8", the semiconductor
emits an intense sound and so can be
used as a sound generator. In other
semiconductors/ such as Ge, Si,
GaAs, InP, and CdTe, the generated
sound is much weaker and there is
no marked break in the current--
voltage relationship at Er. In these
semiconductors the deviations from
Ohm's 1aw are caused by a violation
of the conditionAQ << 4. It trms out
that the mean free time is inversely
proportional to the field E-that is,
\El - llE-and the dependence of
curent density on field strength is
connected only with the changes in
m* and n. At E > 106 V/m the
current-voltage curves of Ge and Si
(see figure 3 on the next page) show
saturation of i (m* and n do not de-
pend on E). There is not only a de-
crease with E of the mean free time
in GaAs, InP, and CdTe, but also an
increase in the effective massm*. An
increase in mx is caused by the
change in the interaction of the
electrons with the crystal lattice. As
a result, the current density I decreases

with E in these semiconductors/

E x 10-5 (V/m)
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Figure 3

beginning with a certain value of the
field strength E, (the segment Eo. E
< Eo in {igure 3). In GaAs the drop in
i begins at E a =3.2. 10s V/m and con-
tinues up to Eo = l]Eo. The electron
drift velocity for a field strength Eo

isu: llen = 1.5 . 105 m/s.
When the field becomes even

stronger-thatis, atE - 107v/m-not
only is the condition A4 .. Q vio-
lated, the condition u << vo is violated
as well. In such a field the electrons,
during the mean free time, receive
enough energy to ionize atoms. When
they collide with atoms, the high-
speed electrons knock out extra elec-
trons, which are also accelerated by
the field and produce other charge
carriers. This effect is known as ion-
ization by collision. The total elec-
tron concentration n increases and,
consequently, the conductivity in-
creases. A further increase in the field
strength (E > 107 V/m) leads to an ava-
Ianche increase in the concentration
and conductivity, causing a break-
down in the semiconductor.

Thus, the current density i = oE
increases in semiconductors in very
strong electric fields more quickly
than a linear function. In particular,
in Ge and Si the saturation of current
is replaced with a noniinear increase,
and for GaAs, InP, and CdTe the
current-voltage curues become N-
shaped (see figure 3): at 0 < E < Eo,

Ohm's law is valid; in the interval
E o. E < Eo there is a falling portion
of the curve, caused by a decrease in
t and increase in m* in a strong elec-
tric field, and finally, in the region
E , Et a rapid growth of f occurs,
caused by the increase in n.

TheffumeflErl
The falling portion in the

current-voltage relationship under-
lies an interesting phenomenon

found by the American engineer
|ohn Gunn. Let's apply a voltage Vo

to a GaAs sample of iength L that
produces the falling portion of the
dependence l(E). The initial electric
field within the sample is assumed
to be uniform and equal to VolL.Let
the electric fieldE in a thin layer AB
slightly exceed for some reason the
field strength in other areas of the
sample (fig. a). The electron drift

"otiod"

Figure 4

velocity u = ilen within this layer
AB will be less than that outside it.
Thus, more electrons will move to-
ward the boundary A than will
move away from it, and the opposite
will take place at the boundary B.
An extra negative charge accumu-
lates at boundaryA, while a positive
charge accumulates at boundary B.
Consequently, an extra electric field
arises in the layer AB that points in
the same direction as the originai
field. This increase in the electric
field results in a further decrease in
the electron drift velocity, which
causes a still greater increase in the
electric field in this area.

Thus, it is impossible to have a

uniform electric field in the falling
portion of i!l: any accidental distur-
bance of E, however small, will not
disappear-on the cofltrary, it will
grow. As a result, a narrow region (of

thickness 5) with a strong electric
field arises, which is called an elec-
tric domain. Since the voltage ap-
plied to the sample is constant,

Er6 + ErlL- 5) = Yo = const,

the increase in the field E, in the
domain is accompanied by a de-
crease in the field E, outside it. A
moment will come whenE, < E o and
Er, Ea (see figure 3). The electron
drift velocity outside the domain
begins to decrease, while inside it
increases. The increase in the fieid

E, in the domain stops when these
velocities are equal and the current
densities in the domain and in the
sample are equal:

ilBtl=iEzl=io.
From the last two equations it fol-
lows that the steady-state current
density io in the sample depends on
the domain's thickness 6.

Usually an electric domain arises
near the cathode (there are more
impurities in this region due to the
soldered contacts), and then, carried
off by the electron flow, it begins to
move to the anode with a velocity
uo= iolen. While it moves through
the sample its size doesn't change,
and so the current 16 also remains
constant. However, the domain be-
gins to disappear near the anode-
its thickness decreases and the cur-
rent in the sample increases.
Simultaneously, the electric fieldE,
increases outside the domain. As
soon as E, reaches the valte Eo, a

new domain arises near the cathode,
the current begins to decrease, and
the r,vhole process starts all over
again (fig. 5). The period of the cur-
rent ioscillations in the sample is

Figure 5

Thus, applying a constant volt-
ageVoto the sample induces an al-
ternating current with a frequency
f = llfo: uolL. This doesn't look
much like Ohm's law. In gallium ar-
senide (GaAs), uo = 105 m/s. Using
short samples (1-100 microns), one
can obtain frequencies in the range

I - 10q-1Ott Hz. Most modern gen-

erators of ultrahigh frequencies
(UHF) are based on the Gunn effect.
These devices are used, for example,
in television transmission via satel-
lite and by the police to measure the
speeds of cars.

To =Lluo.
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lliolaliolt$ ulifi larut curl'enls
Up to now we've looked at the

motion of electrons under the influ-
ence of an electric field only. We
know, however, that current flow-
ing in a conductor is the source of a
magnetic field. This magnetic field
arises not only outside but also in-
side the conductor. For example,
near the surface of a straight wire
of diameter d = 1 mm with current
1: 10 A flowing through it, a mag-
netic field B = Stnllnd = 0.012 T
arises (po = 4n . lO-7 NiA2 is the per-
meability o{ free space). The current-
induced magnetic field also can be
responsible for violations of Ohm's
1aw.

An electron moving in a mag-
netic field is affected by the Lorentz
force, which bends its trafectory. If
the magnetic field B is perpendicu-
lar to the electron velocity v, the
electron's trajectory is a circle of ra-
dius r = m*vf eB. When the angle be-
tween vectors B and v is o, the elec-
tron moves along a spiral of diameter
d = Zlmxv I eB), making one tum of the
spiral in a time T = Zrcm* f eB.

Spiral motion of electrons in a con-
ductor is possible if the mean free
timet >> 7(fig. 6a). When this occurs,

a

t>> T

Figure 6

r <<T

the spiral's diameter d < vT is much
smaller than the distance I : vx,
which corresponds to the displace-
ment of an electron in time r when
there is no magnetic field (fig. 6b).
Thus, during time t the electron
moves as if trapped in a pipe of diam-
eter d. As a result, the conductor's
resistance in the magnetic field is
greater than it is when B = 0. The de-
pendence of the resistance R on the

magnetic field created by its "own"
curent thus leads to a violation of
Ohm's law.

If t << 7, however, the electron's
path between two sequential colli-
sions doesn't deviate substantially
from a straight line (fig. 5c). In this
case the magnetic field doesn't
change the resistance of the conduc-
tor by very much.

The magnetic field Bo, which
marks the beginning of an appre-
ciable influence of the field, can be
found from the condition that the
period T : 2nm* leBo of the elec-
tron's motion along the circular or-
bit be equal to the mean free time t:
Bo:2nm*f et. ForGaAs, m* =0.06me
and t - 10-13 s, so Bo 

= 
3 T. It's practi-

cally impossible to induce such a field
by passing electric curent through a
semiconductor. The sample willbe
destroyed by far smaller currents. On
the other hand, considerably larger
currents can pass through metals. In
addition, in pure metals cooled to the
temperature of liqui{ helium (about
4 K), the mean free flme t can reach
values - 10-e s, whifh is significantly
hrgher than that ir{ semiconductors.
Therefore, the fleldBn is rather small
in metals-abgtt 0.01 T. Such a field
arises in 9.*ire of diameter 1 mm
with aeiirrent of 10 A.
--figor. 7 shows the experimental
dependence of the resistance R of a
metal conductor on the current 1at
the temperature of liquid helium. It's
clear that the resistance increases
with current by a factor of more
than two. The electric field in this
experiment was less than 102 V/m,
which is far less than the fields in
semiconductors where Ohm's law
was violated. Thus, in this case the
influence of the magnetic field on

R (po)

the resistance is the main reason
that Ohm's 1aw is violated.

In this article we looked at physi-
cal phenomena that may lead to a
violation oi Ohm's law in semicon-
ductors. In so doing we didn't men-
tion the nonlinear devices-diodes
and transistors-that underlie the
modern electronic world. These de-
vices are constructed in a special
way to be nonhomogeneous, and
Ohm's law is violated at points of
contact between different conduct-
ing materials. In addition, we paid
no attention to the many nonlinear
effects that arise in conductors
placed in alternating electric and
magnetic fields. But if you try to do
everything at once/ nothing gets
done. Perhaps others will pick up
where we left off. O
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Quantum readers, let us know about itl
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
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events.
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IN THE OPEN AIR

PanlinU dous, arolnalic hlooms,

and lea in a $atlcerr

Tales of evaporation in the natural world

by Andrey Korzhuyev
\ \. 't--

\
spikes instead. That's how plants
cherish the precious moiStrrre'''-

What if it's necessary to increase
the rate of evaporation? Why, just
increase the surface area as much as
possible. That's what we do when
we pour hot tea from a cup into a
saucer/ or cut potatoes, apples, and
other fruits and vegetables into
small pieces when we want to dry
them.

Another f.actor that affects the
rate of evaporation is air motion
over the surface of the liquid-in
plain language, the wind. So, when
we want to cool off our teal we cre-
ate al artificial wind-we blow on
the surface. For the same reason/ cut
grass in a meadow dries quicker
than in a forest (although, truth to
say, another factor is also atplay-
evaporation is increased by the
Sun's rays, which bathe the field but
hardly penetrate the forest canopy).
On the other hand, the leaves of
many desert plants are covered with
smalI, thick hairs that hinder air cir-
culation near the leaf's surface and
slow the process of evaporation.

Let's turn to another interesting
phenomenon. Have you noticed
how much stronger the aroma of
flowers is after it rains? To explain

this we need to remember that the
aromas are caused by volatile oils
produced in the flowers' nectaries.
Water-free volatile oils evaporate
more slowly than a mixture of the
oils with water, which drops into
the calyxes in abundance when it
rains and enters the nectaries. Rapid
evaporation of this mixture in-
creases the aroma.

As I said earlier, evaporation de-
creases the temperature of the body
from which the liquid evaporates. So
if you tear off a leaf from a tree and
put it against your face, you feel a
pleasant coolness. Again, this is due
to the intense evaporation of water
from the leaf. You can notice the
same effect when you go swim-
ming-you'li cool off in hot weather
if you don't immediately use a
towel.

Did you ever wonder what tem-
perature a human being can endure?
Well, experiments have shown that,
by gradually increasing the tempera-
ture of dry arr, humans can endure
temperatures up to 150'C. How can
we explain it? After all, a change in
temperature of only loC can be per-
ceived as quite unpleasant. As it
turns out/ the temperature of the
body itself changes only slightly.

S YOU KNOW, EVAPORA-
tion occurs when the fastest
molecules in a liquid, alter
making their way to the sur-

face, overcome the attraction of the
adjacent molecules and leave the
liquid. We know that the rate of
evaporation depends on many fac-
tors: the nature of the liquid, its tem-
perat:ure, its surface area, where it's
kept (in a ciosed or an open vessel),
and so on. Also, the more intense the
evaporation, the faster the liquid
cools, because the most energetic
l"hot"l molecules are leaving it.

Evaporation is a widespread phe-
nomenon in nature and plays an
important role in the world o{ ani-
mals and plants. Let's look at some
examples and try to explain them.

As you know, when a drought
begins, the leaves of most plants
start to wither. Why? Obviously,
because of a lack of water in the soil.
During a drought the supply of wa-
ter to the roots decreases, so the
plants tell their leaves (or so it
seems) to roll up. This decreases
their exposed surface area and con-
sequently reduces the amount of
water lost through evaporation.
Likewise many desert plants are be-
reft of leaves and have only ugly
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The organism resists
being heated by perspir-
ing profusely. Evapora-
tion of sweat requires a
great deal of heat,
which is absorbed from
the layer of air adjacent
to the skin. After the
heat is drawn off, this
layer cools off. How-
ever, the air must be
dry enough for this pro-
cess to take place. If it
contains a lot of mois-
ture, the process of
evaporation will go
very slowly, and a hu-
man being wouldn't be
abie to bear the heat.
This is why "humid
heat" in St. Petersburg,
for example, is much
more uncomfortable
than the "dry heat" in
Central Asia.

Dogs, on the other
hand, adapt to heat
very poorly. They have
sweat glands only on
the pads of their paws.
That's why a dog opens
its mouth and lets its
tongue hang out-
evaporation of the sa-
liva decreases its body
temperature. Other
mechanisms of heat
transfer based on ther-
mal conductivity and
convection are also
available to dogs: they
can stretch out their
legs, for instance, or lie
on their backs to ex-
pose their bellies,
which generally have a

thinner coat of hair.
Finally, let's talk

about why coid air is
easier to endure when
the wind isn't blowing.
The feeling of cold is caused by the
fact that the exposed parts of the
body lose a great deal of heat in
windy weather/ because the air that
is warmed by them is quickly re-
placed by more cold air, which in
turn takes heat away. The stronger

the wind, the quicker this replace-
ment. However, evaporation also
plays a role here. Moisture evapo-
rates from the surface of our skin
even in cold weather. If there is no
wind, the evaporation is slow, be-
cause the layer of air near the skin

gradually becomes saturated with
vapor. If it's windy (or if you're mov-
ing quickiy through still air), new
packets of air come in contact with
the skin, resulting in evaporation
and cooling. So in windy weather, do
yourself a lavor and stay homel O
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HE ARTICLES THAT FORM
the mathematical installments
o{ Quantum's Kaleidoscope are
kaleidoscopic in many differ-

ent ways. There have been kaleido-
scopes of problems/ and kaleido-
scopes of facts, and even a kaleido-
scope of kaleidoscopic ornaments.
This time we'll present a kaieido-
scope of proofs of the same-and
very well-known-theorem: the
property of the medians of a triangle.
We'll tell this "tale of a proof" not
twice, but seven times! (Wise people
say this is often more instructive
than to give a number of different
facts with a single proof {or each.)

Each proof wiil be based on its
own important and useful idea and
will be accompanied by other appli-
cations of this idea that include sev-
eral generalizations o{ the main
theorem. But let me remind you of
the statement we'll discuss-how-
ever well known it is.

KALEIDOSCOPE

The lnodialt$

A good tate is none the worse for beingi'toltd twice

by Vladimir Dubrovsky

I

I

MAr

C

Figure 2

C

Figure

ratio AM: MA, = 2, and Prove onlY
that the line BMbisects AC. Replac-
ing the hne BMin any of these argu-
ments with CM, we'll show that the
third median CC, also passes through
M. And since the medians are inter-
changeable, BB, and C C, are divided
by M in the same ratio as AAr. Point
B', whenever it appears below, is de-

fined as the intersection of the ex-
tended lnne BM and the side AC.

Proof 1: using proportional seg-
ments. Draw a line through Arpar-

A

al1ei to BM and label N the point
where it meetsAC (fig. 2). Add lines
through A and C parallel to these
two. Let's apply the foliowing well-
known statement: parallel lines cut
transverse lines into proportional
segments. The four parallel lines are

those that we added to our figure.
On the transversals AC and AA,
three of them intercept the propor-
tional segments AB' : B'N = AM : MA,
= 2: l; and for the transversals CA and
CB three other lines give CB' '. B'N
: CB: BAr:2 : 1. So AB' : CB' : l,
and we're done.

Exercise 1. In figure 2, imagine
that B'MB is an arbitrary line inter-
secting the sides CA, AAt, and the
extension of the side AArC of tri-
angle AArC , and that M is any point
at all on the segment AAy Prove
that

AM AB CB,1 _t

BC B,A

(This is Menelaus's theorem.)
The idea of the next proof is to

express the ratios of segments in
terms of the ratios of areas. It's
based on a very simple fact (see fig-
ure 3 on page 34): if two triangles
PQR and PQS have a common
base PQ, then the ratio of their
areas is equal to the ratio in which
the line PQ divides the segment

Tur,onnvt oN MEonNs lfig.ll. The
medians AA1, BBr, and CCrof atri-
angle ABC meet at a certain point
M and are divided by this point in
the same ratio 2 : 1, counting from
thevertices-AM: MAr: BM: MB,
= CM: MCr:2.

A11 our proofs, except the fourth
and sixth, will follow the same
scheme: we take the point M on the
median AA, that divides it in the
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(paR):(pes) =(lro r,),(1ro o,)
\z

=h.h-1'--r.

= RT: ?S

Figure 3

ST-(PQR) : (PQS) : R? : ?s,
where parentheses denote areas
and 7 is the intersection of lines
RS and PQ.

Proof 2: using areas. Let x be
the area of ABArM lfi1. al. Then
the lemma above yields IBMAI =
(AMlMArlx = 2x and IBMCI =

lBClBArlx = 2x, so AB' ; B'C =
(BMAI: {BMCI = r.

Figure 4

34 ilourirBrR/DrcrrilBrn tgg4

Nop use this method in the exer-
cises Uelow.

Exeicises
2. Pirove Ceva's theorem: if points

41, 81,\,pt are chosen on the sides
BC, CA\..AB of a triangle ABC so
that the iegnppts AA, BB, ar.d
CC, meet at a poin.;then-

CB. AC.
I I 

-IB,A C,B

3. Each vertex of a convex penta-
gon is joined to the midpoint of the
opposite side. Four of these seg-
ments pass through the same point.
Prove that the fifth segment also
passes through this point.

Proof 3:using dilatior. Consider
the dilation Dby -llzrelative to the
center M-that is, the transforma-
tion that leaves point M unmoved
and to any other pointX assigns the
pointX on the ray opposite MXhaIf
as close to M asX (formally, W =

-%Iw{' ). Clearly, the images X'
andY' of anytwopointsX, Ysatisfy
VT = -/r-*r'. By construction,
the image of A is Ar; labeL E the
image of B (fig. 5). Then Art' :
- %Tf But, by the property of a

midline of a triangle, Arq
- %TE as well. Therefore, E = B r-
that is, the midpointB, of AC lies on
the line BM.

Exercises
4. Prove that the extended alti-

tudes of a triangle meet in a pointH,
and that our pointM divides the seg-
ment OH, where O is the circum-
center/ in the rutio OM : MH = 2 : L.
(The line OMH is called Euler's
Iine.)

5. Prove that the line through the
intersection point of the diagonals of
a trapezoid and the intersection of
its extended (nonparallel) sides bi-
sec,ts the bases.

Proof 4: using coordinates.Derrote
by (xn, v6l the coordinates of vertexA
in any fixed coordinate system; like-
wise, (xs, ypl and (xs, ygl are the co-
ordinates of B and C. Find x* the x-
coordinate of M. Since A, is the
midpoint of BC, *4 = k, + x"llZ.
Since AM is 2/g of AA, xo- XM =

%t"^- *q ) (fig. 5). so

lt \

"tr= ,\xe+2xe,)
t,=;(",+',+'.)'

And, of course,

t,
vr=;(vo+Ys+Yc).

These expressions are symmetric
relative to the coordinates of the
triangle's vertices. Therefore, the
points dividing the two other medi-
ans BB, and CC, in the rutio 2 : I
must have the same coordinates as
M, so they all are the same.

Readers familiar with the notion
of the center of mass must have rec-
ognized the expressi on for x, and y *
as the coordinates of the centroid of
points4, B, C-thatis, the center of
equal mass points placed atA, B, C.
In the next proof we take advantage
of this observation.

Proof 5: using centu of mass. Put
unit mass points at the vertices.
The center of mass of any finite sys-
tem can be found step by step: any

lL
4c

Figure 6Figure 5



two masses can be replaced with
their total mass placed at their cen-

,ter of mass, after which we gPt a sys-
t\m that has one mass -pdint less.
riibn we eqa!4e.rr6-ther pair of
masses/ and so on until there is only
one point left. In our case we have
to make only two steps: the mass
points atB and C can be replaced'by
a single mass point at 41; the cen-
ter of mass of this point and the unit
mass point at A, according to the
"lever trtle," divides the segment
AA, in inverse proportion to the
masses-that is, in the ratio 2 : 1.

Now, if we first unite masses at A
and C, we'll see that the center of all
three masses lies on another me-
dian, BB1, which completes the
proof according to our scheme.

Some readers may argue that this
proof is mathematically inadequate.
Indeed, the notion of the center of
mass/ as well as its properties, be-
longs to physics rather than math-
ematics. However, an absolutely
rigorous mathematical support for
the center-of-mass technique can be
provided with some elementary
vector algebra. In fact, this tech-
nique (in geometry) is just another
"language" describing the same
contents as the "language of vec-
tors," but more convenient with a
certain kind of problems.

By the way, the center of mass
of a triangular plat e coincidentally
falls on the centroid M, too (see,

for instance, "Halving It A11" in
the March/April 1992 issue of
Quantuml. However, the center of
mass of a wire triangle does not
coincide with the centroid unless
the triangle is equilateral (see
question l7 in the Kaleidoscope of
the |uly/August 1994 issue). For
other polygons, all three kinds of
center of mass are, irt general, dis-
tinct.

Exercise 6. Prove that the four
segments joining the vertices of a
tetrahedron to the centroids of the
opposite faces (the medians of the
tetrahedron) and the three segments
joining the midpoints of its opposite
edges (its bimedians) meet in a
point. This point is called the cen-
troid of. the tetrahedron.

Figure 7

Proof 6: using parullel proiection.
Let's attach to the side AB of the
given triangle an equilateral tri-
angle ABC'with its vertex C' off the
planeABC (fi1.7l. Now consider the
parallel projection of the triangle
ABC onto the plane ABC' along
CC'. CLearly, triangle ABC with its
medians projects on the triangle
ABC' and its medians (because the
midpoint of a segment is proiected
on the midpoint of the segment's
projection). But the medians of an
equilateral triangle coincide with its
perpendicular bisectors (and with
its bisectors and altitudes), which
are known to pass through the same
point-the circumcenter. There-
fore, the medians of the original tri-
angle also pass through the same
point. As to the ratios, we note that
the ratio in which a segment is di-
vided by any point on it is preserved
under a parallel projection (this fol-
lows from the property of propor-
tional segments mentioned in the
first proof). But for the center O
( centroid, circumcenter, incenter-
it's all the same) of the ecluilateral
triangle ABC' and, say, the median
CC'we have

CrO : OC' = CrO :OB = sin30"= 1.
2

This proof brings to light and
makes use of the fact that the prop-
erty of medians, as well as the no-
tion of the median itself, is pre-
served under parallel projection.
Such properties and notions are
called affine. For instance, "tobe a
parallelogram" is an affine property,
whereas the properties "to be a

rhombus" or "to be a rectangle" are
not affine: parallel projection can
make equal sides different and
doesn't preserve perpendicularity .

Proportional segments, ratios of ar-
eas, dilation, coordinates, center of
mass, and paraliel projection all are
very useful and effective toois that
help us solve affine problems. In
fact, the best way to tackle most af-
fine problems is to apply one of
these tools. However, in our case
affine proofs have a certain flaw-
they are "too Euclidean." The prop-
erty of medians can be extended be-
yond the limits of the Euclidean
plane, so to speak. It can be general-
ized to space-to the three-dimen-
sional analog of the triangle, the tet-
rahedron (see exercise 5 above)-and
its affine proofs can be modified ac-
cordingly. But this theorem can be
generalized to non-Euclidean planes
as well. No, I'm not going to delve
into hyperbolic (or Lobachevskian)
geometry-the articles on this topic
in the September f October 1992,
November/December 1992, ar,d
March/April1993 issues will give
the interested reader plenty of op-
portunity to explore the property of
medians. We have a much more fa-
miliar example of non-Euclidean
geometry at hand-the geometry on
the sphere. A spherical triangle
ABC is obtained by joining three
points A, B, C on the sphere with
the (minor) arcs of great circles
(these are the circles along which
the sphere is cut by planes through
its center-like meridians and the
equator, but not the paraliels of lati-
tude, on a globe). The medians of tri-
angle ABC, as well as any "straight
segments" on the sphere, are also
arcs of great circles. With this un-
derstanding, it turns o:ut that the
medians of a spherical triangle al-
ways meet in a point.

Exercise T.Ptove this statement.
Hint: make use of the medians of
the ordinary plane triangle with the
same vertices.

Now I can explain what's wrong
with affine proofs. They depend on

CONTINUED ON PAGE 39
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Supercoltducliltu maunel

"Know then that this is the law:
the north pole of one lodestone attracts the south pole

of anothsl'."-pstrus Peregrinus (13th century ,q.o.)

by Arthur Eisenkraft and Larry D. Kirkpatrick

OR TFTE )OW INTERNANONAL
Physics Olympiad held in |uly
in Beijing, the Chinese hosts
prepared problems that are an

interesting mix of the modern and
the traditional. We have used one o{
the theoretical problems as the ba-
sis for this month's contest problem.

For those of us who grew up with
conventional electromagnets, it is
very strange to see an electromagnet
that is not connected to an external
power source. But that is what hap-
pens with a superconducting mag-
net. After a current has been estab-
lished in the magnet, the magnet
can be disconnected from the exter-
nal power and it will continue to
produce a steady magnetic field for
avery long time.

In a conventional electromagnet,
alarge cuffent passes through a so-
lenoid (a coil of wire) producing a
magnetic field inside the solenoid.
But the current produces a 1ot of
heat due to the resistance of the
wire. The production of this heat
means that a source of energy is re-
quired to maintain a steady state.

In a superconducting magnet, the
coil is immersed in liquid helium at
a temperature of 4.2 K. At this tem-
perature/ the wire becomes super-
conducting-that is, its electrical re-
sistance drops to zero.Therefore/ no
heat is produced and the need for an

extemal power supply is eliminated.
The current in the magnet is

controlled with a specially de-
signed superconducting switch wired
in parallel with the coil as shown in
figure 1. The superconducting switch
is usually a small length of supercon-
ducting wire wrapped with a heater
wire and thermally insulated from
the liquid helium bath. When the
wire is heated, the wire reverts to the
normal state and its resistance sud-
denly changes from r = 0 to r = rn.

This very modern device can be
analyzed using the very traditional
physics that we leam in an introduc-
tion to circuits. We start out with
Ohm's law, V = IR. We then add
Kirchhoff's two laws. Kirchhoff's

I

PHYSICS
CONTEST

voltage rule tells us that the voltage
drop across the superconducting coil
must be the same as the voltage drop
across the superconducting switch,
V"= Vr. This is iust a statement of
the conservation of energy.
Kirchhoff's current ruIe tells us that
the current flowing into a junction
must equal the current fiowing out
of the iunction-a statement of the
conservation of charge. Using the
directions indicated in figure 1, we
havel=1"+1r.

The remaining physics that we
require involves the coil. It is inter-
esting because we have a pure induc-
tor-the wire in the coil is supercon-
ducting and its resistance is zero.
The voltage drop across an inductor

power
switch

powet
soulce

variable
resistor

superconducting
maSnet

the part enclosed in dashed lines is immersed
in a liquid helium bath at a temperature of 4.2 K
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depends on the geometry and size of
the coil (contained in the inductance
Ll and the change in the current.
Notice that it is only the change in
the current that matters, not the
actual value of the current. Thus,

AIrc
At

As a consequence of this, when a
solenoid is wired in series with a
resistor and a battery, the current
cannot instantaneously reach the
final value of VlR. The voltage drop
produced across the inductor as the
current increases means that the
current must climb to this final
value exponentially. That is,

v.
1 =:(1 - "-ttr),R'

where r, = LIR is the time c,onstant
characteristic of this circuit.

Let's now use these basic ideas
about circuits to see how the super-
conducting switch can be used to
control the operation of the super-
conducting magnet. Let's assume
that r,, = 5 Q and I : 10 H. We start
out with switch K closed.

A. Assume that from t: 0 until
, = 3 min, we have 1 = 1 A, 1" : 1, =
0.5 A, and r = 0. We now use the
variable resistorR to reduce the cur-
rent l linearly to zero from t : 3 min
to t = 6 min while keepingr : 0. Plot
graphs of 1" and 1, as functions of
time and explain why they behave
this way.

B. Assume that from t = 0 until
t : 3 min, we have I : Ic= 0.5 A, 1s :
0, andr = 0. At t : 3 min we use the
heater to suddenly put the supercon-
ducting switch in the normal state
with r : r,r. At t = 6 min we cool the
switch so that it suddenly retums to
the superconducting state withr: 0.
Plot graphs of I, Io and /. as func-
tions of time and explain why they
behave this way.

C. Let's now change the initial
conditions by putting the initial cur-
rent through the switch instead of the
coil. Assume that the extemal resis-
tor has a constant value R = 5 Q and
that from t = 0 until t = 3 min we have

1: /s = 0.5 A, 1" = 0, andz : 0. At t = 3
min the switch changes to the normal
state with r : rn At, : 5 min the
switch returns to the superconduct-
ing state with r = 0. Plot graphs of 1,

1", and 1, as functions of time and ex-
plain why they behave this way.

D. When the switch is in the su-
perconducting state, the magnet
may be operated in the "persistent
mode." In the persistent mode
switch K is open and a current cir-
culates through the coil and the su-
perconducting switch indefinitely.
Suppose that the magnet is operat-
ing in the persistent mode (that is,
I = O, I": Io, and /, = Jolwith 1o :
20 A from t = 0 to t = 3 min. Wenow
want to shut the magnet down by
reducing 1o to zero. However, we
will destroy the switch i{ the current
through the switch exceeds 0.5 A.
(Large currents cause the wire to
switch to the normal state and the
resulting heat melts the wire.) What
steps can you use to shut the mag-
net down? Be sure to plotf 1", 1", and
r as functions of time to illustrate
your method.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA2220l-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Lasel' luuilalion

Our contest problem in the
Mayllrrne 1994 issue of Quantum
required readers to compute the
intensity of a laser beam required
to suspend a triangular glass prism
in the air. An excellent solution
was submitted by Scott Wiley of
Weslaco, Texas.

A. The preliminary problem in-
volves suspending a box with bul-
lets striking the bottom of a box at
an angle 0. Because momentum is a
vector quantity, we can break the
initial and {inal momentum of the
bullets into vertical and horizontal
components. Ignoring the horizon-
tal components as instructed, we
can calculate the change in the ver-
tical component of the momentum
for each bullet:

Lp - -mvo cos 0 - mvo cos 0
= -Zmvocos 0,

where the minus sign indicates that
the change is in the downward direc-
tion. Therefore, the force Foo, ex-
erted on the box is

F6or. = RAP

= 2Rmyo cos 0
= 0.6 N,

based on the data given in the prob-
lem.

B. Let's now move on to the laser
beam. From the geometry of figure 2
we see that the angle of incidence for
the incoming light beam is cr. Using
Snell's law and setting the index of
refraction of air equal to 1, we have

sin cr = n sin Q,

where Q is the angle of refraction at
the first surface. A litt1e more geom-
etry shows that

0+Y=cr'
where y is the angle of incidence at
the second surface. Finally, using
Snell's law at the second surface
yields

n sin Y= sin 0,

with 0 being the angle of refraction
back into the air.

Solving these equations, we find

0 = arcsin [r sin (cr - Q)],

with
sintr

Q = arcsrn-'

C. By conservation of linear mo-
mentum, the total momentum of
the system must remain unchanged.
Since the wavelength of the laser

V
c
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light is the same before and after it
enters the prism, the magnitude of
the momentum of each photon is
the same and equal to Ef c, where E
is the energy of each photon. How-
ever, the angle of the beam has
changed. Therefore, the horizontal
and vertical components of the mo-
mentum change of the prism are

Lpp* =p - pcos0 = Itr-cos0),
E

Lp-,, = psino -:sino.
c

Therefore, using the technique from
part A, we find that the components
of the force on the prism are

F, =flpr* =f O-coso),

- N, NE ^Or=TOpor--slnU.

Knowing that the power P in terms
of the intensity and the number of
photons N is

P=IA=NE.t'
we have

p,=!$-coso),*c

.E = 4sino.
vc

However, the intensity is not uni-
form over the prism. Because it falls
off linearly with distance/ we can
avoid doing an integral and just use
the average value for each face. The
average intensities for the upper and
lower faces for the caseh a yra 3h are

d=
I(yo)+ I(yo + h) =,,(!!#),

; 1(yo)+ t(yo-h)
'l= z

As shown in part B, the top face
provides an upward momentum to
the prism. Conversely, the lower
face provides a downward momen-
tum. Therefore, the net vertical
force is

-3h -2h -h 0 h 2h 3h

Figure 3

Fo=(._-Qf'me

Inwh .

= - ' sinO.
4c

The minus sign indicates that the
prism should be placed below the axis
of the beam for it to be suspended.

Because the horizontal components
act in the same direction, we have

F, =(\+4)@(r- cose)x \ u ,l c t

=-IP* 1+t -yoXr-coso).2c \ 'l

Figure 4

D. Similar calculations for the
range g < yo< h yield the graphs
shown in figures 3 and 4.

E. Using the dimensions and den-
sity given in the problem, the wei.ght
of the prism is I4l = 1.42. l}-e N. To
levitate the prism, the upward force
on the prism must equal its weight.
This requires 1o = 6.19 . 108 Wl^2.
The average intensity of the beam is
Iol2, so the power of the beam must
be

P:IA:24.8W.
o

_, (gh-zyo) 
^ -,-'o[ 8h )' oo 

=
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.THE MEDIANS"
CONTINUED FROM PAGE 35

parallelism, perhaps indirectly, and
therefore can't be adjusted to spheri-
cal (or hyperbolic) geometry. Well,
such universality may not be the
first thing we want from a proof, but
still I want to conclude with a proof
that can be more or less applied to
the sphere, too.

Proof 7: using the Law of Sines.
Let's again follow the scheme we
used above. Applying the Law of
Sines to triangles ABB' ar;id CBB'
(fig. 4 on page 341, we get

ABsinZABB' BCs|TZCBB'
sinlAB'B sinlCB'B

ABsinIABB'
CBsinZCBB"

because sinZCB? = sin (1B0' - IAB'BI
= sirt ZAB'8. Similarly, triangles
AMB andArMByield

AM 
= 

ABsinZABB'

4M \BsrnZCBB'

Since AM = zMAr ar;:d CB :2ArB,
after dividing the first relation by
the second we obtain AB'f B'C = l,
completing the proof.

On the sphere, the Sine Law re-
mains valid if we replace the side
lengths of a triangle in it with the
sines of the angular measures of the
sides. So instead of the Euclidean re-
lationABf sinZC =BCf sinlAinan
ordinary triangle ABC, we'IIhave
the spheric relation s(A , Bl lsin ZC =
s(8, C)/sin ZA, where s(X, Y) =
sinAOY and O is the center of the
sphere. If we choose point M on the
median AA, oI a spheric triangle
ABC such that s(A, Mlls(M, A1l:
2 and replace all distances XY in
proof 7 with s(X, Yl, it will work per-
fectly well for the sphere. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60

I l^wh
- ' sinO
4c
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AT THE
BLACKBOARD

UUhal you add is ulhat you la[e

-but a profit you can make

by Andrey Yegorov

,D LIKE TO BEGIN MY STORY WITH AN OLD
chestnut. It's been around, but I found it in the old
Russian book of recreational mathematicsV tsarstve
smekalki lln the Realm of Mother Witl by E.I.

Ignatyev, first published in 1908:

An old man who had three sons ordered that after his death
they divide his herd of camels such that the oldest son took
half of the herd, the middle son received one third of it, and

the youngest son got one ninth. The old man died and left 17
camels. The sons started divifing the legacy, but found that
the number 17 is not divisible by any of the numbers2,3, or
9. In a hopeless quandary about what to do, the brothers
turned to a sage. The sage rode over on his own camel and di-
vided the old man's herd in accordance with his will. How did
he do it?

Don't rack your brain too long over this baffling
przzle.It's only a joke: the sage added his camel to the
herd, gave one half of the new herd (9 camels) to the old-
est brother, one third (6 camels) to the middle brother,
and one ninth (2 camels) to the youngest brother, and
took the remaining camel ( I 8 - 9 - 6 - 2 : 1 ), which hap-
pened to be his own. He then departed, leaving the
brothers-and you, no doubt-completely befuddled.

, I'm sure you'Il unravel the secret of the sage'sp trick {although it looks very plzling at first glance,
doesn't it?). Howevett my goal wasn't to fool you,
or even to make you smile (which would be a good
enough excuse, in my book). It just so happens the

p sage's trick is a good illustration of one
of the most frequently used techniques
of recasting mathematical objects. For
instance, in algebra we often add to an

jd expression some terms and then subtract

ry equal terms, preserving the total but
making it easier to rearrange. You'll find

many such algebraic transformations in this
article, but before we concentrate on algebra, it

should be said that this branch of mathematics is far
from being the only one where the "add and subtract"
trick is applied. In fact, it can be encountered almost ev-
erywhere, and my first more serious example will be
from geometry. Let's derive the well-known formula for
the area of a parallelogram as the product of its base and
height (we already know that the area of a rectangle is
the product of two adjacent sides).

*' :. '
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ABK
Figure 1

ABNK

Figure 2

Consider a parallelogram ABCD and add to it a trap-
ezoid CBKL (fig. 1)whose bases BK and CL are the ex-
tensions of AB arrd DC and whose side KI is perpen-
dicular to the bases. Now we can draw MNparallel to
LK and cutting off a trapezoid AN MD that is congruent
to trapezoid BKLC (fu1. 2lr. The remainder is the rect-
angle KLMN, which has the same area as ABCD.Bttt
this area equals NK . KL, where NI( equals the baseAB
of the parallelogram and KI is equal to its height.

Exercises
1. An absent-minded mathematician, instead of pour-

ing milk into his cup of coffee, poured a spoon of coffee
into a jug of milk and care{ully mixed the liquid in the
jug. Then he noticed his mistake and poured a spoon-
ful of the mixture back into the cup. Is there more milk
in the coffee or coffee in the milk? Does the answer
depend on how carefully the drinks were mixed? And
what does this problem have to do with the caiculation
of the area of a parallelogram above?

2. Show how a trapezoid can be transformed into a
parallelogram with the same areaby adding and sub-
ffacting congruent figures. Derive from this formulas for
the area of atrapezoid, and also of a triangle.

3. Prove that the volume of an oblique prism equals the
product of the area of its cross section perpendicular to the
edges joining its bases and the length of any of these edges.

4. Find a formula for the lateral area of. the prism in
problem 3 in terms of the perimeter of the length of a lat-
eral edge and the perimeter of a cross section taken per-
pendicular to the edge.

CompletiltUile sflme
Now we turn to algebra.
One of the most frequent applications of the add-and-

subtract technique is reworking an algebraic expression
so as to create the expansion of the square of a sum or
difference. For example, we have

.* 
=t*F-*r,1,,-'""

and, similarly,

u2+tP:lu-rl2+Zuv.
The first of these simple relations is used in the {ollow-
ing problem.

Problem 1. For what positive integers n is the num-
berna+4aprime?

Solution. We can think of na + 4 as u2 + v2 with ti = r72 ,

v = 2. Then

na+4=n4+4n2+4-4n2
: (r2 * 2lz - 4rz
= lnz -2n + Zllnz + 2n + 21.

So the number na + 4 is always the product of two in-
teger factors the smaller of which, equal to ln - ll2 + l,
is greater than 1 unless n = 1. So f.or n > 1 this number
is composite, and for n : 1 it's the prime number 5.

At the same timg we've factored the polynomial n4 + 4
of n into two quadratic factors. Here's a similar factor-
ization.

Problem 2. Factor the polymomial * + * + l.
Solution. Add and subtract x2:

* +*.' 
:k.:1!.aloi,.,,

In the same way the formula for the roots of the qua-
dratic equation * + px + e = 0 is derived:

where D = p' - 4q is assumed to be nonnegative. This im-
mediateiy yields the formula for the roots

,. _-priD^r,r- 2 '

Next is a fourth-degree equation.

Problem 3. Solve the equation r/ + 4x - | = 0.
Solution. We'll complete two squares at a time by

adding and subtracting2r,2 + l:
# +4x-l:x4 +2sr2 +l-2x2 +4x-Z

= (* * tlz -2(x- 1)r: o.

It follows that xz + I = +Ji (x - l)-that is, either
xz + nD x * I - "D = O or* - Ji * + | + ",0, : 0. Solving
these equations, we get the answer:

Jiti
xz, q

(where i = J-t is the imaginary unit).

4t

x2+pxte=x2+Z.lx***n-

=(,* +)' -(+-,)

=(,*L- P\(**L*[ 2 V4r[ 2

p2

4

D
4
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Later we'll see how to factor an arbitrary polynomial
of the fourth degree into quadratic factors by complet-
ing the square. For the time being, I'd like to mention a
historical curiosity connected with the factorization of.
the expression-/ + aa.The great mathematician G. W.
Leibniz (one of the creators of calculus) thought that this
expression cannot be factored into quadratic polynomi-
als. Yet we'lldo this right now:

*+aa=*+2*a2+aa-2*a2
: (* * azlz _ ("fuxal2

= (* * ,Dxa * ,rll* - ^f2xa + a2l.

Exercises
5. For what positive integers n is na + 4n aprirrre?
6. Factor into quadratic po\momials (see the last ex-

ample in the text above) ("1* - a2* + aa, (bl * + b* + c.
7. Solve the equations (a)/ + 8x- 7 = O, (b) (* - 112 =

4l2x + ll, (c) * + *lg + 1)2 :1.
I'11 conclude this chain of problems with an example

where the add-and-subtract trick is used to create the
"incomplete square" u2 +ltv + v2, which emerges in the
standard iactorization of u3 - #.

Problem 4. Factor a5 + a + 1 into two polynomials
with integer c,oefficients.

Solution.

a5+ a +' 
-ri;::!i,*i:i.,,,

(Here we used the formula uB -tF = (u-vl(u2 + uv + rPl
foru=a,v=l.l

As an additional consequence we see that the num-
ber as + a + | is composite for all integer a > 1.

Exercises
8. Factor the polynomials (a) aro + as + 1, (b) a8 + a + l.
9. Prove that the number 1,280,000,401 is composite.

lttlillfuly altd dlttide

So far we performed algebraic transformations by
adding and subtracting the same expression. Sometimes
it's helpful to use another pair of inverse operations-
multiplication and division.

Problem 5. Find the product P = cos x. cos 2-x. cos 4x.
....cos2nx.

Solution. Assuming sin x * 0, multiply and divide p
by sin x:

P_ sinx. cosx . cos2x. ... . cos2rx
sinx

sin2x. cos2x ..... cos2n x
2sinx

= 
rrr

Sin2n + lx
=-2n+1einx'

il0tltil0tn/0tcrtttBtI I g g4

(I{sinx:0,P:+1.)
Thus, we have obtained aneat formula that will al-

low us to derive ViEte's formula for the number rc. To
do this, take the limit of both sides of the equality

xxxslnxcos- .cos-.
2 4 2n 2rsinx

2n

which is an immediate consequence of problem 5 (with
n - 1 substituted for n and 2-nx substituted for x), as
l? -+ €.

Using the well-known relation sin o/o + I as cr -+ 0,
we see that the denominator in the right side of this
equality approaches x as fl -+ @:

Y sin(xlz"\
2n sin 'r =;s. _,1_____J _9;,

2' xl2"

because xf 2 -+ 0 as r -+ -. The left side turns into an
infinite product, and we arrive at

XX x sinx
24 2nx

Substitutingx: nf 2, we obtain

tErcnz
COS-.COS-. .,r. = -2 I 2n+t TE

But for any acute angle x

Therefore, forn>2

x
COS- =

2

TECOS- =
2n

t_r, ,/1.

l-t + cos-
I .)n_I
\t o
\L

11
-+-22

42

and so

1] - 1 roots

7t

a

i1II T 1T

-*-COS-2 2 2n-1
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Exercise 10. Compute the infinite product

Certain sums can also be calcrilated using the mul-
tiply-and-divide device.

Problem 6. Find the sum

S, = 1+ 11+ 1 1 1+ ... + I1r..1.
n

Solution. Let's multiply (and later dividelby 9:

9Sr=9+99+999+"'+9J
n

= 10-1+lP -l+103 - 1+.'. +10' -1
=10+102+.'.+10n-n

10n+1_10
=--u.

9

So the answer is

sr= 10n+1_9n_10

Now a problem from number theory.

Problem 8. What greatest power of 2 is a divisor of the
product Pn= b + 1) . (n + 2l . ... .2n?

Solution, Let's multiply and divide P rby nr. = l. 2. 3. . . .. n
and rework the numerator:

Pr=
n!

p4
nl

2.(2.2).(2.3) .....(2") (r a s ... (zn-r))
nl

z .nt(t.8.....(zn-t))
n!

=2".(2n-L)tr.,

where (2n - llll is, by definition, the product of all the
oddnumbers from 1 to2n- 1. This shows that the answer
is 2n.

It's simply impossible to give in one article a more
or less complete notion of the variety of problems that
are solved using the add-and-subtract or multiply-and-
divide tricks. (For example, I didn't even touch on the
applications of this method in proving inequalities.) I
hope you'llfind and solve a lot of these problems your-
self. Now I want to fulfil the promise I made earlier and
explain how to f.actor polynomials of the fourth degree
into quadratic polynomials.

tenl'al'ib lngiltod
We're going to follow in the footsteps of Lodovico

Ferrari (1522-1565), who discovered a method for
solving equations of the fourth degree by reducing
them to quadratic equations (using an auxiliary cubic
equation).

Consider the equation

P(xl=*+af+b*+cx+d=0.
Applying our technique, rewrite it as

Now let's try to represent the last expression as the
difference of squares, which would enable us to factor
it. To do this, we'll add to P(x) and subtract from it the
expression 2o:(* + axlLl + c2, where c, is an unknown
number as yet. Then P(x) takes the form

-(e", + Bx+C),

111
-+-.-2 22

1

2

81

Problem 7.Find the sum

S, = sin x + sin 2x + ... + sin nx.

Solution. The reader can verify (or recall) that sinA sin B
:,/rlccs(A - Bl - cos (A + Bl.If sin lxl2l * 0, then using
this formula we get

S- sinl = sin{ .sinx + sinl .sin2x + ... + sinl .sinnxn2222
l( x 3x\ l( 3x 5x\

=-l COS- l+-l COS--CoS I2\ 2 2) 2\ 2 2)
l( 2n-l Zn+l \+.,,+_l cos_x_cos_x I2t 2 2 )

l( x 2n+l )
=-l COS--COS-X I2( 2 2 )

. nx (n+I)x
22

Therefore,

,in nx ..ir, ('* 1)'
c- 2 2u_ - 

-.

" sinl
2

(Clearly, S, = 0 for sin (xlzl = O.l

Exercise 11. Compute the sums (alx+2* + ... +nxn,
(b) I +cosx+cos2x+... +cosnx.

P(x) = xa +21# * t*' - t"' +bxz + cx + d

=(* . +)' .(o - t)"2 + cx + d.

P(x)= (*'*7*r)'

0ulilTUtI/[T Tflr 0rAcr(00rR0 43
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whereA =2a+ a2l4-b,B = aa.-ct C:a2-d.Wewant
the trinomial Ax2 + Bx + C to be a complete square/
which is true if and only if the foilowing conditions
hold: A > 0 and 82 - 4AC: O-that is,

(aa - c)2 = +( zo * + -a11.,, - a;.
\4)'

This cubic equation for cr is called the Ferrari resol-
vent for the polynomialP(xl.If uo is the resolvent,s root
satisfying 2ao + azf 4 - b > O (thai is, A , O), then p(x) is
equal to the difference of squares:

p(x) = (* . T* o)' - (kx + t)2 ,

where k and I are expressed in terms of the coeffi-
cients of P(x) and the number oo, and so our original
equation is reduced to two quadratic equations. (And/
of course, we'll be able to tactor p(x) into quadratic
polynomials.)

Let's make sure that the required root of the resolvent
reaLly does exist. The cubic equation for o given above
can be written as

For u:Vlb - a2l4l we have Q(o) = -(aa - cl2 < O, and
for large enough g, Q(o) > 0 (because e(o) = Boc3 +
some quadratic polynomial in o). Therefore, there ex-
isls l number uo ,Ub - a2l4l such that e(clto) = 0-
which is iust what we need.

To apply Ferrari's method one must know how to
solve cubic equations. There is a formula, called
Cardano's formula,l that allows us to express the roots
of a cubic equation in terms of its coefficients and en-
tails only four arithmetic operations and radicals (square
and cube roots). Quadratic equations are also solved in
radicals. Therefore, by Ferrari's method, we can express
the roots of a fourth-degree ecluation in radicals-that
is, there exists a formula that involves four arithmetic
operations and scluare and cube roots for solving fourth-
degree equations. Paolo Ruffini (1765-1822) and Niels
Henrik AbeI (1802-1829) proved that for equations of
higher degrees there are no such formulas. Not only
that, it follows from the work of Galois (see ,,The Shori,
Turbulent Life of Evariste Galois,, in the November/De-
cember 1991 issue of Quantuml that there exists an
equation of the fifth degree with integer coefficients
whose roots cannot be expressed in terms of the coe{fi-
cients-that is, integers-by means of a finite number
of additions, subtractions, multiplications, divisions,
and extraction of roots of any degrees. One such equa-
tion is, for instance , xs - ZSx - 5 = 0, which has three

lFerrari's teacher Girolamo Cardano (1501-1576) was
the first to publish this {ormula. Its discovery forms one of
the most fascinating chapters in the history o{
mathematics, and we're going to publish a-special article
about it.-Ed.

e(o) = +(z* * t - r)A, - d) - (aa - c)2

real and two complex roots.
The reader may want to look back to problem 3 and

see how this method worked there. Or, let,s look at an
example showing directly the application of Ferrari,s
method.

Problem 9. Solve the equationxa - 10x2 - Bx + 5 = 0.
Solution. Rather than use the formula we already

worked out, let's walk through the steps of Ferrari,s
method once again. First, rewrite the equation:

*=tO*+Bx-5.
Addza;rP + a2 to both sides:

(* + ulz = (10 + 2ul* +Bx + a2 - 5.

Equate the discriminant of the quadratic polynomial on
the right side to zero:

16-(10 +2ul(u2-5)=0.
A{ter simplifying, we arrive at the equation in c,

u3+5cr2-5cr-AB=0.

One of the roots of this equation can simply be guessed:
cr = -3. Substituting this value of a,, we get

(* - 312 : 4* + Bx + 4 = 4(x + Il2,

which gives either * - B = 2x + 2 or * - B = -2x - 2. Solv-
ing the quadratics * -2x -5 = 0 and * + 2,x- I = 0, we
finally obtain the answer: xr,z= | t J6, xs.q= -I r nD.

Now try Ferrari's methocl yourself.

Exercises
12. Solve the equations (a)ra - 4# + 5* -Zx - 6 : O,

(bl1+*-l\P-2x+4=0.
13. Factor into quadratic polynomials (a) * + 2* + 2*
+ x-2, (bl # + 2# -gP - 4x- t. O

ANSWERS, HINTS & SOLUTIOIVS oN PAGE 61

OUANTUM
lnalG$ a p8rl8cluilt!

Use the response card in this issue to order
Quantum for your child, grandchild, niece,
nephew, mother, f.ather, friend . . . Or call l 800
SPRINGER (777-46431. Give them six color{ul,
challenging entertaining issues o{. Quantum-
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Factor x into the
OUANTUM equation,
where x is any potential
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MATH
INVESTIGATIONS

tUyptialt lractions

An alternate life-style without multiplication tables

HE ANCIENT EGYPTIANS
didn't torture their children by
forcing them to memorize ex-
tensive multiplication tables.

Instead, they used a succession of
doubling operations to perform mul-
tiplications and divisions, implicitly
recognizing the fact that any num-
ber can be expressed as the sum of
powers of 2. Hence their practice
may be considered a forerunner of
the computer age.

To deal with fractions, they
avoided some of the computational
difficulties by developing extensive
tables of representations of fractions
of the form Zln as sums of distinct
unit fractions 1/k, which they de-
noted by an elongated ellipsis above
the number ft. To simplify the
present exposition, we will use a bar
in place of their elliptical symbol.
The Ahmes (or Rhindl Papyrus, dat-
ing back to 1550 8.c., starts with a
table of such expressions for 2f n for
al1 odd values of n from 5 to 101. A
few of the entries are reproduced
below in order to provide some prac-
tice with the notation:

Clearly, they were familiar with
a number of identities, like 2l3k =

2k * 5k,21"-- " * 2n * gn * 5n,
and lln = n*l + n(n+l), while
some of their other entries were ob-
tained seemingly by ad hoc meth-
ods, aiming for the smallest denomi-
nators.

The world of Egyptian fractions
continues to fascinate mathemati-
cians. For example, Erd6s posed the
question: Can 4ln always be repre-
sented as the sum of three or fewer
unit fractionsl Some partial answers
are provided by the identities in the
box below, leaving the development
of the easier identities f.or al$k - ll, proper detail.

=- - =48k+10+120k +25+240k+50,
l2Ok+25

= lQft 1 16 + (6k + a)$20k + 73) + (tSft + 10x120k + 73),
lZOk+73

.==: - = 30i< + 25 + 10(ft + 1)020k + 97) + 10(k + t)(6k + 5)(120k + 97)
l2Ok+97

.)_
'=3O+42,

35

.)_
' =101+ ZU+mZ+eOO.

101

by George Berzsenyi

.r_
a=12+276,
23

t't _' =56+679+776,
97

4 I l4k - 2',, 4 I (8k- 3), and 4 I l24k - 7l
as a first challenge to my readers.
My second challenge is to verify
that these identities prove the con-
jecture of Erd6s for all fractions, ex-
cept those of the forrn 41fi20k + 1)

and 41fi20k + 49). These findings
were reported in an article (in Hun-
garian) by |6nos Surdnyi in 1981.
According to Richard Guy's Un-
solved Problems inNumber Theory,
published in the same year by
Springer-Verlag New York, Inc., a
similar conjecture by Sierpirlski con-
cerning fractions of the form 5lnhas
been verified for all n < 108.

In conclusion, my last challenge
to my readers consists of several
easier problems: (1) For which pairs
of relatively prime integers a and b
will there exist positive integers x
andysuch thatalb: x + yz. (2)Find
all solutions in positive integers of
the equations i + y =2 and x2 * y2
: 22 .Bl Are there positive integers
x,y,Zsuchthat x'+yn =V iln,
2? Space limitations do not allow
me to address this last question in

o
2=s*15.
5

? =4 *ze.
7

t)_
a=6+66.
11

2

13
=6+52 +104,
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NU\ Executive Director Search
The National Science Teachers Association
search for an Executive Director to oversee
the largest organtzatton of science teachers

announces its
the affairs of
in the world.

The position requires

f -Exercising 
the powers

E -Administration 
of the

and duties of a secretary of a corporation.
national office of the Association and its

staff, and proper disbursement of its funds including supervision of
the budget and financial reports.

f -Execution 
of business transactions on behalf of the Association

and subject to the direction of the Board of Directors, contracts and
agreements including notes, bonds, deeds, mortgages, leases, and
other legal instruments without limitation.
E -Maintenance 

of records of the official business, actions, and
meetings of the Board of Directors and Executive Committee.
f {arrying out the policies and programs of the Board of Direc-
tors for presentment to the membership either through Association
journals or at the annual convention or both.
f, -Action as public relations spokesperson, liaisoru and represen-
tative for NSTA to other organizations, the press, business and in-
dustry groups, and government agencies.

Deadline for Applications: February '1.,1995

Qualifications: Science education back-
ground, teaching experience, management
skills, good verbal and written communica-
tions skills and experience, financial pianning
abilities, negotiation skills, and sound leader-
ship abilities. Knowledge of and experience
working with the Washington, D.C., network,
including govemment and private agencies,
are extremely desirable.

Procedures: ( I ) Candidates submit applications
for review by the NSTA Search Committee.
(2)The Search Committee selects individuals
for consideration and interviews the best
potential candidates. (3) The top candidates
resulting from these interviews are then

proposed to the NSTA Executive Committee
for final interyiews. (a) The NSTA Executive
Committee will make the final selection and
negotiate a contract with that individual for a
term of five years subject to annual review.
Interested candidates are invited to write for
an application to NSTA Search Committee,
1840 Wilson Blvd., ArlingtonVA 2220L-3O0O.

Timelinq Completed applications will be
accepted until February l,1995. Final Candi-
dates will be interviewed by the NSTA
Executive Committee. Appointment date will
be negotiated.

-Equal Opportunity Employer



INNOVATORS

The le$auy ol lllol'hert ttUiener

Part l: Childhood, boyhood, and youth

ORBERT WIENER WROTE
his autobiography in two vol-
umes, Ex-Prodigy ar;:d I Am a

M athem atici an. The title Ex-
Prodigy says much: having been a
prodigy was a determining fact of
Wiener's life. But although it may be
true that prodigies are bom, they are
also made. Wolfgang might not have
become Mozart without Leopold,
and Norbert might not have become
Wiener without Leo.

For good reason/ Leo Wiener
(1862-1939) becomes the most com-
pelling character in his son's autobi-
ography. Born into a family of |ew-
ish scholars in the Belorussian city
of Bialystok (now part of Poland),
Leo showed a phenomenal gift for
languages and by adolescence al-
ready spoke German, Russian,
French, Italian, and Polish. Accord-
ing to Norbert, Leo could pick up
the essentials of a language in a few
weeks, and later in his professional
careet "spoke some forty of them."
He also published mathematical ar-
ticles in obscure journals and passed
on his knowledge to his son.

Always leaning toward Tolstoy-
ism, Leo at 18 joined a humanitarian
society and "forswore drink, tobacco
and the eating of meat for the rest of
his life." This iast habit, at least,
passed on to Norbert. The same
year,Leo joined a fellow Tolstoyan

Reprinted from the program booklet
for The Legacy of Norbert Wiener: A
Centennial Symposium in Honor of
the 100th Anniversary of Norbert
Wiener's Birth, October 8-I4, 1994,
prepared by the MIT Department of
Mathematics with the assistance of
Tony Rothman.

in a hare-brained scheme to found a

vegetarian-humanitarian-socialist
community in Central America.
The friend reneged, but Leo soon
found himself sailing penniless for
the American continent. A{ter some
usefui adventures, he ended up in
Kansas City, Missouri, where a sign
"Gaelich Lessons Given" caught his
eye. He enrolled, soon ended up

N orb ert Wiener ( 1894-1964)

teaching the class, and settled in
Kansas City.

In 1893 Leo married Bertha Kahn,
the daughter of a department store
owner. On November 26, L894,Ber-
tha gave birth to Norbert. Around the
same time, Leo lost his position as

Professor of Modem Languages at the
University of Missouri, Columbia,
and the family moved east to Leonard
Avenue at the border between Cam-
bridge and Somerville, Massachu-
setts. Once again Leo was forced to
accept odd iobs, but his remarkable
talent soon landed him an instructor-
ship at Haward, where he remlined
until his retirement as Professor of
Slavic Languages in 1930.

According to Leo, as quoted in the
|uly 1911 issue ol American Maga-
zine, Norbert's precocity first be-
came evident at the age of 18

months, when his nurse noticed
him intently watch her draw letters
in the sand at a beach. Within a few
days he knew the alphabet. "Think-
ing that this was an indication that
it would not be hard to interest him
in reading, I started teaching him
how to spell at the age of three. In a
very {ew weeks he was reading quite
fluently, and by six was acquainted
with a number of excellent books,
including works by Darwin, Ribot,
and other scientists, which I had put
into his hands in order to instill in
him something of the scientific
spirit. "

Leo made no secret that he in-
tended to mold his children into
prodigies. In the same article he de-

clared, "It is all nonsense to say/ as

some people do, that Norbert and
Constance and Bertha fNorbert's sis-
ters] are unusually gifted children.
They are nothing of the sort. I{ they
know more than other children of
their age, it is because they have
been trained differently. "

The elder Wiener did indeed take
almost complete charge of the
younger Wiener's education. A1-
though Norbert was enrolled in the
third grade at the age of seven, not too
far in advance of his years, he was
soon skipped to the fourth grade.
Even that move proved unsatisfac-
tory, and Leo withdrew Norbert from
school entirely, deciding to tutor him
at home. This period of home instruc-
tion included large doses of algebra,
Latin, and German, and lasted about
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two years.
An impor-
tant event
took place
when Nor-
bert was
eight. Due
to aheady
severe myo-
pia he was
forced to
stop read-
ing for six
months
and learn
his lessons
aurally. He

credits the experience with a sharp
improvement of his memory,
which, by later accounts/ was nearly
photographic. According to one an-
ecdote, he could recite a full Gilbert
and Sullivan operetta having heard
it once.

Undoubtedly, Leo saw himself as

a well-intentioned father and fair
taskmaster, but the son remem-
bered his training otherwise. Ac-
cording to Norbert, whenever he
made the slightest mistake , " the
gentle and loving father was re-
piaced by an avenger of the blood."
Even worse, Leo's comments in
American Magazine implied that
Norbert's innate abilities were un-
important. Norbert recalls that the
article "had a devastating effect on
me. It declared to the public that my
failures were my own but my suc-
cesses were my tather's." But de-
spite what Wiener wrote in Ex-
Prcdigy, Amar Bose, Wiener's
former student and colleague, and
perhaps his closest associate during
the last decade of his life, reports
that Wiener said that "everythinghe
had was due to his father." In sum,
Norbert was ambivalent toward his
f.ather, and he displayed that am-
bivalence in the dedication of his
book The Human Use of Human
Beings: "To the memory of my fa-
ther, Leo Wiener . . . my closest
mentor and dearest antagonist."

In 1903 the family moved to
Harvard, Massachusetts, where
Norbert, not quite nine, was en-
rolled in nearby Ayer High School.

He remained there three years, until
his graduation in 1906. At that point
his mentor and antagonist decided to
enroll the eleven-year-old at Tufts,
rather than risk the strain of the
Harvard entrance exams. At the time
Norbert's main interest was in biol-
ogy, and his course work appears
typical for a science major: doses of
physics and mathematics along
with the biology courses. Leo con-
tinued to tutor his son at home, with
the result that Norbert found "the
courses on calculus and differential
equations quite easy." He does con-
cede that his introduction to the
theory of equations under Professor
Ransom was "over my head," espe-
cially the section on Galois theory.
Nonetheless, in 1909, Norbert was
graduated cum laude in mathemat-
ics. He was fourteen.

Wiener's career at Tufts seems to
have ended in a severe adolescent
depression that lifted only gradually.
Recurring depression would become
a central feature of Wiener's life, and
his own account suggests that this
bout lasted fully through his gradu-
ate studies atHaward. At Harvard
Norbert had intended to pursue zo-
ology, but this decision quickly
proved to be a disaster, which he
blamed on his lack of manual dex-
terity andhis severe myopia. Earlier,
at Tufts, he had had some success in
philosophy, and, characteristically,
it was at his father's behest that he
abandoned zoology and applied to
the Sage School of Philosophy at
Cornell. In Ithaca, Norbert's depres-
sion continued, and his writings
leave no doubt that he hated the
place. Not only did he do poorly in
his philosophy courses, "the theory
of functions of a complex variable
was beyond me."

As a result of his poor perfor-
mance/ Wiener's fellowship at
Cornell was not renewed. The fol-
lowing yeart he returned to
Harvard's Department of Philoso-
phy and his father. At Harvard he
studied mathematical logic and,
under Karl Schmidt of Tufts, wrote
his thesis on theories of Schroeder,
Whitehead, and Russell. Although
he claims to have found the work

easy, he also admits that later "un-
der Bertrand Russell in England, I
learned that I missed almost every
issue of true philosophical signifi-
carrce." A11 in all, Wiener never
liked Harvard much more than
Cornell. In 1913 he received his
Ph.D. He was not quite 19, about six
years younger than the average
Ph.D. recipient in that era.

While in his last year atHarvard,
Wiener received a travel grant and,
upon graduation, set sail for Cam-
bridge, Engiand, to pursue post-
doctoral work in mathematical logic
with Bertrand Russell. Wiener rel-
ished his new-found independence
from his parents, even if his inexpe-
rience created problems: for ex-
ample, he waged a cluixotic battle
with his landlady over the terms of
his lease. But he also discovered a
different breed o{ student who ac-
cepted his eccentricities and thrived
on intellectual discussion. During
that year he met another expatriate/
T. S. Eliot, and they exchanged
books and philosophical ideas.
Wiener credits Russell with per-
suading him to learn some more
genuine mathematics and acquaint-
ing him with the work of Einstein.
But he was most inspired by G. H.
Hardy, whom he calls his "master in
mathematical training." Hardy in-
troduced him properly to complex
variables and to the Lebesgue inte-
gral, topics that would play a major
role in his later career.

Despite the importance of Har-
dy's influence, Wiener came to view
Hardy's renowned condescension
toward applications as "pure escap-
ism." In their later encounters/
Wiener bridled at Hardy's sugges-
tion that Wiener's beautiful work on
harmonic analysis was motivated
solely by the internal aesthetics of
mathematics and not by applica-
tions. In keeping with his deep and
abiding interest in applications,
Wiener believed that mathematicians
cannot ignore the outside world and
must both apply mathematics and
bear the moral responsibility for ap-
plications. This conviction would
become even more pronounced as
time passed.Indeed, Wiener has had

Norbert Wienu at age 7.

48 ilottrt'lBr[/[rcrilBrR rss4



the last laugh: even Hardy's beloved
number theory has applications to
telecommunications, cryptography,
and computer science.

Because Russell was planning to
spend the spring semester at
Harvard, Wiener had decided to fin-
ish his postdoctoral year at
Gottingen, home to such math-
ematical luminaries as David Hi1-
bert and Edmund Husserl. After
Gottingen, he returned to England,
hoping to spend the ac,ademic year
l9I4-19I5 at Cambridge again.
However, he found the university
effectively shut down by the war
and decided to return to America.
Back in America, he spent an un-
happy semester at Columbia, where
disagreeable encounters with dorm-
mates apper to have overshadowed
his academic activities.

As a Harvard Ph.D., Wiener had
the right to give a series of docent
(unpaid) lectures at Harvard. The
following year,he lectured in math-
ematical logic and did some routine
undergraduate teaching in philoso-
phy. He hoped in this way to secure
a permanent position in the Harvard
Philosophy Department. He never
did. Wiener was a chaotic lecturer,
a trait that did not improve with
time. Moreover/ George David
Birkhoff, America's leading math-
ematician at the time, disturbed
Wiener's docent lectures even fur-
ther by pointing out mistakes.

In I Am a Mathematician, W iener
accuses Birkhoff of shutting him out
of Harvard and blames Birkhoff's anti-
Semitism. Norbert goes on to say that
Birkhoff resented Leo Wiener's ex-
tra.vagarrt boasts about Norbert and

the aggres-
siveperson-
alityof both
father and
son-Leo
had re-
cently con-
firmed his
reputation
as a "qtJaL
relsome"
character
with vitri-
olic public

attacks against German militarism
and its defenders among the Harvard
faculty. But by any objective stan-
dard, Norbert's performance that
year was not good enough to have
secured a position at Harvard, even
for a Cabot.l

Although Wiener was never rec-
onciled to his failure to get a posi-
tion at Harvard, he did ultimately
win G. D. Birkhoff's respect. They
ran the joint Harvard-MlT Math-
ematics Colloquium, and their cor-
respondence reveals that they
geatly admired each other's math-
ematics and deveioped a cordial re-
lationship. The basis of that rela-
tionship may be guessed from the
following reference to Birkhoff in 1

Am a Mathematician: "I was not
alone in my competitiveness. At
least one of the greatest American
mathematicians, a man whose dis-
approval was the highest hurdle I
should have to leap, was even more
intensely competitive than myself . "

After the Haward debacle, Nor-
bert, again following Leo's advice,
began to look for a job in mathemat-
ics instead of philosophy. He man-
aged, with some difficulty, to land
a position at the University of
Maine. But he found the place intel-
lectually moribund, and the entire
experience proved a nightmare. (For
example, although he did not have
to contend with the formidable
Birkhoff, students dropped pennies
to disrupt his lectures.)Near the end
of the l9l7 academic year, the
United States entered the war and
Norbert attempted to enlist. But he
was rejected by all the services be-
cause of bad eyesight. Eventually,
he did graduate from the Harvard
ROTC2 with a "document that was
eminently not negotiable for a com-
mission." There followed brief
stints at General Electric and at the
Encyclopedia Ameficana, where he
was employed as a hack writer.
Wiener actually enjoyed this work,
but, during the summer of 1918, he

1A "Boston Brahmin" (that is, a
member of the blue-blooded Anglo-
Saxon elite o{ that cityl.-Ed.

2The Reserve O{ficers Training
Corps.-Ed.

decided to renew his job search. At
this stage he was so desperate that
he even applied for a position in
Puerto Rico.

Around this time he received an
invitation from Professor Oswald
Veblen of Princeton to join Veblen's
newiy formed ballistics group at the
Aberdeen Proving Ground in Mary-
land. This group's primary mission
was to test new ordnance and to
compute range tables that took into
account the elevation angle, size of
the charge, and other factors. Wiener
seems to have enjoyed the direct prac-
tical application of mathematics in
ballistics calculations, and his expe-
rience at Aberdeen served him well
in his investigations of anti-aircraft
fire during World War II.

After the war, Wiener had hoped
to follow Veblen back to Princeton,
where Veblen was instrumental in
assembling Princeton's soon-to-be-
famous department of mathematics.
The invitation never came. At about
the same timg the fianc6 of Wiener's
sister Constance died in the influenza
epidemic that swept the country af-
ter World War I. Constance's fianc€
had been a budding mathematician,
and after his untimely death Norbert
received several mathematics books
from his library. Thus, by accident,
Wiener became acquainted with
Volterra's Theory of Integtal Equa-
tions, Osgoo d's Theory of Functions,
Lebesgue's book on the theory of in-
tegration, and Fr6chet's treatise on
the theory of functionals. Wiener
claims that "for the first time I began
to have a reallygoodunderstanding of
modern mathematics." As Norman
Levinson, Wiener's most prominent
student, remarks, this is an astound-
ing statement from an individual who
had attended Hardy's lectures five
years earlier, not to mention one who
had spent a semester at Hilbert's
Gottingen, the fount of modern
analysis. Here we confront the irony
of Wiener's precocity: he received his
Ph.D. at age 18, buthis grasp of math-
ematics did not arrive until the rather
advanced ageol24. O

TO BE CONTINUED
IN THE NEXTISSUE
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HAPPEN INGS

US PhysicsTeam plaueslhird in BuliinU

The host team is tops at the XXV lnternational Physics Olympiad

HE US PHYSICS TEAM
earned the third-highest num-
ber of points at the XXV Inter-
national Physics Olympiad,

held in Beijing, China, |uly 11-19,
1994. The Chinese team achieved
the highest total, and Germany took
second place.

The trip to China provided oppor-
tunities for team leaders and mem-
bers to experience some of the differ-
ences between the US and Chinese
educational systems. Chinese teach-
ers are very demanding and do not
tolerate the carelessness typical of
many American high school physics
students. Partial credit is not given
very often, and small mistakes, such
as incorrect plus and minus signs,
receive large deductions. For in-
stance/ in a collision problem, stu-
dents were expected to begin by
writing the conditions for the con-
servation of linear and angular mo-
mentum/ a relationship obtained
from the impulse-momentum theo-
rem and two conditions on compo-
nents of the velocities. Each correct
equation received a 0 or 0.8 point,
and no partial credit was given. If
one equation was missed, the stu-
dent received no credit for solving
the six simultaneous equations.

This style of grading produced a
skewed distribution with almost no
high scores. As a consequence, only
six gold medals, five silver medals,
and twenty-two bronze medals were
awarded to the 229 competitors
from47 countries. Thus, only l4Y"
of the students received medals.

China was clearly the top team,

winning four gold medals and miss-
ing a fifth by only 0.05 point. Ger-
many won one gold medal and three
silver medals. The remaining gold
medal went to Great Britain, and the
remaining silver medal went to Po-
1and.

The Chinese organizing commit-
tee was very gracious in awarding
many special medals to students
who performed particularly well on
either the theoretical or experimen-
tal parts of the exam. The US Phys-
ics Team was awarded three gold
and two bronze special medals.

Bestlinish euer
The 1994 US Physics Team

achieved the highest US team finish
ever. The team was led by Andrew
Frey from the North Carolina School
of Science and Mathematics, who
placed 15th in the competition. He
was awarded a bronze medal and a
special gold medal for his theoretical
work. Daniel Schepler of Beaver-
creek, Ohio, placed 16th overall and
received abronze medal. He also re-
ceived a special goid medal for plac-
ing seventh on the theoretical portion
of the exam. Andy Neitzke of
Narberth, Pennsylvania, had a tough
day on the theory problems, but came
storming back to gamer the second-
highest score on the experimental
problems. He placed 25th overall and
was awarded a bronze medal and a
special gold medal. Geoffrey Park of
Tenafly, New |ersey, tied for 50th
place and received an honorable men-
tion and a speciai bronze medal for
his theoretical work. Charlene Ahn

from the North Carolina School of
Science and Mathematics received a

special bronze medal for theory and
placed B2nd overall.

$omelflinu old, somefiinu new
The Chinese designed an inter-

esting mixture of modern and tradi-
tional problems for the five-hour
theoretical and experimental exami-
nations. The first theoretical prob-
lerr, analyzed the one-dimensional
motion of two quarks forming a
meson. The quarks were assumed to
be ultrarelativistic and to have an
interaction that was independent of
their mutual separation.

The second problem is presented
as this month's Physics Contest (see

page 35). In the last theoretical prob-
lem, two uni-form circular discs with
the same mass but different radii suf-
fered an off-center collision. The new
element in the problem was the re-
cluirement that the relative veiocity
along the line connecting the centers
of the discs keep the same magnitude
while the two final velocities of the
contact points be the same along the
direction perpendicular to this line.
Students needed to develop six equa-
tions to find the four veiocity compo-
nents and the two angular velocities
of the two discs.

The first experimental problem
was a cleverly designed optics ex-
periment. Each student was pro-
vided with a laser, two photodetec-
tors/ two rotatable polarizers with
degree scales, a glass beam splitter,
and a dielectric plate. The task was
to measure the transmission axis of
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one polarizett yerify the linearity of
the photodetectot, and measure the
index of refraction of the dielectric
using Brewster's angle. As an added
complication, the students were re-
cluired to monitor the variation in
the intensity of the laser and make
suitable corrections.

The second experimental prob-
lem was a black-box experiment in
which students used an oscilloscope
and a frequency generator to deter-
mine the wiring diagram and the
valves oI a resistor, capacitor, and
inductor inside the box.

The requirements set by the Chi-
nese grading teams were stringent.
For instance, the transmission axis
had to be obtained within two de-
grees, and Brewster's angle to within
one degree, to receive ful1 crefit. As
a result, the top experimental score
was only 15.9 out of a possible 20
points.

Ihe uutnders olChina
Before flying to Beiiing, the US

team members spent three days
honing their skills in the physics
department at Stanford University.
Then, after a l3-hour flight to Hong
Kong, they spent two days trying to
adjust their biological clocks. Beijing
was a three-hour hop away by plane.
After VIP treatment in customs, a
quick bus trip brought the five US
students to their hotel to make
friends with high school students
hor::. 46 other nations. The aca-
demic leaders likewise made new
friends and renewed old acquaintan-
ces among physics teachers from
around the world.

The cultural and social programs
prepared by the Olympiad hosts
drew on centuries of Chinese his-
tory. Books and pictures are hardly
an adequate preparation for the real-
ity of the Great Wall. This engineer-
ing marvel snakes its way across the
lush mountain terrain at Ba Da Ling
pass just outside Beijing. Two hours
of walking along the Great Wall
gave but a brief glimpse of its mili-
tary andculturai significance in the
history of China.

Massive size, extraorditary art,
and very long histories are traits of

the Summer Palace, the Imperial
Palace, the Forbidden City, the
People's Hall, and the Ming Tombs.
An evening of acrobats, jugglers, and
magicians offered another glimpse
of Chinese culture.

The Chinese people themselves,
however, were the richest compo-
nents of the visit. Beijing with its 1l
million people, is a thriving me-
tropolis with hundreds of buildings
under construction, thousands of
cars, buses, and cars on wide boule-
vards, millions of bicycles, and a
population with nerves of steel in
the face of churning traffic patterns.
The streets of Beijing seemed always
to be teeming with people in a con-
stant "street fair" atmosphere.

l094Eam and $rult$ol'$
Twelve states were represented

on the 1994 US Physics Team. In the
list below, members who repre-
sented the team in Beiiing are
marked by an asterisk, and each
member's physics teacher is noted
in parentheses.

Matthew Ahart, Sherman Oaks,
California (|ohn Feulner, Harvard-
Westlake School)

*Charlene Ahn, Kinston, North
Carolina (Hugh Haskell, North
Carolina School of Science and
Mathematics)

Gil Barretto, Ridley Park, Penn-
sylvania (Paul Pomeroy, Archmere
Academy)

Rhiiu Das, Norman, Oklahoma
(Xifan Liu, Oklahoma School of Sci-
ence and Mathematics)

Brian Doherty, Richmond, Indi-
ana (H. Fakhruddin,Indiana School
of Science, Mathematics, and the
Humanities)

fames Dunlop, Libertyville, Illi-
nois (Theodore Vittitoe, Libertyville
High School)

Ron Fertig, Cherry Hill, New |er-
sey (Hirendra Chatterjee, Cherry
HiIl High School West)

*Andrew Frey, bronze medal,
Winston-Salem, North Carolina
(Hugh Haskell, North Carolina
School of Science and Mathematics)

Brian Leibowi tz, Matalapan, New
|ersey (|im Kovalcin, Manalapan

High School|
Paul Luian (alternatel, San Fran-

cisco, California (Richard Shapiro,
Lowell High School)

*Andrew Neitzke, Narberth,
Pennsylvania (Robert Schwartz,
Harriton High School)

Mark Oyama, Honolulu, Hawaii
(Carey Inouye, Iolani School)

*Geoffrey Park, Tenafly, New |er-
sey (Zenon Ushak, Tenafly High
School)

Aaron Pierce, Shaker Heights,
Ohio (|ohn Schutter, Shaker Heights
High School)

*Daniel Schepler, Beavercreek,
Ohio (Margo DeBrosse, Beavercreek
High School)

Mike Shubov, Lubbock, Texas
(|eff Barrows, Lubbock High School)

Ian Spielman, Albuquerque, New
Mexico (David Glidden, Albuquer-
que Academy)

Mary Spikowski, Bay Village,
Ohio (Timothy Wagner, Bay High
School)

Doug Stone, Libertyville, Illinois
(Theodore Vittitoe, Libertyville
High School)

Autelio Teleman, East Setauket,
New York (Tania Entwistle, Ward
Melville High School)

The 1994 US Physics Team was
organized by the American Associa-
tion of Physics Teachers (AAPTI
with the financial support of the
American Institute of Physics and
contributions from other physics so-
cieties, industry, and individuals.
The Principal Sponsor of the 1994
US Physics Team was the Physical
Sciences Department of the IBM
Research Division.

The XXVI International Physics
Olympiad willbe held in Australia,
llrly 5-12, 1995. Teachers of stu-
dents wishing to compete for posi-
tions on the 1995 US Physics Team
who do not receive application ma-
terials by mid-December should
contact Maria Elena Khoury at the
American Association of Physics
Teachers, One Physics Ellipse, Col-
lege Park MD 20740-3845 (phone:
30r 209-33441.

-Based 
on a report in the Sep-

tember 1994 AAPT Announcer
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American team UarltEF$ six Uold medals

ar 35rhltlll0

Six perfect scores puts the US in first for the first time ever

OMPETINC AGAINST TEAMS
representing 69 countries, a
team of six American high
school students placed first in

the 35th International Mathemati-
cal Olympiad (IMO), held |uly 8-20
in Hong Kong, with six perfect
scores. The top five teams were, in
order, the United States, China,
Russia, Bulgaria, and Hungary.

This is the first time that a tearrr
has scored a perfect score in the
IMO. Each of the six members of the
US team scored the maximum num-
ber of points (421 on the nine-hour
exam and each received a gold
medal.

The members of the team are

feremy Bem, Ithaca High School,
Ithaca, New York;

Aledsandr L. Khazanov, Stuyve-
sant High School, New York City;

|acob A. Lurie, Montgomery Blair
High School, Silver Spring, Mary-
land;

Noam M. Shazeer, Swampscott
High School, Swampscott, Massa-
chusetts;

Stephen S. Wang, Illinois Math-
ematics and Science Academy, Au-
rora, Illinois;

|onathan Weinstein, Lexington
High School, Lexington, Massachu-
setts.

The US team was led by Profes-
sor Walter E. Mientka of the Uni-
versity of Nebraska-Lincoln, execu-
tive director of the American
Mathematics Competitions. The
team was chosen on the basis of
performance in the 23rd annual

United States of America Math-
ematical Olympiad (USAMO), held
earlier this year. The winners of the
1994 USAMO were honored on
|une 6 at the National Academy of
Sciences in Washington, D.C. Prior
to the competition, the US students
participated in a monthlong sum-
mer program at the US Naval Acad-
emy under the direction of profes-
sors Anne Hudson, Titu Andreescu,
and Paul Zertz.

The Mathematical Olympiad is a
program of the Mathematical Asso-
ciation of America. It is cosponsored
by the American Association of Pen-
sion Actuaries, the American Math-
ematical Association of Two-Year
Colleges, the American Mathemati-
cal Society, the American Statistical
Society, the Casualty Actuarial So-
ciety, the Mathematical Association
o{ America, Mu Alpha Theta, the
National Council of Teachers of
Mathematics, and the Society of
Actuaries. Financial support is pro-
vided by the Army Research Office,
the Office of Naval Research,
Microsoft Corporation, and the
Matilda R. Wilson Fund.

Pl'0hlems lr0m tle 35lll lllll0
l. Let m and n be positive inte-

gers. Let at, a2, ..., a*be distinct el-
ements of ll, 2, ..., n) such that
whenever ai + ai < n for some i, i, 1

<i<i <m, thereexists k,7<k<m
with a, + a, = ap. Prove that

m2

2. ABC is an isosceles triangle
with AB : AC. Suppose that (i) M is
the midpoint of BC and O is the
point on the line AM such that OB
is perpendicular to ABt (Lil Q is an
arbrtrary point on the segment BC
different from B and C ; (iii) E lies on
the lineAB andFlies on the lineAC
such thatE, Q, andF are distinct and
collinear. Prove that OQ is perpen-
dicular toEF if and only if QE = QF.

3. For any positive integerk, let/o
be the number of elements in the set
{k + 1, k + 2, ..., 3k} whose base 2
representation has precisely three
1's. (a) Prove that for any positive
integer m, there exists at least one
positive integerk such that/(k) : m.
(b) Determine all positive integersm
for which there exists exactly one k
with /(k) : m.

4. Determine all orderedpurslm, nl
of integers such that (n3 + Illlmn - ll
is an integer.

5. Let S be the set of real numbers
greater than -1. Find all functions
l: S -+ S satisfying two conditions:
(11 flx + flvl * xflvll = y + flxl + yf(xl fior
all x and y in S ; (ill f(xl I x is strictly in-
creasing for -1 < x < 0 and for 0 < x.

6. Show that there exists a set A
of positive integers with the follow-
ing property: for any infinite set S of
primes, there exist positive integers
me Aandne A,eachof whichisa
product of k distinct elements of S

forsomek>2.

-From materials submitted by
Walter Mientka and Andy Liu

SOLUTIONS IN THE NEXT /SSUE
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Daniel van Vliet, a Canadian high school student of
Dutch heitage, accompanied Prof . Andy Liu, a member
of the IMO Problem Selection Committee, to Hong Kong.
Here is his account of his stay at the IMO.

AS A RESULT o{ a somewhat unusual arrangement, I had
an opportunity to serve as a grride for the Dutch team at the
1994 IMO in Hong Kong. Guides for the IMO teams are usu-
ally local university students who accept the position of
guide as a summer iob. For one thing, I am not a university
student. At the time of the trip, I had just finished grade I 1.

Moreover, I could hardly be defined as even remotely famil-
iar with Hong Kong, let alone a local. Apart from a pit stop
on fuly 1, I didn't arrive in Hong Kong until |uly 8.

The first thing one notices when one leaves the plane
upon arrival is the heat. Hong Kong is in a tropical coastal
area and has a sticky climate. The average daytime tem-
perature of 35'C comes as quite a shock to someone {rom
Edmonton. However, I learned to tolerate the heat within
a day or two.

The guides were brought together on a cluiet street cor-
ner on fuly 10 and sorted into two groups. It tumed out that
there was no single facility capable of housing all the com-
petitors and deputy leaders. I was among the guides sent
to a camp called Sai-Kung Outdoor Recreational Facility.
Only teams with all male participants were sent there.
Despite this, there were some female guides at the camp.

Hong Kong is a mosaic of tall office buildings, apart-
ments, and shopping centers relentlessly bustling with
heavy traffic from morning until night. As a result of this
striking first impression, the setting of our lodging was
somewhat surprising. After a seemingly lengthy drive
through progressively open landscapes/ we ended up in a
pleasant, woodsy area. The {acilities seemed out of place
in a city where land was at such a premium. They included
a tennis court, swimming pool, soccer field, and various
other recreational facilities. We had the remainder o{ }uly
10 to become acquainted with the camp and receive last-
minute instructions.

On the 11th, the teams were scheduled to arrive ar

various times throughout the day. We all went to the air-
port in the morning to wait for them. It turned out that my
team (the Dutch team) would be landing quite late and, not
being {amiliar with Hong Kong, wouldn't be able to just
head into town find something to do. As all the other
guides were locals, they had no problem with this. How-
ever/ one of the guides showed me some of the sights I
should show my team, and I passed most o{ the day pre-
paring mysel{ in this way.

When the team arrived, there was a somewhat awkward
period in which I was the only source of information the
team had. Not only that, we didn't know eaeh other, so we
were frequently asking each other's name, background, and
so on. The students and deputy leaders went to the camp;
the team leaders and observers stayed at a hotel. When we
arrived at the camp/ after a short orientation, we were all
quite tired and retired quickly for the night.

We were allowed one day o{ {relative) rest. The usual
breakfast time-between 7:00 and 8:00-was relaxed to
allow for jet lag. Except {or this anomaly, however, the day
had quite a rigorous schedule. The first day's activities con-
sisted of a museum visit, the opening ceremonies, and a
welcoming dinner.

The next two mornings were taken up with the {irst and
second contest papers. The afternoons were spent
sightseeing and visiting the Hong Kong Science Museum.
After the papers were written and the deputy leaders
headed back to the hotel, the general atmosphere became
a bit less serious as, understandably, they had a somewhat
adult effect on the proceedings at the camp.

During the sightseeing and socializing, the students ex-
changed addresses, phone numbers, and even e-mail ad-
dresses. I do not believe that there was any student who
left the IMO without making any new friends. This is the
true value of this type of competition.

I was grateful to be able to share this experience with
so many people from so many different countries. This, I
believe, is the true value of the IMO as an educational tool.
The interaction with other cultures is a valuable experi-
ence that cannot be matched by classroom instruction.

Compeliliue culnputinU in Stuulrhulm

The 1994 lnternational Olympiad in lnformatics

HE FOUR MEMBERS OF THIS
year's US team to the Interna-
tional Olympiad in Informatics
(IOI), had just enough time to

call mom and dad and announce
that they were not coming home for
another week before boarding the

by Donald T. Piele

plane for Sweden. They had iust
been selected as members of the
l994US team to the 6th annual IOI
to be held in Stockholm, Sweden,
Iuly 3-Ju1y lO, 1994. The winners
had completed a week-long compe-
tition, the USA Computing Olym-

piad, |une Zl-luly 2, hosted by the
University of Wisconsin-Parkside
and sponsored by The Center for
Excellence in Education, USENIX,
and IBM. The team-|ames Ayers
and Mehul Patel of Houston, Texas;
Brian Dean of Charlotte, North
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Carolina; and Hubert Chen of Fort
Washington, Pennsylvania-was
headed for Sweden. They were ac-
companied by Greg Galperin (the
deputy team leader and a graduate
student at MIT) and myself.

The site of this year's competi-
tion was the Royal lnstitute of Tech-
nology at Riksapplet, with accom-
modations nearby at Hotel Najaden
for the teams and in private apart-
ments for the team leaders. Students
who studied at the institute had gra-
ciously given up their apartments
for the week to help meet the hous-
ing requirements. With 48 coun-
tries, each accounting for six people,
housing was required for over 300
people including guests. Both the
accommodations and the competi-
tion site were superb.

Compeliliun and eruloralion
The first day began with opening

ceremonies that included a parade of
the flags from each of the participat-
ing countries. Mehul Patel, our only
veteran IOI team member, was se-
lected by the team to carry the flag
for the United States. The official
IOI flag was brought from Argentina
and handed over to Yngve Lindberg,
the president of iOI '94. Music writ-
ten especially for the occasion by
f ohannes Dominique, 15, was
played on a computer connected to
a sequencer and synthesizer. After-
wards we boarded buses for a short
trip to the center of Stockholm and
spent the rest of the beautiful after-
noon on the water touring the wa-
terways of Stockholm-the Venice
o{ the North.

Day two was devoted to the first
round of programming challenges.
The next day offered a chance to
sightsee. Our touring day began
with a bus ride to Ericsson, an inter-
national telecommunications com-
pany headquartered in Stockholm
and the sponsor for the day's activi-
ties. We were given a scientilic talk
on the future of telecommunica-
tions and a demonstration of un-
usual robots. After lunch we
boarded our buses for a short ride
downtown to one of Stockholm's
leading attractions-the Vasa. This

seventeenth-century warship was
rescued from the bottom of the har-
bor in 196l after resting for 330
years in the deoxygenated water of
the Baltic Sea. It survived in this
water almost intact and has been
restored to it odginal spiendor. To-
day it stands as a unique witness to
seventeenth-century shipbuilding
and life at sea.

We were bused back to the Royal
Institute of Technology at Riksapplet
for dinner. Afterwards, a seminar on
".Nlias," one of the world's most ad-
vanced software tools for animation,
visualization, and design, was pre-
sented.

The second round of competition
on day four was arcpeat of the first
round, but with harder problems.
On the fifth day of our visit, we had
a chance to explore the Swedish ar-
chipelago. Sweden is blessed with
nearly 20,000 islands, and many of
them are within a short cruise from
the Stockholm harbor. Some of the
islands are so small they have only
a single red log cabin on them-a
summer vacation home. We passed
many of them on our steamboat ride
to the island of Uto, easily recog-
nized by its big windmill. We
stopped off for an island tour con-
ducted by ahearty native who lives
there year-round. Uto is now avaca-
tion destination, but it was once fa-
mous for its iron mine-the first one
in Sweden. The team leaders took a
separate boat back and stopped off at
Rosenon-a vacation resort where
we met/ had dinner, and made the
all important cutoff decisions for the
three classes of medals.

flulards Ge[Blnolty

Since Stockholm is the setting for
the annual Nobel prize awards, it was
a wonderfui idea to hold the final
awards ceremony in the same loca-
tion, the beautiful City Hall situated
on the water in the center of the city.
Most famous of all the rooms in this
magnificent red brick builfing is the
Golden Hall, where 18 million pieces
of mosaic made out of ceramic, glass,

and24-caratgold leaf cover the walls.
The ceremonies were held in the
grand entrance hall, the Blue Room.

To add to the elegance, the lovely
Queen of Lake Malaren, Charlotte
Mangborg, presented the medals to
the very proud winners. The IFIP
trophy for the highest score (195)
went to Victor Bargatchev from Rus-
sia. He lead the Russian team that
finished first among the 48 countries
participating. Below is a listing of
the total points and medals (gold,
silver, bronze) for the top seven
countries.

Pts G
Russia 517 3
China 558 3
Germany 492 2
Hungary 475 2
USA 463 1

Czech Rep 459 1

Romania 444 I

The US team finished in fifth
place- up from seventh last year-
with medals for everyone: Mehul
Patel (gold, 155 points), Brian Dean
(silver, 121 points), Hubert Chen
(bronze,95 points), and |ames Ayers
(bronze,91 points).

The ceremonies ended with the
introduction of Ries Kock, the team
leader from the Netherlands, the
host of the 1995 IOI. Since the be-
ginning of IOI in 1989, the Nether-
lands has brought a team consisting
of two girls and two boys, and Ries
has pushed for a more balanced rep-
resentation of boys and girls from
other countries. However, the num-
ber of women participating overall
has not gone above So/".Inthe Neth-
erlands, it would be difficult to find
sponsors for an event with such a
lov,, percentage of women partici-
pants. To help stimulate thepartici-
pation of girls at IOI, fues extended
an invitation to each country to
bring five students in 1995, as long
as the team includes at least one
woman. This is understandably a

very controversial issue with some
team leaders, but it appeared that
the willingness of the Dutch to in-
vite another student from each
country in an effort to actively en-
courage participation by women si-
lenced the opposition, at least for
the present. When one is around the
Dutch delegation for a week, it is
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easy to believe they know what they
are doing. No one has more fun and
reaches out to more people than do
the Dutch. To them, the IOI is more
than a competition. It is also a
chance for young people from vari-
ous countries to make lifelong
friends.

'Bouquets of flowers were handed
outby Queen Charlotte to members
of avery deservingSwedish organiz-
ing committee. They not only ar-
ranged for a week of perfect weather,
but they also conducted an innova-
tive Olympiad with many new
time-saving improvements. IOI '94
president Yngve Lindberg's years of
experience, and his strong leader-
ship ability, shoved the bar to a new
height. |ust to equal this mark will
be a challenge to those who follow.

I'd like to thank the Center for
Excellence in Education (CEE),
USENIX, IBllt, and the University of
Wisconsin-Parkside for sponsoring
the USA Computing Olympiad at
UW-Parkside. Special thanks are
due to CEE, whichprovidedfunding
airfare to the 3rd USACO and to the
6th IOI in Sweden. These sponsors
make US participation at the IOI
possible.

I would also like to thank the
USACO staff, who gave {reely of
their time during the year to help
select the 15 finalists and then trav-
eled to UW-Parkside in |une to se-
lect and train the final four. Kudos
go to Rob Kolstad (chief of staff),
Greg Galperin (deputy team leader),
Nate Bronson, and Shawn Smith.

For more in{ormation about the
International Olympiad in Infor-
matics, write or call

Donald T. Piele
USACO Director
University of Wisconsin-Parkside
Box 2000
Kenosha WI53141-2000
piele@cs.uwp.edu
4t4 s9s-223r (Ol
414 634-0858 (Hl

PROBLEMS FROM IOI '94 WILL
APPEAR IN THE NEXT /SSUE

Bulletin Board

tin$ SEp lo a [llolol P]'ize

The Poiish Academy of Sciences
has announced the winners of the
second annual intemational compe-
tition in physics for high school stu-
dents. They are Can Altineller (Tur-
key), Anton A. Belyaev (Ukrainel, Z.
Cournia (Greece), |anko Isidorovic
(Yugoslavia), Marcus Meuller (Swit-
zerLandl, Samuel F. Schaer (Switzer-
land), and Michal Rewienski (Po-
land). These winners received a
certificate and an invitation to spend
one month in Poland doing research.

The deadline for the submission
of research papers for the third an-
nual competition is March 31, 1995.
Interested students should contact
Dr. Waldemar Gorzkowski (e-mail:
gorzk@gamma I .ifpan. edu.pl; f ax:
022-430926; phone: 022-4352121, In-
stitute of Physics, Polish Academy
of Sciences, al. Lotnikow 32126,
Warszawa, Poland.

Peace Col,N
Educational needs in the world's

developing nations are immense and
immediate. Thousands of teaching,
teacher training, and curriculum
development posts stand unfiiled in
secondary schools, universities, and
ministries of education around the
world.

Filling some of those vacancies-
in A{rica, Asia, central and eastern
Europg the former Soviet Union, and
Latin America-is a Peace Corps job.
Right now, at the request of 68 coun-
tries, the Peace Corps is looking for
1,500 men and women to become
Volunteers and teach (or train others
to teach) science and seven other dis-
ciplines. Men and women who serve
as Peace Corps Volunteer teachers
find that students in developing na-
tions regard education as a precious
gi{t, not a right.

A Voiunteer assi.gnment is ideal

for folks looking for a mid-career
break, as well as retirees who wish
to continue their work in education.
There is no upper age limit-infact;
the Peace Corps values maturity
greatly. The average Volunteer is 32
years old, and 10"/o of the 5,500 Voi-
unteers now in service are 50 or
older. Three are in their eighties.
Couples are eligible, too/ as long as

both spouses qualify as Volunteers.
The period of service is 24 months,

plus three months of training. Volun-
teers are paid a monthly allowance
thatpermits com{ortable living at the
level of their counterparts in the host
country.In addition, $200 accrues for
each month of service and training,
which is paid upon completion of ser-
vice. The Peace Corps provides all
medical and dental care as well as
transportation to and from the coun-
try of assignment.

For more details, you can get in
touch with your local Peace Corps
office by calling 800 424-8580.

teanless $ytnlneFy

Quantum readers who have en-
joyed reading about Penrose tilings
and other symmetry-related topics
will want to look into Symmetry: A
Unifying Concept by Istvdn and
Magdolna Hargittai. This 221-page,
profusely illustrated compendium is
a pleasure to browse through yet
fully repays the reader who stops to
dive in more deeply. The authors
range through chemistry, biology,
mathematics, engineering, art, and
architecture, and many of the pho-
tographs are products of their own
globetrotting.

Symmetry is published by Shelter
Publications and is distributed by
Ten-Speed Press. Check your local
bookstore, or order copies from Shel-
ter Publications, Inc., POBox 279,
Bolinas CA94924 ($18 per copy + $3
shipping & handling).
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xcl|0$$$cr8[c8 by David R. Martin

Acnoss

1 Arrow poison

5 Named organism
group

l0 47,834 (in base 15)

14 |apanese palanquin
15 One-celled animal
16 60,845 (in base 15)

17 Type of parity
18 1964 Physiol.

Nobelist
19 Fourth dimension
20 State of matter
22 _ Angeles
23rj.zo
24 Food fish
26 Compacted snow
28 Winter month 75 Marathon runner 13 

- 
wax (ozocerite) 50 Swedish 67 _-particle duality

31 English weight unit 
- 

Bikila 21 

- 
product (or oceanographer 

- 
68 Supplemented

33 CzH4 76 Assert inner product) Ekman (1874-19541 69 Soprano Grist
38 Elemental particle 77 Okinawan seaport 23 Moist 51 Olive tree genus 71 Swiss river
40 Heathen 78 Radioactive gas 25 Type oI radar 62 facob's wife 72 Eranklin
43 Abba of Israel 79 Biologist Francesco 27 Dorsal's opposite 63 Million million:
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44 Rose: comb. form
- 

11625?-1598) 28 Capacitance unit pref SOLUTION IN THE
NEXT ISSUE

45 

- 
kingdom

{botanist's domain) Illtttfttt
29 Former hlpothetical 65 Fat: comb. form

medium of space

46 |apanese island 1 Hawaiian instru- 30 _ trap
47 44,732 (in base 15) ments 32 1936 Physiol.
48 Tree dwelling 2 Peacock constella- Nobelist

prlmate tron 34 1935 Physics
49 Set 

- 
(leave port) 3 

- 
iiber (from the Nobelist

50 co2 gebang palm) 35 965,294 (in base 15)

52 Uncle 

- 
4 Type o{ boom 35 Point opposite

54 Sounds of hesitation 5 Prescription abbr. zenith
55 Mine products 6 CsHll 37 Compounds
58 _ Vegas 7 Element 54 containing
60 Units of potential 8 Fat -cH=c(oH)-

difference 9 Nickname {or 39 1601

54 System of units: Nancy 41 Social visit
abbr 10 _ particle (emitted 42 Bodily orifice

6SBnergy per unit electron) 51 Trig. {unction
tlme 11 Mine tunnel 53 Function

70 Toward shelter 12 British archaeolo- 56 981,690 (in base 16)

71 700,139 (in base 16) gist _ Kathleen 57 Distance divided by
73 A pigment Mary Kenyon time
74 Equipment (1906-19781 59 Type of cell or wind
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SOLUTION TO THE
SEPTEMBER/OCTOBER PUZZLE

I 3 5 7 10 11 t2 13

\1 15 16

\7 18 l9

20 z1 23

I
28 29 30 I 31 ,2 33 34 35 l6 37

38 39 +0 41 +2 43

+4 45 16

17 48 49

50 51 )z 53 5,t

50 6t 62 lc 64 65 56 57 58 59

70 7L 7Z 73

74 75 76

77 78 79
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M126
Since 1/x > lf n, we havex < fl/ so

we can put x = n -.r, where r is an
integer, 1 < i < n - 7. Then

(t 1\rv=l--- 
|\x n)

/ I 1\-r_lt-1"-t-;)
_n(n-1).

i

We see that our ecluation has no
positive integer solutions for n = 1

(since x = n - I > 1), and fior any n > I
it has at least one solution (with i = 1):

X:n-l,t- = n\n- 11. A necessary and
sufficient condition for the exist-
ence of another solution is the divis-
ibility of a1n - -i' = rr - niby a cer-
tain i, 1 < r < l, rvhrch is equivalent
to the divisibilitr oi nr by such i
(this would e fl:urc rhat r-is an inte-
ger). But it's clear that such a num-
ber r exists li and onh if n is com-
posite, which comple tes the proof.

M127
The statement can be proved by

induction over N. For \ = 1 the only
number d satisfylng the condition by
itself is zero (we must have a = -a).

Suppose the statement is true for
N- 2 (N> 3) numbers, and consider
an arrangement of N numbers ar,
a2,..., a7,r (numbered clockwise) sat-
isfying the condition (fig. 1). At least
one of them must be obtained from
the previous one by reversing the
sign; otherwise, we'd have a, = sN a 1

= dr,r_ r + 2 = ... ar + N, which is im-
possible.

So we can choose any pair of two
numbers that differ only in sign and

ANSWERS,
HINTS &

SOLUTIONS

label them ar = a - -a2 Now we
have two possibilities for the value
of ar: it can be -a or a - 1. We also
have two possibilities for a.: it can
be a or -a + | = | - a.We can show
that no matter what these values
are, if we delete a, and a, then the
deleted arrangement will satisfy the
conditions of the problem. The in-
duction hypothesis then tells us
that the deleted arrangement must
consist of integers, and any integer
m is found as many times as *m.We
then show that the same is true of
the original arrangement, thus com-
pleting the induction.

Suppose, for instance , that a, = s.
Then no matter which value of a,
we choose, it's not hard to check
that the deleted arrangement satisfies
the conditions of the problem: a, is
obtained from a, either by adding 1

(if a, = a - ll orby reversing the sign
(if a*= -a). Thereforg the deleted ar-
rangement must consist of integers,
with an eclual number of copies of
each integer and its negative. But
then the original arrangement, which
uses no other numbers, also consists
of integers. Since the new affange-
ment adds one copy of a and one copy
of -a to the old, it follows that it also
contains an equal copy of each inte-
ger and its negative.

The reader is invited to check
that similar arguments hold if a, =
| - a (fig.2) no matter which value
of arwe choose. This completes the
induction.

While the caseN:3 is coveredby

the induction, it may be instructive
to derive the resuit directly for this
case. For even values of N the con-
clusion of the problem is false; the
reader may want to construct
counterexamples.

M128
We can look at the diagram as

"centered" around B and C, which
don't move during all the transforma-
tions described. Then point A stays
one unit away from B. It follows that
the position of point A is uniquely
determined by the signed angle o =
ZBCA (the sign is positive if the
"shortest" rotation from the ray CB
to CA is counterclockwise, minus
otherwise); similarly, pointD is deter-
mined by the signed angle 6 : ZCBD.
As the base angles of isosceles tri-
angles, these angles take values be-
tween nf 2 and --nf 2. Let's see what
happens to the pair (a,6) under our
transformations.

LetA'be the reflection of A about
BD. For any point X on the exten-
sion of CB (fig.3) the signed angle

Figure 3

az=-a+l
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IXBA : 2a (as an exterior angle of
the isosceles triangle ABCIi simi-
larly,XBA' :2a',whered = ZBCA'.
By construction, the extensionBYof
DB bisects angle ABA'. Expressing
equal signed angies ABY and YBA'
in terms of the signed angles 5, 2o,
and2u'(see figure 3), we have

ZABX + ZXBY: IABY = ZYBA,
: ZYBX + ZXBA,,

ot -2a+ 6 : -6 + 2d', c.16 = or + cr'. So

cr' : 6 - cr-that is, our first reflection
replaces the pair (cr, 6) that defines the
entire quadrilateral with (6 - ct, 6):

(o, 6) -+ (6 - o, 6).

To be honest, this argument is a
bit fraudulent: it depends rather
heavily on the diagram. In fact, the
relation ZABY = Z-ABX + ZXBY
used above is true in general only
"modulo 2n"-that is, if the differ-
ence between the left and right sides
is a multiple of 2n (see the examples
in figure 4). This remark applies to
IYBA' aswell. So the corect formula
for o/ is oC : 6 - cr + kn with a certain
integer L (k = 0, 1, or -1). However,
knowing 6 - cr, we can always
uniquely determine k from the con-
fition -nElz. a! <nll- This allows us
to omit the terms kzr in the formulas
for our transformations (keeping
them in our head).

tABY = ZABX + ZXBY +2n

IABY=ZABX+ZXBY-2tr,

Figure 4

58 ilouErrrBrR/oEIrrBrR lgo4

The transformation by the reflec-
tion about BD is the same as the one
above except that the terms in the
pair exchange roles: the first remains
the same, and the second is replaced
by the difference between the first
and the second. Alternating these
transformations, we successively get

(cr, 6) -+ (6 - o, 6) -+ (6 - 0, -0)
-+ (-6, -cr) -+ (-6, u - 6)

-+ (u, cr - 6) -+ (o, 6)

-we returned in six stepsl (To be
more exact, we only know that af.-

ter six steps the angles ate d + nfi
and 6 + mn. But 11 : rrl: 0, because
otherwise these angles wouldn't fall
into (-+c I 2, n l2l. I (N. Vasilyev, M. Kon-
tsevich)

M129
Consider three groups of persons:

the group N of unsociable weirdos
(let's call thernnormai), the group i4l
of all the other weirdos, and the
group U of. all the other (not welrd)
unsociable persons. Let n, w, and u
be the numbers of persons in each of
these groups, respectively, and a the
number of pairs of acquaintances/
one from W and the other from U.
We have to prove that2 + n <1t + nl
oTw<u.

First note that a person in N can-
not have an acquaintance in W,
since W is made up of sociable
people. Since acquaintanceship is
symmetric, it follows that a person
horn W can have acquaintances
only in U andmust have more than
10 of them. So a, which counts the
number of times a person from I4lis
in an "acquaintanceship pair" with
a person from U, is at least 10w-
that is, 10w< a. Now, a person from
U can have acquaintances any-
where, but has fewer than ten of
them. So the number of times a per-
son from U is in an acquaintance-
ship pair with a person from I4l (or
with anyone else, for that matter) is
less than iOu-that is, a < lOu. It fol-
lows that 10w < 10u, or w < 71.

Ml30
It's well known that a quadrilat-

eral has an inscribed circle (can be
circumscribed about a circle) if and

only if the sum of its opposite sides
are equal. This can be proved, for
example, by noting pairs of equal
tangent segments from each of the
vertices of the quadrilateral. It turns
out that there are two other condi-
tions that are necessary and suffi-
cient for a quadrilateral to possess an
inscribed circle. We'll use these in
our solution.

Let sidesAB andDC of quadrilat-
eral ABCD intersect (when ex-
tended) at pointsE, and let sidesAD
and BC intersect at point F (fig. 5).
Then either of the following two
conditions are necessary and suffi-
cient for the quadrilateral to be cir-
cumscribed around a circle:

EB + FB: ED + FD, (1)

EA-FA=EC-FC. (21

First we'1l show that each is neces-
sary. Suppos e AB C D has an inscribed
circle. Let a, b, c, d, e, fbe the lengths
of the tangents from points A, B, C,
D, E, and F to the inscribed circle.
Then EB : e-b, FB = f + b, ED = e + d,
FD = f - d, and both sides of equation ( I )

are equal to e - f .An analogous proof
holds for equation (21.

Now let's demonstrate the suffi-
ciency of condition (1). Suppose the
condition holds. We inscribe a circle
in triangle AED lthis is always pos-
sible) and draw a tangent to it ftom
pointF. Let this tangent intersectEA
arrd ED at points B, and C, respec-
tively. It follows from the necessity of
the condition (proven above) that
EBr+ FBr: ED + FD = EB + FBi that
is, FB : FB, + (EBr- EBI = FBr+ 83,
(whether this is a sum or a di{ference
depends on which direction aiong the
tangent point B is from point B, ). If B

F

Figure 5



Figure 6

and B, are different points, this equa-
tion contradicts the triangle ineclual-
ity for points F, B, and 8,. It follows
that B, = B; that is, that the circle we
constructed is tangent to side BC ol
the given quadrilateral. The suffi-
ciency of condition (2) can be estab-
lished in the same way.

Now it's not difficult to prove the
assertion of the problem. Let O be
the intersection of the lines dividing
the quadrilateral (fig. 6). If the quad-
rilaterals that include points B and
D have inscribed circles, then con-
dition (1) guarantees that EB + FB =
EO + FO = ED * FD. Condition (1)

then iets us conclude that the origi-
nal quadrilateral possesses an in-
scribed circie. for the quadrilaterals
that include points A and C, the as-
sertion follows from condition (2)

and the equationEA -FA = EO -FO
=EC-FC.

Physics

Pl26
Let's choose a coordinate system

with the origrn at the foot of the in-
cline and the x-axis pointing up the
incline. If M is the mass of the train
and x is the length of the train that
is on the incline, the mass of the part
of the train on the incline is MxlL.
Then Newton's second law yields

Mo=_M*g"ino.
L,

OI

gsino
n--- v

T
L

This equation is none other than
the equation for harmonic oscilla-
tions. The period 7 of the oscilla-
tions is

T =2x

The time t required for the train to
stop is equal to one quarter of the
period-that is,

Note that the answer does not
depend on the momentum of the
train or how much of it goes up the
incline. This same behavior shows
up in the independence of the period
of a pendulum on its amplitude.

P127
Let's consider the equilibrium

condition for any of the floating ves-
sels: the weight of the vessel is coun-
terbalanced by the net force due to
the difference between the water
pressure above and below the bot-
tom of the vessel. Thus, both before
and after water is added to any ves-
sel, the difference in the water lev-
els inside and outside each vessel
remains the same (except for the
outer vessel, which is not floating;
however, the area of its bottom is so
large that the water level doesn't
change by an appreciable amount).
This means that the position of wa-
ter levels in all the vessels remains
constant relative to the ground.

Thus, after the water is added, the
water level in the smallest vessel
will not change relative to the
ground. Therefore, the bottom of
this vessel will sink by

h=b
so

-that is, by the height of the added
layer of water.

P1 28
Since the water is not being

mixed, all the heat liberated as the
water freezes is dissipated into the

atmosphere oniy. At any moment
the flow o{ heat is directly propor-
tional to the temperature difference
AT between the water and the air
and inversely proportional to the
thickness of the icex. Therefore, for
a change in the ice's thickness Ax
during a period of time At we have

AT
ax _ _Lt,

x
or, taking into account that A? =
constant/

xAx - Lt.

From here it follows that

*-t,
x-T.

In 1,000 hours the thickness of ice
will be

h-ooo
Xrooo=",0{ 

, =1m.

P129
Let's begin with the nodesA andB.

We draw the circuit anew as shown
in figure 7. Then we connect two
identical batteries of emf Z r = 8z = e
with two identical resistors R >> r to
the points A and B (we neglect the
internal resistance of the batteries)
(fig. 8 on the next page). Let's assume
that r : 1 A and choose the values of
E and R such that ZIR: I A.

First we consider the connec-
tion of one source to the node A,
which results in a branching of the
cuffent flowing into node A (tig.9l.
By symmetry the current along each
of the three ribs from node Ais lrf 3,
where \ = ZIB + r*l = 1 A and r, is
the resistance between nodesA and
B). Similarly, with the source €,

Figure 7

TTc
42

L

gsino,
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All that remains is to find the re-
sistance between nodes B and C.
Connecting one source to B results
in a current 1r/3 flowing in rib AB
and a current Irl6 in rib BC. Con-
necting the second source to node C,
taking into account principles of
symmetry and superposition, yields

vsc =ro(] e+f e)+r o(]e+f e)

=lV

Rr"

2l
A=---Iad.

80 40

This results in a spot of diameter

So, if your hands shake, avoid using
long exposure times.

Bl'ainlea$El's

8126
The answer is yes. The harder

brainteaser is this one.

8127
Suppose PQ is the required line
(fig. 11). We can form the new
rhombus by shifting APQD over so
that AD artd BC coincide. But how
do we determine P Q? For PA'D'Q to
be a rhombus/ we must have QP :
QD' : DC. One way to arrange this
is to draw a line through M parallel
to DC.It will intersect AD at its
midpointX. Then a circle with cen-
ter M and radius MX will intersect
DC at the required point Q.

8128
If we take three 10-kg weights, we

have a total of30 kg and the condi-
tions of the problem are satisfied. To
prove that a greater mass is impos-
sible, take any weight and add other
weights to it, one by one, until the
total mass M of the chosen weights
becomes greater than i0 kg. Then the
remaining mass m < 10 kg. On the
other hand, if a is the mass of the
last weight chosen, then a < 10 kg
and M - a( 10 kg so the total weight
is M + m : (M - al + a + m 130 kg.

dz =2uF= r(*)t, mm = 2.5 mm.

Figure 8

,13- 
and

v^^
=1C)=1.

I

Figure 9

Figure 10

connected to node B, the current 12

='8 llR + r,l = I A flows out of it. The
curent comes from the three nodes
closest to B and goes off to "infirrity"
via the source (fis. 101.

Now let's connect both batteries
to nodes A and B. Then from the
principle of superposition and the
condition R >> r we obtain a current
I AB - F | + I2l I 3 = 213 Aflowing in the
conductor AB, which results in the
voltage drop

Ven=3A.1O=3V.

On the other hand, the circuit is
fed a total voltage 28, anda current
I = 2El2R: 1 A is flowing into it.
Consequently,

, -vo, -Lnor= -T = j o= lr.

The case when the voltage is ap-
plied to nodesA and C is absolutely
analogous to the case considered
above:

RAC=3o=3r.

P1 30
First we need to find out what

sort of camera movement leads to a
spot of the largest diameter. Clearly,
shifting the camera forward and
backward plays virtually no role in
blurring the spot (the depth of field
is sufficient to keep the image
sharp). Up-and-down motion isn't
very harmful, because it's equivalent
to a vertical movement of the object
being photographed. When the dis-
tance to the object is 1 m, the angu-
lar magnitude of a point of the object
is 2 mm/lm = 0.002 radian, so the
image of apoint will have a diameter

dI= 0.002. 50 mm = 0.1 mm.

It's far worse if the camera
"swings" relative to the line between
the camera and the object-that is,
when points at the edges of the cam-
era move in opposite directions. The
maximum angle is achieved when
these points are closest to one an-
other (for most cameras, this means
the top and bottom of the camera).

The height of an ordinary carr.era
is about 80 mm, so the angle of ro-
tation is about

80 ilot,ttttotR/[rcr'rBrR rog4.

Figure 11



81 29
If we have ten dif{erent rect-

angles, then the area of each can-
not be too large. If rve u,rite the
dimensions of all possrble inte-
ger rectangles in order oi increas-
ing area-l x 1, 1 x ), I x 3, \ x 4,
2x2, lx5, 1 x 6,2x3, 1 x 7, 1 xB,
2 x 4, ...-the sum oi the areas of
the frrst ren recrangles in this list
equals 1 - I - -l - -1 - -l * 5 + 6 + 6
- - - S = +6 > -15. Thereiore, \\'e
cannor have anr' larger recrangles,
and at least one oi these ren must
be repeated.

81 30
In figure 12, KN andML are the mid-
lines in triangles ABD and CBD, so
these segments are parallel to BD
and half as long. Similarly, KL and

Figure 12

MN are parallel to and half as long
asAC. A 90'rotation about point O
takes A into D ar;:d C into B, so it
takes AC into BD. But this means
that the segments AC and BD, and
therefore NI( and NM, are perpen-
dicular and equal in length.

lhleidosroIE
1. Inspecting figure 2 in the ar-

ticle, we see that the left side o{ the
relation in question is equal to

AB, .NB, .CB, =I.
B,N B,C B, A

2. Let P be the common point of
the segments AA' BB' CCr.Then
the ratios in the relation in the prob-
lem can be expressed in terms of the
areas of triangles ABP, BCP, CAP-
say, BA rf A rC = area(ABPI I area(CAPl,
and so on. A{ter these substitutions

into the statement of the theorem,
all the areas cancel out.

3. SupposepointsA, B, CL, Drirr
figure 13 are the midpoints of the cor-
responding sides of the pentagon.

A

Figure 13

Then we ge! successively, the equal-
ity of the areas of triangles PBE ar;.d

PBD, PBD andPAD,PAD ardPAC,
PAC and PEC. So the areas of PBE
andPEC are equal, which means that
E, is the midpoint oI BC, too.

4. The dilation considered in
proof 3 takes the altitudes of a tri-
angle ABC into the altitudes of the
triangle AtBrCr (where At, Bt, Cr
are the midpoints of the sides of
ABCI. But the altitudes of. ArBrC,
are the perpendicular bisectors of
ABC, and so they meet at O. There-
fore, the original altitudes meet at a
point, and this point H is taken into
O under the dilation by -ll2 rela-
tive to M, because this dilation
transforms the triangle ABC into
ArBrCt

5. Consider two dilations that
take one base of the trapezoid into
the other: one dilation with the cen-
ter at the intersection of extended
sides of the trapezoid (by a positive
factorl, the other relative to the in-
tersection point of the diagonals
(with the negative of the same fac-
tor). Both dilations take the mid-
point of the first base into the mid-
point o{ the other.

5. Place unit masses at the verti-
ces of the tetrahedron and find their
center of mass by, first, uniting any
three masses and then adding the
fourth masS; 4nd, second, by uniting
masses in pairs.

7.If A, B, and C are the vertices of a
spherical triangle and O is the center

of the sphere, then the planes drawn
through O and the medians of the ordi-
nary triangle AB C have a common Line
OM(whercMis the centroid of this tri-
angle). These planes cut the sphere
along the spherical medians. So these
medians have a common point-
namely, the pornt where the line OM
meets the sphere.

Tuy $lure
l. See figure 14.

Figure 14

2. The deleted squares are the
same color-say, black. Then the
number of the remaining black
squares is less than that of the white
squares. But each domi.no in a tiling
covers one black and one white
square, so any area covered by domi-
noes must contain equal numbers of
squares of both colors.

3. All the strips must be posi-
tioned horizontally, because they
are longer than the height of the
board. The greatest number of strips
that can be placed on each of the n
horizontal rows is l*lk).

Camels altd GollEB
1. The amount of coffee in the

milk is equal to the amount of milk
in the coffee, and this doesn't de-
pend on how well they are mixed.
As to geometry,we can think of the
trapezoid ANMD in figure 2 in the
article as the spoonful of coffee
poured into the milk, and of CBKL
as the spoonful of the mixture
poured back. Then ABCD is "the
coffee left in the jug" and it's equal
in "amount" to KLMN-"the milk
poured into the cup with coffee."

2. Figure 15a on the next page
shows how a trapezoid ABCD can

0l0UAilIU]itliAllSI{tBS, 1llf'lT$ & S0LtlIl0ilS



AKB

Figure 15

be transformed into a parallelogram
AKLD by cutting off triangle BMK
and adding the congruent triangle
CML lM is the midpoint of BCl.
Now the formula for the area of
ABCD can by derived from the for-
mula for a parallelogram. An argu-
ment for a triangle, based on figure
15b, can be constructed similarly.

3. Extend the parallel edges of the
prism (fig. 16) and cut them with two
planes perpendicular to them at a dis-
tance equal to the edge length from

Figure 16

each other. Then repeat the argument
for a parallelogram in the article, us-
ing volumes instead of areas.

4. The areainquestion is equal to
the product of the perimeter and the
edge length.

5. Only f.orn= l. If n is even, then
n4 + 4n is also even. Forn:2k + 1 the
number in question can be factored
as follows:

na + 2? - n4 + 2. n2 . 2n * 2Jn -2n + t . 12

=(n2 +2n12 -1Zx+r . nl2
=(n2 +2n-2k+1.n1(nz +2P +2k*r .nl.

The second {actor is always greater
than one, and for the first one this is
true whenever n > 1, because n2 + 2'
>2^ln'.ii , n.2k+r.

6.(al* -a2* + aa =* +2a2* + aa

-Ba2* :(* + a2l2 -Ba2* = (* - ax"li
+ a2ll* + axJB + azl.

(b)If D =b2-4c20,then* +b*
+ c = (* -y)(* -y2l,whereylandy,
are the roots of the equation f * by
+ c = 0. In the more interesting case
of D < 0,or4c>b2,wehave

*+b*+c
=*+zJc*+c+lb-z"tEl?
= (* * ^812 -(2"t8 -bl*,

which is factored as the difference of
squales.

-tr.[4Ei7.lal J'
Hint: xa + 8x- 7 = xa + 2x2 + I -
2(r' - 4x + 4l = (x2 + ll2 - zlx - ll2.

(b) t t Ji andl ti^tT,. Hint: the
equation can be rewritten as (* + Il2

= 4(x + ll2.

( *'\' - zx2(cl l_ | =t__.' '(x+li x+l
Hint: subtracting 2*1ft + 1)from
both sides of the given equation and
rewriting the left side as the square
of the difference x-xl$ + 1), we ar-
rive at

( *' ')'-, 2x2

[x+1./ x+l
This equation is solved by substitut-
ingt=*l@+rl.

B. (a) alo + as + I : ato - a + a5 + a
+I = a(as - Ilb6 + a3 +ll + a5 - a2 + a2

+a+l=(a2 +a+lll(az-alla6 +a3 +Il
+ az{a- 1) + 1] = (o'* a + ll(a8 - a7 +

a5-a4+a3-a+ll.
(b) a8 + a + I = a8 - a5 + a5 + a + |

: as(a3 - Il + (az + a + ll(a3 - az + ll
= (a2 + a + ll(a6 - a5 + aB - a2 + ll.

In both cases further f.actoization
with integer coefficients is impossible.

9.I,280,000,401 = a7 + a2 + l,where
a = 2O.Btt a7 + a2 + | : a7 - a + a2 + a
+ | = (a2 + a + Illa(a - llb3 + 1) + 11.

10. The answerisS^15 lQnl. It's ob-
tained from the expansion of sin x/x
into an infinite product given in the
article after substituting x = 2n13.

nxn+z -(n+l)x"*r +x
("-l)'

difference xS, - Sr.

nx n+l
'COS-X

22
bl xsln-

2

Multiply the sum by sin (xlLl and
rework it following the solution of
problem 7 in the article.

12 (al lt $ and 1 ti!5. Rewrite
the equation completing the square
in the left side:

(* -2x12 = -* + 2x + 5.

Add}ol(* -2xl + cr2 to both sides:

l* -2,x + c:lz = (2n - lW -Ha - 2lx + 6 + *.
Ferrari's resolvent for this equation
is

(2a- Il2 : (2a- ll(5 + a?1,

and it has the root cr = 1/2. With this
0 our equation takes the form

(b) t t JB and -3l2t"tT7l2.
13. (al (* + x - Ll(* + x + 21.
(b)/+2*+*-14*+4x+rl:

(* + xlz -(2x + ll2 : (* -x-1)(x2 + 3x+ 1).

( *' -zr* 1l' = 2!( z) +

bt11.

Curreclions
Vol.4, No.6
p. 29, itern I B: a keyboarding

error caused a"6" tobe dropped
from the third solution. Our
thanks to Paul |. Blatz for point-
ing this out and supplying the
corect answer to 12 digits:
-0.766664595952... .

p.45, col. 1, 113,11. 4-5: fot
|uly/August 199 3 i ead f:Jry I A.u-
gsst1992. We are proud to note
that, in the meantime, Sergey
has won an award fuorr, Pilnt
magazine for his cover to our
|anuary/February 1994 issue.

Vol.5, No. 1

p. 13, col. 1, I. 18: the last co-
efficient in the display equa-
tion should be a,(not aol.

02 riottEirBrR/orcruBrR rso4

Multiply S,, by x and consider the

a
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$ll'ips olt a hoal'd

Close packing in two dimensions (but not three)

by Boris Kotlyar

Figure 1

we can simply lay mlk strips on each
of nhorizontal rows (fig. 1). The
whole point of the theorem is the
necessity. It can be proved in a num-
ber of different ways, and one of the
proofs will emerge from our subse-
quent investigation of this more gen-
eral question: what is the greatest
number N = N(m, n, kl of 1 x k strips
that can fit on an m x. n board? We
imply, of course, that the strips do not
overlap; not only that, we'll con{ine
ourselves to the case where the k unit
squares that constitute each strip ex-
actly {it unit squares that constitute
the board. So we are not going to con-
sider "irregular" positions of strips
like those shown in figure 2. Notice
that we didn't have to stipulate this
restriction in the de Bruijn-Klamer
theorem, because it's clear that in any
complete tiling of the board with our

strips they all must be positioned
"tegllarly."

This problems is not only inter-
esting, it can be very useful. Ques-
tions like this arise when things are
packed ("How can we put as many
items as possible in this boxl"-a
well-known problem of packaging),
or in pattern cutting ("How can we
cut the greatest number of rect-
angles of a given size out of a rect-
angular piece of sheet metal?").

[llo mong, [o lo$$

A rough estimate forNis given by
the inequality Nk < mn between the
areas of N strips and the board. We
see that

I mnfN<l- I"-L t l
(where [x] denotes the greatest inte-
ger not exceeding x). Some addi-
tional information is provided by the
de Bruijn-Klarner theorem. For in-
stance, if we're packing 1 x 4 strips
into a 6 x 6 square, the inequality
above gives N< 6 . 614 = 9. But since
5, the side length of the square, is
not divisibleby 4, it's impossible to
fit in all nine strips, so N < B.

Exercise 1. Show that in this case
the estimate gives the exact value of
N-thatis,N=8.

It's easy to derive a certain lower
bound for N. Let r and s be the re-

I N THE POPULAR PUZZLE
I "pentominoes," you have to tile
I a given shape with twelve differ-
I ent blocks, each consisting of five
equal squares. This puzzle gave
birth to numerous variations and
mathematical problems. One such
challenge is to find out whether
such a tiling-for various shapes and
various sets of blocks-is possible at
all. Even for the simplest shapes,
this problem turns out to be far from
easy. Some time back it was dis-
cussed in Quantum along with an
interesting technique in group
theory (see "Getting It Together
with Polyominoes" in the Novem-
ber/December 1991 issue). In par-
ticular, this articie contai.ned a re-
sult about tiling a rectangle
measuring m x n with rectangles
measuring p x q lwith inreger m, n,
p, and q). In the even more special
case of narrow tiles I x k or k x 1,

called strips below, this theorem
says that aL m x n rectangle can be
tiled with such strips if and only if
at least one of the numbers m andn
is divisible by k.

The first proofs of this rather
simple fact were given independently
by the Dutch mathematician N. G.
de Bruijn and an American, D. F.
Klamer, in1969. Of course, the suffi-
ciency in this statement is obvious: if,
say, the horizontal dimension m of
the "board" is a multiple of k, then Figure 2

0UlilTl|l'l/I0Y sI0Rt $3
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Figure 3

mainders of m and n, respectively,
when divided by k:

m:kmr+t,01t<k;
n=knt+s,0<s<k.

Draw the vertical line dividing the
board into two rectangles measuring
(- - rl x n and r x n, and the horizon-
tal line divifing the second rectangle
into r x (n - s) and r x s parts. Since
m - r and n - s are divisible by k, the
rectangles (* - r)x n andr x (n -s) can
be tiled with our strips 1 x k (fig. 3).
The tiled area will then be equal to
(m - rln + /n - sl : mn- rs, so the
number of tiles used is

^T _ mn- rs
'v0 - ------l-'

k

Thus, the maximum number N of
strips is no less than No.

Of course, the two bounds we
obtained usually don't coincide, and
so they don't give the exact value of
N. However, we'Il manage to find
this value by means of a special col-
oring of the board-a technique of-
ten used in tiling problems.

Counting [y colol,s
The following classic olympiad

problem is a good and simple illus-
tration of the method.

Exercise 2. Use the standardblack-
and-white coloring of the 8 x 8 chess-
board to show that after cutting out
its two diagonally opposite squares
we'llbe unable to tile it with 2 x 1

dominoes.
You'll surely solve this problem

yourself. (|ust in case, we give the
answer on page 61.) And now that
you've grasped the idea, let's use

Figure 4

coloring to improve our estimates.
Imagine that the m x n board

we're tiling is placed at the comer of
the first quadrant of the coordinate
plane divided into unit squares.
Paint the squares diagonally in k
colors, as shown in figure 4. The
remarkable property of this color-
ing is that whenever a 1 x k strip
is placed over it (square on square),
it covers exactly one square of
each color. Therefore, the number
o{ strips on the board can't be
greater than the number of squares
of the same color. Let's number
the colors from 1 to k, split the
board into three rectangles as we
did in the previous section (fig.3),
and count the number o{ squares
of the kth color on the board. In
the tiled rectangles l- - rlx n and
r x (n - s) it's equal to the number
of strips that cover them-that is, to
No = (-, -rsllk. As to the third rect-
angle r x s (fig. 5 ), there are two pos-
sibilities. If r + s - | . k, then the top
right square of the board is colored
in the color r + s - 1, and there are
no squares of the kth color in this
rectangle. In this case the total
number of kth-color squares on the
board is No, so N< No. And in view
of the inequality N , No proved
above, we get the exact formula

MN_ ISN=No= 
O

The other case, r + s - 1 > k ltrg. 51,

is more difficult. Here thekth diago-
nal intersects with ther x s rectangle
left untiled, and the number of
squares in the intersection can be

Figure 5

{ound by subtracting from the num-
ber k of squares on the entire kth di-
agonal the numbers of its squares ly-
ing to the right or above the rectangle:
k- (k -r) - (k -r) :r + s -k. So in this
case the number of kth-color squares
on the entire board-which is an up-
per bound for N, as we know-is
equal to No * (r + s -k). Below we'll
see that, disregarding an obvious
exception of k, m or k> n, this
number is the exact value of the
greatest possible number N of strips
on our board.

But at this point let's turn back to
the de Bruijn-Klarner theorem to
show how the necessity statement
in it follows from our last estimate.
Suppose themxnboard canbe tiled
with I x k strips. Then it contains as
many squares of the kth color as of
any other-in particular, the sth
color. On the other hand, suppose
that neither mrrornis a multiple of
k-that is, r > 0 and s > 0. Then the
construction in figure 3 shows that
the first two of the three rectangles
we considered containNo squares of

s T

s T

+2

2 s I '+1

1 2 s T
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Figure 6
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either color s and k, while in the
third rectangle (fig. 5) there are s

squares of the color s, and zero or
r + s -k < s squares of colork. So in
this case the complete tiiing is im-
possible.

An optimalliling
Nor,r, I \\,-ant to explain how to fit

N, : N,, - ir' + s - kl strips on the
1r1 x n L.,oard in the c:rse r' + s -k > 0,
k . ii, k < m. The construction below
is due to mr- srudent L. Khariton. It's
simrlar to the one rr-e used 1iig.3)ex-
cept that instead oi the r x s rectangle
in the bottom left corler oi the board,
we single out a (r + ft) x 1.s - kl rect-
angle R lfig. 7), which r,vill aliou. us
to fit sufficiently manv srrlp5 in ir.

squares uncovered. Thus, the strips in
this tiling coYer mn - (r - k)(s - k) =
(mn - rsl + (r + s - k)k squares of the
board. Dividing this number by k, we
find out that there are exactly N1
strips.

Exercise 3. Show that in the case
k > n the greatest possible number of
strips N = nlm/kl.

In the case k > m, the expression
for Nis similar: N = m[nlk). (If k > n
and k > m, then both expressions
give N:0.)

Now let's sum up our results.
Tnronru. The greatestnumber N

of 1 x k strips that can be ("regu-
larly") fit into an m x n rectangle,
wherc m and n give the remainders
r and s upon division by k, can be

found by the formula

: (-np - rctllk bricks in the box,
wherer, s, and t are the remainders of
m, n, andp when divided by k. The
de Bruijn-Klarner theorem is true
here as well (it was proved for three-
dimensional and even n-dimensional
space by de Bruijn). But an exact for-
mula for the greatest possible num-
ber N of bricks in a general case has
not been found yet. I only know the
estimate

N,<N smnp -' 
ll;ll ll;ll ll*ll

where I vll denotes the distance from
a real number \ t0 the nearest ilte-
ger (livll : rnin([v], I * {v}), where {v}
= v - [v] is the {ractional part of r,).
If all the numbers r, s, and r are no
greater than k12, then this in-
equality turns into the exact
equality N: No.

However, in general the leit anel
right sides of this estirnate do not
coincide, so it doesn't give the exact
value of l/. Perhaps our readers u.r11

be more lucky and succeed in calcr-r-
lating N. CI
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k+r
Lt^ ,-^ /r 19urE /

As to the other trr-o rectangles, now
measuring \n7 - r - Ar x n and (r + kl
x (n - s - k), ther, can be tiled with-
out gaps, because each of them has
a side of a length dir-lsib1e byk. Fig-
ure 8 shows hou' to fill rectangle R.

.N, + max(r + .s - ,k, 0), ii k < min(nr, r);

rl J< > nti

ilk > n,

wherc N o: (mn - rc) lk, max(x, y) is
the greatest and min(x, y) the small-
est numbers x and y. (It may seem
that we skipped the casesk = m afld
k : n in the reasoning above, but
they simply are special cases of the
divisibility oI m andn by k.)

Briclrs in hoxes

Our problem seems to be com-
pletely solved. But it's not time to
celebrate yet. It turns out that our
solution for a rectangle can't be ex-
tended even to the case of a "box"
(rectangular parallelepiped) in three-
dimensional space. Things are even
worse forn-dimensional space with
n > 3.I'll briefly describe some re-
sults without any proofs.

Instead of a board measuring
mx n,let's consider a box measur-
ingmxnxpt and instead of strips
take "bricks" measuring 1x 1 xk.
Let's stack the bricks in the box in
the "regular" way-that is, so that
the unit cubes constituting each
brick exactly fit on the unit cubes
constituting the box. Then, just as
on the plane, we can always fit No

[;]-
f,,, I
[;]"

Figure B

At two opposite corners the strips
are layed horizontally (s strips at
each corner), and at each of the
other two comers we put r yeftical
strips. So there will be 2(r + s) strips
laid on rectangle R, which leaves
(r + k)(s + kl - 2(r + s)k = (r- k)(s - k)
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