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The Lackawanna Valley (1855) by George Inness

E OFTEN THINK OF ARTISTS AS FREE SPIRITS,

unencumbered by the mundane considerations that
hold the rest of us firmly earthbound. This painting by
George Inness (1825-1894) gives the lie to that relatively
modern conceit. The work was commissioned by the Dela-
ware and Lackawanna Railroad, and when Inness had com-
pleted his vision of the roundhouse at Scranton, he found
that his client was far from satisfied. Inness had painted
only one line of rails—plans called for three or four more,
so the president of the railroad demanded that they be put
in the painting in advance of reality. Also, this powerful
patron of the arts wanted the entire rolling stock of the
company depicted, and he wanted the railroad’s initials
painted on the sides, and perhaps he had other ideas as well.
He was, after all, a practical man.

Inness was faced with a dilemma: paint what he liked
and let his family starve, or accommodate the whims of
his patron. He gave in. And after everything he went
through, Inness later learned the company had sold the
painting, and as an old man he recovered it in a junk shop
in Mexico.

“Who is right, railroad or artist?” asks John Walker,
curator emeritus of the National Gallery of Art. He sur-
mises that most of us will stand behind the artist and be-
rate the patron. “Yet many of the greatest works of art were
executed in accordance with the strictest contracts,”
Walker writes—“how many figures to be shown, where
they were to stand, how much gold, how much blue, how
much red to be used.” It is Walker’s opinion that Inness
benefited from the railroad magnate’s restrictions on his
artistic freedom: “Today The Lackawanna Valley is more
highly prized than the misty landscapes he painted at the
end of his life, when he had no patron to dictate.”

Not only artists are thus constrained. Scientists who
receive government research grants, writers for hire, teach-
ers, corporate climbers—they all must tack their sails to
some extent if they hope to be paid. And in a less venal
light, many of us need the limitations of a specific task to
get our creative juices flowing—or to keep us from spin-
ning our wheels.

Questions of practicality keep popping up in this issue
of Quantum, as do locomotives.
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Gyberspace exploration

Cheap thrills and real science in the computer age

HE NATIONAL SCIENCE

Teachers Association has re-

cently installed a T1 Internet

node. All of us are very excited
about the remarkable explosion of
interest in electronic communica-
tions, but there are reasons to look
with consternation on some aspects
of this thrust.

The Internet offers a unique op-
portunity to bring people from all
parts of the world together. To gain
some small appreciation for the
power of this new technology, one
need only sit at his or her computer,
bring up MOSAIC, and start looking
at images and information from
around the world. Or even the
simple matter of sending and receiv-
ing mail messages or documents can
be handled with far greater efficacy.
The mix of multimedia and the
Internet offers even more interesting
and exciting possibilities.

But what are the concerns? The
computer is a remarkable device,
capable of perfect memory and logi-
cal reasoning. Yet it can only re-
member what it has been given by
humans, and its reasoning is limited
to drawing logical conclusions from
premises provided by those humans.

There are those who call for the
use of Internet, multimedia, and of
similar computer-based technology
to replace much of what is done in
science education, particularly labo-
ratory work. For example, in the July
issue of Wired magazine, Nicholas
Negroponte of MIT argues that
“since computer simulation of just
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about anything is now possible, one
need not learn about a frog by dis-
secting it. Instead, children can be
asked to design frogs, to build an
animal with froglike behavior, to
modify that behavior, to simulate
the muscles, to play with the frog.”
Negroponte goes on to emphasize
the design aspects of learning.
Computer simulations of natural
phenomena do not teach science!
They represent a form of exposition
of science—of unsupported asser-
tion about science. What is worse,
they separate the person learning
science from nature, imposing an
intermediary device that is pro-
grammed to model the phenomenon
under consideration. This means
that the programmer can re-create
nature in any way she or he desires,

so that science can match nature, or
not, as the programmer chooses.

Lest the reader think this is ab-
surd, let me call attention to two
such examples. I have seen simula-
tions that allow one to study gas
laws. The problem with these simu-
lations is that there are perhaps 50
or more different gas law equations
one might use, and the ideal gas law
is very wrong for much of what hap-
pens to gases. Yet such simulations
more often use that law. Thus, the
student, removed from the real
world of gases, is examining some-
one else’s model of what gases do.
That is not science.

I know of another instance where
children were examined in terms of
their predictions of the motion of a
projectile in comparison to an “ex-
pert system,” which was a computer
simulation. Drawings from the chil-
dren were compared with the expert
(computer) so that the children
could learn how the motion occurs.
As it turned out, the computer used
a parabolic path, where the children
drew a diagram that was far closer to
reality (due to air resistance). The so-
called expert system was wrong be-
cause the programmers did not
bother to include a few lines of code
for air resistance. The kids were
right because they had observed the
motion in real situations.

Science is learned through devel-
opment of concepts drawn from ex-
perience with real phenomena. Cer-
tain of those concepts are related to
one another in relationships that



can be determined through con-
trolled experiments with natural
phenomena. When several related
empirical relationships are found for
which explanations are needed, a
theory is created by the human
mind. Empirical laws can often be
determined more easily by data
analysis with a computer, and some
models or theories are very ame-
nable to computer modeling. Also,
once there are theories and empiri-
cal laws, they can be applied in ar-
eas of engineering design. But engi-
neering design is not science—it is
engineering. And modeling is a high-
level skill that should properly be
preceded by experience with the
phenomena and experimentation to
arrive at empirical relationships be-
fore computer modeling and design
are even included.

Modern technology has the
power to greatly improve the ability
of students to access raw data, ana-
lyze it, and create for themselves
some of the natural laws scientists
have found. The technology also of-
fers great opportunities to create
models and theories and suggest
tests for them—which requires real-
world measurements or observa-
tions. Modern computer technology,
along with the proper transducers
and coupling devices, can allow
much better and easier access by
students to real-time data and rapid
analysis of those data. Such use of
the technology allows far greater
opportunity for changing variables
and testing hypotheses. This is how
computer technology should be
used. It becomes part of the measur-
ing or observing instrument.

Science is a study of natural phe-
nomena, not a study of what some
person has decided is natural phe-
nomena. The technology offers great
promise, but some real dangers. (The
respected Russian mathematician
Vladimir Arnold also sounds the
alarm in his article in this issue.) We
at NSTA want to use that technol-
ogy in all of the best ways. With our
new Internet node, my address is
bgaldridge@nsta.org. Let me hear
from you!

—Bill G. Aldridge

QUANTUM

THE MAGAZINE OF MATH AND SCIENCE

A publication of the National Science Teachers Association (NSTA)
& Quantum Bureau of the Russian Academy of Sciences
in conjunction with

shhddag
> - 7

the American Association of Physics Teachers (AAPT)
X% @ the National Council of Teachers of Mathematics (NCTM)

The National Science Teachers Association is an organization of science education professionals
and has as its purpose the stimulation, improvement, and coordination of science teaching and learning,

Publisher
Bill G. Aldridge, Executive Director, NSTA

Associate Publisher
Sergey Krotov, Director, Quantum Bureau,
Professor of Physics, Moscow State University

Founding Editors
Yuri Ossipyan, President, Quantum Bureau
Sheldon Lee Glashow, Nobel Laureate (physics), Harvard University
William P. Thurston, Fields Medalist (mathematics), University of California, Berkeley

Field Editors for Physics
Larry D. Kirkpatrick, Professor of Physics, Montana State University, MT
Albert L. Stasenko, Professor of Physics, Moscow Institute of Physics and Technology

Field Editors for Mathematics
Mark E. Saul, Computer Consultant/Coordinator, Bronxville School, NY
Vladimir Dubrovsky, Associate Professor of Mathematics, Moscow State University

Managing Editor
Timothy Weber

Staff Artist

Sergey Ivanov

Supervising Production Editor
Madeline Kraner

Editorial Consultants
Alexander Buzdin, Professor of Physics, Moscow State University
Yuly Danilov, Senior Researcher, Kurchatov Institute
Larissa Panyushkina, Managing Editor, Quantum Bureau

International Consultant
Edward Lozansky

Advertising Managers
Paul Kuntzler (Washington office)
Bob Vrooman (New York office)

Advisory Board
Bernard V. Khoury, Executive Officer, AAPT
James D. Gates, Executive Director, NCTM
George Berzsenyi, Professor of Mathematics, Rose-Hulman Institute of Technology, IN
Arthur Eisenkraft, Science Department Chair, Fox Lane High School, NY
Karen Johnston, Professor of Physics, North Carolina State University, NC
Margaret J. Kenney, Professor of Mathematics, Boston College, MA
Thomas D. Rossing, Professor of Physics, Northern Illinois University, IL
Alexander Soifer, Professor of Mathematics, University of Colorado-Colorado Springs, CO
Barbara I. Stott, Mathematics Teacher, Riverdale High School, LA
Carol-ann Tripp, Physics Teacher, Providence Country Day School, RI

Quantum (ISSN 1048-8820) is published bimonthly by the
National Science Teachers Association in cooperation with
Springer-Verlag New York Inc. Volume 5 (6 issues) will be
published in 1994-1995. Quantum contains authorized En-
glish-language translations from Kvant, a physics and
mathematics magazine published by Quantum Bureau of
the Russian Academy of Sciences, as well as original ma-
terial in English. Editorial offices: NSTA, 1840 Wilson
Boulevard, Arlington VA 22201-3000, telephone (703) 243-
7100. Production offices: Springer-Verlag New York, Inc.,
175 Fifth Avenue, New York NY 10010-7858.

Advertising:

Advertising Representatives: (Washington) Paul Kuntzler
(202) 328-5800; (New York) Bob Vrooman (212) 460-1700;
and G. Probst, Springer-Verlag GmbH & Co. KG, D-14191
Berlin, Germany, telephone (0) 30-82 07-1, telex 185 411.

Second class postage paid at New York, NY, and additional
mailing ofices. Postmaster: send address changes to: Quan-
tum Springer-Verlag New York, Inc., Journal Fulfillment
Services Department, P. O. Box 2485, Secaucus NJ 07096-
2485. Copyright © 1994 NSTA. Printed in U.S.A.

Subscription Information:

North America: Student rate: $15; Personal rate (nonstu-
dent): $20; Institutional rate: $34; Single Issue Price: $5.95.
Rates include postage and handling. (Canadian custom-
ers please add 7% GST to subscription price. Springer-
Verlag GST registration number is 123394918.) Subscrip-
tions begin with next published issue (backstarts may be
requested). Bulk rates for students are available. Send
orders to Quantum, Springer-Verlag New York, Inc., P.O.
Box 2485, Secaucus NJ 07096-2485; or call 1-800-
SPRINGER (777-4643) (in New York, call [201] 348-4033).

All Countries Outside North America: Subscription rates
in U.S. currency as above (all rates calculated in DM at the
exchange rate current at the time of purchase)
plus postage and handling. SAL (Surface Air-
mail Listed) is mandatory for Japan, India, Aus-
tralia, and New Zealand. Customers should
ask for the appropriate price list. Air mail de-
livery to all other countries is available upon
request. Orders may be placed through your
bookseller or directly through Springer-Verlag,
Postfach 31 13 40, D-10643 Berlin, Germany.

QUANTUM/PUBLISHER'S PRGE

3







nouen| Aebiag Ag Uy

Foiled by the Coanda effect

“In aerodynamics, theory is what makes the invisible plain.
Irying to fly an airplane without theory is like getting into a

fistfight with a poltergeist.”—David Thornburg

by Jef Raskin

SOUND THEORETICAL UN-
derstanding of the phenom-
enon of “lift” had been
achieved within two decades of
the Wright brothers’ first flight
(Ludwig Prandtl’s work was most
influential),! but the most common
explanation of lift seen in elemen-
tary texts and popular articles today
is problematical. Here is a typical
example of what is found. Figure 1
is based on an entry in a popular
book explaining machines and tech-
nology. The reasoning there implic-
itly involves the Bernoulli effect,
which correctly states that the faster
air moves over a surface, the lower
the air pressure on that surface.
Now, most airplane wings do in
fact have considerably more curva-
ture on the top than the bottom,
lending credence to this explana-
tion. But even as a child, I found that
it presented me with a puzzle: how
can a plane fly upside down (some-
thing I'd seen at air shows)? When I
pressed my teacher on this point, he
just got mad, denied that planes can
fly inverted, and tried to continue
his lecture. I was frustrated and tried

to argue until he said, “Shut up,
Raskin!” I'll tell you what happened
later in the article.

A few years later I carried out a
calculation according to a naive in-
terpretation of the common expla-
nation of how a wing works. Using
data from a model airplane, I found
that the calculated lift was only 2%
of that needed to fly the model (see
the box on page 8). Given that

AIRFOIL

The cross-section of a wing has a
shape called an airfoil. As the wing
moves through the air, the air di-
vides to pass around the wing. The
airfoil is curved so that air passing
above the wing moves faster than
air passing beneath. Fast-moving
air has a lower pressure than slow-
moving air. The pressure of the air
is therefore greater beneath the
wing than above it. This difference
in pressure forces the wing upward.
The force is called lift.

'Ludwig Prandtl (1875-1953), a
German physicist, is often called the
“father of aerodynamics.” His famous
book on the the theory of wings,
Tragflugeltheorie, was published in
1918.

Figure 1
The common explanation. From The

Way Things Work by David
Macaulay.

PHYSICE QF FLIGHT

Bernoulli’s equation is correct (in-
deed, it’s a form of the law of conser-
vation of energy), I was left with a
second puzzle: where does most of
the lift come from?

Let’s look at attempts to explain
two phenomena—what makes a
spinning ball curve and how a
wing’s shape influences lift—and
see how the common explanation of
lift has led a surprising number of
scientists (including some famous
ones) astray.

The Spinning bal

The path of a ball spinning
around a vertical axis and moving
forward through the air is deflected
to the right or the left of a straight
path. Experiment shows that this
effect depends both on the fact that
it’s spinning and that it’s immersed
in fluid (air). Nonspinning balls or
spinning balls in a vacuum go
straight. Before continuing, you
might want to decide for yourself
which way a ball spinning counter-
clockwise (when seen from above)
will turn.

Let’s see what five books say
about this problem. Three are by
physicists, one is a standard refer-
ence work, and the last, just for
kicks, is from a book by my son’s
soccer coach. We'll start with physi-
cist James Trefil, who writes:

QUANTUM/FEATURE b




top view of ball

curve ball

B I s

pitcher
side view of ball
fast ball
------- O'S >
pitcher ¢ )
Figure 2

Based on a figure from James Trefil’s book A Scientist at
the Seashore. It does not agree with some other sources.
(For instance, the direction of spin on the left-hander’s

curve ball is problematical.)

Before leaving the Bernoulli effect, I'd
like to point out one more area where its
consequences should be explored, and
that is the somewhat unexpected activ-
ity of a baseball. Consider, if you will,
the curve ball. This particular pitch is
thrown so that the ball spins around an
axis as it moves forward, as shown in
the top of figure 2.2 Because the surface
of the ball is rough, the effect of viscous
forces is to create a thin layer of air
which rotates with the surface. Looking
at the diagram, we see that the air at the
point labeled A will be moving faster
than the air at the point labeled B, be-
cause in the first case the motion of the
ball’s surface is added to the ball’s over-
all velocity, while in the second it is
subtracted. The effect, then, is a “lift”
force, which tends to move the ball in
the direction shown.?

Baseball aficionados would say that
the ball curves toward third base.
Trefil then shows a diagram of a fast
ball, shown as deflecting downward
when spinning so that the bottom of
the ball is rotating forward. It is the
same phenomenon with the axis of
rotation shifted 90 degrees.

In The Physics of Baseball, Rob-
ert K. Adair imagines a ball thrown
toward home plate so that it rotates
counterclockwise as seen from

2] have renumbered Trefil’s figure.

3The surface roughness is not
essential. The effect is observed no
matter how smooth the ball.

8 SEPTEMBER/OCTOBER 1884

batterE t} 15

above, as in
Trefil’s diagram.
To the left of the
pitcher is first
base, to the right
third base.
Adair writes:

We can then expect
the air pressure on
the third-base side
of the ball, which is
traveling faster
through the air, tobe
greater than the pres-
sure on the first-base
side, which is trav-
eling more slowly,
and the ball will be
deflected toward
first base.

batter

This is exactly
the opposite of
Trefil’s conclusion, though they agree
that the side spinning forward is mov-
ing faster through the air. We have
learned from these two sources that go-
ing faster through the air either in-
creases or decreases the pressure on that
side. Iwon’t take sides in this argument
as yet.

The Encyclopaedia Britannica
(1979) gives a different reasoning
that introduces the concept of drag
into the discussion:

The drag of the side of the ball turning
into the air (into the direction the ball
is traveling) retards the airflow, whereas
on the other side the drag speeds up the
airflow. Greater pressure on the side
where the airflow is slowed down forces
the ball in the direction of the low-pres-
sure region on the opposite side, where
a relative increase in airflow occurs.

Now we have read that spinning
the ball causes the air to move either
faster or slower past the side spin-
ning forward, and that faster-moving
air increases or decreases the pres-
sure, depending on the authority
you choose to follow. Speaking of
authority, it might be appropriate to
turn to one of the giants of physics
of this century, Richard Feynman.
He and his coauthors take the side
of Trefil and uses a cylinder rather
than a sphere (the italics are theirs,
and the lift force referred to is shown
pointing upward):

The flow velocity is higher on the upper
side of a cylinder [shown rotating so that
its top is moving in the same direction as
its forward travel] than on the lower side.
The pressures are therefore Jower on the
upper side than on the lower side. So
when we have a combination of a circu-
lation around a cylinder and a net hori-
zontal flow, there is a net vertical force
on the cylinder—it is called a Iift force.

Now for my son’s coach’s book.
The coach in this case is the world-
class soccer player George Lamptey.
No theory is given, but we can be
reasonably sure that Lamptey has
repeatedly tried the experiment and
should therefore report correctly the
direction the ball turns. He writes:

The banana kick is more or less an off-
center instep drive kick which adds a
spin to the soccer ball. Kick off center to
the right, the soccer ball curves to the
left. Kick off center to the left, the soc-
cer ball curves to the right. . . . The
amount the soccer ball curves depends
on the speed of the spin.

As you can see from figure 3,
Lamptey, like Adair, has the high
pressure on the side moving into the
air. I won’t relate other accounts,
some having the ball turn one way,
some the other. Some explanations
depend on the author’s interpreta-

C

<— qir
< pressure
< build up

curves left

nonkicking kicking
foot foot
Figure 3

tion of the Bernoulli effect, some on
viscosity, some on drag, some on
turbulence.

We'll return to the subject of spin-
ning balls, but we're not yet finished
finding problems with the common
explanation of lift.

Other paradones

The traditional explanation of how
awing works leads us to conclude, for
example, that a wing that is some-
what concave on the bottom—often
called an “undercambered” wing—
will always generate less lift, under



Figure 4
Undercambered airfoil.

otherwise fixed conditions, than a
flat-bottomed one (fig. 4). With an
undercambered airfoil, the bottom
path of the air is longer than it is
with the flat-bottomed airfoil in fig-
ure 1. Therefore, less lift—right?
Wrong!

Then we have to ask how a flat
wing like that of a paper airplane,
with no curves anywhere, can gen-
erate lift (fig. 5). Note that the flat

\

Figure 5

Flat wing.

wing has been drawn at a tilt. This
tilt is called the “angle of attack”
and is necessary for the flat wing to
generate lift. We’ll return to this
topic later in the article.

The cross-sectional shape of
wings, like those illustrated here,
are called “airfoils.” A very efficient
airfoil for small, slow-flying models
is an arched piece of this sheet ma-
terial (fig. 6), but it’s not clear at all

/—\
Figure 6

Curved wing used in small model
airplanes.

from the common explanation how
it can generate any lift, since the top
and bottom of the airfoil are the
same length.

If the common explanation were
correct, we should be making the
tops of wings even curvier than they
now are. Then the air would have to
go even faster, and we’d get more
lift. In figure 7 the wiggliness is ex-
aggerated. (We’ll encounter more

A“/(}K:,»//:%

Figure 7
Wiggly wing.

realistic lumpy examples below.) If
we make the top of the wing like in
figure 7, the air on top has a lot
longer path to follow, so the air will
go even faster than with a conven-
tional wing. You might conclude
that this kind of airfoil should have
lots of lift. In fact, it’s a disaster.

Enough examples. While Ber-
noulli’s equations are correct, their
proper application to aerodynamic
lift differs greatly from the common
explanation. Applied properly or
not, the equations offer no conve-
nient visualization that links the
shape of an airfoil with its lift and
reveal nothing about drag. This dif-
ficulty, combined with the preva-
lence of the plausible-sounding
common explanation, is probably
why even some excellent physicists
have been misled.

Albert Einstein's wing

My friend Yesso, who works for
the aircraft industry (though not as
a designer), came up with a proposed
improved airfoil. Reasoning along
the lines of the common explana-
tion, he suggested that you should
get more lift from an airfoil if you
restarted the top’s curve part of the
way along (fig. 8). This is just a “rea-

Figure 8

Lumpy wing.

sonable” version of the wiggly air-
foil we looked at earlier. Yesso’s idea
was, of course, based on the concept
that a longer upper surface should
give more lift. T was about to tell
Yesso why his foil idea wouldn’t
work when I happened to talk to
Jorgen Skogh, who worked on aircraft
design for Saab in Sweden. He told me
of a humped airfoil Albert Einstein
designed during World War I, based
on much the same reasoning Yesso
had used (fig. 9). It had no aerody-
namic virtues. This meant that in-

Figure 9

Albert Einstein’s airfoil.

stead of telling Yesso merely that his
idea wouldn’t work, I could tell him
that he had created a modernized
version of Einstein’s error! Einstein
later noted, with chagrin, that he
had goofed!*

Evidence from experiments

If it were the case that airfoils
generate lift solely because the air-
flow across a surface lowers the pres-
sure on that surface, then if the sur-
face is curved, it doesn’t matter
whether it’s straight, concave, or
convex. The common explanation
depends only on flow parallel to the
surface. Here are some experiments
that you can easily reproduce to test
this idea.

Experiment 1. Make a strip of writ-
ing paper about 5 cm x 25 ¢m. Hold
it in front of your lips so that it hangs
out and down, making a convex up-
ward surface. When you blow across
the top of the paper, it rises (fig. 10a).
Many books attribute this to the low-
ering of the air pressure on top due to

paper moves up

blow air

blow az'r\g

|

paper moves down

Figure 10

“Jorgen Skogh writes: “During the
First World War, Albert Einstein was
for a time hired by the LVG (Luft-
Verkehrs-Gesselschaft) as a
consultant. At LVG he designed an
airfoil with a pronounced mid-chord
hump, an innovation intended to
enhance lift. The airfoil was tested in
the Gottingen wind tunnel and also
on an actual aircraft and found, in
both cases, to be a flop.” In 1954
Einstein wrote; “Although it is
probably true that the principle of
flight can be most simply explained in
this [Bernoullian] way, it by no means
is wise to construct a wing in such a
manner!” '
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balsa airfoil

cross section

plywood box open on top and at the back

soda straw

top view

Figure 11

the Bernoulli effect. Now use your
fingers to form the paper into a curve
that is slightly concave upward along
its whole length and again blow
across the top of the strip. The paper
now bends downward (fig. 10b).

side view

Experiment 2. Referring to figure
11, build a box of thin plywood or
cardboard with a balsa airfoil held in
place with pins that allow it to flap
freely up and down. Air is intro-
duced with a soda straw. That’s one

of the nice things about science. You
don’t have to take anybody’s word
for a claim—you can try it yourself!®
In this wind tunnel the air flows
only across the top of the shape. I
made another where a vacuum
cleaner blew on both the top and
bottom, and I got the same results;
but that design takes more effort to
build and the airfoil models require
refinement of the leading and trail-
ing edges. Incidentally, I tried to
convince a company that makes sci-
ence demonstrators to include this
in their offerings. They weren’t in-
terested because “it didn’t give the
right results.” “Then how does it
work?” I asked. “I don’t know,” said
the head designer.

An experiment may be difficult to
interpret, but unless it’s fraudulent,
it cannot give the wrong results.

Experimental resuits

When air is blown through the
straw, the normal airfoil (see figure

5In some fields—for instance, the
study of subatomic particles—you
might need megabucks and a staff of
thousands to build an accelerator to do
an independent check, but the
principle is still there.

A quantitative application of an incorrect explanation

If the pressure in newtons per square meter (N/m? =
kg/(m - s?)) on the top of a wing is notated Dy the pres-
sure on the bottom p, ..., the velocity (m/s) on the top
of the wing v, and the velocity on the bottom v, ...,
and wherep is tTle density of air (approximately 1.2 kg/m3),
then the pressure difference across the wing is given by
the first term of Bernoulli’s equation:

_ _ 1 b g
ptop pbottom P top bottom /*
2

A rectangular planform (top view) wing of one-meter
span was measured as having a length chordwise along
the bottom of 0.1624 m, while the length across the top
was 0.2636 m. The ratio of the lengths is 1.0074. This
ratio is typical for many model and full-size aircraft
wings. Since the top and bottom of the wing are part
of the same rigid object, they are moving at equal ve-
locities; thus, according to the common explanation,
the air velocities on the top and bottom are also in
the ratio of 1.0074.

A typical speed for a model plane of 1-m span and
0.16-m chord with a mass of 0.7 kg (a weight of 6.9 N is

10 m/s, sO Vi, om is 10 m/s, which means that v, =
10.074 m/s. Given these numbers, we find a pressure gif-
ference from the equation of about 0.9 kg/(m - s?). The area
of the wing is 0.16 m?, giving a total force of 0.14 N.
This is not nearly enough—it misses lifting the weight
of 6.9 N by a factor of about 50. We would need an air
velocity difference of about 3 m/s to lift the plane.

This calculation is an approximation, since Bernoulli’s
equation assumes nonviscous, incompressible flow, and
air is both viscous and compressible. But the viscosity is
small, and at the speeds we are speaking of air does not
compress significantly. Accounting for these details
changes the outcome at most a percent or so. This treat-
ment also ignores the second term (not shown) of the Ber-
noulli equation—the static pressure difference between
the top and bottom of the wing due to their trivially dif-
ferent altitudes. Its contribution to lift is even smaller than
the effects already ignored. The use of an average veloc-
ity assumes a circular arc for the top of the wing. This is
not optimal but it will fly. None of these details affects
the conclusion that the common explanation of how a
wing generates lift—with its naive application of the Ber-
noulli equation—fails quantitatively.
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Figure 12

12) promptly lifts off the bottom and
floats up. When the blowing stops,
it goes back down. This is exactly
what everybody expects. Now con-
sider the concave shape. The curve
is exactly the same as the first air-
foil, though turned upside down. If
the common explanation were true,
then, since the length along the
curve is the same as with the “nor-
mal” example, you'd expect this one
to rise, too. After all, the airflow
along the surface must be lowering
the pressure, causing lift. Nonethe-
less, the concave airfoil stays firmly
down. If you hold the apparatus ver-
tically, it will be seen to move away
from the airflow.

In other words, an often cited ex-
periment that is usually taken as
demonstrating the common expla-
nation of lift doesn’t do so—another
effect is far stronger. The rest of the
airfoils are for fun—try to anticipate
the direction each will move before
you put them in the apparatus.
James Gleick has noted that
“progress in science comes when
experiments contradict theory,” al-
though in this case the science has
long been known, and the experi-
ment contradicts not aerodynamic
theory but the often taught com-
mon explanation. Nonetheless,
even if science doesn’t progress in
this case, an individual’s under-
standing of it may. Another simple
experiment will lead us toward an

normal
concave

recurved
flat

flat with downturn

flat with upturn

explanation that may help give us
a better feel for these aerodynamic
effects.

The Goantla eftect

If a stream of water is flowing
along a solid surface that is curved
slightly away from the stream, the
water tends to follow the surface.
This is an example of the Coanda ef-
fect® and is easily demonstrated by
holding the back of a spoon vertically
under a thin stream of water from a
faucet (fig. 13). If you hold the spoon
so that it can swing, you will feel it
being pulled toward the stream of
water. The effect
has limits: if you
use a sphere instead
of a spoon, you'll
find that the water
will follow only a
part of the way
around. Also, if the
surface is to sharply
curved, the water
will not follow but
will just bend a bit
and break away
from the surface.

Figure 13

%In the 1930s the Romanian
aerodynamicist Henri-Marie Coanda
(1885-1972) observed that a stream of
air (or other fluid) emerging from a
nozzle tends to follow a nearby
curved or flat surface, if the curvature
of the surface or the angle the surface
makes with the stream is not too
sharp.

The Coanda effect works with any
of our usual fluids (such as air—see
figure 14) at usual temperatures, pres-
sures, and speeds. I make these quali-
fications because liquid helium, gases
at extremes of low or high pressure or
temperature, and fluids at supersonic
speeds may behave rather differently.
Fortunately, we don’t have to worry
about all of these extremes with
model planes.

Another thing we don’t have to
worry about is why the Coanda ef-
fect works—we can take it as an
experimentally given fact. But if
you're curious, we can touch on it
lightly. On a microscopic scale we
note that most gas molecules that
come close to one another generate
a small attractive force, called the
van der Waals force, that tends to
keep them together. There are a
number of sources of these van der
Waals forces, but the main one is
due to the fact that the charge distri-
bution of electrically neutral mol-
ecules, such as hydrogen, oxygen,
and nitrogen, is distorted by their
proximity to one another in such a
way as to create a dipole (the electri-
cal equivalent of a magnet). These
dipoles arrange themselves so that
the positive end of one is near the
negative end of another. Thus, they
develop a minuscule electrostatic
“cling.” For inherently polar mol-
ecules, such as water or carbon diox-
ide, their mutual attraction is in-
creased by proximity. For similar

A stream of air, such as what you’d
get by blowing through a straw,
goes in a straight line.

A stream of air alongside a straight
surface still goes in a straight Iline.

A stream of air alongside a curved
surface tends to follow the
curvature of the surface.

A stream of air alongside a curved
surface that bends away from it
still tends to follow the curvature
of the surface!

Figure 14
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reasons, gas molecules tend to cling
to liquid or solid surfaces. On the
other hand, molecules resist being
pushed closer together than the van
der Waals forces bring them. The
resistance to compression due
mostly to electrostatic repulsion
(the electrons surrounding each
atomic nucleus are all negative and
—if forced too close—repel each
other), along with the motion of the
molecules, are the mechanisms un-
derlying pressure. The van der Waals
forces explain why at least a thin
layer of a fluid follows a surface.

A word often used to describe the
Coanda effect is to say that the air-
stream is “entrained” by the surface.
One advantage of discussing lift and
drag in terms of the Coanda effect is
that we can trace the forces involved
in a rather straightforward way. The
common explanation (and the meth-
ods used in serious texts on aerody-
namics) are anything but clear in
showing how the motion of the air
is physically coupled to the wing.
This is partly because much of the
approach taken in the 1920s was
shaped by the need for the resulting
differential equations (mostly based
on the Kutta-Zhukovsky theorem’)
to have closed-form solutions or to
yield useful numerical results with
paper-and-pencil methods. Modern
approaches use computers and are
based on only slightly more intui-
tive constructs. We will now de-
velop an alternative way of visualiz-
ing lift that makes it easier to
predict the basic phenomena associ-
ated with it.

Visualizing lift and trag

As is typical of physicists, I have
often spoken of the air moving past
the wing. In fact, aircraft wings usu-
ally move through the air. It makes
no real difference, as flying a slow
plane into the wind so that its
ground speed is zero demonstrates.
So I will speak of the airplane mov-
ing or the wind moving, whichever

"Discovered independently by the
German mathematician M. Wilhelm
Kutta (1867-1944) and the Russian
physicist Nikolay Zhukovsky
(1847-1921).
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Figure 15

The surface moves to the left and the
air molecules, attracted to the
surface, are pulled down.

makes the point more clearly at the
time. In the next illustration, it be-
comes convenient to look at the air
from the point of view of a moving
airplane.

In figure 15, think of the wing
moving to the left and the air stand-
ing still. The air gets pulled toward
the wing by the attractive and pres-
sure forces just discussed, much as if
they were attached to the wing with
invisible rubber bands. It’s often
helpful to think of lift as the action
of the rubber bands that are pulling
the wing up.

Another detail is important: the
air gets pulled along in the direction
of the wing’s motion as well. So the
action is really more like figure 16.

Figure 16

The air is pulled forward as well as
down by the motion of the wing.

If you were in a canoe and tried to
pull someone in the water toward
you with a rope, your canoe would
move toward the person. The wing
is like the boat, the air is the person,
and the rope models the attractive
force between the wing and the air.
It is classic “action and reaction.”
You move a mass of air down and
the wing moves up. That’s the Iift
generated by the top of the wing.

As the diagram suggests, the wing
has also spent some of its energy,
necessarily, in moving the air for-
ward. The imaginary rubber bands
pull it back some. That’s the drag
that is caused by the lift you are gen-
erating. When lift is considered this
way, it’s immediately clear that it
can’t occur without the penalty of
some drag.

The acceleration of the air around
the sharper curvature near the front
of the top of the wing also imparts a

downward and forward component
to the motion of the molecules of air
(usually a slowing of their upward
and backward motion, which is
equivalent) and thus contributes to
lift. The bottom of the wing is easier
to understand, and an explanation is
left to the reader.

The experiments with the minia-
ture wind tunnel described earlier
are readily understood in terms of
the Coanda effect: the downward-
curved wing entrained the airflow to
move downward, and a force upward
is developed in reaction. The up-
ward-curved (concave) airfoil en-
trained the airflow to move upward,
and a force downward was the re-
sult. The lumpy wing generates a lot
of drag by moving air molecules up
and down repeatedly. This eats up
energy (by generating frictional
heat), but doesn’t create a net down-
ward motion of the air and therefore
doesn’t create a net upward move-
ment of the wing. The Coanda effect
helps us visualize why angle of at-
tack (the fore-and-aft tilt of the wing,
as illustrated earlier) is crucially im-
portant; why planes can fly inverted;
why flat and thin wings work; and
why experiment 1 with its convex
and concave strips of paper works as
it does.

What has been presented so far is
by no means a complete account of
lift and drag, but it does tend to give
a good picture of the phenomenon.
We will now use this grasp to get a
reasonable hold on the spinning ball
problem.

Why the spinning ball curves

Let’s take another look at the fig-
ure from James Trefil’s book (fig. 2).
The Coanda effect tells us that the air
is pulled along with the surface of the
ball. Consider Trefil’s side A, which
is rotating in the direction of flight. It
is trying to entrain air with it as it
spins. This action is opposed by the
oncoming air. Thus, to entrain the air
around the ball on this side, it must
first decelerate it and then reacceler-
ate it in the opposite direction. On the
B side, which is rotating opposite the
direction of flight, the air is already
moving (relative to the ball) in the



same direction and is thus more eas-
ily entrained. The air more readily
follows the curvature of the B side
around and acquired a velocity to-
ward the A side. The ball therefore
moves toward the B side by reaction.

It’s time again for a simple experi-
ment. It’s difficult to experiment with
baseballs because their weight is large

compared to the aerodynamic ...

forces acting on them, and it’s
very hard to control the magni-
tude and direction of the spin. So
let’s look at a case where the ball
is lighter and the aerodynamic ef-
fects easier to see. [use a cheap in-
flatable beach ball (expensive ones
are make of heavier material and
show aerodynamic effects less).
Thrown with enough bottom spin
(bottom moving forward), such a ball
will actually rise in a curve as it trav-
els forward. The lift due to spin can
be so strong that it’s greater than the
downward force of gravity! Soon air
resistance stops both the spin and the
forward motion of the ball and it falls,
but not before it has shown that
Trefil’s explanation of how spin af-
fects the flight of a ball is wrong.

The lift due to spinning while
moving through the air is usually
called the Magnus effect.® Some
books discuss the “Flettner rotor,”
which is a long-since abandoned at-
tempt to use the Magnus effect to
make an efficient boat sail. Many
authors besides Trefil get the effect
backwards, including the usually re-
liable S. F. Hoerner in his Fluid-Dy-
namic Drag (1965). College-level
texts tend to get it right, but as noted
in part I, Feynman’s Lectures on
Physics has the rotation backwards.
I was relieved to see that the classic
Aerodynamics by T. von Karman
gets the lift force on a spinning ball
in the correct direction, though the
reasoning seems a bit strained.

I wish I could send this article to
that sixth-grade science teacher who
wouldn’t take the time to listen to
my reasoning. Here’s what happened.
He sent me to the principal’s office
when I came in the next day with a

8H. G. Magnus (1802-1870), a
German physicist and chemist,
demonstrated this effect in 1853.

balsa model plane with dead flat
wings. It would fly with either side
up, depending on how an aluminum
foil elevator was adjusted. I used it to
demonstrate that the explanation the
class had been given must have been
wrong, somehow. The principal,
however, was informed that my of-
fense was “flying paper airplanes in

class,” as though done with disrup-
tive intent. After being warned that I
was to improve my behavior, I went
to my beloved math teacher, who
suggested that I go to the library to
find out how airplanes fly—only to
discover that all the books agreed
with my science teacher!

It was a shock to realize that my
teacher and even the library books
could be wrong. And it was a revela-
tion that I could trust by own think-
ing in the face of such concerted op-
position. My playing with model
airplanes had led me to take a major
step toward intellectual indepen-
dence—and a spirit of innovation
that later led me to create the
Macintosh computer project and
other inventions as an adult.

Further reaing

There are many fine books and ar-
ticles on the subject of model air-
plane aerodynamics (and many
more on aerodynamics in general).
Commendably accurate and read-
able are books and articles for mod-
elers by Professor Martin Simons
(for example, Model Aircraft Aero-
dynamics, 2nd ed., Argus Books
Ltd., London, 1987). Much can be
learned from Frank Zaic’s delightful,
if not terribly technical, series of the
Model Aeronautic Yearbook
(1936-64, available from the Acad-
emy of Model Aeronautics in the
United States). No treatments are
more professional than those of
Michael Selig (for example, Selig et

al., Airfoils at Low Speeds, Soartech
8, 1989, available from Herb
Stokely, 1504 Horseshoe Circle, Vir-
ginia Beach VA 23451). All of these
authors are also well-known model-
ers. Graduate or upper-level under-
graduate texts—for example, Foun-
dations of Aerodynamics by Kuethe
and Chow and Aerodynamics for
Engineering Students by
2 Houghton and Carruthers—re-
quire a knowledge of calculus,
including partial differential
equations. Modern Subsonic

(Aircraft Designs, Inc., 1988) is
an informal treatment by a
master, and Fluid-Dynamic
Drag by S. F. Hoerner (Hoerner Fluid
Dynamics, 1965) is a magnificent
compendium of experimental re-
sults—it has little theory, but prac-
tical designers find his work invalu-
able. Finally, the epigraph came
from Do You Speak Model Air-
plane! by Dave Thornburg (Pony X
Press, 1992, 5 Monticello Dr., Albu-
querque NM 87123). (@)

I am very appreciative of the suggestions
I have received from a number of careful
readers, including Bill Aldridge, Dr.
Vincent Panico, Professor Michael Selig,
Professor Steve Berry, and Linda Blum.
They have materially improved both the
content and the exposition, but where I
have not taken their advice my own
errors probably shine through.

Jef Raskin was a professor at the Uni-
versity of California at San Diego and
originated the Macintosh computer at
Apple Computer, Inc. He is a widely
published writer, an avid model air-
plane builder and competitor, and an
active musician and composer.
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Gheliyshev's problem

CHEBYSHEV CENTENNIAL

Polynomials of least deviation from zero

by S. Tabachnikov and S. Gashkov

ITH THIS ARTICLE WE PAY TRIBUTE TO THE
outstanding Russian mathematician Pafnuty
Chebyshev, who died a hundred years ago, on
November 26, 1894, (See also the Anthology de-
partment on page 35). His famous achievements include
a solution of one of the most beautiful problems con-
cerning polynomials—Chebyshev’s problem on polyno-
mials of least deviation from zero. We'll derive the prop-
erties of these polynomials in two ways: in the first
section of the article (written by the first author), by
exploring the geometry of their graphs; in the following
sections (written by the second author), by undertaking
a little investigation into trigonometric polynomials in
general. Choose whichever you like better.
Fix a segment of the number axis, say, [-2, 2]. (Well,
to be fair, it’s not just “say”’—the formulas for this seg-
ment come out the simplest.) Let

fix)=x"+ax""l+a,x2"2+ ... +aq,

be a reduced polynomial of the nth degree (this means
that its leading coefficient is 1). The range of f(x) on the
segment [-2, 2] is the segment [m, M|, where m is the
minimum and M the maximum value of the polyno-
mial. The deviation of f(x) from zero is the greatest of
the numbers Iml and IMl. If the deviation is c, then the
graph of the polynomial (on [-2, 2]) lies entirely in the
band lyl < ¢ and is not contained in any narrower band
with the same midline (the x-axis).

Chebyshev’s problem consists in finding a reduced
polynomial f,(x) of degree n whose deviation from zero
is the smallest. (The condition that its leading coeffi-
cient is 1 does not allow the graph to be squeezed arbi-
trarily close to the x-axis.) On the face of it, this prob-
lem doesn’t excite a lot of enthusiasm: to find the
deviation, you have to take derivatives and solve equa-
tions of the nth degree . . . It’s all the more surprising
that it can be solved geometrically—and almost with-
out calculations!

Let’s start small and look at the cases of small de-
grees. For n = 1 we deal simply with a linear function
fix) = x + a. Its range is the segment [-2 + a, 2 + a] of
length 4. So the least deviation from zero equals 2, and
flx) - x.

The case n = 2 (quadratic function) is only a little
more complicated. Here the graph is a shifted segment
of the parabola y = x2, and it’s not hard to see that its
most economical position is the one in figure 1. That
is, f,(x) = x* - 2, and the deviation from zero is again
equal to 2.

Exercise 1. Check your intuition by calculation:
prove that the deviation of a reduced quadratic polyno-
mial from zero is no less than 2.!

We could have offered you the investigation of the
case of cubic polynomials to make sure that the least
deviation from zero is 2 in this case as well. This prob-
lem can still be handled with our “bare hands.” But we
can’t wait to tell you how the general problem is solved.

Suppose we've succeeded in detecting a reduced
polynomial f, (x) of degree n whose graph lies in the band

lyl < ¢ and con-

A tainsn + 1 points
on the band’s

2 | border such that

/ the rightmost of
these points lies
on the liney = ¢,
the next point
on the left lies
ony = —c, the
y next one again
" liesony=c, and
so on (see figure
2 on the next
page for n = 5).

1See also challenge M120 in the July/August 1994

issue.—Ed.

x Y

Figure 1
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Tueorem. The
deviation from
zero of any poly-
nomial of the
nth degree other
than f,(x) is
greater than c.

Here’s  the
geometric proof
that makes Che-
byshev’s prob-

lem so attrac-
tive. Let g(x) be
any reduced
polynomial of degree n whose deviation from zero does
not exceed c. Then its graph also lies in the band lyl < c.
Cut this band with vertical segments into n rectangles as
shown in figure 3. The blue curve in this figure—the graph
of f (x}—joins di-
agonally two op-
posite vertices of
each rectangle.
Therefore the
red line—the
graph of g(x)—
intersects the

Figure 2

YA

X Dblue one inside
each of the
rectangles. So

-c the equation
fux) - glx) = 0

Figure 3

has no less than
n roots. But the
degree of the polynomial f (x) — g(x) is no greater than
n -1 (the terms x” cancel out). If such a polynomial has
1 or more roots, it has to be identically equal to zero—
that is, g[x) = f (x). The proof is complete.

On second thought, we see that this proof gives us
“free of charge” quite a lot of additional information: al-
though we don’t know yet the value of ¢, we do know
that the polynomial of least deviation from zero is
unique for a given degree, and we can visualize its graph.

Exercise 2. There’s a gap in the proof above (this is
the price of its beauty). What should be done if the two
graphs touch one another (fig. 4)? (Hint: recall the defi-
nition of a mul-
tiple root of a
polynomial.)
_c Thus, we have
to bring forward a
polynomial f,(x)

VA

/
/

/

\
\
/ \x

/ \
/ N

/
L

Figure 4
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with a graph like
the one in fig-
ure 2. This figure
will undoubtedly
remind you of
trigonometric
functions. Sure

enough, it’s time for them to come into play!

It would be simplest to take as f, (x) something like the
function cos no—except that the cosine function isn’t a
polynomial. The following lemma comes to the rescue.

Lemma. The function 2 cos na can be written as a
reduced polynomial f,(x) of degree n of the function
2 cos a: 2 cosna=f. (2 cos )

For instance,

2 cos 20, = 4 cos?o. — 2 = (2 cos a)? - 2
—that is, f,(x) = x2 - 2;
2 cos 30, = 8 cos®a.— 6 cos o = (2 cos o) — 3(2 cos o)

—that is, f,(x) = x® - 3x.

In the general case we use induction over n. Suppose
the statement of the lemma is true for a certain n and
n-1(nz=2):

2cos(n-1jou=f, ,(2cosa
2 cos no. = f,(2 cos o).

Then the formula

cos A +cos B =2 cos (A-B)/2 cos (A + B)/2
implies

cos (n + 1o+ (cosn — l)d =2 Ccos 0. cos 1o,
or

2 cos (n + 1)o = (2 cos a)(2 cos no) — 2 cos (n - 1)o
= (2 cos a)f, (2 cos a) - f, (2 cos al.

It follows that

fos 1l%) =2 (x) =1, ().

This completes the proof and, in addition, gives a recur-
sive formula for computing f (x).

Perhaps you've guessed that the polynomials f,(x) are
just what we need. Indeed, let o run through the seg-
ment [0, ). Then no varies from 0 to nx, and the func-
tions x =2 cos o.and f (x] = 2 cos no. take values on [-2, 2].
In so doing, x sweeps this segment once, while f (x]
sweeps it n times, alternately taking values +2 for x =
arccos (nk/n), k=0, 1, ..., n. This means that the graph
of f (x) lies in the band Iyl <2 and passes alternately
through n + 1 points on its upper and lower borders.
That is, f (x] is the polynomial of least deviation from
zero on the segment [-2, 2] (and the deviation is 2).
These polynomials are called Chebyshev polynomials.

The discussion above leads to an unexpected conclu-
sion: for any reduced polynomial g(x), there is a point
in [-2, 2] such that the absolute value of g(x) at this
point is no less than 2. We think it would be impossible
to foresee such a result.

After Chebyshev’s problem has been solved for the
segment [-2, 2], one can solve it on any other segment.
It will suffice to change the variable in the Chebyshev
polynomials.?

2In fact, it is more usual to define them as polynomials given
on the segment [-1, 1] by the formula T, (x)='Af (2x).—Ed.




Exercise 3. Find the least deviation from zero for re-
duced polynomials of degree n on the segments (a) [0, 4],

(b} [-1, 1].
Two Kinds of polynomials

In addition to the common algebraic polynomials
you’ve encountered at school, mathematicians also
study the trigonometric polynomials

flo) = ag + a, cos o + a, cos 20 + ...

(1)

wherea, a,, ..., a, are numerical coefficients. The num-
ber n is called the degree and a, the leading coefficient
of this trigonometric polynomial.

You may be wondering, “Why ‘polynomials?’” The
reason is that fla) is an algebraic polynomial of the
function cos o. In the first section, it was proved that
2 cos o.is a polynomial of degree n1 of 2 cos o with lead-
ing coefficient 1. Foranyn=0, 1, 2, ...,

+a, cos 1o,

cos no. = p,(cos o,

where p, (x) is a polynomial of degree n with leading
coefficient 27 -1

cos Oa = 1 = p,(x),
cos o = X = p,(x],

cos 200 =2 cos? o.— 1 = 2x2 - 1 = p,(x), (2)
cos 30 = 4 cos? 0. — 3 cos o = 4x7 — 3x = p,[x),
cosno = 27"1x"+ . =p (x),
where x = cos a.
Multiplying these equalities by a,, a,, ..., a,, respec-

tively, adding them up, we get a representation of a gen-
eral trigonometric polynomial (1) as an algebraic poly-
nomial of degree n of cos o.

Now let’s read equalities (2) from right to left and
from the bottom up. The last of them gives

1
X" = cosno+ -,
211—1

(3)
where the dots mean the terms containing x*, k <n. The
second expression from the bottom becomes

X" (4]

1
=——cos(n-lja+--,
2 2

YA
where the dots stand for monomials
with xX, k <n -1, and so on. Plug-
ging equation (4) and the similar
equations for x¥, k < n — 1, into
equation (3), we come up with this:

The mean value of a trigonometric polynomial

Consider a trigonometric polynomial with leading
coefficient a,. Divide its domain [0, 2n] into 2n equal
parts with the points 0, n/n, 2n/n, 3n/n, ..., (2n - 1)n/n, ‘
and calculate the value of

I}

aal @) A

This will be called, for now, the mean value of the poly-
nomial (but note the alternating signs of the terms).

LemMmA. This number equals a,.

Since a trigonometric polynomial (equation (1)) is the
sum of functions g, (o) = cos ko, 0 < k < n, with number
coefficients, its mean value (expression (5)) is a similar
sum (with the same coefficients) of the mean values of
functions g,. Let’s prove that these mean values for all
k < n are zeros.

For k = 0, we have gy(a) = 1, so

go_go(£j+:1—l+1_—lzo
n

Now take any k, 0 < k < n. The sum in expression (5)
for f = g, is equal to the difference of two sums:

(anj [475]() [(2n—2)n]<
p =cos0+cos +cos +--+cos| ——F—
n n n

and

[nkj (nk 2nkj [nk 471:]<j
g =cos| — |+cos| — +—— |+cos| — + ——
n n n n n

(TC]{ (2n- Z)nk]
+cos =
n n

Each of these sums is zero. Indeed, consider a regular n-
gon in figure 5a (in which the case n = 6, k = 2 is illus-

trated). The vertices numbered A}, A A are

1+kr “*1 +2kr

YA

if x = cos o, then x" is a trigonomet-
ric polynomial of degree n with
leading coefficient 1/27-1.

It follows that any algebraic
polynomial p, (x) of the nth degree
and with leading coefficient 1 for x
= cos o becomes a trigonometric
polynomial of the nth degree with
leading coefficient 1/22-1,

a
Figure 5

9

6 n=
2 b k=
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a subset of its vertices (in the figure, an equilateral tri-
angle), and after a number of steps one of these points
coincides with A,. This set of vertices has rotational
symmetry, so the sum of the vectors drawn from the
center of the polygon to the marked vertices is equal to
zero. (Rotation by 2ntk/n about the center takes the poly-
gon and the marked vertices into themselves, so the
sum in question stays unchanged under this rotation,
which is impossible for a nonzero sum.) Therefore, the
sum of the projections of these vectors onto the x-axis
is also zero. But this is just the sum p! A similar argu-
ment using figure 5b (where k = 1) proves that g = 0.

So it remains to compute the sum in expression (5)
for fla) = a,, cos no. In this case, fink/n) = a cos (nk) =
(~1)¥a, so our sum equals

a a
—A-(-1)+1-(-1)+-|=—2-2n=a_,
=) 41D+ =T an=g,

and we're done.

A solution of Chehyshev's problem

Any labor should be rewarded: we're ready to solve
Chebyshev’s problem—that is, to find the least possible
deviation from zero of a reduced polynomial (with lead-
ing coefficient 1) on a certain segment. Now it will be
more convenient to consider the segment [-1, 1].

First, let’s estimate from below the deviation from zero
of the trigonometric polynomial flo) from equation (1).
Consider the mean absolute value of flo) at the points

[ ]
n

;H{f(mh%f(zj

-

+f@n—Un

+

n

(6)

The inequality here follows from the fact that the ab-
solute value of a sum is not greater than the sum of the
absolute values of all its terms, and the equality follows
from the lemma in the previous section. Now, the es-
timate in equation (6) implies that at least for one k,

&
n
Therefore, the deviation of a trigonometric polynomial
from zero is not less than the absolute value of its lead-
ing coefficient.

Now Chebyshev’s problem is solved “in one move.”
Since the substitution x = cos o turns an arbitrary re-

duced polynomial p (x) of degree n into a trigonomet-
ric polynomial flo) with leading coefficient 1/27 -1 (as

Z‘a ‘
n
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we saw above), and x runs through the segment [-1, 1]
(from 1 to —1), as o varies from O to 2w, the deviation of
p,lx) on [-1, 1] equals that of fla) on [0, 2r]. Therefore,
the deviation on [-1, 1] of a reduced polynomial of the
nth degree from zero is no less than 1/22-1,

We can see that this deviation is actually achieved for
the polynomial p, (x) defined by the formula p_(cos o) =
(1/27-1) cos no—that is, for

pn(X)=[

e ] cos(narccosx).

In conclusion, we leave you with several problems to
work through on your own.

Problems

1. A trigonometric polynomial of degree n has no
more that n roots on [0, ] and no more than 2n roots
on [0, 2x].

2. If two trigonometric polynomials of degree n take
equal values at 11 + 1 points in the segment [0, ©t], then
they are equal everywhere.

3. The only reduced polynomial of degree n that de-
viates from zero on the segment [-1, 1] by 1/27~ ! is the
Chebyshev polynomial (1/22-1) cos (n arccos x). (Hint:
when does equation (6) become an exact equality?)

4. Prove the identity

cos 0+ cos (0t + X ) + cos (0 +2x) + -+ + cos (oL + nx)

_ sin[oa +(n+ 1/2)X] —sin(o - x/2)

2sinx/2

(Hint: sin[a + (k + 1/2)x] - sin[o + (k = 1/2)x] =
2 sin (x/2) cos (o + kx).

5. From problem 4, deduce the lemma on the mean
value of a trigonometric polynomial.

6. Prove that a trigonometric polynomial without a
constant term, flot) = a, cos o + a, cos 200 + ... + a, cos no,
necessarily has a root. (Hint: what is the mean value of
flo)?

7. Recall the proof of the lemma, and make sure that
the sequence of the vertices of the polygon returns to
the start after n/GCD(n, k) steps. (GCD stands for
“greatest common devisor.”)

In this article we’ve touched upon the analytical
properties of Chebyshev polynomials. Their combina-
tory properties are no less interesting—but that’s a sub-
ject for another article. Q)

Gra that chain of thought!

Did an article in this issue of Quantum make you think of a re-
lated topic? Write down your thoughts. Then write to us for our
editorial guidelines.

Send your inquiries to Quantum, 1840 Wilson Blvd., Arling-
ton VA 22201-3000 (e-mail: quantum@nsta.org).




BRAINTEASERS

Just for the fun of itl

Equal angles appear. In a rectangle ABCD, M and N are the midpoints of
BC and CD (see the figure), P is the intersection point of DM and BN.
Prove that the angles MAN and BPM are congruent. (V. Proizvolov)

B122

Alphanumeric multiplication. Solve the number rebus ONE - 9 = NINE,
where 9 is “nine” and each letter stands for one (and only one) of the other
digits. (P. Filevich)

B123

Pascalmeter. John invented a pascalmeter—that is, a device to measure pressure.
To show how it works, he came to a construction site where a new hotel was
being built. He demonstrated that a brick laid flat exerted a pressure of 1,368 Pa;
when set on its front side, it exerted a pressure of 2,581 Pa; and when set on its
smallest face, it exerted a pressure of 5,404 Pa. A 4-m wall made of such bricks
exerted a pressure of 88,200 Pa. What is the mass of one brick? (A. Pidora)

B124

Permutations in order. The language of the tribe of Robitecs consists of all possible
permutations of the eight letters R, O, B, I, T, E, C, S, and no other words. When the
chief of the tribe learned about such useful things as dictionaries, he instructed his
court linguist to compile a dictionary of the tribe’s language. The linguist wrote the
name of the tribe as the first word in the dictionary, and, based on the order of the
letters thus specified, began to order words in the usual way. What word did he
write after scretibo? Before biscrote? After iscetbor? Can you offer a simple way to
order the words in the dictionary? By the way, what’s the last word?

B125

Unresignable position. The game of checkers often ends in a draw—even in
Russia, where kings can move through any number of unobstructed squares
(unlike American kings, who must plod square by square). Is a draw possible in
the game of give-away checkers, played according to the usual Russian (or
Continental) rules except that each player tries to get rid of all his or her pieces -
before the other? More exactly, does there exist a position in which neither z
player will lose unless a mistake is made? (A. Domashenko)

(See the box on page 61 for a full description of Continental Checkers.)
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Ontics for a stargazer

On seeing stars at noon: do the old tales hold water?

by Vladimir Surdin

HERE IS AN OLD AND RATH-

er widespread belief that the

stars can be seen even in the

daytime if the observer looks
for them from the bottom of a deep
well. Sometimes you can come
across this assertion in authoritative
sources. More than a thousand years
ago Aristotle wrote that the stars
can be seen during the day from in-
side a deep cave. Later the Roman
historian Pliny repeated this belief,
replacing the cave with a well. Many
writers have mentioned this phe-
nomenon in their works: Rudyard
Kipling, for instance, wrote about
the stars being visible at noon from
the bottom of a deep ravine. In his
book Star-Land (Boston, 1889) Sir
Robert Ball gives a detailed account
of how to see the stars in the day-
time from the bottom of a tall chim-
ney (fig. 1), ascribing this ability to
the fact that human sight becomes
more keen in a dark tube.

So, is there any truth to the mat-
ter? Has anyone researched the
question of seeing stars during the
day? I must admit that I have yet to
be offered the opportunity to go
down into a very deep well or crawl
into a tall chimney. Nevertheless,
at various times there have been in-
quisitive people trying to prove the
“well phenomenon.” The famous
German naturalist and traveler
Alexander von Humboldt tried to
see the stars in the daytime from

18 SEPTEMBER/OCTOBER 1984

deep pits in America and Siberia,
but to no avail. Adventurous indi-
viduals are still to be found among
us. To name just one, let’s see what
a reporter from Komsomolskaya

Figure 1

Illustration from the 1899 edition of
Sir Robert Ball’s 1889 book Star-Land.
The caption read: “How the stars are
to be seen in broad daylight.”

HEARSAY V&, OGBSERVATION

Pravda, L. Repin, wrote on May 24,
1978: “People say that it is possible
to see the stars in the sky in broad
daylight from the bottom of a deep
well. Once I tried to verify it and
went down into a 60-meter well,
but I did not see any stars—only a
little square of blindingly blue sky.”
Then there’s the evidence of Ri-
chard Sanderson, an experienced
amateur astronomer from the town
of Springfield, Massachusetts, who
described his observations in The
Skeptical Inquirer (1992):

About 20 years ago, when I worked as
a trainee in the planetarium of the
Springfield Museum of Science, I talked
with some of my colleagues about this
old popular belief. Our discussion was
overheard by the director of the mu-
seum, Frank Corcosh, who proposed
that we solve the problem by experi-
ment. He led us to the basement of the
museum, where the base of a tall, thin
chimney was located. A small door led
into the shaft, where we managed to in-
sert our inquisitive heads. I still remem-
ber the feeling of excitement connected
with the prospect of seeing the noctur-
nal luminaries in the daytime.

Looking up along the flue I saw a
bright circle standing out against a back-
ground of the pitch darkness of the
chimney’s interior. The surrounding
darkness made my pupils widen, and
the patch of sky shone even brighter.

I immediately realized that I could
never sce the stars in broad daylight
with such a “device.” When we had
climbed out of the basement, Corcosh

Art by Sergey Barkhin






remarked that only one star could be
seen in the daytime in good weather—
the Sun.

Thus, the nocturnal luminaries
can’t be seen in the daytime from
either a deep well or tall tube. Still,
let’s not be too hasty: there are some
tubes that make it possible to see
stars even in broad daylight. I'm
talking about astronomical tubes—
telescopes. What makes them so
special? Why do tubes with lenses
allow us to see the stars during the
day, while empty ones don’t?

First of all, let’s think things
through: why aren’t the stars visible
in the daytime? Simply because the
sky is so bright due to the scattered
sunlight. If the scattered light be-
comes weaker for any reason (for
instance, during a total eclipse of the
Sun), the bright stars and planets are
stunningly visible in the daytime.
They are also clearly seen in outer
space and from the surface of the
Moon. So why does the scattered
sunlight in the atmosphere hide
them from us? After all, the light
from the stars doesn’t become any
weaker.

To understand this phenomenon,
we need to know how we see. As
you know, the eye’s lens forms an
image on the back of the eye—on
the light-sensitive layer called the
retina. The retina is composed of a
large number of elementary light
receivers—cones and rods. They dif-
fer in their sensitivity to color, but
for our purposes this doesn’t matter,
so we'll just refer to them as
“cones.” The important thing is that
each cone sends information to the
brain about the flux of light landing

on it, and the brain synthesizes an
overall picture from these individual
signals.

The eye is an extremely complex
instrument for collecting informa-
tion, but in a way it’s similar to a
“smart” electronic device like a ra-
dio. The eye has an automatic am-
plification system that decreases its
sensitivity in bright light and in-
creases it in dim light. It also has a
system of noise suppression that
smoothes the random fluctuations
in the light flux both over time and
over a number of adjacent cones on
the retina. This system has certain
threshold properties, so the brain
doesn’t see rapid changes in the im-
age (this is the idea behind movies)
or small fluctuations in luminosity.

When we look at a star at night,
the light flux landing on a single
cone, though small, is still much
greater than the flux of the dark sky
talling on the adjacent cones. So the
brain interprets it as a meaningful
signal. But in the daytime every
cone is illuminated by so much
light from the sky that a little extra
light from a star landing on a cone
is not perceived by the brain as a
real difference in the light flux and
the brain “writes it off” as a fluctua-
tion. A star can become visible
against the daytime sky only when
its light flux is comparable to that
coming from a patch of sky pro-
jected onto a single cone. The angu-
lar magnitude of this patch is
known as the resolving power of the
human eye and is equal to about one
minute of arc.

Among the heavenly bodies only
Venus is sometimes seen in the day-

time sky. It’s not an easy thing to pull
off: the sky must be especially clear,
and you need to know approximately
where the planet is located in the
sky. All the other planets and stars
are far less bright than Venus, so it’s
absolutely impossible to see them in
the daytime without a telescope.
However, some astronomers assert
that under ideal conditions they can
see Jupiter in the daylight, and Jupi-
ter is about a fifth as bright as Venus.
As for the brightest star in our sky,
Sirius, nobody has seen it in the day-
time at sea level. They say you can
see it in the mountains against the
dark-violet sky.

It’s easy to show how the bright
background masks the luminous
points. Here’s what Yakov Perelman
recommended in his book Astro-
nomy for Fun:

A simple experiment can demonstrate
the disappearance of the stars in daylight.
In the side wall of a cardboard box punch
a dozen holes in the form of a constella-
tion, then stick a sheet of white paper on
it from the outside. Put the box in a dark-
ened room and illuminate it from the
inside. You can clearly see the illumi-
nated points on the perforated side like
stars in the night sky (fig. 2). But if you
turn on another light in the room that’s
bright enough, the artificial stars on the
paper disappear without a trace: “day-
light” has extinguished the “stars.”

So how does a telescope help us
to see the heavenly bodies by day?
Obviously its objective (set of lenses)
collects much more light than the
pupil of the eye can. But in this re-
spect the images of a star and a patch
of sky are equivalent, because their
light fluxes are increased by the same

Figure 2
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factor, which is approximately equal
to the ratio of the objective’s area to
the area of the pupil. Something
more important is at play here: the
telescope improves the resolving
power of the eye because it magni-
fies the angular size of the objects
observed. This means that the tele-
scope projects the same patch of sky
on a larger number of cones, each of
which absorbs proportionally less
light. For example, if a telescope
increases the angular size by a fac-
tor of A, the observed luminosity
decreases by a factor of A2. How-
ever, a star has a very small angular
size, so its light still falls on a single
cone even after passing through the
telescope. But now the extra light
from the star can be rather signifi-
cant in comparison with the de-
creased luminosity (per cone) of the
background sky. Thus, with a mag-
nification of 45x, the effective lumi-
nosity of the sky is decreased by a
factor of 452 = 2,000, which makes
it possible to see the brightest stars
and planets against the daytime sky.
So does this mean we can just
take a telescope with a high magni-
fication and see the dimmest stars
by day? No. The Earth’s atmosphere
isn’t homogeneous, so a star’s image
is blurred and has a certain angular
magnitude, though very small. At
night and in good weather in the
mountains, it’s about 1 arc second,
and in the daytime at sea level it’s
no less than 2-3”. Therefore, if a
telescope has a magnification of
more than 30-60x, the angular size
of a star exceeds the eye’s resolving
power and its image is projected
onto several cones. So there’s no
point in increasing the magnifica-
tion: the star’s brightness will de-
crease as much as that of the sky.
Let’s figure out which stars can be
seen during the day with a telescope.
In good weather the daytime sky has
a magnitude of -5 per square arc
minute,! corresponding approxi-

1 Astronomers measure the
luminosity of heavenly bodies by their
“stellar magnitude,” which is denoted
as (for example) -5. A decrease in
stellar magnitude of 1 corresponds to
an increase in brightness by a factor of

mately to the light falling onto one
cone. The magnitude of Venus is
about —4. Therefore, we assume that
a star will be visible if its luminos-
ity differs from that of a square arc
minute of sky by more than 1. As we
found earlier, we can decrease the
brightness of the sky with a tele-
scope by a factor of no more than
2,000—that is, by a luminosity fac-
tor of about 8. So the sky’s luminos-
ity will decrease from -5 to -5 + 8 =
3 per square arc minute, which
means we can see stars with a mag-
nitude as low as 4. Astronomical ob-
servations confirm this estimate.

Now that we've settled the tele-
scope question, let’s return to the
well. Can a well decrease the sky’s
luminosity for an observer at the
bottom? In principle, yes—though
not with lenses, but geometrically,
by removing the entire field of vi-
sion except for a small patch of sky,
which sends a light flux comparable
to that of a star. To do this, the
well’s opening must appear to the
observer to have an angular magni-
tude of no more than 1”. If the well’s
diameter is 1 m, its depth must be
more than 1 m/sin 1’ = 3.4 km! Even
in this case the observer will see
only a bright point whose brightness
increases momentarily when a star
passes directly overhead. Even by a
stretch of the imagination it’s diffi-
cult to consider this procedure as
“an observation of the stellar sky,”
to say nothing of finding such a well.
As for the probability that a bright
star will pass directly overhead
(+0.5’), I'll let you estimate that
yourself, but I can tell you that
you’ll have to wait more than a
thousand years for that marvelous
moment!

Generally speaking, a tall tube can
also play a role in the daytime obser-
vation of the stars. It creates a chan-
nel of air in which there is practically
no scattering of sunlight. If such a
tube passed all the way out of the at-
mosphere, we could observe the night
sky at any time of day! Almost the

2.5. Most of the stars we can see on a
clear, dark night range in magnitude

from 6 (for the dimmest| to 1 (for the
brightest.)

entire mass of air is confined near the
Earth’s surface, reaching a height of
about 20 km. The tube would have to
be very tall indeed!

So we are led to conclude that the
daytime sighting of stars is simply a
myth. Where did it come from? We
can only speculate. It’s possible that
someone at the bottom of a deep pit
actually did see Venus in the sky.
Such an occurrence has a very small
probability and is possible in prin-
ciple only in the tropics, where Ve-
nus passes directly overhead. It’s
more likely that people who went
down into a deep well or entered a
cave saw dust particles lit by sun-
light against the dark walls. Maybe
they mistook them for stars?

Still, it’s too early to consider the
case closed. We need to look more
carefully at optical illusions, at un-
expected combinations of natural
conditions, at rare physical effects.
It is you, our esteemed readers, who
can provide valuable help in the
matter.

Indeed, Ramiro Cruz, an amateur
astronomer from Houston, Texas,
decided to clear up for himself the
rumors that Sirius can be seen in the
daytime. He looked for the star in
the southwest part of the sky in
April 1992 not long before sunset.
Take note of the fact that he knew
where to look! With the naked eye
he managed to spot Sirius no earlier
than 21 minutes before sunset.
When he used binoculars with a
magnification of 70 x 50, he found
the star 43 minutes before sunset.?
We have enough data to estimate
the sky’s luminosity at the moment
he sighted the star.

Houston is situated at 30° N
latitude, so the celestial equator
crosses the horizon there at an angle
0f 90°-30° = 60°. As the observations
were made just after the vernal equi-
nox, the Sun was near the equator and
approached the horizon at the same
angle. It takes the Sun one minute to
pass an arc of 360°/(24.60) = 0.25° in

2See Sky and Telescope, Vol. 85,
No. 2, Feb. 1993, p. 112.
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HOW DO YOU
FIGURE?

Challenges in physics and math

Math
M121

Symmetric inequality. For any two
integers m and n greater than 1,
prove the inequality

1 1
+
Tn+1

>1.

UIm+1

You may want to use the following
modification of Bernoulli’s inequal-
ity:foranyx>0and O <o < 1, we have
(1 +x)*< 1+ ox. (L. Kurlyandchik)

M122

Combining ones and twos. Prove
that for any positive integer n there
is a number composed only of the
digits 1 and 2 that is divisible by 27.
(B. Ivlev)

M123

Black out. Several unit squares of an
infinite square grid are colored black.
Prove that it is possible to cut out a
number of (non-unit) squares such
that (1) they will cover all the black
unit squares and (2) in each of them
the black squares will cover no less
than 1/5 and no greater than 4/5 of its
total area. (G. Rozenblume)

M124

Watching a snail. A group of natu-
ralists observed a crawling snail for
t > 1 minute. Each of them watched
the snail during exactly 1 minute
and noticed that it crawled a dis-
tance of exactly 1 m during this pe-
riod. The observation was never in-
terrupted. What longest and shortest
path could the snail crawl during
these t minutes? You may start with

small values of t—say, t = 2.5 min-
utes. (N. Konstantinov)

M125

Remarkable line in a quadrilateral.
A quadrilateral has both circum-
scribed and inscribed circles. Prove
that the intersection point of its di-
agonals and the centers of the
circles lie on the same straight line.
(V. Protasov)

Phiysics

FP121

Taking off. A small airplane with its
engine shut off can glide down with
a minimum speed v = 150 km/h at
an angle o = 5° with the horizon. (If
the pilot reduces this speed or this
angle, the plane goes into a spin.)
What minimum thrust must the en-
gine produce for the plane to take off
from a horizontal runway? In each
case the airplane’s velocity is di-
rected along the fuselage. The mass
of the plane m = 2,000 kg. (A. Andri-
anov)

P122

Gas and piston. One mole of an
ideal monatomic gas is contained
under a massive piston at a tempera-
ture T, in a thermally isolated ver-
tical cylinder. The gas is compressed
by pressing down on the piston. Af-
ter performing work W, the piston is
released and assumes a new equilib-
rium position. Find the temperature
T in this state. (V. Uzdin)

P123

Puck in a magnetic field. A small
puck of mass M carrying a charge Q

lies on a plane inclined at an angle
o. The coefficient of friction is W.
There is a magnetic field B perpen-
dicular to the plane (see the figure
below). The puck is released with

zero initial velocity. Find the steady-
state velocity of the puck, including
its direction. (A. Alexeyev)

P124

Most powerful heater. You have a 1-
ohm, a 2-ohm, and a 3-ohm resistor.
Each of them can release no more
than 1 W of power. How should
they be connected and what voltage
should be supplied to obtain a
heater with the most total power?
(A. Zilberman)

P125

Conical light conductor. A light
conductor in the form of a truncated
cone is made of glass coated on the
inside with silver (for better reflec-
tion of the incident rays). The
planes of the bases of the cone are
perpendicular to its axis, their diam-
eters are D and d, and the height of
the coneis H (H >> D >>d). A beam
of light parallel to the cone’s axis
falls on the large base. Will all the
rays emerge from the small base af-
ter undergoing multiple reflections?
(S. Pankov)
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Why study mathematics?

What mathematicians think about it

by Vladimir Arnold’

HY MUST WE STUDY

mathematics? In 1267 this

question was answered by

the English philosopher
Roger Bacon: “[H]e who ignores it
can not know the other sciences nor
the things of this world.. ... And what
is worse, men who are ignorant of it
do not perceive their own ignorance,
and therefore seek no remedy for it.”
At this point I could have ended my
lecture, but people think that maybe
something has changed over the last
seven centuries . . .

Let’s look at more recent evi-
dence. One of the creators of quan-
tum mechanics, Paul Dirac, says
that when you build a physical
theory, no physical conceptions
should be trusted. So what is to be
trusted? According to the famous
physicist, only a mathematical
scheme—even if, at first glance, it
isn’t connected with physics.

Indeed, physics has cast aside all
the purely physical conceptions
prevalent at the beginning of this cen-
tury, while the mathematical models
incorporated into the physicists’ arse-
nal gradually acquire physical mean-
ing. Here the stability of mathemat-
ics clearly manifests itself.

IThese are slightly abridged notes
from a lecture given by Arnold, one of
the leading mathematicians of our
time, at the Republic Institute for
Advancing the Qualifications of
Educators in Moscow on April 16,
1992. The notes were submitted by
Prof. Y. Fominykh of Perm.—Ed.

Thus, mathematical modeling is
a fruitful method of understanding
in the natural sciences. We'll ap-
proach mathematical models from
another angle, examining the prob-
lems of mathematical education.

Three approaches to teaching math

In Russian mathematical educa-
tion (both secondary and higher) we
follow the European system based
on the “Bourbakization” of math-
ematics. (Nicolas Bourbaki is the
pseudonym of a group of French
mathematicians who, since 1939,
have been publishing a series of
books in which the principal divi-
sions of modern mathematics were
presented formally—that is, by
means of the axiomatic method
based on set theory.)

The formalization of mathemat-
ics leads to a certain formalization of
its teaching, demonstrating the
costs of Bourbakization in math-
ematical education. Here’s a dra-
matic example. Second-year pupils
at a French school are asked, “How
much is two plus three?” The an-
swer follows, “Since addition is
commutative, it’s three plus two.”

A truly remarkable answer! It’s
absolutely correct, but the pupils
didn’t even think about simply add-
ing these two numbers, because
their instruction laid stress on the
properties of operations. In Europe,
educators had already become aware
of the shortcomings of this approach

MOTIVATIONS IN MATH

and began to back off from Bour-
bakization.

In the last few years, Russian
mathematical education had under-
gone Americanization. It’s based on
the principle: teach what’s needed
for practical application. So some-
one who doesn’t think he or she will
need mathematics need not study it
at all. Mathematics is optional for
high school juniors and seniors—for
instance, one third of high school
seniors don’t take algebra. The effect
is illustrated by the following ex-
ample. A test for 14-year-old Ameri-
can students asked them to estimate
(not compute, but just estimate)
what happens to the number 120 if
we take 80 percent of it. Three ver-
sions of an answer were offered: it
will increase, remain the same, or
decrease. The right answer was cho-
sen by about 30% of the tested stu-
dents. This means that they checked
answers haphazardly. The conclu-
sion: nobody knows anything.

The second particular feature of
the American approach to teaching
math is computerization. The fasci-
nation with computers by itself
doesn’t contribute to the develop-
ment of thinking ability. Take an-
other example from an American
test.

There are 26 students in a class.
They are going on a car trip. A car
can take one parent and four stu-
dents. How many parents should be
invited to help?
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A typical answer is 65 parents. A
computer gives out 26+4 = 6.5. And
a student already knows that if the
solution must be an integer, one
should do something with the deci-
mal point—for instance, just throw
it away.

And now look at an example from
an official examination in 1992 for
students:

Which of the following pairs most
closely resembles the relation be-
tween angle and degree—

(a) time and hour;

(b) milk and quart;

(c) area and square inch

{and so on)?

The answer is area and square
inch, because the degree is the mini-
mal unit of angle measure, and the
square inch is the minimal unit of
area, whereas an hour can be divided
into minutes.

The authors of this problem were
obviously taught according to the
American system. I'm afraid we’ll
soon get to this level, t0o.? It’s only
surprising that there are so many
outstanding mathematicians and
physicists in the United States.

Today our mathematical educa-
tion slowly turns from the European
system to the American. As always,
we are late, lagging behind Europe
by about 30 years, so 30 years later
we should be ready to set things
aright and get out of the dead-end
where we'll be driven by the Ameri-
can educational system with its
pragmatism, optionality, and mass
computerization.

Our traditional mathematical
education used to be at a higher level
and was based on the culture of
arithmetic problems. Even as re-
cently as twenty years ago some
families still had copies of the old
“merchant” problems. Now it’s all
gone. The algebraization of the last
reform of mathematical education
turns students into robots. It is the
arithmetic approach that demon-

2A New York professor, Joe Birman,
explained to me that for him as an
American the “correct” solution to
this problem was absolutely clear.
“The point is,” he said, “I can imagine
precisely the level of idiocy of the
author of these problems.”
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strates the “meatiness” of the math
we teach.

Consider, for example, these
problems:

(1) There are three apples. One is
taken away. How many are left?

(2) How many cuts with the saw
are needed to divide a log into three
pieces!?

(3) Boris has three more sisters
than he has brothers. How many
more girls than boys are in his family?

From the point of view of arith-
metic these are all different prob-
lems—their content is different.
And the intellectual effort needed to
solve the problems is quite differ-
ent, too, although the algebraic
model is always the same: 3 -1 = 2.
What strikes you first of all in
mathematics is the surprising uni-
versality of its models and their
incomprehensible effectiveness in
applications.

As the great Russian poet Vladi-
mir Mayakovsky said: “The man
who first formulated that ‘two and
two is four’ was a great mathemati-
cian, even if he obtained this truth
from adding two cigarette butts to
two cigarette butts. All his followers,
even though they may have added
immeasurably greater things—say,
locomotives to locomotives—are not
mathematicians.” To “count loco-
motives” is the American way of
teaching math. It is disastrous. The
example of the development of
physics at the beginning of this cen-
tury shows that locomotive math-
ematics turned out to be worse than
cigarette-butt mathematics: applied
mathematics couldn’t keep pace
with physics, while theoretical
mathematics supplied everything
physicists needed for further devel-
opment of their science. Locomotive
mathematics lags behind practice:
while we teach how to calculate
with abacuses, computers appear.
We must teach how to think, not
how to push buttons.

Admittedly, a mathematical
model doesn’t always give immedi-
ate practical returns. Sometimes it
may prove useful only after two
thousand years. That’s what hap-
pened with conic sections.

Conic sections and the law of gravity

Conic sections were discovered
in ancient Greece and described by
Apollonius of Perga (265-1708.c.)in
an eight-volume treatise. But the
need for this theory arose only in
the 16th century, when Johannes
Kepler was deriving his laws of
planetary motion.® His teacher,
Tycho Brahe, had scrupulously
measured the positions of the plan-
ets of the solar system in the obser-
vatory at Uraniborg over the course
of 20 years. After his teacher’s
death, Kepler got down to the math-
ematical processing of the results of
these observations and found that
the trajectory of Mars, for instance,
is an ellipse.

An ellipse is the locus of points
such that the sum of the distances
from these points to two given
points, called the foci, is constant. A
remarkable theorem—which, unfor-
tunately, is not proved at school—
says that the section of a cone by a
plane tilted at a large enough angle
to its axis is an ellipse. Its proof is
pretty simple (see figure 1). The two
spheres inscribed in the cone and

Figure 1

Ellipse with foci F and E and
Dandelin spheres. Two tangents
drawn to the same sphere from the
same point are congruent, so FA + EA
= BA + AC = BC, a constant.

3See also “An Act of Divine
Providence” in the May/June 1993
issue of Quantum and “The Fruits of
Kepler’s Struggle” in the January/
February 1992 issue.—Ed.




touching the plane (at the foci E and
F of the ellipse in the section) used
in this proof are called Dandelin
spheres.

To understand the chain of
Kepler’s reasoning, we'll need a few
simple facts about the geometry of
the ellipse. It can be shown that the
length of the major semiaxis of an
ellipse OK |(fig. 2), usually denoted a,
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N

Figure 2

Foci, semiaxes, and eccentricity of an
ellipse.

is equal to the length of the hypot-
enuse EL of the triangle with legs b
= OL (the minor semiaxis) and ¢ =
EO. The ratio c¢/a characterizes the
ellipse’s shape and is called its ec-
centricity, because it’s proportional
to the displacement of the foci from
the center of the ellipse. The eccen-
tricity is usually denoted by e.

By the Pythagorean Theorem, the
ratio of the semiaxes equals b/a =
N1-¢2 =1 - €2/2 for small e. It fol-
lows that an ellipse with a small
eccentricity is virtually indistin-
guishable from a circle. For instance,
if e = 0.1, then the minor axis is
shorter than the major axis by only
1/2,000 of the length of the latter.
For such an ellipse with major axis
1 meter long, the minor axis will be
shorter by only half a centimeter,
yielding an unnoticeable difference
between such an ellipse and a circle.
However, the foci are 5 cm apart
from the center, which is quite no-
ticeable.

The formulab/a = 1-¢e? =1-€%/2
(which means that the longer leg of
a stretched right triangle is practi-
cally as long as the hypotenuse and
gives a good approximation of the
difference between their lengths) is
one of the most remarkable facts in
all of mathematics. (Unfortunately
this isn’t taught in school.)

For example, suppose you're

Figure 3

How much longer is a sine curve than
a straight line!

coming back home along a sine
curve. How much will your path be
longer than the straight one (fig. 3)?
The first impression (twice as long)
exaggerates the length, of course.
Yet it seems that the curved path
will be about half again as long as
the straight length. In actual fact, it’s
only about 20% longer. The reason
is that the greater part of the sinu-
soid is only slightly tilted toward the
axis, so the corresponding hypot-
enuses are barely longer than the
legs.

Here is another application of
this formula. The engines of the
first jet planes were attached to the
wings near the fuselage, so the air
rushing from the engines was harm-
ful to the tail assembly. The design-
ers, who knew and felt the formula
we've been examining, turned the
engines by a small angle o (fig. 4).

Figure 4

Saving the tail.

The tail assembly was saved (the
deviation of the stream of air is pro-
portional to o), while the net thrust
remained practically the same (the
loss is approximately 0?/2, where o
is measured in radians—for an angle
of 3° only about 1/800 of the power
is lost).

Let’s turn back to Kepler. First he
thought that the orbit of Mars is a
circle. But the Sun happened to be
offset by about 0.1 of the orbit’s ra-
dius from the orbit’s center. Kepler
didn’t stop at this result (remarkable
in itself)—because he knew the
theory of conic sections. Kepler
knew that an ellipse with a small
eccentricity looks very much like a

circle, and he examined how the
small remaining deviation of the
orbit from a circle behaved. It’s in-
teresting that this verification was
made possible only by the excep-
tional precision of Tycho Brahe’s
observations, performed with the
naked eye. At the time, astronomers
did not trust telescopes much, and
even later, at the end of the 17th
century, it still had to be proved that
telescopic observations could attain
as high a precision as those with the
naked eye.

New physics often begins with
refinement of the last significant
digit of the previous theory. If Kepler
had been satisfied with an eccentric
circular orbit, or if Tycho Brahe’s
observations were less exact, the
development of celestial mechanics
(and, perhaps, of all of theoretical
physics) could have been delayed,
perhaps even for centuries.

The orbit of Mars turned out to be
slightly oblate in the direction per-
pendicular to its diameter passing
through the Sun by approximately
half a percent—that is, by €2/2. This
led Kepler to the idea of elliptical
planetary orbits.

If the theory of conic sections had
not been worked out by mathemati-
cians in advance, certain fundamen-
tal laws of nature wouldn’t have
been discovered in time, modern
science and technology would not
have arisen, and our civilization
would have remained at the medi-
eval level. Or, at the very least, the
paths of history would have been
totally different.

Kepler discovered the laws of
planetary motion, but the fact that
planets actually move in ellipses
was proved by Sir Isaac Newton in
his book Mathematical Principles of
Natural Philosophy (1687), which
laid the basis for all of modern theo-
retical physics. He derived from his
law of universal gravitation the fact
that planetary orbits are ellipses.
Note that before Newton this prob-
lem was examined by his contempo-
rary Robert Hooke. He studied the
law of a body’s motion in a gravita-
tional field assuming that the force
of gravity is in inverse proportion to
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the square of distance. Having ap-
proximately integrated the equation
of the motion, Hooke drew orbits
and discovered that they look like
ellipses. His scientific honesty
didn’t allow him to call them el-
lipses, and he couldn’t prove they
were ellipses. So Hooke called them
ellipsoids and proposed that Newton
prove that Kepler’s first law (that
planets move in ellipses) follows
from the law of inverse squares.
Newton, who knew the ancient
theory of conic sections very well,
met this challenge by means of in-
tricate constructions based on el-
ementary geometry.

Later, second-order curves began
to appear in scientific research more
and more often. Why did this model
prove so fruitful in application?
Why, in particular, does the conic-
section model describe planetary
motion? It’s a mystery. An enigma.
There’s no answer to this question.
We believe in the power of rational
science. Newton saw here a proof of
God’s existence: “This most grace-
ful combination of the Sun, planets,
and comets could not happen other
than by the intention and the power
of the mightiest and wisest creature.
... It governs all not as the world’s
soul, but as master of the Universe,
and by its supremacy should bear
the name of God Almighty.”

Modern space explorers also use
the properties of conic sections
when they plan the launching of sat-
ellites. So the foundation for modern
physics and the scientific and tech-
nical revolution was established by
a classical work by Apollonius. Yet
the renowned Greek was thinking
only about the beauty of the math-
ematical model when he investi-
gated conic sections.

Computers, quantum mechanics, and
Riemann surfaces

Another example is the story of
the creation of computers. Long be-
fore the first computer came to being,
its two principal mathematical com-
ponents were lying in wait in math-
ematics: mathematical logic (specifi-
cally, Boolean algebra, created by
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George Boole, 1815-1864) and the
schematic design of a computing
machine. The first adding machine
was designed by the French math-
ematician Blaise Pascal in 1641,

A third example is the develop-
ment of wave mechanics by Erwin
Schrodinger. By the time Schrodinger
took up the oscillation problem,
Werner Heisenberg’s matrix version
of quantum mechanics was already
known. It wasn’t clear how a discrete
rather than a continuous spectrum
could be obtained from the theory of
waves in all of space. Schrodinger got
help from the well-known German
mathematician Hermann Weyl.
Without Weyl’s results in spectral
theory on an infinite interval, we
would never have heard about the
famous Schrodinger equation. It’s the
same story again: a mathematician
turns up with a theory ready to ap-
ply—that of boundary conditions at
infinity—and all that was left to do
was use it.

The next example is Riemann
surfaces. They were introduced by
the German mathematician Bern-
hard Riemann in the middle of the
last century. These are the surfaces
obtained by correspondingly cutting
and gluing a number (or even an infi-
nite number) of planes of a complex
variable. Topologically, such a sur-
face can be a sphere, a sphere with
handles (fig. 5), and so on. The theory
of Riemann surfaces was developed
as part of the theory of functions of
a complex variable. Later they
proved useful in completely differ-
ent problems. For instance, elliptic

integrals get a simple geometric
treatment on Riemann surfaces.

Karl Gustav Jacobi proved that
Riemann surfaces “govern” two
other problems:

1. Determining the number of
ways of representing a given integer
as the sum of four squares

2 2

2, . 52
N=x*+y*+z* + u%

2. Investigating oscillations of a
pendulum, which leads to the differ-
ential equation

x” = —sin x.

Trig functions and counting Snakes

As a fifth example, consider the
so-called Bernoulli-Euler triangle:

16 16 14 10 5 O
0 16 32 46 56 61 61

272 272 256 224 178 122 61 O

It’s filled in as follows. In line num-
ber 0, we write 1. Every odd line
(first, third, and so on) is filled out
from the right by writing in each
position the sum of all the numbers
in the previous line to the right of
this position. Even lines are filled
out in the same way but from the
left.

The miracle concealed in this tri-
angle was discovered a hundred years
ago. The clue to it is given by this
“simple” theorem (mathematicians

Figure 5

Riemann surfaces.



often disguise the fact that every-
thing is quite simple):

oo n
sect+tant = » k_ L,
a!
n=0 :
where the coefficients k_ are the
numbers on the sloping sides of the
Bernoulli-Euler triangle (k, is the
nonzero extreme number in the nth
line).

It follows that the coefficients
along the left slope yield the expan-
sion into a power series of the func-
tion tan x (it’s odd, and so its expan-
sion contains only odd terms):

k k
al__i:]'/ a3='3=%=l/
1! 3l 6 3
k5 16 2
aS_ = — =
51 51 15
and
x3 2x®
tanx =X+ —+—— 4.
3 15

Similarly, the right slope yields the
expansion of the secant function.

The Bernoulli-Euler triangle de-
livers the topological classification
of the real polynomials x7*1 a,x" +
... +a, all of whose n critical val-
ues (local extrema) are real and dif-
ferent.

The graph of such a polynomial
resembles a snake, so I'll call it a
snake. All possible types of snakes
for n < 4 are shown in figure 6. Two
snakes are assigned to the same type
it they can be transformed into each
other by a smooth change of inde-
pendent and dependent variables
preserving orientation.*

Consider, for instance, the snakes
of the polynomials of degree 4 (n = 3).
The three critical points will neces-
sarily go in the order minimum-maxi-
mum-minimum. The topological

4That is, if the polynomials p(x) and
g(x) that define the snakes are related
by the equation p(x) = f{g(g(x))), where
the functions f{x) and g(x) have positive
derivatives. You can think of these
transformations as irregular shrinking.
and stretching of the coordinate plane
along the axes without folding it or
turning it over.—Ed.

m =

Figure 6

Classification of snakes: n is the number of bends, m is the number of

snake types.

type of a snake is determined by
whether the last minimum is lower
or higher than the first. So the num-
ber of types forn = 3 is 2.

For snakes with n = 4 (max-min-
max-min), the second maximum
can be lower or higher than the first.
In the first case there are two posi-
tions for the second minimum (be-
low or above the first minimum, but
always below both maxima); and in
the second case three positions are
possible. In all, there are five types.

If you have enough patience to
draw all snakes with n = 5, you'll
convince yourself that there are 16
of them, and for n = 6 there are 61
(these still lend themselves to draw-
ing). Whenever Euler’s number 61
crops up in some classification, we
should look around and see if the
rest of these numbers are nearby.

Now let’s classify snakes by their
“tails”—that is, by their rightmost
critical points. Numberas 1,2, ..., n
all n critical values in ascending or-
der (from the bottom up). The num-
ber of a critical point will be called
its height. The heights of the snakes’
tails are indicated in figure 6. For
instance, the five snakes withn = 4
are distributed by tail height as fol-
lows:

Height of tail 1 2 3 4

Number of snakes 2 2 1 0

Comparing the bottom line in our
table with the numbers in the Ber-
noulli-Euler triangle (namely, the
third line, counting from line 0), we
see that they are the same. And,
naturally, thesum 2 +2+1+0=5
(which is equal to k,) is the total
number of types of snakes with four
bends.

You can make sure that the num-
bers of snakes with different tail
heights for a certain number n of

bends will always coincide with the
corresponding line in the triangle (in
some order). After this fact, unex-
pected enough in itself, has been
noted (which necessarily requires
some experimental work—sketch-
ing snakes), we can prove that the
distribution of snakes by tail height
satisfies the recursive law that de-
fines the Bernoulli-Euler triangle.®
As to the analytic formula

K(t)=sect+tant

for
= n
K(t)= an =
120 n!

it can be proved as follows.

Take any snake with n + 1 bends,
n21. Choose its highest local maxi-
mum and pull it upward to infinity.
This will tear our snake into two
shorter snakes and decrease the total

5Take a snake with n bends,
unbend its tail, and turn it over to get
a new snake with n - 1 bends. Let the
tail height of the first snake be h.
Since the last critical point of a snake
is always a minimum, the height of
the next-to-last bend (a maximum) of
the first snake is greater than h. Our
operation turns this point into the
last critical point of the second snake,
so the tail height of this new snake is
any number from 1 to n — h. This
leads to the following relation for the
numbers s(n, h) of snakes with n
bends whose tail height is h: s(n, h) =
sn-1,1)+sn-1,2)+...+sn-1,n-h).
If we build a triangle from these
numbers so that line 0 consists of the
single number s(1, 1) = 1, and its
({n—1)st line is s(n, 1), s(n, 2), ..., s{n, n)
for any even n, and s(n, n), s(n, n - 1),
..., 8(n, 1) for any odd n, n = 2, we'll see
that the above relation is just the one
used to fill out the Bernoulli-Euler
triangle. In particular, we see that the
total number of snakes with n bends
is equal to s(n, 1) + ... + s(n, n) =
sin+1,1) =k, —Ed.
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number of critical points by one.
Similarly, we can pull the lowest
local minimum to—e (and turn over
the left piece to make it a regular
snake).

This reduction leads to the fol-
lowing recursive relation for n > 1:

n

Q‘kn +17 2 (Ij)klkn ~1*
i=0

Here the product kk, , counts the
pairs of all possible “subsnakes”; the
n
b

binomial coefficient ( ) takes care

of possible different mutual arrange-
ments of the critical values in the
two pieces (any i numbers chosen
from 1,2, ..., n can be the heights of
the bends in, say, the left piece with
respect to all the n bends in the en-
tire snake); and the factor 2 on the
left accounts for the two ways in
which every (n + 1)th snake can be
torn and so enters the sum on the
right. For n = 0 the factor 2 must
drop out (why?).

In terms of the function K, this
relation can be written as the differ-
ential equation

Zd—KzlnLK2
dt

(see if you can verify it directly). It
follows that K(t) = sec t + tan t (this
function satisfies the equation and
the initial condition K(0) = k, = 1).

From optimal fishing to optimal refoPms

And the last example. Let’s con-
sider a model of the variation in the
number of a certain population of
animals (say, the number of fish in a
pond or ocean). In the simplest case
the situation is described by the
model X’ = kx, where x = x(t) is the size
of the population at time t—that is,
the rate of change of the population is
proportional (with the coefficient k)
to the population itself. The solution
to this equation is the exponential
function x(t) = x(0)eXt.

However, in actual practice the
living conditions of the population

6See also “The World according to
Malthus and Volterra” in the July/
August 1992 issue.—Ed.
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Figures 7-11 present solutions to
the model equation of the popula-
tion change x’ = x — x* — ¢. The red
curves at left in all the figures graph
the rate of change v({x) = x-x*-c¢
(in coordinates rotated for conve-
nience); the blue curves at right are
the solutions. The population
grows at points with v(x) > 0, de-
creases for v(x) < 0, and is steady at
points with v(x) = 0.

c=0
NN
YA
Figure 7

Stabilization of the population. All
trajectories tend to the stable solution
x=1

c<1/4
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Figure 8

Model of fishing with a “moderate”
catch. If the initial population x(0) < x,,
the population dies out; trajectories
with x(0) > x, all approach x = x,.

worsen as x increases, and the coef-
ficient k decreases. Taking, for in-
stance, k = a — bx, we get the so-
called logistic equation. In the case
a=>b =1, its solutions tend to a
stable population level x = 1 (fig. 7).

If, in addition, a certain quotac for
the capture and consumption of a part
of the population is introduced, the
equation becomes only a little more
complicated: X’ = x —x2 —c. This is the
simplest model of fishing.

For a quota ¢ < 1/4, a stationary
solution is established again (fig. 8). For
¢>1/4,we get rapid extinction (fig. 9).

"Don’t be surprised at this strange
population size: it’s just a model, but
a model that gives a more or less
correct qualitative picture of the
situation.—Ed.

c>1/4
X A

NN\

\%4

Figure 9

Overcatch. The population always
dies out.

c=1/4
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Figure 10

Destruction of the population by the
optimal plan. The trajectories in the
domain x < 1/2 lead to extinction;
those with x > 1/2 tend to the steady
state x = 1/2, but in the long run, due
to small random perturbations,
necessarily hit the dangerous domain
as well.

c=kx
Lo R
PP
Figure 11

Stabilization of the system through
feedback. (Compare with figure 7.)

For ¢ = 1/4 the stationary regime is
at the level 1/2 (fig. 10). But this state
is unstable: small random deviations
lead to a catastrophe—annihilation of
the population. How can an optimal
catch be achieved while keeping the
population at a certain stable level?
The answer is not to assign a fixed
plan for the catch, but rather to intro-
duce feedback—that is, a catch quota
proportional to actual resources. In a
model with feedback x” = x - x? - kx,
the optimal value of the coefficient is
k = 1/2. With this choice of k all so-
lutions stabilize at the level x, = 1/2,
which means that the average catch
over a long period will be kx, = 1/4
(fig. 11). This is the same catch as
with the highest permissible fixed
plan for the catch.



Greater productivity in this case
is impossible. But with a rigid plan
the system loses its stability and is
guaranteed to self-destruct, while
feedback stabilizes it, and small
variations in the coefficient k do not
lead to disaster.

It wouldn’t be bad if the persons
who make crucial decisions were
familiar with similar models and
other rules for choosing strategic
social options.

Simpler mathematical consider-
ations—the fact that laws of nature
are described by differential equa-
tions—allow us to understand cer-
tain seemingly paradoxical phe-
nomena in our life. For several
decades the state of the Russian
economy has been a matter of con-
cern for specialists: militarization,
monopolism, and the general in-
competence of the leadership
caused the second derivative to be-
come stably negative (that is, the
rate of development steadily
slowed). This didn’t really scare
those who didn’t understand math-
ematics, because the first derivative
was still positive (social well-being
kept increasing). But mathemati-
cians know that a permanently
negative derivative, even of a higher
order, ultimately makes the first
derivative negative—that is, leads
to a decrease in production and in
the welfare of society, and this pro-
cess of deterioration, when it be-
comes noticeable, will accelerate.
Because of the inertia of the system,
there are no means at all for instan-
taneously changing its state at this
point, since changes of any kind af-
fect only the sign of a higher deriva-
tive (for our perestroika, the third or
even fourth derivative). Thus, the
economic degradation we observe is
caused by old mistakes made at the
time of production growth rather
than by wrong new decisions. Un-
fortunately, these elementary math-
ematical facts are too difficult to
explain to a pillaged people inclined
to ascribe all its hardships to failed
reforms. Any reforms must cer-
tainly lead to a worsening, even if
they are absolutely the correct steps
to take.

Plans in this country were usu-
ally devised so as to optimize pro-
duction for 20 years (“long enough
for our lifetime”). It’s clear to a
mathematician that optimal plan-
ning of this sort must result in the
complete destruction of all re-
sources by the end of that period
(otherwise, the remaining resources
could have been used and, therefore,
the plan wouldn’t be optimal). For-
tunately, the plans used to be “cor-
rected” and were never fulfilled.
However, the basic tendencies were
kept, so roughly speaking, we had
eaten all we had by the beginning of
perestroika.

Attempts to create detailed “day-
by-day” programs of economic re-
form are similar to attempts to plan
the entire economy and are like try-
ing to give minute-by-minute in-
structions to someone driving from
Moscow to St. Petersburg: “At such-
and-such a minute, turn right; at
such-and-such aminute, turn left...”
Success can be achieved only through
feedback. That is, what’s needed is
not a program (trajectory) but, in
mathematical terms, a vector field in
the space of the system’s states, a
mechanism for making decisions as
required by the attained state rather
than the calendar date.

Some of these points should be
kept in mind as well when it comes
to reforming the educational system.
Our examples show that “there is
nothing more practical than a good
theory.” It's essential that educators
not chase after the practical need of
the moment, but rather have the
long-term goals of society con-
stantly in view.
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HE RESTLESS ACTIVITY OF
mankind, in the last three cen-
turies in particular, have
prompted us to think con-
stantly about how to create engines
that will “spend less and produce
more.” Many fruitless attempts
were made before science set limits
to our unfettered inventiveness and
showed us how to improve the en-
gines and motors we already had.
However, as a first step it was nec-
essary to investigate such notions as
work, power, and efficiency. After
establishing themselves as funda-
mental notions in the mental
toolbox of scientists and engineers,
these concepts now demonstrate a
wonderful versatility. Whatever pro-
cesses we're working with—me-
chanical, thermal, or electrical—we
can apply them with confidence.

KALEIDOSCOPE

= Models of efficiency |

“Here we use the expression ‘motive force’
to denote the efficiency that an engine

can develop.”—Sadi Carnot

frame associated with the Earth?

3. Can the force of static friction
perform mechanical work?

4. A bubble of gas rises from the
bottom of a pond. Does the gas per-
form work?

5. Why are the engines of racing
cars so much more powerful than
those of ordinary automobiles?

6. Assume that the drag forces of
air and water increase proportion-
ally to the square of a ship’s veloc-
ity. (We neglect so-called wave
losses.) How much less power does
the ship need when its velocity de-
creases by a factor of 3?2

7. A rocket hovers over the
Earth’s surface. What is the power of
its engine expended on?

8. Would there be a change in the
power developed by the motors of an
escalator if a person standing on the

upward-moving steps starts to walk
up the escalator with a constant
velocity?

9. Two mechanical de-
vices are used to lift
weights: an in-

clined plane =
and an in- e
clined —_E

conveyer belt sliding over rollers.
Which of them is more efficient?

10. Would a hydraulic press work
if its cylinder were filled with gas in-
stead of fluid?

11. The temperature of the air,
which serves as a heat sink for a car
engine, becomes apprecia-

Problems

1. Is mechanical work
performed on a mass that
is carried horizontally
with a uniform velocity
along a straight line?

2. In a uniformly mov-
ing railway car a man
stands and stretches a
spring with force F, as
shown in the figure at the
right. The car travels a

distance D. What work

bly lower in winter than in
summer. Does this lead to
an increase in the engine’s
efficiency in winter? {
12. What is the heat
| source and what is the \
heat sink in a rocket en- ‘
gine?
13. Two electrical loads
are connected to a battery,
first in series, then in par-
allel. When will the effi-

has been performed by
the man in the reference
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ciency be greater?
14. Can the efficiency
of a battery equal 12




Microexperiment

Turn on an electric stove and ob-
serve it for an extended period of
time. Why, despite the continuous
expenditure of electrical energy,
does the temperature of the coil not
increase without limit?

It’s interesting that . . .
the French scientist V.
Poncelet came up with a not exactly
scientific but nonetheless extremely
practical definition: “Mechanical
work is what you pay money for.”

... when a person tries to main-
tain a constant muscular force, even
in the absence of movement the
muscles contract and relax continu-
ously, causing microscopic move-
ments. So the muscles are perform-
ing a significant amount of work, in
accordance with the stan-
dard definition of that
term.

the unit of an
engine’s power, “horse-
power,” introduced at the
end of the 18th century by
James Watt, is still in use.
It was defined as the aver-
age work that a strong En-
glish draft horse could per-
form per second working
uniformly for an entire
day.

... the efficiency of a theoretical
heat engine that would exploit the
temperature difference between sur-
face and deep ocean water does not
exceed a few percent.

.. . the power de-
veloped when a click
beetle lying on its
back pushes off is approxi-
mately 100 times that de-
veloped by. any of its
muscles individually.

... a great amount of
power does not neces-
sarily mean a large
thrust. For example,
in proposed photon
rockets the force of
jet propulsion is as-
sumed to equal tens
or hundreds of new-
tons. Such a rocket
could not even take

off from the
Earth without assistance.

.. a very tempting possibility
exists of obtaining electrical energy
directly from the chemical energy of
a fuel and an oxidizer without
combustion in a so-called electro-
chemical generator, which has a
very high efficiency.

... when burning 1 milligram of
gasoline in a car engine, we obtain
about 40 joules of heat energy, a
small fraction of which winds up as
kinetic energy of the car. One mil-
ligram of sugar provides an organism
with the same 40 joules of energy,
but the energy is utilized much
more effectively to maintain its
body temperature and for other bio-
logical functions. (0]
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ANTHOLOGY

The most profit with the [east effor

In memoriam P. L. Chebyshev (1821-1894)

by Yuly Danilov

HE LIST OF HONORIFIC TITLES AND DEGREES

of P. L. Chebyshev is long and impressive: Doctor

of Mathematics and Astronomy (1849); ordinary

member (academician) of the Saint Petersburg
Academy of Sciences (1859); ordinary (after 1872,
emeritus) professor of St. Petersburg University (1860);
corresponding member of the Academic Board of the
Ministry of State Property (1854), the Liege Royal So-
ciety (1856), the Philomathematical Society in Paris
(1856), and the Cherbourg Society of the Natural Sci-
ences (1866); founding member of the Moscow Math-
ematical Society (1867); member of the Berlin (1871),
Bologna (1873), and Royal Italian academies of sciences;
member of the Royal Society of London (1877) and the
Mathematical Society of France (1882); foreign associ-
ate member of Academy of Sciences in Paris (1874); for-
eign member of Swedish Academy of Sciences (1893);
honorary member of the Moscow (1858), Kiev (1869),
Novorossiisk (1878), St. Petersburg (1882), and Kazan
(1893) universities, of the Artillery Academy (1870), the
Academic Board of the Ministry of Education (1873),
the Moscow Society of Natural Scientists (1889), the St.
Petersburg Mineralogical Society (1890), and the St. Pe-
tersburg Mathematical Society (1893).

Chebyshev founded a St. Petersburg mathematical
school and achieved worldwide fame for his brilliant
work in probability, integration of algebraic functions,
number theory and other branches of pure mathemat-
ics. He nurtured many outstanding mathematicians
whose names signify the glory of the mathematical
sciences: G. F. Voronoy, D. A. Grave, E. L. Zolotarev,
A.N.Korkin, A. M. Lyapunov, and others. Chebyshev
also took a lively interest in practical problems: the
rational design of mechanical devices, the drawing of
geographic maps, the optimal cut of clothing, and other
similar problems.

During a celebration of the centennial of
Chebyshev’s birth in 1921, the great Russian mathema-
tician V. A. Steklov laid special stress on Chebyshev’s
practical bent:

The genius of Chebyshev . . . was a striking example of
the union of practice in the highest sense of the word and the
creative, generalizing force of an abstract thinker.

He turned practical problems into a corresponding math-
ematical theory, which would turn out to be a new discov-
ery in the domain of pure science; but the discovery did not
remain in the sphere of pure thought, but was embodied in
reality—in machines and mechanical devices of various
kinds that served as a realization of his theoretical achieve-
ments. Along with purely theoretical investigations . . . there
is a series of papers whose titles may seem strange to a per-
son not in the field. . . .

For example: “On a Mechanical Device”; “On a Centrifu-
gal Equalizer”; “On Gear Wheels”; “On the Simplest
Joints”; and so on. Then we find “On the Drawing of Geo-
graphic Maps” and, finally, his paper delivered to the French
Association for the Improvement of the Sciences “On the
Cut of Clothing.”

Coming upon such a title, could a lay person imagine that
the investigation belongs not to a specialist in the sartorial
arts but to the author of “The Theory of Congruences,” the
creator of “The Theory of Functions of Least Deviation from
Zero”? . ..

The almost boundless domain of new problems and new
methods of solving them arise out of Chebyshev’s brilliant
ideas, which emerged and were developed on the soil of a
single philosophical idea: to take Nature as it is, as an un-
avoidable, real observational fact, and to derive from avail-
able observational data as much profit as possible with the
least effort. (A. V. Steklov, “Theory and Practice in Cheby-
shev’s Works”)

Chebyshev’s practical works, with their rather un-
usual titles, were not the whims of a genius or the
fruits of his leisure away from his arduous work in the
domain of pure mathematics. In his life’s work prac-
tical problems were indissolubly tied with lofty theory
and flowed from a philosophical precept that
Chebyshev adhered to through all his extraordinarily
fruitful activity and is so well expressed in his report
“The Drawing of Geographic Maps,” delivered at a cel-
ebration held on February 8, 1856, at St. Petersburg
University.
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CHEBYSHEY

The drawing of geographic maps

A paper written for a celebration at the Imperial St. Petersburg University

on the 8th of February, 1856

entlemen!

The mathematical sciences, from the most an-
cient times, have attracted special attention; at present
they have garnered even more interest due to their im-
pact on the arts and industry. The convergence of
theory and practice gives the most fruitful results, and
not only practice gains; the sciences themselves de-
velop under its influence: practice opens new subjects
for them to investigate or new aspects of subjects
known long ago. In spite of the higher degree of devel-
opment to which the mathematical sciences have been
brought by the work of the great geometers of the last
three centuries, practice clearly reveals their incom-
pleteness in many respects; it offers essentially new
problems for science and thus induces a search for com-
pletely new methods. If theory gains much from new
applications of an old method or new developments of
it, then it gains all the more from the discovery of new
methods, and in this case the sciences find in practice
a reliable guide.

The practical activity of humankind is extraordinar-
ily diverse, and science of course lacks many and vari-
ous methods for satisfying all its requirements. But of
these the most important are the methods needed to
solve different variants of one and the same problem
common to all practical activity of humankind: how to
dispose of one’s means in order to achieve the great-
est gain.

Solving problems of this kind constitutes the subject
of the so-called theory of maximum and minimum
values. These problems, purely practical in nature, are
particularly important for theory as well: all laws gov-
erning the motion of matter, ponderable and imponder-
able, are solutions to problems of this sort. It is impos-
sible not to notice their especially fruitful influence on
the development of the mathematical sciences.

Before the discovery of the infinitesimal calculus
only particular examples of the solutions of such prob-
lems were known,; but already in these solutions there

was the origin of a new, very important branch of the
mathematical sciences, known by the name of differ-
ential calculus. In order to show the influence of these
problems, I shall cite the passage from Newton’s fa-
mous treatise Philosophiae naturalis principia
mathematica, where he speaks of the origin of this
discovery, whose applications and results are now
numberless.

About ten years ago (in 1667), when I had been correspond-
ing with Leibniz, I wrote to him that I knew a method for
determining maximum and minimum values, drawing tan-
gents, and solving other similar questions, and that my
method with the same convenience can be applied to equa-
tions containing radicals as well as rational numbers. At that
time I concealed my method in an anagram that had the fol-
lowing meaning: “Given an equation containing any num-
ber of things that flow, find the current, and vice versa.” To
this, the celebrated Leibniz answered that, for his part, he had
also found such a method and reported it to me in the same
letter. His method differed from mine only in its name and
notation. (Note to statement VII of book 2, 1713 edition)

But the subject was not exhausted with the discov-
ery of differential calculus and the solution of problems
similar to those that led to its discovery, and this was
found in the research of Newton himself: the question
of finding a shape that enables a body moving in a fluid
to encounter the minimum resistance, which he
solved, posed a problem of maximum and minimum
values that were fundamentally different from similar
problems that can be solved by differential calculus. A
general method of solving problems of this type, espe-
cially important for theoretical mechanics, brought to
light another new calculus, known by the name of
variational calculus.

In spite of this development of mathematics with
regard to the theory of maximum and minimum val-
ues, it is not hard to see that practice goes further
and requires the solution of problems of maximum
and minimum values of a new kind, fundamentally

QUANTUM/ANTHOLOGY 37




different from those solved by differential and integral
calculus.

As an example of problems of this kind and their
solution, we can present our research on Watt’s paral-
lelogram, published in Memoirs des Savants Etrangers
of our Academy for 1854. From the results we achieved,
examining the method needed to find the optimal de-
sign for this kind mechanism, we can see that ques-
tions of practice in this case as well led to numerous
theoretical results that are of interest for science; that
the methods called forth initially by practice are the
means of solving new theoretical problems that are of
interest independently of their
practical significance.

Another example of this
type of problem, and an espe-
cially striking one, is the
drawing of geographic maps.
Given the modern state of the
theory of geographic maps, one
can show countless methods
of drawing them such that
very small elements of the
land will retain their true form
in the image. However, in do-
ing so, because of the spheroi-
dal surface of the Earth, the
scale of the image of different
land elements will necessarily
be different, so that equal ele-
ments, taken at different
places depicted on the map,
will be different sizes. The
greater these changes in scale,
the more irregular the geo-
graphic map. And because the magnitude of these
changes in scale across the area of the same portion of
the surface can be larger or smaller, depending on the
method of projection used in the map, the following
question naturally arises:

For what projection will these changes in scale be
smallest?

In a paper I delivered at a conference of the Acad-
emy of Sciences on January 18 [1856], I showed that
this problem, translated into the language of calculus,
can be reduced to a particular problem of maximum
and minimum values that is fundamentally different
from problems solved by differential and variational
calculus. This problem is similar to those that were the
subject of the aforementioned paper “On Watt’s Par-
allelogram” but belongs to a higher rank of such prob-
lems: there, several constant values had to be found;
here, two unknown functions have to be found, which
is tantamount to determining an infinite number of
constants. This presupposes the same difference be-
tween these problems as that between problems in dif-
ferential and variational calculus. From the theoreti-
cal point of view, this subject is all the more
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interesting in that it leads to an investigation of a par-
tial differential equation that is particularly remark-
able and, among other things, expresses the heat equi-
librium in infinitely thin plates. Thus, a question
about the most advantageous map projection is related
to this remarkable property of heat: given a state of
thermal equilibrium in a round, infinitely thin plate,
the temperature in the center is the mean of the tem-
peratures of all the points on the circle; the same is true
of a sphere: the temperature in the center is the mean
of the temperatures on the surface.

The final solution regarding the most advantageous
map projection is very simple:
the optimal projection for de-
picting some portion of the
Earth’s surface on a map is
that in which the scale on the
boundary of the image pre-
serves one and the same value,
easily determined by the ac-
cepted, normal value for the
scale. As for finding the pro-
jection that possesses such a
property, it can be reduced to
solving an ordinary problem
in the integration of partial
differential equations when
the integral is given on the
boundaries and must remain
finite and continuous inside.

Thus, there is one projec-
tion for depicting each coun-
try on a map that is the most
advantageous. This projection
is determined by the position
of the country relative to the equator and the shape of
its boundaries; the parallels of latitude and meridians
of longitude will be different curved lines, but in
general close to circles and straight lines, if an insig-
nificant portion of the Earth’s surface is projected.
These lines can be drawn point by point without any
difficulty.

Especially remarkable are those cases when the par-
allels and meridians turn out to be perfect circles or
straight lines; this makes it much easier to draw maps
of insignificant dimensions. In his paper “Sur la con-
struction des cartes geographiques” (Noveaux Mem-
oirs de I’Academie de Berlin, 1779), Lagrange found all
projections for which this holds true. On the basis of
the property of the most advantageous projection, it
can easily be shown in general which countries can be
depicted optimally by using such projections: the
boundaries of these countries are determined by points
in which the scale preserves one and the same value
under this kind of projection. The boundaries of coun-
tries determined in this way are in general rather com-
plicated curves. But as the area to be depicted on the
map is decreased, they become simpler and quickly



approach ellipses, so that they differ insignificantly
from ellipses even for maps of such extensive countries
as, for example, the European part of Russia. These el-
lipses have certain defined positions: their center is
located at the center of the projection; one of the axes
goes along the meridian. The ratio of the axes of these
ellipses is defined by the position of their center rela-
tive to the equator and, in particular, by a magnitude
that Lagrange called the indicator of the projection.

Conversely, in order to depict any portion of the
Earth’s surface that is not too large and is bounded by
such an ellipse, it is possible to find a method of pro-
jection in which parallels and
meridians are circles and
straight lines and which gives
us an image that is close to be-
ing perfect. But to achieve this,
according to what was said
above, the center of the projec-
tion and its indicator must be
chosen properly in accordance
with the position of the coun-
try and the shape of its bound-
aries. Therefore, the particular
methods of projection that pre-
serve similarity in infinitesi-
mal elements—that is, stereo-
graphic projections (polar and
horizontal) and the Gauss and
Mercator projections, which
can all be deduced from a gen-
eral method involving a par-
ticular conjecture about the po-
sition of the center of the
projection or the value of the
indicator—can give an image on the map that is close
to perfect only in certain particular cases.

Thus, if the aforementioned ellipse turns into a
circle, the indicator becomes equal to 1, and the most
advantageous projection reduces to a stereographic
horizontal projection, which turns into a polar projec-
tion when the center of the circle coincides with the
Earth’s pole. As the axis of the ellipse, directed along
the meridian, becomes smaller, the most advantageous
projection approaches the Gauss projection. When the
center approaches the equator, the Mercator projection
becomes the most advantageous.

It is clear from this that, in attempting to obtain the
optimal image of different countries on a map, one
must not restrict oneself to one or several methods, but
it is necessary to use a general method, each time ap-
propriately selecting both the center of the projection
and the value of the indicator.

According to what was said above, this can easily be
done when one is depicting on a map a portion of the
Earth’s surface whose boundary is an ellipse with an
axis directed along a meridian. But such simple cases
do not occur in practice; the boundaries of different

countries are always extraordinarily irregular curves. In
spite of this, for the best image of a country that is not
too large, one can determine both the position of the
center of the projection and the value of the indicator,
comparing the shape of the boundaries with an ellipse
or other conic sections. To this end, it is sufficient to
have only an approximate image of the country for
which the most advantageous position of the center of
the projection and the value of the indicator is being
sought, and because of this a map drawn according to
any method can be used here.

Strictly speaking, here one can make three different
assumptions, which give rise
to three different solutions; but
comparing them, one can eas-
ily find the most advantageous
one. First, the country to be
projected can be considered
part of an area bounded by an
ellipse with an axis along a
meridian; for countries in
which the greatest propagation
along meridians and parallels
is almost opposite the center,
this always corresponds to the
most advantageous solution.
This case occurs in practice
most frequently. Second, the
land to be projected can be con-
sidered part of an area between
two ellipses, hyperbolas, or pa-
rabolas situated identically.
This can give the most advan-
tageous solution only for de-
picting countries that are bent
in the shape of a sickle or are a narrow band slanting
toward the meridians and parallels. Third and last, the
country can be compared with an area confined be-
tween the branches of two reciprocal hyperbolas; this
corresponds to countries whose boundaries are signifi-
cantly concave opposite the center.

Turning our attention to the first assumption, which
applies to the majority of cases occurring in practice,
we note that, of the set of ellipses that can be circum-
scribed about the country to be projected, the most ad-
vantageous projection is determined by the smallest of
them, if in order to compare the different ellipses we
take the length of the mean diameter slanted equally
toward both axes.

From the appearance of the country to be projected,
it is not difficult to find the points upon which the el-
lipse will rest and use them to determine its axis and
center. The center of this ellipse will be the most ad-
vantageous position of the center of the projection, and
the ratio of the axes determines the most advantageous
indicator. All this refers to drawing maps of extremely
small countries; but for larger countries, in accordance
with the method of successive approximation, one can
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easily find corrections for both the position of the cen-
ter of the projection and the value of the indicator.
Thus, the most advantageous method of drawing a map
of the given country will be found, in which the paral-
lels and meridians remains circles.

It can be seen from this that the drawing of geo-
graphic maps is one of those practical problems that are
solved differently for different countries, and that the
method of drawing that is advantageous for France,
Germany, and England may turn out to be disadvanta-
geous for Russia. In addition, Russia, due to its great
size, presents a special challenge in drawmg its map,
and because of this fact the :
choice of the projection that
most suits its area, the shape of
its boundaries, and its position
relative to the equator is espe-
cially important. Maps of its
different parts present very
sensitive changes in scale, to
say nothing of maps that en-
compass all of Russia. Thus,
depicting on a map everything
that belongs to Russia on this
side of Ural Mountains accord-
ing to Gauss’s method, one al-
lows changes in scale of more
than 1/20, and this, when one
is measuring surfaces, gives a
difference of one square mile
per ten, which is a very signifi-
cant error. The error of a map
decreases in a stereographic
horizontal projection with a
properly selected center, but in
this case the differences in scale are as much as 1/34;
this corresponds to a difference of one square mile per
seventeen, when the surface is being measured. These
errors are not so small as to be unworthy of our atten-
tion; the way to diminish them is to determine which
projection corresponds best to the shape and position
of the land to be projected.

Looking at this part of Russia on a map, we note that
in the general outline of its boundaries it is far from
approaching ellipses with axes directed along a merid-
ian, and in this case, as we have seen, it is impossible
to obtain an optimal image on the map, preserving the
meridians and parallels as circles or straight lines. Such
a simplification in drawing its map implies a consid-
erable reduction in the degree of regularity of the im-
age. To obtain a truer image, it is necessary, according
to what was said above, to determine the method of
projection by integrating a special equation. Since this
integration must be carried out under a condition that
depends on the shape of the boundaries, and these
boundaries are very complicated curves, exact integra-
tion is, of course, impossible. But practice does not re-
quire this. For practical purposes it is sufficient to re-
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strict oneself to a change in scale of one ten-thou-
sandth, and in this case everything can be reduced to
finding several coefficients, which can easily be calcu-
lated with accuracy sufficient for practice according to
the shape of the boundaries, no matter now curved they
are. As for the parallels and meridians, they can be
drawn point by point without difficulty.

Turning now to the simplest methods for drawing
maps, where the parallels and meridians are circles and
straight lines, we note that Russia’s possessions on this
side of the Urals, together with the Caucasus and Geor-
g1a spread more from north to south than from east to

: west, and that is why this ter-
ritory cannot be compared
with a circle and even less so
with an ellipse, whose axis
from north to south is very
small compared to the axis
from east to west. Therefore,
according to what has been
said, neither a Gauss projec-
tion nor a stereographic pro-
jection corresponds in this
case to the land to be pro-
jected. Applying to this case
the method presented here for
determining the center and in-
dicator of the projection, we
note that the center of the
smallest ellipse that, with an
axis along a meridian, em-
braces all the possessions of
Russia to the Urals, along with
the Caucasus and Georgia, is
located between Yaroslavl and
Uglich at 57°36’ latitude; the ratio of its axes is 17/10.
Taking this ellipse as a basis, we find that the most ad-
vantageous projection has an indicator of 1.0788. This
value differs from 1, the indicator of a stereographic pro-
jection, by less than by one tenth. But even this differ-
ence has a considerable influence on the degree of ac-
curacy of the image. As we have seen, a stereographic
projection, with its center positioned most advanta-
geously, covering the area of Russia under consider-
ation gives a change in scale of 1/34. Taking the value
we obtained, 1.0788, for the indicator of the projection
and choosing its center between Yaroslavl and Uglich
(at the 57° longitude, 57°42’30” latitude), we obtained
a map of this part of Russia where changes in scale do
not exceed 1/50, and this is the highest degree of accu-
racy that can be attained, preserving the parallels and
meridians as circles or straight lines.

In much the same way, gentlemen, most practical
problems can be reduced to problems of maximum and
minimum values—problems quite new for science; and
only by solving these problems can we satisfy the re-
quirements of practice, which everywhere seeks the
best, the most profitable. (e
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Turning algebraic identies
o geometric inequaliies

You do it using complex numbers

ANY INEQUALITIES CON-

cerning absolute values turn

into statements of identity

when the absolute values are
removed. We can sometimes go
backwards, too: an identity involv-
ing polynomials can turn into a
valid inequality if we take the abso-
lute value of each term on one side,
while taking the absolute value of
the whole polynomial on the other
side.

We can then think of the argu-
ments in such a relation as complex
numbers and give them a geometric
interpretation. This simple idea al-
lows us to obtain a number of inter-
esting geometric inequalities that
are rather difficult to prove directly.

Before we look at some examples,
let’s recall the primary definitions,
notations, and facts about complex
numbers. This will give us all the in-
formation we'll need, so you don’t
need any prior knowledge about com-
plex numbers to understand the argu-
ments below (at least, theoretically).

Complex numbers, which will be
denoted by a, b, ¢, ..., are expres-
sions of the form x + iy, where x and
y are real numbers and i is a so-
called imaginary unit defined by the
property i = -1. A complex number
a = x + Iy can be represented by the
point A(x, y) in the coordinate plane

by Zalman Skopets

v A

Y

O X

Figure 1

(fig. 1). Then the distance from this
point to the origin O is called the ab-
solute value of a and is denoted by lal:

d=x+iy]=x>+y*> =0A. (1)

YA

Y

O

a
Figure 2

The sum of two complex numbers
a, =x, +1y, and a, =x, +1iy, is defined
asa=a, +a,=(x; +x,) +ily, +y,). The
geometric construction of the point
Afrom A| and A, is shown in figure
2 (in terms of vectors, OA = OA +
O4, ). By the Triangle Inequality,
OA'<OA, +AA=0OA, + OA,, so
according to equation (1), we have

la, + a)l < lal + la,|.

The equality here is achieved if (and
only if) the points O, A|, and A, are
collinear and O doesn’t belong to
the segment A A,.

Thus, the absolute value of the
sum of two complex numbers does
not exceed the sum of their absolute
values.

YA

o
Y

(a) Points O, A,, A, are not collinear; (b) points O, A,, A, are collinear (M is the

common midpoint of A A, and OA).
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In this figure la, — a,l = lal.

The difference a, - a, of two com-
plex numbers g, and 4, is the num-
ber a such that a + a, = a,. The con-
struction in figure 3 makes it clear
that the absolute value of the differ-
ence between two complex num-
bers is equal to the distance be-
tween the points that represent
them.

Further, from OA, - OA, <A A,
<OA,| + OA, we get

la,l -la,| <la; - a,| < la,l + la,|.

If points O, A, A, are collinear, one
of these two inequalities becomes
an exact equality.

So, the absolute value of the dif-
ference between two complex num-
bers is no greater than the sum and
no less than the difference of their
absolute values.

Also, we can see (fig. 4) that the
following inequality, for instance, is
true:

la + b +cl<lal +1bl + Icl.

Notice that two opposite numbers a
and -a are represented by two

YA

a+b

a+b+c

Y

Figure 4
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a=x+1iy
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—a=-x+1i[-y)

Figure 5

points, (x, y) and (-x, -y), symmetric
about the origin (fig. 5), so |-al = lal.
In fact, all the properties above
could also be formulated in terms of
vectors. Essentially new opportuni-
ties for applications arise only when
we make use of another operation
on complex numbers—multiplica-
tion. It is defined by the formula

(X1 + jyl) (Xz + iYQ) = (X1X2 - Yﬂ’z) +
1(X1Y2 +X2y1);

which is obtained by multiplying
out the two factors—

(x; +1y,) (x, + Iy,) = XX, + iy, +
ix,y, + 27V,
replacing 12 with -1, and collecting
like terms. One can verify by direct
computation that the product of
complex numbers obeys the follow-
ing properties:

ab = ba,
alb + c¢) = ab + ac,
labl = lal - 1bl.

So algebraically we can deal with
the addition, multiplication, and ab-
solute value of complex numbers as
we usually do in the case of real num-
bers. More details about complex
numbers can be found in any precal-
culus textbook. Here we’ll confine
ourselves to this brief introduction,
which will suffice to demonstrate our
method of deriving geometric in-
equalities from algebraic identities.

Example 1. Consider the well-
known identity

a’?-b?=(a + b)la-Db).

Taking the absolute value of both

sides, we get

la + bl -la-bl=1a>- b2
<la’l + b,

A

O

Figure 6

or
20M - AB < OA? + OB?,

where M is the midpoint of segment
AB and O is the origin (fig. 6). In
other words, the sum of the squares
of two side lengths of a triangle is
not less than twice the product of
the third side length and the length
of the median drawn to the third
side.

Example 2. We can verify the
identity

—~(b-cl)c-a)la-Db)
=a}b-c)+b¥c-a)+cHa-b).
It follows that

Ib-cl-lc—al-la=bl<lal*-1b-cl
+1b12-lc—al +lcl?-la-bl,

or (see figure 7)

BC-CA-AB
<OA? -BC+OB*-CA+OC?*- AB

for any four points O, A, B, C in the
plane. This inequality is especially
interesting in these two particular
cases.

(1) For an equilateral triangle
ABC we have

VA

B

Y

0
N

Figure 7




OA? + OB2 + OC? = d?,

where d is its side length. Thus, the
sum of the squares of the distances
from an arbitrary point O to the
vertices of an equilateral triangle is
not less than the square of its side
Iength.

(2) If O is the circumcenter of tri-
angle ABC and R is its circumradius,
then

AB-BC-CA<RYAB + BC + CA),

or

AB-BC-CA _ ,
AB+BC+CA "~

—the ratio of the product of all the
triangle’s side lengths to its perim-
eter is not greater than the square of
its circumradius.

Recalling that the area of the tri-
angle ABC can be expressed as AB -
BC - CA/4R, or (AB + BC + CA)r/2,
where r is the inradius, we can re-
write the last inequality in this neat
form: R > 2r.

Example 3. We can verify the
identity

(a - bla—clib - c) = {b - cl[b + cf
+(c—a)c+al+(a-Db)a+Db]

Denote by d,, d,, d, the distances
from the circumcenter of a triangle
ABC toits sides BC, CA, AB, respec-
tively (fig. 8). Let the circumcenter
be the origin. Then

Ib+cl=2d,
lc +al = 2d,,
la + bl =2d,

and so the identity yields

Figure 8

AB-BC-CA
<4{d2-BC+d2 - CA+d2- AB).

Notice that d_ - BC = R? sin ZBOC,
because both these expressions equal
twice the area of triangle BOC. On
the other hand, d, = OB cos ZBOM.
If angle A in triangle ABC is not ob-
tuse, then ZBOC = 2A and ZBOM =
B £ZBOC = A; otherwise, ZBOC =
360°-2A and ZBOM = 180° - A. But
in either case sin ZBOC - cos ZBOM
=sin2A-cosA,sod? - BC=R3cosA-
sin 2A. Similar formulas are true for
d2-CAandd?- AB,while AB- BC
-CA =4R - S ., where S, is the
area of ABC (this fact had been men-
tioned above). Putting all of these to-
gether, we come up with the in-
equality

_Sggc < cos Asin2A + cos Bsin2B

+c0sCsin2C,

which is true for any triangle.

Now prove these geometric in-
equalities yourself.

Exercises

1. Derive from the identity a® — b?
= (a + b)(a - b) the inequality 20M -
AB > OA? - OB?, where M is the
midpoint of AB. When does it turn
into an equality?

2. Derive from the identity

alb-c)+b¥c-a)+Bla-b)
=—(a+b+c)la-b)b-cl)c-a)

the inequality OH < R?/2r, where O
is the circumcenter, H the ortho-
center, R the circumradius, andr the
inradius of a triangle ABC. (The or-
thocenter is the point where a
triangle’s heights intersect.)

3. Prove the inequality AB - CD +
BC - DA > AC - BD for any four
points A, B, C, D in the plane. An
additional problem (which may re-
quire some additional facts about
complex numbers): prove that this
inequality becomes an equality if
ABCD is a quadrilateral inscribed in
a circle (Ptolemy’s theorem).

4. Prove that AB- AM - BM + BC
-BM-CM+CA-CM-AM=>AB -
BC - CA for any four points A, B,
C, M. Q)

HINTS ON PAGE 62

“OPTICS FOR A STARGAZER”
CONTINUED FROM PAGE 21

the sky. Therefore, the altitude a of
the Sun above the horizon t minutes
before sunset was

a=0.25°-sin 60° -t = 0.2t.

Thus, you can see Sirius with the
naked eye when the Sun’s altitude
does not exceeda, =0.2°-21=4.5°,
and with binoculars when the cor-
responding value is 4, =0.2°- 43 =9°.
Under these conditions the luminos-
ity of the sky directly overhead is 7%
and 13%, respectively, of its midday
value.> Remember that the magni-
tude of Sirius is one fifteenth that of
Venus. When the brightness of the
sky decreases by a factor of 15 before
sunset, Sirius can be seen with the na-
ked eye. Binoculars help one see it in
a brighter sky, because it increases
the brightness of the star while chang-
ing the surface brightness of the sky
only negligibly. So an instructive ex-
periment was carried out by an ama-
teur astronomer from Houston!
Now it’s easy for us to believe
that Sirius can be seen in the day-
time in the mountains or from an
airplane, because the sky is 15 to 20
times darker at altitudes of 5-7 km
than at sea level. The next time
you’re in an airplane, take a look
around: can you see Sirius, or Jupi-
ter, or Venus? O

3D. Y. Martynov, A Textbook of
Practical Astrophysics, Moscow and
Leningrad, Nauka, 1977, p. 300.

 Whats happening?

Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Send your short news items, firsthand re-
ports, and announcements of upcoming
events to
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PHYSICS
CONTEST

Rising star

“What is the sound of one hand clapping?™—Zen koan
“‘Can two sounds make silence?”—~Physics challenge

by Arthur Eisenkraft and Larry D. Kirkpatrick

E SUPPOSE THAT YOUNG

people are first introduced to

waves while attending or

watching sports events.
These stadium waves can provide
some useful insights into the most
counterintuitive property of waves:
the wave moves, but the medium
does not. In a stadium wave, a group
of spectators at one end of the sta-
dium stands and then sits. This trig-
gers the adjoining section of fans to
stand and sit, followed by the next
section, and so on. While the wave
of people standing and sitting
moves around the stadium, no per-
son moves in that direction—that
is, the people remain at their seats.
Leonardo da Vinci noticed this wave
property in water and remarked that
the wave flees the place of creation
while the water does not.

An interesting wave phenom-
enon that is not easily demonstrated
in a stadium wave is interference.
What happens when two waves
meet? A first step in our understand-
ing will be to look at two pulses
passing each other on a spring. What
one notices is that as the peaks of
the pulses meet, a momentary
superpeak is created (fig. 1a). What
is perhaps more surprising is that
when a peak pulse meets a valley
pulse, there may be a point on the
string that doesn’t move. For this
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point, it’s as if no pulse passed by
(fig. 1b).

A periodic wave is a continuous
series of pulses (fig. 2). This repre-
sentation can be assigned to any
wave phenomenon. A sound wave,
which propagates by disturbing the
air in compressions and rarefac-
tions, can use figure 2 as a graphical
representation, where the peaks are
compressions and the valleys are
the rarefactions. A series of sketches
in which two waves pass each other
will reveal that the sum of the
waves produces points on the string

AWAWAY
RYRVAY

Figure 2

that undergo large displacements
and other points that undergo no
displacement whatsoever (see figure
3 on page 46). The points of maxi-
mum disturbance are called anti-
nodes, while the points of no distur-
bance are referred to as nodes.

The interference of sound waves
can create these nodal points, and
one of the jobs of the acoustical en-
gineer is to ensure that a new con-
cert hall does not have places (due to
reflections) where aspects of the
music cannot be heard. Acoustical
engineering is both an art and a sci-
ence. It is part good fortune and part
mystery why Carnegie Hall and La
Scala have such exceptionally fine
acoustics.

And so, in answer to the physics
challenge posed above, two sounds
can create silence. Two light sources
can also create darkness, as in
Young’s double-slit experiment or a
Michelson interferometer. And two

Art by Tomas Bunk
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beams of electrons can produce loca-
tions where no electrons will reach in
what is arguably the most profound
discovery of the 20th century. The
Zen koan about one hand clapping
must remain a mystery. We're not
sure what insights physics can offer to
this puzzle.

This month’s contest problem is
from the XII International Physics
Olympiad, held in Bulgaria in 1981.
Readers of Quantum are urged to
send in a solution and to provide a
brief autobiography. Other readers
may just wish to comment on the
problem in general by sending mes-
sages to the authors via e-mail
(quantum@nsta.org).

The receiver of a radio observa-
tory is placed on an island, near the
shore, at a height of 2 m above sea
level. It detects only the horizontal
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components of the electric field.
When a radiostar radiating waves
with a wavelength of 21 cm rises
above the horizon, the receiver
records maxima and minima.

A. Determine the altitude of the
star when maximum and minimum
are observed.

B. Does the intensity decrease or
increase after the star first appears
above the horizon?

C. Investigate the ratio of the in-
tensity of the successive maxima
and minima.

(Note: The ratio of the ampli-
tudes of the incident and reflected
waves is (n — sin 0)/(n + sin 6), where
0 is the angle of the incident wave
measured from the horizontal andn
is the index of refraction. For radio
waves and water, n = 9.)

Please send your solutions to

Quantum, 1840 Wilson Blvd., Ar-
lington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Fun with liquid nitrogen

We hope our Quantum readers
enjoyed “playing” with liquid nitro-
gen in the Contest Problem that ap-
peared in the March/April issue.

Part A asked you to calculate the
specific heat of aluminum. We begin
by writing down an expression for
the conservation of energy where
the first term is the heat gained by
the water (subscript “w”) and the
second term is the heat lost by the
piece of aluminum (subscript “Al”):

m AT, + Cam AT, =0,

where c is the specific heat, m is the

mass, and AT is the change in tem-
perature. Therefore,

A m, ATW
Al T "YW T
WmAl ATy,
_[_j cal | 1008 ( 5 G ]
g-°CN36.2g \-77°C
0215l
g-°C

Using the conversion factor 1 cal =
4.186], we getc,; = 0.9]/g- Kat room
temperature, in agreement with the
graph of the specific heat of alumi-
num given in the problem.

Part B used data taken at the
XXIV International Physics Olym-
piad to calculate the latent heat of
vaporization of liquid nitrogen.
There are two complications in-
volved in this experiment: (1) the
change in the specific heat of the
aluminum as a function of tempera-
ture and (2) the loss of heat to the
surroundings, since the liquid nitro-
gen boils at 77 K.

The specific heat of aluminum as
a function of temperature is shown in
the graph given in the problem. Be-
cause the amount of heat g required
to change the temperature of 1 g of
aluminum by AT is just cAT, this
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heat can be obtained graphically by
computing the area under the curve
between the two temperatures. The
easiest way of doing this is to count
boxes (estimating fractional boxes)
under the curve between T = 77 K
and T = 293 K. We obtain 300 £ 6
boxes with the area of each box be-
ing (0.05 J/g - K)(10 K) = 0.5 J/g.
(Don'’t forget the 130 boxes below
the x-axis.) This gives us a total g =
150+ 3J/g. Therefore, the total heat
given up by the aluminum is

Q=myq =(19.4 g)(150]/g)
=2,9107.

We now need to obtain the mass
of liquid nitrogen that was evapo-
rated with this heat. To do this we
plot the mass of the liquid nitro-
gen in the calorimeter as a func-
tion of time as shown in figure 4.
(Don’t forget to subtract the mass
of the aluminum after it is put into
the liquid nitrogen.) This graph
shows that the loss of mass due to
heat from the surroundings is
quite important and occurs at a
different rate before and after the
aluminum is put into the liquid
nitrogen. We can obtain a very
good estimate of the mass of liquid
nitrogen vaporized by looking at
the difference in the two lines at

the middle of the time interval—
that is, around 270 s. This yields
my = 14.4+0.3 g. We can now cal-
culate the latent heat of vaporiza-
tion:

Q _2910]
144 g

L= =202]/g.

my

In part C you were asked to cal-
culate the error in your value for

the latent heat. You may remem-
ber the simple rule that when ex-
perimental values are multiplied
or divided, the percentage errors in
the measured quantities add. This
gives an overestimate and can be
refined by adding the errors in
quadrature—that is, add the
squares of the errors and then take
the square root.

The error in g is 2.0%, while the
error in m,; is 0.5%. Adding these
in quadrature yields a 2.1% error in
Q, or Q =2,910 +607]. The error in
my is 2.1%. Adding this in quadra-
ture to that in Q yields an error in
L of 3%. Therefore, our experimen-
tal value is

L=202+6]/g

Erratum

During typesetting, an error
crept into the last contest problem
and went undetected during proof-
ing. The display equation in the
third column on page 32 should
read

1 111 1 2

S f s f 3f 3f

We hope all our readers caught this
typo.
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IN THE LAB

Sninning in a jet stream

Vacuuming up Bernoulli's law and the Magnus force

ERHAPS SOME QUANTUM

readers have had a chance to ob-

serve how a Ping-Pong ball

hangs in the jet of air created by
a hair drier or a vacuum cleaner.
Let’s modify the experiment a little
bit. Take a wooden ball from, say, a
children’s wooden construction set
and drill a hole along its axis about
1 ¢cm in diameter. If this ball is
placed in the stream of air, it first
just hovers, then it begins to revolve
with increasing speed such that the
hole has a horizontal axis. The fre-
quency of revolution may be as high
as 100 per second, and the height the
ball attains is five times higher than

Figure 1

by Stanislav Kuzmin

= o

Figure 2

at first (compare figures la and 1b).
Here’s how the frequency of revolu-
tion was measured in our experi-
ment: a small magnet was embed-
ded in the ball’s surface, the ball was
placed in a coil of wire, and the in-
duced voltage was fed to the lead of
an oscillograph.

A similar experiment can be car-
ried out with other kinds of balls—
also solid but drilled in different
ways (fig. 2). In every case both lift
and rotation are observed, but the ro-
tation of the ball with a shifted hole
doesn’t occur about a single axis (in
scientific language, it precesses).
This phenomenon seems to be con-
nected with a change in the position
of the center of mass relative to its
geometric center.

For these experiments we can
also use hollow balls (for instance,
Ping-Pong balls) with holes in them.
True, they rotate more slowly and
don’t rise as high. However, if a pa-
per tube is inserted into the hole, the
rate of rotation increases.

All these experiments show that
the flow of air through the hole is of
primary importance. If the hole is
closed with, say, modeling clay, the
rotation stops. To gain a better un-
derstanding of the shape of the air
flow around the rotating ball, we can

e

attach long threads to the vacuum
cleaner tube and then photograph
the apparatus using a flash. Figure 3
shows that the flow presses against
the ball on the side that moves with
the flow and moves away from the
ball on the opposite side. As this

Figure 3
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occurs, the ball shifts relative to the
center of the jet.

Let’s try to come up with a pos-
sible explanation of the experiment.
First we consider the case of an ab-
solutely smooth ball without a hole.
It is suspended in the jet in a stable
way even if the jet is slightly in-
clined. This is explained by Ber-
noulli’s law, because the pressure
within the jet is lower than that in
the surrounding air, so when the ball
shifts a little bit, the side emerging
from the jet will be pushed back in.!

Now let’s look at a rotating ball.
If it is rotating at the center of the
jet, the velocity and, therefore, the
pressure are different on opposite
sides of the ball, because the rotat-
ing ball slows down the flow on one
side and accelerates it on the other.
Then a force arises that shifts the
ball aside. However, as our ball
hangs at the same place, the average
pressure on both sides should be the
same. It follows that the rotating
ball must be displaced from the cen-
ter of the jet, because the equality of
the velocities on opposite sides is
possible only in such a position.
(The velocity in a jet decreases with
the distance from its center, which
means that the side of the ball near
the jet’s center must move opposite
to the flow, while the other side will
move in the direction of the jet.)

So why does the ball rotate?
Again we begin by looking at a ball
without a hole, which hangs exactly
on the axis of the jet and doesn’t ro-
tate. If we move the ball to one side,
the air on its outer side begins to rub
on a larger surface area compared to
the ball’s other side, which results in
the ball’s rotation about a horizon-
tal axis. When it is released, the ball
returns to its equilibrium position
on the jet’s axis and the rotation
stops.

In a similar experiment the ball
with a hole plays another game—the
hole makes the rotation stable even
without an external force. This is
because the hole changes the struc-
ture of the flow around the ball.
During a quarter-turn (fig. 4a) the

'However, see “Foiled by the
Coanda Effect” on page 4.—Ed.

I

Figure 4

small jet coming out of the hole cre-
ates a cloud of small vortices. These
vortices prevent the flow from be-
coming detached, and this allows
the flow to move along the ball’s
surface for a longer time. It looks as
if the viscosity of the air and the
corresponding friction were in-
creased. During the phase of rota-
tion shown in figure 4b this effect is
absent, since the flow was able to
detach itself by this time. Thus, a
frictional force arises that turns the
ball. As it turns, a transverse Mag-
nus force arises that moves the
stable position of the ball relative to
the jet’s axis.

The extra lift of the perforated
ball might be connected with the
existence (in some positions) of a
vertical component of the force dis-
placing the ball from the jet’s axis
(fig. 5a). The air passing through the
hole sucks in the rest of the stream,
which causes the jet to incline. This
doesn’t happen in the opposite posi-
tion (fig. 5b) be-
cause nothing
here prevents the
stream from de-
taching from the
ball.

Now let’s try to
make some esti-
mates. Along the
vertical direction
the ball is affected
by three forces:
gravitation, the
drag of the air, and
the vertical com-
ponent of the

Figure 5

Magnus force.
The drag force can
be written as F =
kpv2S, where k is
the coefficient of
drag (which de-
pends on the
shape of the body),
p is the density of
air, v is the veloc-
ity of the airflow,
and S is the cross-
sectional area of
the ball. The order
of magnitude of
the Magnus force
can be estimated from Bernoulli’s
law. Let a cylinder of length ] and di-
ameter d turn clockwise with a lin-
ear speed u in an infinite flow of gas
moving with speed v. Then to the
right of the cylinder there will be a
speed v —1u, and the speed to the left
will be v + u. According to Ber-
noulli’s law, the pressure difference
on a cylinder is

2 2
v+u v—-u
Ap=p( ) —p( ) :
2 2

and the Magnus force is Fy, = pvudl.

For our rough estimate the ball
can be approximated as a cylinder
having equal length and diameter,
while the linear speed of rotation
can be taken as equal to the speed of
the stream. To obtain the vertical
component of the Magnus force, we
multiply it by the sine of the jet’s
angle of inclination B (judging from
figure 3, B is about 4-5°). Then for a
ball we get F,; = pd?v? sin B.

W 7

I

[ L

QUANTUM/IN THE LAB 51




The change in speed with height
in the jet can be estimated by means
of the law of conservation of mo-
mentum. Since the static pressure
and air density in the jet change only
slightly in our case, this law can be
written approximately as V1251 =
v}S,. The cross section of the jet can
be expressed by the altitudes h, and
h, and by the angle of the jet’s ex-
pansion. Thus,

vy

v, b
It should be noted that the jet begins
not where it exits from the tube but
at the vertex of the angle of the jet’s
expansion, so its altitude is mea-
sured from the vertex and not the
edge of the tube.

From the condition of equilib-
rium of the ball in the vertical direc-
tionmg = F, + F,;, we can express the
height to which the ball rises:

]72 = hldvl M

m§

Here h, is the height of the ball and
v, is the velocity of the air as it ex-
its the tube, both of which can be
measured easily. Our estimates gave
a height for the ball of about 30 cm,
which is in good agreement with our
experimental observations. (@

When he wrote this article, Stanislav
Kuzmin was an eleventh grader at
School No 130 in Novosibirsk, Russia.
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MATHEMATICAL

SURPRISES

Toroidial currency

Australias polymer money has
a curious twist to it

by Martin Gardner

DOUBT IF MANY MATH-
ematicians outside Australia are
aware that the Reserve Bank of
that nation has recently issued
two bank notes that are toroidal.
They are the $5 bill printed in 1992
and the $10 bill printed in 1993.
The front and back of each of these

handsome notes are shown. Observe
that on both sides of each bill the pat-
terns at top and bottom “wrap
around,” as well as the patterns on
the left and right edges. As all topolo-
gists know, if the right and left sides
of arectangle, and its top and bottom,
are joined, the result is the familiar

HiHH ]




torus or doughnut shape. If just one
pair of sides is connected by reversing
one of the edges, the structure is a
Klein bottle. If the reversal applies to
both pairs of edges, the structure is a
projective plane. Perhaps some day a
nation will print projective plane or
Klein bottle notes!

The purpose of the toroidal wrap-
arounds is to make it harder to coun-
terfeit the bills. Sophisticated color
copiers have made counterfeiting
much easier all over the globe.

An additional anticounterfeiting
feature of each note is a transparent
“window” at a lower corner (it ap-
pears black as printed here). Still an-
other such device is the little circle
showing four points of a star on one
side and three points on the other.
Hold either bill up to a strong light
and the points fuse to form a perfect
seven-pointed star, symbolizing
Australia’s seven original states.
The slightest variation in register
would distort the star.

The face on the $5 note obviously
is that of Queen Elizabeth. The

woman on the $10 note is Dame
Mary Gilmore, an Australian poet
who worked tirelessly to battle in-
justices in the nation, especially in
the treatment of the native aborigi-
nes. The man on the opposite side is
A.B. “Banjo” Paterson, a ballad singer
and journalist best known for having
written the words of “Waltzing
Matilda,” Australia’s unofficial na-
tional anthem. (Matilda, by the way,
is not a woman but a knapsack.) “The
Man from Snowy River” is another of
Paterson’s popular songs.

The $10 note has been made 7 mm
longer than the $5 bill to help sight-
impaired persons distinguish be-
tween the two. Both notes are made
of locally produced polymer rather
than imported paper. The polymer
lasts longer, stays cleaner, and can be
recycled for plastic products.

Melbourne artist Max Robinson
designed the new $10 note. Behind
Paterson’s profile, in microprinting,
are lines from Paterson’s verse, mak-
ing the bill even more difficult to
counterfeit. [0

CARE plants the
most wonderful
seeds on earth.

Seeds of self-sufficiency that help
starving people become healthy,
productive people. And we
do it village by village by village.
Please help us turn cries for help
into the laughter of hope.

——
™

[CARE

1-800-521-CARE

To Someone
Who Stutters,
It’s Easier Done

Than Said.

The fear of speaking
keeps many people from
being heard. If you stutter
or know someone who
does, write for our free
informative brochures on
prevention and treatment
of stuttering.
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OF AMERICA
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Since 1947 —
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MATH
INVESTIGATIONS

Congtructing triangles from
three located points

Of the 139 problems, 20 are still looking for a solution!

S PROMISED IN MY LAST

column, in this issue I'll share

with my readers yet another set

of unsolved construction prob-
lems, called to my attention by my
friend Leroy (Roy) F. Meyers. These
problems are based on an article by
William (Bill) Wernick in the Septem-
ber 1982 issue of Mathematics Maga-
zine and on subsequent work by Bill
and Roy, which is yet to be published.
Bill Wernick is a retired mathemati-
cian (from CCNY), whose Advanced
Geometric Constructions (written
with Alfred S. Posamentier and first
published in 1973) is strongly recom-
mended to my readers.

Following the work of Bill Wer-
nick, the sixteen most important
points of a triangle will be denoted
as follows:

vertices A B C
circumcenter O

feet of medians M, M, M,
centroid G

feet of altitudes H,H, H,
orthocenter H

feet of angle bisectors T, Ty, T,
incenter 1

(For the sake of brevity, the term
“feet” designates the point of inter-
section of the given lines (medians,
altitudes, and angle bisectors) with
the opposite sides of the triangle.
The angle bisectors are of the inter-
nal angles.)

Bill Wernick’s 139 problems con-
sist of a listing of significantly distinct
triples of these “located points” and
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by George Berzsenyi

ask for the (reJconstruction of triangle
ABC from them. In a general setting,
one may assume that three points are
given in the plane, they are labeled by
three of the sixteen symbols listed
above, and one is to construct a tri-
angle whose located points are the
ones given. In a more restrictive set-
ting, one could start with triangle
ABC, label all sixteen of its points,
erase all but three of them (along with
the various lines connecting them),
and attempt to reconstruct triangle
ABC from them. Clearly, some ar-
rangements of three located points in
the plane will not be obtainable in the
latter manner.

My first challenge to my readers is
to reconstruct the 139 significantly
different problems mentioned above.
As a partial aid, in the table below I
have retained the original numbering
given to the list of problems by Bill.

The 139 problems fall into five
categories:

1. Redundant triples, in which any
two of the three given points will
determine the third. Of the 119
problems resolved, only (4, B, M),
(A, M,, G, and (O, G, H) fall into
this group.

2. Locus-restricted problems. These
yield either an infinity of solutions
or none at all, depending on the
chice of one of the points. Twenty-
three of the 119 unresolved prob-
lems fall into this category.

3. Unsolvable problems, which do
not allow for the construction of a

triangle by Euclidean tools (that is,
compass and straight edge). Thus
far, 20 such triples have been iden-
tified.

4. Solvable problems. In these one
can construct a (basically) unique
triangle by Euclidean tools.

5. Unresolved problems. These 20
triples are listed below:

77.0,H, T, 122.G,T,T,
78.0,H,I  123.G,T,I
81.0,T, T, 127.H,H, T,
90.M, M,, I  128.H, H,, I

109. M, H, T, 132.H,T,T,

110. M, H,I  134.H,T, T,
111.M,, T, T, 135.H, T, I
113. M, T,, T, 136.H,T, T,

118.G, H, T, 137.H,T,I
119.G, H,I  138.T,T,T,

It’s highly probable that many of
these problems are of the “unsolv-
able” variety; in that case, in addition
to the tools mentioned in my previ-
ous column, the following result,
found in G. Chrystal’s Algebra, an
Elementary Textbook (reprinted by
Chelsay Publishing Company in
1964), may also be of use.

THeoreM. The monic quartic
equation x?*+ ax3+ bx?+ cx+d=0
with rational coefficients a, b, ¢, d
has a constructible root if and only
if it or its Lagrange resolvent, y° —
by? + (ac - 4d)y + (4bd - c® - b?d) =
0, has a rational root.

Surely there are several other use-
ful tools hidden in the literature
which may also be of value as you
resolve these 20 problems! (@



Duracell/NSTR Scholanship

Competition

Over $90,000 (face value) in US
Series EE Savings Bonds will be
awarded in the 13th Annual Dura-
cell/NSTA Scholarship Competi-
tion. The competition is open to
full-time ninth through twelfth
grade students in the United States
and its territories. Entrants design
and build a device powered by
Duracell batteries. A good way to
begin is to come up with an idea for
a device that will help people or serve
some useful purpose. Many success-
ful inventors simply thought of some-
thing that will make life easier. Most
of this year’s top devices either helped
the handicapped, were safety-related,
Or were an improvement on an exist-
ing item. (See Happenings in the
May/June issue for a descriptions of
winning inventions).

One first-place winner will take
home a $20,000 bond, five second-
place winners receive $10,000
bonds, ten third-place students get
$1,000 bonds, 25 fourth-place win-
ners receive $200 bonds, and 59
fifth-place students get $100 bonds.
First- and second-place finishers,
their parents or guardians, and their
teacher-sponsors will also win an
all-expenses paid trip to the NSTA
National Convention in March of
1995 in Philadelphia. The top six
winners will receive their awards at
a special banquet to be held in their
honor at the convention. The 100
winners will each receive a person-
alized certificate, suitable for fram-
ing. Everyone is a winner in the
competition, because all entrants
will receive a certificate of apprecia-
tion and an entry gift.

HAPPENINGS

Bulletin Board

For the second year, First Step
gives you an opportunity to send in
an idea for a device you might want
to enter in the formal competition.
Simply give a 100-150-word descrip-
tion of a device you might like to
design and build for the formal com-
petition. All eligible entrants will
receive a coupon for Duracell batter-
ies and a general critique letter.

The 1994 top six winners re-
ceived national media attention
when they were featured in a seg-
ment that aired numerous times on
the Cable News Network. This was
in addition to the coverage they re-
ceived in their local areas and from
press in the Los Angeles area cover-
ing the NSTA National Convention
in Anaheim, California.

You can receive an entry kit by
writing to Duracell/ NSTA Scholar-
ship Competition, 1840 Wilson
Blvd., Arlington VA 22201-3000. All
entries must be received at NSTA
Headquarters by January 13, 1995.

Toshiba/NSTA ExploraVision Awards
competition

A voice-activated toilet . . . a ma-
chine that uses lasers to construct
tunnels . . . a holographic traffic con-
trol system . . . a medical alert sys-
tem implanted in the wrist . . . These
are some of the future innovations
envisioned by national finalist
teams in the 7-9 and 10-12 grade
level entry categories in the second
annual Toshiba/NSTA Explora-
Vision Awards competition.

More than 17,000 students in
grades K-12 from the United States
and provinces of Canada entered the
1994 competition. Working in
teams of three or four with a

teacher-advisor, the students chose
a present technology and envisioned
how it might be used 20 years from
now. Of the nearly 5,000 team en-
tries received this year, almost 2,000
teams were from the 7-9 grade level,
and over 1,000 teams were from the
10-12 grade level.

The twelve national finalist
teams—four first-place and eight
second-place teams—received a trip
to Washington, D.C., for a weekend
of activities, including a press con-
ference and visits with congres-
sional representatives. The high-
light of the weekend was an awards
dinner featuring George Takei, Star
Trek’s “Captain Sulu,” and Rep.
George E. Brown, Jr., chair of the
Science, Space, and Technology
Committee, who served as honorary
chairperson for the awards cer-
emony. Broadcast coverage about
the weekend included a story about
the national finalist teams on
CNN'’s “Future Watch” and “Real
News For Kids” and a live interview
with George Takei on a Washing-
ton, D.C., Fox television affiliate.

In addition to a trip to the
nation’s capital, students on the
first-place teams each received a
$10,000 US savings bond, and stu-
dents on the second-place teams
each received a $5,000 US savings
bond. The teacher-advisors and
schools of the national finalist
teams were awarded their choice of
Toshiba products, such as laptop
computers, copiers, TVs, and VCRs.

The 1995 competition will ex-
pand to include all of Canada. Entry
kits for the 1995 competition will be
mailed to teachers in September.

CONTINUED ON PAGE 62
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Across

1 Galatea’s lover
5 Units of energy
9 Diver’s equipment
14 Rod
15 Asian country
16 Fool
17 __ acid
18 Tails
19 1967 Chem.
Nobelist Manfred
20 Roman garment
21 Measurement
system: abbr.
22 Eye’s coat
23 Hard rubber
25 Floor covering
26 Distilled coal
27 It’s high in the
Dead Sea
32 Bank account
35 Units of substance
37 Hot drink
38 Danube tributary
40 Umbilicus
42 Mister in Munich
43 Does as com-
manded

Brigs

Crogs science

by David R. Martin

10 11 12 13

45 Blood

47 ___ giant star

48 Atmospheric gas

50 ___ rod (brace)

52 Roman spirit

53 Degrees ___

57 Hipbones

61 Tap

62 Synthesized
chromosomal
material

63 Expect

64 Square root of 2809

65 Landed

66 Chalk and gelatin

67 Beige

68 Million billion
(pref.)

69 German city

70 Unit of matter

71 First garden

Down

1 Like some angles

2 Leguminous tree

37___andoutl
come”

4 Trig. function

5 Fermion
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6 Extent
7 “...noother ___
before me.”
8 Draft agcy.
9 ___ phase (of liquid
crystals)
10 Inductor
11 Desire
12 South African
13 Woman'’s suffrage
leader ___ Shaw

22 soda (sodium
carbonate)
24 “___ the greatest”

25 Microwave source

27 343’s cubed root

28 Japanese drama

29 Bakery worker

30 Ripped

31 Unit of length

32 Element in steel

33 1944 Physics
Nobelist

34 Aid a criminal

36 Monochromatic
radiation source

39 County in SW
Scotland

41 Trivalent rare earth

44

Nondispersive wave

46 Unit of length

49
51
53
54

55
56

State of matter

___velocity

Egypt’s capital
Behaved like a
disengaged engine
Combine

Snake in 71A

9|zzNd PIOMSSOID) oneway | v661 ©

57 Turn the

58 Female sheep

59 Girl

60 Clamp

61 Ancient inhabitant
of Britain

64 Hawaiian wreath

SOLUTION IN
THE NEXT ISSUE

SOLUTION TO THE
JULY/AUGUST PUZZLE
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Math
M121

Using the hint, we can estimate
the denominators of the terms in the
left side of the inequality in ques-
tion:

1+ m)l/z1 <1+
n
(1+m)'™ <1+ 2
m
It follows that
1 1 n m
+ > + =1

!

n/

! m
5

m+1 ®n+l m+n m+n
and we're done.

To prove the version of Bernoulli’s
inequality given in the statement of
the problem, we can consider the
function f{x) = (1 + x)*-ox — 1. Since
flx) = ofl + x)*~1 - o for x > O, this
function decreases, sof|x) < f{0) = 0 for
x> 0. (V. Senderov)

M122

Consider all n-digit numbers
composed of ones and twos. There
are exactly 27 such numbers and as
many possible remainders upon di-
vision by 22. So it will suffice to
prove that all these 2 numbers
yield different remainders when di-
vided by 2% then one (and only one)
of these remainders will have to be
Zero.

We can do this by induction. We
leave the casen = 2 to the reader, and
assume that all (n - 1)-digit numbers
consisting of ones and twos left dif-
ferent remainders when divided by
27-1 We will show that this induc-
tion hypothesis does not allow the
existence of two n-digit numbers (of
our form) with the same remainder

ANSWERS,
HINTS &
SOLUTIONS

upon division by 22.

Let a, and b, be any two of these
n-digit numbers. Suppose the remain-
ders of a, and b, upon division by 22
are the same. Thena, and b, are both
even or both odd—that is, they end
with the same digitr(r=1 or 2}, sowe
can write them as a, = 10a, | + 1,
b,=10b, ,+r,wherea, ;andb, ,
are numbers composed of 1 — 1 ones
and twos (a_ and b without their last
digits). Since a, - b, =10(a, ,-b, ,)
is divisible by 27, 5(a, _, - b, _,)is
divisible by 22-1. This means that
a, ,andb, _, give the same remain-
ders when divided by 22-!. This con-
tradicts the induction hypothesis.

M123

Let’s call a square suitable if the
portion of its area colored black is no
greater than 4/5 and no less than 1/5.
Since our grid is infinite, we can find
an integer n big enough so that a cer-
tain square Q bounded by grid lines,
and with a side of length 27, contains
all black squares and their area is less
than 1/5 of the area of Q. Divide this
square into four congruent squares
with the side length 27~ 1. In each of
them, at most 4/5 of the area will be
colored black. Those that have at
least 1/5 of the area colored are suit-
able. All the rest have less than 1/5

Figure 1

QUANTUM/ANSWERS, HINTS & SOLUTIONS

of the area colored black, so we can
apply our subdivision process to
them again, and so on (fig. 1).

After the (n - 2)nd subdivision
we'll get a number of suitable squares
and a number of 2 x 2 squares, each
of which is at most 4/5 black. Those
of the latter that contain at least one
black square are suitable (they have at
least 1/4 > 1/5 of the area colored).
None of the rest contains any black
squares at all, so at this step all black
squares will be covered by suitable
squares, which was the goal.

The problem can be extended to
space by replacing 1/5 and 4/5 by 1/9
and 8/9, respectively. The proof is
modified in a natural way.

M124

This problem emerged from a
mistake made by a student at Mos-
cow University. Once he used the
following lemma, which seemed
obvious to him: if a function is de-
fined on a segment [a, b] covered by
a finite system of segments, and the
variation of the function on each
segment of this system is no greater
than its length, then the variation of
the function on the entire segment
la, b] is no greater than b — a. (The
variation of a function in this case is
the difference between its maxi-
mum and minimum values.) In our
case we could take for the function
the distance s(x) that the snail crawls
in a period of time x, 0 < x < t, and
for the segments that cover the in-
terval [0, t] we can use the intervals
of observation of all the naturalists.
Then, if the lemma were true, the
entire path of the snail would not
exceed t meters. This is what most
people think about this situation—
many even think that the snail must
crawl at a constant speed of 1 meter
per minute and travel exactly ¢
meters during the entire given time
interval. In fact, the path of the snail
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Figure 2

can range, roughly speaking, between
t/2 and 2t meters. This apparent con-
tradiction between common sense
and actuality makes the problem
particularly attractive.

More exactly, if m and M are the
smallest and largest integers in the
interval (t/2, t), then the shortest and
longest possible distances crawled
by the snail are m and 2M, respec-
tively. (For t > 1 the numbers m and
M are well defined.)

Let’s explain how to arrange the
observation and the movement of
the snail to obtain these extreme
values.

Take any integer k , t/2 <k < t (we
are particularly interested in k = m
and k = M). Divide the interval [0, t]
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into k equal
segments. The
length t/k of
each segment is
greater than 1
and less than 2,
s0 it can be cov-
ered with two
overlapping
unit intervals as
shown in figure
2a. We arrange
the intervals of
observations of
the naturalists
to be these seg-
ments. The snail
can decide to
move only when
it is observed by
a single natural-
ist (fig. 2b), in
which case it
will crawl 2k
meters. It can
also decide to
move only when
it is observed by
two naturalists
(fig. 2¢), in which
case its total
traveled distance
will be k meters.
Taking k = 2M
and m gives 2M
meters and m
meters for the
length of the
snail’s path. (By
the way, modifying the law of mo-
tion slightly, we can make the snail
crawl any distance from m to 2M.
Check this yourself.)

It remains to show that the dis-
tance traveled cannot be greater
than 2M or less than m.

For any order of observation, let
I, = [0, 1] be the first interval of ob-
servation, let I, be the rightmost in-
terval intersecting I (I, possibly has
only a common endpoint with I,
but the intersection of I, and I, can-
not be empty, since the observation
is never interrupted), and, in general,
letI, ., be therightmost interval in-
tersecting I . If there are ] intervals
in this sequence, then the last inter-
val in this sequence, I, is [t - 1, t].

time

Notice that forn=2, ..., 1-1 the in-
tervalsI _,andI , aredisjoint (oth-
erwise, I would not be the rightmost
interval intersecting I, _,). Let k be
the number of “odd” intervalsI,, I,
I, ... (so that I = 2k or I = 2k — 1);
then the entire interval [0, t] contains
k disjoint “odd” intervals and is com-
pletely covered by all the 1 <2k in-
tervals I . It follows that k < t < 2k.
Similarly, considering the I seg-
ments of the snail’s path corre-
sponding to the time intervals I , we
can see that k < s < 2k. Since k is an
integer, k < t and k > t/2 (except for the
caset =2k), we get m <k <M, and so
m < s <2M whenever t # 2k.

As to the exceptional case t = 2k,
one can easily understand that here
I=t,andI =[n-1,n]foralln=1,
2, ..., 1. Then the only possible value
for s is 2k, so the inequality s > m is
true again (here m = k + 1).

And here’s an additional problem:
correct the lemma formulated at the
beginning of the solution. (N. Kon-
stantinov, V. Dubrovsky)

M125

Our solution will be based on
two useful ideas: the fact that the
ratio of the distances to the sides of
an angle is constant for all points on
a line drawn inside the angle
through its vertex, and the so-called
“area method,” which consists of
using areas to express various geo-
metric values.

Denote by ABCD the given quad-
rilateral; 2a, 28, 27y, and 28 are its
angles at the vertices 4, B, C, and D;
O and I are the centers and R and r
the radii of its circumcircle and
incircle, respectively; and P is the
intersection point of its diagonals
(fig. 3). Since the quadrilateral has a

Figure 3



circumcircle, its opposite angles are
supplementary. It follows that two
of its consecutive angles are both
acute (or right). Assume for definite-
ness that the angles 20 and 2 are
not obtuse (and so 2y and 28 are not
acute).

It will suffice to show that in this
case points O and I lie in the angle
APB and the ratios of the distances
from these points to the sides of this
angle are equal:

d(0,DB) _d(1, DB)

d(0,CcA)  d(I,CA)

(the letter d here denotes distance).

Since the angle BCD is not acute,
the circumcenter O lies on the same
side of BD as point A (or on BD). The
incenter I (where the angle bisectors
of the quadrilateral intersect) also
lies on this side of BD, because the
angle at the vertex I of the quadrilat-
eral BCDI equals

2n-B-2y-8=n—-(B+8)+m—-2y

=T oasn
2

(B +d=m/2, since ABCD is inscribed
in a circle).

Similarly, both points O and I lie
on the same side of AC as point B.
So they lie in the angle APB.

Now the ratio of the distances
from O and I to BD can be written
as the ratio of the areas of triangles
OBD and IBD with a common base
BD—that is, it’s equal to

OB-OD-sin ZBOD
IB.ID-sin ZBID

But OB=0OD =R, ZBOD =2/BAD =
40, (by the Inscribed Angle Theorem),
IB=r/sinB, ID =r/sind=r/cos B (see
figure 3}, and, as we’ve shown, ZBID
=7/2 + 20. It follows that

d(O, BD) _ R2sin4osinBcosp

d(I,BD)  r2sin(n/2 +20)

_ R%sin20.cos20.8in2p
r2 cos2o

2
= R—2 sin2osin2f.
r

By the symmetry of the problem
and of the obtained expression, the
ratiod|(O, AC)/d(I, AC) is the same,
which means that the equality of
ratios we intended to prove is indeed
true. (V. Dubrovsky)

Physics

P121

From the statement of the prob-
lem, the motion of the gliding air-
plane is uniform, so its weight mg
and the drag force F, are counterbal-
anced by the forces F| and F, (fig. 4).

Fy
F

e
pad

Figure 4

Ty
'mg

Therefore, F, = -mg and F, = -F,,
where the forces F, and F, depend on
the plane’s velocity. For the sake of
our estimate, we'll assume that the
speed of the plane at takeoff is prac-
tically equal to v—that is, the forces
F,, F,,and F, are rotated through the
angle o together with the velocity
vector (figure 5). In this case the con-

E

Figure 5

dition for the plane to have uniform
motion without pressure on the run-
way (during takeoff the runway ex-
erts no force) can be written as

Fyue = Fsina,
mg = F, cos a.
Thus,
Fipruse = mgtan = 1,700 N.

There’s no point in refining this
estimate—the nature of the airflow
around the plane near the ground is
rather different from the case of a

gliding plane, but we can’t take that
into account here.

P122

The work W performed on the
system was converted to changes in
the internal energy of the gas AU,
and in the potential energy of the
piston AUP:

W = AUg + AUp.

For one mole of monatomic ideal
gas, the change in the internal en-
ergy is given by the expression

3
AU, = ER(TX -Ty)

The change in the potential energy
is equal to the work performed in
moving the piston quasi-statically
from its initial position to its final
one. As this takes place, the external
force that performs the necessary
work must be equal at every mo-
ment to the force of gravity mg act-
ing on the piston. Since the piston is
in equilibrium in both the initial
and final positions, this force of
gravity is equal to the pressure of the
gas in the vessel PS (the pressure of
the external air is neglected|. Denot-
ing by Ah the change in the height
of the piston, we get

AU, = mgAh = PSAh = PAV,

where AV is the change in the vol-
ume of the gas. Applying the ideal
gas law for 1 mole of gas yields

AU, = PAV = R[T, - T).
Thus,

W= SR(TX -T,)+R(T, - T,)

=EMQ—%)
2
and so
T =T, +%K
5R

P123

It is immediately obvious that if
I = tan o, the puck won’t move at
all. So we'll examine the case where
U < tan o.
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Figure 6

Let’s consider the forces acting on
the puck and lying in the plane (fig. 6).
These are (1) the component of grav-
ity directed down the plane and equal
to F, = Mg sin o, (2) the force of fric-
tion F,, directed counter to the puck’s
velocity v and equal to F;=uMg cos o,
and (3) the magnetic force F_, which
is perpendicular to the velocity v and
equal to F_ = QvB. For steady-state
motion the vector sum of all three
forces is zero—

Fg +F+F =0
or, taking into account that F, is per-
pendicular to F_,
2_p2, 2
F2-F2+F2
From this we find the steady-state
velocity

M5
QB

v |Jsin2 o —u2 cos? o

and the angle between the vectors v
and E,

i

B = arcsin ;
tano

P124

The main challenge in solving
this problem is just keeping track of
all the possible ways of connecting
the resistors. The resistors can be
connected in series, in which case
the maximum power is 2 W (the
maximum current in this scheme is
determined by the 3-ohm resistor).
When all the resistors are connected
in parallel, the power will not ex-
ceed (1 +1/2+1/3)W=11/6W, be-
cause the maximum voltage is de-
termined by the 1-ohm resistor.
There are three other diagrams cor-
responding to figure 7 and three
more corresponding to figure 8. The
“champion” is the scheme shown
in figure 7, where the 2- and 3-ohm
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Figure 7
* NV *

Figure 8

resistors are connected in parallel.
The maximum power is

P =[1+9jvv:2.2 W,

max 5
and the voltageis 11/5 V.

FP1256

The “billiard method,” well
known from geometry, is a handy
way to construct the path of a beam
undergoing multiple reflections from
a flat surface. (In our case the reflect-
ing surface is conical, but it doesn’t
matter for the rays we are interested
in.) After colliding with a wall, a ball
“jumps” onto the mirror-image table
A* and continues to move along a
straight line (fig. 9). (We can replace
“wall” with
“reflecting
surface” and
“ball” with
“light beam.”)
In our problem
it's sufficient
to consider the
passage of the
“extreme” ray
at the edge of
the large base. After the first reflec-
tion it enters the neighboring “added”
cone, and so on (fig. 10). The small

Figure 9

Figure 10

diameters d turn out to be the sides
of an equilateral polygon inscribed in
a circle of radius R. Under the condi-
tions of the problem (d << D << H), we
can assume that an arbitrary ray will
pass through the plane of the small
base if

ey <R
2
A little more geometry tells us that

RELH.

D-d

From this we get

Q< Hd
2 D-d’
or
D(D-d) pD?
H>72d =05

Thus, if H > D?/2d, all the rays of the
incident beam will pass through the
plane of the small base of the coni-
cal light conductor.

Brainteasers

B121

Let K be the midpoint of AB (fig.
11). Then DK is parallel to NB, so
£BPM = ZKDM. By the symmetry
of the rectangle, /KDM = /NAM.

B M C
P

K N

A D

Figure 11

B122

The answer is 650- 9 = 5,850. The
equation can be rewritten in the
form 9(100- O + NE|) = 100 NI + NE,
0r900- O = 100 NI-8NE. It follows
that NE is divisible by 25—that is, we
must consider three cases: NE = 25,




NE = 50, and NE = 75. Substitution
leads to the equations

(1)NE=25,18+1=90,
(2) NE =50,46+1=9-0,
(3)NE=75,64+1=9-0.

Equation (1) has no solution, be-
cause I <9, O #2; equation (2) has a
unique solution I = 8, O = 6, and
yields the answer given above; and
equation (3) gives = O = 8, which is
impossible. (V. Dubrovsky)

B123

Let the dimensions of the brick be
a, b, ¢, its density p, and the pressure
in the aforementioned three posi-
tions p,, p,, p;- Then

abc
plng 7

ab
from which we get ¢ = p,/pg. Simi-
larly, b = p,/pg and a = p,/pg. There-
fore, the brick’s mass is

m=pV = pabcw.

03g3
As the pressure exerted by a wall of
height h is p = pgh, then substitut-
ing this value p into the equation for
the brick’s mass yields

32
e plpzzps
p°g
_1,368-2,581-5404-16
88,2002 -9.8
=4 kg.

B124

The word scretibo is followed by
scorbite; biscrote is preceded by bi-
sector; iscetbor is followed by
trobiecs; and the last word in the
dictionary is scetibor.

It’s convenient to replace the let-
ters of the “key word” robitecs with
the digits 1, 2, 3, ..., 8, respectively.
Then every “word” becomes an
eight-digit number composed of
these digits in a certain order, and
the problem is reduced to arranging
these numbers in increasing order.
The general rule can be formulated as

follows: read a given number (permu-
tation| a,a,...ag from the right, find
the first digit a, such thata, ,<a,,
and find the smallest of the digits a,,
a, . ...,aqthatis greater thana, ,—
say, a,. Then write the digits a,...a,, _,
in the initial order; after them write
a, and then all the remaining num-
bers in increasing order. For in-
stance, in 75348621, a, = 8 (n = 5),
a, = 6, and the next number in the
list is 756361248. (V. Dubrovsky)

B125

In the position shown in figure 12
none of the kings will lose if it goes
every time to the opposite end of the
longer diagonal it occupies. So it’s a

Figure 12

Polish Checkers, also known as coNTI-
NENTAL CHECKERS, board game, variety of
Checkers (Draughts) most played in con-
tinental Europe. The game is played on
a board of 100 squares with 20 men on
a side. The men move and capture as in
English Draughts and American Check-
ers, except that in capturing they may
move backward as well as forward. A
piece is promoted to queen (or king)
when it ends its move on the opponent’s
back line. If on reaching that line more
captures are possible, they must be
made; the piece involved is not pro-
moted until it again reaches the back
line and remains there at the end of a
move. A queen may move any number
of squares along a diagonal, capturing
any unguarded pieces in its path and
changing diagonals to take any other un-
guarded pieces on the board. In captur-
ing, the player must choose the direc-
tion by which he can take the greatest
number of pieces, whether men or
queens, under penalty of huffing (forfeit-
ing the offending piece).

The German game Damenspiel is
Polish Checkers played on the 64-square
chessboard with 12 men on a side, as in
Draughts or Checkers. (Encyclopaedia

Britannica, 15th ed.)

draw. However, it’s not very obvious
whether this position can emerge at
the end of a real game in which the
players don’t miss any opportunities
to give away their last king.

Toy Store

A thief and a clever wife. See fig-
ure 13.

A greedy moneychanger. See fig-
ure 14

e o

Y

Figure 14
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Kaleidoscope

1. No mechanical work is per-
formed.

2. The total work performed
equals zero both in the reference
frame associated with the Earth and
in that of the moving train.

3. Yes—for example, when it acts
upon a weight lying on the floor of
a moving railway car.

4. Yes: as the bubble rises, the hy-
draulic pressure drops and the gas
works to expand the bubble.

5. At large velocities the air resis-
tance increases markedly.

6. The power needed is reduced
by a factor of 27.

7. The rocket’s work is expended
on the kinetic energy imparted to
the gas ejected from the nozzle.

8. Yes, the escalator’s motors
would need to develop more power,
but for correspondingly less time.

9. For small angles of slope the
conveyer is more efficient, since the
rolling friction is less than the slid-
ing friction.

10. Yes, but its efficiency would
be very low, because most of the
work will be expended on compress-
ing the gas itself.

11. It's doubtful, because there
will be an increase in energy losses
associated with thickening of the
crankcase 0il, and also with the need
to warm up the engine and the air in
the passenger compartment.

12. The heat source is the com-

bustion chamber and the heat sink
is the surroundings.

13. The efficiency will be greater
when the loads are connected in se-
ries.

14. No, because the efficiency ap-
proaches one as the load’s resistance
approaches infinity. However, the
power of the battery and the power of
the resistor both approach zero.

Microexperiment. As the tem-
perature increases, the energy losses
due to radiation and heat convection
also increase.

Algeliraic identities

1. The equality is true if points O,
A, B are collinear.

2. Show that if O is the origin, then
the complex number h represented by
the orthocenter Hisequal toa+b +c¢
(where g, b, ¢ are the numbers repre-
sented by A, B, C). Note that h—a =
ofb+c),h-b=Blc+a,h-c=va+b),
where o, B, v are real numbers, and
derive therefrom that o= fy= 1.

3. Use the identity (a — b)(d - c) +
(b-c)d-a)+(c-a)d-Db)=0.To
prove Ptolemy’s theorem, show that
the complex numbers (a - b)(d - ¢)
and (b - ¢)(d - a) have equal argu-
ments (this follows from the In-
scribed Angle Theorem).

4. Check that replacing the lengths
AB, BC, CA, AM, BM, CM with the
complex numbers b—a,c- b, a-c,
m —a, and so on, yields an identity for
complex numbers.
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“BULLETIN BOARD”
CONTINUED FROM PAGE 55

The deadline for entries is February
1, 1995.If you don't receive an entry
kit by October 15, contact Toshiba/
NSTA ExploraVision Awards Pro-
gram, 1840 Wilson Blvd., Arlington
VA 22201-3000 or call toll free 800
EXPLOR-9.

Learn and Serve America grants

In June the Clinton Administra-
tion named 65 colleges and univer-
sities winners of new Learn and
Serve America higher-education
grants to establish service-learning
programs that benefit local commu-
nities. Totaling $6.75 million, the
new Learn and Serve America grants
are provided by the Corporation for
National Service and enable colleges
to make community service an inte-
gral part of students’ educational
experience.

The Corporation’s flagship pro-
gram, AmeriCorps, will be fully
launched in September. By year’s
end it will engage up to 20,000 mem-
bers in critical service to communi-
ties nationwide. In exchange for one
or two years of service, AmeriCorps
members will receive education
awards to finance their higher edu-
cation or repay college loans. Ameri-
Corps members work within the
AmeriCorps national service priori-
ties of education, public safety, hu-
man needs, and the environment.

For more information, contact the
Corporation for National Service,
1100 Vermont Ave. NW, Washington
DC 20525 (phone: 202 606-5000).

Geifand named 8 MacArthur Fellow

I. M. Gelfand, a Distinguished Visit-
ing Professor at Rutgers University, has
received a $375,000 fellowship from
the John D. and Catherine T. Mac-
Arthur Foundation. He is the founder
of the Gelfand Outreach Program and
the Gelfand Mathematics Correspon-
dence School (see the November/De-
cember 1993 and January/February
1991 issues of Quantum). For infor-
mation about these programs, contact
Harriet Schweitzer at 908 932-0669
(e-mail: harriets@gandalf.rutgers.edu).



TOY STORE

Diamonds from a jug

Two tales with a brainteasing twist

DITOR’S NOTE: IN THIS IN-
stallment of our Toy Store we
present two stories from A Jug
of Diamonds—a collection of
tales by Sergey Grabarchuk. Each of
the stories is built around a puzzle
(generally a “dissection,” “assem-
bly,” or “fit-in” puzzle) created by
this talented puzzle designer from
Uzhgorod (Ukraine). Quar
ers should already be familiar with
his “triad” puzzle (see the Novem-
ber/December 1993 issue).

by Sergey Grabarchuk

A tiief and a clever wife

One night a thief sneaked into the
house of a merchant and stole the
jewelry of the merchant’s wife. As
he was leaving, he failed to notice
the master of the house returning at
the same time. When the merchant
saw a stranger going out the gate, he
sensed that something was amiss
and secretly followed him. Some
time later he found himself under
the windows of the thief’s home,
where he could hear very well what

was going on inside. So he heard the
thief entering his home and saying
to his girlfriend: “Quick, put on all
this jewelry, and if anybody asks,
tell them you inherited it from your
mother.”

Early the next morning the mer-
chant went to the judge and re-
counted the whole story. The judge
ordered the guards to bring in the
thief, his girlfriend, and the mer-
chant’s wife, and he addressed the
thief:

“Is it true that you stole the valu-
ables of this worthy man’s wife?”

“No, Your Honor, that’s a vicious
slander,” the thief replied, since he
was not only deft but very sly, too.
“This is my girlfriend’s jewelry—
she inherited it from her mother.”

And the thief’s girlfriend swore
that that’s exactly the way it was, and

‘ N

A\ 4

Figure 2
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that the merchant lied. But then the
merchant’s wife said:

“T have proof that this bracelet—
which this brazen hussy has defiled
by putting on her arm—belongs to
me.”

She produced a small box and
gave it to the judge, saying:

“Let Your Honor order this good-
for-nothing to hand you the bracelet.
Then I'll be able to prove that the
bracelet and the box were made for
each other and match each other
perfectly.”

The judge opened the box and
saw hollows carved in its bottom—
there were sixteen of them. He or-
dered that the bracelet be removed
from the thief’s girlfriend’s arm and
gave it to the merchant’s wife. With
a few deft movements, the mer-
chant’s wife laid the bracelet in the
box so that each piece of the brace-
let fit exactly into its nest, and the
entire bracelet went into the box
without leaving any hollows empty.

“But that’s not all,” the clever
woman said. “Let Your Honor see
that any straight row consisting of
four pieces contains pieces of four
different colors!”

The judge then realized that the
merchant’s wife was telling the
truth. The thief and his girlfriend
understood that they had been un-
masked, and they confessed to their
crime.

And now, dear reader, can you fig-
ure out how the merchant’s wife
laid the bracelet (fig. 1 on the preced-
ing page) in the box (fig. 2)? An indis-
pensable condition is that all
straight rows of four pieces—horizon-
tal, vertical, and diagonal—must con-
tain pieces of four different colors.

A greedy moneychanger

There once was a moneychanger
at a bazaar in Damascus. This
moneychanger was very greedy and
stingy, but he had the reputation of
being a good-hearted simpleton.
Thanks to this reputation, custom-
ers visited his shop more willingly
than others, and this helped his
business flourish.

One day a blind old man entered
his shop and asked to exchange a
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small bag of gold coins for dinars.
When the moneychanger first saw
the coins that the old man gave him,
he was dumfounded: the coins were
unknown to him and very strange.
But, biting one, he convinced him-
self that they were pure gold. He was
just about to count out the required
number of dinars when the inevi-
table occurred: the moneychanger
was seized by greed and, unable to
control himself, with trembling
hands counted out only half of the
dinars he owed the old man. He
poured them into the bag and
handed it to the blind visitor. The
old man thanked him and went
away. The moneychanger closed the
shop and secluded himself in a dis-
tant room, where he took out the old
man’s coins to examine them thor-
oughly. In the semidarkness of the
room they glimmered magically,
and that soothed the swindler’s con-
science. He sorted the coins and
then began to arrange them in neat
piles, flat rows, or just small heaps.
He played with the coins for a long
time, until evening fell and he
ceased this activity. The money-
changer prayed, thanked Allah for a
successful day, and went to bed.
Contrary to his habit, he didn’t hide
the old man’s coins in a chest, but
left them on a small table.

He slept very well and had no
dreams. But towards morning he saw
the blind old man in a dream. To the
moneychanger’s horror, the old man
was staring directly at him with tears
rolling from one of his eyes, while the
other one squinted strangely. The
moneychanger came up to the table
and saw the coins where he had left
them the previous evening. They
formed a beautiful pile and looked
like seashells. This startled the
moneychanger, because he had left
them in a different arrangement. He
reached out for the coins, but felt a
certain awkwardness in his hands.
He looked at his hands more
closely—he was struck with horror:
all the fingers on both his hands,
except his thumbs, were stuck to-
gether as if glued. He broke out in a
cold sweat, felt weak in the knees,
and sank onto a mat near the table.

He shot another look at the coins
and tried to sweep them off in his
hand. What happened next only in-
tensified his horror. The coins, like
his fingers, had become glued to-
gether, too, and became a kind of
nugget, or one solid piece. The
moneychanger kept turning this
nugget in his hands, unable to shake
off his horror and astonishment.
Suddenly something rustled in
the darkest corner of the room. The
moneychanger turned his head, saw
the same blind old man, and remem-
bered his last dream. He wanted to
get up and rush toward the old man,
but his legs wouldn’t obey him. He
tried to say something, but he
couldn’t even move his tongue. The
old man, as if stopping him, raised
his hand and spoke: “You see,
wicked man, how, cheating me, you
outwitted yourself. What good is my
money to you if you cannot use it?
You won’t dare to appear in public
with such hands. Your business will
be ruined, and you’ll become a beg-
gar like me. But I feel that you
haven’t fallen low enough yet, and I
want to give you a chance to expiate
your guilt. Throw the thing you're
holding onto the floor, and when it
splits into several parts try to as-
semble it again from the pieces.
You’'ll see what will happen then.
But hurry, because every hour it will
become harder and harder to do.”
And so saying, the old man disap-
peared, vanishing into thin air.
When the moneychanger’s aston-
ishment has partly passed, he imme-
diately threw the nugget to the floor.
Sure enough, it split into several
pieces. The moneychanger picked
them up and immediately started
fitting them together. His memory
was very good, and he remembered
clearly what the nugget looked like.
So he easily put together half of it,
and more, but he failed to get be-
yond that point. Not only that, he
suddenly felt that the pieces of the
nugget became heavier and a little
bigger, and that they kept getting
heavier and bigger by the minute.
When he finally reached the point of
inserting the last piece, the
moneychanger could hardly lift it.



He managed to put one of its edges
in place and was trying to adjust the
whole piece, when all of a sudden it
slipped out of his hands and sank
into place, pinching the money-
changer’s thumb. He was pierced by
a sharp pain and fainted, collapsing
near the nugget . . .

The moneychanger
woke up, as always, before
sunrise. He didn’t remem-
ber his dream. He said his
morning prayers and
walked up to the table.
The coins were lying
there as he had left them
the previous evening.
When he reached out for
them, he suddenly re-
called everything he saw
in his dream. He broke
out in a cold sweat. With
a sinking heart he tried to
sweep them off into his

hand and . . . managed to Figure 3

do it. The coins fell one

after another with a gentle tinkling.
And when the last coin fell, the
moneychanger suddenly felt weak
in the knees and sank down onto
the mat near the table. It’s hard to
say how long he sat there. When he
regained con-

. PN
sciousness, 2
he walked p -
into his shop, =

stuffed his
pockets full
of money, <A 0
andwentout /) |
into the ba- A
zaar. He gen-

erously gave

alms to all

the beggars

along  the

From that
day on he did
the same thing every morning, but
he never came across that blind old
man. And all his customers soon
noticed that an inexplicable gener-
osity had been added to his good
heart and simple mind.

And now, dear reader, can you
construct the nugget in figure 3 from
the seven pieces in figure 4?

Figure 4
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Take a lesson from us.

Every week, resourceful teachers lend an ear to
SOUNDPRINT, the acclaimed documentary series
from National Public Radio.

This month, thanks to funding from the National
Science Foundation, SOUNDPRINT will excite the
airwaves with thought-provoking programs that explore
evolving aspects of geography, culture and technology.
KAZAKHSTAN

Travel to a newly independent state as intertwined
peoples rooted in the past begin to build a new society.
MEXISTAN

Compare the mix of cultures in Kazakhstan to those in
the San Antonio, Texas area that cultural geographers call
“Mexistan.”

Miamr’s SoutH BEACH

Accompany a Soviet geographer and professional people-
watcher as he attempts to make sense of this uniquely
American scene.

VIRTUAL PARADISE

Take a trip into the future via the cyberpunk

underground of Generation X.

Listen and learn. For air dates and times, call-your
local public radio station. Or contact SOUNDPRINT @
american.edu via the Internet.
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AT THE AIR FORCE ACADEMY,
THE TOUGHEST CHALLENGES
PROVIDE THE GREATEST REWARDS.

All throughout your life, you never
settled for second best

You've worked hard to achieve your
goals and have now set your sights on even
tougher challenges.

At the Air Force Academy, challenge
_ _ i and competition are a way of life,

A life full of opportunity and the chance to
do things other colleges can't offer.

A life that will be full of rewards Qs you
become an officer in the Air Force and realize that
all your hard work and dedication have paid off

Admission to the Air Force Academy is not
easy. Nothing worthwhile ever Is!

If you meet the standards and have the
desire to excel, you may earn one of the most
exclusive invitations around -- an invitation to
be an Air Force Academy cadet.

Call 1-719-472-2520 or ask
your high school counselor about
application procedures. |
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