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GALLERY O

THIS GENTLEMAN CUTS A FINE FIGURE IN MORE

I *uy, than one. He also had the good fortune to be por-

trayed by the foremost American portrait painter o{ his day,

Clibert Strru.t (1755-1828). Stuart painted the likeness of

George Washington on numerous occasions, but he is per-

haps 6est remembered for the painting he didn't {inish' It was

coinmissioned by Martha Washington in the {inal years of

her husband's liie and is familiar to all Americans as the

image on the US one-dollar bill.

National Gallery of Art, Washington (Andrew W Mellot

The Skater (Portrait of william Grant)(l782lby Gilbert Stuart

I
l

I
!
I

l

lLike the portraits of Washington, this painting exudes

strength and confidence. Mr. Grant manages to maintain
a perf-ectly erect posture even though, from his track on the

ici, he is executing arather tight curve. His skating appears

efiortless, and he would be the last person to worry about

what's happening beneath his blades. He knows it works,

and that's lt orgh for him. Let someone else read "The
Friction and Preisure of Skating" on page 25'Hdd rather
just skate.
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When Pythagoras discovered his famous
theorem, he was so overjoyed he sacri-
ficed an ox to the gods-so the story goes.

Tinkering with triangles and the theo-
rem, another Pythagorean made a star-
ding discovery. If the two arms of a right
triangle are one unit long, the hypot-
enuse is {2. Now, 2 isn't a perfect
square/ so its square root isn't a whole
number or a fraction made of whole
numbers. It's itrational. Pythagoras
was so pleased with the discovery he
sacrificed another ox-so they say.

Morris Kline notes that the second
story is suspect on two counts. First, "if
all the legends telling of Pythagoras sac-
rificing an oxwere trug he couldnothave
had time for mathematics." More impor-
tarriy, irrational numbers shook his phi-
losophy to its core. The Pythagoreans
believed that everything in nature can be
reduced to whole numbers or theirratios.
So another legend has the ring of truth:
sailing to an untold destination, they
tossed the hapless discoverer overboard.

Reprising its appearance in the fanu-
aryfFebruary 1994 issue, the Pythag-
orean theorem pops up in "suggestive
Tilings," which begins on page 36.
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Some thoughts on science education in 2044

S WE CELEBRATE THE soth
Anniversary of the National
Science Teachers Association,
our thoughts naturally turn to

the future. What will science educa-
tion be like 50 years from now?
What will the chronicle of NSTA's
hrsthundredyears have to say about
the period 1995-2044? While it may
be folly to prognosticate, we cannot
iunction as educators without a vi-
sion of the future. What happens in
classrooms fifty years hence will
depend on what we do today. So this
rs a good opportunity to restate our
goals for science education, and to
take stock of science and society, as

we enter the 21st century.
I believe that science itself-its

basic concepts, principles, empirical
laws, and fundamental theories-
will change very little in the next
fifty years. Scientific advances are
slow compared to the pace of tech-
nological innovation. Science educa-
tors will take a great step forward
when they learn to distinguish be-
tween science and technology, yet
are able to use technology to teach
science. The confusion of the two
has long been with us. In 1883
Henry Augustus Rowland, address-
ing the American Association for
the Advancement of Science, said
"the proper course of one in my po-
sition is to consider what must be
done to create a science of physics in
the country , rather than to call tele-
grams/ electric lights, and such con-
veniences by the name of science."
While interactive CD-ROM and
powerful computers (not to mention

electric lights) are not science per se,

they can be very useful in the class-
room, freeing up the teacher to teach
and motivating students to learn
science based on relevance.

What are the most important
things young people in the 2lst cen-
tury will learn from science? The
same things they shouldbe learning
today (only more so). First and fore-
most, they will still need to learn
facts, names, definitions/ concepts/
empirical laws, theories, models,
and universal laws of science, and to
keep them from turning into one
another (the "Law of Relativity,"
the "Theory of Universal Gravita-
tion"). They will learn about count-
less applications of scientific prin-
ciples to meet human needs or solve
societal problems, without losing
sight of the basic science. Second,
they will understand that what
makes a certain kind of activity sci-
ence is its ability to predict. It is not
enough to explain what happened-
science must be able to say whatwill
happen. Students will leam that in a
true science, someone's explanation

of a phenomenon is acceptable only
if independent investigators can
verify empirical facts or reproduce
experimental results. Third, stu-
dents will learn how to learn. In
school they will discover reasons to
keep educating themselves about
science for the rest of their lives,
and they will have picked up the in-
tellectual tools required to do it.
Fourth, they will develop a keen
sense of skepticism. They will care-
fully examine statements from "au-
thorities," whether they are the
world's leading scientists, politi-
cians, or clerics. They will draw on
their own reasoning abiiity and sci-
entific training to study issues and
come to their own conclusions.

How will students acquire these
abilities? Not by burrowing in a

textbook. Not by listening to a

teacher. Not by watching a video, no
matter how well produced, in which
every step in the development of a
particular concept is explained with
the greatest clarity. Not even by in-
teracting with af"ancy computer sys-
tem that provides continuous feed-
back and monitors the student's
progress. They will acquire these
abilities by arduous concentration
and hard work motivated by their
desire to learn some basic aspect of
science for reasons that are entirely
their own. They must be guided to
the science thatthey find essential,
some piece of apuzzle of their own
devising.

These plzles and problems will
be so varied that no classroom situ-
ation or "cooperative group" with a

JUI.Y/AUTtlSI ISS4



general set of "typical" problems
will be appropriate. I foresee that
learning science will become highiy
individualized. The social or group
aspect of science education will in-
volve communicating one's insights
and helping one another in the indi-
vidual struggle to make such dis-
coveries.

So, where does the teacher fit in?
The teacher will be a faciLitator, a
source of guidance. The teacher will
not grade the student. There will be
better means of assessing 

^student's grasp of science, and the
student-teacher relationship will be
the healthier for it. Students will
know that the only thing the
teacher can do is help them learn
science, not iudge their worth by
assigning a grade.

If we do our job well, here in the
late 20th century, one maior impedi-
ment to learning will have been
eliminated: the destruction of self-
esteem in young people who are hu-
miliated in the classroom for failing
to grasp a conc.ept or recall af.act.Per-
haps the most damaging thing a
teacher can do is to tell students, ex-
plicitly or implicitly, that they cannot
leam science-that they lack the in-
herent ability. Unfortunately, this
damaging impression is conveyed
regularly to young people by well-
meaning parents/ teachers, counse-
lors, and others in our society.

In the same address to the AAAS
cited above, Henry Augustus Row-
land said, "American science is a
thing of the future"-meaning it
was yet to be formed. But I would
repeat his words almost verbatim:
American science education is a
thing of the future. But our only av-
enue is through thepresent. Ibelieve
we are living on the cusp between
two worlds. One is a world of strife,
chaos, and misery, fomented by iS-
norance and superstition. The other
is a world of enlightenment, peace,
and prosperity, based on rational dis-
course and universal moral princi-
pals. Education for all-especially
science education-is the only thing
that will keep us from falling into
that abyss.

-BillG. Aldridge
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[Ulalhematics in

porpelual motion

It really does keep going,
and going, and going . . .

by Anatoly Savin

HE WORDS "PERPETUAL
motion" (p erp etuum mobile in
Latin) are usually associated
with a machine like the one

you see in figure 1. According to the
inventor's conception, this wheel
with several balls rolling inside
must not only rotate for an infinitely
long time, it can also set in motion
other machines-looms, lathes, and
so on. By the time we graduate from
high school we all know that such a
machine can't work, because it
would contradict the law of conser-
vation of energy. Yet year afteryear
academies of sciences the world
over receive hundreds of new (and
not new) designs for such machines.
Physicists call them "perpetual en-
gines of the first sort." So-are there
"perpetual engines of the second
sort"? Yes, there are. And that's
what I'm going to discuss here.

Here's an idea for such an engine.
Suppose we have two equallyheated
bodies. As it works, the engine
transfers some heat from one body
to the other without expenditure of
energy/ and then obtains kinetic
energy by means of a heat engine
that uses the temperature difference
thus created. The work of the heat
engine leads to a leveling of the tem-
peratures of the two bodies, so the
entire process can be started again:
heat is transferred from one body to

the other, work is extracted ftom the
temperature drop-and so on to in-
finity,

A perpetual engine of the second
sort doesn't contradict the law of
conservation of energy. In this case,
energy neither appears nor disap-
pears-it merely passes from one
body to the other and then is spent
in the heat engine to perform some
work. In so doing, the temperature
of both bodies becomes lower than
it was initially, but this loss can be
compensated by the heat of the sur-
roundings.

However, there is another law
that prevents the construction of a
perpetual engine of the second sort.
The idea of this law first appeared in
works by the prominent French
physicist and engineer Sadi Carnot,
a son of the outstanding figure in
the French Revolution and weli-
known mathemati cian Lazare C ar -

not. Later it was developed by the
English scientist William Thomson
and the German physicist Rudolph
Clausius. This law is called the sec-
ond law of thermodynamics and
reads as follows: It is impossible to
transfu heat from one body to an-
other without expenditure of energy
if the temperature of the first body
is no higher than that of the second.

This prohibition doesn't look all
that convincing. Does it always

work? The great English physicist
|ames Clerk Maxwell conceived of a
device, called Maxwell's demon, in-
tended to refute this law. Imagine a
box divided in half with a partition
that has a small hole in it and a " de-
mon" sitting near the hole. FiIl the
box with any gas and ask the demon
to let only fast molecules from the
left half of the box into the right half
and leave allslow molecules in the
left half. Since the temperature of a
gas is characterized by the average

ffiD

=o
o
=

x

=o Figure 1
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molecular speed, the gas in the left
half of the box will be cooled and the
gas in the right half will be heated.
A number of devices have been pro-
posed thatt according to their au-
thors, could play the role of such a
demon, but all of them failed to
work because of certain unantici-
pated effects found in them.

However, where physics faiis,
mathematics may succeed. I want to
suggest a device, free from demons
and other evil spirits, that can be built
even in a high school workshop. I'11

present calcuiations that wili clearly
show that this device can transfer
heat from one body to another if they
were heated equally at ihe outset.

Before going into a description of
my "perpetual enging" you'llhave to
swallow a certain amount of math so

that you can convince yourself that
the reasoning and constructions to
follow are correct. We'llbe dealing
with the ellipse and its properties.

By definitior', an ellipse is the
cuwe formed by alJ the points in the
plane such that the sum of their dis-
tances to two fixed points F, and F,
is constant. Each of the points Fr and
F, is called afocusi the constant sum
oI the distances is usually denoted
by 2a.

This property is used by gardeners

when they want to make oval flower
beds. They drive a pair of sticks into
the ground (at the foci), tie the ends
of a rope to them, then take another
stick with a sharp end and stretch
the rope taut with this stick. If the
stick is moved so that the rope re-
mains taut, its sharp end traces an
ellipse. The size and shape of the
ellipse depend on the length of the
rope and the distance between the
foci. You can verify this on a sheet
of paper using two pins and a pencil
instead of sticks {{ig.2l.

After you draw several ellipses
you'll see that any ellipse is a closed
convex curve that has a center of
symmetry and two symmetry
axes-the line FrF, and the Perpen-
dicular bisector of the segmentFf 2.
Also, it's easy to see that the sum of
the distances to the foci is less than
2a lor points inside the ellipse and
greater than2a outside it.

This information suffices to
prove an important and not so obvi-
ous property of the ellipse: the seg-

ments that join the foci of an ellipse
to an arbitrary point M on it make
equal angles with the line that
touches the ellipse at M.

Comparing this property to the
law of reflection of light-the angle
of incidence equals the angle of re-
flection-we come up with the fol-
lowing formulation: a tay of light
issuing from a focus of an eliipse af-

ter reflection from it hits the other
focus.

This is the "optical property" of
the ellipse. It can be observed in na-
ture: there are caves with eilipsoidal
domes where you can find two
spots/ far enough from each other,
such that the voice of a person
standing at one of these spots is
heard at the other spot as if the
speaker were just inches away. And
some palaces and castles have halls
intentionally designed to produce
this effect.

Since the optical property of the
ellipse plays a major role in what
follows, I'11give its proof-it's rather
short and simple.

Let l be the tangent to an ellipse
at its point M lfig.3) and let cr and p

be the angles between the linel and
segments F, M and MF rlF, and F, are
the foci). Reflect F, about I into F1',

ioin F r'F2, and find the intersection
pointNof this segment withl. SuP-

pose N * M; then N lies outside the
ellipse (actually, the entire line 1,

except its point M, lies outside the
ellipse, because any ellipse is a con-
vex curve). Therefore FrN + NF, > 2a
: FrM + MFr. But by the construc-
tion, FrN = Fr'N anLdFrM = Ft'M, so

we get Fr'N + NFz> Fr'M + MF, ot
Fr'M + MFr. Fr'F, whtch contra-
dicts the Triangle Inequality for tri-
atgle Fr'FrM. Therefore, points N
andM must coincide, so FrMFr'is a

straight line-that is, cr = P.

Now let's bring our project to
fruition. Take a sheet of good draw-
ing paper, mark points F, and F, on
it, and &aw two ellipses with the
foci at these points, using a longer
string the first time and a shorter
one the second time. Draw the Per-
pendicular bisector to the segment
FrErand erase a part of what we've
drawn so as to obtain a "mush-
room" like the one in figure 4.

Figure 4

Nowrollyour "blueprint" up, Put
it in a cardboard tube, and go to the
nearest metalworking shop. Ask
that atin sheil be made in the shape
obtained by rotating the curve in the
blueprint about its symmetry axis
f rF, (fiS. 5). The inside of the shell
must be covered with a reflective
coating. When the thing is readY,
take it home. Now you are the

Figure 2
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Figure 6

owner of a perpetual engine! You
don't believe me? We1l, I'll prove it
mathematically.

Place two equally heated bodies
at points F, and Fr. Notice that any
ray lof light or heat) issuing from F,
must arrive atFzffig.6l. Aray propa-
gated along the same trajectory from
F, will arrive back at F, of course.
But look at a ray aimed frorn F, at
the vertical barrier. If there were no
partition, this ray would rebound
from the erased part of the ellipse
and hit Fr. But now it will be re-
flected at some point R of the parti-
tion in the direction it would have
had if it had propagated from F, to R
(fig. 6). Therefore, it will come back
to Fr! And, clearly,leaving point F,
along the same trajectory in the op-
posite direction, we again come
back to Fr. So there's a considerable
number of rays that make "light
loops." In the cross section of our
"engine" shown in figure 5, these
are aLL the rays within the angle
AFrB and the symmetric angle
A',FzB'..

So, the body at F, will be heated,
while the body at F, willbe cooled.
We can even compute the eventual
temperatures of the bodies after the
process stabilizes.

Suppose the initial temperatures
were 7o K (or "kelvins," named af-
ter the English physicist W. Thom-
son mentioned above, on whom the
title of Lord Kelvin was con{erred for
his outstanding scientific achieve-
ments). It's known that the rate of
energy loss by radiation (the lumi-
nosity) is proportional to the fourth
power o{ the temperature (in
kelvins) of the radiating body.
Therefore, if the temperature at

Figure 7

point F, is 7r, and at Frit's Tr, then
the luminosity at F, and F, canbe
written as k( andkTf , respectively.
A11 the rays from F, after one reflec-
tion arrive at F,b:ut only some of
the rays from F, arrive at Fr. How
many? Consider a small sphere cen-
tered atFr. The rays that return to F,
cut a ring out of this sphere lfi4. Tl-
If its area is A, and the total area of
the sphere is A, than the amount of
radiation that comes back to F,
equals ArkTtlA, and the portion
that arrives at F, is (A - A)kftlA.

In the steady state, the energy ra-
diated from point F, equals the en-
ergy that arrives at this point in the
same time interval. That is,

(o- +)U = krl.\t/A

On the other hand, by the law of
conservation of energy, the loss of
energy atF, equals the gain of energy
atFz-thatis, C(7, -Tol: ClTo-721,
where C is the heat capacity of ei-
ther body,(we assume that the bod-
ies are absolutely alike). The last
equation gives 7, + Tr:2T0, so us-
ing the previous relationship and
letting b = l(A - Ar) I A| la, andnoting
that b < 1, we finally get

T, =T&.To,' r+b

2T^

"= ri"o'
That's it! You can check the rea-

soning from the very beginning and
be satisfied that it's perfectly cor-
rect. So, did we really refute the sec-
ond law of thermodynamics? Unfor-
tunately (or fortunately), no. We've
made a mistake. But where? Think

about it yourself, and then compare
your answer with what's written
below. I have a feeling that not ev-
ery reader will be able to find the
correct answer.

You were on the wrong track if
you tried to find an error in the phys-
ics-for instance, in the fact that we
ignored convection. Why? We can
cteate a vacuum inside the shell. But
what else is there in our little "en-
gine" except math and physics? The
error is hiding at the border, so to
speak, between these two sciences-
in the transition from the physical
process to its mathematical model.

Recall that we dealt with two
bodies placed at the foci. Thus, we
neglected the sizes of the bodies.
This is common in physics reason-
ing, and the phrase "a body is 1o-
cated at point M" doesn't cause
anyone to protest. In many situa-
tions, this disregard of the sizes of
the bodies is justifiable. For instance
the motion of a body under given
forces applied to its center of mass
doesn't depend on its size and
shape. Or, as Newton showed, a
body consisting of a number of con-
centric homogeneous spherical lay-
ers attracts other bodies as the same
mass concentrated at the center of
this body. So to reptrace a body with
a point is indeed a customary opera-
tion in physics.

But in our case this operation
leads to an error. Let's see whether
our reasoning remains valid if we
consider balls of nonzero radius cen-
tered at the foci.

Consider three rays reflected from
the ellipse at the same point M in its
left half (fig. B): a ray issuing from the
foci F, and two rays, AM arrd BM,
with endpoints at a distancer fr.or;-i,Fr.

M

IB Y',

Figure B
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After reflection, the first ray will
pass through the focus F,, and the
two other ruys at the same distance
R fromF, (becatselAMFr: ZF*MB
= ZBTMFT= ZF.MAT). By the simi-
larity of right triangles AMF, and
A.MF' r I R = AFrl Af t = F2Ml F rM.
Since M lies in the left part of the
ellipse, FrM.FrM, andsoR >r. This
means that some of the rays from a

ball of radius r centered at F, will
neither come back to this ball after
several reflections nor hit an equal
ball at Fr-these rays will disperse.
And this destroys all our reasoning
and constructions.

Physics lovers who have read the
article to this point can now rest as-

sured that the second law of thermo-
dynamics remains inviolable. And for
math lovers, here are a few more cu-
rious facts about the behavior of rays
reflected in an elliptical mirror.

If. aruy emerges from a focus of an
ellipse, then after the first reflection
it passes through the second focus; i-f
there is no body there to restrain it, it

Figure 9

reflects again to return to the first fo-
cus, then arrives once again at the
second focus; and so on. That's clear
enough. But it's less clear though cu-
rious that with each reflection the
trajectory approaches the line
through the foci, and in the limit
merges with the segment of this line
inside the ellipse. If the first segment
of the trajectory intersects with this
segment not in a focus, it will never
pass through a focus later. Not only
that, if the first intersection occurs
outside the segmentbetween the foci
the same willbe true for all subse-
quent intersections as well (fig. 9).
And most surprising is the fact that
there exists a smaller ellipse with the
same foci such that the trajectory

Figure 10

touches it after each reflection.
Similarly, a trajectory intersecting

the segment between the foci (fig. 10)

wiII do so after each reflection, and its
segments will all touch a hlperbola
with the same foci. (By definition,
this is a curve formed by points such
that the di{ferences of their distances
to the foci equal a given constant.)

These and other properties of re-
flections in a curve or curved surface
are studied in a comparatively new
branch of modern mathematics
called the theory of mathematrcal
billiards. As to the physical side of
the matter, M. I. Feingold is at the
blackboard in this issue (page 40),
showing the effects of reflection in
a parabolic mirror. O
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BRAINTEASERS

Just lol' IhE lun ol it!

B1 16
Band on parade. A huge military band was playing and marching in forma-
tion on the parade grounds. First the musicians formed a square/ then they
regrouped into a rectangle so that the number of rows increased by 5. How
many musicians were there in the band? (S. Dvoryaninov)

81 17
Sixty degrees everywhere. A triangle ABC is inscribed in a rhombus with
an acute angle of 60o as shown in the figure. One of the triangle's angles is
also 60o. Prove that ABC is an equilateral triangle. (V. Proizvolov)

B1 1B
Logic meets physics. There are three lamps in one room and three
switches in another. Each switch is connected to its own lamp. How can
you determr.ne r,r,hich lamp is connected to each switch if you're allowed
to entel the roorn rvtth the lamps only once? (A. Zilberman)

E 8120
f ruistory meets arithmetic. The height of a certain Egyptian pyramid in
_-P. meters is greater than the product of two odd two-digit numbers, but less

Y than the square of their half-sum. For which of the pharaohs was this
fr pyramid built? (You'Il need to refer to an encyclopedia for the heights of
\ various pyramids.) (I. Akulich)
_o
E

B1 19
Magic network, Write the numbers I, 2, 3, ..., 1 1 in the circles in the figure
such that the sum of the three numbers along each of the ten segments is
the same. (M. Varga)

OUAlllIlJ llll/BBAI iIT IAS IRS



[Ulushl'ooln$ and l('ray aslroltolny
"Two things affect us most deeply' the stars above
and the conscience within."-Folk wisdom

by Alexander Mitrofanov

HIS ARTICLE IS DEVOTED TO
a modest but still glorious
event. Thirty years ago-or/ to
be exact, on |une 18,1962-the

iirst nonsolar source of X rays was
discovered. This source is in the
constellation of Scorpio, and accord-
ing to the accepted terminology is
now called Sco X-1.

The discovery was made cluite
unexpectedly during a rocket ex-
periment by the American scien-
tists Bruno Rossi and George Clark
of the Massachusetts Institute of
Technology and Ricardo Giacconi,
F. Paolini, and Herb Gursky of
American Science and Engineering,
Inc. The experimenters had planned
to do research in the X-ray band of
the spectrum (in the region 0.2 nm
< 1" < 0.8 nm) on the fluorescence of
the lunar sur{ace induced by the
flow of fast particles coming from
the hot solar corona (the solar
wind). So-called "so[t" X rays can't
be detected at the Earth's surface be-
cause they are absorbed in the atmo-
sphere. So devices were installed
onboard the Aerobee-150 rocket,
which was capable of lifting scienti{ic
ecluipment to an altitude of 200 km
or more.

At that time the existence of de-

tectable celestial X-ray sources other
than the Sun and Moon was consid-

1X-ray solar radiation was discovered
in the Iate 1940s by American
scientists. In near-Earth orbit the flow
of X-ray radiation {rom the "calm" Sun
is about 106 photons/cm2 ' s. During

ered improbable.l Indeed, the dis-
tances to the stars, even the nearest
ones, are so large that the 1/R2 de-
crease in the flux of X rays from a star
at a distance R would negate all at-
tempts at detecting X-ray radiation
from stars like the Sun and those that
are even hotter and bigger.2

It was estimated that the X-ray
flux from hot stars should not be
more than about 10r photon/cm2 ' s

-far too faint to be detected by de-
vices available at that time. Never-
theless, tn 1962 two of the three
photon detectors in the X-ray experi-
ment showed a sharp increase in the
photon counting rate.

During that historic flight the
rocket rotated about its longitudinal
axis, and the readings of the detec-
tors were correlated with this rota-
tion. Thus, despite the large angular
view of the detectors, it was clear
that the source o{ the X rays was
located somewhere near the center
of our galaxy. The exact direction to
the source could not be established
in that experiment, although evi-
dently neither the Sun nor the Moon
was connected in arry way with the
increase in X-rayphotons. That very
first experiment also showed the
existence of a cosmic background of

solar bursts it increases many times
over.

2Modern technology is capable of
recording the X-ray radiation o{ the
stellar coronas in ordinary stars-for
example, Alpha Centauri, which is a
star similar to our Sun.

comparatively bright, continuous X-
ray radiation.

One year later the scientists again
launched Aerobee, but this time
with new equipment. The angular
view of the X-ray detectors was de-

creasedby means of a Roentgen col-
limator whose walls were impervi-
ous to X rays. The same source
discovered in 1952 was detected
again! But this time its coordinates
on the celestial sphere were deter-
mined. In another part of the sky a
second bright X-ray source was
found, in the Crab Nebula (TauX-1).
There could no longer be any doubt:
unusually bright X-ray sources exist
outside our solar system (see figures
I and2 on page 12). This discovery
revolutionized our view of the struc-
ture of the universe and stimulated
the development of a new experi-
mental science: X-ray astronomy.
You can read more about this in
many fine books on popular as-
tronomy.

As for our story, we leave the sky
along with the discovery that trans-
formed astrophysics in our century
andretumto Earth, to the experimen-
tal equipment that makes such dis-
coveries possible. Let's take a closer
look at one of the tools of X-ray op-
tics-the collimator, which is a com-
ponent of modern X-ray or gamma-
ray telescopes (figures 3 and 4). Its
design is rather simple: it consists of
a system of parallel metal plates/
masks, slits, and little identical tubes
working together to limit the angular
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Perseus

NGC 5624

Figure 1

Map of the X-ray sky fuom data recorded by Uhuru, launched by Ricardo
Giacconi's goup on Decembu 12, 1970. The size o;f a cfucle coruesponds to the
luminescence o;f the source. The source Sco X-1 recorded during the rccket
flight in 1962 is among the bilghtest in the sky. It's located in the center oi the
map, neT the galactic equator. This experiment used X-ray photon counters
with plate collimators having an angulu view of 5 x 5' and 5 x 0.5'.

Coma
Her X-l

cvg A

Cyg X-3

view of a photon detector. The colli-
mator/s walls are usually "blacl<"-
that is, opaque for wavelengths in the
spectral band under investigation.
This ensures that objects located out-
side its view, as well as the continu-
ous background noise, won/t hinder
its observation of sources located at a
small angle to the telescope's axis.

Now, if you were told that binocu-
lars or other optical devices grow in
the forest, you of course wouldn't
believe it. Nevertheless, you can find
something in the forest that looks
very much like an optical device-
the X-ray collimator. I'm serious! A
model of such a device-one that you
could almost use "as is" in an experi-

Figure 3
Collimator composed of metal
capillary tubes.

3C273
Sco X-1

NGC 3783

Cen X-B

Crab
Nebula

ment-grows on birches and some
other trees. It's a polyporoid (Fomes

fomentarius) from the family of tree
fungi (Polyporaceael. You can find
poiyporoids clinging to dead birches
and alder trees. Under birches in-
fected by polyporoids, other mush-
rooms $ow up in due time-specifi-
cally, honey agarics, a "secret"
known to many mushroom hunters.

In its outward appearance and to
the touch, the fruit of a polyporoid re-
sembles natural cork. However,
closer inspection shows that this
" cork" consists of a huge number of
cylindrical pores whose axes are di-

Figure 2
Circular cluster NGC 6624, which
contains a bright X-ray source (see the
map of the X-ray sky in figure L).

rected perpendicular to the lower
horizontal surface of the polyporoid.
These tubular pores contain the
spores. Each year the polyporoid
grows a new porous layer, which is
why the mushroom has a layered
structure. You can tell how old the
mushroom is by the number of pro-
jections on the outside. For our pur-
poses it's noteworthy that along al-
most the entire surface of the
pollporoid the pores don't grow ran-
domly during each season,but are a
continuation of the preceding years'
tubes. Thus, when the spores leave
the tubes, one can look through a
thick, dense layer of pollporoid be-
cause the pores go all the way

through. It's an X-ray collima-
tor, don't you think?3

Find a large polyporoid in
the forest and cut some layers
of different thicknesses from
it. With these samples you
can do several interesting ex-
periments. First, you need to

Figure 4
Plate X-ray collimator used by Rossi and
his colleagues.

3lt's worth noting that the
empty pores of the polyporoid
once served humanity in
another capacity. Before
matches were invented,
polyporoids were used to
prepare tinder-a material that
would ignite and smolder when
a spark landed on it. (The spark
was produced by striking steel
against flint.)

12 JlJI,Y/AUOUST 1Sg4
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Figure 6
Elecfton micrograph of the sudace of a polyporoid.

Figure 5
Cross section of a polyporoid layer.

dry the layers of polyporoid under a
press to prevent them from warping.

Experiment 1. As a first step, let,s
find the density of the pores-that
is, the number of pores per unit area
in a layer of a polyporoid. Then we'll
try to measure the diameterD of the
pores. These tasks are rather easy to
do with a microscope, but you can
still do them without one. We'lluse
an ordinary photographic enlarger or
film projector. With a sharp knife or
razorblade cut off a thin section of
the fruit of a polyporoid, which
should be oriented perpendicular to
the pores-that is, parallel to the
bottom surface of the mushroom.
Then place the section in the en-
larger (instead of a negative), focus
the image, and make a magnified
positive photograph of the section.
However, it would be sufficient just
to trace the outline of the pores on
an ordinary sheet of paper. All that,s
left is to calibrate the magnification
of the enlarger/ count the number of
pores in the photograph, and mea-
sure the diameter of the pores. By
way of example, figure 5 shows the
shadow projection of the cross sec-
tion of a polyporoid with a 2-mm
scaling bar. Figure 5 is a picture of
the surface layer of a polyporoid ob-
tained with a more complicated de-
vice-the scanning electron micro-
scope. The scaiing light bar here

corresponds to 1 mm. These figures
show that the average diameterD of
the pores is about 1/3 mm. The de-
viation is not too large, although,
strictly speaking, the pore's shape is
far from being a perfect cylinder.

Try to figure out why we used a thin
section of the mushroom for our mea-
surements instead of the entire layer,
even though the entire layer also lets
the liglrt through (the pore tubes go all
the way through the mushroom).

Experiment 2. It's interesting to
look at objects through a polyporoid

10o, and for a layer 3 cm thick, it's 1 
o.

Figure 7 shows the hot filament of a
tungsten lamp photographed through
the porous layer of a polyporoid.

After you do the second experi-
ment, you'll probably conclude that
the reflection of visible light from the
walls was very small, as if the walls
were black. Second, you'll observe
some blurring of the {ilament image
connected with the diffraction of light
in narrow openings (which is what
the pores are). For X-ray radiation the

layer. Turn on
your desk lamp,
place a porous
layer of a poly-
poroid in the path
of the light, and
observe the hot
filament through
the pores. To do
this experiment
you need to prac-
tice getting the
right direction and
turning the layer
by small angles.
Thepore-tubes are
narrow/ which re-
sults in a compara-
tively small sight-
ing angle: 0-"* -
DIL ..1. Even for
alayer only3 mm
thic( this is about

Figure 7
Hot filament of a tungsten lamp photographed tfuough the
porous layer of a polyporoid placed in front of the leis.
Note that the image is somewhat blurred, which is the
result of light diffraetion in the porcs.
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Figure 8
Electron micrograph of a portion of the
atrface of a glass collimatoL based on
the so-called microchannel plate. The
main use of the miuochannel plate in
X-ray astronomy is to amplify the
image. The system of empty gJass

capillaries can aTso be used to focus X
ruys (the Kumakhov lens).

role of the diffraction-induced blur-
ring is not as significant (for the
range of sizes used in the experi-
ment)because the wavelength of an
X-ray photon is far less than that of
a photon of visible radiation.

It's also interesting to determine
how the optical characteristics of a
polyporoid layer depend on the pa-

rameters of the pore-tubes-that is,
on the diameter D andlength I. The
optical properties of any collimator (a
polyporoid layer included) are charac-
terrzed first of all by the dependence
of the transmittance 7 on the angle u
between the collimator axis and the
direction of a parallel beam. You may
be tempted to try a third experiment

Figure 9
P olymer porous collimator.

to measure the function flo), but try
to find it theoretically instead. This
task will be of particular interest to
math aficionados. Here I'11 merely
give the result: see equation (1) in
the box below, where 7, is the maxi-
mum transmittance of the collima-
tor (at cr : 0). When the angular view
of the collimator is small-that is,
u << l-this formula can be simpli-
fied, taking into account that for
small o(/ cos d = l, tan ct = cx,: see
equation (2) in the box. Usually the
formula for ?(o) is written in this
form for an X-ray or gamma collima-
tor composed of identical narrow
capillaries.

I could end my story here, but I
really must say a few words about the
technical solutions that humans have
devised to collimate X-ray fluxes. Fig-
ures B and 9 show a glass micro-
collimator with channels 10 pm in di-
ameter and a thin polymer film

collimator {or soft X-ray and vacuum
ultraviolet radiation with randomly
located cylindrical pores approxi-
mately 1 pm in diameter (which
could be made even smaller). The
polymer collimator is only 10-20 pm
thick. The pores in the polymer films
are obtained by irradiating the mate-
rial with heavy ions il an accelerator
and then processing the irradiated
film chemically. These and other ar-
tificial porous structures have been
used for a long time in elecrronics and
optics, as well as in many technologi-
cal processes for licluid and gas filtra-
tion. These materials, of course, have
far outstripped the poiyporoid in their
technical characteristics and poten-
tial uses. But then, these fancy gad-

gets don't sme1l like mushrooms, and
there are no honey agarics growing
underneath. . . o
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can't both be divisible by 2 arrd can't both be divisible
by 5. So we're left with four possibilities:

(1) x is divisible by 10ft;
(21 x - 1 is divisible by 10ft;
(3) x is divisible by 2k andx - 1 is divisible by 5k;
(4) x is divisible by 5k and x - I is divisible by 2k.

Since x < 10&, the {irst possibility can occur only i{ x = 0;
similarly, the second possibility corresponds to x = 1.

Lr case (3 ) the numberx (and in case (4) the numberx - 1 )

isoneof thenumbers a.2k, andsince x>x- 1>5k,
we know that 0 < a < 5k - 1. All these numbers yield
different remainders when dividedby 5k, because if the
numbers Zkb and2kc give the same remainders upon
division by 5k, then their difference 2k(c - b) is divis-
ible by 5k, and so by 10k as well, which is impossible
for 0 < c -b < 5k. But there are only 5k possible remain-
ders, so each of them is represented once among our
numbers 2ka. This means that exactly one of these
numbers-say,Zkar-'has the remainder l, so that for
x = Zkav the numberx - I is divisible by 5ft. Similarly,
exactly one of these numbers-say, Zkar-has the re-
mainder 5k - 1 when divided by 5k, and-so, for x - I =
2ka, the number x is divisible by 5k.

This conclusively shows that in each of our four
cases there is one and only one x satisfying our condi-
tions, so the problem has exactly four solutions. It's
also clear that in case (3) the number x ends in 6, and
in case (4) it ends in 5. The proof is complete.

Second proof . We'll take it for ganted that the prob-
lem has no more than four solutions. (We know this from
the first proof, but it can be proved directly as we11.)Also,
we'll use induction over k: we'll assume that we've al-
ready found the numbers xu_, and )27._ 1 ending in 5 and
6, respectively, such that 0 (xo_, . lG- I, 0 ( /r_ r . 1S-',
and the differences x? _ t - xx _ , and yoz_ f yx _, are di-
visible by lgr- 1 (we create a basis for the induction-
that is, the existence of x, and yr- by setting xr = 5,

=o
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Throuuh thg decimal poiltt

Where the quadratic x2 - x has four roots

by A. B. Zhiglevich and N. N. Petrovl

E WILL TRY TO PERSUADE YOU THAT THE
number of roots of the ecluationx2 = x is not two/
as everybody thinks, but four, as stated in the
title of this article. But first we offer the follow-

ing undisputed fact. If a natural number (in decimal no-
tation) ends in any of the digits 0, l, 5, or 5, its square
ends in the same digit. This also applies to the two-digit
endings 00, 01, 25, and75-thatis, if a number ends in
one of these pairs of digits, its square does too (for in-
stance, 17 62 = 30,97 6j 2252 = 50,625 ; and so on). A simi-
lar property holds for the three-digit endings 000, 001,
625, and376. At the same time, no other one-, two-, and
three- digit endings possess this property. What's so
special about these combinations of numbers? The
answer is given by the following theorem.

THroRru. For any natural k there are exactly four
sets of k digits (00. . .00, 00 . . .01, and two more, ending
in 5 and 6, respectively) such that if a natural number
ends in one of these sets of digits, the square of this
number ends in the same set of digits.

To eliminate any doubts, we'llgive two proofs of this
theorem. But first let's try to understand better what
we have to prove.

We're looking for an integer & 0 < x < 10&, such that
for any integer a > O the square of the number 10&a + x
(which is the general form of a number whose k-digtt
ending coincides with x) has the form 10kb + x, where b
is an integer. But (108a + xlz = tCf(tOka2 + 2axl + x2, so
our condition simply amounts to the fact that x2 - x is
divisible by 1S. Thus we've arrived at a very simple prob-
lem: to find all integers x, 0 < x < 1#, such that x2 - x is
divisible by 1S. We must make sure that this probiem
has four solutions, and that these solutions have the prop-
erties specified in the theorem.

First proof . The difference * - x = x(x - 1) must be
divisible by 10k : 2k5k. But the numbers x and x - 1

lSome material by V. Denisenko was incorporated in
this article with his permission.-Ed.
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y r = 6l.Now we have to find the numbers xo and yo with
similar properties.

To find x7., let's square xo _ , and take the last k digits
of this square/ so thatx?_ r = 10ka +xo. Let's show that
*i - *t is divisible by 10k:

,?-rt =l"?_,-lokalz-("?_, - loka)

= *X_r-2axl_, . 100 + IO*a2 -*?_r+ lOka
: (" 

? _ r- xk _, )(r?_, * x1_ 1) + 10kl 10ka2 + a - Zax f; - 1lr.

But xo2_ r - xft - r is divisible by lG- 1, and x | _, + xo _, is
divisible by 10 (since both xo_, and xo2_, end in 5).
Therefore, both terms in the last expression are divis-
ible by 10k.

The construction of yo is a bit more complicated: we
have to take the last k digits of yf _ r. the divisibility
of yk2 - lr7. by 10k is proved in almost the same way:

v? -vx:bf -r-tokblz -(vf -1- lokbl
= b ? -, - vt )lv f -, + Y I - r + Y f - r+ rf- r + v f - tl+ lOk c,

where c:tOkb2 +b-zbyf_,. Thetermyos_ r+ ...+yf_r
is divisible by 10 because it's the sum of five numbers
ending in6, andthe differencey?_r-yt _, is divisible
by 1Or - 1 by the induction hypotheiis. So yo2 - yo is di-
visible by 10k, and we're done.

Implim[ions
From the first proof, we can see that the sum of the

third and fourth numbers we've found is equal to 10& +1
(indeed, 25 + 76 = 101, 625 + 376: 1,001).

Exercise 1. Prove that this is true for allk.
The second proof demonstrates one arnazing fact:

the fourk-digit endings that are preserved under squar-
ing are obtained from the respective (k - 1)-digit end-
ings preserved under squaring merely by adding one
digit on the left! Indeed, the lastk - 1 digits ofxo coin-
cide with those of x|_r, and so they constitute xo_ r;
only the kth digrt from the right in xo is new. In a simi-
lar argument for the y's we must use the fact that yo _,
comprises the last k - 1 digits of y f _,: this follows from
the identity y f - t - y * _ r : (V ? _, - y x _ rl(y x _ r + 1 )( yo2_, + 1 )

and the divisibility of y ? _ r - yt _, by 10k - 1. You may
have noticed this already in our numerical examples:

0-00-000-...,
1-01-001-...,
5-25-625-...,
6-75-375-....

Thus, in the sequence 5,25, ..., xk_r, xk,... , the
terms are built up by adding digits on the left end; this
is also true of the sequence 6,76, ... ,yk_1, yp, .... If we
don't interrupt this process, it will yield two infinite
"numbers"; with ten digits written out they are

x: ...82t289062s,
Y = ...1787t09376.

We cautiously put the word "numbers" in quotation

marks, but, as we'll see in a while, these infinite se-
quences can quite legitimately be granted the status of
genuine, though somewhat unusual, numbers.

A new kind olnumhel'
We need a name for our inIinite-to-the-1eft sequences

of digits ...a4azazar. Let's call them supetnumbers.Il
all the digits in such a sequence starting from a certain
place are zeros, we'll say that this supernumber is an
ordinary number-for instance,

...000132 : t32.

Thus, among supemumbers one can find all ordinary
nonnegative integers, but other "numbers" as well.
Supernumbers can be added and multiplied using the
ordinary digit-by-digit rules (fig. 1). They resemble in-
finite decimals, as if they were reflected through the
decimal point, except that because of the "carry," the
rules for performing operations are not reflected. This
makes them an essentially new algebraic object. How-
ever, for ordinary supernumbers these operations are
our usual addition and muitiplication. It's interesting
that supernumbers can be subtracted from one another
in any order, also in the usual digit-by-digit way-see
figure 2. (The relation " greaterf srnaLler" cart't be intro-
duced for supernumbers so as to agree with the alge-
braic operations as it does for ordinary numbers.) In
partiatlar, any supernumber can be subtracted from
zero (the supemumber ...000). Therefore, all ordinary
negative numbers can also be found among
supernumbers. For example, figure 3 illustrates the
equality -132 = ...999858. We can see that "ordinary
negative integers" are simply supernumbers with an
infinite row of 9's to the left.

Addition and multiplication of supernumbers, and
subtraction as well, have the usual properties of these
operations: a + b = b + a, ab = ba, a + (b + cl : (a + bl + c,

a(bcl = lablc, a{b + cl = ab + ac, arld so on. In particular,
for arry supemumberxwe can calculate the supemumber
* - ,, and our theorem immediately tells rs that the

a .... _.6847
+.... ..4219

..._..t066

......6847
x.... ..4219

......t623
......6847

......3694
...... 7388

......2628

4219
6847

.7372
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. . . ..99868

Figure 3 Figure 4

ecluation x2 = x has exactly four solution in super-
numbers: 0, 1, X andY.

And that's the result we've been waiting for.

llow is fialRossible?
If the operations on supernumbers obey the usual

rules, the usual proof of the f.act that the equation
* - x = 0 has two solutions must work equally well
with supernumbers. Let's see if they really do. As be-
fore, * - x = x(x - l)-there's nothing to rule out this
f.actorization. Therefore ,ilf.* -x: 0, then eitherx = 0 or
x- 1 = 0. But why? How do we know that the product
ab of supernumbers a andb is zero only if one of them
is zero? In (act, that's wrong! We know perfectly well
that XY: 0!

Indeed, xo is divisible by 5k and yo is divisible by 2k,

so the productxT,)zp is divisible by lOk- that is, it ends
in k zeros. So multiplying X and Y digit by digit, we'll
get only zeros in the result. To dissolve any possible
doubts you may have, look at frgure 4.

If a+0,b+O,butab:0, thena andb arecalledzero
divisors. There are no zero divisors among ordinary
numbers, but we can find them among super-
numbers-and that's the gist of the matter.

By the wa, now we can verify once again that X andY
satisfy our equation: since X + Y = 1 (rememb et, xp+ /p:
10ft + 1- see exercise l), X(X - 1 ) = -X( 1 - Xl : -XY : O,

and, similarly, -Y(Y - 1) : 0.

The equation P=I
Ifx2 :x, then# :* - x : X. x =* = x, * : * . X : X

. x: *: & andso on: x5 = x, * = x,... . So ourfour
solutions to * : x satisfy xm = x for arry m. But does
the equation xm = x have any other roots?

Let's startwith m = 3. Besides 0, I, X, and I the
equation # = x has a solution X - Y:

lx - Yl3 : vz - Y - \xY(x - Yl = x - Y,

because XY = O, alternatively, we could prove that
(X -Ylz = l, which also implies lX -Yl3 = X -Y.In ad-
dition, we can reverse the sign of any root of the equa-
tion # : x and this will yield four other solutions: -1,
-X, -Y, Y - X. A11 in all, we've found nine solutions:

Exercise 2. Prove that the equation f = x has no
other solutions.

The case m: 4 (and in general the case of any even
m-see the theorem below) is not as interesting.

Exercise 3. Prove that the equations * = x andl2:
x have the same solutions.

In the case m = 5 new solutions emerge. To describe
them, it will suffice to display one of them. Consider a

sequence zo in which 1= 2 and any term zo consists of
the last k digits of zf _ r:

zt : 2, zr: 32, z, : 432, ... .

Exercise 4. Prove that zo is obtained from zo_rby
adding one digit on the left, and that zf - zo is divis-
ible by 10ft for all k.

The numbers zo define the supernumber

z = ...9879t85432.

Exercise 5. The equationxs -xhas fifteen solutions:
the nine solutions of # - x (see exercise 2) and the
supernumbers Z, -2, X - Z, Z - X, X + Z, -X - Z.

For greater values of m new solutions don't appear.
The reader may try to prove the following theorem.

THronil,{. If m is even, the equation xm : x has the
same solutions (in supernumbers) as x2 = x. If m has
the form 4n - 1 , this equation has the same solutions
as # - x. And if m: 4n + 1, then xm : x has the same
solutionsasx5-x.

Here is one more statement conceming the equation
x- : l:If m is odd, thenx- : t has only one solutionx: 1.

If m is even but not divisibleby 4, then xm = I has four
solutions: l, -1, X - Y, Y - X. If m is a multiple of four,
then xm = I has eight solutions: 1, -1, X - Y, Y - X, X - Z,
Z-X,X+2,-X-2.

fuo mol,e eqtlatiolr$

Exercise 6. For what (ordinary) numbers m does the
equation mx : I have a solution in supernumbers?
(That is, what ordinary fractions can be found among
supernumbers?)

Exercise 7. Is the statement of Fermat's Last Theo-
rerrl-"If n is an (ordinary) integer greater than 2, then
the equatiort xn + yn : zn has no roots"-true for
supernumbers x, y, z7

Conclusion

If the notion of supernumbers rang a bell for you,
don't be surprised. They are known to mathematicians
as "integer lO-adic numbers." A11 the troubles-or, to
put it more positively, surprises-that we've encoun-
tered are due to the fact that 10 is a composite num-
ber. If we had consideredp-adic numbers with a prime
p (which are defined the same way except that we'd
have to write them using the number system with the
base p), our equation * = x would have had two solu-
tions, as it should. Actually, if our number system had
a prime base, we wouldn't have had enough material
foi an article like this. O

.....00000

.....00132

......052s
x......9376

......3750
......437s

...... 1875

.....5525

0000
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0, 1, -1, X, -X, Y, -Y, X - Y, Y - X.



The $tlpel'pt'ohlem ol

$pace lliUht

and the resurrection of the fathers

by Albert Stasenko

HY A "SUPERPROBLEM"?
As i{ there weren't enough
problems foisted on poor, de-
fenseless students. Like this

The Tsiol kovsky formu la

one. . .

Imagine that an astronaut, build-
ing a structure in the boundless ex-
panse of outer space/ swallowed a

nut and needs to be taken as quickly
as possible from the spacecraft to the
space station traveling parallel to it
with the same speed at a distance of
100 km. The maximum accelera-
tion the astronaut can endure is 49,
where g is the acceleration due to
gravity. The question would natu-
rally arise for the captain of the
spacecraft: what is the minimum
amount of fuel the ambulance
rocket needs to take the victim to

m- LM

N=EP

:, .,,',,; ,llTlie:heauenly,Yorlds:i ,tsil!llffi:ei.::.i.1 lir:i

future home of the fathers,.as
the heavenly spaces can be
accessible only to those who
are resurrected and resurrect-
ing: the study of heavenly

r 
1r1, ;,,:,$.p,a$,e,$,:i,1$i.l.a'lp:[.ep'a:fa!i]gn..]ito,f;]..:i,tl:,1

r,, r,.,ihe:$&,..,,:.i,n.ha.biitantC,|ll;,N.r.,,.,,.F..,.,. 
.:,, t.,,,

Fyodorov, The Phitosophy of
the Common Cause

the doctors as quickly as possible?
The speed at which the combustion
products are ejected from the nozzle
of the engine is constant and equals
2 km/s.

Now the usual thoughts occur to
the captain. Let the rocket have a

velocity v and mass m at a given

moment. We mentally divide the
rocket into two parts (fig. 1): one part
that in the time At will move back-
ward (the combustion products), its
mass being LM; and another part
with a mass m - A,M thatwill move
forward with the astronaut, attatn-
ing the velocity v + Lv. Denote the
velocity of the ejected gas relative to
the rocket as uoi then its velocity
relative to the starting point will be
(v + Lvl -uo. As the separation of the
two parts results from the action of
intemal forces, the total momentum
of the rocket and the combustion
products does not change (in the co-
ordinate system of the space station
and the spacecraft, which move par-
allel to one another with the same
velocity relative to the stars):

(m - LMllv + Av) + LM(v + Lv - us)

= IT7V.

After some algebraic manipulation
(the captain had leamed to do it in his
head way back when he was on
Earth), the law of conservation of mo-
mentum takes the following form:

mLv: uoLM. (1)

Taking into account that the
ejected mass is equal to the decrease

v+

t+ Lt

Figure 1
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in the rocket's mass (AM = -Lml, we
can rewrite equation (1) as

Lv Lm

"Well, wellr" you may be think-
ing, "this imaginary captain wasn't
such a good student/ was he? Why,
elementary integration of equation
(2) gives us the Tsiolkovsky formula

t 
= 1r-o {31u6m

(in which we assume that att: 0 the
rocket's mass was mo).

Rest assured, the captain knew
equation (3)-otherwise he wouldn't
have passed the examinations to be-
come an astronaut. But he had been
ordered to take the victim as quickly
as possible, yet with an acceleration
of no more than 49, which means that
during the flight the acceleration
must be constant-thatts, a: a^o=
49. This means we have to go back to
equation (2)-the differential version
of equation (31-and dividing by Lt,
set Lvf\t = 49 = constant. Inserting

a

4g

0

-49

v

mo

m(r)
0

Figure 2

into equation (3) the required veloc-
ity change v:4gt, we get the equa-
tion for the change in the rocket's
mass that must be fed into the
onboard computer:

4gtm,!!_=s uo. 
l4lmo

Traditionally another condition (con-

stant rate of fuel consumption) is ex-
amined-that is, p : constant (kg/s),
which means that m(tl = mo - Ft. But
this leads to a continuously increas-
ing acceleration, which can violate
the condition of our problem. So it
wasn't for nothing that all these
thoughts flashed through the
captain's mind!

Not much remains for us to do.
The ambulance rocket must come to
the space station with zero velocity-
any small but finite velocity at con-
tact will give an in{initely large accel-
eration, which is forbidden. In our
problem the trip is made with uni-
form acceleration. Thus, the motion
oi the rocket can be depicted as a
time-dependent graph (frg. 2). It shows
that in the middle of the trujectory, at
time t = r I 2 (wheret is the total travel
time) the propulsion force must re-
verse directions. From the well-
known laws for motion with uniform
acceleration, we obtain

from which we get

The final mass of the rocket will be

is used up the moment the rocket
docks with the space stationl.

Now here's another problem. In-
stead of a nut, the astronaut swallows
a sandwich {which isn't as harmful)
because he suddenly sees an enemy
spacecraft approaching with uniform
velocity vo = 2 km/s. How near
should he let the spacecraft approach
before he launches a missile if he
wants to get the most out of his mis-
sile (that is, deliver maximal kinetic
energy to the targetl? The missile's
control devices can bear an accelera-
tion of no more than 1009; the veloc-
ity of the gas ejected is the same as in
the previous problem (un : 2 km/s).

It's clear that the missile must
travel with the maximum accelera-
tiona = a**= 1009, andthereareno
reasons to change the direction of the
reactive forcg so the relative velocity
of the missile and the target changes
according to the equation v : vo + atr
and the di.stance between them s =
so- vot-Yzatz.

The formula for kinetic energy
can be obtained from equation (4):

K =mvz =-o n
22

It's clear that this product of a de-

creasing exponent and an increasing
parabola has a maximum. This
maximum can be found from the
graph of the kinetic energy as a func-
tion of time (fig. 3). Those readers
who know calculus can set the first
derivative equal to zero: dKf dt:0,
from which we get

lv^ + atl
- 

\' u --'l +2(vo + df) = 0.
uo \r

This equation has two roots. One
corresponds to vo + at = 0 =+ t, =

-lvolal < 0; sincet, is negative, itre-
lates to the past and so does not in-
terest us. (The spacecraft are getting
closer, which means that vo > 0.)The
second root is tr:1: (zuo- volla,
which, under the conditions of our
problem, yields

1.1_1l=ft110r =2 s.

l2lUg

at
--, ,2

"o (vo + ar) .

r -t -(r,\2 -gr,2..._-.._ul-l 
--t2 2\2) 2

asE 410
mF) 

="- %tli - e z.to'
mo

Thus, the initial amount of fuel that
made up part of the rocket's mass
can be obtained from the equation

mo-m(r) 
= t_!

mo e2

(where it is assumed that all the fuel

I
,e'
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Figure 3

This root could well be negative, if
vo > Zuo-that is, if the spacecraft
are approaching so quickly that
the missile doesn't have enough
time to reach a velocity corre-
sponding to the maximum kinetic
energy:

vo

r/ _Zmouf,e"o-.max 
2e

Finally, we obtain the required
distance so by substituting r in the
expression for s(t):

s(r) : o,

"^-4uZ-v3=5km.to- 
2o

Thus, we have imagined and
solved two problems using equa-
tion (3), yet how different they are
in their aimsl One is for help, the
other for harm, and both use the
most advanced technology. Are
human beings destined to tread a
vicious circle of creation and de'
struction forever, despite our ever
growing knowledge? Were our
greatest minds right to be pessi-
mistic?

"Perfected methods and unclear
purposes-these are, to my mind,
the characteristics of our time."

(Albert Einstein, The Common Lan-
guage of Sciencel

"Our winged thoughts turn into
poultry." (Henry David Thoreau|

"Adhering to old practice, we
again consider science as merely a
new way to obtain the same old
things, bread and arable land. We
yoke Pegasus to the plow." (Pierre
Teilhard de Chardin)

Still, there is some hope. First of
all, there is the very existence of
{light, which is somewhat more
than just a transiti.on from point A

to point B. Do you remember what
you felt the first time you f1ew,
watching clouds beneath and the
abyss above, fu1l of stars and the
shining Sun? (Physicists have
wanted to fly from time immemo-
rial, it seems, beginning with
Daedalus-surely he was a physi-
cist?-and his disobedient son
Icarus.) For example, in 1783 |acques
Alexander Caesar Charles, an expert
in the laws of gases/ constructed a
balloon just after the Montgolfier
brothers. Charles filled his with hy-
drogen and made several flights, in-
cluding one over the Alps. In 1804

|oseph Louis Gay-Lussac made two
flights in a balloon and reached an
aititude of 7 km. In 1887 Dmitry
Mendeleyev, who devised the peri-
odic table of the elements, made a
solo flight in a balloon to observe a
solar eclipse (he was in his forties at
the time).

But the person who discovered the
remarkable equation (3) above-what

was he thinking about? Indeed, why
would a provincial schooi teacher be
drawn to outer space from the green
pastures and forests, neglecting day-
to-day life and spending most of his
income on experiments and pdvate
publication of his works, which
were rejected at the time by almost
everyone? We can't ascribe it all to
a maniacal striving for worldly
glory-everything in his work is so
right and so fruitful. His motivation
must lie deeper.

In his diaries he complained that
people considered him "just a one-
sided mechanic, not a thinker. A
rocket for me is only a means/ a
method for penetrating into outer
space." But why? And then, step by
step/ a suspicion arises that every
$eat thinker tries to solve some
superproblem that lies far beyond
common sense. The discovery of
such a superproblem is a most im-
portant f.actor in the history of sci-
ence and a most useful element in
teaching.

In the history of Russian astro-
nautics one can discern a chain of
shining personalities and memo-
rable events-logically connected
links amid the jumble of persons
and occurrences. Let's begin with
N. F. Fyodorov (1828-1903), the il-
legitimate son of Prince Gagarin
and the librarian of the Rumyantsev
Museum. Fyodorov was "a modest,
unpretentious philosopher in old,
shabby, but still tidy clothes" who
published almost none of his medita-
tions duringhis lifetime. What occu-
pied his mind? Nothing less than
physical, corporal immortality, and
not only that of futwe generations
whose science will have reached the
required level (this would have been
understandable but selfish on their
part), but also of past generations-
in a word, the resurrection of the
fathers. He saw this as the main
purpose of science, and he even de-
manded that universities be built in
cemeteries so that students would
not waste their time on trifles, but
think about the victory of life over
death.

Just as our modern terminology
divides all science into "basic" and
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"applied," Fyodorov seemed to be an
advocate of. practical, applied Chris-
tianity. In this he was in absolute
accord with the tenets of the Ortho-
dox Faith: "I hope for the resurrec-
tion of the dead and the life of the
world to come."

What was he thinking when he
went up to the mountains of the
Pamirs? That there the heavens are
rtearert the Sun and the Moon are
absolutely white, and the stars are
colored but do not twinkle? Or that,
according to the ancient Aryan tra-
dition, every mahatma (teacher)
must spend time in the Himalayas?

"Between the multitude of dead
generations and the plurality of
worlds an expedient relation is pos-

sible, to create all the inhabitants of
all the worlds from a single blood
and the ashes alone of Earth . . . The
Earth that swallowed countless
multitudes of generations, moved
and guided by the heavenly filial
love and knowledge, will return
those it swallowed and will populate

the celestial, now soulless . . .starry
worlds with them. It willbe a great
and wonderful but not miraculous
day, as the resurrection will result
not from a miracle, but from knowl-
edge and work in common." (N. F.

Fyodorov, The Philosophy of the
Common Causel

The next link: for three years

{I87 3-187 5) this Russian philosopher
guided the self-education of K. E.

Tsiolkovsky. Surely Fyodorov's ideas
were accepted by his pupil as a
stimulus for a concerted effort-not
the resurrection of the fathers, how-
ever, which was and still is impos-
sible, but preparation for the next
step: solving the problem of where to
put the resurrected as well as future
generations of sons. The answer was
obvious: upward, toward weightless-
ness, toward the sea of light, the
ocean of energy-into outer space!

Andnow comes the link connect-
ing the physicist and thinker Tsiol-
kovsky with the rocket designer
Sergey P. Korolyov-the practical

iink in this chain. Their collabora-
tion led to the first artificial satellite,
or "sputnik" in Russian (1957); then
the first human being in space 1196ll
(was it only a coincidence that the
first cosmonaut, Yury Gagarin, had
the same surname as N. F. Fyo-
dorov's father? ); then the first humans
on the Moon (1969), and the list
goes on.

Thus, physics and technology, to
their honor, managed to overcome
the Earth's gravitation.

Of course, the tremendous and
noble goal of defeating death not
only in the future but in the past is
far from being reached. (According
to Fyodorov, the basic idea occurred
to him in 1851, whereupon he as-

signed the task to human reason to
fulfill.) Our current thinking says
this is most likely a Utopia-or, per-
haps, the sole prerogative of the A1-

mighty. But what noble "spiritual
springs" may underlie the simplest
formulas in physics-for example,
equation (3)! o
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BLACKBOARD I

The lriclion and pre$$tlre ol slralinU

Also glaciers, pressure cookers, and the Carnot theorem

by Alexey Chernoutsan

I F YOU WERE TO ASK A TEN-
I lear-old child why ice skates
I glide so easily on the ice, the an-
I I*"r you'll probably get is the
simple and obvious one: "The skates
rub against the ice and they make a
thin watery film, and this helps the
skates slide along the ice." A stu-
dent more experienced in physics,
however, would find this answer too
simple and rather boring. "No, no,
no," the budding physicist will say,
"it's not a matte'r of friction but of
the pressure of the skates on the ice.
As the pressure increases, the melt-
ing point of ice becomes less than
0oC, so the ice melts under the
skates." There is some merit in this
explanation-the melting point of
ice actually does decrease with an
increase in external pressure. How-
ever, physics is a quantitative sci-
ence. If we want to find out whether
this physical phenomenon has any
bearing on ice skating, we need to
produce the appropriate numerical
calculations.

First of all, what is the melting
point of ice, and why is it interest-
ing? As you may know, when the
temperature increases to this point,
it can't be raised any further, and
any additional heat goes into melt-
ing the ice. If no heat is provided
from outside, the ice and water coex-
ist in thermal equiiibrium. Thus, the
meltingpoint is the equilibrium tem-
perature of water and ice at a given
pressure. For example, it's equal to
0'C when the pressure is 1 atm.

f
o
ao
(o
o
@
0)
x
3'j::

2$0UIt'lTllil/AI Tllt 0LlCl([01R0 I



How much will the temperature in-
crease when the pressure increases
to 1.01 atm?

Surprisingly, it is the Carnot
theorem that helps us calculate the
shift in the meltingpoint of ice. Yes!
The very theorem that deals with
the maximum efficiency of heat en-
gines. "What has this to do with the
melting point of ice?" you may ask.
The point is, Nicolas Camot proved
that the maximum efficiency of a
cyclic heat engine of any design does
not depend on what this engine uses
as its working substance-an ideal
gas, melting ice, or a soapy film.
Only one condition must be met:
the engine must acquire heat at a
temperature T, and release it at a

temperature T, (there must be no
heat exchange during the intermedi-
ate steps). The efficiency of such an
ideal engine (known as a Carnot en-
gine) is attained by a slow, reversible
process and, regardless of the work-
ing substance used, equals

W 7,.7"
n_ _= _;, 

(1)qir
where I4l is the work performed by
the engine per cycle and Q, is the
amount of heat obtained at the tem-
perature 7r.

Let's consider our imaginary
Carnot engine to be a vertical cylin-
der with a piston (fig. 1a). Inside the
cylinder we put ice of massm under
PressureP, = 1 atm and temPerature

0'C (71 :273K\. Thepressureis sta-
bilized by a weight set on the piston.
To underscore the state of equilib-
rium between the water and the ice,
the figure shows a small amount of
water at the corner of the cylinder.

Now let's describe, step by step/
what goes on in this kind of Carnot
engine during one complete cycle.

1. Let's set the cylinder on a ther-
mal reservoir at a constant tempera-
ture 7, and transmit heat energy Q,
= Lm to the system necessary to
melt all the ice (I is the latent heat
of fusion). As a result, the piston
sinks a little (fig. 1b), because the
volume of ice Vi: mlpi is larger
than that of water V* = m/p*. This
melting stage is represented by the
line 1-2 on the graph, where the co-
ordinates are pressure P and volume
v (fig.2l.

2. Now we take the cylinder away
from the thermal reservoir, isolate it
thermally (fig. 1c), and then increase
the pressure very slowly until it is
equal to P, + LP: 1.01 atm. (This
can be done by pouring sand slowiy
onto the piston.) This will result in
a decrease in the temperature down
toTr=Tr-LT, which is equal to the
melting point of ice at apressure of
1.01 atm.

3. Now we put the cylinder on a
thermal reservoir at a temperature ?,
and remove heat until the water
freezes again (fig. 1d). In figure 2 this
stage is shown by the line 3-4.

4. All that's left is to thermally

isolate the cylinder and slowly re-
move all the sand from the piston.
This brings us back to the initial
state.

Now let's do some calculations.
The work performed during the
cycle can be found from the graph -it's equal to the area outlined by the
cycle:

(* -)w = LP(vi - y,)= oPl "'- "' 
l.

[Pi P* )

The amount of heat obtained from
the heater is

Qt = Lm'

Hence, from the Carnot theorem (1)

we get

AT

TT

or, for any arbttrary temperature 7t
:7,

' r)
^r = ^P!l 

L.

This is known as the Clapeyron-
Clausius equation. Substituting nu-
merical data in this equation gives
us A? = 9.2. l}-s K forM = 0.01 atm.
The effect is clearly very small. To
change the melting point by say, I K,
we need apressure of about 133 atm.
Now we can get back to our skating.

The pressure produced by an ice
skater can be estimated as P : mglS

= 600 N/2 cm2:30 atm. The corre-
sponding shift in the meltingpoint of
ice is about 0.3 K, which is surely too
little on a cold winter's day. So the
"l\aive" little kid was right after aII:

^P(r- 
-'l

Ip, p* )
Lm

I atm

b

T
1 atm

waterrt Aa
TT le,

d TA
1.01 a

ice

r1*Ar I a
Tt- ^T Yo,

Figure 1
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a lubricant is formed primarily by
friction. Then what kind of role do
the skates play? It turns out we need
them after all! Without going into
the details of "skating physics," I'11

point out one obvious fact: far less
ice needs to be melted to lubricate
the blade of a skate (whose surface
area is rather small) than it takes to
lubricate the sole of a boot.

Are there any other phenomena
where an substantial shift in the
melting point of ice occurs? Most
certainly. For example, consider the
way a huge glacier overcomes ob-
stacles as it creeps down a slope.
Right where the glacier comes up
against aboulder or outcrop/ agreat
amount of pressure builds up, which
causes the ice to melt. In a way the
glacier flows around the stone and
lets it pass through the ice. When
the pressure drops, the water in the
glacier freezes again.

"This is all very interesting," you
rr,ay sayr "but is that all you have to
show for yourself?" Of course not.
Let's take a closer look at our result.
Now we can calculate the change in
the equilibrium temperature of two
phases-liquid (water) and solid
(ice)-caused by a variation in exter-
nal pressure. What's most remark-
able is that we can apply the result
to any other pair of phases, provided
they are in thermal equilibrium-for
example, liquid-vapor, metal-molten
metal, solid-vapor, and so on. In other
words, the Clapeyron-Clausius equa-
tion holds not only for melting, but
for any process involvirrg the transi-
tion o{ a substance from one phase
to another (evaporation, sublima-
tion, and so on). For these processes
we need to modify equation (2) with
the corresponding values for the
densities of the substance in the two
phases and the latent heat for the
phase transition.

By way o{ example, let's look at
the transition of water to vapor. As
you know, vapor that is at equilib-
rium with water is called "satu-
rated." The relation between the
temperature of the saturated vapor
and its pressure is used to calculate
atmospheric humidity, the dew
point, and so on. In addition, the

v

Figure 3

temperature of saturated vapor (that
is, the equilibrium temperature in
the water-vapor system) determines
the boiling point of water at a given
external pressure. Thus, at a pres-
sure of I atm, the boiling point is
100'C (373 K). Coming at it from the
other direction, we know that the
pressure of saturated vapor increases
with temperature. This phenom-
enon constitutes the working prin-
ciple of the pressure cooker, which
cooks food at a higher temperature
and greater pressure.

What's the difference between
the melting of ice and the evapora-
tion of water? Why does the equilib-
rium temperature drop with an in-
crease in pressure in the one case,
and rise in the other? There's an-
other factor involved: volume.
When ice absorbs heat and melts,
the volume of the system decreases
(the density of water is greater than
that of ice), but when water absorbs
heat and evaporates/ the volume of
the system increases (the density of
saturated vapor is less than that of
water). However, in both cases the
graph for the cycle must move
clockwise in theP-V coordinate sys-
tem-otherwise the work performed
by the Camot engine would be nega-
tive. Compare the trajectories of
both plots (figures 2 and 3l and you
can see why for one of them a lower
temperature corresponds to a greater
pressure/ while the opposite occurs
in the other case. In addition, try to
find the sequence of actions you
need to perform with a vessel con-
taining water and vapor in order to
obtain the Carnot cycle shown in
the graph.

To put a cap on our story, let's
calculate the shift in the boiling
point caused by a pressure increase
from 1.00 to 1.01 atm. We replace

the latent heat of fusion for ice in
equation (2) with the latent heat of
vapoization Iu, and the density of
ice with the density of saturated va-
Por Pv:

/\

^r=^PLl 
I -llr' [P, P* )

The density of saturated water vapor
at T = 373 Kand P = 1 atm can be
found from the Clapeyron-Men-
deleyev equation:

p,, = 
P-Y= 

0.58 kg / ,,,t.'R7

Substituting numerical data, we get
LT 

= O.28 K for AP = 0.01 atm.
As you can see, in this case the

phenomenon is quite pronounced:
to increase the boiling temperature
by 1 K, we need to increase the pres-
sure by a mere 0.035 atm, which is
perfectly feasible even under ordi-
nary conditions. o
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MATH
INVESTIGATIONS

Consll'uclinU trianules Inom

Ihl'ee Uiuen pal'ts

Of the 1BO problems, 28 are still looking for a solution!

T THE RECENT ANNUAL
MAA/AMS meeting in Cin-
cinnati, I enioyed a wonderful
evening with my mathemati-

cian friends, Stanley Rabinowitz
(the series editor of Indexes to Math-
ematical Problemsl, Curtis Cooper
and Robert Kennedy (the coordinat-
ing editor andproblems editor of the
excellent Missouri loutnal of Math-
ematical Sciencesl, and Leroy (Roy)

Meyers (who served as the problems
editor of theMathematics Magazine
for several years). Since Roy and I
serve on Stan's editorial board, part
of the conversation was about books
to be published by Stan's company,
MathPro Press, in the near future.
These include theLeningrad Math-
ematical Olympiads, 1987-L99 1 i
the Problems and Solutions from
the Mathematical Visitor, 1877-
1896, the NYSMI-AR ML Contests,
1989-1994, and two more volumes
of tt.e Index to Mathematical Pr ob -

7ems, covering the years 1975-1979
and i9B5-1989. All of these should
be of great interest to my readers.

Since both Stan and Roy are
deeply interested in geometry, our
conversation led to some problems
in that area, ard I learned that Roy
was an outstanding expert on the
constructibility of triangles from
given data. More precisely, he found
that there are 185 nonisomorphic
problems resulting from choosing

by George Berzsenyi

three pieces of data from the follow-
ing list of 18 parts of a triangle:

sides a, b, c
angles a,9, T
altitudes ho, h.r, h"
medians ffio,frb,ffi"
anglebisectors to,tb,t"
circumradius R
inradius r
semiperimeter s

(For the sake of brevity, I have omit-
ted the terms "length of" and "rr.ea-
sure of" in the list above. I will also
assume that the notation is self-ex-
planatory andf or familiar to all of
my readers.)

My first challenge to my readers
is to reconstruct the 186 problems
mentioned above. As a partial aid, I
wiil retain the numbering given to
the list of problems by Roy; his list
is a variation of one provided earlier
by Alfred Posamentier and William
Wernick in their Advanced Geo-
metric Constructions (Dale Sey-
mour Publications, 1988). The inter-
ested reader may wish to consult
chapter 3 of this book for a more
thorough introduction to the topic.

Basically, the problems fall into
four categories:

1. Redundant triples, in which any
two of the three given parts will
determine the third. Of the iB6
problems, only (u, B, yl, (u, $, h"l,

(a, a, Rl fall into this group.
2. Unsolvable problems, which do

not allow for the construction of
a triangle by Euclidean tools (that
is, compass and straightedge).
There are 27 such triples.

3. Solvable problems (by Euclidean
tools). There are 128 such prob-
lems.

4. (Jnresolved problerns. These are
listed below, retaining the num-
bering given to them by Roy in a
preprint he recently sent me.

I wish to take this opportunity to
thank him for sharing with me and
my readers his wonderful findings.

72. a, mo, to l3L. a, mo, r
8L. hr, fro, tb 135. ho, mo, r
82. ho, frb,to l3B. a, to, t
83. ho, 11761 t6 142. ho, tb, r
84. ho, 1176r t" 143. mo, to, t
85. mo, ft)61 t" 144. mo, t6, r
88. a, t6, t" 149. mr, R, r
89. ct, to, t" I5O. to, R, r
9O. a, to, t" 165. ho, mo, s

ll0. ho, mo, R t72. ho, t6, s
ll7. ha, tb, R 173. mo, t,, s

ll8. mo, to, R 174. mr, t6, s

ll9. mo, to, R 179. mo, R, s
l2o. ta, tb, R 180. to, R, s

To prove the unsolvability of
some of the problems, Roy found

CONTINUED ON PAGE 55
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HOW DO YOU
FIGURE?

Challeltue$ in plty$ics and lnath

tulaI[

Ml16
Average side and diagonal com-
pared. Prove that the arithmetic
mean of the side lengths of an arbi-
trary convex polygon is less than the
arithmetic mean of the lengths of its
diagonals. (V. Lev)

Ml 17
With a neighbor on the left.Inhow
many ways can the numbers I,2,
..., n be permuted so that any num-
ber i (1 < i < nl not in the leftmost
place has at least one of its "neigh-
bors" j - 1 and i + I in one of the
places on its ieft side? (A. Anjans)

Ml1B
Choosing the double-greatest.ln a
rectangular array of different real
numbers with m rows and n col-
umns/ some numbers are under-
lined-namely, the -k greatest num-
bers in each column (k <m)and thel
greatest numbers in each row (1< z).
Prove that at least kJ numbers are
underlined twice. (S. Konyagin)

Ml19
A condition for reguladry. The base
ArA2...An of an n-sided pyramid

PArAz...An has congruent sides
AtAz = A2AB = ... AnAl; the angles
PA.A,, PA2AB, ..., PArAr are also
congruent (fig. 1). Prove that the
pyramid is regular-that is, its
base is a regular n-gon and its alti-
tude falls on the center of the base.
(V. Senderov, V. Dubrovsky)

Ml20
The steepest parabola. Find the
smallest positive number a such
that for any quadratic function/(x)
satisfying lf(xll < 1 on the interval
0 < x < 1 the inequality lf'(tll < a
holds. (V. Pikulin)

Physics

Pl 16
Footprints on the water. A water
bug can walk on the surface of wa-
ter without sinking because o{ sur-
face tension. What do its ,,foot-
prints" look like on the surface of a
calmly flowing river if the bug
doesn't move relative to the shore?
(S. Krotov, A. Stasenko)

P1 17
Rod under a dome. For what values
o{ the coefficient of friction can a solid
rod of lengthlwith rubber tips remain

air in the space between the inner
and outer shells of a thermo.s
bottle was pumped out, resulting
in a pressure of P = 10-s atm at
room temperature. The volume of
the flask is 1 1, its surface area is S

= 500 cm2. Estimate the time it
takes tea to cool from 90'C to
70"C. The specific heat of water c
= 4.2 . 103 J/(kg . K) and the molar
gas constant R : 8.3 J/(K . mol).
Neglect the heat loss through the
cap of the thermos. (A. Stasenko)

Pl 19
Particle near a wire. A charged
particle moves with kinetic energy
K past a long, uniformly charged
wire. The particle travels in the
plane perpendicular to the wire
and deviates from its initial path
by a small angle o (fig. 31. Find cr

@

Figure 3

assuming that the particle's charge
is a and the charge of a unit length
of the wire is 1". At a distance R
from the wire, the electric field E
: )ul2neoR. (V. Mozhayev)

P120
Light through a lens. A light beam
entering a thin lens intersects its
principal axis at an angle u = 4" at
a distance d: 12 cm in front of the
lens and exits at an angle p = 8"
(relative to the principal axis).
Find the focal length of the lens.
(V. Deryabkin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 49

Figure 2

in a horizontal position under a dome
of radius R (fig. 2l?.D. Grigoryev)

P1 18
Tea in a thermos. In order to cre-
ate effective thermal isolation, the

3r

Figure i
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PHYSICS
CONTEST
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"The empty mirror. lf you could really understand that,

there would be nothing left to look fs1'."-ysn de Wetering

by Arthur Eisenkraft and Larry D. Kirkpatrick

N I L'. ,?ff,il1#'#,fJl;
I -asic shows and see the ma-
I gicirtt push sharp swords

through a box containing the
"lovely assistant" or ride the
"Haunted Mansion" and see the
ghost flying through the room at
Disneyland/ we are often surprised
and pleased by clever manipulations
of images.

In this contest problem, we'll
look at the image producedby a con-
cave mirror filled with water. Be-

cause our con{idence in a physics so-

lution increases if different
approaches to the problem yield the
same result and there are many
ways of obtaining the position of the
image, we will want to discover as

many of them as possible. Perhaps
you will come up with a solution
that is fundamentally different from
the ones we expect.

Texts on geometrical optics often
begin by showing that the reflection
of light from plane mirrors follows
the principle that the angle of inci-
dence is equal to the angle of reflec-
tion. If the mirror is curved, this be-
havior still holds, but the geometry
of the parabolic mirror is such that
all parallel rays come to a focus for
a concave mirror, or appear to di-
verge from the focus in the case of a
convex mirror. For a spherical mir-

ror, the spherical surface approxi-
mates the parabolic curve and paral-
lel rays near the axis also come to-
gether at (or diverge from) the focus.

The relationship between the
image and object is given by the
mirror formula

111
s s' f'

where s and s'are the distances of
the object and image from the sur-
face of the mirror and I is the focal
length of the mirror. The focal
length is often stamped on the mir-
ror and is equal to one half of the
radius of the spherical surface from
which the mirror is made. The focal
length can be measured by shining
a beam of parallel light onto a con-
cave mirror and measuring the dis-
tance from the surface of the mirror
to the point where the beam is
brought to a focus. For a convex
mirror the light appears to diverge
from a focal point located behind the
mirror. Both of these points can be
determined by drawing several rays
parallel to the axis of the mirror, us-
ing the law of reflection at the sur-
face, and locating where the rays
CIOSS.

To make effective use of the mir-
ror formula we must remind our-
selves of a number of conventions.

The fistance s is positive if the ob-
ject is located in front of the mirror.
This will always be the case for real
objects, but the "obiect" couldbe an
image produced by another optical
device. I:r this case, the object could
be located behind the mirror and s

would be negative. If the image is
located in front of the mirror, the
image distance s'is positive; if the
image is behind the mirror, s' is
negative. Finaily, f is positive for a
concave mirror and negative for a

convex mirror.
As an example, consider an object

located a distance 3/ in front of a
concave mirror:

Therefore, the image is located a
distance 3f 12 in front of the mirror.
This can also be shown with a dia-
gram that traces the rays. Convince
yourself that the image would be
3f l4behind the mirror if we use a
convex mirror instead of the con-
cave mirror.

The mirror formula also works
for lenses if we adopt the following
conventions: s is positive if the ob-
ject is located in front of the lens,
negative if the obfect is located be-
hind the lens; s' is positive if the
image is located behind the lens,

!2 JU[Y/rtlEtlsI tss4
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negative if the image is located in
front of the lens. Converging lenses
(thicker in the center than at the
edges) have positive l, while diverg-
ing lenses (thinner at the center)
have negative /.

Another useful relationship is the
lens maker's formula. For the special
case when one of the surfaces is pla-
nar, it tells us that

1= r_r
f R'

where n is the index of refraction of
the lens material andR is the radius
o{ the curved surface.

Now that we have completed this
very brief review, let's take a look at
our problem. A concave mirror of
radius R resting face up on a table
top has been filled with a small
amount of water (index of refraction
n = alSl as shown in the figure be-

low. A small object is located a dis-
tanced = SRIZfromthe mirror along
the optic axis. Where is the image 1o-

cated? In the spirit of the "thin lens
approximation" often used in such
problems, we will neglect the thick-
ness of the water.

A. Let's begin by using a tech-
nique used by eye doctors. Often the
doctor will place a lens in front of
your glasses to show you how the
new lenses will work. This works
because the effective focal length f'
of two (or more) lenses (or mirrors)
in close proximity is given by

-that is, the focal lengths add as re-
ciprocals. Therefore, the mirror-
water combination can be replaced
by a mirror with an effective focal
length and you can use the mirror
formula given above. Does the water
lens appear in the sum once or
twice? Use the other methods to
check yourself.

B. You can also obtain the effec-
tive focal length by tracing aray par-
allel to the optic axis as it enters the
water and bends according to Snell's
law, reflects from the mirror surface,
and exits the water again. Don't for-
get to make suitable approxima-
tions.

C. Our third method makes use
of the observation that images
formedby one optical element act as

objects for subsequent optical ele-
ments. Begin by finding the location
of the image formed by the air-water
interface. Use this image as the ob-
ject for the mirror (without the wa-
ter) and find the new image location.
Then find the image of this image
formed by the water-air interface
when the light exits the water. This
is the finai image produced by the
combination.

D. The trickiest method treats
the combination as a water lens, a
mirror, and a water lens in combina-
tion. Find the location of the image
produced by each element and then
use it as the object for the next ele-
ment. This is trickybecause it's very
easy to make mistakes with the sign
conventions.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA2220l-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Shp on red, Uo on Ul'solt...
Quantum readers were asked to

determine when it's sa{e to go
through a yellow light and when it's
safe to apply the brakes at the yel-
low light. We hope many of our
readers thought about the problem
as they waited at an intersection for
the light to change.

An excellent solution was sub-

mitted by Ophir Yoktan of Israel.
Unfortunately, Yoktan provided no
biographical information and so we
don't know if Yoktan is a professor
or a student. Irrespective of that, the
solution presented here closely fol-
lows Yoktan's submission.

A. (a) In the "go zofle" a person
wi1lbe able to continue at the trav-
eling speed and get through the in-
tersection within the time that the
yellow iight is illuminated. This
depends on the velocity of the clt vst
the yellow light time t.,,, the width of
the intersection ra4, ancl the length of
the carl. (The go zone is cluite differ-
ent for a stretch limo and a compact
car.) This gives us

dr<votr-w-1.
(b) In the "stop zone" a person

will be able to stop before the inter-
section. It depends on the velocity of
the car vs, the acceleration a of the
car while braking (a negative num-
ber), and the reaction time of the
driver tr:

d >v^ts Ur

(c) Whether we have a "dilemma
zolne" or an "overlap zofre" depends
on the difference between the go
zone and the stop zone.If the zone
is defined as the go zone minus the
stop zone, a negative value will in-
dicate a dilemma zone and a positive
value will indicate an overlap zone:

zone = voty -w - 1-votr+fi

1"t
= *"'r* (r, - ,,)ro-(w+ /).

B. We can find the conditions for
which there will always be a di-
lemma zoneby requiring that the
zone be negative:

o, j"'o* (r, - r,)ro - @ + 1).

See the equation in the box on the
next page. A dilemma zone willal-
ways exist if the terms within the
radical sign are negative. This occurs

--z,o
-2,

t _rr I

f,- L 
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if the response time is greater than
the yellow light time. (In this unre-
alistic case the yellow light time
does not a1low any decision mak-
ing.) This also occurs when the term
containing the acceleration is small
in comparison to the difference in
the yellow light and reaction times.

If the radical is positive, we will
always get two positive values forvn.
Calling the smaller root yr and the
larger rootv, we see that there will
always be a dilemmazofle if vo> v,
or vo < v, and an overlap zonetf.v, <

vo < vz. Physically it's easy to under-
stand why a high speed can produce
a dilemma zone. Why can a low
speed produce a dilemmazone?

Another way of
viewing the problem
is to realize that
people will usually
betraveling atatypi-
cal speed for this
type of road and we
wish to set the yel-
low light time to
make it a safe inter-

section. In this case/ we should solve
the equation for the yellow light
time fr. The dilemmazofieexists for
the following values of tr:

(w+1) vo
t.. <t- +Ytvo2a

An overlap zone exists when f, is
larger than this value.

This new equation allows us to
set the yellow light time at an inter-
section, since we can assume that
the velocity, the braking accelera-
tion, the response time, and (w + 1l

are constants.
C. If the car is traveling downhill,

there is an acceleration equal tog sin cr,

where cx is the slope. If we let g' : g
sin cr, then

t
go zone = voty + 

rS' 
t] - w - t,

! r 2 (vo+g't,)2
stop zone =votr+ 

Zg'Li 
-W.

The overlap zone is, once again, the
difference between the go zone and
stop zone. The go zone increases as
a result of the hill (if the driver al-
lows the car to accelerate down the
hill-this is not safe driving!); the
stop zone also increases (iI the driver
loses some braking acceleration as a
result of the hiil-this is not usually
true). We can see from these equa-
tions that if the accelerationais due
to a heavier foot on the gas pedal, the
go zone does increase/ as one might
expect. This increase in the go zone
is much smaller than we might an-
ticipate, however, and the accelera-
tion would lead to bigger problems
if an accident were to occur at the
higher speeds. o
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FOLLOW-UP

SuUUestiue lilinUs
Another crack at theorems by Napoleon, Pythagoras, and Pick

by Vladimir Dubrovsky

PEN AN OLD HIGH SCHOOL
geometry textbook-you'11
find hardly any mention of
tilings. This isn't surprising:

traditional geometry has been devel-
oping over thousands of years/
whereas this mathematical notion
has become a subject of study for
mathematicians comparatively re-
cently. Nowadays, due to their in-
creasing role in modern geometry
and, in no small measure/ their in-
herent attractiveness, they are
gradually penetrating the school
curriculum. And, not to be outdone,
Quantum has published a number
of articles on this topic (see the ref-
erences below).

Because tilings have a lot of inter-
esting properties, they are usually
studied by themselves. In this ar-
ticle, I want to show how they can
be applied to solving traditional,
even classical, geometry problems
that originally had nothing to do
with tilings. The solutions we'lldis-
cuss are not the only ones possible,
nor are they always the shortest. But
they certainly are beautiful, and I
hope you'll enjoy them as much as

r did.
We'llstart with the two simplest

kinds of tilings, shown in figure 1.

These are the parallelogram and tri-
angle tilings. We obtain the first by
cutting the plane along two sets of
equidistant parallel lines, and the
second by additionally cutting the
parallelograms of the first tiling
along parallel diagonals. Clearly, a
parallelogram of any size and shape
can be used as a sample tile for a til-

Figure 1

ing of the whole plane. The same is
true for any triangle.

Even the simple triangular tiling
can be used to understand a funda-
mental geometric theorem. Look at
figure 1 again. Do you see what theo-
rem I mean? I'm sure you do. Yes, it's
the theorem about the sum of the
angles of a triangle. In the figure, the
angles of six triangular tiles fit around
their common vertex leaving no gaps;

since each angle o{ a tile occurs twice
among these six angles, the sum of
the angles of one tile is 180'.

So, staring at this tiling can help
us discover a basic fact about geom-
etry. This "power of suggestion"
manifests itself in most of the "til-
ing solutions" we'll discuss below.
Also, our simple example explains
one of the reasons why tilings turn
out to be useful in finding certain
geometric facts and their proofs:
when a figure is surrounded by its
copies in a tiling, its parts come to-
gether to make visible relationships
that originally were obscure.

There is one more featute, of. a
more technical character, that
makes tilings useful. This requires a
more detailed explanation.

[ulea$ttriltu arsfls hy cottnliltu

Consider a parallelogram tiling
and an arbitrary figure on the plane.
The area of the figure is approxi-
mately equal to the number of par-
alleiograms contained in it times
the area of one parallelogram. The
finer the tiling, the more exact this
equality is. Here we think of the fig-
ure as fixed and of the tiling as get-
ting finer. But we can also think of
the tiling as fixed and the figure as

being dilated. Then, assuming the
tiles are of unit area, the area of our
figure is approximately equal to the
number of tiles contained in it, and
the relative error gets smaller as the
figure gets bigger.

Instead of counting parallelograrn
tiles, we can count their vertices.
The set of all vertices of paralielo-
grams in a tiling is called a grid; the
vertices themselves are its nodes.
Each node of a grid is the left bottom
vertex of one and only one parallelo-
gram of the associated tiling. With
this correspondence in mind, we can
see that the number of nodes in a
figure is not less than the number of
parallelograms contained in it and
not greater than the number of par-
allelograms that have common
points with it. So, taking the area of
one parallelogram of our tiling for
the unit area (which will be assumed
throughout the article unless other-
wise noted), we can say that the area
o{ a figure is approximately equal to
the number of nodes it covers.

This approximation gets more
and more acc;rlrate as the figure is
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scaled up, but we can never achieve
an absolute equality for all figures.
However, for certain figures there
are formulas that allow us to find
the exact values of areas by counting
the nodes they cover. One such for-
mula is given by Pick's theorem,
which says that the areaof a polygon
whose vertices are nodes of a grid is
equal tor +bl2- 1, wherer andb arc
the numbers of nodes inside and on
the border of the polygon, respec-
tively. (For details and a proof, see
the article "Chopping Up Pick,s
Theorem" in the lanuaryfEebruary
issue.) However, we'lI use another
formula below. If, on a parallelo-
gram grid, we superimpose a new
tiling made of congruent copies of
some figure, this formula gives the
area of one of these tiles.

Consider first the simplest case:
suppose each tile of the tiling in
question contains the same number
n of nodes of our initial grid in its
interior and no nodes on its border.
Then the areat of a tile will simply
be equal to n.

Indeed, let's take a circle of a big
radius R. Suppose it contains N tiles
of the tiling in question. Then its
areaxRz is approximately equal toNt
(this is true for a parallelogram tiiing
au{ of course/ for any other tiiing as
well). This means thatNtfxR2 + 1 as
R grows to infinity. On the other
hand, as we've seen, the area of the
circle is approximately equal to the
number of nodes in it, which, in
turn, is approximately equal to Nn.
So Nn/nR2 -+ 1 as well. Therefore,
Nn/Nt : nf t -+ I as R grows to in-
finity. But this is possible only if
t : nr since n and t do not depend
on R.

A similar argument can be ap-
plied when tiles have nodes on their
borders. But in this case, when we
calculate the number n of. nodes
covered by a tile, we must count a
bordernodewith afactor If k,where
k is the number of tiles it belongs to.
Then, adding the numbersn over all
the N tiles in a big circle, we,l1
count such a node k times (with
every tile containing it). Every time
it is counted it gives a contribution
of I lk, so its total contribution will

be 1. The number of nodes in the
circle will again be (approximately)
Nn, leading to the desired equality
t: n.

By way of example, let's look
again at our initial parallelogram til-
ing (fig. 1). Each parallelogram tile
covers four nodes, but each node is
covered by four tiles, so the average
number of nodes per tile is 4 . I14 =
1, which is the area of a tile. A more
interesting example is given by an
arbitrary triangle with its vertices on
the grid such that, other than the
vertices, there are no other nodes
inside or on the border of the tri-
angle (see the shaded triangle in fig-
ure 1). Let's show that the area of
any such triangle is l12 (thatis, one
half of the area o{ one grid parallelo-
gram, taken/ as we assumed, to be
the unit area).

Tile the plane with congruent
copies of the given triangle as shown
in figure 2. Then all these tiles will
have their vertices on the grid and
won't have any other nodes inside
them or on their sides. (We can show
this by using the fact that the grid is
taken into itself under any transla-
tion by vector TE , wheri A and. B
are arbitrary nodes.) Now, every tri-
angular tile covers three nodes, and
every node belongs to six tiles, so
the average number of nodes per tile
is 3 . 1/6 : ll2, and we're done. By
the way, now you can try to prove
Pick's Theorem by cutting an arbi-
trary polygon with vertices on the
grid into triangles of the sort consid-
ered above and counting the number
of these triangles.

This method of calculating the
areaof a tile can be applied when the
tiling and the grid are relatedso that
any isometry that carries one tile
into another maps the entire grid

ab
Figure 3

onto itself. This ensures that the
pattern of nodes in all tiles is the
same.

Exercise 1. Two opposite sides of
a parallelogram of unit area are di-
vided into n equal parts, two other
sides are divided into m equal parts.
The points of division are joined in
two different ways as shown in fig-
ures 3a and 3b. Find the areas of the
small parallelograms thus obtained.

In this problem the grid is, in ef-
fect, given by the condition. Some-
times, as in the following exercise,
you have to ueate a suitable grid.

Exercise 2. Points 41, 81, C, are
given on the sides BC, CA, AB of a
triangle ABC such that BAr: ArC =
CBr: BrA = ACr: CrB :l : 2. The
triangleABC is of unit area. Find the
area of. the triangle formed by the
lines AAr, BB, CCr

Pyl]taUoras retti$ilod

One of most beautiful applica-
tions of tilings is the proof of the
Pythagorean Theorem illustrated in
figure 4, which adds one more item
to the collection of proofs in "The
Good Old Pythagorean Theorem,,
(l anu,ary I F ebruary 199 4ir.

Take two squares-a small one
and a bigger one (they'li be the
squares constructed on the legs of a

Figure 4Figure 2
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risht triangle) and tile the entire plane
with copies of these squares as shown
in figure 4. (To prove strictly that this
is really possible, and that our figure
isn't merely an optical illusion, we
can make b-shaped tiles out of bigger
and smaller squares/ make infinite
bands o{ these tiles fitting the bottom
left areaof each tile into the "notch"
on another, and then pave the Plane
with thesebands without gaps.) Now
mark the bottom left comer of each

bigger square red (which is at the
same time the bottom right corner of
a certain smaller square). The red
points form a square grid (we can
prove this using the symmetries of
our tiling). The side length of each red
square is equal to the length of the hy-
potenuse of a right triangle whose
legs are the sides of small and big
square tiles-look at the blue triangle
in the figure. Now it remains to no-
tice that each b-shaped tile covers
two red nodes and each red node is
covered by two such tiles, and so the
area of. this tile (the sum of the areas

of the squares on the legs of our right
triangle) equals 2. l12 = l-that is, it
equals tlne areaof any red square (the
square on the hypotenuse).

Notice that our tiling also shows
how to cut a b-shaped tile (a pair oi
"leg" squares) into pieces that can be
rearranged to form a red grid square:
simply cut a b-tile along the red
lines. Thus/ we get one more proof
of the famous theorem. Similarly,
most of the problems about areas in
this article can be solved both by
counting nodes or by the cut-and-
paste method-you can choose
whichever you like better.

0uadrilalenals and finm0ons

The more diverse tilings we deal
with, the more diverse the results
we're likely to get. Let's see what
results can be derived from a tiling
with congruent quadrilateral tiles of
arbitrary shape.

To obtain such a tiling, consider
a parallelogram tiling (the red lines
in figure 5) and mark a point in each
parallelogram in the same position
with respect to the parallelogram
(see the top part of figure 5); the
marked points constitute a grid con-

Figure 5

gruent to the grid of vertices of the
tiling. |oin each marked point to the
vertices of its parallelogram and
erase the red lines to produce a til-
ing that consists of congruent con-
vex quadrilaterals. Clearly, a convex
quadrilateral of. any shape can be
used as a sample tile for such a til-
ing: we can begin with a tiling by
parallelograms whose sides are
equal and parallel to the diagonals of
the given cluadrilateral, mark appro-
priate points in these parallelo-
grams, and proceed as above. (By the
way/ this construction works also
with nonconvex quadrilaterals-we
merely have to join each marked
point to the vertices of a certain par-
allelogram not containing this
point, say/ n rows above andm rows
to the right of the parallelogram to
which the point belongs. You might
like to draw such tilings yourself
and see whether the facts we discuss
below remain valid for them.)

Every two adiacent quadrilateral
tiles in our tiling are symmetric about
the midpoint of their common side,
because their corresponding sides are
parallel and congruent. Red lines
(sides of parallelograms) cut these
tiles into pairs of triangles, and we see

that the four triangles obtained from
two adjacent quadrilaterals can be
shiJted to fill one red parallelogram.
So the area of any of our cluadrilater-
als is half that of the parallelogram.
Check this by counting nodes! An-
other simple consequence is that for
any pointP in aparallelogramABCD
the sum of the areas of trianglesPAB
arrd PCD is equal to the sum of the
areas o{ PBC and PDA-eachpair of
triangles is obtained from the same
quadrilateral by cutting it along differ-
ent diagonals.

This property of pairs of triangles
is almost obvious. But its generaliza-
tion given in the next exercise will
certainly require some serious
thought.

Exercise 3. (V. Proizvolov)A smail
square lies inside a big square. Their
vertices are joined to
form four cluadrilater-
als as shown in{igure
5. Prove that the sum
of the blue areas in
this figure is equal to
the sum of the pink Figure 6
areas.

The following exercises demon-
strate that the range of applications
of the tiling technique is wider than
one might think judging by the prob-
lems considered above.

Exercise 4. Prove that a midline of
a quadrilateral-that is, a segment
joining the midpoints of two oppo-
site sides-is no longer than the
half-sum of the other two sides and
is equal to this half-sum only i{ the
last two sides are parallel.

Exercise 5. In ancient Egypt the
area of a quadrilateral was calcu-
lated as the product of the half-sums
of its opposite sides. Prove that this
formuia yields a correct result only
for rectangles.

Exercise 6. (I. Goldsheid). LetPbe
an arbrtrary point in a rectangle
ABCD. Prove that theareaof ABCD
is not greater thanPA ' PC + PB ' PD.
(Hint: if you want to solve this prob-
lem using tilings, you'll have to
modify the construction of a quad-
rilateral tiling described above).

Let's turn back to figure 5. If we
erase the common side of two adia-
cent quadrilateral tiles in this figure
and all the sides of quadrilaterals par-

allel to it, we'll get a tiling of the plane
with hexagons. These hexagons have
symmetry centers (the midPoints of
erased sides) and their opposite sides

are parallel and congruent to each
other. Of course/ any centrally sym-
metric hexagon can serve as a sample
tile for such a tiling.

Exercise 7. Three alternate verti-
ces of a centrally symmetric hexa-
gon are joined to form a triangle.
Prove that the areaof this triangle is
half that of the hexagon.
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Itlapdeon$ pt'oilem

The example I'm going to present
now, at the end of the afiicle, is cer-
tainly the most remarkable and sur-
prising. It's a rather well-known
theorem o{ten associated with the
name of Napoleon Bonaparte, and it
has already appeared in Quantum
(see "Botanical Geometry" in the
September/October 1990 issue).
This is what it says.

Tusonp^n. Let ABC be an arbi-
trary triangle. Let ABC, BCA, and
CAB, be equilateral ftiangles con-
structed exterually on the sides of
ABC, and P, Q, and R their centers
(fiS 7) Then PQR is also an equilat-
eral triangle.

Figure 8 shows that the triangles
considered in this theorem can be
embedded in a certain tiling. We can
view it as a hexagonal tiling like those
we considered above, in which every
hexagon is subdivided into three equi-
lateral triangles congruent to ABCr,
BCA., andCAB, and three triangles
congruent to ABC. To make sure this
tiling really exists, construct triangles
BrEA an;d C.AD congruent to ABC
(such that the vertices correspond, as
implied by the notation: IEB.A =
ZACp : ZBAC, and so on). Then
BrE: AB = BC1, and ZEBrC +
ZBpB + ICBC, = (tEBi+ 60") +

150" + ZACBI + IZCBA+ 60.) = 180"
+ ILBAC + .ACB + LCBAI: g\o",
which means that BrE is parallel to
AC, (whf?). Similarly, CB, is congru-
ent and parallel to CrD.It {ollows

that BTECTB arrd CBTDC, arc paral-
lelograms with a common fiagonal
BrC, so their fiagonalsBE, BrC, arrd
CD have a common midpoint, and,
therefore, the hexagon CBCTDEBT|s
symmetric about this midpoint,
which allows us to tile the plane with
its copies. Notice thatAE = AD = DE
(because all three segments are con-
gruent to BCl, so ADE is an ecluilat-
eral triangle congruent to BCAr.

Now consider the "Napoleon tri-
angle" PQR together with all the tri-
angles constructed in the same way:
by joining the centers of colored equi-
lateral triangles (in our figure, with
red lines). All these triangles are con-
gruent, because half of them can be
viewed as obtained by exactly the
same construction as PQR-by ioin-
ing the centers of the three equilateral
triangles on the sides of a certain
(whiteltriangle congruenr to ABC,
and any of the remaining triangles has
three sides respectively congruent to
the sides of any triangle of the first
sort. Now, every node of the red-line
grid is a common vertex of six such
triangles (congruent to PQR). In all
six triangles, it's not too difficult to
see that the angles at this vertex cor-
respond to each other (since they are

opposite corresponding sides of the
triangles). Therefore, each of these
angles is 50". And this is true for all
the angles of all these triangles. So
they are indeed equilateral!

The theorem is proved, but as a
reward for our toil (which wasn't all
that arduous/ was it?) we get a neat
formula for the area of. the triangle
PQR. We can view the nodes of the
red tiling as a parallelogram grid, so
that each equilateral triangle has area
|12.Eachof our hexagonal tiles con-
tains three nodes of the red grid inside
it and no nodes on its border, so its
area is 3 "ted grid units." Thus, the
area of. the hexagon is six times that
of PQR. On the other hand, the hexa-
gon consists o{ three copies of triangle
ABC and three equilateral triangles
constructed on its sides. So we come
up with the following formula:

area(.eQR)

= ! 
^rr^(ABc1 

+ E 
1* + bz + cz),224

where a: BC,b: CA, c= AB. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 53

Figure 7 Figure B
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Double reflection and redistribution of energy

HE "PHYSICAL" DEFINITION
of the optical properties of apa-
rabola can be based on the fol-
lowing property: a beam oi

light that strikes a parabola parallel
to its axis of symmetry Passes
through its focus after reflection.
From the principle of reversibility of
light it follows that abeam coming
from the focus of a parabola will
travel parallel to its symmetry axis
after reflection. In this article we'Il
look at some purely "physical" fea-

tures of light reflection from a pa-

raboloid-that is, the surface formed
by revolving a parabola about its axis
of symmetry. The paraboloidal mir-
ror is a paraboloid with a reflective
interior surface. I{ light falls on such
a mirror parallel to the axis of sym-
metry of the paraboloid, after reflec-
tion all the beams pass through its
focus as if they were being collected
there. On the other hand, rays ema-

Figure 1
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AT THE
BLACKBOARD II

Ihe illnazinU Hl'aholoid

by M. l. Feingold

nating from a point source at the
focus wili propagate as a parallel
beam after reflection on the mirror
surface.

I should point out that both of
these effects are the result of only
one reflection of the rays from the
paraboloidal surface. If a paraboloid
is rather deep, most of the entering
rays willbe reflected twice (fig. 1).

AIter the first reflection each beam,
having passed through the focus,
will again be re{lected from the op-
posite side of the paraboloid. In
other words, the focus becomes a

kind of point source of light.l But
the rays of such a source leave the
paraboloid as a parallelbeam. Thus,
we come to the conclusion that the
paraboloid converts the incoming
beam, which is parallel to its sym-
metry axis, into an outgoing beam
that is also parallel to this axis.

The incident and reflected beams
do differ, however, with regard to
their energies. To understand this,
let's look at figure 2. It shows the re-

sults of a very simple experiment.
Photographic film is placed pe{pen-
ficular to the mirror's qrmmetry axis,

with the photosensitive layer facing
the reflective surface. The mirror is
illuminated by a Light beam parallel
to the symmetry axis with homoge-

lln reality the designation "point
source" is appropriate only to a certain
extent/ in the sense that the
dimensions are small. Later we'II see

how this source differs from the point
source.

neous energy distribution over the
cross section-that is, an equal
amount of energy passes Per unit
time through a unit area placed at any
location perpendicular to the beam.
The incoming light would strike the
film homogeneously. However, in
our experiment the film is struck bY

reflected light, which produces the
result shown in figure 2.

',",i
Figure2
(a) Intensity distribution over the
cross section of the outgoing beam;
(b) plot of the intensity as a function
of distance from the beam's axis.
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Figure 3

At first we explain this fact as fol-
1ows. Let OZbe the symmetry axis,
and let /, /'be the distances be-
tween the axis and the correspond-
ing incoming and outgoing rays (fig.
3). The farther from the axis OZ the
incident beam falls, the nearer to the
axis it will exit-that is, thelarger/
is, the smaller-/'is. Thus, the energy
of the peripheral areas of the incom-
ing beam is shifted toward the axis
of the outgoing beam. If the incident
beam is rather wide (that is, the ra-
dius of the mirror is large), this phe-
nomenon leads to a substantial con-
centration of energy near the axis.
As a result, the energy emerges from
the mirror practically in the form of
a narrow pencil of light, and the
wider the incoming beam, the nar-
rower the light pencil.

Thus, we come to the following
conclusion: a paraboloid can con-
cenffate energy not only at the focus
but also along the symmetry axis.

We can calculate this effect. Let's
consider the parabola whose revolu-
tion about the axis OZ forms the
surface of the paraboloid. If the ori-
gin of the coordinates is piaced at
the focus, the equation for the pa-
rabola will be

from the symmetry axis will pass
through the focus after reflection
and again strike the parabola at the
pointa" at a fistance.1'from the axis
OZ (tig.3). Let's denote by 0 the
angle betwe en OZ and the interme-
diate segmertt a'a" of our beam. The
equation for the line a'a" is as fol-
lows:

Z=-rcotan0. l2l

The points a' and a" belong simulta-
neously to the parabola defined by
equation {1) and the line defined by
equation (2). Thus, we can equate
the right-hand sides of equations (i )

and (2):

12 + 4ft cotan 0 - 4f2 : O. (3)

Solving this equation we get

r,=-2fss19, rn=2fan9. Al'2'2

The roots r, and r, are the values of
the coordinater f.or the points a' arrd
a". Thus, / : lrrl, /' = rz. It follows
from equation (4) that

r'1' :472' (5)

Equation (5) can be obtained by
means of the Vidte theorem without
solving equation (3).This result sup-
ports the aforementioned qualita-
tive conclusion that the distances of
the incoming and outgoing rays
from the axis OZ are inversely pro-
portional.

Equation (5) can be "read" in the
following way. Consider the planeA
perpendicular to the axis OZ. Let
every beam, either coming into or
going out of the paraboloid parallel
to OZ, cut this plane and leave a
trace on it in the form of a dot (fig.
4). According to equation (5), double

reflection from the paraboloid corre-
sponds to a conversion of the points
in plane A that transforms any seg-
mentOa'= lrrl into anothersegment

' Oa" : l4f2lrrl. This transformation
was the centerpiece of a previous
article in Quantum, "Making the
Crooked Straight" (November/De-
cember l990l.It's known as the in-
version relative to a circle of radius
2f with center O.2 That article also
described devices that put this trans-
formation to practical use-the
"inversors" of Peaucellier and Hart.

Equations (4) and (5) contain all
the information we need about the
redistribution of energy in a beam of
incident light. Let's try to extract it.

Within the incident beam let's
single out a narrow ring of width
Lr' atad inner radius t' (A,r' << r'l
lying in the plane perpendicular to
the axis of the paraboloid. The rays
passing through the ring travel at a
distance from the axis within the
range l{, { + Ar'l-see figure 5. Af-
ter double reflection off the mirror,
these rays intersect the plane A at
points lying inside the ring of width
M' with outer radius r".That is, the
outer radius I + M of the "incident"
ring corresponds to the inner radius
{' - M'of the "teflected" ring. Ac-
cording to equation (5), the product
of these radii is 4f2 {we'll dispense
with the absolute value signs and
take r to be the numerical value of

ilililtrJil

2Actually, in this case we don't
have a "pure" inversion, but rather a
combination of two transformations:
an inversion and a symmetry
transformation relative to the point O.

2I,
-t- It

4f
(1)

where I is the focal length, r arrd z
are the abscissa and ordinate of an
arbitrary point of the parabola. The
incoming beam meeting the pa-
rabola at the point a'at a distance 1

Figure 5
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the distance). That is,

lr' + Lr'll{'- M"l = r'r" + r"Lr' - r'M'
_ Lr,M, = 4f2.

Taking into account that /1' = 4f2,
we get

1/'L/-1/M'-MM'=0.
Since M << { attd M' << t", thelast
member in the equation can be ne-
glected and we can write

/'Lr'-r'Ar":0.
It follows directly that

Lr" r" 4f2

L{ / r'2'

OI

. ,, ,4f2Lr =Lr n. @

Thus, the energy that in the inci-
dent beam passes through a ring of
width M after double reflection of
the rays o{f the mirror passes
through a ring of width L{' < A/.
This means that the amount of en-
ergy passing through a unit area per
unit time (this characteristic value
is known as the beam's intensity) is
greater in the "reflected" ring than
in the "incident" ring. We consid-
ered the case when { , 2f .If r' < 2f ,
the reflected ring will be larger than
the incident ring, which means that
the intensity of the reflected light is
less than that of the incident light.

So, the reflection of light from the
paraboloid mirror results in a redis-
tribution of energy. Let's find how
the intensity changes with distance
{rom the symmetry axis of the pa-
raboloid. Let the intensity of the in-
cident light be /6. Then the amount
of energy passing through a ring of
width Lr'per unit time (that is, the
light flux through the ring) is the
product of /o and the area of the
ring-that is,

6qr = foZnr,Ar,,

where r'is the inner radius of the
ring.3 After double reflection from

3The area o{ the ring delimited by
the circles with radii r and r + Az is S =
n(r + Lrl2 - r? = Znr\r + rc(Lrlz.If Lr << r,

the mirror all of this flux will come
out through att area Znr"M'. So the
intensity of light in the reflected
beam will be

- Ao - r'Lr' - l6f4
l = 

,n ,,*" = lo ,,*, = lo ,^ ' l7l

Equation (7) describes the sharp in-
crease in the intensity with a de-
crease iti{'-that is, as the distance
from the symmetry axis of the pa-
raboloid decreases.

However, this result does not
mean that the intensity becomes
infinite at the axis itself. After all,
the rays that emerge closest to the
symmetry axis are those that were
on the periphery of the incident
beam. Clearly the maximum dis-
tance of the incident ray r'^ofrom
the symmetry axis is equal to the ra-
dius of the mirror. This corresponds
to the minimum distance r"-r, in
the exiting beam. The intensity of
the reflected light increases accord-
ing to equation (7)whenr" decreases
to 1'^ir, but it becomes practically
zero when /' . r"^in{ This is why
there's a trough in the intensity
curve near the axis in figure 2. How-
ever/ the maximum intensity,
which occurs right near the trough,
can be many times the intensity /o
of the incident beam.

We extracted all this information
from one simple formula-equation
(5)!

Now let's consider the equations
(a). They describe the passage of the
rays "inside" the paraboloid be-
tween two reflections. These rays,
converging at the focus and fiverg-
ing then from it, form a kind of point
source in the focus. This source fif-
fers, however, from a real one. It
emits iight non-isotropically-that
is, the intensity of the emitted light
changes with the beam's firection.

One can't help thinking that
there is some mystical beauty in all
these properties of the paraboloid!

we can neglect the term with (41)2
and consider that S = 2nrAr.

aln reality the distribution of the
intensity in the outgoing light is more
complicated due to diffraction at the
mirror's edge.

I should point out that the con-
clusions we/ve drawn are correct
only within the framework of ideal-
ized considerations that do not
strictly correspond to reality. We
spoke about the paraboloid as a
mathematically ideal surface. A real
mirror is only an approximation of
such an ideal. Its surface is not
strictly symmetrical; it has some
spots that arefl't quite as smooth as
others; and so on.

Also, we used the concept of a
beam of parallel rays. In reality any
pencil of light propagates inside
some solid angle that is not zero. We
can speak only of a practically par.
allel beam-that is, a beam that di-
verges so little that we can neglect
this divergence in a particular
stretch of space. For example, the
light pencil falling on the paraboloid
from a star can be considered prac-
tically parallel. But even in this case
the emerging beam will be distorted
due to so-called diffractive diver-
gence caused by the wave nature of
light. And the narrower this beam
(that is, the larger the mirror's diam-
eter), the greater the divergence of
the rays. Quantitatively the
diffractive divergence is character-
izedby the angle of deviation of a ray
from the direction of light propaga-
tion. The order of magnitude of this
angle is

i"
d=r,

Tmln

where 1. is the wavelength of the
incident light. Thus, the thinner and
more concentrated the light pencil
is, the more it diverges. Let's evalu-
ate the distancez where the increase
of the beam's radius caused by the
divergence becomes equal to the ini-
tial radius of the beam (up to this
fistance the beam can be considered
practically parallel). We find that

,= {,.nr, ='^r, =(1rr)' .

tano( 0,

According to this formula, the thin-
ner and more intense the beam (all

CONTINUED ON PAGE 55
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Marina Ratner's energetic path in mathematics

PROFILE

tur the loue ol her $uhiect

by Julia Angwin

high school teacher, although as the
child of scientists she had always ex-
celled in the subject.

"Ireally got a lot out of that one
teacher," she recalled. "He was very
tough and he was very difflcult but
interesting."

About her life as a woman in
mathematics, Ratner said: "I don't

UCKILY FOR HER, THE YEAR
that Marina Ratner applied for
college in the Soviet Union coin-
cided with Nikita Khrushchev's

denouncement of Stalin. It was 1956,
and the young |ewish girl was trying
to get into Moscow State Univer-
sity-the Harvard of the USSR. The
doors to the university, normally fro-
zen shut to )ews, opened a crack that
year during the political thaw . . . and
Marina Ratner slipped in.

The training normally denied to
people of her religion set Ratner on
her course as a mathematician. She is
now a professor at the University of
California, Berkeley, and recently
won a $25,000 award from the Na-
tional Academy of Sciences.

The awardrecognizes her "striking
proof" of a fundamentally important
theorem that originated in number
theory and is called the Raghunathan
conjectures. Previous attempts to
prove the conjectures for some par-
ticular cases were very intricate and
provided little insight into what
was going on. Ratner tackled the
proof using a branch of mathemat-
ics called ergodic theory that origi-
nated in the study of thermodynam-
ics. The roots of the name are the
Greek words erg(eneryyl andhodos
(path). This area of mathematics is
also closely related to probability
theory and statistics. Ratner's
knowledge of ergodic theory helped
her come up with the ideas needed
to prove the conjectures. Her solu-
tion led to further developments in
number theory and the theory of
quadratic forms.

Ratner traces her interest in math
partly to the tutelage of a particular

believe when they say that women
have different brains, or that women
arer't treated the same as men or
boys. In my life I did not encounter
any gender discrimination. "

The most important thing for stu-
dents is to love their subject, she
said. That is how she won her
teacher's love.

"He would sometimes even ask
me to help in grading the test that he
had given the class," she recalled.

He assigned the students difficult
problems, teaching them to work in
three dimensions as well as in plane
geometry.

"Even students whom he gave a
C, they did very well in college
tests," Ratner recalled.

At Moscow State University, Rat-
ner honed her mathematical skills.

For four years she studied mostly
math, peppering her curriculum
with only physics classes and the
required Marxism and Communist
Party history courses.

After that, she took a four-year
hiatus, working in a statistics re-
search group. She also gave birth to
her daughter, Anna.

When Anna was three years old,
her mother went back to school to
get her Ph.D. in mathematics. Rus-
sian students could stay in graduate
school a maximum of three years. If
their doctorate took any longer, they
had to complete it on their own. So,

by 1959, Ratner had her doctorate
and was looking for work.

She taught for a while at a techni-
ca1 engineering school, but quickly
decided to emigrate to Israel. She ap-
plied for a visa and was immediately
fired from her fob.

"It was considered unpatriotic and
they called us traitors just because we
wanted to emigrate," she recalled.

Fortunately her visa took only
three months to arrive, and she
quickly joined her relatives in Israel.
After a few years' teaching at the
Hebrew University of |erusalem, she
was hired by the University of Cali-
fomia at Berkeley.

"I liked America from the very
first day, despite the many things
that are not good here," she said. "I
think that not all Americans realize
how great a country it is."

This country is undoubtedly the
richer for the influx of such talented
scholars as Marina Ratner. The
award she received is merely a sign
of what she had aheady given her
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/lnntunanl0ttattltllnile$ win awal'ds tllew IttllAX lilm
The Professional and Scholarly

Publishing Division of the Associa-
tion of American Publishers (AAP)
named Quantum the award winner
for Excellence in Design and Produc-
tion in the joumals category {or 1993.
As part of its commitment to excel-
lence, this division of AAP sponsors
a prestigious annual awards program
that acknowledges and promotes out-
standing examples of professional and
scholarly publishing. The National
Science Teachers Association
(NSTA) and Springer-Verlag New
York, Inc., were joint recipients of the
award in the AAP's Eighteenth An-
nual Awards Competition.

Several Quantum covers have re-
ceived special notice over the past
several years. Artist Leonid Tishkov's
covers for the November/December
l99I and March/Aprll 1992 issues
won awards for excellence from
Print magazine and were reprinted
in its regional design annual, a
showcase of the best in illustration
and design.

Staff artist Sergey Ivanov was an
award winner in the Magazine
Cover category in the Creativity'93
competition. His cover for the |uly/
August 1993 issue o{ Quantumwill
appeil in the Creativity'93 Annual.
Sergey also cited by the Educational
Press Association of America
(EdPress) for his work on The
Pillbug Proiect, an NSTA publica-
tion. EdPress honored Quantum
publisher Bill G. Aldridge for his
Publisher's Page editorial "Photo-
synthesism" in the |uly/August
1992 issue of. Quantum.

Our congratulations to the artists,
to Bill Aldridge, and to our col-
leagues at Springer-Verlag.

HAPPEN INGS

Bullelilt Board

If your vacation plans include a
visit to Washington, D.C., be sure
and stop by the National Air and
Space Museum and take in the new
IMAX film, "Destiny in Space."
This summer marks the 25th anni-
versary of the Apollo 11 moon land-
ing, and as we look back at that piv-
otal event and take stock of what
has been achieved since then, we
also look for signs of what lies ahead
in space exploration. "Destiny" pro-
vides insights into how our current
space activities are preparing us for
the future.

The 4O-minute film is the third in
a trilogy of movies shot by astro-
nauts aboard space shuttles. It ex-
plains the exploratory background
laid by life sciences research, robotic
planetary missions to Venus and
Mars, investigations involving the
Hubble Space Telescope, and other
studies. "Star Trek" actor Leonard
Nimoy narrates the film.

Guide lo scltolarsftips

Students who are considering ca-
reers in math or science, or those
who are already well on their way in
these fields, would do well to con-
st;lt The Prentice Hall Guide to
Scholarships and Fellowships for
Math and Scienca Students by
Mark Kantrowitz and |oann P.
DiGennaro. According to the pub-
lisher, this is the "first and only re-
source to focus on the more than
250 scholarships and fellowships
available to math and science stu-
dents at the high school, under-
graduate, and graduate levels." It
also provides the latest information
on more than 80 contests and com-
petitions, internships/ summer em-

ployment offerings, and opportuni-
ties to study abroad.

The guide includes information
on financial aid programs that span
the range of careers open to students
in science, math, and engineering,
from acoustics, biotechnology, and
computer science to meteorology,
physics, and zoology. It describes
programs directed toward female
and minority students as well as
programs of a more general nature
that do not restrict the student's
field of study.

The book provides guidance on
such topics as how to choose an un-
dergraduate school that suits your
needs (evaiuating everything ftom
courses of study and instructors to
social atmosphere and extracurricu-
lar activities); how to uncover all
possible sources of financial aid; and
how to improve your chances of be-
ing accepted by the graduate school
of your choice.

The book is capped off with an
annotated bibliography of additional
sources of academic and career in-
formation of potential interest to
science and math students. (325
pages, $19.95 paper-ISBN 0-13-
045345-5, $29 .95 cloth-ISBN 0- 13-
04s337-41

d) Talk hack t0 us G

E df0[ us a line at Quantum,
1840 Wilson Blvd.,
Arlington VA 22201

or

tr Ii[ us an electron or two
at quantum@nsta.org
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The Amazing Paraboloid (double
refraction and energy redistribu-
tion), M. L Feingold, lall Aug94, p40
(At the Blackboard)
The American Mathematics Corre-
spondence School (I. M. Gelfand's
project for high school students),
Nov/Dec93, p5 I (Happenings)
The Annual Przzle Party (report
and samples), Anatoly Kaiinin,
lillArg94, p56 (Toy Store)
Anticipating Future Things (science

education in2044), Bill G. Aldridge,
lrllAugg4, p2 (Publisher's Page)

Backtracking to Faraday's Law
(threshold voltage in electrolysis),
Alexey Byalko, lanfFebg4, p20 (Fea-

ture)
The Beetle and the Rubbet Band
(mind-stretching problem), Alexan-
der A. Pukhov, Marf Apr94, p42 (At
the Blackboard)
The Bounding Main (physics of sea

swells ), Ivan Voroby ov , May f lan9 4 ,

p20 (Feature)
Bushels of Pairs (graphical primer),
Andrey N. Kolmogorov, Nov/Dec93,
p4 (Feature)

The Case of the Mythical Beast
{Ho1mes and the Helmholtz resona-
tor), Roman Vinokur, Nov/Dec93,
p10 (Feature)
Chopping Up Pick's Theorem (trian-
gulation and polygonal partition),
Nikoiay Vasilyev, lanlFeb94, p49
(At the Blackboard)
Constructing Triangles from Three
Given Parts (185 problems), George
Berzsenyi, l:uJlAug94, p30 (Math In-
vestigations)
Cooled by the Light (photonic refrig-
eration), I. Vorobyov, Sep/Oct93,
p20 (Feature)

Derivatives in Algebraic Problems

(counting roots), Alexander Zvonkin,
Nov/Dec93, p2B (At the Blackboard)
Drops for the Ctops (limits on the
size of droplets), Yuly Bruk and
Albert Stasenko, Marf Apr94, plO
(Feature)

Electricity in the Air (surface charge
density of the Earthl, Arthur
Eisenkraft and Larry D. Kirkpatrick,
Nov/Dec93, p46 (Physics Contest)
Endless Self-description (Hilge-
meier's "likeness sequence" ),

George Berzsenyi, Sep/Oct93, p17
(Math Investigations)
Extremists of Every Stripe (investing
in Russia's future), Bili G. Aldridge,
Marf Apr94, p2 (Publisher's Page)

The Fifth International Olympiad in
Informatics (problems and empa-
nadas), DonaldT. Piele, Marf Apr94,
p46 (Happenings)
Focusing on the Fleet (Archimedean
victory at seal, Sergey Semen-
chinsky, Sep/Oct93, p2B (In the Lab)
Follow the Bouncing Buckyball
(fullerenes and other carbonic archi-
tecture), Sergey Tikhodeyev, Mayl
lun94, pB (Feature)
For the Love of Her Subiect (inter-
view with Marina Ratner), |ulia
Angwin, lul l Augg 4, p44 (Profile)
The Fourth State of Matter (plasma
physics), Alexander Kingsep, Sep/
Oct93, p4 (Feature)
The Friction and Pressure of Skating
(glaciers and the Carnot theorem),
Alexey Chernouts an, lulf Aug9 4,
p25 (At the Blackboard)
From a Snowy Swiss Summit to the
Apex of Geometry (biographical
sketch of |acob Steiner), I. M.
Yaglom, Nov/Dec93, p35 (Looking
Back)
Fun with Liquid Nitrogen (latent
heat of vaporization), Arthur Eisen-

kraft and LarryD. Kirkpatrick,Marf .

Apr94, p3B (Physics Contest)

Geometric Summation (infinite al-
gebraic tilings), M. Apresyan, Mayf
l:un94, p30 (In Your Head)
The Good Old Pythagorean Theo-
rem (proofs and generalizations), V.
N. Berezin, l an lE ebg 4, p24 lF eaturel

Happy Birthday, Uncle Paul! (Erdos

turns eighty-one), George Berzsenyi,
Mayllrng4, p28 (Math Investiga-
tions)
Home on the Range (functional
primer), Andrey N. Kolmogorov,
Sep/Oct93, p10 (Feature)
Horseflies and Flying Horses (mat-
ters of scale in the animal world), A.
Zherdev, Mayll:ung4, p32 (Kaleido-
scope)

An Ideal Gas Gets Real (and relativ-
ity visits electromagnetic induc-
tion), Albert Stasenko and Alexey
Chernoutsan, Sep/Oct93, p42 {At
the Blackboard)

Keeping Track of Points (trajecto-
ries, tracks, and displacements), Sep/
Oct93, p32 (Kaleidoscope)

Laser Levitation (lifting with light),
Arthur Eisenkraft ar,d Larry D.
Kirkpatrick, May fl:unr94, p3B (Phys-

ics Contest)
Late Light from Mercury lgravita-
tional refraction), Yakov Smoro-
dinsky, Nov/Dec93, p40 (In the Lab)
Light at the End of the Tunnel (in-
variants and monovariants), Dmitry
Fomin and Lev Kurlyandchik, Mar/
Apr94, p15 (Feature)
A Little Lens Talk ("paper" ar.d
"teal" lenses), Aiexander Zilber
man, May flun94, p35 (At the Black-
board)
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Martin Gardner's "Royal Problem"
(generalization of a chessboard prob-
lem), |esse Chan, Peter Laffin, and
DaLi, Sep/Oct93, p45 (Follow-up)
A Mathematical Handbook with No
Figures (silliness with a purpose),
Yuly Danilov, Mayllung4, p42
(Quantum Smiles)
Mathematical Hopscotch (discon-
tinuous Q&,A), lullAtgg4, p28 (Ka-
leidoscope)
Mathematics in Perpetual Motion
(imaginary elliptical engine), Ana-
toly Savin, lu,llAug94, p4 (Feature)
Mirror Full of Water (wet optics),
Arthur Eisenkraft and Larry D.
Kirkpatric( lul I Au$9. 4, p32 (Physics
Contest)
Mushrooms and X-ray Astronomy
(natural collimator), Alexander
Mitrofanov , luIlAugg4, p10 (Fea-
ture)

Nine Solutions to One Problem
(classic triangle problem), Constan-
tine Knop, Mayllung4, p45 (At the
Blackboard)
Numbers in Our Genes (quantifica-
tion in molecular biology), Bill G.
Aldridge, Mayllur'g4, p2 (Pub-
lisher's Page)

Ones Up Front in Powers of Two
(Fractional Parts Theorem),
Vladimir Boltyansky, Nov/Dec93,
p16 (Feature)
The Other Half of What You See
(more on derivatives in algebraic
problems), Vladimir Dubrovsky,
Nov/Dec93, p44 (Fo1low-up)

Penrose Patterns and Quasi-crystals
(tiling and a high-tech alloy), V.
Koryepin, lanlFeb94, p12 (Feature)
Periodic Binary Sequences (generat-
ing 0's and 1's), George Berzsenyi,
Nov/Dec93, p50 (Math Investiga-
tions)
A Permutator's Bag of Tricks (solu-
tions to rolling-block puzzles),
Vladimir Dubrovsky, I an I F eb9 4, p62
(Toy Store)
The Pharaoh's Golden Staircase (dy-
namic programming and Bellman's
formula), M. Reytman,Marf Apr94,
p4 (Feature)
Phlogiston and the Magnetic Field (out-
grown concepts), Stephanie Eatman,

Fraser Muir, and Hugh Hiclcnan, Mar/
Apf. 4, p35 (Looking Back)
ThePizza Theorem-Part I (equal-
ity of off-center slices), George
Berzsenyi, lanlFebg4, p29 (Math
Investigations)
The Pizza Theorem-Part II (includ-
ing the Calzone Theorem), George
Berzsenyi, MarlAprg4, p29 (Math
Investigations)
A Polarizer in the Shadows (Iife and
physics of Etienne Malus), Andrey
Andreyev, lanfEebg4, p44 (Looking
Back)
A Princess of Mathematics (excerpt
from autobiography of Sofya
Kovalevskaya), Yuly DanlIov, lanf
Feb94, p37 (Anthology)
The Problem Book of History (math-
ematical approach to the past), Yuly
Danilov, Sep/Oct93, p47 (Looking
Back)

The Rolling Cubes (solutions and
records), Vladimir Dubrovsky, May/
ltn94, p62 (Toy Store)

Savoring Science (piquancy of pri-
mary sources), Bill G. Aldridge,
Nov/Dec93, p2 (Publisher's Page)
A Simple Capacity for Heat (specific
heat and molecular motion),
Valeryan Edelman, Nov/Dec93, p2i
(Feature)
The Sines and Cosines You Do and
Don't Know (survey with linguistic
digressions), Nov/Dec9 3, p32 (Kalei-
doscope)
Six Challenging Dissection Tasks
(and the birth of "high-phi"), Martin
Gardner, Mayll:ung4, p26 lMath-
ematical Surprises)
Some Things Never Change (prob-
lem solving with invariants), Yury
Ionin and Lev Kurlyandchik, Sep/
Oct93, p34 (Feature)
Songs That Shatter and Winds That
Howl (sound thinking), lanfFebg4,
p32 (Kaleidoscope)
Stop on Red, Go on Green.. . (what
to do on yellow?), Arthur Eisenkraft
and Larry D. Kirkpatrick ,lanfFeb94,
p34 (Physics Contest)
A Strange Emperor and a Strange
General (psychology and numerical
avalanches), Igor Akulich, May/
lun94, p16 (Feature)
Suggestive Tilings (new material,

o1d topics revisited), Vladimir
Dubrovsky, lul I Augg 4, p36 (Follow-
up)
The Superproblem of Space Flight
(origins of Tsiolkovsky formula),
Albert Stasenko, lullAtgg4, pZO
(Feature)
Swords into Plowshares (Russian
wingships and California fires), Bill
G. Aldridge,lanlFebg4, p2 (Pub-
lisher's Page)

A Tale of One City (Tournament of
Towns report), Andy Liu, Mayl
lun9 4, p50 (Happenings)
Thtee Metaphysical Tales (profound
thoughts of lines, light, and planets),
A. Filonov, Marf Apr94, p28 (Quan-
tum Smiles)
Three Paths to Mt. Fermat-Euler
(primes and squares), Vladimir
Tikhomirov, Mayflung4, p4 (Fea-
ture)
Thrills by Design (physics in the
amusement park), Arthur Eisenkraft
and Larcy D. Kirkpatrick, Sep/
Oct93, p38 (Physics Contest)
Through the Decimal Point (qua-
dratics and 10-adic numbers), A. B.
Zhiglevich and N. N. Petrov, |u1/
Aug94, p16 (Feature)
Topsy-turvy Pyramids (rolling-b1ock
puzzlesl, Vladimir Dubrovsky, Sep/
Oct93, p63 (Toy Store)
Torangles and Torboards (toroidal
constructions), Vladimir Dubrov-
sky, Mar/Apr94, p63 (Toy Store)
Tori, Tori, Tori! (bagels and beyond),
Mar f Aprg 4, 32 (Kaleidoscope)
Trees Worthy of Paul Bunyan (phys-
ics and tree growth), Anatoly
Mineyev, l an lF ebg 4, p4 (Feature)
Tricky Rearrangements (more roll-
ing-block puzzles), Vladimir Dub-
rovsky, Nov/Dec93, p63 (Toy Store)

The View from the Masthead (new
subtitle, departure, clarification),
Bill G. Aldridge, SeplOctgS, p2
(Publisher's Page)

What Little Stars Do (physics of
twinkling), Pavel Bliokh, Mar/
Apr94, p22 (Featwe)
World-class Physics in Colonial
Williamsburg (IPO report), LarryD.
Kirkpatrick, Sep/Oct93, p51 (Hap-
penings)
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xGl|0$s$clBllc0 by David R. Martin

vl,.2
-C5

[cnoss

1 Behind
6 Experimental

results
10 Large plasma ball
14 Milton 

-15 Mild oath
16 Albacore or blueiin
17 Plait
18 Oxide of cerium or

erbium, e.g.

20 Discharge
21 Former Yugoslavian

leader

22 Emotional emana-

tions (slang)

23 Oscilloscope pattern

25 TV's Iay 
-26 Bank account

27 Atmosphere
28 Plastic ingredient:

abbr.

31 Branch o{ mechanics

36 Leguminous plant
37 Serze iIlegally
38 Fish disease

39 
- 

ruy (high energy

photon)
40 Coin
41 Not critically

damped

43 Employ
44 Chemical suffix
45 Mixture of hydro-

carbons

45 Speed

48 Heating ore

mixtures
53 Large nail
55 Laser 

-56 Nonpareil
57 

- 
Iine (on a tidal

map)

59 French river
60 Birth-control

advocate 

-Guttmacher
61 "The King 

-"62 Attend to
63 Courageous

54 Pear

55 Unit of length

Doum

I Abbots
2ltaliar, physicist

Enrico 

-3 Comet tail
4 A type
5 _ giant star

5 Instantaneous rate

of change

7 Ornamental
chalcedony

8 Poi sourcc

9 Summer drink
10 Preparc a slide
11 Turbine driven

machine
12 Poker stake

13 Arena noises

19 For 

- 
more

21 Scarlet's home

24 Weakling
25 

- 
pendcns

)/ LrRe. some lenses

and prisms

29 Arrived
30 Nail
31 Airican antelopc

32 Egyptian goddcss

33 Not analytical
34 Poet's before

3.5 Dry 
-36 Gror-rp of whales

39 Type of bladder
41 Single

42 Per _
44 fusion project: abbr

47 Insulation fiber
zl8 Dispatches
49"-aflnelady"

50 Like a noble gas

5l cell (neuron)

52 Feminist Cermaine

53 Wound cover

54 Rich man's sport

55 Seismologist 

-Gutenberg (1889-

1 960)

58 Mortar mix;r
59 Belief
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M1 16
Let n be the number of sides of

the given polygon iof course, n >- 1\.
Then the number of rts diagonals is
n(n - 3ll2 (because there are n - 3
diagonals issuing irom each oi its n
vertices, and this accounrs tr,r'ice for
each diagonal). So rre har.e to prove
that

sd
n n(n- 3r I

where s and d are the sums o{ the
iengths of all the pol,vgon's sides and
diagonals, respectir.elr-.

Consider two nonadiacent sides
AB and CD, and dragonals AC and
BD joining their endpoints and in-
tersecting at O 1iig. 1J. Since AB <

AO + OB, CD < CO + OD, we have
AB + CD. iAO + OC) + IBO + OD)
=AC+BD.

I{ u,e write out such inequalities
{or all pairs of nonadjacent sides and
add them up, we'l1 get (n - 3)s on the
le{t side (because each side enters r
- 3 pairs) andZd on the right side (be-
cause each diagonal occurs in two
inequalities-it joins two pairs of
nonadjacent sides in the position of
figure 1). So (n - 3)s . 2d, which is
equivalent to what we set out to
prove.

ANSWERS,
H INTS &

SOLUTIONS

M1 17
The answer isl-t. Consider any

of the permutations in question. Sup-
pose the number in the first place
(from the left) is k. If k > 1, then the
numbersk - l, k - 2,..., 1 will be met
just in this (decreasing) order as we
move from left to right. Indeed, the
number 1 must have 2 on its left side,
the number 2 must have 1 or 3-that
is, 3--on the left, 3 must have} or 4-
that is, 4-on the left, and so on.
Similarly, for k < n the numbers k + 1,

k + 2, ..., n must be arranged in in-
creasing order, becausen - 1 must be
to the left of n, then n - 2 to the left
of n - I, and so on. Therefore, arty of.

the permutations considered in the
problem is uniquely determined by
the set of places occupied by the
numbers l, 2, ...,k - 1 (there may be
no such places if k = l-that is, for
the identity permutation 1,2, ..., nl:
we have to affange these numbers in
these places in decreasing order and
the remaining numbers in the re-
maining places in increasing order.

It's not hard to see that the num-
ber of such sets is simply the num-
ber of all subsets of the set of all the
n - 1 places except the first, and is
equal to 2" - I.

Ml18
We'Il use induction overm + fl to

prove a slightly generalized state-
ment with not Tess than k greatest
numbers underlined in each col-
umn, andnot less thanl in each row
(this will be more convenient for
inductive reasoning).

Obviously, for m = n : k : I = I
the statement is true: ftJ: 1 number
(the only one) will be underlined
twice. Let's now show that the
statement for an m x n afiay can be
reduced to the case of an lm - Il x n

ormx(n-llaruay.
If all the underlined numbers in an

m x n afiay are underlined twice, then
there are no less thankJ of them. Oth-
erwise, let a be the greatest of the
numbers underlined once. It's either
one of the k greatest numbers in its
column or one of the I greatest num-
bers in its row. Assume it was under-
lined "along a column." Then the 1

greatest numbers in its row are
greater than a and so are underlined
twice. Cancel out this row. We get an
(m - ll x n arrayt in which at least 1

greatest numbers are underlined in
each line and at least k - 1 numbers
in each column. The induction hy-
pothesis implies that at least (k - 1)1

numbers in this reduced afiay are
underlined twice. The same numbers
are underlined twice in the big array;
together with at least I numbers
underlined twice in the line that was
deleted, this makes at least (k - lll + 1 :
ld numbers, completing the proof.

Ml19
Let's first prove that PAr = PA2 =

... : PAn.Suppose this is not true.
Choose the shortest and the longest
of these edges, PA, and PAr, respec-
tively. Now draw atangleBAC con-
gruent to angles PA.A,, ..., PAnAt,
and mark off the segmentAB : ArA,
: . . . = A,lron one of its sides, and seg-
ments AC = Ar_rP and AD = Aj_P
on the other side. (Figure 2 shows the

Figure 2

4$

Figure 1
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A*-, Ak

Figure 3

case where AD < AC. The same ar-
gument will hold If AD > AC. Of.
course/ when s : 1 or l, A, _, or A, _

, should be replaced byA,.)Triangles
ABC and ABD are congruent to the
faces A, _ rArP and Ar_rAtP of the
pyramid, respectively, so BC : PA,
and BD = PAt.By the Triangle In-
equality, BD - BC < DC : IAD -
ACI-that is, PA, - PA,. I PAj_ \ -
PAs_Ll 3 PAt - PAr, because PA., is
the longest arrd PA, the shortest of
the edges PAo-and this is a contra-
diction that proves that all these
edges are the same length. Now drop
the height PH of the pyramid (fig.
3). By the Pythagorean Theorem,
HAt, : PAo, - PH2, so HAr = HA2

HAn. Therefore, the vertices
Ay, ..., Arall lie on a circle with
center H and so divide it into equal
arcs (subtended by equal chords
A*A* * ,). This means that
AtA2...An is a regular n-gon, and
the base H of the pyramid's height
is its center, so we're done.

Ml20
The answer is a : B. If f(xl : A* +

Bx+ C, thenl'(1) =2A+ B. Now

flot: c,
f(rl2l: Al4 + Bfz + c,
f(Il=A+B+C,

so we have

V'llll: l2A + Bl

= tsflll - +f(tl2l + flolt
< 3ll(1)l + atf$lzlt + l/(0)l
<8.

So a < 8. On the other hand, the
above inequalities turn into exact

Figure 4

equalities If flrl = -f(rl}): f(0) : I,
that is, lor folxl : 8* -Bx + 1 (see the
graph in figure 4). The {unctionlo(x)
satisfies the inequality lfolxl < I for
0 <x< 1 (its graph is a parabolawith
the vertex at x = I f2l,so the number
8 in our estimate for l/'(1)l cannot be
decreased, and therefore a = 8.

This solution was based on the
f.act that a polynomial of degree n is
uniquely determined by its values at
n + 1 points. Inourcase/n :2;tr\to
solve this problem for cubic polyno-
mials. It's worth noting that for an
arbitrary degree n the best estimate
in this problem is given by the so-
called Chebyshev polynomials,
which we intend to discuss in detail
in upcoming issues of. Quantum.

Physics

Pl 16
Three characteristic cases are

possible: (a) the beetle's velocity rz

relative to the water is less than the
velocity of the surface waves u-
that is, v < ui (bl v = u; (cl v > u. Each
case is illustrated in figure 5. Figure
5c looks like the shock wave pro-
duced by a supersonic aircraft, or
iike Cherenkov radiation, which
arises when electrons travel faster
than light in a particular medium
(though not, of course, faster than
light in a vacuum).

Pl 17
Denote the normal force as N (the

vector is directed tsward the center

river bank

-

Figure 5

of the dome), and the force of fric-
tion as /. To find the correct direc-
tion of this force, we need to see
where the support point moves if
the friction disappears. Let's write
the equilibrium equation for the rod
(fig.5):

2N cos a-2f sin cr + mg = O.

If the rod were initially pressed into
place more strongly, N and I would
increase, but mg would not change.
As we are interested in the minimal

sin u: u/v

50 Jtl[Y/rtlGttsI tss4
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possible value of the coefficient of
friction, we assume that the rod has
been pressed very strongly and,
hence, the force mg car be ne-
glected. Then

Ncoso:Isincr<pNsino,
OI

^@ -t4+ trF .U>CotO( --r--I.' u2 \12
We've obtained the answer, but

some comments are in order. If J >
2R, we can't insert the rod into the
dome. If, on the other hand, the rod
is too small, then the corresponding
value forp will be too large and will
make no sense. Finally, rubber is a
substance with very complicated
properties; its i_nteraction with a
solid surface is not adequately de-
scribed by the laws of dry friction
(but that's another story).

P1 18
The conduction of heat from the

inner shell of the thermos (that is,
from the tea) is performed by mol-
ecules of gas between the inner and
outer shells. That's why the space
between the shells was pumped out:
to prevent the gas that remains from
forming a continuous heat-conduct-
ing medium-that is, to make the
molecules move between the shells
without colliding with one another.

Let's assumethat after a collision
with a shell, a molecule on average
has an energy proportional to the
temperature of the shell. Thus, at
the outer shell the kinetic energy of
the translational movement of a
molecule is K, - %kTr, where { is
room temperature; at the inner shell
the corresponding value is K, -
"/zkT, where 7, is the temperature
of the tea. Although this tempera-
ture changes with time, the range of
its variation is not large: AT = 363 K
- 343 K = 20 K. So for the purpose of
our estimates we can assume thatKl
- %kT"where 7. = 353 K is the av-
erage temperature of the hot shell.

Consequently, after a coliision
with the hot shell, each molecule
"takes" energy from the tea that is
equal to

LK - %kff"- T,l.

The number of molecules colliding
with the hot shell per unit time is
proportional to f nvs, where n is
the density of the gas molecules and
v is the average magnitude of the ve-
locity projected perpendicular to the
wall. The number of molecules
that collide with the wall during
time At is

N - fnvSLt.

These molecules take from the tea
the energy

AE : NAK - sfnvSk(T"- T,lLt.

This energy is equal to the change
AU in the intemal energy of the tea
in the period At-that is, AE : LU.
Insofar as

LU: McLT,

where AT is the change in the tem-
perature of the tea, then

sfnvSk(T"- T,lLt - MILT.

From this we get

4McLTAf-:.
anvsk(4 -4)

Taking into accountthat v - $fli,
where p is the molar mass of the gas,
and n: PlkT, (which follows from
the Clapeyron-Clausius equation),
we finally obtain

aMcLf rE\
BP(4 - 4)sJR

Substituting numerical data lM :
1 kg, A7:}OIK,T,=293K,P: lPa,
p.= 29 . 10-3 kg/mol, and so on)
results in

Lt-3.104s-gh.

P1 19
At an arbitrary point A at a dis-

tance R from the wire, the velocity
of the particle is directed at a small
angle cr with the x-axis, so

Figure 7

where v, is the vertical projection of
the velcicity and v, : TXlmis the
horizontal projection.

Let's write down Newton's sec-
ond law for the y-component (fig.7l:

Fydt = mdvr,

where

F, = gEc'ssy =
e),cosy

ZneoR

The small time period dt canbe de-
rived from the formula v,= dxf dt:

Rdv

Y COSTI,Txr

v
A= 

-,v

,dx
uL -

vx

Lt-

During this time the vertical projec-
tion changes by

F. e),,
dv.. = Jdt = ----"!' 4*.o m 2neomv,

The total projection of the velocity
on the y-axis is composed of small
increments:

rl2

' -^,' ' Zeomv*

Thus, the angle we're seeking is

v, e?" e)"
d=L 

= 
_

v, 2eomtl 4eoK

P120
Two cases are possible. (1) The

lens is convergent. Drawing the
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light path through the lens (fis. 8)

yields the following relationship:

dtar,o"=Ftanu+FtanB.
From this it follows that

F- = 4 crn.
1+ tanp/tana

(2) The lens is divergent. From
figure 9 we have

Ftanp=Ftanu+dtana,
from which we get

F_ =12cm
tanBf tancl"-l

-that is, the beam exits from the
focus of the lens.

Figure 9

Bnainlea$Er$

81 16
Suppose originally the band

formed annxn square/ so that the
number of musicians is n2. By the
statement of the problem, n2 must
be divisibleby n + 5 (so that it's
possible to form n + 5 rows). Since
n2 = (n + 5)(a - 5l + 25, this means
that 25 is divisible by n + 5. The
only divisor of25 greater than 5 is
25 itself, so r? + 5 :25, n = 20, and
the answer is n2 = 400. (V. Dub-
rovsky)

Figure 10

81 17
From the properties of a rhombus

it is clear that IACD : I BDA = 60
(fig. 10). Suppose angle ACB were
50'. Then quadrilateral ACDB car.
be inscribed in a circle lsince ZACD
= ZADBI, so angle CAB is supple-
mentary to angle CDB, andis 60o as

well. This makes triangle ABC
equilateral. A similar proof holds if
angle ABC is assumed to be 50'.
Finally, if the 60" angle is supple-
mentary to angle ADB, so again
quadrilateral ACBD is cyclic. Hence
IACB = ZADB : 60", and triangle
ABC ts once more equilateral.

81 18
Turn on one of the switches, wait

a while, turn it o{f, then turn on a
second switch and enter the room
with the lamps. The lamp that's on
is connected to the second switch,
one of the other two lamps is hot
and is connected to the first switch,
and the remaining lamp is con-
nected to the third switch.

81 19
Let s be the sum of the three

numbers along any of the lines and
a the number in the left bottom cor-
ner. If we add together the five triple
sums along the lines through a,
we'llget (l +2 +... + 11) + 4a:66 +

4a = 5s. Now consider three hori-
zontallines and the line through the
two numbers not on these lines.
Adding the numbers along these
four lines, we get 4s = 55 + a. From'
these two equations we find a : 6,

s = 18. One of the lines through a : 5

contains the numbers 1 and I l.
Other lines that may pass through
1 can contain B and 9 or 7 and 10,

while lines through 11 can contain
2,5 or 3, 4. So a line through 1 can't
intersect a line through 11. This
leaves only the circles on the left or
bottom sides of the square as pos-
sible locations of I and 11. Writing
11 in the top left comer, by trial and
error we find the two solutions in
figure 11. If we simultaneously ex-
change the pairs of numbers other
t}r'an6 on all lines through 6 (for in-
stanse/ 1 and 11, 10 and 2, 7 and 5,

and so on in figure llal, we'll get
two other solutions. (Using the fact
that s = 18 and a = 6, we can make
sure that this operation always
transforms a solution into another
solution.) And, finally, these, four
solutions can be reflected about the
diagonal line to give four more so-
lutions. So the total number of so-

lutions is B. (V. Dubrovsky)

a

Figure 11

b

52 JUI.Y/AllIUST IOO4



8120
By the statement of the problem,

the two odd numbers in question are
different-otherwise, their product
wouldbe equal to the square of their
half-sum. So the smallest possible
product is 1 1 . 13 : l43j the next one
is 11 . 15 = 165. Since there are no
pyramids as high as 165 m, the nuin-
bers are I I and 13, and the height of
the pyramid is greater than 143 m
but less than [(11 + L3ll2l2:144rr,.
There are two pyramids in Egypt
higher than 143 m: the pyramid of
Khufu (Cheops) at 146.6 m and that
of Khafre (Chephren) at 143.5 m. So
the pyramid was built for Chephren.

Iilings
l. For figure 3a in the article the

answer is I llmn+ 1); forfigure 3b it's
I llmn - 1). In both cases the answer
is obtained by extending the grid of
the small parallelograms and count-
ing nodes inside the big parallelo-
gram.

2.It canbe proved that the points
A, B, C and the intersection points
of AA' BBr, ar,dCCrcanbe consid-
ered nodes of a parallelogram grid
(fig. 12). Then the arca of ABC
equals 3 + 3' 116 = 3% times the
area of a grid parallelogram, while
the area of the small (shaded) tri-
angle is LlZ of this unit. So the an-
swer is ll2 + 3/, = /7 .

The existence of the parallelo-
gram grid in the solution above can
be derived, for example, from the
fact that the segments AA' BBr,
CC, divide each other in theiatio 3
:3 : 1. A proof is left to the reader.

3. Let's tile the plane with copies

Figure 13

of the given big square with the
small square inside it (fig. 13). This
creates blue and red hexagons (we
see them in the top part of the fig-
ure), and we have to prove they are
of equal area. |oin the small squares
as shown. Then a "thick" grid con-
sisting of small squares and paral-
lelograms joining them emerges (see
the lower part of the figure). Obvi-
ously this grid fits on itself when
rotated 90' about the center of any
small square. Therefore, the paral-
Ielograms are all congruent to one
another and divide the plane into
squares. Each of these squares con-
sists of two blue and two pink tri-
angles with a common vertex, and,
as was mentioned in the article, the
two blue triangies have the same
total area as the two pink ones.
Now, looking at the hexagons again,
we see that a blue one comprises
two blue triangles and a parallelo-
gram, and a pink one consists of two
pink triangles and a parallelogram. It
follows that the hexagons have the
same areal and we're done.

4.Let M and Nbe the midpoints
of the sides AB and CD of a quadri-
lateral ABCD. Think of ABCD as a
tile in a quadrilateral tiling of the
sort considered in the article. Let
CDEF be an adjacent tile (symmet-
ric to ABCD about N), and I be the
midpoint of its side EF (fig. 14). Since
M andl are symmetric about N, all
these three points lie on one line, so
ML = MN + NL:zMN. On the other
hand, ML = AE. Now the statement
of the problem follows from the Tri-
angle Inequality for ttiangle ADE

Figure 14

and the relation DE = BC.
5. We use the fact that the area ot

a parallelogram is less than half the
product of its diagonals, and is equal
to this product only if the diagonals
are perpendicular. We can see this, for
example, by looking at the four tri-
angles formed by a parallelogram and
its diagonals. We can then use the
facts that the area of a triangle is half
the product of two adjacent sides and
the sine of the included angle, and
that this sine is at most equal to I
(when the diagonals are perpendicu-
lar).

Consider the given quadrilateral
ABCD as a sample tile, the corre-
sponding tiiing and the paralleiogram
tiling associated with it. The area of
any of the parallelograms is twice the
areaof.ABCD, and it's no greater than
the half-product of the diagonals of
the parallelogram. As seen in figure
14, one of the diagonals, AE a AD +
DE = AD + BC. Similarly, the other
diagonal is not greater thanAB + CD.
So the areaof ABCD does not exceed

%Ao+BCI(AB+cDl.
To obtain equality, we must have

AD + BC = AE, or AD ll BC andAB ll
CDi in addition, the diagonals of the
parallelogram must be perpenficular.
This means that AB CD is a rectangle.

6.Infigure 15, the areaof ABCDis
twice the area of APDQ (because

Figure 15

\--->

Figure 12
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LADQ is congruent to ACBP). Now
it's not hard to prove (see the solution
to problem 5) that the area of a tri-
angle is not more than 1,12 the prod-
uct of two adjacent sides. Therefore,
area IAPDQ) = area(APQI +

area(DPQI < AP . AQlz + DP . DQlz
= %Pe PC + PD PB), so
area(ABCD)<PA.PC + PB .PD.

7. The hexagon can be inciuded in
a tiling as shown in figure 5 in the
article so that the vertices of the tri-
angie in cluestion are nodes of the cor-
responding grid. Then every hexagon
covers three nodes, each of which
belongs to three hexagons. So the
hexagon's area is 3. I f 3 : l " gridunit,"
while the area of the triangle is l12.

Tale ul one city
(See the Happenings department

in the May/|une issue)
1. The regular networks are 3b, 3e,

3f,3h,3k, 31, 3m, 3n, 3o, 3p, and 3q.
2. Consider a section of the net-

work without A_Aalry crossmg
gyQr, os shown 

n ft Bin figure 16. D

There are four C -__z C
branches,
whichwelabel
A, B, C, andD,
On either side, Figure 16
each ofA andB

A

B

a

Figure 19
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Figure 17

will join up with one of C and D.
Hence there are at most two compo-
nents.

While the networks themselves
can be very complicated, the solu-
tion to question 2 shows that there
are only four basic patterns/ as
shown in figure 17. Two of them
Iead to regular networks and the
other two lead to irregular networks.

3. By symmetry we need only
consider the addition of integration
points. Figure 18a shows the results
when both points are added on the
same side of the circle, while in fig-
ure 18b they are on opposite sides.
Comparison with figure 15 shows
that the former does not affect regu-
larity. We can see that the same
holds for the latter by going through
the four cases in figure 17.

4. Suppose there is an integration
point on one side of a circle. We can
move it to the other side as follows.

A

C

,>cq, 
o,7'o

ab
Figure 18

By question 3 we can first add two
points on the other side and then
remove one of them along with the
original point.

5. The regular networks are (cl,
(d), (e), (h), (i), and (k).

5. The results of the three opera-
tions are shown in figure 19. Ciearly
regularity is not affected.

7. Observe first that the elimina-
tion of initial or terminal0's does not
affect the divisibilityby3 of the alter-
nate sum/ nor does any of the three
operations in question 6. We can
eliminate all 0's from a sequence as
follows. Firsg we get rid of the outside
0's and the inside 00's. Any remain-
ing 0 must be flanked by two 1's, both
of which can be removed. This is be-
cause we can replace 101 with 0. Re-
peatin& if necessary, we can either
force the 0 to the outside or bring it
next to another inside 0. In either
casg the 0 can be eliminated. When
only l's remain in the sequence/ we
can get rid of 111's, so that the final

D

b

A

B

A

B

A

C

DD

C



sequence is either empty or consists
of one or two 1's. In the first case, the
network is irregular, and the altemat-
ing sum 0 is divisible by 3. In the last
two cases, the networks are regular,
and the altemating sum, which is i or
2, is not divisible by 3.

Training problem. (a) We have

aP -bP = (a-bllao-t * 6o-2fu a ..'.

+ abP*2 + bP-tl.

Since a : b (modp), a - b =0 (modp),
and

ap-I + ap-2b + ... + abp-2 + bp-r
=paP- 

1 :0 (modp).

The desired result follows.
(b) (1) We use the fact, which the

reader can prove/ that i{ x is a central
angle (see figure 20), a necessary and
sufficient condition for point P to be
on circle O is that x + 2y = 2n. In the
figure accompanying the original
problem, arc AB: arc DK (since AB

Figure 20

llBC) and xc AR: arc AN (since ZB
= ZADC). Hence arc MN = arc N/(
(sinceANis a fiameter). This means
that NM : N1(, so we need only show
that point C is on the circle with cen-
ter Nthrough M and K.Let arc AB =

arc DK = a, arc AK: arc AN : b, arrd
arc MN = arc NI( = c. Then ZMNK =
a+b,LZMCK=a+b+2c,ar..d
IMNK + 2ZMCK = 2a + 2b + 2c = 2n.
The result follows from the first state-
ment in this solution. (21 Tnanf,es AB C
md IUC are similar, as are ADC arrd
MLC. Hence LCILK: CBIAB =
ADICD = LMILC, so thatIC : Jfr .

Toy Slol'e
The answer to Tim Rowett's

ptzzle: in the sequence 77,49,36,
18, each number except the first is
the product of the digits of the pre-

ceding one. The missing number is
8=1.8.

For the solution to Peter Hajek's
przzle, see figure 21.

Figure 21

.AMAZING PARABOLOID"
CONTINUED FROM PAGE 43

other conditions being equal), the
shorter its "parallelism." As a con-
sequence/ not only is it practically
impossible to construct a very deep
paraboloid, it's also senseless from
the theoretical point of view. The
wave theory of light doesn't allow us
to obtain a beam of light that is as
powerful and as parallel as we like.

Thus, the beautiful and unex-
pected effects related to doul:le re-
flection from the paraboloid of revo-
lution are possible only within
certain limits-when we can ignore
the wave character of light. This oc-
curs when the smallest of all the di-
mensions in the system-the radius
r"-rr-is many times greater than
the wavelength. This condition im-
poses a limit on the degree to which
light can be "amplified." O

"MATH INVESTIGATIONS"
CONTINUED FROM PAGE 30

the following corollary to a theorem
of Gauss often useful: 1t is impos-
sible to construct with ruler and
compasses a line whose length is a
root or the negative of a root of a
cubic equation with rutional coeffi-
cients having no rationaTroot, when
the unit of length is given. To use
this theorem, he would assign care-
fully chosen rational values to the
data, derive a cubic equation with
roots the sides of the triangle (or
other essential entities) and con-
structible coefficients, and then
show that this cubic has no rational
roots. In some other problems his
data led to the constructibility of an
angle of 20o or some other impos-
sible situation. However, it should
be noted that in all cases, even
though it cannot be constructed by
Euclidean tools, there should be a
triangle satisfying the given data. In
fact, all 185 problems may be
viewed as reconstructions of a given
triangle from the ingrefients given.

Leroy Meyers's interest in these
problems dates back to his high
school days, when-like many
other incipient mathematicians-
he was intrigued by the variety of
such problems and the clever prob-
lem-solving techniques needed for
their solutions. Later his interest
was rekindled by an article in the
M ath em ati c s M a g a zin e written by
William Wernick. Their subsequent
collaboration will be the subject of
my next column. Since I plan to fea-
ture there 20 other unsolved prob-
lems, in the meantime I challenge
my readers to resolve the 28 prob-
lems listed above. O
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TOY STORE

Theannual ruzleparu
Everyone brings one present and takes away a bundle

by Anatoly Kalinin

N AUCUST 20, 1994, TIIE
city of Seattle, Washington,
will host an event unusual in
many respects. The most fa-

motJs "pttzzle people" from all over
the world will gather there at the
l4th International Puzzle Party. To
give you an idea of what happens at
these meetings, I'11 tell you about
the last one-the ISth Puzzle P afiy,
which took place in the Netherlands
last summer.

A year ago, on August 20, 1993,
the halls of a fashionable restaurant
outside Amsterdam were crowded
from early morning on. More than a
hundred people from the US, the
Netherlands, Italy, France, the
Czech Republic, Ireland, Malaysia,
Portugal, Russia, Ukraine, and New
Zealand had arrived there to hold
their "congress." The international
union of mechanicalptzzle lovers
arose many years ago/ but it became
really popular and well-organized in
the early 1980s, when the famous
Rubik's cube enthralled millions of
people of all ages all over the world.

Today, however, the Hungarian
Erno Rubik is no longer the most
famous personality in the puzzle
community. |ust as in the ancient
view the world rested on three giant
fishes, the modern world of clever
toys is shouldered by three of its
most famous puzzle-personalities:
|erry Slocum of the US, Edward
Hordern of England, and Nob

Yoshigahara of |apan. They possess
the biggest collections (tens of thou-
sands of puzzles in each), they've
published many books about
puzzles, and, of course/ they've in-
vented originai pazzles of their
own.

But let's retum to Amsterdam. By
tradition, everyone who comes to a
Ptzzle Party is obliged to bring a
copy of an original p:uzzle (most of-
ten of his or her own devising) for
every participant, who receives it
free of charge. This multilateral
trading results in full suitcases of
new ptzzles heading to new homes
around the world. And for apuzzle
f.anattc,new ptzzles are more valu-
able than Amsterdam's famous dia-
monds.

The conclave in and around
Amsterdam continued for two
days-a time filled with ptzzle trad-
ing, attempts (often vain) to unlock
the secret of a new ptzzle right
away, discussions of ideas for new
puzzles, and excursions into the
thousand-year history of puzzles.

The toy that was declared the
best of those that were brought to
the party was inventedby one of the
three contemporary giants-Edward
Hordern. It's a brass six-sided prism
pierced by a round rod. You have to
draw the rod out of the prism. The
surfaces of the prism and rod are
absolutely smooth, without any pro-
jections or moving parts. All in all,

the puzzle looks completely inac-
cessible and unsolvable-and no
wonder. Only a month after the
party each participant received a 1et-
ter that revealed the secret: to disas-
semble the thing, you have to . . .

kiss it! It turns out there's a little
hole in the surface of the prism-so
small you hardly notice it. You place
your lips over this hole and draw the
air in. The rod slips out of the prism
all by itself.

Second place was won by another
luminary of the p:uzzle world, |erry
Slocum. His puzzle was astonishing
and paradoxical. It consisted only of
four identical pieces resembling fa-
miliar jig-saw-puzzie shapes. A11
four pieces are linked to one an-
other, and the task is to unhook
them. It seemed as if witchcraft
were involved: you could easily dis-
connect any two pieces, but to dis-
assemble all four was absolutely
impossible!

By way of illustration, I'd like to
present a few ptzzLe gifts from the
lSthPuzzLeParty that canbe solved
in your head, or are flairly easy to
make"

If there's the slightest chance that
you can make your way to Seattle
this August, take advantage of it and
come to the 14th International
Przzle Pafiy. You won't re$et it!
For detaiis, contact Gary Foshee,
15006 255thAve. S.8., Issaquah WA
98027, phone 206 392-2907. O
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Read the sentence directlY below:

GRE.\T IUN FOR PEOPLE OF ALL ACES-TRY
PIJZZLLTT S POCKET PIJZZLEST\|-HAND MADE

OF BRASS AND FINE WOOD.

Ncxv, count the F's in the sentcnce above.

Only once, thoughl Don't go back and

count them again.

'srrll a>lrT ssaurlsrlool uo aurtl :no,(
3uuse,u. cc1 or poo8 ool rlJnlu t9 snrua!

e a,r,no i 'a.\rl II1? lo8 no,i 11 auo d]rqs
r ar no-( rnol pa::tlds t"'tl \ II :LlLrIl111aS

Figure 1

The puzzle lrom Mtke Ct'een tKe nt. 11-il-sfun.gtonr.

Figure 3
Tlte puzzle front HosrcLnJ R. Srrft (Toledo, Ohio). The
obit'cl is Lo remove Ll,t ritt:.

Figure 4
The present from Herman Wittaveen (the Netherlands):
ur"iong" the two red blocks with the two blue blocks
by sliding only.

Figure 2
Tint Rowett, an English toy and puzzle designer,
preselTted each party guest with a candy bar.1 inch in
-clittnteter 

and 8 inchas long,. The edible stuffing of the
candy is penneatad with nine figured (literally
"iigured';lbttnds-.also edible-such that as you bite
ofia piece yott always see these mysteilous figwes on

the eid So the ptocess of soTving the puzzle is cotn-

bhecl tvith its ionsttmption. To win this "biathalon"
\-c)u not onlv has,e to find the relationship, between the
'nuntlters 

artd figttre ottt the mi.ssrng nutnbet, you have
to eat the puzzle as fc.st as ,You can.

Eiar ra (r rvurv u

The ptesent from Peter Haiak (UK): fit the four T's
inside the red sqttare. And a special aclditional question
lor Qnantum readers: at'ter you solve this puzzle, tty to

figwe out the smallest size of the red sqLlare, given-the
slze oi tlte big sqllare, such that the soltttictn ls stil-1

possible. (We cttn vaty the ditnensiotts of the letters.)

ffi E==-1ffiffiffi
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