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GeodesicDomeby

IF ALL BUCKMINSTER FULLER EVER DID WAS
I invent the geodesic dome, his place in history would have
been assured. It is considered by some the most significant
structural innovation of the 20th century. It encloses more
space with less material than any alternative form. "When
I invented and developed my first clear-span, all-weather geo-
desic dome," Fuller wrote/ "the two largest domes in the
world were both in Rome and were each about 50 meters in
fiameter. They are St. Peter's, built around e.o. 1500, and
the Pantheon, built around a.o. 1. Each weighs approxi-
mately 15,000 tons. In contrast/ my {irst 50-meter-diam-
eter geodesic dome installed in Hawaii weighs only 15
tons-one thousandth the weight of its masonry counter-
part. An earthquake would tumble both the Roman domes,
but it would leave the geodesic unharmed."

Fuller coined the word "tensegrity" for the continuous
tension/discontinuous compression structural system he
developed from an idea he learned from a sculptor. He soon
reahzed that, because of the greater efficiency of tension
compared to compression, very large domes could be built
with his tensegrity trusses. He calculated that a 3-km
dome would weigh only 4,000 tons.

In the photograph above, Fuller is standing in front of
the76-rn dome that housed the US pavilion at the world's
fair in Montreal in 1967. Not all geodesic domes are quite

courtesy of Universit)

R. Buckminster Fuller

so monumental. The photo below shows Buckminster
Ful1er and his wife, Anne Hewlett Fuller, in their geode-
sic home in Carbondale, Illinois. Turn to page 8 for a look
at even smaller geodesic structures: hollow carbon mol-
ecules called "buckyballs" in honor of this wide-ranging,
forward-looking thinker.
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C ov er art by Leonid Tishkov

Some of us can recall, with a twinge
of shame, a time when it was oh-so-
easy to make a bit of money. A11 you
had to do was strike a little deal with
a younger kid: "Here, I'11 trade you
this nice, big nickel for that little dime
of yours." It was a nice scam-for a
while, at least. Either the kid got wise,
or someone older intervened-with
dire consequences for the clever cur-
rency trader.

Who can blame the four-year-old
for thinking a nickel is worth more
than a dime? Only an adult would
think of making a bigger coin less
valuable than a smaller one. It all but
invites fraud in the seven-year-old
mind. Of course/ grown-ups aren't im-
mune to psychological mishaps when
it comes to money. In [act, the noble
Roman on our cover has fallen prey to
a cunning emperor. |ust how cunning?
You be the judge. The story begins on
page 16.
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The role of quantification in molecular biology

I N A RECENT EDITORIAL IN
I the British journal Nature {Vol.
1368, 10 March 19941, |ohn Mad-
I dox makes an important point
regarding the present descriptive
character of molecular biology.
Maddox observes that in the human
genome proiects, the main goal is to
list the genes and "to specify their
nucleotide sequences. " The projects
also try to specify "the sequences of
regions of DNA that hoid the genes
together in the chromosome."

These activities are, first of. all,
ones of identifying structure and giv-
i.ng names to that structure. Second,
researchers make connections be-
tween these structures and other
structures or characteristics of the
organism that are inherited through
the gene. Still, these processes are
inherently descriptive. They do not
r e\y on qu antit ativ e rcIationships. As
description, we can tell what the re-
sults will be, and we can give names
to genes and sequences of regions of
DNA. But we cannot make quantita-
tive predictions. Furthermore, quali-
tative predictions that fail to consider
underlying quantitative variables
may well be wrong.

Most importarLtt regardless of
how well descriptive molecular bi-
ology may tellwhathappens, it does
not te1l why it happens. This can
only occur if we can apply laws of
science that are quantitative to the
situation. Maddox uses as an ex-
ample a virus that infects E. coli,
called bacteriophage 1,, and areprcs-
sor protein produced by one of the

viral genes. A second gene, called
Cro, will bind to the same DNA site
if there is no repressor protein
present and repress the activity of
the repressor. This is called a
switching mechanism. In examin-
ing this situation, researchers have
found that there are only about i00
or so free molecules in the cell un-
der consideration. This means that
there are fluctuations of macroscopic
laws of equilibrium thermodlrramics
that are not accounted for. Maddox
speculates that the genetic switch
may in factbe a krnetic phenomenon,
and that "the energetic implications
of what appears to be equilibrium
constants may be spurious."

As Maddox points out, "The
naming of parts does not in itself
yield understanding." He goes on to
list the problems yet to be resolved:
"how the molecules olrepressor fold
into their characteristic dumbbell
shape, why dimers are so much
more stable than monomers, and
how an alpha helix in the amino-
component interacts with DNA at
the binding sites. To be more pre-
cise, what happens has been deter-
mined by elegant genetic experi-
ment; why that, not something else,
happens remains to be discovered."

In this brief overview I haven't
done justice to Maddox's editorial. If
you have read some molecular bioi-
ogy, I recommend that you read the
essay in its entirety. Here, I simply
wanted to give a sketch of his ideas
to suggest the importance of two
aspects of science that aren't often

associated with molecular biology.
One is the use of quantity, svmbols,
and equations; the other is their ap-
plication in fundamental larvs of
science, such as thermodl-namics
and kinetic theory.

I have noticed a tendency to
downplay the "hard sci.ences" on
the grounds that the real1r exciting
areas of research are in molecular
biology. Yet even if that is u.here the
"excitement" is, you rr.r11 come to a
dead end if you fail to utilize phys-
ics and chemistry. You can't get to
the heart of natural phenomena if
you don't understand the basic laws
and principles of science that under-
lie those phenomena.

Readers oI Quantum magazine
continually see the unusual and ex-
citing ways in which such funda-
mentals lead to a more profound un-
derstanding of varied phenomena in
bioiogy as well as in other areas of
science. Recall, for instance, "Math-
ematics in Living Organisms" (No-
vember/December 1992), where cats
are shown to be handy with loga-
rithms; or "Trees Worthy of Paul
Bunyan" (November/December
19931, where physical processes af-
fecting plant growth are expiored.
Regardless of your interests-but es-
pecially if you intend to go into the
Iife sciences-continue to study
physics and chemistry and acquire
the mathematical tools needed for
research in all the sciences. We hope
Quantum will help keep you on
that productive path.

-Bi1lG. Aldridge
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you think belongs it Quantum!
Do you have an unusual topic
that students would find fun and
challenging? Do you know o{
anyone who would make a great
Quantum author? Write to us
and we'll send you the editorial
guidelines {or prospective Quan-
tum contributors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in colloquial
English and at a level appropriate
for Quantum's predominantly
student readership.
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Quantum readers, let us know about itl
Help us fill Happenings and the Bulletin

Board with short news items, firsthand re-
poris, and announcements of upcoming
events.

ltllfiatt olt your lniltd?
Write to us! We want to know what you

lhink ot Quantum. What do you like the
most? What would you like to see more

of? And, yes-what don'tyou like about
Quantunl? We want to make it even bet-
ter, butwe need your help.
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Thl'ee palh$ Io [Ull. Fermal-Euler

Let Lagrange, Zagier, and Minkowski be your guides

by Vladimir Tikhomirov

OOK AT THE FIRST FEW
prime numbers greater than 2:
3,5,7, rL, 13,17,19,... . The
numbers 5, 13, and l7 canbe rep-

resentedas the sums of two squares-

5=12+22
13 :22 + 3i
17=12*42'

-while the other four numbers (3,

7 , 17, 19) cannot. (Check it yourself !)

Is there afly way to tell one sort of
number from the other without a
brute-force search through all pos-
sible breakdowns? And how can this
difference be explained? The answer
is given by the foiiowing theorem.

THsoR.sr{. A prime number
greatu than 2 is representable as
the sum of two squares if and only
if its remainder upon division by
four is one.

(Indeed, 5 : 4. l+ 1, 13 = 4. 3 + l,
L7 :4.4 + l, whereas 3 = 4.0 + 3,7
=4.1+3, 11 =4.2 *3,....)

Problem 1. Prove the "only if"
part of the theorem: any prime (ex-
cept 2) equal to the sum of two
squares can be written as 4n + | Ior
some integer n.

Who first discovered this math-
ematical phenomenon? There is evi-
dence that not long ago we could

have celebrated the 350th anniver-
sary of this remarkable result. On
Christmas Day in 1540, the great
Pierre Fermat (1601-1565) wrote a

letter to the renowned Mersenne, a

faithful friend of Descartes and the
main intermediary in the correspon-
dence of scientists of that time. He
informed Mersenne that "any prime
number that yields a remainder of
one when divided by four is
uniquely representable as the sum of
two squares."l At that time there
were no mathematical iournals, so
mathematicians exchanged infor-
mation by mail. In general they sim-
ply announced their results and
didn't include any proofs.

However, almost 20 years after
writing to Mersenne, Fermat de-
scribed his plan of attack in proving
the theorem presented above. In a

letter to Carcavy2 sent in August
1659, he writes that his proof is based
on the method of infinite descent.

1In this article we won't touch on
uniqueness, which was established
long before Fermat. See the solution to
problem Ml15 in this issue.-Ed.

2After his death, Mersenne's role as
a scientific intermediary was played
by the Royal Librarian, an amateur
mathematician and Fermat's friend
Pierre de Carcavy (d. 1684).-Ed.

Starting from the assumption that the
conclusion of the theorem is not valid
for a certain prime of the form 4n + l,
he proves that it must be wrong for
some smaller number and proceeds
allway down to the number 5, thus
arriving at a contradiction (since the
theorem is true for 5).

The first complete proofs were
found by Leonhard Euler (1707-
1 783 ) betwe en 17 42 and 17 47 . Erler
held Fermat in the highest esteem
and, ceding priority to his predeces-
sor, created a proof that elaborated
the idea in Fermat's letter. Giving
credit to both great scholars, we now
call this statement the Fermat-Euler
Theorem,

There is a feature inherent in al-
most any beautiful mathematical
result (as weli as almost any beauti-
ful but forbidding summit): many
paths lead to it. We can approach it
from different sides, and all the
paths give sheer delight to those
who aren't afraid to take them.

The Fermat-Euler Theorem viv-
idly displays this wonderful feature,
and I'm going to demonstrate this
below.

We'll ascend to this peak, discov-
ered in the 17th century/ in three
different ways. One of them was

o

o
(o
o

e
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{ound in the l8th century, another
in the 19th century, and the third
only recently, in our own century.

Lagrange$ pl'ool

The first proof (with certain
modifications) is given in almost
every textbook on number theory.
It's based on the following lemma.

WrrsoN's Lrume. For any prime p
the number (p - 1)! + 1 is divisible
bv p.

In order not to digress {or the proof
of this auxiliary (but very usefill fact,
I'1I demonstrate its main idea using
the prime number 13 as an example.
For any integer from 2 through 11,
let's find the factor whose product
with this integer gives a remainder
of I when divided by 13, and collect
such pairs of factors in the factorrza-
tion of (13 - 1)! together:

(13-11! =12!
= 12 

. 7N3. e)(4 . 10)(s . 8)(5 . 11) . 12

(where 2. 7 = 14= 13 + l, 3. 9 = 27 =
2. 13 + L, 4. I0: 5. 8 : 40 =3. 13 + 1,

6 . 11 : 66:5. 13 + 1. It follows that
the remainder of. l2l upon division
by 13 is l}-thatis,l2l + 1 is divis-
ible by 13. The general case is
treated likewise.

Ptoblem 2. Prove that for any
prime p the integers 2,3, ..., p - 2
can be paired so that the product of
the numbers in each pair la, bl gives
a remainder of 1 when divided byp.
(This is written as ab = 1 (mod p).)
Use this fiact to prove Wilson's
Iemma in the general case.

From Wilson's lemma we derive
a corollary.

Conorrenv. If the number p: 4n
+ f. is prime, then [(2n)!]2 + 1 is di-
visible by p.

To prove it, we rewrite (p - 1)! + 1

as (4nl!+ 1 = 1 . 2. .... 2n. (2n + Il.
... .(anl + 1 = 1 .2. ... .2n.(p -2n1.
(p -2n- 1). ... . (p =r) * 1 : (znlt.
(-L12"(2nll + I =|2nltlz + I (modp),
and note that the left side is divisible
bv p.

Denote (znllby N. Then our cor-
olIary means that M: -l (mod p).
Now we have to overcome the ma-
jor difficulty.

Consider all the pairs (k, m) of non-
negative integers that are no larger

than 
^1p 

. The largest of the numbers
k (orm) is greater than.Jr - 1, so the
number of such pairs is geater than
lq p - 1) + 112 : p. Therefore (by the
pigeonhole principle applied to the
pairs as pigeons and the remainders
modulo p as pigeonholes),3 there are
at least two different pairs (k, mrl arrd
(k, m2l such that the remainders of k,
+ Nm, andkr+ Nm, when divided by
p are the same. Then a + Nb (where
a: kr- k2, b - mt 4zl is divisible
byp. Note that lal . ",lp andlbl . I p .

Now, a2 - 
^Pbz 

: la - Nbl(a + Nbl
is divisible by p, arrd since M = -l
(mod p), a2 + bz is also divisible by
p-that is, a2 + bz : rpfor some posi-
tive integer r (r + 0, because other-
wise the two pairs above would be
the same). It remains to note that az
+b2 <2p, which means thatr = 1 and
a2 + b2: p, completing the proof.

agiel'suoo
Another proof, which is due to

the contemporary mathematician
D. Zagier, completely stunned me:
the result seems to emerge miracu-
lously, out of thin air.

Our goal in reproducingZagpe{s
proof will be to show that for any
prime p of the form p = 4n + I the
equation in positive integers

*+4yz=p
has a solution (x, y, zl with y = z.
This would yield the representation
p : * + 4J? : * * (2ylz,which proves
the theorem.

We'll prove the existence of such
a solution in a rutherbizarre way: by
proving that the (obviously finite)
number of solutions to the above
equation is odd. How is the oddness
connected to the existence o{ the
solutions we need? All the solutions
withy + z can be arranged in pairs by
swapping y arrd z; if.lx, y, z) is a so-
lution, then (x, z, yl is a solution as

well. So the number of these solu-
tions should be even, and the totai
number can be odd only if there's a

solution withy: z.
The modern way to articulate
3For an explanation of the

pigeonhole (or Dirichlet) principle, see

"Pigeons in Every Pigeonhole" in the
lanuary 1990 issue o{ Quantum.-Ed.

this reasoning is to consider the
transformation / of the set S of all
positive integer triples satisfying
our equation that swaps y and z-
Ik, y, zl : k, z, yl-and note that,
first, it's an involutioa-that is,
when applied twice it takes us back
to the starti second, its fixed points
(*, y, ,l = I&, y, z) supply the re-
quired decomposition of p (since
they are characterized byy : zl; and
third, the number of points that
aren't fixed is even, because they
can be arranged in pairs such that
either element of each pair is the
image of the other element. Of
course/ the last statement holds for
any involation of any finite set.

And now let's consider the trans-
formation B of triples (x, y, zl defined
as follows: B(x, y, zl: ({,1/, y'l,where

(1)for x<y-z:d:x+22,
t' =2,y, =y_x_z;

l2l for y - z < x < 2y { : 2y - x,
t':y,2,=x_y+Z;

(3)forx>2y:d=x-2y,
5/=x-Y+2,y':Y-

Like /, this transformation con-
sidered on the set S is also an invo-
lution of S. First of all, it maps the
set S into itself, because it preserves
the valuex2 + 4yz.lndeed, take case
1, for instance:

{2 + 4fz' : (x + 2,212 + 4z(y - x - zl
: * + 4xz + 4zz + 4zy - 4zx - 422
:*+4y2.
Verification in the other two

cases is iust as straightforward. Fur-
ther, if (X', y', z'l = B(x, y, zl, t};'en
B(1, y', z'l = (x, y, zl. This is also
verified by direct calculation. For in-
stance, if x < y - zt we must appiy
the equations in case 1: they yield:1
: x + Zz > 2z = 25/, so (f,, y,, 2,,1 =
Bld, y', z'l rrust be computed using
the equations in case 3, and we get

d'=d -zt':x+22-22=x,y''=1-t'*z'=x+22*z+
(v-x-zl=Y,

_r, _J

E*r*irrrtion of the other two
cases is left to the reader. After such
verification, we conclude that B is
an involution of S.

What about the fixed points of B?

I'llY/JUilt lSS4



Looking at the definition, we see
thatincases 1 and3,1 >xord <x,
respectively/ so a {ixed point can
arise only in case 2, which yields x
=/ =2y-x1 otX= jt.

Conversely/ you can see at once
that any triple of the form (x, x, zlis
preserved under B. But only one of
these triples belongs to the set S. of
positive integer solutions to our
equation: If p = * + 4xz : x(x + 4zl,
then x = I (since p is a primel and z
= n (recall thatp = 4n + 1). Thus, the
involution B of the set S has a
unique fixed point (I, l, nl, and
therefore, as we've seen, S consists
of an odd number of triples, which
is what we set out to prove.

Iulinfiowslri$ pl'ool

The (slightly modified) proof by
Hermann Minkowski (1864-190911,

which I'm going to present now/
staggers the imagination perhaps
even more.

Minkowski's proof begins with a

result that doesn't seem to have any-
thing to do with the Fermat-Euler
Theorem.

Tsponrm. Let a, b, and c be any
integers satisfying a, 0 and ac -b2
= L. Thenthe equation ax2 + 2bxy +

cf = t has aninteger solution (x, y).
Proof . The expressional,2 +2bxy

+ ct' :1 can be viewed as the square
of the distance from the origin O to
the point P with coordinates (x, y) in
a certain coordinate system (not
necessarily rectangular). To con-
struct such a system/ draw the axes at
the angle a defined by cos a: b I ^Fac(this is possible because ac > 0 and
lbl Ja"l < 1, since ac = b2 + I > b2l.
Choose the units of scale on the x-
and y-axes equal to 1E and ,lZ, rc-
spectively (fig. 1). Then the square

Figure 2

of the distance OP, P = (x, yl, canbe
foundfrom the triangle OQP, where
Q = (x, 0): in this triangle, OQ =
lxlJa, QP = lyllc , and the angle at
Q is o or 180' - cr, depending on the
signs of 5 and y. However, no mat-
ter what these signs are, the Cosine
Law always yields

oPL : oQ2 -zoQ.oP cos(zQl+oPz
= a* + 2bxy + c1fl.

The points with integer coordinates
form the integer grid with respect to
our coordinate system (fig. 2), and
we have to prove that there is a node
in the grid at a unit distance from
the origin.

Let d be the smallest distance from
the origin O to another node, and let
(m, nlbe a node at a distance d from
O. Since the distance from (x, y) to
(x1, y1l is equal to the distance from
(0, 0) to (*r- *, yt- yl, the distance
between any two nodes is no
smaller than d. Therefore, the
circles of radius dfL centered at all
the nodes of our grid do not overlap:
if two such circles, with centers A
andB, have a common interiorpoint
C, thenAB < AC + CB < dlz + dl2 =
d. As is clear from figure 2, the area
covered by these circles in the tri-
angle with vertices O(0, 01, A(1,0l1,
and B(1, 1)is half the area of one
circle-that is,nd2f 8. And this is only
a part of the triangle's area, which
equals

! oo. o, . 

"rn(ze) = ! nG-li "in(ze)22

=;![41- "-"-
=!.tr"_a,

2

=1
2

So ndzlS < lf 2, or & . +ln < 2. Since
& is an integer (dz : amz + 2bmn +

cnzl, we get d = 1, which proves Min-
kowski's theorem.

But what relationship does this
marvelous theorem have to Fermat
and Euler? The most directl

By the corol1ary of Wilson's lemma
proved above, we know that thenum-
berM + 1, whereN= [(p - 1]/21!, is di-
visible byp, don't we? Well, now let's
apply Minkowski's theorem to the
numbers a=p,b =^/,c =(b2+llla.
The theorem says that for certain in-
tegers marrdn

l=amz+2bmn+cnz,

so

p = a = a2m2 + 2abmn + {b2 + Llnz
= (am + bnl2 + n2

-that is, p is the sum of two
squares. And, once again, the theo-
remisproved! O
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On fullerenes and other carbon structures

by Sergey Tikhodeyev

VERYBODY KNOWS THAT
carbon is one of the most com-
mon elements. But did you
know that carbon atoms are a

first-rate building material for con-
structing a wide variety of crystals
and molecules? The record in the
hardness department belongs to dia-
mond, which is one of the crystal-
line forms of carbon. The complex
organic molecules known as pro-
teins-whose atomic "skeletons"
are atoms of carbon and nitrogen-
form the basis of all living things.

The great variety of atomic struc-
tures made of carbon is due to the
fact that carbon-an element of
group IV of the periodic table-has
four electrons in its outer valence
shell and can form valence bonds
with four, three, or two neighboring
atoms. If a carbon atom has four
close neighbors, the resulting struc-
ture is three-dimensional. One ex-
ample of such a structure is the dia-
mond crystal, in which each carbon
atom sits in the center of a regular
tetrahedron whose corners are the
neighboring carbon atoms.

If there are only two adiacent at-
oms/ a one-dimensional linear struc-
ture appears-long polymer mol-
ecules are examples of this type.
When there are three neighbors, the
atomic structures include flat re-
gions. For example, in the flat mol-
ecule of benzene CrHu each carbon
atom forms bonds with one hydro-

gen and two carbon atoms.
Another example of atomic struc-

tures where each carbon atom has
three neighbors is graphite, the sec-
ond natural form of carbon. Graph-
ite is a layered substance whose
structure is based on planes in
which the atoms sit at the corners of
regular hexagons, forming a kind of
honeycomb. Actually, tro other
structure is possible when each car-
bon atom forms valence bonds with
only three neighbors and all the at-
oms are arranged in the same way.
Fortunately there is a mutual atttac-
tion between adjacent planes, which
connects the carbon layers to form
a crystal of graphite. These atttac-
tive forces (known as van der Waals
forces, which decrease with distance
as r7l are much weaker than the in-
teraction between adjacent carbon
atoms in the same layer. Thus,
graphite isn't strong mechanically,
and so it can be used to make pen-
cil lead. The carbon planes them-
selves, however, are as strong as dia-
mond.

The question arises: can we make
something more interesting from
carbon atoms than just a flatlayer in
a graphite crystal-say, a polyhe-
dron? Since each carbon atom must
have exactly three neighbors, the
{oliowing geometrical problem
arises: how to construct a polyhe-
dron in which exactly three edges
come together at each corner?

Here we'11 make use oi : --.r's
theorem: ior any conves : -.:c-
dron, where C is the numbe r - :.rr-
ners, F is the number of iaces =:d E
is the number of edges,

C+F-E:2. 1)

For more complicated polr-h. ::.rns
equation {1) must be modrr-.: by
introducing a new concept hai':tr to
do with the number of "hani-t. in
a polyhedron. For a torus _i = 1,

which means that it has one hanJle,
while for a convex polyheir.--n g
equals zero.

The generalized Euler theorerl
yields

C-F-E=2-2g. ,2'

It's surprisingly easy to prove
ecluation {2). We need but note that
each handle of a polyhedron and the
polyhedron with its handles cut off
satisfy equation (11. When we paste
each handle back onto the polyhe-
dron, the four glued faces disappear,
while the difference C - E doesn't
change.

Now we have all we need to de-
duce the architectural rules for
constructing polyhedrons out of
carbon atoms. Suppose we want to
construct a closed polyhedron with
hexagonal faces on1y, and that there
ate n(1 of them. Since three faces
come together at each corner, and
because each edge belongs to two
faces simultaneously, we get

Y
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5n. 6n-

" 
= -i, F = 176, E - -----L. (3)

Figure 1

Thr ee- dimensionaT structur e of
buckminsterfuller ene C 

^n 
(buckyb all).

Carbon atoms sit at the-corners of the
polyhedron.

ized by a laser beam in a stream of
helium. The most stable was the Cuo

molecule, and the discoverers
thought that it had the form of a
hollow soccer ball (fig. 1). In honor
of "Bucky" Fuller the researchers
called their molecrle a buckyball
(which soon evolved into the more
stately buckminste{ullerenel, ard
they named the whole class of Cuo-

Iike molecules fullercnes.
It turned out that fullerenes

arert't all that rare: there are plenty
of them in lampblack, gas soot,
and other substances resulting
from incomplete combustion. The
problem is isolating a pure sample
of such molecules-that is, obtain-
ing a substance that contains al-
most nothing else.

In the molecule buckminster-
fullerene C.o, the comers are carbon
atoms and the edges are theirvalence
bonds. There are no free valences in
Con, which explains its high chemicai
and physical stability. The Cuo mol-
ecule is the most symmetrical and
stable among fullerenes. The next (in
order of increasing numbers of carbon
atoms) stable molecule Crn has 25
hexagons and the same 12 pentagons.
It is formed less often than C.o. The
highly symmetrical molecules Cro6,

Cuoo, and Cruo, which are thought to
be stable as well, have not been found
yet.

It's curious that there is nothing
to prevent 

^ 
Cseomolecule from hav-

ing a Cuoo molecule (or other fuller-
ene)inside it. Such compound mol-

ecules have not been found either,
though the term "matryoshka" has
aheady been coined for them (after
the Russian nesting dolls). It's also
curious that almost 20 years before
the discovery of hollow molecules,
their existence was hlpothesized by
David E. H. |ones, who for many
years wrote the famous Daedalus
column in the journal New Scien-
tist.3

At present the dimensions of
the buckyball are well known: its
radius is 0.3512 nrn, the length of
the short bond (which separates
the hexagons) is 0.1388 nm, and
that of the long bond (the same ior
hexagons and pentagons ) is 0 . 1 +3 3

nm. The numbers are very similar
to those for graphite. Quantum-
mechanical calculations show
that the valence electrons must be
distributed more or less homoge-
neously in the spherical sheil rvith
a width of approximatelv S a.u. (1

a.u. [atomic unit] = 0.0519 nm, the
Bohr radius). An electron-ire e cav-
ity about 2 a.u. in radius is iormed
in the center of the buckvball. So

the Cuo molecule re se mbles a little
empty cage.

The existence oi the cavit)- rnside
the buckyball appears to hare been
proved experimentally b1, muon
analysis. (The sensor in this method
is muonium, which is something Like
the hydrogen atom, but instead of a

proton it has a muon-an elementary
particle with a charge o{ +e and a

mass of 200 m". The properties of
muonium depend strongly on the
electron density at its location. The
researchers managed to place muo-
nium inside a "fullerene cage" and
show that the properties of free and
captive muonium are virtually the
same.

Free buckyball molecules attract
one another with the same weak
van der Waals forces that appear be-
tween the carbon layers in graphite.
Because of this attraction, bucky-

3The ideas expressed by "Daedalus"
rn 1966 are not so much {antasy as
scientific prediction that has come
true. See The Inventions of Daedalus
by David E. H. fones (San Francisco: W.
H. Freeman 8r Company, 1982).-Ed.

Substituting this equation into
equation (2) results in I = 1. Thus,
using hexagons only we can con-
struct a polyhedron that is topologi-
cally equivalent to a torus.

If we want to construct more di-
verse structures, hexagonal "graph-
itelike" faces won't suffice. Sup-
pose, in addition ton. hexagons/ we
have nu pentagons and n, hepta-
gons. Repeating the reasoning
above, we get

ns- nt = 612 -zsl (41

So if we're interested in convex poly-
hedrons (S = 0) only, we can do with-
out heptagons, but in that case we
must add precisely 12 pentagons.
(Incidentally, it was Euler himself
who first noticed and proved this
fact.) To construct more compli-
cated structures/ we need heptagons
as well.

Thus, we have deduced the basic
rules for constructing complicated
three-dimensional structures from
carbon atoms. Large structures simi-
lar to these exist in nature. For ex-
ample, the skeletons of rafiolarians-
the simplest organisms among
plankton-as well as many viruses
are constructed in just this way.r
These structures are also familiar in
architecture. The geodesic domes of
R. Buckminster Fuller spring to
mind.2 To drive home the fact that
such structures aren't rarities, pick
up an ordinary soccer ball, which is
stitched together from 20 hexagons
and 12 pentagons. But the question
remains: is it possible to build such
a structure out of carbon atoms?

Fullel'enes and fulleriles
In 1985 H. W. Kroto (Great Brit-

ain), |. Heath, S. O'Brien, R. Curl,
and R. Smalley (United States)found
that fairly stable molecules consist-
ing of a large 132-9Ol and always
even number o{ carbon atoms were
formed when graphite was vapor-

lSee Growth and FormbyW.
D'Arcy Thompson or the book cited in
{ootnote 3.-Ed.

2See Gallery Q in this issue.-Ed.
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Figure 2
Sftucture of pure fullerite-the crystal
f or m e d fu o m buckminst e{ull ercne s.

One elementary cell of the crystal is
shown. The buckyballs are situated in
the corners and in the middle of the
cube faces.

balls crystallize at room tempera-
ture into a fragile yellow-red crystal
with a face-centered cubic lattice.
The new crystal was named
fullerite. The distance between ad-
jacent buckyballs in this crystal at
room temperature is 1.00 nm. Pure
fullerite that contains nothing but
buckyballs is a dielectric.

Figure 2 shows an elementary cell
of fullerite. Buckyballs play the
same role in a fullerite crystal as at-
oms in an ordinary crystal. Many
characteristics of fullerites (for ex-
ample, the electron spectrum) can
be calculated with great accuracyby
treating the buckybalis as if they
were atoms and applying traditional
methods of calculating the proper-
ties of crystals.

The new carbon molecules
(fullerenes) and the crystals made
from them (fullerites) are the third
form of naturally occurring car-
bon-or in scientific terms, the
third allotrope of carbon. The first
two ailotropes-diamond and
graphite-have free bonds that
grab stray atoms (for instance, hy-
drogen atoms). Such is not the case
with fullerenes and fullerites, since
they don't have any free bonds, so
among carbon allotropes, they are
the purest.

llow l0 huild a fuller8ll0
By the mid-1980s, when fuller-

enes were being discovered, meth-
ods for experimentally producing so-

called cluster molecules (consisting
of a small number of identical at-
oms) had reached an advanced state
of development. Usually the num-
ber of atoms in such clusters is
rather arbttrary. However, the very
first experiments with carbon pro-
duced a surprise: large carbon clus-
ters with an odd number o{ atoms
were never formedl At first this fact
was explained by the formation of
polymer chains of the type [-C =C-].
H. W. Kroto and his colleagues were
the first to provide a correct interpre-
tation, though they couidn't per-
form a reliable structural analysis-
they had too few fullerenes. Their
explanation remained a hypothesis,
and the fullerene an exotic toy for
theoreticians, until the summer of
1990, when a revolutionary event
occurred: a method of large-scale
production of fullerenes was pro-
posed.

The solution was found rather
surprisingly by a group of American
astrophysicists-speciaiists in the
area of cosmic dust: W. Kretschmer,
D. Huffman, and their students L.
Lamb and C. Fostiropoulos. As {ar
back as 1983 Kretschmer and Huff-
man had tried to experimental\y re-
produce the natural conditions
needed for the formation of cosmic
dust. To this end they evaporated
graphite samples heated by an elec-
tric current in gaseous helium. A{ter
the discovery of buckminster-
fullerene, the researchers decided to
repeat their old experiments. To ex-
tract the spherical molecules they
expected to produce, Kretschmer
and Huffman took advantage of the
old chemical rule: dissolve a sub-
stance in a similar one. They dis-
solved the lampblack (formed by
carbon vaporization) in benzene,
which also consists of closed mo1-
ecules. A yellowish or reddish liquid
was produced whose color depended
on its concentration. Soon it was
clear that the dissolved fraction of
Iampblack was composed of mol-
ecules of Cuo 175%1, Crol23%), and
even larger fullerenes (2%1. Nter the
benzene evaporated ol{, small
fullerite crystals remained on the
bottom of the cuvettel Analysis of

these crystals produced the first re-
liable information about the shape
and properties of fullerenes.

Later this method was perfected.
It turned out that in order to obtain
the fullerene-rich carbon soot, it was
convenient to use an electric arc be-
tween carbon electrodes. When the
monomolecular fractions were ex-
tracted from the fullerene solution,
a purity of 99.99"/. was achieved.
Yet the basic production stages re-
mained the same: evaporating
graphite electrodes in helium, then
dissoiving the soot in an organic sol-
vent. So the price of the final prod-
uct in this improved production pro-
cess depended only on the cost of the
electricity consumed: about 5 cents
per gram of fullerenes!

How are fullerenes formed when
graphite is evaporated, and why is an
atmosphere of helium essential? As
was mentioned above, graphite
consists of flat layers of carbon
hexagons. Fairly small carbon
clusters seem to be formed ini-
tially during graphite vaporization
in the electric arc. They are linear
and have plenty of free bonds. In
the cooling atmosphere of helium
these clusters form graphite "fish
scales" resembling scraps of graph-
ite planes (see figure 3 on the next
page).From the energy standpoint
it's advantageous for these fish
scales to change their shape (be-

cause they have free bonds at the
edges, which ^re disadvanta-
geous)-they form several penta-
gons instead of hexagons and bend
because of it (the ends of the free
bonds come together and thus
lower their energy). Since it is en-
ergetically disadvantageous for
two pentagons to be next to one
another, the open ends must come
together in the course of this evo-
lution, the structure that emerges
automatically is-the soccer ball!
(The buckyball is a minimal
fullerene, in which the pentagons
have no common edges.)Thus, if a

fullerene grows slowly enough, it
must necessarily become a

buckminsterfullerene. Under actual
conditions, of course, the shell can
close up before the ideal soccer-ball
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Figure 3
Consecutive stages of formation of buckminsterfullerene C60 during graphite
vaporization in a helium a.tmospherc.

the new technology: not micro-, but
nanoelectronics. The characteristic
lengths of the elements are nano-
meters. In nanoelectronics the most
interesting objects from the view-
point of possible applications are
quantum dots-microcrystals or
other formations incorporated into a
nanoelectronic circuit-that can re-
tain (localize) electrons. Such dots
have a number of unique optical prop-
erties that make it possible to use
them either as control elements in
fiber-optic communications or as the
basic processor elements in the opti-
cal supercomputer cuffently being
designed. Fullerenes are in many re-
spects ideal quantum dots. Adding to
our list of records, we can say that
fullerenes have a good chance o{ be-
coming the smallest microchip in a
computer nanoprocessor.

And, last but not least, high-tem-
perature superconductivity.4 Fol-
lowing the discovery of high-tem-
perature oxide superconductors in
1986 by Bednorz and Mriller, new
substances have continually been
tested for possible superconductiv-
ity. A pure fullerite, of course, was
an unlikely candidate for supercon-
ductivity, since it's a dielectric (as

was mentioned above). But everyone
knows how to turn a dielectric into
a conductor: you dope it. Atoms of
a suitable impurity can, for ex-
ample, be donors of the electrons
needed to conduct electric current.
It was doping that produced the first
high-temperature superconductor
Lar_,Sr,CuOo (here x = 0.1-0.2 is

4See "Meeting No Resistance" in
the September/October 1991 issue of
Quantum.-Ed.

structure is formed, and then other
structures arise.

It's not accidental that inert he-
lium serves as the cooling bath
when fullerenes are grown. ("Bath"
here is a term of art, not figurative
language.)This is due to the fact that
helium doesn't saturate the free car-
bon bonds, which lets the carbon
fish scales close in on themselves. If
there were hydrogen atoms/ for in-
stance, in the combustion atmo-
sphere, they could saturate some of
the free bonds and destroy the sym-
metry of the curling fish scale. The
opposite sides wouldn't be able to
come together. As a result, struc-
tures that resemble shells would
grow instead. It's interesting that
this very process underlies the for-
mation of carbon soot during incom-
plete combustion in ordinary air.

T]te smalle$tfii$, lhe $lnalls$lfial . . .
There are many proposed appli-

cations for fullerenes. For example,
they might be used as the basis for
producing unique lubricants. As
was mentioned above, the Con mol-
ecule is very strong both chemicaliy
and mechanically. Its mechanical
strength was tested as follows: a
flux of buckyballs was accelerated
to a velocity of 30,000 km/h (about
orbital velocity) and then sent
crashing into a steel waI1. The
fullerenes bounced off, and were
none the worse for the wearl Such
strength is just what one wants in a

lubricant. So not only is the
fullerene Cuo the world's smallest

12 llAY/Jtlilr 1 gs4

soccer bal1, it's the smallest and
strongest ball bearing as well.

The chemical stability and hol-
low structure of fullerenes suggest
ways in which they might be used in
chemistry, microbiology, and medi-
cine. For example, fullerenes seem
to have no match as a packing ma-
terial for individuai atoms. Scien-
tists have learned how to pack
fullerenes even with such heavy at-
oms as lanthanum and uranium.
Fullerenes filled with such atoms
open unexpected possibilities for
chemists. For instance, fullerenes
can be used to pack and transport
not only atoms but entire molecules
to the required destination. Not a
bad idea for pharmacists and micro-
biologists! So the world's smallest
soccer ball is also the world's small-
est packing box-or should I say,
pillbox.

Nowadays molecular biologists
engaged in genetic engineering use
viruses (many of which, by the way,
are shaped like buckyballs). If scien-
tists manage to use fullerenes to
transport the necessary organic mol-
ecule to a particular site in a protein,
it would mean the creation of an
artifrcial, specialized virus, and
again-the smallest one (for the ben-
efit o{ life on Earth, we all hope).

Now let's talk about microelec-
tronics. It's well known that the pro-
cess of miniaturization of electronic
chips has recently reached its natural
limits-that is, molecular and atomic
dimensions. As a matter ol f.act, arr-
other term is used more and more for



Figure 4
Cry stal structur e of sup erconducting
fullerite K.C^n. The little balls corre-
spond to atoms of the doping impurity
(potassium),

the concentration of the impurity-
strontium, in this case).

In the beginning of. l99l a new
discovery grabbed the scientific
headlines: A. Hebard and his col-
leagues discovered that a fullerite
doped with potassium-K.Cuo-
became a superconductor at 18 K
(-255'C). This temperature wasn't
a record, but when rubidium was
substituted for potassium, the su-
perconductivity transition tem-
perature jumped 28-29 K. Before
the race began in 1986 to find
high-temperature superconduc-
tors/ no one had found a material
that was superconducting above
24 K. Now materials that are su-
perconducting at 126 K have been
found, and there are reports of
even higher temperatures.

Superconductors based on C.o
molecules appear to enjoy superior
stability due to the strength of these
molecules. This is what makes
them stand out from the oxide high-
temperature superconductors. The
crystal structure of a superconduct-
ing fullerite is shown in figure 4.
The doping impurity occupies posi-
tions in the crystal between the
fullerenes.

$till annilher lol,m olcailolt:
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So, we see that cellular structures

made of carbon pentagons and hexa-
gons have been discovered and are
now the subject of intense research.

Figure 5
Elementary cell of a schwartzite-an
infinite surface made of carbon
atom* (Six of its 24 heptagons arc
completely visible her e. )

But what about heptagons? Such
structures have not yet been obtained
experimentally, but theoreticians are
abeady modeling their properties on
computers. It f.act, heptagons offer
even more possibilities than fuller-
enes. For example, a carbon "sponge"
has been found whose complex sur-
face consists of hexagons and hepta-
gons that separate three-dimensional
space into two subspaces.

These structures were named
schwartzites af.ter the German
mathematician who was the first
to study such surfaces at the end of
the last century. Figure 5 shows
but one elementary schwartzite
celi. The entire crystal is obtained
by an infinite repetition of such
cells. Schwartzite has the same type
of crystal lattice as the cubic face-
centered fullerite in figure 2. The el-
ementary cell has 215 corners,24
heptagons, 80 hexagons, and 3
handles. Note that in this periodic
structure the handles connect adja-
cent crystal cells; in figure 5 each
handle is cut in two and only half of
it is shown.

Again, such stryctures have not
yet been observed experimentally.
But if researchers manage to synthe-
size this new allotrope of carbon,
they would obtain a substance with
unique mechanical, physical, and
chemical properties.

The author is grateful to Grigory
Kopelevich, who prepared the computer-
generated illustrations for this article.

o

Energg Sources
ond Natural Fuels

bg Bill Aldridge, Linda Crow,
and Russell Aiuto
This book is a vivid exploration of
energy, photosynthesis, and the
formation of fossil fuels. Energg
Sources and Natural Fuels
follows the historical unraveling
of our understanding of photo-
synthesis from the 1600s to the
early part of this century. Fifty-
one full-color illustrations woven
into innovative page layouts
bring the subject to life. The
illustrations are by artists who
work with the Russian Academy
of Science. The American
Petroleum Institute provided a
grant to bring scientists, engi-
neers, and NSTA educators to
create the publication. This
group worked together to
develop the student activities and
to find ways to translate indus-
trial test and measurement
methods into techniques
appropriate for school labs.
(grades 9-10)
#PB-104, 1993, 67 pp. US$12.95

To Order, Call

r-800-722-NSTA

@HT:'
t3OUA[IIUill/TIATllRI



Seeing is
Believing

LEt NSTAS
Project Earth

Science
series open
your eyes to

the skies.

The hands-on, teacher-tested activitie s in Astronomy and Meteorologlr-the first wo books in the National
Science Teachers Association and BP America's Project Earth Science series-bring the sometimes daunting
concepts of astronomy and meteorology down to Earth. Background information, supplementary readings, and

suggestions for integrating other disciplines provide a framework for launching a successful introduction to both
subjects.

ln Project Earth Science: Astronomy students will discover Earth's uniqueness by examining it as a part of the
whole Solar System. How did the planets form? Are we seeing a star's present or past?'Why is Earth's distance

from the Sun so important?
Learn to read weather maps and do forecasts; model the water cycle on a tabletop; and use real data to track

Hurricane Andrew as it moves oyer ocean and land in Project Earth Science: Meteorologt. Other activities explain
why the equator heats more quickly than the poles and why dust is needed for cloud formation. Both books

provide supplemental readings for teachers (and for interested students).

Project Earth Science: Meteorology (grades 5-10, 1994,230 pp.) #PB103X $18.50
Project Earth Science: futronomy (grades 5-10, 1992,160 pp.) #PB090X $18.50

VISA, MasterCard, Discover,
& Purchase orders welcomeTo 0rder Call 1-80F722-NSTA



BRAINTEASERS

Jusl lol' Ihe lun ol il!
8111
Breaking even. According to a corltractt a worker is to be paid 48 francs
for each day worked and is to give up 12 francs for each day not worked.
A{ter 30 days the worker is owed nothing. How many days did the
worker work during these 30 days? (Etienne Bezout 11730-l793ll

81 12
What's wrong! Once I found a
strange notebook. A hundred
statements were written in it.
They said:
"There is exactly one wrong statement in this notebook."
"There are exact.ly two wrong statements in this notebook."

"There ,r" "*r",ly 
one hundred wrong statements in this notebook."

Which of these statements is true? (A. Savin)

shoelace is arranged inside the shoe. Can you tell exactly how many?
(N. Zilberberg).

81 15
In half . Cut the figure at right into
two congruent parts.

15

81 13
)Fire!" Which is more effective in extinguishi.ng a fire-cold water or
boiling water? (S. Krotov)

81 14
Arithmetic of lacing. There are
many ways to lace wrestling
shoes, as is shown in the figure,
although we can't see how the
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managed to ro11 it out of the treasury
with the greatest difficulty, using
his spear as a lever). The next coin
was absolutely unmovable. So the
total sum he received amounted to
252,143 brasses-that is, slightly
more than ll2O of whathe originally
asked for. The emperor exulted,
while Terentius suffered miserably.

This story, with a lot of interest-
ing details and the brilliance typical
of its author, can be found in Yakov
Perelman's book Mathematics
Comes Alive.l

lltto lhe distaltl[ast
More than a century ago, during

a lecture in Baltimore, Lord Kelvin
asked the following rhetorical clues-
tion: "Of all the two hundred billion
men/ women, and children that
have walked across wet sand from
the beginning of time down to the
meeting of the British Association in
Aberdeen in 1885, how many would
answer anything but 'yes' to the

lQuantum readers may already be
acquainted with this outstanding
Russian popularizer of math and
physics. See, for instance, the
Kaleidoscope o{ the November/
December 1992 iss'ge.-Ed.

question: 'Did the sand become
compressed under your foot?' " Why
Aberdeen in 1BB5? That was where
O. Reynolds showed that the sand
actually expands rather than con-
tracts under our feet, contrary to
common sense.

But let's not digress too far from
our subject. It would be better to ask
a similar question about the
emperor's award: "Of. aLI the mil-
lions of readers of Perelman's book
and the thousands of. Quantum
readers, how many noticed that the
behavior of both the emperor and
the general described in the story
was at Least strange and absolutely
illogical?"

What was so strange and illogi-
cal? We'll soon see.

First, let's try to estimate some of
the values we'Il need. It's clear from
the story that a coin with a mass of
655 kg was just about at the limit of
Terentius's physical resources: a little
more andhe wouldbe unable even to
budge it. we'lI estimate this "little
bit" as 45 kg-that is, assume that the
biggest coin that would yield to
Terentius's efforts has a mass of 700

fu(which corresponds to a denomina-
tion of 140,000 brasses). In addition,

Asll'altue Blnpsror

alld a $lralluE uEllEral

A case study
with two leaps into the past

by lgor Akulich

HENTERENTIUS, ABRAVE
Roman military leader, de-
cided to retire, he came to the
emperor and asked for a pay-

ment of 5 million brasses (a "brass"
was a copper coin with a mass of 5 g).

The emperor, however, was tight
with his money, so he decided to
cheat the general. He said, "I
wouldn't want you to be content
with such a pitiful reward. Go to the
treasury arrdcarry out onebrass the
first day, a two-brass piece the sec-
ond day, then a four-brass, eight-
brass, sixteen-brass piece, and so on,
doubling the value of the coin each
day. I'11 have a coin minted every
day of the appropriate size. As long
as you're able to carry the coin out
on your own, with no help, it's
yours. But as soon as a coin is be-
yond your power to carryt you'll
have to stop, and our agreement will
be null and void." Terentius was
very happy. He imagined an enor-
mous pile of coins, each one bigger
than the next, that he'dcarry out of
the treasury.

What actually happened? Teren-
tius's enrichment lasted only 1B

days, because the coin on the 18th
day weighed about 555 kilos (he

l0 ilflY/Jtlrrr rss{



assume that Terentius's state of
health will allow for daily visits to
the treasury and removal of new
coins for ten thousand days (about
25 yearsl.

So, the emperor decided to lure
his combative general into a trap
that is often called the avalanche.
(Indeed, it's hard to think of a better
name: the coins grow like at ava-
lanche, and this is what the miserly
and cunning emperor counted on.)
In this case, the multiplication fac-
tor is k = 2-that is, each coin is
twice as massive as the previous
one.

And it is this choice of multipli-
cation factor that leads one to sus-
pect that the emperor was a strange
person, because of all positive inte-
gers k, he had chosen the one that
brought the greatest profit to
Terentius!

Consider, {or instance, the case in
which each new coin is three (and
not two) times as massive as the pre-
ceding one. How many coins would
Terentius be able to lift? The value
of the (n + 1)st coin would then be 3"
brasses. The general can lift a coin
that is equivalent to no more than
140,000 brasses. What is the largest
n such that}n < 140,000? Thisn sat-
isfies the inequalities 3'1 < 140,000 <
3n*1, or

1ogr140,000 - | < n( 1ogr140,000.

Since 1o9.140,000 = 10.7 ... , we get
n = 10. So the last coin Terentius
would be able to lift is the eleventh:
on the first day he'd receive 1 brass,
on the second day 3 brasses, on the
third 32 = 9 brasses, and so on. The
total reward would come to 1 + 3 +
32 + ... + 310 = 88,573 brasses. Re-
member, with k :2he received
252,1 43 brasses-almost three times
as many!

A similar situation would occur
for larger values ofk. In general, the
sum S that Terentius could receive
in n days given a fiactor k ecluals

S=1+k+k2+...+kn,
where n = [1o90140,000] (and [a] de-
notes the greatest integer not ex-
ceeding al.By the formula for the
sum of a geometric sequence/

^ J<n+1-1" k-I
If n is large enough, we can assume
n = [1ogo140,000]= 1690140,000; then

- 140,000k-l
k-1

^ lSg,ggg=14o,ooo.fr.

This means that S actually decreases
as k increases. In our case, however,
this is not exactly true: the loga-
rithm isn't very large, so in fact S(k)

decreases "irregularly." Here are a
few values of S: S(4) = 87,381; S(5) =
97,658; 516l = 55,987; S(71 = t37,257;
s(81 = 37,499, S(10) = 111,i11, S(20)

= 8,421i S(50) = r27,55ti S(i00) =
10,101 (in the last case, Terentius
would come for his reward only
three times!).

And what happens for k = 1? Per-
haps in this case the sum S turns out
to be greater than for k = 2? .PJas,
that's not the case. Another factor
comes into play here-the somber
fact of human mortality. We've al-
ready estimated the time allotted to
Terentius for receiving his reward as

o
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o
l
o
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10,000 days. Consequently, in the
case k : 1, he wouid get simply
10,000 brasses.

Of course, we couid adopt other
limitations instead of 700 kg and
10,000 days. Then our conclusions
would have been somewhat differ-
ent-for instance, with 1,000 kg as
the greatest possible mass of the
coin we'd have S(2) < S(3)-but basi-
cally they would remain the same.

Thus, the (supposedly) cunning
emperor, having decided to cheat
the general using the avalanche ef-
fect, chose the worst multiplication
factor (or at least one of the worst).
And this gives us grounds to con-
sider him a strange person-to put it
mildly.

And what about Terentius? This
is a little more complicated. It may
help to take a leap . . .

lnlo fie recelttpa$l
Way back when I was in elemen-

tary school (and, I should add, after
I read Perelman's book), I used to ask
my friends-the ones who didn't
particularly like math-to estimate
how many grains of wheat you
would need to put one grain on the
first square of a chessboard, two
grains on the second square/ four on
the third, and so on, doubling the
number of grains each time. "HaLf a
sack," my friend would naively re-
ply. Then I would happily set about
convincing my victim that this an-
swer wasn't just wrong, it was very
wrong-that in actual fact the num-
ber of grains keeps growing from
square to square/ like an avalanche,
and becomes unimaginably large. I
would present the result of calcula-
tions using the geometric series . . .

and I'd be interrupted by a skeptical
snort: "What the heck are you talk-
ing about, 'trillions of tons'? I say
half a sack, and it's haif a sack!" A
total fiasco! And it's no surprise,
because the human mind refuses to
comprehend such enormous, "un-
worldly" numbers.

Here's what I conclude from this
little leap into the past. There are
basically two kinds of people: those
who believe in calculations and
strict logic, no matter how incred-

ible the result is; and those who rely
on common sense and don't trust
anything that contradicts it. Both
attitudes are absolutely normal and
natural.

Which of the two categories does
our character Terentius belong to?
On the one hand, he was very satis-
fied with the emperor's suggestion,
l:ecause he understood at once how
large the coins will grow even if you
start with one brass. (And this is just
what Perelman's story says: //He

imagined an enormous pile of coins,
each one bigger than the next.") So
we can definitely include Terentius
in the first category. But then, why
didn't he understand that since the
value of a coin is proportional to its
mass, he'd also have to cope with an
avalanche of masses? Did he simply
overlook this fact? No, that's hardly
possible: the emperor intentionally
emphasized that Terentius was al-
lowed to take coins as long as he was
able to lift them himself, without
anybody's help.

It looks as if Terentius simulta-
neously did and didn't understand
that he was going to be dealing with
an avalanche, and where it might
lead him. I can't call this behavior
anything but strange.

Unden fie lahe botlom

By now, I imagine you've figured
out that this story has a kind of
"false bottom," like a jewelry box.
But there's something interesting
even under the secondbottom. Let's
al1ow for non-integer values of k.
Then what value of k will make
Terentius's reward the greatest? It's
clear enough that for this k the mass
of the coin he takes on the 10,000th
day must be exactly 700 kg-that is,
it must have a denomination of
140,000 brasses, which means that
k = 140,000tleeee = 1.0012.

Then Terentius's total income
over more than25 years of his daily
visits to the treasury will come to
S = (Ptoooo - llllk - ll = t2O million
brassesl This is many times more
than the sum he requested of the
emperor. In truth, the real avalanche
doesn't come crashing down-it just
creeps along. So here is how I would

advise Terentius to respond to the
emperor's seemingly attractive offer:

"Sire! Such a reward is too gener-
ous for me. Not only that, it will
lessen the treasury so rapidly that
severe damage will he infiicted on
you and on the entire state. So I can't
agree to such a sharp growth in the
coins'value. But it would be impu-
dent of me to turn your offer down
completely. Might I ask only one
thing of you: let the value of the
coins grow, but not so rapidly. I'd be
completely satisfied if each coin
would be more massive than the
previous by twelve hundredths of a
percent." (Note: most probably they
didn't know percentages at that
time. I imagine, though, that Teren-
tius could have expressed his wish
in some other way.)

Nothing ventured, nothing gained.
Maybe the emperorwouldhave swal-
lowed the bait without noticing the
hook-which would eventually lead
to the bankruptcy of the empire.

Actually, in this case a certain
difficulty arises: the values of the
coins won't be expressed as integers,
which probably wasn't allowed at
that time. No matter-Terentius
could propose a magnanimous cor-
rection: rounding downto the near-
est integer! This wouldn't cost him
too much, because the damage will
definitely be less than ten thousand
brasses, which is nothing compared
to his income.

Of course, it's easy for us to solve
the financial problems of the brave
general. But how would Terentius
himself respond to my advice? It's
not unlikely that he would find the
proposal sfiange, to say the least.
After all, he would have to wait 20
long years for the bulk of his reward.
In the first five years Terentius
would receive less than 6,600
brasses, and during the first year and
ahalf he'd have to come every day
for a one-brass coin! So who of the
three is the strangest: the emperor/
the general , or I?. It's up to you to
decide. At any rate,Ican'thelp won-
dering what Yakov Perelman would
have thought of this interpretation
of his story. I'd like to think he
would have been amused. O
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HOW DO YOU
FIGURE?

Challgltug$ in phy$ics and lnath

tUIath

Ml11
Factorials and powerc. (a) Prove the
identity

l.21 2.3! n(n+1)!
T-

222 2n

{n + 2)l
_\ t q

-L
2n

l-l --l . 'l -\!!1.

(b) Find the sum

r.3t 2.4! n(n+z)l+ +...+ 

-
JJ- 3n

(V. zhokha)

M1 12
Meeting on the diagonal. A line
drawn through a point K in a square
ABCD intersects two opposite sides
AB andCD atpointsP and Q (fig. 1).

Two circles are drawn: through
points K, B, P and through points K,

D, Q. Prove that their second point
of intersection (the point other than
K) lies on the diagonal BD. (V. Dub-
rovsky)

Ml 13
Playing vnth quadratlcs. The coeffi-
cients in a quadratic equation arere-
placed with asterisks: atr2 * x; + x = 0.

The first player names three num-
bers. The second one writes them
instead of asterisks at will. Can the
first player ensure that the resulting
equation has distinct rational roots
no matter how the seeond one ar-
ranges the coefficients? (A. Berzins)

M114
Rollingto almost everywherc. (a)A
regular octagon is rolled over the
plane by repeatedly turning it over
(reflecting about) any of its sides.
Prove that the sequence of rolls can
always be chosen in such away that
the octagon's center ends up inside
or on a given (arbitrarily small)
circle. (b) Solve a similarproblem for
a regular pentagon. (c) For what
regular q-gons is a similar statement
true? (G. Galperin)

M115
Composite sum of squares. Prove
that 2352 + 9722 is a composite num-
ber. (D. Fomin)

Physirs

P111
Spring in water. A long homoge-
neous spring of length I in the re-
laxed state consists of a large num-

ber of identical turns. When the
spring is placed vertically inside a

tall cylinderwith a smooth wall, the
spring is half as long as it originally
was. Water is then poured into the
cylinder up to the level I/2. How
long is the spring after the water is
added? The density of the spring is
p and the density of water is po. (S.

Krotov)

P1 12
A charge isn't alone. A point particle
of mass m and charge Q is placed at
a distance I from an infinite con-
ducting plane and then released.
How long does it take the particle to
reach the plane? Neglect the effects
of gravity. (Hint: use the method of
images and compare it to previous
problems that you have done with
the same force law.) (A. Bytsko)

P1 13
Subkme self-rescue. According to a
science fiction story/ an astronaut of
mass M = 100 kg was at a distance I
: 100 m from her spaceship with a

glass of frozen water in her hand.
Using the sublimation of the ice, the
astronaut returned to her ship. Is
such a mode of rescue possible? De-
termine the time needed to return to
the ship. Assume that the sublima-
tion of the ice occurred at a constant
temperatureT:272 K. The pressure
of saturated vapor at this tempera-
ture is P = 550 Pa. The gas constant
R : 8.3 |/mol . K). The size of the
glass and the mass of the ice can be
any values you wish. (A. Stasenko)

CONTINUED ON PAGE 45
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The forces controlling the sea swells

by lvan Vorobyov

The houndinU lnailt

HE HURRICANE IS HUN-
dreds of miles away, the air is
calm hereabouts, but the walls
of water roll one after another

as far as the eye can see. It's the sea
swell-the steady surging of the
Earth's great oceans. The chain of
parallel curves stretches for tens of
kilometers, and the waves go on like
that for hours on end.

Near the Cape of Good Hope the
waves canreachg*l I mwithawave-
length of 100-300 m. Oniy the
ocean's great depth (2 km) reassures
us that a particularly high wave won't
expose the very floor of the ocean.
The speed of these colossal waves is
quite impressive: 40-70 km/h.

What are the forces that produce
this regular movement of so much
water? What does the velocity of the
waves depend on? What is their
characteristic shape (profile)? What's
going on beneath the roiling surface?
I'11 try to answer these cluestions.
But first, it will be worthwhile to
take a close look at the wave itself.

lrymsdflow
With waves, it's more convenient

to study them when they aren't
moving. Imagine we're flying in a
helicopter with the velocity of the
wave motion c. Relative to us, the
curves of the water's surface don't
change, and along their unchanging
profile the water flows steadily. Both

the level and inclination of the sur-
face, as well as the velocity V of the
water flow along the stationary pro-
file, repeat themselves over a dis-
tance of the wavelength 1,. Next to
the surface layer is another one just
below it, and next to that is another
layer below, and so on. (Physicists
callthislaminar flow.l As the water
moves smoothly along, there are no
gaps or ruptures/ and the curves of
the deepest layers remain stationary
with respect to the profile of the sur-
facelayer, repeating with the same
distance ). (fig. 1).

v2

Figure 2

of this, the lower boundary of each
layer is less inclined than the upper
boundary. The difference in their
heights becomes smaller, the changes
in the velocity during ascent and de-
scent are less pronounced, and the
layers become more homogeneous in
thickness as a result of the damping
o{ the curves.

At the lower limit we come upon
horizontal layers of still water. But

which means that the same mass of
water passes through any cross sec-
tion of a given layer per unit time.

The profiles of the different layers
are not identical. Their amplitudes
decrease gradually with depth. This
becomes clearer if we examine the
flow between the boundaries of one
layer. Because the flow is steady, the
layer is thicker where the velocity is
1ess, and vice versa. Flowing down-
hill, the water particles gain velocity;
climbing upward, they slow down.
Therefore, the distance between
boundaries is larger at the crests and
smaller at the troughs (fi1.2). Because

L

Figure 1

Sq, our "stopped was.e" reference
frame-turns the movement of the
water into a steady-state flow along
the curved layers. The stationary
boundaries are formed by waterpar-
ticles moving along the same traiec-
tory. Water doesn't leave a Layer,

o
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actually the water is stationary only
relative to the ocean floor-in our
moving (stopped-wave) referenge
frame, it travels with a velocity c
directed opposite to the wave. The
ocean floor moves with the same
velocity and in the same direction.

If the water is deep enough to
damp the wave appreciably, the
ocean floor will be in still water and
will not affect the movement in the
upper layers. A quantitative treat-
ment of this condition will be found
at the end of this article. But for now
it's clear why the uneven relief of
the ocean floor doesn't disturb the
waves at the surface.

To find the velocity v of a water
particle in the "moving waye" refer-
ence frame (in which the ocean floor
and the shore are stationaryl, we
need to sum the velocity of. a par-
ticle moving along the wave profile
V and the velocity of this profile c
(fig.3):

v=V+c.

c<_

Figure 3

This simple equation will play an
important role later on.

fil'auityaltd pl'e$$l'g

The term "surge" is used when
waves are anywhere from one meter
to hundreds of meters long. For
waves that long we can neglect sur-
face tension. The fact that they
travel hundreds of kilometers with
no appreciable damping is evidence
of the small role friction plays here.
So the osean's surge is basically de-
termined by the interplay of just two
forces: gravity and pressure.

The pressure along the water's
surface is identical everywhere and
equal to the atmospheric pressure.
At a very great depth the layers are
almost horizontal and the water in
them is almost stationary. The pres-

Figure 4

sure at a given depth in still water is
the same throughout. In deep watet
it differs from the atmospheric pres-
sure, but there are no pressure varia-
tions along the wave profile in either
the surface wave or in the deep
waves. In the intermediate layers
the variations in pressure cannot be
caused by air pressure/ since it is
uniform everywhere on the surface.
But there can't be any heterogene-
ities coming from below either. This
is a compelling argument in favor of
the pressure being identical at the
boundary ofanylayer.

Although the pressure is the same
at atly point in a profile, it changes
at the transition from one boundary
to another. The pressure difference
and the force of gravity accelerate
the water particles. We can deter-
mine this pressure difference by the
following reasoning. A layer as a
whole doesn't move up or down.
The forces are counterbalanced for
every fragment of the layer with a

length eclual to the wavelength 1,

$ig. al.
To calculate the force of the pres-

sure acting on the upper curved
boundary, where the pressure af afly
point is p, we begin with a small
inclined fragment. The force is equal
to the pressure times the area of the
fragment and is directed perpendicu-
lar to it. The vertical component of
the force is equal to the pressure
times the area oI the horizontal pro-
jection of the fragment (fig. a). The
common factor (pressure) is taken
out of the brackets when we sum
the vertical components, and the
sum of the areas of the projections
gives the area )vL of the horizontal
cross section of the wave fragment
(where I is its width). Thus, the to-
tal force of pressure acting on the
upper boundary is pluL and is di-
rected downward.

For a lowerboundarywith a,pres-
surep + dp, the corresponding force
is directed upward and is equal to

p+dp

).

c<_
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(p + dpl)"L. The difference between
these forces is counterbalanced by
the force of gravity mg, where m is
the mass of the fragment. There-
fore,

Let's take a closer look at this
equation for the increase in pressure.
A curve doesn't change alayer's
mass or the mass of a fragment. It's
the same as it was between the hori-
zontal boundaries of this fragment
in still water. So in still water there
is the same pressure difference, and
the same pressure. (In every case it
begins at the surface with the atmo-
spheric pressure.) The pressure at
the curved boundary is equal to the
initial hydrostatic pressure acting on
its particles in still water (fig. 5).

Acuelenation ola wafler parlicle

Consider a small fragment of a
thin layer (fig. 6). Its butt-ends are

Figure 6

perpendicular to the velocity V of
the flow. During the time dt of
passage through this fragment, the
length of the inclined boundaries
isV dt, and their area is LV dt.In
order to apply Newton's second
law and find the acceleration, we
need to know the mass of the frag-
rnent dm and the sum of the forces
acting on it.

In the period T = ?rlc the entire
mass m of the wave fragment is re-
placed, so the mass that passes
through the fragment per second is
mlT = (ml\,lc.In the period dt the

From this it follows that the force of
gravity acting on the fragment is

/\
dm e=l %1" at." (rl

This force is directed downward at
a right angle to the wave velocity c.

The pressure doesn't change
along the flow in alayer, and the
sum of the forces directed at one an-
other at the butt-ends is zero. The
pressure difference at the inclined
boundaries dp results in the {orce

This force is directed perpendicular
to the boundary, at a right angle to
the velocity of the flow V.

Both forces can be obtained from
the vectors V and c in the same way:
by rotating them 90o and multiplying
by the same factor (mglLl dt. Thus,
the sum of the forces can be obtained
from the vector sum V + c by the
same two operations: rotation by 90'
and multiplication by the aforemen-
tioned factor (IiS. 7lr. Since V + c : v,

(msn")vdt lmsn"lcdt

{ru- = lmsn'lvdt
v

dm = lm/)"lcdt

Figure 7

the total force can be expressed by the
velocity of a water particle relative to
the ocean floor (that is, in the moving-
wave reference frame). The force is
perpendicular to this velocity and is
equal to

Fsum

Dividing the force by the mass dm
gives us the acceleration of the frag-
ment:

a=Ev.
c

The acceleration is directed at a

right angle to the velocity v.
This is a turning point. We've

determined the acceleration that
results from the forces of gravity and
pressure/ and now we're ready to
unravel the details one by one.

A Ricilm olmolion
An acceleration that is perpen-

dicular to the velocity does not
change its value. In this case the
acceleration itself a = lglclvhas a
constant absolute value. Constant
acceleration at a right angle to the
velocity clearly indicates uniform
circular rotation (fig. Bl. For a circle

Figure 8

of radius z, the centripetal accelera-
tion is a = rPl4 and since the angu-
lar veiocity is ol = vf r, then a: @v.

Comparing the last equation and the
formula for acceleration found pre-
viously, we obtain the angular veloc-
ity:

ot={.
L

Now we essentially have the
whole picture of the motion: the wa-
ter particles move with the same an-
gular velocity in a circle of constant
radius. For particles forming the
wave's profile, the radii are the same,
but their centers lie on ahorizontal
Iine. The particles rotate simulta-
neously; the angular displacement be-
tween particles doesn't change, but
the wave profile as a whole moves

mass entering the fragment is
equal to

. (m)
dm=l'-:: lc dt.

l. r./

dp=mg
)LL

dp LV at=(ra)v at.

=(T)""

'a=@v=(s/clv
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Figure 9

with a velocity c (fig.9l. This occurs
at every depth in the water-only the
radius of the circular motion changes
from layer to layer.

AJter a time T:2nlaapa*iclewill
return to its initial position and find
itself in the same fragment, but in the
next wave (fig. 10)-the one that trav-
eled the distance )" = cT = 2ncf a dw-
ing this time. Since a = glc, then l, =

+
T = 2nla

Figure 10

2nczf g. This gives us the following
equation for the velocity of the wave:

It's easier to analyze the wave
profile in the stopped-wave refer-
ence frame. The profiie then is
drawn by the particle itself, whose
movement is a combination of rota-
tion and translation with a velocity
c. This allows us to construct the
profile and find the dependence of
the coordinates on time:

x=ct-rsinrot,
y: / cos ot.

The coordinate origin {fig. 11) is

Figure 11

chosen at the center of the circle,
and zero time corresponds to the
moment when the particle is at the
crest.

For a weak wave (when y = oz is
small compared to c), the horizon-
tal velocity V*= c - 611 cos ot can
be considered constant and equal
to c. Thenx = ct.Inthe formula for
y we replace , with xf c and obtain
an approximate equation for the
profile:

So it turns out that a weak wave is
sinusoidal. The "weakness" condi-
tion mentioned in the opening sec-
tion is ecluivalent to the inequality

T
.2n

For moderate waves we see a
sharpening at the crests and aflat-
tening in the troughs (fig. 12). The

c

-

c+v
CV

Figure 12

vertical deflections from the crests
and troughs are equal for small time
periods, but the horizontal deflec-
tions differ: the velocity at a crest is
c - v, while the velocity in a through
is c + y. The closer the value of v is

to c, the stronger the horizontal
"compression" of the crests.

Ourphysics intuition tel1s us
that we should expect some-
thing unusual when the natural
Iimit o{ the wave velocity is
passed. Formally, atv = c an in-
finitely sharp vertical spike
appears/ and atv > c the profile
crosses over itself and a loop
emerges (fig. 13). For a wave in

the ocean this scenario would look
pretty strange. According to our

V:C V>C

Figure 13

theory, when y is smaller than but
close to c, thelayers near the sharp
crests cuffie steeply, and the veloc-
ity of flow changes sharply {rom
layer to layer. Doubts arise not
only about the stability of such
motion, but even whether such a
motion is close to being stable. So
the case of large waves seems to
demand a more compiicated ap-
proach.

[amping olumues flt deilr
The crests of laminar waves are

located precisely one beneath the
other, and likewise the troughs. At
the points of the profile that are
symmetrical relative to the crests/
the absolute value of the flow veloc-
ity is equal, and also at these points
the thickness of a layer is the same
because the flow is constant, which
precludes any skewing.

The boundaries of a layer in a

stopped wave are formed by the tra-
jectories of its particles. For each of
them the motion consists of a com-
bination of rotation and translation.
The difference is that the centers of
the circles are located at different
depths and their radii aren't equal.

To obtain the dependence of the
radius on depth we use the fact that

(cx) ( zrx\
y = rcosl-J= r"o'[ 

^ 
J.

-z - 8)"

2n

dQ = adt

v>c

x:ct*rsinrullt
y =r cos @t
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'dh + r-- r

c + v trough

Figure 14

the flow is constant throughout a
layer. Let's consider two cross sec-
tions (fig. 14). The first is in a crest,
where both radii "look" up; the flow
velocity is c - y and is directed hori-
zontally. The second is in a trough,
where the radii "look" down; the
flow velocity is c + v. When the dis-
tance dh between the centers is
small, the radii r artd { of the upper
and lower circles differ only slightly.
The thickness of the layer in the
crest is dh + t - r', and in the trough
it's dh + { - r. The equality of the
flows in these cross sections gives us

(dh + r - lllc - vl = @h + I - rllc + vl.

Therefore, we can find the in-
crease in the radius dt : / -r, which
is negative-

dr =-Ldh
c

-and this is correct because the ra-
dius decreases with depth. Since v =
or, the decrease in the radius is pro-
portional to the radius itself. When
the center of the circie is lowered by
dh, theradius decreases by the same
proportion:

4! = -g-an.
TC

1/e

I lez

Starting from the circle of ra-
dius ro at the surface and descend-
ing by small steps from its center,
we can find either graphically or
numerically the radius at ar,y
depth h (fi1.15). Readers who can
integrate will be able to obtain the
analytical expression

_ofi _zrhI=roe " =Ioa L

(They will also have obtained the
expression alc = 2nl),, with no great
difficulty.)

The amplitude of the waves and
the velocity of the water decrease
with depth geometrically. The num-
ber e is approximately equal to 2.72
= 100 43. At a depth of ),,12n the wave
is damped roughly by a {actor of 3.
But at a depth equal to the wave-
length, it's damped by a factor of e2" ,
which is close to 535. When the
depth is of the order of the wave-
length, agitation from the ocean
floor is far weaker than the surface
agitation, which allows us to neglect
the influence of the ocean floor on
the waves.

And now, a few final remarks.
Our basic assumption at the out-
set was the absence of a pressure
drop along the curved layers. In
essence this meant that a deep
wave is similar to a surface wave/
only it has a different " atmo-
spheric" pressure. The discovery
of this kind of "self-similarity"
has helped lead to the solution of
complex problems in fields rang-
ing from fluid mechanics to el-
ementary-particle physics. In our
probiem this approach made it
possible to describe the motion of
the entire mass of water by apply-
ing Newton's second law to a
single droplet. O

r/ro

1

c/a=)y/2n

Figure i5
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vided into three
congruent poly-
ominoes unless
the pieces are
rectangles.l

Figure 2 shows
three solutions to
the second dis- 2l

section task.

bc
Figure 2

finity of positions. The one shown
may be the one in which line seg-
ments have the smallest possible
integer lengths.

As mathematician Robert Wain-
wright of Plainview, New |ersey, has
observed, figure 2b results when the
slanting line is orthogonal.

We turn now to the three equilat-
eral triangle tasks.

The fourth task obviously has an
infinity of solutions, obtained by

rotating the three trisecting lines
about the central point (fig. a). The
trisecting lines need not be straight.
They can be as wiggly as you like,

Figure 4

provided that they are identical and
do not intersect (fig. ab).

Scherer found an elegant solution
to the fifth task (fig. 5). It's believed

Figure 5

to be unique. Note its similarity to
figure 2c.

The sixth task is easily solved (fig. 6).

It's probably unique, though no proof
is known.

My only con-
tribution to the
six tasks was the
rediscovery of a
second solution
to the third task

18

Task 3 is more difficult. Scherer
found the pattern shown in figure 3.
The solution is not unique, because
the slanting line can assume an in-

tlownal of CombinatoriaT Theory,
Series A, Vol. 61, September 1992, pp.
130-35.

MATHEMATICAL
SURPRISES

$ilt challeltUiltu disseulion lasfts

And a visit from a close relative of Q

by Martin Gardner

ARL SCI{ERE& ACOMPUTER
scientist in Auckland, New
Zealand, recently posed the fol-
lowing six tasks:

1. Cut a square into three congru-
ent parts.

2. Cut a square into three similar
parts, just two of which are congru-
ent.

3. Cut a square into three similar
parts/ no two congruent.

4. Cut an equilateral triangle into
three congruent parts.

5. Cut an equilateral triangle into
three similar parts, just two of
which are congruent.

6. Cut an equilateral triangle into
three similar parts/ no two congm-
ent.

The solution to the first task is
obvious (see figure 1). It is surely
unique, though I know of no proof.
Ian Stewart and A. Womstein have
shown that no rectangle can be di-

Figure 1

t'-'
I

-+-
#!l
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t2

t4

Figure 6



*-x+l

*+l
Figure 7

(fig. 7). I later learned from Scherer
that he had found it years earlier.
What is the value of x, assuming the
smailer side of the smallest rect-
angle is 1? I thought this would be a
simple question to answer. If x isn't
rational, surely it's a recognizableir-
rational, such as 1.732... (the square
root of 3 ), or 1 .618 . . . (the golden ra-
tio, often called phi), or some other
well-known irrational.

To my amazement, x turned out
to be an irrational number
I had never encoun-
tered before. ,C

The cubic ,4ffi
equation re- ,:N
Iating the ,i #i{
ratio of f.'#ff
the W
sides , fofM

l .d'

the smallest rectangle to the ratio of
the sides of the similar largest rect-
angle is

I _xz -x+l 
.

x xz+l '

x3 -2x2 +x-1=0,

(x'-x)(x-1)=t.

The decimal expansion of x is
1.75487756624659275... . As Wain-
wright pointed out/ the number is
closely related to phi, the golden ra-
tio. The reciprocal of phi equals phi
minus one. The reciprocal of x
equals (, - ll'.Other equalities are

1,-1__.,1;f _I; vX=_.x2 x-l

I propose calling this number
"high-phi." DonaId

ffiI;;-*.." Knuth, Stan-

high-phi:

r+-!
Jl+ 1

J-_r*,
[r+1

Jl+1

As Knuth write, the series con-
verges more rapidly than the series
for phi, giving values that arc alter-
nately over and under the true value:
1,2, 1.71, 1.765, 1.753, r.7554, ... .

Knuth also called attention to the
{ollowing equality for high-phi:

r, I -. I
=Y+-'

I -r I

Karl Scherer points out that the
three rectangles in my figure have
areas of x, #, and1.. And if the origi
nal square has a side length of 1, the
rectangies have areas of I f x, I I *, ar.Ld

Iff. This shows that I : llx+Il* +

llf , and the ratio of the largest regt-
angle to the rest of the scluare is JP .

Scherer suggests the terms phi-
two, phi-thtee, and so on/ for the
first terms of the series of solutions
for the equation

11=(x_1),.
x

He conjectures that 1 is the sum of
the infinite series of the reciprocals
of phi-two, phi-three, phi-four, and
so on. In brief,

Can any reader prove or refute this
coniecture?

Is it not surprising that such a

simple geometrical construction
would generate such a curious num-
ber? Note that 666, the number of
the beast in the Book of Revelations,
follows its first six decimal digits.
Perhaps Quantum readers know of
other properties, serious or numero-
logical.

I would welcome hearing from
anyone who can find other solutions
to any of the six tasks. O

2t

a

ford Uni-' versity's
'r,,,1 noted

,'i com-
l'i Pu.ter
, I Sclen-
'..ri tist,

,"..1 sug-
' ,'i gested

,,' ,i'' giving it
.j:,,,1' the symbol

i:f i"" g, in which
.ri' ,: the little cir-

,t'.,i cle of phi is

,' ..t raised. He point-
i.::j ed out in a letter

. .=. i-'1 how close a mofi-
1 +:-1.i', ")t fied fraction for

*i!i.,
, 6 "' high-phi resembles
,- J the continued frac-

A Y. ,.f tion for phi. Phi is
.,jl the limit of

r = i, 9;r'.
0
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1+1
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o
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Add square root signs and you get
the modified continued fraction for

ffi r-a,:, 1..
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Erd6s is "squared,"
and we hope he will be squared yet once more

MATH
INVESTIGATIONS

]lappy hirthdaU Uncle Paul!

by George Berzsenyi

which is greatly responsible for the
high level of mathematical life in
that small country. Following the
completion of his formal studies for

eur pno6s, MATHEMATT-
cian extraordinaire, recently
celebrated his 8 lst birthday and
referred to the occasion as being

"squared," since 81 :92.We
hope he will celebrate many
more birthdays, write yet an-
other 1,500+ papers, inspire
many more mathematicians
throughout the worid to de-
crease their "Erd5s number"
to l, and pose many more
wonderful problems.l In this
column I'11 share some of his
problems with my readers in
the hope that they will assist
Uncle Paul, as he is affection-
ately called by his many
friends and admirers, in his
constant quest for the math-
ematical unknown.

Paul Erd5s is a native of
Hungary. His unique math-
ematical talents were recog-
nizedvery early and were en-
couraged by his parents, both
of whom were excellent
mathematics teachers. His
development as a mathema-
tician was much enhanced by
the Kozdpi skolai Matem a-
tikai Lapok, Hungary's 1 O0-year-old
high school mathematics journal,

IIf you coauthor a paper with Erd6s,
your Erd6s number is 1; if you
coauthor one with someone who
coauthored one with Erd6s, your Erd6s
number is 2; and so on.

a doctorate in mathematics, Erd6s
became the only truly universal
university professor of mathemat-
ics. In the words of one of his admir-
ers, |. W. S. Cassels of Trinity Co1-
lege, Cambridge University: "He
has executed an almost Brownian

motion amongst the mathematical
centers of the world, being the focus
of mathematical activities wherever
he goes. Just as a bumblebee goes

from flower to flower carry-
ing its load of pollen, he
goes from mathematical
center to mathematical cen-
ter with his problems and
information, thereby being
an agent of mathem atical
cross fertilization." The
problems beiow are but a
few samples of his many in-
teresting queries.

Problem l:Let P be an ar-
bitrary point interior to a tri-
angle, and denoteby a, a, a,
the distances from P to the
triangle's vertices, and by x,
y, zbe the distances from P to
the three sides of the triangie.
Determine the minimum of
lar+ar+arlllx+y+zl.

Problem 2: Let n points
be given in a plane, with no
three of them on a line.
Maximally how many pairs
of points can be unit dis-
tance apayt?

Problem 3: Prove that

>;h is irrational.
Problem 4: In a convex n-gon, let

s17 s2, ... denote the multiplicity of
the occurrence of the distances be-
tween the vertices of the n-gon.

/.\
(Note that )s, = [;, ) Prove that

Paul tud6s in 1983.
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there exists a constant c such that

\sl < cnT.

Problem 5: Prove thataconvexn-
gon always has a vertex that is not
equidistant from any four of the
other vertices.

The problems above were posed in
the centennial issue of Kozdpiskolai
Matematikai Lapok; they aie all
open. Problem 6 beiow was his first
serious problem, posed in 1931; it,
too, is still unresolved. Problems 7
through 10 are reproduced here from
recent letters of Pali B6csi (Hungarian
for "IJncle Paul") to the author. The
prizes offered by him for the solution
of his problems are also typical, ex-
cept for the fact that most of them are
in the thousands. It has been esti-
mated that he couldn't possibly cover
his promises if all of his problems
were solved at the same time. How-
ever, since most of them are very
deep and difficult, he seems to be safe
from ever going bankrupt.

Problem 6: Let ar < az < aB < ... <

ao be distinct positive integers such

that the 2k sums, 2{.rr,where e, =

0 or 1, are all distinct. Estimate or
determine the value of min ao.

Problem 7: Let a, < az < ... be the
set of integers of the form 2d3 9. Prove
that everyn can be written as the sum
of ar's, no one of which divides any
other. Is it in fact true that if n is suf-
ficiently large, then there exist such
ar's with

A.+A.+...+A.=nlt 12 .rft

and

Problem 8: Let x' Xz, ..., xnbe n
points in the plane in general posi-
tion-that is, no three on a line and
no four on a circle. ErdSs believes
that for largen the points determine
at least n distinct distances. For
smalla this is certainly false. In fact,
for n < 9 it can happen that one dis-
tance occurs n - I times, one n - 2
times, and so on. For n = 4 an isos-
celes triangle and its center consti-
tute an example. For n = 5 Carl
Pomerance constructed such an ex-

ample, while f.orn = 6,7, and 8 Ilona
Palasti did so. (To whet your appe-
tite, Pomerance's example is illus-
trated below, with equal distances
bearing the same markings.) Erd6s
offers $10 for an example for n:9,
$25 for a proof that for large n such
an example does not exist, and 950
for a proof or disproof that for large
n the points determine at leastn dis-
tinct distances.

Problem 9:Letflnlbe the largest
integer for which there are integers
a, b torwhichnllfulb!) is an integer,
and a + b : n +l(n). Prove that there
exist cl andcrsuch thatl(n) < c, log
n for alln, and try to prove that f(nl
> c, 1og n for infinitely many a.
Moreover, refer to n as a champion
if f(nl > f(ml for all m < n. For ex-
ample, 10 is a champion, since
l0! l6!71 = L, 6 + 7 = l0 + 3, andf(ml
. 3 = fl10) for all.m < 10. Try to de-
termine all champions.Letgnlal =b
be the largest b for which nllalb! is
an integer, andletfnful = a + g,lal -n.
Determine or estimate the value of

+>!:f"@).
Problem 10: Let X, x2, ..., xnbe

the vertices of a convexn-gon in the
plane. Construct all of its diagonals;

there willO. (;) - n ofthem. Con-

sider the interior points of intersec-
tion thereof. If we assume that no
three of them go through a point,
then it is trivially true that there are

[l) ", 
them, since every choice of 4\+/

points yields a point of intersection.
Hence let's not assume anything
about the number of diagonals meet-
ing at a point. Then there are two

questions: How many fistinct points
of intersection can there be? And
what is the minimum of the number
of intersection points? Moreover, for
2n points, can the number of intersec-
tion points be smaller than that for
regular 2n-gons?

As the above problems illustrate,
the questions posed by Paul Erd6s
constantly probe the frontiers of the
known mathematical universe. His
discoveries cover most branches of
mathematics from number theory
to combinatorics, from foundations
to analysis, from geomgtry to prob-
ability, and many new areas which
were initiated by his own investiga-
tions. It is not unusual that he is si-
multaneously working on several
papers with different mathemati-
cians.

"Pali B6csi" loves to work with
young people, many of whom have
been inspired by him to great ac-
complishments. He was also one of
the founders of the famous Budapest
Semesters in Mathematics program,
which is briefly described in the
Bulletin Board in this issue (page
szl.

Paul ErdSs is a member of the
Hungarian Academy of Sciences and
was also elected to membership in
the Academies of the Netherlands,
Australia, India, and England. He
has also been the recipient of nu-
merous honorary degrees. Most re-
cently, the World Federation of Na-
tional Mathematics Competitions
honored him by creating the Erd6s
Prize, to be awarded to mathemati-
cians whose efforts in the popular-
ization of mathematical. competi-
tions have resulted in an increased
awareness of the important role of
mathematics. O

The purpose o{ this column is to direct
the attention oI Quantum's readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science proiects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes andf
or {ree subscriptions.

0 lJ I ll T l,l I'l / il A I ll I ll U t S T I t A T I 0 il S 2g



IGH SCHOOL STUDENTS
know that for lql < l, the sum
of an infinite geometric se-
quencel+q+q2*q3+...

equals llll - ql, and study an arta-
lyticai proof of this formula.For q =
lf n, wherc n e N, this sum can be
computed geometrically. You might
have seen similar geometric proofs
of simple algebraic identities-for
example, la + blz = a2 + Zab + b2-
that make use of a device called al-
gebraic tiling.

We'llbegin with the case n:2.
Let's find the sum

111I+-+-+-+ ....
248

Take an arbitrary rectangle o{ area
2. Cut it into two rectangles of unit
area lfig. 1). Cut one of these rect-
angles again into two equal halves of
area lf2. Do the same with one of
them to get two small rectangles of

IN YOUR HEAD

Geomelric $ttlnlnaliun

I nfi n ite al geb rai c ti I i ng s

by M.Apresyan

area lf 4, and so on. This process cre-
ates a sequence of rectangles whose
areas are equal to l,lf2,lf 4, LfB, ...,
Ll2n, .... The union of these rect-
angles coincides with the initial rect-
angle'(without one comer point). So

the sum of the areas of all these rect-
angles is equal to the xea of the ini-
tial rectangle-that is, to two. Thus,
l+l12+Il4+ll8+...:2.

Now let's find the sum 1 + lf n +
lf n2 + lf n3 ... . Start with a rectangle
of arean and cut it inton rectangles
of area 1 (fig. 2). Next, cut one of
these rectangles into n rectangles of
equal area (Ilnl, do the same with
one of these smaller rectangles, and
so on. This process yields rectangles
of areas I, I f n, I 1n2, ..., I f nk, ... (n - |
rectangles of each of these areas). The
union of al1 these rectangles is again
the initial rectangle with one corner
point deleted. So the area of the
union is n; on the other hand, it's
equal to

(n-l)*'-l *+-.
nn'
(tl\

=in-1)l 1- ' -+- |\nn')
Thus,

lln
I r-=-r..

n n' n-l r-rl n

The same idea works for the sum
of an infinite geometric sequence
with an arbitrary rational ratio q,0 <

q < 1. hdeed, let's take the last con-
struction in a rectangle of area n, but
each time let's subdivide m (m < nl
rectangles of the n obtained in the
previous step (fig. 3), leaving intact
the remaining n - mrectangles. Do
you think you can take it from here?
Give it atry, arrd derive the formula
forl+mfn+lmlnl2+....

This method can be appiied to
some other infinite sums as well.

Figure 1
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n-m

n-m

n

Figure 3

For instance, let's prove that

Figure 4

now we cut one of the last two
rectangles intothree parts equal in
area (the areaof each of these parts
is l12 + 3 = llSl = ll5l. One of the
rectangles of. area 1/6 is now cut
into four equal parts, one of these
parts is cut into five parts, and so
on. This yields one rectangle of area
1, one of arealf 2, two rectangles of
area lf}!, three of area lf4l, ..., n
rectangles of. areallfu + 1)1, and so
on. So the sum arising in this case

is 1 + 1/2! + 213! + 314! +..., which
is equal to 2-the area of the whole
rectangle. O

.-:,. . ..E 1ir'i.:ii us a line at Quantum,
1840 Wilson Blvd.,
Arlington vA 2220 1 -3000

o1

E ": ', us an electron or two at
7 203O.3 | 62@ compuserve. com.

-123l+-+-+-+...2! 3! 4!

nr 

- 

-','(n+1)! "'

Again we'li take a rectangle of arca
2. The first two steps are the same
as in the first example: we cut the
rectangle into two unit rectangles,
and then one of them into two
rectangles of area l12lfi1.4). But

1 1 1 .
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KALEIDOSCOPE

]lol'sellies and IIyinU hol'se$

Questions of scale in the animal kingdom

by A, Zherdev

then as now were delighted by
Swift's "wondrous realism" as ex-
pressed in the precision of his arith-
metical calculations: Gulliver was
12 times larger than Lilliputians and
was smaller than the Brobding-
nagians by exactly the same factor,
and everything in both countries
was scaled by the appropriate
amount.

Real life is not so simple, how-
ever, and the first person who real-
izedit was none other than Galileo
Galilei. He wrote: "It is not pos-
sible to decrease in equal mea- i
sure the surface and the weight ,i

of a body and preserve similar-
ity of form. It is absolutely i
clear that the decrease in i
weight is proportional to the :

decrease in volume , and
therefore every time the vol-
ume decreases more than the )

surface (while preserving

I

l

IZE TS ONE OF THE MOST
important characteristics of a
living thing, but the difference
in size is so obvious that we of-

ten pay little attention to it. Every-
body knows that an elephant is big-
ger than a mouse/ but rarely do we
think how much bigger: by a f.actor
of 100,000. The smallest adult
shrew is a tenth the size of a mouse,
which makes it l/1,000,000 the
mass of an elephant. The difference
is even more striking when we com-
pare animals of different phyla-say,
aprotozoar and a whale.

Does a size difference lead to a
qualitative change? For a long time
both scientists and lay persons be-
lieved that it doesn't and thought
that all the characteristics of living
creatures change in proportion to
their size. The classic example of
such an assumption is the world cre-
ated by |onathan Swift in his elassic
satire Gulliver' s Tr avels. Readers

'i:.+

*@=''
-1-' .'4

\#.

ol<
-Ca'tr
p
C
o
c)
J

_o

71

s=24
v= 8

s/v :3

Figure 1

t2 llllAY/Jl|lrr rg04

s/v=5

i
i

i

--k**w> ffilanwv* l))-



weight will also de-
crease more than the sur-

face. But geometry teaches
that the ratio of volumes
of similar bodies is larger
than the ratio of their sur-
faces. ., . Therefore, it is
impossible to construct
ships, palaces, and churches
of enormous size such that
their oars, masts/ beams,
iron clamps-in a word, all
their parts-hold together.
On the other hand, Nature
herself cannot produce gi-
gantic trees because their

I branches would ultimately
break under their own weight.
Likewise, it is impossible to
imagine the skeleton of an im-
possibly huge human being,
horse, or other living creature
that cansupport the body as it is

meant to. Animals can attain ex-
traordinary sizes only i{ their

bones change, increasing in thick-
ness by a corresponding amount."
(See figure 1.)

As an animal increases in size, the
parameters of its various physiologi-
cal processes increase in di{ferent
ways: some linearly proportional,
others proportional to the squares or
cubes of these values. And so animals
of different sizes must have different

shapes. An entire branch of biology
is devoted to analyzing the rela-

tionship between size and shape,
and researchers in this area

have obtained a number of
interesting results. Work

through the questions
'. presented below and

you'll become ac-
quainted with some

. of them.

Questions
t. On the mi-

croscopic level
the muscles of the
most various kinds
of animals do not

differ all that much
in structure. Muscu-

lar contraction is
caused by intermolec-

ular chemical complexes

Figure 2

whose structure and arrangement
are basically the same. Still, a dis-
tinct differentiation exists: the
smaller the animal, the greater the
mass (relative to its own) it can lift.
How can this be explained?

2. Why do animals with approxi-
mately the same shape (a grasshop-
per and a locust or a kangaroo rat
and a kangaroo) iump to the same
height, regardless of their size?

3. In the treatise cited above,
Galileo introduces a drawing that
shows that alarge bone is dispropor-
tionately thicker than a small bone

fis.2lr. He made a small arithmetical
error, though. What was it?

4. A scientific expedition discov-
ered a new creature: a one-{ooted
mammal (fig.3). Its dimensions are
given in retems-the unit of length

Figure 3
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used by the natives. Estimate the
mass and height of the "monoped"
using human data (average measure-
ments or your own dimensions). De-
termine the length of 1 retem in
meters.

5. A baby was born weighing 8
lbs. It tripled its weight in one
year, weighing in at 25 lbs. Con-
tinuing to grow at the same rate,
by the end of its second year it
would weigh 25 x 3: 75 lbs; after
three years , 75 x 3 = 225 lbs; after
four, 225 x 3 = 675lbs; and after
five years, the baby would weigh
67 5 x 3 :2,025lbs. The daily food
intake of this one-ton " toddler," at
I 15 to I 17 of its body mass (as is nor-
mai for growing children), comes to
300 lbs. From this estimate the fa-
mous Po1ish teacher |anuszKorczak
drew the conclusion that one
should not force little children to
eat against their will! What do you
think the daily food intake of such
a three-year-old baby should be?
How much do you weigh, and how
much food do you eat each day? Do
your figures iibe with Korczak's cal-
culations?

6. (a) Insects don't try tobtzz or
drone-it just happens. The sound
comes from the flapping of their
wings. The force of the flapping
(pushing against the air) must com-
pensate for the insect's tendency to
fall due to gravity. So why do gnats
buzzwhlle bees drone? What is the
relationship between the insect's
tone and its size? (b) Our friend
Gulliver complained about the dron-
ing of Brobdingnagian flies: at
dinnertime these insects didn't give
him a moment's rest. He may have
been bothered by them, but did they
really drone?

7. The higher the body tempera-
ture of birds and mammals, the
smaller the animal is. Why?

B. Parents who are in a hurry waik
quickiy, and if they happen to be
holding their child by the hand, the
child must run to keep up. Why do
adults and chiidren achieve the
same speed in such different ways?

9. Which desert animals are able
to live without water for a longer
time-smalI ones or big ones?

Take a good look around. . .
Compare the height and thick-

ness of nearby trees and stalks of tall
grass. What {ormula describes the re-
lationship between these two pa-
rameters? What factors are at play
here?

It's interesting that . . .
. . . there are so many large ani-

mals around. If it's so disadvanta-
geous to be large, why didn't evolu,
tion produce a prevalence of small
animals? The reason is that large
animals are stronger than smaller
species in absolute terms/ although
the smaller animals are relatively
stronger. This gives them the advan-
tage in head-to-head competition
and also allows them to occupy new
ecologic4l niches. But bigness is
unfavorable in other respects. In or-
der to find enough food, a horse
must cover more terrain than a
mouse does. Since the food supply is
usualiy limited, a mouse may have
the upper hand over the horse be-
cause it needs less food. A hectare of
meadowland can support a huge
population of mice, but no more
than one or two horses. Appreciable
populations of large animals can
gather only on great expanses of
land. Thus, both smallness and big-
ness have their own ecological ad-
vantages.

. . . a few years ago the newspa-
pers trumpeted the achievement of
a cettain seven-year-old who set a
record for doing push-ups (about
5,000). The boy grows up and prob-
ably takes up g),'rnnastics, but he has
no chance of beating his own rec,ord.
We hope by now you understand
why.

. . . the biggest land animal was
the brachiosaurus/ which was up to
20 m long and weighed 80 tons.
Speculation about how such a huge
animal could exist led paleontolo-
gists to the hypothesis that this kind
of dinosaur lived in tidal areas, so
that its entire body (except the head)
was immersed in water (fig. 4). Oth-
erwise, in the opinion of these au-
thors, the bones of the brachiosaurus
could not have borne the enormous
load. However, this mode of living
creates certain problems. In particu-
lar, it would be impossible to
breathe, because the lung muscles
would not be able to continually
overcome the pressure of the water.
And so biologists had to go back to
the blackboard and recalculate the
strength of the bones. They came to
the conclusion that the bones could
support such a huge load.

. . . comparing different mam-
mals, biologists came up with a

CONTINUED ON PAGE 37
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AT THE
BLACKBOARD I

A litlle lens tillk

Then let's go to the movies

by Alexander Zilberman

the light beam is almost parallel (for
example, the beam from a search-
light).

In many cases of practicalimpor-
tarrce, the optical system consists of
several lenses. For example, the ob-
jective of a camera can consist of
more than ten different lenses-con-
cave and convex/ thin and thick,
made of different and special kinds
of glass. One can even have lenses
with a more complicated geometry
than the usual spherical surfaces.

Admittedly, the simplest calcula-
tions of optical systems that can be
done within the framework of high
school physics will not meet the
practical demands of actual devices:
even the lenses for high-quality eye-
glasses (not to mention contact
lensesl) are often calculatedby com-
puter, and not because o{ a surplus
of computers.

Nonetheless, even a simple
theory can come in handy, because
approximate calculations will often

HE PHENOMENON OF RE-
fraction of light at the bound-
ary of transparent media (say,

air and glass) can be used for a

number of purposes in various opti-
cal devices, including parallel plates,
prisms, and lenses.

Most often lenses are used to form
images of luminous (or illuminated)
objects. A lens makes it possible to
produce an image at the right place
(on the film in a cafiierat on the screen
in a movie theater) or at a distance
that is comfortable
for viewing (eye-
glasses, a magnify-
ing glass, contact
lenses). We can ob-
tain an image of the
object that is either
greatly increased (in
a microscope orfilm
projector) or de-
creased (in a tele-
scope or binocu-
lars-yes, decreased
by afactor of thou-
sands, but brought
nearerby afactor of
hundreds of thou-
sands, whichmakes
it possible to ex-
amine the object
in all its details).
We can also obtain
an image of a lumi-
nous point at infin-
ity-in this case

o'
a)o
(o
o

E
OJ

x
==

OllAltlIUltl/AT TIII BTACI(BOARI I



be good enough. Let's look at the
paths of beams falling on a very
simple, plano-convex lens with a
spherical convex sur{ace of radius R.
I've chosen this lens because the
paths of the beams will be simplest
in this case. Let the lens be made of
glass and placed in air.

Let's imaginethat aparallel beam
of light falls on the plane surface bf
our lens. We know that after refrac-
tion in a convergent lens it must
converge at a point lying in the fo-
cal plane. Let's show how. First we
need to formulate the problem more
accurately. We'll assume that we're
using a thin lens (in due course I'11
explain more rigorously what the
term "thin lens" means and what
we should neglect), and we'll take
the angle of incidence to be small
(this keeps the error small when we
replace the functions sin o and tan o,

with the angle cx itself, which
greatly simplifies the calculations).
These are reasonable conditions
that correspond in general to the ac-
tual situation in simple optic,al ex-
periments.

Let's draw the lens and the path
of one of the incident beams (fig. 1-
here the lens is thick and the angles
arelarge for the sake of legibility).

Figure 1

The chosen beam strikes the lens at
an angle a to the principal optical
axis, and after refuaction at the plane
surface the angle decreases by a f.ac-
tor of n, where n is the refractive
index of glass. We can see this by
using Snell's law

sin c,: n sin Q

and approximating these sines by
the angles to get Q = aln. The beam
falls on the spherical boundary be-
tween the glass and air at an angle of
uf n + p, where B is the angle be-

tween the principal optical axis of
the lens and radius drawn to the
point of incidence of the beam. The
beam then exits the lens at an angle
of

[;.4"-o=s+(n-r)B.
From now on we'llneed the thin-

lens condition: we'll consider that
the points of entry of the beam into
the lens and exit from it are at the
same distanceRB from the principal
optical axis. At a distance I to the
right of the lens the beam is shifted
vertically relative to the exit point
by Lfln- 1)F * ol, and the distance to
the principal optical axis is

H = Ll(n - 1)F * 0l- RB.

Two different rays from the origi-
nai incident beam intersect to the
right of the lens (fig.2l. Equating the

Figure 2

distances H for both rays, we find
the distance I to the point of inter-
section:

I[(r-1)B,+o]-RB,
= Llb - 1)B, + o) - RFz,

from which we get

We see that the distance obtained
doesn't depend on the angle B-it,s
the same for all the rays from our
beam. Thus, we have proved that
the refracted beams converge at one
point, and we've found the distance
from this point to the lens. Notice
that ali the points of intersection
(corresponding to various angles of
incidence) lie in the plane perpen-
dicular to the principal optical axis
of the lens and are located at a dis-

tance Rf (n - 1) from the lens. In
other words, we have calculated the
focal length of our lens:

,R
r i-.' n-l

In the same way/ after more
lengthy calculations we can obtain
an analogous formula for the focal
iength of a lens formed by two
spherical surfaces with radii R, and
Rr. It's more convenient to present
this formul a in a slightly different
form:

The radii of the lens can be both
positive (biconvex lens), both nega-
tive {biconcave), or they can have
opposite signs. (In our case of a
plano-convex lens, one of the radii
is infinitely large.) If the resulting
focal length turns out to be positive
(the focus of the lens is real)-that
is, the refracted beams indeed con-
verge at a point-the lens is called
converging (or positive). On the
other hand, if the {ocal length is
negative (the focus is imaginary)-
that is, the parallel rays diverge af-
ter refraction-the lens is ca11ed di-
verging (or negative).

There is simple relationship
known as the lens formula (it can be
deduced geometrically) that links
the distance s between the source
and the lens, the distance s'between
the lens and the image, and the fo-
ca1 length / of the lens:

Thus, alter re[raction by the con-
verging lens, the beam of parallel
rays converges at a point in the fo-
cal plane. This makes it easy to de-
termine the path of any beam after
refraction. We need only draw the
auxllrary ray parallel to it that passes
through the center of the lens (this
ray is not refracted) and find the
point of intersection of this ray with
the focal plane-the original ray
must pass through this same point

!=.,-l)fr*a).f ' '[R, Rr)
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Figure 3

after refraction (fig. 3). The possibil-
ity of sketching the path of an arbi-
trary ray helps greatly when we need
to form an image in a complicated
optical system consisting of a dozen
lenses. There is no need to obtain
intermediary images after each lens.

I should point out that with this
method o[ drawing we can use any
rays-even those at large angles to
the principal axis. If necessary we
can increase the diameter of the lens
so that the rays land on it. The point
is, this method of drawing corre-
sponds to a "paper lens"-that is,
not to a lens but to the lens formula.
For a real lens such a result corre-
sponds to " eorrect" rays only-that
is, to rays at small angles to the prin-
cipal axis-and this is exactly what
we need.

Let's use the method described to
solve a simple problem. Figure 4
shows a converging lens, its princi-
pal axis, and the path of one ray be-
fore and afterrefractionby the lens.

Figure 4

We need to find the position of the
focal plane. Let's draw the auxiliary
ray parallel to the incident ray such
that it passes through the center of
the lens-this ray doesn't refract,
but its point of intersection with the
refracted ray lies in the focal plane.
By the way/ we can "reverse" the
rays-taking the incident ray to be
the refracted one and the refracted
ray as the incident ray-and, as in

the first case, draw the focal plane
on the other side of the lens. How-
ever, both focal planes must be at
the same distance from the lens.

Now let's retum to "real" lenses.
Usually it's assumed that the point
source emits light evenly in all di-
rections. Wherever the eye is 1o-

cated, it receives the divergingbeam
of light and we perceive the iumi-
nous point. It's quite another matter
if we want to see the image of this
point in a lens. Let figure 5 show a

"!eal" lens of a cettain size. In this

--il
Figure 5

case the image of a point source is
formed by a beam of rays whose
marginal r^ys are limited by the di-
ameter of the iens. These marginal
rays also restrict the beam of rays
emerging from the lens. We can see
the image only if we are within the
solid angle formed by the rays that
passed through the point of intersec-
tion after passing through the lens.

It's interesting that there ire
points from which neither the
source nor its image can be ob-
served. For example/ say we were at
the point B: the source is covered by
the lens, and we're outside the solid
angle from which the image can be
seen. In order to expand the region
where the real image can be observed,
we can use a screen. If we place a
screen where the refracted rays
emerging from the lens intersect, the
rays reflected from the screen image
will travel in every direction.

This is how a movie is shown in
a theater. If we try to watch a movie
by looking into the objective of the
projector, or by using a mirror in-
stead of the screen, we'll see at best
only a small fragment of the overall
picture. Different parts of it wiil be
visible from different places-not
exactly what the director had in

t5
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curious relation (Bergmann's rule): as

we move from the poles to the equa-
tor, the size of warm-blooded animals
of the same or similar species de-
creases. Why? One of the important
factors determining the energy bal-
ance in an organism is heat loss, so

animals in polar regions "try" to de-
crease it by any means possible. Be-

cause mammals are warm-blooded
and their temperatures don't change,
they can't decrease heat losses by
lowering their body temperatures.
However, increasing the body's di-
mensions lets them decrease the
relative (that is, per unit mass) sur-
face that transfers heat. Since heat
transfer is higher in a cold climate,
a larger size is more important for
animals in polar regions, accounting
for Bergmann's rule.

. . . hummingbirds with a mass of
3-5 g are the smallest birds, and
their heat losses are particularly
high. To keep their body tempera-
ture constant at night, the hum-
mingbird must store up fat or glyco-
gen during the day. However, this
would be extremely inconvenient
for the bird, since it would increase
its body mass in the daytime and
lead to higher energy expenditures
when flying. In addition, the conver-
sion of the original carbohydrates to
stored, energy-rich substances also
requires energy. Also, the humming-
bird's method of feeding-hovering
over a flower-consumes quite a bit
of energy. Lr the course of evolution,
the hummingbird was faced with
two options: get bigger, or reduce
nocturnal heat losses. As a result,
their record (among birds) high body
temperature of 43-45"C is main-
tained only during the day. At night
it drops all the way down to
10-20'C. This explains why hum-
mingbirds live in the tropics-other-
wise they would experience large
heat losses around the clock and
couldn't have the normal metabo-
lism of warm-blooded animals. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59



PHYSICS
CONTEST

Lasel' leuilaliolt

"Suspend here and everywhere, eternal float of solution!"

-Walt 
Whitman, Leaves of Grass

by Arthur Eisenkraft and Larry D Kirkpatrick

OW CAN SOMEONE LEVI.
tate an object? Magicians do it
all the time. Can physicists do
it as well? The easiest tech-

nique is to attach a string to the ob-
ject and secure the string to the ceil-
ing. The weight of the object is bal-
anced by the tension in the string. If
the suspended object is a magnet,
then a second magnet can keep it in
place. A third technique is to shoot
pellets at the object so that the {orce
of the pellets balances the weight of
the object.

Let's assume that the object we
wish to suspend is a rectangular box
oriented so that its bottom is hori-
zontal.If we shoot pellets vertically
upward at the box, the pellets just
provide an average force on the box
that is equal to its weight. If the pel-
lets rebound from the box down-
ward with the same speed, then the
momentum change of each pellet is
given by

APP"11"I :2mvs'

where vo is the initial speed of the
pellets and m is the mass of each
pel1et. The impulse-momentum
theorem and Newton's third law tell
us that the beam of pellets exerts a
force on the box equal to

F66,.: RAppellet,

where R is the number of pellets
hitting the box each second.

We can get a feeling for the prob-
lem by solving it with some appro-
priate values. If the pellet gun shoots
5 pellets per second, and each of
these 2-g pellets hits the box with a
speed of 50 m/s and rebounds with
the same speed, what is the heaviest
box that can remain suspended?
Let's work it through:

poeret = mv = {2 10-3 kg)(50 m/s)' 
= 0.1 kg m/s,

Apperet = 0.2 kg m/s,

F: (5 pellets/s)(0.2 kg m/s) : 1 N.

Therefore, a 0.l-kg box can be sus-
pended with these high-speed pel-
lets.

A. The problem becomes more
challenging to solve if the pellets hit
the box at an angle. Assume that the
pellets are identical to those in the
example, but that they hit the box at
an angle of 53'from the vertical.
Once again, the pellets rebound at
the same speed (50 m/s) and at the
same angle. (Assume that the pellets
hit at random orientations about the
vertical so that there is no horizon-
tal component of the net force.)
What is the heaviest box that can
remain suspended?

What do we do if the object to be

suspended is so smal1 that its weight
is of the order of 10-10 newtons? If the
object is transparent, it can be levi-
tatedbya laserbeam! How to do this
was one of three theoretical problems
that were given to students who par-
ticipated in the XXfV International
Physics O\nnpiad, which was hosted
in the United States inluly L993.
This theoretical problem was created
by Charles Holbrow of Colgate Uni-
versity. We have adapteditfor Quan-
tum readers.r

By means of refraction a strong
laser beam can exert appreciable
forces on smal1 transparent objects.
To see that this is so, consider a
small glass triangular prism with an
apex angle A = n - 2a, abase o{
length 2h, andawidthw. Theprism
has an index of refraction n and a
mass density p.

Assume that the prism is placed
in a laser beam aimed horizontally
in the x-direction. (Throughout this
problem assume that the prism does
not rotate-that is, its apex aiways
points opposite to the direction of
the laser beam, its triangular faces

lThe entire XXIV International
Physics Olympiad Examination has
been published in Physics Today
(November 1993) in an article by
Anthony P. French, chair of the
examination committee.
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Figure 1

are parallel to the xy-plane, and its
base is parallel to the yz-plane, as
shown in figure 1.) Take the index of
refraction of the surrounding air to
be n",, = 1. Assume that the faces of
the prism are coated with an
antireflective coating so that no re-
flection occurs. The momentum of
a photon is given by p = Elc.

The laser beam has an intensity
that is uniform across its width in
the z-direction but falls off linearly
with the vertical distanceyfrom the
x-axis such that it has a maximum
value 1o at y = 0 and falls to zero aty
= 4h (fis.2).

Figure 2

B. Write equations from which
the angle 0 (see figure 3) may be de-
termined in terms of tx and n for the
case when the laserbeam strikes the
upper face of the prism.

C. Express, in terms of.Io,0, h, w,
and yo the x- and y-components of

the net force exerted on the prism by
the laser light when the apex of the
prism is displaced a distanceyo from
the x-axis, where h s yo ( 3ft. If we
want the prism to be suspended,
should the prism be placed above or
below the axis of the laser beam?

D. PIot graphs of the values of the
horizontal and vertical components
of force as functions of the vertical
displacement yo.

E. Suppose that the laser beam is
1 mm wide in thez-direction and 80
pm thick (in the y-direction). The
prism has the following characteris-
tics: cr = 30, h: 10 pm, n = 1.5, w :
1 mm, andp = 2.5 glcms.Howmany
watts of power would be required to
balance this prism against the pullof
gravity when the apex of the prism
is at a distance yo = 2h : 20 trtrr,?

This problem is certainly difficuit
enough. Olympiad students from4Z
countries took the problem one step
further and solved parts C, D, and E
for prism positions where y6 < hl
And some of them correctly com-
pleted this analysis within the allo-
cated time of 100 minutes!

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington YA222OI within a month
after receipt of this issue. The best
solutions will receive special certifi-
cates from Quantum.

Elednidly in lfie ah
In the November/December issue

of. Quantumwe asked our readers to
use Gauss's law to examine the elec-
tric field near the Earth's surface. We
will follow the solution provided at
the International Physics Olympiad
held in the United States in |uly
1993.

Part A of our problem was to find
the total charge and charge density
on the Earth's surface given the elec-
tric field near the surface. We begin
by assuming that we have a spheri-
ca1 gaussian surfac,e that is only
slightly above the Earth's surface.
Therefore, the radius of this surface
is R. Because the electric field points
radralLy, the total electric flux
through this surface is just the prod-
uct o{ the surface area of. the sphere
A and the electric field Eo. Gauss's

law tells us that

" n-Q--o^ - -r

where Qo is the total charge en-
closed by the surface and the minus
sign is included because the electric
field is directed into the sphere. Be-
cause

Q, = ooA,

where oo is the Earth's surface
charge density, we can solve for ei-
ther the charge density or the total
charge. Let's find the charge density:

06 = -€oEo

=[-r.ru.1o-I2 c2 
= )(t.oN)I N'm'/\ c)

= -1.33.10-e +,
fiao

where we have replaced the units
V/mbyN/C. Theminus signtells us
that the charge on the Earth is nega-
tive, which we also know from the
direction of the electric field. We can
now find the total charge on the
Earth:

Qo = o# = oo4nRz = -6.85 . 105 C.

Part B required our readers to cal-
culate the average net charge per cu-
bic meter of the atmosphere given the
electric field at a height of 100 m.
Many students at the International
Physics Olympiad solved this part of
the problem by considering the
gaussian surface to consist of two
concentric spheres, one with a ra-
dius R and the second with a radius
R + h with h = 100 m. However,
since R << h, the Earth's surface is
relatively fiat on the scale of the
problem. Therefore, it's simpler to

Figure 3
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consider a cylinder with a cross-sec-
tional area S and a height h sitting
just above the Earth's surface, as

shown in figure 4.
The walls of the cylinder do not

contribute to the electric {lux, be-
cause the electric field is parallel to
the walls. Therefore, Gauss's law
tells us

s(Eo-E,oo)=?=f,

where p is the average charge den-
sity inside the cylinder and the con-
tribution of Eroo to the flux is nega-
tive. Using the data in the problem,
this yields

p = ?(Eo - 
E oo) = 4.42' to-'' 

,rq.

Notice that the charge density is
positive.

To solve part C, we first note that
under the infiuence of the electric
field, the positive ions move down-
ward and the negative ions move

upward. Therefore, only the positive
ions can contribute to the cancella-
tion of the surface charge density.
The current per unit area i is grven by

i = n*ev = (1.44 . r}-t+lE,

where we have used the values and
relationship given in the statement
of the problem. Note that the con-
stant must have units of A/V.m.

Now, I is the rate of change of the
surface charge density ltolttl, andf,
= -oleofrom part A. Therefore,

4=-1.68.10-3o=- 1o.
ar 613

This is the same relationship that
we encounter in radioactive decay.
Therefore, its solution is an expo-
nential decrease of o with time:

o(t) = oos-tLc'

with t : 613 s. Putting oltl: ool2
gives

t:tin2=425s=7min.
o
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A lnalltolnalical handhoolr

urith lto IiUul'E$

A little book that gives endless "dolgics"
of reading pleasure to children of all ages

by Yuly Danilov

credulously open the book and
promptly lose yourself in a world of
curious characters struggling with
unmathematical problems: captai.n
F1int, boatswain Fedya, sad uncle
Borya, little baby Ktzya, the she-
goat Lucy, the scientist Innokenty of
world renown/ a criminal, the
criminal's grandma, a cannibal, kit-
tens, ducklings, an elephant, per-
sons from other planets/ an octopus/
Bryaka, Mryaka, Slyunik, Hryam-
zik, ar-.d many others. It's an en-
chanting blend of fairy tale, thriller,
adventure novel, and probiem book!
Most people catt't tear themselves
away from the Problem Book until
they've read it cover to sover.

The book has led to untold dra-
mas, and even tragedies. People are
Iate for work, a son argues with his
{ather about who will read the book
first, but while they struggle on, the
boy's mother picks up the Problem
Book and won't let go until she's fin-
ished. Hoary scholars greet each
other like the courtiers in Hans
Christian Andersen's fairy tale "The
Emperor and the Nightingale"2 and,

EGEND HAS IT THAT WHEN
the famous American ptzzle-
meister Sam Loyd invented
Taquin (or "15"1, it was greeted

with almost disastrous enthusiasm.
Farmers stopped farming, shopkeep-
ers forgot to open their shops in the
morning, government bureaucrats
stood all night long under street
lamps, trying in vain to solve a
puzzle that looked simple but was
really unsolvable: to make two
small squares numbered 14 and 15
change piaces without taking them
out of the frame.

Something like that happened,
and continues to happen, with those
lucky enough to get their hands on
a copy of a little book by the poet
Crigory Oster with the seemingly
innocent, but actually subtly ironic,
sarcastic, and even insidious title
Prcblem Book. Without paying at-
tention to the subtitle-"A Math-
ematical Handbook with No Fig-
ures," which to some extent should
warn of impending danger, 1 you

lThe subtitle-Henarnsruroe noco6ue
rro MareMarr{Ke-contains a rather
outrageous pun. Harnxgnrni means
"visual" (something you can easily
understand by looking at it); while
nenarnsm*trT-with the negative prefix
ue added-usually means "beloved',
(someone you can't see enough of)!

2For those who haven't reread
Andersen for a while, I'11 explain:
when three persons would meet,
instead of "Good day" the first would
say "Nigh-," the second "-tir:.-," arrd

interrupting one another, recite
their favorite problems from Oster's
little book. And it's easy to under-
stand why. How would youreactto
"problems" like these (the first ones
in the Problem Bookl?

1. In the tiny hold of a pirate ship
Captain Flint and boatswain Fedya
divided one and the same dividend
by different divisors: Captain Flint,
with a dark smirk, divided by 153,
and boatswain Fedya, with a pleas-
ant smile, divided by B. Boatswain
Fedya got a quotient of 612. What
quotient did Flint get?

2. The personal paffot of Captain
Flint learned I,567 swear words in
different langu ages: 27 | swear words
in English, 352 in French, andI27 in
Spanish. The rest of the swear words
the parrot got from the great and
powerful Russian language. How
many swear words did Captain
Flint's personal parrot get from the
Russian language?

3. Ten pirates divided among
themselves in equal shares L29 cap-
tured maidens, and the rest were put
in a boat and sent home to their par-
ents. How many captured maidens
were sent back to their parents?

the third "-gale"-ss great was their
admiration for the mechanical
nightingale presented to the emperor.
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4. To find a hidden treasure, you
need to start from the old oak and go
12 steps to the north, 5 steps to the
south, 4 more steps to the north, and
11 more steps to the south. Find
where the hidden treasure is.

5. The 14 best friends of Captain
Flint, after various pirating exploits,
were left with one leg each, and Cap-
tain Flint was left with two legs'.
How many legs, not including
wooden ones, could be counted un-
der the table when all t5 men sat
down to eat breakfast?

So, do you like them? So do I.
Many people have tried to imitate
Oster, but all have fa11en short. The
Problem Book even got an official
seal of approval: the Ministry of Edu-
cation of Russia (no joke!) recom-
mended the "mathematical hand-
book with no figures" as a textbook
for schools ! Apparently bureaucrats
in the Ministry of Education actu-
ally have a sense of humor and ap-
preciate a good joke.

And when, after they had read the
Problem Book over and over, from
cover to cover/ and had learned their
favorite problems by heart, charmed
readers turned at last to the foreword
(because a real reader reads a {ore-
word only after diving deep into the
book itself), they found that the au-
thor had no intention of misleading
them. He had honestly warned ev-
eryone, children and adults alike,
about his intentions. He even went
the extra mile and wrote two (or
possible three, depending on how
you count) forewords. Here they are.

tol'ewords

"Would you like to hear a sadis-
tic joke? One day a children's author
comes to his readers and says: 'Dear
children! I have written a new book
for you-a mathematical problem
book!'That's like getting a bowl of
oatmeal instead of a pretty cake on
your birthday. But to telI you the
truth, the book you're looking at
isn't exactly a problem book."

Here the text splits: one foreword
for kids, one foreword for grown-ups.

For gtown-ups: "Don't wotry,
don't worry, these are realproblems.
For second, third, and fourth grades,

as a matter of. fact. All of them are
solvable and help cement the mate-
rial studied in the classroom. But the
main aim of theProblem Bookisn't
to cement any material, and the
problems have nothing in common
with what is called 'recreational
mathematics.'I don't think these
problems will eiicit any professional
interest from math olympiad cham-
pions. These problems are for those
who don't like mathematics, who
find it tedious and enervating to
solve problems. Let them have their
doubts about itl"

For kids: "Dear kids, this book is
calledProblem Book on purpose. It's
so you can read it on your lap behind
your desk. And if your teacher gets
upset/ just say: 'I don't understand.
This book has been approved by the
Ministry of Education."'

Needless to say, the spoofing,
high spirits, and inventiveness dis-
piayed by Oster are enjoyed greatly
not only by those who don't like
math but also by olympiad champi-
ons. And their teachers, and the
teachers of their teachers-profes-
sors of mathematics-were filled
with the warmest feelings (and the
darkest envy) toward the author,
because they didn't come up with
the idea of creating such wonderful
problems.

Now I think it's about time I of-
fered those who haven't seen
Grigory Oster's Problem Book a
few more problems, taken almost
at random.

Problems
1. Mryaka drooses poosics. To

droose one poosic it takes Mryaka a
half-dolgic. How many dolgics will
Mryaka spend droosing 8 poosics?3

2. Mryaka and Bryaka droosed a
poosic. Mryaka took for herself 2
farics, and Bryaka took 1. How many
hroonechkas does Mryaka have, and
how many does Bryaka have?

3.Bryaka and Mryaka quarreled.
Mryaka kryacked Bryaka 7 times
with a marfoofochka on his whatever,
and Bryaka kryacked Mryaka 9 times

sThere are 3 farics in a poosic, 5
blyakas rnafaic, and 2 hroonichkas
in a blyaka. (You'Il need this for the
next problem.)

with the same marfoofochka on her
whatever. The question is, how many
times was the poor marfoofochka
grabbed by the tail and kryacked on
somebody's whatever?

4. Bryaka hid 3 poosics under a
coolyuk, shoved 5 poosics in a
mliiechka, and buried 12 poosics in
a gryazinuce. Mryaka went out to
look for Bryaka's poosics, found l7
of them, and droosed them into
hroonichkas. Where did Bryaka
most likely find his undroosed
poosics?

5. Mryaka and Bryaka came to a
meadow and started to jump.
Mryaka jumped on 7 lygs and
Bryaka iumped on 8. How many lygs
remained uncrushed if 39 lygs had
been sitting in the grass, softly sing-
ing their pensive song?

6. Mryal<a and Bryaka found a
chalochka that was 9 tyatoosics
1ong. Mryaka nibbied 4 tyatoosics
and gave the rest to Bryaka. How
long in dlinnics was the piece of
chalochka that Bryaka got? (Keep in
mind that there are 7 dlinnics in a
tyatoosic.)

7. Mryaka, Bryaka, Slyunik, and
Hryamzik walked and walked and
walked, covering 200 dlinnics in 5
dolgics. How many dolgics will it
take for them to cover 360 dlinnics
if they walk and walk and walk with
the same velocity?

S.ItHryarnzik is cailed a sl1.unik,
he starts to butt and doesn't stop un-
til he has butted the offender 5 times
with each horn. One day Bryaka
called Hryamzik that very thing, and
Hryamzik butted Bryaka 35 times.
How many horns does Hryamzik
have?

9. Every time they go out for a
walk, Mryaka puts on 3 foofiras,
while Bryaka puts on only 2. Both of
them always return home buck na-
ked. How many foofiras did Mryaka
and Bryaka lose in one summer i-f it's
known that Mryaka went for a walk
150 times and Bryaka 180 times this
summer?

I0. If Slyunik is teased, she begins
to kick and doesn't settle down un-
til she kicks the teaser 3 times with
each leg. One day Mryaka called
Slyunik ahryarrrzik, and Slyunik

44 l,tAY/Jtttrtr I os4



kicked Mryaka 27 times.How many
legs does Slyunik have?

11. One day two numbers-S and
3-came to a place where a lot of
different di{ferences were scattered
about, and they started iooking for
their own. Find the difference of
these numbers.

12. Once upon a time there lived
two numbers-S and 3. They had a
sack of arerage size that they took
with them wherever they went.
When they came across something
dangerous, they would quickly jump
into the sack, close it from inside,
and press against each other so
tightly that sometimes they became
one number. And then the sack
would contain their sum. Find the
sum of the numbers 5 and 3 in the
sack.

Editor's note: We have retained the
Russian flavor of the nonsense words in
these problems. A true English transla-
tion might turn "dlinniki" into
"longies," for instance, since [nltrrrufi
("dlinny") means long, as in "long dis-
tarrce.'t But what is the poor translator

to do with "dolgiki"? [onna7 ("dolgy")
also means long-but "tirrre" this time!
English readers can perhaps imagine a

similar work written by Lewis Carroll or
Ogden Nash, but we hope they experi-
ence some of the giddy silliness that
Russians feel when thev read Oster's
exuberant coinages.

,,HOW DO YOU FIGUREI"
CONTINUED FROM PAGE 19

P1 14
Rings on the move. Two identical
wire rings of radius rt each of mass
mt are located in a homogeneous
magnetic {ield B directed perpen-
dicular to the plane of the rings and
into the page (fig. 2). The rings make
electrical contact at the points of in-
tersectionA andC.What is the ve-
locity that each ring gains when
the magnetic field is switched off ?

The eiectrical resistance of each
ring is R and the angle o : m/3. Ne-
glect the self-inductance and mu-

Figure 2

tual inductance of the rings, the
dispiacements of the rings while
field is turned off, and ar,y fuic-
tional effects. (V. Mozhayev)

Pl 15
Image vs. reality. A point source of
light moves parallel to the principal
axis of a converging lens with focal
length F. Determine the distance of
the source from the lens when the
absolute value of the velocity of its
image is equal to that of the source.
The distance from the source to the
principal axis is H = F14.lA.Zllber-
man)

ANSWERS, H/NIS & SOLUTIONS
ON PAGE 54
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AT THE
BLACKBOARD II

Illine solulionslo olte pl'ohlem

And integer angles galore

by Constantine Knop

find IFGE: 180' - 50' - 80" = 400,
and zEFG:40" lsay, from triangle
BGF). This reveals another isosceles
triangle, FEG (FE : EGl.Finally, by
the SSS property, triangles EFD and
EGD are congruent/ and so

IEDB = Z.EDF= 
60o 

= 3go.
2

I want to point out one fact men-
tioned in this proof that will be re-
peatedly used in what follows: the
trianfl,eBCE is isosceles-that is, BE
= BC.

Well, this solution, borrowed

A

HE PROBLEM THAT I'M GO.
ing to discuss has appeared re-
peatedly in geometry problem
books. Although its statement

seems simple, it's very difficult to
solve. This might be why most of
the books give more or less the same
solution, and not even the best one,
in my view. But let's start with the
statement.

Problem. In an isosceles tiangle
ABC, AB : AC and the angle BAC
measures 20o. Points D and E are
taken on the sides AC and AB, re-
spectively, such that angle ECB is
50" and angle DBC is 60'. Find the
angle EDB.

Before you go on/ try to solve the
problem on your own. Give yourself
a few hours (or maybe minutes) to
think it over. You'llfind real pleasure
. . . if you manage to find the answer.

The first solution. Draw segment
DF parallel to BC with F on AB
(fig. 1), draw CF,label as G the in-
tersection of BD and CF, and draw
GE. Clearly the triangleBGC is isos-
celes (withBG = GCI and, therefore,
equilateral (since ZDBC : 60").
Then the triangle GDF is equilateral
as well. Further, we notice that
ZBEC : 180' _ ZBCE _ ZCBE= lBO'
- 50'- B0' = 50o (ICBE can be found
from the given isosceles triangle
ABCI, so IBEC : ZBCE, which
means that triangle BGEis also isos-
celes (BE : BC = BGI withEBG = 80'
-50'= 20" and/.EGB = B0'. Nowwe

from a problem book, uses two ad-
ditionally constructed points, and
five triangles are under consider-
ation. It couldn't be called too com-
plex or too long, really, and yet it
didn't seem very elegant or beauti-
ful to me. So when, after thinking
long and hard, and unsuccessfully, I
finally found another solution, I was
hrppy. The only thing that dis-
tressed me was that this solution
was analytical (trigonometric) rather
than geometric.

The second solution. Let x be the
measure of the unknown angIeEDB.
Then ZBED : 160' -x. By the Sine
Law, from triangle BED we find
BD : BE = sin (160" - x) : sin x, and
from triangleBCD, BD : BC: sin 80'
: sin 40o : 2 cos 40'(since IBDC =
180'- 50" - 80"1.

Using the aforementioned equal-
ity BE : BC, we get the equation

sin(150"-x)\ / =2cos40o.
sinx

Let's rework and solve it:

sin (20' + xl :2 cos 40o . sin x
= 2 cos (60'- 20') sin x;

sin 20' cos x + cos 20o sin x
= (cos 20' + rE sin 20') sin x;

sin 20o cos x : "uE sin 20o sin x;

1tanx=-zt;'!o
x = 30o.

ll
C
c)c
Oca
(d

f

!
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Trigonometry is a powerful and
universal tool. But does our problem
realiy have no other geometric solu-
tions?

Fortunately, such a solution does
exist-in fact, there are a number of
them. I created the next two in sev-
eral hours of leisure time.

The third solution. As with the
first solution, I'11 again try to prove
that DE is the bisector of zeOP
(fig. 1). To this end, I'11 create atri-
angle, one of whose angles will be
BDF, with its incenter at E. Draw
DH andBHparallelto CB andCD,
respectively, to obtain a parallelo-
gramBCDH lfi1.2l. Draw CG as we
did in figure I (to make an equilat-
eral triangle BCGI. Now we have

lll BH = CD lbv a property of the
parallelogram);

(21BE=BC=CG,
(31ZHBE = ZHBA = ZBAC =20", Figure 2

and zGCD: 80'- 500 : 200, so
ZHBE = IGCD.

Therefore, the triangles BEH and
CGD are congruent by the SAS
property; consequently, ZBHE =
ICDG:40 :Yz Z-BCD: YzlBHD.
It follows that HE bisects IBHD,
and at the same trme, BE bisects
ZHBD (since ZHBE : ZDBE :20"1.
Therefore, E is the center of the
incircle of triangle BDH, and DE is
the bisector of z.non.

This was a different solution, but
it's hardly simpler than the first one.
The next solution seems more at-
tractive to me.

The fourth solution. Mark point
K on AC such that IKBC = 20 , and
join it to B andE (see figure 3 cin the
next page).

Then . . . On second thought, why
don't you try to finish this proof
yourself?
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Figure 3

Exercise 1. Prove that the marked
segments in figure 3 are congruent
and use them to find the unknown
ang1e.

After I found these solutions, I
was obsessed with the idea of offer-
ing this problem to students at some
serious math competition. These
clever kids might discover some-
thing newl Unexpectedly, about a
year ago my dream came true: the
problem was proposed to the candi-
dates for Ukraine's International
Mathematics Olympiad team. And
my collection of solutions grew by
four new items. It's interesting that
three of these solutions involve an

auxiliary construction based on
drawing the bisector of the angle B
of the given triangle ABC. All three
solutions use the f.act that this line
is also the perpendicular bisector of
the segment CE (sinceBC = BEl,b*
other than that they are surprisingly
different.

The fifth solution (Maria Gel-
band). Let M be the reflection of E
across AC (fig.4). Then CE = CM
and zECtw = L.ECD = 60", so the
triangle CEM is equilateral, CM =
EM, and therefore M lies on the bi-
sector mentioned above. Now we
notice that the point D is the inter-
section of the perpendicular bisector
of EM and BD, the bisector of the
angle EBM o{ the triang,le BEM
(.EBD = 20o = y2 BMl.It follows that
D lies on the circumcircl e of BEM llf
D, is the intersection o{ the circum-
circle with the perpendicular bisec-
tor of EM, then ED, = DtM, and the
angles EBD , and MBD, inscribed in
this circle, are subtended by congru-
ent chords ED, and DMr; so these
angles are equal, which means that
Dr= Dl. Thus, the angles EDB and
EMB are inscribed in this circum-
circle and subtended by the same
chord BE. So IEDB : IEMB =
YILEMC = 30o, and we're done.

The sixth solution (Sergey Sapri-
kin). Let the bisector of IABC inter-
sect AC at T (fis,.5). Then ZETB =
ZBTC (why?). But IBTC = lB0" -
40" - B0'= 60o, so ZETD = 60o, and
7D is the bisector of the exterior
angle of triangle BET at 7. On the

other hand/ as we/ve already seen,
BD bisects angle EBT, so D is equi-
distant from the lines BA, BT, and
ET, and, therefore, ED is the exterior
bisector of triangle BET at E.

Note, by the way, that D is the
excenter (center of the escribed circle)
of this triangle. Now we tirrd ZBED
: IBET + ZTED = I.BET +lVzlBO' -
IBETI:90 +Yz ZBET = 130o, because
ZBET : ZBCT: B0'. Finally, from
triangle BED we get what we want:
IEDB = 180'- 130'- 20" = 30".

In the last part of this proof we've
actually proved the following prop-
erty of the excenter D of an arbitrary
triangleEBT that lies inside its angle
EBT: ZEDB = YIIETB (which is in-
dependent of specific values of the
angles).

The seventh solution (Alexey
Borodin). Consider the circumcenter
O of the triangle EDC. Since EO =
OC, the line BO is just the bisector
of the angle EBC used in the two
previous proofs.

Exercise 2. Finish this proof using
figure 5. (Hint:prove the congruence
of triangles BED ard BOD.I

Perhaps one of the most natural
ways to tackle our problem is to
notice that the measure of ZA of the
given triangle is 2O"-that is, one
third of 60'-and try to make use of
this observation. This idea is imple-
mented in the next solution.

The eighth solution (Alexander
Kornienko) ({ig.7l. Reflect the given
triangle aboutAB (to getABC,)and
AC (to get ACB1\. Then ZACrE :

Figure 4

40 ]i4AY/JlJlrr 1gg4
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Figure 7

ZACE = 30o, ar,d lACrB, : 60o
(since triangle ABrCr is equilat-
erul-ACr= AB1, ZCIAB. = 60"), so

CrE bisects ZACrB' which means
that CrE is the perpendicular bisec-
tor of ABr. On the other hand, AD :
BD (because ZABD: IBAD:20'1,
a:ad BD = BrD (by construction). So

D is equidistant {romA and B, and,
therefore, lies on line CE. Now the
angle EDB can be found from tri-
angle CrBD, in which IBC.D = B0

-30': 5O andZC,BD:80'+ 20o =
100'. We find that Z.EDB: 100' -
50"-80'=30".

(In fact, the idea underlying this
proofis to considerfigure 7 apartof
the regular 18-gon centered at A arrd
segments CrB, BC, andCBras three
consecutive sides. Segments CrD
and BD turn out to be parts of its
two diagonals-which has to be
proved, of course, but this enables us
to quickly find the unknown angle.)

I hope you liked these eight solu-
tions, full of many clever construc-
tions and useful properties of tri-
angles. "But where's the ninth one? "
you ask. Why, I've left it for you to
find!

I'11leave you with another prob-
lem about the same triangle (pro-
posed by a ninth-grader, Sergey
Yurin).

Exercise 3. In an isosceles triangle
ABC, AB : AC, an.d ZA :2}".Point
P is taken on the side AC such that
AP = BC. Find the ingle PBC. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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HAPPENINGS

A IalB ol one cily
It was the best of times . . .

Problems from the lnternational Mathematics
Tournament of Towns in Beloretsk, Russia

by Andy Liu

solving Workshop conducted in
Beloretsk, in the Bashkirian Repub-
lic of Russia, from August 1 to Au-
gust 9, 1993. The participants were
mostly from the former Soviet bloc,
but included representatives from
England, Austria, Canada, Cer-
many, and Colombia. They were
high school students invited on the
strength of their performances in the
International Mathematics Tourna-
ment of Towns.l

Each of the five problems is very

carefully constructed. It is divided
into many questions, leading the
solvers step-by-step to the main one.
It also raises other related questions
along the way. The problem we fea-
ture here is proposed by S. Loktev
and M. Viaiyj, based on a problem of
Prof. V. Arnold.

We begin our investigation by
studying some small integrated net-
works.

Question 1. Which of the inte-
grated networks in figure 3 are regu-
Iarl

It may be observed that each of
the irregular networks in figure 3
consists of two components. Is this
true in general? In other words, how
bad can an irregular network be?

Question 2. Is there an integrated
network that consists of three or
more components?

Some of the integrated networks
in figure 3 have, at the end of the
inner chains, circles without inte-
gration points. Clearly, the deletion
of such circles does not affect regu-
larity. From now on/ we shall as-
sume that they have been deleted. If
the inner chain consists only of
such circles/ it will be reduced to
the empty set. However, the inte-
grated network is stil1 considered to
be irregular, although the ring road
now constitutes the only compo-
nent.

HE ROAD NETWORK OF A
certain city consists of a con-
tinuous chain of circles. At the
point of tangency of two adja-

cent circles, the roads cross over as

shown in figure 1, which illustrates
the case with four circles.

A ring road is constructed around
the city, and is integrated with the
inner chain at various points. At

:XXX)
0

:XXX)
0

Figure 1

each "integration point," the ring
road is crossed over with the inner
chain as shown in figure 2, which il-
lustrates the case with two integra-
tion points.

Note that in figure 2 the integrated
network consists of two mutually
inaccessible components. We call an
integrated network regular if it con-
sists of only one component/ and ir-
regular otherwise. We wish to find a
necessary and sufficient condition {or
an integrated network to be regular.

This is the main question in one
of five problems posed in a Problem-

Figure 2

lFor more on the Tournament of
Towns, see the articles in the
Happenings department in the |anuary
1990 and November/December 1990
issues of Quantum.
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As we are interested only in the
regularity of integrated networks,
we can simplify them in many
ways. The following is also moti-
vated by observations of the simple
cases in figure 3.

Question 3.
Prove that nei-
ther of the fol-
lowing opera-
tions affect the
regularity of an
integrated net-
work: (a)adding
two integration
points to a circle
in the inner
chain; (b)remov-
ing two integra-
tion points from
a circle in the
inner chain.

A simple but
useful corollary
of question 3 is
the following. It
makes figures

3d, 3f, 3i, 31,3n, 3p, and 3q irrel-
evant.

Question 4. Prove that in an inte-
grated network, we can move all in-
tegration points in each circle of the
inner chain to the same side of the
ring road.

A more important corollary of
question 3 is that we may assume
that each circle of the inner chain
has either one integration point or
no integration points. We say that
such an integrated network is nor-
malized, and represent it by a se-
quence of 0's and 1's.

Question 5. Which of the follow-
ing normalized networks are regu-
lar? (al101 (b) 111 (c) 1001 (d) 1011
(e) 1111 (f) 10001 (g) 10011 (h) 10101
(i) 10111 (i) i1011 (k) 11111.

The next result allows us to re-
duce every normalized network to
one of three in figure 3-namely,3a,

3b, and 3k.
Question 6. From a binary se-

quence/ we delete all subsequences
of the forms 00 and 111. We also re-
place all subsequences of the form
101 by 0. Prove that the reduced
sequence represents a regular net-
work if and only if the original one
does.

It turns out that it is possible to
determine whether a binary se-
quence represents a regular network
or not without act.ually carrying out
the reduction process in cluestion 6.
Consider the sequence as blocks of
consecutive I's separated by singie
0's. For example, 111001101 con-
sists of four blocks of consecutive
1 's, with 3 , 0, 2 and 1 of them in the
respective blocks. The altemate sum
of these numbers is 3 - 0 + 2 - I = 4,
and the altemate sum of any binary
sequence can be defined in the same
way.

Question 7. Prove that a binary
sequence represents a regular net-
work if and only if its altemate sum
is not divisible by 3.

Amazingly, what we have gone
through so far constitutes only part
of the problem of Loktev-Vialyi. A
more general setting replaces the
city with a metropolis, where the
road network is not a chain but may
look like figure 4. There are also
other questions one can ask about
integrated networks.

The top prize winner for this prob-
lem at the workshop was Clemens
Heuberger, a graduating high school
student frorrr Graz, Austria. Other
winners were M. Alekhnovich and
M. Ostrovsky (joint effort), and I.
Nykonov. All three were high school
students from Moscow, Russia.

The principal organizer of the
workshop was Prof. Nikoiay Kon-
stantinov of the Independent Uni-
versity of Moscow, a recent winner
of the prestigious Erd6s Award from
the World Federation of National
Mathematics Competitions. The as-
sembly was honored by the pres-
ence of Prof. Nikolay Vasilyev,
chairman of the problem commit-
tee of the Tournament of Towns,
and Prof. A. A. Yegorov, an editor
of Kvant, the sister journal ofFigure 4
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Quantum. Both posed problems for
the workshop.2

Most of the group assembled at
Moscow on fuly 30, 1993, and took
a 35-hour train ride across European
Russia to Beloretsk. Five problems
were distributed on board to whet
the participants' appetites. We con-
clude with one of them.

Training Problem. (a)Let a andb
be integers and p a prime number.

2See "A Mathematical |oumey" by
A. Liu in Crux Mathematicorum,
lanuary 199a (pp. 1-5).

Figure 5

Prove that

a = b (mod pl * aP : bP (rnod pzl.

(blABCD is aparalleloeram (fig. 5).
The circumcircle of triangle BAD,
with center O, cuts the extensions of
BC, AC, DC, andAO atK, L, M, and
N, respectively. (1) Prove that N is
the circumcenter of triangle KCM.
(2) Express the length of.LC interms
of a: KL andb = LM. O

ANSWERS, HINTS & SOLUTIONS
IN THE NEXT /SSUE

Budapest Semestet's in lulatflematius

Initiated by Paul Erd5s, Llszl6
Lovlsz, and Vera T. S6s in 1984, the
Budapest Semesters in Mathematics
program offers a unique opportunity
to North American undergraduates
for a semester oryear of study abroad,
in one of the most advanced math-
ematical centers of the world.
Through this program, mathematics
and computer science majors in their
junior/senior years can take a v ariety
of courses in al1 areas of mathematics
under the tutelage of eminent Hun-
garian scholar-teachers, most of
whom have had years of teaching ex-
perience in North America. The
classes are small, all of the courses are
conducted in English, and the credits
are transferable to the students'home
institutions.

The classes are held on the Inter-
national College Campus of the
Technical University of Budapest,
which is near the historic city cen-
ter. The accommodations are excel-
lent, the living costs are modest, and
the tuition is most reasonable. The
fall semester usually begins during
the first week of September and ends
before Christmas, while the spring
semester starts in early February and
ends in late May. There is a brief
orientation program prior to the
start of semesters/ and one can also
take part in an optional two-week
language program prior to the begin-
ning of the regular program. Ar-

Bulletin Boal'd

rangements can be made for taking
the Putnam Examination in Buda-
pest and/or for taking the Graduate
Record Examination in Belgrade or
Vienna, both about four hours by
train from Budapest.

During the past ten years, hun-
dreds of North American students,
representing more than 120 univer-
sities, took advantage of Hungary's
long tradition of excellence in math-
ematical education and in creative
problem solving through this unique
program. Many of them have stayed
in close contact with one another
and the factltyf organizers of the
program.

To leam more about the Budapest
Semesters in Mathematics, please
contact its North American Direc-
tor, Professor Paul D. Humke, at
Saint Olaf College (telephone: 800
277-0434 or 507 545-3113; e-mail:
humke@stolaf.edu). You can also ob-
tain a copy of the application mate-
rials and a brochure describing the
program via anonymous ftp
(ftp.stolaf .edu). The registration
deadline for the fall semester is
April30; early applications are en-
couraged, but late ones are some-
times accepted. The size of each
class is usually around 30.

-George 
Berzsenyi

0uantum tts.lfialtt
Student readers of Quantum and

its sister magazine Kvant will go

head to head in a friendly math-
ematics competition in Moscow in
the summer of 1995. The event will
be sponsored by American Univer-
sity in Moscow and administered by
the two magazines. Participants will
be selected on the basis of answers
to several rounds of questions pub-
lished here and irKvant. According
to Edward Lozansky, Quantum's
international consultant, a team of
five US high school students will be
chosen for the one-week, a1l-expense-
paid trip to Moscow.

Watch this space in the months
ahead for further details.

Dul'acell Scholat'ship tltirlter$
Seventeen-year-old Tr acy Phillips

of Long Beach, New York, was the
first-place winner in the Duracell/
NSTA Scholarship Competition.
She invented Money Talks, an elec-
tronic device neatly built into awal-
1et that helps blind people distinguish
between different values of paper
money. After a bill is placed in the
wallet, the device "talks," giving the
denomination. How does it know
what to say? It uses an infrared light
emitter/detector that lets varying
amounts of light pass through the
printed patterns of a bili, identifying
key points that distinguish the bill's
denomination. The amount of light
passing through each point is

CONT/NUED ON PAGE 61
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Acl'oss

1 Group of legislators
5 Common electric

circuit element
10 WiId duck
14 OI aircrak
15 Decrease
16 Stare flirtatiously
17 Birds
18 Wooden pin
19 Hardy cabbage

20 Semiconductor
22 Rotating vector
24 Negative prefix
25 Type o{ salt
27 Hawthorne's home
30 1051

31 1958 Physiology
Nobelist Edward L.

3S Aunt in Spain
36 Tooth covering
39 "Crtizen _"
40 Intuitive letters
4l Crag
42 4.19 foules: abbr.
44 Orre who transmits:

abbr.
45 Landed
47 Eye's outer coat

49 

- 
douloureux

50 Elementary particle
52 Dawn goddess

53 Scandinavian
55 Sways
57 Understand
58 Am. inventor
61 Fluid acceleration

machine
65 Fashion designer

- 
Gernreich

66 Disulphuric(vi) acid
69 First garden

70 European capital
71 Scoop

72 Peruse
73 British gun
74 Deforming {orce
75 Plant fluids

Dout.

1 Sheep cries
2 

--Civita 
symbol

3 City on the Oka
4 Trigonometric

{unction
5 Radioactive gas

5 Black
7 Fundamental

physical truth

8 Devoured
9 Dog's cries

10 Plasma confining
device

ll 1949 Physiology
Nobelist Moniz,
Antonio _

12 Chemical prefix
13 Sly smile
21 Halley's 

-23 Highly radioactive
25 Graceful tree
26 Parts
27 Yaporizedwater
28 Corridor
29 

-lazdj. 
(blue rock)

30 French anthropolo-
gist _ Mauss

32 Flavor
33 Untied
34 U.S. dancer 

-Cunningham
37 I and 101, e.g.: abbr.
38 Roman spirit
43 Monochromatic

radiation source
46 Twisting deforma-

tion
48 

- 
Angeles

51 Hydrocarbon prefix
54 Magnetic flux units

55 Compounds
containing

-cH:c(oH)-
57 Ancient

Mesopotamian
region

58 God of love
59 Dirt
60 Unloaded engine

speed

51 River near Mexico
City

62 Concept
63 Lowest tide
64 TalLs
67 

--&-dah58 Dutch town

SOLUTION IN THE
NEXT ISSUE

SOLUTION TO THE
MARCH/APRIL PUZZLE

S T A R H A L A S G L A D
o R L E A P A C E L I M A
L A I D L E V E R U N I T
I C E S I R E o C T A N E

D E N S I T Y C L o E

o N E B R o w N I A N
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Ml11
(a) The equality can be proved by

induction. It's obviously true for n =
t: lr .2lll2 = 3tl2 -Z = L. Assuming
that it's already been proved {orn = k,
let's make sure it's true for n = k + 1.

Using the inductive assumption, we
get

t.2t 2.3!

-*"'
22)

, k(k + I)! , (ft + I)(k + 2)!- 2k - zk-'t

_(k+2)! , (k+t)(l<+z)l 
^-- T-2R zk+r

Q.+k+ 1)(l<+z)!
o

2k +t

(/< + 3)! 
^= -)

2k +I

(b) The sum equals (n + 3l! l3 - 5.
This can also be proved by induc-
tion, as in part (a), but we'll give a
somewhat modified argument with
"telescoping" sums. Note that any
term of the given sum can be writ-
ten as the difference

(k+ 3)! _ (k+2)! _ (k+2)!(l<+ 3- 3)

3ft 3L-1 3k

_ k(l< + 2)!

3J<

Writing out all these differences
for k = 1,2, ..., n and adding them
up we get, after canceling out
terms of opposite sign,

ANSWERS,
HINTS &

SOLUTIONS

(n+3)! .,

--o:-

3n

1 . 3! 2. 4l n(n+Z\r.

- 

r 

- 

r ... r ____l___________1

3323n

Similarly, for any positive integer d,
we have

(l<+ d)l _ (k + d-1)! _ /<(k+d-l)!
dk dk-r 6*

from which the following generali-
zation of statements (a) and (b) can
be derived:

r. dt, 2(r+ d)t,, n(n+ d-t)t
d - d, -"'- 

trn

_(n+ d)l )t
dn

(N. Vasilyev, V. Zhokha)

Ml12
Let I be the point of intersection

of the diagonal BD and the circle
KDQ ffig. 1). We have to prove that
I lies on the second circle KBP. For
the sake of definiteness, we'Il as-
sume that points K and Q are on dif-
ferent sides of BD; then K and P are

on the same side otBD, because the
segment PQ intersects BD. Then
the angles DQK and DLK are in-
scribed in the same circle, subtend
the same chord DK, and have their
vertices on the same side of the
chord, so ZDQK = ZDLK. On the
other hand, since DC ll AB, ZDQK
= ZKPB. Therefore,

ZKPB + ZKLB
= LDQK + (180'- IDLKI
:1800,

which means that points B, P, K, L
are concyclic-that is, I lies on the
ckcle KBP.

Ml13
The answerisyes.If thefust player

names any three different integers
whose sum is zero (say, l, -3, 21, then
regardless of the order chosen by the
second player, the resulting equation
a* + bx+ c : 0 will have a rootxl = 1

(because a. 12 + b . I + c = 0) and a
different second toot x2= cla * L

(since the product xlxz is always
eqtalto cf al.

If you liked this problem, here is
a much more elaborate extension.

Two players create an equation of
the form f + **+ xx+ * = 0. The
first one names a number, the sec-
ond writes it in place of any of the
asterisks; then the first player names
a second number and the other
player inserts it in place of any of the
two remaining asterisks; {inally, the
first player replaces the last asterisk
with some number. Can the first
player ensure that the resulting
equation has three distinct integer
roots?

M114
The specific problems (a) and (b)

have specific solutions-based, for
instance, on the Fractional Parts

54 l,tAY/JUirr rso4
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q = 8 (even)

Theorem from "Ones Up front in
Powers of T.,r,o" rn the November/
December 1993 issue oi Quantum.
But we'11 consider the general prob-
lem (c) right au-a1-. The solution be-
low involr.es some ideas from the
solution to M100 in thar same issue.

First let's introduce a number of
convenient notations and terms. Let
Q be the fixed initial position of the
given regular q-gon and O its center.
Denote by Q r the q-gon (with cen-
ter A) obtained from Q.under
translation b1- r'ector OA' . Two
points A and B are said to be con-
nected ii the polygon Qo can be
rolled into the polygon Qr. The se-
quence of its successive positions in
this series of roils will be called the
track AB. {Notice that if q is odd,
then an,v uacl< AB necessarily con-
sists of an odd number of polygons
(including Qo and Q6), because in
this case a single rolling yields a
polygon turned 180' with respect to

the initial one/ so only an even num-
ber of rollings restores the initial ori-
entation of the polygon-see figure
2.) The points connected to O will
be called attainable. Clearly any
two attainable points A arrd B are
connected to each other (we can
construct a track from A to O to Bl
conversely, any point B connected
to an attainable point A is attain-
able itself (there is a track from O
to A to Bl.

Next we prove two important
properties of attainable points.

lll If points A and B are attain-
able and C is obtained from B un-
der a rotation r through 360'/q
about A, then C is attainable.

Indeed, the rotation z takes Qo
into itself and any track AB (which
exists because A and B are con-
nected) into a trackAC (fig. 3). So C
is connected to an attainable point
A.

2l A A, B, and C are attainable,
then the translation t by vector AB
takes C into an attainable point D.

To prove this, it suffices to con-
struct a track AC and notice that our
translation takes Q, and Q" into Q,
and Qa, and the constructed track
into a track BD. So D is connected
to an attainable point B.

Of course, this statement is true
for the transiation by B?as well.

Now let's prove that for q27 arry
circle contains an attainable point
inside it. Let e be the radius of the
circle. Take any two attainable points
A andB and construct C as speci{ied
in statement ( 1 ) (fig. 41. Then BC I AB
= k = }sin {180'/q) < 2 sin 30' : 1.

Applying the same construction to
B and C instead of A andB, we'llget
a pair of attainable points C and D
such that CD = kBC = kzAB (fig. a).
Then we repeat the construction
with C and D, and so on, until we
get attainable points X and Y such
thatXY :k"AB < e and also the next
point Z in the sequence A, B, C, D,
..., X, ...(such that XZ : XY and
IZXY = 360lql. Repeatedly apply-
ing statement (2) to points X, Y, O
and X, Z, O, we see that any num-
ber of translations bv the vectors
xY- ,-xY' :Yi , or+VZ -.thatis,
a translation by vector nXY +

mXZ with any integer m and n-
takes O into an attainable point.
These points make up a grid of
rhombi with side length less than e
(fis. 5).

The center of the given circle falls
into one of the rhombi, and it's easy
to see that its distance from one of the
vertices of this rhombus is smaller
than e. So this vertex lies inside the
circle, whichproves the statement of
the problem f.or q> 7, because a1lthe
nodes of the grid are attainable.

For q = 5 we can take two attain-
able points A and B, rotate B about
A through 3. 36l- 1 

q = 216' to get an
attainable point P, and translate A
bv FT. This yields an attainable

Figure 5
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Figure 6

point C (fig. 61, which can alterna-
tively be constructed by rotating B
about A through 2L6 - 180' : 35' :
350110. So in this case we can ap-
ply the above argument for q: 10.

In the cases 4 = 3, q = 4, and c1 = $
the statement is obviously wrong
(the rolling produces a hexagonal,
square/ or triangular grid of centers/
respectively). Thus, the answer is 4
:5 or q>7.(Y. Dubrovsky)

Ml15
The given number is equal to

1,000,009 = 32 + 1,0002. Let's prove
the following general f.act: If an in-
teger m of the fprm 4k + 1 (with a
positive integer k) can be repre-
sented as the sum of two squares in
two or more di{ferent ways/ then m
is a composite number.

Suppose that

m=*+5P=u2+tfl. (1)

Since m is odd, we can assume that
x and u are odd, x ) u, and y and v
are even/ y <v, sox*u andv+y are
positive even numbers. Thenm can
be written as

(x+u ,-r\2m-l_+ It, 11

(v+v ,-.rr\2+t, _ 'l
\2 2)

t:2r'2,:2(x+ul /x-u\ lv+v\=[ , J.[, J.l', )
r:2,lv -y \Tl- |[2 )

=p2+rt+P+s2,

wherep = (x + ul 12, q = (x - ull2, and
so on. In this calculation we've used
the equality

x+u x-upq= 

-. -22

=v*Y.L-Y2;Ql
= IS,

whichisequivalenttox2 -u2 :* -f
and so to equation (1).

Let abe the greatest common di-
visor of p and r. Then p = ab, r = act
where b and c are relatively prime.
Substituting into equation (2) yields
abq: acs, or bq = cs. It follows that
4 is divisible by c-thatis, q = s,fl,

and so bcd = cs, or s = bd. Now we
have

m: azbz + c2& + a2c2 + b2&
= (o' * d2l(b2 + czl.

In our particular case this reasoning
results in the factorization

1,000,009 = (172 +221(72 + 5B2l

= 293 . 3,4t3.

A stronger statement can be
proved: anumber m=4k +lis
prime if and only if it's uniqueiy rep-
resentable as the sum of two
squares. For details, see the article
by V. Tikhomirov in this issue. (N.
Vasilyev, D. Fomin)

Physics

Pl 11
Let the spring consist of N turns

(by the statement of the problem, N
>> 1). Consider first the compression
of the spring due to its own weight
in the absence of water. Turn num-
ber I (counting from above) must
support the upper (i - 1) turns. The
change in its length is determined by
the weight of these tums Mg(l - 1 )/N,
whereMis the spring's mass, andby
the spring constant for a single turn,
which is N times that for the entire
spring k. Therefore,

^, _ twg(i -t) I

'NNk

The total shortening of the spring
is equal to the sum of the changes in
each turn's length:

N

I(l-1)=N(N-D=M.
i=r

Therefore, we get Mglk = L.
Let's now consider the case with

the water at a heightI, f2.If there are
n turns underwater, the other (N-n)
will be above the surface. Let's find
the value of n/N. We begin by find-
ing the load for each immersed
winding and the change in its
length. We then sum the changes
and equate the result to LnlN - Ll2
(this is the difference between the
lengths of n tums in the relaxed and
compressed states|.

The weight of the immersed
windings is reduced due to the
buoancy of the water. The effective
weight of each turn is

Ms(p-po) 
-a"Ms

PN N,
where o, = (p - po)/p. So the force com-
pressing the (i + l)th tum (counting
down from the surface) is

" _ Ms(^/- n) , atvtgiti-l/Trr

and the sum of the changes in the
lengths of the immersed windings
is

+ 4 Mgn(N-n),attrtgnz

?*kN- kN, - zkN,

=L(L-!\.tN 2)

Settingn/N = x and usingMg/k =
I, we obtain the equation

,i\Ax2 Ix(I-x)* Z =r-r,

N
A/.=t n1 =Ms =LL,--t 2k z',

l-L

where
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from which we get x = ll1T4.
Now the entire length of the

spring can easily be obtained by
summing the length of the im-
mersed part Llz and that of the de-
formed (N - n) windings above the
surface:

L*=L+Lfi-r1-r(1-x)22"2

=/r-4)\ 2l
or

r* _ L(3-2a)
z(z- a)

P1 12
When a point charge is placed

rlear a conductingplane, charges are
induced in the plane that attract the
particle. Their effect i.s equivalent to
the action of an image charge -Q
located at the same distance on the
other side of the plane (see figure 7).
The resultingforce is obtained from
Coulomb's law:

- k@ kQ2
t-=-!;.=-' (2*)' 4x2'

Because the force of gravity also
depends on the inverse square of the
separation, let's replace the electri-
cal force with an equivalent gravi-
tational force. We can do this by as-
suming that we have a mass M at O
with

M-"' -
u1f1 4mC

Now we can describe the trajec-
tory of the particle using Kepler's
iaws. It can be considered a yety
elongated ellipse with semimajor
axis a = Ll2 andsemiminor axis b <<

a (the foci are at O and the initial po-
sition of our point particle).

Because the period of an elliptical
orbit with semimajor axis r is the
same as that for a circular orbit of
radius r, let's find the period of rota-
tion ? of the particle about the mass
M:

4n2 GmM771-* f = 

-

Ti 12 l

^11l^ -'zn"i-" vGM

It's clear that the time necess ary for
the particle to reach the plane is
equal to the half the rotation period:

_"1 E4-alzl'
P1 13

In a closed vessel the number of
molecules striking the surface of the
ice per unit time is equal to the
number of molecules sublimating
from the surface (dynamic equilib-
rium). These are the conditions un-
der which the saturated vapor pres-
sure P, is measured. Both fluxes of
mass are equal to psn Sf 6, where p.
: P,/RTls the saturated vapor den-
sity, S is the surface area of the ice,
p is the molecular mass of water,
amd v = .flRfff. is the mean mo-
lecular velocity. The factor ll5 (or
strictly speaking, 1/4) accounts for
the choice of a particular direction
among six possible directions. If the
vessel is open, the flow of evaporat-
ing molecules remains the same, but
there is no return traflici now the
pressure is P"12.

Let's estimate the time necessary
for complete evaporation by assum-
ing an initial mass of ice m - 0.2 kg
and a cross-sectional area for the glass
S - 30 cm2 and using p = 18 g/moI:

m6m
!o 7S PS
(1 I S S

= 150 s.

In reality, however, the evaporation
requires more time; thus, we have
obtained a lower bound for the
evaporation time.

As the ice evaporates the accelera-
tion of the astronaut is a = P"S|LM,
and she will cover a distance d =
a'c2f2 = 90 m. Since this is compa-
rable to the distance given in the
problem, the rescue will work!

Recalling the approximate nature
of our computations/ we can say
that the astronaut will return to her
spaceship in a time t = 100 s.

P1 14
When the extemal magnetic field

is switched off, the value of the mag-
netic field drops from the initial value
B to zero. The changing magnetic
field induces an electric current in
each ring. Let's determine this cur-
rent at time t after the magnetic field
is tumed off.

Consider the closed loop AfCbA,
which coincides with the left ring
(fig. 8). According to Lenz's law, the
current flows clockwise. Let the
current in the AfC section be 1r(r),
and let the current in the CbA sec-
tion belr(t). The electromotive force
(emf) induced in this loop is

@ _ , tB(t)
6ind = -n*i.

According to Ohm's law, for a
closed circuit we have

Eind = rrft) *Urc+ rrft)filoo,

or, taking into account that the

1.- 1rf 
- 

'l 
-22

kQ2

Figure B
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lengths of the arcs 1o," and 1"oo are
ru13 and Sruf 3, respeitively, we ob-
tain

t(r)+s/2(r) =-ry ^BARLt

In the same way we write down
Ohm's law for the loop AfCdA:

,, \ (zn-zJi)rz rc1t)
1, (r) = 2R Lt

Inserting this value of 1,(t) into the
equation above gives us

r /+\_ (ton+aJa)2'z ar(1;
tc\L ) - 10R Ar

Each element of a ring A1 carrying
electric curent {t) experiences the
Amperean force AF = IltlLl . B(tl,
which is directed along the radius of
the ring. Due to the bilateral sym-
metry of these forces relative to the
horizontal axis connecting the cen-
ters of the rings, the resulting force
acting vertically on each of the rings
is zero. The absence of symmetry of
the forces relative to the vertical
axis passing through the center of
the left ring (1r(tl * tr(tll results in a
horizontal force. This force is equal
to the difference between the {orces
acting on the arc AfC and the sym-
metrical arc on the opposite side of
the ring:

F = Fr- r, = Ir(tllocB(tl -
Ir(tllo"B(tl,

where 1r" is the chord subtending
thearcAfC (1o":2r sino/2 =r). Thp
final expression for the force F is

F = -9,Fsrs r(r)4I(r).
5R Lt

The action of this force duringa small
time period t results in a change in
the ring's momentum:

mLv = Ft = -9{3-" B(r)ar(r)
5R

= -'f:' o[s'(,)],
1OR L

and so the ring will gain a velocity

9"l5rB
Y =:-'-fiz.

1OmR

Pl 15
Denoting the distance between

the source and the lens as d and the
distance between the image and the
lens as /, we write the lens formula
as follows:

In a small time period lt the dis-
tance between the source and the
lens decreases byAd =voLt, and the
distance between the lens and the
image increases by Lf : u cos cx,At.

Then (see figure 9)

1

d-voLt

or

/+ucoscr.At

ucoscr.At

111
df F

11
_-a-,

df

YE
d2

The image's velocityu equals that of
the source vo when f | = drJcosct'.
Taking into account that cos o =
FIJP + rI' , we obtain

111
-T-------:_-,dt d,Jcoso F

d,=Fj**l={,
\ ^/coso 7 1

=p(r*@)I z)

r*41
pz

Bnaintea$er$

8111
Six days. The

off must be 48 +
number of days
L2=4timesthe

number of days worked. So the
number of days worked is 1/5 of
30, the total number of days.

81 12
Since every two statements con-

tradict each other, only one of them
can be true. All of them can't be
wrong, because in this case the hun-
dredth one would be true. So there
are exactly one true and 99 wrong
statements. This means that the
only true statement is the ninety-
ninth.

81 13
Hot water puts out a fire quicker

than cold water, because it evapo-
rates more rapidly and the vapor
impedes the access of air feeding the
flames.

81 14
The answer is 384. Suppose we

start to lace the shoe by passing
the lace through the top right hole.
Then it may go out through any
other hole except the top left
one-that is, in eight ways. Next
we have to pass the lace through
the "parallel" hole on the other
side and let it out through any of.

the six holes. This makes B . 6
ways. Proceeding in the same
manner/ we'll get four choices on
the next step, then two choices,
and, finally, we'll pass the lace
through the top left hole. Al1in all
we have 8 - 6 . 4 . 2 : S94ways of
lacing the shoe.

81 15
See figure 10: pointA is the mid-

point of the arc; the two pieces can
be made to coincide by rotation
about O through 45'.

5I illY/Jtlirr r ss4
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lhleido$coIE
1. The molecular force is propor-

tional not to the muscle's mass but
to its cross-sectional area. So if all
the linear dimensions of an animal
are decreased by a faetor of n, its
mass will be reduced by a factor of
n3, and the force will decrease only
by a factor of n2. Thus, the relative
force (that is, the force per unit
mass) increases as the animal's size
decreases. Of course, the geometry is
not precisely the same in different
animals, but the influence of the
dimensional factors far outweighs
the role of specific features, which
allows us to establish a clear rela-
tionship between the relative {orce
and the animal's size.

2. The force produced by a muscle
is proportional to its cross-sectional
area (see the previous problem), and
the distance the muscle contracts is
proportional to its initial length.
Because the mechanical energy out-
put of a single contraction is the
product of force and distance, it is
proportional to the cube of the
organism's linear size (and corre-
spondingiy to its mass). The same
amount of muscular energy per unit
mass corresponds to the same poten-
tial energy at the top of the jump.
Thus, geometrically similar animals
should be able to jump to the same
height.

3. If the linear dimensions of an
animal are increased by a factor of n,
its body mass increases by a factor of
n3. Suppose that, when this happens,
the thickness of a bone is increased
by a lactor of m. To the extent that
we assume (in accordance with ac-
tual conditions) that the composi-
tion of the bone doesn't change, the
pressure on the bony tissue (per unit
cross section) must be preserved-
thatis, n3 lmz = t.Inotherwords,m
is proportional to nl s. As one can
see from the figure, Galileo in-
creased the linear dimensions by a

factor of 3. So the animal's mass in-
creased by a factor of 33 : 27. It
seems that for the sake of clarity
Galileo increased the bone's thick-
ness in the figure by a factor oI27 l3

= 9 (rather than 31's = 5.21. In
Galileo's defense, it should be
pointed out that all the calculations
in the text of his book are coffect.

4. As in the previous problem, we
assume that the pressure exerted on
the foot's cross section in both a

human and in a "monoped" is the
same. The body density for all mam-
mals is about 1 g/cm3. The mass of
the foot itself can be neglected in
such approximations. In humans
this pressure is about

700 N
= 1 N/cm2

2.3.r4.(ts cm)z f +

(two feet!). Let I retem be z meters.
Then the weight of the monoped
willbe

B.l4z3.1,ooo. 
9'8 

= 4,ooor3 N
B

(estimate the contribution of the
foot's mass on your own), and the
cross-sectional area of the foot is

,10.(o'22'loo)t =goz2 c,. .

4

This gives us

502: l,
z = 0.02.

It should be noted, however, that
comparing the monoped to an ante-
lope instead of a human would dras-
ticaLly change the result.

5. Of course,30401bs of food per
day is an absolutely fantastic figure
both for a three-year-old child and
for our readers. (Don't forget that
water requirements weren't in-
cluded in our estimates.) Little chil-
dren eat gteatet amounts of food
because of their faster metabolisms
and perhaps even more because of
the higher heat losses typical of
smaller mammals. Another in-
stance of this factor can be seen in
problem 9.

6. The weight of an insect (that is,
the force of gravity acting upon it) is
proportional to n3, and the pressure
on the air created by each stroke of
its wing is proportional to the wing's
area lnzl and to the muscular torce

{another factor of nzl. Although a

decrease in size makes an animal
relatively stronger (see problem I ), it
doesn't help with "rowing" types of
movement. In order to hang in the
air, a smaller animal has to increase
the number of strokes. The pitch of
the sound emitted by the wings in-
creases correspondingly. As for the
flies that bothered Gulliver, their
flight should be more or less silent
(to the human ear), just as the flight
of birds is relatively quiet. The
sounds that we hear when birds fly
are produced by other types of wing
movement.

There is an even more energy-
consuming mode of flight based
upon the rotation of a propeller. In
your leisure time try to estimate
how much jam Karlsson would have
to eat so as not to lose weight in
flight. {Karlsson is a character in the
stories of A. Lindgren.)

7. Warm-blooded animals expend
a significant amount of energy keep-
ing their temperature constant. This
is a particularly challenging problem
for a small animal with a relatively
large surface atea. Its surface area is
inversely proportional to the square
of its linear dimensions, while its
mass is inversely proportional to the
cube of its linear dimensions. In or-
der to achieve equilibrium between
heat production and heat loss, small
animals maintain higher body tem-
peratures.

8. When we walk, our center of
mass-which is located in the lower
part of the body, just below the na-
vel-moves along the arc of. a circle
whose radius is approximately
equal to the length of our legs. It's
known that a body moving with
velocity v along a circle of radius I
has an acceleration * I 1 directed to-
ward the center of the circle. Two
forces act on a person when walk-
ing: the force of gravity and the sup-
porting force. The resultant of these
forces-the centripetal force-
clearly cannot be more than the
force o{ gravity lmtPil does not ex-
ceedmg, wherem is the mass of the
body). So the maximum walking
velocity equals u = nE|, which for a
human comes to about 3 m/s (a
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reasonable value). Children have
shorter legs, so th-ey have to run to
keep up with their parents, but their
running is actually a succession of
jumps and not rotations of the body
about the axis of the leg.

9. As the problem deals with
desert animals, we can assume that
water loss is caused by evaporation
from the body's surface. Since the
areaof. this surface is proportional to
the square of the animal's linear di-
mensions (nzl and the amount of
stored water is proportional to the
body's volume lnsl,Iaryer animals
can survive longer after drinking
their fill of water. And yet, desert
animals vary widely in size. How do
we explain this? It turns out that our
reasoning is applicable to animals
that are closely related taxonomi-
cally (for instance, ierboa and
camel), for which a decrease in size
is not accompanied by a reduction in
the water permeability their tissues.
It makes no sense to compare
beetles, lizards, and mice according
to the similarity principle because
their tissues are fundamentally dif-
ferent.

Toy Slnre
l.If r,1, u, d are the numbers of

the R, L, U, D moves/ respectively,
required to get from (0, Ol to (m, nl,
thenz - I = m, u - d = n, andthe to-
tal number of moves equals t + I +

u+d=m+n+2(1+dl.
2. Required short sequences to

reach a colored square lm, nl fuorr,
(0, 0) marked face up are, for in-
stance: UR^D 6or m > l, n = O;

URfu-LURDR form t2,n:1; simi-
lar sequences for (0, n) and (l,nl; and
RULURD f.or (m, n) = (1, 1).

3. The three possible half-turns
are given by RIJLLDR, (JRLDLL,

Anozt.
4. H(a-|, b) generates the half-turn

huof the central cube, and H(a,b-rl
generates hr; both operations can be
reduced to 38 moves.

5. Consider the chessboard color-
ing of the squares. If the vacancy
comes back to its initial place, then
the number of cubes that moved

a

\/
b

7l

*,,....,1l.ll:*

i),:r .,r:1.,C,

/

d
\

L

Figure 11

from the black squares to the white
squares equals the number of cubes
that changed from white to black. In
particular, the total number of cubes
that changed their underlying color
is always even. So the answer to (a)

is no (because a 90o turn is possible
only with a change of color). The
answer to (b) is no/ too/ because ali
corner squares in a 3 x 3 board are
the same color, and so we have to
make only two like color changes
without any opposite changes.

We'll use the shortened notations
a, b, c, d for the four-roll cyclic
moves about points A, B, C, D rn fig-
ure 11 (as we did in the article).
When verifying the number of single
rolls, take cancellations into ac-
count.

6. (dcbalsdc.
7. azbzc2dcd2c-rd-t.
B. ab-t ad-r cd-r ab-| ad-r c2 ab-I -

c-Ib-Ldcbada2d.
9. a-r dcbz d-l a-2 d-I czb d-r c-l d-r _

a-1c2.
10. bz a-| (b-r alsb aa D ( the vacancy

is shifted; the direction of rotation
here is the opposite of that in the
previous solution).

Ll. a-rbaz.

[Ull. Fenmat-tulel'
l.If a2 + b2 is an odd prime, then

one of the scluares-say, a2-is even.
Therefore, a = 2r7, and the other one
is odd, so b = 2k + L.Tt,en a2 + b2 :
4nz + 4k2 + 4k + l:4m + 1, where
rrl=r72+k2+k.

2.For anyinteger a, l<aap-1,
consider the products I . a,2 . a, ...,
(p - lla. The remainders of all these
products when divided by p are all
different (because If ka : la lmod pl,

k > 1, then (k - lla is divisible by p,
which is impossible since both fac-
tors k - 1 > 0 arrd a areless than p,
andp is prime). None of these prod-
ucts is divisible byp, so the remain-
ders take each of the values I,2, ...,
p - I once. So for the given value of
a thereis a unique b, I < b < p - l,
such that ab = I (mod p). For a = 1

and a = p - | the corresponding
number b is equal to a. For any
other a (2 < a < p - 2l1, b * a,because
a2 = 1 (mod p) impiies that a2 - | =
(a - ll(a+ 1) is divisible by b only for
a - | :0 or a + I =p. This proves the
first statement. The proof of
Wilson's lemma is now completed
iust as was done for p : 13 in the
article:

(p-z)t=2.3.....(p-z)

=[, s4) ['-' (p-z\1
\ 2 ) 12 ')

=t(modp),

afi(p-Lll:p - 1=-1 (modp).

tlline $oluliolt$
i. In figure 3 in the article, the

angles of triangle CBK are lC = 80
(by the condition), ZB = 20" (by con-
struction), zK : l9o - 80'- 20' =
B0o, so BC : BK. We saw in the first
solution that BC = BE, so BE = BKj
and, since IKBE = B0'- 20" = 60",
the triangle BEK is equilateral. Fur-
ther, ZKBD = 50' - 20o = 40o =
ZBDK (the last equality was proved
in the third solution), so KD : KB:
KE. To finish the solution, we can
notice, for instance, that K is the
center of the circle that passes
through B, E, and D; it follows that
ZEDB:I/IZEKB = 50o +2.

2. In figure 6 in the article, ZEOD
= 2IECD: 50o, because ZEOD is a
central angle in the circumcircle of
triangle CED, and IECD is an in-
scribed angle subtended by the same
chord ED. We deduce that DEO is
an equilateral triangle andED = DO.
Thus, D lies on the perpendicular
bisector p of the segment EOi also,
we know that BD bisects the angle

80 il[Y/JUrr roo4
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EBO.If p arLd BD were different
lines, we could apply the argument
from the fifth solution to show that
D lies on the arc EO of the circum-
circle of triangle BEO. Bttt in this
case we'd have IEDO + ZEBO =

180o, whereas in fact this sum
equals 50o + 40o = 100'. So BD is the
perpendicular bisector of E O, which
means that triangles BDE andBD'O
are congruent, and IEDB = zBDo
=50.-2:30'.

3. Apply the construction with
two reflections from the eighth so-
lution (fig. 12) (compare figure 7 in
the article). Then AP = CB1, AB :

BC

Figure 12

C,8,. Using the fact that points C,
B, C, and B, all lie on a circle with
center A and applying the Inscribed
Angle Theorem, we get lcptc =

V2ZCIC = IBAC (and, therefore,
LCPp is congruentto LBAP), ard
tBpp = V2ZBtAC : 10'. By the
congruence of the triangles men-
tioned above, ZABP = lB \C rC =

10o, so ZPBC = 80'- 10' = 70'. lV.
Dubrovsky)

lb! Iltaffi ttot hotlt it 0oes!

The author of "The Good O1d
Pythagorean Theorem" in the
|anuary,febn:an-issue is V. N.
Berezin inor ''Be11'ozit\," as
printed). Likerr-ise, the author of
"Flexible in the Face of Adver-
sity" in the September,,October
1990 issue is A. P. Veselov (not
"Vesyolov"). Our apologies ior
mangling these names.
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measured by converting light energy
to electrical energy. The signals are
sent to a digital logic circuit, which
matches codes and identifies the
bill. The logic circuit activates a
voice chip. The device is poweredby
four AAA batteries.

Phillips said she wanted to com-
bine her interest in electronics with
her desire to do something for blind
people. (Tracy's brother is blind.) For
her scientific skill, Phillips will re-
ceive a $20,000 savings bond from
Duracell.

Second-place winners were Chris
Hyun Cho, 15, of East Setauket,
New York; Seth Frankel, 17, of
Demarest, New |ersey; Eric
Magnuson, 18, of Uniontown, Ohio;
David Monson, 15, of Boise, Idaho;
and Robbie Lynn Slaughterbeck, 17,
of OklahomaCity, Oklahoma. Each
of these student inventors received
a $10,000 savings bond.

Cho was inspired to create the
Automated Page-Replacing Con-
trivance because/ as a member of his
school's chamber orchestra, he
found quick page turning to be a
problem. Frankel created Safe-T-
Eyes, a device that protects a power
tool operator from injury by requir-
ing a face shield to be in place before
the tool can be turned on. Magnuson
developed the Safe Distance Brake
System, which shows, in different
colors, the amount of pressure a
driver is applying to the brakes.
Monson invented the RF Intercon-
nectable Smoke Alarm, a wireless
unit that causes every smoke alarm

in a house to sound when only one
is activated by smoke or fumes.
Slaughterbeck devised the Rx-
Locker, a timed, internally locked
pill dispenser designed to prevent
overdoses. (He was inspired by the
accidental overdose of a family
friend.)

The first- and second-place win-
ners, their parents, and their science
teachers were guests of Duracell at
an awards ceremony in Anaheim,
California, on March 30. The young
inventors demonstrated their de-
vices for a luncheon audience and
exhibited them for thousands of sci-
ence teachers at the 42nd annual
convention of the National Science
Teachers Association (NSTA).

Ten students were also awarded
$1,000 third-place savings bonds; 25
students won $200 fourth-place
bonds; and 58 finalists were selected
for $100 bonds.

,To enter the Duracell/NSTA
Scholarship Competition, students
in grades 9 through 12 design and
build a device that is educational,
useful, or entertaining and is pow-
ered by one or more Duracell@ bat-
teries. Entries are judged on energy
efficiency, practicality, and inven-
tiveness. Every student who enters
receives a gift from Duracell and a
certificate of participation from
NSTA. Proposals for entries are due
at NSTA each )anuary. For more in-
formation, write to Eric Crossley,
NSTA, 1840 Wilson Blvd., Arlington
VA2220l-3000, or phone 703 243-
7100.

AAPT

Burleigh Instruments hrc.
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NSTA Special Publications

Sharp

Triton Pictures

45

31

49

L3, 14

Cover 4

4t

0r0lJAilrl|lll/ilrsr{tRs, lililTs & s0LllIt0ils

lndex ol Aduel'tisel's



TOY STORE

The nollinU cuhes

Can you roll your way into the record books?

HIS ARTICLE COMPLETES
(for the time being) the discus-
sion of different kinds of rolling-
block puzzles in the September/

October and November/December
issues. In most of the puzzles we
considered earlier you had to ro11

pyramid-shaped blocks. This time
we'll be rolling cubes around.

Iumlleweed retli$ited
We'll begin with one of the sim-

plest problems posed in connection
with the "Tumbleweed" game in
the November/December issue.
Slightly generalized, it reads as fol-
lows.

Consider a unit-square grid in the
first quadrant (fig. 1) and a unit cube
sitting on the corner square of this
grid. Suppose five faces of the cube
are white, and one {ace-the top
one-is colored (we'11 call this the
marked face). We have to ro11 the
cube over to a given square of the

Figure 1

02

by Vladimir Dubrovsky

grid in such a way that the marked
tace appears on the top again, and
figure out the possible number of
moves (rolls) this procedure will
take.

Well, this problem isn't all that
difficult. The answer is given in fig-
ure 1: if we number the horizontal
and vertical lines of the grid 0,1,2,
..., thus linking a pafu lm, nl with
each grid square (m and n are the
numbers of the column and the
row/ respectively, that contain
this square), then the minimal
number N of rolls sufficient to
reach the square l-, ,l marked
face up is equal to m + n for the
white squares/ m + n + 2 for the blue
ones, andm + n + 4 = 5 torthe single
yellow square (1, l).

To see that this is indeed true, we
note first that after four rolls in the
same direction the cube restores its
initial orientation (it makes a full
turn). Therefore, for (-, ,l : (41,01or

10, 411we have N = rri + 17 = 41. Obvi-
ously it's impossible to get to these
squares in a smaller number of
moves/ and it's just as obvious that
we can't get to any square (m, nl in
Iessthanm+nmoves.

Now, imagine you roll the cube
from the initial position once to the
right. Then the marked face appears
on the right side and will stay on
this side after arry number of subse-
quent rolls in the vertical direction.
In particular, if you make only one
"ttp" roll and then continue roiling
to the right, the cube will assume
the initial orientation after three
additional right moves, as well as

after 3 + 4k moves for arly k. Thus,
we can ro11 the cube to the square

l-, rl : {41, Ll in m + n : 4l + |
moyes. Denoting the right, left, up,
and down moves as R, L, U, and D,
we can write this sequence of rolls
as R(JRal- I (Rk denotesJ< successive
R moves).

Similarly (and symmetrically) we
can get to the square l*, nl : ft, 41lr n
m + n : 4l + lmoves: tlRu{l-t. The
simple trick used here-rolling the
cube with its marked face on a side
along this face-enables us to solve
the problem in m + n moves for any
square (m, n)with m>2, n> 2.For-
rnally, the sequence of moves that
carries the cube over to this square
marked face up is RtF-2RUR^-L[J.
(See the example tor (m, nl = (7, 5l n
figure 1-rolling along the dotted
lines in this figure doesn't change the
relative position of the marked face.)

Next, you can easily make sure
that m + n rolls aren't enough to get
to the colored (blue and yellow)
squares in figure 1, and that to get to
the yellow square (1, 1) you havd to
make even more than 4: m + n + 2
moves (there are only a few conceiv-
ableroutes oflengthm +n from (0,0)
to lm, nl with m or n no greater than
l, and you can check all of them).

Problem 1. Prove that if you can
reach the square (*, nl in k moves,
then k - (- * n) is a nonnegative
even number.

According to this problem, the
blue squares require no less than m
+ n + 2 moves, while the yellow
one-(m, nl = (1,1)-requires at least
m+n+4=6moves.

l
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Problem 2. Find the solutions for
the yellow and all the blue squares in
6 and m + n = Zmoves/ respectively.

If you compare these results with
the numbers given in the Novem-
ber/December issue for the Tum-
bleweed game/ you'Il see at once
that these numbers are the mini-
mum possible (that is, m + n for the
white squares/ m + n +2 for the biue
ones, and 6 for the yellow one).

Botalions and rolling touns

More interesting questions come
up when we have a cube whose faces
are all colored differently. Can we
roll a cube from the square 10, 0) to
(m, n\ tn such a way that it ends up
in exactll- the same position as it
started, or, more generall,v, in a cer-
tain given positronl

It turns out that possible final po-
sitions depend on the coordinates
lm, n) of the iinal square-more ex-
actly, on the parltv oi m + n. This
becomes clear rrhen 1'ou look at fig-
ure 2. We drarr a line on each face of
the cube as shorrn in this figure (the
lines on the iaces we can't see are
parallel to the hnes on thefu opposite
faces), and drau' lines on all grid

Figure 2

squares altemating their directions in
chessboard order. Put the cube on a
grid square so that the line on its bot-
tom coincides with the line on the
square. Now ro11 the cube. The lines
on the cube and on the plane will fit
each other again, so they will coin-
cide a{ter a second roll and, in general,
after any number of rol1s in any direc-
tion. This means that only a half of all
possible positions of the cube on a
given square are accessible by rolling
it from another given square. Indeed,
a cube can rest on any of its six faces
and we can tum it four different ways
on this face. So there are 6 . 4 = 24
positions on a given square. But iI we

bLy
d,

Figure 3

want the line on the cube's bottom
to fit the line on the square, we'll be
left with only two ways to turn the
cube on the bottom, which amounts
to 6.2 = l2 positions.

Now imagine that we've rolled
the cube somewhere and then slid it
back without turning it (that is, by
a parallel translation). Then the final
position of the cube can be obtained
from the initial one by a certain ro-
tation. It's a very good exercise to
find all the24 rotations of the cube,
and the 12 thatpreserve our pattern
of lines on the faces. Try to do it
yourself.

And here's the answer to verify
your investigation: there are three
rotations (by 90", 180', and 270')
about each o{ the three axes perpen-
dicular to the cube's faces (fig. 3a);
two rotations (120' and24O'l about
each of the four diagonals (fig. 3b);
and the (least obvious) rotations, or
half-turns, about each of the six axes
through the midpoints of the cube's
opposite edges (fig.3c). This makes
3 . 3 + 2 . 4 + 6 = 23 different rota-
tions; the one missing is the identity
transformation. Our pattern of lines
is preserved by the three half-turns
about the " face axes," eight diagonal
turns/ and, of course/ the identity
transformation.

Since every single roll changes the
direction of the line on the cube's
bottom, the rotations that preserve
the pattem of lines emerge after any
even number of rolls, and we can call
them even rotations. Twelve other
rotations will be calledodd. By prob-
lem l, the number of rol1s required to
get from the square (0, 0) to (m, nlhas
the same parity as m + n, so the rota-
tions that can emerge as the result of
rolling the cube from (0, 0) to lm, nl
are even or odd depending on whether
m + n is even or odd.

In particular, when a cube traces

any closed path/ it
ends up on the initial
square rotated "even-
ly." But can we actu-
ally obtain all 12 even
rotations in such a
way? The simplest
closed path consists
of four moves around

a2x2 square (fig. a). We can see im-
mediately that this "rolling tour"
results in a 120" rotation about the
diagonal passing through the center
of the square (point A in figure 4al,
as shown in figure 4b. The sense of

ao
Figure 4

the rotation depends on the sense of
the rolling tour. In our notation the
tour in figure 4a is written as LURD.
Since the moves R and D are the
inverses of I and U, we can rewrite
it in the ftorrn L(JL-lU-l. Visitors to
our Toy Store may remember that
operations of this form (in general,
XYX-IY-|, rendered in shorthand as

lX, Y1l are called commutatorc (of X
and Y) and are often useful with trans-
formational puzzles. (See, for in-
stance, the lan:uary lFebruary issue. )

The commutator lL, Ul together
with the seven other commutators
of L, (J, and their inverses-[I, U-1]
: LU-rL-rU = LDRU,[U, L] = ULDR,
and so on-yield all eight diagonal
rotations of the cube.

Problem 3. Find the three 6-move
rolling tours that turn the cube 180"
in its place about each of the three
face axes (shown in figure 4a).

By taking the cube on rolling
tours/ we can obtain a1l 12 of its
even rotations and return it to its
initial location.

flollinUinacroM
Now we're ready to investigate

puzzles with many rolling cubes and
only one empty space. One version of
such apuzzle is shown in figure 5 (on
the next page). It consists of eight

OlJII{TUIil/TOY $TORI 03



Figure 5
identical 6-color cubes in a squarebox
with an empty space in the middle.
Initially all the cubes are oriented in
the same way so that each face of the
square "rirrg" is the same color. You
have to ro11 the cubes in such a way
that they all again become oriented
alike but not as they were initially.
It's not hard to see that the final col-
oring in this problem can be chosen
in 23 different ways, which is the
number of non-identical rotations of
the cube.

This particular problem was pro-
posedbypuzzle designers A. Dryom-
ov and G. Shevtsova, whom we've
aheady mentioned in connection
with other rolling-block puzzles. It's
interesting how they managed to pre-
vent the cubes from slipping: the
cubes they use have grooves along
their edges lh1.5l, and the bottom of
the box has a 3 x 3 square grid of nar-
row laths glued to iq the iaths fit into
the grooves, so when you tilt a cube
to ro11 it to an adjacent square, it
"stumbles" orr a
lath and lands ex-
actly where you
want. Of course,
other antislipping
devices exist, and
other problems,
too.

Figure 6

For instance, the set of rolling
cubes manufactured in Poland some
time ago comprised eight identical
cubes that had only one colored face
each. It was supplied with instruc-
tions saying that the puzzle could be
used for evaluating the IQ of the
player. The maximum score was
given for the following "Royal Prob-
lem." Initially the four corner cubes
are set in the box, their colored faces
up, and the remaining four cubes at
the edges are turned so that their
colored faces are down. You have to
ro11 the cubes so that the colored
faces appear on the bottom in the

corners and on the top at the edges.
According to the instructions, "if
you find a solution in no more than
35 moves, you're a genius; if not,
you fall just a little short."

A natural way to tackle the prob-
lems we described, and others like
them, would be to try to find se-
quences of rolls that result in rotating
a single cube in its place and leave all
the other cubes unaltered. This won't
be economical; but the advantage of
this method is universality: if we
learn how to turn a single cube in
every possible way, we'll be able to
obtain the required arrangement by
rotating the cubes one by one. Notice
that this approach didn't work with
the rollingpyramids (see the Septem-
ber/October Toy Store), because a
pyramid always retums to its initial
location in the same orientation that
it had at the start.

I'll describe two types of operations
that rotate a single cube. Both can be
performed in a "small" box measur-
ing 3 x 2; for definiteness, we'l1 as-
sume that the empty square is at the
middle of the longer side of the box,
as shown in figure 7. Any sequence of
rolls in this box that brings the empty
space back to its initial location can
be represented as a combination of
the four 4-ro11 cyclic moves about the
centers A and B in figure 7: DRUL
(the clockwise cycle about A, which
will be denoted by ol, LDRU lthe
ciockwise cycleb about B), and their

inverses a-r = RDLU and b-r :
DLUR. This is easy to verify, so I'11
give only one illustration: RDLLUR
= RDLUDLUP = rL-r6-t-the succes-
sivemoves U andD intheinterme-
diate expression cancel out. Below
we'll use this shorthand notation-
that is, the cycles a and b-rather
than the notation for single rolls R,
L, U, D'

So, in cyclic notation, operations
of the first type are commutators
(deia vu!) of the triple cyclic moves
a3, b3, and their inverses. More ex-
actly, under la\, ba) = a3b3a-3b-a the
four corner cubes stay in place,
while the central cube makes a half-
firnhrabout the axis parallel to the
long sides of the box; then, loa, ba)
: a-3b3a\b-3 performs a half-turn h,
of the central cube about the axis
paraliel to the short sides of the box;
andlas, b-3] rotates the central cube
by 180" about the vertical axis (per-
pendicular to the box). Notice that
the last half-turn fr, is produced by
4 . 3 . 4 = 48 single rolls, while the
acfitalnumber of rolls inft, andh, is
46 (we've seen that in the combina-
tion a-tb-l two rolls-U ar'd D-
cancel out; the same happens with
bal.

It's interesting to look into why
these operations behave as they do.
The 4-ro11 move d cycles the three
cubes about A clockwise by one po-
sition. Repeated three times, it
brings the cubes to where they
started after rolling one full circuit
about A-that is, a3 twists these
cubes 120" about their diagonals
drawn from their vertices at A (com-
pare figure 4). The operation b3 be-
haves similarly about point B in-
stead of A. What happens under
a\bza-3b-\| The two left corner
cubes are twisted by a3, left intact by
b3, untwiste dby a-3, and left intact
again by b-3. So eventually these
cubes, as well as the two right cubes,
stay put. At the same time, the cen-
tral cube is successively subjected to
120" rotations about its diagonals
frorn A and B and their inverses,
which results in the half-turn speci-
fied above.

Operations of the second type
were presented by |ohn Harris in one

d
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of the first publications on rolling
cubes. They can be written in the
foliowing general form:

H(r, yl : xyxyxytr'f'r'y-',
where x and y stand for a, b, or their
inverses, and they also result in rota-
tions of a single (central) cube. In par-
ticular, taking (r, yl = la, bl, we gey arr
operation H(a, bl : a(bal2{b*1 a-Llzb-l
that performs the diagon aL rctation d,
shown in figure 7; H(b, a) gives the
inverse rotation d;t; H(a-|,6-11 and
H(b-r, a-1) produce rotations do and
d o-t, respectively. Although these
operations are defined as sequences of
ten 4-ro11 cyclic moves/ they contain
a number of mutually annihilating
successive ro1ls (in the combinations
ba and a-1b-1 ,1, so after cancellations
they can be reduced to 32 rather than
40 single rolls. The four other opera-
tions of this forrn-H(a-I,b1, H(a,b-11,
and their respective inverses H(b, a-l )

and H(b-t,a)-don't add much to
what we already have: they only re-
produce some of the rotations gen-
erated by the commutators above,
though in fewer moves.

Problem 4. Exactly what rota-
tions are generated by the operations
H(a-t, bl ato.d Hla, b-r), and how
many rolls do they comprise after
possible cancellations ?

So, it tums out we have compara-
tively short operations for seven of
the eleven even non-identity rota-
tions of the central cube on a 3 x 2
board: the three half-tums h1, h", hu,
and four 120o rotations about two of
the diagonals. As to the remaining
four rotations about the other two
diagonals, I don'tknow atice, elegant
way to obtain them, but they can be
represented as combinations of d,
and d r. For instancg the rotation d in
figare 7 results when do is followed
by drr 

-that 
is, d = d od r-t . A shorter

way to perform d is (i) tum the cen-
tral cube (and maybe some other
cubes) so that the axis of d fits onto
the axis of, say, dp; l2l perforrn dr;
(3) "undo" operation l-that is, d =

a3dra-3, or a-3do--r a3. Here d is repre-
sented as a coniugate ol d, (or d or )-
see the lanuarylFebruary Toy Store.

Conjugation can also be used to
rotate separately any of the corner

cubes in its place. For instance, the
top left cube is rotated by an opera-
tion of thefotnara-l, wherer is any
of the rotations of the central cube
considered above: a rolls the top left
cube to the central location, r rotates
it, a-1 rolls it back.

Now we can do any rolling-cube
problem in which the "target" posi-
tion differs from the initial one by an
even rotation on each square turning
cubes in their places one by one. As
for problems with odd rotations, I'11

illustrate them with one example:
turn all the cubes in a box through
90o about their vertical axes.

Imagine that the squares of the box
are colored black and white in chess-
board order so that the empty square
is white. To be "oddly rotated," a
cube must make an odd number of
rolls; therefore, it must moYe to a
square of the other color (because one
roll changes the color of the cube's
underlying square). But initially our
cubes occupied three black and two
white squares. One white square for
the "b1ack cubes" is lacking, and the
problem seems to be unsolvable!
However, a solution does exist. Here
it is a2b2a2b2a2D.It wasn't stipu-
lated that the vacant place remain
the same, and in the last move it's
shifted to a black square, while an
extra "black cube" changes its un-
derlying color.

Tricks aside, this solution i11us-
ttates a general rule for solving ro11-

ing-cube przzles. First, using the
chessboard coloring, we determine
which cubes must change their un-
derlying colors. Then we ro11 the
cubes so as to change colors as re-
quired, without paying much atten-
tion to the cubes' orientations. After
that, the required final orientations
become attainable by even rotations
of the cubes in their new places,
which can be done by using the op-
erations we described above.

Problem 5. In a 3 x 3 box with an
empty space in the center, all the cubes
are colored the same and have the same
initial orientation.Is it possible to ob-
tain a position in which (a) one cube
is rotated 90", (b) two comer cubes are
rotated 90', while all the other cubes
retain the initial orientation?

Beat lhese !'E[ord$
Although the expianations above

al1ow us to solve any (solvable) ro11-

ing-cube problem, they don't help
much if you have to find a solution in
a small enough (or the smallest)num-
ber of moves. I count such problems
among the most intriguing and chal-
lenging transformational puzzles.
Here are some of them/ together with
the lengths of the best solutions I
know of. The empty square must re-
main in its place in all the problems
below except one (figure out which).

Problems
The first three problems are bor-

rowed from |ohn Harris's article in
the lournal of Recreational Math-
ematics,Yol.T, No.3.

6. In a3 x 3 box with an empty
space in the middle each of the eight
cubes has only one colored face. Ini-
tially it's on the left side of each
cube. You must move it onto the
right side. (30 moves).

7. Starting with the initial posi-
tion of the previous problem, turn
the colored faces onto the front sides
of the cubes. (44 moves)

(In the next problem the coloring
is different.)

8. Initially all the external faces of
the cubes arered, and allthe hidden
faces are white. You must hide all
the red faces. (84 movesr)

The remainingproblems are for 5-
color cubes. The record solutions for
the first two are heid by A. Pante-
Ieyev, a Moscow mathematician.

9. Turn all the cubes in the 3 x 3
box through 90o about the axis par-
allel to the lower edge of the board.
(60 moves)

10. Do the same as in the previous
problem in the 3 x 2 box (45 moves.)

I 1. You're given five cubes in the
3 x 2 box having the same orienta-
tion. Roll them so as to obtain five
different colors other than the initial
one on their top faces. (The author,
V. Rybinsky, cafl do this in 14
moves.) O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60

lAccordlng to Martin Gardner,
Harris later found a 74-movc solutior.r
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