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Geodesic Dome by R. Buckminster Fuller

F ALL BUCKMINSTER FULLER EVER DID WAS

invent the geodesic dome, his place in history would have
been assured. It is considered by some the most significant
structural innovation of the 20th century. It encloses more
space with less material than any alternative form. “When
Iinvented and developed my first clear-span, all-weather geo-
desic dome,” Fuller wrote, “the two largest domes in the
world were both in Rome and were each about 50 meters in
diameter. They are St. Peter’s, built around a.p. 1500, and
the Pantheon, built around a.p. 1. Each weighs approxi-
mately 15,000 tons. In contrast, my first 50-meter-diam-
eter geodesic dome installed in Hawaii weighs only 15
tons—one thousandth the weight of its masonry counter-
part. An earthquake would tumble both the Roman domes,
but it would leave the geodesic unharmed.”

Fuller coined the word “tensegrity” for the continuous
tension/discontinuous compression structural system he
developed from an idea he learned from a sculptor. He soon
realized that, because of the greater efficiency of tension
compared to compression, very large domes could be built
with his tensegrity trusses. He calculated that a 3-km
dome would weigh only 4,000 tons.

In the photograph above, Fuller is standing in front of
the 76-m dome that housed the US pavilion at the world’s
fair in Montreal in 1967. Not all geodesic domes are quite

so monumental. The photo below shows Buckminster
Fuller and his wife, Anne Hewlett Fuller, in their geode-
sic home in Carbondale, Illinois. Turn to page 8 for a look
at even smaller geodesic structures: hollow carbon mol-
ecules called “buckyballs” in honor of this wide-ranging,
forward-looking thinker.
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Cover art by Leonid Tishkov
Some of us can recall, with a twinge
of shame, a time when it was oh-so-
easy to make a bit of money. All you
had to do was strike a little deal with
a younger kid: “Here, I'll trade you
this nice, big nickel for that little dime
of yours.” It was a nice scam—for a
while, at least. Either the kid got wise,
or someone older intervened—with
dire consequences for the clever cur-
rency trader.

Who can blame the four-year-old
for thinking a nickel is worth more
than a dime? Only an adult would
think of making a bigger coin less
valuable than a smaller one. It all but
invites fraud in the seven-year-old
mind. Of course, grown-ups aren’t im-
mune to psychological mishaps when
it comes to money. In fact, the noble
Roman on our cover has fallen prey to
a cunning emperor. Just how cunning?
You be the judge. The story begins on
page 16.
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Numbers in our genes

The role of quantification in molecular biology

N A RECENT EDITORIAL IN

the British journal Nature (Vol.

368, 10 March 1994), John Mad-

dox makes an important point
regarding the present descriptive
character of molecular biology.
Maddox observes that in the human
genome projects, the main goal is to
list the genes and “to specify their
nucleotide sequences.” The projects
also try to specify “the sequences of
regions of DNA that hold the genes
together in the chromosome.”

These activities are, first of all,
ones of identifying structure and giv-
ing names to that structure. Second,
researchers make connections be-
tween these structures and other
structures or characteristics of the
organism that are inherited through
the gene. Still, these processes are
inherently descriptive. They do not
rely on quantitative relationships. As
description, we can tell what the re-
sults will be, and we can give names
to genes and sequences of regions of
DNA. But we cannot make quantita-
tive predictions. Furthermore, quali-
tative predictions that fail to consider
underlying quantitative variables
may well be wrong.

Most important, regardless of
how well descriptive molecular bi-
ology may tell what happens, it does
not tell why it happens. This can
only occur if we can apply laws of
science that are quantitative to the
situation. Maddox uses as an ex-
ample a virus that infects E. coli,
called bacteriophage A, and a repres-
sor protein produced by one of the
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viral genes. A second gene, called
Cro, will bind to the same DNA site
if there is no repressor protein
present and repress the activity of
the repressor. This is called a
switching mechanism. In examin-
ing this situation, researchers have
found that there are only about 100
or so free molecules in the cell un-
der consideration. This means that
there are fluctuations of macroscopic
laws of equilibrium thermodynamics
that are not accounted for. Maddox
speculates that the genetic switch
may in fact be a kinetic phenomenon,
and that “the energetic implications
of what appears to be equilibrium
constants may be spurious.”

As Maddox points out, “The
naming of parts does not in itself
yield understanding.” He goes on to
list the problems yet to be resolved:
“how the molecules of repressor fold
into their characteristic dumbbell
shape, why dimers are so much
more stable than monomers, and
how an alpha helix in the amino-
component interacts with DNA at
the binding sites. To be more pre-
cise, what happens has been deter-
mined by elegant genetic experi-
ment; why that, not something else,
happens remains to be discovered.”

In this brief overview I haven’t
done justice to Maddox’s editorial. If
you have read some molecular biol-
ogy, I recommend that you read the
essay in its entirety. Here, I simply
wanted to give a sketch of his ideas
to suggest the importance of two
aspects of science that aren’t often

associated with molecular biology.
One is the use of quantity, symbols,
and equations; the other is their ap-
plication in fundamental laws of
science, such as thermodynamics
and kinetic theory.

I have noticed a tendency to
downplay the “hard sciences” on
the grounds that the really exciting
areas of research are in molecular
biology. Yet even if that is where the
“excitement” is, you will come to a
dead end if you fail to utilize phys-
ics and chemistry. You can’t get to
the heart of natural phenomena if
you don’t understand the basic laws
and principles of science that under-
lie those phenomena.

Readers of Quantum magazine
continually see the unusual and ex-
citing ways in which such funda-
mentals lead to a more profound un-
derstanding of varied phenomena in
biology as well as in other areas of
science. Recall, for instance, “Math-
ematics in Living Organisms” (No-
vember/December 1992), where cats
are shown to be handy with loga-
rithms; or “Trees Worthy of Paul
Bunyan” (November/December
1993), where physical processes af-
fecting plant growth are explored.
Regardless of your interests—but es-
pecially if you intend to go into the
life sciences—continue to study
physics and chemistry and acquire
the mathematical tools needed for
research in all the sciences. We hope
Quantum will help keep you on
that productive path.

—Bill G. Aldridge
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Have you written an article that
you think belongs in Quantum!?
Do you have an unusual topic
that students would find fun and
challenging? Do you know of
anyone who would make a great
Quantum author? Write to us
and we'll send you the editorial
guidelines for prospective Quan-
tum contributors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in colloquial
English and at a level appropriate
for Quantum’s predominantly
student readership.

Send your inquiries to:

Managing Editor
Quantum
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sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.
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Write to us! We want to know what you
think of Quantum. What do you like the
most? What would you like to see more
of? And, yes—what don’t you like about
Quantum? We want to make it even bet-
ter, but we need your help.

What's our address?
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PRIME PROPERTIES

Three paths to Mt. Fermat-Euler

Let Lagrange, Zagier, and Minkowski be your guides

by Vladimir Tikhomirov

OOK AT THE FIRST FEW
prime numbers greater than 2:
3 5; 7; 11, 18, 17, 19; .. ; The
numbers 5, 13, and 17 can be rep-
resented as the sums of two squares—

5=12+22,
13 =02 + 32,
17 =12 + 42

—while the other four numbers (3,
7,11, 19) cannot. (Check it yourself!)
Is there any way to tell one sort of
number from the other without a
brute-force search through all pos-
sible breakdowns? And how can this
difference be explained? The answer
is given by the following theorem.

THEOREM. A prime number
greater than 2 is representable as
the sum of two squares if and only
if its remainder upon division by
four is one.

(Indeed, 5=4-1+1,13=4-3+1,
17=4-4+1,whereas3=4-0+3,7
—4.1+4311=4-2+3,....)

Problem 1. Prove the “only if”
part of the theorem: any prime (ex-
cept 2} equal to the sum of two
squares can be written as 4n + 1 for
some integer n.

Who first discovered this math-
ematical phenomenon? There is evi-
dence that not long ago we could

have celebrated the 350th anniver-
sary of this remarkable result. On
Christmas Day in 1640, the great
Pierre Fermat (1601-1665) wrote a
letter to the renowned Mersenne, a
faithful friend of Descartes and the
main intermediary in the correspon-
dence of scientists of that time. He
informed Mersenne that “any prime
number that yields a remainder of
one when divided by four is
uniquely representable as the sum of
two squares.”! At that time there
were no mathematical journals, so
mathematicians exchanged infor-
mation by mail. In general they sim-
ply announced their results and
didn’t include any proofs.
However, almost 20 years after
writing to Mersenne, Fermat de-
scribed his plan of attack in proving
the theorem presented above. In a
letter to Carcavy?® sent in August
1659, he writes that his proof is based
on the method of infinite descent.

IIn this article we won’t touch on
uniqueness, which was established
long before Fermat. See the solution to
problem M115 in this issue.—Ed.

2After his death, Mersenne’s role as
a scientific intermediary was played
by the Royal Librarian, an amateur
mathematician and Fermat's friend
Pierre de Carcavy (d. 1684).—Ed.

Starting from the assumption that the
conclusion of the theorem is not valid
for a certain prime of the form 4n + 1,
he proves that it must be wrong for
some smaller number and proceeds
all way down to the number 5, thus
arriving at a contradiction (since the
theorem is true for 5).

The first complete proofs were
found by Leonhard Euler (1707~
1783) between 1742 and 1747. Euler
held Fermat in the highest esteem
and, ceding priority to his predeces-
sor, created a proof that elaborated
the idea in Fermat’s letter. Giving
credit to both great scholars, we now
call this statement the Fermat-Euler
Theorem.

There is a feature inherent in al-
most any beautiful mathematical
result (as well as almost any beauti-
ful but forbidding summit): many
paths lead to it. We can approach it
from different sides, and all the
paths give sheer delight to those
who aren’t afraid to take them.

The Fermat-Euler Theorem viv-
idly displays this wonderful feature,
and I'm going to demonstrate this
below.

We'll ascend to this peak, discov-
ered in the 17th century, in three
different ways. One of them was
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found in the 18th century, another
in the 19th century, and the third
only recently, in our own century.

Lagrange's proof

The first proof (with certain
modifications) is given in almost
every textbook on number theory.
It’s based on the following lemma.

WiLsoN’s LEmMma. For any prime p
the number (p — 1)! + 1 is divisible
by p.

In order not to digress for the proof
of this auxiliary (but very useful) fact,
I'll demonstrate its main idea using
the prime number 13 as an example.
For any integer from 2 through 11,
let’s find the factor whose product
with this integer gives a remainder
of 1 when divided by 13, and collect
such pairs of factors in the factoriza-
tion of (13 — 1)! together:

(13- 1) = 12!
=(2-7)(3-9)(4-10)(5- 8)(6 - 11] - 12

(where2-7=14=13+1,3-9=27=
2:-13+1,4-10=5-8=40=3-13+1,
6-11=66=5-13 + 1.1t follows that
the remainder of 12! upon division
by 13 is 12—that is, 12! + 1 is divis-
ible by 13. The general case is
treated likewise.

Problem 2. Prove that for any
prime p the integers 2, 3, ..., p — 2
can be paired so that the product of
the numbers in each pair (a, b) gives
a remainder of 1 when divided by p.
(This is written as ab =1 (mod p).)
Use this fact to prove Wilson’s
lemma in the general case.

From Wilson’s lemma we derive
a corollary.

CoroLLARY. If the number p = 4n
+ 1 is prime, then [(2n)!]? + 1 is di-
visible by p.

To prove it, we rewrite (p—1)! + 1
as(4n)!+1=1-2-...-2n-(2n+1)-
. 4n)+1=1-2-...-2n-(p-2n)-
(p-2n-1)-...- (p=-1)+1=(2n)-
(-1)?2(2n)! + 1 =[(2n)!]* + 1 (mod p),
and note that the left side is divisible
by p.

Denote (2n)! by N. Then our cor-
ollary means that N2 = -1 (mod p).
Now we have to overcome the ma-
jor difficulty.

Consider all the pairs (k, m) of non-
negative integers that are no larger
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than ,/p . The largest of the numbers
k (or m) is greater than ﬁ -1, so the
number of such pairs is greater than
[[\/p = 1) + 1]> = p. Therefore (by the
pigeonhole principle applied to the
pairs as pigeons and the remainders
modulo p as pigeonholes),? there are
at least two different pairs (k,, m,) and
(k,, m,) such that the remainders of k|
+ Nm, and k, + Nm, when divided by
p are the same. Then a + Nb (where
a=k, -k, b=m,-m,)is divisible
by p. Note that lal < \/p and Ibl < |/p.
Now, a*> - N*b2 = (a — Nb)(a + Nb)
is divisible by p, and since N2 = -1
(mod p), a*> + b2 is also divisible by
p—that is, a® + b? = rp for some posi-
tive integer r (r # 0, because other-
wise the two pairs above would be
the same). It remains to note that g2
+ b2 < 2p, which means thatr =1 and
a® + b2 = p, completing the proof.

Lagier's proof

Another proof, which is due to
the contemporary mathematician
D. Zagier, completely stunned me:
the result seems to emerge miracu-
lously, out of thin air.

Our goal in reproducing Zagier’s
proof will be to show that for any
prime p of the form p = 4n + 1 the
equation in positive integers

x*+4yz=p

has a solution (x, y, z) with y = z.
This would yield the representation
p =x*+4y* =x* + (2y)?, which proves
the theorem.

We'll prove the existence of such
a solution in a rather bizarre way: by
proving that the (obviously finite)
number of solutions to the above
equation is odd. How is the oddness
connected to the existence of the
solutions we need? All the solutions
with y #z can be arranged in pairs by
swapping y and z: if (x, y, z) is a so-
lution, then (x, z, y) is a solution as
well. So the number of these solu-
tions should be even, and the total
number can be odd only if there’s a
solution with y = z.

The modern way to articulate

3For an explanation of the
pigeonhole (or Dirichlet) principle, see
“Pigeons in Every Pigeonhole” in the
January 1990 issue of Quantum.—Ed.

this reasoning is to consider the
transformation | of the set S of all
positive integer triples satisfying
our equation that swaps y and z—
JIx, v, z) = (%, z, y)—and note that,
first, it’s an involution—that is,
when applied twice it takes us back
to the start; second, its fixed points
(x, ¥, z) = Jlx, y, z) supply the re-
quired decomposition of p (since
they are characterized by y = z); and
third, the number of points that
aren’t fixed is even, because they
can be arranged in pairs such that
either element of each pair is the
image of the other element. Of
course, the last statement holds for
any involution of any finite set.
And now let’s consider the trans-
formation B of triples (x, v, z) defined
as follows: B(x, y, z) = (x/, ¥/, Z), where

(1) forx<y-z:x =x+ 2z,
YI=Z,Z,=Y—X—Z;

(2)fory-z<x<2y: X =2y -x,
y<y,Z=x-y+z

(3) forx > 2y: X = x -2y,
V=x-y+z,2Z=y.

Like ], this transformation con-
sidered on the set S is also an invo-
lution of S. First of all, it maps the
set S into itself, because it preserves
the value x2 + 4yz. Indeed, take case
1, for instance:

x?+4y'7 = (x + 2z* + dz[ly - x - Z)
=x? +4xz + 422 + 4zy — 4zx — 47>
=x? + 4yz.

Verification in the other two
cases is just as straightforward. Fur-
ther, if (x’, ¥/, z’) = B(x, y, z), then
B(x’, ¥/, Z') = (x, y, z). This is also
verified by direct calculation. For in-
stance, if x < y — z, we must apply
the equations in case 1: they yield x’
=x+2z>2z=2y,5%0(x", ¥y, 2") =
B(x/, ¥, z’) must be computed using
the equations in case 3, and we get

X'=x -2y =x+2z-2z=X%,
V' =xX-yV+Z=x+2z-z+
(y-x-z)=y,

Z'=y =2z

Examination of the other two
cases is left to the reader. After such
verification, we conclude that B is
an involution of S.

What about the fixed points of B?



Looking at the definition, we see
thatin cases 1 and 3, x’ >xorx’ <x,
respectively, so a fixed point can
arise only in case 2, which yields x
=x'=2y-x,0rx=y.

Conversely, you can see at once
that any triple of the form (x, x, z) is
preserved under B. But only one of
these triples belongs to the set S of
positive integer solutions to our
equation: if p = x% + 4xz = x(x + 4z),
then x = 1 (since p is a prime) and z
=1 (recall thatp = 4n + 1). Thus, the
involution B of the set S has a
unique fixed point (1, 1, n), and
therefore, as we've seen, S consists
of an odd number of triples, which
is what we set out to prove.

Minkowski's proof

The (slightly modified) proof by
Hermann Minkowski (1864-1909),
which I'm going to present now,
staggers the imagination perhaps
even more.

Minkowski’s proof begins with a
result that doesn’t seem to have any-
thing to do with the Fermat-Euler
Theorem.

Tueorem. Let a, b, and ¢ be any
integers satisfying a > 0 and ac - b®
= 1. Then the equation ax? + 2bxy +
cy? = 1 has an integer solution (x, y).

Proof. The expression ax? + 2bxy
+cy® =1 can be viewed as the square
of the distance from the origin O to
the point P with coordinates (x, y) in
a certain coordinate system (not
necessarily rectangular). To con-
struct such a system, draw the axes at
the angle o defined by cos o = b/Jac
(this is possible because ac > 0 and
Ib/Jac| < 1, since ac = b2 + 1 > b?).
Choose the units of scale on the x-
and y-axes equal to /g and /¢, re-
spectively (fig. 1). Then the square

P(x,y)

(1,0) 180°-a AC

= Qo) x

Figure 1

Figure 2

of the distance OP, P = (x, y), can be
found from the triangle OQP, where
Q = (x, 0): in this triangle, OQ =
IxIva, QP = lyl+/c, and the angle at
Qis ocor 180° — 0, depending on the
signs of x and y. However, no mat-
ter what these signs are, the Cosine
Law always yields

OP? = OQ%-20Q - OP cos(£Q]+OP?
= ax® + 2bxy + cy>.

The points with integer coordinates
form the integer grid with respect to
our coordinate system (fig. 2), and
we have to prove that there is anode
in the grid at a unit distance from
the origin.

Let d be the smallest distance from
the origin O to another node, and let
(m, n) be a node at a distance d from
O. Since the distance from (x, y) to
(x,, y,) is equal to the distance from
(0, 0) to (x, - x, y, — y), the distance
between any two nodes is no
smaller than d. Therefore, the
circles of radius d/2 centered at all
the nodes of our grid do not overlap:
if two such circles, with centers A
and B, have a common interior point
C,then AB<AC +CB<d/2+d[2=
d. As is clear from figure 2, the area
covered by these circles in the tri-
angle with vertices O(0, 0, A(1, 0),
and B(1, 1) is half the area of one
circle-that is, td?/8. And this is only
a part of the triangle’s area, which
equals

Loa.08. sin(£A) = 1ave sin(ZA)
2 2

Sond?/8 <1/2, or d* < 4/ < 2. Since
d? is an integer (d? = am? + 2bmn +
cn?), we getd = 1, which proves Min-
kowski’s theorem.

But what relationship does this
marvelous theorem have to Fermat
and Euler? The most direct!

By the corollary of Wilson’s lemma
proved above, we know that the num-
ber N2 + 1, where N=[(p-1)/2]!, is di-
visible by p, don’t we? Well, now let’s
apply Minkowski’s theorem to the
numbers a=p, b= N, ¢ = (b + 1)/a.
The theorem says that for certain in-
tegers m and n

1 = am? + 2bmn + cn?,

o)

p=a=a*m?+2abmn + (b? + 1)n?
= (am + bn)* + n?

—that is, p is the sum of two
squares. And, once again, the theo-
rem is proved!

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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MOLECULAR ARCHITECTURE

Follow the bouncing buckyball

On fullerenes and other carbon structures

by Sergey Tikhodeyev

VERYBODY KNOWS THAT
carbon is one of the most com-
mon elements. But did you
know that carbon atoms are a
first-rate building material for con-
structing a wide variety of crystals
and molecules? The record in the
hardness department belongs to dia-
mond, which is one of the crystal-
line forms of carbon. The complex
organic molecules known as pro-
teins—whose atomic “skeletons”
are atoms of carbon and nitrogen—
form the basis of all living things.

The great variety of atomic struc-
tures made of carbon is due to the
fact that carbon—an element of
group IV of the periodic table—has
four electrons in its outer valence
shell and can form valence bonds
with four, three, or two neighboring
atoms. If a carbon atom has four
close neighbors, the resulting struc-
ture is three-dimensional. One ex-
ample of such a structure is the dia-
mond crystal, in which each carbon
atom sits in the center of a regular
tetrahedron whose corners are the
neighboring carbon atoms.

If there are only two adjacent at-
oms, a one-dimensional linear struc-
ture appears—Ilong polymer mol-
ecules are examples of this type.
When there are three neighbors, the
atomic structures include flat re-
gions. For example, in the flat mol-
ecule of benzene C,H, each carbon
atom forms bonds with one hydro-

8 MAY/JUNE 1994

gen and two carbon atoms.

Another example of atomic struc-
tures where each carbon atom has
three neighbors is graphite, the sec-
ond natural form of carbon. Graph-
ite is a layered substance whose
structure is based on planes in
which the atoms sit at the corners of
regular hexagons, forming a kind of
honeycomb. Actually, no other
structure is possible when each car-
bon atom forms valence bonds with
only three neighbors and all the at-
oms are arranged in the same way.
Fortunately there is a mutual attrac-
tion between adjacent planes, which
connects the carbon layers to form
a crystal of graphite. These attrac-
tive forces (known as van der Waals
forces, which decrease with distance
as r’) are much weaker than the in-
teraction between adjacent carbon
atoms in the same layer. Thus,
graphite isn’t strong mechanically,
and so it can be used to make pen-
cil lead. The carbon planes them-
selves, however, are as strong as dia-
mond.

The question arises: can we make
something more interesting from
carbon atoms than just a flat layer in
a graphite crystal—say, a polyhe-
dron? Since each carbon atom must
have exactly three neighbors, the
following geometrical problem
arises: how to construct a polyhe-
dron in which exactly three edges
come together at each corner?

Here we’ll make use of Euler’s
theorem: for any convex polvhe-
dron, where C is the number of cor-
ners, F is the number of faces, and E
is the number of edges,

C+F-E=2. 1)

For more complicated polyhedrons
equation (1) must be modified by
introducing a new concept having to
do with the number of “handles” in
a polyhedron. For a torus g = 1,
which means that it has one handle,
while for a convex polyhedron g
equals zero.

The generalized Euler theorem
yields

C+F-E=2-2g (2)

It’s surprisingly easy to prove
equation (2). We need but note that
each handle of a polyhedron and the
polyhedron with its handles cut off
satisfy equation (1). When we paste
each handle back onto the polyhe-
dron, the four glued faces disappeat,
while the difference C - E doesn’t
change.

Now we have all we need to de-
duce the architectural rules for
constructing polyhedrons out of
carbon atoms. Suppose we want to
construct a closed polyhedron with
hexagonal faces only, and that there
are n, of them. Since three faces
come together at each corner, and
because each edge belongs to two
faces simultaneously, we get

Art by Pavel Chernusky
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F=n,E=—2%.
! 6/ 2 (3)
Substituting this equation into
equation (2) results in g = 1. Thus,
using hexagons only we can con-
struct a polyhedron that is topologi-
cally equivalent to a torus.

If we want to construct more di-
verse structures, hexagonal “graph-
itelike” faces won’t suffice. Sup-
pose, in addition to n, hexagons, we
have n, pentagons and n, hepta-
gons. Repeating the reasoning
above, we get

ng -n, = 6(2 - 2g) (4)

C

So if we're interested in convex poly-
hedrons (g = 0) only, we can do with-
out heptagons, but in that case we
must add precisely 12 pentagons.
(Incidentally, it was Euler himself
who first noticed and proved this
fact.) To construct more compli-
cated structures, we need heptagons
as well.

Thus, we have deduced the basic
rules for constructing complicated
three-dimensional structures from
carbon atoms. Large structures simi-
lar to these exist in nature. For ex-
ample, the skeletons of radiolarians—
the simplest organisms among
plankton—as well as many viruses
are constructed in just this way.!
These structures are also familiar in
architecture. The geodesic domes of
R. Buckminster Fuller spring to
mind.? To drive home the fact that
such structures aren'’t rarities, pick
up an ordinary soccer ball, which is
stitched together from 20 hexagons
and 12 pentagons. But the question
remains: is it possible to build such
a structure out of carbon atoms?

Fullerenes and fullerites

In 1985 H. W. Kroto (Great Brit-
ain), J. Heath, S. O’Brien, R. Curl,
and R. Smalley (United States) found
that fairly stable molecules consist-
ing of a large (32-90) and always
even number of carbon atoms were
formed when graphite was vapor-

1See Growth and Form by W.
D’Arcy Thompson or the book cited in
footnote 3.—Ed.

2See Gallery Q in this issue.—Ed.
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Figure 1

Three-dimensional structure of
buckminsterfullerene C,, (buckyball).
Carbon atoms sit at the corners of the
polyhedron.

ized by a laser beam in a stream of
helium. The most stable was the C,
molecule, and the discoverers
thought that it had the form of a
hollow soccer ball (fig. 1). In honor
of “Bucky” Fuller the researchers
called their molecule a buckyball
(which soon evolved into the more
stately buckminsterfullerene), and
they named the whole class of C-
like molecules fullerenes.

It turned out that fullerenes
aren’t all that rare: there are plenty
of them in lampblack, gas soot,
and other substances resulting
from incomplete combustion. The
problem is isolating a pure sample
of such molecules—that is, obtain-
ing a substance that contains al-
most nothing else.

In the molecule buckminster-
fullerene C,, the comners are carbon
atoms and the edges are their valence
bonds. There are no free valences in
Cy Which explains its high chemical
and physical stability. The C,, mol-
ecule is the most symmetrical and
stable among fullerenes. The next (in
order of increasing numbers of carbon
atoms) stable molecule C,; has 25
hexagons and the same 12 pentagons.
It is formed less often than C,. The
highly symmetrical molecules C,,,
Cs,o and Cyy, which are thought to
be stable as well, have not been found
yet.

It’s curious that there is nothing
to prevent a C,, molecule from hav-
ing a C,,, molecule (or other fuller-
ene) inside it. Such compound mol-

ecules have not been found either,
though the term “matryoshka” has
already been coined for them (after
the Russian nesting dolls). It’s also
curious that almost 20 years before
the discovery of hollow molecules,
their existence was hypothesized by
David E. H. Jones, who for many
years wrote the famous Daedalus
column in the journal New Scien-
tist.3

At present the dimensions of
the buckyball are well known: its
radius is 0.3512 nm, the length of
the short bond (which separates
the hexagons) is 0.1388 nm, and
that of the long bond (the same for
hexagons and pentagons) is 0.1433
nm. The numbers are very similar
to those for graphite. Quantum-
mechanical calculations show
that the valence electrons must be
distributed more or less homoge-
neously in the spherical shell with
a width of approximately 8 a.u. (1
a.u. [atomic unit| = 0.0529 nm, the
Bohr radius). An electron-free cav-
ity about 2 a.u. in radius is formed
in the center of the buckyball. So
the C,, molecule resembles a little
empty cage.

The existence of the cavity inside
the buckyball appears to have been
proved experimentally by muon
analysis. (The sensor in this method
is muonium, which is something like
the hydrogen atom, but instead of a
proton it has a muon—an elementary
particle with a charge of +¢ and a
mass of 200 m,. The properties of
muonium depend strongly on the
electron density at its location. The
researchers managed to place muo-
nium inside a “fullerene cage” and
show that the properties of free and
captive muonium are virtually the
same.

Free buckyball molecules attract
one another with the same weak
van der Waals forces that appear be-
tween the carbon layers in graphite.
Because of this attraction, bucky-

n

3The ideas expressed by “Daedalus
in 1966 are not so much fantasy as
scientific prediction that has come
true. See The Inventions of Daedalus
by David E. H. Jones (San Francisco: W.
H. Freeman & Company, 1982)—Ed.



Figure 2

Structure of pure fullerite—the crystal
formed from buckminsterfullerenes.
One elementary cell of the crystal is
shown. The buckyballs are situated in
the corners and in the middle of the
cube faces.

balls crystallize at room tempera-
ture into a fragile yellow-red crystal
with a face-centered cubic lattice.
The new crystal was named
fullerite. The distance between ad-
jacent buckyballs in this crystal at
room temperature is 1.00 nm. Pure
fullerite that contains nothing but
buckyballs is a dielectric.

Figure 2 shows an elementary cell
of fullerite. Buckyballs play the
same role in a fullerite crystal as at-
oms in an ordinary crystal. Many
characteristics of fullerites (for ex-
ample, the electron spectrum) can
be calculated with great accuracy by
treating the buckyballs as if they
were atoms and applying traditional
methods of calculating the proper-
ties of crystals.

The new carbon molecules
(fullerenes) and the crystals made
from them (fullerites) are the third
form of naturally occurring car-
bon—or in scientific terms, the
third allotrope of carbon. The first
two allotropes—diamond and
graphite—have free bonds that
grab stray atoms (for instance, hy-
drogen atoms). Such is not the case
with fullerenes and fullerites, since
they don’t have any free bonds, so
among carbon allotropes, they are
the purest.

How to build a fullerene
By the mid-1980s, when fuller-

enes were being discovered, meth-
ods for experimentally producing so-

called cluster molecules (consisting
of a small number of identical at-
oms) had reached an advanced state
of development. Usually the num-
ber of atoms in such clusters is
rather arbitrary. However, the very
first experiments with carbon pro-
duced a surprise: large carbon clus-
ters with an odd number of atoms
were never formed! At first this fact
was explained by the formation of
polymer chains of the type [-C =C].
H. W. Kroto and his colleagues were
the first to provide a correct interpre-
tation, though they couldn’t per-
form a reliable structural analysis—
they had too few fullerenes. Their
explanation remained a hypothesis,
and the fullerene an exotic toy for
theoreticians, until the summer of
1990, when a revolutionary event
occurred: a method of large-scale
production of fullerenes was pro-
posed.

The solution was found rather
surprisingly by a group of American
astrophysicists—specialists in the
area of cosmic dust: W. Kretschmer,
D. Huffman, and their students L.
Lamb and C. Fostiropoulos. As far
back as 1983 Kretschmer and Huff-
man had tried to experimentally re-
produce the natural conditions
needed for the formation of cosmic
dust. To this end they evaporated
graphite samples heated by an elec-
tric current in gaseous helium. After
the discovery of buckminster-
fullerene, the researchers decided to
repeat their old experiments. To ex-
tract the spherical molecules they
expected to produce, Kretschmer
and Huffman took advantage of the
old chemical rule: dissolve a sub-
stance in a similar one. They dis-
solved the lampblack (formed by
carbon vaporization) in benzene,
which also consists of closed mol-
ecules. A yellowish or reddish liquid
was produced whose color depended
on its concentration. Soon it was
clear that the dissolved fraction of
lampblack was composed of mol-
ecules of C, (75%), C,, (23%), and
even larger fullerenes (2%). After the
benzene evaporated off, small
fullerite crystals remained on the
bottom of the cuvette! Analysis of

these crystals produced the first re-
liable information about the shape
and properties of fullerenes.

Later this method was perfected.
It turned out that in order to obtain
the fullerene-rich carbon soot, it was
convenient to use an electric arc be-
tween carbon electrodes. When the
monomolecular fractions were ex-
tracted from the fullerene solution,
a purity of 99.99% was achieved.
Yet the basic production stages re-
mained the same: evaporating
graphite electrodes in helium, then
dissolving the soot in an organic sol-
vent. So the price of the final prod-
uct in this improved production pro-
cess depended only on the cost of the
electricity consumed: about 5 cents
per gram of fullerenes!

How are fullerenes formed when
graphite is evaporated, and why is an
atmosphere of helium essential? As
was mentioned above, graphite
consists of flat layers of carbon
hexagons. Fairly small carbon
clusters seem to be formed ini-
tially during graphite vaporization
in the electric arc. They are linear
and have plenty of free bonds. In
the cooling atmosphere of helium
these clusters form graphite “fish
scales” resembling scraps of graph-
ite planes (see figure 3 on the next
page). From the energy standpoint
it’s advantageous for these fish
scales to change their shape (be-
cause they have free bonds at the
edges, which are disadvanta-
geous)—they form several penta-
gons instead of hexagons and bend
because of it (the ends of the free
bonds come together and thus
lower their energy). Since it is en-
ergetically disadvantageous for
two pentagons to be next to one
another, the open ends must come
together in the course of this evo-
lution, the structure that emerges
automatically is—the soccer ball!
(The buckyball is a minimal
fullerene, in which the pentagons
have no common edges.) Thus, if a
fullerene grows slowly enough, it
must necessarily become a
buckminsterfullerene. Under actual
conditions, of course, the shell can
close up before the ideal soccer-ball
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Figure 3

Consecutive stages of formation of buckminsterfullerene C60 during graphite

vaporization in a helium atmosphere.

structure is formed, and then other
structures arise.

It’s not accidental that inert he-
lium serves as the cooling bath
when fullerenes are grown. (“Bath”
here is a term of art, not figurative
language.) This is due to the fact that
helium doesn’t saturate the free car-
bon bonds, which lets the carbon
fish scales close in on themselves. If
there were hydrogen atoms, for in-
stance, in the combustion atmo-
sphere, they could saturate some of
the free bonds and destroy the sym-
metry of the curling fish scale. The
opposite sides wouldn’t be able to
come together. As a result, struc-
tures that resemble shells would
grow instead. It’s interesting that
this very process underlies the for-
mation of carbon soot during incom-
plete combustion in ordinary air.

The smallest this, the smallest that . .,

There are many proposed appli-
cations for fullerenes. For example,
they might be used as the basis for
producing unique lubricants. As
was mentioned above, the C, mol-
ecule is very strong both chemically
and mechanically. Its mechanical
strength was tested as follows: a
flux of buckyballs was accelerated
to a velocity of 30,000 km/h (about
orbital velocity) and then sent
crashing into a steel wall. The
fullerenes bounced off, and were
none the worse for the wear! Such
strength is just what one wantsin a
lubricant. So not only is the
fullerene C, the world’s smallest
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soccer ball, it’s the smallest and
strongest ball bearing as well.

The chemical stability and hol-
low structure of fullerenes suggest
ways in which they might be used in
chemistry, microbiology, and medi-
cine. For example, fullerenes seem
to have no match as a packing ma-
terial for individual atoms. Scien-
tists have learned how to pack
fullerenes even with such heavy at-
oms as lanthanum and uranium.
Fullerenes filled with such atoms
open unexpected possibilities for
chemists. For instance, fullerenes
can be used to pack and transport
not only atoms but entire molecules
to the required destination. Not a
bad idea for pharmacists and micro-
biologists! So the world’s smallest
soccer ball is also the world’s small-
est packing box—or should I say,
pillbox.

Nowadays molecular biologists
engaged in genetic engineering use
viruses (many of which, by the way,
are shaped like buckyballs). If scien-
tists manage to use fullerenes to
transport the necessary organic mol-
ecule to a particular site in a protein,
it would mean the creation of an
artificial, specialized virus, and
again—the smallest one (for the ben-
efit of life on Earth, we all hope).

Now let’s talk about microelec-
tronics. It’s well known that the pro-
cess of miniaturization of electronic
chips has recently reached its natural
limits—that is, molecular and atomic
dimensions. As a matter of fact, an-
other term is used more and more for

the new technology: not micro-, but
nanoelectronics. The characteristic
lengths of the elements are nano-
meters. In nanoelectronics the most
interesting objects from the view-
point of possible applications are
quantum dots—microcrystals or
other formations incorporated into a
nanoelectronic circuit—that can re-
tain (localize) electrons. Such dots
have a number of unique optical prop-
erties that make it possible to use
them either as control elements in
fiber-optic communications or as the
basic processor elements in the opti-
cal supercomputer currently being
designed. Fullerenes are in many re-
spects ideal quantum dots. Adding to
our list of records, we can say that
fullerenes have a good chance of be-
coming the smallest microchip in a
computer nanoprocessor.

And, last but not least, high-tem-
perature superconductivity.* Fol-
lowing the discovery of high-tem-
perature oxide superconductors in
1986 by Bednorz and Miiller, new
substances have continually been
tested for possible superconductiv-
ity. A pure fullerite, of course, was
an unlikely candidate for supercon-
ductivity, since it’s a dielectric (as
was mentioned above). But everyone
knows how to turn a dielectric into
a conductor: you dope it. Atoms of
a suitable impurity can, for ex-
ample, be donors of the electrons
needed to conduct electric current.
It was doping that produced the first
high-temperature superconductor
La,  Sr CuO, (here x = 0.1-0.2 is

4See “Meeting No Resistance” in

the September/October 1991 issue of
Quantum.—Ed.




Figure 4

Crystal structure of superconducting
fullerite K,C, . The little balls corre-
spond to atoms of the doping impurity
(potassium),

the concentration of the impurity—
strontium, in this case).

In the beginning of 1991 a new
discovery grabbed the scientific
headlines: A. Hebard and his col-
leagues discovered that a fullerite
doped with potassium—K,C ,—
became a superconductor at 18 K
(-255°C). This temperature wasn'’t
a record, but when rubidium was
substituted for potassium, the su-
perconductivity transition tem-
perature jumped 28-29 K. Before
the race began in 1986 to find
high-temperature superconduc-
tors, no one had found a material
that was superconducting above
24 K. Now materials that are su-
perconducting at 126 K have been
found, and there are reports of
even higher temperatures.

Superconductors based on Cg,
molecules appear to enjoy superior
stability due to the strength of these
molecules. This is what makes
them stand out from the oxide high-
temperature superconductors. The
crystal structure of a superconduct-
ing fullerite is shown in figure 4.
The doping impurity occupies posi-
tions in the crystal between the
fullerenes.

Still another form of cartion;
sciwartzite

So, we see that cellular structures
made of carbon pentagons and hexa-
gons have been discovered and are
now the subject of intense research.

Figure 5

Elementary cell of a schwartzite—an
infinite surface made of carbon
atoms. (Six of its 24 heptagons are
completely visible here.)

But what about heptagons? Such
structures have not yet been obtained
experimentally, but theoreticians are
already modeling their properties on
computers. In fact, heptagons offer
even more possibilities than fuller-
enes. For example, a carbon “sponge”
has been found whose complex sut-
face consists of hexagons and hepta-
gons that separate three-dimensional
space into two subspaces.

These structures were named
schwartzites after the German
mathematician who was the first
to study such surfaces at the end of
the last century. Figure 5 shows
but one elementary schwartzite
cell. The entire crystal is obtained
by an infinite repetition of such
cells. Schwartzite has the same type
of crystal lattice as the cubic face-
centered fullerite in figure 2. The el-
ementary cell has 216 corners, 24
heptagons, 80 hexagons, and 3
handles. Note that in this periodic
structure the handles connect adja-
cent crystal cells; in figure 5 each
handle is cut in two and only half of
it is shown.

Again, such structures have not
yet been observed experimentally.
But if researchers manage to synthe-
size this new allotrope of carbon,
they would obtain a substance with
unique mechanical, physical, and
chemical properties.

The author is grateful to Grigory
Kopelevich, who prepared the computer-
generated illustrations for this article.

Energy Sources
and Natural Fuels

by Bill Aldridge, Linda Crow,
and Russell Aiuto

This book is a vivid exploration of
energy, photosynthesis, and the
formation of fossil fuels. Energy
Sources and Natural Fuels
follows the historical unraveling
of our understanding of photo-
synthesis from the 1600s to the
early part of this century. Fifty-
one full-color illustrations woven
into innovative page layouts
bring the subject to life. The
illustrations are by artists who
work with the Russian Academy
of Science. The American
Petroleum Institute provided a
grant to bring scientists, engi-
neers, and NSTA educators to
create the publication. This
group worked together to
develop the student activities and
to find ways to translate indus-
trial test and measurement
methods into techniques
appropriate for school labs.
(grades 9-10)

#PB-104, 1993, 67 pp. US$12.95

To Order, Call
1-800-722-NSTA

Purchase
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Seeing Is
Believing

Let NSTA'S
Project Earth
science
series open
your eyes to
the skies.

The hands-on, teacher-tested activities in Astronomy and Meteorology—the first two books in the National
Science Teachers Association and BP America’s Project Earth Science series—bring the sometimes daunting
concepts of astronomy and meteorology down to Earth. Background information, supplementary readings, and
suggestions for integrating other disciplines provide a framework for launching a successful introduction to both
subjects.

In Project Earth Science: Astronomy students will discover Earth’s uniqueness by examining it as a part of the
whole Solar System. How did the planets form? Are we seeing a star’s present or past? Why is Earth’s distance
from the Sun so important?

Learn to read weather maps and do forecasts; model the water cycle on a tabletop; and use real data to track
Hurricane Andrew as it moves over ocean and land in Project Earth Science: Meteorology. Other activities explain
why the equator heats more quickly than the poles and why dust is needed for cloud formation. Both books
provide supplemental readings for teachers (and for interested students).

Project Earth Science: Meteorology (grades 5-10, 1994, 230 pp.) #PB103X $18.50
Project Earth Science: Astronomy (grades 5-10, 1992, 160 pp.) #PB090X $18.50

To Order Call 1-800~722-NSTA /s Mastercara, Discover,



BRAINTEASERS

Just for the fun of it

Breaking even. According to a contract, a worker is to be paid 48 francs
for each day worked and is to give up 12 francs for each day not worked.
After 30 days the worker is owed nothing. How many days did the
worker work during these 30 days? (Etienne Bezout [1730-1793])

B112

What’s wrong¢ Once I found a
strange notebook. A hundred
statements were written in it.
They said:

“There is exactly one wrong statement in this notebook.”
“There are exactly two wrong statements in this notebook.”

“There are exactly one hundred wrong statements in this notebook.”
Which of these statements is true? (A. Savin)

B113

“Fire!” Which is more effective in extinguishing a fire—cold water or
boiling water? (S. Krotov)

B114

Arithmetic of lacing. There are
many ways to lace wrestling
shoes, as is shown in the figure,
although we can’t see how the
shoelace is arranged inside the shoe. Can you tell exactly how many?
(N. Zilberberg).

B115

In half. Cut the figure at right into
two congruent parts.
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A strange emperor
and a strange general

A case study

with two leaps into the past

by Igor Akulich

HEN TERENTIUS, ABRAVE

Roman military leader, de-

cided to retire, he came to the

emperor and asked for a pay-
ment of 5 million brasses (a “brass”
was a copper coin with a mass of 5 gJ.
The emperor, however, was tight
with his money, so he decided to
cheat the general. He said, “I
wouldn’t want you to be content
with such a pitiful reward. Go to the
treasury and carry out one brass the
first day, a two-brass piece the sec-
ond day, then a four-brass, eight-
brass, sixteen-brass piece, and so on,
doubling the value of the coin each
day. I'll have a coin minted every
day of the appropriate size. As long
as you're able to carry the coin out
on your own, with no help, it’s
yours. But as soon as a coin is be-
yond your power to carry, you'll
have to stop, and our agreement will
be null and void.” Terentius was
very happy. He imagined an enor-
mous pile of coins, each one bigger
than the next, that he’d carry out of
the treasury.

What actually happened? Teren-
tius’s enrichment lasted only 18
days, because the coin on the 18th
day weighed about 655 kilos (he
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managed to roll it out of the treasury
with the greatest difficulty, using
his spear as a lever). The next coin
was absolutely unmovable. So the
total sum he received amounted to
262,143 brasses—that is, slightly
more than 1/20 of what he originally
asked for. The emperor exulted,
while Terentius suffered miserably.

This story, with a lot of interest-
ing details and the brilliance typical
of its author, can be found in Yakov
Perelman’s book Mathematics
Comes Alive.!

Into the distant past

More than a century ago, during
a lecture in Baltimore, Lord Kelvin
asked the following rhetorical ques-
tion: “Of all the two hundred billion
men, women, and children that
have walked across wet sand from
the beginning of time down to the
meeting of the British Association in
Aberdeen in 1885, how many would
answer anything but ‘yes’ to the

lQuantum readers may already be
acquainted with this outstanding
Russian popularizer of math and
physics. See, for instance, the
Kaleidoscope of the November/
December 1992 issue.—Ed.

MATHEMATICS AND PSYCHOLOGY

question: ‘Did the sand become
compressed under your foot?’ “ Why
Aberdeen in 1885? That was where
0. Reynolds showed that the sand
actually expands rather than con-
tracts under our feet, contrary to
common Sense.

But let’s not digress too far from
our subject. It would be better to ask
a similar question about the
emperor’s award: “Of all the mil-
lions of readers of Perelman’s book
and the thousands of Quantum
readers, how many noticed that the
behavior of both the emperor and
the general described in the story
was at least strange and absolutely
illogical?”

What was so strange and illogi-
cal? We'll soon see.

First, let’s try to estimate some of
the values we'll need. It’s clear from
the story that a coin with a mass of
655 kg was just about at the limit of
Terentius’s physical resources: a little
more and he would be unable even to
budge it. We'll estimate this “little
bit” as 45 kg—that is, assume that the
biggest coin that would yield to
Terentius’s efforts has a mass of 700
kg (which corresponds to a denomina-
tion of 140,000 brasses). In addition,



assume that Terentius’s state of
health will allow for daily visits to
the treasury and removal of new
coins for ten thousand days (about
25 years).

So, the emperor decided to lure
his combative general into a trap
that is often called the avalanche.
(Indeed, it’s hard to think of a better
name: the coins grow like an ava-
lanche, and this is what the miserly
and cunning emperor counted on.)
In this case, the multiplication fac-
tor is k = 2—that is, each coin is
twice as massive as the previous
one.

And it is this choice of multipli-
cation factor that leads one to sus-
pect that the emperor was a strange
person, because of all positive inte-
gers k, he had chosen the one that
brought the greatest profit to
Terentius!

Consider, for instance, the case in
which each new coin is three (and
not two) times as massive as the pre-
ceding one. How many coins would
Terentius be able to lift? The value
of the (n + 1})st coin would then be 3®
brasses. The general can lift a coin
that is equivalent to no more than
140,000 brasses. What is the largest
n such that 37 < 140,000? This n sat-
isfies the inequalities 37 < 140,000 <
3n+ 1’ or

log,140,000 - 1 < n <1o0g,140,000.

Since log,140,000 = 10.7... , we get
n = 10. So the last coin Terentius
would be able to lift is the eleventh:
on the first day he’d receive 1 brass,
on the second day 3 brasses, on the
third 3% = 9 brasses, and so on. The
total reward would come to 1 + 3 +
32+ ... + 310 -88,573 brasses. Re-
member, with k = 2 he received
262,143 brasses—almost three times
as many!

A similar situation would occur
for larger values of k. In general, the
sum § that Terentius could receive
in n days given a factor k equals

S=1+k+k*+..+kn

where n = [log, 140,000] (and [a] de-
notes the greatest integer not ex-
ceeding a). By the formula for the
sum of a geometric sequence,

kn+1_1
S=——.
k-1

If n is large enough, we can assume
n =[log, 140,000] = log, 140,000; then

_ 140,000k -1
k-1

S

139,999

=140,000 +
k-1

This means that S actually decreases
as k increases. In our case, however,
this is not exactly true: the loga-
rithm isn’t very large, so in fact S(k)

decreases “irregularly.” Here are a
few values of S: S(4) = 87,381; S(5) =
97,658; S(6) = 55,987 8(7) = 137,257,
S(8) = 37,499; S(10) = 111,111, S(20}
= 8,421; S(50) = 127,551; §(100) =
10,101 (in the last case, Terentius
would come for his reward only
three times!).

And what happens for k = 12 Per-
haps in this case the sum S turns out
to be greater than for k = 27 Alas,
that’s not the case. Another factor
comes into play here—the somber
fact of human mortality. We've al-
ready estimated the time allotted to
Terentius for receiving his reward as
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10,000 days. Consequently, in the
case k = 1, he would get simply
10,000 brasses.

Of course, we could adopt other
limitations instead of 700 kg and
10,000 days. Then our conclusions
would have been somewhat differ-
ent—for instance, with 1,000 kg as
the greatest possible mass of the
coin we’d have §(2) < §(3}—but basi-
cally they would remain the same.

Thus, the (supposedly) cunning
emperor, having decided to cheat
the general using the avalanche ef-
fect, chose the worst multiplication
factor (or at least one of the worst).
And this gives us grounds to con-
sider him a strange person—to put it
mildly.

And what about Terentius? This
is a little more complicated. It may
help to take a leap . . .

Into the pecent past

Way back when I was in elemen-
tary school (and, I should add, after
I read Perelman’s book),  used to ask
my friends—the ones who didn’t
particularly like math—to estimate
how many grains of wheat you
would need to put one grain on the
first square of a chessboard, two
grains on the second square, four on
the third, and so on, doubling the
number of grains each time. “Half a
sack,” my friend would naively re-
ply. Then I would happily set about
convincing my victim that this an-
swer wasn't just wrong, it was very
wrong—that in actual fact the num-
ber of grains keeps growing from
square to square, like an avalanche,
and becomes unimaginably large. I
would present the result of calcula-
tions using the geometric series . . .
and I'd be interrupted by a skeptical
snort: “What the heck are you talk-
ing about, ‘trillions of tons’? I say
half a sack, and it’s half a sack!” A
total fiasco! And it’s no surprise,
because the human mind refuses to
comprehend such enormous, “un-
worldly” numbers.

Here’s what I conclude from this
little leap into the past. There are
basically two kinds of people: those
who believe in calculations and
strict logic, no matter how incred-
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ible the result is; and those who rely
on common sense and don’t trust
anything that contradicts it. Both
attitudes are absolutely normal and
natural.

Which of the two categories does
our character Terentius belong to?
On the one hand, he was very satis-
fied with the emperor’s suggestion,
because he understood at once how
large the coins will grow even if you
start with one brass. (And this is just
what Perelman’s story says: “He
imagined an enormous pile of coins,
each one bigger than the next.”) So
we can definitely include Terentius
in the first category. But then, why
didn’t he understand that since the
value of a coin is proportional to its
mass, he’d also have to cope with an
avalanche of masses? Did he simply
overlook this fact? No, that’s hardly
possible: the emperor intentionally
emphasized that Terentius was al-
lowed to take coins as long as he was
able to lift them himself, without
anybody’s help.

It looks as if Terentius simulta-
neously did and didn’t understand
that he was going to be dealing with
an avalanche, and where it might
lead him. I can’t call this behavior
anything but strange.

Under the false botiom

By now, I imagine you’ve figured
out that this story has a kind of
“false bottom,” like a jewelry box.
But there’s something interesting
even under the second bottom. Let’s
allow for non-integer values of k.
Then what value of k will make
Terentius’s reward the greatest? It’s
clear enough that for this k the mass
of the coin he takes on the 10,000th
day must be exactly 700 kg—that is,
it must have a denomination of
140,000 brasses, which means that
k = 140,0001/9%° ~ 1.0012.

Then Terentius’s total income
over more than 25 years of his daily
visits to the treasury will come to
S = (k10000 _ 1)/(k — 1) = 120 million
brasses! This is many times more
than the sum he requested of the
emperor. In truth, the real avalanche
doesn’t come crashing down—it just
creeps along. So here is how I would

advise Terentius to respond to the
emperor’s seemingly attractive offer:

“Sire! Such a reward is too gener-
ous for me. Not only that, it will
lessen the treasury so rapidly that
severe damage will he inflicted on
you and on the entire state. SoI can’t
agree to such a sharp growth in the
coins’ value. But it would be impu-
dent of me to turn your offer down
completely. Might I ask only one
thing of you: let the value of the
coins grow, but not so rapidly. I'd be
completely satisfied if each coin
would be more massive than the
previous by twelve hundredths of a
percent.” (Note: most probably they
didn’t know percentages at that
time. I imagine, though, that Teren-
tius could have expressed his wish
in some other way.)

Nothing ventured, nothing gained.
Maybe the emperor would have swal-
lowed the bait without noticing the
hook—which would eventually lead
to the bankruptcy of the empire.

Actually, in this case a certain
difficulty arises: the values of the
coins won't be expressed as integers,
which probably wasn’t allowed at
that time. No matter—Terentius
could propose a magnanimous cor-
rection: rounding down to the near-
est integer! This wouldn’t cost him
too much, because the damage will
definitely be less than ten thousand
brasses, which is nothing compared
to his income.

Of course, it’s easy for us to solve
the financial problems of the brave
general. But how would Terentius
himself respond to my advice? It’s
not unlikely that he would find the
proposal strange, to say the least.
After all, he would have to wait 20
long years for the bulk of his reward.
In the first five years Terentius
would receive less than 6,600
brasses, and during the first year and
a half he’d have to come every day
for a one-brass coin! So who of the
three is the strangest: the emperor,
the general, or I? It’s up to you to
decide. At any rate, I can’t help won-
dering what Yakov Perelman would
have thought of this interpretation
of his story. I'd like to think he
would have been amused. Q)



HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M111

Factorials and powers. (a) Prove the
identity

1.2 2.3! H(H+l)!
+ ot
2 22 7
|
:(n+2)._2
211
nl=1-2-.. n).
( )

(b) Find the sum

1.3! 2.4 n(n+2)!
+ ot .
3 3 3

(V. Zhokha)

M112

Meeting on the diagonal. A line
drawn through a point K in a square
ABCD intersects two opposite sides
AB and CD at points P and Q (fig. 1).
Two circles are drawn: through
points K, B, P and through points K,

D C

A P B

Figure 1

D, Q. Prove that their second point
of intersection (the point other than
K) lies on the diagonal BD. (V. Dub-
rovsky)

M113

Playing with quadratics. The coeffi-
cients in a quadratic equation are re-
placed with asterisks: *x? + *x + * = 0.
The first player names three num-
bers. The second one writes them
instead of asterisks at will. Can the
first player ensure that the resulting
equation has distinct rational roots
no matter how the second one ar-
ranges the coefficients? (A. Berzins)

M114

Rolling to almost everywhere. (a) A
regular octagon is rolled over the
plane by repeatedly turning it over
(reflecting about) any of its sides.
Prove that the sequence of rolls can
always be chosen in such a way that
the octagon’s center ends up inside
or on a given (arbitrarily small)
circle. (b) Solve a similar problem for
a regular pentagon. (¢) For what
regular g-gons is a similar statement
true? (G. Galperin)

M115

Composite sum of squares. Prove
that 2352 + 9722 is a composite num-
ber. {D. Fomin)

Physics

P111

Spring in water. A long homoge-
neous spring of length L in the re-
laxed state consists of a large num-

ber of identical turns. When the
spring is placed vertically inside a
tall cylinder with a smooth wall, the
spring is half as long as it originally
was. Water is then poured into the
cylinder up to the level L/2. How
long is the spring after the water is
added? The density of the spring is
p and the density of water is p,,. (S.
Krotov)

P112

A charge isn’t alone. A point particle
of mass m and charge Q is placed at
a distance L from an infinite con-
ducting plane and then released.
How long does it take the particle to
reach the plane? Neglect the effects
of gravity. (Hint: use the method of
images and compare it to previous
problems that you have done with
the same force law.) (A. Bytsko)

P113

Sublime self-rescue. According to a
science fiction story, an astronaut of
mass M = 100 kg was at a distance L
= 100 m from her spaceship with a
glass of frozen water in her hand.
Using the sublimation of the ice, the
astronaut returned to her ship. Is
such a mode of rescue possible? De-
termine the time needed to return to
the ship. Assume that the sublima-
tion of the ice occurred at a constant
temperature T = 272 K. The pressure
of saturated vapor at this tempera-
ture is P = 550 Pa. The gas constant
R = 8.3 J/mol - K). The size of the
glass and the mass of the ice can be
any values you wish. (A. Stasenko)

CONTINUED ON PAGE 45
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The hounding main

The forces controlling the sea swells

by Ivan Vorobyov

HE HURRICANE IS HUN-

dreds of miles away, the air is

calm hereabouts, but the walls

of water roll one after another
as far as the eye can see. It’s the sea
swell—the steady surging of the
Earth’s great oceans. The chain of
parallel curves stretches for tens of
kilometers, and the waves go on like
that for hours on end.

Near the Cape of Good Hope the
waves can reach 9-11 m with a wave-
length of 100-300 m. Only the
ocean’s great depth (2 km) reassures
us that a particularly high wave won’t
expose the very floor of the ocean.
The speed of these colossal waves is
quite impressive: 40-70 km/h.

What are the forces that produce
this regular movement of so much
water? What does the velocity of the
waves depend on? What is their
characteristic shape (profile)? What's
going on beneath the roiling surface?
I'll try to answer these questions.
But first, it will be worthwhile to
take a close look at the wave itself.

Layered flow

With waves, it’s more convenient
to study them when they aren’t
moving. Imagine we’re flying in a
helicopter with the velocity of the
wave motion c. Relative to us, the
curves of the water’s surface don’t
change, and along their unchanging
profile the water flows steadily. Both
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the level and inclination of the sur-
face, as well as the velocity V of the
water flow along the stationary pro-
file, repeat themselves over a dis-
tance of the wavelength A. Next to
the surface layer is another one just
below it, and next to that is another
layer below, and so on. (Physicists
call this Iaminar flow.) As the water
moves smoothly along, there are no
gaps or ruptures, and the curves of
the deepest layers remain stationary
with respect to the profile of the sur-
face layer, repeating with the same
distance A (fig. 1).

Figure 1

So, our “stopped wave” reference
frame turns the movement of the
water into a steady-state flow along
the curved layers. The stationary
boundaries are formed by water par-
ticles moving along the same trajec-
tory. Water doesn’t leave a layer,

LARGE-SCALE PHENOMENA

which means that the same mass of
water passes through any cross sec-
tion of a given layer per unit time.
The profiles of the different layers
are not identical. Their amplitudes
decrease gradually with depth. This
becomes clearer if we examine the
flow between the boundaries of one
layer. Because the flow is steady, the
layer is thicker where the velocity is
less, and vice versa. Flowing down-
hill, the water particles gain velocity;
climbing upward, they slow down.
Therefore, the distance between
boundaries is larger at the crests and
smaller at the troughs (fig. 2). Because

/

Figure 2

of this, the lower boundary of each
layer is less inclined than the upper
boundary. The difference in their
heights becomes smaller, the changes
in the velocity during ascent and de-
scent are less pronounced, and the
layers become more homogeneous in
thickness as a result of the damping
of the curves.

At the lower limit we come upon
horizontal layers of still water. But

Art by Dmitry Krymov
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actually the water is stationary only
relative to the ocean floor—in our
moving (stopped-wave) reference
frame, it travels with a velocity ¢
directed opposite to the wave. The
ocean floor moves with the same
velocity and in the same direction.

If the water is deep enough to
damp the wave appreciably, the
ocean floor will be in still water and
will not affect the movement in the
upper layers. A quantitative treat-
ment of this condition will be found
at the end of this article. But for now
it’s clear why the uneven relief of
the ocean floor doesn’t disturb the
waves at the surface.

To find the velocity v of a water
particle in the “moving wave” refer-
ence frame (in which the ocean floor
and the shore are stationary), we
need to sum the velocity of a par-
ticle moving along the wave profile
V and the velocity of this profile ¢
(fig. 3):

v=V+ec.

Figure 3

This simple equation will play an
important role later on.

Gravity and pressure

The term “surge” is used when
waves are anywhere from one meter
to hundreds of meters long. For
waves that long we can neglect sur-
face tension. The fact that they
travel hundreds of kilometers with
no appreciable damping is evidence
of the small role friction plays here.
So the ocean’s surge is basically de-
termined by the interplay of just two
forces: gravity and pressure.

The pressure along the water’s
surface is identical everywhere and
equal to the atmospheric pressure.
At a very great depth the layers are
almost horizontal and the water in
them is almost stationary. The pres-
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p+dp

dS, = dS cos o <

Figure 4

sure at a given depth in still water is
the same throughout. In deep water
it differs from the atmospheric pres-
sure, but there are no pressure varia-
tions along the wave profile in either
the surface wave or in the deep
waves. In the intermediate layers
the variations in pressure cannot be
caused by air pressure, since it is
uniform everywhere on the surface.
But there can’t be any heterogene-
ities coming from below either. This
is a compelling argument in favor of
the pressure being identical at the
boundary of any layer.

Although the pressure is the same
at any point in a profile, it changes
at the transition from one boundary
to another. The pressure difference
and the force of gravity accelerate
the water particles. We can deter-
mine this pressure difference by the
following reasoning. A layer as a
whole doesn’t move up or down.
The forces are counterbalanced for
every fragment of the layer with a

IR

PN

Figure 5

R

length equal to the wavelength A
(fig. 4).

To calculate the force of the pres-
sure acting on the upper curved
boundary, where the pressure at any
point is p, we begin with a small
inclined fragment. The force is equal
to the pressure times the area of the
fragment and is directed perpendicu-
lar to it. The vertical component of
the force is equal to the pressure
times the area of the horizontal pro-
jection of the fragment (fig. 4). The
common factor (pressure) is taken
out of the brackets when we sum
the vertical components, and the
sum of the areas of the projections
gives the area AL of the horizontal
cross section of the wave fragment
(where L is its width). Thus, the to-
tal force of pressure acting on the
upper boundary is pAL and is di-
rected downward.

For a lower boundary with a pres-
sure p + dp, the corresponding force
is directed upward and is equal to




(p + dp)AL. The difference between
these forces is counterbalanced by
the force of gravity mg, where m is
the mass of the fragment. There-
fore,

dp :ﬁ'
AL

Let’s take a closer look at this
equation for the increase in pressure.
A curve doesn’t change a layer’s
mass or the mass of a fragment. It's
the same as it was between the hori-
zontal boundaries of this fragment
in still water. So in still water there
is the same pressure difference, and
the same pressure. (In every case it
begins at the surface with the atmo-
spheric pressure.) The pressure at
the curved boundary is equal to the
initial hydrostatic pressure acting on
its particles in still water (fig. 5).

Acceleration of a water particle

Consider a small fragment of a
thin layer (fig. 6). Its butt-ends are

Figure 6

perpendicular to the velocity V of
the flow. During the time dt of
passage through this fragment, the
length of the inclined boundaries
is V dt, and their area is LV dt. In
order to apply Newton’s second
law and find the acceleration, we
need to know the mass of the frag-
ment dm and the sum of the forces
acting on it.

In the period T = A/c the entire
mass m of the wave fragment is re-
placed, so the mass that passes
through the fragment per second is
m/T = (m/A)c. In the period dt the

mass entering the fragment is
equal to

dm = (ch dt.
A

From this it follows that the force of
gravity acting on the fragment is

dmg= E]C dt.
(5

This force is directed downward at
a right angle to the wave velocity c.
The pressure doesn’t change
along the flow in a layer, and the
sum of the forces directed at one an-
other at the butt-ends is zero. The
pressure difference at the inclined
boundaries dp results in the force

dp LV dt = (%}V dt.

This force is directed perpendicular
to the boundary, at a right angle to
the velocity of the flow V.

Both forces can be obtained from
the vectors V and ¢ in the same way:
by rotating them 90° and multiplying
by the same factor (mg/A) dt. Thus,
the sum of the forces can be obtained
from the vector sum V + ¢ by the
same two operations: rotation by 90°
and multiplication by the aforemen-
tioned factor (fig. 7). Since V+c=v,

(mg/\cdt

= (mg/Nvdt

dm = (m/\cdt
Figure 7

the total force can be expressed by the
velocity of a water particle relative to
the ocean floor (that is, in the moving-
wave reference frame). The force is
perpendicular to this velocity and is

equal to
P - [%) d.
A

Dividing the force by the mass dm
gives us the acceleration of the frag-
ment:

The acceleration is directed at a
right angle to the velocity v.

This is a turning point. We've
determined the acceleration that
results from the forces of gravity and
pressure, and now we're ready to
unravel the details one by one.

A picturg of motion

An acceleration that is perpen-
dicular to the velocity does not
change its value. In this case the
acceleration itself a = (g/c)v has a
constant absolute value. Constant
acceleration at a right angle to the
velocity clearly indicates uniform
circular rotation (fig. 8). For a circle

a=wv=(g/clv

Figure 8

of radius r, the centripetal accelera-

. tion is a = v?/r; and since the angu-

lar velocity is ® = v/r, then a = wv.
Comparing the last equation and the
formula for acceleration found pre-
viously, we obtain the angular veloc-

ity:

w=%.
&

Now we essentially have the
whole picture of the motion: the wa-
ter particles move with the same an-
gular velocity in a circle of constant
radius. For particles forming the
wave’s profile, the radii are the same,
but their centers lie on a horizontal
line. The particles rotate simulta-
neously; the angular displacement be-
tween particles doesn’t change, but
the wave profile as a whole moves
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do = wdt

Figure 9

with a velocity ¢ (fig. 9). This occurs
at every depth in the water—only the
radius of the circular motion changes
from layer to layer.

Aftera time T'= 21/ a particle will
return to its initial position and find
itself in the same fragment, but in the
next wave (fig. 10}—the one that trav-
eled the distance A = ¢T = 2nc/o dur-
ing this time. Since = g/c, then A =

C

T=2n/®
: ;4>k=cT=2nc/m/ AN
Figure 10

2nc?/g. This gives us the following
equation for the velocity of the wave:

2k

o

It's easier to analyze the wave
profile in the stopped-wave refer-
ence frame. The profile then is
drawn by the particle itself, whose
movement is a combination of rota-
tion and translation with a velocity
¢. This allows us to construct the
profile and find the dependence of
the coordinates on time:

X =ct—rsin ot,
y =1 COSs Ot.

The coordinate origin (fig. 11) is

Y, X =ct—rsinot
y =r cos ot

4
ot /|

I~
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Figure 11
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chosen at the center of the circle,
and zero time corresponds to the
moment when the particle is at the
crest.

For a weak wave (when v = oris
small compared to ¢), the horizon-
tal velocity V_ = ¢ — @r cos ot can
be considered constant and equal
to c. Then x = ct. In the formula for
y we replace t with x/c and obtain
an approximate equation for the
profile:

((DX] [ZTCXJ
y=rcos| — |=rcos| — |.
c A

So it turns out that a weak wave is
sinusoidal. The “weakness” condi-
tion mentioned in the opening sec-
tion is equivalent to the inequality

r<<—,
o

For moderate waves we see a
sharpening at the crests and a flat-
tening in the troughs (fig. 12). The

c+vVv

Y
Y

Figure 12

vertical deflections from the crests
and troughs are equal for small time
periods, but the horizontal deflec-
tions differ: the velocity at a crest is
¢ —v, while the velocity in a through
is ¢ + v. The closer the value of v is

to ¢, the stronger the horizontal
“compression” of the crests.
Our physics intuition tells us
that we should expect some-
thing unusual when the natural
limit of the wave velocity is
passed. Formally, atv = c an in-
finitely sharp vertical spike
appears, and at v > ¢ the profile
crosses over itself and a loop
emerges (fig. 13). For a wave in
the ocean this scenario would look
pretty strange. According to our

v=_~=C
Figure 13

theory, when v is smaller than but
close to ¢, the layers near the sharp
crests curve steeply, and the veloc-
ity of flow changes sharply from
layer to layer. Doubts arise not
only about the stability of such
motion, but even whether such a
motion is close to being stable. So
the case of large waves seems to
demand a more complicated ap-
proach.

Damping of waves at depth

The crests of laminar waves are
located precisely one beneath the
other, and likewise the troughs. At
the points of the profile that are
symmetrical relative to the crests,
the absolute value of the flow veloc-
ity is equal, and also at these points
the thickness of a layer is the same
because the flow is constant, which
precludes any skewing.

The boundaries of a layer in a
stopped wave are formed by the tra-
jectories of its particles. For each of
them the motion consists of a com-
bination of rotation and translation.
The difference is that the centers of
the circles are located at different
depths and their radii aren’t equal.

To obtain the dependence of the
radius on depth we use the fact that
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the flow is constant throughout a
layer. Let’s consider two cross sec-
tions (fig. 14). The first is in a crest,
where both radii “look” up; the flow
velocity is ¢ — v and is directed hori-
zontally. The second is in a trough,
where the radii “look” down; the
flow velocity is ¢ + v. When the dis-
tance dh between the centers is
small, the radii r and 7’ of the upper
and lower circles differ only slightly.
The thickness of the layer in the
crest is dh + r — ¢/, and in the trough
it's dh + r’ - r. The equality of the
flows in these cross sections gives us

(dh+r-7)c-v)=(dh+7-r1)c+V)

Therefore, we can find the in-
crease in the radius dr = v’ —r, which
is negative—

dr=-Ydn

(o}

—and this is correct because the ra-
dius decreases with depth. Sincev =
or, the decrease in the radius is pro-
portional to the radius itself. When
the center of the circle is lowered by
dh, the radius decreases by the same
proportion:

& %,

r c

c/o=\/2rn X/n h

Figure 15

c+v trough

Starting from the circle of ra-
dius r, at the surface and descend-
ing by small steps from its center,
we can find either graphically or
numerically the radius at any
depth h (fig. 15). Readers who can
integrate will be able to obtain the
analytical expression

_oh _2mh
r=re c =rne A

0
(They will also have obtained the
expression ®/c = 21/A with no great
difficulty.)

The amplitude of the waves and
the velocity of the water decrease
with depth geometrically. The num-
ber e is approximately equal to 2.72
= 10943, At a depth of A/2x the wave
is damped roughly by a factor of 3.
But at a depth equal to the wave-
length, it’s damped by a factor of ¢,
which is close to 535. When the
depth is of the order of the wave-
length, agitation from the ocean
floor is far weaker than the surface
agitation, which allows us to neglect
the influence of the ocean floor on
the waves.

And now, a few final remarks.
Our basic assumption at the out-
set was the absence of a pressure
drop along the curved layers. In
essence this meant that a deep
wave is similar to a surface wave,
only it has a different “atmo-
spheric” pressure. The discovery
of this kind of “self-similarity”
has helped lead to the solution of
complex problems in fields rang-
ing from fluid mechanics to el-
ementary-particle physics. In our
problem this approach made it
possible to describe the motion of
the entire mass of water by apply-
ing Newton’s second law to a
single droplet.
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MATHEMATICAL
SURPRISES

IX challenging dissection tasks

And a visit from a close relative of ¢

ARL SCHERER, A COMPUTER
scientist in Auckland, New
Zealand, recently posed the fol-
lowing six tasks:

1. Cut a square into three congru-
ent parts.

2. Cut a square into three similar
parts, just two of which are congru-
ent.

3. Cut a square into three similar
parts, no two congruent.

4. Cut an equilateral triangle into
three congruent parts.

5. Cut an equilateral triangle into
three similar parts, just two of
which are congruent.

6. Cut an equilateral triangle into
three similar parts, no two congru-
ent.

The solution to the first task is
obvious (see figure 1). It is surely
unique, though I know of no proof.
Ian Stewart and A. Womstein have
shown that no rectangle can be di-
vided into three
congruent poly-
ominoes unless
the pieces are
rectangles.!

Figure 2 shows
three solutions to
the second dis-
section task.

Task 3 is more difficult. Scherer
found the pattern shown in figure 3.
The solution is not unique, because
the slanting line can assume an in-

Figure 1

ournal of Combinatorial Theory,
Series A, Vol. 61, September 1992, pp.
130-36.
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by Martin Gardner

b C
Figure 2

finity of positions. The one shown
may be the one in which line seg-
ments have the smallest possible
integer lengths.

As mathematician Robert Wain-
wright of Plainview, New Jersey, has
observed, figure 2b results when the
slanting line is orthogonal.

We turn now to the three equilat-
eral triangle tasks.

The fourth task obviously has an
infinity of solutions, obtained by

18 3

N
~

21 7/

14

Figure 3

rotating the three trisecting lines
about the central point (fig. 4). The
trisecting lines need not be straight.
They can be as wiggly as you like,

a b

Figure 4

provided that they are identical and
do not intersect (fig. 4b).

Scherer found an elegant solution
to the fifth task (fig. 5). It’s believed

Figure 5

to be unique. Note its similarity to
figure 2c.

The sixth task is easily solved (fig. 6).
It’s probably unique, though no proof
is known.

My only con-
tribution to the
six tasks was the
rediscovery of a
second solution

to the third task  Figure 6




Art by Sergey Ivanov

Figure 7

(fig. 7). T later learned from Scherer
that he had found it years earlier.
What is the value of x, assuming the
smaller side of the smallest rect-
angle is 1?2 I thought this would be a
simple question to answer. If xisn't
rational, surely it’s a recognizable ir-
rational, such as 1.732.... (the square
root of 3}, or 1.618... (the golden ra-
tio, often called phi), or some other
well-known irrational.

To my amazement, x turned out
to be an irrational number
I had never encoun-
tered before.

The cubic
equation re-
lating the
ratio of
t h e
sides
o f

the smallest rectangle to the ratio of
the sides of the similar largest rect-
angle is

_®-x+l
=

1
b¢ x*+1
x*-2x*+x-1=0,

(x> -x)(x-1)=1

The decimal expansion of x is
1.75487766624669276... . As Wain-
wright pointed out, the number is
closely related to phi, the golden ra-
tio. The reciprocal of phi equals phi
minus one. The reciprocal of x
equals (x — 1)2. Other equalities are

1

1ox-y e
x? x-1
I propose calling this number
“high-phi.” Donald
: Knuth, Stan-
ford Uni-
versity’s
noted
com-
| 4 puter
. scien-
tist,
sug-
gested
giving it
the symbol
¢, in which
the little cir-
cle of phi is
raised. He point-
ed out in a letter
how close a modi-
* fied fraction for
high-phi resembles
the continued frac-
tion for phi. Phi is
the limit of
1
S
I+l
141
1+1

1+

Add square root signs and you get

Vthe modiﬁed continued fraction for

e

high-phi:
1+ L
V1+1
V141
J1+1

V1+1

As Knuth write, the series con-
verges more rapidly than the series
for phi, giving values that are alter-
nately over and under the true value:
1,2,1.71,1.765,1.753, 1.7554, ... .

Knuth also called attention to the
following equality for high-phi:

ERILI VY
¢-1 ¢

Karl Scherer points out that the
three rectangles in my figure have
areas of x, x3, and x*. And if the origi-
nal square has a side length of 1, the
rectangles have areas of 1/x, 1/x?, and
1/x*. This shows that 1 = 1/x + 1/x> +
1/x*, and the ratio of the largest rect-
angle to the rest of the square is /9 .

Scherer suggests the terms phi-
two, phi-three, and so on, for the
first terms of the series of solutions
for the equation

1 n
—=(x-1).

L)

He conjectures that 1 is the sum of
the infinite series of the reciprocals
of phi-two, phi-three, phi-four, and
so on. In brief,

1=i<P;f“.
0

Can any reader prove or refute this
conjecture?

Is it not surprising that such a
simple geometrical construction
would generate such a curious num-
ber? Note that 666, the number of
the beast in the Book of Revelations,
follows its first six decimal digits.
Perhaps Quantum readers know of
other properties, serious or numero-
logical.

I would welcome hearing from
anyone who can find other solutions
to any of the six tasks.
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Happy birthday, Uncle Paull

Erdds is “squared,”

and we hope he will be squared yet once more

AUL ERDOS, MATHEMATI-

cian extraordinaire, recently

celebrated his 81st birthday and

referred to the occasion as being
“squared,” since 81 = 92 We
hope he will celebrate many
more birthdays, write yet an-
other 1,500+ papers, inspire
many more mathematicians
throughout the world to de-
crease their “Erd6s number”
to 1, and pose many more
wonderful problems.! In this
column I'll share some of his
problems with my readers in
the hope that they will assist
Uncle Paul, as he is affection-
ately called by his many
friends and admirers, in his
constant quest for the math-
ematical unknown.

Paul Erdés is a native of
Hungary. His unique math-
ematical talents were recog-
nized very early and were en-
couraged by his parents, both
of whom were excellent
mathematics teachers. His
development as a mathema-
tician was much enhanced by
the Kézépiskolai Matema-
tikai Lapok, Hungary’s 100-year-old
high school mathematics journal,

1Tf you coauthor a paper with Erdds,
your ErdGs number is 1; if you
coauthor one with someone who
coauthored one with Erdds, your ErdSs
number is 2; and so on.
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Paul Erdés in 1983.

by George Berzsenyi

which is greatly responsible for the
high level of mathematical life in
that small country. Following the
completion of his formal studies for

a doctorate in mathematics, Erd6s
became the only truly universal
university professor of mathemat-
ics. In the words of one of his admir-
ers, J. W. S. Cassels of Trinity Col-
lege, Cambridge University: “He
has executed an almost Brownian

motion amongst the mathematical
centers of the world, being the focus
of mathematical activities wherever
he goes. Just as a bumblebee goes
from flower to flower carry-
ing its load of pollen, he
goes from mathematical
center to mathematical cen-
ter with his problems and
information, thereby being
an agent of mathematical
cross fertilization.” The
problems below are but a
few samples of his many in-
teresting queries.

Problem 1: Let P be an ar-
bitrary point interior to a tri-
angle, and denote by a,, a,, a,
the distances from P to the
triangle’s vertices, and by x,
y, z be the distances from P to
the three sides of the triangle.
Determine the minimum of
(a, +a, + a))/(x +y + z).

Problem 2: Let n points
be given in a plane, with no
three of them on a line.
Maximally how many pairs
of points can be unit dis-
tance apart!?

Problem 3: Prove that

Zﬁ is irrational.
Problem 4: In a convex n-gon, let
Sy, 8,5, ... denote the multiplicity of

the occurrence of the distances be-
tween the vertices of the n-gon.

(Note that Y.s, = (g)) Prove that



there exists a constant ¢ such that
Y s <cnd.

Problem 5: Prove that a convex n-
gon always has a vertex that is not
equidistant from any four of the
other vertices.

The problems above were posed in
the centennial issue of Kézépiskolai
Matematikai Lapok; they are all
open. Problem 6 below was his first
serious problem, posed in 1931; it,
too, is still unresolved. Problems 7
through 10 are reproduced here from
recent letters of Pali Bicsi (Hungarian
for “Uncle Paul”) to the author. The
prizes offered by him for the solution
of his problems are also typical, ex-
cept for the fact that most of them are
in the thousands. It has been esti-
mated that he couldn’t possibly cover
his promises if all of his problems
were solved at the same time. How-
ever, since most of them are very
deep and difficult, he seems to be safe
from ever going bankrupt.

Problem 6: Let g, <a, <a; < ... <
a, be distinct positive integers such

k k -
that the 2 sums, ) 'e,a,, wheree, =

0 or 1, are all distinct. Estimate or
determine the value of min a,.

Problem 7: Let a, < a, < ... be the
set of integers of the form 2*38. Prove
that every n can be written as the sum
of a/s, no one of which divides any
other. Is it in fact true that if n is suf-
ficiently large, then there exist such
a/s with

+d4da =n

a+a + -
4 ) 1k

and

a<a < --<a <2a?
1. 12 lk 1

1 1

Problem 8: Let x,, x,, ..., x, be n
points in the plane in general posi-
tion—that is, no three on a line and
no four on a circle. ErdSs believes
that for large n the points determine
at least n distinct distances. For
small n this is certainly false. In fact,
for n < 9 it can happen that one dis-
tance occurs n — 1 times, one n — 2
times, and so on. For nn = 4 an isos-
celes triangle and its center consti-
tute an example. For n = 5 Carl
Pomerance constructed such an ex-

ample, while forn = 6, 7, and 8 Ilona
Palasti did so. (To whet your appe-
tite, Pomerance’s example is illus-
trated below, with equal distances
bearing the same markings.) Erd6s
offers $10 for an example forn = 9,
$25 for a proof that for large n such
an example does not exist, and $50
for a proof or disproof that for large
n the points determine at least n dis-
tinct distances.

Problem 9: Let f{n) be the largest
integer for which there are integers
a, b for which n!/(a!b!) is an integer,
and a + b =n + f{n). Prove that there
exist ¢, and ¢, such that f(n) < ¢, log
n for all n, and try to prove that f{n)
> ¢, log n for infinitely many n.
Moreover, refer ton as a champion
if fin) > f{m) for all m < n. For ex-
ample, 10 is a champion, since
10!/6!7!=1,6+7 =10 + 3, and f(m)
<3 =f({10) for all m < 10. Try to de-
termine all champions. Letg (a) =b
be the largest b for which n!/a!b! is
an integer, and letf,(a) =a + g (a) - n.
Determine or estimate the value of

EONAC]

Problem 10: Let x), x,, ..., x, be
the vertices of a convex n-gon in the
plane. Construct all of its diagonals;

there will be (121) —n of them. Con-

sider the interior points of intersec-
tion thereof. If we assume that no
three of them go through a point,
then it is trivially true that there are

(2) of them, since every choice of 4

points yields a point of intersection.
Hence let’s not assume anything
about the number of diagonals meet-
ing at a point. Then there are two

questions: How many distinct points
of intersection can there be? And
what is the minimum of the number
of intersection points? Moreover, for
2n points, can the number of intersec-
tion points be smaller than that for
regular 2n-gons?

As the above problems illustrate,
the questions posed by Paul Frdds
constantly probe the frontiers of the
known mathematical universe. His
discoveries cover most branches of
mathematics from number theory
to combinatorics, from foundations
to analysis, from geometry to prob-
ability, and many new areas which
were initiated by his own investiga-
tions. It is not unusual that he is si-
multaneously working on several
papers with different mathemati-
cians.

“Pali Bacsi” loves to work with
young people, many of whom have
been inspired by him to great ac-
complishments. He was also one of
the founders of the famous Budapest
Semesters in Mathematics program,
which is briefly described in the
Bulletin Board in this issue (page
52).

Paul Erdés is a member of the
Hungarian Academy of Sciences and
was also elected to membership in
the Academies of the Netherlands,
Australia, India, and England. He
has also been the recipient of nu-
merous honorary degrees. Most re-
cently, the World Federation of Na-
tional Mathematics Competitions
honored him by creating the Erd6s
Prize, to be awarded to mathemati-
cians whose efforts in the popular-
ization of mathematical competi-
tions have resulted in an increased
awareness of the important role of
mathematics.

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.
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IN YOUR HEAD

~ (eometric Summeation

IGH SCHOOL STUDENTS
know that for Igl < 1, the sum
of an infinite geometric se-
quence 1 + g+ ¢+ g3+ ...
equals 1/(1 — ¢g), and study an ana-
lytical proof of this formula. For g =
1/n, where n € N, this sum can be
computed geometrically. You might
have seen similar geometric proofs
of simple algebraic identities—for
example, (a + b)? = a® + 2ab + b*—
that make use of a device called al-
gebraic tiling.
We'll begin with the case n = 2.
Let’s find the sum

1 1 1
I+—+—+—+ .
2 4 8

Take an arbitrary rectangle of area
2. Cut it into two rectangles of unit
area (fig. 1). Cut one of these rect-
angles again into two equal halves of
area 1/2. Do the same with one of
them to get two small rectangles of

Infinite algebraic tilings

by M. Apresyan

area 1/4, and so on. This process cre-
ates a sequence of rectangles whose
areas are equal to 1, 1/2, 1/4, 1/8, ...,
1/2n, ... . The union of these rect-
angles coincides with the initial rect-
angle (without one corner point). So
the sum of the areas of all these rect-
angles is equal to the area of the ini-
tial rectangle—that is, to two. Thus,
1+1/2+1/4+1/8+...=2.

Now let’s find the sum 1 + 1/n +
1/n?+1/n3 ... . Start with a rectangle
of arean and cut it into n rectangles
of area 1 (fig. 2). Next, cut one of
these rectangles into n rectangles of
equal area (1/n), do the same with
one of these smaller rectangles, and
so on. This process yields rectangles
ofareas1,1/n,1/n? ..., 1/n%, ... (n-1
rectangles of each of these areas). The
union of all these rectangles is again
the initial rectangle with one corner
point deleted. So the area of the
union is n; on the other hand, it’s
equal to

-1 n-1
n-1)+— + -
(m-1)+ s T
=(n-1)l+—+—+-|

e
Thus,

I 1 n 1
I+ —+—+.=——= .

n n? n-1 1-1/n

The same idea works for the sum
of an infinite geometric sequence
with an arbitrary rational ratio g, 0 <
g < 1. Indeed, let’s take the last con-
struction in a rectangle of area n, but
each time let’s subdivide m (m < n)
rectangles of the n obtained in the
previous step (fig. 3), leaving intact
the remaining n — m rectangles. Do
you think you can take it from here?
Give it a try, and derive the formula
for 1 + m/n + (m/n)* + ....

This method can be applied to
some other infinite sums as well.

Figure 1
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Figure 3
For instance, let’s prove that

1 2 3 n
I+—+—+—+ - +—=2
2! 3! 4! (n+1)!

Again we'll take a rectangle of area
2. The first two steps are the same
as in the first example: we cut the
rectangle into two unit rectangles,
and then one of them into two
rectangles of area 1/2 (fig. 4). But

Figure 4

now we cut one of the last two is 1+ 1/2! +2/3!+3/4! + ..., which

rectangles into three parts equal in  is equal to 2—the area of the whole

area (the area of each of these parts rectangle.

is 1/2 +3 = 1/3! = 1/6). One of the

rectangles of area 1/6 is now cut ,

into four equal parts, one of these usa line at Quantum,
. . . 1840 Wilson Blvd.,

parts is cut into five parts, and so Arlington VA 22201-3000

on. This yields one rectangle of area

1, one of area 1/2, two rectangles of

area 1/3!, three of area 1/4!, ..., n

rectangles of area 1/(n + 1)!, and so

on. So the sum arising in this case

or
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Art by Leonid Tishkov

Horseflies and flying horges

Questions of scale in the animal kingdom

IZE IS ONE OF THE MOST

important characteristics of a

living thing, but the difference

in size is so obvious that we of-
ten pay little attention to it. Every-
body knows that an elephant is big-
ger than a mouse, but rarely do we
think how much bigger: by a factor
of 100,000. The smallest adult
shrew is a tenth the size of a mouse,
which makes it 1/1,000,000 the
mass of an elephant. The difference
is even more striking when we com-
pare animals of different phyla—say,
a protozoan and a whale.

Does a size difference lead to a
qualitative change? For a long time
both scientists and lay persons be-
lieved that it doesn’t and thought
that all the characteristics of living
creatures change in proportion to
their size. The classic example of
such an assumption is the world cre-
ated by Jonathan Swift in his classic
satire Gulliver’s Travels. Readers

KALEIDOSCOPE

by A. Zherdev

then as now were delighted by
Swift’s “wondrous realism” as ex-
pressed in the precision of his arith-
metical calculations: Gulliver was
12 times larger than Lilliputians and
was smaller than the Brobding-
nagians by exactly the same factor,
and everything in both countries
was scaled by the appropriate
amount.

Real life is not so simple, how-
ever, and the first person who real-
ized it was none other than Galileo
Galilei. He wrote: “It is not pos-
sible to decrease in equal mea-
sure the surface and the weight
of a body and preserve similar-
ity of form. It is absolutely
clear that the decrease in
weight is proportional to the '
decrease in volume, and
therefore every time the vol-
ume decreases more than the
surface (while preserving
similarity of form), the

1 £
P

1=2
S=24 A
V=8
1-1
_ S=6
S/V=3 ik
. S/V=6
Figure 1
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weight will also de-
crease more than the sur-
face. But geometry teaches
that the ratio of volumes
of similar bodies is larger
than the ratio of their sur-
faces. . . . Therefore, it is
impossible to construct
ships, palaces, and churches
of enormous size such that
their oars, masts, beams,
iron clamps—in a word, all
their parts—hold together.
On the other hand, Nature
herself cannot produce gi-
gantic trees because their
branches would ultimately
break under their own weight.
Likewise, it is impossible to
imagine the skeleton of an im-
possibly huge human being,
horse, or other living creature
that can support the body as it is
meant to. Animals can attain ex-
traordinary sizes only if their
bones change, increasing in thick-
ness by a corresponding amount.”
(See figure 1.)
As an animal increases in size, the
parameters of its various physiologi-
cal processes increase in different
ways: some linearly proportional,
others proportional to the squares or
cubes of these values. And so animals
of different sizes must have different
shapes. An entire branch of biology
= . : is devoted to analyzing the rela-
s S ' tionship between size and shape,
and researchers in this area
have obtained a number of
interesting results. Work
through the questions
presented below and
you’ll become ac-
quainted with some

‘ | of them.
j Questions
| 1. On the mi-
croscopic level

the muscles of the

most various kinds

of animals do not

; ‘ differ all that much

N i in structure. Muscu-
— P lar contraction is
caused by intermolec-

ular chemical complexes

Figure 2

whose structure and arrangement
are basically the same. Still, a dis-
tinct differentiation exists: the
smaller the animal, the greater the
mass (relative to its own) it can lift.
How can this be explained?

2. Why do animals with approxi-
mately the same shape (a grasshop-
per and a locust or a kangaroo rat
and a kangaroo) jump to the same
height, regardless of their size?

3. In the treatise cited above,
Galileo introduces a drawing that
shows that a large bone is dispropor-
tionately thicker than a small bone
(fig. 2). He made a small arithmetical
error, though. What was it?

4. A scientific expedition discov-
ered a new creature: a one-footed
mammal (fig. 3). Its dimensions are
given in retems—the unit of length

L.
>

A

Figure 3
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used by the natives. Estimate the
mass and height of the “monoped”
using human data (average measure-
ments or your own dimensions). De-
termine the length of 1 retem in
meters.

5. A baby was born weighing 8
Ibs. It tripled its weight in one
year, weighing in at 25 lbs. Con-
tinuing to grow at the same rate,
by the end of its second year it
would weigh 25 x 3 = 75 lbs; after
three years, 75 x 3 = 225 lbs; after
four, 225 x 3 = 675 lbs; and after
five years, the baby would weigh
675 %3 =2,025 Ibs. The daily food
intake of this one-ton “toddler,” at
1/6 to 1/7 of its body mass (as is nor-
mal for growing children), comes to
300 lbs. From this estimate the fa-
mous Polish teacher Janusz Korczak
drew the conclusion that one
should not force little children to
eat against their will! What do you
think the daily food intake of such
a three-year-old baby should be?
How much do you weigh, and how
much food do you eat each day? Do
your figures jibe with Korczak’s cal-
culations?

6. (a) Insects don't try to buzz or
drone—it just happens. The sound
comes from the flapping of their
wings. The force of the flapping
(pushing against the air) must com-
pensate for the insect’s tendency to
fall due to gravity. So why do gnats
buzz while bees drone? What is the
relationship between the insect’s
tone and its size? (b) Our friend
Gulliver complained about the dron-
ing of Brobdingnagian flies: at
dinnertime these insects didn’t give
him a moment’s rest. He may have
been bothered by them, but did they
really drone?

7. The higher the body tempera-
ture of birds and mammals, the
smaller the animal is. Why?

8. Parents who are in a hurry walk
quickly, and if they happen to be
holding their child by the hand, the
child must run to keep up. Why do
adults and children achieve the
same speed in such different ways?

9. Which desert animals are able
to live without water for a longer
time—small ones or big ones?

34 MAY/JUNE 1994

Take a good look around . ..

Compare the height and thick-
ness of nearby trees and stalks of tall
grass. What formula describes the re-
lationship between these two pa-
rameters? What factors are at play
here?

It’s interesting that . . .

. . . there are so many large ani-
mals around. If it’s so disadvanta-
geous to be large, why didn’t evolu-
tion produce a prevalence of small
animals? The reason is that large
animals are stronger than smaller
species in absolute terms, although
the smaller animals are relatively
stronger. This gives them the advan-
tage in head-to-head competition
and also allows them to occupy new
ecological niches. But bigness is
unfavorable in other respects. In or-
der to find enough food, a horse
must cover more terrain than a
mouse does. Since the food supply is
usually limited, a mouse may have
the upper hand over the horse be-
cause it needs less food. A hectare of
meadowland can support a huge
population of mice, but no more
than one or two horses. Appreciable
populations of large animals can
gather only on great expanses of
land. Thus, both smallness and big-
ness have their own ecological ad-
vantages.

... a few years ago the newspa-
pers trumpeted the achievement of
a certain seven-year-old who set a
record for doing push-ups (about
5,000). The boy grows up and prob-
ably takes up gymnastics, but he has
no chance of beating his own record.
We hope by now you understand
why.

. . . the biggest land animal was
the brachiosaurus, which was up to
20 m long and weighed 80 tons.
Speculation about how such a huge
animal could exist led paleontolo-
gists to the hypothesis that this kind
of dinosaur lived in tidal areas, so
that its entire body (except the head)
was immersed in water (fig. 4). Oth-
erwise, in the opinion of these au-
thors, the bones of the brachiosaurus
could not have borne the enormous
load. However, this mode of living
creates certain problems. In particu-
lar, it would be impossible to
breathe, because the lung muscles
would not be able to continually
overcome the pressure of the water.
And so biologists had to go back to
the blackboard and recalculate the
strength of the bones. They came to
the conclusion that the bones could
support such a huge load.

.. comparing different mam-
mals, biologists came up with a

CONTINUED ON PAGE 37
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A lttle lens talk

Then let’s go to the movies

HE PHENOMENON OF RE-

fraction of light at the bound-

ary of transparent media (say,

air and glass) can be used for a
number of purposes in various opti-
cal devices, including parallel plates,
prisms, and lenses.

Most often lenses are used to form
images of luminous (or illuminated)
objects. A lens makes it possible to
produce an image at the right place
(on the film in a camera, on the screen
in a movie theater) or at a distance
that is comfortable
for viewing (eye-
glasses, a magnify-
ing glass, contact
lenses). We can ob-
tain an image of the
object that is either
greatly increased (in
amicroscope or film
projector) or de-
creased (in a tele-
scope or binocu-
lars—yes, decreased
by a factor of thou-
sands, but brought
nearer by a factor of
hundreds of thou-
sands, which makes
it possible to ex-
amine the object
in all its details).
We can also obtain
an image of a lumi-
nous point at infin-
ity—in this case $

Les 2t
4 8

by Alexander Zilberman

the light beam is almost parallel (for
example, the beam from a search-
light).

In many cases of practical impor-
tance, the optical system consists of
several lenses. For example, the ob-
jective of a camera can consist of
more than ten different lenses—con-
cave and convex, thin and thick,
made of different and special kinds
of glass. One can even have lenses
with a more complicated geometry
than the usual spherical surfaces.

3
J

M‘ﬁ

Admittedly, the simplest calcula-
tions of optical systems that can be
done within the framework of high
school physics will not meet the
practical demands of actual devices:
even the lenses for high-quality eye-
glasses (not to mention contact
lenses!) are often calculated by com-
puter, and not because of a surplus
of computers.

Nonetheless, even a simple
theory can come in handy, because
approximate calculations will often

L e
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be good enough. Let’s look at the
paths of beams falling on a very
simple, plano-convex lens with a
spherical convex surface of radius R.
I've chosen this lens because the
paths of the beams will be simplest
in this case. Let the lens be made of
glass and placed in air.

Let’s imagine that a parallel beam
of light falls on the plane surface of
our lens. We know that after refrac-
tion in a convergent lens it must
converge at a point lying in the fo-
cal plane. Let’s show how. First we
need to formulate the problem more
accurately. We'll assume that we're
using a thin lens (in due course I'll
explain more rigorously what the
term “thin lens” means and what
we should neglect), and we’ll take
the angle of incidence to be small
(this keeps the error small when we
replace the functions sin o and tan o
with the angle o itself, which
greatly simplifies the calculations).
These are reasonable conditions
that correspond in general to the ac-
tual situation in simple optical ex-
periments.

Let’s draw the lens and the path
of one of the incident beams (fig. 1—
here the lens is thick and the angles
are large for the sake of legibility).

Figure 1

The chosen beam strikes the lens at
an angle o to the principal optical
axis, and after refraction at the plane
surface the angle decreases by a fac-
tor of n, where n is the refractive
index of glass. We can see this by
using Snell’s law

sin 0. = n sin ¢

and approximating these sines by
the angles to get ¢ = a/n. The beam
falls on the spherical boundary be-
tween the glass and air at an angle of
a/n + B, where B is the angle be-
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tween the principal optical axis of
the lens and radius drawn to the
point of incidence of the beam. The
beam then exits the lens at an angle
of

(E+ﬁjn—ﬁ=oc+(n—l)ﬁ.

n

From now on we’ll need the thin-
lens condition: we’ll consider that
the points of entry of the beam into
the lens and exit from it are at the
same distance Rf from the principal
optical axis. At a distance L to the
right of the lens the beam is shifted
vertically relative to the exit point
by L[(n-1)B + o], and the distance to
the principal optical axis is

H=L[[n-1)B+a]-RB.

Two different rays from the origi-
nal incident beam intersect to the
right of the lens (fig. 2). Equating the

Figure 2

distances H for both rays, we find
the distance L to the point of inter-
section:

L[(n- 1)B; + o - RB,
= L[(n - 1)B, + &) - RB,,

from which we get

p=—&_
n-1

We see that the distance obtained
doesn’t depend on the angle B—it’s
the same for all the rays from our
beam. Thus, we have proved that
the refracted beams converge at one
point, and we’ve found the distance
from this point to the lens. Notice
that all the points of intersection
(corresponding to various angles of
incidence) lie in the plane perpen-
dicular to the principal optical axis
of the lens and are located at a dis-

tance R/(n - 1) from the lens. In
other words, we have calculated the
focal length of our lens:

R
f n-1

In the same way, after more
lengthy calculations we can obtain
an analogous formula for the focal
length of a lens formed by two
spherical surfaces with radii R, and
R,.It's more convenient to present
this formula in a slightly different
form:

1 1 1

7 (n 1)(}21 + %, j
The radii of the lens can be both
positive (biconvex lens), both nega-
tive (biconcave), or they can have
opposite signs. (In our case of a
plano-convex lens, one of the radii
is infinitely large.) If the resulting
focal length turns out to be positive
(the focus of the lens is real)—that
is, the refracted beams indeed con-
verge at a point—the lens is called
converging (or positive). On the
other hand, if the focal length is
negative (the focus is imaginary)—
that is, the parallel rays diverge af-
ter refraction—the lens is called di-
verging (or negative).

There is simple relationship
known as the lens formula (it can be
deduced geometrically) that links
the distance s between the source
and the lens, the distance s’ between
the lens and the image, and the fo-

cal length f of the lens:
1,11
s 8 f

Thus, after refraction by the con-
verging lens, the beam of parallel
rays converges at a point in the fo-
cal plane. This makes it easy to de-
termine the path of any beam after
refraction. We need only draw the
auxiliary ray parallel to it that passes
through the center of the lens (this
ray is not refracted) and find the
point of intersection of this ray with
the focal plane—the original ray
must pass through this same point




Figure 3

after refraction (fig. 3). The possibil-
ity of sketching the path of an arbi-
trary ray helps greatly when we need
to form an image in a complicated
optical system consisting of a dozen
lenses. There is no need to obtain
intermediary images after each lens.

I should point out that with this
method of drawing we can use any
rays—even those at large angles to
the principal axis. If necessary we
can increase the diameter of the lens
so that the rays land on it. The point
is, this method of drawing corre-
sponds to a “paper lens”’—that is,
not to a lens but to the lens formula.
For a real lens such a result corre-
sponds to “correct” rays only—that
is, to rays at small angles to the prin-
cipal axis—and this is exactly what
we need.

Let’s use the method described to
solve a simple problem. Figure 4
shows a converging lens, its princi-
pal axis, and the path of one ray be-
fore and after refraction by the lens.

Figure 4

We need to find the position of the
focal plane. Let’s draw the auxiliary
ray parallel to the incident ray such
that it passes through the center of
the lens—this ray doesn’t refract,
but its point of intersection with the
refracted ray lies in the focal plane.
By the way, we can “reverse” the
rays—taking the incident ray to be
the refracted one and the refracted
ray as the incident ray—and, as in

the first case, draw the focal plane
on the other side of the lens. How-
ever, both focal planes must be at
the same distance from the lens.
Now let’s return to “real” lenses.
Usually it’s assumed that the point
source emits light evenly in all di-
rections. Wherever the eye is lo-
cated, it receives the diverging beam
of light and we perceive the lumi-
nous point. It’s quite another matter
if we want to see the image of this
point in a lens. Let figure 5 show a
“real” lens of a certain size. In this

Figure 5

case the image of a point source is
formed by a beam of rays whose
marginal rays are limited by the di-
ameter of the lens. These marginal
rays also restrict the beam of rays
emerging from the lens. We can see
the image only if we are within the
solid angle formed by the rays that
passed through the point of intersec-
tion after passing through the lens.

It’s interesting that there are
points from which neither the
source nor its image can be ob-
served. For example, say we were at
the point B: the source is covered by
the lens, and we're outside the solid
angle from which the image can be
seen. In order to expand the region
where the real image can be observed,
we can use a screen. If we place a
screen where the refracted rays
emerging from the lens intersect, the
rays reflected from the screen image
will travel in every direction.

This is how a movie is shown in
a theater. If we try to watch a movie
by looking into the objective of the
projector, or by using a mirror in-
stead of the screen, we'll see at best
only a small fragment of the overall
picture. Different parts of it will be
visible from different places—not
exactly what the director had in
mind! Q)

“KALEIDOSCOPE”
CONTINUED FROM PAGE 34

curious relation (Bergmann's rule): as
we move from the poles to the equa-
tor, the size of warm-blooded animals
of the same or similar species de-
creases. Why? One of the important
factors determining the energy bal-
ance in an organism is heat loss, so
animals in polar regions “try” to de-
crease it by any means possible. Be-
cause mammals are warm-blooded
and their temperatures don’t change,
they can’t decrease heat losses by
lowering their body temperatures.
However, increasing the body’s di-
mensions lets them decrease the
relative (that is, per unit mass) sur-
face that transfers heat. Since heat
transfer is higher in a cold climate,
a larger size is more important for
animals in polar regions, accounting
for Bergmann’s rule.

... hummingbirds with a mass of
3-5 g are the smallest birds, and
their heat losses are particularly
high. To keep their body tempera-
ture constant at night, the hum-
mingbird must store up fat or glyco-
gen during the day. However, this
would be extremely inconvenient
for the bird, since it would increase
its body mass in the daytime and
lead to higher energy expenditures
when flying. In addition, the conver-
sion of the original carbohydrates to
stored, energy-rich substances also
requires energy. Also, the humming-
bird’s method of feeding—hovering
over a flower—consumes quite a bit
of energy. In the course of evolution,
the hummingbird was faced with
two options: get bigger, or reduce
nocturnal heat losses. As a result,
their record (among birds) high body
temperature of 43-45°C is main-
tained only during the day. At night
it drops all the way down to
10-20°C. This explains why hum-
mingbirds live in the tropics—other-
wise they would experience large
heat losses around the clock and
couldn’t have the normal metabo-
lism of warm-blooded animals. [@

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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Laser levitation

‘Suspend here and everywhere, eternal float of solution!”
—Walt Whitman, Leaves of Grass

by Arthur Eisenkraft and Larry D. Kirkpatrick

OW CAN SOMEONE LEVI-

tate an object? Magicians do it

all the time. Can physicists do

it as well? The easiest tech-
nique is to attach a string to the ob-
ject and secure the string to the ceil-
ing. The weight of the object is bal-
anced by the tension in the string,. If
the suspended object is a magnet,
then a second magnet can keep it in
place. A third technique is to shoot
pellets at the object so that the force
of the pellets balances the weight of
the object.

Let’s assume that the object we
wish to suspend is a rectangular box
oriented so that its bottom is hori-
zontal. If we shoot pellets vertically
upward at the box, the pellets just
provide an average force on the box
that is equal to its weight. If the pel-
lets rebound from the box down-
ward with the same speed, then the
momentum change of each pellet is
given by

Appellet = 2I’HVO/

where v, is the initial speed of the
pellets and m is the mass of each
pellet. The impulse-momentum
theorem and Newton’s third law tell
us that the beam of pellets exerts a
force on the box equal to

Fbox = RAppellet/
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where R is the number of pellets
hitting the box each second.

We can get a feeling for the prob-
lem by solving it with some appro-
priate values. If the pellet gun shoots
5 pellets per second, and each of
these 2-g pellets hits the box with a
speed of 50 m/s and rebounds with
the same speed, what is the heaviest
box that can remain suspended?
Let’s work it through:

Dty = 1V = (2 - 107 kg)(50 m/s)
=0.1 kg m/s,
Appellet =02 kg m/S,

F = (5 pellets/s)(0.2 kgm/s) = 1 N.

Therefore, a 0.1-kg box can be sus-
pended with these high-speed pel-
lets.

A. The problem becomes more
challenging to solve if the pellets hit
the box at an angle. Assume that the
pellets are identical to those in the
example, but that they hit the box at
an angle of 53° from the vertical.
Once again, the pellets rebound at
the same speed (50 m/s) and at the
same angle. (Assume that the pellets
hit at random orientations about the
vertical so that there is no horizon-
tal component of the net force.)
What is the heaviest box that can
remain suspended?

What do we do if the object to be

suspended is so small that its weight
is of the order of 10719 newtons? If the
object is transparent, it can be levi-
tated by a laser beam! How to do this
was one of three theoretical problems
that were given to students who par-
ticipated in the XXIV International
Physics Olympiad, which was hosted
in the United States in July 1993.
This theoretical problem was created
by Charles Holbrow of Colgate Uni-
versity. We have adapted it for Quan-
tum readers.!

By means of refraction a strong
laser beam can exert appreciable
forces on small transparent objects.
To see that this is so, consider a
small glass triangular prism with an
apex angle A = © - 20, a base of
length 24, and a width w. The prism
has an index of refraction n and a
mass density p.

Assume that the prism is placed
in a laser beam aimed horizontally
in the x-direction. (Throughout this
problem assume that the prism does
not rotate—that is, its apex always
points opposite to the direction of
the laser beam, its triangular faces

IThe entire XXIV International
Physics Olympiad Examination has
been published in Physics Today
(November 1993) in an article by
Anthony P. French, chair of the
examination committee.

Art by Tomas Bunk
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Figure 1

are parallel to the xy-plane, and its
base is parallel to the yz-plane, as
shown in figure 1.) Take the index of
refraction of the surrounding air to
be n,, = 1. Assume that the faces of
the prism are coated with an
antireflective coating so that no re-
flection occurs. The momentum of
a photon is given by p = E/c.

The laser beam has an intensity
that is uniform across its width in
the z-direction but falls off linearly
with the vertical distance y from the
x-axis such that it has a maximum
value I at y = 0 and falls to zero at y
= +4h (fig. 2).

X

Figure 2

B. Write equations from which
the angle 8 (see figure 3) may be de-
termined in terms of o and n for the
case when the laser beam strikes the
upper face of the prism.

C. Express, in terms of I, 6, h, w,
and y, the x- and y-components of

Figure 3
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the net force exerted on the prism by
the laser light when the apex of the
prism is displaced a distance y, from
the x-axis, where h <y, < 3h. If we
want the prism to be suspended,
should the prism be placed above or
below the axis of the laser beam?

D. Plot graphs of the values of the
horizontal and vertical components
of force as functions of the vertical
displacement y,,.

E. Suppose that the laser beam is
1 mm wide in the z-direction and 80
um thick (in the y-direction). The
prism has the following characteris-
tics:o0=30°, h=10um,n=1.5 w=
1 mm, andp = 2.5 g/cm3. How many
watts of power would be required to
balance this prism against the pull of
gravity when the apex of the prism
is at a distance y,, = 2h = 20 pm?

This problem is certainly difficult
enough. Olympiad students from 42
countries took the problem one step
further and solved parts C, D, and E
for prism positions where y, < h!
And some of them correctly com-
pleted this analysis within the allo-
cated time of 100 minutes!

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201 within a month
after receipt of this issue. The best
solutions will receive special certifi-
cates from Quantum.

Electricity in the air

In the November/December issue
of Quantum we asked our readers to
use Gauss’s law to examine the elec-
tric field near the Earth’s surface. We
will follow the solution provided at
the International Physics Olympiad
held in the United States in July
1993.

Part A of our problem was to find
the total charge and charge density
on the Earth’s surface given the elec-
tric field near the surface. We begin
by assuming that we have a spheri-
cal gaussian surface that is only
slightly above the Earth’s surface.
Therefore, the radius of this surface
is R. Because the electric field points
radially, the total electric flux
through this surface is just the prod-
uct of the surface area of the sphere
A and the electric field E,. Gauss’s

law tells us that

Y
&)

where Q, is the total charge en-
closed by the surface and the minus
sign is included because the electric
field is directed into the sphere. Be-
cause

Qp = 6p4,

where o, is the Earth’s surface
charge density, we can solve for ei-
ther the charge density or the total
charge. Let’s find the charge density:

Gy =g,k
c N
=[-885.10-2 & _|150N
[ossno 7 107
--133.10° <
3

where we have replaced the units
V/m by N/C. The minus sign tells us
that the charge on the Earth is nega-
tive, which we also know from the
direction of the electric field. We can
now find the total charge on the
Earth:

Q, = O,A = 6,41R? = —6.85 - 10° C.

Part B required our readers to cal-
culate the average net charge per cu-
bic meter of the atmosphere given the
electric field at a height of 100 m.
Many students at the International
Physics Olympiad solved this part of
the problem by considering the
gaussian surface to consist of two
concentric spheres, one with a ra-
dius R and the second with a radius
R + h with h = 100 m. However,
since R << h, the Earth’s surface is
relatively flat on the scale of the
problem. Therefore, it’s simpler to

h
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consider a cylinder with a cross-sec-
tional area S and a height h sitting
just above the Earth’s surface, as
shown in figure 4.

The walls of the cylinder do not
contribute to the electric flux, be-
cause the electric field is parallel to
the walls. Therefore, Gauss’s law
tells us

Q,, Sh
S<Eo - ElOO) = ;OC = pSTI

where p is the average charge den-
sity inside the cylinder and the con-
tribution of E, , to the flux is nega-
tive. Using the data in the problem,
this yields

€y 1 C
=9(F —FE =442.10712 =,
Y h(o 100) m?

Notice that the charge density is
positive.

To solve part C, we first note that
under the influence of the electric
field, the positive ions move down-
ward and the negative ions move

upward. Therefore, only the positive
ions can contribute to the cancella-
tion of the surface charge density.
The current per unit areaj is given by

j=n,qv=(l.44-10E,

where we have used the values and
relationship given in the statement
of the problem. Note that the con-
stant must have units of A/V - m.

Now, j is the rate of change of the
surface charge density (Ac/At), and E
= -G/, from part A. Therefore,

AS _ 163.10%6=-—o.
AL 613

This is the same relationship that
we encounter in radioactive decay.
Therefore, its solution is an expo-
nential decrease of o with time:
olt) = 6,77,
with T = 613 s. Putting o(t) = 6,/2
gives
t=1ln2=425s=7 min.

@
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A mathematical handbook

With no figures

A little book that gives endless “dolgics”
of reading pleasure to children of all ages

EGEND HASIT THAT WHEN

the famous American puzzle-

meister Sam Loyd invented

Taquin (or “15”), it was greeted
with almost disastrous enthusiasm.
Farmers stopped farming, shopkeep-
ers forgot to open their shops in the
morning, government bureaucrats
stood all night long under street
lamps, trying in vain to solve a
puzzle that looked simple but was
really unsolvable: to make two
small squares numbered 14 and 15
change places without taking them
out of the frame.

Something like that happened,
and continues to happen, with those
lucky enough to get their hands on
a copy of a little book by the poet
Grigory Oster with the seemingly
innocent, but actually subtly ironic,
sarcastic, and even insidious title
Problem Book. Without paying at-
tention to the subtitle—"”A Math-
ematical Handbook with No Fig-
ures,” which to some extent should
warn of impending danger,! you

'The subtitle—Henarnsnsoe mocobue
10 MaTeMaTHKe—contains a rather
outrageous pun. Harmaaoneiii means
“visual” (something you can easily
understand by looking at it); while
HeHarnsmHbli—with the negative prefix
He added—usually means “beloved”
(someone you can’t see enough of)!
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by Yuly Danilov

credulously open the book and
promptly lose yourself in a world of
curious characters struggling with
unmathematical problems: captain
Flint, boatswain Fedya, sad uncle
Borya, little baby Kuzya, the she-
goat Lucy, the scientist Innokenty of
world renown, a criminal, the
criminal’s grandma, a cannibal, kit-
tens, ducklings, an elephant, per-
sons from other planets, an octopus,
Bryaka, Mryaka, Slyunik, Hryam-
zik, and many others. It’s an en-
chanting blend of fairy tale, thriller,
adventure novel, and problem book!
Most people can’t tear themselves
away from the Problem Book until
they’ve read it cover to cover.

The book has led to untold dra-
mas, and even tragedies. People are
late for work, a son argues with his
father about who will read the book
first, but while they struggle on, the
boy’s mother picks up the Problem
Book and won't let go until she’s fin-
ished. Hoary scholars greet each
other like the courtiers in Hans
Christian Andersen’s fairy tale “The
Emperor and the Nightingale”? and,

2For those who haven’t reread
Andersen for a while, I'll explain:
when three persons would meet,
instead of “Good day” the first would
say “Nigh-,” the second “-tin-,” and

interrupting one another, recite
their favorite problems from Oster’s
little book. And it’s easy to under-
stand why. How would you react to
“problems” like these (the first ones
in the Problem Book)?

1. In the tiny hold of a pirate ship
Captain Flint and boatswain Fedya
divided one and the same dividend
by different divisors: Captain Flint,
with a dark smirk, divided by 153,
and boatswain Fedya, with a pleas-
ant smile, divided by 8. Boatswain
Fedya got a quotient of 612. What
quotient did Flint get?

2. The personal parrot of Captain
Flint learned 1,567 swear words in
different languages: 271 swear words
in English, 352 in French, and 127 in
Spanish. The rest of the swear words
the parrot got from the great and
powerful Russian language. How
many swear words did Captain
Flint’s personal parrot get from the
Russian language?

3. Ten pirates divided among
themselves in equal shares 129 cap-
tured maidens, and the rest were put
in a boat and sent home to their par-
ents. How many captured maidens
were sent back to their parents?

the third “-gale”—so great was their
admiration for the mechanical
nightingale presented to the emperor.

Art by Yury Vashchenko
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4. To find a hidden treasure, you
need to start from the old oak and go
12 steps to the north, 5 steps to the
south, 4 more steps to the north, and
11 more steps to the south. Find
where the hidden treasure is.

5. The 14 best friends of Captain
Flint, after various pirating exploits,
were left with one leg each, and Cap-
tain Flint was left with two legs.
How many legs, not including
wooden ones, could be counted un-
der the table when all 15 men sat
down to eat breakfast?

So, do you like them? So do I.
Many people have tried to imitate
Oster, but all have fallen short. The
Problem Book even got an official
seal of approval: the Ministry of Edu-
cation of Russia (no joke!) recom-
mended the “mathematical hand-
book with no figures” as a textbook
for schools! Apparently bureaucrats
in the Ministry of Education actu-
ally have a sense of humor and ap-
preciate a good joke.

And when, after they had read the
Problem Book over and over, from
cover to cover, and had learned their
favorite problems by heart, charmed
readers turned at last to the foreword
(because a real reader reads a fore-
word only after diving deep into the
book itself), they found that the au-
thor had no intention of misleading
them. He had honestly warned ev-
eryone, children and adults alike,
about his intentions. He even went
the extra mile and wrote two (or
possible three, depending on how
you count) forewords. Here they are.

Forewords

“Would you like to hear a sadis-
tic joke? One day a children’s author
comes to his readers and says: ‘Dear
children! I have written a new book
for you—a mathematical problem
book!” That'’s like getting a bowl of
oatmeal instead of a pretty cake on
your birthday. But to tell you the
truth, the book you’re looking at
isn’t exactly a problem book.”

Here the text splits: one foreword
for kids, one foreword for grown-ups.

For grown-ups: “Don’t worry,
don’t worry, these are real problems.
For second, third, and fourth grades,
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as a matter of fact. All of them are
solvable and help cement the mate-
rial studied in the classroom. But the
main aim of the Problem Book isn’t
to cement any material, and the
problems have nothing in common
with what is called ‘recreational
mathematics.’ I don’t think these
problems will elicit any professional
interest from math olympiad cham-
pions. These problems are for those
who don’t like mathematics, who
find it tedious and enervating to
solve problems. Let them have their
doubts about it!”

For kids: "Dear kids, this book is
called Problem Book on purpose. It's
s0 you can read it on your lap behind
your desk. And if your teacher gets
upset, just say: ‘I don’t understand.
This book has been approved by the
Ministry of Education.””

Needless to say, the spoofing,
high spirits, and inventiveness dis-
played by Oster are enjoyed greatly
not only by those who don’t like
math but also by olympiad champi-
ons. And their teachers, and the
teachers of their teachers—profes-
sors of mathematics—were filled
with the warmest feelings (and the
darkest envy) toward the author,
because they didn’t come up with
the idea of creating such wonderful
problems.

Now I think it’s about time I of-
fered those who haven’t seen
Grigory Oster’s Problem Book a
few more problems, taken almost
at random.

Problems

1. Mryaka drooses poosics. To
droose one poosic it takes Mryaka a
half-dolgic. How many dolgics will
Mryaka spend droosing 8 poosics?3

2. Mryaka and Bryaka droosed a
poosic. Mryaka took for herself 2
farics, and Bryaka took 1. How many
hroonechkas does Mryaka have, and
how many does Bryaka have?

3. Bryaka and Mryaka quarreled.
Mryaka kryacked Bryaka 7 times
with a marfoofochka on his whatever,
and Bryaka kryacked Mryaka 9 times

3There are 3 farics in a poosic, 5
blyakas in a faric, and 2 hroonichkas
in a blyaka. (You’'ll need this for the
next problem.)

with the same marfoofochka on her
whatever. The question is, how many
times was the poor marfoofochka
grabbed by the tail and kryacked on
somebody’s whatever?

4. Bryaka hid 3 poosics under a
coolyuk, shoved 5 poosics in a
mlijechka, and buried 12 poosics in
a gryazinuce. Mryaka went out to
look for Bryaka’s poosics, found 17
of them, and droosed them into
hroonichkas. Where did Bryaka
most likely find his undroosed
poosics?

5. Mryaka and Bryaka came to a
meadow and started to jump.
Mryaka jumped on 7 lygs and
Bryaka jumped on 8. How many lygs
remained uncrushed if 39 lygs had
been sitting in the grass, softly sing-
ing their pensive song?

6. Mryaka and Bryaka found a
chalochka that was 9 tyatoosics
long. Mryaka nibbled 4 tyatoosics
and gave the rest to Bryaka. How
long in dlinnics was the piece of
chalochka that Bryaka got? (Keep in
mind that there are 7 dlinnics in a
tyatoosic.)

7. Mryaka, Bryaka, Slyunik, and
Hryamzik walked and walked and
walked, covering 200 dlinnics in 5
dolgics. How many dolgics will it
take for them to cover 360 dlinnics
if they walk and walk and walk with
the same velocity?

8. If Hryamzik is called a slyunik,
he starts to butt and doesn’t stop un-
til he has butted the offender 5 times
with each horn. One day Bryaka
called Hryamzik that very thing, and
Hryamzik butted Bryaka 35 times.
How many horns does Hryamzik
have?

9. Every time they go out for a
walk, Mryaka puts on 3 foofiras,
while Bryaka puts on only 2. Both of
them always return home buck na-
ked. How many foofiras did Mryaka
and Bryaka lose in one summer if it’s
known that Mryaka went for a walk
150 times and Bryaka 180 times this
summer?

10.If Slyunik is teased, she begins
to kick and doesn’t settle down un-
til she kicks the teaser 3 times with
each leg. One day Mryaka called
Slyunik a hryamzik, and Slyunik



kicked Mryaka 27 times. How many
legs does Slyunik have?

11. One day two numbers—5 and
3—came to a place where a lot of
different differences were scattered
about, and they started looking for
their own. Find the difference of
these numbers.

12. Once upon a time there lived
two numbers—>5 and 3. They had a
sack of average size that they took
with them wherever they went.
When they came across something
dangerous, they would quickly jump
into the sack, close it from inside,
and press against each other so
tightly that sometimes they became
one number. And then the sack
would contain their sum. Find the
sum of the numbers 5 and 3 in the
sack.

Editor’s note: We have retained the
Russian flavor of the nonsense words in
these problems. A true English transla-
tion might turn “dlinniki” into
“longies,” for instance, since NJMHHBIL]
(“dlinny”} means long, as in “long dis-
tance.” But what is the poor translator

to do with “dolgiki”? Momnruii (“dolgy”)
also means long—but “time” this time!
English readers can perhaps imagine a
similar work written by Lewis Carroll or
Ogden Nash, but we hope they experi-
ence some of the giddy silliness that
Russians feel when they read Oster’s
exuberant coinages.

“HOW DO YOU FIGURE?!”
CONTINUED FROM PAGE 19
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Rings on the move. Two identical
wire rings of radius r, each of mass
m, are located in a homogeneous
magnetic field B directed perpen-
dicular to the plane of the rings and
into the page (fig. 2). The rings make
electrical contact at the points of in-
tersection A and C. What is the ve-
locity that each ring gains when
the magnetic field is switched off?
The electrical resistance of each
ring is R and the angle o = ©/3. Ne-
glect the self-inductance and mu-

A

Figure 2

tual inductance of the rings, the
displacements of the rings while
field is turned off, and any fric-
tional effects. (V. Mozhayev)
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Image vs. reality. A point source of
light moves parallel to the principal
axis of a converging lens with focal
length F. Determine the distance of
the source from the lens when the
absolute value of the velocity of its
image is equal to that of the source.
The distance from the source to the
principal axis is H = F/4. (A. Zilber-
man)
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Ine Solutions to one problem

And integer angles galore

HE PROBLEM THAT I'M GO-

ing to discuss has appeared re-

peatedly in geometry problem

books. Although its statement
seems simple, it’s very difficult to
solve. This might be why most of
the books give more or less the same
solution, and not even the best one,
in my view. But let’s start with the
statement.

Problem. In an isosceles triangle
ABC, AB = AC and the angle BAC
measures 20° Points D and E are
taken on the sides AC and AB, re-
spectively, such that angle ECB is
50° and angle DBC is 60°. Find the
angle EDB. '

Before you go on, try to solve the
problem on your own. Give yourself
a few hours (or maybe minutes) to
think it over. You’ll find real pleasure
... if you manage to find the answer.

The first solution. Draw segment
DF parallel to BC with F on AB
(fig. 1), draw CF, label as G the in-
tersection of BD and CF, and draw
GE. Clearly the triangle BGC is isos-
celes (with BG = GC) and, therefore,
equilateral (since ZDBC = 60°).
Then the triangle GDF is equilateral
as well. Further, we notice that
/BEC =180°-ZBCE - ZCBE = 180°
-50°-80° = 50° (£CBE can be found
from the given isosceles triangle
ABC), so £LBEC = ZBCE, which
means that triangle BGE is also isos-
celes (BE = BC = BG) with EBG = 80°
—-60° =20° and LEGB = 80°. Now we
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find ZFGE = 180° — 60° — 80° = 40°,
and ZEFG = 40° (say, from triangle
BGF). This reveals another isosceles
triangle, FEG (FE = EG). Finally, by
the SSS property, triangles EFD and
EGD are congruent, and so

60°

/EDB=Z/EDF = =30°.

I want to point out one fact men-
tioned in this proof that will be re-
peatedly used in what follows: the
triangle BCE is isosceles—that is, BE
= BC.

Well, this solution, borrowed

A

Figure 1

from a problem book, uses two ad-
ditionally constructed points, and
five triangles are under consider-
ation. It couldn’t be called too com-
plex or too long, really, and yet it
didn’t seem very elegant or beauti-
tul to me. So when, after thinking
long and hard, and unsuccessfully, I
finally found another solution, I was
happy. The only thing that dis-
tressed me was that this solution
was analytical (trigonometric) rather
than geometric.

The second solution. Let x be the
measure of the unknown angle EDB.
Then £ZBED = 160° — x. By the Sine
Law, from triangle BED we find
BD: BE =sin (160° - x) : sin x, and
from triangle BCD, BD : BC = sin 80°
: sin 40° = 2 cos 40° (since ZBDC =
180° — 60° - 80°).

Using the aforementioned equal-
ity BE = BC, we get the equation

sin(160°-x)

sinx

=2.cos40°.

Let’s rework and solve it:

sin (20° + x) = 2 cos 40° - sin x
=2 cos (60° - 20°) sin x;
sin 20° cos x + cos 20° sin x
= (cos 20° + /3 sin 20°) sin x;
sin 20° cos x = /3 sin 20° sin x;

tanx =

ﬁi

Art by Yury Vashchenko




Trigonometry is a powerful and
universal tool. But does our problem
really have no other geometric solu-
tions?

Fortunately, such a solution does
exist—in fact, there are a number of
them. I created the next two in sev-
eral hours of leisure time.

The third solution. As with the
first solution, I'll again try to prove
that DE is the bisector of ZBDF
(fig. 1). To this end, I'll create a tri-
angle, one of whose angles will be
BDF, with its incenter at E. Draw
DH and BH parallel to CB and CD,
respectively, to obtain a parallelo-
gram BCDH (fig. 2). Draw CG as we
did in figure 1 (to make an equilat-
eral triangle BCG). Now we have

(1) BH = CD (by a property of the
parallelogram);

(2) BE = BC = CG;

(3) ZHBE = ZHBA = ZBAC = 20°,

Figure 2

and Z/GCD = 80° - 60° = 20°, so
ZHBE = Z/GCD.

Therefore, the triangles BEH and
CGD are congruent by the SAS
property; consequently, Z/BHE =
ZCDG=40°=% /BCD= % /BHD.
It follows that HE bisects ZBHD,
and at the same time, BE bisects
ZHBD (since ZHBE = Z/DBE = 20°).
Therefore, E is the center of the
incircle of triangle BDH, and DE is
the bisector of ZBDH.

This was a different solution, but
it’s hardly simpler than the first one.
The next solution seems more at-
tractive to me.

The fourth solution. Mark point
K on AC such that ZKBC = 20°, and
join it to B and E (see figure 3 on the
next page).

Then ... On second thought, why
don’t you try to finish this proof
yourself?




B C

Figure 3

Exercise 1. Prove that the marked
segments in figure 3 are congruent
and use them to find the unknown
angle.

After I found these solutions, I
was obsessed with the idea of offer-
ing this problem to students at some
serious math competition. These
clever kids might discover some-
thing new! Unexpectedly, about a
year ago my dream came true: the
problem was proposed to the candi-
dates for Ukraine’s International
Mathematics Olympiad team. And
my collection of solutions grew by
four new items. It’s interesting that
three of these solutions involve an

D
M
E
B

Figure 4
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auxiliary construction based on
drawing the bisector of the angle B
of the given triangle ABC. All three
solutions use the fact that this line
is also the perpendicular bisector of
the segment CE (since BC = BE), but
other than that they are surprisingly
different.

The fifth solution (Maria Gel-
band). Let M be the reflection of E
across AC (fig. 4). Then CE = CM
and ZECM = 2ZECD = 60°, so the
triangle CEM is equilateral, CM =
EM, and therefore M lies on the bi-
sector mentioned above. Now we
notice that the point D is the inter-
section of the perpendicular bisector
of EM and BD, the bisector of the
angle EBM of the triangle BEM
(ZEBD =20°=Y% BM).It follows that
D lies on the circumcircle of BEM (if
D, is the intersection of the circum-
circle with the perpendicular bisec-
tor of EM, then ED| = D, M, and the
angles EBD| and MBD,, inscribed in
this circle, are subtended by congru-
ent chords ED, and DM; so these
angles are equal, which means that
D, = D). Thus, the angles EDB and
EMB are inscribed in this circum-
circle and subtended by the same
chord BE. So ZEDB = ZEMB =
/EMC = 30°, and we're done.

The sixth solution (Sergey Sapri-
kin). Let the bisector of ZABC inter-
sect AC at T (fig. 5). Then ZETB =
ZBTC (why?). But ZBTC = 180° —
40° - 80° = 60°, so ZETD = 60°, and
TD is the bisector of the exterior
angle of triangle BET at T. On the

B C

Figure 5

other hand, as we’ve already seen,
BD bisects angle EBT, so D is equi-
distant from the lines BA, BT, and
ET, and, therefore, ED is the exterior
bisector of triangle BET at E.

Note, by the way, that D is the
excenter (center of the escribed circle)
of this triangle. Now we find ZBED
= /BET + LTED = ZBET +(1180° —
ZBET)=90°+" £BET = 130°, because
ZBET = ZBCT = 80°. Finally, from
triangle BED we get what we want:
ZEDB = 180° — 130° - 20° = 30°.

In the last part of this proof we’ve
actually proved the following prop-
erty of the excenter D of an arbitrary
triangle EBT that lies inside its angle
EBT: Z/EDB = Y /ETB (which is in-
dependent of specific values of the
angles).

The seventh solution (Alexey
Borodin). Consider the circumcenter
O of the triangle EDC. Since EO =
OC, the line BO is just the bisector
of the angle EBC used in the two
previous proofs.

Exercise 2. Finish this proof using
figure 6. (Hint: prove the congruence
of triangles BED and BOD.)

Perhaps one of the most natural
ways to tackle our problem is to
notice that the measure of ZA of the
given triangle is 20°—that is, one
third of 60°—and try to make use of
this observation. This idea is imple-
mented in the next solution.

The eighth solution (Alexander
Kornienko) (fig. 7). Reflect the given
triangle about AB (to get ABC,) and
AC (to get ACB,). Then ZAC\E =

Figure 6




Figure 7

ZACE = 30°, and £AC,B, = 60°
(since triangle AB,C, is equilat-
eral—AC, = AB,, ZC,AB, = 60°), so
C,E bisects ZAC,B,, which means
that C,E is the perpendicular bisec-
tor of AB,. On the other hand, AD =
BD (because ZABD = ZBAD = 20°),
and BD = B,D (by construction). So
D is equidistant from A and B, and,
therefore, lies on line CE. Now the
angle EDB can be found from tri-
angle C,BD, in which ZBC,D = 80°
-30°=50°and ZC,BD =80° +20° =
100°. We find that ZEDB = 100° -
50° - 80° = 30°.

(In fact, the idea underlying this
proof is to consider figure 7 a part of
the regular 18-gon centered at A and
segments C, B, BC, and CB, as three
consecutive sides. Segments C,D
and BD turn out to be parts of its
two diagonals—which has to be
proved, of course, but this enables us
to quickly find the unknown angle.)

I hope you liked these eight solu-
tions, full of many clever construc-
tions and useful properties of tri-
angles. “But where’s the ninth one?”
you ask. Why, I've left it for you to
find!

I'll leave you with another prob-
lem about the same triangle (pro-
posed by a ninth-grader, Sergey
Yurin).

Exercise 3. In an isosceles triangle
ABC, AB=AC, and ZA = 20°. Point
P is taken on the side AC such that
AP = BC. Find the angle PBC. @
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HAPPENINGS

A tale of one city

It was the best of times . . .
Problems from the International Mathematics
Tournament of Towns in Beloretsk, Russia

HE ROAD NETWORK OF A
certain city consists of a con-
tinuous chain of circles. At the
point of tangency of two adja-
cent circles, the roads cross over as
shown in figure 1, which illustrates
the case with four circles.
A ring road is constructed around
the city, and is integrated with the
inner chain at various points. At

OO0

Figure 1

each “integration point,” the ring
road is crossed over with the inner
chain as shown in figure 2, which il-
lustrates the case with two integra-
tion points.

Note that in figure 2 the integrated
network consists of two mutually
inaccessible components. We call an
integrated network regular if it con-
sists of only one component, and ir-
regular otherwise. We wish to find a
necessary and sufficient condition for
an integrated network to be regular.

This is the main question in one
of five problems posed in a Problem-
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by Andy Liu

solving Workshop conducted in
Beloretsk, in the Bashkirian Repub-
lic of Russia, from August 1 to Au-
gust 9, 1993. The participants were
mostly from the former Soviet bloc,
but included representatives from
England, Austria, Canada, Ger-
many, and Colombia. They were
high school students invited on the
strength of their performances in the
International Mathematics Tourna-
ment of Towns.!

Each of the five problems is very

G559

Figure 2

IFor more on the Tournament of
Towns, see the articles in the
Happenings department in the January
1990 and November/December 1990
issues of Quantum.

carefully constructed. It is divided
into many questions, leading the
solvers step-by-step to the main one.
It also raises other related questions
along the way. The problem we fea-
ture here is proposed by S. Loktev
and M. Vialyj, based on a problem of
Prof. V. Arnold.

We begin our investigation by
studying some small integrated net-
works.

Question 1. Which of the inte-
grated networks in figure 3 are regu-
lar?

It may be observed that each of
the irregular networks in figure 3
consists of two components. Is this
true in general? In other words, how
bad can an irregular network be?

Question 2. Is there an integrated
network that consists of three or
more components?

Some of the integrated networks
in figure 3 have, at the end of the
inner chains, circles without inte-
gration points. Clearly, the deletion
of such circles does not affect regu-
larity. From now on, we shall as-
sume that they have been deleted. If
the inner chain consists only of
such circles, it will be reduced to
the empty set. However, the inte-
grated network is still considered to
be irregular, although the ring road
now constitutes the only compo-
nent.
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Figure 3

As we are interested only in the
regularity of integrated networks,
we can simplify them in many
ways. The following is also moti-
vated by observations of the simple
cases in figure 3.
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Question 3.
Prove that nei-
ther of the fol-
lowing opera-
tions affect the
regularity of an
integrated net-
work: (a) adding
two integration
points to a circle
in the inner
chain; (b) remov-
ing two integra-
tion points from
a circle in the
inner chain.

A simple but
useful corollary
of question 3 is
the following. It
makes figures
3d, 3f, 3j, 31, 3n, 3p, and 3q irrel-
evant.

Question 4. Prove that in an inte-
grated network, we can move all in-
tegration points in each circle of the
inner chain to the same side of the
ring road.

A more important corollary of
question 3 is that we may assume
that each circle of the inner chain
has either one integration point or
no integration points. We say that
such an integrated network is nor-
malized, and represent it by a se-
quence of 0’s and 1’s.

Question 5. Which of the follow-
ing normalized networks are regu-
lar? (a) 101 (b) 111 (c) 1001 (d) 1011
(e] 1111 (f) 10001 (g) 10011 (h) 10101
(i) 10111 () 11011 (k) 11111,

The next result allows us to re-
duce every normalized network to
one of three in figure 3—namely, 3a,
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3b, and 3k.

Question 6. From a binary se-
quence, we delete all subsequences
of the forms 00 and 111. We also re-
place all subsequences of the form
101 by 0. Prove that the reduced
sequence represents a regular net-
work if and only if the original one
does.

It turns out that it is possible to
determine whether a binary se-
quence represents a regular network
or not without actually carrying out
the reduction process in question 6.
Consider the sequence as blocks of
consecutive 1’s separated by single
0’s. For example, 111001101 con-
sists of four blocks of consecutive
1’s, with 3, 0, 2 and 1 of them in the
respective blocks. The alternate sum
of these numbersis3-0+2-1 =4,
and the alternate sum of any binary
sequence can be defined in the same
way.

Question 7. Prove that a binary
sequence represents a regular net-
work if and only if its alternate sum
is not divisible by 3.

Amazingly, what we have gone
through so far constitutes only part
of the problem of Loktev—Vialyj. A
more general setting replaces the
city with a metropolis, where the
road network is not a chain but may
look like figure 4. There are also
other questions one can ask about
integrated networks.

The top prize winner for this prob-
lem at the workshop was Clemens
Heuberger, a graduating high school
student from Graz, Austria. Other
winners were M. Alekhnovich and
M. Ostrovsky (joint effort), and I.
Nykonov. All three were high school
students from Moscow, Russia.

The principal organizer of the
workshop was Prof. Nikolay Kon-
stantinov of the Independent Uni-
versity of Moscow, a recent winner
of the prestigious Erd6s Award from
the World Federation of National
Mathematics Competitions. The as-
sembly was honored by the pres-
ence of Prof. Nikolay Vasilyev,
chairman of the problem commit-
tee of the Tournament of Towns,
and Prof. A. A. Yegorov, an editor
of Kvant, the sister journal of
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Quantum. Both posed problems for
the workshop.?

Most of the group assembled at
Moscow on July 30, 1993, and took
a 36-hour train ride across European
Russia to Beloretsk. Five problems
were distributed on board to whet
the participants’ appetites. We con-
clude with one of them.

Training Problem. (a) Let a and b
be integers and p a prime number.

2See “A Mathematical Journey” by
A. Liu in Crux Mathematicorum,
January 1994 (pp. 1-5).

A/\D

Figure 5

Prove that
a=>b (mod p) = aP = b? (mod p?).

(b) ABCD is a parallelogram (fig. 5).
The circumecircle of triangle BAD,
with center O, cuts the extensions of
BC, AC, DC, and AO atK, L, M, and
N, respectively. (1) Prove that N is
the circumcenter of triangle KCM.
(2) Express the length of LC in terms
of a=KLand b = LM. Q)

ANSWERS, HINTS & SOLUTIONS
IN THE NEXT ISSUE

Budapest Semesters in Mathematics

Initiated by Paul Erdds, Liszlo
Lovasz, and Vera T. S6s in 1984, the
Budapest Semesters in Mathematics
program offers a unique opportunity
to North American undergraduates
for a semester or year of study abroad,
in one of the most advanced math-
ematical centers of the world.
Through this program, mathematics
and computer science majors in their
junior/senior years can take a variety
of courses in all areas of mathematics
under the tutelage of eminent Hun-
garian scholar-teachers, most of
whom have had years of teaching ex-
perience in North America. The
classes are small, all of the courses are
conducted in English, and the credits
are transferable to the students’ home
institutions.

The classes are held on the Inter-
national College Campus of the
Technical University of Budapest,
which is near the historic city cen-
ter. The accommodations are excel-
lent, the living costs are modest, and
the tuition is most reasonable. The
fall semester usually begins during
the first week of September and ends
before Christmas, while the spring
semester starts in early February and
ends in late May. There is a brief
orientation program prior to the
start of semesters, and one can also
take part in an optional two-week
language program prior to the begin-
ning of the regular program. Ar-
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rangements can be made for taking
the Putnam Examination in Buda-
pest and/or for taking the Graduate
Record Examination in Belgrade or
Vienna, both about four hours by
train from Budapest.

During the past ten years, hun-
dreds of North American students,
representing more than 120 univer-
sities, took advantage of Hungary’s
long tradition of excellence in math-
ematical education and in creative
problem solving through this unique
program. Many of them have stayed
in close contact with one another
and the faculty/organizers of the
program.

To learn more about the Budapest
Semesters in Mathematics, please
contact its North American Direc-
tor, Professor Paul D. Humke, at
Saint Olaf College (telephone: 800
277-0434 or 507 646-3113; e-mail:
humke@stolaf.edu). You can also ob-
tain a copy of the application mate-
rials and a brochure describing the
program via anonymous ftp
(ftp.stolaf.edu). The registration
deadline for the fall semester is
April 30; early applications are en-
couraged, but late ones are some-
times accepted. The size of each
class is usually around 30.

—George Berzsenyi

Quantum vs. Kvant

Student readers of Quantum and
its sister magazine Kvant will go

head to head in a friendly math-
ematics competition in Moscow in
the summer of 1995. The event will
be sponsored by American Univer-
sity in Moscow and administered by
the two magazines. Participants will
be selected on the basis of answers
to several rounds of questions pub-
lished here and in Kvant. According
to Edward Lozansky, Quantum’s
international consultant, a team of
five US high school students will be
chosen for the one-week, all-expense-
paid trip to Moscow.

Watch this space in the months
ahead for further details.

Duracell Scholarship winners

Seventeen-year-old Tracy Phillips
of Long Beach, New York, was the
first-place winner in the Duracell/
NSTA Scholarship Competition.
She invented Money Talks, an elec-
tronic device neatly built into a wal-
let that helps blind people distinguish
between different values of paper
money. After a bill is placed in the
wallet, the device “talks,” giving the
denomination. How does it know
what to say? It uses an infrared light
emitter/detector that lets varying
amounts of light pass through the
printed patterns of a bill, identifying
key points that distinguish the bill’s
denomination. The amount of light
passing through each point is

CONTINUED ON PAGE 61
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. 50 Elementary particle 9 Dog’s cries containing City
1 Group of 1eg1slaFors 52 Dawn goddess 10 Plasma confining -CH=C(OH}- 62 Concept
5 Qommon electric 53 Scandinavian device 57 Ancient 63 Lowest tide
erreuit element 55 Sways 11 1949 Physiology Mesopotamian 64 Tails
10 Wﬂq duck 57 Understand Nobelist Moniz, region 67 ___-di-dah
14 Of aircraft 58 Am. inventor Antonio ___ 58 God of love 68 Dutch town
15 Decreaée ) 61 Fluid acceleration 12 Chemical prefix 59 Dirt
16 St':are flirtatiously machine 13 Sly smile 60 Unloaded engine SOIL\/%)T(/S//?IS g:lj Z_—HE
17 Birds ) 65 Fashion designer 21 Halley’s ___ speed
18 Wooden pin __ Gernreich 23 Highly radioactive

19 Hardy cabbage

20 Semiconductor

22 Rotating vector

24 Negative prefix

25 Type of salt

27 Hawthorne’s home

30 1051

31 1958 Physiology
Nobelist Edward L.

35 Aunt in Spain

36 Tooth covering

39 “Citizen __ "

40 Intuitive letters

41 Crag

42 4.19 joules: abbr.

44 One who transmits:
abbr.

45 Landed

47 Eye’s outer coat

66 Disulphuric(vi) acid
69 First garden

70 European capital

71 Scoop

72 Peruse

73 British gun

74 Deforming force

75 Plant fluids

Down

1 Sheep cries

2 __ -Civita symbol

3 City on the Oka

4 Trigonometric
function

5 Radioactive gas

6 Black

7 Fundamental
physical truth

25 Graceful tree

26 Parts

27 Vaporized water

28 Corridor

29 __ lazuli (blue rock)

30 French anthropolo-
gist ___ Mauss

32 Flavor

33 Untied

34 U.S. dancer ___
Cunningham

37 1 and 101, e.g.: abbr.

38 Roman spirit

43 Monochromatic
radiation source

46 Twisting deforma-
tion

48 __ Angeles

51 Hydrocarbon prefix

54 Magnetic flux units

SOLUTION TO THE
MARCH/APRIL PUZZLE
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Math
M111

(a) The equality can be proved by
induction. It’s obviously true for n =
1:(1-2!)/2 =3!/2 -2 =1. Assuming
that it’s already been proved forn =k,
let’s make sure it’s true forn = k + 1.
Using the inductive assumption, we
get

1.21, 2.3!
I
k(k+1)!  (k+1)(k+2)!
+ +
0k 2k +1
:(k+2)!+(k+1)(k+2)!_2
2k 2k+1
(2+k+1)(k+2)!
= 3
9k+1
_(k+3)!
T ogk+l

(b) The sum equals (n + 3)!/32 - 6.
This can also be proved by induc-
tion, as in part (a), but we'll give a
somewhat modified argument with
“telescoping” sums. Note that any
term of the given sum can be writ-
ten as the difference

(k+3)! (k+2)! (k+2)(k+3-3)
3k gk-1 3k
k(k+2)!

Writing out all these differences
fork=1,2,..., nand adding them
up we get, after canceling out
terms of opposite sign,
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(n+3)! B
3H
1.3! 2.4 n(n+2)!
+ +
3 32 3%

Similarly, for any positive integer d,
we have

(k+d)! (k+d-1)! k(k+d-1)!
dk - dk-l - dk

from which the following generali-
zation of statements (a) and (b) can
be derived:

1.d!+2(1+d)!+ +n(n+d—1)!
d g2 dn
_fpedlt .
-

(N. Vasilyev, V. Zhokha)

M112

Let L be the point of intersection
of the diagonal BD and the circle
KDQ (fig. 1). We have to prove that
L lies on the second circle KBP. For
the sake of definiteness, we’ll as-
sume that points K and Q are on dif-
ferent sides of BD; then K and P are

D Q C
L
K
A P B
Figure 1

on the same side of BD, because the
segment PQ intersects BD. Then
the angles DQK and DLK are in-
scribed in the same circle, subtend
the same chord DK, and have their
vertices on the same side of the
chord, so ZDQK = ZDLK. On the
other hand, since DC || AB, ZDQK
= ZKPB. Therefore,

ZKPB + ZKLB
=/DQK +(180° - £DLK)
= 180°,

which means that points B, P, K, L
are concyclic—that is, L lies on the
circle KBP.

M113

The answer is yes. If the first player
names any three different integers
whose sum is zero (say, 1, -3, 2, then
regardless of the order chosen by the
second player, the resulting equation
ax* + bx + c=0will have arootx, = 1
(because a- 12+ b-1+c=0)and a
different second root x, = c/a # 1
(since the product x,x, is always
equal to c/a).

If you liked this problem, here is
a much more elaborate extension.

Two players create an equation of
the form x3 + *x2 + *x + * = 0. The
first one names a number, the sec-
ond writes it in place of any of the
asterisks; then the first player names
a second number and the other
player inserts it in place of any of the
two remaining asterisks; finally, the
first player replaces the last asterisk
with some number. Can the first
player ensure that the resulting
equation has three distinct integer
roots?

M114

The specific problems (a) and (b)
have specific solutions—based, for
instance, on the Fractional Parts



g =5 (odd)

Figure 2

Theorem from “Ones Up Front in
Powers of Two” in the November/
December 1993 issue of Quantum.
But we'll consider the general prob-
lem (c) right away. The solution be-
low involves some ideas from the
solution to M100 in that same issue.

First let’s introduce a number of
convenient notations and terms. Let
Q be the fixed initial position of the
given regular g-gon and O its center.
Denote by Q, the g-gon (with cen-
ter A) obtained from _Q, under
translation by vector OA . Two
points A and B are said to be con-
nected if the polygon Q, can be
rolled into the polygon Q. The se-
quence of its successive positions in
this series of rolls will be called the
track AB. (Notice that if g is odd,
then any track AB necessarily con-
sists of an odd number of polygons
(including Q, and Qg), because in
this case a single rolling yields a
polygon turned 180° with respect to

Figure 3

g =8 (even)

the initial one, so only an even num-
ber of rollings restores the initial ori-
entation of the polygon—see figure
2.) The points connected to O will
be called attainable. Clearly any
two attainable points A and B are
connected to each other (we can
construct a track from A to O to B);
conversely, any point B connected
to an attainable point A is attain-
able itself (there is a track from O
to A to B).

Next we prove two important
properties of attainable points.

(1) If points A and B are attain-
able and C is obtained from B un-
der a rotation r through 360°/q
about A, then C is attainable.

Indeed, the rotation r takes Q,
into itself and any track AB (which
exists because A and B are con-
nected) into a track AC (fig. 3). So C
is connected to an attainable point
A.

(2) If A, B, and C are attainabg]e),
then the translation t by vector AB
takes C into an attainable point D.

To prove this, it suffices to con-
struct a track AC and notice that our
translation takes Q, and Q. into Qg
and Q,, and the constructed track
into a track BD. So D is connected
to an attainable point B.

360°/q

A B

Figure 4

Of course, this statement is true
for the translation by BA as well.

Now let’s prove that for ¢ > 7 any
circle contains an attainable point
inside it. Let € be the radius of the
circle. Take any two attainable points
A and B and construct C as specified
in statement (1) (fig. 4). Then BC/AB
=k =2 sin (180°/q) < 2 sin 30° = 1.
Applying the same construction to
B and C instead of A and B, we'll get
a pair of attainable points C and D
such that CD = kBC = k?AB |(fig. 4).
Then we repeat the construction
with C and D, and so on, until we
get attainable points X and Y such
that XY = k"AB < ¢ and also the next
point Z in the sequence A, B, C, D,
..., X, ... (such that XZ = XY and
£LZXY = 360°/q). Repeatedly apply-
ing statement (2) to points X, Y, O
and X, Z, O, we see that any num-
ber of translations by the vectors
— 0 == == —

XY ,-XY =YX ,or+XZ —that s,

-
a %_r}lslation by vector nXY +
mXZ with any integer m and n—
takes O into an attainable point.
These points make up a grid of
rhombi with side length less than ¢
(fig. 5).

The center of the given circle falls
into one of the thombi, and it’s easy
to see that its distance from one of the
vertices of this rhombus is smaller
than €. So this vertex lies inside the
circle, which proves the statement of
the problem for g > 7, because all the
nodes of the grid are attainable.

For g = 5 we can take two attain-
able points A and B, rotate B about
A through 3-360°/q =216° to get an
atta@_a}ble point P, and translate A
by PA . This yields an attainable

Figure 5
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Figure 6

point C (fig. 6), which can alterna-
tively be constructed by rotating B
about A through 216° - 180° = 36° =
360°/10. So in this case we can ap-
ply the above argument for g = 10.

Inthecasesq=3,g=4,andg=6
the statement is obviously wrong
(the rolling produces a hexagonal,
square, or triangular grid of centers,
respectively). Thus, the answer is g
=50r g=>7. (V. Dubrovsky)

M115

The given number is equal to
1,000,009 = 3% + 1,0002. Let’s prove
the following general fact: if an in-
teger m of the form 4k + 1 (with a
positive integer k) can be repre-
sented as the sum of two squares in
two or more different ways, then m
is a composite number.

Suppose that

m=x2+y2=u+v. (1)

Since m is odd, we can assume that
x and u are odd, x> u, and y and v
areeven,y <v,soxtuand vty are
positive even numbers. Then m can
be written as

xX+u X—UT
m= +
(2 2

+(M_uj2
2 2

(e (25 ()
(57

=pt+qg*+1% +52,
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wherep = (x +u)/2, g = (x —u)/2, and
so on. In this calculation we've used
the equality

_X+u X—-u

2 2
_V+y v-y
=158,
which isequivalent to x2 —u? = v2 - y?

and so to equation (1).

Let a be the greatest common di-
visor of p and r. Then p = ab, r = ac,
where b and c are relatively prime.
Substituting into equation (2] yields
abqg = acs, or bg = cs. It follows that
q is divisible by c—that is, g = cd,
and so bcd = cs, or s = bd. Now we
have

m = a*b? + 2d? + a?c? + b2d?
=(a® + d?)(b% + ).

In our particular case this reasoning
results in the factorization

1,000,009 = (172 + 22)(72 + 582
=293 . 3,413.

A stronger statement can be
proved: a number m = 4k + 1 is
prime if and only if it’s uniquely rep-
resentable as the sum of two
squares. For details, see the article
by V. Tikhomirov in this issue. (N.
Vasilyev, D. Fomin)

Physics

P111

Let the spring consist of N turns
(by the statement of the problem, N
>> 1). Consider first the compression
of the spring due to its own weight
in the absence of water. Turn num-
ber j (counting from above) must
support the upper (j — 1) turns. The
change in its length is determined by
the weight of these turns Mg{j - 1)/N,
where M is the spring’s mass, and by
the spring constant for a single turn,
which is N times that for the entire
spring k. Therefore,

AL = Meli=1) 1
N Nk

The total shortening of the spring
is equal to the sum of the changes in
each turn’s length:

N

Mg L

A= 2 AL ==y
=1

where

M=

1
i

(i-1)=N(N-1)= N2

Therefore, we get Mg/k = L.

Let’s now consider the case with
the water at a height /2. If there are
n turns underwater, the other (N -n)
will be above the surface. Let’s find
the value of n/N. We begin by find-
ing the load for each immersed
winding and the change in its
length. We then sum the changes
and equate the result to Ln/N - L/2
(this is the difference between the
lengths of n turns in the relaxed and
compressed states).

The weight of the immersed
windings is reduced due to the
buoancy of the water. The effective
weight of each turn is

Mg(p - Po) _ oMg
pN N’

where o = [p —p,)/p. So the force com-
pressing the (i + 1)th turn (counting
down from the surface) is

B- Mg(N-1) , oaMgi
N N

and the sum of the changes in the
lengths of the immersed windings
is

52 - Mgn(N -n)  aMgn®
~kN  kN? 2kN?

= L(E _ l}
N 2
Setting n/N = x and using Mg/k =
L, we obtain the equation

i=0

2
X(l—X)-f-OCXT:X—%,



from which we get x = 1/\2-a.

Now the entire length of the
spring can easily be obtained by
summing the length of the im-
mersed part L/2 and that of the de-
formed (N - n) windings above the
surface:

or

P12

When a point charge is placed
near a conducting plane, charges are
induced in the plane that attract the
particle. Their effect is equivalent to
the action of an image charge -Q
located at the same distance on the
other side of the plane (see figure 7).
The resulting force is obtained from
Coulomb’s law:

P KO _KQ
B (2X>2 4x2

Because the force of gravity also
depends on the inverse square of the
separation, let’s replace the electri-
cal force with an equivalent gravi-
tational force. We can do this by as-
suming that we have a mass M at O
with

2 7
M_FX _kQ

" Gm  4mG’

Figure 7

Now we can describe the trajec-
tory of the particle using Kepler’s
laws. It can be considered a very
elongated ellipse with semimajor
axis a = L/2 and semiminor axis b <<
a (the foci are at O and the initial po-
sition of our point particle).

Because the period of an elliptical
orbit with semimajor axis r is the
same as that for a circular orbit of
radiusr, let’s find the period of rota-
tion T of the particle about the mass
M:

4n* _ GmM
it 2’
3
T, =2n éﬁi

It’s clear that the time necessary for
the particle to reach the plane is
equal to the half the rotation period:

_lp_z L
2 2 V2GM

_nL |Lm
QV2k"

P113

In a closed vessel the number of
molecules striking the surface of the
ice per unit time is equal to the
number of molecules sublimating
from the surface (dynamic equilib-
rium). These are the conditions un-
der which the saturated vapor pres-
sure P_ is measured. Both fluxes of
mass are equal to p_v /6, where p,
= P u/RT is the saturated vapor den-
sity, S is the surface area of the ice,
u is the molecular mass of water,
and Vv = \/3RT/u is the mean mo-
lecular velocity. The factor 1/6 (or
strictly speaking, 1/4) accounts for
the choice of a particular direction
among six possible directions. If the
vessel is open, the flow of evaporat-
ing molecules remains the same, but
there is no return traffic; now the
pressure is P /2.

Let’s estimate the time necessary
for complete evaporation by assum-
ing an initial mass of ice m ~ 0.2 kg
and a cross-sectional area for the glass
S ~ 30 cm? and using p = 18 g/mol:

B B0 (BT
Lp 7S PSY 3u
=150 s.

In reality, however, the evaporation
requires more time; thus, we have
obtained a lower bound for the
evaporation time.

As the ice evaporates the accelera-
tion of the astronaut is a = P,S/2M,
and she will cover a distance d =
at?/2 = 90 m. Since this is compa-
rable to the distance given in the
problem, the rescue will work!

Recalling the approximate nature
of our computations, we can say
that the astronaut will return to her
spaceship in a time t = 100 s.

P114

When the external magnetic field
is switched off, the value of the mag-
netic field drops from the initial value
B to zero. The changing magnetic
field induces an electric current in
each ring. Let’s determine this cur-
rent at time ¢ after the magnetic field
is turned off.

Consider the closed loop AfCbA,
which coincides with the left ring
(fig. 8). According to Lenz's law, the
current flows clockwise. Let the
current in the AfC section be I,(t),
and let the current in the ChA sec-
tion be I,(t). The electromotive force
(emf) induced in this loop is
, AB(t)

€ing =T v
According to Ohm’s law, for a
closed circuit we have

R
€ind =I1(t)7m

R

Lyje +Iz(t)2—m

ZCbA U

or, taking into account that the

h I,

Figure 8
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lengths of the arcs 1,,- and 1, , are
nr/3 and 5mr/3, respectively, we ob-
tain

2
I&ﬂ+55&)=_éy;éﬁﬁl
R At

In the same way we write down
Ohm’s law for the loop AfCdA:

1 (= r=33)2 ane)

2R At

Inserting this value of I (t) into the
equation above gives us

()=~ (10m+ 33)r* AB(t) ‘

10R At

Each element of a ring Al carrying
electric current I(t) experiences the
Amperean force AF = I(t)Al - B(t),
which is directed along the radius of
the ring. Due to the bilateral sym-
metry of these forces relative to the
horizontal axis connecting the cen-
ters of the rings, the resulting force
acting vertically on each of the rings
is zero. The absence of symmetry of
the forces relative to the vertical
axis passing through the center of
the left ring (I(t) # I,(t)) results in a
horizontal force. This force is equal
to the difference between the forces
acting on the arc AfC and the sym-
metrical arc on the opposite side of
the ring:

F=F,-F, = Lt),.B(t)-
L)(t)LBlt),

where 1, is the chord subtending

the arc AfC (1, ,=2rsino/2 =r). The

tinal expression for the force F is
N AB(t

el B(t) ) !

SR At

F=

The action of this force during a small
time period t results in a change in
the ring’s momentum:

9./3r3
5R

9J3r® 1,
10R Az o)

mAv = FAt = - B(t)AB(t)

and so the ring will gain a velocity

08

MAY/JUNE 1994

9./3r3
10mR

2
BZ.
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Denoting the distance between
the source and the lens as d and the
distance between the image and the
lens as f, we write the lens formula
as follows:

Q|+
~ | =
| =

In a small time period At the dis-
tance between the source and the
lens decreases by Ad = v At, and the
distance between the lens and the
image increases by Af = 11 cos aAt.
Then (see figure 9)

1 1 1 1
+ =—+=,
d-vAt f+ucoso-At d f
or
vV, At ucoso - At
42 - 2 )
Vo
o—>
F
o
« Vel Y K|
Figure 9

The image’s velocity u equals that of
the source v, when f, = d</cosa..
Taking into account that cos o =

F/JJF* + H* , we obtain
1,1 _1
d, dcosa F'

S
Brainteasers

B111

Six days. The number of days
off must be 48 + 12 = 4 times the

d, =F[l+

number of days worked. So the
number of days worked is 1/5 of
30, the total number of days.

B112

Since every two statements con-
tradict each other, only one of them
can be true. All of them can’t be
wrong, because in this case the hun-
dredth one would be true. So there
are exactly one true and 99 wrong
statements. This means that the
only true statement is the ninety-
ninth.

B113

Hot water puts out a fire quicker
than cold water, because it evapo-
rates more rapidly and the vapor
impedes the access of air feeding the
flames.

B114

The answer is 384. Suppose we
start to lace the shoe by passing
the lace through the top right hole.
Then it may go out through any
other hole except the top left
one—that is, in eight ways. Next
we have to pass the lace through
the “parallel” hole on the other
side and let it out through any of
the six holes. This makes 8 - 6
ways. Proceeding in the same
manner, we'll get four choices on
the next step, then two choices,
and, finally, we’ll pass the lace
through the top left hole. All in all
we have 8 - 6 - 4 - 2 = 384 ways of
lacing the shoe.

B115

See figure 10: point A is the mid-
point of the arc; the two pieces can
be made to coincide by rotation
about O through 45°.

A

Figure 10




Kaleidoscope

1. The molecular force is propor-
tional not to the muscle’s mass but
to its cross-sectional area. So if all
the linear dimensions of an animal
are decreased by a factor of n, its
mass will be reduced by a factor. of
n3, and the force will decrease only
by a factor of n2. Thus, the relative
force (that is, the force per unit
mass) increases as the animal’s size
decreases. Of course, the geometry is
not precisely the same in different
animals, but the influence of the
dimensional factors far outweighs
the role of specific features, which
allows us to establish a clear rela-
tionship between the relative force
and the animal’s size.

2. The force produced by a muscle
is proportional to its cross-sectional
area (see the previous problem), and
the distance the muscle contracts is
proportional to its initial length.
Because the mechanical energy out-
put of a single contraction is the
product of force and distance, it is
proportional to the cube of the
organism’s linear size (and corre-
spondingly to its mass). The same
amount of muscular energy per unit
mass corresponds to the same poten-
tial energy at the top of the jump.
Thus, geometrically similar animals
should be able to jump to the same
height.

3. If the linear dimensions of an
animal are increased by a factor of n,
its body mass increases by a factor of
nd. Suppose that, when this happens,
the thickness of a bone is increased
by a factor of m. To the extent that
we assume (in accordance with ac-
tual conditions) that the composi-
tion of the bone doesn’t change, the
pressure on the bony tissue (per unit
cross section) must be preserved—
that is, n3/m? = 1. In other words, m
is proportional to n'°. As one can
see from the figure, Galileo in-
creased the linear dimensions by a
factor of 3. So the animal’s mass in-
creased by a factor of 3% = 27. It
seems that for the sake of clarity
Galileo increased the bone’s thick-
ness in the figure by a factor of 27/3

= 9 (rather than 3!®° =z 5.2). In
Galileo’s defense, it should be
pointed out that all the calculations
in the text of his book are correct.

4. As in the previous problem, we
assume that the pressure exerted on
the foot’s cross section in both a
human and in a “monoped” is the
same. The body density for all mam-
mals is about 1 g/cm?. The mass of
the foot itself can be neglected in
such approximations. In humans
this pressure is about

700 N
2-3.14-(15 cm)’ /4

=1 N/(:rn2

(two feet!). Let 1 retem be z meters.

Then the weight of the monoped
will be

314z%-1,000- % =4,000z° N

(estimate the contribution of the
foot’s mass on your own), and the
cross-sectional area of the foot is

(02z-100)’

314. =80z cm?.

This gives us

50z =1,
z=0.02.

It should be noted, however, that
comparing the monoped to an ante-
lope instead of a human would dras-
tically change the result.

5. Of course, 3040 Ibs of food per
day is an absolutely fantastic figure
both for a three-year-old child and
for our readers. (Don’t forget that
water requirements weren’t in-
cluded in our estimates.) Little chil-
dren eat greater amounts of food
because of their faster metabolisms
and perhaps even more because of
the higher heat losses typical of
smaller mammals. Another in-
stance of this factor can be seen in
problem 9.

6. The weight of an insect (that is,
the force of gravity acting upon it) is
proportional to n?, and the pressure
on the air created by each stroke of
its wing is proportional to the wing's
area (n?) and to the muscular force

(another factor of n?). Although a
decrease in size makes an animal
relatively stronger (see problem 1), it
doesn’t help with “rowing” types of
movement. In order to hang in the
air, a smaller animal has to increase
the number of strokes. The pitch of
the sound emitted by the wings in-
creases correspondingly. As for the
flies that bothered Gulliver, their
flight should be more or less silent
(to the human ear), just as the flight
of birds is relatively quiet. The
sounds that we hear when birds fly
are produced by other types of wing
movement.

There is an even more energy-
consuming mode of flight based
upon the rotation of a propeller. In
your leisure time try to estimate
how much jam Karlsson would have
to eat so as not to lose weight in
flight. (Karlsson is a character in the
stories of A. Lindgren.)

7. Warm-blooded animals expend
a significant amount of energy keep-
ing their temperature constant. This
is a particularly challenging problem
for a small animal with a relatively
large surface area. Its surface area is
inversely proportional to the square
of its linear dimensions, while its
mass is inversely proportional to the
cube of its linear dimensions. In or-
der to achieve equilibrium between
heat production and heat loss, small
animals maintain higher body tem-
peratures.

8. When we walk, our center of
mass—which is located in the lower
part of the body, just below the na-
vel—moves along the arc of a circle
whose radius is approximately
equal to the length of our legs. It’s
known that a body moving with
velocity v along a circle of radius I
has an acceleration v?/I directed to-
ward the center of the circle. Two
forces act on a person when walk-
ing: the force of gravity and the sup-
porting force. The resultant of these
forces—the centripetal force—
clearly cannot be more than the
force of gravity (mv?/I does not ex-
ceed mg, where m is the mass of the
body). So the maximum walking
velocity equals v = /gl , which fora
human comes to about 3 m/s (a
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reasonable value). Children have
shorter legs, so they have to run to
keep up with their parents, but their
running is actually a succession of
jumps and not rotations of the body
about the axis of the leg.

9. As the problem deals with
desert animals, we can assume that
water loss is caused by evaporation
from the body’s surface. Since the
area of this surface is proportional to
the square of the animal’s linear di-
mensions (n?) and the amount of
stored water is proportional to the
body’s volume (n3), larger animals
can survive longer after drinking
their fill of water. And yet, desert
animals vary widely in size. How do
we explain this? It turns out that our
reasoning is applicable to animals
that are closely related taxonomi-
cally (for instance, jerboa and
camel), for which a decrease in size
is not accompanied by a reduction in
the water permeability their tissues.
It makes no sense to compare
beetles, lizards, and mice according
to the similarity principle because
their tissues are fundamentally dif-

‘ Toy Store

1.If r, 1, u, d are the numbers of
the R, L, U, D moves, respectively,
required to get from (0, 0) to (m, n),
thenr-1=m, u—-d =n, and the to-
tal number of moves equals r + I +
u+d=m+n+2I+d).

2. Required short sequences to
reach a colored square (m, n) from
(0, 0) marked face up are, for in-
stance: UR®D form =21, n = O;
UR™-2URDR form >2,n = 1; simi-
lar sequences for (0, n) and (1, n); and
RULURD for (m, n) = (1, 1).

3. The three possible half-turns
are given by RUL?DR, UR2DIL?,
U?RD2L.

4. H(a, b) generates the half-turn
h, of the central cube, and Hia, b™1)
generates h; both operations can be
reduced to 38 moves.

5. Consider the chessboard coloz-
ing of the squares. If the vacancy
comes back to its initial place, then
the number of cubes that moved
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Figure 11

from the black squares to the white
squares equals the number of cubes
that changed from white to black. In
particular, the total number of cubes
that changed their underlying color
is always even. So the answer to (a)
is no (because a 90° turn is possible
only with a change of color). The
answer to (b) is no, too, because all
corner squares in a 3 x 3 board are
the same color, and so we have to
make only two like color changes
without any opposite changes.

We'll use the shortened notations
a, b, c, d for the four-roll cyclic
moves about points A, B, C, D in fig-
ure 11 (as we did in the article).
When verifying the number of single
rolls, take cancellations into ac-
count.

6. (dcba)3dc.

7. @b*etded e 1d,

8. abtadledabladlctab-1-
c'bldcbada®d.

9. a’ldcb*d'a2d-'c2bd-1c1d-1-
ale,

10. b2a (b 'aPba®D (the vacancy
is shifted; the direction of rotation
here is the opposite of that in the
previous solution).

11. a'ba?.

Wit. Fermat-Euler

1.If a? + b2 is an odd prime, then
one of the squares—say, a>—is even.
Therefore, a = 2n, and the other one
isodd, so b =2k + 1. Then a? + b? =
4n* + 4k% + 4k + 1 = 4m + 1, where
m=n?+k>+k.

2. For any integera, 1 <a<p-1,
consider the products 1-4,2 -4, ...,
(p = 1)a. The remainders of all these
products when divided by p are all
different (because if ka = Ia (mod p),

k > 1, then (k - I)a is divisible by p,
which is impossible since both fac-
tors k — 1> 0 and a are less than p,
and p is prime). None of these prod-
ucts is divisible by p, so the remain-
ders take each of the values 1, 2, ...,
p -1 once. So for the given value of
a thereis aunique b, 1 <b<p-1,
such that ab =1 (mod p). For a = 1
and a = p - 1 the corresponding
number b is equal to a. For any
othera (2<a<p-2), b+#a,because
a* =1 (mod p) implies that a®> -1 =
(a—1){a+1)is divisible by b only for
a-1=0ora+1=p. This proves the
first statement. The proof of
Wilson’s lemma is now completed
just as was done for p = 13 in the
article:

(p_g)!zz.g.....(p_z)

(Q.PT”].....FZ;L(Z,_Z)}

=1(mod p),

and (p-1)!=p-1=-1(mod p).

Nine solutions

1. In figure 3 in the article, the
angles of triangle CBK are £C = 80°
(by the condition), £B = 20° (by con-
struction), £K = 180° - 80° - 20° =
80°, so BC = BK. We saw in the first
solution that BC = BE, so BE = BK;
and, since ZKBE = 80° - 20° = 60°,
the triangle BEK is equilateral. Fur-
ther, ZKBD = 60° - 20° = 40° =
ZBDK (the last equality was proved
in the third solution), so KD = KB =
KE. To finish the solution, we can
notice, for instance, that K is the
center of the circle that passes
through B, E, and D; it follows that
ZEDB=%/EKB = 60° + 2.

2. In figure 6 in the article, ZEOD
=2/ECD = 60°, because ZEOD is a
central angle in the circumcircle of
triangle CED, and ZECD is an in-
scribed angle subtended by the same
chord ED. We deduce that DEO is
an equilateral triangle and ED = DO.
Thus, D lies on the perpendicular
bisector p of the segment EO; also,
we know that BD bisects the angle



EBO. If p and BD were different
lines, we could apply the argument
from the fifth solution to show that
D lies on the arc EO of the circum-
circle of triangle BEO. But in this
case we'd have ZEDO + £EBO =
180°, whereas in fact this sum
equals 60° + 40° = 100°. So BD is the
perpendicular bisector of EO, which
means that triangles BDE and BDO
are congruent, and ZEDB = ZBDO
=60° + 2 = 30°.

3. Apply the construction with
two reflections from the eighth so-
lution (fig. 12) (compare figure 7 in
the article). Then AP = CB,, AB =

Figure 12

C,B,. Using the fact that points C,,
B, C, and B, all lie on a circle with
center A and applying the Inscribed
Angle Theorem, we get £C,B,C =
%5£ZC/AC = ZBAC (and, therefore,
AC,B,Cis congruent to ABAP), and
/B,C,C=%/B,AC = 10°. By the
congruence of the triangles men-
tioned above, ZABP = £B,C,C =
10°, so £ZPBC = 80° - 10° = 70°. (V.

Dubrovsky)
a )

Yol That$ not how it goes!

“BULLETIN BOARD” CONTINUED FROM PAGE 52

measured by converting light energy
to electrical energy. The signals are
sent to a digital logic circuit, which
matches codes and identifies the
bill. The logic circuit activates a
voice chip. The device is powered by
four AAA batteries.

Phillips said she wanted to com-
bine her interest in electronics with
her desire to do something for blind
people. (Tracy’s brother is blind.) For
her scientific skill, Phillips will re-
ceive a $20,000 savings bond from
Duracell.

Second-place winners were Chris
Hyun Cho, 16, of East Setauket,
New York; Seth Frankel, 17, of
Demarest, New Jersey; Eric
Magnuson, 18, of Uniontown, Ohio;
David Monson, 15, of Boise, Idaho;
and Robbie Lynn Slaughterbeck, 17,
of Oklahoma City, Oklahoma. Each
of these student inventors received
a $10,000 savings bond.

Cho was inspired to create the
Automated Page-Replacing Con-
trivance because, as a member of his
school’s chamber orchestra, he
found quick page turning to be a
problem. Frankel created Safe-T-
Eyes, a device that protects a power
tool operator from injury by requir-
ing a face shield to be in place before
the tool can be turned on. Magnuson
developed the Safe Distance Brake
System, which shows, in different
colors, the amount of pressure a
driver is applying to the brakes.
Monson invented the RF Intercon-
nectable Smoke Alarm, a wireless
unit that causes every smoke alarm

in a house to sound when only one
is activated by smoke or fumes.
Slaughterbeck devised the Rx-
Locker, a timed, internally locked
pill dispenser designed to prevent
overdoses. (He was inspired by the
accidental overdose of a family
friend.)

The first- and second-place win-
ners, their parents, and their science
teachers were guests of Duracell at
an awards ceremony in Anaheim,
California, on March 30. The young
inventors demonstrated their de-
vices for a luncheon audience and
exhibited them for thousands of sci-
ence teachers at the 42nd annual
convention of the National Science
Teachers Association (NSTA).

Ten students were also awarded
$1,000 third-place savings bonds; 25
students won $200 fourth-place
bonds; and 58 finalists were selected
for $100 bonds.

To enter the Duracell/ NSTA
Scholarship Competition, students
in grades 9 through 12 design and
build a device that is educational,
useful, or entertaining and is pow-
ered by one or more Duracell® bat-
teries. Entries are judged on energy
efficiency, practicality, and inven-
tiveness. Every student who enters
receives a gift from Duracell and a
certificate of participation from
NSTA. Proposals for entries are due
at NSTA each January. For more in-
formation, write to Eric Crossley,
NSTA, 1840 Wilson Blvd., Arlington
VA 22201-3000, or phone 703 243-
7100.
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TOY STORE

The rolling cubes

Can you\ro// your way Iinto the record books?

HIS ARTICLE COMPLETES

(for the time being) the discus-

sion of different kinds of rolling-

block puzzles in the September/
October and November/December
issues. In most of the puzzles we
considered earlier you had to roll
pyramid-shaped blocks. This time
we'll be rolling cubes around.

Tumhlgweed revisited

We'll begin with one of the sim-
plest problems posed in connection
with the “Tumbleweed” game in
the November/December issue.
Slightly generalized, it reads as fol-
lows.

Consider a unit-square grid in the
first quadrant (fig. 1) and a unit cube
sitting on the corer square of this
grid. Suppose five faces of the cube
are white, and one face—the top
one—is colored (we’ll call this the
marked face). We have to roll the
cube over to a given square of the
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Figure 1
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by Vladimir Dubrovsky

grid in such a way that the marked
face appears on the top again, and
figure out the possible number of
moves (rolls) this procedure will
take.

Well, this problem isn’t all that
difficult. The answer is given in fig-
ure 1: if we number the horizontal
and vertical lines of the grid 0, 1, 2,
..., thus linking a pair (m, n) with
each grid square (m and n are the
numbers of the column and the
row, respectively, that contain
this square), then the minimal
number N of rolls sufficient to
reach the square (m, n) marked
face up is equal to m + n for the
white squares, m +n + 2 for the blue
ones, andm +n + 4 = 6 for the single
yellow square (1, 1).

To see that this is indeed true, we
note first that after four rolls in the
same direction the cube restores its
initial orientation (it makes a full
turn). Therefore, for (m, n) = (41, 0) or
(0, 41) we have N =m + n = 41. Obvi-
ously it’s impossible to get to these
squares in a smaller number of
moves, and it’s just as obvious that
we can’t get to any square (m, n) in
less than m + n moves.

Now, imagine you roll the cube
from the initial position once to the
right. Then the marked face appears
on the right side and will stay on
this side after any number of subse-
quent rolls in the vertical direction.
In particular, if you make only one
“up” roll and then continue rolling
to the right, the cube will assume
the initial orientation after three
additional right moves, as well as

after 3 + 4k moves for any k. Thus,
we can roll the cube to the square
(m,n)=(4], 1)in m + n = 41 + 1
moves. Denoting the right, left, up,
and down moves as R, L, U, and D,
we can write this sequence of rolls
as RUR*-1(Rk denotes k successive
R moves).

Similarly (and symmetrically) we
can get to the square (m, n) = (1, 41)in
m+n=4I]+1moves: URU¥*-1. The
simple trick used here—rolling the
cube with its marked face on a side
along this face—enables us to solve
the problem in m + n moves for any
square (m, n) with m > 2, n > 2. For-
mally, the sequence of moves that
carries the cube over to this square
marked face up is RU?-2RUR™-2UJ.
(See the example for (m, n) = (7, 5) in
figure 1—rolling along the dotted
lines in this figure doesn’t change the
relative position of the marked face.)

Next, you can easily make sure
that m + n rolls aren’t enough to get
to the colored (blue and yellow)
squares in figure 1, and that to get to
the yellow square (1, 1) you have to
make even more than 4 =m +n + 2
moves (there are only a few conceiv-
able routes of length m + n from (0, 0)
to (m, n) with m or n no greater than
1, and you can check all of them).

Problem 1. Prove that if you can
reach the square (m, n) in k moves,
then k — (m + n) is a nonnegative
even number.

According to this problem, the
blue squares require no less than m
+n + 2 moves, while the yellow
one—(m, n) = (1, 1}—requires at least
m +n + 4 = 6 moves.




Problem 2. Find the solutions for
the yellow and all the blue squares in
6 and m + n = 2 moves, respectively.

If you compare these results with
the numbers given in the Novem-
ber/December issue for the Tum-
bleweed game, you'll see at once
that these numbers are the mini-
mum possible (that is, m + n for the
white squares, m +n + 2 for the blue
ones, and 6 for the yellow one).

Rotations and rolling tours

More interesting questions come
up when we have a cube whose faces
are all colored differently. Can we
roll a cube from the square (0, 0) to
(m, n) in such a way that it ends up
in exactly the same position as it
started, or, more generally, in a cer-
tain given position?

It turns out that possible final po-
sitions depend on the coordinates
(m, n) of the final square—more ex-
actly, on the parity of m + n. This
becomes clear when you look at fig-
ure 2. We draw a line on each face of
the cube as shown in this figure (the
lines on the faces we can’t see are
parallel to the lines on their opposite
faces), and draw lines on all grid

-/l /= /=7

/=Ll /=)=
—L N1/~
/1Y /=
i Lo L imrdi
Figure 2

squares alternating their directions in
chessboard order. Put the cube on a
grid square so that the line on its bot-
tom coincides with the line on the
square. Now roll the cube. The lines
on the cube and on the plane will fit
each other again, so they will coin-
cide after a second roll and, in general,
after any number of rolls in any direc-
tion. This means that only a half of all
possible positions of the cube on a
given square are accessible by rolling
it from another given square. Indeed,
a cube can rest on any of its six faces
and we can turmn it four different ways
on this face. So there are 6 - 4 = 24
positions on a given square. But if we

any closed path, it
ends up on the initial

itk

square rotated “even-
ly.” But can we actu-

I 7]

a
Figure 3

want the line on the cube’s bottom
to fit the line on the square, we’ll be
left with only two ways to turn the
cube on the bottom, which amounts
to 6 - 2 = 12 positions.

Now imagine that we’ve rolled
the cube somewhere and then slid it
back without turning it (that is, by
aparallel translation). Then the final
position of the cube can be obtained
from the initial one by a certain ro-

C

ally obtain all 12 even
rotations in such a
way? The simplest
closed path consists
of four moves around
a 2 x 2 square (fig. 4). We can see im-
mediately that this “rolling tour”
results in a 120° rotation about the
diagonal passing through the center
of the square (point A in figure 4a),
as shown in figure 4b. The sense of

120°

A,

tation. It’s a very good exercise to
find all the 24 rotations of the cube,
and the 12 that preserve our pattern
of lines on the faces. Try to do it
yourself.

And here’s the answer to verify
your investigation: there are three
rotations (by 90°, 180°, and 270°)
about each of the three axes perpen-
dicular to the cube’s faces (fig. 3a);
two rotations (120° and 240°) about
each of the four diagonals (fig. 3b);
and the (least obvious) rotations, or
half-turns, about each of the six axes
through the midpoints of the cube’s
opposite edges (fig. 3c). This makes
3-3+2-4+6 =23 different rota-
tions; the one missing is the identity
transformation. Our pattern of lines
is preserved by the three half-turns
about the “face axes,” eight diagonal
turns, and, of course, the identity
transformation.

Since every single roll changes the
direction of the line on the cube’s
bottom, the rotations that preserve
the pattern of lines emerge after any
even number of rolls, and we can call
them even rotations. Twelve other
rotations will be called odd. By prob-
lem 1, the number of rolls required to
get from the square (0, 0) to (m, n) has
the same parity as m + 11, so the rota-
tions that can emerge as the result of
rolling the cube from (0, 0) to (m, n)
are even or odd depending on whether
m + n is even or odd.

In particular, when a cube traces

a
Figure 4

the rotation depends on the sense of
the rolling tour. In our notation the
tour in figure 4a is written as LURD.
Since the moves R and D are the
inverses of L and U, we can rewrite
it in the form LUL'U"!. Visitors to
our Toy Store may remember that
operations of this form (in general,
XYX1Y"!, rendered in shorthand as
[X, Y]) are called commutators (of X
and Y) and are often useful with trans-
formational puzzles. (See, for in-
stance, the January/February issue.)
The commutator [L, U] together
with the seven other commutators
of L, U, and their inverses—[L, U]
-LUL'U=LDRU, [U, L] = ULDR,
and so on—yield all eight diagonal
rotations of the cube.

Problem 3. Find the three 6-move
rolling tours that turn the cube 180°
in its place about each of the three
face axes (shown in figure 4a).

By taking the cube on rolling
tours, we can obtain all 12 of its
even rotations and return it to its
initial location.

Rolling in a crowd

Now we're ready to investigate
puzzles with many rolling cubes and
only one empty space. One version of
such a puzzle is shown in figure 5 (on
the next page). It consists of eight
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Figure 5

identical 6-color cubes in a square box
with an empty space in the middle.
Initially all the cubes are oriented in
the same way so that each face of the
square “ring” is the same color. You
have to roll the cubes in such a way
that they all again become oriented
alike but not as they were initially.
It’s not hard to see that the final col-
oring in this problem can be chosen
in 23 different ways, which is the
number of non-identical rotations of
the cube.

This particular problem was pro-
posed by puzzle designers A. Dryom-
ov and G. Shevtsova, whom we’ve
already mentioned in connection
with other rolling-block puzzles. It’s
interesting how they managed to pre-
vent the cubes from slipping: the
cubes they use have grooves along
their edges (fig. 6), and the bottom of
the box has a 3 x 3 square grid of nar-
row laths glued to it; the laths fit into
the grooves, so when you tilt a cube
to roll it to an adjacent square, it
“stumbles” on a
lath and lands ex-
actly where you
want. Of course,
other antislipping
devices exist, and
other problems,
too.

For instance, the set of rolling
cubes manufactured in Poland some
time ago comprised eight identical
cubes that had only one colored face
each. It was supplied with instruc-
tions saying that the puzzle could be
used for evaluating the IQ of the
player. The maximum score was
given for the following “Royal Prob-
lem.” Initially the four corner cubes
are set in the box, their colored faces
up, and the remaining four cubes at
the edges are turned so that their
colored faces are down. You have to
roll the cubes so that the colored
faces appear on the bottom in the

Figure 6
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corners and on the top at the edges.
According to the instructions, “if
you find a solution in no more than
36 moves, you're a genius; if not,
you fall just a little short.”

A natural way to tackle the prob-
lems we described, and others like
them, would be to try to find se-
quences of rolls that result in rotating
a single cube in its place and leave all
the other cubes unaltered. This won’t
be economical; but the advantage of
this method is universality: if we
learn how to turn a single cube in
every possible way, we’ll be able to
obtain the required arrangement by
rotating the cubes one by one. Notice
that this approach didn’t work with
the rolling pyramids (see the Septem-
ber/October Toy Store), because a
pyramid always returns to its initial
location in the same orientation that
it had at the start.

I'll describe two types of operations
that rotate a single cube. Both can be
performed in a “small” box measur-
ing 3 x 2; for definiteness, we’ll as-
sume that the empty square is at the
middle of the longer side of the box,
as shown in figure 7. Any sequence of
rolls in this box that brings the empty
space back to its initial location can
be represented as a combination of
the four 4-roll cyclic moves about the
centers A and B in figure 7: DRUL
(the clockwise cycle about A, which
will be denoted by a), LDRU (the
clockwise cycle b about B), and their

d
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inverses a! = RDLU and b! =
DLUR. This is easy to verify, so I'll
give only one illustration: RDLLUR
= RDLUDLUR = a'b'—the succes-
sive moves U and D in the interme-
diate expression cancel out. Below
we'll use this shorthand notation—
that is, the cycles a and b—rather
than the notation for single rolls R,
L, U D.

So, in cyclic notation, operations
of the first type are commutators
(déja vu!) of the triple cyclic moves
a®, b3, and their inverses. More ex-
actly, under [a®, b3] = a®b3a=3b=3 the
four corner cubes stay in place,
while the central cube makes a half-
turn h; about the axis parallel to the
long sides of the box; then, [a=3, b™]
= a*b*a®b~® performs a half-turn h_
of the central cube about the axis
parallel to the short sides of the box;
and [a3, b~3] rotates the central cube
by 180° about the vertical axis (per-
pendicular to the box). Notice that
the last half-turn b is produced by
4 -3 - 4 = 48 single rolls, while the
actual number of rolls in h; and h_is
46 (we've seen that in the combina-
tion a~'b~! two rolls—U and D—
cancel out; the same happens with
ba).

It’s interesting to look into why
these operations behave as they do.
The 4-roll move a cycles the three
cubes about A clockwise by one po-
sition. Repeated three times, it
brings the cubes to where they
started after rolling one full circuit
about A—that is, a® twists these
cubes 120° about their diagonals
drawn from their vertices at A (com-
pare figure 4). The operation b3 be-
haves similarly about point B in-
stead of A. What happens under
ab3a-3b-3? The two left corner
cubes are twisted by a3, left intact by
b3, untwisted by a2, and left intact
again by b3. So eventually these
cubes, as well as the two right cubes,
stay put. At the same time, the cen-
tral cube is successively subjected to
120° rotations about its diagonals
from A and B and their inverses,
which results in the half-turn speci-
fied above.

Operations of the second type
were presented by John Harris in one




of the first publications on rolling
cubes. They can be written in the
following general form:

Hlx, y) = xyxyxy 'x" 'y~ 'x"ly ™,

where x and y stand for q, b, or their
inverses, and they also result in rota-
tions of a single (central) cube. In par-
ticular, taking (x, v) = (a, b), we get an
operation H(a, b) = alba/}(bla')*b!
that performs the diagonal rotation d,,
shown in figure 7; H(b, a) gives the
inverse rotation d,'; H(a™!, b™') and
H(b™, a’!) produce rotations d, and
d, !, respectively. Although these
operations are defined as sequences of
ten 4-roll cyclic moves, they contain
a number of mutually annihilating
successive rolls (in the combinations
ba and a~'b1,), so after cancellations
they can be reduced to 32 rather than
40 single rolls. The four other opera-
tions of this form—H(a™, b), H(a,b™),
and their respective inverses H(b, a™!)
and H(b"!,a)—don’t add much to
what we already have: they only re-
produce some of the rotations gen-
erated by the commutators above,
though in fewer moves.

Problem 4. Exactly what rota-
tions are generated by the operations
H(a™!, b) and H(a, b7'), and how
many rolls do they comprise after
possible cancellations?

So, it turns out we have compara-
tively short operations for seven of
the eleven even non-identity rota-
tions of the central cube on a 3 x 2
board: the three half-turns h, h, h,,
and four 120° rotations about two of
the diagonals. As to the remaining
four rotations about the other two
diagonals, I don’t know a nice, elegant
way to obtain them, but they can be
represented as combinations of d
and d;. For instance, the rotation d in
figure 7 results when d, is followed
by dy'—thatis, d =d,d, . A shorter
way to perform d is (1) turn the cen-
tral cube (and maybe some other
cubes) so that the axis of d fits onto
the axis of, say, dy; (2) perform d;
(3) “undo” operation 1—that is, d =
addga=3, or a?d a3, Here d is repre-
sented as a conjugate of d (ord ;7! )—
see the January/February Toy Store.

Conjugation can also be used to
rotate separately any of the corner

cubes in its place. For instance, the
top left cube is rotated by an opera-
tion of the form ara™!, wherer is any
of the rotations of the central cube
considered above: a rolls the top left
cube to the central location, r rotates
it, a! rolls it back.

Now we can do any rolling-cube
problem in which the “target” posi-
tion differs from the initial one by an
even rotation on each square turning
cubes in their places one by one. As
for problems with odd rotations, I'll
illustrate them with one example:
turn all the cubes in a box through
90° about their vertical axes.

Imagine that the squares of the box
are colored black and white in chess-
board order so that the empty square
is white. To be “oddly rotated,” a
cube must make an odd number of
rolls; therefore, it must move to a
square of the other color (because one
roll changes the color of the cube’s
underlying square). But initially our
cubes occupied three black and two
white squares. One white square for
the “black cubes” is lacking, and the
problem seems to be unsolvable!
However, a solution does exist. Here
it is: a’*b2a?b?a?D. It wasn’t stipu-
lated that the vacant place remain
the same, and in the last move it’s
shifted to a black square, while an
extra “black cube” changes its un-
derlying color.

Tricks aside, this solution illus-
trates a general rule for solving roll-
ing-cube puzzles. First, using the
chessboard coloring, we determine
which cubes must change their un-
derlying colors. Then we roll the
cubes so as to change colors as re-
quired, without paying much atten-
tion to the cubes’ orientations. After
that, the required final orientations
become attainable by even rotations
of the cubes in their new places,
which can be done by using the op-
erations we described above.

Problem 5. In a 3 x 3 box with an
empty space in the center, all the cubes
are colored the same and have the same
initial orientation.Is it possible to ob-
tain a position in which (a) one cube
is rotated 90°, (b) two corner cubes are
rotated 90°, while all the other cubes
retain the initial orientation?

Beat these records

Although the explanations above
allow us to solve any (solvable) roll-
ing-cube problem, they don’t help
much if you have to find a solution in
a small enough (or the smallest) num-
ber of moves. I count such problems
among the most intriguing and chal-
lenging transformational puzzles.
Here are some of them, together with
the lengths of the best solutions I
know of. The empty square must re-
main in its place in all the problems
below except one (figure out which).

Problems

The first three problems are bor-
rowed from John Harris’s article in
the Journal of Recreational Math-
ematics, Vol. 7, No. 3.

6.In a 3 x 3 box with an empty
space in the middle each of the eight
cubes has only one colored face. Ini-
tially it’s on the left side of each
cube. You must move it onto the
right side. (30 moves).

7. Starting with the initial posi-
tion of the previous problem, turn
the colored faces onto the front sides
of the cubes. (44 moves)

(In the next problem the coloring
is different.)

8. Initially all the external faces of
the cubes are red, and all the hidden
faces are white. You must hide all
the red faces. (84 moves!)

The remaining problems are for 6-
color cubes. The record solutions for
the first two are held by A. Pante-
leyev, a Moscow mathematician.

9. Turn all the cubes in the 3 x 3
box through 90° about the axis par-
allel to the lower edge of the board.
(60 moves)

10. Do the same as in the previous
problem in the 3 x 2 box (45 moves.)

11. You're given five cubes in the
3 x 2 box having the same orienta-
tion. Roll them so as to obtain five
different colors other than the initial
one on their top faces. (The author,
V. Rybinsky, can do this in 14
moves.) Q

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60

1According to Martin Gardner,
Harris later found a 74-move solution.
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