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NATOLY TIMOFEYEVICH

Fomenko (b. 1945) is a
mathematician at Moscow
State University. Although he
produces drawings of great
emotional power and technical
competence, he does not con-
sider himself an artist. “In my
mind, these are not just an
artist’s images. . .. I am a math-
ematician. To me, my draw-
ings are like photographs of
some strange and interesting
mathematical world. For me it
is not important to be an artist
but to represent images of this
world so that others can appre-
ciate it. To penetrate this
world, you must study math-
ematics at a reasonably high
level, maybe even be a profes-
sional mathematician. If you
study mathematics only for
technical purposes and do not
stop to think deeply about the
ideas, then you really cannot
understand this world. In that
sense I differ from other art-
ists.”

Fomenko’s drawing No.
229, “Deformation of the Rie-
mann surface of an algebraic
function,” is but one of many
beautiful and intriquing im-
ages to be found in his book
Mathematical Impressions
(Providence: American Math-
ematical Society, 1990). Here's
his description:

Bahbhhig
S hhbabkbiy
“BAkELLRY

Underlying this twisted defor-

mation of space, where long

tubes intertwine to weave a tor-

tuous egg-like shape, is a certain three-dimensional model.
The model shows a deformation of a Riemann surface of a
special algebraic function, set in four-dimensional Euclidean
space. This surface is also considered to be homeomorphic to
a two-dimensional sphere with one handle as well as a two-
dimensional torus. In terms of the theory of algebraic func-
tions, we can construct this kind of Riemann surface by tak-
ing two copies of a two-dimensional sphere, making two cuts
on each, and then gluing the corresponding cuts together.
What we obtain is a torus, or donut-like object, represented
as two spheres joined together by two tube-like cylinders
(which are shown in this image). A curious feature of this

No. 229 (1983) by Anatoly Fomenko

form is that if we deform the underlying function, a polyno-
mial, such that its roots coalesce, then so too does the corre-
sponding Riemann surface follow. Vanishing cycles appear,
singular points arise, and the surface loses its smoothness. In
this image, two roots seek to coalesce into one, and, as a re-
sult, the upper sphere gets smaller while the lower one grows
larger, a process somewhat visible through the object’s cut-
away sections.

If you need to catch your breath after visiting Fomenko’s
“parallel world,” visit the Kaleidoscope and Toy Store in
this issue. Riemann won'’t be there, but the torus will.
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Extremists of every stripe

Where is the middle ground in Russia?

HE RECENT ELECTIONS IN

Russia have thrown American

and European politicians into a

tizzy. The Russian people, it
would appear, do not accept the poli-
cies of rapid economic reform that
the West wants to impose as a con-
dition for our assistance. Not only
that, they have elevated a ranting ul-
tranationalist—the possibly danger-
ous, perhaps merely ridiculous
Vladimir Zhirinovsky—to political
prominence at home (if not abroad).
Zhirinovsky’s reckless rhetoric has
frightened many in the West, with
his (unfortunately plausible) talk of
new bombs and his (fundamentally
insane) threat to pile nuclear waste
on the Russian border and install
fans to blow the radioactivity into
the Baltic states!

Perhaps we have overreacted. Af-
ter all, we have seen citizens in our
country cast “protest votes” for can-
didates whose extreme views and
limited qualifications would
frighten these same voters if their
champion actually managed to get
elected. There is evidence in the
Russian press (for instance, recent
letters and opinion polls in the
weekly Argumenty i Fakty) that
many, if not most, Russians are
wary of Zhirinovsky. This is a na-
tion that suffered horrendous losses
in repelling Nazi expansionism. But
it is history itself that cautions us to
pay heed to embryonic dictators ea-
ger to capitalize on the uncertainty,
resentment, and fear of a proud
people. When a Russian politician
speaks of regaining “lost territory,”

2 MARCH/APRIL 1884

and other Russians vote for him, we
all—Russians and Americans
alike—must take precautionary
measures.

But what kind of measures? As
the former Soviet Union has steadily
fallen apart, the United States has
acted as if democratic and economic
reforms are indistinguishable. The
operating assumption seem to be: fix
the Russian economy, and rehabili-
tation of the Russian body politic
will follow. The appearance of Zhiri-
novsky and others of his ilk shows
that, even were this assumption
true, time may be running out. Af-
ter several years of “shock therapy”
largely imposed by the West, the
banking system in Russia is still a
shambles, production continues to
decline, and a new “mafia” has
taken charge of economic life. All
shock, no therapy.

\Why arg we holding fiack?

So it’s no surprise that some Rus-
sians are heeding the siren song of
nationalism and iron rule from the
top down. This is no time for legal
niceties, they would argue. And if
we were faced with such chaos,
would we even try to refute them?

Sadly, this outcome could easily
have been predicted, and in my view
the United States is largely at fault
for creating this situation. When the
cold war ended, the United States
was relieved of spending some $50
to $100 billion in defense-related
funds to offset similar expenditures
in the former USSR. Although our
military-industrial complex was

huge, the military component of the
Soviet economy was staggering. Our
conversion to a world without the
threat of the USSR has merely pro-
duced recession and dislocation of
many people. In the former S
Union, the effects have been p
sive and profound.

As a superpower, the polyglot
USSR was held together largely by
its well-controlled military ma-
chine, and its component “states”
depended on one another for con-
sumer goods and other commodi-
ties. The collapse of the union and
the emergence of independent re-
publics, all competing with one an-
other, and each trying to emerge in-
tact from the devastating economic
consequences of the military reduc-
tions and the breakup of interdepen-
dence, have contributed to the dras-
tic reduction in the standard of
living in all of these republics. Eth-
nic and religious tensions merely
compound an already volatile situ-
ation.

Now, what have we done to help?
The United States, despite the much
ballyhooed “peace dividend,” has
delivered a fraction of the modest
amount of aid we have promised.
We have provided less aid than sev-
eral other nations like Germany and
Japan. And the aid we were willing
to provide was made contingent
upon a set of economic restrictions
that would have devastating effects
on the lives of ordinary Russians. On
top of it all, the worst kind of “free
enterprise” has sprung up. The
country is awash with bubble gum
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and VCRs, peddled by Russians and
foreigners out to make a quick buck
at the expense of the long-term
health of the country. The economic
“reforms” we want to impose as a
condition of aid involve changes
that are so dramatic and powerful
that the entire safety net for the
poor, unemployed, and medically
dependent would be eliminated.
These draconian measures would be
inflicted on behalf of an unbridled
free-enterprise system that has
never been accepted here or any-
where else.

It time fo invest in democracy

In the meantime, we totally ig-
nore the really important aspect of
change in the former USSR: demo-
cratic reform. It is democracy and
freedom that will ultimately create
a great Russian nation. How can we
support the transition to democratic
processes in Russia? For starters, our
government could acknowledge the
wide range of political and economic
views in Russia and not trivialize
legitimate dissent from our current
favorite in Moscow.

Let the US invest only a small part
of the billions we no longer spend on
the fraudulent Strategic Defense Ini-
tiative, planting seed money in Tula
and Vilnius and Yerevan and
Magadan rather than flying more
bankers to Moscow and St. Peters-
burg! Our governments may be
more comfortable dealing “at the
highest levels,” but democracy
grows from the bottom up. Any aid
to the central government should be
designed to maintain the same sort
of social safety nets that we depend
on—programs that grew out of our
own crisis of the Great Depression.

In short, let’s show that we genu-
inely value the friendship of the
Russian people and recognize their
great strengths in natural and hu-
man resources. Let’s make Russia
one of our best friends and trading
partners, not a laboratory for eco-
nomic extremists! Transitional
times call for gradualism and com-
promise, a meeting of minds in the
broad middle ground.

—Bill G. Aldridge
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BELLMAN'S FORMULA

The pharaohs golden Staircase

Dynamic programming then—and now

by M. Reytman

HE PHARAQOH’S PALACE

was renowned for its luxury:

pearl curtains, walls decorated

with amber, gold dishes—one
could hardly name all the treasures.
But what was particularly striking
for those who were allowed into the
throne room of the palace was the
gold staircase that led to the throne.
Figure 1 shows a cutaway view of
this staircase with dimensions
translated from the ancient Egyptian
measurements into decimeters. Ar-
chaeologists didn’t have to rack
their brains to understand why the
steps start out so low. The explana-
tion is pretty simple: the aged pha-
raoh didn’t want his subjects to see
how hard it was for him to climb up
to the throne—they might lose their
respect for him, and who knows

where that could lead? That’s why
he ordered his court jewelers to
make the steps of the staircase so
low—no higher than 1.5 dm.

But time passed and the old pha-
raoh died. His young son assumed
the throne.

The young pharaoh had already
heard the courtiers poking fun at his
father’s naive slyness. And although
he would fly up the stairs three steps
at a time, the malicious talk contin-
ued. Finally the young ruler decided
to put an end to the gossip by build-
ing up the steps of the staircase. He
called for the court jewelers and the
treasurer and said:

“My servants! I order you to build
up the staircase in such a way that
it has no more than four steps. Make
them where you want, but there

must not be more than four of
them!”

“But, sire,” the treasurer stepped
forward timidly, “where can we find
so much gold? Here’s an estimate
I've jotted down on this piece of pa-
pyrus.” (And he showed the pharach
the dotted outline of the staircase in
figure 1.) “The staircase is 1 m, or 10
dm, wide. So to build it up we’ll
need[3-1.5+1-1+1.2-(1+5)+1-
3+08-(3+4)+1.2-11]-10=2345
dm? of gold! But, sire, we don’t have
that much in our treasury, which
has been depleted by the war.”

“Scoundrel! You want to ruin the
country? I can see in an instant that
you have never thought seriously
about economics! Look!” And the
pharaoh drew the red line in figure 1.
“You're always ready to spend more
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gold than is actually needed!”

“Q wisest of pharaohs! You are
right, indeed. But this saves only
90 dm?, while 345 — 90 = 255 dm?.
We still don’t have enough gold.”

“You despicable wretch! You cast
a shadow upon my might! If the
staircase is not ready in seven days,
I'll drown you in the holy Nile my-
self and sell the jewelers into sla-
very. And don’t even think of bring-
ing me those ridiculous drawings
again!”

The despondent treasurer left the
palace and went to see a friend of
his. Nobody was more skilful in the
art of designing a pyramid or com-
puting parcels of land. The friend
was a priest in the capital’s temple,
and he was reputed to be a calculat-
ing and practical man. Hearing
about his friend’s misfortune, the
priest asked:

“How much gold is left in the
treasury?”

“Two hundred dm?.”

“Not much! But maybe you could
get by with less, if the steps were
well designed.”

“T've tried that,” the treasurer
sighed. “But there are so many pos-
sibilities, and I barely have enough
time.”

“Well, my friend,” the priest said,
“let me think it over. Come back
tomorrow.”

The next day, the downhearted
treasurer trudged over to see the
priest, who met him with a con-
tented smile.

Figure 2
The staircase that requires the least
gold is the red one: f,(4) = 4.5+ 1= 5.5.

“Tell me, my friend, can I count
on receiving the remainder of the
gold if T arrange it so you need a
smaller amount?”

“Q gods!” the treasurer ex-
claimed, not believing his luck.
“You'll get a dozen of slaves in ad-
dition and as many measures of
grain!”

“Then behold!” The priest held
out a sheet of papyrus with another
plan for building up the staircase.
“This plan will require only 171 dm?
of gold. And the remaining 29 dm?
are mine!”

“But tell me, O greatest of calcu-
lators, how you managed to find this
solution? I tried this and I tried that,
but this variant didn’t occur to me!”

“Then listen,” said the priest.
“First I examined the cases where a
number of the lower steps of the
staircase are replaced with one step.
So that the numbers are simpler, I'll
compute only the areaf of the figure
between the solid and dotted lines
and introduce a constant factor—the
width of the staircase—later. You

don’t mind, do you? To be consis-
tent, I must begin with only one
step, the lowest. There’s nothing to
build up in this case, because we
have a single step from the very be-
ginning, so I write

f,(1)=0.
“The formula
f(2)=15-3=45

shows that I need 4.5 dm? to replace
the first two steps with one step.
Similarly we find that replacing the
first three steps will cost

f,3)=4.5+0.7 - (3 +4) = 9.4 dm™.
Then,

fi4)=94+1-(3+4+1)=174,
f(5)=174+12-(3+4+1+5)=33,

and so on. Each new calculation
adds an amount to the previous
one.”

“Tunderstand all of this,” the trea-
surer interrupted, “but what do Ineed
one step for? The pharaoh wants four!
Besides, the original staircase has
many more than five steps!”

“Slow down!” the priest smiled.
“Soon there will be more new steps—
two, as a matter of fact (fig. 2). But
before that, we have to find the ar-
eas that must be added to make a

. new step starting from various steps

of the original staircase. These areas
g(i, ) depend on the numbers i and j
of the old steps where the new step
begins and ends, and we can com-
pute them one after another. For

four three  two one
steps steps steps step
171 .- ‘ .. sl | 358 | 138 1R 3 |9 1
[ 243 | ... . & wr | s 128 | 48 |8 1.2
>14.1 26 | 65 | 466 s 3 86 | 33 |7 0.8
8.5 204 | 49 | 34 4 14 & 6 1
5.5 12.7 33 198 1891 6 B 1.2
0 1 55 174 | 7B 14 1
2.8 94 B 0.7
0 i5 |2 15
1 1
M 4 |1 5 3 4 4 3
Figure 3

The numbers g(i, j), 1 <1, j <9, in the shaded portion of the table show how much gold is needed for one new step from
the ith to jth old ones, and the numbers f,(j) in the left part (k = 2, 3, 4) show the minimum amount of gold required for a
k-step staircase ending at the jth old step.
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f,(3) = min {2.8, 4.5} = 2.8

fl4) =min {7.8, 1 + 4.5, 9.4} =
fw)Imnu9882+456+9417m_127

£16) = min {32.4, 17.2 + 4.5, 14 + 9.4, 3 + 17.4, 33} = 20.4

fl7) = min {46.6, 27.6 + 4.5,23.6 + 9.4, 8.6 + 17.4, 3.2 + 33, 49} =

f,4) =min {1, 2.8} = 1

fi(5) =min {0 + 8.2, 2.8 + 6, 5.5} = 5.5

f(6) min {0+ 17.2,2.8 + 14, 5.5 + 3, 12.7} =
fW)Imnm+27628+23655+86127+3220M—141

f(8) min {0 +46,2.8 +42.8,5.5+21.8,12.7 + 12.8,20.4 + 4.8, 26} = 25.2
£(9) = min {0+ 61.8, 1 +35.8, 5.5 + 23.8, 8.5 + 11.8, 14.1 + 3, 24.3) = 17.1
Figure 4

instance, building up a new step
from the second old one to the
fourth requires

g2,4=28+1-5=7.8dm2

“I wrote down all these numbers,
which we’ll use in our calculations
later, in a special table that fits on a
single papyrus sheet (fig. 3). The num-
bersg(1, j] =f,(j) in the column labeled
“one step” have already been calcu-
lated, and further calculations are
easily done row by row, moving to
the right and upward: g(2, 3), g(3, 4),
82, 4), 84, 5), ...

“Now I can find the minimum
areas for two steps. Since we can’t
replace one step with two, f,(1) is
meaningless. To obtain two new
steps instead of two old steps (the
two lower ones), we don’t have to
add any gold:

£l2) =

“But to find f,(3) we need to do
some calculations—we have to con-
sider two possibilities and choose
the best one. Either we build up the
second step to the level of the third,
which adds the area of g(2,3), or we
build the first step to the level of the
second (g(1, 2) =f,(2)). What we need
is the minimum of the two areas:

f,(3) = min {g(2, 3}, f,(2)}
=min {2.8, 4.5} = 2.8.

“To find f,(4) we’'ll have to find
the smallest of three numbers (in fig-

ure 2 they’re shown in different col-
ors):

f2(4) = min {g(ZI 4)/ fl(z) + g(3/ 4)/ fl(g)}
- min (7.8, 4.5+ 1,9.4]

and so on.” (The complete calcula-
tions are given in figure 4.)

“Wait. I've understood how to
find the best staircase with two
steps, but then the number of possi-
bilities will quickly grow: I'm scared
to think how many three-step stair-
cases we have to look at, and we
need four steps! Did you actually
examine all the possibilities?”

“There was no need to, as you'll
see now. Let’s find, for example,
f,(4)—the staircase with three steps
that ends level with the fourth old
step and has the minimum area.
Let’s see where its second step
might end. It ends up flush with the
second or third old step, naturally.
That is, either we must build a new
step from the third to the fourth old
one, at a cost of g3, 4), or we replace
the first three steps with two. But
we already know exactly which of
the two-step staircases is the best. It
costs f,(3) = 2.8. So,

f3(4) = min {g(g/ 4)/ fg(g)}
=min {1, 2.8} = 1.”

“Wait a minute, I want to make
sure I've understood how to find

f,(5). Of three new steps that end
flush with the old fifth step, the sec-
ond can end on the old second, third,
or fourth. Therefore,

fg(S) = min {g(gl 5)/ fz(s) it g(4/ 5)/ f2(4)}
=min {8.2,2.8 + 6, 5.5} = 5.5.”

“Verily, the wise look after the
state treasury,” the priest said flatter-
ingly. “In the same way we can com-
putef, of 6, 7, and 8, and then proceed
to the case of four steps. Now, we
don’t have to consider £,(4), ..., f,(8),
because we know for certain that the
fourth step must end flush with the
old ninth step (otherwise the staircase
would have more than four steps). So
it remains for us to find £,(9) as the
minimum of the sums £,(j] + g}, 9),
where 7 is one of the numbers 3, 4, ...,
8. This minimum is equal to f,(7) +
g(8,9)=14.1+3=17.1. And thisis the
best of all four-step staircases!

“This means that the new stair-
case will require 17.1-10=171 dm?
of gold in all. Now let’s see how the
new steps should be arranged. We
underlined all the optimal choices.
The last optimal solution includes
the area (which we can think of as
the cost) of three new steps £,(7) =
14.1, so the third step should end up
level with the old seventh step. Now
let’s take one step back to the defi-
nition of f,(7) to see that it includes
the cost f(4) 5.5 of the first two
steps. It follows that the second new
step must be level with the fourth
old step. Finally, in the expression
for f,(4) we see the term f(2) =
This means that the first step of the
new staircase must end flush with
the second step of the old staircase.”

The resulting plan for the cheapest
new staircase is shown in figure 5.
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The theory of dynamic programming

I don’t know whether the crafty
treasurer kept his promise to the
priest. I don’t even know whether
any of this actually took place or if
the whole thing is made up. But I do
know that it could very well have
happened, because we used only two
arithmetic operations, addition and
multiplication, that were well
known in ancient Egypt (although
the notations of numbers and opera-
tions we use were created much
later). And, of course, we used a bit
of common sense, too, but this hu-
man ability can be found in suffi-
cient quantity anyplace and any-
time. However, the mathematical
technique applied here gained cur-
rency only about forty years ago. It's
called dynamic programming.

Let’s give some thought to how
we managed to find the optimal so-
lution without searching through
every possible way of building up
the staircase (and there are a lot of
them—the priest really wouldn’t
have had enough time to examine
each one thoroughly). The idea was
to split the general problem at each
stage into a number of simpler ones.

Suppose we're going to build up a
staircase with N steps so as to make
an n-step staircase, where N is
greater than n. Assume we already
know the optimal arrangement of
the steps in the new staircase in the
case when their number is fewer
than n. Let h, be the number of the
old step level with the kth new step.
It's clear that this kth step begins on
the (h, _, + 1)th old step. Denote the
additional area, shown in figure 6, by

The length
of the kth new step

Figure 6
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glh, ,+1,h,). Thenthe general prob-
lem consists of finding the values h,,
h,, ..., h, | that minimize the sum
of k values g(1, h,) + glh, + 1, b)) +
+gh ,+1, B )+ glh, ,+1,h)
(foragivenk =nandh, =h, =N). De-
note this minimum value f (h ).
Notice that to find the minimum
value f,_,(h, ) of the first n — 1
terms, where h_doesn’t enter, we
must solve the same problem for the
number of steps minus one. This
leads to the following remarkable
formula found by the American
mathematician Richard Bellman
(1920-1984):

fk(hk) = min {fk_l(hkﬁl} +g(hk_1 +1 hk)}/

where the minimum is taken over all
possible values of b, (k—-1<h,_, <
h,). This formula allows us to calcu-
late successively the numbers f,(h,)
for all k < n and h, < N. It should be
understood as follows: to find the
minimum, we must assign all pos-
sible values tok, starting withk =1,
and for each of them determine and
remember the value h, | that mini-
mizes f,(h,). Then, when we reach
the last value k =n, we have tomove
backward, picking up all the optimal
valuesh ., h ..., h, on the way

n-1 ""n-2

(see the red arrows in figure 3).

Discussion and a bit of history

An important feature of the afore-
mentioned method is that it’s appli-
cable without any special conditions
imposed upon the function g. (In this
respect dynamic programming com-
pares favorably with so-called linear
programming, which requires that
all the relations considered be linear
and that the variables change con-
tinuously.) It’s essential only that
the function f to be minimized be
represented as the sum of terms
each of which depends on fewer
variables than the next one. So
Bellman’s equation and the method
described above are currently much
used, though not for satisfying a
pharaoh’s whims. Try to get along
without it when you are looking for
the optimal proportion between the
weights of the stages of a rocket, or
determining the best way of putting

pieces together in a manufacturing
process, or creating a schedule with
the least possible downtime! You'll
find yourself in the desperate situa-
tion of the treasurer depressed by the
plethora of possibilities. Of course,
the calculations required for dy-
namic programming are hardly ever
done “by hand.” But this method is
well suited for computer processing
and is free from the sorts of pitfalls
that unfortunately are encountered
in linear programming and other
methods of locating extrema of
functions of many variables.

The idea of dynamic programming
emerged a long time ago. We can
trace it back to the works of C. Mac-
laurin (1698-1746), and Archimedes
applied it, in a certain sense, much
earlier. But it took its final form in
Bellman’s works and is forever linked
with his name.

We saw here how dynamic pro-
gramming works with a very simple
question. To what extent is it appli-
cable to more complex problems?
This question must be answered
with certain reservations. The prob-
lem is that a particular difficulty,
called “the curse of dimension,” can
arise. One has to search through so
many variants and memorize so
many intermediate results that the
method loses its advantageous fea-
tures. But it has gotten a second
wind thanks to parallel computa-
tion, which receives more and more
attention from programmers and
computer designers (for instance,
those who work on the Connection
Machine at Boston University).

Dynamic programming in molecular
hiology’

Not long ago dynamic program-
ming found a new application—in
molecular biology, where data bases
contain biological sequences (such
as molecules of DNA, RNA, and
proteins) numbering many millions
of “letters” that cannot be analyzed
without computers. Molecules of
DNA carrying genetic information

1This section was written by
Nikolay Vasilyev.—Ed.




Cl1]|2]8|3|4|5|5|6]|7
T|1|2|2]|3|4|5|5|6]|7
Gl1[2]2|3|4|4]|5]6]6
G|1[2|2|3|4|4]5]5]5
Al1|1]2|3]4|4|4]4]|4
T|1|1|2|3|3|4|4|4]|4
Al1|1(|2]8]3|3|3|3]|3
clo|l1]2]2|2(2]2]2]2
GloJl |1 |11 |1} L}1]1
AGCAATGGT
Figure 7

The red squares mark one of the
longest subsequences (of length 6).

can be thought of as long series of
the four letters A, C, G, T (standing
for adenine, cytosine, guanine, and
thymine—the chemical groups that
form these molecules). In the pro-
cess of evolution, mutations alter
these sequences: an old letter may
be replaced by another, it may drop
out, or a new letter may appear.
How similar are two DNA frag-
ments? What is the smallest number
of transformations that turn one of
them into the other?

Here is a more precise formula-
tion of the problem. We call a string
of letters A, C, G, T a word. A sub-
sequence of a word is a new word
made by striking out some of the
letters of the original word. Given
two words of length m and n, our
problem is to find the longest subse-
quence that appears in both. A
simple procedure proposed in the
1970s solves this problem (biologists
call it the Nudelman-Wunsh algo-
rithm).

Write one of the given words—x
= X X,...X_—from the bottom up,
and the other—y = Y|Y,...Y —from
left to right along the sides of a m x
n table (fig. 7). In this example, m =

-9, x = GCATAGGTC, y =
AGCAATGGT. We create a func-
tion that establishes identity or
nonidentity:

L, ifX =Y,
d. = , 7
70, 1in¢1/7.

x=_|GCA|T|A|_|GGT|C
y=A|GCA|_|A|T|GGT|_
Figure 8

One of the best alignments of the two
“words” in figure 7.

(squares with d, = 1 are colored blue
in the table). Let a, be the length of
the longest subsequence we can
choose from the opening segments of
our words: X...X and Y,...Y.. All the
numbers a, (1—1 , I, 7—1 m)
can be found successively by using
the following formula (which re-
sembles Bellman’s formula):
a,=max {a a

i-1,i % i-1 ai—l,f—l ¥ dif}

(fori=lorj=1 the formula is sim-
plified:a, =d =max|{a, , , d,},
& max{aU 1, dl }) In other words,
a number in each square of the table
is the largest of three numbers: the
one at the left, the one below, and,
if the square is blue, the number at
the bottom left plus 1.

Thus, by computing each time
the maximum of two or three num-
bers—and remembering, as in the
problem with the pharaoh’s stair-
case, the intermediate results—we’ll
fill out the entire table inm - n steps.

Verify that the last number a__
will be equal to the length of the
longest subsequence common to
both given words. The subsequence
itself can be read as we move in the
reverse direction (sometimes the
path might not be unique, however).
This reverse path must proceed in
“diagonal steps” that increase by one
the numbers in the table when we
move directly; the squares framed in
red represent one of the longest sub-
sequences. Biologists usually depict
the result as an “alignment” of the
given words (fig. 8). Fast algorithms
like this, that don’t require much
memory, can be found for similar
problems. For instance, we can as-
sign a different “weight” to the re-
placement of a letter compared to its
removal (or insertion). With protein
sequences (words of 20 amino acid
“letters”), it’s reasonable to assign
each pair of letters a “weight” indi-

1]’

cating their degree of likeness (mea-
sured, for example, by the frequency
of replacements of one letter by an-
other). Another very important prob-
lem is that of “multiple alignment”
of several words at a time, but the
number of operations in this problem
quickly grows with the number of
words, and more complex heuristic
algorithms have to be applied.

Exercises

1. Complete the calculations for
the pharaoh’s staircase to find the
most economical five-step staircase.
How much gold will it require?

2. Some years ago a school de-
cided to buy nine different lathes for
its workshop at a cost of 10, 20, 40,
60, 75, 100, 130, 160, and 190 dol-
lars. Each more expensive lathe of
these nine can replace any cheaper
model. Since each lathe needs its
own spare parts, the school’s princi-
pal suggested that nine lathes of
only four types be bought, on the
condition that they be able to do
everything the original nine lathes
can. So the math teacher was asked
to choose the lathes to be purchased
such that the cost would be lowest.
What was the math teacher’s choice,
and how much did the school pay?
(This problem is an example of uni-
fication problems.) (0]

p
1 Grah that chain
of thought!

Did an article in this issue of
Quantum make you think of a re-
lated topic? Write down your
thoughts. Then write to us for our
editorial guidelines. Scientists and
teachers in any country are invited
to submit material, but it must be
written in colloquial English and at
a level appropriate for Quantum’s
target readership of high school and
college students.

Send your inquiries to

Managing Editor
Quantum
1840 Wilson Boulevard
Arlington VA 22201-3000
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Drops for the crops

Making rain while the sun shines

by Yuly Bruk and Albert Stasenko

LITTLE GIRL WITH AN IN-

quiring mind asked: “Why

aren’t raindrops ever as big as

my head?” Her friend replied:
“Well, if they were, it would be
rather awkward to walk with an
umbrella.”

But the question remains. It cer-
tainly might be that the raindrops
falling out of the clouds don’t have
enough time to grow this big from
the condensation of water vapor or
by combining with other drops
when they bump into each other.
But if we rigged up a meteorological
balloon to dump a bucket of water
from a cloud’s height, the water
won’t hit the ground in one piece
but in the form of separate drops. (If

2nrc

Figure 1
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you don’t believe us, you could re-
peat this experiment from the roof of
a tall building.) So something else
must determine the final size of
raindrops.

This “something else” is surface
tension. In order to tear a drop in
half at its “equator” (fig. 1), we need
to apply a force F_equal to the prod-
uct of the equator’s length 2nir and a
factor o called the coefficient of sur-
face tension. Its dimensionality is [o]
= N/m = J/m?2 For water, ¢ ~
0.05-0.08 N/m.

Think of the rubber bladder in-
side a soccer ball. The tension of the
bladder, which at every point is tan-
gential to its surface, produces radial
forces directed toward the center of
the ball that counterbalance the ex-
tra pressure of the gas. In the case of
a liquid drop, surface tension results
in an extra internal pressure, known
as Laplacian pressure. (Of course,
this analogy isn’t precise. The sur-
face tension in a drop, unlike that in
the ball, is practically unrelated to
its radius—at least in the range of
sizes we'll be using in this article.)

Because of these forces a drop of
liquid in weightless conditions (say,
in an orbiting space vehicle) retains
the shape of a ball. On the other
hand, a drop placed on the dry sur-
face of a table flattens out. You can
observe a similar phenomenon in
nature: a drop of dew on a leaf or
flower petal. In exactly the same
way a raindrop falling with a uni-

PHYSICS IN THE FIELD

form velocity is flattened by the
force of air resistance and assumes
the shape of a hamburger bun.

In short, air resistance deforms
the drop, and the other force—sur-
face tension—tries to reshape it into
a sphere. Obviously the equality of
these two forces gives us an approxi-
mation (if only the order of magni-
tude) of the maximum size of a drop
falling with a uniform velocity. The
uniform motion of the drop means
that the force of air resistance is
equal to the drop’s weight. Thus,

4
2mor ~—nrp_ g,
3

where p_ is the density of water.
Solving for r we obtain

B e

max \/ pwg

(Naturally we have neglected the
factor ./6/4, taking it to be of the or-
der of 1.) Substituting the numerical
datag=10m/s?, 6 ~0.06 N/m, p =
10° kg/m®yields

r ~/6:10°=2.5-10°m=2.5mm,

which seems quite realistic, as
you can verify yourself during a
summer shower.

Now let’s estimate the velocity
of the drops. As we mentioned
above we should set the weight of
the drop equal to the force of air re-
sistance. The aerodynamic force

Art by Pavel Balod






acting on a ball of radius r moving
with a velocity v in a medium of
density p, is known to be of the or-
der of F, ~ p r2v?. This formula can
be obtained by using dimensional
analysis.! If we want to change the
sign ~ (“of the order of”) for an equal
sign, we need to determine experi-
mentally the dimensionless factor
in this formula. And that’s what
wind tunnels are for. However,
rough estimates are sufficient for
our present purposes.

Thus, for the uniform fall of a
drop we have

4
E ~p r*v* ~—nr’p g,
3 W

from which we get

v~ (4p z8/p )"

Substituting the maximum radius of
the drop obtained above into this
estimate yields

v ~(4.10°-2.5-107 - 10/1)"
~10m/s,

which also seems realistic, as you
can verify by estimating the angles
of the tracks left by falling drops on
the window of a moving car or train,
if you happen to know the vehicle’s
velocity.

But there is yet another source of
resistance to a moving body: the vis-
cosity of the medium. Its existence
is clearly seen when you drop a
marble in honey (the colder the
honey, the slower the descent). As it
falls, a certain kind of slow, “creep-
ing” movement appears around the
marble. Now, of course, air isn’t
honey, but if the drops are small, the
phenomena are similar. In these
cases the surrounding medium
(honey or air) can be thought of as
sticking to the moving body: layers
of liquid farther from the body slide
more quickly, so that a tangential
force of friction F, arises between
them, like when you rub your palms
together.

As a result, a force acts on the
moving body that is proportional
not to the square of its radius and

1See “The Power of Dimensional
Thinking” in the May/JTune 1992 issue
of Quantum.—Ed.
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velocity but simply to its radius and
velocity. The formula for this force
was obtained in the last century by
Sir George Gabriel Stokes:

F = 6murv,

where u is the coefficient of viscos-
ity of the medium. For air,u=2-107
N - s/m?* ComparingF, ~ (rv)* and F,
~ v, it’s easy to see that as the prod-
uct rv decreases (that is, as either or
both factors decrease), the aerody-
namic force F, decreases more
quickly than the viscous force F , so
that the second becomes prevaient
for small bodies and slow move-
ment. Equating the viscous force
and the weight yields the velocity of
the slow descent for small drops:

2p,87" _ o
yv=——Y—=0r
9

7

where o = (2/9)(p,g/u) is a constant.

Figure 2 shows both relation-
ships: a parabolic function for small
drops, a square-root function for
larger ones. Obviously both curves
have a common point at a certain
value of the radius r = r,, thus provid-
ing a physical basis for using the
term “droplet” for drops whose ra-
dius r < r, and the term “drop” for
drops characterized by r > r,. Both
forces are equal where the lines in-
tersect: F /F = 1. The relation on the
left-hand side is known as the
Reynolds number Re, which plays
an important role in aerodynamics.
It’s clear that microbes and droplets
of fog have Re < 1, while airplanes,
ships, and raindrops in a downpour
have Re > 1.
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Figure 2

But is there any practical use in
all these cogitations? Remember the
words of Winnie-the-Pooh: “The
only reason for being a bee that I
know of is making honey. And the
only reason for making honey is so
as I can eat it.”

So, what are raindrops for? For
watering our gardens! At least, that’s
the only reason that we know of.

But we can’t always count on rain
everywhere. Sometimes we have to
take matters into our own hands.
We can do it with pails and watering
cans, of course—"on foot,” so to
speak. Or we can drive a tractor be-
tween the rows, dragging a tank of
water and a sprayer. But if we need
to water huge expanses of land, it’s
more practical to use the wind that
blows across the great open ex-
panses of land almost constantly.

Let’s set a horizontal pipe with
sprayers at a height h above the
ground (fig. 3). Water is supplied
under pressure and forced out in the
form of drops flying in all directions.
The radii of the drops may differ, but
we’'ll look at only those drops that
can be considered small by the cri-
teria we established above (that is,
flattened according to Stokes’s law)
because only small droplets can be
carried by the wind over large dis-
tances.

Let the wind blow with a uniform
velocity u perpendicular to the pipe.
It can be shown that for any initial
velocity of a droplet, the droplet is
quickly drawn into a uniform hori-
zontal movement with the velocity
of the wind (a physicist would say
that the relaxation time is short for
small droplets). Therefore, each
droplet has a constant velocity u in
the horizontal direction and a con-

Figure 3




stant velocity v = or? in the vertical
direction.

Since both components of the
velocity are constant, all the drop-
lets move in straight lines. It’s clear
that a smaller droplet will travel far-
ther along the x-axis, but will carry
less water to irrigate the soil. If we
want to irrigate a field uniformly,
which is usually the case, then the
number of small droplets should be
greater than the number of large
droplets. And here a reasonable ques-
tion arises: what is the relationship
between the numbers of droplets of
different sizes? In the language of
physics, what is the distribution
function of the droplets according to
size that results in uniform irriga-
tion?

All these words are more or less
clear by intuition, but we'll try to for-
mulate the problem in a more precise
way. What does “uniform irrigation”
mean? It means that any small patch
in the field of length L (which is also
the length of our pipe) and of width Ax
(therefore, of area LAx) gets an
amount of water AM such that the
ratio G = AM/LAx is constant. We'll
call the constant G the irrigation sur-
face density.

And what does “distribution of
droplets according to size” mean?
Let’s take some interval in radius Ar
and denote by An the number of
droplets with radii in this interval.
The ratio

is the droplet size distribution func-
tion we're looking for.

In the same way one can find the
distribution function for students in
a college according to age, height, or
eye color (if it’s expressed as a wave-
length of visible light); the molecu-
lar velocity distribution function for
a gas (the formulas found by Boltz-
mann and Maxwell); the distribu-
tion function for the quanta of solar
radiation according to their frequen-
cies (Planck’s law); the distribution
of electrons in a solid according to
their energies (Fermi statistics); and
SO on.

But let’s get back to the problem

of uniform irrigation. The time it
takes a droplet of radius r to fall to
the ground from a height h is t(z) =
h/v(r) = h/ar?. The horizontal dis-
placement of the droplets is

ki)

2

X=ut=
or

What is the width Ax of the area ir-
rigated by droplets whose radii de-
viate from the given value r by a
small amount Ar? This can be ob-
tained by differentiation or by taking
the difference in x-values for values
of randr + Ar:

2uh

3

Ax =-— Ar.

or

Here the minus sign reflects a fact
mentioned earlier: that a decrease in
the droplet radius (Ar < 0) results in
a greater travel distance (Ax > 0), and
vice versa.

Now let’s see how much water
lands on the area LAx. The number
of droplets with radii varying from r
tor + Ar is An(r). We can make Ar so
small that the masses of the droplets
in this group can be considered iden-
tical and equal to m(r) = % nr’p .
Then the mass of water carried in
these droplets is

AM = m(r)An(r) = %nrsprn(r).

From this it follows that

_LAX_

CoAM _ _(2npwajr6 An.
3Luh Ar

All the constant parameters in the
problem are collected in the paren-
theses. But the ratio An/Ar is the
desired distribution function for
the droplets. Thus,

An 1
Ar 1S

This is a very steep function. Let’s
consider two equal intervals of drop-
let radius Ar near two values z, and r,
= 2r,. Then we can draw the follow-
ing conclusion from the last formula:
within this interval Ar the number of

small droplets An(r ) must be (r,/r,)° =

26 = 64 times the number of large
droplets Anz,).

So we have found the distribu-
tion function that a designer should
use to make a proper choice of
sprinklers and a procedure for using
them. And it doesn’t just apply to
irrigation but to other applications
as well—for instance, the uniform
distribution of pesticides.

Now, what have we failed to take
into account in our solution? Lots of
things. For instance, the fact that the
wind doesn’t always blow with a
uniform velocity, or that its velocity
changes with height above the
ground, or that the droplets (particu-
larly the smaller ones that travel far-
ther) can change due to evaporation;
and so on. Any physical model has its
limits within which it is true. Out-
side those limits it requires correc-
tions and complications. And some-
times it stops working altogether.

Then again, look at how many
fine physicists came to mind just
because we wondered how best to
water our garden. Now there’s arich
harvest for you! Q)
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Art by Pavel Chernusky

BRAINTEASERS

Just for the fun of it

B106

Archeometics. Each square in the row in the figure had a number inscribed
in it such that the sum of any three numbers in succession was fifteen.
Then all the numbers but two were erased. Restore the erased numbers.

B107

Around the garden. A garden has two concentric circular paths with many
radial walkways connecting them. You are standing on the outer circle and
want to go to another point on the same circle. If the latter point is within the
same quadrant, it’s apparent that walking along the outer circle is the fastest
way to get there. But for a destination that’s almost directly across from
where you are, it seems advantageous to first get to the inner circle along a
radial path, walk along the inner circle, and get back to the outer circle by the
nearest radial path. Assuming that there is radial path wherever you might
need one, where is the “dividing line” between these two options? (S. Sidhu)

B108

Circles on water. A stone thrown into still water generates ripples that
propagate outward as circles. What shape will the ripples take if the stone
is thrown into the flowing water of a river? (S. Krotov).

B109

Wonderful simplification. Solve this number rebus:

SIX 2

NINE 3

(Different letters stand for different digits, identical
letters stand for identical digits.) (P. Filevich)

B110

Circle-halving zigzag. All the vertices of a polygonal line ABCDE lie on a
circumference (see the figure), and the angles at the vertices B, C, and D are
each 45°. Prove that the area of the blue part of the circle is equal to the
area of the yellow part. (V. Proizvolov)

ANSWERS, HINTS & SOLUTIONS ON PAGE 56
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Light at the end of the funnel

Some things that come to an end

by Dmitry Fomin and Lev Kurlyandchik

F YOU LIKE MIXING BUSINESS

with pleasure (in this case, the

business of learning mathemat-

ics), then get yourself a bag of can-
dies and invite a friend to play this
game. Make two piles of candies—
12 pieces in one pile and 13 in the
other. Each player in turn makes a
move consisting either of eating two
candies from either of the piles or
moving a candy from the first pile to
the second. The player who can’t
make a move loses.

If your resources allow you to
play this wonderful game long
enough, you’ll observe a strange
regularity: the player who begins
the game always loses! However,
the reason for Lady Luck’s bias is
easy to understand. Each move
changes by 2 the difference between
the numbers of candies in the two
piles. So the remainder of this differ-
ence upon division by four will
change in a strictly defined way: 1 (=
13-12),3,1,3,1,3, .... We see that
before every move made by the sec-
ond player the remainder is three.
But the game stops only when the
candies are eaten up (the remainder
is zero), or there is exactly one candy
left and it’s left in the second pile
(the remainder is 1). So the second
player is never exposed to the dan-
ger of losing.

Maybe you’re already familiar
with this line of reasoning. Remem-
ber “Some Things Never Change”

(in the September/October 1993 is-
sue of Quantum)? An invariant is
something that doesn’t change. And
in our game every other remainder
is the same. However, the problem
is not yet completely solved. We've
only proved that the second player
can’t lose. But does she or he neces-
sarily win? In other words, does the
game necessarily end?

It’s not hard to come up with the
answer to these particular questions
(which is, of course, yes). But there
are much more interesting problems
of this sort. In this article we’ll de-
scribe one method for solving them.

To start us off, here’s an old prob-
lem (proposed at the First All-Rus-
sian Math Olympiad in 1961).

Problem 1. (A. Schwarz] Real
numbers are written in an m x n
array. It’s permissible to reverse the
signs of all the numbers in any row
or column. Prove that after a num-
ber of these operations we can make
the sum of numbers along each line
(row or column) nonnegative.

Let’s see what happens to the
sum of all the numbers in the array
after one operation. If the sum along
the chosen line (where the signs
have been changed) was negative,
the total sum increases; if the sum
along the line was positive, the to-
tal decreases; and if the sum along
the line was zero, the total remains
the same. So, if there is a line with
anegative sum, we can increase the

INVARIANTS AND MONOVARIANTS

total sum by applying our operation
to this line.

But is it possible that the total
sum increases infinitely many
times?

Of course not! Indeed, our opera-
tions can produce only a finite num-
ber of tables, because each of the mn
entries can take only two values (dif-
fering in their sign), and so all in all
there could be no more than 2= dif-
ferent tables.! Therefore, the total
sum of the numbers in our array can
take only a finite number of differ-
ent values.

Now let’s look at the original ar-
ray. Choose a line with a negative
sum (if there are no such lines, we're
already done). Apply the reverse-sign
operation to this line. Again find a
line with a negative sum in the array
thus obtained, and so on. Note that
the total sum (1) increases every time
we apply our operation; (2) takes only
a finite number of values. Therefore,

In fact, the number of tables
obtainable from a given table by our
operations is significantly smaller.
Since any two applications of our
operation to the same line cancel out,
any attainable table can be obtained
by reversing signs in each line no
more than once. There are m + n lines,
so the number of tables is not greater
than 27+7, Actually, it’s even smaller,
because different sets of operations
can produce the same result. You may
want to verify that the exact number
of tables produced from a given table
is 2m+a-1 _Fd,
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sooner or later the process must come
to an end. This means that at some
point we'll be unable to find a line
with a negative sum—that is, all the
sums along lines will have turned
nonnegative, so we will have arrived
at a required table.

The next problem has nothing in
common at first glance with the one
we've discussed. However . . .

Problem 2. Given are n points, no
three of which are collinear, and n
lines, no two of which are parallel,
in the plane. Prove that we can drop
a perpendicular from each point to
one of the lines, one perpendicular
per line, such that no two perpen-
diculars intersect.

Let’s start by drawing perpendicu-
lars—one from each point and one to
each line—in an arbitrary order. If no
two of them intersect, they comply
with the requirement in the prob-
lem.

Otherwise, take two intersecting
perpendiculars AA and BB, dropped
from points A and B to lines o and
B, respectively (fig. 1). Let P be their
common point. Replace AA, and
BB, with the perpendiculars AA,
and BB, dropped from A and B to 3
and o, respectively. Then the sum of
the lengths of the perpendiculars
will decrease. Indeed, it’s clear that
AA, < AB < AP + PB,, and both
these inequalities become equalities
only if AB, is perpendicular to .
Similarly, BB, < BP + PA,. Adding
these inequalities and taking into ac-
count that AB cannot be perpendicu-
lar to both lines o and B at the same
time, we get AA + BB, < (AP + PA)
+(BP+PB) - AA, + BB,

Now let’s do the same thing as in
the first problem. Take the initial
arbitrary set of perpendiculars.

Figure 1
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Choose two intersecting perpen-
diculars (if there are any) and apply
our operation: replace them with
two perpendiculars having a smaller
sum of lengths. Find two intersect-
ing perpendiculars in the new fig-
ure, apply our operation again, and
so on. Note these two properties of
the sum of the lengths of all perpen-
diculars: (1) the sum decreases at
every step of our process; (2) the
sum can take only a finite number
of values (why?). It follows that our
unbraiding process can’t go on for-
ever. But once it stops we’ll have
arrived at the required configura-
tion, because it will be impossible
to find any more intersecting per-
pendiculars in it.

Let’s analyze the two solutions.
We took the same approach both
times: we introduced a certain value
(the sum of all the numbers in the
array in problem 1, the sum of the
lengths of all perpendiculars in prob-
lem 2) and an operation whose appli-
cation each time changes the value in
the same way (increases it in the first
problem, decreases it in the second).
The solution was based on the fact
that the value we introduced could
take only a finite number of values.
Consequently, the operation could be
applied only a finite number of times,
after which we inevitably arrived at a
required situation.

From this point of view, the sec-
ond problem is more difficult than
the first, because to solve it we not
only had to invent the unknown
value to keep track of, we had to
invent the operation as well.

Also, the second problem is an
excellent example of how easy it is
to get off track: the new perpendicu-
lars AA, and BB, don't intersect, so
it seems reasonable to consider the
total number of intersections of all
n perpendiculars in our configura-
tion, which appears to decrease
upon each application of the de-
scribed operation. However, this is
not so (try and come up with a
counterexample). It’s far from easy
to learn how to create an appropri-
ate pair “operation-value”—it re-
quires experience and insight.

There is no standard mathemati-

cal term for a quantity that changes
monotonically and takes a finite
number of values. We’ll call it a
monovariant.

The next problem can also be
considered widely known.

Problem 3. Prove that any 2n
points in the plane can be viewed as
the endpoints of n disjoint segments.

First, we draw an arbitrary n seg-
ments joining n pairs of the given
points. If any two of them are dis-
joint, we're done. Otherwise, take a
pair of intersecting segments AB and
CD |(fig. 2a). The operation will con-
sist of replacing these segments by
the disjoint segments AC and BD.

It remains to find a monovariant—
some value that is changed mono-
tonically by our operation. The sum
of diagonals AB and CD of a convex
quadrilateral ACBD is greater than
the sum of opposite sides AC and BD:
in figure 2a, AB + CD = (AO + OB) +
(CO +0D)=(AO +OC)+(BO + OD)
> AC + BD. The reader can check that
this inequality remains true in the de-
generate case of figure 2b as well. So
we can take as a monovariant the
sum of the lengths of all n segments.
This sum can take only a finite num-
ber of values, because there is a finite
number of possible segments. Just as
in the previous problem, these opera-
tions will lead us to a set of nn disjoint
segments.

Originally in this problem we had
neither an operation nor a mono-
variant. But once we came up with an
operation, it was no problem to pick

A D
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out a proper monovariant.

Problem 4. (V. Alexeyev) Several
numbers are arranged around a
circle. If four consecutive numbers
a, b, ¢, and d satisfy the inequality
(a-d)(b-c) >0, we can exchange b
and c. Prove that we can perform
this operation only a finite number
of times.

Here the operation is given from
the very start. Although it involves
only two numbers, it’s convenient
to think of it as an operation on the
whole set of numbers by assuming
that all the numbers except b and ¢
remain unchanged: in accordance
with our “solving philosophy” any
monovariant we introduce must
depend on the whole set of numbers.

So, suppose we can apply our op-
eration to the numbers a, b, ¢, and
d—that is, (a - d)b-c¢)>0or ab +
cd > ac + bd. The operation turns the
quadruple a, b, ¢, dinto a, ¢, b, d
and, by the above inequality, de-
creases the sum of the products of
neighboring numbers: ab + bc + ¢d
>ac +cb + bd.

Now it’s clear that the required
monovariant can be defined as the
sum of products of all pairs of neigh-
boring numbers around the circle.
Our operation decreases this mono-
variant, and since our sum of prod-
ucts can take only a finite number of
values (why?), the operation can be
applied only a finite number of
times.

The next problem was borrowed
from Problems in Plane Geometry
by V. Prasolov (in Russian).

Problem 5. A nonconvex polygon
is subjected to the following opera-
tion: if it lies on one side of a line AB
joining its nonadjacent vertices A
and B, then one of the parts into
which the perimeter of the polygon
is divided by A and B is reflected
about the midpoint of the segment
AB—that is, it’s rotated 180° about
the midpoint (fig. 3). Prove that af-
ter a number of such operations the
polygon becomes convex.

Here again, the operation is speci-
fied by the statement of the prob-
lem. The monovariant quantity is
equally obvious—it’s the area of the
polygon. The fact that the area can

take only a finite number of values
is less obvious. To prove it, consider
the vectors joining consecutive ver-
tices of the polygon in, say, the
clockwise direction. Our operation
preserves this set of vectors, al-
though it rearranges them around
the perimeter. We can see that every
polygon that may arise, starting

Figure 3

from the given one, is completely
defined by the order of the vectors.
But there is a finite number of differ-
ent orders, and therefore, of poly-
gons and their possible areas.?
Now here’s a problem proposed
for eighth-graders at the All-Union
Olympiad in 1979. Only three par-
ticipants managed to solve it.
Problem 6. Each member of a
parliament has no more than three
enemies among other MPs.? Prove
that the parliament can be split into

It’s interesting that this proof
doesn’t work for reflection about the
line AB instead of the midpoint of
AB—simply because the above set of
vectors is changed by line reflection.
—Ed.

%In this and the next problem it’s
assumed that if B is an enemy of A,
then A is an enemy of B.
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two houses such that each MP has
no more than one enemy in the
same house.

As we did before, let’s first divide
the parliament into two houses in an
arbitrary way. If each member of par-
liament has no more than one enemy
in the house where he or she belongs,
it’s the required partition. Otherwise,
there’s a member of parliament A
who has at least two enemies in his
or her house. Then A has no more
than one enemy in the other house.
So if we transfer A to the other house,
the number of pairs of enemies that
belong to the same house will de-
crease. This means that we can take
this number as a monovariant. The
proof can now be completed by the
ritual phrase, “The monovariant can
take only a finite number of values.”

By the way, in this problem we can
make sure of the latter statement al-
most without looking into the situa-
tion in question: it suffices to note
that our monovariant is a positive
integer (a sequence of positive inte-
gers cannot decrease forever).

The following problem was offered
at the 1964 Moscow City Olympiad.
It proved to be so difficult that none
of the competitors could solve it.

Problem 7. King Arthur sum-
moned 2N knights to his court. Each
knight has no more than N - 1 en-
emies among the knights present.
Prove that Merlin can seat the
knights at the Round Table in such
a way that no two enemies will sit
next to each other.

Let’s seat the knights at the
Round Table arbitrarily. If the re-
quirement of the problem is not yet
satisfied, we can find two enemies,
A and B, sitting side by side. For defi-
niteness, let’s assume that B sits to
the right of A (fig. 4a).

The problem itself suggests the
value to be tried as a monovariant:
the number of pairs of enemy-neigh-
bors at the table (compare this with
the previous solution).

Consider the friends (that is,
knights who aren’t enemies) of A.
One of them, C, must have B’s
friend as his right-hand neighbor—
we'll call him D. (Otherwise, B
would have more than N - 1 en-
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emies, because A has no less than N
friends.) Now let’s reverse the order
of knights sitting between A and D
to the right of A (fig. 4b). Then C
becomes the neighbor of A, B be-
comes the neighbor of D, while all
the other pairs of neighbors remain
the same (fig. 4c|). Therefore, our hy-
pothetical monovariant really does
decrease, because the pairs (4, B) and
(C, D)—at least one of which, (4, B),
consists of enemies—are replaced
with two “friendly pairs” (A, C) and
(B, D). Now we can complete the
proof in the usual way.

A natural question arising in a
problem on monovariants is how
long the process considered in the
problem will continue. Examine all
the problems we’ve discussed from
this point of view. You'll see that it’s
usually not that easy.

We'll give just one example.

Problem 8. Written on the black-
board is a string of N numbers, each
equalto+1or-1. A “move” consists
of reversing the signs of several con-
secutive numbers. What minimum
number of moves is sufficient to
obtain a string of +1’s from any ini-
tial arrangement of signs?

The operation here is given by the
condition. Let’s count the pairs of
neighboring numbers with opposite
signs and take the result as the mono-
variant. Our operation changes it by
no more than two.

Let’s prove that the string of N
numbers -1, +1, -1, +1, ... cannot be
turned into +1, +1, +1, ... in less than
n =[(N + 1)/2] moves, where [x] is the
greatest integer not exceeding x. Af-
ter performing k moves, we change
our monovariant by no more than 2k.
The change will be even less if at least
one of the moves involves any of the
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numbers at the ends of the string,
because such a move changes the
monovariant by one (or even makes
no change at all, if it reverses the signs
of all the numbers). Turning the given
alternate string into the constant
string of +1’s, we necessarily make
such a “small change” at least once—
when we change the sign of the
leftmost —1. So if we manage to do
this transformation in k < n moves,
we’ll have changed the monovariant by
lessthan2k <2(n-1)<2((N+1)/2)-2
= N-1.But this change must be exactly
equal to N — 1, because the initial
value of the monovariant is N -1 and
the final value is zero. So the minimum
number we seek is not less than n.

In fact, it’s equal to n. To show
this, take any initial string and pick
out groups of consecutive -1’s. If k
is the number of these groups, then
there are at least k — 1 numbers +1
between the groups, so k + (k- 1) =
2k - 1 £ N, and the number of the
groups k < (N + 1)/2. Since k is an in-
teger, k <[(N + 1)/2] = n. Now, suc-
cessively changing the signs in the
groups, we'll make all the numbers
positive in k < n moves.

So n moves always suffice, while
fewer than n moves might not suffice.

Turning back to our candy game,
we notice that it also has a mono-
variant—for instance, the expres-
sion 2a + b, where a and b are the
numbers of candies in the first and
second piles, respectively. In par-
ticular, this means that the game
can’t go on forever.

Exercises

Most of these exercises are from
All-Union and Leningrad Math
Olympiads, 1973-87.

1. N red and N blue points lie in
the plane, and no three of them are



collinear. Prove that one can draw N
non-intersecting segments joining
red points to blue points.

2. A number of red and blue
points are given, some of them
joined with segments. We'll call a
point special if more than a half of
the points joined to it are a different
color. We choose a special point (if
there are any) and paint it the other
color. Prove that after a number of
such steps there will not be any spe-
cial points left.

3. N points lie in the plane, some
of them joined by segments. There
are no more than 11 segments issu-
ing from any point. Prove that these
points can be painted in four colors
in such a way that there are no more
than N segments with endpoints of
the same color.

4. Each face of a cube has a num-
ber written on it, and not all the
numbers are the same. Each of the
numbers is replaced by the arith-
metic mean of the numbers written
on the four adjacent faces. Is it pos-
sible to obtain the initial numbers
on the faces again after a number of
these operations?

5. N positive integers are written
around a circle. The greatest com-
mon divisor of every two neighbor-
ing integers is written in between
them. Then the former numbers are
erased, and the newly written num-
bers are subjected to the same opera-
tion. Prove that after a number of
steps all the numbers will be equal.

6. A 1 and nine 0’s are written on
the blackboard. Each of any two of
these numbers can be replaced by
their arithmetic mean. What small-
est number can appear in place of
the number 1 after a series of such
operations?

7. Finitely many squares of an in-
finite square grid drawn on white pa-
per are painted black. At each mo-
ment in time ¢t = 1, 2, 3, ... each
square takes the color of the major-
ity of the following three squares:
the square itself and its top and
right-hand neighbors. Prove that
some time later there will be no
black squares at all.

8. Several children are standing
around a circle, each holding a hand-

ful of candies. On a signal from the
leader each player hands over a half
of his or her candies to the neighbor
on the right (if the number of can-
dies is odd, the leader gives one ad-
ditional candy to the player). Prove
that after a certain number of rounds
all the children will have the same
number of candies.

9. All the volumes of the Encyclo-
paedia Britannica stand in an arbitrary
order on a special shelf in a library.
Every minute, a robot-librarian takes
an arbitrary volume that is not in its
proper place and puts it in its proper
place—that is, if the number of the
volume is k, the robot puts it into the
kth place. Prove that sooner or later
all the volumes will be standing in
their proper places.

Editor’s note: You can find more about
some special methods of solving various
types of problems in these Quantum ar-
ticles: “Pigeons in Every Pigeonhole,”
January 1990 (the pigeonhole principle);
"Going to Extremes,” November/De-
cember 1990 (the “extremity” rule); “Off
into Space,” January/February 1992 (look-

ing at plane geometry problems from a
three-dimensional viewpoint); “Jewels in
the Crown,” July/August 1992 (math-
ematical induction); “Some Things
Never Change,” September/October
1993 (invariants).

The problems involving monovariants
are related to the problems involving in-
variants mentioned at the beginning of
this article: both kinds of problems deal
with the result produced by a sequence of
certain operations. But the problems
considered in this article are even closer
to those studied in the article “Going to
Extremes” mentioned above. For in-
stance, in problem 3 we could choose to
apply the “extremity” rule introduced in
that article and consider the set of seg-
ments with the minimum total length;
then the same basic argument as the one
we used ensures that the segments of this
set do not intersect. Something similar
can be done with other problems that do
not directly refer to any operations. The
advantage of monovariants is that they
not only allow us to prove that a certain
configuration exists, they also show how
to construct it.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 58

“YOUR FREE
CATALOG KNOCKED
MY SOCKS OFF"”

We get that sort of comment all the time. People are impressed
that our free Consumer Information Catalog lists so many free and
low-cost government booklets. There are more than 200 in all,
containing a wealth of valuable information.

They tell you how to make money, how to save money and how to
invest it wisely. They tell you about federal benefits, housing and
learning activities for children. They fill you in on nutrition, health,
jobs, and much, much more.

Our free Catalog will very likely impress you, too. But first you
have to get it. Just send
your name and address to:

Consumer Information Center
Department KO
Pueblo, Colorado 81009

A public service of this publication and the Consumer Information Center of the U. S.
General Services Administration
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What little stars do

And the big old planets don't

by Pavel Bliokh

RY THIS LITTLE PARLOR
trick sometime: you say a word
and your friend says an action
that comes to mind. Then you
show a sheet of paper with the re-
sponses already written on it, and in
most cases they’re the verbs your
friend has uttered—you’re a mind
reader! You say “a dog,” your friend
says “barks,” you say “a bird,” she
says “flies,” you say “a fish,” she
says “swims.” And if you say “a
star,” then most likely you will hear
“twinkles,” because the beautiful
sight of twinkling stars, or sparkling
lights off in the distance here on
Earth, is embedded in our conscious-
ness from the time we were babies:
“Twinkle, twinkle, little star .. .”
The firmament with its stars
whose sparkle constantly changes
and pulses with all the colors of the
rainbow is indeed a beautiful sight.
We can admire it unquestioningly
for a long time. But sooner or later
the thought occurs to an inquisitive
mind: “Why do they twinkle?”

Twinkling facts

A star can change its brightness in
two ways: either the amount of light
emitted by the star varies (just as
candlelight varies on a windy day) or
the light changes during its long
journey to Earth. Let’s look at some
facts related to the twinkling of stars
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(you can verify most of them your-
self).

1. The twinkling of stars depends
both on the weather and on your
location. In good weather in the
mountains, the stars hardly twinkle.
This is all the more true when you
look at the stars from an airplane fly-
ing at high altitude, and the bright-
ness of stars seen by astronauts
doesn’t vary at all.

2. Stars near the zenith (straight
up) twinkle noticeably less than
those near the horizon. The bright-
ness of far-off lights here on Earth
also varies to a considerable extent,
but these same lights give off a
steady glow (without twinkling)
when they are nearby.

3. The intensity of the twinkling
depends on whether we're looking at
the heavens with the naked eye or
through a telescope. If the diameter
of the objective is more than a few
dozen centimeters, the brightness of
a star does not seem to change, al-
though its image quivers—that is,
oscillates chaotically around a cer-
tain average position.

4.1f we look hard at the heavenly
bodies, we notice certain “stars”
that do not twinkle at all. These are
not stars but planets. The best way
to convince ourselves that planets
don’t twinkle is to look at Venus—
the most brilliant object in the heav-
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ens after the Sun and Moon. Venus
can be seen either in the morning in
the east or in the evening in the
west, but it’s best to know where to
look ahead of time. You can find this
information in an astronomical
handbook.

5. When the stars are near the
horizon, you can see chromatic
twinkling: more or less rapid
changes not only in brightness but
in color as well.

The features noted in items 1 and
2 show that the cause of the twin-
kling should be sought not in the
physical characteristics of the stars
but in the optical properties of the
atmosphere. The blanket of air is
very thin compared to the Earth’s
radius R = 6,500 km. About 50% of
the mass of the air lies below an al-
titude of 6 km, and at 30 km this
rises to almost 99%.

A beam of light coming from a
star near the horizon travels a far
greater distance through the lower,
dense layers of the atmosphere
than a beam traveling from
straight overhead (fig. 1 on page
24). The longer path of light in air is
a strong argument in favor of the at-
mospheric nature of the twinkling,
although it explains nothing by it-
self. After all, pure air is completely
transparent, but twinkling is ob-
served in clear weather.

Art by Sergey Barkhin






Figure 1

Light beam in the Earth’s atmosphere (a) without refraction and (b) with
refraction. S is the light source and S* is the apparent position of the source.

Atmosphieric refraction

The optical properties of the at-
mosphere are characterized by the
refractive index n, which is always
a trifle greater than one and depends
on the density of the air p:

n=1+kp, (1)

where k is a coefficient of propor-
tionality. The quantity kp is very
small—of the order of 10~“—but it
is these ten-thousandths that dis-
tinguish “absolutely transparent
air” from an empty medium: the
vacuum.

Let’s recall that the refractive in-
dex shows how much the speed of
light c_ is reduced in the given me-
dium in comparison with its veloc-
ity in a vacuum c: ¢, = ¢/n. The dif-
ference between ¢, and c is so small
that it would seem it can only be
measured in especially subtle ex-
periments that make it possible to
detect a negligible decrease in the
speed of light.

And that would be the case if the
air were absolutely homogeneous.
But as we mentioned earlier, the
density p decreases with altitude,
and the refractive index decreases
with it. Near the Earth’s surface n =
1.0003, but at a height of 10 km n =
1.0001. So the Earth’s atmosphere is
an optically heterogeneous medium
that bends light rays.

This phenomenon (refraction)
wasn’t taken into consideration
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when we drew the rays in figure la.
It is taken into account in figure 1b.
Clearly the path of the light beam in
the atmosphere increases slightly,
and—what is especially important—
the angle at which the beam arrives
at the observer changes.

Due to refraction all the heavenly
bodies appear to be elevated above
the horizon. The angle of refraction
Ao, is greater when the light source
is closer to the horizon. The maxi-
mum value of Ao is about 30’, which
is not insignificant. For example, the
angular diameter of the Sun is 30".
Thus, when the Sun sets, we watch
it until the upper edge of the disk
drops below the horizon by a half-
degree. The same thing happens at
sunrise: the Sun becomes visible a
little before the “true” sunrise. As a
result, daytime is prolonged some-
what (by 8-13 minutes in the middle
latitudes), and the polar night is re-
duced by several days.

We've been talking about the so-
called regular refraction, but this
doesn’t explain the twinkling of
stars.

Random variationg

The simplest meteorological in-
struments—the thermometer and
the barometer—can be found in
many households. As you know,
their readings vary from day to
day. Sometimes these variations
occur within a few short hours, in-
dicating a sudden change in the

weather. If we use more sensitive
and “non-inertial” devices that
can record small, quick changes, we
see that the temperature and pres-
sure vary almost constantly. Not
only that, they have different values
in different places even if the read-
ings are taken at points that are not
that far from one another.

Air density varies with tempera-
ture and pressure, and the same
holds for the refractive index, which
is thus a function of the coordinates
t and time ¢. This function can be
written as the sum of two compo-
nents:

n(t, t) = n (z) + dnlr, t). (2)

The first item describes the regu-
lar variation of n with height z
and, generally speaking, it also
depends on time. But we aren’t
interested in such slow changes
(for example, from day to night),
and so we don’t write the argu-
ment ¢ in n (z). The regular refrac-
tion mentioned above is linked
withn(z). The second item dnr, t
is characterized by changes that
are quick (measured in seconds or
even fractions of seconds) and
small-scale (from a few dozen
meters to millimeters).

But the differences between n,
and 8n can’t be ascribed entirely to
the rate and range of their changes.
Very important features of these
values are expressed by the
phrases “determinate function”
(for n ) and “stochastic function”
(for 8n). Determinate means that
in principle the function n(z) can
be calculated for any height z. On
the other hand, the quantity dn(r,
t) depends on a multitude of ran-
dom circumstances [hence the
name stochastic) and it’s impos-
sible to calculate. We can only in-
dicate the probability that this
function assumes a certain value.
Not as comprehensive as the prob-
ability function but still a very im-
portant characteristic of the ran-
dom value is its mean value,
which we denote by a horizontal
line above it: dn.

Unlike the function itself, its
mean value is often a constant. To



tie things down a bit, we’ll consider
that dn = 0. This means that 8n as-
sumes both positive and negative
values with equal probability. How-
ever, the square of the fluctuations
(0n)? is another story entirely. This
value is always positive. Its mean

value (611)2 characterizes the range
of the fluctuations and is known as

the dispersion ¢ ? = (511)2. The root
mean square (rms) value is also used:

c, = 1/(811)2 . In the lower layers of

the atmosphere, 6 ~ 10°-107—that
is, the fluctuations in the refractive
index are very small even compared
to the small deviation of n, from
unity mentioned above (n, - 1 ~
104).

Fluttering

How does the stochastic hetero-
geneity dn influence the refraction
of light beams? It’s easy to picture
how in addition to the regular refrac-
tion (angle Ao in figure 1b) there may
be stochastic deviations do. that can
be directed to any side with equal
probability—that is, 6o, = 0. In a way
similar to that for 8n, we introduce

the notions of the dispersion (Boc)2 #
0 and the root mean square refrac-

tion o = (8(x)2 . Astronomical ob-

servations give us the estimate c, ~
1”. This means that the image of a
star in a telescope wanders ran-
domly within a circle with a radius
of approximately one second of arc.
Obviously such fluttering gets in the
way of astronomical observations.
This is why astronomers choose the
locations of their large optical in-
struments with great care, preferring
mountainous regions with good
“seeing”—that is, 6_and o, are very
small.

The fluttering of the image in a
telescope often occurs so rapidly
that only the eye can make out the
oscillations. When a photograph is
taken, the result depends on the ex-
posure time, which in turn is deter-
mined by the sensitivity of the film
and the brightness of the star. To
obtain images from weak sources,
the first astronomical photographs

were taken with exposures of many
minutes or even several hours. The
fluttering of the image was averaged
over this long period and each
“point” source of light produced an
image of a diffuse circle with angu-
lar size ~ G,

Along with the rapid shifts of an
image, there are also slow ones with
a period of about 1 minute. They
have larger amplitudes and can be
decreased to a considerable extent if
the astronomer compensates for the
shift by adjusting the direction of
the telescope or the position of the
film. It’s hard to believe now, but in
the beginning of this century as-
tronomers had to work through the
night, simultaneously using their
eyes, their hands, and even their
mouths. Their eyes watched the
image of a star, their hands adjusted

Figure 2

Refraction of rays caused by random variations in the

air’s refractive index.

the photographic plate in two per-
pendicular directions, and their
mouths held the cable release for the
camera’s shutter. As you might have
guessed, nowadays this work is fully
automated.

Fluttering = fwinkling

Our intuition tells us that the
random shifts of a star’s image and
the chaotic variations of its bright-
ness are related somehow, and yet
they are different phenomena. At
first glance twinkling can easily be
explained not only by fluctuations
in the air’s refractive index but by
fluctuations in the air’s transpar-
ency. Certainly this is a nice, simple
explanation, but why then do some
heavenly bodies twinkle (stars) and
others don’t (planets)? Also, direct
optical measurements show that the
transparency of
air is very high
and does not
Y vary over short
periods of time.
So we need to
look for other ex-
planations.

Let’s consider
in more detail
the influence of
the heterogene-
ities &n on light
beams. Each het-
erogeneity acts
like a small lens,
which can be ei-
ther converging
(when 8n > 0) or
diverging (when
dn < 0). For defi-
niteness the case
ofdn > 0 is shown
in figure 2, and
the beams pass-
ing through the
heterogeneity
converge.

The flux of
light energy E
falling on a lens
with characteris-
tic dimensions I
is proportional to
its  cross-sec-
tional area S,
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Figure 3

Refraction of rays in random atmo-
spheric heterogeneities, which leads
to a redistribution of the intensity in
the transverse direction. Where the
beams converge, the amplitude
increases, and vise versa.

which we can estimate to be ap-
proximately the area of a circle of ra-
dius r, ~ I: S, = nl*. Therefore, E =
J,nl2, where ] is a factor characteriz-
ing the light intensity. After passing
through the lens the radius of the
cross section of the light cone de-
creases by dr = x8o and becomes
equal to r ~ I - xda.. Here do. = 6n is
the deflection angle caused by a
single heterogeneity, and x is the
distance from the lens. The law of
conservation of energy yields E =
Jnl2 = | (I - x30, from which it’s
easy to find the intensity of the fo-
cused beam:
ZZ

J.= [OIZ (3)
(1-x3a)
The value of da is always small,
but the product xda can become
comparable to I, when x is suffi-
ciently large. We need to pay spe-
cial heed to this, because when x
= F = 1/8a (where F is the focal
length of the “lens”), the denomi-
nator in equation (3) become 0,
while ] — eo.

In actuality the increase of ] is
always constrained by the wave
nature of light. As you probably
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know, light is electromagnetic ra-
diation that is characterized by a
wavelength A and an amplitude A.
The intensity of the light is pro-
portional to the square of the am-
plitude: ], < A2, ] o< A%. The wave-
length determines the angle of
diffraction: when the wave en-
counters an obstacle with dimen-
sions I, the wave passes around it
and spreads out within the angle
v, ~ M1 (fig. 2 on the previous
page). As a result, even an ideal
lens of diameter I concentrates the
light not into a point (as geometri-
cal optics predicts) but into a
circle of radius r, ~ xy,_lying in the
focal plane x = F (here we take into
account that the angles 3o and
in figure 2 are very small).

We also recall that the wave-
lengths perceptible to the human
eye range from ~0.4 pm (violet) to
~0.76 um (red). It is atmospheric dis-
persion that is partially responsible
for multicolored (chromatic) twin-
kling. This is because the factor k in
equation (1) depends on L. Generally
speaking, o2 also depends on A.
Chromatic twinkling can be seen at
small angles to the horizon and is a
very pretty sight.

Concluding remarks

Why does the intensity of light
vary in absolutely transparent air?
Because the energy is redistributed
in the transverse direction relative
to the beam (fig. 3). Up to now
we’ve only addressed spatial varia-
tions 84, but twinkling is a change
in a star’s brightness that varies
with time. Were the air absolutely
motionless, no twinkling would
be observed. The same star would
simply be brighter in one place
(say, at point x,y, ) than in another
(%,7,)-

In reality, though, air is con-
stantly moving, and with it move
the heterogeneities of the coeffi-
cient of refraction. The leading
role here is played by wind that is
transverse to the light beam,
which “carries” the curve Aly) as
a whole along the y-axis with a ve-
locity v, . As a result, a stationary
observer sees changes in time in a
star’s brightness—that is, twin-
kling (fig. 4). The average distance
between peaks of the intensity is
about the size of a heterogeneity I.
Thus, the characteristic time for a
change in brightness (the “period”

Figure 4

Translation of atmospheric heterogeneities by the wind, which leads
to temporal variations in the intensity of light radiation (twinkling).
Ay, is the size of the pupil of the eye and Ay, is the diameter of an

objective (y, is their center).



Figure 5

Sources of (a) small and (b) large
angular size. In the first case, twin-
kling is observed; in the second, it is
absent.

of twinkling) is 1 = I/v . Let’s as-
sume, for the sake of our estimate,
that /= 10" m and v, = 1-10 m/s.
Then we get a period 1= 1-10"! s.
If we take into account that the air
contains heterogeneities of differ-
ent sizes, we can understand why
twinkling is characterized by such
a wide range—from tenths of a
hertz to 10 Hz or more.

This scenario helps us understand

other properties of twinkling men-
tioned at the beginning of this ar-
ticle. When we look at a star with
the naked eye, a light beam a few
millimeters in diameter enters the
pupil. But the distance between the
oscillations of intensity in air is
much larger, so the eye doesn’t av-
erage the variations of A(y). The op-
posite occurs with a telescope. If
the diameter of its objective d > I
= 107! m, it takes in both the stron-
ger and weaker portions of the light
flux, which results in an averaging of
the intensity and a damping of the
twinkling.

Now all that’s left is to figure
out why the planets don’t twinkle.
Let’s imagine that the light source
isn’t a “point” but a luminous
body with a rather large diameter
D—so large, in fact, that its angular
size y, = D/R, (R, is the distance
from the source) exceeds by far the
angular dimensions of the atmo-
spheric heterogeneities y, = I/x. This
means that when we look at a lumi-
nous body many heterogeneities are

projected onto its area. Figure 5
compares two sources: a point
source (y, << y,) and an extended
one (y, >>y ). In the first case, the
light beam hits either one or an-
other heterogeneity (remember
the wind!) and its intensity con-
stantly changes. In the opposite
case, the extended source can be
thought of as a collection of a large
number of “points.” The bright-
ness of each point varies as in the
first case, but they fluctuate inde-
pendently, because the rays of light
from different parts of the source
pass through different heterogene-
ities. As a result, if the brightness of
one part increases, it decreases in an-
other. The total intensity of light
emitted by the source as a whole
practically doesn’t change.

So, we've answered (though not
exhaustively) the questions raised at
the beginning of the article and, we
hope, showed once more how an
understanding of physics helps us
appreciate even more deeply the
beauty of Nature.
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Three metaphysical tales

The Meaning of Life for lines, light, and cosmic bodlies

Ways of looking at the plane

Many lines passed through the
plane: straight lines, curved lines,
broken lines. And each of them had
its own way of looking at the world.

“Bverything in the world is either
raised up or sunk down”—that
was one straight line’s slice of the
Truth.

“No,” another cut her off, “every-
thing in the world is either right or
not right.”

“Stop bickering, girls,” inter-
jected a curve, bending ever so
smoothly. “Everything in the world
is dialectical: here you're right, but
there you're sunk.”

The broken lines were too em-
barrassed to express their opinion,
but the circle formulated its view
thus: “The entire world is either
inside, or it’s everything else. [,
uh, don’t have much to say about
all the rest, but my inner world is
very rich indeed. Only all-round
types like me . . .”

“Two-dimensional personalities
always have so much to say,” inter-

7

rupted a spiral. “As far as the world /

is concerned, it’s just a layer be-
tween coils that keeps them from
getting tangled . . .”

And no one solicited the
opinion of the inconspicuous
little point—the only com-
mon point of the plane and a
line passing outside this .
plane.
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by A. Filonov

Universal gravitation

At one time the Earth had no sat-
ellites. When a satellite did appear,
is turned out to be the defenseless
little Moon.

And every meteorite, every cos-
mic speck of dust injured her. After
all, the Moon has no atmosphere to
protect her.

The Earth inclined its axis, deep
in thought. Whatbusiness was
it of hers? She % had
atmosphere,
water even—
why should
she worry?
But the
Earth

did worry: there was a planet nearby
that needed protection.

The concerned Earth offered the
Moon her air, her water: “Take
them, Moon, I have plenty to spare.”
The Earth drew itself toward the
Moon. The Moon drew itself toward
the Earth.

That’s how tides arose, which of-
ten sweep us up. And that’s the ori-
gin of what people later called “self-
less love.”

Attraction to powerful Sensations

Light travels in a straight line—if
it’s in a vacuum. But what if it’s near
abig, bright star? It bends its path ever
so slightly so it can pass closer.

“Well, just the tiniest bit, hardly
at all, really!” light says defensively.
“T was drawn to take a look!”

‘ But then it comes upon a
black hole, which doesn’t let
the least scrap of light escape
its tight embrace. Like a mi-
ser, it hides its own light
from others, and also tries to
grab any other light that
happens by. And that light
bends toward the black
hole out of curiosity.
“Tust one last time!” it
says.
For the very last time.
So don’t deviate from
the straight and narrow!
(Even if you're really
drawn to.) Q)




MATH
INVESTIGATIONS

The Pizza Theorem—Part |l

And when you're done with the pizza, try the calzone!

S INDICATED IN PART I OF

this account, I am most in-

debted to Stan Wagon (Macal-

ester College) for my initial in-
formation about this problem area,
which seems to have originated with
Problem 660, proposed by L. J. Upton,
in Mathematics Magazine. Its solu-
tion appeared in 1968 on page 46 with
a comment by Michael Goldberg that
the result can be generalized to 2n
equally spaced chords. A closely re-
lated problem was later posed by
Stanley Rabinowitz as Problem 1325
in Crux Mathematicorum; for two
different solutions to it, see vol.15
(1989), pp. 120-22. In particular, it
was noted in the solution that M. S.
Klamkin generalized the problem to
n chords through an arbitrary point P
with equal angles n/n between suc-
cessive chords. One of the two solu-
tions given is geometric, while the
other one uses calculus. The third
method of solution (for the special
case of n = 4 referred to in part I} is by
dissection; it was discovered by Stan
Wagon and Larry Carter (IBM) and
will appear in Mathematics Maga-
zine. My first challenge to my readers
is to find a proof by dissection to the
Pizza Theorem. Dissection proofs for
n = 6 and 8 were later discovered by
Allen Schwenk (Western Michigan
University), who feels that such
proofs exist in general, though it’s
hard to see how one could prove this
in a uniform way. Incidentally, upon
reading part I, Stan Rabinowitz sent
me a wonderful 37-page manuscript

by George Berzsenyi

The Pizza Theorem: If a circle
is divided into eight parts by
chords through an arbitrary
point inside or on the boundary
of the circle, if the resulting
“pseudoradii” form equal
angles with one another, and if
the resulting “pseudosectors”
are colored alternately black
and white, then the sum of the
black areas is equal to the sum
of the white areas.

entitled A Survey of Interesting Re-
sults about Regular Polygons, which
includes nearly everything known
about the Pizza Problem. You may
wish to request a copy by writing to
Stan (MathPro Press, 12 Vine Brook
Road, Westford MA 01886). If you do
so, please also inquire about (and pur-
chase!) his Index of Mathematical
Problems, 1980-1984, which is a
must in every problemist’s library.

In reaction to my previous note I
also heard from Murray Klamkin, in-
forming me that an expository article
of his on three kinds of “equi-area
partitions” is now in preparation. In
particular, he found that the restric-
tion of P to the interior of the circle
is not necessary if one uses signed
areas. Moreover, he generalized the
problem to kn points distributed
regularly on the circle: if one sums
every kth sector, one obtains 1/k of
the circle’s area. My second challenge
is: verify Klamkin’s claims.

My third challenge concerns a
three-dimensional extension com-
municated to me by Tom Banchoff. It
was found by a student of his,
Michael Nathanson, while a junior at
Brown University. They refer to it as
the Calzone Theorem: Choose any
point P inside or on the boundary of
a sphere (calzone), any line through
this point, and four planes through
this line making eight equal 45°
angles at P. Then these planes, to-
gether with the plane perpendicular
to this Iine, divide the calzone into 16
pieces, which can be colored alter-
nately black and white, so that the
total volume of the black pieces will
be equal to the total volume of the
white pieces. The proof can be ob-
tained by using Cavalieri’s Principle;
my third challenge is: develop such
a proof or find a proof by dissection.

In closing, I should mention that
the aforementioned manuscript of
Rabinowitz also deals with the divi-
sions of regular polygons and affine
images of them (and of circles), and
that he suspects the presence of a
duality principle between equally
placed points on the perimeter and
equal angles between the “pseudo-
radii” emanating from P. I will inform
you when his paper, Klamkin’s ar-
ticle, and the findings of Wagon and
Carter appear in print. In the mean-
time I wish you a happy journey in
this wonderful problem area. For the
related Kvant material mentioned in
part I, see brainteaser B110 in this is-
sue of Quantum. (@
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HOW DO YOU
FIGURE?

Challenges in physics and math

Math
M106

Economical omnipresence. (a) What
smallest number of points is it suf-
ficient to mark inside a convex pen-
tagon so that at least one of these
points lies inside the triangle formed
by any three vertices of the penta-
gon? (b) Answer the same question
for a convex n-gon.

M107

Finding Pa. From point O inside tri-
angle ABC perpendiculars OM, ON,
and OP are drawn to sides AB, BC,
and CA, respectively. If AM = 3, MB
-5,BN=4,NC=2,and CP = 4, find
PA. (E. Tsinovi)

M108

Inequality on the unit sphere. For
any three nonnegative numbersx, y,
z satisfying the equation of the unit
sphere x> + y> + z2 = 1, prove the in-
equality

P
X ¥ z ZSNS.
1-x* 1-y* 1-2° 2

(V. Matizen)

M109

Lots of right angles. From the vertex
A of a square ABCD two rays are
drawn inside the square. From ver-
tices B and D, perpendiculars are
dropped to the two rays: BK and DM

are dropped to one of them, and BL
and DN are dropped to the other.
Prove that the segments KL and MN
are congruent and perpendicular.
(D. Nyamsuren [Mongolia])

M110

Don’t get around much anymore.
The dormitory of the Basy Listening
School of Music has an infinitely
long hallway with an infinite row of
rooms on one side. The rooms are
numbered in order by integers, and
each room has a grand piano in it. A
finite number of students live in
these rooms (several students might
live in the same room). Every day
two students from adjoining
rooms—the kth and (k + 1)st—get
annoyed with each other’s playing
and move apart—to the (k - 1)st and
(k +2)nd rooms. Prove that the mov-
ing ends in a finite number of days.
(V. Ilyichov).

Physics

A flying leap. Estimate the mini-
mum size of a spherical asteroid that
an astronaut couldn’t leave by jump-
ing off. (G. Meledin)

P107

Spilled milk. Pouring milk into a
glass, you spill some of it on the
tablecloth, which happens to be a

piece of oilcloth. You discover that
the design of the oilcloth is just
barely visible through the film of
milk. Considering that milk is a sus-
pension of little fatty balls in water,
estimate their size. (P. Zubkov]

P108

A watched pot. One liter of water in
a pan cannot be boiled by using a
100-watt electric heating element.
Find the time it takes the water to
cool 1°C when the heating element
is turned off. (K. Sergeyev)

P109

One more capacitor. A capacitor C
and an inductor L are connected in
series to a battery of voltage V. The
coil is then connected in parallel to
another capacitor with the same ca-
pacitance C. What is the maximum
charge of this capacitor? Neglect the
resistance of the wires and the inter-
nal resistance of the battery. (A. Zil-
berman)

P110

Disappearing fence. Watching ten-
nis players through a chain link
fence, we can observe two phenom-
ena: first, if we move farther away
we can see the players better; and
second, if we walk quickly along the
fence, the fence seems to disappear.
Explain why. (S. Krotov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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KALEIDOSCOPE

Tori, tori, topi?

From bagels to tokamaks to topological mina-games

HEN DID YOU SEE YOUR
first torus? Was it the dough-
nut you gnawed on as a baby?
Or the inner tube you used to
float down a stream? The wedding
band on your father’s finger? Or
maybe the delicate ring blown by a
stogie-smoking uncle?

The mathematically perfect torus
is defined as a solid body formed by
rotating a circle about a line in the
circle’s plane that has no common

Figure 1

points with the circle (fig. 1). The
volume of such a ring was calculated
by Johannes Kepler. This is what he
wrote in his famous book The New
Stereometry' of Wine Barrels:
“Any ring of circular or elliptical
section is equal in volume to the cyl-
inder whose height equals the length
of the circumference described by the

1Stereometry” is the old name for
solid geometry.—Ed.
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center of the rotating figure, and the
base equals the section of the ring.”

The complete title of this work,
according to the style of that time,
was rather verbose: The New Stereo-
metry of Wine Barrels, Mostly Aus-
trian, As Having the Most Advanta-
geous Shape, and the Remarkably
Convenient Use of the Cubic Ruler
with Them, with an Addendum on
Archimedean Stereometry. A Work
by Johannes Kepler, the Mathemati-
cian of Emperor Caesar Mattheus I
and His Faithful Ranks of Upper
Austria with the Caesarean Privilege
for 25 Years.?

In modern notation, Kepler’s for-
mula for the volume V of a torus
with a generating circle of radius r
and a distance R from its center to
the rotation axis is

V = 2m’r’R.

The surface area of the torus is
4n*Rr—that is, it’s equal to the prod-
uct of the lengths of two circumfer-
ences: the one generating the torus
and the one described by its center
as it rotates about the axis. Simi-
larly, the volume can be interpreted
as the product of the area of the ro-
tating circle and the length of the
circumference described by its cen-
ter. Both interpretations are particu-
lar cases of the so-called Guldin for-
mulas for the volume and surface
area of rotational solids.

The term “torus” is used not only
for the solid but also for its surface.
This surface is a particular favorite of
topologists—mathematicians who
study the properties of figures that are
preserved under continuous deforma-
tions. From the topological point of
view, the torus is the simplest surface
after the sphere. (What distinguishes
it from the sphere is, of course, the
hole.) This visible geometric differ-
ence can be expressed algebraically.
Leonhard Euler noticed that any poly-

Figure 2

hedron topologically equivalent to a
sphere obeys the formula

V-E+F=2,

where V, E, and F are the numbers of
its vertices, edges, and faces, respec-
tively.? For instance, a cube has 8
vertices, 12 edges, and 6 faces; ac-
cordingly, V-E+F=8-12+6=2.

2See “The Secret of the Venerable
Cooper” in the May 1990 issue of
Quantum to learn more about the
main subject of this curious work.—Ed.

%You can find a proof of this
theorem in “Topology and the Lay of
the Land” in the September/October
1992 issue of Quantum.—Ed.
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Figure 3

Or take an n-gonal pyramid: it hasn
+ 1 vertices, 2n edges, andn + 1 faces,
which givesus V-E+F=(n+1)-2n
+{n + 1) =2 again. But if you compute
the same expression (called the
Euler characteristic) for a toroidal
(that is, torus-shaped) polyhedron,
you'll find that it’s equal to 0, not 2.
For instance, for the “triangular
torus” in figure2, V-E+F=9-18
+9=0.

Now imagine we cut a torus (the
surface, not the solid!) across it and
along it (fig. 3a)—that is, around the
rotating circle and the circle described
by any of its points—and develop it.
When we unbend the ring after the

Figure 4

first cut (fig. 3b), we get a cylinder
with the second cut running along it.
So in the end we’ll get a rectangle
whose opposite sides—the edges of
the cuts—can be thought of as iden-
tical (glued to each other). Since di-
mensions are of no importance to to-
pologists, they usually draw the
resulting figure as a square (fig. 3c).
The arrows on the sides are drawn to
make sure they are glued together
properly—arrow to arrow. (Reversing
an arrow in one or both parallel pairs
of sides leads to other interesting sur-
faces.) This representation is very
convenient for exploring and explain-
ing many properties of the torus. For
instance, figure 4 illustrates a map on
the torus in which every two coun-
tries have common border. Don't for-
get that the opposite edges of this
map must be glued together, so the

Figure 5

four apparently disjoint pieces at the
corners of the map are actually parts
of the same country. Other pieces of
the same color at the edges belong to
the same countries as well. Another
version of the same map (fig. 5), ob-
tained by cutting the square map into
pieces and gluing them together along
the edges, clearly shows that there are
seven hexagonal countries, each sur-
rounded by the other six. (In the fig-
ure we see only one country sur-
rounded by the others, but in fact it’s
true for all the countries. Try to show
this by recarving the map in an appro-
priate way.) This map illustrates the
fact that we need at least seven col-
ors to paint any map on the torus so

Figure 6

that neighboring countries are a dif-
ferent color. It can also be proved that
seven colors suffice to paint any map.
The same problem for the sphere
wasn’t solved until several years ago,
when it was definitively proved that
four colors will always suffice for a
spherical map.

The thin black lines in figure 4
constitute a triangular grid on the
torus (the vertices of our hexagonal
map are the centroids of the net-
work triangles). This network has
seven vertices every two of which
are connected with an edge. The
edges form 14 triangular faces. The
Toy Store in this issue explains how
to construct a model of a polyhe-
dron whose development is topo-
logically equivalent to this network.
And this is the simplest toroidal
polyhedron in the sense that it has
the smallest possible number of ver-
tices.

Imagine we glue together the op-
posite edges of a chessboard. Then
the “edge” and “corner” squares
will disappear—all the squares will
become geometrically equivalent.
What a plethora of opportunities for
bishops, rooks, and queens! A
bishop or queen can get from b5 to,
say, g2 in one move, and even by
moving in two opposite directions
(fig. 6). A king and a rook or a queen
can’t checkmate a solitary opposing
king. (See the Toy Store in this issue
for some toroidal chess problems.)

Other games on a square board can
also be transferred to a torus. For in-
stance, try to play tic-tac-toe on the
torus. It’s well known (and easy to
show) that on an ordinary 3 x 3 board
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either player can force a draw. Who
wins on the torus? What should the
first move be? Notice that in the po-
sition shown in figure 7 the first
player has already formed a line of
three X’s and, therefore, has won!

Figure 7

Figure 9

To close, let’s turn the torus in-
side out. It’s easy to turn a balloon
inside out through the hole you use
to blow it up, if the rubber is elastic
enough. It might seem that this op-
eration is impossible with the inner
tube of a bicycle tire. But we can do
it, as figure 8 shows. And now a to-
pological question to test your
imagination: think of a second torus
linked with the first one initially
(fig. 9). What happens to it after we
perform our barbarous act? Q

ANSWERS, HINTS & SOLUTIONS
ON PAGE 57

Figure 8
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LOOKING BACK

Phlogiston and the magnetic field

A brief tour of the junkyard of science

by Stephanie Eatman, Fraser Muir, and Hugh Hickman

OMETIMES IN SCIENCE, OLD
ideas have to be replaced by
new ideas. Phlogiston, caloric,
and the luminiferous ether
were all legitimate scientific con-
cepts, once believed to be real. One
by one they were discarded when
new information revealed that they
were no longer needed to explain the
phenomena they were created to ex-
plain. Could it be that the magnetic
field will one day join them in the
scientific scrap pile?
Electricity and magnetism
were both known to the an-
cient world, but it wasn’t un-
til 1820 that Hans Christian Oersted
established a definite connection be-
tween the two phenomena. Oersted
discovered that a wire carrying an
electric current was able to deflect a
compass needle when the wire was
placed parallel to the original direc-
tion of the needle. Since an electric
current consists of a line of moving
charge, and compass needles are
known to be deflected by magnetic
fields, the connection became
clear—lines of moving charge pro-
duce magnetic fields.
For the next hundred years great
scientists like Ampere, Faraday, and
Maxwell made significant contribu-
tions to our understanding of elec-
tromagnetism. In the final analysis,
however, the electric field and the
magnetic field were still perceived
to be two different things. It’s easy
to see why. The two fields seem to
produce quite different effects. For

example, an electric field will exert
a force on an electric point charge
whether the charge is moving or
standing still. But for a magnetic
field to exert a force on the same
point charge, the charge must be
moving, and it must be moving in a
direction that is not parallel to the
direction of the magnetic field.

This perception of the two fields
as two distinct entities was seri-
ously challenged soon after 1905,
when Albert Einstein published his
special theory of relativity. For the
first time it became possible to
demonstrate that the magnetic
force on a moving point charge ac-
tually comes about because of the
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Figure 1

relativistic transformation of the
electric field. Let’s see how.

According to Einstein, the length
of a moving object, measured by a sta-
tionary observer, becomes contracted
in the direction of the object’s motion
(fig. 1). The faster the object moves,
the shorter it becomes compared to
its stationary length. Mathemati-
cally, this is expressed as

72
L=LO\/1_C_2' (1)

where L is the contracted length, L,
is the stationary length, v is the
speed of the object relative to the
observer, and c is the speed of light
(approximately 3 - 10® m/s in a
vacuum).

The idea that the length of a mov-
ing object becomes contracted in the
direction of its motion has been well
established experimentally. On the
other hand, both experiment and
theory indicate that the amount of
electric charge possessed by a mov-
ing object does not change due to the
object’s motion.

Suppose we have a uniform line
of positive charge situated in air.
The electric field around an infinite,
stationary, positive line charge is
given by

Ao

B e 2)

2neor

where the boldface E indicates that
the electric field is a vector quantity,
having both magnitude and direction
(on the right-hand side, t is a unit
vector, meaning that the field always
points directly away from the line); g,
is the permittivity of free space (per-
mittivity is a measure of how much
the medium surrounding the line
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charge affects the field strength); r is
the perpendicular distance from the
line out to the point of measurement;
and ) is the linear charge density:

==, )

If the line moves in the direction of
its own length, a stationary observer
sees L become L \1-v?*/c*, but she
does not see a change in Q. So equa-
tion (3) becomes

Q A

T = N 7
Lw/l v J1-v¥/c

(4)

where A, is the stationary charge
density Q/L,. Substituting equation
(4) into equation (2) leads to

E= ! :

=—20
2] 2
Ame r1-v*/c

E (5)

— 0

- J1- VZ/"’C2 /

where E now stands for the electric
field of the stationary line charge.
Equation (5)is already quite reveal-
ing. According to this equation the
strength of the electric field that ema-
nates from a moving line charge de-
pends on the relative velocity be-
tween the observer and the line. The
faster the line is observed to move,
the stronger the E field. Interpreted
within the framework of special rela-
tivity, it is this “variability” of E that
actually gives rise to the force that for
centuries has been associated with
the existence of the magnetic field B.
In order to see how this works,
imagine you're holding a positive
point charge and standing close to
the moving line charge (fig. 2). Any
charge g located in an electric field
always experiences a force given by
F = gE. In this case,

Foge| L
Wie)

since the line is moving with

velocity v. So your positive IR

point charge is being pushed
away from the positive line
charge, and you have to push

—>
N
lE:
Figure 2

back in order to hold it in place.

Now, the moving line charge is
also supposed to produce a B field
(remember Oersted’s experiment),
but that field will not affect your
point charge, since a B field can only
exert a force on a moving charge and
your charge doesn’t move. (Relative
to you, it’s stationary as long as you
keep holding it.)

Suppose you now start running
parallel to the line, but in the direc-
tion opposite to the motion of the
line (fig. 3). (Maybe you could hold
the charge over your head like an
Olympic torch bearer.) From your
viewpoint the line goes by faster be-
cause the relative velocity between
the line and the charge is now

V=V, +V,. (7)

(Actually, this equation is wrong.
Galileo, who first proposed equation
(7), didn’t know that the relative
velocity between two moving ob-
jects can never exceed the velocity
of light. Einstein had to replace
equation (7) with

e v, + qu 8)

l+vy, /¢

F

F

elect
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in order to preserve the velocity of
light as the maximum possible
speed in our universe. If v, = v, =C,
then Einstein’s equation results in

c+c
V= =C

2

If v, and v, are small, such that vy,
<< ¢, then Einstein’s equation re-
duces to Galileo’s equation. But
we're getting away from our story.)
The point is, when the charge
moves parallel but opposite to the
direction of line motion, the relative
velocity between the line charge and
the point charge increases. So to an
observer traveling with the point
charge, the point charge appears sta-
tionary, but the line charge goes by
faster and becomes even more con-
tracted. The extra contraction re-
sults in an increase in the electric
field strength. (Increasing v in equa-
tion (6) causes an increase in E.) And
the new, total force on our moving
point charge could be written as

extra / (9 )

total T elect *

where F___ is the electric field force
experienced by the point charge be-
fore it began to move, andF___ is the
component of force that comes
about because the point charge is
now moving.

Of course, you are moving with
the point charge, so the origin of
F_ .. is perfectly clear to you. F___ is
simply the increase in electric field
force caused by the extra line con-
traction that you see as you run
along. But suppose a friend of yours
is standing still, watching you run
by. He sees the same line that you
saw before you started to run, and

extra

there is no extra contraction. So how
does he explain F__?

Before you answer this question,
let’s recap the two perspectives. You
are running with the point charge. To
you the point charge is stationary, but
the line charge goes by quickly, so it
looks highly contracted. You see the
extra force as being caused by an in-
crease in the line’s electric field. No
problem. Your friend is standing still.
To him, the point charge is moving,
but the line charge goes by slowly, so
it looks just like it always did—not so
highly contracted. He sees an extra
force, but he has no clue as to the ori-
gin of the extra force. Big problem.

Your friend can’t explain the ex-
tra force using just the electric field
from the line, because he never saw
that field change. Instead he has no
choice but to postulate the existence
of a second field. He believes that
the second field originates in the
moving line charge (since where else
could it come from?), and he sees
that it only acts on moving point
charges. He calls it B (fig. 4).

Our friend postulated the exist-
ence of B in order to explain a phe-
nomenon that he couldn’t otherwise
explain from his (stationary) point of
view. Phlogiston (the “element” of
combustion), caloric (the “fluid” of
heat), and luminiferous ether (the
medium through which light was
supposed to propagate) were all pos-
tulated for exactly the same reason.
But all three concepts were later

abandoned as scientific knowledge
advanced.

Is it really possible that science
could do without the concept of a
magnetic field? Most physicists
would say no. They would agree that
apurely electric or magnetic field in
one coordinate frame will appear as
a mixture of electric and magnetic
fields in another coordinate frame.
But they would argue that E and B
are both elements of something
called a second-rank tensor, and that
one should properly speak of the
electromagnetic field F*# rather than
E or B separately. B, they would say,
is too deeply ingrained in the theory
to discard.

Still, there’s no doubt that the
development of electrodynamics
would have proceeded quite differ-
ently if special relativity had been
introduced 100 years earlier.

Ptolemy’s epicycles formed the
backbone of celestial mechanics for
1400 years. Even Copernicus used
them in his original heliocentric
theory. Epicycles vanished with the
acceptance of Kepler’s conjecture
that planetary orbits are elliptical
and not circular. The magnetic field
is already shaky. Could it be that a
new theory of broader scope will
eradicate B entirely? Q)

Stephanie Eatman and Fraser Muir are
students at Hillsborough Community
College in Tampa, Florida. Dr. Hugh
Hickman teaches physics at the same
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PHYSICS.
CONTEST

Fun with liquid nitrogen

“‘Some say the world will end in fire,
Some say in ice.—Robert Frost

by Arthur Eisenkraft and Larry D. Kirkpatrick

RON IS SOLID, MERCURY IS
liquid, and nitrogen is a gas. We
gain our familiarity with sub-
stances at ambient temperature
and tend to think of them in that
context. Over millennia our tech-
nology has found ways to heat iron
so that it becomes a liquid and to
cool mercury so that it becomes
solid. Cooling nitrogen to form a lig-
uid was first achieved 117 years ago.
And the world of liquid gases—Ilig-
uid hydrogen, oxygen, and nitro-
gen—could not be stranger.

Liquid nitrogen is used to perform
lots of interesting experiments. It's
also fun. Demonstrations exploiting
the extreme cold of liquid nitrogen
provide entertainment for children
of all ages. Since liquid nitrogen
boils at a temperature of 77 K at at-
mospheric pressure, we keep it cold
in a dewar. If we pour some of the
liquid nitrogen on the floor, the lig-
uid forms droplets that scoot around
the floor like droplets of water on a
hot skillet. Of course, the floor is
like a hot skillet to the very cold lig-
uid nitrogen droplets!

The liquid nitrogen can also be
used to superfreeze common mate-
rials. In another demonstration we
take a rod-shaped piece of rubber
sharpened on one end and drop it
into the liquid nitrogen. We then
remove it with tongs and hammer it
into a board. Frozen rubber is as good
as a nail—until it thaws. Some
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things become brittle at these cold
temperatures. It’s rather spectacular
to shatter a frozen banana or a flower
with a hammer. It’s as if they were
made of glass. One class of kinder-
gartners remembered this demon-
stration five years later.

The expansion and contraction of
gases also seem spectacular when
liquid nitrogen is used. A blown-up
balloon inserted into the liquid ni-
trogen shrinks down to essentially
zero volume, showing that the ideal
gas law is not valid for these condi-
tions. The gases in your breath
liquify or freeze at these tempera-
tures. In fact, the balloon makes a
good rattle if shaken as it warms up.
Usually the balloon expands back to
its original volume as it warms, but
not always!

In this contest problem we want
to measure the latent heat of vapor-
ization of liquid nitrogen. The latent
heat of vaporization is the amount
of heat required to convert a unit
mass of liquid to vapor at the boil-
ing point of the substance. This is
based on one of the two experimen-
tal problems given at the XXIV In-
ternational Physics Olympiad held
last summer in Williamsburg, Vir-
ginia.

Our method is a variation of the
thermal experiment that many of
you have performed in your school
laboratory. We usually use the
known thermal properties of water

to measure the specific heat of a
block of metal. The specific heat of
water ¢ is the amount of heat re-
quired to raise the temperature of a
unit mass of the metal by 1 degree.
We usually assume that ¢ is con-
stant with a value of 1 cal/g - C° =
4.186 J/g - K. The heat lost by the
metal block is equal to mcAT, where
AT is the change in temperature of
the metal. Setting this equal to a
similar expression for the heat
gained by the water allows us to
solve for the specific heat of the
metal.

Let’s begin this contest problem
with an analysis of this common
experiment. We then move on to the
more challenging Olympiad experi-
ment.

A. Calculate the specific heat of
aluminum given the following data:
the aluminum block has a mass of
36.2 g and an initial temperature of
100°C. You have an ideal calorim-
eter (that is, one that loses no heat
to the surroundings and does not
absorb any heat) containing 100 g of
water at an initial temperature of
17°C. After the block is placed in the
water, the temperature rises to 23°C.

In the Olympiad experiment we
will place a “hot” block of alumi-
num into liquid nitrogen and deter-
mine the latent heat of vaporization
of the liquid nitrogen from the
amount of liquid that is vaporized.
Of course, in a real experiment the
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Specific heat of aluminum.

calorimeter is not ideal and heat is
exchanged with the surroundings
whenever there is a temperature dif-
ference. In working with liquid ni-
trogen, there will be a large tempera-
ture difference, and the calorimeter
will continually allow heat to enter
the system. We also cannot assume
that the specific heat of the alumi-
num is a constant. In fact, it varies
a lot, as shown in figure 1.

B. Calculate the latent heat of
vaporization of liquid nitrogen given
the following data: the aluminum
has a mass of 19.4 £ 0.1 g and is ini-
tially at a room temperature of 20.0°
+ 0.1°C. The total mass of the sys-
tem is monitored as a function of
time and gives the following data:

total mass (g} time (s
153 0
152 37
151 79
150 121
149 161
148 203

Aluminum block added
150 332
149 382
148 457
147 489
146 541
145 595

During the Olympiad the stu-
dents had to measure the changing
mass using a triple beam balance.
This is why the time was recorded
for specific decreases in the mass
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rather than the mass recorded for
specific time intervals.

C. Because every good experi-
menter gives an uncertainty for each
experimental value, estimate the
uncertainty in your value for the la-
tent heat.

The actual experimental prob-
lem during the Olympiad required
students to measure the latent
heat of vaporization by two inde-
pendent methods. The evolution
of the experiment began with the
decision by Professor Anthony P.
French of MIT (chair of the exami-
nations committee) to make use of
the ample supplies of liquid nitro-
gen that the College of William &
Mary (the Olympiad host institu-
tion| maintains for research. Peter
Collings of Swarthmore College ac-
cepted the challenge and devised the
Olympiad experiment. As with many
good ideas, this one was indepen-
dently created by Gerhard Salinger
(National Science Foundation) and
published in The Physics Teacher in
September 1969.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certificates from Quantum.

Thrills by design

We hope that Quantum readers
enjoyed analyzing and creating
amusement park rides. The two best
solutions to this problem came from
Stephan Chan of Ontario, Canada,
and Chao Ping Iris Yan of Rio de
Janeiro, Brazil. Quantum is truly an
international magazine!

The example provided in our col-
umn explained the physics of the
rotor—a hollow cylinder that spins
and then “pins” the riders against
the wall as the floor drops out. The
ride that we hoped readers would
design used a rotating hemisphere.
The physics of the rotating cylinder
and rotating hemisphere are similar
in that a centripetal force must be
furnished to keep the passenger
moving in a circle. In the rotor, the
normal force supplied this centrip-

etal force. In the hemisphere, the
horizontal components of the nor-
mal force and the frictional force
must provide the centripetal force.
Another difference in the analysis of
the two rides is in the measurement
of the radius. In the rotor, the radius
of circular movement is equivalent
to the radius of the cylinder. In our
hemisphere, the radius of circular
movement is equal to a component
of the radius of the hemisphere—R
sin a. The final difference is that in
the cylinder, we recognized that the
frictional force keeps the rider from
slipping down. In the hemisphere,
the frictional force may keep the
rider from sliding down or from slid-
ing up!

We wish to find the minimum
coefficient of friction required to
keep the rider from sliding down
when the angular velocity o is small
(5 radians per second). As with many
physics problems, the first step is a
carefully drawn diagram and vector
analysis (fig. 2)

The sum of the horizontal com-
ponents must equal the centripetal
force; the sum of the vertical com-
ponents must equal zero:

ZFX =F_sino.— F coso

= mo’Rsinaq,

>.F =E_ cosa+Esino - mg=0.

Since the frictional force is (less than
or) equal to the coefficient of friction
u multiplied by the normal force, we

Figure 2



Figure 3

can solve the simultaneous equa-
tions for u:

1-w?Rcoso/g

U =sino . —,
cosa + @*Rsin’o)/g

For the values given (@ = 5 rad/s, R
= 0.5 m, and o = 60°), we get

33

u=Y° 023,
23

Part B asked for the coefficient
of friction required when o = 8
rad/s. The analysis is similar ex-
cept that the vector diagram in fig-
ure 3 now shows that the fric-
tional force is preventing the
object from slipping up the hemi-
sphere. Solving the simultaneous
equations again for u, we get

®*Rcosa/g-1

L =sino. : —,
coso + o?Rsin® o/ g

Substituting 0.6
the values
given (@ = 8 2 (4
rad/s, R=0.5 & o=8
m, and o = 60°) 5 09 -
gives us =
3 2 0+
uz 2 _dig e
29 £ -02
In part C of S
the problem, -0.4 R
we wanted to ¢ 10 20
analyze the sta-
bility of the .
mass in the Figure 5
hemisphere

ride for small variations of the posi-
tion of the block and for small varia-
tions of the angular velocity of the
block.

Using a graphing calculator, a
spreadsheet program, or sketching,
we can look at a graph with three
curves (fig. 4). The main curve
shows the relationship between u
and the angle. This u is the friction
required to remain at that angle.
The two other curves show that
relationship for different values of
®. If the object moves to a higher
angle, the minimum friction re-
quired to stay at that height is
greater. The object does not have
that much friction and it slides
back down to the original position,
where the friction is sufficient to
have it remain at that height. If the

object moves
to a smaller

angle, the fric-
tion required
= 0.8+ to remain at
= that position
2 064 is less. The
Q § a
E object is able
B 044 to remain at
‘g this height. If
5 021 ® increases,
5 ®=5 the  object
S will remain
OT——0 where it is
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Figure 4

friction is re-
quired at that
new o); if o
decreases, the
object will

T T T T T T T
30 40 50 60 70 80 90 100
angle (o)

not have the friction required to
maintain its position and will start
to slide down to an angle where
the friction provided is sufficient
for this o.

At a higher initial o, the graph
reveals a different situation (fig. 5).
If the object moves to a higher angle,
it stays there; if the object moves to
a smaller angle, it will return. If ®
increases, the block slides up; if ®
decreases, the block will maintain
its position.

In part D readers were asked if
this hemisphere problem could be a
ride for an amusement park and
what problems might arise. Chan
was able to show that the person
would experience an acceleration of
approximately 1.4g during this ride.
He thinks that the person would
enter the ride from the bottom, and
as the ride spins the rider would
slide up against the wall. He doesn’t
see it as an exciting ride as it
stands—he suggests that we in-
crease the speed to make the g forces
greater.

Yan thought that getting on the
ride could be accomplished with a
floor at a height equal to R/2. The
tloor would then rotate out of the
way during the ride. This would
limit the riders to only one side of
the hemisphere. Yan suggests that
the velocity be increased and de-
creased during the ride. Yan con-
cludes that the ride may be too
scary and people would probably
be more secure on the roller
coaster. Q)
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AT THE
BLACKBOARD

The hestle and the rubiber band

A problem with an unexpected solution

RUBBER BAND OF LENGTH
L is attached to a wall. Its loose
end begins to move with a ve-
locity v, which stretches it. Si-
multaneously, a beetle begins to
crawl from the wall along the rubber
band with a velocity u < v. The rub-
ber band is assumed to be infinitely
extensible. Will the beetle ever
reach the loose end of the rubber
band? If so, how long will it take?

What the greats say

I came across this problem in an
issue of the journal Priroda (“na-
ture” in Russian) dedicated to the
memory of Andrey Dmitryevich
Sakharov (1990, No. 8, p. 119).
Among other things it described an
episode that took place at a confer-
ence on elementary-particle physics.
During one break the participants
were offered the beetle problem as
an intellectual test. Some physicists
took only 15 minutes to solve it,
others needed up to an hour, and
there were some who couldn’t solve
it at all, concluding that the beetle
would never reach the end of the
rubber band. When the problem
was posed to Andrey Dmitryevich,
it took him only one minute to
find the correct answer—that’s
how long it took him to jot the so-
lution on the back of the confer-
ence program. Let’s try to solve it
ourselves.

At fint glance

A brief acquaintance with the
problem leads one to think that
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by Alexander A. Pukhov

|
.

Figure 1

the problem can be most easily
solved in the stationary coordinate
system associated with the wall
(fig. 1). The distance between the
beetle and the wall x(t) increases
with time t as x(t) = ut, and the
rubber band’s length y(t) changes
during the same interval as y(t) =
L +vt. Since v > u, y(t) seems to be
always larger than x(t), which
means that the beetle will never
reach the end of the rubber band.
Right?

Not so fast! We haven’t taken
into account that the rubber band
is being stretched. This results in
an additional contribution to the
velocity dx/dt of the beetle as it
crawls from the wall. What is the
value of this contribution? The
rubber band stretches linearly, so
the velocity of the point where the
beetle is crawling is proportional
to x and inversely proportional to
y. Logically, the beetle’s total ve-
locity is dx/dt = u + x - v/y. This
relationship is a differential equa-
tion with the solution x(t) deter-
mining the graph of the beetle’s
path. If we manage to find the so-
lution, then by comparing it with
the movement of the loose end y(t)

= L + vt, we'll settle the issue. So
the equation we need to solve is

dx v
—=u+

X. 1
dt L+vt )

How to we Solve the equation?

Equation (1) seems “frightful.”
Let’s try to deal with it, though.
We begin with something more
pleasant. Surely we can solve the
equation

LoV, 2]
dt L+vt
We get
g_J‘ vdt
X L+Vt’

Inx =1In(L + vt)+ const,

x=C(L +vt).

The constant C always appears in
the solution of a differential equa-
tion, and in this case it is deter-
mined unambiguously by the
beetle’s initial position. Unfortu-
nately this method, known as “sepa-
ration of variables,” falls short with
equation (1). Let’s try something
else: “substitution of variables.”
We'll search for a solution of the form
x{t) = C(t)(L + vt), where C(t)is a new
unknown function. Substituting for

At right: “Will it catch him or
not?”

Art by Leonid Tishkov
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this x{t) in equation (1) results in the
equation for C(t),

dc__u
dt  L+vt’

(3)
which we can readily solve:
jac-]

C= Eln(L +vt)+ const.
v

udt
L+Vt/

By dint of the initial condition x(0)
= 0, we finally obtain the result

x(t)= B(L+ve) ln[l + YLEJ

\4

Back to the heetle

Notice that as t — oo, the distance
x(t) increases faster than the first
power of t. This means that the
beetle will always reach the loose
end however small its velocity u <<
v (fig. 2). This will occur at the mo-
ment T when x(T) = y(T)—that is,
when

T=—{e"~1) 5]

So, the problem is solved. As we
admire our solution, though, an un-
easiness comes over us. Isn’t there
some arithmetical error in equation
(5)? Let’s test the solution. If u = 0,
the beetle doesn’t move and will
never reach the loose end. Indeed, T
~ e* ~ 0. On the other hand, if v=0,
the rubber band is not stretched and
T = L/u. The same value follows
from equation (5), since as v — 0,

AXY "

,//’/
I —y(t)=L+ vt

0 T
Figure 2
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e = 1 + v/u + O[v/u). Everything’s
okay, and only one question remains.

I$ there a shortcut?

Yes! It’s based on a very simple
idea. Consider the fraction of the to-
tal length z(t) = x(t)/y(t) that the
beetle manages to crawl in the time
t. The rubber band’s length in-
creases, but no matter how much
we stretch it, the fraction z of its
length remains constant. Therefore,
z is an additive value, and the “in-
crement of the fraction” is equal to
the “fraction of the increment.” The
increment dz taken for the time dt
results in

_udt

dz=—.
z ¥(t) (6)

If youhave any doubts about the cor-
rectness of equation (6), just substi-
tute z = x/y. What do you get? Why,
equation (1).

It’s much easier to solve equation
(6) than equation (1). Taking into
account that z(0) = 0, we get

dt
L+vt

. 1n[1 + th.
14 L
The beetle will arrive at the loose
end when z(T) = 1, which results in
equation (5), obtained previously for
the time value T. Nice! In fact, this
is the elegant solution that Andrey
Sakharov found lickety-split.

The idea of using the fraction of
the rubber band’s length appears
particularly attractive in the discrete
variant of the beetle problem.

A slight modification

Let’s assume that L = 1 km and u
=1 cm/s, and let’s suppose that the
rubber band is stretched stepwise:
after the first second it’s stretched 1
km, after another second again by 1
km, and so on. This variant of the
problem was given in Martin
Gardner’s book Time Travel. So, af-
ter the first second the beetle has
crawled 1/10° of the way; after the
second, only 1/(2 -10°); and so on.

+ const

z(t) = uj

The beetle will arrive at the other
end after the nth second, when

1 1 1 1
- [1++—+---+—j=1. (7)
10° 2 3 n

The harmonic series 1 + 1/2 + 1/3 +
... diverges, which means that the
relationship is valid for sufficiently
large n. The series can be evaluated
by the integral

1 1 1 dn

I+ =+ —tt—=]

2 3 n
and the larger n is, the more precise
the estimate. The beetle will crawl
the entire length of the rubber band
in the time n = exp(10°%) s, which
coincides with equation (5).

This variant of the problem pro-
vokes further thought. What will
happen if the length of the rubber
band doubles every second? By the
end of the nth second the beetle will
have crawled

1 [ 1 1 1]
—| Lot oo
10° 2 22 on

of the length of the rubber band. The
series in parentheses is a geometric
series that converges to 2. This means
that as n — oo, the beetle will ap-
proach the point marking 2/10° of the
continuously stretching rubber band.
It’s clear that the beetle will never
reach the loose end of the rubber
band.

And so, the beetle’s fate depends
on how the rubber band is stretched
and how fast the beetle is crawling.
This circumstance suggests that we
try to generalize the beetle problem.

A digression hefore the generalization

We'll assume that the velocities
of the beetle u(t) and the end of the
rubber band v{t) are both arbitrary
functions of time. How can we
know whether the beetle will reach
the loose end? Recall equation (6),
which is universally valid. Integrat-
ing it, we obtain the equation for the
duration T of the beetle’s journey:

Lu(t)d



where the current length of the rub-
ber band is

The relation (8) is the criterion for
determining whether the beetle will
reach the other end of the rubber
band. The answer is simple: it will
occur only when equation (8) is valid
for some value of T. As we saw
above, the beetle is far from being
successful in every case. Thus, by
substituting different functions for
u(t) and v{t) in equation (8), we can
quickly learn the beetle’s fate.

A few examples

1. Stretching the rubber band
with constant acceleration. Substi-
tuting u(t) = u = const and v(t) = at in
equations (8) and (9) yields

aTl jl'l ( aL ]1’2
=75 (10
2L 24
From this it follows that the beetle
will not complete its journey if al/u?
> 7*/2. In the opposite case, when
aL/u® < ©*/2, the beetle’s trip will
end successfully by the time T =
J2L/a - tan./aL/2u* . The condition
obtained has a simple physical
meaning: the beetle has enough
time to crawl over the entire rubber
band if during this time ~ L/u the
band’s loose end does not acquire a
velocity comparable to that of the
beetle—that is, if L/u < u/a.

2. Constant acceleration of the
beetle. If the beetle also moves with
a constant acceleration u(t) = a,t,
then it will make it across the rub-
ber band however small its accelera-
tion a, << a. Equations (8) and (9)
yield the duration of the trip

arctan[

12

T= ZL[eXpa—lj /a '
/

4

3. Stretching the rubber band n-
fold per second. In this case the
length of the rubber band changes
according to y(t) = L - exp(t/t). For
example, when 1 = 1/In 2 s, the
length doubles each second. Then,

with u(t) = u = const, condition (8)
becomes

1-e ="
ut

From here it follows that when L < u,
the beetle’s trip will end after a time
T =1 In [ut/(ut - L)]. In the opposite
case, when L > ut, the beetle will
crawl forever. This condition means
that the length of the rubber band
must not increase significantly in
the amount of time the journey
takes (~L/u}—that is, Lju < 1.

4. Exponential increase in the
beetle’s velocity. If the beetle’s veloc-
ity also increases exponentially u(t) =
uexp(t/t)), thenif 1/t <1/t +u/L, the
trip will end successfully after a time
T=(1/r,-1/t In (1 + L{1/1, - 1/1)/ul.
In the opposite case, the beetle will
never complete its journey.

Trajectory of the heetle’s success

The examples above show that
there is a kind of competition be-
tween the functions u(t) and y(t) that
are integrated in equation (8). If (¢
gains the upper hand in the compe-
tition with y(t), the total integral
increases in such a way that it will
reach 1 when ¢t = T (the red curve in
figure 3). This means that the beetle
managed to crawl the entire length
of the rubber band. On the other
hand, when y(t) emerges victorious,
the integral is too small and will
never reach 1 (the blue curve in fig-
ure 3). Failure awaits the beetle in
this case.

Well, that’s it. Almost.

Figure 3

A few parting words

Let’s go back to the very beginning
of our inquiry, when we had just ob-
tained equation (5] for the duration of
the beetle’s trip T. It depends expo-
nentially on the relation of velocities
v/u. This dependence is very strong.
To demonstrate the power of an ex-
ponential function, let’s assume u =
1 cm/sandv=1km/s, and let’s plug
them into equation (5). We get T ~
exp(10°) s ~ 10490 g for the duration
of the beetle’s difficult journey,
which far exceeds the age of the uni-
verse (10%8 s). By journey’s end, the
rubber band will be longer than the
universe is wide—it will measure a
whopping 10* cm.

Of course, a real bug would die
quietly at the very outset of such a
journey, and a real rubber band
would become so thin that its mol-
ecules would be separated by vast
distances of empty space. However,
these considerations take nothing
away from our detailed solution to
the beetle problem. Ol
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HAPPENINGS

The Fitth International
Dlympiad in Informatics

Argentina serves up meaty problems
to hungry young programmers

UR ADVENTURE BEGAN

Friday, October 15, at the Mi-

ami International Airport,

where the USA Computing
Olympiad team met for the first
time since the summer training pro-
gram at the University of Wiscon-
sin-Parkside. Dr. Harold Reiter, the
deputy team leader, flew back from
London, where he was spending the
year teaching mathematics at
Kingston University. Team member
Hal Burch, 18, flew in from Mis-
souri, where he was a freshman at
the University of Missouri at Rolla,
having graduated in June from the
Oklahoma School of Science and
Mathematics in Oklahoma City. Eric
Pabst, 17, came from Salt Lake City,
Utah, where he was a senior at East
High School, and Mehul Patel, 16,
arrived from Houston, Texas, where
he was a senior at Langham Creek
High School. Yonah Schmeidler, 17,
a graduate of Ramaz School in New
York and now a freshman at MIT, had
flown earlier to Buenos Aires and
would meet up with us on Sunday. I
flew in from Chicago’s O’Hare airport
after busing down from Wisconsin.
Our next stop would be Santiago,
Chile, with a connecting flight over
the Andes mountain range to
Mendoza, Argentina, the site of the
Fifth International Olympiad in
Informatics (IOI).
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by Donald T. Piele

We left the United States at the
peak of the fall colors and arrived in
Mendoza in the full bloom of spring.
We were met at the Mendoza airport
by a contingent of college students
from Mendoza University, whose job
for the next ten days would be to
guide the participants (273 students
and team leaders from 45 countries)
to various events within the city and
one excursion to the Andes. Their
enthusiasm and warmth were infec-
tious. Fric savored the opportunity to

try out the Spanish he had studied for
five years, and he quickly established
a special relationship with our hosts.
His facility in the native language
proved to be a big asset for him as well
as all the members of the US team.
Several times during our stay he
would be called upon to give radio
and TV interviews, talk with the
press, help us translate stories that
appeared in Los Andes (the local
newspaper), and find the beef and
chicken dishes on a restaurant menu.

The 1993 US IOI Team. Left to right: Eric Pabst, Yonah Schmeidler, Mehul
Patel, Hal Burch.



In the Shaow of M. Aconcagua

IOI participants were housed in
two hotels, and our team stayed at
the Hotel Aconcaqua, named after
the highest mountain in the West-
ern Hemisphere, which is located
near Mendoza. Fifty Compaq com-
puters were set up on the hotel’s
second floor for students to use. This
was a welcome sight for all teams
and a place they often went to hash
things over. Similar Compaq com-
puters were housed in the Conven-
tion Center, approximately six
blocks south of the hotel, where we
had our meals and where the com-
petition was held. The city of
Mendoza had purchased 400 Com-
paq computers for the event, and
they would be used by the city when
the competition was over. There
were enough computers around to
completely outfit the team leaders’
room with a networked system
complete with e-mail and printing
capabilities. This was a first for I0I
and a very appreciated feature of this
year’s Olympiad. I used it to keep in
touch with family and supporters
back home.

On Sunday evening we all gath-
ered at the Convention Center for
the opening ceremonies. Argentin-
ean officials, including the director
of technology in education, the
mayor of Mendoza, and the 1993 101
organizer, Dr. Alicia Bafiuelos, gave
their addresses in Spanish, which
were translated paragraph by para-
graph into English, the official lan-
guage at IO A festive mixer erupted
soon after, with a Latin beat drown-
ing out any attempt at conversation.
The young hostesses, dressed in
fashionable miniskirts, soon had the
young group shaking and stomping
to a fast Latin beat. It was nonstop
acrobics and survival of the fittest,
and I survived by watching and tak-
ing pictures from the sidelines.

Three problems to biegin

Tuesday was the first day of com-
petition. The team leaders and
deputy team leaders were given a
wake-up call at 3:30 A.m. so we
would be ready for the early morn-

ing jury meeting at 5:00 A.Mm. in the
Convention Center. The main or-
der of business was the selection
of three problems for the first day’s
competition. Those were selected
from a set of nine problems sub-
mitted by the scientific commit-
tee from Argentina. Besides choos-
ing the problems, all of the
non-English-speaking countries
needed to translate the problem
statements into their native lan-
guage and have copies made for
each of their participants. There
were approximately 35 different
native languages represented, and
everything needed to be ready at
the appointed starting time.

At 11:00 a.m. the competition
began, and 155 students went to
their personal Compaq 386 ma-
chine, identified with a small flag of
their country, in one of four different
rooms, and “started their engines.”
They had five hours to solve three
problems, using one of the officially
installed languages: Turbo Pascal v.
6.0, Turbo C++v. 2.0, QuickBasic v.
4.5, and LCN Logo v. 3.0. We had
been working for six hours straight
in a smoke-filled room, and it was
time for a much-deserved rest. But
before we could relax, we had to re-
main on call to translate any written
questions the students might ask
during the first hour. Then we were
free to go and get some rest before
the judging began.

At 4:00 p.m. the competition
ended and the students filed out of
their rooms with looks of confi-
dence and relief. For the next several
hours they would be called back,
one at a time with their team leader,
to have their programs checked by a
local coordinator who had been
trained to run the programs against
a series of input data and evaluate
the output file for the correct re-
sults. If all runs were perfect, the
program was awarded 100 points.
Hal and Mehul’s programs were flaw-
less, and Eric and Yonah'’s were close
behind with 71 and 62. No scores are
officially posted for the first day, but
we quickly learned through word of
mouth that a total of 16 students had
perfect first-round scores.

Interlude; Argentinean telicacies

The next day was reserved for
touring a local chocolate factory,
followed by a barbecue at the coun-
try home of one of the organizers of
the IOL The feast began with trays
filled with empanadas, a pastry filled
with beef and spices and freshly
baked in clay outdoor ovens.

One of the special treats in Argen-
tina is to cook large hunks of fine
beef very slowly over an open pit.
The meat is then sliced off and
placed on buns and topped with a
special mustard sauce. This makes
an excellent sandwich, and the life-
time of each platter full of meat
could be measured in nanoseconds.
Soon the hosts took to filling the
platter and running through the
crowd to reach those who weren’t
close enough to see the food before
it vanished. As they traversed the
lawn, scores of hungry participants
reached out and snared their meal
and quickly emptied the tray. It took
quite a few runs to make it with
anything left for the unlucky ones at
the other end of the lawn.

After a delightful afternoon, we
returned to our hotel to get ready for
the final round.

Two hiard probilems (one unplanned)

Thursday morning began at 3:30
A.M. and was a repeat of Tuesday,
except that this time one harder
problem was selected from a set of
three. One problem was eliminated
because of its ambiguous wording
and the difficulty of making it com-
pletely clear in 35 languages. Al-
most any problem can have different
interpretations depending on how
it’s translated. For example, does the
statement “all rectangles fall within
the borders of an a x b sheet of pa-
per” mean that rectangles can or
cannot share a boundary with the
sheet of paper? In English, the state-
ment would imply that they could
be on the boundary, but it all hinges
on how you translate the word
within. Explaining this in 35 lan-
guages can be difficult, so the jury
overwhelmingly chose a problem
that we believed had no ambiguities.
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The problem was clear, but one
thing we forgot to discuss was how
the solutions to this problem would
be graded. This, unfortunately, led
to a major misunderstanding.

The trouble quickly became ap-
parent when we walked into the
computer room with the coordina-
tor and saw for the first time the
rules used to judge the eight sample
runs. The first six data sets had a
limit of two minutes and the last
two a limit of five minutes. Every-
one on the team had solutions that
ran instantly for the first seven data
points, but all ran over the five-
minute limit for the last and most
difficult data set. Since this run was
worth 25 points, their hopes for a
gold medal vanished as did the
hopes for 12 other participants who
had perfect scores the first day and
also did not optimize for speed.
They had fallen into the exponential
time trap, which for many could
have been avoided had they known
that, for the first time at IOI, speed
would be the deciding factor.

Last year, at the IOl in Germany,
I was surprised to learn that the
speed and efficiency of an algorithm
wasn’t considered a factor in grad-
ing. In fact, several programs were
allowed to run for hours, even over-
night, and others finished in sec-
onds; yet no distinction was made
between them. I thought this was
rather odd, but everyone seemed to
accept this as an unwritten rule of
IOI. Students were aware of it, and
we had told our team members to
play it safe and go with any working
algorithm and not to worry about
speed unless it was explicitly stated
in the problem.

It never occurred to the jury to
ask how the problem would be
graded, and when the time question
surfaced after the competition was
over, it was too late to correct. Many
students were well aware that their
programs could take years to com-
plete if a large number of data points
was used as test data, but since time
had never been a factor before, they
thought it wouldn’t be a factor here.
But this was not to be. The jury re-
acted to this situation by drafting
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additional competition rules to be
considered for IOI ‘94, including:
“When a time limit will be applied
during evaluation, it should be ex-
plicitly stated in the problem de-
scription.” Had this been done at IOI
’93, it would have helped a great
deal. Of course, speed of execution
as a factor in grading solutions isn’t
a bad idea. Since this was the first
Olympiad to broach the time bar-
rier, it will now be on the minds of
all team leaders as they prepare for
IOI ’94. In Mendoza, the omission
affected everyone equally.

Into the windswept Andes

A long bus excursion into the
mountains of the Andes was re-
served for Saturday. Our final desti-
nation was Uspallata, a ski resort
high in the mountains. Here we
were treated once again to the fa-
mous open pit beef barbecue done
on a grand scale. A wind barrier was
set up around the pit to deflect the
strong spring winds rolling off the
mountains. The snow was com-
pletely gone, and so were all the
people. But inside the dining hall,
the participants were happy grazing
on all the beef they could eat and
toasting a local guide whose birth-
day had been discovered.

We soon had to leave to get back
to an important jury meeting to de-
cide the cutoff scores for the gold,
silver, and bronze medals. It was a
picturesque excursion into a dry,
barren, and mountainous region. A
few were able to drive to a spot
where they could view Mt. Acon-
caqua.

Back at the Convention Center
the jury met to decide who would
get the medals. According to the
rules, only half of the students can
receive a medal. This rule helps
maintain the value of each award.
Also, the gold, silver, and bronze
awards must be given out in a ratio
of 1:2:3, or at least as close as pos-
sible. Out of a possible 200 points, it
worked out as follows: 13 gold med-
als were awarded for scores of
180-200; 27 silver medals for
160-179 points; and 39 bronze med-
als for 125-159 points.

Rwards and plans

Hal Burch and Mehul Patel re-
ceived silver medals, and Eric Pabst
and Yonah Schmeidler got the
bronze. Our team ranked seventh
out of 45 in the total number of
points, and for the first time two
girls won silver medals, one from
the Czech Republic and one from
the Slovak Republic.

Seven teams won four medals:

Pts G S B
Slovak Republic 714 2 1 1
Romania 691 2 1 1
Russia 683 1 2 1
Iran 660 1 2 1
China 644 1 1 2
Korea 640 1 1 2
USA 633 - 2 2

Gold medals were also won by stu-
dents from Sweden, the Czech Re-
public, Bulgaria, Belarus, and a
United Nations team from Yugosla-
via.

After the jury adjourned, the US
delegation was invited to attend a
meeting of the International Com-
mittee to see when we would be in-
terested in hosting an Olympiad.
Countries that had submitted pro-
posals up to 1997 were Sweden, the
Netherlands, Hungary, and South
Africa. Several countries were in-
vited to this meeting to announce
tentative plans to submit proposals
for years to come. They were Portu-
gal (1998), Turkey (1999), China
(2000), Thailand (2001), and Korea
(2002). We were also interested in
the year 2000, but since China has
been a member of IOI longer, they
were given precedence over any pro-
posal from a newer member. Since
2003 is too far into the future to
make any plans, Joann DiGennaro,
president of the Center for Excel-
lence in Education, our sponsor,
didn’t want to make a commitment
at this time, and we decided to wait
a year and see if the proposal for the
year 2000 materializes.

The awards ceremony was held
on Sunday and began at 9:30 A.m. in
the Independence Theater. All
medal winners were seated on the



stage, and the delegates, other par-
ticipants, and spectators were seated
in the audience. After the opening
ceremonies each team leader was
invited to the stage to present the
medals to their team members,
starting with the bronze and ending
with the silver. For the gold medal
winners, the students received their
award and prizes from local dignitar-
ies. The top four students, who were
tied at 200 points each, received com-
puters and were awarded a new IFIP
trophy that will go each year to the
top student or students at the IOL

Picture were taken as the trophy
was hoisted into the air by four ex-
cited and deserving young men from
the Czech Republic, Romania, Iran,
and Sweden. The torch was passed to
Sweden, whose team invited us all to
the 1994 101 in Stockholm, and the
curtain rang down on another suc-
cessful International Olympiad in
Informatics. Thank you, Argentina,
for a wonderful Olympiad. Our
memories of your warm hospitality
will always be with us.

On behalf of this year’s US del-
egation to I0OI, I would like to ex-
press our warm appreciation to the
Center for Excellence in Education
(CEE) and Joann DiGennaro, who
funded the USA Computing Olym-
piad training program at the Univer-
sity of Wisconsin—Parkside and the
IOl team’s trip to Argentina. We are
most grateful for the generous sup-
port we received from CEE.

I also want to thank USENIX for
its financial contribution to the USA
Computing Olympiad and the Uni-
versity of Wisconsin-Parkside for in-
kind support of the USACO.

For more information about IO],
write or call

Donald T. Piele

USACO Director

University of Wisconsin-Parkside
Box 2000

Kenosha WI 53141-2000
piele@cs.uwp.edu

414 595-2231 (O)

414 634-0868 (H]
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Firgt-round problems

Problem 1

You have a necklace of n beads (n
<100} some of which are red, others
blue and others white, arranged at
random. Let’s see two examples for
n=29:

12 12
0XXO0 X00X
0 X X X
0 0 X 0
o] o @ 0
X 0 @ @
X X O 0
X X X X
X X 0 X
o o} X o
X o} 0 0
X o} o} o}

o} 0 o} X
0XO0 oo@
Figure 1 Figure 2
o = red bead
x = blue bead

@ = white bead

(The beads considered first and sec-
ond in the text that follows have
been marked in the figures.)

The configuration in figure 1 may
be represented as a string of b’s and
r's, where “b” represents a blue bead
and “r” a red one, as follows:
brbrrrbbbrrrrrbrrbbrbbbbrrrrb.

Suppose you are to break the
necklace, lay it out straight, and
then collect beads of the same color
from one end until you reach a bead
of a different color, and do the same
for the other end (which may not be
of the same color as the beads col-
lected before this). Determine the
point where the necklace should be
broken so that the greatest number
of beads can be collected.

For example, for the necklace in
figure 1, eight beads can be col-

lected, with the breaking point ei-
ther between beads 9 and 10 or be-
tween beads 24 and 25.

In some necklaces, white beads
had been included as shown in fig-
ure 2. When collecting beads, a
white bead that is encountered may
be treated as either red or blue and
painted with the desired color. The
string that represents this configura-
tion will include the symbols r, b,
and w.

Write a program to do the follow-
ing:

1. Read a configuration from an
ASCII input file NECKLACE.DAT
with each configuration in one line.
Write these data into an ASCII output
file NECKLACE.SOL. An example of
an input file would be

NECKLACE.DAT
brbrrrbbbrrrrrorrbbrbbbbrrrrb
bbwbrrrwbrbrrrrrb

2. For each configuration, deter-
mine the maximum number M of
beads collectable, along with the
breaking point.

3. Write to the outfile
NECKLACE.SOL the number M
and the breaking point. The solu-
tions for different configurations
should be separated with a blank
record. Example of a possible solu-
tion:

NECKLACE.SOL
brbrrrbbbrrrrrbrrborbbbbrrrrb
8 between 9 and 10

bbwbrrrwbrbrrrrrb
10 between 16 and 17

Problem 2

Some companies are partial own-
ers of other companies because they
have acquired part of their total
shares. For example, Ford owns 12%
of Mazda. It is said that a company
A controls company B if at least one

of the following conditions is satis-
fied:

(a) A=B;
(b) A owns more than 50% of B;
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(c) A controls k (k 2 1) companies
C(1), ..., C[k) so that C(i) owns
x(i)% of B for 1 <i<k and x{1)
+ ...+ x(k) > 50.

The problem to solve is:

Given a list of triples (1, j, p),
which means that the company i
owns p% of company j, calculate all
the pairs (h, s) so that company h
controls company s. There are at
most 100 companies.

Write a program to do the follow-
ing:

1. Read from an ASCII input file
COMPANY.DAT the list of triples
(1, 7, p) to be considered for each case
(that is, each data set), where 1, j, and
p are positive integers. Different
cases (data sets) will be separated
with a blank record.

2. Find all the pairs (h, s) so that
company h controls company s.

3. Write to an ASCII output file
COMPANY.SOL all the pairs (h, s)
found, with h different from s. The
pairs (h, s) must be written in con-
secutive records and in increasing
order of h. The solutions for differ-
ent cases must be separated with a
blank record.

Example:

COMPANY . DAT COMPANY . SOL

2 3 25 4 2
1 4 36 4 3
4 5 63 4 5
2 1 48
3 4 30
4 2 52
5 3 30
1 2 30 2 3
2 3 52 2 4
3 4 51 2 5
4 5 70 3 4
5 4 20 3 5
4 3 20 4 5
Problem 3

N rectangles of different colors
are superposed on a white sheet of
paper. The sheet’s dimensions are a
cm wide and b cm long. The rect-
angles are put with their sides par-
allel to the sheet’s borders. All rect-
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angles fall within the borders of the
sheet. As a result, different figures of
different colors will be seen. Two
regions of the same color are consid-
ered to be part of the same figure if
they have at least one point in com-
mon; otherwise they are considered
different figures. The problem is to
calculate the area of each of these
figures. The numbers a and b are
positive integers not greater than 30.
The coordinate system considered
has its origin at the sheet’s center
and the axes are parallel to the
sheet’s borders.

Different data sets are written in
an ASCII input file RECTANG.DAT
in which g, b and N are the first line
of each data set, separated by a blank

space. In each of the next N lines you
will find

e The integer coordinates of the
position where the left lower
vertex of the rectangle was put;

e Followed by the integer coordi-
nates of the position where the
upper right vertex of the rect-
angle was put;

e And then the rectangle’s color
represented by an integer be-
tween 1 and 64, the color white
represented by 1.

The order of the records corre-
sponds to the order used to put the
rectangles on the sheet. Different
data sets will be separated with a
blank record.

Write a program to

1. Read the next data set from
RECTANG.DAT.

2. Calculate the area of each col-
ored figure.

3. Write in an ASCII output file
RECTANG.SOL the color and the
area of each colored figure as shown
in the example below. These records
will be written in increasing order of
color. The solutions to different data
sets will be separated with a blank
record.

Example:

RECTANG.DAT
20 L2 5

RECTANG. SOL
1172

-7 -5 -3 -1 4 2 47
~B -3 5 3 2 4 12
-4 -2 -2 2 4 4 8

2 -2 3 -1 12 12 1
31751

30 30 2 1 630
0 05 14 2 2 70
-10 -7 0 13 15 15 200

Second-round problem

You have won a contest spon-
sored by an airline. The prize is a
ticket to travel around Canada, be-
ginning in the westernmost point
served by this airline, then traveling
only from west to east until you
reach the easternmost point served,
and then coming back only from
east to west until you reach the
starting city. No city may be visited
more than once, except for the start-
ing city, which must be visited ex-
actly twice (at the beginning and the
end of the trip). You are not allowed
to use any other airline or any other
means of transportation. Given a list
of cities served by the airline and a
list of direct flights between pairs of
cities, find an itinerary that visits as
many cities as possible and satisfies
the above conditions beginning with
the first city and visiting the last city
on the list and returning to the first
city.

Different data sets are written in
an ASCII input file ITIN.DAT. Each
data set consists of the following:

e In the first line, the number N of
cities served by the airline and
the number V of direct flights
that will be listed. N will be a
positive integer not larger than
100. V is any positive integer.

e In each of the next N lines: a
name of a city served by the air-
line. The names are ordered
from west to east in the input
file—that is, the ith city is west
of the jth city if and only if 1 < ;.
(There are no two cities on the
same meridian). The name of
each city is a string of at most 15
digits and/or characters of the
Latin alphabet—for example,
AGR34 or BEL4. (There are no
spaces in the name of a city.)



¢ In each of the next V lines: two
names of cities, taken from the
list of cities, separated by a
blank space. If the pair cityl
city2 appears in a line, it indi-
cates that there exists a direct
flight from city1 to city2 and
also a direct flight from city2 to
cityl.

Different data sets will be sepa-
rated by a empty record (that is, a
line containing only the end-of-line
character). There will be no empty
record after the last data set. The
following example is stored in the
file ITIN.DAT:

ITIN.DAT

8 9 55
Vancouver Ccl
Yellowknife Cc2
Edmonton C3
Calgary c4
Winnipeg C5
Toronto b ¢4

Montreal C2 C3
Halifax c3 C1
Vancouver Edmonton C4 C1
Vancouver Calgary Q@5 €2
Calgary Winnipeg

Winnipeg Toronto

Toronto Halifax

Montreal Halifax

Edmonton
Edmonton
Edmonton

Montreal
Yellowknife
Calgary

The input may be assumed correct.
No checking is necessary.

The solution found for each
data set must be written to an
ASCII output file ITIN.SOL: in the
first line, the total number of cit-
ies in the input data set; in the
next line, the number M of differ-
ent cities visited in the itinerary;
and in the next M + 1 lines, the
names of the cities, one per line, in
the order in which they are vis-
ited. Note the first city visited
must be the same as the last. Only

one solution is required. If no solu-
tion is found for a data set, only two
records for this data set must be
written in ITIN.SOL: the first one
giving the total number of cities, the
second saying “NO SOLUTION.”

A possible solution for the above
example:

ITIN.SOL

3 5
[ NO SOLUTION
Vancouver
Edmonton
Montreal
Halifax

Toronto
Winnipeg
Calgary
Vancouver

Put your program solution into an
ASCII file named DDD.xxx. The
extension .xxx is .BAS for QBasic,
.LCN for Logo, .C for C, and .PAS for
Pascal. (@

American Regions Math League

If you like math, and you like
playing on a team, the American
Regions Math League (ARML) may
be your cup of tea. This year the
ARML competition will be held on
June 4 at two sites: Pennsylvania
State University and the University
of Towa. When the “power question”
is posed, you will have a chance to
work it through with your team-
mates, producing a single answer
paper. Later, “quick problems” are
given, and team members decide
who will tackle what. And in the
“relay round,” the answer to each
question forms part of the next, and
only the final answer is scored.

The ARML competition is the
largest on-site event of its kind in
the country, drawing 15-member
teams of high school students from
every region. Teams are organized
on a local basis. For information on
organizing an ARML team or joining

Bulletin Board

an existing team, write to Joseph
Wolfson, Phillips Exeter Academy,
Box 1172, Exeter NH 03833; or Bar-
bara Rockow, Bronx High School of
Science, 75 W. 205th St., Bronx NY
10468.

“How's the weather up there?”

Next year, students at 25 US
schools will have the chance to chat
with an astronaut aboard the space
shuttle via amateur radio. The
Shuttle Amateur Radio EXperiment
(SAREX] program is currently solic-
iting applications for a limited num-
ber of openings. Selections are made
jointly by the American Radio Relay
League (ARRL), the National Aero-
nautics and Space Administration
(NASA), and the Radio Amateur Sat-
ellite Corporation (AMSAT).

Urban, suburban, and rural
schools are encouraged to apply. To
be eligible, school officials must
complete an application and write a
proposal that shows how they will

integrate the program into the class-
room. Applicants must also prove
that they have the support of local
radio amateurs (popularly known as
“hams”) to qualify for the program.

For information on how to apply
to the SAREX program, write to
Tracy Bedlack at the American Ra-
dio Relay League, 225 Main St.,
Newington CT 06111, or call 203
666-1541.

Wanted: a certain back issue

Occasionally readers call or write
to Quantum, asking for copies of the
September/October 1990 issue,
which is out of print and unavail-
able. If any readers have a copy that
they are willing to part with, or
would like a copy, please contact us.
We will maintain a list and try to
link seller with purchaser.

Write to Tim Weber, Managing
Editor, Quantum, 1840 Wilson Blvd.,
Arlington VA 22201-3000 (e-mail:
72030.3162@compuserve.com).

QUANTUM/HAPPENINGS a1




Readers write .. .

E A. John Mallinckrodt, associate professor of
physics at the California State Polytechnic Univer-
sity in Pomona, found that we came up short in our
discussion of “telephoto shooting.” He writes:

Contrary to a problem solution published in the Janu-
ary/February 1994 issue (Challenges in Physics and
Math, P105), the apparent foreshortening of objects ob-
served through a telephoto lens is quite definitely not a
result of the ratio of transverse to longitudinal magnifi-
cations. To demonstrate this, it is enough simply to note
that this ratio would seem to predict precisely the op-
posite effect.

The solution itself properly derives the ratio of trans-
verse to longitudinal magnifications as (L — F)/F, where
L is the distance to the object and F is the focal length
of the lens. Unfortunately, it goes on to misinterpret this
as a “flattening” factor in spite of the fact that this ex-
pression obviously decreases as F increases. (To see why
this ratio is, in fact, irrelevant to the explanation of fore-
shortening, it is important to keep in mind that ordinary
planar imaging systems—Ilike the retina and film—have
no way of conveying information about longitudinal
magnification.)

The foreshortening effect is actually a relatively simple
(and at least partially psychological) consequence of the
fact that when everything in a view “looks” closer, then
everything will necessarily also “look” foreshortened.
Telescopes, binoculars, and telephoto lenses make things
“look” closer by increasing the angular size of their im-
ages; when the subtended angle of an image is increased
by a factor of m, the object it represents “looks” m times
closer. Suppose, for example, that the front of a car is 100
meters away and the back is 104 meters away. Quite
clearly if we malke both “look” four times closer we have
a car that “looks” like it is 1 meter in length.

The oscillating ring in physics challenge P100
in the November/December issue impelled Rouben
Rostamian (Department of Mathematics and Sta-
tistics, University of Maryland-Baltimore County)
to write:

The solution points to an interesting phenomenon:
the period of oscillations of this system is identical to
that of a simple pendulum of length L.

Both in the statement of the problem and its solution,
it is assumed that r = L/2. The problem is actually more
interesting than that. An inspection of the solution in-
dicates that the assumption r = L/2 is a red herring—the

period of oscillations is independent of the radius of the
ring! The unfortunate wording of the problem may mis-
lead some readers into believing that the equality of the
oscillatory and flexural periods is a consequence of the
r=L/2 assumption.

(=] In that same issue, Mary E. Violett of Hay-
market, Virginia, noticed something rotten in
“Bushels of Pairs.” On page 6, column 1, equation
(4), “x # 0” should have been “x = 1,” and “x = 0”
should have been “x=1.”

(=] Robert A. Rosenbaum (University Professor
of Mathematics and the Sciences, emeritus, at
Wesleyan University in Connecticut) found an al-
ternative approach to brainteaser B99 that “may be
of interest because it uses a physical principle to
obtain a mathematical result of which the conclu-
sion to B99 is a corollary.” He writes:

Let A, B, C, D be any four points (not necessarily ly-
ing in one plane, not necessarily with no three collinear,
not necessarily forming a convex quadrilateral). Let P be
the midpoint of segment AB, Q of BC, R of CD, S of DA,
T of AC, and U of BD. Then the segments PR, QS, TU
are concurrent at point O, which is the midpoint of each
of these three segments.

The result can be obtained by placing a mass m at
each of A, B, C, D. To locate the center of mass of the
system we can replace the masses at A and B by a mass
2m at P; and we can replace the masses at C and D by a
mass 2m at R. Then we can replace the masses at P and
R by a mass 4m at O, which is then the center of mass
of the original system. But, starting again, . ..”

2 Jim Moskowitz at the Franklin Institute Sci-
ence Museum noticed a flub in math challenge
M93 (September/October 1993). The statement
should say “positive integers,” not simply “inte-
gers.” As our correspondent noted, “If any integers
are allowed, there are lots of pairs of integers whose
sum is 30,030 and whose product is divisible by
30,030. For example, {60,060, -30,030} or the trivial
(30,030, 0}.”

-

We thank all our readers who have taken the
time to send us their comments and corrections.
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Large plasma ball
Football’s “Papa
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Happy

Heraldic border
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Capital of Peru
Placed
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Hydrogen and
oxygen

Procreate
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tiny particles)
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Math
M106

The answer to the general ques-
tion (b)isn -2 (forn = 5, the answer
is 3). Clearly, the number in ques-
tion can’t be less thann - 2, because
an n-gon can be cut into n — 2 tri-
angles (by all diagonals drawn from
one vertex, for example), and every
triangle must contain a marked
point. To see that the numbern -2
is sufficient for a convex n-gon
AA,..A |, let'smarkapoint B, k
=1,2, ..., n-2, inside the triangle
AAA, | very close to the vertex A,
(see figure 1)—more exactly, in the
triangle cut off from the triangle
AAA  bythelineA, A, . Any
triangle formed by three vertices of
the polygon can be written as
AIAkAf,OS1'<]<<j£n—1.It con-
tains point B,, because angle A A A,
contains angle A, A A, |, and the
diagonal A, A, | crosses the seg-
ments A A, and AA,. (N. Vasilyev)

M107

In the situation described, we can
prove that AM? + BN? + CP* = AP* +
BM?* + CN*. Substituting the given
values yields 3% + 42 + 52 = 5% + 2% +
%% and x = /12

Figure 1
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ANSWERS,
HINTS &
SOLUTIONS

To see that AM?> + BN? + CP? =
AP* + BM? + CN?, we draw AO, BO,
and CO (fig. 2). Then AO? + BO* +
CO?* = (AM2 + OM?) + (BN? + ON?) +
(CP* + OP?) = (AP> + OPY) + (BM? +
OM?) + (CN?* + ON?). Equating the
two expressions on the right and
cancelling like terms gives the de-
sired result.

M108

Somewhat unexpectedly, each
term on the left side of the inequal-
ity can be estimated separately.
We'll prove that

t _3J3 ,

5

1% 3
forall t,0 <t < 1. On this interval,
the inequality is equivalent to

f(t) =§;ﬁt(1—t2) <1,

which can be proved by a routine
analytical investigation of the func-
tion: find the derivative

:@(
2

f®)

1-31%).

It has only one zero in [0, 1): t, =
1/4/3. Since fi0) =fI1) =0 < f{//3) = 1,
t, is the maximum point of f{t}—that
is, flt) < f(1/</3) = 1 for all tin [0, 1).

It follows that the left side of the
inequality in the problem is not less

Figure 2

than

33 33
R "

x2+y?+2%)=
2

Equality is achieved only at the
point x =y = z = 1/4/3.

M109

Consider the 90° rotation R of the
square about its center, taking B into
A and A into D (in figure 3 it’s a
counterclockwise rotation). Let’s
show that this rotation takes the
segment KL into MN—this will
prove the statement of the problem.

Since ZKBA = 90° - LKAB =
/KAD and, likewise, «ZKAB =
/ADM, the ray BK is rotated into
the ray AM (these rays form equal
angles with rays BA and AD, respec-
tively, and BA goes into AD by the
definition of our rotation), and the
ray AK is rotated into DM. Conse-
quently, the intersection point K of
rays BK and AK is taken into the
intersection point of AM and DM—
thatis, into M: R(K) = M. In the same
way we can prove R(L) = N, which
means R(KL) = MN. This completes
the proof. (V. Dubrovsky)

M110

If you’ve looked into “The Light
at the End of the Tunnel” in this
issue, you may have noticed that
this problem is related to so-called
monovariants—a useful device for

B / C
K
N
L 1
A \_/ D
Figure 3




dealing with a certain class of
problems. Refer to that article for
details and compare the solution
below to the method discussed
there.

For every student, take the num-
ber of the room he or she lives in,
square this number, and denote by s
the sum of all these squares (the
number of terms in this sum is equal
to the number of students).

Every time two students living in
rooms k and k + 1 move apart, the
sum s increases by [(k - 1) + (k + 2)?]
— [k + (k +1)*] = (2k*> + 2k + 5] -
(2K> + 2k + 1) = 4.

Let’s show that it can’t increase
forever.

Note that if someone were stay-
ing in any of three successive rooms
k-1, k, and k + 1 on some day, at
least one of these rooms will be oc-
cupied on any subsequent day. In-
deed, one can leave the block of
these rooms only by moving from
room k + 1 to room k + 2, or from
k -1 to k — 2. But either move can
occur only if there is a student in
room k who moves to room k -1 or
k + 1, respectively. In any case this
student remains in the three-room
block. It follows that a student from
room Kk can’t get to a room with a
number greater than k + 3N, where N
is the number of students; otherwise
in each of the N + 1 three-room blocks
(k, k+1,k+2),(k+3,k+4,k+5),...,
(k+3N,k+3N+1,k+3N+2)atleast
one of the N students must stay—
which is, of course, impossible. Simi-
larly, our student can’t go in the
opposite direction farther than room
k —-3N.Soif a and b (a < b) are the
smallest and the greatest numbers of
rooms occupied originally, then our
young pianists will always stay in
rooms with numbers between a - 3N
and b + 3N. Therefore, the sum s
considered above cannot be greater
than Nm, where m is the greatest of
the numbers (a — 3N)* and (b + 3N)~.
So s will stop increasing some day,
which means that students will stop
moving.

The sum s in this solution could
be replaced by other characteristics
of the students’ distribution in the
rooms. Try, for instance, the sum of

the “distances” between all pairs of
students, where “distance” is under-
stood as the absolute value of the
difference between the numbers of
the rooms where the two students

" Physics

P106

There is no “most correct an-
swer” to estimation problems like
this one. What's important is the
route one takes to the solution. You
have to supply some of the data
yourself, approximating the magni-
tudes based on your knowledge of
familiar phenomena.

So, what is the approximate value
for the velocity needed for an astro-
naut to leave the surface of the aster-
0id? We know that a person can
jump to a height h = 1 m without
extreme effort (one can do better
without a spacesuit, but the point is,
an astronaut isn’t a grasshopper or
an Olympic high-jumper!). This cor-
responds to a takeoff velocity equal
to

v, = +2gh = 4.4 m/s.

Let’s assume that the density of
the asteroid is equal to the average
density of the Earth p. Then the ac-
celeration due to gravity on the sur-
face of an asteroid of radius r is

M
a :Gpﬂ
3

T2

g8 =G

The corresponding value for the
Earth, which has a radius R = 6,400
km, is

4R
g=Gp—.
3

The so-called escape velocity (the
minimum velocity needed to leave
a planet or other massive object) is
obtained in a straightforward way
by equating the kinetic energy at
the surface to the change in the
gravitational potential energy in
going from the surface to infinity
Yamv? = GM m/r:

2

V=428, = Gp8m

3
a /2gr2
VR
o |28,
IR

Equating this value to the initial
velocity of the jump gives us the ra-
dius of the asteroid:

r=+/Rh =25 km.

This is a reasonable value for an ac-
tual asteroid. It’s clear that our an-
swer wouldn’t change drastically if
we took another value for the height
of the jump. You can show that our
answer doesn’t depend very much
on the assumption that the densities
of the asteroid and Earth are the
same.

P107

This is another estimation prob-
lem. Let the balls of fat be the same
size and uniformly distributed in the
milk. We can determine the number
of balls if we recall that the fat con-
tent of milk in stores ranges from
negligible (skim milk) to about 5%.
Let’s choose 2%. Taking into ac-
count the approximate equality of
the densities of fat and water, we'll
assume that fat accounts for 0.02 of
the milk’s volume.

Let’s designate the radius of the
ball r and the thickness of the film
of spilled milk h. Then the number
of balls of fat N in a puddle with an
area S can be found from the equa-
tion

4nrd
3

The balls cover the area of the
puddle completely with their cross
sections. Thus,

N = S.

N =0.028h.

Dividing the first equation by the
second yields an estimate of the ra-
dius of a ball of fat:

r=0.0155.

The thickness of the film can be es-
timated by using the known value of
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surface tension for water, but for our
rough estimate we can use a value
from our own milk-spilling experi-
ence—say, 1-2 mm. So the approxi-
mate radius of a ball of fat in milk is
0.01-0.02 mm.

P108

From the statement of the prob-
lem it’s clear that the power of the
heating element is equal to the
power dissipated in the surround-
ings (the temperature of the water
does not change with time). So if we
turn the heater off, the dissipated
power will be p = 100 W, and the
time it takes the water to cool 1°C
is equal to

cmAT
fi=
p

=42 s,

where the specific heat ¢ for water is
4.2 kJ/kg - C°.

P109

Because the sum of the voltages
across the capacitors is always equal
to the voltage of the battery V,,when
the voltage across one of them
reaches the maximum, the voltage
drop across the other falls to the
minimum. Because there is no cur-
rent flowing through either capaci-
tor, there is no current in the coil ei-
ther, and so the total energy of the
system is equal to the sum of the
energies of the capacitors. Notice
that when the second capacitor is
connected a certain amount of heat
energy Q can be dissipated (it’s also
possible that no energy is dissipated
if at the moment of connection the
voltage drop across the first capaci-
tor is equal to the battery’s voltage,
so that the second capacitor is con-
nected to a source with zero volt-
age). The total work of the battery
can be expressed in terms of the
charge of the first capacitor. So we
can write

i_kisz
c C

2 2
qV,= i-i-i-i—Q.
2C 2C
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Eliminating ¢, from these equa-
tions, we obtain the following equa-
tion for the second capacitor:

e cv;

C 2

2
2

It’s clear that the maximum value of
g, will be achieved when there is no
heat dissipation in the system. So,
finally,

_cv

V2

q,

Note that the value for the induc-
tance L does not appear in the an-
swer. The inductor determines the
time scale for the problem, but does
not affect the maximum values of
the capacitors’ energies.

P110

If we are close to the chain link
fence, even a single piece of wire can
block a substantial portion of our
field of view. Moving away from the
fence, we increase our field of vision,
and the relative amount of light
coming from the tennis players be-
hind the fence and from the indi-
vidual pieces of wire in the fence
changes in favor of the former—ap-
proximately the ratio of the area of
the holes in the fence to the overall
area of the fence. (A player is now
covered with many more holes.)

When we move briskly along the
fence, we can see the players more
clearly because, due to the persis-
tence of our vision, several different
momentary images now take part in
forming the image of the players
that we perceive. We see different
parts of the players in the various
images so that, by “summing” all
the images, we get a single blurred
but substantially more transparent
fence, and the players are much
more visible.

Brainteasers

B106

Answer: 6,5,4,6,5,4,6,5,4,6,5.
Let a, b, ¢, d be any four consecutive
numbers. Thena+b+c=b+c+d,

and so a = d. Thus, the sequence on
the blackboard must be periodic with
a period of 3—that is, it can be writ-
tenasa, b, c,a, b, ¢ ab,c, a b. By
the statement of the problem, a = 6,
¢ =4. Therefore, b=15-6-4=5.

B107

Let r and R be the radii of the in-
ner and outer circular paths. If 6 is
the angle between the radial lines
through the starting and ending
points, then the value of 6 (in radi-
ans) for which the two walks have
the same length is given by

RO=10+2(R-1).

The answer, 0 = 2 radians (about one
third of the way around the circle),
is independent of the two radii.
Thus, even if there is no inner circle
(r = 0) but you are limited to only the
circular and radial paths, it’s better
to stay on the circular path if you are
going less than one third of the way
around.

B108

Let’s consider the motion of the
particles of the surface of the river
after the stone drops into it as the
sum [superposition) of two motions:
wave motion in the form of expand-
ing circles and a translational motion
with the velocity of the river. The
waves will form expanding circles
with a center moving with the veloc-
ity of the river. (We're assuming here
that all portions of the river have a
uniform velocity.)

B109

The answer is 942/1413. Since
NINE = (3/2)SIX < 1,500, we know
that N = 1. Now we can write the
equation in the form 2,020 + 2001 +
2E = 300S + 30I + 3X, or

3008 = 2,020 + 170 + 2E - 3X.

The right side of this equatiomis cer-
tainly larger than 1,800, so S cannot
be less than 7. Now we examine three
possibilities. For S = 7, we have 80 =
170I + 2E - 3X, which is impossible.
For S = 8, we have 380 = 170[ + 2E -
3X, or 40— 2F + 3X = 170(I - 2J, which
also is impossible, because the left

B



side of this equation is greater than
zero and less than, say, 70, so it’s not
divisible by 170.

Finally, we put S = 9 and get 680 =
1701 + 2E—3X, or 170(4 —I) = 2E - 3X.
It follows that I = 4, and 2F = 3X. Tak-
ing into account that E and X must be
different numbers not equal to 9 = S
and 4 = I, we arrive at the unique pos-
sibility X =2, E = 3.

B110

Join the center O of the circle to
all the five given points (fig. 4). Then
the angles AOC, BOD, EOC are
right angles, because each of them is
a central angle that intercepts the
same arc as the corresponding in-
scribed angle measuring 45°. It fol-
lows that the center O lies inside the

Figure 4

angle BCD, and the yellow area is di-
vided by the radii drawn above into
five pieces: two circular segments
AB and DE, circular sector BOD,
and two triangles OBC and ODC.
Note that ZDOC = 180° - ZAOB,
ZBOC = 180° — £DOE. Therefore,
the area of triangle ODC, which is
equalto2OC? sin ZDOC, is equal to
the area of triangle AOB (sin £DOC
= sin ZAOB), and area(AOBC =
area(AODE). Now, if we replace the
triangles ODC and OBC in the yel-
low figure by triangles OAB and ODE
with the same areas, respectively,
we'll turn this figure into the semi-
circle ABCDE without changing its
area, which, consequently, equals the
blue area. (V. Dubrovsky)

Kaleidoscope

In the tic-tac-toe on the torus, the
player who makes the first move can
always force a win. The first move
is irrelevant (because on a toroidal
board all the squares are equivalent).
The second move of the first player
can be any but the silliest one
(which marks the square in line
with the first X and O). The remain-
ing moves are practically uniquely
determined.

When one torus is turned inside
out through a hole in it, the second
one, initially linked with the first, is
absorbed by it, and will finally end
up completely inside the first torus.

Toy store

1. It’s clear that a peaceful ar-
rangement of seven queens must
leave one row and one column free
of queens. If we cut the chessboard
with a number of queens on it along
the line between two files and ex-
change the two pieces (together with
the queens), we'll get a peaceful ar-
rangement whenever it was a peace-
ful arrangement initially, because a
full diagonal becomes another full
diagonal after this operation. (In fact,
these two arrangements represent
simply the same arrangement on the
torus: they are obtained by cutting
the torus along different circles—see
figure 3 in the Kaleidoscope.) Using
this operation, we can rework any
arrangement of no more than seven
queens so as to move free files to the
extreme top and right positions. Be-
low we consider only arrangements
on the remaining 7 x 7 chessboard.
Any symmetry of this reduced board
(rotation about its center or reflection
about a line through the center) takes
any pair of its parallel diagonals at a
distance of d—that is, two segments
of a full diagonal—into another such
pair. So these symmetries preserve
“peacefulness” of arrangements.
Number the vertical and horizontal
files 1,2, ..., 8 (fig. 5). Suppose there
exists a peaceful arrangement of
seven queens on the 7 x 7 subboard;

let (1, q,), ..., (7, q,) be the squares
with the queens. We can apply the
reasoning in the article to see that the
remaindersr, of the differences g, -k,
k=1, ..., 7, when divided by 8 must
all be different, while their sum must
by divisible by 8 (because the seven
differences themselves add up to
zero). So the sum z, + ... + 7, is ob-
tained from 0 + 1 + ... + 7 by crossing
out one term to make the remaining
sum divisible by 8. It’s easy to see
that the number we should cross out
is 4. Thus, there is no queen with r,
= 4, and there is exactly one queen
with any other r,, 0 <7, < 7. The
squares (i, j), withj —i =4 modulo 8,
are (1/ 5)r (21 6)/ (3/ 7) (7 ~L = "4') and
(5/ 1)/ {6/ 2)/ (7r 3) (7 —i= 4') By sym-
metry, there are 6 other squares that
can’t have queens on them (obtained
from the first six squares, say, by 90°
rotation about (4, 4)). All 12 forbidden
squares are shaded in figure 5. We
know that there is a queen with r, =
0—it stands in one of the unshaded
squares of the diagonal (1, 1)-(7, 7).
Symmetrically, there must be a
queen on one of the unshaded
squares of the diagonal (1, 7)-(7, 1).
We have only two essentially differ-
ent possibilities (positions that are
not symmetric to each other). Either
there is a single queen on (4, 4) for
both diagonals, or there is a queen
on (1, 1)and aqueen on (3, 5). In the
first case, the queen does not attack
any of the four squares (3, 2), (3, 6),
(7, 2), (7, 6), and a second queen
placed on any of these squares will
attack the others. We have also ruled
out all the other squares in columns
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3 and 7, which means that there can
only be one queen in those two col-
umns, and thus cannot be seven on
the board. A slightly longer argu-
ment, proceeding case by case, rules
out the possibility of having queens
on (1, 1) and (3, 5). So we cannot
place seven queens peacefully on the
toroidal chessboard.

2. One peaceful arrangement (in
the usual chess notation) is al, b3,
c6, d2, e7, 15.

3. The reasoning based on divis-
ibility can be applied to any even n,
because the sum 1 +2 + ... + (n - 1)
is not divisible by n, and twice this
sum is divisible by n. For odd n not
divisible by 3 it’s easy to verify that
the squares (k, 1), where 1, is the re-
mainder of 2k upon division by n, k
=1, ..., n, are all different, and
queens on them form a peaceful ar-
rangement.

Chess problem. After 1. Qf5-h7!
the black king has only two possible
moves: (a) 1. ... Ke8—{8 2. Qh7-g6
Kf8-e7 3. Ke2-el Ke7-d7 4.
Qg6-e84#!, or (b) 1. ... Ke8-d8 2.
Qh7-c7+ Kd8—e8 3. Nb5-h6! (jump-
ing over the edge) Ke8-f8 4.
Qc7-el#!. Check that all the moves
of the black king are forced by white
pieces attacking “over the edge.”

Light at the End

1. Join the red points to the blue
points with N arbitrarily drawn seg-
ments and apply the operation de-
scribed in problem 3 in the article to
any pair of intersecting segments,
replacing them with a pair of dis-
joint segments with endpoints of
different colors. Repeat so long as
there remain intersecting segments.
The total length of the segments is
monotonically decreasing.

2. It’s easy to see that the number
of segments with endpoints of the
same color (we'll call them mono-
chromatic) is a monovariant.

3. Paint the points arbitrarily. Let
m be the number of monochromatic
segments (see the previous solution).
We'll show m is a monovariant—
more exactly, that m can be de-
creased by recoloring points when-
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ever m > N.

Suppose m > N. First we show
that there exists a point joined to at
least three points of its own color.
For suppose the contrary—that each
point in our set is connected to at
most two points of its own color.
Then the N original points are, alto-
gether, endpoints of at most 2N
monochromatic segments. This
counts the monochromatic segment
twice (once for each endpoint), so
there are at most N monochromatic
segments, or m < N, contradicting
our assumption.

So let point A be joined to at least
three points of its own color. Then
there are at most 11 segments issu-
ing from A, and one of the four col-
ors—say, black—occurs on their
endpoints fewer than three times.
Painting A black decreases m. The
rest of the proof is standard.

4. No, it’s impossible. At each
stage, consider the difference d be-
tween the maximum and minimum
numbers. Fach of these numbers is
a quarter sum of the four numbers
obtained previously on the adjacent
faces, and these two sums must
have exactly two common terms.
When we subtract one sum from the
other to find d, the common terms
cancel out. So d can be written as
the quarter sum of two differences
between certain previous numbers.
Each of these differences is not
greater than the previous value of d,
which means that every step re-
duces d by half or even more.

It can be shown that in fact the
sequence of numbers on any face of
the cube tends toward the arith-
metic mean of all six numbers as a
limit. This means that d is not a
monovariant as it was defined in the
article: it may take infinitely many
values. And the process we consider
isn’t finite either, though d is de-
creasing and bounded from below.
However, this isn’t needed to solve
the problem.

5.1f a < b, then the greatest com-
mon divisor of a and b is not greater
than a and strictly less than b. It fol-
lows that the sum of all the numbers
around the circle is a monovariant.

6. The answer is 1/512. Consider

the number ¢ = m/2?, where m is the
smallest positive number written on
the blackboard and n is the number
of zeros. When two positive num-
bers are averaged, n doesn’t change
and m can only grow, so ¢ can only
grow, too. When a zero is averaged
with a positive number a, n de-
creases by one and m either remains
unchanged or becomes equal to a/2
>m/2, so the new value of ¢ will be
greater than or equal to (m/2)/27-! =
m/2”. In either case ¢ can’t decrease,
s0 it’s a monovariant. Originally, ¢
=1/2° = 1/512; therefore, we'll al-
ways have m = 27/512 > 1/512. To
obtain exactly 1/512, we must suc-
cessively average the number ap-
pearing in place of the original one
with all the nine zeros.

7. Surround the set of black
squares with a rectangle bounded by
grid lines. Take its bottom left ver-
tex as the origin and the grid lines
through it (directed to the right and
upwards) as the axes. Find the sum
of the coordinates of the center of
each black square. The greatest of
these sums is a strictly decreasing
monovariant.

8. Consider the number of can-
dies that each player holds in a cer-
tain round of the game. Notice that
the smallest of these numbers
doesn’t decrease during the game,
and the maximum number either
increases by one (if it’s odd and oc-
curs in two neighboring places) or
doesn’t increase at all. This means
that the maximum never becomes
greater than M, + 1, where M, is its
original value. Thus, the total num-
ber of candies held by all the chil-
dren never exceeds n(M, + 1), where
n is the number of players. There-
fore, at some point the leader stops
giving out candies, which means that
all the numbers have become even by
this time.

From that point on, we can show
that the number S = nM + k is a
monovariant, where M is the maxi-
mum number of candies held by a
player and k is the number of players
with M candies. For k < n, consider
the player with M candies whose
neighbor on the left has fewer than
M candies. After the operation, this



player will have fewer than M can-
dies; therefore, either M remains the
same while k decreases or M de-
creases while k may increase by at
most 1 — 1. In any case, S decreases
by one or more.

Once S stops decreasing, all the
numbers will have become equal.

9. Let a, be the number of the
place occupied by the kth volume, d,
= la, - il. Then the sum of all the
numbers d. is a decreasing mono-
variant. Indeed, when the kth vol-
ume is set in the kth place, the term
d, in the sum vanishes, and only the
d, -1 terms d, with the numbers i
between k and a, can change, but
each at most by one. So the sum
decreases by at leastd, —(d, - 1) =1.

Penrose Patterns

(See “Penrose Patterns and
Quasi-crystals” in the last issue)

1. In figure 6 (which reproduces
figure 7 from the article) AC bisects
angle BAC. Therefore, /BAC =
ZCAD = ZADB = 36°. It follows that
ABC and DAB are similar isosceles
triangles, and since DC = CA = AB
=1 (because ZCAD = ZCDA),

._pp_DB_AB
AB CB
11

" DB-DC x-1

Now the quadratic equation x> - x —
l1=0vyieldsx=1=(1+./5)/2.
Triangle FHI has the same angles

as triangle ADC (36° — 36° — 108°).
D H
E P
I
C G
Q
P
A B F
P Q
Figure 6

In addition, FI = AC = 1. So FH =
AD = 1.

2. Calculate angles and use the
previous solution.

3. Let P and Q, be the P- and Q-
triangles of the initial size, and P
the P-triangle emerging after the nth
inflation. By construction, each tri-
angle P is tiled with P, and Q,such
that the tiling of P_ | is an extension
of the tiling of Pn and, in addition,
contains one more congruent copy
of P_tiled in the same way as P_. So
P, contains two copies of P and,
therefore, four copies of P ; in gen-
eral, P, contains 2% copies of P
tiled in the same way.

Now, if T is any finite part of
the entire tiling, we take n such
that P_ covers T (this is possible
because P,c P cP,c.. and tri-
angles P_ together cover the plane).
Then each new copy of P_ (there are
infinitely many of them) will con-
tain a copy of T}

Proofs of the statements from the
editor’s postscript “Why does it
work?”

1. Since F, and F, are separated
only by a hne of the 1th set, they lie
in adjacent strips of the 1th set and
in the same strip of each of the four
other sets. So n(F ) differs by +1
fromn|F,), whilen, (F ) -n(F,)=0for
all j # 1. By the construction of the
tiling,

AAZ [n(F,)—n,(F e, + [n,E,)
—n,(F)le, + ...+ [n,(F,)
n,(F, e,
= [nl(Fz) - Hl(Fl)]el
= iei.

2. Thenodes N, (i=1,2,3,4) were
constructed corresponding to faces
F. of the grid G such that F| and F,
are adjacent across the same line of
the grid as F, and F,, with F, F, on
one side of thrs line and E,F on the

273
other. According to the previous

proof, NN, = NN, (= te). Simi-
larly, N,N, = N\N, (= e ). Since
the angle between te, and *e is a
multiple of 36°, the quadrilateral is
arhombus with the unit side length
and angles 36°, 144° or 72°, 108°.
3. Suppose the angle between
PP” and e is acute. Then, moving

along the line PP’ from P to P, we'll
cross every line I(n) we meet in the
“positive” direction—that is, we’ll
pass from the strip between I(n — 1
and I{n) to the strip between I(n) and
I{n + 1) (because the lines are num-
bered in the direction of e). If, cros
ing line I{n), we pass from face F, to

Fk+ 1/ then nl( k+ 1) I(Fk) = (n = 1
=1, and
A A]<+1 = [nj(F]<+1) - nr(Fk)]ej = el.

(compare this with the proof of
statement 1).

Similarly, if the angle between
PP” and e is obtuse, we'll cross
lines I(n) only in the “negative” di-
rection, from larger numbers to
smaller. So in this case A A, | =-e.
whenever AA, isparallel toe.

If PP’ is perpendicular to e, we
move parallel to the lines of the ith
set and will never cross any of them.
So none of the vectors in the sum
will be equal to *e..

4. We have
n(F)-n|F) - nF,) - nfF)
=[ (2) H(F1H+[ FS) n(F,)]
.. +[n(F)-n(F

The argument we used in the proofs
of statements 1 and 3 shows that the
nonzero terms in this sum corre-
spond to all the terms te, in the sum

AA +..+A A andadduptothe

coefficient of e, after terms in the vec-
tor sum are collected—that is, to c..

5. By the definition of the tiling T,
the given nodes correspond to two
faces F and F. Then the construction
discussed in statements 3 and 4 ap-
plied to F and F’ yields the required
progressive path joining the given
nodes.

To prove the second statement,
join the given nodes with a progres-
sive path A ...A_. Allits edges make
acute angles with a certain direction
d. Draw all ten vectors *e, from a
point O and a perpendicular to d
through O (fig. 7 on the next page).
Choose the five vectors of the ten on
the “positive” side of the perpen-
dicular—the side at which the direc-
tion d points (if two vectors, e, and
—e, happen to be perpendicular tod,
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Figure 7

we take the four “positively di-
rected” vectors and add either of
these two). The angle between the
two “extreme” vectors of these five
is 4 - 36° = 144°; the other three vec-
tors divide it into four equal parts
equalling 36°. For definiteness, as-
sume that one of the “extreme” vec-
tors is e, and the other one is e,.
Then the remaining vectors are e,
e, and -e,. Every vector A A,
along our path is equal to one of
these five vectors.

Let’s draw a line I along e, and
consider the projection A’,...A’, of
the path onto this line. Each vector
AkAk+1 is the projection of one of
our five vectors onto ], so it’s aligned
with e, and its length is equal to cos
72° (if A A, .| =e ore,)], cos 36° (if

k™ Tk+1
AkAkH =—-e, or —e, or 1 (if AA

k" Tk+1
= e ). In any case, it’s not shorter
than cos 72° = 0.309..., so the dis-
tance r between the given nodes sat-
isflesr=AA >A" A" = A" A,
A A +. . +A A2 (n 1) cos 72O

If the numbern 1 of edges in the
path is greater than three, then r 2
4 cos 74°.

If this number is three and one
of the edges is parallel toe,, e,, or
e, thenr>cos 36° + 2 cos 72° > O 8
+ 2 0.3 >1.

If n - 1 =3 and each of the three

vectors A A AA AA

1779 ¢
to e or e, then two of them are
equal to, say, e,, and

is equal

r= |141A4 | =12e, +el>12el-lel=1

by the Triangle Inequality (here 7 =
1 or 3).
Finally, if the path consists of two
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edges A A, and A A, the angle o
between thern is a multlple of 36°.
From the triangle A A A, we have r
= A A, =2 sin (0/2), which is equal
to 2 sin 18° = 2 cos 72° for o = 36°,
and is no less than 2 sin 36° > 1 for
o > 36°.

6. Suppose two different faces F
and F’ of grid G define the same node
A of T. Applying the construction
discussed in statements 3 and 4 to F
and F’ yields a progressive path
A ...A_that consists of at least one
edge, and so, by the previous proof,
A, # A_. But the endpoints of this
path are the nodes corresponding to
Fand F—thatis, A = A=A _. This
contradiction completes the proof.

7.Let F,=F F, .., F = F be the
faces of G associated with the nodes
A, A, .. A, respectively. By state-
ment 6, they are defined uniquely, so
F, must necessarily border on F,
(because A, is joined with an edge to
A, ). Now the proof of statement 4
above applies without any change.

8.LetA A beanedgeof TandF,
F, be the faces of grid G correspond-
ing to the nodes A and A,. By the
construction of T, A A, is a side of a
rhombic tile if and only if the node
of grid G corresponding to this tile
is an endpoint of the common side
of polygons F, and F, (see the proof
of statement 2). But F, and F, have
exactly one common side, which
has two endpoints, each associated
with one tile.

9. Move from A to X and label the
edges we successively meets , s, s,,

.. and their intersections with AX
as X, X,, X,, .... Every two succes-
sive edges s, and s, | are sides of the
same tile, so if they are parallel,
then X X, | is no less than the
shortest height h of the narrow
rhombus. If three successive edges
S,_,, S, and s, | form a zigzag (s, |
=BC, s, = CD s, ., = DE), then it’s
easy to see thatX X, ., 2h(because
neither angle ABC nor angle BCD is
less than 36°).

Now divide segment AX into a
finite number of pieces of length less
than h. Then no two successive
edges intersecting one of these
pieces are parallel, and no three such
edges make a zigzag. So all the edges

intersecting one piece issue from a
common node. Since there are at
most ten edges issuing from a node
(they make angles not less than 36°),
each of the pieces contains no more
than ten points X, (in fact, it can
contain at most five of these points).
So the total number of points X,—
and the total number of tiles in our
chain—is finite.

10. Let A be a node of T. It is re-
lated to a certain face of grid G—a
polygon F = X X,...X . Then any
rhombic tile with the vertex A is
related to one of the vertices of this
polygon. Label R, the rhombus cor-
responding to X.. By construction,
the sides of R, issuing from A are
perpendicular to X X, and XX |,
so the angle o, between them equals
180° - £X, XX,  ,—thatis, it's
equal to the exterior angle of the
polygon F at X,. Each thombus R is
wedged between R, | and R, |,
which border on its sides issuing from

A (R, isbetween R _and R, and R is
between R and R ), because the
node X, is 101ned with edges to X,
andX, .SointhesequenceR;, R,
R, R, the tiles border on the neXt and
the prev1ous ones without overlap-
ping with them, and the go around A
without gaps. Since o, + o, + ... + 0.
= 360° (this sum is equal to the sum
of exterior angles of F), the rhombi
circumnavigate the node A exactly
once. Thus, no two of them overlap.

11. The existence of the required
edges is almost obvious, but the
proof is full of petty details; so we'll
omit it here.

If M is a single common point of
edges AB and CD, then one of the
distances MA and MB is not greater
than 1/2 (becausc AM + MB=AB=1].
The same is true for CD. Suppose AM
<1/2and CM <1/2; then AC < AM +
CM<1.

12. We regret that a misprint
marred the satement of the prob-
lem. It should have read: “. . . no
two edges drawn from A and C”
(not “from A to C”).

Consider the tile ABPQ lying on
the same side of AB as edge BC. Since
ZABP > 36°, the edge BC can't lie
outside this tile. It can’t lie strictly
inside it either, because in this case a

=1



tile on BC would overlap with ABPQ,
contradicting statement 10. There-
fore, BC coincides with the side BP of
tile ABPQ (C = D).

For similar reasons, any two edges
AD and CE must lie outside our tile
ABCD. So if they intersect at M, the
triangle AMC contains either B or Q.
Then AM + MC > AB+ BC=AQ +
QC = 2. But this is impossible, be-
cause AM + MC < AD + CE = 2.

13. Take an arbitrary node B of the
tiling T. The translation by the vec-
tor p takes it into another node B’ of
T. Connect these nodes with a path b
=B B,...B_, where the B, are all nodes
of T and B =B, B, -7,

Replace the terms in the sum
BB, + BB, +..+BB,_, =BB.
w1th appropriate vectors *e and Col
lect like terms. We get

p= BB

B =pe +..

+Dp.e,.
This representation is the required
one.

To prove this, consider an arbi-
trary face F of the grid G and the
corresponding node A of T. Connect
A to B with a path a. Since pis a
period of T, our translation takes
this path into a path a’ from some
node A’(AA" =p)toB’. Let F' be the
face of G corresponding to A”. Now
consider the path from A to A’ that
goes first along a to B, then along b
to B’, then along a’ from B’ to A’
Again write the sum of vectors cor-
responding to the path ABB’A’ and
collect like terms. The terms corre-
sponding to the edges in a and @’ will
cancel out, because these two paths

consist of the same (up to translation)
edges, but we pass them in opposite
directions. So after simplifying we’ll
get the same sum pe, + ... p e . Fi-
nally, statement 7 applied to the path
ABB’A’ from A to A’ shows thatn (F')
=n(F)+pfori=1,2,..,5.

14. We'll show that this statement
is true even for triple intersections of
strips—namely, for strips of the first,
second, and fifth sets. To simplify
notations, suppose thatn, =n, = n,

0 (0therw1se we can renumber the
lines of the grid G). The intersections
r,=5/(0]ns,(0)and r , = 5,(0) N s(0)
are congruent rhombuses (they are
seen in the left corner in figure 8;
is shaded). If the two thombuses have
no common point, we are done. So
assume they both contain point A.
Draw vectors along their sides: v, {red
in figure 8) along the strip s (0], v
(blue) along the strip s,(0), v, (black]
along the strip s.(0). All three vectors
are the same length v. We can see that
the intersection of s (kp,) and s,(kp,)
is the rhombus r/, obtained from r,,
under translation by the vector Z<pzv1
+ kp v,, and the intersection ', of
(kp Jand s, J\kp,) is obtained from r ,
under translation by kp.v, + kp v,
(these intersections are shown in the
right corner in figure 8). Let B and C
be the images of A under the transla-
tions specified above. Point B belongs
tor,, Ctor,, and BC =klpv, +pv.)
—k(p,v, +p,v,) =K{[p;~p,}v, +p,(v;~V,]]
=kd. Notice thatv, and v, —v, are par-
allel, but the ratio of their lengths is
irrational (draw v, and v, from one
point and join their tips—you’ll get
a P-triangle, so the length of v, - v,

sg(kpz)

Figure 8

isv/t). Sincep,, p,, and p, are integers,
d #0. Therefore, the distance between
Band C (equal to kldl) can be made ar-
bitrarily large by choosing a large
enough k. This means that we can
slide the thombi ], and 7/, arbitrarily
far apart and thus make the intersec-
tion of s (kp ), s,(kp,), and s (kp,)
empty.

15. This statement follows di-
rectly from the definitions.

16. Represent the grid G as the
union of two grids: G’, comprising
the lines of the first, second, and
fifth sets; and G”, comprising the
lines of the third and fourth sets.
Consider a face F’ of grid G’ and a
face F” of G”. If we shift F” so that its
sides do not pass through the vertices
of F' and its vertices do not hit the
sides of F’ as F” is moving, then the
intersection of F' and F” will remain -
empty or nonempty, according to
what it was initially. In addition, the
boundary of the new intersection (if
it’s nonempty) will be formed by the
lines of the same sets and with the
same numbers as initially.

Denote by G, the part of G that
corresponds to T (the union of all
the faces associated with nodes in
T,). For each node in G, measure
the distance to the closest line of
G (not passing through this node);
let 6 be the minimum of these dis-
tances (it’s positive, because this
set of nodes in G, is finite). If we
shift the grid G” by a vector whose
length is smaller than §, the afore-
mentioned condition on the nodes
and sides of any two faces F’ (of G')
and F” (of G”) whose intersection
is a face of G, will hold. This
means that each face F of G,
though slightly altered under the
shift, will remain the intersection
of the strips with the same num-
bers bounded by the grid lines
with the same numbers. So the
node corresponding to F will re-
main in its place together with all
the edges issuing from it. Thus,
the entire subtiling T —all its
nodes and edges—is preserved.

Notice also that our operation
can’t create any new nodes and edges
in the area covered by T, because
that would mean the appearance of
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new tiles overlapping with the old
tiles of T},

17. Lines of the second set make an
angle of 72° with a line of the first set,
and the interval between them is 1.
Therefore, the length of vector v is
1/sin 72°. Similarly, the length of v/
is 1/sin 36°. The ratio of these lengths
is equal to sin 36°/sin 72° = 1/(2 cos 36°).
We can see from the Q-triangle FHI in
figure 6 above and problem 1 that 2
cos 36° = FH/FI = 1, s0 v = {1/1}v’ and
Inv-mv’l =ln-mal - (1/sin 72°). Now
the statement follows immediately
from the Fractional Parts Theorem,
because T = (1 + +/5)/2 is irrational.

18. First, consider two grids G,
and G, (constructed and numbered
like G| such that G, can be trans-
lated into G,. Using the same fixed
point O, construct tilings T, and T,
associated with G, and G, (see page
17 in the original article). In view of
statement 1, it’s quite clear that T,
is obtained from T under a certain
translation as well. More exactly,
suppose that the numbers of lines in
the ith set of G, differ by ¢, from the
numbers of corresponding lines in
G, (obviously the difference be-
tween the numbers of corresponding
lines is the same in each set). Then,
for any face F, in G, and its image F,
under the translation that takes G,
into G,, we'll have n(F ) =n(F ) +1t,
which means that the nodes A, and
A, of T, and T, associated w1th F,
and E, respectlvely, will differ from
each other by the vector AA =t
+te +...+t.e, (provided the tilings
were constructed using the same
pole O, of course). Therefore, the
translation by this vector takes T|
into T,.

Now take as G, the grid G’ ob-
tained from G by shifting the third
and fourth sets of lines through the
vector mv’ — nv, and as G, the grid
G itself. Note that the translation
through vector nv takes G’ into G.
Indeed, for 1 = 1, 2, and 5 any line
1'(k) of G’ simply coincides with I (k)
and, by statement 15, is taken into
1 (k) (for i =1), Lk + n] (for i = 2), or
L[k -n)(fori=5). Then, I'(k])is taken
into the image of I,(k) under the
translation through (mv’ - nv) + nv
= mv’'—that is, by analogy with
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statement 15, into I (k + m), and,
similarly, I,/(k) is taken into I (k —m).
As we saw above, this means that
the tiling T” associated with G’ is
taken into T under translation by
vector 0 - e, + ne, + me, — me, — ne,

2
= t. But, by statement 16, T" contains

—\
Corpections

(See also “Readers Write

" on page 52.)

Vol. 4, No. 3:

p.3,col. 1,92, 1. 7: for
Dick Rutan read Burt
Rutan. (Burt Rutan is the
noted aircraft designer; Dick
Rutan flew the Voyager, de-
signed by his brother Burt,
around the world nonstop
with Jeana Yeager.)

p. 18, col. 3, 1. 3:for from
A to C read from A and C.

Vol. 4, No. 2:

p. 44, col. 1,92, 11. 11-12:
for Can a* be greater than x?
read Can a* be less than x?

p. 44, col. 2, 12, 1. 3: for
flx)=a*Ina-Inxreadf(x) =
alna-1.

p. 44, col. 2, 12, 1. 5: for
-In x < 0 read -1 < 0.

p. 56, col. 1: for AB;,

A7B5 , etc, read AA,
AA, et
Vol. 1, No. 4:

A credit line was inadvert-
ently omitted from the piece
by I. M. Gelfand on the Mos-
cow Correspondence School
in the March/April 1991 is-
sue of Quantum. Dr. Tanya
Alekseyevskaya-Gelfand
translated the article and
helped prepare it for publica-
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TOY STORE

Torangles and torboards

What you can do with a little glue

FYOU ARE AN ACTIVE READ-

er of this magazine, by now you

will have created a sizable collec-

tion of paper models of peculiar
geometric objects based on our Toy
Store articles. Here we add two new
items to our Quantum Paper Model
Collection. They aren’t flexible like
most of the models we’ve described.
What makes them remarkable is
that they’re the simplest polyhe-
drons with a hole through them—in
other words, topologically equiva-
lent to the torus (see the Kaleido-
scope in this issue). “The simplest”
here doesn’t mean “the easiest to
create”—in your head or with your
hands. The word is understood more
formally as “having the smallest
possible number of vertices.” The
models are shown in figure 1: the

Figure 1

by Vladimir Dubrovsky

left one has v = 7 vertices, the right
one v = 8.

Polyhedral tori

Before I explain how to make
them, let’s try to understand why
these polyhedral tori are really mini-
mal. Start with any polyhedral torus,
and let’s see what must be true if it is
to be minimal. We’ll make use of
Euler’s formula for the torus f—e + v
=0, wheref, ¢, and v are the numbers
of the faces, edges, and vertices of any
toroidal (torus-shaped) polyhedron.
Since any face can be subdivided
into triangles (by its diagonals) with-
out changing the number of vertices,
we can assume that all the faces are
triangles. If we count the sides of
each face and add up the results, we
get, on the one hand, 3f (all faces are

triangles) and, on the other hand, 2e
(every edge is a side of two faces), so
3f=2e, and consequently, 3v = 3¢ - 3f
= e. Every edge joins two vertices, so
the number of edges is no greater than
the number of pairs of vertices, which
is v(v-1)/2. Thus, we get

dv=e< M,

2

and, after simplifying, v > 7. But this
is only a necessary condition. To
construct a toroidal polyhedron
with, say, seven vertices, we must
first draw the network of its edges
and faces—that is, a map on a torus
consisting of triangular countries
(faces) any two of which can have ei-
ther a common side (edge), a common
vertex, or no common points at all.
Then the network must
be realized as a polyhe-
dron. In the case v =7, the
inequality above becomes
an equality: 3v =v(v-1)/2.
This means that every
two vertices are con-
nected by an edge. But, of
course, not every triple of
vertices will be the verti-
ces of a face.

It’s a good exercise to
create the required net-
work. Try to do it, then
compare your result with
figure 2a (on the next
page), or with the trian-
gular network in figure 4
in the Kaleidoscope.
Note that these two net-
works are equivalent
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Vi vy V3 V1
4
a b
V4 ¢ Vy V4
\% V.
Vs 7 6 ) V5 Vs
V1 Vs Vs V]
Figure 2

Networks of (a) 7-vertex, (b) 8-vertex toroidal polyhedrons.

even though they look different—
don’t forget that the opposite sides
of the squares in these figures should
be thought of as glued to each other!
Can you establish a correspondence
between the vertices of the two net-
works such that any three vertices of
a face in one network correspond to
the vertices of a face in the other
network?

Now that the network is ready,
try to imagine a polyhedronv v,...v,
based on this network of edges and
faces. This is a challenging but en-
grossing problem. One of the pos-
sible polyhedrons can be con-
structed using the following edge
lengths (in centimeters):

v,v,=v,v,=10.3,

v,v,=Vv,v,=7.8,

v,v,=10.0,

v,v,=vv,=8.7,
v,v,=v,v,=7.0,

VVe=V,v, =V v, =v,v.=7.0,
v,v,=6.0,

vy, =41,

vv,=v,v,=3.4,

vy,=vv,=4.9,
v,v,=v,v,=3.8.

Cut triangles with these side lengths
out of thin cardboard, join them to-
gether according to figure 2a, and
you’ll get the model on the left in
figure 1. The model was created by
two undergraduate students at Mos-
cow University, A. Bushmelev and
S. Lavrenchenko. In fact, they
worked on the more general and se-
rious problem of the existence of a
toroidal polyhedron with a given
network of edges. Such a theorem
for ordinary polyhedrons was dis-
covered by E. Steinitz in 1917 (see
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the Kalei-
doscope in
the May/
June 1993
issue). The
young
Moscow
mathema-
ticians
proved that
any trian-
gular net-
work on
the torus
represents a certain polyhedron. In
their proof, they reduced an arbitrary
network to one of the simplest ones
(with no more than 10 vertices). One
of the four possible 8-vertex net-
works is shown in figure 2b, and its
realization as a polyhedron is shown
in figure 1 at the right. The edge
lengths for this model are

Vi

Vy

v \4
7, 8 Vs

Vs V3

V1 V1

vv,=15.0,
vv,z18.1(i=1,61=3,4,8
k= 2/ 5/ 7)/

v, v, =V,v,=v.v, =185,
VeV, =V,v, =V,v, =63,
v,V =V,v,=v,v,=7.0,
V.V, =V,v, =V v, =12.09.

The Queen Probiem on the torus

The Queen Problem is an old and
well-known problem of recreational
mathematics, often associated with
the name of the great Carl Friedrich
Gauss (1777-1855). One has to place
eight queens on a chessboard so that
they don’t attack one another, and
find the number of such

corner squares then disappears, be-
cause we wipe out the edges them-
selves, and a queen will always attack
7 - 4 = 28 squares regardless of its po-
sition. Horizontally and vertically,
these are the same 14 squares as on
the ordinary chessboard. But either
diagonal attacked by a queen (if it’s
not one of the main 8-square diago-
nals al-h8 or a8-hl) can be “ex-
tended” onto the parallel short diago-
nal at a fixed distance d, equal to four
diagonal lengths of a square. Two
such “extended diagonals”—we’ll
call them full diagonals—are illus-
trated in figure 3. You may imagine
that a queen moving along a full di-
agonal jumps back to the opposite
side of the board the very moment it
reaches an edge of the board, and then
it continues moving in the same di-
rection: the torus has no edges!

Thus, queens on the toroidal
chessboard are more powerful, and
“peaceful coexistence” of eight
queens becomes impossible. The
proof of this fact is based on divis-
ibility.

Let’s number both the horizontal
and the vertical files 1, 2, ..., 8 (fig. 3).
Then each square receives a pair of
coordinates (1, j), 1 <1, j < 8. Suppose
we can put eight queens on the board
so that they don’t attack one another
(we'll call such arrangements peace-
ful). Then there will be exactly one
queen in each horizontal and verti-
cal file, so we can write the coordi-
nates of the queens as (1, q,), (2, q,),
..., (8, qJ, where the numbers g, ...,

arrangements. QObvi-
ously it’s impossible to

o

arrange more than eight

queens so that they
don’t attack one an-

N N 0o

other, because in any

u

such arrangement two
or more queens would

appear on the same

horizontal or vertical
line.

2w A
o

What happens if we 1

glue the opposite sides
of the board together,
turning it into a torus?
The difference between
the central, edge, and

wn
(&)}
~ 09
o]



q, take each value from 1 to 8 once.
Also, no two queens can stand on the
same full diagonal parallel to the
main diagonal al-h8. This means
that the remainders of the differences
q, — k when divided by 8 must all be
different. (Check that for all squares
(1, /) on any of these full diagonals the
remainder of j — i modulo 8 is the
same!) So the remainder of the sum
(q,— 1)+ ... + (g, - 8) must equal that
of 0+ 1 +...+7=28—thatis, it'’s equal
to 4. But this is impossible, because
(q,-1)+...+(q,—8) = (g, +... + q,) -
(1+...+8)=(1+...+8)=(1+...+8)=0.

The following problems elaborate
on this theme.

Problems

1. Show that seven queens can'’t
be peacefully arranged on the 8 x 8
toroidal chessboard. (Hint: you can
reduce the number of search possi-

peaceful arrangement into another
peaceful arrangement; also, use the
above considerations of divisibility.)

2. Find a peaceful arrangement of
six queens.

3. Prove that on the n x n toroidal
chessboard a peaceful arrangement
of n queens doesn’t exist for any
even n, and exists for any odd n not
divisible by 3.

What is the maximum number of
queens in a peaceful arrangement on
the n x n toroidal chessboard for n
divisible by 2 or 3? It seems that a
plausible answer is n - 2. You may
want to prove or disprove this con-
jecture.

Checkmate on the torus

In conclusion, here’s a toroidal
chess problem by E. Mach! (fig. 4):
white must checkmate black in four

Figure 4

Problem by E. Mach: toroidal mate in
four moves.

torus each piece attacks the same
number of squares regardless of its
position (like a queen), so they be-
come stronger, but the black king
also has more possibilities to escape

bilities by proving that the top and moves. Don’t forget that on the from check. (@)
far right files can be assumed to be S ANSWERS, HINTS & SOLUTIONS
free of gHecas, and all_symmetnes of  Mathematics on the Chessboard by ON PAGE 57

the remaining 7 x 7 board turn a Yevgeny Gik (in Russian).
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