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GALLERY O

Saint Francis Receiving the Stigmata (ca. 1445) by Domenico Veneziano

Tur wono "srIGMA," wHICH LITERALLy MEANS A
I mark, almost always implies disgrace or infamy. The Greek

plural form, however, has just the opposite connotation. In the
Christian tradition, "stigmata" are a sign of special grace and
holiness. The person receiving them-in this case, Saint Francis
o{ Assisi-bears mysterious wounds in the {ive places where
the cruciJied Christ was pierced by nails and by the spear o{ the
Roman centurion.

One curious aspect of this painting is the object in the up-
per right-hand comer from which the five lines are emerging.
In Medieval and Renaissafice artt the source o{ the stigmata
is usually the dying Christ or a crucifix. In the first case, the
saint stands at the foot of the cross in the actual historical
setting; in the second, a small artistic representation of the

Crucifixion hovers above the s;rurt in his or her own timc. In
Domenico Veneziano's version, St. Francis and his compan-
ion are in a tin-relcss landscapc, :rn.l thc Crucifixion has been
transformed almost beyond recognition Thcrc is somethin5l
awful about the fonn suspended rn thc air. ar.icl ior a moden.t
viewer, the leve1 of abstraction is u Lrnilcririlh ltnerFected. \Ve
arc usccl to seeing, for instance, the Holr Sprrit repre sented
as a dove or (in representations oi tirc Irentecostl ;rs tongucs
o{ flarne. But this painting hints at thc spiritr,ral reirhr in a way
that most art o{ the period does r.rot.

Once you've read the articlc in this issue by the great Rus-
sian mathematician Andrey Kolmogorov, our reason for choos-
ing thls work of art for Gallery Q will become so obvious that
we prefer to lcave it unsaid.

z
1
!

o

q
!
-{

o

a

E

o

o
5
o

>.n
!



TU
SEPTEM BER/OCTOBER 1 993

FEATU R ES

VOLUME 4, NUMBER 1

4 Conceptual Transfusion

The loul'lh $talo ol lnaltsl'
by Alexander Kingsep

l0 Functional Primer

llome on t[e l'anue
by Andrey N. Kolmogorov

20 Counterintuitive Physics

cotled Iy Ihe light
by l. Vorobyov

34 Tricks of the Trade

Some tfiinu$ reuer c]tafl[E
by Yury lonin and Lev Kurlyandchik

DEPARTMENTS

The physicist on our cover looks a little
frustrated. That's because he's working
with a very tricky substance: plasma.
The allure of plasma physics has been
like a will-o'-the-wisp, leading deeper
into the woods where the secret of con-
trolled thermonuclear {usion resides.
The three requirements for a thermo-
nuclear reactor-high particle density,
high plasma temperature, and long
confinement time-are proving more
difficult to achieve than was originally
thought. But the research continues,
because many see fusion as the energy
source of the future. (This explains the
big blue Q that has muscled its way into
our logo.)

If the only plasma you know about is
the stuff flowing through your veins,
turn to the cover story on page 4 for a
"conceptual transfusion. "
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The uieul lrom the maslhead

You have to get into it to read the fine print!

I I I HEN I SAY "MASTHEAD,"
lil do vou think ot a crow's nest?

UU , wouion t biame you 1r you
I I oo. L-rnry eoltors-anqpernaps

a peculiarbreed of masthead aficiona-
dos-actually read the dense block of
inJormation that usually appears on
page 3-right across the "gutter"
from my little soapbox! But I'd like to
drawyour attention to afew changes
that have been made there.

The first is a statement of the
mission of the National Science
Teachers Association. It will appear
in a1I NSTA journals. Next to it is a
seal commemorating the fiftieth an-
niversary of NSTA, which will appear
in the masthead throughout this jubi-
lee year. Quantum is one of the many
ways in which NSTA strives to fulfill its
stated goal of stimulating and improv-
ing science teaching and leaming.

If you have sharp eyes/ you may
have noticed that I skipped some-
thing. The lineunder "QUANTIJM"
now reads: The Magazine of Math
and Science. Although we've dropped
the word "student" {rom the subtitlg
we haven't changed our goal of pro-
ducing amagazine that students will
enjoy. In [act, we hope to include in
each issue more material that will
engage students with less math and
physics background. In making this
change, we're simply acknowledging
that Quantum appeals to a broad
range of readers, from high school stu-
dents and teachers to researchers and
graduate students. It seems there is no
upper limit to Quantum's appeal.

Finally, a new address is hiding
somewhere in all that fine print.

NSTA has purchased a new head-
quarters building in a Washington
suburb. Operations that are now scat-
tered in several locations will soon be

brought together under one roof-
specifically, at lB40 Wilson Boule-
vard, Arlington, VA 2220I. Use this
address for any editorial correspondence.
(Subscription inquiries should be di-
rected to our copublisher, Springer-
Verlag New York, at the address and
phone numbers given in the masthead. )

T[anls, E'[st[!
One change to the mastheadwon't

appearuntil thenextissug andit is asad
one. Because of budgetary pressure, the
position o{ art director at Quantum
has been eliminated. Some of the
tasks performed by Elisabeth Tobia
will be transferred to the NSTA Pub-
lications Production Department. But
E'beth (as she is known to her co-
workers) is irrepiaceable. She was one
of a handful of people who brought
Quantum into existence and who
worked tirelessly to make it better
and help it grow. Because the staf{ is
small, each member wears several
hats. E'beth lent her expertise to pro-
moting Quantum and was our prin-
cipal liaison with our production and
marketing colleagues at Springer.

E'beth has taken another position
at NSTA-project manager of student
competition sponsored by NYNEX
and administered by NSTA. We wish
her well, and congratulate NYNEX
on their good fortune. We will miss
her skillful hand at layout, her good
humor in tight situations, and her
fierce devotion to Quantum.

[id I say tlmt?

Sometimes the words just don't
come out the way you meant them.
In my last Publisher's Page, I e4plored
the "circuitous route" I took to a kind
of science I found "televattt." On the
way,I described the view from a high
window onto the elevated plain of ad-
vanced physics, and wrote that I
"figuratively lowered myself {rom
thatwindow. . .Ibecame ateacher."
Some readers took the time to point
out how btzarre that sounds. Even
with the words restored to the ellip-
sis-"and pursued those things for
which I was fully capable"-the text
as printed doesn't cluite work.

Let me try again. I feel strongly that
teaching is as important as research

{look at the name of my organization!).
Each requires different abilities,
though. I had spent time in the world
of Einstein, Feymman, and Co., and
understood the profound theoretical
work being done there-but only
with great difficulty. Realizing that I
could not succeed at their level, I still
wanted to excel, not just do time. So

I tried to become the best in another
field:teaching.

My apologies to teachers every-
where who may have been offended
by what I wrote. I've met bright
people in research labs, andl've known
geniuses who work in classrooms. And
none of them was pursuing watered-
down science. That was my larger
point, which I hope came through
loud and clear.

-BillG. Aldridge
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OUANTUM
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Have you written an article that
you think belongs in Quantum!
Do you have an unusual topic
that students would find fun and
challenging? Do you know of
anyone who would make a great
Quantum author? Write to us
and we'll send you the editorial
guidelines for prospective Quan-
tum contrTbutors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in colloquial
English and at a level appropriate
lor Quantum's predominantly
high school readership.

Send your inquiries to:
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Quantum
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lflltafiS happening?
Summer study ... competitjons ,.. new
books... ongoing activities ,.. clubs and as-
sociations ... free samples ... contests ...

whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.
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Write to us! We want to know what you
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most? What would you like to see more
oJ? And, yes-what don'tyou like about
Quantunft We want to make it even bet-
ier, butwe need your help.
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Quantum
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l840Wilson Boulevard
Arlington, vA 22201
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Thelourlh slale ol matlel'

Neither solid nor liquid nor gas

by Alexander Kingsep

ET ME ASK YOUA STRAIGHT-
forward question: what state of
matter is most prevalent in the
universe? Solid, you say? Not

so. Licluid? Guess again. Gas? Sorry.
You may be surprised by the answer.
The most typical state of matter
throughout the universe is plasma,
and the bulk of creation exists in
just this phase. That might strike
yout, a solid-liquid being, as a bit
unlikeiy.

Plasma used to be defined as ion-
ized gas. As a matter of fact, that's
not quite right-or, more exactly,
it's as correct as these definitions:
"liquid is melted solid," or "gas is
vaporized liquid." The properties of
plasma (at least, of typical plasmas)
are essentially different from those
of gases, so physicists generally look
upon plasma as the fourth state of
mattett occupying the highest place
on the temperature scale.

You've seen plasmatic objects
virtually every day of your life-the
Sun and stars. You've seen plas-
matic light sources-neon lights.
Everyone is familiar with the short-
lived plasmatic phenomenon of
lightning. And almost everyone is
aware of shortwave radio broadcast-
ing. In its older variants, this means
of long-distance communication
was based to a great extent on the
so-called plasma mirror provided by
the ionosphere, which reflects the
electromagnetic waves broadcast by
shortwave radio stations (fig. 1). It's

not surprising that such a broad
range of objects and phenomena
have attracted the attention of the
physics community. Many instru-
ments and devices have been in-
vented as a direct result of progress
in plasma physics. But the main
problem stimulating progress in this
field is that of controlled nuclear
fusion, which many consider the
energy source of the future. If this
problem were solved, fusion would
give humanity a power source no
less efficient than our current fis-
sion reactors but much less danger-
ous. It would be ecologically pure
and almost inexhaustible. Most
plasma physicists nowadays are in-
volved in several advanced fusion
programs.

In this article, though, we'll be
looking at just a few aspects of
plasma-its most fundamental
properties.

Plasma as a coililtuous medrum

At first glance, as noted above,
plasma should be more gase ous than
gas. Indeed, its place on rhe tem-
perature scale is higher. Let's take
hydrogen plasma as i1n e\ample. To
transform the neutral H atom into
thc pair H* + e, rr-e need energics as

high as t,,,,, = 13.(-,c\- =-).18 10 t8 
I.

(Thc dissociation threshold is much
lower, so we don r take it into ac-
count.) Such ionr-ation can occur in
many ways, but ro keep a hydrogen
cloud in such :r state, the tempera-
ture must bc at least 7,,,, = t,n,/k
(where ft rs the Boltzmann constant,
k: 1.38 10 riTiK: 1 eV/l1,600 K).
In actualin- the temperature may be
a little lortci, but it's still of the or-
der of ser-era1 electron volts.r This
temperatlue is close to that on the
surface oi stars 1it's funny, but they
call these plasmas "cold"l). Fusion
plasmas are substantially hotter
(temperature s as high as 108 K); the
plasmas rn neon lights are much
cooler, so ther're on1,v partially ion-
ized. This is an argument in favor of
the notion that plasma is "more gas-

eous than gas."
All gases, even metal vapors/ are

always poor conductors. This situa-
tion changes drastically, however,

lPlasma physicists often give
temperatures in energy units using the
relationship 'T: Elk. An energy of leV
is equivalent to a temperature of
11,600 K.

\/

-O./\

Figure 1

Two natural plasmatic obiects and a
schematic rendering of long-distance
radio broadcasting.
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when ionization occurs. Depending
on the parameters (primarily tem-
perature and particie density),
plasma can be a Yery good conduc-
tor/ no worse than such metals as

copper and silver in the solid state.
As a result, its macroscopic dynam-
ics become rather complicated,
since its mechanical properties are
closely linked with its electrody-
namic properties. This might be
considered the main feature of
plasma-that electrodyrramics plays
an extremeiy important role in any
problem having to do with plasma
and in any of its effects that you
come across. Specifically, plasma
flow produces an electromagnetic
field, whiie the motion and ecluilib-
rium of the plasma are determined
by the fields acting on it.

This property turns out to be very
useful for holding plasma. The point
is, very hot piasmas-say/ fusion
plasmas-can't be put in a container
where it comes into contact with
the walls. Such contact would pro-
voke both very rapid energy losses
and a very rapid recombination of
the plasma particles (for example, H*
+ e ) H). So, if we want to heat
plasma, we have to fiap it some
other way. A strong, properly de-
signed magnetic field is just what
we need. The simple principle un-
derlying a magnetic trap (the so-
called mirror trap/ or Budker's trap)
is shown in figure 2.

To understand the physical
mechanism of magnetic confine-
ment (in particular, the principle of
a magnetic mirror), let's tutn to fig-
ure 3. As was just mentioned, tlpi-
cal plasmas are good conductors.
This means that an external mag-
netic field has difficulty penetrating

coil

coil

Figure 2
The mirror plasma ftap,

into a space occupied by plasma.
Researchers in the field of supercon-
ductors know this effect well-it's
called the Meissner effect. Now,
plasmas are very good conductors,
but they're not ideal conductors, so
such penetration isn't completely
prohibited. It's just that it requires
too much time compared to the
typical time scales of plasma dy-
namics. If the magnetic field doesn't
penetrate the plasma, it has to be
kept away {rom it by a thin iayer of
current/ as shown in figure 3. The
surface charge density l-and the
very fact that such alayer exists-
are direct consequences of Max-
well's electrodynamics. And the
Amperean force per unit area is lB
and acts perpendicular to the
plasma's surface, from outside in, as

if some pressure were being applied
to this surface. And that's why mag-
netic trapping occurs.

Another example of this sort/ per-
haps the simplest and most visual,
is the so-called pinch effect (fig. 4a).

Imagine a plasma cylinder with a
current running along its length (it
doesn't matter whether the current
is concentrated on the plasma's sur-
face or is distributed inside the cyl-
inder). It's known that conductors
with parallel currents in the same
direction atttact one other. This is
one of the basic tenets o{ electrody-
namics. In our case, it means that
such a curent-carrying plasma cyl-
inder must draw tighter along its
radius. On the other hand, ordinary
" thermal" or " gas" pressure opposes
this tightening. The resulting equi-
librium determines the radius of the
cylinder, the thermal pressure, and

Figure 3
Magnetic confinemant.

the magnetic field at any point in
space. And that is what we call a

"pr:nch." By the way, if this pinch is
shaped into a torus to eliminate the
effects of the ends and placed in the
external magnetic field in a toroidal
conducting chamber, it forms the
so-called tokamak configuration, at
present the most effective type of
plasma trap.

The pinch is also useful in dem-
onstrating another fundamental
property of hot plasmas-one that
gives plasma physicists fits. I'm
talking about plasma instability. It's
been responsible for sending matay a
promising idea or proiect to an early
grave. A simple instance of this in-
stability is shown in figure 4b. It's
usually called a"neck" or "constric-
tion instability." Let's assume that
the radius of the plasma cylinder has
become less than the average at
some point. Such a perturbation
doesn't disrupt the thermal pressure
(assuming, of course, that the pinch
is long enough). As for the magnetic
field, it is drastically disturbed in
some region of the plasma's surface,
because the total current must be
conserved, while its magnetic field (as

for any straight conductor) decreases

with distance: B n lr1. Since the at-
tractive Amperean force increases

Figure 4
The pinch effect: (a) steady, (b)unstable.
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while the repulsive gas pressure
stays almost constant/ our equilib-
rium is broken.

Instead of a neck, we could imag-
ine a "bubble" with similar conse-
quences. Such a bubble must ex-
pand, thereby destroying the
equilibrium. For decades the physics
community has struggled with
plasma instabilities on route to con-
trolled fusion. Some instabilities
can be eliminated by properly ar-
ranging the experimental setup and
adjusting the plasma parameters,
some can be suppressed with exter-
nal fields; some can be delayed dur-
ing plasma experiments. Plasma in-
stabilities essentially determine the
physical scenario in outer space and
must be studied to understand many
astrophysical problems.

I'd like to point out one final con-
sequence of the influence that
plasma mechanics and electrody-
namics have on one another. This is
the phenomenon of "heezing in a
magnetic field." As was mentioned
above, rapid penetration of a mag-
netic field into a plasma is difficult,
but it can still occur as the result of
a rather slow evolution. After that,
though, if some sort of rapid dynam-
ics sets in, penetration of the mag-
netic field again becomes drfficult.
{You may have seen the popular
physics demonstration in which a
silver or copper coin falls between
the poles of a powerful magnet-it
drops very slowly compared to the
free-fall velocity.) So the rapid me-

chanical motion of a plasma-such
as the compression of a plasma
a"lsud/'-gauses the magnetic field
to be "glued" to the plasma. You can
see a very good example of this in
figure 5, which expiains the huge
values for the magnetic field in neu-
tron stars. Indeed, the neutron star
(fig. 5b) results from the gravitational
collapse of a star (fig. 5a), and this col-
lapse occurs fast enough to keep the
magnetic field of the star "frozer:,it:,."
As a result of this collapse, the den-
sity of the magnetic field lines and,
hence, the strength of the magnetic
field are $eatly increased.

It/s interesting that this connec-
tion between the mechanical and
the electromagnetic properties is
typical of molten metals. So in this
respect plasma looks like condensed
mattett not a gas.

Plasma a$ att slt$elnlle olRarlides
Let's try to compare the different

states of matter on the microscopic
Ievei (see figure 5). The solid state is
lowest on the temperature scaie. All
the atoms in this state are ordered in
space, forming a lattice. Their equi-
librium positions are fixed, and their
motion is essentially restricted-
only rather small thermal oscilla-
tions near these positions are a1-
lowed. In the liquid state, particles
ate given much
more freedom to
move-this is the
so-called Brownian
motion. However,

this motion isn't completely free.
Nearest neighbors still interact, and
this interaction affects how all the
particles move about. The next
phase on the temperature scale, the
gaseous state/ corresponds to maxi-
mum freedom of particle motion
(atoms or molecules, depending on
the kind of gas). These particles are
almost completely free to move
about. The only restriction occurs
when they collide, since the inter-
molecular forces decrease sharply
with distance:

Fri * ,i,

(the Lennard-)ones approximation
of the van der Waais force). The
more rarefied the gas, the rarer the
collisions between particles, and the
less influence the particles have on
one another.

What about plasma? As ru1e, hot
plasma is even more rarefied than
gases and its particles move much
faster, since the characteristic ther-
mal velocity

{x=i,e,

liquid
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Figure 6
The;fow states of matter
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Figure 5
The "fueezing-in" effect (a) in the initial state of a star;
(b) in itb final state (a neutron star).
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increases with temperature. In addi-
tion, the electron's mass is less than
the least massive atoms by a lactor
of almost 2,OOO, so electrons travel
faster than ions by a factor o{
(2,0001'tz. Nevertheless, their mo-
tion doesn't become "{reer"-on the
corrtrary, long-distance interactions
come into play here, radically
changing the entire microdynamics.
This occurs because the Coulomb
forces between particles don't de-
crease very rapidly with distance:

-0.f .. e I..'.

This slow decrease is enough to com-
pletely change the mechanical inter-
actions, forming great ensembles of
particles despite the thermal motion.
Though Coulomb collisions remain
substantial at times, the collective
behavior predominates in hot, rar-
efied plasmas iust as in solids. So in
this respect plasma is also closer to
condensed matter than to a gas.

One of the most important proper-
ties of plasma is its so-called quasi-
neutrality. Although it consists of
charged particles, plasma as a whole
has no charge. That's to be ex-
pected-since all the electrons and
ions are produced by the ionization of
neutral atoms/ their net charge is
zero. Not only that, the plasma's neu-
trality is maintained with great accu-
racy because it takes a very large volt-
age to separate the charges.

For example, let's look at a cube of
plasma with a volume V= 1 cm3 and
a particle concentration that's rather
typical for laboratory plasmas: 4: frn
: ni: l0zo mr. If we want to disrupt
the charge ecluilibrium in this small
volume ever so slightly-say,by I
percent-we need to bring a Yety
strong external electric field to bear
on this volume. Indeed, let's assume
that there is some excess of electrons
(ions)in the cube with a relative con-
centration 5n = 0.01n : 1018 mr. To
estimate the resulting electric field,
we can use Gauss's theorem:

Jnas=ES=
(l

'o

Then, taking the cube's surface S =
6 - lO4 m2, V = 10-6 m3, e : 1.6 . LO:e
C, and eo = 8.9 ' tg-tz gz/N' m2, we
can readily obtain E = 3 . 107 V/m.

In addition, we can modi{y the
problem. Let's keep !n" dV

ln dV , but violate local equality. If
n - n.= lO-2n . near one side of the

",1b" 
l.ra n"-u'i,= -10 

2n^. near the
opposite ,i&e, tfrerr, as foiltws from
the exact solution, E is again of the
order of 107 V/m in the entire vol-
ume. In the first example, such a
huge field induces a repulsive pres-
sure that causes the plasma to blow
apart, while in the second case the
strong attraction equalizes the elec-
tron and ion densities inside the
cube. To maintain the initial fisrup-
tion of neutrality, we have to use an
external electric field, again with a

strength of 107 V/m. If our external
field can't be this strong, then all the
charge perturbations (as a whole)
within this volume have to obey the
inequality

lt
6n : In" - r,l ..10 ,.

' n iln,i

Thus, quasi-neutrality consists not
only of net neutrality but also of the
local relation

I7o = 11,: 17,

or

n":ZrtitZ+1,

where Z isthe ionic charge number.
Nevertheless, charge oscillations
are allowed (and do occur) near
charge equilibrium. Imagine a
plasma layer and let all the electrons
be displaced a bit with respect to the
ions (fig. 7l.If x is the spatial dis-
placement (, .. ll, then the charge
per unit area inthe narrow sheets on
the boundary is equal to

t)

plate capacitor, and we can immedi-
ately calculate the electric field inside
the volume of the plasma:

E=Y,v =9,c=d - E=nu* .

1C7.0

Nowwe take into account thatm"f m,
<< 1. This ratio is approximately
equal to Ill,84O for hydrogen, which
allows us to neglect ion motion. Elec-
tron motion can be described by
Newton's second law:

d2x - ndxm =-eE=-dt2 ro '

where m=moand the negative sign
of the electron's charge is taken into
account. As a result, we obtain the
equation for the harmonic oscilla-
tor:

This is the most typical collective
motion for a plasma, called Lang-
muir oscillations or simply plasma
oscillations.

Any spontaneous or induced dis-
ruption of quasi-neutrality leads to
such oscillations. On the other
hand, many interesting and impor-
tant properties of plasma are based
on this effect. In particular, it offers
the possibility of nonlinear plasma
diagnostics. Two Langmuir waves
can merge into a single transverse
electromagnetic wave with a fixed

Figure 7
Deriving the Langmuir frequency
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frequency very close to 2ro-. Such a
wave can be detected. SincJ this fre-
quency {o, = 2rDo : l4ne2 I eoml ri2 can be
measured by studying the radiation,
this is one of very few possibilities
for measuring the particle concen-
tration of plasmas in outer space/ es-
pecially of intergalactic plasma.

The reasoning and the computa-
tion given above both show that
some perturbations that disrupt
quasi-neutr ality are still possible.
But they must be small compared to
unity (or, which is the same thing,
6n must be much less than n. ,).
Also, their characteristic time scale
cannot be too long:

At < rrr;1.

During this time the fastest plasma
particie (the electron) can travel a
distance of not more than vr"Lt.
Consequently, this estimate can
serve as the upper limit for the ra-
dius of interaction:

v 1 e,,kT 1':LX=Vr,A,t a ', =ao"=l " ; i.0n\net

The magnitude ro" is the Debye
radius (or radius of Debye screen-
ing). The field due to this charge
separation acts effectively only over
distances less than rr". In other
words, rr" is the maximum length of
the springs in figure 6. And now
we're ready to introduce an effective
criterion for the predominance of
plasma's collective properties. If the
number of charged particles inside
the Debye sphere is great enough-
n4"=@okT1stz"er 1/2 >> l-then col-
lective interactions dominate. In the
opposite case/ we have something
like a gas with modified interactions
between particles. From this equa-
tion we can readily see that collec-
tive interactions become more
dominant as the plasma becomes
hotter and more rarefied. For ex-
ample, the plasma corona of a pellet
irradiated by a powerful laser is very
dense-n, = 1027 mr-but extremely
hot: 7 = 107-108 K. Interstellar plas-

mas are rather cold-7= 10a K-but
extremely rarefied: n = 106 mr. In
both cases, n4. r, I and collective
interactions dominate.

Ionclusion
We should avoid the dangers of

the too popular interpretation of
plasma physics. It is, in fact, rather
complicated and full of facts, details,
and possibilities for viewing it from
different angles. Let's try to come up
with an imaginary scenario for the
dynamics of a plasma in a magnetic
trap.

Imagine we have a magnetic trap
similar to the one in figure 2. After
switching on the external magnetic
fie1d, we iniect a stream of plasma
into the trap with a plasma gun; or,
using another approach, we fill the
trap with gas and then control its
ionization by means o[, say, a pow-
erful discharge of current. The next
step is to heat the plasma, since we
need very hot plasma (T= 108 K). To
do this, we can irr.adiate the plasma
cloud with a powerful beam of radio
waves/ a powerful beam of neutral
particles, or a beam of charged par-
ticles (which is a little more difficult
because of the external magnetic
field). It's also possible to use a dis-
charge of a very strong current. One
other problem is to keep this hot
plasma in the trap for as long as nec-
essary-that is, we need to maintain
both the plasma itself and its thermal
energy. At this stage, many different
kinds of instability enter the picture,
coloring the plasma's existence right
down to its complete dissolution. I've
oversimplified this scenario, of
course-in actual fact, all of these
events occur simultaneously.

If we take space plasma as an-
other example, we can't add arry ar
tificial elements to the scenario,
since all the effects and processes
occur naturally. But this doesn't
make its nonlinear dynamics any
simpler. In both space and labora-
tory plasmas, all the basic elements
of the collective scenario are opera-
tive: oscillations and collective mo-
tion; disorder in its macrophysics
accompanied by additional order in
its microphysics; chaos arising out

of structure and structure based on
chaos. All these features are typical
for both particle motion and the
dynamics of the electromagnetic
field.

So it turns out that everything in
plasma physics is rather compli-
cated and hard to investigate. But if
this weren't the case, what would
the poor physicist have to do? Look
for another iob? (Or, at least, another
problem?) By the way, this is one of
the few areas that deal with funda-
mental processes while remaining
classical-that is, non-quantum-
mechanical. (In fact, plasma physics
and a sizable chunk of astrophysics
maybe the only areas.) The great ad-
vantage of plasma physics is that it's
avery visual process. Alas, this qual-
ity-so atfiactive in the physics of
the 19th century-has been com-
pleteiy lost in modern physics.

So, if you prefer visual yet up-to-
date science, try getting acquainted
with plasma physics! CI
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HomE oltthe raltue

And in the domain as well

by Andrey N. Kolmogorov

HIS ARTICLE EXPLAINS
what mathematicians mean
nowadays when they use the
word "function." It won't

make for easy reading-you'Il have
to pay attention to every word, al-
though it doesn't presuppose any
special knowledge beyond the scope
of the high school curriculum. Also,
it's assumed that you understand
the words "set" ar..d "element of a
set" and know how to handle them.

lnll'oduction

When asked what a function is, a
student will often say, " A function
can be given by a table, graph, or
formula." But, of course/ this isn't a

definition. Then again, students
who avoid an explicit general defini-
tion and try to describe directly the
ways of specifying a function arer:r't
entirely wrong. Mathematics can't
begin with definitions. When we
formulate a definition of some con-
cept, we inevitably have to use some
other concepts in the definition it-
self. Until we understand the mean-
ing of some concepts/ we can't really
get started and can't formulate a
single definition. And so the exposi-
tion of any mathematical theory
begins with the acceptance of some
basic concepts that aren't defined.
Then they can generally be used to
formulate the definitions of subse-
quent deilved notions.

So how do we explain to one an-
other our understanding of what the

basic concepts mean? There's no
way to do this other than by illus-
trating the things to be defined with
examples and by comprehensively
describing their characteristic prop-
erties. These descriptions can be a
bit unclear in some details, and they
may not be exhaustive at first. But
gradually they etch the meaning of
the concept with sufficient clarity.
This is how we'll approach the con-
cept of a function, rcgarding it as one
of the basic mathematical concepts
that cannot be formally defined.

[Now, it's true, later on I'11 say
that a function is nothing but a
mapping of one set onto another set
(the domain of the function onto its
rangel. But the word "mapping"
here is simply a synonym of "func-
tion." These are two names for one
concept. And the explanation of one
word by means of another that's
equivalent can't replace the defini-
tion of the concept it expresses.]

Example 1. Let the letters x and
y denote real numbers; the radical
sign "i" denotes the extraction of
the (positive) square root. Then the
equality

Y=J;f
means that the conditions

*.1,y>0,*+f=l

(1)

(21

are valid. The points with coordi-
nates that obey these conditions Figure

constitute the semicircle shown in
figure 1.

Figure 1 graphically illustrates
the following facts, which you may
prove in a purely algebraic way.

1. For any x satisfying

-1 <x< 1, (3)

equation (1) enables us to calculate
the corresponding y, which satisfies
the inequalities

0<y(1. (41

2. For every y satisfying inequali-
ties (4), there is at least one x to
which equation (1) assigns this y.

We can say that equation (1) de-
fines a mapping of the set of num-
bers x satisfying inequalities (3) onto
the set of numbers that obey in-
equalities (a). To denote a mapping,
mathematicians often use an affow.
Thus, the mapping in question can
be written as

, -+ J-r'. {5)

o

C

!Da
fo:t
o
=xo
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r - (-r)'

For instance,

-1-;

4
--+

5

O+Jr-02 =1.

Notice that a mapping is com-
pletely defined if (a) the set E that
is mapped is given; (b) for every el-
ement x of the set E an element y
onto which x is mapped is given.

We denote by Mthe set of allva1-
ues of y. In example 1, E is the set of
numbers satisfying condition (3),
ard M is the set of numbers satisfy-
ing condition {4).'

Example 2. The two rules

l. x -+ ",,17

and

- fx, ifx>0,
2. x-+1

[-r, ifx<0

define the same mapping

x -+ lxl l7l

of the real numbers onto their abso-
lute values (fig. 2).

The mapping (7) sends the set of
all real numbers

R:(--,-)

1A set can be labeled with any
letter. Here we chose the letters E,
from the Irench word ensemble, and
M, frorn the German Menge-both
words mean a set or collection of
items. Coincidentally, the Russian
word for "set" also begins with M:
MHolKecrBo (MNOH-zhest-vuh). But
one needn't stick with these letters-
in the next example we'll denote the
set of real numbers by the letter R, as
is customary.

R*: [0, _)

of the nonnegative real numbers.
Instead of mapping we can say

function and write the mapping (5)

AS

i(x) = '/i - 'rn (81

and the mapping (7) as

f(xl = txt. le)

Then the special values of function
(8) listed by formulas (6) will be writ-
ten in the form

The domain of function {9) is the set
of all real numbers R. Its range is the
set R. of nonnegative real numbers.

Example 3. Petya, Kolya, Sasha,
and Volodya live in the same room
in a dormitory and take turns with

the housekeeping. They've estab-
lished a "duty roster" for February
(fig. 3). The similarity between this
table and the ordinary graphs of
functions that we know from high
school algebra immediately catches
the eye. Does this analogy have an
exact logical sense? Have the stu-
dents established here a mapping of
one set onto another-that is, have
they defined a certain function? And
haven't they drawn the graph of this
function?

Ihe Uenel'al coltcepl ol a lunclion
We see in example 3 that a cer-

tain student is assigned to duty for
each o{ the 28 days of February. In
other words, the set of the days in
February rs mapped onto the set of
the students distributing the duties
among themselves. As a kind of
shorthand, we can say that the let-
ter x denotes any day in February
and y : /(x) denotes the student on
duty for that day. There's no reason
why the mapping

dayx-+y: sfitdent on duty on dayx

shouldn't be calied a function. We
can write this mapping as

v: flxl.

Any mappins f of a set E onto a set
M will be callad a function with
domain E and range M.

Don't forget that, when we talk
about a mapping / of a set E onto a
set M, we keep in mind that y : f(xl
is defined for any x from E and only
for an x from this set, while the val-
ues y of function / necessarily be-
long to M and eYery y from M is a
value of f for at least one value of
the argument x.

i t 4\' 3it I I -\' | ..,1 
-s'

i t:t' 4il I I -ll-l! \s/ s

o
-+

5

l(-1) : 0,

^( 4\ .l
|- 1-
\ .r/ 5

"(s) ++t -lt l-\s, 5

/10) = 1

Figure 2

(6) onto the set

1 2 J 4 5 6 7 8 9 10 11 t2 13 28

Petya

Kolya

Sasha

Volodya
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Figure 4
Mappings of (a)E onto M, (b)E into M.

If all we know is that the values
of function f necessarily belong to
M,but it's not stated that any ele-
ment of this set is a value of func-
tionf , the function is said to map its
domain E into the set M, or that the
mapping I is a mapping of E into M.

So we must strictly distinguish
between the two expressions: "rnap-
ping onto set M" (frg. aal and "map-
ping into set M" (fig. ab).'z

For example, the mapping

x -+ lxl

can be described as a mapping of R
into R, but not of R onro R.

From the purely logical point of
view, the case of the finite domain
is the simplest one. Clearly a func-
tion with a domain that consists of
n elements cannot take more thann
different values. So functions with
finite domains map finite sets onto
finite sets. Such mappings are stud-
ied by an important branch of math-
ematics-combinatorics (see prob-
lems 8, 11, 18, 19).

Example 4. Let's consider the
functions whose domain is the set
M : lA, B) of two letters A and B, and
whose values belong to the same
set-that is, the mappings of the set
M into itself.

There are exactly four such func-
tions:

2Notice also that any "mapping
onto" can be called a "mapping in1o,"
but not vice versa.

Functions f, and f, are constants-
the range of either consists of a
single element.

Functions f, and furnap M onto
itself. Function frca, be given by
the formula

frl,l = *.

This is the identity mapping: each
element of E (: M) is mapped into
itself.

To conclude our examination of
the general concept of "function,"
we just need to make note of the fact
that it's absolutely insignificant
which letters are chosen as nota-
tions of the "independent vari-
able"-that is, an arbitrary element
of the domain, and the "dependent
vanable"-that is, an arbitrary eIe-
ment of the range. When we write

x-l-)"1;,
zflzg--------? vg/

y--\^F,

f(')=Y=^[i'

/(E)= n = G,

f(v)="=lv,

we define one function f that maps
a nonnegative number into its
square root. Using either of these
notations, we get

f(rl: r, fl4) = 2, flel:3,

and so on.

lnuel'tille lunclions

A function

v: f(xl

is called invertibld if it takes each
of its values once and only once.
Functions fr(xl and f okl in example
4 are invertible; functions l,(x) and
fr(rl, as well as those in examples 1,
2, and3, are noninvertible.

To prove that some function is
noninvertible, it suffices to indicate
two values of the argument xr + x2
such that

f("rl: f("r).

In example 3 we simply note that
Petya is on duty on both February I
and February 5. So the function in
this example is noninvertible.

Example 5. The function

x__\ y = _J,

is invertible. It is defined on the set
R- of the nonnegative numbers. Its
range is the set

R-: (- -, o]

of all nonpositive numbers. Given
arly y from the set R_, we can find
the corresponding x by the formula
x=5P.

The function g-

y__4x=yz fory<0

3The origin of this name becomes
clear below: a function is invertible if
it has an inverse.

x /,(x) f ,lx) l (x) f 
^lxl

A

B

A

A

B

B

A

B

B

A
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v: f(x)

-is the inverse function lor just the
inversel of f .It maps R_ onto R.. As
aheady noted, the choice of nota-
tions for the independent and de-
pendent variables is irrelevant.

Functions f and g can be written

"f(")=-G forx>o'

8(x)=*z forx < 0'

Figure 5 shows the graphs of the in-
verse functions I and g.

Figure 5

Example 6. The function I is de-
fined on the set of the first five letters
of the English alphabet, and its range
is the set of the first five natural num-
bers (positive integers):

The inverse function g is specified
by the following table:

The graphs of these functions are
given in figure 5.

Let's give exact definitions. Let f
be a mapping of a set E onto aset M.
If for any element y o{ the set M
there exists a unique element

x: s(vl

of the set E such that

f(") = v

C DEX

Figure 6

(fig.7l, then the mapping/is invefi-
ible,a and

Y--3--+x

is called the inverse mapping for /.
So, the invertibility of a mapping

f means that it has an inverse g. The
inverse mapping of / is usually de-
noted by t'.For instance, if

v=s6)

Since "function" is a synonym of
"mapping," we have thus defined
the term "inverse function" as well.
Try to repeat what was said above
using the word "function" instead
of "mapping."

It's clear that the domain of the in-
verse function f t is the range of f, while
the range of f1 is the domain of l.

The inverse of the inverse ft is
the original function f:

lrlrt : f .

So the functions f arrd t' are always
mutually inverse.

Example 7. There
exist functions that
are their own in-
Yerses. These are the
functions

(a) f(xl = *,
I(b) f(*l = :,
X

(c) flxl: 
x 

.

x-l
Check themyourself!
The graphs of these
functions are plotted
in figure 8. Notice
that all these graphs
are symmetric about
the bisector of the

first and third quadrants-that is, the
liney = x.

Figure 9 shows the relationships
between the different ways of map-
ping setA onto set B and mapping set

then

/(,) =,',

l-1(x)= ii.

Figure 7
Invertibla mappings of (a) E onto M,
(b)E into M.

aAnother name {or such a mapping
is a ona-to-one mapping ol E onto M.
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Figure 8

A into set B.
Let me remindyou once again that

the concept o{ a mapping of A into B
is the most general. If the image of A
in such a mapping coincides with B,
we say it's a mapping o{ A onto B.

Invertible mappings are also
called one-to-one mappings. You'll
encounter this term often in math
books. But it's not so customary to
speak of "one-to-one functions."
Since we think of "functions" and
"mappings" as synonyms/ we pre-
ferred to use "invertible function"
or, what is the same thing "invert-
ible mapping."5

Lately, the French terminology
has also found acceptance:

1. The mappings of A onto B arc
called suriections;

2. The invertible mappings of A into
B are called iniectionsi

3. The invertible mappings of A
onto B are called biiections.

Notice that the accurate use of the
prepositions "into" and "onto" makes
this abundance of terms superfluous.

Pl'oilems
Degree signs indicate very easy

questions intended to help you
verify whether you've understood
this article. More difficult problems

sThe last remarks are, perhaps,
somewhat out-of-date. Nowadays the
term "one-to-one function " cat hardly
be called uncommon (mind you, the
article was written in 1969). A. N.
Kolmogorov was particular about
terminology and its justification
because at the time he was working
on new high school textbooks and was
engaged in many discussions about
what, how, and in what terms math
should be studied in school.- Ed.

are marked with a star. It's not nec-
essary to solve them all.

Introduction
1". Find the domains and ranges

of the following functions: (al y -- flxl: 1l*', (b) y : flxl : ,F:t.
2. The integer pafi of a numberx

is the greatest integer not exceeding
x. The integer part of x is denoted by
ffi. For instance,

[o] : o, 17.sl: 17):7,
[-0.3] : -r,l--nl: -4.

The difference x - [x] is called the fr ac-
tional part of x and is denoted by {"}.
Sketch the graphs of the following
functions and find their domains and
ranses: (al f ,kl: ["], (b) f ,lxl : lxl,
lcl f,kl: t"l- r12, (dl f 

^(xl 
: tlxl - tlzt,

(e). l,(rl : [1i"], (Il- f ulrl : rll"l,
kl- f,lxl = lrl*1, (hl. l,(x) :rl[x].

3*. For any natrraln we'll define
s(n) as the sum of the divisors of n
(not counting n itself ). For instance,

s(1) : 0, s(2) = 1, s(51= 6,
s(12) = t5, s(281 = 28.

Prove that s(n) doesn't take the val-
ues 2 and 5.

The general concept of a function
4'. Two persons A ar;.d B can oc-

cupy two rooms in four different
ways:

EEHE
How many ways are there to place (a)

two persons in three roorrs; (b) three
persons in two roofirs; (c) three per-
sons in two rooms/ so that none of the
rooms is left unoccupied?

5o. A set M contains three ele-
ments and a set N contains two ele-
ments. Find the number of map-
pings of (a) M into N, (bl M onto N,
(c)Ninto M, (dl Nonto M.

5. How many seven-digit tele-
phone numbers are there? How
many of them consist of the digits 0,
1,2, and 3 only?

7. Prove that there are more than
a million functions taking only two
values 0 and 1 and defined on the
set of the first twenty natural num-
bers.

B. The set M consists of m eie-
ments and the set N consists of n
elements. How many functions de-
fined on M and taking values in N
are there?

NorE. Problems 8, 11, 18, and 19
are basic problems in combinato-
rics. They are given here to show
that combinatorics is in large part a
matter of counting the number of
mappings of various kinds of finite
sets into finite sets.

9. How many ways can n guests

15

Mappings oI A into B

Mappings oI A onto B

Invertible mappings
oI A onto B

Invertible mapings
ol A into B

Figure 9
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A lounden3 leuary
ll pnn zs. 1993. woulD HAVE
llb".n the goth birthday oi
Andrey Nikolayevich Kolmo-
gorov/ one o{ the greatest math-
ematicians o{ modern times. He
blazed a trail in so many math-
ematical fields-the theory of
functions, topology, differential
equations, the theory of turbu-
lence, dynamic systelns/ and so

on-it's dif{icult to name a branch
of mathematical analysis in
which he didn't make a substan-
tial eontribution, where he didn't
solve old {sometimes 200-year-
old) problems.

Many of Kolmogorov's works
were devoted to diverse applica-
tions of mathematics. He pub-
lished articles on geology, mechan-
ics, biology, metal crystallization,
inJorrnation theory, even versifica-
tion. But most of his world {ame is
due to his fundamental work i.n

probability. His superior role in the
formation of this important branch
of mathematics is vividly illustrated by the following quo-

tation from the preface to a textbook by Moscow Univer-
sity pro{essor V. N. Tutubalin: "It is strildng that an elernen-

tary course {or university students, intended to sum up the
development of the theory of probabfity andrandorl processes

and provide its simplest and most essential parts, cnded up
consisting of results more than half of which belong to this
great scientific personality. . . . Without his works, personal

influence, and example we would be unable to understand
how to effectively apply the theory of random processes,

and in what areas of science such applications are feasible.
. . . We must be grateful to A. N. Kolmogorov for establish-
ing a truly bright ideal of scientific achievement."

Thesewords express the q,pical
attitude of Kolmogorov's students
toward their outstanding teachcr.
And, without exaggeration, these
scientists are the pride o{ the Rus-
sian school o{ mathematics. But
Kolmogorov's {ostering of new
research mathematicians wasn't
the only n-ranifestation of his
teaching ability. Frorn the mid-
sixties on he devoted most of his
time to math education at the
high school level. He taught in
regular schools and was one of the
founders o{ the Special Math and
Science Boarding School at Mos-
cow University (which now bears
his name). He spearheaded the
re{orm of math education in the
Soviet Union and wrote a number
of textbooks.

In a certain sense, it can be
said that Kolmogorov is the
grandfather of the magazine
you're reading: together wi.th the
eminent physicist I. K. Kikoyin

he founded Kvant, the Russian predecessor o{ Quantum,
in 1970. He was its permanent editor in chief for math-
ematics until his death in 1987. (You can find more about
Kohnogorov's life and work in the Innovators departrnent
of the fanuary 1990 issue.)

The accompanying article was written speciallyfor the very
first issue ol Kvant, when Kolmogorov was working rnost
actively on reshaping the mathcmatics curriculum. Since

that time its subiect matter-the concept of a "functi.on" and

the functional approach in general-has become common-
place in textbooks throughout the world. Still, we think
that a prescntation by this great mathematical pioneer will
be of interest to our readers-both teachers and students.

in correspondence with the word
written with the same letters in re-
verse order (a word is understood as

an arbitrary sequence of letters). Is
this function invertible? If so, what
is its inverse?

15. A mapping of a finite set onto it-
self is always invertible. Give an ex-
ample of a noninvertible mapping of the
set of natural numbers onto itself.

15. Nine tourists must arrange
themselves in three boats. In how
many ways can they do this if

CONTINUED ON PAGE 41

be seated on n chairs {or (al n:2,
(b) " 

: 3, (cl n:6?
10. A set E consists of six e1e-

ments. Prove that there are exactly
720 functions for which E is both
the domain and the range.

11. A mapping of a finite set onfo
itself is cailed a substitution (or per-
mutation). The number of all di{fer-
ent substitutions of a set depends
only on the number n of its ele-
ments and is denoted by n!. Prove
that 1! : l, 2! = 2, 3! : 6, 4! = 24, 5! =

l2O, 6! :720. Find a general method
of computing fl!.

Invertible functions
12o. Determine which of the fol-

lowing {unctions are invertible:

[-,lx): #, Ir(xl = #,
f zl"l : xt7, f olx) = Yrg.

13. No more than two students
sit at any desk in a classroom. As-
sign to every student the student
with whom they share the same
desk (those sitting alone are each
assigned to themselves). What is the
inverse mapping?

14.Let every English word be put
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MATH
INVESTIGATIONS

Endle$$ ssll-descl'iption

Finding the limits in Hilgemeier's "likeness sequence"

by George Berzsenyi

I N CHAPTER 29 OF HIS WONDERFUL BOOK

I O" Computers and. the Imagination (St. Martin's
I Press. 19891. Cli{ford A. Pickover treats an interest-
I irrg proced.rie for generating sequences of numbers.
I learned about it from a California high school student,
Peter Wang, who was one of the USA Mathematical
Talent Search participants last year, and I'd like to
share it with my readers.

The idea for "Die Gleichniszahlen-Reihe" was first
described in a German article (with that title) by M.
Hilgemeier as follows: staft with a I in row one; read
that row and record the result ("one 1") in row two as

l, l; ueate row three similarly from row two-that is,
since there are two l's in row two/ row three will be-

come 2, 1; row three is read as " orte 2, one 1, " hence
row four will be 1,2, 1,1. Continuing in this manner,
we create the first ten rows as follows:

I
1, 1

2, 1

I,2, l, I
l, r,1,2,2, I
3, 1,2,2, l, I

1,3, l, 1,2,2,2, I
l, l,1,3,2,1,3,2, l, I

3, l, l, 3, r,2, l, l, l, 3, 1,2,2, I
1,3,2, l, l, 3, l, l, 1,2, 3, r, l, 3, l, 1,2,2, l, I

My first challenge to you is to write a computer pro-
gram to genetate many more lows in the same man'
ner. The program should also count the number of dif-

The purpose of this column is to direct the attention of
Quantum's readers to interesting problems in the literature
that deserve to be generalized and could lead to independent
research and/or science projects in mathematics. Students
who succeed in unraveling the phenomena presented are en-

couraged to communicate their results to the author either di-
rectly or through Quantum, which will distribute among
them valuable book prizes ar,dfor tree subscriptions.

ferent entries in each of the rows/ as well as the fre-
quency of certain combinations thereof, so as to allow
for various conjectures. In particul art you will want to
show that only the numbers 1,2,3 appear in any of the
rows. This fact was established by Hilgemeier earlier,
but it's still not known whether the combination 3, 3,
3 can ever occur in any row. This was the challenge
that prompted Peter Wang to wdte to me.

More generally, suppose that one starts with a row
of 1's, 2's, and3's such that not more than three 1's or
2's and no more than two 3's appex consecutively. Will
the next row necessarily inherit this propetty? One
should be able to generate such starting rows randomly
and detect possible additional conditions that will guar-
antee the "likeness" of the next row. Alternately, one
should also ask: Is it possible to go backward from any
given row of an even number o{ entries? You'll soon
discover that the answer to this question is no, but it
takes a lot more to detect the reason(s) for it.

It's not difficult to see that no row can contain more
than twice as many members than the previous row.
By examining the number of entries in each of the first
27 rows (in the Z7ththereare 1,000 ones, 635 twos, and
376 threes), Hilgemeier found that each row has about
1.3 times as many entries as the previous one. See the
article by |ohn Conway in the November/December
1990 issue of Quantum (pp. 31, 53)for a precise math-
ematical formulation of this observation. Interestingly,
the number of 1's, 2's, and3's seems to grow from row
to row at the same rate.

In his book, Pickover also explores the possibility of
starting with a nonnegative integer, p + I, in row one
and then generalizing the other rows, as well as the pos-

sibility of starting with two distinct nonnegative inte-
gers (say, p and q, p * I + q) rn row one. Clearly, there
are a number of other possible "seeds." My final chal-
lenge to my readers is: Generalize. Of course/ the best
generalizations are those that will provide additional
insight into the specific case under consideration-

l"T:", 
one should never lose sight of the orisinal prob-

0llAllTU]il/lillIll lllIltSTltATl0Il$ ll



College of Arts and Sciences, Northwestern University

Mathematica!
Experience for
j"lorthwesternNU Undergraduates

Northwestern University announces the formation of an expanded set of programs for selected students
interested in mathematics and its related fields. MENU will be offered for the first time to entering students
in the fall of l993.If you have strong intellectual curiosity in this direction and seek a major university
and the opportunity to work closely in a small and personalized setting with other students and professors,
read on.

HISTORY

FEATURES OF
MENU

WHY A SPECIAL
PROGRAM?

APPLICATION
PROCEDURE

In 1976, Northwestern inaugurated the Integrated Science Program (ISP), which is
a successful, one-of-a-kind effort to bring together mathematics and the sciences at
the undergraduate level. This was followed by the creation of a parallel program in
Mathematical Methods in the Social Sciences (MMSS). Enrollment in these programs
is limited to approximately 30 students per year.

MENU is a set of special concentrations for students with a strong interest in mathematics
and its applications in the sciences and social sciences. MENU is designed to bring together
students seeking to develop an active, hands-on approach to mathematics and encourage
the exploration of advanced topics in special seminars with program faculty. MENU will
provide smaller classes, more individualized advising and seminar programs for selected
students wishing to concentrate in mathematics in a multidisciplinary setting. The principal
entry route will be Mathematics B90, a three-quarter sequence covering the foundations
of analysis. During the first year, students applying to MENU will indicate one of several
possible routes: ISP* MMSS* and the new MENU programs in Mathematics, Mathematical
Physics, Statistics, Computer Studies, and Decision Sciences.

At Northwestern University, we combine the strengths of a research institution with a small
size to offer individualized programs at the undergraduate level, where students receive
an in-depth approach that leads to superior preparation and more informed choices for
graduate study or professional preparation. As a student interested in obtaining the best
possible education, your personal interests are given the highest priority.

Applications will be accepted by the director of MENU during the Freshman Year from
students who are enrolled in Mathematics B90. The specific MENU programs will begin
with Sophomore Year. It is expected that MENU students will take some calculus in high
school, including the BC and/or AB examinations administered by the CEEB Advanced
Placement Program. Other specific questions can be administered by the Director by
writing to: Mark Pinsky, Director of MENU, Kresge 324, Northwestern University,
Evanston, lL 60208 -2206

* High School students interested in entering ISP or MMSS must complete the relevant application concurrently
with the Northwestern application in the last year ofhigh school.

Northwestern University is an equal opportunity, affirmative action educator and employer.
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BRAINTEASERS

Justlol'lhelunol il!

891
Dancing regulafities. At aparty each boy danced with three girls, and
each girl danced with three boys. Prove that the number of boys at the
party was equal to the number of girls. (V. Proizvolov)

892
Careless cashier.I went to the bank to cash a check. As the cashier gave
me the money, I put it in my empty wallet without counting it. During
the day I spent $6.23. When I checked my wallet in the evening, it
contained exactly twice the amount of the check I had cashed. Strange!
A little calculation revealed that while making the payment, the cashier
had interchanged the figures for dollars and cents. What was the amount
of the check? (S. Sidhu)

893
Bubbles in a glass. An
with hot water. After a
glass. Why?

upside-down glass was immersed in a pan filled
while, air bubbles started coming out of the

894
Squares in a semicircle. Two squares are
shown in the figure at left. Prove that the
times that of the small one.

inscribed in a semicircle as
area o{ the big scluare is four

895
Rock to rcck.fuor::, a pile of 1,001 rocks one rock is taken away and the
rest of the pile is divided into two piles. Then one rock is taken away
from a pile with more than one rock, and one of the piles is divided into
two, and so on. Is it possible that after a number of such operations all
piles have three rocks each? (S. Rukshin, S. Genkin)
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ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 58
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Cooled hy the liUht

"Degrade first the Arts if you'd Mankind degrade,
Hire tdiots to Paint with cold light & hot shade..."

-Wiltiam 
Blake, annotations toThe Works of Sir Joshua Reynolds

by l. Vorobyov

DMIT IT NOW-DOESN'T
my title bug you iust a little
bit? After all, on a hot day we
look for a shady spot to get

away from the Sun's rays. So how
can we cool something by shining
light on it? To bring a body's tem-
perature down, we have to remove
energy, but light brings energy with
it. And yet a "photonic refrigerator"
has been created, and it cools to the
remarkably low temperature of
2.4 -tO-4 K.

Now that we know it's possible,
let's see if we can figure out how to
"make it cold" with light.

The afiom Isaln altd lho p[otolt tsaln

First of all, remember that tem-
perature is related to the average
kinetic energy of the thermal mo-
tion of atoms:

9 p7 =-! . (1)
22

For this energy to decrease, we need
only slow down the atoms. Well,
why not use photons to slow them
down? We know that a photon has

a momenturn p : t f c, where e is the
photon's energy and c is its speed-
that is, the speed of light. If a mov-
ing atom absorbs the first photon it
meets, then this atom will slow

down. But how can we get a Photon
to hit an atom?

Clearly there's no point in trYing
to aim at an individual atom. We
need to hit a beam of atoms with a

beam of photons "right between the
eyes." We naturally tum to a laser as

the source of light that will act as a

brake. It emits a directed beam of
photons of the same energy. To get

a directed beam of atoms/ let's do
the following. Evaporate a tiny piece
of a substance in a vacuum chamber
(either with an electric discharge or
a pulse of laser light). Two barriers
with small holes separate out a thin
beam from the escaping cloud of
vapor. And that's how we get the
"atom tear-rr" that will meet the
onrushing laser beam (fig. 1).

Isn't it marvelous? The basic out-
lines of the refrigerator I described
have already taken shape. But will
the light be absorbed by the rela-
tively rarefied beam? (As a rule,

gases are rather transparent. This
means that most Photons Pass
through a gas without bumping into
arry o{ its atoms.) And if the photon
is absorbed, will the atom necessar-
ily slow down and lose some of its
energy in this process? These two
questions are closely linked.

The levels of the possible intemal
energy of an atom form a ladder
with empty intervals between the
steps (fig. 2). The first excited state
is separated from the ground state
(with the lowest internal energy)by
the energy E,; the second excited
state is separated from the first ex-

cited state by the energy Er; and so

on. The steps themselves have a cer-
tain thickness: in a given excited
state most of the atoms have ener-
gies from E -l12 to E + f f2, where

I,

fz
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f is the width of the level with en-
ergy E. The probability o{ meeting
an atom outside this range is small
and decreases sharply as the devia-
tion from the middle of the step in-
creases.

There is a definite correspon-
dence between the energy of the
atom and that of the absorbed pho-
ton: an atom can only absorb a pho-
ton whose energy corresponds to a

transition from one step to another.
It is this resonance in the absorption
that in large part expiains why gases

are so transparent: if the photon en-
ergy differs from the transition en-
ergy by more than the width of the
level, the probability of absorption
decreases sharply to zeto.

So if we select the right photon
energy/ absorption occurs with a

transition of the atom from one
state to another in which the inter-
nal energy is greater. Because of the
kick received during the absorption
of the photon, the atom slows down,
and its kinetic energy decreases.
This does not contradict energy con-
servation, though. In this case a por-
tion of the atom's kinetic energy
and the photon's energy increase the
internal energy of the atom. An ex-
amination of the conservation of
momentum and energy when the at-
oms and photons interact will make
it possible to understand the idea of
cooling by light.

Let's leave calculations aside for
the moment and think about this. It's
hardly likely that a single absorption
can completely extinguish the speed
of an atom. So its fate after the absorp-
tion is also important. An atom is
stable only in the ground state, when
it is in its lowest energy level. The
li{etime of an atom in an excited state
is limited. For the first level, a typical
li{etime is of the order of 10 8 s. On av-
erage, in that period of time an atom
retums to its ground state and in so

doing emits a photon. How does the
emission of a photon affect the mo-
tion of the atom? Does it compensate
for the slowing down that occurred in
the absorption stage? Does it cause
the atom to leave the atomic and la-
ser beams? This calls for quantitative
estimates.

These emitted photons can also
be absorbed by other atoms: the con-
ditions of resonance apply to them
as well. The number of these "sec-
ondary" photons is, however, much
smaller than the number of photons
in the intense laser beam. In addi-
tion, they are radiated in all differ-
ent directions, and most of them
quickly leave the atomic beam. So

we can neglect the absorption of
emitted photons.

fininU and l'e$oltance

Let's look at arl actual experi-
ment performed with sodium. We'll
consider a transition from the
ground state to the first excited
state, with an energy E = 2.1 eV and
width I : 4.4. 10-8 eV.r Such a nar-
row resonance needs a high accu-
racy in the choice of the photon en-
ergy. The atomic mass of sodium is
m = 22 GeY f c2,where c : 3 . 108 m/s
is the speed of light.'?In converting
from temperatlte to energy and vice
versa/ it's convenient to use a

rounded figure for the Boltzmann
constant k = 10-a eV/K (more pre-
cisely, energies of 1 eV correspond
to 11,600 K). A speed for the thermal
motion of sodium atoms of approxi-
mately 103 m/s corresponds to a
temperature 103 K, while a speed of
I m/s corresponds to a temperature
of 10r K. The orders of magnitude
are approximately the same for
other atoms as well.

Consider the conditions of reso-
nance absorption in a head-on colli-
sion o{ an atom with a velocity v
and a photon with some energy €

(fis. 3). According to the law of con-
servation of momentum,

€mvl= mV --,

where v, is the velocity of the atom
after absorbing the photon. Accord-

lOne electron volt (eV) is equal to
the energy gained by an electron in
passing through a potential difference
of one volt; 1 GeV : 10e eV.

2The expression GeV/c2 has the
dimensionality of mass and serves as

its unit.

mv xlc
H<.-^./

mv, e/c

mv

Figure 3

ing to the energy conservation law,

mv? ^ mv)'+.e=t+
22

Solving these equations gives the
photon energy s that ensures reso-
nance absorption and the velocity of
the atom v, after absorption. At a
temperature of the order of 103 K,
which is necessary for sodium
evaporation, the velocity of the at-
oms is much lower than the speed of
light. It's reasonable to find an ap-
proximate solution with a precision
suitable for our purposes. To this
end, let's write the conditions for
the balance of momentum and en-
ergy in a different way-

t : mc(v -v1l, Ql

m(P- o\

E_t.=rn\v'-vi) (3)

-and divide equation (3) by equa-
tion (2):

E-, =vtvt . t4lt2c

The relative difference between the
photon energy and the excitation
energy turns out to be small. Ne-
glecting this difference, for our first
approximation we get

Ev-vr= " =3'10 
2 m/s. (5)-mc

This difference in velocities is ob-
tained by substituting e for the
slightly larger magnitude E in equa-
tion (2), so that the precise value of
this difference is actually a bit
smaller.

o
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In our next approximation we'll
exploit the fact that the difference
between the velocities is small com-
pared to the velocities themselves.
Replacing v, with v in equation (4),

we obtain

Taking the difference in veloci-
ties into account results in an en-
ergy shift that is much smaller than
the width of the level, so it's imma-
terial to us-it won't affect the reso-
nance condition. For the same rea-
son we're allowed to substitute e for
E in the denominator of equation (5),

SO

T7E-t=E
L

17l

with a precision sufficient for our
purposes.

Therefore, the condition for in-
tensive absorption of photons has
been found: their energy must be
lower than the energy of the level by
a fraction equal to the ratio of the
atom's velocity to the speed of light.
But the negligible decrease in the
velocity-3 cm/s-is vexing. A one-
time slowing of the atom in fact
gives us nothing.

We should bear in mind that the
velocities of atoms in a beam are
different, so only some atoms satisfy
the resonance condition . In fact, ac-
cording to equation (71, for the upper
and lower boundaries of the level we
get

Etf - r=EV',2c

where V* are the boundary velocities
leading to resonance for a given pho-
ton energy. The width of the veloc-
ity range is

Atoms whose velocities are beyond
this range will not slow down.

Be-emhsion altd l'e$oltflltts illtilt0
A one-time slowing at absorption

is not enough. However, when an
atom has spent a short time in the
excited state/ it returns to the
ground state by emitting a photon.
After that, we hope, it's ready for
another absorption. So let's look at
the radiation of photons by excited
atoms when they return to their
ground states.

Laser photons go where we point
them, but radiated photons f1y off
every which way. The change in the
atom's velocity when it gives up a
photon depends on the angle 0 be-
tween the velocity v of the excited
atom and the direction of the pho-
ton (fig.  ). The energy of the emit-
ted photon e' depends on the same
angle 0. According to the conserva-
tion of energy/

( ,\2mlv. I"'\,,/ +r,=*r?+E. (9)

22

where v,'is the atom's velocity af-
ter emitting the photon. The law of
conservation of momentum must
be written in vector form:

mvr' +P' = fiyYt

It's clear that when a photon is emit-
ted "sideways," the direction of the
atom's motion changes by some
angle Q.

Let's do another approximate cal-
culation. In our first approximation,
e' : E. Since Elc rs much smaller

mvt i{;vi)

Figure 4

than mvr, then v, and vr' arc again
rather close and the angle Q is rather
small. Using the radius mvr', we'll
cut off a portion of the segment mvl
(see figure 4). The small arc of the
circle can be considered a linear seg-
ment perpendicular to the segment
mv.It's evident from the small right
triangle that the length of this arc is
E sin 0/c. Then the angle at which
the atom deviates from its original
direction is

ms. (Br rut'c'-E/c

E-t v--"=.. (6)

Esin0o= ,mvc
( 10)

f-c =6
E

and the change in the atom's speed
is

, Ecos0
(11)vr-vr =

For our next approximation we
rearrange the terms in ecluation (9)

and factor the right-hand side:

t'-E=
z(u'-,,)[,,'*,, )'
\ r '/\' ')

Substituting from equation (11) and
setting vr' = v1, we get the difference
between the energy of the radiated
photon and the energy of the excited
state:

Ev, cos0t -L=
c

The magnitudes e'and e are the
same only when the photon is radia-
tion backward-that is, at 0 = n (see

equation (7)). OnlV in this single
case will the loss when the photon
is emitted compensate exactly for
the slowing that occ.urs when it is
absorbed. (Convince yourself that
this is anexactt not an approximate,
result.)

In each individual act o{ radia-
tion, the change in the atom's veloc-
ity depends on the angle of the pho-
ton emission, and according to
equation (11) it falls within the
raige -Ef mc to Ef mc = 3 cm/s. Due

LV =V*-V

OUAIIIIUlll/IIAIURt 23
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to the randomness of the emission
angle, the average value of the veloc-
ity change can be regarded as zero.

According to equation (10), the
largest angle of deviation of the
atom's velocity is

E6=lmax mvp

For a velocity of the order of 103 m/s,
this equals approximately 3 . 104 rad,
but for a velocity of 10 m/s, it's about
3 ' 10r rad.

At first, dozens and even hun-
dreds of absorption-emission cycles
won't draw an atom out of the reso-
nance region. The changes in veloci-
ties per cycle are small, the devia-
tions of the directions of the
velocities are small and random, and
the angular deviation of the beam of
atoms accumulates very slowly.

But this continues only for a cer-
tain time. After the velocity de-

f
creases by AV : c; = 6 m/s (see

equation (8)), resonance stops. For
the atom to be slowed further, we
now need to fine-tune our system.
Analyzrng the resonance condition
described by equation (5), we might
come up with two methods of tun-
ing.

The first method is to smoothly
increase the photon energy e in ac-

cordance with the decrease in the
atom's velocity. To do this, we need
a laser that radiates photons of vary-
ing energy. Such lasers exist.

The second method is to manipu-
late the energy itself. In particalar,
energy levels vary slightly in an ex-
ternal magnetic fie1d. In a field that
is constant in time but varies
smoothly along the beam's axis, an
atom with any velocity will find a
place with a suitable value for the
field. Both methods can actually be
implemented.

Let's look at the first method in
more detail. We'll choose an initial
photon energy such that it corre-
sponds to resonance at a velocity Y
that is gteater than the velocities of,
say, 9Oo/o of the atoms in the beam.
We smoothly increase the photon

energy to a value equal to the energy
E of the level corresponding to reso-
nance for atoms that are almost sta-
tionary.

At first, atoms in the range of ve-

1f
locities V - r"i

1.I-toV+-c;slow
down. Because the atoms slow
down, this range gradually empties:
the velocities of almost all the at-
oms will be lower thanV.

When the photon energy in-
creases/ these slowed atoms will
again enter into resonance along
with other atoms that initially had
lower velocities. Thus, all atoms
with velocities lower than V will
enter into resonance at some time
and begin to slow down.

Let's estimate the slowing time
from a velocity V to a velocity of
almost zerc.The number of absorp-
tion-emission cycles during this
time is equal to N:Vl@lmc), where
E f mc is the decrease in velocity dur-
ing the act of absorption (see equa-
tion (5)); we neglect the change in
velocity when an excited atom
emits a photon. The length of the
cycle At is defined by the lifetime t
in the excited state, since absorption
takes place quickly when the inten-
sity of the laser beam is high. Thus,
the total slowing time is

t = N.At = Nt =*"V 
".E

For an initial velocity V: 3 . 103 m/s,
,: 10r s. (We recall that, for sodium,
m : 22 GeY f c2, E :2.1 eY .l

The distance during which the
slowing occurs is estimated to be
1 = VtlL = 1 m. This distance is im-
portant not only in choosing the di-
mensions of the vacuum chamber.
The diameter of the laser beam is

limited. If there is a marked angular
deviation of the velocities from the
axis of the beam of atoms, atoms
will leave the beam (fig. 5). If the di-
ameter of the beam is of the order of
l-2 cm, a deviation of 10-2 rad is
sufficient over a distance of 1 m.
Deviations of such size are achieved
during sideways emission for atoms
with velocities of 3-10 m/s. The
possibilities of slowing with a single
laser beam are limited by the almost
complete loss of atoms. These ve-
locities correspond to a temperature
range of 0.1 K to 0.01 K. Tempera-
tures of 0.05 K that are actually ob-
tained are in close agreement with
our rough calculations.

A Fap urrifiin a Fal
Even slow atoms disperse rather

quickly due to variations in their
velocities. "Supercold" atoms must
somehow be gathered and kept in a
compact group. To this end, a trap
made of light was created-actually,
two traps/ one inside the other.

The outer, larger trap, which pro-
vides additional cooling, is a sort of
elaboration of the slowing beam. It's
formed by crossing six laser beams
whose photon energy e.o= E -ll2
corresponds to the lower boundary
of the excited state (fig. 6).

In this case the law of conserva-
tion of energy results in the follow-
ing equality:

mv2 _f _mv?
222

If theatom'skinetic energymf f2>
f f2, absorption of a "slowing" pho-

E-f12
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ton is possible, but absorption of a
"dispersing" photon doesn't occur.
For an atom that has already ab-
sorbed a photon to absorb one {lying
along behind, the second photon
must have an energy a bit higher
than the lower boundary of the
level. So the atom will be slowed
down, and the direction of its veloc-
ity due to the absorption and emis-
sion will change rather markedly.
This wi1llead to ayery tangled path
and, as a result, to a rather extended
period of wandering in the region
where the six beams cross. In prac-
tice, for a region with a volume of
several cubic centimeters, the con-
tainment time was forind to be ap-
proximately 0.5 s. This is more than
enough time for the kinetic energy
of many atoms to decrease to the
half-width of the level.

It's clear that when the atom's
energybecomes lower thanllZ, ab-
sorption will stop. So a limiting
temperature is defined by the width

of the level: T,*:llzk (see equation
(1)). The temperature acttally at-
tained, 2.4 . l0 a K, is very close to
the limiting temperature.

The six-beam trap can't keep at-
oms there for a long time, though.
They leave it during their wander-
ings and must certainly leave it
when they've slowed to an energy of
f l2 or to a velocity of about 0.5 m/s.
So it turns out that an additional
trap is needed.

It was necessary to create a small
pit in the six-beam trap where the
slowed atoms could go. Unfortu-
nately, to explain this convincingly
would require a huge digression. So
I'li just tell you that the pit consists
of a region with a volume of about
10 e cm3 near the focus of still an-r
other laser beam whose photons
have an energy markedly lower than
the resonance energy. By moving a
lens, one can shift the focus and
transport the atoms captured
nearby.

The energy depth of the pit is
only 5 l0-3 K in temperature
units. So a collision with an
atom of a residual gas at a tem-
perature of 300 K literally kicks
the sodium atom out of the pit.
With a vacuum of the quality of
those obtained to date, it's possible
to hold atoms for about 10 s.

The story of the photonic refrig-
erator stretches from 1968, when
the notion of a trap at the focus of a
laser beam was first seriously pro-
posed, to 1986, when it became pos-
sible to trap 500 atoms of sodium
and keep them for several seconds.

Modern advances have given us
" arr arr,azirtg power over atoms," in
the words of one of the creators of
the photonic refrigerator, Steven
Chu. I have a feeling that atoms and
photons will offer us yet another
opportunity to invent and build
something iust as beautiful. O
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HOW DO YOU
FIGURE?

Challeltus$ in phy$ics and malh

IUIalh

M91
Tr apping chips. Two chips, one white
and one b1ack, are placed on the ex-
treme squares o{ a board consisting of
30 squares arranged in a single row.
Two players take tums moving their
respective chips to one of the neigh-
boring squares (if it's not occupied by
the other chip)-a player is not al-
lowed to skip a move. The player who
can't make a move loses. Who wins
the game: the player who goes first or
the player who goes second? Answer
the same cluestion for a board of N
squares. (A. Talalai)

M92
Legs can't be bases. Prove that it's
impossible to construct two trap-
ezoids (not parallelograms!) such
that the legs of each are congruent
to the bases of the other. (V. Proiz-
volov)

M93
Thirty thousand thirty. The sum of
two integers is 30,030. Prove that
their product is not divisible by
30,030. (S. Fomin)

M94
Quadrilater al f aces. Does there ex-
ist a polyhedron with 1993laces all
of which are quadrilaterals? For
what values of the number n of faces
does such a polyhedron exist?
(V. Dubrovsky)

M95
An end to mimicryl The island of
Bluebrownblack is inhabited by 13

blue, 15 brown, ardlT black chame-
leons. If two chameleons of different
colors meet, they simultaneously

change to the third color (for instance,
a blue and brown chameleon both
turn black). Can all the chameleons
tum the same color after a number of
such meetings? (V. Ilyichov)

Physics

P91
Cartesian diver. A wooden ball
floats in water in an enclosed vessel.
How does the depth of immersion
change when air is pumped into the
vessel such that the air pressure in
it is doubled? (S. Krotov)

P92
Ideal gasworks. A movable piston
inside a horizontal cylinder is at-
tached to the base by a spring. The
spring is relaxed when the piston is
at the extreme left-hand end of the
cylinder (see figure 1). There is an
ideal gas to the left of the piston that
occupies a volume V, under a pres-
sure P,. On the other side is a
vacuum. How much heat must be
supplied for the gas to double in vol-
ume and pressure? Heat leakage
through the walls and heating of the
walls, spring, and piston are ne-
glected. The molar heat capacity of
the gas at constant volume is C, : +R.

Figure 1

P93
Lightning in water.If lightning hits
a body of water during a thunder-
storm/ a dead fish is sometimes seen
afterward on the surface. Why is

this? After all, the probability of
lightning hitting a fish is negligibly
small. (A. Buzdin)

P94
Drawing rays. Figure 2 shows the
positions of two point sources A and
B. Also shown are the corresponding
images A' and B'formed by a lens.
Find the position of the lens in each
case. (L. Aslamazov)

B.

B'.
a

bAtA'

Figure 2

P95
Light pressure. A parallel beam of
light strikes a ball of radius R cov-
ered with soot (fig. 3). The intensity
of the light is 1, where 1is the energy
carried by the light beam through a
unit cross-sectional area per unit
time. What force does the light
beam exert on the ball? (V. Peterson)

-++
+
+
+

Figure 3
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Archimedean smoke and mirrors

by Sergey Semenchinsky

CCORDING TO LEGEND,
Archimedes used mirrors to
burn an enemy fleet anchored
near Syracuse. Let's take a

close look at this legend from the
viewpoint of modern physics and
determine the conditions allowing
something to be burned with a mir-
ror or lens.

Our reasoning will be based on
the fact that the energy radiated
from a unit surface of a heated body
per unit time is proportional to the
fourth power of the body's tempera-
ture (this is known as Stefan's law).
If the energy supplied to the body is
greater than the radiated energy, the
body will heat up. This process will
go on until the energy radiated per
unit time is equal to the energy sup-
plied.t Therefore, to heat a body to
a temperature T, the energy flux in-
cident on a unit area must be pro-
portional to 7a.

Let's take a lens with a surface
area S and focal length F and form an
image of the Sun on some surface.
The entire flux of solar energy inci-
dent on the lens will be collected in
the focal plane of the lens at a small
spot whose diameter is

d.=2Ftan!
2

tWe neglect the thermal flow from
the body due to the thermal
conductivity of air. Experiments have
shown that at the temperature at
which wood ignites, this thermal flow
is small compared to the radiation.

28 stPrrl,tBrR/ocroBrR rssg

IN THE LAB

tocusiltu olt IhB lleel

and whose area is

4nFz tanz I
"_ 2

4

where o is the angular size of the
Sun (see the figure above). Taking
angle u to be equal to 30', we get

- nFzj=* 
4 .(110r

(since 2 tari 15'= 1/110). The flux o{
energy incident on a unit area of the
Sun's image is S/s times that of the
flux incident on the same area with-
out a lens. It follows from Stefan's
1aw that the steady-state tempera-
ture 7 at the focus is (S/s1'l' greater
than the temperature 7o to which
the Sun would heat a surface with-
out a lens. The relationship between
the area of a lens (or mirror) and the
temperature at its focus is

^ fiFz T4J=--.
4 .(rto)' r:

oYg
.a
F
p
C
oo
J

_o

It's widely known2 that the tem-
perature needed to ignite, say/ paper
is approximately 250"C (520 K),
while a temperature of 500-700'C
(800-1,000 K) is needed to ignite dry
wood.

An experiment performed by the
French naturalist Bu{fon showed
that a piece of dry wood soaked with
pitch can actually be ignited from a
distance of 158 feet (about 47 rnl.
His setup consisted of 168 mirrors,
each 48 square inches (310 cm2) in
area, attached to a common frame.
Clearly it's easier to ignite wood
soaked with pitch than an unsoaked
sample. So we can assume at least
that the pitched wood would ignite
at the lowest temperatures men-
tioned-that is, at 800 K. Then, fo1-
lowing equation (1) and assuming
that 7o = 60"C = 330 K, we get S :
4.9 m2, while in the Buffon experi-
ment the total area of the mirrors
was 5.2 m2. Thus, Buffon's experi-
ment doesn't contradict our theory.

Now let's try to calcul ate the arca
of the mirror that Archimedes

zSee, {or example, Ray Bradbury's
novel Fahrenheit 451.

(1)
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U[ill il igrile or ltol?
I N I 9 74 THE POLISH MAGAZINE AR O UND THE
lworldpublished a note about another verification
of the legend of Archimedes and the burning ships.

This legend was subject to doubt because the
technology of that time wasn't advanced enough to
construct a concave mirror so big that the flux of
sunlight from it could ignite ships at a considerable
distance. So it was considered a legend invented by

copy o{ a Roman wooden ship. Each soldier was given
a polished copper sheet measuring 150 cm x 90 cm
with a handle. The soldiers aimed the re{lected sunlight
at one spot on the ship, which was located 200 m from
the shore.

After several attempts the soldiers managed to
collect al1 their individual spots of light at one point
on the ship. In two seconds the ship sLrted to smoke,
and in three seconds it burst into flame. A minute
later what was left of the ship disappeared beneath
the water.

And that was how a December day in 1973 pro-
duced yet another triumph ior Archimedir. 

,.,,r,

on the walls of Syracuse and were
aware of the danger they were fac-
ing, they could fire fusillades from
their ships and scatter the unarmed
throng. But they didn't knowl After
the first ship caught fire, the others
could have fled. But most likely
panic set in-after aII, a "miracle"
had occurred.

And that's how the people of
Syracuse could set fire to several
ships and retteat to the safety of
their fortifications. Of course, this is
just a hypothesis, but as far as the
physics goes, there's nothing impog
sible in it. Al

[allinU all modem

lllaniaGs!

What did you like in this issue
oI Quantum? If you find pen-
and-paper communication too
old-{ashioned, you can send
your comments, questions,
and suggestions to the manag-
ing editor by electronic mail at
the {ollowing address:

7 2030.31 62@compuserve.com

We look forward to hearing
from you.

Greek storytellers.

would need. We suppose the ships
were made from the same material
as Buffon's piece of wood. According
to the legend, the distance from the
mirror to the ships was equal to the
length of an arbalest shot (about 400
m).3 In this case, S = 350 m2. How-
ever, Archimedes not only had to
ignite the ships, he had to ignite
them as quickly as possible-since
the ships could move (unlike
Buffon's piece of wood), they
wouldn't wait around to be set on
fire. The calculation of the time
needed for wood to be heated to its
ignition temperature is rather in-
volved-for example, one must take
into account the thermal conductiv-
ity and heat capacity of wood. So
Iet's just borrow some experimental
data from a reputable book.a Accord-
ing to these data, the illumination
needed to ignite oak boards in 20
seconds is 70 times the illumination
of summer sunlight at normal inci-
dence. To obtain such illumination
one must enlarge the area of the
mirror to 700 m2. A mirror of this

3The arbalest is a type of crossbow
The length of an arbalest shot was
taken {rom the novel The White
Detachment by Sir Arthur Conan
Doyle.

aD. Lawson, The Atom Bomb and
Ffues.

But if it was impossible to construct one big mir-
ror, why not use many small ones? In December
1973, the Greek physicist Ionas Sakkos verified this
hypothesis 

"*p"ri*"rta11y, 
not at Syracuse, though,

but in the port of Athens. He used 70 soldiers and a

size isn't out of the question-the
ancient Greeks were capable of con-
structing even larger objects.

But here's the rub: the rays re-
flected from the various parts of the
mirror must be brought together at
one point, which requires painstak-
ing preparation of such a huge sur-
face. And that's not all. It would be
impossible to control the location of
the spot of light from such a mirror.
To turn a mirror into a controllable
weapon one needs to be able to
change its focal length, and the time
needed for refocusing must be very
short. Could such a compiicated
device be created in ancient times?
Apparently not.

However, Archimedes had another
opti"on: he could line up several thou-
sand soldiers on the fortress wa1l,
each holding a mirror (1,400 men
with 0.5-m2 mirrors would be suffi-
cient). They would all aim their re-
flected light at the same spot on a
particular ship designated in advance.
If the design of the wal1s at Sl,racuse
allowed them to do this (which is
quite likely, since Archimedes him-
self took part in their construction),
and if the mirrors were prepared be-
forehand, everything could be done
quickly enough. Of course, if the
Romans knew why thousands of
soldiers with mirrors had appeared

30 stPTtll4BtR/0cT0BtR tsgS
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KALEIDOSCOPE

ltuepinutl'ackul puinls

"lt is not possible to observe and determine the movements
of a finite body without establishing ab ovol

the movement of every tiny part of it."

-Leonhard 
Euler

3. A string (assumed not to stretch)
is wound on a cylinder whose circum-
ference is /. The other end of the
string is attached to a mass (fi1. 2l'.
What distance will the mass travel
when the cylinder is allowed to roil
through one complete turn without
any slippage of the string or cylinder?

4. Three masses are attached to a
string that is threaded through a sys-
tem of pulleys as shown in figure 3.
Find the direction and magnitude of
the displacement vector for mass M,
i{ mass M, is moved upward 5 cm and
mass M, is moved downward 3 cm.

5. An obiect moves along a

straight line starting from position
xo with a velocity that changes with
time as shown in figure 4. Draw
graphs of the coordinate x, the dis-
placement S,, and the distance trav-
eled S as functions of time.

6. What is the trajectory (relative to
the Earth) of a mass oscillating on the
end of a spring hung from the ceiling
of a car that moves uniformly along
a straight line (fig. 5)?

T.Whatis the trajectory of apar-
ticle moving in a iongitudinal trav-
eling wave?

B. A child throws a ball from atrain
in the direction opposite to the veloc-
ity of the train. How will the ball
move relative to (a) the train, (b) the
railway bed?

9. What is the trajectory of a
charged particle that enters a uni orm
electric field at an angle to the field?

10. Are there points of a moving

Figure 4

E GAIN A WONDERFUL
abiiity to study the most var-
ied and complex motions by
reducing them to the sim-

plest possible motion: a point mov-
ing along a line. But even this seem-
ingly trivial motion requires a

whole bag of concepts to describe it.
In this Kaleidoscope you'll get a

chance to work with some of these
concepts: trajectories, coordinates,
tracks, and displacements. Behind
each of these ideas is a long history,
bound up with the discovery of the
laws governing the motion of bodies
both on Earth and in the heavens.

Questions and ptoblems
1. Can we predict that two balls

will collide if we know that the tra-
jectories of their centers cross?

2. A circle of radius R rolls along
a circle of radius aR (fig. 1). How
many rotations will the smaller
circle make in returning to its start-
ing position?

Figure 1

lThat is, from the beginning
(literally "from the egg" in Latinl.-Ed.

I

)

SIPIIll,IEIR/OCTOBIR

Figure 3 Figure 5
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train that don't move forward but
backward? If there aret what are
their trajectories?

111A piece of chalk is set in mo-
tion along the diameter of a circle
(fis. 51. Relative to the Earth it trav-
els a distance equal to the diameter
by the time the circle makes one
half of a rotation. What track will
the chalk leave on the circle? Fric-
tion is negligible.

12. The fragments of a shell that
exploded at the top of a tower flew of{
with the same initial speed vo. How

o
U)o
(o
o
E
OD

-f
='

will these fragments be distributed
spatially after the explosion? What is
the trajectory of each fragment?

Microexperiment
Hang a hear,y bob on a long string and

move it from its equiJibrium position by
a small angle. Let it go (a)without an
initial velocity; (b)with a velocity per-
pendicular to the vertical plane drawn
through the support point. Along what
trajectories will the bob move?

It's interesting that . . .
. . . the modem notion of three-fi-

mensional physical space seems to
have appeared in the 17th century,
when Descartes invented the rectilin-
ear system of coordinates. In ancient
tirnes the idea of space having dimen-
sionality didn't arise because there
was no understanding of coordinates.

. . . physical bodies fall strictly

vertically only at the Earth's poles.
In all other places on the planet the
trajectories of freely falling bodies
are shifted to the east due to the so-
called Coriolis force, which appears
in rotating systems.

. . . from the time of Aristotle the
trajectories of projectiles were be-
lieved to consist of segments of
straight lines and connecting arcs.
Finally Galileo managed to see that
the trajectory of an object thrown at
an angle with the horizontal plane
in a vacuum is a parabola. And
though the Italian Tartalia (1500-
1557) didn't know the laws govern-
ing projectile motion, he concluded
that a shell can be fired the farthest
if the gun is tilted at an angle of 45'
with the horizontal. - O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 59
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the numbers on the blackboard re-
mains unchanged (because multipli-
cation is both commutative and
associative). This product was origi-
nally -1, so finally it must also be
equal to -l-that is, the last number
will be -1, or the last sign will be a
minus.

The same reasoning can be re-
shaped as follows. Let's replace all
the pluses by zeros, minuses by
ones, and note that the sum of any
two numbers is of the same parity as

the number written down in their
place when they are erased. Since
initially the sum of all the numbers
was odd (it was equal to 15), the last
number left on the blackboard has
to be odd-that is, 1; so the sign left
on the blackboard is a minus.

Final1y, a third solution can be
based on the observation that under
every operation the number of mi-
nuses either doesn't change or de-
creases by two. Initially the number
of minuses was odd, so a minus will
be left in the end.

Now let's examine all three solu-
tions.

The first one was based on the
invariability of the product of the
numbers on the blackboard, the sec-
ond on the invariability of the par-
ity of their sum, and the third on the
invariability of the parity of the
number of minus signs. We can say
that in each of these solutions we
were able to find an invafiant: the
product of ones and negative ones, Figure

the parity of the sum of zeros and
ones, the parity of the number of
minuses. The solutions to the prob-
lems and exercises that follow are
also based on aptly selected invari-
ants.

Exercise 1. A number of plus and
minus signs are written on the
blackboard. It is permitted to erase
any two signs and write a plus in-
stead if they were different and a

minus if they were the same. Prove
that the last sign that will be left
doesn't depend on the order of era-
SUIC.

Problem 2. Plus and minus signs
are arranged in a 4 x 4 table as
shown in figure 1. It is permissible
to reverse all the signs in one hori-
zontal line, one column, or along
any line parallel to a diagonal of the
table (in parLicular, in any corner
unit square). Does there exist a se-
quence of these operations leading
to a table without minus signs/

Replace the pluses and minuses
with +1's and -1's again. Multiply
the numbers in the squares shaded

Some lhinus ltgtter chaltue

So use invariadlity to your advantage

by Yury lonin and Lev Kurlyandchik

HE PROBLEMS DISCUSSED
in this article are alike in that
each of them involves (perhaps
with an appropriate reduction)

some "configurations" of numbers
or other symbols and a set of opera-
tions that can be applied to these
configurations. We'1l ask such ques-
tions as these: Is it possible to find
a sequence of operations that turns
one given configuration into an-
other? Under what conditions re-
stricting the configurations and the
sequence of operations can this be
achieved? What configurations can
be obtained from a given one?

We'll see that problems like these
are most efficiently solved by find-
ing unchangeable features in a
changing con{iguration as it is sub-
jected to the allowed transforma-
tions.

Problem l. Ten plus signs and fif-
teen minus signs atewritten on the
blackboad. You can erase any two
signs and write in their place a plus
sign if they were the same and a
minus if they weren't. This opera-
tion is repeated 24 times. What sign
remains on the blackboard!

Let's replace every plus sign with
the number I and every minus sign
with -1. Then the ailowed opera-
tions can be described as erasing any
two numbers and writing down
their product. So the product of al1

At left: "A mathematician on
vacatiorr."
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Figure 2

in figure 2. This product is an invari-
ant, because any of our operations
either leaves these numbers intact or
changes exactly two of them. Origi-
nally this product is eclual to -1, so

it's impossible to get a table without
minuses, for which this product is +1.

Exercise 2. Solve problem 2 for
the tables in figures 3, 4, and 5.

Problem 3. Written on the black-
board ate a numbet of zetos, ones,
andtwos. Instead of any two differ-
ent digits we can vwite a digit dif-
ferent from these two (0 and 1 can
ba replaced by 2, and so on). These
operations are repeated until only
one figure remains on the black-
board. Prove that this figure doesn't
depend on the order in which these
operations are performed.

Let xo, x,, and x, be the numbers
of zeros, ones, and twos/ respec-
tively. Every operation changes each
of these numbers by one, and so it
changes the parities of all three
numbers. When there's only one fig-
ure left, two of the numbers Xo, X,,
ar-.d xrbecome equal to 0, and the
third is 1. Therefore, initially two of
these numbers were of one parity
and the third was of the other parity.
So regardless of the order of the op-
erations, the only number among x,
xy artdxrthat can be equal to 1 in
the end is the one that initially dif-
fered in parity from the other two.

Our solution implies that in the
case when all three numbers Xo,X'
x2are of the same parity it's impos-
sible to erase all figures but one.
However, our solution does not im-
ply that this can rcal\y be done if
there are both odd and even num-
bers among them (and at least two
of the initial numbers are nonzero).
In fact, such a sequence of opera-
tions can always be found in this
case-we leave this fact as a tather
simple exercise for the reader.

Let's change the operations in
problem 3: we'll require that four
figures are erased at a time-two of
one kind and two of another-and
that one figure of the third kind is
written down in their place. Sup-
pose that after a number of such
operations only one figure is left.
Can we tell in advance, knowing the
initial numbers of zeros, ones, and
twos, what figure will remain on the
blackboard?

The parity argument doesn't work
here, because one of thenumbersXsr x1r

x, changes its parity under each opera-

tiorl while the parities of the other two
are preserved, so numbers with initially
different parities can get the same
parities. But if we consider the re-
mainders of xo, X'x, modulo 3 rather
than modulo 2 (looking at parities is,
after all, equivalent to reducing the
numbers modulo 2), we notice that our
operations leave them equal if they were
equal and different whenever they were
different initially. (h other words, the re-

mainders of x, - xo, xr- Xrt xtd xo- x,
modulo 3 are invariant.) The rest of the
reasoning follows that of dre solution to
problem 3.

Problem 4. In each square of an
B x B aruay an integer is vwitten. We
can choose an arbitrary 3 x 3 or 4 x 4

sub arr ay and increase all the numb ers

in itby one. Is it always possible to ob-
tain numbers divisible by 3 in all
squarcs of the initial anay!

The answer is no. Let's find the
sum of the numbers in the 48
squares shaded in figure 6. Since any
4 x 4 square contains 12 shaded unit
squares and any 3 x 3 square con-
tains 9 or 6 such small squares, the
allowed operations do not change
the remainder of this sum when di-
vided by 3. Therefore, if this sum is
not divisible by 3 initially, the
shaded squares always contain
numbers not divisible by 3.

Exercise 3. Given the conditions
of problem 4, is it possible to obtain
aL affay not containing even num-
bers from arrarbitrary initial array?

Problem 5. The numbers 1, 2, ...,
n are aftanged in some ordet. We
can exchange any two adiacent
numberc. Prove that an odd num-
ber of such exchanges produces an
aru angement neces s adly diff er ent
fuom the initial one.

Let ar, a2, ...t anbe the numbers 1,

2, ..., fi written in the given order.
Such a string of numbers is called a

peruutation of l, 2, ..., fr .The num-
bers a- and a,in this permutation are
said to form an invercion if i < I but
a. > a-that is, the greatet of these
two numbers precedes the smaller.
Exchanging any two adjacent num-
bers, we reverse their order, but the
order of any other pair of numbers is,
of course, preserved. So the number
of inversions increases or decreases
by one. A{ter an odd number of pair
exchanges we change the parity of
the number of inversions and, there-
fore, the permutation as well.

Exercise 4. Prove that the state-
ment of problem 5 remains valid

Figure 3
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Figure 4
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even if we're allowed to swap any
two numbers in the given permuta-
tion. (Hint: show that any two num-
bers can be exchanged by means of
an odd number of "adjacent ex-
changes.")

Another term for a pair exchange
is transposirlon. Using this term, we
can formulate the statement of ex-
ercise 4 as follows: an odd number
of transpositions changes a permu-
tation. The solution to problem 5,
along with the fact stated in the hint
to exercise 4, shows that every
transposition changes the parity of
the number of inversions. A permu-
tation is called even or odd if the
number of inversions in this permu-
tation is even or odd, respectively.
So we can now say that performing
a transposition changes the parity of
the permutation whose elements
are transposed.

Problem 6. Twenty-five cars
started from different points along
a closed speedway in the same di-
rection and at the same time. Ac-
cording to the rules of the race, the
cars can pass one anothet, but
double passing is forbidden. The
cars finished simultaneously, all at
their r espective starting posit ions.
Ptove that there was an even num-
ber of passes during the race.

Imagine that one of the cars is
painted yellow and number the re-
maining cars in their order at the start
(car number one starts immediately
behind theyellow car, the second one
behind the firsq and so on). Imagine
there is a scoreboard indicating the
order of the cars as they follow the
yellow car. Then every time a num-
bered car overtakes another num-
bered cart two numbers on the
scoreboard exchange places.

Let's see what happens when a
numbered car passes the yellow one.
If the order of the numbers before
the pass was art a2t ...t arn, then a{-
ter the pass the scoreboard will read
art a3t ...t aro, ar.. But we can obtain
the same permutation as a result of
23 transpositions:

Al, AZ,A3r ...r AZ4-+ Ay Ay A3t ...r
az+) a2, a3, ay...r a24)... -) a2t

A3t ...t AI, AZ4) A2t Ay ..., A241 A1.

If the yellow car passes another one,
the permut ation a, a2r . . .r a24 turns
into a24t ar1 a2t ...r aru. This can also
be achieved by a series of 23 trans-
positions (how?).

Thus, any pass amounts to an
odd number of transpositions-that
is, changes the parity of the indi-
cated permutation. But the final per-
mutation coincides with the initial
one/ so/ by exercise 4, the total num-
ber of transpositions must be even
(in other words, the overall permu-
tation must be even). Therefore, the
number of passes had to be even as
we1l.

With this introduction, you're on
your own. We're confident you can
handle the exercises that follow.

Exercises
5. Four ones and five zeros are

written around a circle in an arbi-
trary order. A one is inscribed be-
tween every two equal numbers and
a zero between different numbers;
then the initial numbers are erased.
Is it possible to obtain a set of nine
zeros atter a series of these opera-
tions?

5. Wendy tore up a sheet of paper
into 10 pieces, then tore some of
these into 10 pieces, and so on.
Could she obtain 1993 pieces in this
way?

7. The numbers I, 2, ..., 1993 are
written on the blackboard. Two
numbers are erased and replaced by
the remainder of their sum when
divided by 13. This operation is re-
peated until one number is left.
What is this number?

8. Every number from I to
1,000,000 is replaced by the sum of
its digits. The resulting numbers are
repeatedly subjected to the same op-
eration until all the numbers have
one digit. Will the number of ones in
the end be greater or less than the
number of twos?

9. The sum of digits of a three-
digit number is subtracted from the
number. The same is done to this
difference, and so on. What number
is obtained after a hundred repeti-
tions?

10. A circle is divided into 10 sec-
tors and one chip is placed in each.
We can move any two chips to the

neighboring sectors but they must
move in opposite directions. Is it
possible to bring all the chips to-
gether in one sector?

11. (a) A minus sign is placed at
the vertex A' of a regular 12-gon
ArAz...AD, and plus signs are placed
at all other vertices. One is allowed
to reverse signs at any three vertices
forming an isosceles but not a right
triangle. Can we get a minus sign at
A, and plus signs at all other verti-
ces after a number of such opera-
tions?

(b) Will the answer to part (a) re-
main true if we're allowed to change
signs at the vertices of any isosceles
triangie?

J2. A plus or minus sign is writ-
ten in every scluare of a 4 x 4 aruay.
We can change all the signs in any
line or any column. The smailest
number of minus signs that can be
arrived at via these operations start-
ing with a given aruay is called the
character of this aray.What values
can the character take?

13. Thirty chips-ten white and
twenty black-are placed around a
circle. Any two chips with three
chips between them carr be
swapped. Two arrangements of
chips are ecluivalent if one of them
can be obtained from the other after
a number of such transpositions.
What is the greatest possible num-
ber of nonequivalent arrangements?

14. The numbers l, 2, ..., 1993 arc
written in increasing order. Any
four numbers can be rearranged in
reverse order in the same places. Is
it possible to obtain the reverse order
1993,1992, ...,2, L of the entire set of
numbers? O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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PHYSICS
CONTEST

Thnills hy desiun

"Centrifugal power . . . what stillnesses lie at your center
resting among motion?"

-Muriel 
Rukeyser ( 1 91 3-1 980)

by Arthur Eisenkraft and Larry D. Kirkpatrick

T TIil, XXIV INTERNATIONAI
Physics Olympiad, which was
held in Williamsburg, Virginia,
durrng luly 1993, students from

the 41 participating countries spent a
day investigating the physics of some
of the amusement park rides at Busch
Gardens. Those roller coasters and
bumper cars and swings certainly
move the awareness of momentum,
forces, and acceleration from our
brains to our guts.

One ride that appears simple
enough to analyzeis the rotor. As in
many physics explorations, the
analysis reveals a hidden effect-a
treasure that you may not have pre-
viously known. The rotor is a hol-
low cylinder of radius 2.5 m. Riders
stand inside the cylinder with their
backs against the wa1l. As the rotor
spins, they feel as if they are being
pushed against the wall. When the
maximum speed is reached, the
floor drops out! As shouts emerge/
the riders don't fal1. The friction
between the wall and the riders
keeps them from slipping down.

Let's analyze this ride, keeping
our minds ready to discover that
extra treasure. From the perspective
of a person above the ride, a person
is kept from flying through the wall
by the push of the wall. This normal
force F* is directed toward the cen-
ter of the cylinder. The force o{ grav-
ity F, pulls the person vertically
down. The frictional force F, is di-

rected vertically up and must be
equal to F- or the person will slide
down.

The horizontal normal force F*
must supply the required centripetal
force to keep the rider moving in a
circle:

P =!"-NR,

where m is the mass o{ the rider, v
is the velocity of the rider, and R is
the radius of the rotor. The equality
of F" and F, yields the following re-
latidnship:

mg: pF^,

where p is the coefficient of friction.
Substituting for F*, we can find the
required coefficient of friction:

The coefficient of {riction deter-
mines the required minimal speed
for any rotor! Next time you get to
watch or ride on a rotor/ take a look
at how the ride's designers have in-
creased the coefficient of friction-
did they add carpeting to the walls,
or did they use rough paint?

Some of you are probably still
searching for the surprise discover-

ies. One minor surprise is that the
ride works just as well irrespective
of the mass of the rider. The more
interesting surprise is that, from the
reference frame of the rider, the
question "Which way is up?" takes
on new meaning. The rider feels
gravity pulling one way and a cen-
trifugal force pulling outward. The
combination of the two defines a
"new gravity" in the rider's balance
system. Riders think that they are
lying at an angle and are no longer
vertical. Next time you're on the
rotot, try to be aware of this effect.
Estimate the angle of apparent tilt,
and check to see if it's consistent
with your estimates of F^ and F".

One of the challenges for the"en-
gineers working for amusement
parks is to develop new, exciting,
and safe alternatives to the tried-
and-true classics. We thought that
Quantum readers might enioy such
a design challenge. We'I1 describe a
traditional physics problem-one
that was used in the International
Physics Olympiad in Budapest,
Hungary, in1976. Your challenge is
to understand the physics of the
problem and then to incorporate the
design into an amusement park ride.

Ahollow sphere o{radius R = 0.5 m
rotates about its vertical diameter
with an angular velocity rrl : 5 s 1.

Inside the sphere at the height R/2
a small block revolves together with
the sphere. (Use g : 10 m/sr.)
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A. What is the coefficient of fric-
tion required for the block to con-
tinue to revolve at this height?

B. What is the coefficient of fric-
tion required when ro : B s-r?

C. Investigate the problem of sta-
bility (1) for small variations in the
position of the block and (2) for
small variations in the angular ve-
locity of the sphere.

D. Can the block be replaced by a
person as a design for an amusement
park ride? Are there any inherent
problems with such a ride? Would the
public enjoy such a ride? How would
you get on and off such a ride?

Please send your solutions to
Quantum, I 840 Wilson Boulevard,
Arlington, YA 22201 within a

month of receipt of this issue. The
best solutions will be noted in this
space and their authors will receive
special certi{icates from Quantum.

How ahoul a date?

In the March/April issue we
asked you to explore the problems
created in radiocarbon dating when
the atmospheric concentration of
carbon 14 varies with time. An ex-
cellent solution was submitted by
Ben Davenport from the North
Carolina School of Science and
Mathematics. Ben was a semifinal-
ist for this year's US Physics Team
that competed in the International
Physics Olympiad in Williamsburg.

A. We begin by calculating the
value of the decay constant:

^ ln}
lL:

7..
h

=l.2I.lQ-+ ysar-t

= 3.83. 10-12 s-1.

We can calculate the number { of
1aC atoms from the ratio of the laC

to 12C atoms and the fact that 12 g
of carbon contain Avogadro's num-
ber of atoms:

No=
(6.02.t0,3 atoms)(t.ao . to-,r)

t2
= 6.52. 1010 atoms.

Therefore, the decay rate for the 1-g
sample of carbon shortly after the
animal died was

Ro = XNo : 0.250 decays/s
= 15 decays/min.

B. Solving the equation for the
change in the decay rate for t, we
can obtain the time since the animal
died:

ln(a a")
t-

-).

ln(t/15)

=7.07. 1011 s

=22,400 years/

where R is the current decay rate of
1 decay/min.

C. Unfortunately there was an
error in the statement of the prob-
lem that caused this part of the prob-
lem to be harder than was intended.
The rate of decrease was meant to be
O.l"/" rather than the stated 1%.
Let's solve the problem with both
rates of decrease.

With a decrease ol0.l% per cen-
tury/ we can use an iterative tech-
nique to find the age. As a first ap-
proximation to the decay rate Ro' at
the time of the animal's death, let's
use our age from part B. Then

D, n (. o.oolt )
^o - ^o[ 

, 
I00 years 

.J

= 0.776(15 decays/min)

= 11.6 decays/min

and

m[a/a ")- \ ,/ 1n(fII.6)

-T _I
:6.40.1011 s

:20,300 years.

If we iterate this procedure two
more times, we settle in on an age
of 20,500 years.

This techniclue will not work for
the stated decrease o{ lY", because
the ratio drops to zero in 10,000
years. However/ we can use a graphi-
cal technique to solve for the an-
swer. If we let t represent time in the
past, then the decay rate at any time
in the past must be given by

Ro' = ReL''

The historical decay rate of a new 1-g

sample of carbon is given by

't)R'= R l l-o.ol- r.' '[ 100 years/

The graph of these two functions is
shown in figure 1. Notice that the
two functions cross at an age of
8,200 years.

D. This same graphical technique
works very well for the sinusoidal
dependence, where the historical
decay rate is given by

t. ^^-.( Znt \lR^ = R^l 1+ 0.05sinl -'"' I l.' 'L \ 628 Years ,/-]'

-).
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Figure 1

The age nssuming; a 1ok decrease per centttry.
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the two carbon isotopes is increasing
or decreasing at the current time. We
see that in both cases we obtain three
possible ages for the sample. About
the best that we can say is that the age
is 22,500 + 300 years if the ratio is

22.2 22.4 22.5 22.8 23.0
age (thousands of years)

increasing and 22,300 + 300 years if
the ratio is decreasing. Ben observed
that our solution to part A is equiva-
lent to using the average atmospheric
concenftation and lies within both of
these ranges.

Figure 2
The ages assumlng an increasing ratio tlt present.

and we have used cos (t - nlLl : sin t
to make Ro' have the current value
when r : 0-that is, at the current
time. We get two different results
(figures 2 arrd 3) depending on
whether we assume that the ratio of

Figure 3
The agas assuming a decreasing ratio at present.

o

.HOME ON THE RANGE" CONTINUED FROM PAGE 16

(a) there must be three persons in
each boat; (b) there must be no more
than four and no less than two per-
sons in each boat; (c) there must be at
least one person in each boat? (The
boats are numbered 1 through 3.)

17.. If the hosts have enough
chairs, it's customary rrot to seat
more than one guest on a chair: the
set o{ guests is invertibly mapped into
the set of chairs. If there are six chairs
in the room/ how many ways are
there to seat (a) one, (b) two, (c) three,
(d) foua (e) five, (f) six guests?

18*. hrvertible mappings of a finite
set M into another finite set Nare called
p ermutations in combinatorics. The
number of such mappings depends
only on the numbers m and n of ele-
ments in M and { respectively, and
is denoted bV Af .6 Show that

6The elements of M can be thought
of as the numbers \, 2, . . ., m; then any
mapping in question assigns a certain
order to their m images in N: the
image of 1 can be considered the first
of these m images, the image of 2 the
second, and so on. Thus, a permu-
tation of m elements chosen from n is
defined. The notation A- stems from
the French word auangdments.-Ed.

-3,

and establish a general rule for cal-
culating A-. Prove that A4 : A
for all n.

19*. Problem 16(c) can be formu-
lated in the abstract: how many
mappings of a set of 9 elements onto
a set of 3 elements are there? Denote
bV Df the number of mappings of a
set of n elements onto a set of m ele-
ments. Verify that

4=6,4=I2,4=36,DX=n!
and try to state the general rule for
computing Df (this is a somewhat
more difficult problem than prob-
lems 8, 11, and 1B).

20-. Find the number of func-
tions defined on a set of 28 elements
and taking the four values P, K, S,

arad V seven times each. (This is a
problem about the number of ways
to distribute housekeeping chores
among Petya, Kolya, Sasha, and
Volodya-see example 3.) O

4 =t, 4= 4 =2, Ar,

4= A:=6, '!o=90,
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AT THE
BLACKBOARD

An ideal Uil$ UBI$ l'eal
And relativity pays a call on electromagnetic induction

SKANYONEWHATFIAPPENS
to the temperature of an ideal
gas expanding in a closed vessel
without heat exchange with

the environment. Almost everyone
is sure to answer that the gas will
get cooler. Don't you believe it! It
ain't necessarily so.

Let's imagine a little experiment.
Let one part of the heat-isolated ves-
sel be occupied by an ideal gas with a

pressure p, and temperature T, and
let the other part be empty (fig. 1). At
some point we remove the barrier
between the parts of the vessel. Natu-
rally the gas will expand, making its
way into the vacuum. After its mol-
ecules have collided repeatedly with
the walls and with one another, an
equilibrium state is established. It's
clear that now the volume of gas has
doubied: Vz:2V1. What are its pres-
s:.Jre p).and temperattxe Tr?

Figure 1

On the one hand, since the pro-
cess is adiabatic, the points corre-
sponding to the initial and final
states of the gas are on the adiabatic
curve 1-2' lIig.2l. This curve, as you
probably know, decreases more
abruptly than the isotherm, so the
temperature o{ the gas must de-
crease: Tr' . Tr.

On the other hand, let's see what
the first law of thermodynamics
tells us. A quantity of heat Q added
to a gas increases its intemai energy
tJ arrd al1ows the gas to do the work
I4l associated with the expansion:

Q=U+W.

In our case Q : 0 (because we've
made the process adiabatic). What
kind of work is performed by the
gas? No work at all, since it expands
into a vacuum. The gas meets no
resistance from that empty space. So

both the force and the work are
equal to zero: W = O. Thus, the
change in the internal energy is also
equal to zero: U = 0. However, since
in the case of an ideal gas the inter-
nal energy depends on temperature
only, the temperature doesn't
change: Tr= Tr; the Pressure is equal
to pz: ptl2. Thrs means that the
points corresponding to the initial
and final states are on the isotherm
1-2.

What happens between these two
states? Un{ortunately, the thermo-
dynamics you learn in school tells
you nothing about that. Why? Be-
cause it holds only for very slow
(quasi-static) processes that occur at
rates much slower than the thermal
velocity of molecular motion. In our
case, as soon as we remove the bar-
rier, the gas will simply rush into
the vacuum with a velocity of the

Yo
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order of the thermal velocity of the
molecules or even faster, since there
are individual molecules in the gas
whose velocity is much higher than
the thermal velocity. Here thermo-
dynamics is just plain wrong. That's
why in figure 2 we depicted this
unfamiliar process with slashes in-
stead of solid lines.

A11 our reasoning holds for an
ideal gas. But suppose the gas isn't
ideal. Then its molecules interact
with one another, and the internal
energy of the gas consists of the ki-
netic energy of its molecules and the
potential energy of their interaction.

Figure 3 describes the dependence
of the potential energy U for the in-
teraction of two molecules on the
distancerbetween them. Where the
potential energy is minimal (the
point zr), the substance condenses-
that is, turns into a liquid. Accord-
ing to our conditions we have a gas
at the outset, so the average distance
between molecules corresponds to
the point rr > ro. After the volume
doubles, the average distance be-
tween molecules is equal to rn :
rrl,,li , r,. During expansion the las
has been pulled slightly upward
along the slope of the potential well.
Who worked to increase the poten-
tial energy by LU? No one did. And
neither did the gas. So we're forced
to admit that the increase in the po-
tential energy is due to a decrease in
the kinetic energy of the moving
molecules. This means that the
temperature-which is a measure of
the average kinetic energy of gas
molecules-decreases slightly as a
result of the expansion. But this
holds only for a real gas.

-Albert Stasenko

[lllichael, tnsslAlhsrt
In 1831 Michael Faraday discov-

ered the phenomenon of electromag-
netic induction. He found that a
change in the magnetic flux through
any surface bounded J:y a closed loop
causes an electric current to arise
there. Faraday's experiments proved
convincingly that the strength of the
induced current/ or the electromotive
force (emf), doesn't depend on what
caused the magnetic flux to change.
We can change the extemal magnetic
field, leaving the circuit stationary-
here we must either move the source
of the field (the coil or magnet) or
change the current in the coil creat-
ing the field (for instance, by opening
and closing a switch, as Faraday did).
But we can take a completely differ-
ent approach: without changing the
magnetic field, we can achieve a
change in the magnetic flux by mov-
ing the loop itself or by changing its
shape (which is what happens, for in-
stance/ in a generator, where the in-
duced em{ arises in a wire frame as it
rotates in a constant magnetic field).
In either case, the induced emf is pro-
portional to the rate of change in the
magnetic flux (Faraday's law), while
its direction is defined by Lenz's law.

Faraday himself thought it quite
natural that both variations are de-
scribed by the same law. However,
careful analysis shows that this situ-
ation is far from obvious. Let's take

a closer look at this question.
When the loop is moved in a rr,ag-

netic field that does not change in
time, the Lorentz force, which acts
on any movingcharge, plays the role
of an extraneous force creating cur-
rent in the circuit. Flere's an ex-
ample you rnay recall from your
textbook. Let arectangular loop be
placed in a homogeneous magnetic
field B with its plane perpendicular
to the field (fig. 4). One of the sides
of the circuit is a wire with sliding
contacts. If we move the wire with
a speed v, we induce an induction'8
= BvJ (where I is the length of the
wire). Indeed, the Lorentz force F :
qvB (directed as shown by the ar-
row) acts on the free charge q in the
moving wire. The emf correspond-
ing to this magnetic force is

.aWa= =
q

Fl qvBl n ,_ = tiVlr
qq

where W is the work of the force
over the length of the wire. Com-
pare this result with the rate of
change in the magnetic flux:

r'-r^,2
I

Figure 4

Figure 3
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We can easily verify that the sign o{
the emf obeys Lenz's law.

The example above shows that
when conductors move in a constant
magnetic field, the generation of the
induced curent is not a fundamen-
tally new physical phenomenon.

We get a completely different pic-
ture with a stationary loop placed in
a magnetic field that changes with
time. Since free charges in the con-
ductor are initially stationary (of
course/ we don't take random ther-
mal motion into account), a mag-
netic field does not act on them and,
thus, cannot cause them to move in
a certain direction. As a result, the
induced current can arise only under
the influence of an electric field.
How does the electric field arise and
what properties does it have?

It's clear that this electric field is
very different from the well-known
electrostatic field. For example, it
creates an emf in a closed loop. This
means that the work it performs in
moving charges along the closed
path is not equal to zero.It is a vor-
tex field-that is, its lines of force
take the form of closed lines. There
are other dif{erences as well.

We see that an analysis of the
situation arising with a stationary
loop in a variable magnetic field re-
sults in a whole range of new physi-
cal phenomena that show a direct
interrelationship between electric
and magnetic fields. In 1860 |ames
Clerk Maxwell came to the conclu-
sion that a magnetic field that var-
ies with time always generates an
electric field. Following his inner
sense of the symmetry of physical

laws, Maxwell further postulated a
fact that wasn't supported at the
time by any experiments: an electric
field that varies in time always gen-
erates/ in tum, a magnetic field. Giv-
ing these statements a mathemati-
calIy symmetrical form (now
known as Maxwell's equations), he
completed his construction of a uni-
fied theory of the electromagnetic
field.

After all these statements it
might appear that the 1aw of electro-
magnetic induction describes two
cluite different physical phenomena.
In a constant magnetic field, the in-
duced cuffent in a moving loop is
caused by the magnetic field itseif.
A variable magnetic field generates
an electric field that causes charges
to move along a stationary loop.
Then why is the law o{ electromag-
netic induction the same for these
two cases? Is it just a striking coin-
cidence? Actually, this "coinci-
dence" points up the profound link
between the theory of the electro-
magnetic field and the special
theory of relativity. This theory is
based on the principle of relativity
developed by Albert Einstein, who
formulated the special theory of
relativity in 1905. According to this
principle all phenomena in nature
must occur the same way in a1l in-
ertial reference systems. An impor-
tant consequence of this principle is
the fact that it is impossible unam-
biguously, outside of a dependence
on the reference system/ to say what
fields exist in the surrounding space.

By way of example, let's look at
the interaction of two electrons
from the viewpoint of two observers
(fig. 5). Observer A asserts that the
moving charges create around them-

selves both an electric and a mag-
netic field and that, in addition to
the Coulomb repulsion, there is a
magnetic attraction between them
(as between paral1e1 currents). Ob-
server B doesn't agree with observer
A and asserts that there is no mag-
netic field, since the charges are at
rest, and only the Coulomb repul-
sion operates between the electrons.
The principle of relativity, however,
soon brings the observers into agree-
ment/ asserting that they're both
right, since the notions of the electric
and magnetic fields are relative-they
depend on the reference system. Both
these fields are parts of a single
whole-the electromagnetic fie1d.

Now let's get back to Faraday's
law and imagine the following ex-
periment. Let's bring a permanent
magnet r'ear a closed conducting
loop (fig. 6). A galvanometer con-
nected to the loop shows the in-
duced current. A deflection of the
galvanometer arow can be seen by
both observer A on the magnet and
observer B on the loop. "It's clear as

crystal," observer A says. "The loop
is moving in the constant field of
my magnet, the Lorentz force oper-
ates on the charges in the loop, and
that's why there's a current!" Ob-
server B says the opposite: "The
magnet is approaching my station-
ary loop. A variable magnetic field
generates an electric field, and it's
this field that generares current in
the loop!" According to Einstein,
however, both observers are right.
Both see the same deflection of the
galvanometer needle. This simply
means that Faraday's law must be
identical for both cases.

-Alexey Chernoutsan
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FOLLOW-UP

[Ulal'lilt Eardnel',s "Hoyal Prohleln"

The playing field is level, but is it also square?

by Jesse Chan, Peter Laffin, and Da Li

HIS IS A GENERALIZATION
of a problem originally posed
by Martin Gardner (see "A
Royal Problem," coauthored by

Andy Liu, in the last issue oI Quan-
tuml. The problem goes like this:
"On an mby n chessboard, m) n)
3, a White Queen is on square (1, 1),

while a Red King is on square (-, nl.
The Queen moves first unless m :
n, in which case the King must
move out of check. Thereafter,
moves alternate. The Queen wins if
and only if the King is forced to her
initial square (1, 1) in a finite num-
ber of moves. With perfect play,
which royalty wins?"

We claim that the King wins if
and only if m: n.

The reader doesn't have to know
chess beyond the moves of the
Queen and King. If the King can
move to where the Queen is, he can
capture her and win the game. The
King is said to be in check if the
Queen can capture him on her turn.
The King is not allowed to move
into or remain in check.

If the King on his turn has no le-
gal move but is not in check, the

game ends in what is called a stale-
mate. In our game/ this can only
happen if he is at a corner other than
(1, 1), and it is a victory for the King.

In our analysis, all positions are
considered at the moment when it
is the King's turn to move. We first
prove that the King wins 7f m : n>
3. We consider the game from his
point of view and define a "forbid-
den zone" into which he must not
move. This zone consists of all
squares (i, i) where i + i I n - l. It
always contains the forbidden
square (1, 1). For n = 3, it consists
only of this square. The case n: 4 is
shown in figure 1, with the forbid-
den zone shaded.

We'll prove that not only can the
King avoid going to (1, 1), he can't
even be forced into the forbidden
zone by the Queen. For this to hap-
pen, the King must be on one of the
following types of squares:

A.(n-1, 1)or(I,n-l);
B. (i, i),wherei + i : n,withi > 1 and

irl;
C. li, il,where i + j : n+ 1, withr > 1

and I > 1.

n-3

n-2

n- |

n

Figure 2

For n : 4, the relevant squares are
marked accordingly in figure 1.

Consider case A. Suppose the King
is on (n - 1, 1 ) as shown in figure Z.He
can move to (n - 2, 2), (n - l, 21, ln, ll,
or (n,21, none of which is in the for-
bidden zone. These moves are marked
with x's in figue 2.

The only squares from which the
Queen can control all four squares
are ln - l, l), (n - l, 2l1, arrd (n, 2). The
first is aheady occupied by the King.
If the Queen is on either of the other
two squares, she will be captured. So
the King can't be forced into the for-
bidden zone when he is on ln - l,ll
or, by symmetry/ on (1, n - 1).

Cases B and C canbehandled simi-
larly, the King having even more op-
tions. This completes the proof that
the King wins if m: n> 3.

While this proof is very simple,
one may well ask how we came to
think of the forbidden zone in the first
place. Our initial approach is by
mathematical induction on n. It's not
di{ficult to see that the King wins if
n=3.

For n = 4, we mark off two over-
lapping 3 x 3 boards on the 4 x 4

.)

Figure 3Figure 1
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board, as shown in figure 3. Each
smaller board has its own forbidden
square/ and the two join up with the
actualforbidden square to form the
forbidden zone in figure 1.

We now consider two cases. If the
King and Queen are on the same 3 x 3
board, we akeady know that the King
has a safe square within the same
board. If the King and Queen arerr't
on the same 3 x 3 board, the Queen
is too far away to restrict the King's
movement effectively.

It's easy to see how the general
inductive step goes. We omit the
details because our simplified proof
makes mathematical induction un-
necessary here.

To complete the justification of
our claim, we give a winning algo-
rithm for the Queen It m > n > 3. We
consider the game now from her
point of view. She will win if she
can achieve the position in figure 4,

with the King on (i, l), provided that
i+j<n.

From this position, all possible
moves by the King are indicated by
arrows. The Queen's responses are
shown by arrows with matching labels.

Note that after each move, the
position is againthatin figure 4. The
King's column number never in-
creases/ and it can't remain constant
forever. Thus, the King will be
driven to column 1 eventually. It's
now a simpie matter for the Queen
to march him up column 1 to (1, 1).

We've aheady proved that the
Queen can't win on a square board.
This is a good place to pause and see

why the squareness of the board
makes such a big difference. It's cer-
tainly possible for the Queen to get
the King into the position in figure
4, with the King on(i, il, where z + f
( n. It's also possible for the King to

Flgure 4

keep i + i : n. By choosing option C
every time, he will reach column I
on (n - 1, 1). The Queen must now
move to (n + 1,21, but this is possible
if and only if m > n.

We now prove that the Queen
can win, with or without getting the
King into the position in figure 4.
Her initial obiective is to achieve
any of the three positions shown in
figure 5. If n ) 5, this is easily accom-
plishedby the Queen giving check on
(m, ll. The King can move to either
(m- l, n - 1) or (m - l, n). The Queen
then goes to lm, n - 3l or lm, n - 2l
accorfingly.

For n = 4, the Queen first moves
to (m - 1, 1). For n = 3t the Queen
first gives check on lm - 2, l). In
each of these two special cases, at
most two more moves will lead to a
desired position. The reader can
work out the details.

From the positions in figure 5, all
possible moves by the King are indi-
cated by arrows. The Queen's re-
sponses are indicated by arrows
with matching labels. If the King
happens to be in column I or n, op-
tion A or D for the Queen in figure
5b isn't possible. She should make
the alternate response, indicated by
the gray arows with the matching
labels.

Note that alter each move, the
position is again one of the three in
figure 5. The King's row number
never increases, and it can't remain
constant forever. So the King willbe
driven to row 1 eventually.

When the King reaches row 1 at
(1, l), the Queen abandons the strat-
egy indicated in figure 5. Instead she
gives check at (3, il, which she can
always do. We now consider three
cases.

Case 1: i < n and the King moves to
(1, i - 1). The Queen moves to12, i + ll
and marches the King along row 1 to
(1, 1).

Case 2: j < n and the King moves
to (1, i + 1).The Queen continues to
check along row 3. If the King
moves back toward (i, 1) before
reaching (1, n), the Queen can con-
vert the situation to that in case 1.

If the King goes to (1, nl, the Queen
makes an unexpected move, from
,3, n - 1) to (4, n - 1). The King's
moves are now forced: King to (2, n),

Queen to 13, n - 2), King to ( 1, n - I ),
and Queen to (3, nl. She has now
achieved the winning position in
figure 4, since I + (n - 1) : ,.

Case 3: i : n. The King must
move to (L, n - 1). The Queen gives
check at 13, n - 1). The King's re-
sponse will lead to either case I or
case 2.

This completes the proof that the
Queen wins if * , n :3. e

fesse Chan, Peter Laffin, andDal.;i ara
high school students in and around
Edmonton, Alberta, Canada. Thay are
members of a Saturday mathematics
club under the direction of Andy Liu
and produced this article as a team
proiect. The club also competes ragu-
larly in the Toutnament of Tovms (see

the Hapy)enings depafiment in the [anu-
ary 1990 and Novamber/December
1990 issues).
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LOOKING BACK

The pl'ohlem hoolrul hislol'y

Bringing a mathematical turn of mind to a study of the past

by Yuly Danilov

I T WOULDN',T BE AN EXAG-

I Seration to say that the human
! race-or at least the community
I of scientists-can be divided into
"problemists," who know the point
of a difficult and beautiful problem,
can properly appreciate an elegant
shortcut, and know the foy of a sud-
den insight, and "nonproblemists"
(including those extremists, the
"antiproblemists"), who take no
pleasure in any of the above. Histo-
rians, biologists, philologists, phi-
losophers, and the like often belong
to the latter group. It is with a feel-
ing close to sympathy that math-
ematicians look upon their unrea-
sonable (so they think) fellow
scientists who don't know the
charm of the problemistic paradise.
They try their best to bring their
prodigal colleagues into that joyful
region.

And that is the motive force be-
hind a strange new kind of problem
book that has appeared on the scene.
It's as if it was written by a two-
headed person who combines two
specialties in one body: a mathema-
tician lthe donorl, eager to share the
experience of problem solving, and
a historian, biologist, or philologist
Ithe rccipient), who is a kind of recep-
tor for a new problemistic culture.

The mathematician and historian
Sergey Smirnov has written just
such a book of problems. Smirnov is
convinced that a problem book of
history can and must be as fascinat-

ing as commonly known olympiad
problem books of mathematics,
physics, and chemistry. A good
problem book (like a good textbook)
can't be compiled in the silence of
one's study, at a solitary desk. The
author needs feedback. That's why
since 1987 the students in one Mos-
cow school have been studying his-
tory not from a textbook (or at least
not only from a textbook) but from
a problem book. Since then the
problem book of history grew con-
siderably and now includes ancient
history, the Middle Ages, and Rus-
sia up to the time of Peter the Great.

The history problems enfoyed
great success and managed to pen-
etrate the annual Lomonosov Tour-
nament, which is an interdiscipli-
r,ary olympiad in astronomy,
biology, and linguistics held every
autumn in Moscow.l

One's appetite is whetted by eat-
ing, so when the tournament laure-
ates return home they feel an insis-
tent hunger for a good nonstandard
problem. They wander the halls at
school with signs pinned to their
backs: "Suffer from insomnia! Will
take any problem!"

Sergey Smirnov thinks these
people need help. Their teachers and

lMikhail Lomonosov lL7 Il-17 55),
a multitalented scholar, was one of
the founders of Moscow State
University-see the Publisher's Page
in the |anuary 1990 issue of
Quantum.-Ed.

parents need help even more. A new
problem book (in three parts) is cur-
rently being prepared for publica-
tion, but excerpts have been pub-
lished in the Russian journal
Znanie-sila ("Knowledge Is
Power").

All the problems are printed with
solutions. Almost all of these prob-
lems have been posed at the
Lomonosov Tournament and will
certainly test the knowledge and
imagination of our readers. Go
ahead, put yourself in the shoes of
tournament participants !

Some of the problems are formu-
lated as expiicit questions that test
your erudition and wit. Other prob-
lems are hidden in literary or his-
torical texts. These texts are thickly
strewn with historical mistakes-
try to find them! Something de-
scribed there didn't happen that
wayt or happened somewhere else,
or some time else, or didn't happen
at all. Each error you find will give
you the chance to feel smarter than
the author-don't pass up this op-
portunity!

Maybe other problem books like
this one wili soon appear-one on
biology, another on works of fiction,
maybe even one about structural lin-
guistics . . . After all, problem solving
is the most important activity for a
specialist in any field, and the more
problems we solve, the clearer it be-
comes that we encounter such prob-
lems at every step we take.
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Ptoblems
1. Why does flooding on the Nile

take place in the summer (not in the
spring), and why does it last three
months?

2. Why did so many ancient Egyp-
tian inscriptions survive to the
present day even though there were
few literate people in Egypt?

3. Why didn't any other people
adopt the Egyptian way of writing?

4. Could Khufu (Cheops) have
carried out the same religious re-
form as Ikhnaton?

Fractured history
The young Pharaoh Thutmose III

mounted his horse and galloped off
to inspect the construction of his
pyramid. His attendants rode cam-
els. The sovereign of Egypt was ac-
companied by ambassadors from
Hammurabi, king of Babylonia;
from the country of Urartu; and
from the state of the Hittites. The
steel swords of the Greeks-the
hired bodyguards o{ the pharaoh-
glittered brightly in the sunlight.

The supervisor in charge of con-
struction/ Ptahhotep, who was also
the high priest of the god Aton, gave
a progress report to the pharaoh and
complained about the lack of slaves
for baking bricks--otherwise the con-
struction would proceed more
quickly. The pharaoh answered that
soon he would go to war against the
Assyrians and bring back many new
slaves. Then the building would
quickly be completed, and Thut-
mose's tomb would be taller than the
tombs of his great ancestors Djoser
and Khufu. The foundation of the
pyramid was made enough deep this
time and would not sink in the sand,
as happened with the tomb of the
unf ortunate Pharaoh Ikhnaton.

Thutmose III praised his humble

At left: "Errors: . . . An ancient
Egyptian depiction o{ the sacred bull
Apis; . . . Answer: This canlot be an
ancient Eglrytian depiction of the
sacred bull Apis, since it was painted
on wallpaper manu{actured by the
Moscow Wallpaper Factory in 1992
by the artist Y. Vashchenko."

servant for a job well done. He
promised Ptahhotep that after the
successful completion of the great
building, the high priest would be
allowed to wear a silk skirt instead
of the usual cotton one and to erect
his own tomb near the pharaoh's at
the state's expense.

"Glory to the Great Housel"
cried the architect, overjoyed. "May
it live, healthy and strong! May the
benevolence of the goddesses Maat
and Ishtar never desert their favor-
ite-the sovereign of the Two King-
doms!"

Can you spot the eftors in this
naruative!

Ihe glory llal ulas Gl'eece

Problems
1. List all the towns you know in

Phoenicia and Greece. Why were
there more towns in Greece?

2. They say that in Athens one
could attend the theater free of
charge. Not only that, everyone was
obliged to attend. Why?

3. A1l the philosophers of ancient
Greece that we know about lived
after Homer. Why is that?

4. Sparta was founded much later
than Athens, yet the state structure
of Sparta seems more primitive.
whv?

Fractured history
This is a day of celebration: exactly

thirty years ago/ on the broad seaside
plain near Thermopylae, an Athenian
phalanx crushed the numerous but
disordered Persian horde. The king of
kings Artaxerxes III escaped dis-
guised in a woman's chiton, while
the cavalry of "immortals" covered
the general tetreat. On that very day
the Olympicarchery champion, the
young Pythagoras, added to his
golden wreath.a more valuable tro-
phy: the iron crown of the
SZs5nians, which was left in the
tent by the cowardly king.

Ayearlater agranite statue of the
young hero was erected in the forum
in front of the Parthenon. Pericles
himself delivered a solemn speech
and made a sacrifice to Asclepius on
behalf of his best warrior, and old

Euripides composed an ode in honor
of this child of fortune, whose ar-
rows struck down the enemies of his
homeland as assuredly as they
struck the wooden target.

Is it possible to surpass such
glory? Would it not be better to per-
ish at the height of one's powers,
leaping off the Tarpeian Rock as the
Spartans do, than to live out one's
years bragging in the bazaar about
past exploits, not noticing the sneers
of the youth people? These are the
questions Pythagoras put to himself
time and again, and could find no
answer. At last Socrates, his old
comrade-in-arms/ gave him some
advice (Socrates was no less brave
than Pythagoras but was far less
lucky).

"Pythagorasl Both of us need to
change professions immediately and
seek new happiness in iife. I intend
to study with Paracelsus and be-
come a physician, and you must go
to old Euciid and prove to him that
it is not only timid milksops who
can scale the heights of geometry!"

This was his wise friend's ad-
vice. Pythagoras took it, and
once again put in hard years at
thegymnasium...

Euclid was a severe teacher. Of-
ten repeating that "there are no
royal or olympian roads in geom-
etry," he recognized Pythagoras as a

worthy student only after Pythag-
oras had read all eight books of the
Elements and compiled a problem
book to go with it. All the problems
were quickly solved by Pythagoras
and his new friends: Diophantos,
Plato, and Aristotle. That is, all but
one: how to measure a diagonal in a
square. It turned out that no one in
the world-not even the wise Egyp-
tians, not even the Teacher himself-
could do it! On that very day
Pythagoras made a decision: "Here is
the new aim in my life! If I reach it,
then I shall sacrifice to Hecate an un-
precedented offering: one hundred
black horses!"

Much time has passed since old
Euclid died. His students dispersed
all over Europe. Plato sailed to
Rome, Aristotle went south, all the
way to Macedonia, to teach a local
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prince mathematics. He didn't do a
bad iob! Alexander did what no
Athenian could do-he drove the
Persians into the heart of Asia and
reached the end of the world: the
fabled land of China. From there the
Greek king sent marvelous plunder
to Athens: talking parrots/ sweet
white pebbles, and unusual manu-
scripts on the giant leaves of some
strange tree. Nobody could read
them, but in one manuscript there
was a small drawing that upset
Pythagoras for some reason. It de-
picted an ordinary chessboard, but
why was it divided into triangles?

Pythagoras spent an entire year
trying to understand this. Then the
solution came to him in a flash:
waking up three days ago, he under-
stood at once that an unknown Chi-
nese mathematician was able to cal-
culate the diagonal of a square!
How, Pythagoras couldn't say, but
the answer was clear from the draw-
ing. If Pythagoras couldn't arrive at
the same result on his own, then all
his years o{ study under Euclid were
wasted!

And here we are: the long-
awaited proof is ready-a very
strange drawing similar to Persian
sharovars2 . . . Could it be that with-
out Alexander and his Persian cam-
paign, and without his old friend
Aristotle, who taught Alexander,
Pythagoras would never have been
able to add the last theorem to
Euclid's great treatise, the famous
Pythagorean trousers?3

Only the gods know the answer.
But they don't talk to mortals . . .

Anyway, old Pythagoras can be satis-
fied with what he accomplished. The
second half of this life wasn't spent in
vain. Today he will honor the gods
with his long-promised offering!

Can you spot the eruors in this
naruative! O

COMMENTARY ON PAGE 59

2loose trousers gathered at the
ankles.-Ed.

3Famous in Russia, anywayt
because of a student rhyme:
flu@aroponrr rrrraHbr Bo Bce cropoHll
paenu (Pythagorean trousers are equal
in all directions).-Ed.
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HAPPENINGS

World-cla$$ phy$ics

Highlights from the XXIV lnternational Physics Olympiad

HE US PHYSICS TEAM WON
four medals and an honorable
mention at the XXIV Interna-
tional Physics Olympiad that

was held in |uly on the campus of
the College of William and Mary in
Williamsburg, Virginia. This was
the first time in the eight-year his-
tory of the Team that it has been
awarded four medals and only the
second time that all five team mem-
bers have received an awatd.

The US Physics Team was led by
gold-medal winner Dean fens from
Ankeny, Iowa, who tied for 12th
among the 196 high school competi-

in mloltial Ullilliilln$huru

by Larry D. Kirkpatrick

tors from 41 nations with a score of
35.4 cornpared to the top score of
40.55 out of a maximum of 50. Dean
placed third on the theoretical por-
tion of the exam, receiving a score o{
24.9 pornts out of a possible 30; the
top theoretical score was 25.55.
Daniel Schepler from Beavercreek,
Ohio, was awarded a silver medal
and placed 32nd in the competition
with a score of 31.55. He was fol-
lowed by the two bronze medal win-
ners: Ha1 Burch from Ponca City,
Oklahoma, and Dmitri Linde from
Stanford, California, who received
the highest experimental score

among the US Team members.
Chang Shih Chan from Philadel-
phia, Pennsylvania, was awarded an
honorable mention. A11 five team
members placed in the top 4OYo o{
the brightest physics students in the
world.

There were 16 gold medals (G), 17
silver medals (S), 32 bronze medals
(B), and 38 honorable mentions (H)
awarded at the closing ceremonies
by Nobel laureates Leon Lederman,
)erome Friedman, and Vai Fitch.
There was a tie for the top award
between Harald Pfeiffer of Germany
and |unan Zhang of China. The
youngest competitor was Akshay
Venkatesh of Australia, who is 11

years old and abronze medal win-
ner. Three countries received five
medals each: China (GGSSB), Ger-
many (GGSBB), and Russia
(GGGSS). Seven other countries re-
ceived five awards each: Bulgaria
(SBHHH), the Czech Republic
(GGSSH), Great Britain (GSSBH),
Hungary (GGGBH), Romania
(GGBBH), Turkey (GBHHH), and
the USA (GSBBH). Australia
(BHHH) and Canada (BBBH) were
among the countries winning four
awards each.

The competition at the Interna-
tional Physics Olympiad consists of
two five-hour examinations that are
taken individually. The theoretical
portion consists of three problems.
In the first problem students were
told that there was a downward

The 1993 US Physics Olympiad Team, coaches, and sponsorc at the National
Academy of Sciences in Washington,
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electric field at the Earth's surface
and asked to determine the surface
charge density, the total charge on
the Earth, and the net volume
charge density near the ground.
They were then asked to analyze a
hypotheticai device designed to
measure this fie1d. In the second
problem students were asked to ana-
lyze the forces exerted by a laser
beam passing through a triangular
prism. The final problem involved
the deflection of an electron beam
by a charged wire and the resulting
interference pattern produced on a
distant wall.

The first experimental problem
was in stark contrast to the hot, hu-
mid East Coast weather. The stu-
dents were asked to measure the la-
tent heat of vaporization of liquid
nitrogen using an aluminum block
and then using an eiectrical resistor.
The second experimental problem
was a very diIficult exercise in deter-
mining the magnetic moment of a
dipole magnet and the axial depen-
dence of the magnetic field of an un-
known magnet. The top score on
the experimental exam was a re-
markable 19.5 out of a possible 20
by Gabor Veres of Hungary.

"lll'at[E[ Fil'e," $oGGe[ & mone

There is much more to the Inter-
national Physics Olympiad than the
examinations. According to the stu-
dents the most valuable aspect is
the opportunity to meet and interact
with students from around the
world who share their love of phys-
ics and mathematics.

The students were treated to a
tour of Colonial Williamsbutgt an
afternoon atWater Country USA, a
physics demonstration night, a day
at the Busch Gardens amusement
park, tours of the Continuous Beam
Electron Accelerator Facility and
NASA-Langley, a street party, a

computer workshop, a Paper Olym-
pics, a day at Virginia Beach with a

stopover at a shopping mall, an
American Music Fest, and a talent
night after the closing bancluet. As
you can see, the visiting students
were given ayety good introduction
to American student life.

The US students were also suc-
cessful in the informal competition
that took place during the trip to
Busch Gardens. HaI Burch teamed
with competitors from Australia,
Canada, Mexico, and Poland to win
first place in the analysis of the
physics o{ the "Big Bad Wolf," a sus-
pension-type roller coaster. Dean
|ens's team was composed of stu-
dents from Greece, Italy, the Neth-
erlands, and Spain and won second
place in the analysis of "Drachen
Fire," a roller coaster with many
twists and loops. In addition, three
members of the US Physics Team
managed to tie students from the
Czech Republic in a soccer match.

The US Physics Team was
coached by the author, a professor of
physics at Montana State University
and Quantum's field editor for phys-
ics, and Theodore Vittitoe, a physics
teacher at Libertyville (Illinois) High
School, with the assistance of P.
Wilson Bascom from Wootton High
School in Rockville, Maryland. The
selection and training of the US
Physics Team is the responsibility
of the American Association of
Physics Teachers under the direc-
tion of its Executive Officer, Bernard
Khoury. Fund raising is directed by
the American Institute of Physics on
behalf of its member societies. The
International Physics
Olympiad was hosted by
AAPT with the assis-
tance of AIP under the
direction of Quantum
contributor Arthur
Eisenkraft. The exami-
nation committee was
headed by Anthony
French of MIT and the
local organizing com-
mittee by Hans von
Baeyer.

The selection of the
US Physics Team began
Iast fall with the solici-
tation of nominations
from high school physics
teachers. Two written
exams narrowed the
{ield to the top 20 stu-
dents, who attended a

weeklong training camp

held at the University of Maryiand
during the last week in May. The
top five students were chosen to rep-
resent the Team and sent home
with a hundred practice problems to
further hone their skills. These stu-
dents gathered once again at the
University of Maryland for three
days of training in laboratory skills
just before traveling to Williams-
burg for the International Physics
Olympiad.

Students wishing to try out for
positions on next year's US Physics
Team, which will compete in
Beijing, China, should contact Ber-
nard V. Khoury, AAPT, 5ll2
Berwyn Road, College Park, MD
207 40-4lOO for application materi-
als.

ThE l0g3 US Plryshs Team

In the list below, team members
who represented the US in Williams-
burg are marked by an asterisk; each
student's school and physics teacher
are noted in parentheses.

fames Ayers, Houston, Texas
(Langham Creek High School, Bob
Menius)

Adtian Banard, Aiexandria, Vir-
ginia (Thomas |e{ferson High School
for Science and Technology, |ohn
Dell)

Val Fitch awarding a gold medal to Dean lens.
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* Hal Burch, br onze medal, P onca
City, Oklahoma (Oklahoma School
of Science and Mathematics, Wei
Chen)

Mrunil Champaneri, Des Plaines,
Illinois (Maine Township High
School East, Scott Welty)

*Chang Shih Chan, honorable
mention, Philadelphia, Pennsylva-
nia (Northeast High School, Raj
Rajan)

foey Chang, Cherry Hill, New
|ersey (Cherry Hill High School
West, Hirendra Chatterjee)

Kurt Franke, San Antonio, Texas
(|ohn Marshall High School, feff
Szabo)

*Dean 
lens, gold medal, Ankeny,

Iowa (Ankeny High School, Donald
Savage)

|ack Langsdorf (alternate),
Watertown, Connecticut (The Taft
School, |im Mooney)

*Dmitri Linde, bronze medal,
Stanford, California (Gunn High
School, Art Farmer)

Alexander Morcos, Greensboro,
North Carolina (North Carolina
School of Science and Mathematics,
fohn Kolena)

Edward Otte, Tampa, Florida
(Berkeley Preparatory School,
Walter Murfee)

Andrew Poynot, Slidell, Louisi-
ana (Louisiana School for Math-
ematics/ Science and Arts, A1i
Rahbar)

Dmitriy Rogozhnikov, Bronx,
New York (|ohn F. Kennedy High
School, Patrick Clark)

*Daniel Schepler, silver medal,
Beavercreek, Ohio (Beavercreek
High School, Margo Debrosse)

Robert Schneck, Charlotte,
North Carolina (North Carolina
School of Science and Mathematics,
|ohn Kolena)

Carl Streeter, Oshkosh, Wiscon-
sin (Oshkosh North High School,
leffuey Elmer)

Christopher Tom, Honolulu, Ha-
waii (Ioiani, Carey Inouye)

Robett Wagner, Cherry Hill, New
fersey (Cherry Hill High School
West, Hirendra Chatterjee)

fonathan Weinstein, Lexington,
Massachusetts (Lexington High
School, Mark Rodriguez)

Bullelin Boal'd
0uest amounl on sururmmpuler

Lawrence Livermore National
Laboratory now has a "guest ac-
count" that students and teachers
across the nation can use to access
the National Education Supercom-
puter (NES) without attending a
workshop or obtaining training out-
side the classroom.

Operated by the Laboratory, the
supercomputer is a Cray X-MP do-
nated by Cray Research in 1990 ex-
clusively for educational use. It is
used to run large-scale simulations
and models through a "point and
click" interface on the microcom-
puter. The simulations currently
available include ray tracingand cli-
mate modeling.

The guest account is actually a
part of the National Education Bul-
letin Board System (NEBBS), a Sun
workstation connected to the NES
through special networking soft-
ware, said Brian Lindow, technical
director of the NES Program.

The guest accormt gives teachers
and students the ability to run simu-
lations and modeis on the NES.
Schools with network or modem ac-
cess can start using the applications
on the NES and the microcomputer
immediately by calling a local
Tltnnet number to gain access to the
network. The simulations are run on
the NES remotely through NEBBS.

The menu-driven software on
NEBBS allows the guest to upload
input files and automatically moves
the files to the NES and starts the
simulation. When the simulation is
finished, the "movie file" is moved
back to the NEBBS for downloading.

Schools wishing to access the
guest account need a color Macin-
tosh or an IBM-compatible com-
puter with VGA card and mouse, a
telephone 1ine, and a modem. For
additional information, contact
Brian Lindow, clo Lawrence
Livermore National Laboratory, L-
561, PO Box 808, Livermore, CA
94551, or call sLO 294-5454.

Dul'acell $cholal's[ip [ompetition
The 12th Annual Duracell/NSTA

Scholarship Competition will aw ard
100 prizes to inventive students (up
from 4l prizes last year). The awards
will now be in the form of US Sav-
ings Bonds, ranging from $20,000 to
$i00. Winners are stil1 encouraged
to use the proceeds from the bonds
to further their education.

The program is open to students
nationwide in grades 9 through 12.
To enter the competition students
must create and build a working
battery-operated device that per-
forms a practical function and is
designed to educate, entertain, or
make life easier in some way. Each
entry must be designed and built by
the entrant.

Winners in previous years have
invented some particularly useful
devices. One of last year's second
place winners was Annette Piepen-
hagen, who attended Thomas
|efferson High School in Alexandria,
Virginia. Her invention was an edu-
cational device that helps teach
people how to write Katakana, the
|apanese writing system used for
words of foreign origin. Another
prize winner, |ustin Chester, who at-
tended Coronado High School in
Colorado Springs, Colorado, invented
a device designed to halt carjackings
by allowing a car owner to turn off a
vehicle using remote control.

Entrants must have a teacherf
sponsor. In addition to the scholar-
ship awards, first and second place
winners will receive an all-expense-
paid trip to Anaheim, California, for
the NSTA National Convention,
March 30-Ap il 2, I99 4. Parents and
teacher/sponsors will accompany
the winners, all expenses paid.

Entry kits will be mailed to
teachers this fa1l. For more informa-
tion or additional kits, write to
Duracell/NSTA Competition, 1840
Wilson Boulevard, Arlington, VA
2220L-3000. A11 entries must be re-
ceived bylanuary 21, 1994.
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M91

The game in question is "uninter-
esting" in a certain sense/ because
its result does not depend on the
players' strategi.es and is completely
determinedby the initial position of
the chips-more exactly, by the dis-
tance between them (except that the
game can be endless-if, say, the
players alternately move their chips
back and forth).

Clearly, every half-move (a move
of one player) changes the parity of
the distance between the chips-
that is, of the number of squares
between them. A chip can be
trapped only in one of the extreme
scluares-i{ the other chip is in the
nearby square. And for N = 30, or
any other even N, this can happen
only after an even number of moves
(because the distance between the
chips in the final position is zero). So
in this case only the second player
can win-and will win by moving
his or her chip always in the same
direction.

Similarly, {or odd N only the first
player can win.

This solution is based on the fact
that the process under consideration
has an invariant: the parity of the
distance between the chips. This
kind of invariant is rather typical for
many problems like this. More in-
volved applications of the method of

ANSWERS,
HINTS &

SOLUTIONS

invariants can be found in the article
"Some Things Never Change" in
this issue; see also the solution to
M95. (V. Vasilyev)

M92
Drawing a line from the vertex of

the shorter base of a trapezoidpar-
allel to the leg from the other vertex
of this base (see figure 1), we con-
struct a triangle ADE two of whose
sides are ec1ual in length to the
trapezoid's legs, and the third side is
the difference of the bases. Now the
Triangle hrequality for ADE ensures
that the difference of the legs is always
less than the difference of the bases (in
our figurg IAD - BCI: IAD - AEI < DE
= CD - ABl. So only one of the two
pairs of opposite sides can serve as the
bases of a trapezoid. (V. Proizvolov)

M9s
Let one of the two given integers

be x; then the other one is a - x,
where a:3O,O30, and the divisibil-
ity of their product by a can be writ-
ten as x(a - xl = ak for some integer
k, or * = a(x - k). So x2 must be di-
visible by a, which means that x is
divisible by every prime fiactor of a
and, therefore, by their product.
(Strictly speaking, this follows from
the uniqueness of factorization of an
integer into primes-see/ for in-
stance "Divisive Divisors" in the
September/October 1991 issue of
Quantum.l The number a:30,030
is factored as

a=2.3.5.7.11.13.

So x must be divisibie by this
product, and, consecluently, x > a
or a * x < 0. But a -xis apositive
integer. This contradiction proves
the statement of the problem.

Of course, the same argument
works for any number a that is
"square-free"-tlr.at is, a number

whose factorization contains only
the {irst powers o{ primes. For other
numbers a, the statement of the
problem is wrong: if an integer a is
divisible by p' , 1, we can take x :
af p, then x(a - xl = a(alp - alp2l is
divisible by a. (Y. Vasilyev)

M94
The number n catttake any value

not less than 6 except n : 7. Examples
of the polyhedrons in question for all
these values of n car' be constructed
by truncating a "bipyramid"-the
solid formed by two congruent pyra-
mids put together base to base. Let
the common base of these pyramids
be a k-gon ArAr...Akk > 3). When
we truncate the corner A, of the
bipyramid with a plane drawn per-
pendicular to the plane AtAz...A1
through the midpoints of the edges
ArA, and ArAo, the four triangular
{aces meeting at A, turn into quad-
rilaterals, and a new quadrilateral
face is formed in the truncating
plane. If we now cut off the corner
Arinthe same manner, all the quad-
rilater al faces created bef ore remain
quadrilaterals (though two of them
will be truncated still more), but
three new cluadrilateral faces will
appear, and so on.

Cutting off all the corners A1, ...,
Ao,we get a 3k-hedron with quadri-
lateral faces (for instance, the 9-
hedron in figure 2l; we can also cut

Figure 2Figure'1
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off only the corners At, ..., Ak tt
leaving Aoas it is, and thus create a
(3k - 1)-hedron, whose faces will be
quadrilaterals all the same (see fig-
ure3 for k : 4, n= 3k- 1 = 11). And,
finally, for k > 4 we can just as well
leave two nonadjacent corners-say/
A, and Au-intact This yields a
(3k - 2)-hedron. Note that any num-
ber n > 5, n + 7, is representable as

3k or 3k - 1 (fork > 3), or as 3k - 2
(for k > 4). In particular, L993 : 3 .

495 - 2, so in the case specilied in the
problem we must apply our construc-
tion fork :495 andcut off all the ver-
tices A, except/ say, Ararrd Ao.

Now let's show that the number
n cannot be less than 6 nor eclual to
7. First, n cannot be less than 5, be-
cause any face of a polyhedron sat-
isfying the condition borders on four
other faces. Second, the fact that n
+ 5 can be proven by searching
through a number of possibilities.
But it's neater to make use of Euler's
formula F- E + V : 2, where F, E, arrd
V are the numbers o{ faces, edges,
and vertices, respectively, of a poly-
hedron.l If F = 5, then 2E : 20 (be-
cause in the total number 4 . 5 :20
of the sides of all faces, each edge is
counted twice), so V : E + 2 -F : 10
+ 2 - 5: 7. But this leads to a con-
tradiction: since there are at least
three edges issuing from every ver-
tex, and each edge joins two verti-
ces,3V 12E, or, in our case,3 .7 =

2l < 20.Finaliy, if n = F : 7, we find,
just as above, that2E : 4F :28, and
3V <28. This means thatV < 9. In
addition, some vertex A must be a

ISee "Topology and the Lay o{ the
Land" in the Septemberf October 1992
issue.-Ed.

Figure 4

meeting of least four faces (because
we have 3V < 4Fl. The number of
vertices of the polyhedron belonging
to all the faces meeting at A, not
counting A, is clearly not less than
B (see figure 4), so it's exactly 8-
there are no other vertices-and
these faces are affarrged exactly as

shown in figure 4. You can verify on
your own that such an arrangement
can't be completed with a polyhe-
dron having quadrilateral faces
without adding new vertices.

M95
The answer is no. The coloring of

the chameleons in the problem can
be described by a triple of nonnega-
tive integers lx, y, z) equal to the
numbers of blue, brown, and black
chameleons, respectively. Then we
have to prove that the initial triple
( 13, 15, 17) can' tbetransformed into
any of the triples (45, 0, 0), (0, 45, 0l1,

(0,0, 45) by way of the operations
described in the condition-that is,
by adding 2 to one of the numbers
of a triple and simultaneously
subtracting 1 from the other
numbers. This is a typical
setup in which it's reason-
able to try to find an in-
vafiant-a function of
our triples that is pre-
served by the given

transformations and takes different
values for the initial triple and for
the three possible final ones.

Such a function exists: we can
take, for instance, the remainder z
of the dif{erence x - y when divided
bv 3.

Indeed, our operations replace the
first two numbers (x, yl of our triples
by either (, - l, y - l), (x + 2, y - l),
or (x- l, y + 21. The difference x - y
doesn't change in the first case and
changes by 3 in the other two cases/
so the remainder r doesn't change.
At the same time r(I3, 15, 17) : l,
while r(45, O, 0) : r(0, 45, Ol :
r(0,0,45) : 0.

Figure 5 provides a nice geomet-
ric interpretation of the problem,
enabling us to answer a general
question: under what conditions can
one triple of integers be obtained
from another triple using our opera-
tions?

Let h : x + y + zbe the sum o{ the
numbers of a triple; of course h is an
invariant, too (there is "conserva-
tion of chameleons"!). Consider an
equilateral triangle with height ft di-
vided into h2 equilateral triangles
with height 1, as shown in figure 5
for h:9. It's easy to see that the dis-
tances x, y, and z frorn any node of
the triangular grid thus obtained to
the sides of the big triangle are inte-
gers, and that x + y + z: l (fig. 6). So

the nodes represent all the possible
triples considered in the problem.

The "recoloring of chameleons"
can be represented now by ar-

rows joining every node (x, y,
zl to thenodes lr', t', z') ob-

tained from (x, y, zl under
the corresponding trans-

formations of triples.
Take any node, draw

the arrows issuing

Figure 3
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from it, then the arows from their
endpoints, and so on. The endpoints
of all these arrows represent the
triples that can be obtained from the
initial triple by "recoloring." As fig-
ure 5 shows/ every red node except
the vertices of the big triangle is
joined by a chain of arrows to any
other red node. Drawing the arrows
for the remaining nodes, we'll ob-
tain two other connected sets of
nodes (colored black and white in
the figure; the arrows between them
are not shown). Clearly, each of the
three classes of nodes is character-
ized by the value of r: tor the red
nodes, r : 0; for the black nodes, r =
1; and for the white nodes, r = 2.

Thus, the triple lx, y, ,l can be
transformed into (X', y', z'l if and
only if the invariants r and s are the
same for both triples and at least
two of the numbers x, y, z are posi-
tive. In particular, if s is divisible by
3, then for all the vertices of the tri-
angle ((s, 0, 0), (0, s, 0), and (0, 0, s)),
r : 0; so they are accessible only
from the nodes with r : 0 (as in fig-
ure 5). If, however, s is not divisible
by 3, it's not hard to show that the
invariant r will take three different
values, 0, l, and 2, atthevertices, so
one (and only one) of them will be
accessible from any other node. (V.
Ilyichov, V. Vasilyev)

Physics

P91
At equilibrium the total force act-

ing on the ball from all kinds of pres-
sure is determined by the ball's

= Ll^rr^(ABp) + area(BCp) + area(CAp))

2.arca(ABC)

From the equation F : kx for the
force due to the spring, we get P,S :
kV1lS. Taking into account that C"
: fR, we obtain

e=r9R 37+1v,p,,
2 2"

Q = 6PrVr

or
A

weight and by the weight of water
displaced. If we neglect the com-
pressibility of water and the ba1l, we
find that the depth of immersion
does not change with an increase in
air pressure. If the compressibility of
the floating body is much greater
than that of water, the body will
sink when the external pressure in-
CICASCS.

This is how the toy known as the
"Cartesian diver" works. An upside-
down test tube floats in a beaker
half-filled with water and sealed at
the top with a thin rubber sheet. By
pressing the sheet downward, one
creates an increase in pressure in the
beaker, thus compressing the air
inside the test tube (which keeps it
afloat). The weight of the test tube
becomes more than that of the wa-
ter displaced by the test tube and the
air inside it, so it begins to sink. One
can make the "diver" come to the
surface again by removing one's
hand from the rubber sheet. Try
making this simple and amusing toy
yourself.

P92
The heat goes to heating the gas

and to producing the mechanical
work of moving the piston:

1_

Q = nc"(r,- I) * i ("i - "?),')-

where x, : V rl S, x, : Vrl S, and n is
the number of moles of gas. It fo1-
lows from the ideal gas equation
that PrVr: nRT, and PrVr: nRTr.
Recalling that V, : 2V, and P, = 2P,
we get Tr= 4Tr. Thus,

P93
The fish is killed, of course, not

by a direct hit but by the electric
current flowing through the water
during the discharge. The current
density decreases with distance
from the spot where the lightning
bolt hits (fi1. 7lr. The voltage drop
across the fish's body is proportional
to the current flowing through the
fish and is determined by the cur-
rent density in the adjaeent water.
Only fish that are in the region
where the current density exceeds
the critical value are killed. The
characteristic size of this " danger
zofle" ranges from a few meters to
several dozen meters. Obviously
several fish can be in this danger
zone at the same time.

A simiiar situation occurs when a
high-voltage wire snaps and fal1s to
the ground. In this case the density of
the current flowing in the ground de-
creases as the distance to the contact
point increases. The 1evel o{ danger
{or people is characterizedby the so-
called step voltage-that is, the volt-
age that arises between one's feet

Figure 7

/
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Figure B

when they touch the ground. It's clear
that small steps result in a smaller
step voltage/ so one must take "baby
steps" to get away from the spot
where a high-voltage wire has fallen
to the ground.

P94
The center of each lens (one con-

verging, one diverging) lies at the
intersection of the lines AA' arrd BB'
(fig. 8). The plane of the lens passes
through the intersection of the lines
AB andA'B'.

P95
The energy E hitting the ball dur-

ing a time interval Af is given by

E: IAAt,

where A : rcR2 is the cross-sectional
area oI the ball. Newton's second
law tells us that

For an absolutely black ball, each
photon is completely absorbed and
the change in momentum Ap is
equal to the momentum p. There-
fore,

-np
Lt

where n is the number of photons.
Since the momentum of a photon

is equal to its energy divided by the
speed of light c, np: Elc. There{ore,

- E lrcRz

cAt c

BrainleasBr$

891
Let N be the number of dif{erent
pairs that danced at least once. Then
the number of boys, as well as the
number of girls, is equal to N/3.

892
Your first try probably went

something like this: the check was
for x dollars and y cents; the cashier
paid y dollars and x cents; since I
was left with 2x dollars and 2y cents
after spending $6.23, the equations
to determine x and y canbe written
AS

x-23 = 2y,
y-5=2x.

But the solutions to these equa-
tions are not positive integers/ so an-
other approach is needed. You have
to consider the possibility that x is
less than 23 so that, to subtract 23,
you have to borrow 100 cents from
the dollars figure. This will modify
the equations as follows:

(x+ 100) -23=2y,
x + 77 :2v.

and

$-tl-6:2x,
y :2x+7.

The solution to this pair (x :21,
y :49) has the right property. So the
check was for $2I.49 j the cashier
paid $49.2L I was left with $42.98
l$+g.Zt * 6.231, which is exactly
double the amount of the check.

You can make up a whole class of
such problems, each of which differs
only in the amount that was spent
during the day. You get a new prob-
lem by increasing or decreasing the
amount by a multiple of 3 cents.
The check amount would go down
by $ t .OZ for each three-cent increase
in the amount spent, it would go up
the same amount if the spending fig-
ure goes down by 3 cents. Thus, if
the amount spent were $6.26, the
check amount would be $20.47.If
the amount spent were $6.20, the
check would be $22.51. There are
limits, though-a spending figure of
$6.68 gives a check amount of 5.19.
I could not have expected to spend
$5.68 if I believed I had only $6.19
in my wal1et!

AIso, some check amounts are
more plausible candidates for the
kind of mix-up that happened. A
spending amount of $5.72 gives a
check figure of $38.83. But you canlt
solve thatproblem by setting up the
equations given above. You'Il have
to use insight into other possibilities
of borrowing and carrying to get the
right equations.

893
The air in the glass was warmed by

the hot water. It expanded, occupying
more volume/ so some air escaped
around the rim of the glass.

894
It's obvious that in figure 9, ob-

tained by 90" rotation of the given
big square about the circle's center,
oc : oA: ABl2: CDlz. So AF:
AE (: ABl2l, and AEDF is the given
small square, whose side lengths are
1/2 those of the big one.

F=LP
At
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Strictly speaking, this argument
is incomplete: it must be proven
that there is only one " srnall
square" satisfying the requirements
of the probiem (then it will have to
coincide with AEDF in figure 9).
The uniqueness follows, for in-
stance, from the tactthatthe vertex
of the small square opposite A must
lie at the intersection of the given
circumference and the bisector of
the angle EAF, which consists of a
single point.

895
A{ter every rearangement of the

rocks their number decreases by
one, while the number of piles in-
creases by one. So, i{ the number of
operations was u/ in the end we
must have n + 1 piles of three rocks
each and n rocks taken away. This
means that the total number of
rocks is 3(n + 1) + n : 4n+ 3. But the
number 1,001 yields a remainder of
1, not 3, when divided by 4. So the
answer to the question is no.

E ditor' s note: This same problem
was posed in the March/Aprl| 1992
issue of Quantum (p. 57). The an-
swer that appeared in the next issue
(p.62lrused the idea of an invariant,
which has figured prominently in
this issue.

l(aleido$co[B
1. There is no unambiguous an-

swer if the sizes of the bal1s and the
times of their arrival at the intersec-
tion of the traiectories are unknown.

2. The small circle makes five
turns.

3. The mass will move a distance
of 21.

4. The displacement vector is di-
rected downward, and its magnitude
is I cm.

5. See figure 10.
5. The trajectory is sinusoidal.
7. The particle moves along a

straight line in the direction of wave
propagation.

8. The ball will move (a) along a
parabola; (b) along a vertical line, if
the velocity of the ball is eclual in
magnitude to that of the car relative
to the railway bed; otherwise, it will
move along a parabola.

9. The particle will move along a
parabola.

10. These points exist on the
outer edges of the wheels. The tra-
jectory of one such point is shown in
figure 1l-it's called a cycloid.

11. See figure 12.
12. The fragments are distributed

on the surface of a sphere that ex-
pands with a speed vn. The sphere's
center drops with an acceleration g.

Each fragment follows its own pa-
rubola as it descends.

Microexperiment. The bob will
move (a) along a circular segment in

Figure i 1

the vertical plane; (b) along a hori-
zontal circle (making it a conic pen-
dulum).

]li$ot'y
Commentary on Egypt's frac-

tured history:
1. At the time of Thutmose III

(15th century n.c.) the Egyptians
didn't ride horses-they harnessed
them to chariots.

2. ThutmoseIII didn't have apyra-
mid-he was buried in an under-
ground tomb.

3. There were no camels in Egypt
at that time-they didn't appear
until about 1000 s.c.

4. Hammurabi ruled in Babylonia
three centuries earlier than Thut-
mose III.

5. The "country otUrartu" didn't
exist yet at the time of Thutmose ltr-
this state arose in the 9th century B.c.

5. The Hittite state existed in
Asia Minor at the time of Thut-
mose III, but the Egyptians didn't
come into contact with it.

7. In the 15th century B.c. no one
in the world could manufacture
steel swords.

B. Hired bodyguards of Greek na-
tionality appeared in Egypt after
Ramses II (250 years after Thut-
mose III).

9. The god Aton (the Sun) wasn't
worshipped in Egypt until the reign
of Ikhnaton/ one century after
Thutmose III.

10. Egyptians almost completely
avoided using clay bricks in build-
ing-they had cheap stone (lime-
stone) in abundance.

11. Thutmose III didn't make war
on the Assyrians and probably didn't
know of their existence. Their re-
mote kingdom in the Upper Tigris
was rather weak at that time.

12. It makes no sense to compare
the height of Thutmose III's under-
ground tomb and the pyramids of
Djoser and Khufu.

13. Djoser and Khufu weren't an-
cestors of Thutmose III, nor were
they relatives of each other-they
belonged to different dynasties.

14. Pyramids don't have founda-Figure 10 Figure 12
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tions-they're built not on sand but
on bedrock.

15. Ikhnaton also had an under-
ground tomb, not a pyramid.

15. The ancient Egyptians knew
nothing about silk or cotton-they
used only linen.

17. Ishtar wasn't an Egyptian god-
dess-she was Babylonian.

18. The protector-goddesses of
both lands-Upper and Lower
Egypt-were Nekhbet (depicted as a
l.ulture) and Buto (depicted as a co-
bra). Maat was the Egyptian goddess
of truth.

Commentary on Greecefs frac-
tured history:

1. At Thermopylae the Athenians
and other Greeks were defeated by
the Persians.

2. During the second Greco-Per-
sian war the king of Persia was
Xerxes.

3. The "immortal" guard was
unmounted-they weren't horse-
men.

4. "Woman's chiton" is a sense-
less turn of phrase-the chiton is
Greek clothing for males only.

5. Archery was not included
among the Olympic games-the
Greeks considered this kind of sport
"barbaric."

5. According to legend, Pythag-
oras was an Olympic boxing cham-
pion.

7. "Percian horde" is a senseless
turn of phrase-the word "horde" is
of Turkic origin and didn't appear in
Europe until the time of the Huns.

8. Iron crowns appeared in Persia
during the reign of the Sasanian
dynasty (3rd century e.n.)-Xerxes
was of the Achaemenian dynasty
and wore a golden crown.

9. The forum was in Rome-in
Athens there was an agora.

10. Pericles lived considerably
later than the Greco-Persian wars.

1 1. Euripides lived later than
Pericles and considerably later than
Pythagoras.

12. During the Greco-Persian
wars/ there were no bodyguards in
Greece-they appeared during the
military democracy (at the time of
Homer and earlier).

13. Asclepius was the god of

medicine-no one made sacrificial
offerings to him in honor of military
deeds.

14. The Tarpeian Rock is in
Rome.

15. "Bazaat" is a word of Turkic
origin-it was unknown in Greece.

16. Pythagoras died of old age on
the eve of the Greco-Persian wars.

17. Socrates lived one century
later than Pythagoras.

18. Paracelsus was a medieval
physician ( 16th century).

19. Euclid lived two centuries
later than Pythagoras.

20. Greek geometers did not com-
pile problem books.

21. Plato and Aristotle lived one
and a half centuries later than
Pythagoras; Diophantos lived even
later.

22. The Greeks sacrificed not
horses but oxen and sheep.

23.Hecate was the goddess of the
Moon and of witchcraft. A sacri{ice
in thanksgiving for a scientific dis-
covery would have been offered to
Athena, the goddess of wisdom.

24.Plato spent all his life in Ath-
ens and was never in Rome.

25. Macedonia is situated to the
north, not to the south, of Greece.

26. Alexander reached India, but
he probably only heard about China.
The Persians apparently called this
country something else-"Sin" or
"Ser."

27. Alexander of Macedonia did
not have the title "King of Greece,"
despite his control over this coun-
try.

28. Cane sugar wasn't white in
Alexander's time, but yellow or
even brown-no one knew how to
purify it.

29. Palm-leaf manuscripts were
common in both China and India.

30. The "Indiatt" proof of the
Pythagorean theorem (dividing a
larger square into smaller squares
and right triangles) became known
in Greece much later than Pythag-
oras discovered his proof.

31. The turn of phrase "Pythag-
orean trousers" emerged only in
modern times. It could not have
been used in ancient Greece-the
Greeks despised such "barbaric"

clothing.
32. The word "sharovars" is

Turkic origin and appeared only
the Middle Ages.

$omelhinus
1. Replacing every plus sign in

this exercis e by a minus sign, and
every minus sign by a plus sign, we
turn it into a simple generalization
of problem I discussed in the article.

2. Write + 1 instead of " +" and -1
instead of "-." If we choose any 4 x 4
subsquare of our diagram and create
within it the pattern of shaded
squares illustrated in figure 2, the
product of the eight numbers thus
chosen will be invariant under the
operations allowed (you can check
this yourself). With this observation,
we can apply the method of problem
3 in the text: the product of the
shaded numbers must be positive
for any position of the 4 x 4 sub-
square or we will not be able to
achieve atable consisting entirely of
+1's. For the distributions of the
signs given in {igures 3 and 5 (p.3511,

this product equals -1 if the "tem-
plate" of shaded squares is placed in the
top left position on the given 6 x 5
seuare; for figure 4 it's -1 for the bot-
tom right position. This means that
the answer to all three questions is no.

3. Shade the first, second, fourth,
fifth, seventh, and eighth rows of the
table considered in the problem. We
can see that the parity of the sum of
the numbers in the shaded squares
is not changed by the permitted op-
erations. For a table without even
numbers, this sum is even (a8 odd
numbers) initially. If this sum is ini-
tially odd, then we can never get all
the numbers to be even with the
given operations.

4.lf(i, l) denotes the exchange of
the numbers standing in the rth and
Ith places in a permutation, then the
exchange of two nonadjacent num-
bers-say, in the first and kth
places-can be organized as a series of
(2k - 3l neiglrbor exchange s: (1, 21, (2, 31,

..., (k - t, kl, (k - 2, k - tl, lk - 3, k -21,

..., (1,2). A worked example will
make this solution clear.

of
in
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5. Let's use -1's instead of zeros.
If x,, ..., xe are the current nurnbers
in their order around the circle, then
the operation we consider simply
replaces them with the products
XrXr., X.rX.,, "', XrXgr xrx, (if X, : Xzr

thenx,xr: 1; other^wisexrx, = -l). So

the product o{ the numbers after the
operation is (x,r, . . .xn 1r : 1 no matter
what x,, .../ xe werc. But the product
of nine -1's is -1, and so it cannot
appear aftel our operation.

6. Every tlme \Vend)- tears/ the
number oi pieces increases by 9, so
its remainder modulo 9 is invariant.
But 1 * i993 rn-rod 9', She can never
get 1993 pieces.

7. The ans\\.er is 10 ,the remain-
derof 1 +2+... - 1991r'-hendivided
by 13).

B. There wili be more ones than
twos. The operation rn qu(.tlon pre-
serves the rernainde rs modulo 9, so
after a certain numbe r ..i steps each
number turns inro its remainder
modulo 9. Since I rl00 000 : 9 .

111,111 + 1, it folltrrs that 111,112
of these remainders :rre ones and
111,111are nr-os.

9. Let x, be the grr-en number and
X, Xjr ..., xr0i. the successtt-e numbers
obtained Lry repsnlc,l subtractions of
their sums oi digits. Then all these
numbers (except -r ' and all their re-
spective sums of digits are divisible
by9. Ifr >0thtnr >9,x.,>9-
9, X,rr)9 . 3 and -\,,, 9 . 80 = 720.
Since there are on11' three 3-digit
numbers g.eater than 720 whose surn
of digits is equal to 9 1801, 810, and
9001, at least I (r oi the 19 nurnbers x,,,,

Xy, . . .r r. have a surr] of digits not less
then I 8. But that u-ould rnean that xl
>xr2xrr+ 16 18 +3.9) 720 +315 >

1,000, which is not a 3-diglt nurnber.
Therefore, X,oo = 0.

10. Label the sectors counter-
clockwise by the numbers 0, l, ...,
9 and define the number of a chip
(for some given arrangement of the
chips) as the number of the sector
where it belongs. When a chip
makes a counterclockwise move
(from sector I to sector i + 1 ), its
number increases by one except for
the move from sector 9 to sector 0,
which decreases the number by 9.
But in either case we can say that

the chip's number inueases by one
modulo 10. Similarly, a clockwise
rtove decreases the chip's number
by one modulo 10. So, when two
chips are moved in opposite direc-
tions, the sum S of the numberc of
all chips modulo 10lthat is, the re-
mainder of the sum of a1l the num-
bers when divided by 10) is preserved.
In the case when all chips are in one
sectorn/ S : 0, since 10n = 0 (mod i0);
if there is one chip in each sector, S =
0 + 1 + 2 + ... +9 : 45=5 (mod 10). So
we can/t gather all the chips in one
SCCtOI.

We can say a bit more about the
situation given in this problem. Sup-
pose the chips are distributed hap-
hazardly among the ten sectors (and
not one to each sector). Then we can
always gather any 9 chips of the 10
in, say, the zero sector. One chip
keeps traveling clockwise, enabling
each of the others to move counter-
clockwise, step by step, until the
other chips each reach the targetted
sector. Then the tenth chip ends up
in sector S, where S is the value of
our invariant for the initial arrange-
ment. It follows that all arrange-
ments fall into 10 classes corre-
sponding to the 10 values of S such
that two affangements can be trans-
formed into each other if and only if
they are in the same class (have the
same value of S).

11. (a) Replace the signs "+" arrd
"-" withthe numbers +1 and-1, re-
spectively. Consider three squares
ArAAAro, AA\A", and Ay'.aay',r,
(fig. 13). Any isosceles triangle in-
scribed in the given 12-gon is either
a right triangle inscribed in one of

the squares or has exactly one com-
mon vertex with each square. So the
products of the numbers at the ver-
tices of each square change their
signs under any allowed operations
simultaneously. But in passing from
one of the given arrangements to
another, only two of the three prod-
ucts should be changed, so this tran-
sition is impossible.

(b) Changing the signs at the ver-
tices of three isosceles right tri-
angles A ry4 rA u, A A 4 r, and A a4, rrA u
results in changing only the sign at
A' and yields plus signs every-
where. After that, we similarly
change the sign atAronly, thus cre-
ating the required arrangement.

12. The character can take any
value from O to 4. Changing signs
along columns that have a minus
sign in the top place, we get plus
signs in the top row. Then we
change signs in the rows that have
more than two minus signs. Now
minus signs occur only in the three
bottom rows/ no more than two
minus signs in each. If the total
number of minus signs is 5 or 6, two
of these rows have exactly two mi-
nus signs and we can change signs in
both, one, or none of them to get a
column having three minus signs
without changing the total number
of minus signs. Finally, we change
signs in this column, decreasing the
total number of minus signs by two,
arriving at no more than 4 minus
signs. And this number, in general,
can't be diminished. Among other
possibiJities, the reader may examine
the situation starting with four minus
signs along a diagonal of the array and
plus signs everywhere else.

13. Number the places occupied
by the chips around the circle from
1 to 30. Any allowed transposition
swaps the chips in places with num-
bers of the same parity. Consider the
t5 "odd" places. |oin place 1 to 5, 5
to 9, ...,25 to 29,29 to 3, ...,27 to
i-that is, those pairs of places
where "transposable" pairs o{ chips
are positioned. We get a closed 15-
sided (self-intersecting) polygonal
curve. And two chips adjacent along
this curve can be swapped. So any
two chips in odd places can beFigure 13
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swapped (see the solution to exer-
cise 4). It follows that any permuta-
tion of these chips is feasible. Like-
wise, any permutation of the chips
in even places is feasible as well.
This means that two arangements
of chips are equivalent if and only if
they have the same number o{ white
chips in the odd places (and there-
fore in the even ones/ too). This
numbercantake 11values (0, l,...,
10), so 11 is the number in question.

14. The operations in the problem
consist of two transpositions each (a

transposition of the two extreme
numbers of a quadruple and a trans-
position of the two inner numbers).
So they can generate only even per-
mutations. But the permutation we
need to create is odd, because it con-
sists of an odd number (9971of trans-
positions: ll, 1993), (2, 19921, ...,
(997, 99Bl.In general, the answer
will be no for any number of the
lorm 4k + 2 (as well as 4k + 3) in-
stead oI 1994.

For numbers of the forrn4k or 4k
+ 1, the inverse order is an even per-
mutation/ and the consideration of
parities is not sufficient to answer
the question. In fact, it's not difficult
to show that here the answer is yes.
A more involved analysis proves
that our operations generate any
even permutation.

Toy $tore
1. The number of arrangements

for a given (nr, ..., n,r) is equal to
24!l@rlnr!...nrrl). This also ac-
counts for the various locations of
empty space. The number of pos-
sibie sets (nr, ..., n,r)is 34!lftIlz}\.

Z.Let's put a chip numbered 0 on
the empty space. Then every move
becomes an exchange of the zero
chip with some other chip. Notice
that during such an exchange the
orientation of the grid's triangle
where the zero chip is located turns
to the opposite direction (if it was
pointed north, it will point south,
and vice versa). Since the zero chip
ends up at its starting location, the
orientations of the triangles that it
passed must have changed an even

number of times, so the number of
moves was even. But evenly many
pair exchanges make an even per-
mutation.

Conversely, the operation de-
scribed in {igure 5b in the article,
and its modifications, allow us to
create any desirable arrangement of
all chips, with the possible excep-
tion of the two located at the oppo-
site vertices of the central hexagon
of the network in figure 4 (they cor-
respond to chips a and b in figure
5b). These last two chips may or
may not end up being swapped in
the end. Suppose they are. This
would mean that we have gotten an
even permutation (the empty space
came back to its starting position!),
which differs from the required (also
even) permutation in exactly one
pair exchange-that of the last two
chips. But this is impossible, be-
cause a pair exchange alters the par-
ity of a permutation.

Col'l'eclions
Vol. 3, No.6l
p. 6, co1. 1, 1. 11: for I - llt

read I lle.
p. 7, col. l, I.22: for i = n read

i=k.
p. 7, co1. 2,1I. l-1: the form of

the equation that "telescopes" is

S*-S^ t:312-tl.,i. r.

p. 56, table in M86: for D. read
D);;for D.,read Dj.

Beadel's

l,llrile...
The article "superheated by
Equations" in the last issue
of Quantum was read with
pleasure by Dr. Richard
Grant of the Albert Einstein
Medical Center in Philadel-
phia. In tact, itreminded him
of a natural phenomenon. He
writes: "The teaser below the
cover art on the contents
page suggests that Dmitry
Fomin's technique of heat ex-
change may be impractical.
As a matter of fact it is used
all the time in nature by hav-
ing veins and arteries en-
twined in 'retia mirabiles.'
These allow heat exchange
exactly as described by
Fomin (though of course not
100% efficient)." He adds
that the mechanism works
for diffusible substances (for
example, oxygen or urea) in
addition to heat.

Dr. Grant offers a citation
for further reading on the
subject: "The Wonderful
Net" by P. F. Scholander in
the April 1957 issue of Scien-
tific American.
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FIE RENO\\\TD ,b" PUZZLE
created bv Sam Lor-d-rr.hich is
said to har-e caused a craze that
can be compared on11- to the

worldwide success oi Rubik's
cube-gave rise to countless rnodi-
fications.l As you probabl,v know,
Loyd's original invcntion is iust a

flat square box measuring -l x -1 with
15 numbered unit-squarc pieces in
it. The remaining cmltv unit square
is used to slide the pieces one by one
all around the bor. Thus, the initial
order o{ the pieces is cornpletely
destroyed, and the task rs to slide
them back to their initial positions.
More generally, you may be asked to
transform one given order into an-
other-which, br rhe way, is not
always possible.

The idea oi "unscrambling a

scrambled order of like pieces" that
lies at the core of Loyd's toy has
been continually used and devel-
oped ever since it was first intro-
duced by the famous puzzle master.
And a new dimension is added to it
(literally!) by reshaping the flat
pieces into blocks that can be rolled
in the box rather than slid. The state
of the puzzle then becomes depen-
dent not only on the location of the
pieces but on their orientations in
their respective "cells" of the box
(just as with the small blocks consti-
tuting Rubik's cube). The two most
natural shapes for the blocks are
cubes and pyrarnids {more exactly,
regular tetrahedrons ). Surprisingly,

rSee "A Portrait o{ Three Pu::le
Graces" in the NovemberlDecember
1991 issue.

TOY STORE

Tupsy{tlruy pyramids

And fishy chips

by Vladimir Dubrovsky

these two offspring of the slide-
block family of puzzles turn out to
be completely dii{erent in their
properties and solutions. This article
is devoted to rollingpyramids, which
seem to be more distant cousins of
the square ancestor . . . but let's not
put the cart before the horse.

The version of the pyramids seen
in figure 1 was invented by two de-
signers from Krivoy Rog, a city in
Ukraine. In fact, they have created
a bunch of rolling-block puzzles and
other kinds as well and won first
prizein apuzzle contest sponsored
by a popular Soviet newspaper in the
mid-eighties. This beautiful toy
consists of a hexagonal box with a
grid of 24 triangular cells ar,d 23
pyramids that fit exactly inside the
cells; one empty cell is left for ro11-

ing the pyramids around. A11 the
pyramids are identical, and each is
colored "vertexwise": one of four
different colors is used for each ver-
tex. The figure illustrates their ini-
tial "regular" arrarrgernent as pro-
posed by the authors. As is typical of
its country of origin, this toy (like
countless other inventions of much
greater import) was never put into
production, and I would guess it ex-
ists in only two or three copies made
by the designers. (It's quite easy to
make yourself-if you have the en-
thusiasm, time, and patience.)

I had a chance to play with one of
these rarities and was astonished at
a number of mathematical subtle-
ties concealed in it. The size and
shape of the box, the coloring of the
pyramids, and their initial order-
all these things matter and were

chosen by the inventors very aptly,
whether by serendipity or as the re-
sult of a thorough search, or both.

Actually, I didn't really playwith
the pyramids, because after rolling
them around for a while I clearly
understood that without a carefully
thought-out, long-range plan, every
move you make in trying to ap-
proach the regular position only
takes you further from it. This
puzzle simply forces you to treat it as

a mathematical problem, so let's do a
bit o{ research together. And let's be-
gin, as usual, with an experiment.

Take, or make, or just imagine
one of the 23 pyramids on an infi-
nite "box" with a triangular grid.
Remember its initial position (loca-
tion and orientation) and ro11 it
along an arbrtrary closedpath. Com-
pare its position when it comes back
to the starting point with the initial
one, and repeat this for several dif-
ferent routes. The result is rather
unexpected: the pyramid always
ends up in the initial position! This
fact isn't self-evident and isn't valid
for other regular polyhedrons. But it

Figure 1
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becomes pretty clear i{ the plane is
colored as in figure 2. Indeed, if you
put our colored pyramid on any of
the triangles of the colored plane so
that their colorings match each
other and roll it over, the colors on
its new base will coincide with the
colors on the plane. This means that
the colors will coincide after any
number of any rollings. But the col-
ors on the pyramid's base uniquely
determine its overall orientation. It
follows that the initial position (1o-

cation and oilentation) of a pyra-
mid uniquely pr esctib es its oilenta-
tion at any other location after it
rolls there, no mattu what its route.
(In particular, overy time the pyra-
mid returns to the starting triangle,
it resumes the initial position.)

Notice that the colored triangles
in figure 2 fall into eight classes
such that any two triangles from
one class can be obtained from each
other by aparallel translation. And
every triple of the four possible co1-
ors occurs in exactly two classes-
with triangles pointing "north" in
one of them and pointing "south" in
the other. (Pairs of these classes are
marked in the figure with white and
black circles.) Accordingly, a pyra-
mid rolling over the plane belongs
permanently to one of these eight
classes.

Now imagine a second pyramid
whose colors do not coincide with
those of the grid's triangle on which

it initially rests. Then it will be im-
possible to make the colors coincide
by any sequence of rollings (other-
wise we would have had a perma-
nent coincidence of colors). So we'll
be always able to tell which of the
two pyramids is the "first" and
which is the "second," although
they look exactly the same when
removed from the plane. Let's call
two such pyramids on the grid dis-
tinguishable. If the grid is not col-
ored we can roll two pyramids, one
after the other, onto the same tri-
angle of the grid and compare their
orientations. Clearly, the pyramids
are distinguishable if and only if
their orientations are different when
they are sitting on the same triangle.
Since a pyramid can be set on a
given triangle in 4 . 3 = 12 ways (any
of its four faces can be its base, and
it can be turned in three ways on the
base), the maximum number of dis-
tinguishable pyramids is also 12.

Now we tum back to our ptzzle to
inspect the orientations of the pyra-
mids in the regular position (fig. 1)

and find which of them are indistin-
guishable. A11 of them rest on their
white-red-yelIow faces. On the other
hand, in figure 2 the white-red-ye1-
low triangles constitute two (of the
eight) classes, so all the pyramids in
the box that are not distinguishable
from a given one can have only two
orientations-exactly the same as
the given pyramid or rotated by

180". A11 such pyramids make a pat-
tern like the one shown in figure 3.
If we lay this pattern over figure 2,
we'll see that it always covers ex-
actly one triangle of each of the
eight classes! (This is one of the rea-
sons I think the shape of the box and
the regular arrangement of pyramids
are so neatly chosen.) So each pyra-
mid in the box can have only one in-
distinguishable counterpart, which is,
infact, qzmmetric to it about the cen-
ter of the box (in the initial position).
Of course, one pyramid-symmetric
to the empty space-doesn't have a
counterpart at all.

At this point we can dramatically
simplify our ptzzle to get rid of ori,
entations-and even the pyramidsl
Let's number the pyramids in the
initial position so that each indistin-
guishable pair gets its own number
from 1 to i2 (one of the numbers
will have to be given to a single
pyramid), and assign the same num-
bers to the respective cells of the
box-say, as in figure 4. Note that
all twelve possible orientations are
found in the regular arrangement-
another indication of good design.
These numbers help greatly in solv-
ing the ptzzle, because they show
where every pyramid must be rolled;
and when it comes to the place with
its number, it will automatically
tum the right way. Then what do we
need all this rolling for? We cafl re-
place the pyramids with numbered

Figure 3
The pyramids with the same orienta-
tion in the rcgulm aruangement of
figwe 1 form a pattern like the one
shown with black ctucles; white
circles mark the locations of pyramids
whose oientation is obtained by a
180o turn fuom the black-circlad one.Figure 2
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chips, and, instead of roliing, slide
thern from triangle to triangle (or
along the lines iorming the hexago-
na1 nent,ork in figure 4, which is the
same, of course).

So c.,ur puzzle is finally reduced to
something very similar to the 15
puzzle. However, if you make it-
which is much easier (draw the net-
work and use a set oi checkers as

chips)-and play with it, you'll see

it's more interesting than its proto-
type. At first the chips will slide to
their destin:rtions rr,rthout any no-
ticcabie resistance. But graclually
you'11 feel that 1t gets harcler and
i-rarder to clrir-e th.-nr trhe re voll
want rtrithour seriLrus clamage to the
orcler alreadr ::chr.r'ed. An,-1 r-ou
may get stucl< a: thc r.itr- enc1. Frg-

ure 5 pror.icles a 11111-, trs.r1 reciL.e ior
constrLr crini .)r-.. :'-r'-llLl tJtiun ol
chips you n-right L.sJ. Ilraslne tl-Iat
the left hcxag..lr ri1 Ilillre 5 rs the
central heragoir rrI Lr!rr nettrork iin
figure 41. Sr,tp1.,1.1; ;lLso that the chips
a and b halc alr.l.l- l.een inst:r11ed

correctl)-. Thrl rhtrr erchange
makes no drite rtnce, since these
chips u,ou1cl h,rle the same num-
bers. So the o;.c1311en illustrated in
figure 5b :rppcars to erchange only c

and d. To erchar-rgc nvo other aclia-
cent elemcnrs-sir)', e and / we
lnust flrst shiit then-r to piaces c and
d (using a cr-c1ic rrove like the one
in [iguIe ;; th.n pctitrrtn our opera-
tion, and move them back. Thr-rs, we
can exch,rnge any t\vo adiacent
chips rn the rlght hexagon ernd,
thereiore, an)' two chips along this
hexagon (see "Some Things Never
Change" in this issuc, where it is
shown that any permutation can be

achieved by repeated
exchanges of adjacent
elements). Any per-
mutation is a combi-
nation of a number of
pair exchanges.

Conluding our in-
vestigation of the
chip (and also cheap)
version of the ptzzle,
we can say that any
arrangement of the
chips numbered I to t2
such that each number
except one occurs on
two chips can be reor-
dcrccl in a standarcl rrirr- i1ikc, say,
iigure 1) b1. a certarn setluence of
lrroves rrncl, there iorL', ciln be ob-
tilrned irom the st;rnc1rrr,,1 arrange-
ilent 1br- rcr-ersing thrs se quence). It
iollorr's that anr- t\\-o arranselrcl-rts
can be tr:lnsfome cl rnto each other
{via the standard one, ior instiu-LCe I

that is to say, any t\vo arrange menrs
are eqttivalenr.r But this rs nLrt rrltc
for arrangements oi pyramiclsl In-
deed, when replacing pyramids rtith
numbcred chips, we mLrst take rnto
account which of them are distir-r-
guishrble igetting different nurrr-
bers) and which are not (gctting the
same numbers). Assign some nu[I-
ber from 1 to 12 to each of the 12
possible orient:ltions of a pyramicl
on a certain triangle of the grid. This
will unicl-re1y define the concordant
(with respect to distinguishability)
nurnhcring of orrentations at ilny
othcr triangle. Then each arranS;c-
ment defincs a set \n1/ n)t..., n,,) of
12 numbers, where n,- is the number
of pyramids in this arrangelnent
that have the orientation numlrer k
at their respcctir e locJtions.

Problem 1. Show that two ar-
rangements o{ pyramids are ecluiva-
lent if and only ii they have the
same sets ln ,, . . . , n, , ). Find the num-
ber of arrangements with a given set
(it clepends on the valucs of n,) and
the numbcr of all possible sets.

fHint: two Quantum articles will
help you coLrnt these numbers:
"summertime, and the Choosin'

Figure 5
/rrl Sirccesslvely sliding, cltips a, b, c, d, e, a, \\re obtttin
thcir cyclic petnilttatioll shown by tlte recl ttrrows;
tbt let L and R be tlte cottnterclctckwise cyclic yternttt-
irrfj.Ds of figwe (a) for the left and right hexttgons,
i..spectively, Li ancl ll. 1 the inverse (clockwise) cycles,
L' : LL and L 2 = L ]L I the c-,ycles L and L ) repettted
tst-ite , Then Lhe oyteration R tLRL )R tL)RL 1 yielcls two
-',:tultttneous lttti exchttnges d <+ b and c <+ tl.

Ain't Easy" (fuly/Ar-rgust 1992) ancl

" Combinatorics-polynomials-prob -

ability" {March/April 1 993)1.

Problem 2. Suppose the chips in
figurc 4 were all numbered differ-
ently-from 1 to 23. Prove that any
seqllcnce of moves that returns the
empt-v sprrcc to its initiai location
produces an even perrnutation of the
ulrip. 111,i, i.. it lcllttutiltiolt F,Llter-
ated br- air even nnrrber of pair er-
changcs-see "Sorle Things Nevet
Char-rge " ior rlore tletai1sl. Con-
Vr'l'scl\ . at't\ c\ cn lcilllLlt.'lItnll ..111

Ir.' ohtri in q,l i tt th t- rr .t r

You rlal- har-e notice d thet I'r-e
repeatcdly rcicrred to " Some Thrngs
Ncvcr Change. " This is 11o :lccident.
The rolling pyramic'ls, anc'1 ui,u-n- tc-
latecl puzzles, fit periectl,v the gen-
eral idea of the problems considercd
in that article: given a set of sorle
"configurations" of an arbitrary na-
ture that can be transformed accord-
ing to somc fixed rules, frnd out
whcn and how one configuration
can bc turncd into another. Almost
all the problems in that article can
be viewed as "transformational
ptzzles" as well.

By the way-basecl on your read-
ing of both articles/ can you tell
what the invariants of the rolling
pyramids arc? C

ANSWERS, HINTS & SOLUTIONS
ON PAGE 62

rThis ls also true {or the 15 puzzic
(see "A Portrait of Three Puzzlc
Craces" ).Figure 4

:Cornpare this with prob1cm l3 in
S,l.ne Thir-rgs Ncvcr Change."
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