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Blindman's Buff (ca.l745l by Pietro Longhi

T F YoU WANDER AROUND THE NATIONAL GALLERY
I of ert long enough, you'll eventually come across this scene
of Venetian life in the mid-eighteenth century. The painting
seems misnamed: the Ox{ord English Dictionary defines
blindman's buff as '|a game in which one player is blindfolded
and tries to catch and identify any one of the others, who, on
their part, push him about and make sport with him." (The

"buf{" comes from "buffet.") The activity depicted by Pietro
Longhi (1702-1785lr seems more akin to the festive Latin-
American custom of breaking the pinata. Nowadays we usu-
ally see papier-mAch6 piflatas in the shapes of animals, but they
used to be painted pottery jars. Then, as now, they were filled
with candy and gi{ts. The object on the floor certainly looks
Like an uptumed piece of crockery, and one suspects that afieat
is hiding undemeath.

So, let's trust our eyes and leave the title aside. In so doing
we mimic the abrupt change of direction in Longhi's early
career. He began painting under the tutelage of a history
pailter, but his one important work of this sort, a monumen-
tal ceiling entitled "Fall of the Giants," was a failure. Longhi
then turned to genre painting-that is, the depiction oI every-
day scenes. Rather than paint the imaginary acts o{ mythical

persons/ he recorded life as it was actually lived by his contem-
poraries, sometimes with a touch of irony. A painting like
"Exhibition of a Rhinoceros at Venice/' ll75l) provides docu-
mentation of a society curious about novelties from abroad but
also curious about itself.

"Blindman's Buff" raises some interesting questions. For in-
stance, how do we explain the attire of the boy wielding the
stick? And who is the person faintly visible in the drapery? (Do
you see a resemblance with the girl in the middle of the pic-
ture? We suspect that Longhi moved her there and painted over
her original image at the last minute, not realizing that the
drapes would "fade."l One thing we know for certain: sooner
orlater, the boy will find the pot on the floor (mathematically,
the probability is 1). But what's the probability that he'Il "in-
tersect/' it after, say, 10 random steps lforward, backward, left,
right)? That's a bit trickier.

We could simplify the problem. Say we place the pot and
the boy on a line and give his sister a coin. When she flips
heads, he takes a step forward; tails, he steps back. He would
then be enacting a random walk. Several articles in this issue
deal with this topic-you can begin your tour with "Randomly
Seeking Cipollino" on page 20.
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Cover art by Leonid Ttshkov

The two figures greeting each other on
our cover (the Russian word is pro-
nounced prih-VYET) live in completely
different worlds-or should we say/ tea
glasses? The glass holders bear the ini-
tials of the Ministry of Railways (MIIC)
and were afamlliar sight to the millions
of Soviet citizens who traveled by train
over the course of seventy years. Many of
them were headed to the resorts on the
Black Sea, and while some may have
dreamed of the far-o{f tropical paradise o{
Hawaii, few managed to get there-and
none by rail.

One clever guy, though, figured out
how to tum the frigid tundra into the
sunny seashore. Well, actually, he de-
vised a way of tuming iced tea into hot
(boiling hot) tea by bringrng it into con-
tact with boiling hot water (but not mix-
ing the two liquids). Well, theoretically,
at least. He hasn't managed to make it
work with real glasses of tea and water.

Maybe that's because the guy's a
mathematician. But even physicists will
want to look at his unexpected results.
They are reported in "superheated by
Equations," which begins on page 4.
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A cil'cuiluu$ l'oule

The road to "relevance" in science education

HEN I WAS IN THE TENTH
grade, my family moved from
Kansas City to Shreveport,
Louisiana. After spending one

day in the new high school, I decided
it wasn't for me. I hitchhiked back to
Kansas (a dangerous and stupid thing
to do) and lived with a friend of mine
and his family. They had a place with
several acres and a couple of horses,
which were put under my care.In the
afternoons I'd saddle up one of those
beautiful quarter horses and ride back
to school to show off. Not only had I
retumed to my old stomprng grounds,
I had returned in style!

It's curious that I felt such an attach-
ment to that schoof since I hadn't come
across anythingin school thatI thought
was worth leaming. I was drifting doing
enough to pass but little e1se.

Then Charlie, my friend's older
brother, began to talk with me about
electronics. He was as an electronics en-
glneer and an amateur rafio operator. I
wouldn't leave Charlie alone until he
explained everything to me in ways that
I could understand. By the time I was
a junior I could explain any electric
circuit. I spent every spare moment
searching the local junkyards for old
radios and electronic instruments
that I could cannibalize for parts.

But then i ran into a serious problem.
Even thoughl knew exactlyhow some-
thing worked and could explain it in
terms of electron flow through or into
every component, when I would apply
my knowledge to make a circuit/ guess

what happened? It wouldn't workl A11

I got was smoking insulation, bumed
parts, bloum fuses, sometimes a little

weak noise, and not much else.

To my chagrin, I discovered that it
isn't enough to understand das criptively
(in words) how a circuit works. I found
that you have to know the size of each
component-the resistors, capacitors,
and so on. And to know what that
means, you have to know more about
the components and about electricity. I
had to understand them quantita-
tively-I had to know mathematics,
which I had never bothered with! I
needed to leam equations, which gave

numerical values in units such as ohms,
amps, and so on.

My ocperience with chemistry was
similar. I'd mix up all kinds o{ chemicals
indiscriminately (another stupid and

thing to dol) and usually get
some harmless goop that had to be
thrown out. Even if I got some sort o{
reaction, I had no idea what it was.
Descriptive chemistry was of little
use-even if I had the right reactants,
I didn't know how much to use or
under what conditions. I needed quan-
titative chemistry, withits atomic mass
unitg moles, equilibrium constantg and
so on. And a knowledge of pressure,
temperaturg and energy needed or re-
leased would come in handy (especially
in avoiding an early demise).

Along the way I had seen that elec-
tronics is connected with chemistry,
and that all the sciences are closely
bound up with mathematics. I also re-
alizsd 1tr21 1\Mas most interested in un-
deriying principles, which led me to the
most fundamental of the sciences-
physics. So througlrout my undergradu-
ate and graduate education, I main-
tained an almost even balance between

physics and mathematics.
Now, what's the point of all of

this? I find myself engaged in a na-
tionai debate about how best to help
young people like you leam science.
There are those who don't think a
high school kid like I was can handle
science or math at the level that you-
Quantumreaders-are leaming it. But
you and I both know better. Sure, we
know there are some who reaIly can't do
it. But the vast majority just won't
work hard enough. They have no in-
terest in it. You know the type, and
you know that many o{ your fellow
students are not really that different
from you. They could do just as wel!
and some could do evenbetter.

Well, these folks with whom I
disagree so strongly want to offer
something else. It goes under several
names: "Science, Technology, and
Society"; "A Thematic Approach";
" Ptactical Applications"; "Physics,
Chemistry, or Biology in the Com-
munity." They all take the same
tack: kids can't learn real science, so
let's give them something they can
use in their daily lives to make per-
sonal and societal decisions. Along
the way they'll pick up the right
words for things, and so they'll gain
" scientif ic liter acy. "

But my question is, how can yormg
people leam science by usingproblems
Iike these as a starting point? What ba-
sic knowledge can theybringto bear on
such problems? How can they hold any-
thing constant or carry out any e4peri-
ment that miglrt lead to an understand-
ing of a complex phenomenon like acid
rain, the ozone hole, or global warming?
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Relevance played an important role
in motivating me to leam science and
math. But that isn't what sustained my
interest. And that isn't what sustains
your interest, is it?

The process leading to an under-
standing of some basic scienti{ic prin-
ciple or law, and the comprehension
that it is applicable everywhere tn ou
universe, are awesome and deeply
satisfying experiences. Working one's
way through the creation of a theory
to account for an entire array of seem-
ingly unrelated scientiJic principles or
laws opens a whole new world of
thought. The experience of leaming a
basic part of science {or yourself can
be a powerful, long-term source of
motivation. The history of science is
filled with examples of a small, appar-
ently insignificant learning experi-
ence that was sufficient to sustain the
person until an exponentially increas-
ing number of such experiences pro-
duced major scientific achievements.
How many young people have never
had even one such experience?

These are not privileged orperiences
open only to the elite few who will be-
come research scientists. They should
be open to all students.

I'11 always remember the time I came
closest to the profound understanding of
physics as it existed when I was in
graduate school. It was as if I had pulled
myself up to a hig! window that opened
onto a beauti{ul and complex world I
had never experienced. But to stay up
there and enter that world would have
required a level of effort and, yes, abil-
ity that I simply didn't have. I figura-
tivelylowered mysel-{from thatwindow
and pursued those things for which I
was fuIIy capable. I became a teacher,
but I retained a profound admiration for
those few who could remain and work
in that different world.

Many Quantum readers will un-
doubtedly not only glimpse that world,
but will become part of it. The rest of us
can have a few glimpses, and we can use
what we see there in important ways.
That is the way to leam science, and
thatmal<es science relevant for all.

What do you think about this?
Send us a letter or e-mail message
(7 2030.3 I 62@compuserve. com ).

-Bitl G. Aldridge
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one of them hot, the other cold-for
instance, a can of iced tea and a can
of boiling water. But you want to
drink some hot tea, and you have to
heat the tea using only the hot wa-
ter in the other can. How hot do you
think you can make your tea?
Would you believe me if I say that
the whole can of tea canbe heated-
at least, theoretically-to a tempera-
ture as close to that of boiling water
as you wish? I don't suppose you
would. Nobody believes me-at
first. Wel1, then your astonishment
will be all the greater by the time
you reach the end of my story.

It will be convenient to assume
that the temperature of the cold liq-
uid (tea) is 0' and that of the hot liq-
uid (water) is 1". These might look
like pretty strange readings, but a
temperature scale is just a matter of
convention. And since we won't mix
the two liquids (you don't want di-
luted tea, do you?), the heat must be
transferred by conduction, which oc-
curs when certain volumes of the two
liquids are brought into direct con-
tact. This will help us keep track of
the temperature of each liquid.

[pes olheattl'an$el'
Method l. Can-to-can. The first

and most obvious method of heating
the tea is to bring the cans into con-
tact. After thermal equilibrium is es-
tablished, both cans will have the
same temperature: (1/2)'. So it seems
that this temperature is the maxi-
mum we can obtain for the tea by
heat conduction. And this is what

everyone usually thinks.
Method 2. H ot i et. If you've taken

the time to think things over, you
might have come up with the idea of
dividing the hot water into several por-
tions. To begin with, split the water into
two equal halves and bring them into
contactwith the can of tea one afterthe
other (each time waiting until ther-
mal equilibrium is established). Then
after the first heat exchange the com-
mon temperature of the tea and the
first half of the water is

t.0o+12.1._rt)"--ir- -1,3i

And after the interaction between
this heated tea and the remaining half
of the watett their temperature be-
comes equal to

r 0.)" +0r) r /c\o
=l l =t).555..."lc)l

=o
T-oo
=o
I
@

=x-o

r* lli
That's it! The result is greater

than (1/2)"! This encourages us to
keep going. Let's divide the water
into n equal portions and spray the
tea with this hot jet. To calculate
the final temperature of the tea, de-
note its temperature after the inter-
action with the kth " drop" of water
by to. Certainly, to : 0'. Then

t,to-, =;i(nto + 1. 1),

or, equivalently,

$urcrhealed hyEquatims

A mathematician turns iced tea into hot tea

by Dmitry Fomin

HERE'S A WELL-KNOWN
ioke among scientists that
shows the difference between
mathematical and physical

modes of thinking. A mathemati-
cian and a physicist are asked: "How
do you boil water if you are in a

kitchen with a gas stove, a kettle, a
water faucet, and a box of matches? "
The answer is obvious from both of
them: "Fill the kettle with water,
take a match, light the burner, and
put the kettle on the stove."

Then a second question is posed:

"Imagine that your kettle is already
fu1l. How do you achieve the desired
goal now?"

The physicist answers: "Take a

match lanother match, I should say!),
light the bumer, and put the kettle on
the stove agarn." But this shortest
solution can be simplified further-
here's how a mathematically minded
person deals with this second prob-
lem: "Pour out the water. Now we
have arrived at the previous problem,
which has already been solved."

Take this anecdote as a kind of
epigraph to the article that follows.
And now the real story begins.

It's the story of one apparently
simple physical question that a class-
mate proposed to me in 1980. He was
good in physics, but he asked me to
solve the problem because it had a
large mathematical component.

Here's the problem. Imagine you
have two identical cans of liquid,

At left: "I live in Moscow, drink hot
tea, and daydream about Hawaii . . ."
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, + -1 
ntk+|-n(l-lk)

Rrr n+l n+l

WonderfuI! Now it's easy to see that

water with a cold iet of tea!
Let's investigate this pro-
cess-perhaps we'll get a
better result.

As before, we denote

n equal portions o{ tea

0
u

0
u

0
u

by to the temperature of 1 -+ 
n *'* -("i') - -(;i,)'

2

t- L =(-n ), ,n_[n+t,J ,

OI

r =r-l--l).' \n+l)
As you probably know,l the sequence
a,: (l + llnl" increases and ap-
proaches e = 2.71828... with the
growth of n. Therefore/ the sequence
to= | - tf a,also increases and aP-
proaches l-llt=0.632.

In particular, this means that the
temperature of the water can be
made arbitrarily close to I le =
0.388-that is, much lower than
that of the tea!2 This method of heat
transfer for n = 3 is graphically illus-
tratedinfigure 1: every single act of
heat transfer is represented there by
a pair of arrows joining the initial
temperatures of the tea and that of
the water droplet (which is always
1") to their equilibrium temperature.

Method 3. Cold iet. Maybe you're
sophisticated enough to have come
up with the opposite idea: spray the

iced tea

ing with the kth drop of Figure 2
tea (to : 1"). Thenf as we
can see in fig:ue 2,

r+l .^,1
1 tr, +l.o)= r 

L,1\ | | ,.,1n+1 "

the water after interact-

n+l'

So

(n \' tf =l 

- 

| --)
" \n+l/ e

as n approaches infinity, and we
have exactly the same result as be-
fore: the temperature of the water is
about ll lul" , which means that the
tea has been heated to (1 - L lel" .Un-
fortunately, this adds nothing to
what we've gained with the previ-
ous method. But don't lose heart! I
have one more idea up my sleeve.

Method 4. [et-to-iet. We've already
studied the interaction of tfre entire
can of cold tea or hot water with a jet
of smail portions of the other liquid.
If you're consistent, you'll invent the
last (but not least!) method of heat
transfer. Although it's rather compli-
cated from the computational point
of view, we can investigate math-
ematically the interaction of two jets:

one hot, one cold. What do I mean?
Imagine that we've divided both liq-
uids into n equal portions. Let's bring
the first portion of water into contact
with all the portions of tea one by
one, then let's do the same with the
second portion of water; and so on.
So, step by step, the portions of tea
will be heated by the portions of wa-
ter. It can be described like this: the
drops of the water jet travel along the
tealet, exchanging heat as they go.

This method calls for closer study.

Genel'ous [eatuchange
The jet-to-jet process of heat ex-

change is illustrated in figure 3. The
horizontal rows describe the path of
the water droplets, while the vertical
columns record the path of the tea

droplets. Since the masses of all the
portions of the two liquids are the
same/ the temperature of any two
portions after their interaction is the
arithmetic mean of their initial tem-
peratures. It follows that the tempera-
ture ,,i of the rth portion of water and

Ith portion of tea immediately after
their interaction does not depend on
the number of portions. Formally, the
numbers 1,, for i> l, i > I are found
from the recursive relation

Ir1,,=)(t,,,-,+t,,,,), (1)

and the "initial conditions" for the
temperatures before any interactions
are to. : 0, t, : l.Even a cursory glance
at figure 3 yields several observations
that will be helpfullater. First, we
notice that t*: 112 tor all n 2 1 Ac-
tuaIly, this is a pafiictlar case of a
more general relation that expresses
a certain kind of symmetry in our dia-

Stam:

t + t = 1.11 11
12)

To prove this equality f.or all i >
0,i>O (except li,il:10,0), of course),
puts. : L + t .Then thenumberss.,
tu"io"rtv .rlirfy the same half-su#
recursive law: s..: (s,_,, + s,,, ,llZi
but they obey different initial con-
ditions: soi : sio : 1. Clearly, if we
start to fill out a diagram similar to
that in figure 3 but having ones in-
stead of zeros in its upper row, we'll
certainly obtain ones everywhere/ so

s,, : I for all i, i. This completes the
proot.

Another observation is that the num-
bers t, taken along any " dtagonal" i - i
: constant-that is, the numbers [,,n r.

for any fixed k-form a monotonic se-

quence. That is, the sequence is always
decreasingfork > 0, increasingfork < 0,

and constant {or k : 0 (t* : I l2l.

hot water

0

u

1 -+ ll4
u

1 -+ 7116

u

r > 37164

Figure 1

lSee, for instance, "[Getting to
Know] The Natural Logarithm" by Bill
Aldridge in the November/December
1991 issue oI Quantum.-Ed.

2It goes without saying that in these
considerations the inevitable heat
losses are igrrored. It's hardly possible,
though, to conceive ol a realhot-iet
experiment for a sufficiently large
number a of small portions of water in
which the losses would indeed be
negligible. This remark applies to the
rest of the article as well.-Ed.
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The proof is similar to the one
above. Let d,,:t,_r.,*, - lr, (it's the dif-
ference between two consecutive
numbers along a diagonal). Then the
numbers d,,agun obey the half-sum
law, and in addition do, : tr.,_, - 0,
O, d*: l12- I12 : O, d,,= t,,,r- I .
0. It follows that d > O above the
"lmal:a diagonal" (for'i < il, arrd d,, <0
below the main diagonal, wliich
means that the sequence {t,.,_o} in-
creases as n grows for any fixed k < 0
and decreases for k > 0.

Now we're in aposition to evaluate
the average temperature Q of the tea
after allnzheat exchanges have oc-
curred. For any row k of our figure 3, let
Sr, : to, + t*+ ... + t*. [rparticultr, S, :
t,,. Let So : 0 (areasonable choice for t ).

Note that So: nT,.
Write out equations (1) multiplied

by 2 for i : n and all i : l, 2, ..., n-

2tor:to_r,r+ l,
Ztor= to-r,r+ tot,

Zto,r ,. = Ir r,t ,r * tp,t ,,
Zt,.o= |

-andaddthemup:

2Sk = Sft , + 2 +S*-to,o r-t*,,.,

OI

S^=S. ,+\312-to,o,).

{The reader should check this for the
special cases k = I and k = 2 )

Now we add these equations fork
: l, 2, ...,n. The left-hand side "tele-
scopes": adjacent terms cancel out,
leaving only the first and last. This
gives us

metic mean of the first n terms of the
sequence. A strict proof is left as an
exercise for readers familiar with the
theory of limits.)

By this lemma, the second term in
the right side of equation (3) has a
limit equal to the limit of t, ,_,-that
is,l12. And, finally, we fintl that

r -?_1=r."22

Incredible! Our calculation has led
us to an astounding result: we can
heat our cold tea almost to the unit
temperature, while the hot water not
only becomes colder, its temperature
falls pretty close to zero.

This paradox shows that common
sense sometimes deceives us, and re-
ality can be more complicated than
one would think.

]vlone on llts Mo-iellnslhod
The diagram in figure 3 has two

very interesting properties. You can
try to prove them on your own.3

1. It tums out that there exists an
explicit formula for r,,:

r sl(i+i-t)t = - )'l I.ii 
2i*i_r al k I

cient:

/n) nttt_
[r.,J- rr1, - t;r'

This expression opens another ap-
proach to the proof that ar= lfZ,but
it involves a rather complicated cal-
culation using the so-called Stirling
formula:

/ \n

n!=ln | ,t2""\e)
2. There exists a remarkable probabi-

listic interpretation of the numbers q,.

Imagine a person who walks randomly
through our diagram, moving only up-
wards or to the left (against the arrows)

3Or you can look into "Counting
Random Paths" on page 39.-Ed.

S,-So:S,,
:(Blz-t,,,,,_,) ! 13fz-t,, 1,,, ))

+ ... + 13l2- t,, ) + l3l2-t,nl,

OI

,-Llri , )-r3 ,l-''-"1[z ''o'J lz "')'"'
/3 ll*l,2-'"'',1

718 -+ Ltlt6 -+ rl2
uuu

=i-*(t,, +rz, + "'t,,,-,)' (3)

Let's show thatt-,_, approaches
l12 as n -+ @.w" kiiii# tlat this is
a decreasing sequence; it's also
bounded (O < t, , , < 1); therefore, it
has some limit'a,. Similarly, for ev-
ery k the sequence fn, n _ o has some
limit ao. Taking the limit of both
sides of the equation

Ir
tn,n-k ='r(t,-r,,-u + t,,, o,),

we obtain

Ir
ou = 'z(oo-r* ou-,),

ot ak- ak_t: ak*r- aufor all ,k. This
means that ao is an arithmetic se-
quence, and since it's bounded (0 <

ao< ll, it must be constant.
Thus, at : ao: lf 2 for all k,
and, in particulat, Ln.,_r) at
: 1/2. Now we can apply the
following lemma.

CEsero's LEMMA. If a se-
quence x,has a limit, and sn

= X, * X, + ... + xo, then the
sequence s,ln has the same
limit.

(Roughly speaking, the
proof starts with the observa-
tion that all the numbers x,
with a sufficientiy l arge n arc
approximately equal to their
limit within an accuracy as

high as we wish. Therefore,
the same is true for the arith-

where [;) t' the binomial coeffi-
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I -+ 314 -+
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u

0
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with equalprobabilities. Then t, equals
the probabili q ldtat, starting at the point
with coordinates (i i), the walker will
leave the diagram through its left edge

rather than through the top.
Another remarkable arithmetic

property of our diagram emerges
when the two volumes of liquid are
divided into unequal portions. As-
sume that we have divided the hot
water into portions of masses p1,p2,
..., p,, atrd the cold tea into portions
of masses e1, e2, ..., e-, and that we
have carried out the process described
in the previous section. We can cer-
tainly construct a similar array of the
numbers t, defined by the relations

Ir\
1,, = _ [ 

p,t,.,_r+ eit,_ t.i).-' P,tq \ "tt

This formula for the equilibrium tem-
perature of the portions p, and e, after
their heat exchange follows from the
law of conservation of energy (in our
particular situation, energy equals the
product of mass, temperature, and a
Lactor that depends only on the spe-

P, = l13

1-+

l-+ 7519t -+ 836tlt7ot7

Figure 4

cific properties of water). An example
is shown in figure 4.Infact, we can for-
get the physical sense of what's going on
and study the situation from thepurely
mathematical point of view.

Let Hlpr, ..., pni ey, ..., 4*) be the
full energy of the "tea" after the end
of the process; we can assume that
the units of measurement are chosen
so that H is simply the average tem-
perature of the tea. Then, for the ex-
ample in figure 4,

H(pr, ..., pni ey,..., q-)

75 1 8361 2

91 3 \7017 3

=O.602.

It can be proven (though the verifica-
tion is not obvious) that this function
is semisymmeuic-that is, its value
doesn't depend on the order of p,, nor
on the order of q,! kr other words, the
final rcsult of thle haat exchanga pro-
cess is the same, no mattu what or-
der of the portions in both iets is cho-
sen!

I'11 leave you with some exercises
to mull over.

Exercises

1. Try to show that (1) Hlp,,, ...,

Pi,; Q7r, ..., Q,*l : HlPr, ..., P,i Q1, ...,

e*l,where Prr, ..., P,, is any pennu-

tation oI lp,l, Qir, . . . , 4 j^ is any permu-
tation oI{q,l;(21H(clu ..., e*;p1, ...,pnl
: H(Pr, ..., P,i Q1, ..., Q-1.

2.Try to prove the invariance of
the final result of heat exchanges us-
ing more physics-for example, the
,ro-tion of eniropy. O

clt = 314

q2= ll4

0

u

9l13 -->

u

0

u

8t lzzt
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The neutrino is extremely small.
It may even exist as a mathematical
point. If it has any extent at atrl, we
can't see it on the smallest distance
scale we can obsewe, which is of the
order of 10-18 m. And yet the neu-
trino may dominate the structure of
the universe.

Since theyhave no charge, neutri-
nos interact with matter only very
weakly. It's possible for them to pass

through a light-year of lead. Yet the
neutrino participates in the
universe's most energetic and vio-
lent events, from the day-to-day en-
ergy production in our Sun to ex-
ploding supernovas ( and potentially
apocalyptic devices on Earth like
nuclear reactors and bombs).

How can this be? How can we in-
fer such great things about an ob-
scure and apparently ineffectual par-
ticle? In this article I'lI sketch how
we came to believe ali this, and I'11

describe an ambitious experiment to
clarlfy our picture of the neutrino
and its place in the universe.

A lilolr]rronology
l9l4: lames Chadwick, an En-

glishman working in Berlin, found
hints of missing energy in some ra-
dioactive decays-the so-called
beta-decays. Many heavy atomic

nuclei were known to be unstable,
and some decayed by the emission
of an electron (then called a beta-
rayl.Ifthis was the whole story, the
electron would move in the direc-
tion opposite to the recoiling
nucleus, and each particie would
have a well-defined kinetic energy.
Flowever, Chadwick showed this
was not the case. The electron en-
ergy was variable, even though the
decaying nuclei were identical.

1930: Wolfgang Pauli, an Aus-
trian working in Zutch, reasoned
that Chadwick's observations were
due to kinetic energy being shared
randomly between the decay prod-
ucts. This energy sharing can be ran-
dom only if there are more than two
decay products. So there must be a
third-unseen-particle in addition
to the electron and the recoiling
nucleus. He postulated the exist-
ence of a weakly interactrng neu-
trino al;:d its antiparticle, the anti-
neunino (denoted by the Greek
letters v and V, respectively), which
would cafiy away energy without
being observed. This was a radical
idea-the great Neils Bohr was ini-
tially more inclined to abandon the
law of energy conservation than to
accept the "invention" of a new par-
ticle.
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This particular lightweight just may be
the champion of the universe

by Chris Waltham

HE MOST REMARKABLE
member of our inventory of e1-

ementary particles is the neu-
trino. It's probably the most

numerous particle in the universe
(together with the photon) and has
a density of several hundred per cu-
bic centimeter everywher e, includ-
ing the interior of the Earth, the Sun,
and your own body. This can be
compared to the average density of
the universe, which is inferred to be
the equivalent of one hydrogen
atom in every 100,000 cm3. Even
though neutrinos are so numerous/
we have only "seen" about a million
of them in the 35 years since they
were discovered. By way of compari-
son, we see that many photons by
looking at the bright star sirius for
a few seconds with the naked eye.

The neutrino is an extremely
light particle. If it has a mass at all,
it's less than the smallest mass
we're capable of measuring, which
is about afactor of 100,000 less than
the mass of the electron.l And yet
the neutrino may dominate the
mass of the universe.

lThe electron is the lightest known
particle, with the exception of the
photon (which is believed from indirect
arguments to be absolutely massless).
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1933: Enrico Fermi, in Rome, pro-
duced a detailed mathematical de-
scription of the interactions involv-
ing neutrinos-the so-called weak
interactions. This description has
survived, with a few modifications,
to the present day. He was also re-
sponsible for naming the neutrino-
it means "little neutral one" in ItaI-
ian.

1938: Hans Bethe, a German
6migr€ at Cornell University, devel-
oped the first working model for the
energy generation in the sun. The
fundamental reaction is the fusion
of two protons (p) to form a deuteron
(d), a positron(etl, and a neutrino (v),

all of which caruy kinetic energy.
The proton is the nucleus of hydro-
gen, the deuteron is the nucleus of
"heavy hydrogen" (a proton and
neutron bound together)/ and the
positron is a positively charged elec-
tron (the normal electron's antipar-
ticle). This reaction can be written

p+p-+d+e*+v+energy.

For this and further contributions to
the field of nuclear physics, Bethe
was awarded the 1967 Nobel Prize
for physics.

1956: Two physicists from the
Los Alamos National Laboratory in
New Mexico, Cowan and Reines,
observed neutrino interactions for
the first time at the Savannah River
reactot in Georgia. The flux of anti-
neutrinos from beta-decays of fis-
sion products in a reactot is huge-
typically 1013 cm-2 s-1. But even so/
the detector had to be the size of a
sma1l room to see just a handful of
neutrino interactions in many
weeks of observations.

L962: Leon Lederman, Mel
Schwartz, and |ack Steinberger,
working at the Brookhaven Na-
tional Laboratory on Long Island,
showed that neutrinos can be pro-
duced by particle accelerators and
that there are at least two kinds: vu

and v,. One kind (v") can be seen as

the chargeless relative of the elec-
tron, the other (v,) as the relative of
the muon (p). The muon was first
detected in cosmic rays (which at
the Earth's surface are mostly

muons), and it behaves exactly like
the electron except that it's 207
times heavier. Nobody knows why
it exists or understands the relation-
ship between electrons, muons, and
their neutrinos. However, for un-
covering this mystery, Lederman,
Schwartz, and Steinberger received
the 19BB Nobel Prize for physics.

1975: Martin Perl and his co-
workers at Stanford found a third
electronlike particle, the heavy tau
(t). There is also evidence (missing
energy in tau-decays, in the same
manner as in Chadwick's experi-
ment) that it has a neutrino partner/
the v,. In fact, all known particles
come in groups of three. Nature is
obviously trying to tell us some-
thing, but as yet no one has figured
out what.

1980s: More and more elaborate
attempts to weigh the three neu-
trino types continued (and still con-
tinue) to fail to detect any mass at
all. The v" must therefore have a
mass of less than 1/100,000 that of
the electron, which is the limit of
our sensitivity. For the other neutri-
nos we know less-the v- mass
could be anywhere from zerb to 40
times the mass of the electron.

By now the "big bang" theory of
creation had made sense of many
observations of the universe as a
whole. It also predicted that the
universe is filled everywhere with a

sea of totally invisible neutrinos.
These neutrinos would have no ef-
fect on anything except, if they have
any mass at alI, via the gravitational
interaction. There are so many of
them that they could determine the
gross structure of the universe. They
would be a type of "dark matter,"
totally invisible but abie to slow up
the expansion of the universe by its
gravitational attraction.

"SEEiltg" lte[lrilto$
Neutrinos are now routinely

made and observed in reactors and
acceler atot experiments, and detect-
ing them from astronomical bodies
is becoming possible. In each case,
enormous numbers are made, but
the chance of one interacting with
an atom in a detector is tiny. So the

detectors have to be huge-the larg-
est are several thousand tons (that
is, on the order of 1033 atoms). A way
of seeing the interactions directly is
by "encouragtng" the part of the
atom struck by the neutrino to give
off a few photons of light. These can
readily be detected by photomulti-
plier tubes (PMTs) placed around
the detector. The PMT is like a light
bulb in reverse: it converts light into
electricity. One photon striking a

PMT produces a small pulse of elec-
tricity (typically a few millivolts for
several nanoseconds), which is eas-
ily recordable. There are also indi-
rect ways of detecting neutrinos, but
I don't have the space to describe
them here.

A conceptually simple type of de-
tector is a large tank o{ water sur-
rounded by thousands of PMTs.
When a neutrino strikes an electron,
the electron recoils faster than the
local speed of light lO.75c in water).
This electron then emits the light
equivalent of a sonic boom in the
form of a conical shower of blue and
ultraviolet photons, named Cheren-
kov light after their Russian discov-
erer (who won the Nobel Prize in
1958). These photons are detected
by the PMTs, and thus we "see" the
neutrino. In practice these neutrino
detectors are often placed deep un-
derground. This is to provide a
heavy rock shield to block cosmic-
ray muons/ which can cause large
flashes of light much more fre-
quently than the faint ones from
neutrinos.

Solan neult'inm
The only part of the Sun we can

observe directly is the surface. It ap-
pears to be a sphere of radius
700,000 km, radiating at a surface
temperature of 6,000 K. Yet in the
only plausible model of the Sun we
have (based on Bethe's work), the
energy production has to be deep
inside the core, hidden from direct
view. One of the few testable predic-
tions of this model is the flux of
neutrinos-the neutrinos can leave
the core of the Sun without afiy
scattering. By contrast, the heat and
light generated in the core make a
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10,000-year random walk to the sur-
{ace.

we expect a huge flux of low-en-
ergy neutrinos and a smaller flux of
neutrinos with higher energies. The
only problem is that two experi-
ments designed to see the high-en-
ergy neutrinos (a water-Cherenkov
detector in )apan and one of another
type in South Dakota) see only a

small fraction of what's expected
(about a half and a third, respec-
tively). And two experiments sensi-
tive to the lower energy neutrinos
(calledpp-see problem 1 below) are
also reporting numbers lower than
expected.

This state of affairs has come to
be known as the solar neutrino prob-
lem. Solar theorists claim to under-
stand the Sun so well from so many
different types of observation (sur-
face temperature and composition,
oscillations-yeS, the Sun wobbles
very informativeiy) that bending
their models to suit the low neu-
trino flux will destroy good agree-
ment in another area.

So, some particle physicists have
tried to understand the situation in
terms of a model where the different
types of neutrino have different
masses. These masses would have
to be so tiny as to be unmeasurable
in the lab. If this model is correct, in-
terference would arise in which
some ve would change to vu or vr as

they traveled toward our dbtectors.
Existing detectors are not very sen-
sitive to neutrinos other than vn, so
the changed neutrinos would go
largely unrecorded. This is the MSW
effect, named after the two Russians
and an American who dreamed it
up: Stanislav Mikheyev, Alexey
Smirnov, and Lincoln Wolfenstein.

Even a tiny neutrino mass may be
of cosmological significance when
multiplied by the expected neutrino
density throughout the entire uni-
verse. Needless to say/ the cosmolo-
gists, in their perennial search for
their Holy Grail of dark matter, are
watching this situation closely.
This may be a way of taking the
measure of that sea of unobservable
neutrinos.

Surcrnoua 10874
It's rather bold of us to infer what

is going on inside the Sun. So it's
even more audacious to claim we
know how a star explodes. Yet by
the end of 1986, astrophysicists
were claiming that if a star of a cer,.

tain type exploded at a certain dis-
tance/ they could tell us how many
neutrinos would be observed in ex-
isting detectors. In the immense
pressures caused by the collapse of
the stellar core, hydrogen atoms get
squeezed so tightly that the electron
and proton coalesce into a neu-
tron-and a neutrino, which rapidly
escapes. In fact neutrinos-and as

yet unobserved gravity waves-are
the oniy things that can get out dur-
ing the initial collapse. Because you
get one neutrino per atom in the
entire core, the number of neutrinos
emitted is immense, on the order of
1057 for an average supernova. After
the core collapses to an enormous
density, it bounces back, causing an
outgoing shock wave that blows the
star apatt. This is what we see opti-
cally, and during the fireworks more
neutrinos are thought to be released.

On February 23, 1987, a super-
nova was observed visually in the
Large Magellanic Cloud (170,000
light-years awayl by Ian Shelton of
the University of Toronto. In two
large water detectors (both of which
atthat time were designed {or other
purposes) in mines in Ohio andla-
pan/ twenty tracks appeared within
the space of a few seconds, all point-

ing back to the Large Magellanic
Cloud. This, as you will see from
the second problem, was almost pre-
cisely the expected number. Thus,
the new science of neutrino as-
tronomy was born.

The Sudluny ttleutl'ino 0lsenualony
A new science needs a facility

dedicated to it. The first job of this
new science is to clear up the solar
neutrino problem, which means de-
signing a detector that will have a big
event rate so the results are statisti-
cally significant, andone that can dis-
tinguish between neutrino t)'pes so
the MSW hypothesis can be proven
right or wrong. The second job wiil be
to observe any astronomical event
that generates neutrinos.

Water makes a fine detector, but
it has been known for a long time
that heavy water works even better.
(Heavy water is chemically like or-
dinary water except that the hydro-
gen nuclei are replaced by deuter-
ons. It therefore has a molecular
weight of 20 rather than 18 and so is
10% more dense.) This occurs be-
cause the neutrinos interact with
the neutron in the heavy hydrogen
nucleus, and the probability of this
is 100 times greater than interac-
tions with the electrons. It also in-
teracts with all types of neutrino in
such a way that the types can be dis-
tinguished. A gift to neutrino physi-
cists? Maybe, but at $300 a liter, the
necessary 1,000 tons looked hope-
lessly expensive.

Now, it just so happens that the
nuclear power industry in Canada
has a large reserve of heavy water.2
Back in 1984 some deft negotiations
by George Ewan, a physicist at
Queen's University in Ontario, and
the late Herb Chen at the University
of California, Irvine, ensured not
only the long-term loan of 1,000
tons of heavy water but also a2-ki-
lometer-deep mine shaft in Sudbury,
Ontario, in which to place it.

Nine years later, the $50 million
Sudbury Neutrino Observatory
(SNO), designed by 55 physicists

2Canada's CANDU reactors use
heavy water as a neutron moderator
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Figure 1

The Sudbury Neutrino C)bservatory (artist's rcndefing)

shown in figure 2. Those registering
a photon "hit" arepicked out in yel-
low. The hits form a ragged circle as

the Cherenkov cone/ scattered by the
intervening water, intersects the
sphere of PMTs. The number of PMT
hits gives the neutrino energy, and
the position of the circle indicates the
direction of its origin.

When SNO {inally stops taking
data in August 2000, according to
the current schedule, we expect to
have

. Solved the solar neutrino prob-
lem;

. Measured the neutrino's mass
and confirmed or disproved the
MSW hypothesis (adding fuel to the
"missing mass" debate while learn-
ing something of the relationship
between the triplets of fundamental
particles);

. Gained a picture of the nuclear
processes in the core of the Sun (tak-
ing the temperature of the Sun's
core, in effect).

Note that we have deliberately
called our detector an "observatoryl'
We expect to see something unex-
pected. Don't worryt we won't have
wrapped everything up. There will
still be loose ends to guide you, the
next generation of scientists, into
labyrinths of untold mystery . . .

In token of which I leave you
with two problems to work through.

Problem 1

SoTar neutrinos in your body.The
primary energy- and neutrino-pro-
ducing reaction in the Sun is hydro-
gen fusion:

4 p -+ 1 He + 2 e* + 2ve + energy.

Note that this is just double the re-
action I gave above. "He" is the
nucleus of the helium atom contain-
ing 2 protons and 2 neutrons. On
avetage, the helium and the 2 e*

carry away 26.3 MeY of kinetic en-
ergy, which is responsible for heat-
ing the Sun (and us). The neutrinos
carry away 0.2 MeV of energy each,
on average/ but they interact so in-
frequently with matter that they

(and innumerable engineers, techni-
cians, and students) from Canada,
the United States, and Britain,3 is
two years away from taking data.
Figure I shows an artist's rendering

3The SNO Collaboration consists of
Queen's University, Kingston, Ontario;
Chalk River Nuclear Laboratories,
Chalk River, Ontario; the University of
Guelph, Guelph, Ontario; Laurentian
University, Sudbury, Ontario; Carleton
University, Ottawa, Ontario; the
University of British Columbia,
Vancouver, BC; Princeton University,
Princeton, NJ, the University of
Pennsylvania, Philadelphia, PA; Los
Alamos National Laboratory, Los
Alamos, NM; the Lawrence Berkeley
Laboratory, Berkeley, CA; and Oxford
University, Oxford, UK.

I 4 Jtl[Y/AUGUsI rssB

of what SNO will look like under-
ground. The central sphere (blue)is
made of S-centimeter-thick acrylic
and will hold the 1,000 tons of
heavy water. Outside this is 5,000
tons of light water for support and a

shield against natural radioactivity
from the rock. In the light watet are
ten thousand 20-centimeter-diam-
eter PMTs (shown in yellow) facing
inward. The cavity is 30 m high and
22 m across.

Figure 2 shows a video display
from the SNO simulation program,
which replicates what we expect
from the actual detector. In the bot-
tom left is a picture of a neutrino
event. The PMTs are mounted on the
1 7-meter-diameter geodesic frame
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Figure 2
Video display /rom SNO sintulation prcgtanl

leave the Sun without contributing
anything to its heat. The solar con-
stant-the Sun's power per unit area
at the top of the Earth's atmo-
sphere-is 1,377 W lm2. An MeV-a
million electron volts-is the stan-
dard unit of energy in subatomic
physics and is equal to 1.6 . 10-131.

(a) What is the flux of thesepp neu-
trinos at the Earth's surface? Don't be
put off by the enormity of your an-
swer! (b) Estimate how many neutri-
nos are in your body at any given
time. You can assume that the neu-
trinos move at the speed of light; if
they have a tiny mass/ then this as-

sumption is still good enough.
Unfortunately, these neutrinos

are too low in energy to be seen by
SNO. However/ two experiments
have been designed to see them.
One is operating now in Italy, the
other in Russia. These large and
complex devices should see 1.2 neu-
trinos per day. The first sees
0.8 + 0.2, the other sees even {ewer.
So-solar neutrinos are still a prob-
lem, but let's hope not for long.

Problem 2
Neutrinos from a supernova.

When the explosion from Supernova
1987A was observed on Earth in
February 1987, it was the first time
that neutrinos were seen from such
an event. A total of 20 were seen in
two underground water detectors in
Ohio and lapan, whose combined
volume was 4,000 m3. Now, the
chance of any one neutrino being
detected is extremely small, because
its mean free path (MFP) in water is
approximately one light-year. That
is to say, the probability of detection
equals the path length in the water
divided by the mean free path.
Given that SN1987A was
d : lTO,OOO light-years from Earth,
how many neutrinos were emitted
in the explosion?

Hint: if you're not comfortable
with mean free paths, mentally
reconfigure the detector as a tube
whose length is one mean free path,
pointing to the supernova/ while
preserving the volume of the detec-
tor. Now any neutrino entering it
has, on averaget a unit probability of
interacting and being seen. This
gives the right answer, because in
reality the tiny chance of interaction
depends only on the number of at-

oms in the detector, not on its
shape.

Suggestions for further reading
Bahcall, |ohn. "The Solar Neutrino

Problem." Scientific Ameilcan
May 1990,p.26. Agood introduc-
tion to the field, stressing the pp
experiments.

Bethe, Hans, and Gerald Brown.
"How a Supernova Explodes."
Scientific Ameilcan May 1985, p.
50. The theory, in clear, under-
standable terms/ magnificently
con{irmed two years later by
SN19B7A.

Close, Frank, Michael Marten, and
Christine Sutton. The Particle
Explosion. Oxford University
Press, 1987. An excellent intro-
duction to the rise of particle
physics in the 20th century.

Earle, E. D., W.F. Davidson, and G.
T. Ewan. "Observing the Sun
from Two Kilometres Under-
ground: The Sudbury Neutrino
Observatory." Physics in Canada
44 (1988), p. 49.

SNO Collaboration. "SNO Sculp-
ture." Physics in Canada March
1992. Special issue devoted to
progress on SNO.

Waltham, Chris. "The Sudbury
Neutrino Observatory." Avail-
able on The Physics Teacher's
CD-ROM Toolkit, 1991.

"A Brief History
Heavy Water." Physics
Canada March 1993.

Weber, Robert. Pioneers of Science:
Nobel Prize Winnerc in Physics.
Adam Hilger, 1988. Invaluable
biographical information.

Weinberg, Steven. The First Three
Minutes. Flamingo, 1983. The
classic introduction to the big
bang, eminently readable.

Wolfenstein, Lincoln, and Eugene
W. Beier. "Neutrino Oscillations
and Solar Neutrinos." Physics
Todayldy 1989,p.28.

Chris Walthamis a physics professot at
tfue University of British Columbia and
a coach of the Canadian Physics Team
that competes in the lntarnational
Physics Olympiad. CI
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EVERY PHYSICS TEACHER HAS
TRIED TO EXPLAIN:

. relative motion-reference frames, point of view

. acceleration due to gravity and trajectories-
dropping objects from stationary/moving platforms

o vector addition-relative velocity of a boat
o momentum and collisions-clusterscattering,

billiard-ball and freight-car collisions, and recoil
. conseryation of energy-pole vaulter, driving nails

with falling masses
. standing waves and superposition-vibrations of

a wire and drumhead
o Thomson's atom and Flutherford scattering

Now you can see these physics concepts brought
to life through lhe Physics Single-concept Films Col-

lection / videotapes.

The American Association of Physics Teachers

and its lnstructional Materials Center are proud to
present their latest endeavor to bring proven instruc-
tional resources into the classroom of the 1990s.

Thirty-five original Project Physicsfilm loops have

been transferred, in their entirety, to four, full-color
VHS videotapes. These original film loops would have

cost approximately $1,000. A newly written audio
track and sound effects are included to help the
teacher and student visualize physics concepts. Each

set of videos is accompanied by a teacher's guide.

V ideotape Collection 1 -ContentsUnit I Motion (23 min.)
Chapters include: Acceleration Due to Gravity I and ll, Vector

Addition-Velocity of a Boat, Analysis of a Hurdle Race I and ll, A
Matter of Relative Motion, Galilean Relativily-Ball Dropped from
Mast of Ship, Galilean Belativity-Object Dropped from Aircraft,
and Galilean Relativity-Projectile Fired Vertically.

Unit ll Motion in the Heavens/Modern Physics
(17 min.)' Chapters include: Retrograde Motion-Heliocentric Model, Ret-

rograde Motion-Geocentric Model, Kepleis Laws, Jupiter Satellite
Orbit, Thomson Model of the Atom, Rutherford Scattering, and
Collisions with an Object ol Unknown Mass.

Unit lll Momentum and Energy and Waves (26 min.)
Chapters include: A Method ol Measuring Energv-Nails Driven

into Wood, Gravitational Potential Energy, Conservation of En-
ergy- Pole Vault, Conservation ol Energy-Aircraft Takeoff , Recoil,
Finding the Speed of a Rifle Bullet I and ll, Superposition, Vibra-
tions of a Wire, and Vibrations of a Drum.

Unit lV Collisions (22 min.)
Chapters include: One-Dimensional Collisjons I and ll, Two-

Dimensional Collisions I and ll, Scattering of a Cluster of Objects,
Dynamics of a Billiard Ball, Inelastic One-Dimensional Collisions,
lnelastic Two-Dimensional Collisions, and Colliding Freight Cars.

ORDER TODAY!
The Physics Single-concept Films Collection 1 in-

cludes all four videotapes. Almost one and one-half
hours of actual playing time! Members of the Ameri-
can Association of Physics Teachers (AAPT) can

order this collection for one low price-S175, includ-
ing shipping and handling. To receive this member-
ship discount price, AAPT members should send their
orders to: AAPT Publrcations Sales, 5112 Berwyn
Rd., College Park, MD 20740-4100, 301-345-4200,
FAX 301-345--1857. Purchase orders are accepted
by mail or FAX. Product billing and distribution will be

handled by Ztek Co.

Those who are rrot members of AAPT should send

their orders directly to Ztek Co., using Product No.

T00900. The price is $215 plus $10 for shipping. Total

nonmember cost for the entire set is $225. Ztek Co.,

P.O. Box 1055, Louisville, KY 40201-1055, 800-247-
1 603, 502-584-8505, FAX 502-584-9090.

AAPT Members Send Orders to:
AAPT Publications Sales

51 12 Berwyn Rd.

College Park, MD 20740-4100

301 -345-4200, FAX 301 -345-1 857

O American Association of Physics
Teachers,1993

lntroducing!
Physics Single-concept Films Collection 1

Project Physics Film Loops Now Available On Videotape



HOW DO YOU
FIGURE?

Challeltue$ in phy$ics and malh

IUlalh

M86
Number building. You're allowed to
perform two operations widr numbers:

"doubling" and "increasingby 1." If you
start from zero, what is the smallest
number of operations needed to build up
(a) the number 10Q ft ) an arbitrary posi-
tive integerr? (M. Sapir)

M87
Splitting areas and sides. Each of the
three midlines of a convex hexagon
(the lines that join the midpoints of
its opposite sides) divides its area in
half. Prove that they meet at one
point. (V. Proizvolov)

M88
Roots to logs. For any positive integer
n/ prove the equality

["8]. [{6]. . [&tr]

= [to*, "]+ [Iog, "]* ... + [1og, r],

where [a] is the largest integer not
exceeding a. (V. Kisil)

M89
Z erc s ev etywh er e. Sev er aL points are
plotted on the plane and a number is
written near every point. For any line
that passes through two or more of
the given points, the sum of numbers
written along this line is zero. Prove
that if the points do not lie on one
line, then all the numbers are equal to
zero.lF. Vainshtein)

M90
Regulated shuffkng. A stack of 2n +
1 cards can be rearranged in tr,vo ways:
by operation A, in which a portion of
the stack can be taken from the top
and inserted underneath the rest of

the stack without changing the order
of cards; or by operation B, in which
the top n cards can be inserted (in the
same order) into then spaces between
the bottomn + I cards. Prove that, fol-
lowing these rules, one can obtain no
more than 2nl2n + 1) different rear-
rangements of the given stack.
(D. Fomin)

Physics

PB6
P arub olic ild e- si d ew ays. A smooth
wire is curved in the horizontal plane
in the form of aparabolaY = AX. A
bead of mass M slides along the wire
(fig. 1). What force does the bead ex-
ert on the wire as it passes the vertex
of the parabola with a velocity Vo?

(A. Zilberman)

Figure 2

a
d1

P87
Irresistible. To measure electrical re-
sistance, a circuit is created out of an
electric battery, an ammeter, a volt-
meter, and a resistor lfig.2l. The volt-
meter shows a voltage of 2.9 Y ar,d
the ammeter shows a current of
3 mA. When we change the circuit
by removing the resistor and putting
it in parallel with the ammeter, the
reafing drops to 1 mA. Assuming the
battery's intemal resistance to be neg-
ligible, find the resistance of the resis-
tor. (A. Zilbermanl

P88
What's cookin'! When we take a hot
pan off the stove, we all use a cloth
pot holder. If the pot holder is weg are
we more likely or less likely to get
burned? (S. Krotov)

P89
Plates on a sheet. Two metal plates
with areas S, and S, are brought up
parallel to a large flat metal sheet. The
corresponding distances from the
metal sheet are d, and dr. What are
the electric al cap acitances obtained
by connecting any two conductors by
a wire? The distance between the two
plates is very large, and the distances
d, and d, arc much smaller than the
sizes of the plates.

P90
"I spy something bright." Figure 3
shows a converging lens with foci at
points f , ar;:d f ,. There is a point light
source A on the major optical axis.
What will you see when your eye is
successively at points d, d, and du?

The relative size of the
lens is shown in the fig-
ure. (A. ZiLbermanl

ANSWERS, HINTS &
SOLUTIONS ON

PAGE 56
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Northwestern University announces the formation of an expanded set of programs for selected students
interested in mathematics and its related fields. MENU will be offered for the first time to entering students
in the fall of 1993.If you have strong intellectual curiosity in this direction and seek a major university
and the opportunity to work closely in a small and personalized setting with other students and professors,
read on.

College of Arts and Sciences, N o rt hweste r n U n ive rs ity

Mathematical
Experience for
r'l orthwestern
UndergraduatesNU

In 1976, Northwestern inaugurated the Integrated Science Program (ISP), which is
a successful, one-of-a-kind effiort to bring together mathematics and the sciences at
the undergraduate level. This was followed by the creation of a parallel program in
Mathematical Methods in the Social Sciences (MMSS). Enrollment in these programs
is limited to approximately 30 students per year.

MENU is a set of special concentrations for students with a strong interest in mathematics
and its applications in the sciences and social sciences. MENU is designed to brhg together
students seeking to develop an active, hands-on approach to mathematics and encourage
the exploration of advanced topics in special seminars with program faculty. MENU will
provide smaller classes, more individualized advising and seminar programs for selected
students wishing to concentrate in mathematics in a multidisciplinary setting. The principal
entry route will be Mathematics B90, a three-quarter sequence covering the foundations
of analysis. During the first year, students applying to MENU will indicate one of several

possible routes: ISP* MMSS* and the new MENU programs in Mathematics, Mathematical
Physics, Statistics, Computer Studies, and Decision Sciences.

At Northwestem University, we combine the strengths of a research institution with a small
size to offer individualized programs at the undergraduate level, where students receive
an in-depth approach that leads to superior preparation and more informed choices for
graduate study or professional preparation. As a student interested in obtaining the best
possible education, your personal interests are given the highest priority.

Applications will be accepted by the director of MENU during the Freshman Year from
students who are enrolled in Mathematics B90. The specific MENU programs will begin
with Sophomore Year. It is expected that MENU students will take some calculus in high
school, including the BC and/or AB examinations administered by the CEEB Advanced
Placement Program. Other specific questions can be administered by the Director by
writing to: Mark Pinsky, Director of MENU, Kresge 324, Northwestern University,
Evanston, lL 60208 -2206

* High School students interested in entering ISP or MMSS must complete the relevant application concurrently
with the Northwestern application in the last year ofhigh school.

Northwestern University is an equal opportunity, affirmative action educator and employer.

HISTORY

FEATURES OF
MENU

WHY A SPECIAL
PROGRAM?

APPLICATION
PROCEDURE
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BRAINTEASERS
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B86
Odd sums on a star.Is it possible to inscribe ten different integers in the
circles on the star shown at left so that the sum of the four numbers along
each o{ the five lines is odd? (A. Domashenko)

Two scales, one 1og. The ends of a log are placed on two
scales. The first scale shows 200 kg, the second only
100 kg. What is the log's mass? Where is its center of

890
Clever tactics. Prince Ivan made up his mind to fight the three-headed,
three-tailed dragon. So he obtained a magic sword that couid, in one stroke,
chop off either one head, two heads, one tail, or two tails. A witch revealed
the dragon's secret to him: if one head is chopped off, a new head grows; in
place of one tail, two new tails grow; in place of two tails, one new head
grows; and if two heads are chopped off, nothing grows. What is the
smallest number of strokes Prince Ivan needs to chop off all the dragon's
heads and tails? (V. Rusanov)

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 59

887
Mirror numbers.Two numbers are called mirror numbers if one is ob-
tained from the other by reversing the order of digits-for example, 123 and
321. Find two mirror numbers whose product is92,565. (A. Vasin)

888

gravity? (V. Vigun)

B89
Seen and unseen. One magazine lies on top of another one as shown in the
figure at right. Is the part o{ the bottom magazine that we see bigger or
smaller (in area) than the covered part? (A. Domashenko)
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Handomly seekinU Clpollino

Adventures of a probabilistic detective

by S. Sobolev

begins at time t : 0 and that every
step takes a unit time. Then the
movement of the chip is called the
symmetric random walk in the set
Z of integer points of the line start-
ing at point a. The term "symmet-
ric" reflects the assumption that
both directions-to the right and to
the left-are equaily probable (that
is, the coin is fair).

So from the mathematical point of
view, Detective Carrot in his search
for Cipoliino executes the syrnmetric
random walk in the set Z.

Exercise 1. Take a coin and a
chip. Place the chip at point 0. Toss
the coin, move the chip, and write
down its location. Repeat this about
10 times. In the end you should ob-
tain a line of consecutive positions
of the chip.

A specific walk can be graphically
pictured by drawing its path. For ev-
ery t:0, L,2,..., we plot the point
Mrwith coordinates (t, k), where k
is the location of the chip at time r
lk e Zl. |oining every M,, t = O, 1,2,
..., to M, *, with an arrow (fig. 1 ), we
get the graph of the chip's path in tk-
coordinates.

For example, if the tossing results
in the sequence H, H, T, H, T (H =
heads, T : taiis) and the initial loca-
tion of the chip is at the origin, its

consecutive locations are as follows:

The corresponding path is shown in
figure 1.

Exercise 2. Draw the path of the
chip from exercise l.

T]te pl'ohahilily 0lhitlittg a Uittslt ruiil
Let the walk of our chip begin at

the origin. It's interesting and impor-
tant to find the probability that at
time r the chip arrives at location k.
In other words, what is the probabil-
ity that a path with t segments ends
at the point (t, k)? Denote this prob-
ability by P,(k). The answer to the
question depends upon the number
N,(k) of paths leading from point (0, 0)

to point (t, k).
Let's write the number N,(l<) near

every point lt, kl thatis the endpoint
of at least one path for t : 0, 1,2,3
(frg.2l.

u1

Figure 1

HE BOOK CIPOLLINO AND
His Friendsby the Italian writer
Gianni Rodari is very popular
with iittle children in Russia.

It's about a country inhabited by veg-
etables. Mr. Carrot, a detective, is
searching for the main charactert an
onion-boy by the name of Cipollino.
Mr. Carrot's method takes the form
of a rhyme:

One step forward, one step back,
There's no escape for the thieving brat.

This "search principle" could be re-
garded as the author's little joke if its
effectiveness didn't stem from an ac-

tual theorem in probabiiity theory. I'11

talk about this very theorem and re-
lated problems.

Handom walk in a line

Let Z be the set of all integer
points on the number axis. Put a
chip at point a e Z arrd toss a coin.
If it turns up heads, move the chip
a unit distance to the right; if it's
tails, move it the same distance to
the left. Toss the coin again, and
follow the same procedure. If the
coin is fair, we always move the
chip to the left or to the right with
the same probability of I l2.1lt's con-
venient to assume that the process

=C'

U
3
=
x
3
o

lThe simplest "common sense"
definition of probability-which is,
howevet, enough for you to understand
this article-and some elementary
basic facts can be found in
" Combinatorics-polynomials-

probability" (March/April) and
"Geometric Probabilities " lMay llunel.
See also "Counting Random Paths" in
this issue {or the "classical" definition
of probability and for more information
on random walk.-Ed.
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Figure 2

Exercise 3. Extend figure 2 {or t =

4, 5,5'
You see that apath canarrive atpoint

(t,k)onlyvia lt-l,k- 1)or(r- 1, k+ 1).

Therefore,

N,(k) = N, ,(k - 1) * N,-,(k + t). (t)

The numbers N,(k) arranged in this
way form the so-called Pascal's tri-
angle.z It is generated, column after
column, by the conditions l%(/<) : O

for k + 0, A%(0) : 1, and equation (1).

For instance,

N,(-1) : Iv.(r) + N.(0) : 0 + I = 1,

N,(1) = A%(o)* N,(2): 1 + o: 1,

Ar,(-2) : N,(-3) + N,(-1) : 0 + 1 : 1,

Nr(0) :N,(-1) +N,(1) = | + | :2,
A/,t2) = N,(1)+ N,(3): I + o: 1,

and so on.
Of course, there are twice as many

t-segment paths as (t - 1)-segment
paths, because every (t - 1)-segment
path generates two t-segment paths.
That's why there are two one-seg-
ment paths, four two-segment paths,
and so on. The number of t-segment
paths is 2t.

Since heads and tails are equally
likely to tum up, all the 2'paths with
t segments are also equally probable;
and N,(k) of them end at point (t, -k).

So the probability P,(kl that a t-seg-
ment path arrives at (t, kl is equal to
N,(kllz'. writing the probability P,lkl
near every point (t, k) that lies on at

2You'11 recall this from "Formulas
for Cos nx and Sin nx" in the last issue
oI Quantum.-Ed.

rl4
Oo
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Figure 3

least one path, we get a number array
called the uiangJe of pr ob abilities. It
is generated, startingwith Po(O) = 1, bl
thehalf-sumlaw

p(k\=!p tp-,r*|t,(k+t),i\ / ,t-t\ 
l2l

which is obtained simplyby dlviding
ecluation lllby 2'(see figure 3).

Exercise 4. Extend the triangle of
probabiJities to the riglrt for t = 4,5,5.

Alternatively, equation (2) can be
derived in a more "probabilistic"
way. The chip can arrive at point k
either from k - 1 or from k + 1. So

P,(k) is the sum of the probability
that it arrives at point k - I at the
moment t * I and then heads turns
up (so the chip moves to the right,
from k - 1 to k) and the probability
that it arrives at k + I at the moment
t - I and then tails turns up. Either
one is the probability of the intersec-
tion of two events: ( 1 ) aniving at a cer-
tain location and (2lgetting a certain
side of the coin. Since these two
events are independent of each other
(the first event depends on the results
of the first r - 1 tosses, whereas the
second event depends on the rth toss),

we can apply the Multiplication Rule
(see, for instance, "Geometric Prob-
abilities" in the last issue), according
to which the first probability equals

4 -,(k - 1) ' /z and,the second equals

\_,(k+r). l.
The next two exercises are in-

tended for readers farrrlliar with the
definition and formula for the num-

ber of combinations of n things taken

/n\
m at a time I I and with the Bino-

\m)
mial Theorem.3

Exercise 5. Prove that

(t 
.]

t(r+k) 2l
4(k)=;

Exercise 6. Verify that P,(k) is the
coefficient of xk in the expansion of

r( 1\'
the polynomtd 

,, [" 
* 

,) ,n terrns

of the powers of x (al for t = l, 2, 3, 4i
(b) for any positive integer t.

tt[ill Chollino [e mplured?
Assume that Cipoilino is hiding at

the origin of the number axis, while
Mr. Carrot is at point k. The detec-
tive, in search of Cipollino/ executes
the symmetric random walk starting
at time zero.'V{hat is the probability
that Mr. Carrot ever finds Cipollino-
that is, arrives at the origin?

Denote this probability by P(k).
As with any probability, P{k) is a
fraction of unity: 0 < P(k) < l. Notice
that P(0) = 1, because if k : 0, then
the detective and Cipollino are at
the same point from the very begin-
ning, so capture is certain and has a
probability of one. If k * 0, we can
apply an argument similar to the
second method used to derive equa-
tion (2) above. There are two ways
for the detective to get to the origin:
either (1) make the first move {rom
point k to point -k + I and then a se-
ries of moves leading to zerc, or (21

moYe to k - I first and then to zero.
The probabilities of attaining the
origin by starting atk + 1 and k - I
are P(k + 1) and P(k - 1), respectively.
The two possible first moves have
the same probability I l2 ard are in-
dependent of where the irresolute Mr.
Carrot decides to head thereafter. So,

3Seg for instance, "Combinatorics-
pollmomials-probability," where the
number of combinations that coincide
with a binomial coefficient was denoted

(n\
by Cln, m) rather than I ,,!.-ua.

1/8
o
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using the Multiplication (and the
Addition) Rule, we get, for k*0,

P(k)='rnfu-r;+]r1l+r;. t3)

Imagine now that we've plotted
the points Mklk, Plk)) on the xy-
plane for all integers k. Since the mid-
point of the segment joining (x, yrl

(x,+x" .y,+Iz)
andlx, yr) is [ ' , '-,tf l, ev-

ery point Mu(k + 0) is the midpoint
of segment Mo _ rMo * r. Therefore, the
points Mu, where k > 0, all lie on
some haif-line issuing from Mo(0, 1),

and points Mo, where k < 0, lie on
another half-line. And both these
half-lines must be part of the strip
O < y < 1, which is shaded in fig-
ure 4. This is possible only when to-
gether they make one whole line
y = 1. So all the points Molie on this
line and P(k) : 1 for a1i k.

Thus, the detective will sooner or
later find Cipollino, no matter where
he starts his "random search"!

"But what if our coin toss always
results inheads, andMr. Caffot starts
from some positive point k?" you
may ask. "Won't the detective go off
along the line to the right and never
find Cipollino? " This is logically pos-
sible, of course, but theprobability of
such a thing occurring or, in general,
that the path of the walk never passes

through the origin, is equal to zeto.
And that's exactlywhat our theorem
says. As to the problem of its applica-
bility to reality, that's a subtle matter,
and we won't get into it here.

The l'andom tllalk ott IhB plane

and in s[ilm
Consider a triangular grid on the

plane. Take a chip and afair die.La-
bel the six directions of the grid lines

l, 2, 3, 4, 5, 6 (fig.5 ). Place the chip at
one of the grid's nodes and throw the
fie. Move the chip to the neighboring
node according to the number that
turns up. Then throw it again and do
likewise. This process is called the
symmetric random walk in the pla-
nar triangular grid.

Imagine that Cipollino is hiding at
one of the grid's nodes, and that Mr.
Carrot is "randomly walking" around
it. Will he find Cipollino? It turns out
that in this case the answer is exactly
the same as for the ltrre the detective
catches his victim with a unit prob-
ability. This is also a theorem of prob-
ability theory, sometimes worded
metaphorically as "allroads lead to
Rome." Its proof is somewhat more
difficult, and I won't give it here. The
same result is valid for the planar
square grid (in this caset a"fottr-way"
random generator wi1l be needed-
one could use, for instance, a die in
the form of a regular tetrahedron).

The result i.s quite differeng however,
for the syrnmetric random walk in the
tfuee-dimensional cubic grid (here we
can use an ordinary die again, since such
a grid has six edges issuing from each
vertex). If Cipollino is hiding a suffi-
ciently great distance from Mr. Canoq
the probability of capture becomes insig-
nificantly smal1. This is a really difficult
theorem, and I won't touch on its proof
at all.

A fuw words ahotll arulhilliolt$
Don't be misled by the playful ori-

gin of this article. The theory of ran-
dom walk is an important and very
useful part of probability. It's usefuIly
employed in studying various pro-
cesses in physics, chemistry, and
even economics-especially nowa-
days, when random processes can be

so easily simulated on computers.
A1so, it's effectively applied to the nu-
merical solution of certain differen-
tial equations by means of the so-
called Monte Carlo method. But
that's a topic for another article.

To conclude this one, here are two
more exercises.

Exercise 7. Suppose Cipollino is
hiding at the origin of the axis, there
is a chasm at point 

^4 
and Detective

Carrot is located at point k, 0 < k < N.
If the detective gets to the origin, he'll
find Cipollino, but if he comes to
point Nfirst, he'IIfallinto the chasm
(see the illustration at the beginning
of the article). What is the probabfity
that, walking in the same random
manner as above, Mr. Carrot will cap-
ture Cipollino? What is the probabil-
ity that he'llfall into the chasm first?

Hint: prove the hal{-sum law (3) for
the probability P(kl defined as above,
I < k < N- 1, and check the condi-
tions P(0) : 1, P(N) = 0. What canyou
say about the arrangement of points

lk, P(klll To answer the second ques-
tion of the problem, switch the initial
conditions for P(k).

Exercise 8. Figure 6 shows four pos-

sible configurations of twigs tied to-
gether. In each casg points A and B arc
smeared with glue. A caterpillar crawls
along the twigs. When it arrives at a
point where m twigs are tied together/
it either gets stuck (i{ it's point A or B)

or chooses one of the twigs (with the
probability I f m eachl, crawls along it up
to the other end, and continues on.
What is theprobabfity that the caterpil-
Iar, starting at point k (k : 1, 2,31, w177

stick atpoint A? xpotntB? atarty orre
of these points?

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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"After all, the Moon is usually made in Hamburg,
and poorly made at that."

-Nikolay 
Gogol, "Notes of a Madman"

by M A. Koretz and Z, L. Ponizovsky

ILLIPUTIAN SCIENTISTS INFORMED CULLI-
ver/ as you may recall from Jonathan Swift's account
of his travels, that Mars has two satellites. In addi-
tion, they told him how far the satellites are from

the red planet. It was another hundred years before non-
fictional astronomers discovered these satellites and ac-

tually confirmed many details of the LilLiputian schoi-
arship. So how fid Swift know about Martian satellites?

For a long time this was considered a mere coinci-
dence. Then it became fashionable to attribute such
"wonders" to visitors from outer space. Some people
believe that extraterrestrials imparted astronomical
knowledge to ancient peoples in a kind of code. This in-
formation has come down to us in the form of songs/
myths, and fairy tales.

There's a children's rhyme in Russian that goes like
this:

<<flouelry IIyHa He u: uyryna?>>

<<florouy qro Ha Jlyny ne xBarr4rlo 6 uyryuy.>1

"Why isn't the Moon made of iron?"
"There's not enough to go around."

No doubt this is one of the bits of in{ormation about the
Moon that our ancestors were givenby aliens. Sooner or

lPronounced something like: Puh-chi-MOO loo-NAH
nyi iz choo-goo-NAH? Puh-tah-MOO shtuh na loo-NOO
nyi hvah-TYEE-lub choo-goo-NOO.-Ed.

It brightens the spirits
ln times like these
To know the Moon

ls made of cheese.
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later science was destined to find support for the idea
encapsulated in the rhyme.

Sure enough, lunar research has shown that oniy 15 %
of the Moon is iron ( comp ared to 35Y" for the Earth 

) 
. Also,

the fact that the Moon lacks a magnetic field is due ei-
ther to a complete absence of a molten, iron-enriched
core or a very small one. Our current understanding says
the Earth's magnetic field is caused by convective mo-
tion in the Earth's molten core. Finally, the density of
the Earth is 5.5 g/cm3, while that of the Moon is only
3.34 gf crn1, which corresponds to the density of the
Earth's crust, consisting primarily of silicates. Accord-
ing to the British professor S. Rancorn, we might sup-
pose that 4.5 billion years ago/ when the Earth and her
satellite were created, the Moon got less iron. Why? Who
knows? Maybe the extraterrestrials knew, but the rest of
the rhyrne was lost in its endless repetition.

So, if the Moon isn't made of iron, what is it made of ?

We need to look elsewhere for the answer. Do you re-
member the great Baron Munchausen?2 He discovered an
island on Earth made of cheese. This excellent and trust-
worthy report was published back in 1785. Since then it
has been widely conjectured that the Moon consists of
the same material. Bitter disputes have arisen, however,
conceming the type of cheese that constitutes the Moon.

Not so long ago the esteemed American geophysicist
O. Anderson of Columbia University was given the job
of measuring the speed of sound in lunar rocks and find-
ing analogous terrestrial materials. His colleagues
couldn't wait to see his results.

We1l, the end of the year rolled around, and professor
Anderson sent New Year's greetings to al1 his friends. He
wrote the message you see printed next to the drawing on
the facing page: "It brightens the spirits . . ." And below it he
provided a table giving the speed of sound in his samples:

Lunar samples
and cheeses

Speed o{ sound
(km/s)

Lunar sample 10017 1.84

Norwegian cheese 1.83

Italian cheese t.7s

Italian cheese (Romano) t.75

Vermont cheese t.72

Swiss cheese t.65

Wisconsin cheese l.s7

Lunar sample 10046 t.25

2Some of his adventures have been recounted in these
pages-see "The Wolf, the Baron, and Isaac Newton" in the
November/December 199 I issue.-Ed.

As you can see from the table, according to the param-
eter selected (the speed of sound), the values for various
types of cheese coincide with those for the lunar rock
samples. So one can reasonably argue that cheese is the
terrestrial ecluivalent of lunar soii. Unfortunately, from
the table it's still not clear exactly which type of cheese
plays this role. But, fear not, great scientific minds have
solved this puzzle.

Rocket boosters falling to the lunar surface have
caused seismic oscillations in the Moon's soil. Contrary
to expectations, the oscillations didn't damp in amatter
of seconds-they took dozens of minutes to die away. It
was hypothesized that this phenomenon was due to the
existence of some sort of mysterious cavities of unknown
origin. But, as you know, there are some sorts of cheese
with cavities! Recalculate their dimensions to the appro-
priate scale and this obscure phenomenon becomes crys-
tal clear. And that's not all. Since the biggest holes are
found in Swiss cheese, the question of the type of cheese
is resolved as well.

In conclusion, the Moon is not made of iron but of
Swiss cheese. So here's our advice to scientists: take an-
other look at all those folk tales and nursery rhymes.
Better yet, let a computer handle it. CI

Talk hack!

Our e-mail address rs
72030.31 62@compuserve. com ,

Does your library have
Quantum?

If not, talk to your librarian!

Quantum is a resource that belongs in every high
school and college library.

"A first-class 'new' magazine.. . one can appreciate
the meaning of quality and imaginative challenge. .

.it is {or anyone with an interest in science, particularly
math and physics. Highly recommend ed." -Libraryfournal

"It should be in every high school library [and] in most
public libraries. . .we owe it to our students to make
Quantum widely avallable." -Richard Askey,
Professor of Mathematics at the University of
Wisconsin, Madison

Share the

OUANTUM
experience!
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"The great attraction of this book

is that it explains the intuition
behind probabilistic concepts and

illustrates them with interesting

examples worked out in detail.
Pitman encourages the reader to

first develop his/her probabilistic
intuition at the level of finite

outcome spaces, and only later
does he introduce countable and

uncountable outcome spaces with
the attendant need to use calculus.

There is a wide selection of
interesting exercises, some of

which are panicularly challenging.

- PROFESSOR RUTH WILLIAMS,

University of California at San Diego

"Jim Pitman has written a great text:

elementary, yet challenging. I
wish that my first exposure to the

subject had been through this text!
There is a wide range of examples

and exercises, some of them
wonderfully thought-provoking,
to develop the reader's intuition

and understanding. Good students
from any discipline who have

the calculus background
should enjoy this book."

- ATBYN IONES, Reed College

"Probability by Jim Pitman, is

a thorough modern introduction
to elementary probability theory,
at the senior undergraduate level.
The text focuses on developing
the student's intuitive grasp of
probabilistic methods, with a

minimum of technical prerequisites.

Key ideas are presented clearly
and simply. Remarks on the

historical development of the

techniques discussed and a lively
writing style leaven the text."

- PROFESSOR WILLIAM KREBS.

Florida State University

g

tTthis new textbook is ideal for an undergraduate introduction to

I probability, with a calculus prerequisite. It is based on a course

that the author has taught many times at Berkeley. The text's overall

style is informal, but all results are stated precisely, and most are

proved. Understanding is developed through intuitive explanations

and examples. Graphs, diagrams, and geometrical ideas motivate

results that might otherwise look like purely formal manipulations.

In comparison with other texts, more than the usual number of
interesting examples are worked through in detail. Each section has

a large number of exercises of varying degrees of diffrculty. The

exercises are designed to teach the student how to approach a prob-

ability problem in a new setting and relate it to the standard body of
theory.

The normal approximation appears early in the context of the bino-

mial distribution. The central limit theorem is a running theme

throughout the text, and by the end of the course is a familiar tool

for the student. Conditioning is studied in depth, and the treatment

of the bivariate normal is unique in its approach and scope.

Throughout the text, probabilistic reasoning is developed as a pow-

erful tool. The wide range of examples show how basic ideas such

as the linearity of expectation may be applied to solve problems

that would otherwise be difficult to approach by algebra or calcu-

lus. This leads to a much more lively approach than is usual in a

text at this level, reflecting how a working probabilist thinks about

random processes.

Contents:
. Introduction . Repeated Trials and Sampling . Random Variables
. Continuous Distributions . Continuous Joint Distributions .

Dependence . Distribution Summaries . Examinations .
Appendices . Brief Solutions to Odd-Numbered Exercises . Index

1993/app. 596 pp., 156 illus., 18 tabs./Hardcover/$49.00
rsBN 0-387-97974-3
Springer Texts in Statistics

Order foday!
. Call: Toll-Free 1-800-SPRINGE(R): t-8OO-777-4643. ln NJ call 201-348-4033 (8:30 AM - 5:30
PM EST). Your reference number is H216. . Wrlte: Send payment plus $2.50 postage and han-

dling for first book and $1.00 for each additional book to: Springer Verlag New York lnc., Dept.
#H216, PO Box 2485, Secaucus, NJ 0709G2491. (CA, NY, NJ, MA, PA, TX, VA, and W residents
add sales tax, Canadian residents add 7% GST.). Visit: Your local technical bookstore..
lnstructors call or write for an examination copy . Your reference number is H216

Soluttons

Manual Available

JIM PITMAN, Dept. of Statistics. University of California. Berkeley, CA

Probability

"R, Springer-Verlag
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MATH
INVESTIGATIONS

DiUilized mulliplicalion i la Steinhaus

The first of his sto zadan

I N ADDTTTON TO OVER 150

lresearch papers and numerous
I other contributions, the Polish
I -r,na-rtrclan Hugo Sternnaus
llBBT-1972)will always be remem-
bered for his two wonderful books
Mathematical Snapshots ard One
Hundred Problems in Elementary
Mathematics, which have done
wonders in popularizing mathemat-
ics among millions of people on ev-
ery continent. The first of these
books (published in Poland in 1938)
appeared in English in 1960 and is
probably the better known of the
two. Hence I want to call my read-
ers/ attention to his second book and
to the first of his Sto Zadan (as the
book is called in Polish).

In this problem, Steinhaus starts
with two one-digit numbers, 2 and
3; forms their product (6) as the next
member of the sequence; then forms
the product of 3 and 6 and writes it
down as the next two digits (1 and
B). The next term is 6 (since 5 . | =

The purpose of this column is to direct
the attention of Quantum's readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes andf
or free subscriptions.

by George Berzsenyi

5); the next term is B (since 1 . B : B),

then come 4 and 8 (since 6 . 8 = 48),
and so on. You should check that
the first sixteen terms of the se-
quence are indeed as given below:

2, 3, 6, l, 8, 6, 8, 4, 8, 4, 8, 3,2, 3,2, 3, ... .

My first challenge to you is: Show
that the sequence is infinite. My
second challenge is Steinhaus's
problem: Prove that the numbers 5,
7, and 9 never appear in this se-
quence. Your third challenge: Show
that among its members, the se-
quence will contain a string of 77
consecutive 8's.

C1ear1y, if one "seeds" the se-
quence with initial digits other than
2 arrd 3 (in that order), the nature of
the resulting sequence wi1lbe differ-
ent. Just how different will the two
sequences be? For instance: What is
the relationship between the se-
quences flr, n , ... and n, m, ..., whete
m and n are digits? One might also
ask whether the parity of the seeds
might influence the outcome.

To explore such questions, it
might be helpful to have the com-
puter generate lots of data. Hence
our next challenge is: Write an effi-
cient algorithm to do the iob. One
may also explore the problem in
bases other than 10 and generalize it
by starting with three seeds and tak-
ing the products of three consecu-
tive terms to generate the next ones.
The possibilities are truly endless! I

look forward to your findings and
especially the nice problems you
generate.

The Wol'm Pl'ohlem

The reactions to "Leo Moser's
Worm Problem" have been most
gratifying, but thus far nobody has
managed to make any proven irn-
provement on the results published.
Special thanks are due to Art Hovey,
a physics teacher at Amity Regional
High School in Connecticut, who
worked very hard on the problem
with his students. Several partici-
pants of the USA Mathematical Tal-
ent Search are also smitten with the
problem, as well as some mathema-
ticians at the National Security
Agency. Thus, a breakthrough may
be in the offingl o
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AT THE
BLACKBOARD

$uspendinU heliel

Name the shape of that incredible curve

by Y. S. Peirov

USPENSION BRIDGES . . . IN ness! Howeyet, a great deal of ten- has been preceded by the develop-
Russian they're called "hang- sion is hidden behind this apparent ment of the general mathematical
ing bridges," and that's exactly lightness, tension in all parts of the theory of such a structure. Many
what they are-the roadway bridge's suspension. And the majes- fundamental questions and many

seems to hang in midair. These en- tic immobility of the bridge soaring particular problems had to be
gineering marvels arrraLze us with above the mirrorlike surface of the solved. One such question that
the boldness of their underlying river is the result of equilibrium arises when you look at a suspen-

idea, the purity and perfection of among great invisible forces tamed sion bridge is: what must be the
their tinei. Thin steel ropes drop- by the designers' intelligence. curve that defines the shape of the
ping down from delicately curved, Before it emerges as a finished suspension cables such that their
iuspended cables somehow hold up product, constructed out of steel and equilibrium is ensured? The usual

-rny tons of asphalt where trucks, concrete, a bridge must be planned answer is: "Why, it's simply a cat-

buses, and cars race from one shore and painstakingly calculated by a enary 1ine. Any flexible, homoge-

to the other. Look at the drawing: whole team of civil engineers. But neous/ inelastic line whose ends are

what a sense of airiness and light- the design of any particular bridge fixed at two points takes this form.

k*/h-
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For instance, a chain or a telephone
wire hanging under the influence of
gravity looks something like this."
But that's the wrong answerl A11 we
need to do is look in any textbook or
reference book on bridge building.
There we'llfind the correct and very
simpie answer. By the way, in the
books where I've found it, the an-
swer is given without any proof, as

if it's some kind of dogma. And yet
this problem can be solved by using
quite elementary methods. We just
need to be able to work a little bit
with sliding vectors. And that's
what this little article is about.

The supporting part of a suspen-
sion bridge consists of cables and
suspension rods. We'll assume that
the rods are vertical, located at an
equal distance from one another,
and are subject to equal loads (see

the figure below). We neglect the
weight of these rods and that of the
cable. Finally, we'll assume that the
cable is symmetric relative to some
vertical straight line and is abso-
lutely flexible and inelastic. We'll
take the vertical plane of the cable
to be our coordinate plane. Let the
straight line where it intersects the
plane of the roadway (assumed to be
horizontal) be the x-axis, and let the
line of symmetry be the y-axis. De-
note the distance between the rods
by a andthe coordinates of their up-
per ends Moby (xo, y1,l (see the fig-
ure). Assume that the tension of the
horizontalpart of the cable is equal
to To. Denote the tensions of the
next cable portions MtMz, MrM3, ...
by T r, T rr, .., and their angles with

the horizontal as u.' ct2t ... . The
forces F1,82, ... are equallo the load
p ar.d act vertically downward on
the points Mt, M2,... . We need to
find the values of the ordinates ykat
which the sums of the forces acting
on the points Moare equal to zero.

To eliminate any misunderstand-
ing about the directions of the ten-
sion, let's denote the tension of the
cable portio, MN,.rin the direction
from M, to M,_, by 7,,, * , and the
same tension in the opposite direc-
tion by T,* r , From considerations
of symmetry we need to consider
only one half of the cable (say, the one
with positive x-coordinates). The
point M, is in equilibrium under the
influence of the three forces To, F1,

and T,r, from which it follows that

E
tanc[. = 14 ='To

The point M, is in equilibrium un-
der the influence of the forces Tr,,
F, and Tr, from which we get

.2ptanc^ = -'To
Similarly, 

)

.kptano(, = -oro

Now we can calculate the coordi-
nates (xo, 4) of the point Mu. The co-
ordinates of point M, are (a12, bl,
where b is the distance from the
horizontalpart of the cable to the x-

axis. The coordinates of the other
points can be calculated sequen-
tially according to the formulas

X.=X..+4.k k-t ,

Yx: Y*-l + d tan 0(k - 1'

Therefore,

x,.=9+(k-tlra,^2

yx=b * o! 
lt+Z+ ...+ (l - r)]^ 4'

,- . k(k -I) op

2To

There is an unknown tension 70

in the expressions f.or xo and yo. It
can be found if the point of suspen-
sion of the last rcdM,is known. Let
h be the height of this point. Then

n(n-t) aph= b+
2 To'

from which we get

(h-b)

If k is eliminated from the ecluations

x = 
a 

-(k - r)a,
2

. 1 k(k-t)ap
\/=h+

I2To

we find that the suspension points
M,,lie on the parabola

And since that is what we were
seeking, I'11stop. O

p
To

n(n-l\.l-
I 

--u2

y = p 
*, *lu- rp'l

ZaTo [ 8T.,

ap

Diagram of the supporting structure of a suspension bridge: the cable is the
broken line ...M.M,MrM,..., and the sttspension rcds are the seglnents ...,
MP1' M'P" M.1", ... .
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CHECKMATE!

Al'uyal pl'uhlem

And Alice is caught in the middle

by Martin Gardner and Andy Liu

chessboard in figure 1.

"I bet I know where His Majesty
is," said Tweedledum.

" On h6!" exclaimed Tweedledee.
"How do you know that?" Alice

asked.
"Well," said Tweedledum, "the

Red King plays it safe. He never ven-
tures out of his Kingdom into the
Borderland."

"He also refuses to cross over to
the Queen Side," addedTweedledee.

"So he is confined to twelve
squares. That is helpful, but I still
don't see how you can be so sure that
he is on h6."

"His Majesty likes to be as far
away from the Red Queen as he pos-
sibly can," Tweedledum said.

"Actually, as far from the Red
Queen's Palace as possible," cor-
rected Tweedledee. "He has no con-
trol over the whereabouts of Her

I{E RED QUEEN WAS FLIRIOUS,
as usual. Her current ire was
brought on by the absence of the
Red King from his Palace. On

her rare visits, she expected to see
whom she had come to see.

"Bring the old fool back here, or
else!" roared the Red Queen, who
was related to the Queen of Hearts.

"Or else what?" asked Alice, but
only after Her Majesty had swept ra-
diantly out of earshot back to her side
of the Palace.

"Off with your head!" Tweedle-
dum said.

"What else?" added Tweedledee
rhetorically.

"Oh, deat," said Alice, "this puts
a new meaning to ten percent off the
top. What shall I do? I don't even
know where the Red King is."

The twins brought out a map of
the land. It was the familiar 8 x B

Queen Sida King Side
Majesty."

"There is an-
other problem,"
said Alice. "ff the
Red King does not
want to come
back to e8, how
car, I persuade
him against his
wish?"

The twins
thought for a

while, and fought
for a while just to
pass the time.
Then they both
came up with a
brilliant idea. Not
surprisingly, it was
the same idea.

"Ale you in mortal fear of the Red

Queen?" Tweedledum asked Alice.
"Of course. Who isn't?"
"Of. all people, who fears her the

most?" asked Tweedledee.
"Hard to say," Alice replied. Then

it occurred to her. "The Red King, of
COUISC.,,

"Right!" said Tweedledum. "He
could not risk getting cauglrt in a mat-
ing situation with the White Queen."

"So if you disguise yourself as that
good lady, you can drive His Majesty
back here," declared Tweedledee tri-
umphantly.

"It is worth a try," said Alice,
somewhat encouraged. "I should not
waste any time by venturing outside
of those twelve squares either."

"Make sure you don't comer His
Majesty on h8, " Tweedledum advised
Alice.

"Also, do not drive him into the
Borderland," said Tweedledee. "His
Majesty may find out that it is not as

dangerous as he makes it out to be."
"Well, I'd better hurry and bring

His Majestyback as soon as I can. The
Red Queen's patience is shorter than
her temper!"

Problem L. On the miniature
chessboard in figure 2, White has a
lone Queen on eB, and Red has a lone

6

Figure 2
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King on h6. White moves first, and
wins if the Red King is driven back to
eB within 10 moves. If this is not ac-
complished, then Red wins. Other
than what is noted above, normal
chess rules apply With perfect play,
which royalty wins!

Alice was able to accomplish her
mission, only to have the Red King
slip out agarn. Humpty Dumpty, in
his lofty position on the wall, spotted
His Majesty on h4 this time.

Alice correctly deduced that the
Red King still harbored no thought of
crossing over to the Queen Side.
While he had temporarily conquered
his fear of the Borderland, he was not
yet willing to venture into the White
Kingdom.

Having lost much time in accom-
plishing her first mission, Alice set
out immediately to reenact the
drama, but on an enlarged stage.

Problem 2. On the miniature
chessboard in fipre 3, White has a
lone Queen on eB and Redhas alone
King on h4. White moves ftust, and
wins if theRedKingis drivenbackto
e8 within L4 moves. If this is not ac-
complished, then Red wins. Other
than what is noted above, normal
chess ruLes apply With perfect play,
which royalty wins!

Alice drove the Red King back to
his Palace just in time.

"Come alottg," roared the Red
Queen. "We have to attend a summit
conference with the White Queen
and her consort."

"What is the matter this time,
dear?." asked the Red King timidly.

"We have been discussing the par-
tition of the Borderland. There is too
much goings-on here, especially on
h4, or so I hear."

"I can't imagin e what," murmured
the Red King.

" Anyway, the White Queen and I
have agreed to establish our borders
between ranks 4 and 5. We just meet
to formalize the deal."

"If you say so/ dear."
As soon as the new treaty was

signed, the Red King headed for h5,
the furthest haven within his do-
main. Alice was dispatched after him
a third time.

Problem 3. On the miniature
chessboard in figure 4, White has a
lone Queen on eB, and Red has a
lone King on h5. Red moves first
because the King is already in
check. White wins if the Red King
is driven back to eB within L2
moves. If this is not accomplished,
then Red wins. Other than what is
noted above, notmal chess rules

6

5

efsh
Figure 4

apply.With perfect play. which roy-
aliy'winst 
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ANSWERS ON PAGE 60

Martin Gardner's latest books include
Penrose Tiles to Trapdoor Cipherc and
Fractal Music, Hypercards and More
(both W. H. Freeman). Andy Lita r eceived
the 1993 Rutherford Award for Excel-
lence in [Jndergraduate Teaching at tha
univercity of Alberta.
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l. Graceful and amusing. Three

graces, each holding the same quantity
of fruit, met nine muses. After each
grace had given the same number of
pieces of fruit to each muse, all the
graces and all the muses had the same
amount of fruit. How many pieces of

Compiled by Anatoly Savin from
national magazines of secondary school
mathematics and recreational math.

fruit did each grace have before she met
the muses if the total number was not
greater than 70? (Greece)

2. Calendar magic. The 3 x 3
square highlighted in the calendar at
right is "almost magjc":1 the sums of

lSee "Some Mathematical Magic"
by |ohn Conway in the March/April
1991 issue ol Quantum for more on
magic squares (and other magical
shapes).-Ed.
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numbers on its diagonals, the middle
column, and the middle row are all
equal to one another. Prove that this
is valid for any 3 x 3 scluare selected
in any such calendar. (United King-
dom)

3. Partial withdrawals. Someone
took a fi{th of what was kept in a trea-
sury. Another one took a sixth of the
remainder and left 150 gold coins in
the treasury. How many coins were
kept in the treasury initially? (Egypt)

4. Counting shofiest paths. The
figure above shows the map of a vil-
lage. |anek lives in the house labeled
A, Marzenka lives in the house la-
beled B. Obviousiy, to get to
Marzenka, |anek must walk at least
7 blocks (all the blocks are the same
iength). What is the number of such
shortest paths from )anek's house to
Marzenka's ? ( Czechoslovakia)

5. Digital name. Solve the alpha-
numeric puzzle above, where EULER
is as great as possible. (Germany)

6. Mondays andTuasdays, Once I
spent the first Tuesday of a certain
month in St. Petersburg and the first
Tuesday after the first Monday in
Riga. In the next month, I spent the
first Tuesday in Pskov and the first
Tuesday after the first Monday in
Vladimir. What were the dates of my
visits to each of these cities? (Russia)

7. Sea story. A sailboat, a steamer,
and a motor boat were called the
Washington, the Lincoln, and the
lefferson (not necessarily in this or-
der). Their ports of departure and ar-
rival, in alphabetical order, were Ber-
muda, Boston, Halifax, London,
Newport, and New York. It's known
that (a) the motor boat passed by the
ship going to Bermuda; (bl the Lincoln
arrived at Halifax on the same day as

the steamer departed from London;
(c) the Washington departed from
New York under full sail but not for
Boston/ although one of the ships was
headed there. What was the name of
each ship, which port did it depart
from, and what city did it sail to?
(United States)

8. Perfect repetition. Find a four-
digit perfect square whose first two
digits are the same and whose last
two digits are the same, too. (Poland)

9. Prime ages. 'fherc is a family
with six children. Five of themare2,
6, B, 12, and 14 years older than the
youngest child, respectively; the age

o{ each child is a prime number. How
old is the youngest child in the fam-
ily? (Australia)

10. The chase is on. A car started

out from Yarnafor Sofia at a speed of
75 km/hou4 20 minutes later another
car started along the same route at 90
km/hour. At what distance from
Yarna will the second car catch up
with the first one? (Bulgaria)

lL. Olympic equality, The five
olympic rings cut the plane into 15

pieces (not counting the infinite piece
on the outside). Arrange the numbers
I to 15 in these pieces, one number in
each, so that the sum of the numbers
inside each ring is 39. (Austria)

12. 120' in the shade. The sides of
a triangle have the lengths * + x + I,
2x+ l, andr/ - l. Prove that one of its
angles is 120'. (Belgium) O
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Hal'd-core heauenly hodies

How a hypothetical crystal planet sheds light
on the inner nature of all planets

by Yuly Bruk and Albert Stasenko

ID YOU EVER WONDER
how the various planets dif-
fer? "They have different
masses and they're different

sizes," you'll say, and you'll be right.
Irtact, you'llbe more right than you
even know, because the mass and
radius of a planet determine its
other characteristics to a great ex-
tent. A11 the planets consist of at-
oms. What sort of atoms? An astro-
physicist will say, "All kinds of
atoms." But in our solar system, and
in the universe as a whole, atoms of
the various chemical elements are
far from equally represented. For
instance, the reiative amounts (by
mass) of hydrogen, helium, and all
the remaining elements are ex-
pressed by the ratio 0.73 :0.25 :0.02.

The planets of our solar system
are likewise made of different ele-
ments. The biggest of them, |upiter
and Saturn, whose masses are 318
and 95 times that of the Earth, re-
spectively, consist primarily of hy-
drogen and helium. However, both
the hydrogen and helium in these
planets are in the liquid state rather
than the gaseous or solid states, and
the average densities of these plan-
ets surpass by far the densities of the
planetary atmospheres.

The planets lJranus and Neptune
have masses that are 15 ar,d 17
times that of the Earth, and they

consist predominantly of ice, solid
methane (CH4), and ammonia (NH3)
in the metallic phase. Notice how
the average atomic numbers of the
elements in the planets increase as

the planetary mass decreases. Is this
an accident? It would seem not, be-
cause this tendency holds true as we
move down the scale to the smaller
planets. The planets of the Earth
group (Mercury, Venus, and Mars)
are not more massive than the
Earth, but the characteristic ele-
ment for all o{ them (Earth included)
is iron (Fe). They also contain alarge
amount of silicates-for example,
silicon dioxide (SiOr). The tendency
is absolutely clear: the greater the
planetary mass, the smaller the av-
erage atomic number of the ele-
ments in the planet. A rather natu-
ral cluestion arises: is there some
correlation between planetary mass
and the masses of the atoms in the
planet?

It would, of course, be wrong to
assert that the masses of the atomic
nuclei depend on the planetary
mass. The atoms of each chemical
element are absolutely identical not
only in diff erent planets but
throughout the universe as a whole.
However, a correlation between the
masses of the atoms constituting
the planets and the masses of the
planets themselves certainly exists.

It is this correlation that we will dis-
cuss in this article.1

We'll discuss a very simple
model. However, as the Nobel lau-
reate Sir Philip Warren Anderson
noted, "quite often a simplified
model casts more light on the actual
mechanisms of natural phenomena
than any number of ab initioz calcu-
lations for a particular event-calcu-
lations which, even if correct, often
contain so many details that they
hide the truth more than they elu-
cidate it."

Surprisingly, the planets of our
solar system do not deviate very
much from the model presented in
this article. Still, we must caution
our readers against taking the for-
mulas developed below and rigidly
applying them to the actual planets.
In our order-of-magnitude estimates
we'l1 be using qualitative consider-
ations and dimensional analysis. We
won't worry about the numerical
coefficients that arise in more pre-
cise calculations. This approach is

rOf course, we're not saying that
there are no atoms of hydrogen or
uranium in the Earth (for instance).
There are such elements in (and on) the
Earth, but their relative amounts (by
mass) are small.

2Ab initio means "from the
beginning" in Latin; in this context/ it
means "from first principles."

C
E

._v,h
c0

C)
O-)

oa
_o
ts

34 JUI.Y/[UGUSI ISSS



,.@Z'*

:"w
.,-t..1

...1.,

f/

it.
1.rl,,r'



justified when the coefficients are of
the order of 1. And this is exactly the
situation that arises so often in
physics and astrophysics (but not
always, of course). There are firore
fundamental reasons for this, but we
won't discuss them here. We'11 iust
take it for granted that dimension-
Iess coefficients won't spoil our con-
clusions (at least qualitatively).

On the way to our primary goal-
finding the correlation between a
planet's mass and its chemical com-
position-we'lI take a little side trip
into solid-state physics. We'1l also
calculate the energy and Young's
modulus of an ionic crystal. These
calculations will ultimately help us
learn a thing or two about the plan-
ets.

lhung$ lnodttltl$ and ionh cry$tal
First of{, let's consider a model of

an ionic crystal similar to a crystal
of table salt (NaCl) except that all
the atoms have approximately equal
masses. This difference between our
model and a crystal of NaCI is not
very significant for our analysis, but
it wili simplify our calculations. We
can neglect the mass of the elec-
trons in comparison with the mass
of the nuclei.

Let the crystal density be p and
let the atomic numbers of its ele-
ments be Ar= Ar=A. The masses of
nucleons-that is, the protons and
neutrons composing a nucleus-dif-
fer insignif icarrtly, and the differ-
ence will be neglected here. With
these assumptions, the mass of each
atom can be considered equal to that
of the nucleus: m = Am. where m
is the mass of the nucl.5rr. P

If there are n atoms per unit vol-

ume, then the mass per unit volume
(that is, the density) is

p : nm. (1)

It's convenient to rewrite this
simple formula in another way. For
the estimates we're planning to
make, we can consider our model
crystal to be a cube. This means that
the atoms sit at the corners of an
elementary cube-the unit cell of
the crystal lattice. We'Il denote the
edge of the cube as a (fig.1). The
magnitude n is linked by its very
nature with a: naa : l. Therefore,
equation {1) can be rewritten as

Formula (2) is curious in that its
right-hand side contains the "micro-
scopic" values m and a, andthe left-
hand side consists of just the "mac-
roscopic" crystal density.

The crystal lattice here is made
out of alternating positive and nega-
tive ions. For simplicity's sake, the
charge of each ion will be considered
equal to the electron charge with
the corresponding sign (+e or -el.
The usual electrostatic forces act on
each ion. Were there only two ions
with a distance a between them, the
potential energy of their interaction
would be - e2f eoa, where eo is the
permittivity of tree space and the
tilde (-) means that it's an order-of-
magnitude estimate. The energy of
interaction of the ion pair is a very
important and useful characteristic
in our estimates. Of course, there
aremany more than two particles in
a crystal. Taking 2 . 10-8 cm as the

mean distance between particles,
we can easily calculate that there
arc - 1,023 particles per cm3.

Physicists usually discuss the
density of electrostatic energy of the
ionic system that forms a crystal.
The word "density" is used here to
mean the energy contained in a unit
volume. In otherwords, this value is
the sum of all potential energies of
interaction among ali pairs of ions in
a unit volume. It's rather difficult to
calculate this sum precisely, and we
won't be able to do it here, because
we'd have to take into account the
interaction of a huge number of ions
at different distances from one an-
other. We can, however, draw an
analogy with equation (2). It should
be noted that the energy density E
has the dimensions lfrri3, andthat
the dimensions of the potential en-
ergy of an interacting pair of ions are

lezleoa] = |. The brackets denote the
dimensions of the expression inside
them.3 Now divide the "micro-
scopic" expression ezfeoa by au,
which is also "microscopic." This
results in an expression with the
same dimensions as the energy den-
sity E. We can think of this value as
an estimate of E. Of course/ this rea-
soning is not a strict proof that the
density of electrostatic energy o{ the
crystal's ionic system is ezf eoaa.

Nevertheless a precise analysis of
the ionic crystal results in the fol-
lowing equation:

^) e2E-g-n' =O(-.Eoa toao'

which differs from the above esti-
mate by the numericalfactor u - L

The elastic properties of a sub-
stance are determined by the inter-
atomic forces. The most important
characteristic of these properties is
Young's modulus Y. Usuallywe ob-
tain this value from Hooke's law as
the force at which the linear defor-
mation of a body Nll is equal to 1,

or in other words, when the corre-
sponding iength I is doubled or

3See "The Power of Dimensional
Thinking" in the May/|une 1992 issue
ol Quantum.-Ed.

(21
m

P= .
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Figure 1
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halved. However, the value Y
doesn't at all depend on whether we
know Hooke's 1aw or even whether
it's correct. We should also note that
the dimensionality of the elastic
modulus is N/m2 : llt u.We can
therefore interpret Y as some sort of
characteristic energy density.

To make this a little clearer, let's
look at two other examples. The
first has to do with the common
parallel-plate capacitor. If its plates
are charged with +q, then there will
be an electrostatic field inside the
capacitor, and the plates will attract
each other. Let the arca of each plate
l:e S and the distance between them
h. The attractiye force can be calcu-
lated, and when divided by S, it re-
sults in the "characteristic pres-
sure." It's also possible to calculate
the energy accumulated in a capaci-
tor and, dividing it by the volume
S.h, determine the energy density.
Both estimates result in the value
o2f2eo, where o: (IlS is the surface
charge density on the plates. Thus,
the characteristic pressure and the
energy density are the same in this
case-not only in their dimension-\
ality but numericaily as well.

Now it's time to return to the
ionic crystal. Its characteristic en-
ergy is electrostatic, and its elastic
properties are determined by the
electrical interactions of the par-
ticles forming the crystal. So we can
assume E - Y. Again we take for
granted that the proportionality fac-
tor here is 1. In this way we've
learned how to evaluate Young's
modulus for the ionic crystal:

We used equation (2) to obtain
equation (4). From equation (4)it di-
rcctly follows that E has an upper
limit. Indeed, while the ionic lattice
exists, the interionic distance can-
not in any case be less than the
atomic (ionic) size. Were it not so,
the electron shells of the adjacent
ions would overlap. As a result, the

electrons would bunch up, and we'd
have a metal instead of an ionic
crystal. On the other hand, the value
of E for the ionic crystal has a lower
limit as well. We'll demonstrate this
with another example.

Imagine that a deforming force is
applied to a crystal rod. When the
force is large enough, the rod breaks.
The force at which breakage occurs
divided by the rod's cross-sectional
area perpendicular to the force is
known as the tensile strength p,,
which is always less than Young's
modulus. This last statement looks
to be true at face value. As we said
above, a Iorce equal to Young's
modulus causes a twofold change in
the iength of the sample tested.a As
we know from experience, it's prac-
tically impossible to stretch (or
compress) any crystal to twice (or
halflits length-it would break long
before it reached that point.

Now let p represent the pressure
acting on the crystal. Logically, one
of the conditions for the existence of
a crystal structure is that the follow-
ing relations hold true:

E > P,> P. (5)

Another obvious condition is that
the temperature of the crystal be
less than the melting point of the
crystal lattice.

Now this question pops up: if
Young's modulus is defined as the
pressure that changes the length of
a rod by a factcl. of 2, then what
about a spherical or cubic crystal
deformed from all directions simul-
taneously? Here it's more conve-
nient to consider the relative change
not in the length but in thevolume
of the crystal lAVlvl. We now refor-
mulate Hooke's law, for small defor-
mations, as

p _LV
BV

aWe should note that it is generally
not possible to use Hooke's law with
large de{ormations, but the qualitative
conclusions we make in this article
remain valid (even without Hooke's
law).

This equation is very similar to
the one written for stretching or
compressing a rod: plY : Nlll. But
Young's modulus here is replaced
with the bulk modulus B. The bulk
modulus B can also be interpreted as
the characteristic energy density,
and the values Y, B, and E can be
considered ec1ual in their order of
magnitude. This is quite su{ficient
for our purposes in this paper.

An ionic+l'y$alplanet
Now let's move on to our main

topic. Consider a hypothetical
planet made up of almost identical
atoms arranged in a crystal lattice.
For the planet tobe entirely crystal-
line, the pressure at its center
(where it is maximal, of course)
must not exceed the value E. The
pressure at the center of a planet of
mass M and radius R can be calcu-
lated by using the following equa-
tion:

^M2p-c t5l
RO

This formula canbe deduced by di-
mensional analysis.

We'll remind you how to do this.
The pressure p at the center is as-
sumed to depend on the planet's
mass M, its radius R, and the gravi-
tational constant G:

p - G"IWR,,

where X, y, Z are as yet unknown
numbers. Now we write down the
dimensions of the physical values in
this equation: [p] = kg.m-t . s', [G]: nr3 . kg-t . r-2, [M] = kS, [R] : m.
Comparing the dimensions on the
left and right sides of the equation,
we get

kg' 6-t . g-2 - 113x. k5". 5-2"

'kg'''''"'

For this equation to be valid,
numbers X, y, Z must satisfy
combined equations

1 = -x + y; -l:3x + z; -2 = -2x.

From this it follows that x = l, y =

f

Y-E^r.:'=[P]'n'
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2, atad z = -4t which results in equa-
tion (6).

Equation (6) canbe understood in
yet another way. The gravitational
energy of a ball of mass M and radius
R must be of the order of GIWIR. So
the density of the gravitational en-
ergy is equal to this value divided by
the ball's volume - R3. |ust as the
elastic moduli can be interpreted as
the density of electrostatic energy,
the gravitational energy can be con-
sidered to be of the same order of
magnitude as the pressure at the
center of a gravitating globe.

Again it should be stressed that
the question is not about the iden-
tity of pressure and energy density
(which would be an false assertionl
but about the equality o{ these
quantities in their orders of magni-
tude.

The condition for the existence of
an ionic crystal at the cent;r of our
hypothetical planet is as follows:

GM . E _ e2m 
+io.o,,rro-r. 

(7),

Obviously a planet that is entirely
crystal can exist only if it's rela-
tively cold-in other words, the
temperature at its center must not
be close to the melting point. Oth-
erwise a liquid core would appear
inside the planet-the crystal would
melt. Again taking into account that
p - MlRu andm= Amo, eguation (7)

can be rewritten as

From this it's evident that our as-
sumptions (the planet is completely
crystal, the density at its center is of
the order of the mean density) lead
us to limitations on the masses of
atoms that can be u$ed to form these
kinds of planets.

The assumption that the planet's
mean density is of the same order of
magnitude as the density at its cen-
ter seems to be absolutely natural
and reasonabie in those cases where
the substance in the planet's core

38 JttTYIAUBIsr rsss

isn't compressed very much. But if
the compression is too great, the
ionic crystal would not exist. If an
ionic-crystal planet has the radius
and mass of Earth, then the density
of matter at its center and near the
surface do not differ markedly-the
ratio is about 3 : 1. So the mean den-
sity is indeed the same in its order
of magnitude as the density at the
planet's center. This holds true for
other planets and stars as we1l.

The restrictions imposed on the
mass of the atoms from which com-
pletely crystalline planets could be
formed are thus determined by the
parameters of the planets them-
selves. For the simplest model of an
ionic-crystal planet, we obtained

A^,* lconstant . m-%.

Let's draw a graph of the function
M(A*^.l.In the strictest sense, this
graph relates only to our hypotheti-
cal situation in which planets are
composed of ionic crystals and have
no liquid cores to speak of. Remem-
ber what we said at the outset about
the elements and compounds that
arc characteristic of actual planets.

t. flranus't Neptune

w 102030 405060

Figure 2

If the planets in our solar system
were of the ionic-crystal type, and if
we took the average atomic number
for the planets of the Earth group to
be about 50, forlJranus and Pluto-
about L6, and for |upiter and Nep-
tune-about 2 to 4, then the corre-
sponding data points fall rather
nicely on our curve. Along the ab-
scissa we plotted the mean atomic
number of the planet's elements (A),
and along the ordinate we plotted
the mass of the ionic-crystal planet
in relative units, the mass of Earth
being 1 (see figure 2).

Our calculations do not mean
that the realplanets have no liquid
cores. On the contraryt such cores
probably do exist. However, crystal
structures also exist in these plan-
ets. The factthat the real planets are
similar to those in our model, at
least qualitatively, justifies our as-
sertion that we have indeed cap-
tured and understood a law describ-
ing the link between a planet,s mass
and the atomic mass of its predomi-
nant substance.

In conclusion, we should add that
a simiiar approach is valid for plan-
ets that are not made of ionic crys-
tal but of metal. A substance is me-
tallic when free electrons are
detached from their atoms. In this
case the gravitational compression
is said to be "counterbalanced,, by
the pressure of the electron gas, and
it is this balance that makes it pos-
sible for such planets to exist.s

So you can see once again the
"power of dimensional thinking,,,
and how far the human mind casts
its net!

M
M,
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sThe principle of calculation that
leads to the link between the masses of
the planets and the characteristics of
the atoms composing them remains
the same, but the calculations are too
complex to be considered here. For
those who want to do it themselves, we
note that the order of magnitude of the
electron gas pressure in metals is equal

It s/
to ;n!3, where h = 1(Fa I. s is

Plancl<'s constant, ft" = l0+o kg is the
electron's mass, and n- is the number of
electrons per unit voltime.



FOLLOW-UP

Counling l'andoln palhs

And computing equi libri um temperatures

by Vladimir Dubrovsky

tn0m pl'olalililie$ I0 temrunalures
Consider a square grid on the plane

(the set of points (i, i) with integer
coordinates) and a "partrcle" that
"wa1ks"----or rather, " jumps"-in this
grid: from the point (i, il it can jump
to (i - 1, il or (i,l - 1)with equal prob-
abilities o{ | 12, as illustrated in figure
1 (where the axes are directed so as to
correspond to the heat-transfer dia-
grams in SBE). Every jump decreases
the sum of the coordinates by 1, so,
starting from (i, l) with i> 0, i) 0, I +
i > | , the particle will reach one of the
axes in no more than i + I - 1 jumps.
Let's study the probability p that it
will reach the r-axis first.

As was claimed in SBE, the prob-
abilities p,, must be equal to the tem-
peratures t that emerge during the
heat exchange process described

there. Without going into physical
details, which would take a lot of
space and would be of no purpose here,
I'll fust note that the equalityp ,,:t, can
be proven simply by verifying, for all
i> I, i> l, the initial conditions

Pro= l, Po,= O (1)

and the half-sum law

7r \
P,,= _(P,,,+P,.,_r), (zl

because these relations are true for
the temperatures t,, (see SBE) and
uniquely define the numbers that
obey them.

The conditions (1) are obvious-if
you start on one of the axes, you reach
it sooner than the other one! To prove
equation (2), we'lI use the "classical"

ft
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a

li-

ATHEMATICS IS OFTEN
called the "Queen of the Sci-
ences." Perhaps one of the
reasons for such high esteem

lies in its remarkable power to bring
out intrinsic links between phenom-
ena that seem to have nothing to do
with each other. A dramatic instance
of such an unexpected connection is
mentioned ip the article "Super-
heated by Eqriations" lp.4l, which
deals, in particular, with a special
kind of serial heat exchange between
small portions of two substances. The
intermediate equilibrium tempera-
tures that emerge during this process
are interpreted in terms of a certain
two-dimensional random walk. In
this short follow-up article I'11 explain
why this interpretation is true and,
further, I'11 adapt it to the one-dimen-
sional random walk considered in
another article in this issue-"Ran-
domly Seeking Cipollino."l Not only
that, we'1l see that the main results of
both articles (I'11 refer to them as SBE
and RSC, respectively) can be derived
from each other! And in so doing we'll
get to know a simple geometric method
of counting the paths of a random walk
that yields many interesting and impor-
tant properties.

lThis random process is the simplest
discrete model of Brownian motion (the
chaotic motion of particles suspended
in some liquid or gas), which is, in a
certain sense/ govemed by the same
differential equations as heat
conduction. Here the connection
between the two processes manifests
itself even more vividly and, perhaps,
looks more reasonable than in our
discrete case. Figure
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definition of probability: if a random
experiment has N equally likely out-
comes and exactly M of these out-
comes constitute a certain event/
then the probability of this event is
M/N (see, for instance, " The Syrnme-
try of Chance" in the last issue of
Quantuml.In our case, it's natural to
take as "equally likely outcomes" all
possible paths of the particle that start
at a fixed pointli, il andhave the same
length s-that is, consist of s jumps.
Let's take S = I + i - 1. Then all the
paths end up on the line r + i : I (the
blue line in figure 1). Since each path
must end on a lattice point, this point
must be on or "behind" the axes, and

'so must cross an axis. Since there are
N:2'paths of length s, starting at a
fixed point (point (i, l)), we have

N
P,,= "',,,2

where A[. is the number of those that
attain thJi-axis before the 1axis. (In fac!
it's easy to see that these paths are too
short to reach the l-axis at all.) Similarly,
Pi t,i=N,-r,/2'-t ^dp,., , = N., ,/2'-'.
Now we notice that all the N-, paths
in question faII into two classes:
those starting with a jump from (i i) to
(i - l, i), and those that jump first to
(i, i - l).It follows that {, = N,_,,, *
{,,-,, and so

r A/ *N,,, 
,fr = 

1'I'1
t tt 2 2,-l

Ir \
= - lP, -, ,+ P,,, )'2' '-','

So the first piece of work is done-
we've established the link between
the temperatures from SBE andprob-
abilities. The next step will be to pass
from the two-dimensional random
waik considered above to the one-di-
mensional symmetric random walk
studied in RSC.

From lhe ilam lo the lilte
Let's project the integer grid in the

ij-plane onto the blue line i + i : I
supplied with a coordinate scale as
shown in figure 1. Let's call this line
the "k-axis," although the coordi-
nates along this "axis" are not the

same as those along the r- or i-axis.
Then an arbitrary node A(i, i ) of the
grid will be projected onto the point
A' with the integer coordinate k =
j - i on the blue axis. So the projec-
tion of our particle will jump along
the integer grid on the k-axis accord-
ing to the rule described in RSC; from
any point k it jumps to one of the two
neighboring points, k - I or k + l,
with equal probabilities of I I 2. What
does the prohabllity p,,mean in terms
of this pfolectlon?' 

- 
"

It's clear from figure 1 that if a path
that starts at a point Mwithpositive
coordinates crosses the i-axis before
the l-axis, then it meets the k-axis at
a point with coordinate k < 0, and vice
versa. Sop-. can be interpreted as the
probability that our particle, starting
at point (i, i), arrives in the negative
half of the k-axis after s : i + i - 1

iumps, or that its projection/ starting
at point k = i * r, ends up at a point
with a negative k-coordinate after s
jumps. Now, the probabilities of
jumping left or right along the k-axis
do not depend on the position of the
point we start at. It follows that any
path along the k-axis can be shifted
along that axis (preserving the direc-
tion of each jump)without changing
its probability. Let's start our particle
at the origin ratlrrff than at k. Then
the above discussion shows that the
probability that the particle will find
itself at a point with a coordinate less
than -k (that is, less than i - il after s
jumps is also equal to p,,. Denoting
the k-coordinate of the particle after
s iumps by X" and the probability of
an event A under the condition that
the walk begins at the origin by p(Al,
we can write

P,,= P(X". -k) = p(X,, kl (3)

(the second equality follows from the
symmetry of our random walk).

One immediate consequence of
these expressions is the equation
p,i + p i,: 1, established for the tempera-
tures t-. in SBE. Here is a proof.

Remember that s = i + i - landk :
7 -r. First we note that the coordinate
of a particle starting at the origin a1-

ways has the same parity as the num-
ber of jumps it has made. The expres-

sions for s and k show that these
two numbers must have opposite
parity. Hence p(X,: k) = 0.Now,
pij : plx,. i - il, so we can write

p,i + p i, = p(X 
", 

kl + p(X" < kl + p(X, : kl
= plX,*k) +0
:l-p(x,=kl
=1_0
= 1.

Another consequence is the ex-
plicit formula for p ,,, also mentioned
in SBE. The right side of equation (3)

can be written as

p(X,>.k) =plx,=k+ 1)+p(x =k+21+
...+p(X,=s).

Of course, p(X"= n) : 0 for n > s. In
fact, allthe probabilities p(X, : k + 2nl
are also equal to zero,becatse the
numbers s and k +.2nhave different
parities. According to exercise 5 in

( 's \i
RSC, p(x" : 

") 
= 

[t, *,1p)f2' Wi"
probability was denoted by P"(n) in
RSC), so

, =[[;J.[,i,]. .[:J] z

However, we won't be using this ex-
pression here.

Symmelry alulorlr
My goal in this section is to prove

that p, *,,-+ I f2as n -+ -. This rather
technical result-and its proof be-
low-are interesting in three respects.
First, it's a pivotal.fact in explaining
the paradoxical heat transfer dis-
cussed in SBE; second, it turns out to
be closely connected, even equiva-
1ent, to the central statement in RSC
(that the random walk in a line re-
tums to the starting point with prob-
ability 1); third, it provides an oppor-
tunity to demonstrate a simple but
beautiful and useful geometric
trick-the so-called "metirod of re-
flection."

Applying equation (3), we get

Pn*r,o: P(Xr,. ll = PlXr,> _11.
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Since plXr,. Il = plXr,, < 0) and
p(Xr,, -l) = plXr, > 0), we have

2P,,.,t,,= Plx,,< o) + p(Xr,, > o)

= plXr,, < 0l + Zp\Xr, : 0) *
p\Xr,,, Ol

= I + plX.,,:0),

OI

P ,, *t, ,,

where we wdte u^lor p(Xr,= 01.

We'll seebelow thatuz,t theprob-
ability of return to the origin after
exactly 2n steps, is equal to the
probability that the particle does not
return to the origin at ar-y moment
of time from I through 2n.But, ac-
cording to RSC, the return takes
place (at some moment) with prob-
ability l, soltroapproaches 0 as n ->
-, which means that p,*, , -+ lfZ
(see equation (4)).

Let's use the following notation.
Let {(m, k)be the number of paths
of length s that start at point m and
end at point k. Let Z,lm, k) be the
number of paths of length s that start
at m, end at k, and in addition pass

through the origin. In particular, a

path countedby 2,10, k) touches the
origin at least twice: once at the be-
ginning of the path and once after s

moves. Certainly Al(m, kl - {(k, m),
and we will use this relationship
freely in what follows. Similarly,
Z"lm, kl : Z,lk, ml.

It's not hard to see that {(m, k)
depends (for a fixed value of s) only on
the distance between m and k and not
on theirpositions on the line. That is,
N"(m, k) : N"(- + a, k + al for any in-
teger a (and similarly with Z,(m, kll.
[r particular,

N,(m,k)=N"(o,k--l
and

A((0, k)= N,(0, -k).

Now the paths that start at m canbe
divided into those that make their
first jump to m + 1 and those that
jump first to m - 1. It follows that

N"(m, k) = N"_,(- + 1, k)+ N,_,(m-I,kl
:N,_,(0,k-m- 1)*{ ,(o,k-m + 1).

In particular,

{(0, k) : {-,(0,k- 1) + N,-,(0, k + 1).

(5)

Simiiarly,

Z,(0, kl = Z,_JI, kl + Z,_r(- l,kl. (51

Fix some positive k. Any path
that starts at the point -1 and arrives
at k must run through the origin, so
Z"_rl- 1, k) is equal to AI,_,(-1, k) :
N, ,(0, k + 1). Let's now count the
paths that start at the point 1, arrive
atk, andvisit the origin in between.
We can draw a graph of such a path
(fig.2l by plotting the position of the
particle (vertical axis) against time
(horizontal axis). We now use the
"reflection" trick mentioned above.
We take the portion of the graph
from its starting point (at 1) to the
first moment when the particle hits
the origin, and reflect this section
about the time axis. This trick turns
the graph into the graph of a path
starting at the point -1 and arriving
at k! Conversely, every path that
joins -l to k can be transformed in
the same way into a path from 1 to
k that hits the origin at least once.
Thus, we obtain a one-to-one corre-
spondence between the paths of
these two classes, which means that
they are eclual in number. We can
write this as Z,_r(l,kl + Z,_rl-l,kl,
and we can use this result to rewrite
equation (6)as

z,(o,kl =22, tl_t,kl
= 22,_rl0,k + ll

(this last equation is obtained by slid-
ing every path we are counting up one
unit on the k-axis).

Now we can find the number of

paths of length s from the origin to
some k > 0 that nevet retum to the
origin by subtracting the paths that
hit zero from all the paths and using
equation (5). This number is

^L(o,k)-2,(o,kl= N._,(0, k - 1) + N,_,(Q k + 1)
_2N,_,(o,k+ 1)

:N"_,(0,k-1)-N, ,(Qk+ 1). (71

We first use this result to-count
those paths that (a) start at the origin,
(b)contain evenlymany steps s, (c)do
not retum to the origin, and (d) end up
in the positive half-axis. It's not hard
to show that such a path, because it
contains evenly many steps/ must
end at a point with an even cootdi.-
nate. Hence we can get the count we
want by setting k :2, 4, 5, ...,2n : s

in equation (7), then adding. This sum
telescopes, and we have

N,,_ r(0, 1) - AIr,_ 1(0, 3)
+ AL,_ r(0, 3) - N2,_ r(0, 5)

+ N._,(0, 5) - Nr,_1(0, 7)

::
+Nr,_,(0,2N- 1)

-Nr,_,(0,2N+ 1)

=N,,-r(0, 1)

(the numberN, _,(0 mf * I ) above equals
zero, sinceapathof length 2n-l camrot
get as fx as 2n+ 1 starting from 0).

Similarly, the number of paths that
(a) start at the origin, (b) contain evenly
many steps s, (c) do not retum to the
origin, and (d) end up in the negative
half-axisis N._,(0, -1), which, bysym-
metry, is equal to Nr_r(0, 1). The sum
of these two is the number of paths of
length 2n that start at the origin and
never come back.

But by equation (5) this is equal to

CONTINUED ON PAGE 45
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PHYSICS
CONTEST

Alulood3 lnarttelous machines
"And your gravity fails

And negativity won't pull you through."

-Bob Dylan

by Arthur Eisenkraft and Larry D. Kirkpatrick

OUARE STANDING ONTHE
fourth floor of a burning build-
ing and things aret:r't looking
good. Suddenly you notice that

represent your mass/ m the mass of the
sack, g the acceleration due to graity,
Tthe tension in the ropg and a and A
the accelerations of the sack and you,
respectively, you apply Newton's sec-
ond law to the problem at hand.

The beam must exert an upward
force on the rope of 2T to balance the
tension in each section of the rope. Let's
choose the upward direction to beposi-
tive. The net force on you must be equal
to your mass times your acceleration:

T - Ms: MA. (1)

Likewise the net force on the sack
must be equal to its mass times its
acceleration:

T - mg: ma. l2l

This gives us two equations in three
unknowns. But there is a connection
between the two accelerations. If you
moye downward a distance Xt the
sack must move upward a distance

x=-X

if the rope doesn't stretch. Since
these displacements occur at the
same time, the two velocities must
have the same magnitudes and op-
posite directions:

v=-V.

Likewise the accelerations must be

equal in magnitude and opposite in
direction:

a: -A.

This result may seem obvious to you/
but relationships that are a bit more
complicated than this are often over-
looked in solving physics problems
like the last one we ask below.

We can substitute for a in equation
(21 and reduce the problem to two
equations in two unknowns. We can
eliminate Tby solving each equation
for 7 and equating them to a:rrive at

^ M-m
4-O_

d.
M+m

If you have a mass of 90 kg, A: gl\,
and you will hit the ground with a
speed of

V - ^"LAX

= 12.33 m7d .15 m

=9.9 rnls.

Because this is equivaient to jumping
from a height of 5 m, you have a good
chanceof escapingwithoutinjury. Of 

_)<course/ if you have less mass or are 
=clever enough to wrap the rope around 
-mthe beam to maximize the effects of E

friction, you'll have a safer fall. I
This problem is an example of a A

classic physics problem known as E

there is a round beam sticking out of
the wh with a rope draped iver it.
One end of the rope reaches to the
ground and is tied to a sack of sand
that you estimate has a mass of 45 kg.
AIl those contrived physics problems
you've solved in your lifetime have
prepared you for this moment and
you do not panic.

You decide to quickly calculate
your chances of surviving the ride to
the ground using the rope. You start
by drawing a free-body diagram like
the one in figure 1 to determine all of
the forces acting on the system. Since
the beam is highly polished, you de-
cide that you can ignore friction. (And
it's just as well, since your physics
class never got to the problems where
friction was not neglected.) Letting M

Figure 1
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Figure 2

Atwood's machine. In the lab it
serves as a means of achieving a con-
stant acceleration of any value less
than g. Can you suggest a means of
achieving a constant acceleration
greater than g? Atwood's machine is
often modified to test students'under-
standing of the applications of Newton's
laws. For instancg the beam can be at
the top of awedge with the masses slid-
/ing on sloped, foictionless surfaces. And,
of coursg we could always inciude the
effects o{friction.

This month's contest problem con-
sists of two modifications of Atwood's
machine. The second one (without the
hints) appeared on the first of several
examinations used in selecting the
members of the US Physics Team
that will compete in the Intemational
Physics Olympiad this summer in
Williamsburg, Virginia.

A. If the sack slides across the floor
(assumed to be located at the height
of the beam and frictionless) as shown
in figure 2, what is your acceleration
and the tension in the rope, assuming
that your mass is 90 kg? This is some-
times called the "half Atwood's ma-
chine" and is often used in introduc-
tory physics labs to demonstrate
Newton's second law. Be sure to
check your answers in the limits of
each mass going to zero to see if you
get the expected results.

B. Let's assume that we have a
scaled-down version of the situation
in part A and that the half Atwood's
machine is mounted on a car of mass
mrthat is free to move as shown in
figure 3. What are the accelerations of
all three masses and the tension in
the rope just after the masses are re-
leased at rest?

If we let the system continue to

Figure 3

move/ the physics gets very compli-
cated and requires advanced tech-
niques for its solution. Flowever, at
time t = 0, the solution can be ob-
tained with the techniques used to
solve the normal Atwood's machine.
Be sure that you draw free-body dia-
grams for all three masses and then
write down Newton's second law for
each mass. This will give you three
equations infourunknowns(a, a, a,
and ?). If we assume that the rope
does not stretch, you should be able
to find a relationship between the
three accelerations that will give you
the fourth equation you need to solve
the problem. As usual, be sure to in-
clude checks for the expected an-
swers in the extreme cases.

Please send your solution s to Quan-
tum, 3140 North Washington Boule-
vard, Ariington, VA 2220L within a
month after receipt of this issue. The
best solutions will be noted in this space
and their authors will receive special
certificates fuom Quantum.

How, t'ow, rotll yur loal
The contest problem I anuary I F eb-

ruary issue asked readers to row
across a river and arrive at a specilied
point in the least time. Responses
arrived from high school students,
college students, and physics profes-
sors. Geographically, they included
solutions from all over the United
States as well as from Canada and
Great Britain.

The problem assumed that you
wish to end up directly across the
river and that you are permitted to
walk on the far shore if you land up-
stream or downstream. What path
takes the least time? Part A of the
problem asked for a quaiitative dis-

cussion of the range of plausible
angles.

The first coffect solution was sub-
mitted by Ben Davenport of the
North Carolina School of Science and
Mathematics/ a steady reader of
Quantum. The best angle to take lies
between the angle that provides the
minimum rowing time and the angle
that provides the minimum walking
time. For the minimum rowing time,
the boat should head directly across
the river, or at least at 0 : 90o , where
0 is measured relative to the upstream
bank as shown in figure 4. The mini-
mum possible walking time is zero-
that is, the boat arrives exactly at
point B across the river. In order for
this to occur/ the component of the
rowing velocity parallel to the river
must be equal and opposite to the
curent. Note that this is also thepath
of minimum distance. Call this mini-
mum angle 0*. If the angle is de-
creased below e*, it wiil take longer
to cross the river and the walking
time will become nonzero. If the
angle is increased above 90', it will
take a longer time to cross the river,
and the walking time will also in-
crease. Therefore, we have two
boundaries on the angle the boat
should take across the river. fust for
fun, let's solve for 0*:

V": V, COS e*/

where v" is the speed of the current
and v, is the speed of the boat relative
to the water. Then

0*=rr""oaa =4Bo.
V,

So we have limits on reasonable row-
ing angles:

walking

cLlrtent
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48"<e<90'.

Part B rcquired readers to describe
this path quantitatively. The
rower's veiocity component across
thc river is

v""r,.,. = v, sin 0'

The rower's net velocity parallel to
the river is

%tt'tg:v -v'cos0'

The rower's walking velocity aloirg
the shore is given.

The total time is equal to the tirne
spent rowing plus the time spent
walking:

I = t. - t,,.

The time spent rowing is the distance
across the river d divided by the com-
ponent of the rowing velocity di-
rected perpendicular to the current:

The time spent walking depends on
the distance the boat lands from point
B and the walking speed v*. This dis-
tance depends on both the net veloc-
ity paralle1 to the river and the time
spent rowing:

, ',('. -v,coso)
*r*

(, -, .ote )r +r c r +11., _ rrl _ 
|

['*)

Plugging in for the time spent rowing
from above, we get the foilowing expres-

sion for the time to cross the river:

L=
d(v," + v. - v. cos o)

Y*Yr sine

One reader, W. Kenneth Beard of
Cornwall, England, realized that this
problem could also be solved by using
Snell's Law, which he states "usually

applies to waves experiencing a

change of veiocity on passing be-
tween two media of different density.
The waves take the path giving the
shortest time, which is precisely
what is required here."

Part C required a calculation of the
least time using the values providedfor
the speed of the cuffent/ the rowing
speed, and the walking speed. Most
readers differentiated their equation for
the total time and set the derivative
equal to zero to findthe minimum-time
path (see the equation in the box above).

Since sin2 0, + cos2 cx:0,

Thus, the rower should row 25.4 up-
stream of straight across for a mini-
mum crossing time. At this angle, the
rower arrives 132 m downstream and
recluires a total time of 12.6 minutes
to complete the trip.

Andrew Menard from Saginaw,
Michigan, went one step {urther in
noting that "the width of the river
does not matter. It will obviously af-
fect the total time, but the optimal
angle is not affected." Andrew also
sent in a program for the TI-81 and TI-
85 graphing calculators that shows
the path and calculates the total time
recluired for the joumey. This numeri-
ca1 technique could be used by our
readers who have not yet encoun-
tered calculus.

% - cos 0(v." + v") = 0,

e =costl '' l
[t., *,.J

o

=.n,'[9'] =(t4.6\t)
. 
C OUNTING RAND O M PATHS"
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AL,(O, 0). That is, there are as many
paths of length 2n that start at the
origin and never return as there are
paths that start at the origin and re-
turn after exactly 2n steps. It remains
to calculate the corresponding prob-
abilities, and this is easy. In each case,

we just divide the number of paths
(which we have seen is the same in
both cases) by 2'", which is the num-
ber o{ all possible paths of length 2n.
Since the numbers of paths are equal
in each case, the corresponding prob-
abilities must be eclual.

Hence ur,-the probability that
the particle retums to the origin after
exaciy 2nsteps-is equal to the prob-
ability that the particle does not re-
tum to the origin before 2n steps. As
noted earlier, the results of RSC guar-

antee that the retum takes place with
probability 1, so ur, approaches 0 as n
gets larger, and equation (4) assures us
that p, _ r,,approaches 1/2.

The following exercises will help
you master the method used above
and will tell you more about the ran-
dom walk.

1. Prove that p,*ft,, J ll2 as
n )6.

2. Prove that the number of
positive paths of length s that
lead to a certain point k (k > 0) is
eclual to (k/s)N,(kl-that is, the
probability that a path of the
symmetric random walk from the
origin to point k > 0 stays positive at
all times is equal to k/s.

3. Prove that apoint that starts at
the origin andperforms the symmet-
ric random walk retums to the origin
for the first time at the moment 2n
with the probability fr2n_2- fr,,.

For further results about the ran-
dom walk see, for instance, the clas-
sic book An In troduction to Prob abil-
ity Theory and lts Applications by
Willir* Feller. O

)l-( 4 )t- 
[ ,,, ". .Jl

,sin0) - cos0(v,, + v c 
* v,

sin2 0

sin0(v cos 0dt

de
-0

OlJAlllTllliil/PllYSISS COlllIIST 45

L_
t v sinO

f



IN YOUR HEAD

Allantic Gr'o$sinus

Meet me in the middle of the wide blue sea

by A. Rozental

;-:i
t, -._l

-:<a
l
C
c)
.C

c)
(U

o_

o
E

{*,

EMEMBER THIS LITTLE DIT-
ty from Rudyard Kipling's /ust
So Stories?

Yes, weekly from Southampton/
Great steamers, white and gold,
Go rolliag down to Rio
(Roll down-roll down to Rio!),
And I'd like to roll to Rio
Some day before I'm old!

Weli, so weekly (say, each Thurs-
d^yl from Southampton great
steamers go rolling down to Rio . . .

It takes 14 days for a greatwhite and
gold steamer to cover the entire dis-
tance of 9,800 km (700 km per day)
and arrive at Rio de |aneiro exactly
at noon on Thursday. After a four-
day stopover, the ship sets off on the
return trip, and in a fortnight, at
noon on Monday, it arrives at
Southampton. Three days later-
again on a Thursday-it leaves on
its next voyage toBrazll. . . I wanted
to ro11 to Rio, too/ so I stepped onto
an ocean liner at Southampton on
Thursday and my voyage began. In
anticipation, I asked myself some
cluestions:

. How many steamers wending
their way home will I see on the
ocean?

o On what days of the week will I
see them?
How far from Southampton will I
meet them?

I'11use this problem to teach you
graphical method for solving a
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fairly wide range of problems, in-
cluding the so-called "motion prob-
lems."

Plot the movements of the
steamers between the two ports on
one graph. We'll mark the days of
the week on the horizontal t-axis
and the distances from South-
ampton on the vertical S-axis (fig. 1).

Knowing that a steamer travels 700
km per day,weplot the points A, B,
C, D representing its position at
noon on Friday, Saturday, Sunday,
and Monday. Of course, these points
lie on one straight line-the graph of
the steamer's motion. Graphing the
movements of all the steamers in
the problem (departing from South-
ampton on Thursdays and from Rio
on Mondays), we get what's shown
in figure 2. Then every intersection
of the graphs corresponds to a meet-
ing of two ships on the open seas.

Consider, for instance, the line
KL frorn Southampton to Rio de

|aneiro. It crosses the lines repre-
senting the returning ships four
times. Therefore, the answer to the
first question above is that I'11 see
four steamers on their way'home.

Then, as we see from the graph,
the time it takes our steamer to
meet the first returning ship equals
the time it takes the other ship to
reach Southampton after this meet-
ing. So the first meeting occurs half-
way between noon on Thursday and

s (km)

2,800

2,100

l,4oo

700

0

Figure 1

noon on Monday-that is, on Satur-
day at noon. For similar reasons the
second meeting takes place at mid-
night on Tuesday (more exactly,
between Tuesday and Wednesday),
and so on. The distances from the
points of meeting to Southampton
equal 1,400 km,3,850 km, and so on.

And now answer three questions
on your own!

I . Is it true that when two steam-
ers meet in the ocean/ two other
steamers meet at some other spot?
If it's true, then what is the distance
between the two points of meeting?

2. How many steamers travel the
sea lanes between Southampton and
Rio de faneiro?

3. Answer the very first ques-
tion-"How many returning ships
will I meet? "-for the case when the
steamers depart every day, not every
week.

Ihree ppoblelns lor landluhher$

Round the clock. The hour and
minute hands of a ciock meet ex-
actly at noon. Then the minute
hand shoots ahead and some time
later overtakes the hour hand by a
lap and covers it again. When does
this happen? At what moments of
the day (between 12 e.pr. and 12 r.u.)
do the two hands form (a) a straight
angle, (b) a right angle, (c) an angle
o{ l2O7

Strolling ladies. Two elderly la-
dies went for a walk at the same
time along the same 100-meter
path. Mrs. Fields walks at apace oI
I km per hour, while Granny Smith
walks more slowly-at 50O m per
hour. When they reach the end of
the path, each turns around and
walks back at the same speed. Every
time they meet, the ladies greet
each other with a nod of the head.
How many times did they nod dur-
ing the first 25 minutes of their
walk? How long did they waik in
the same direction during this time
interval?

Sfu lsaac Newton's problem. Two
mail carriers A and B separated by a
distance of 59 miles drive out in the
morning to meet each other. MaiI
carrier A drives 7 miles in 2 hours,
while mail carier B drives 8 miles in
3 hours. If mail carrier B sets off an
hour later than mail catier Au how
many miles will mail carrier A cover
before she meets mail carrier B? O
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IN THE LAB

Pinu-poltu in lhe sinlr

But leave your paddles behind

by Alexey Byalko

Ping-Pong ball is a bit smaller: it's
37 mm in diameter, so it can sit in
the opening and still leave a small
gap of about 1-2 mm (fig. 1).

Put the ball just above the drain
opening and let it go. The stream of
water will pull it into the opening in
spite of the {act that the ball nor-
mally resists being submerged. And
do you hear a low,btzzing sound? It
must be from the ball's oscillations.
The first thing that may occur to
you is that the ball is bouncing on
the lattice. But it's not. Touch the
ball on top and you'll be convinced
that the bail is oscillating not verti-
cally but horizontally as far as the
opening allows.

Now look at the trademark on
the bal1. You'll notice that the ball
is rotating-so slowly, in f.act, that
you don't need a slow-motion video
replay to see it. The ball rotates for
a while in one direction, then it
switches and begins rotating in the
other direction.

How can we explain these expeti-
ments? Right off the bat we can say

HE EXPERIMENTS I'M GO-
ing to talk about in this articie
are accessible to anyone. They
don't require arly special con-

traptions. All you'ii need is a Ping-
Pong" balf a sink (or bathtub), a mil-
limeter ntler, a three-liter jar, and a
stopwatch (or a wristwatch with a
second hand).

Experiment 1. Close the drain
opening in your sink or bathtub and
run the water until it reaches the 3-
to 5-cm level. Put a Ping-Pong ball
in the stream of water at the point
where it hits the surface of the
standing water and release it. Your
intuition says that the ball should be
thrown aside. But that doesn't hap-
pen! The stream falling from the
faucet catches the ball-the ball
stays right where you put it.

Take a closer Iook. The ball
doesn't stand sti11, does it? It oscil-
lates slightly under the influence of
the falling water. Cup your hands
and push them under the ball so that
it can keep floating under the falling
stream without touching your
palms. Now lift the ball up along the
stream. You'll see that the fre-
quency of the oscillations decreases
as you iift the ball.

Experiment 2. Open the drain. In
an ordinary sink or bathtub the
opening is a small cylindrical pit
about 20 mm deep and 40 mm in
diameter with a latticed bottom.l A

lln the US, the type of drain opening
described here is more likely to be
found in the utility sink in your
basement (laundry room) or in your lab
at school.-Ed.

that both of them vividly illustrate
Bernoulli's law, one of the first laws
of hydrodynamics. It can be qualita-
tively stated as follows: in flowing
liquids the pressure is greater where
the velocity of the liquid is less, and
vice versa-where the velocity is
greatert the pressure is less. In other
words, as the velocity of any liquid
increases, the pressure inside it de-
creases. In both experiments the
decrease in pressure caused by the
stream of water draws the plastic
bali into the stream.

Bernoulli's law will help us un-
derstand the ball's oscillations in
the stream of water and in the drain
opening as well. But first, let's deter-
mine the velocity of the water in the
stream flowing out of the faucet.

It's not difficult to adjust the flow
of water into a sink or bathtub so
that the water leve1 remains virtu-
ally constant. We can measure the
corresponding outflow of water (that
is, the mass of liquid drained per
unit time) with the three-liter jar
and stopwatch. It will be approxi-
mately 80*100 g/s. Now let's use
the ruler to determine the diameter
of the stream near the surface of the
water in the sink. It's about 5 mm.
This gives us a velocity of about 3
m/s for the stream of water (you can
check this). Of course/ the velocity
of the water can be increased or de-
creased, but in our calculations let's
iust use this figure.

To discuss in more detail the ef-
{ects we observed, we'll need not
only a qualitative but a quantitative
formulation of Bernoulli's law. Ac-
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cording to this law, in any cross sec-
tion of the stream of licluid the sum
pvzf2 + p + pgh remains constant,
where p is the density, y is the ve-
locity, p is the pressure of the liquid,
an.d h is the height of the section
chosen.

The explanation of experiment 1.

Let's simplify our task for the time
being: instead of the interaction of a
cylindrical stream and a spherical
ball, 1et's examine the effect ol aflat
stream on a cylinder. The essence of
the physical phenomenon won't
change because of this-it'11 just
make things easier for us.

First let's look at the case when a
cylinder of radius R touches the
stream slightly and estimate the
force acting on it (fig. 2). According
to Bernoulli's law, the pressure in-
side the curved stream drops by the
amount

Po- P =l(" -'3)"2'

(we can neglect the term pgR since
for our case gR = O.2 rnzlsz is much
less than 'r'p = 4.5 mzf s2l. The tra-
jectory of the particles of liquid en-
veloping the cylinder is an arcl so
they move with centripetal accel-
eration. The acceleration is due to
the difference between the atmo-
spheric pressure pn (the same pres-
sure as in a straight stream) and the
pressure p in a curved stream:

v2/*?=(r"-r)s,
R

where S is the area of contact be-
tween the stream and the cylinder.
The velocity v of the stream flowing
around the cylinder is but a little
more than the initial velocity vo of
a stream whose thickness d is much
less than the radius R of the cylin-
der. Therefore, the force de{lecting
the stream is equal to

F=(p" - 7r)S= 
o;"

The force acting on the cylinder is of
the same magnitude but in the op-
posite direction.

The result obtained for flow
around the cylinder is valid for flow
around a ball but, perhaps, with a
different numerical coef{icient. The
area of contact of the stream with
the ballis practically always of the
order of the square of its radius R.
That's why the force pulling the ball
into the stream when they touch is
of the order of magnitude

F - pvlRd.

Now let's consider the case when
the stream falls directly on top of
the ball (fig. 3). The water flows
around the ball symmetrically, and
thus F: 0. It's not difficult to deter-
mine the thickness oI thelayer d for
this case of centered flow around the
ball. Taking into consideration the
constancy of the flux, we have

*2
d -'o

R

(check it yourself).
Finally, in the intermediate case

when the displacement x of the ball
with respect to the axis of symme-
try of the stream is not large com-
pared to its radius R (fig. a), the force
-F depends on x linearly and is di-
rected so as to bring the ball into
equilibrium:

F--pv'zod.x--0"'Fr.
R

(Unfortunately, it's difficult to ob-
tain the exact value of the force F for
this case.)

The ball will oscillate under the
influence of this force. The fre-
quency of the oscillations can be
expressed by analogy with the oscil-
lations of a small mass on a spring:

F =-kx=co =splil1g sprlng

F,n",, - - Oajd" 
= (Dbarr - yoro

If the mass of the ball M = 3 g, we get

tDo",,-40s1,

and

vo^rr- 6Hz.

When we lift the ball in our
palms up along the stream, roandvo
change simultaneously, but the

Figure 4
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product vSo2 rematns constant. As zo

increases, the product voro decreases.
Thus, as the ball is lifted toward the
source of the stream/ the frequency
of the oscillations must decrease,
which is what we saw in our experi-
ment.

When the frequency of the oscil-
Iations decreases, we notice that the
ball still turns in different direc-
tions. In thin, slow streams the os-
cillation and rotation of the ball
combine to create a complex and
beautiful movement around the
stream. You can check this experi-
mentally on your own.

The explanation of experiment 2.
Let the initial position of the ball be
as shown in figure 5 (viewed from
above). Estimate the velocity of the
flow in the gap between the ball and
the drain opening. The area of the
gap doesn't depend on the position
of the ball and equals r(R'*",o - R'l =I cm2. Therefore, the average veloc-
ity of the flow around the ball is v =
1 m/s. This velocity, however, is far
from constant in the cross section of
the gap-it's essentially greater in
the wider part than it is in the nar-
rower part of the gap (near the point
of contact A), where the flow is
slowed by friction from the wall;

According to Bernoulli's law the
pressure in a moving fiuid is greater
where its velocity is lower. There-
fore, a force arises that is directed at
the wider portion of the gap, and
this causes the ball to oscillate.

But the real motion of the bail is
not a simple movement from wall to
wall via the center. It presses against
the wallof the drain, and the point
of contact A moves around the rim
of the drain, while the center of the
ball O traces a small circle (the dot-
ted line in figure 5). It's easy to see
that the angular velocity of the bail's
rotation is Q : 0(Ra*,, - R)/Ro*,,-
that is, it's approximately one tenth
o{ ro. And it isn't hard to measure the
angular veiocity with a stopwatch by
calculating the number of rotations
made by the trademark (approxi-
mately 2-3 rotations per second).

The question arises: does the ball
rotate clockwise or counterclock-
wise? Before answering, we should

Figure 5

note that the central position of the
ball in the drain opening is stable. To

convince yourself of this, tum off the
faucet and press down on the ball
with your finger. Then carefully re-
lease your finger-the bali remains
stationary. This means that the spe-
cific motion you observe depends on
circumstances-all the events lead-
ing up to it-and three cases are pos-
sible: if the ball was stationary, it will
remain stationary; if the initial push
moved the point of contact A clock-
wise, the ball will rotate counter-
clockwise; and vice versa. O

Dan Schroeder
Astronomer and Phlsicist
Hubble Space Telescope Research

TEam Memher
Beloit College Graduate and Professor

OTf'",ffi ::"#li'illl"jj::'
research university was on
NASA's team that built the
$l-billion Hubble space tele-
scope. He's Dan Schroeder,
who went from Kiel, Wiscon-
sin (population 3,087) to
Beloit College (population
1,100) and the top of his
profession. A world-class
researcher, he's also a great
teacher, three times voted
Beloit College's "Teacher
of the Yeari'He's just one
reason that this historic
Wisconsin school ranks
among America's top 50
undergraduate colleges in
producing graduate scientists
and is a place young men
and women learn to reach
for the stars.

Beloit
College

The Results Speak For Themselves.
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Desktup mrftion simulafiion

"Engineers now have a tool
where they can build and test physi-
cal systems on the computer with a

high level of acauacy. Animators
can make physically accurate ani-
mations in minutes-something
they've never been able to do be-
fore." So says Gregory Baszucki,
Vice President of Marketing for
Knowledge Revolution, developers
of Working Model", a professional
motion simulation application for
the Macintosh. Working Model
builds on Knowledge Revolution's
Interactive Physics II software and
includes a Smart Editor'*, CAD file
import and export, and direct file
saving to popular animation pro-
grams such as MacroMind Three-D
and Wavefront.

Working Model lets users create
physical obfects on a Macintosh
screen by drawing. Obiects are given
physical properties such as mass/
friction, and elasticity. When a

simulation is run/ Knowledge
Revolution's dynamic simulation
engine mathematically calculates
the accurate motion of each object
and displays their movement in
smooth animation. The program
has a large tool kit of devices that al-
lows users to easily build their
physical systems and a complete set
of measurement tools lor data analy-
sis.

The program also uses Apple
Computer's AppleEvents@ to create
real-time data links with other ap-
plications; Working Model can send
and receive data to other applica-
tions while a simulation is running.
For example/ a control algorithm for
a self-stabilizing unicycle is devel-
oped in Microsoft Excel@. The actual
physical model of the unicycle is de-

52

HAPPEN INGS

Bullelilt hoal'd

veloped in Working Model.
AppleEvents allows the control al-
gorithm residing in Excel to com-
municate with the unicycle model
residing in Working Model. When
the simulation is running, the infor-
mation is transferred between both
programs. Any changes in the con-
trol algorithm can be tested on the
unicycle model in a matter of sec-
onds.

Working Model is availabie from
Knowledge Revolution and Macin-
tosh resellers nationwide. For more
information, write to Knowledge
Revolution, 15 Brush Place, San
Francisco, CA 94103, or call 800
755-66t5.

tulohmlal' hiology sel'hs
What if cows could make human

milk, and pigs, human biood? What
if we could cure alcoholism or
Alzheimer's disease by sirnply
changing one gene? In factories and
operating rooms/ on the fatm arrd at
the supermarket, we must allface a

revolution in our understanding of
life. Fresh advances in the science of
molecular biology challenge our
ethics, our economy/ our very no-
tions of what we are.

To help us understand these
changes, WGBH-TV presents The
Secret of Life, an eight-part public
television series premiering this fall
(check local listings for specific air-
dates and times). Hosted by geneti-
cist and television personality
David Suzuki, this series explores
the "new biology" for both scien-
tists and nonscientists. Using a stu-
dio set designed to illustrate our ge-

netic archive, Suzuki explains
exactly what we know-and don't
know-about DNA. Most impor-
taniy, he defines the moral, finan-

cial, and political implications of
this new technology. Microphoto-
graphs created for the series i11umi-
nate intimate biological details, and
computer animation takes viewers
into the core of our genetic code: the
double helix of DNA and beyond.

To extend the educational impact
of the series, WGBH is offering free
print materials for science and sociai
studies teachers. If you would like
more information about the series
or would like to order the teacher's
guide or classroom poster, please
contact Marisa Wolsky, Outreach
Coordinator, at 617 492-2777, ex-
tension 4390, or write her at WGBH,
Educational Print & Outreach, 125

Western Avenue, Boston, MA
02t34.

lnternational studenl lains

The first International Student
Fairs & Conferences-events that
will provide high school students an
opportunity to view, evaluate, and
meet school and industry represen-
tatives from all over the globe-
have been set for March and Octo-
ber 1994.

Produced by Communication A1-

liance of the Americas, Inc. (a Chi-
cago-based company), the Interna-
tional student Fairs & Conferences
have been organized to answer the
mutual needs of a new generation of
student consumers, corpotations,
and providers of postsecondary edu-
cation whose requirements, com-
petitive boundaries, and methodolo-
gies were transformed during the
1980s. New realities in business and
higher education have created the
need for an event which encom-
passes all postsecondary education
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Kirkpatrick, Sep I Oct92, p24 (Physics
Contest)
To Err Is Human (correction is the
key), Bill G. Aldridge, Nov/Dec92, p2
(Publisher's Page)

A Topless Roller Coaster (physics
challenge), Arthur Eisenkraft and
Larry D. Kirkpatrick, Nov/Dec92,
p28 (Physics Contest)
Topology and the Lay of the Land
(mathematical topography), Mildrail
Shubin, SepfOct9Z, p4 (Feature)
A Trio of Topics (center of mass, elec-
tricity in metals, time travel),
A. I. Chernoutsan and Andrey
Varlamov, Sepf Oct92, p47 (At the
Blackboard)
Turning the Incredible into the Obvi-
ous (non-Euclidean geometry)/
Vladimir Boltyansky, Sep/Oct92, p I 8
(Feature)

The USA Computing Olympiad (re-
port), Donald T. Piele, ll/rayllun9S,
p51 (Happenings)
US Team Places Second at IMO (re-
port), Cecil Rousseau and Daniel
Ullman, lanlFeb93,p5 I (Happenings)
US Wins Gold at the International
Physics Olympiad (report), Larry D.
Kirkpatrick, Nov/Dec92, p51 (Hap-
penings)

Wacky Pyramids (cubic trisection),
Yakov Smorodinsky, Mx I Apr93, p54
(Toy Store)
What Harmony Means (exploration of
harmonic mean), Vladimir Dubrovsky
and Anatoly Savin, )an/Feb9}, p32 (Ka-
leidoscope)
What's That You See? (misperception of
light), B. M. Bolotovsky, Mar/Apr93, p4
(Feature)

The Wonderland of Poincaria
(Lobachevsky bicentenary), Simon
Gindikin, Nov/Dec92, p20 (Feature)
The Worm Problem of Leo Moser-
Part I (math challenge), George
Berzsenyi, lanfFeb93, p41 (Math In-
vestigations)
The Worm Problem of Leo Moser-
Part II (math challenge), George
Berzsenyi, Marf Apr93, p15 (Math hr-
vestigations)
The Worm Problem of Leo Moser-
Part III (math challenge), George
Berzsenyi, MayflungS, p21 (Math In-
vestigations)
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M86
It's convenient to reverse the state-

ment and try to find the shortest way
of transforming an arbitrary n into
zeroby means of the two inverse op-
erations: "dividing by 2" (D) and
"subtracting 1" (S). Let r(nl be the
number of operations D and S in such
a shortest sequence. Since only opera-
tion S can be applied to an odd n,

/2k+rl:r+r(2k1.

Now let's show by induction over k
that

r(zkl:1 + r(k)

-that is, in the shortest sequence of
operations an even number must be
always divided by two.

For k : 1 this equality is clear (here

D ar,Ld S coincide). Suppose it's been
proven for all even numbers less than
2k. If we apply S to the number 2k
(that is, subtract 1), then the total
number of operations needed to ob-
tainzero will be no less than

t +l2k-rl:2 + l2k-21= 3 +dk- 1)

(by our assumption). But if we apply
D first and then choose the shortest
path, the number of operations will
be

1 + r(k) 32 + r(k - ll,

so the second method is better.
To findz(n)for a givenn/ represent

n as the sum of powers of 2:

n=2\ +2\'tt +...+2k*4' *k-,

where k, is a nonnegative integer and
kr, . . ., k- are positive integers. (The

ANSWERS,
H INTS &

SOLUTIONS

exponents k ,, k, + kr,... are the num-
bers of the places in the binary nota-
tion of n in which there are ones.)

Now we find that

\n)= 4+ r(nlzo,)

= ( +1 + r(zk' +Zk'*k' + ...

* 2t z+ka+ ... +k-)

=(&* kr+...+k_)+m

= [1og, n)+ *

([x] is the greatest integer not exceed-
ing x), because k, * ... + k- is the ex-
ponent of the highest power of 2 not
exceeding n. The number m is equal
to the number of ones in the binary
notation of n.

In particular, for n : 100 we get the
following answer to part (a):r(100) =
9. Shown below is the transformation
o{ the number 100 into zero in deci-
mal and binary notations. Since
IOO :26 +25 +22, r(100) = 5 + 3:9:

100 1,100,100
J D.:DD J
25 11,001
JsJ
24 11,000
tDuJ
3 11

JsJ
2ro
JDJ
11
JsJ
00

M87
Let's prove a slightly more general

statement: Let M, M2, , Mube the
midpoints of the sides of a convex
hexagon (fi9. 1) and P a point inside

Figure 1

it. If the broken lines MrPMo and
M2PM5 both divide the area of the
hexagon in half, the same holds for
M3PM6

To derive the statement of the
problem from this one, take for P the
point of intersection of two midlines
MrMu and MrM, Then the broken
line MrPMubisects the hexagon's atea
(as does the thirdmidlineM.Mu), soP
lies on MuMu.

To prove the italicized assertion,

ioin P to the midpoints of the sides
and to the vertices of the hexagon. We
get six pairs of triangles such that the
triangles of one pair (numbered the
same in our figure) have equal areas
(because a median of a triangle bisects
its area). Denoting by a,the area of
either of the ith triangles/ we can
write the condition that MrPMobi-
sects the hexagon's area as a, + 2a, +

Zar+ ao: au+Zar+Zau+ a,, or equiva-
lently as

Az+ AA= Ar'l Au.

Similarly, the condition that M.PM.
bisects the hexagon's area is equiva-
lent to

A6+ At= Ar* Ao.

Summing these two equalities and
simplifying, we get

50 JllI.Y/AllGUSI 1993



Ar+ A2= Aoi A5r

which means that MBPM6aIso bisects
the hexagon's atea.

It's not hard to show (do it!) that
inside any convex hexagon there is a
unique point P such that the broken
lines MrPM,*s,i = L,2,3, bisect the
hexagon's atea. (V. Proizvolov,
V. Dubrovsky)

M88
The largest integer not exceeding

a positive a is the number of positive
integers less than or equal to a. So

tffi]- 1 is the number of integers y,

y>2,stchthaty<\!n, ort' <n, arrd
the sum is the number N of theparrs
of integers (x, y)suchthatx> L,y> I,
and y" < n (there are no such pairs
such thatx > n, because 2;'>nl-that
is, the number of integerpoints in the
area shaded in figure 2.We get the
sum above when we count these
points "down." When we count them
"across" (a1ong the lines y = ml, we
get the numbers of integers x > 2 such
that m" 1 n, or x < log- n-that is, the
numbers [1og- n] - L, m> 2.Therefore,

([og, n]- 1)+ ([oq n]- 1) +

... + ([1og,n]- 1)=N

lfor m > n the inequalitym" <z does
not hold for arry x> 21, and both sides
of the equation in question tum out
tobeequaltoN+n- 1.

M89
Let a,be the number written near

point x, n,the number of different
lines joining x to all the other plotted

v
10

o

8

7

6

5

4

J

2

I

o1zB4sG7
Figure 2

points. If S is the sum of all the num-
bers a", then summing the numbers
along each of the n, lines through x
and adding together all the sums we'll
get/ on the one hand, zero (because
every single sum is zerol arrd, on the
other hand, (n,- Ila,+ S (because ev-
ery number except a" is counted
once and a, is counted n, times). So
f.or any x,

llt.-lla,+S=0,

which means that a,and S have op-
posite signs (n, > 1, since our points
do not alllie on one line) or both are
zero. We can write this as a,S < 0.
Summing these inequalities for all
x/ we get 52 ( 0, so S = 0 and a" =

S/(1 - n,) = 0 f.or any x.

M90
Number the cards 0, 1, ...,

2n from the top of the stack
to the bottom and lay them
out one by one at the vertices
of a regular l2n + l)-gon
AAr...Ar, (see figure 3, in
which n : 4). Then the opera-
tion A will be represented
simply as the rotation of the
whole circle of cards about
the polygon's center through
the angle 350'klpn + ll,
where k is the number o{
cards placed underneath the
stack (ft = 1,2, ...,2n1, and
under the operation B the
cards are moved from the
vertices Ao, 41, . . ., A, _ , toA' Ar, ..., Ar,_ 1, respec-
tively; and from the vertices

An, Ar*r, ..., Aroto Ar, Au, ..., Arr(fi+.
4). So after this operation two cards
that were adjacent become one vertex
away from each other. And if they
were k sides of the polygon away
from each other (we can assume k <
n), then operation B moves them2k
sides apart. It follows that after carry-
ing out a number of operations A and
B in any order, the distances between
the cards 0 and 1, between 2 and}, ...,
and between 2n and 0 will be equal to
one another. Therefore, the arrange-
ment of the cards is uniquely deter-
mined by the positions of the cards 0
and 1: if card 0 is at vertex A and card
1 is at vertex A,, then cardZ is at ver-
tex Ao such that A,A u: A l,,card 3 is
at veftex A jsuch that A.A, = A,A, and

AO

Figure 5

qllA!tTU]II/[il$tIrRS, lrilllr8

A. A,

A. 43
o

Figure 3 Figure 4

& s0r.uil0[$



so on (fig. 5). The position of card 0
can be chosen in}n + 1 ways, which
leaves 2n choices f.or card 1. So the
total number of arrangements is not
greater than2nl2n + ll.

For a fixed position of card 0, some
positions of card I c.an be unattain-
able: the number of sides of the poly-
gon between these cards after one
application of operation B becomes
equal to the remainder of the doubled
initial number of sides when divided
by 2n + 1, so the values this number
can take are all possible remainders o{
the powers of 2 when divided by 2n +
1.If there are Nsuch remainders, the
exact number of arrangements is
(2n + I )N.(D.Fomin, V. Dubrovsky)

Physics

P86
When the bead passes the bottom

of the parabola, its velocity is directed
along theX-axis (fig. 5). During a tiny
time interval t after this moment, the
fisplacement along the abscissa can
be approximated as

x: Vot.

The corresponding displacement
along the ordinate is

y: A*: AVozP.

For a small enough time interval, we
can consider the acceleration a along
the ordinate to be uniform and write
the displacement as

t2Y:a-'
2

Therefore, the acceleration of the
bead along the ordinate is equal to

Figure 7

58

X

Figure 6

a = ZAVor.

The force acting on the bead along the
Y-axis is equal to

F: Ma:LMAV,L.

By Newton's third law, an equal
force acts on the wire in the oppo-
site direction.

PB7
Both the ammeter and voltmeter

are clexly nonideal in our case. This
means that the electrical resistance of
the ammeter is not zero and the resis-
tance of the voltmeter is not infinite.
Let's denote the resistance of the am-
meter as t, thatof the voltmeter as R,
and that of the unknown resistance as

Z. In the first network (fig. 7 al the
cuffent flowing through ammeter is

E a(a+ z)

,* R' rR+rZ+RZ
R+Z

In the second case (fig. 7b), when the
resistor is connected in parallel with
the ammeter, the current through the
battery is

,Etn- ,2 'R+,
r+Z

The current flowing through the am-
meter in this case is

Ir= Iu
r+Z Rr+rZ+RZ

Comparing the expressions for 1,

and I, we see that they differ by just
one factor: in the first formula it's
lR + Z), and in the second it's Z.
Since the currents differ by atactor
of 3, the resistance of the voltmeter
R is twice that of the resistor Z.
Now it's easy to calculate Z: the
sum of the electrical currents flow-
ing through the voltmeter and resis-
tor in parallel in the first network is
3 mA, so the current through the
resistor is 2 mA. The voltage drop
across the resistor is 2.9 Y, and so
its resistance is Z : 1.45 kf).

PBB
The low thermal conductivity of

cloth-and of the pot holder made
from it-is due to the air fistributed
among the fibers of the fabric. The
thermal conductivity of water is
higher than that of air, so you might
burn your hand pretty severely if you
replace the air in the pot holder with
water by getting it wet.

P89
Connecting the wires A and B

between S, and S, puts the capaci-
tors C, : eoSrf drand Cr= eoSrf drin
series-that is,

.s ,d . szf d)
Cor=to ^ .,tr-" Srldr+Srfd,

s,s,
u 

srdr+ srd,

When the wire is connected be-
tween S, and the metal sheet, we
short out this capacitor and the re-
maining capacitance is just Cr.
Likewise, when the wire connects
S, and the metal sheet, the capaci-
tance is C,.

Ir=

JUr.Y/AUSUSI 1SS3
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P90
The solution will be clear if we

draw the path of the light rays
through the lens. First consider the
most extreme rays-that is, those re-
fracted at the very edges of the lens
(fig. 8). After refraction these beams
define the region where it's possible
to observe the optical image of the
light source behind the lens. The con-
tinuation of these extreme rays de-
fines the boundaries of the region
where the light source can't be seen
because the lens blocks it. It's clear
that both the optical image and the
light source itself can be observed
from the point d,, since the rays by-
pass the lens in traveling to this point.
From the point drit's possible to see

the optical image only as result o{ re-
fraction in the lens. Finally, neither
the sourcenorits optical image can be
seen from the point d..

Bl'ainlea$Er$

BB6
No, it's rmpossible, because when

the five odd surns are added up we
must get an odd number; but on the
other hand, each of the inscribed
numbers enters this total sum twice,
so it must be even.

BB7
The answer is 561 and 165.

Clearly, the numbers in question
must have three digits each. Let one
of them be abc: 100a + 10b + c and
the other cba. Since a . c ends in 5,

one of the numbers a and c-say/ a-
must be 5; and since 92,565 - 500 <

200, c = 1. To find b we notice that
the 6 in the product is the last digit
oi 5l - b = 6b,so b : 1 or b = 6.A11
that ren.rrns is to test the two pos-
sibilirres \ Dubrovsky)

BBB
The ma.s -r ----: - :.. r--,lt k.s. The

distance bc!.r':-r. - - - -. -' : ---'. rlr'

tancebetwe(n:.-.- -- - -- .

and the second s;--.

Figure B

B89
The line EF in figure 9 makes it

obvious that the area of. the triangle
ABE is exactly half that of the bottom
rectangle ABCD. So the covered part
of the rectangle has a greater area. By
the way, this will remain true even if
we replace the top rectangle with an
arbitrary convex polygon that covers
the vertices A ar;Ld B and has a com-
mon point with the side CD.

890
The answer is nine. After Prince

Ivan makes h,(n:1, 2) strokes that
the chop off n of the dragon's heads
and to (k : 1, 2) strokes that chop off
k tails, the numbers of heads and
tails will be equal to 3 -2hr+ trand
3 + tr-Zt, respectively. So we must
find the solution to the equations

Zhr- tr= 3,
2tr-t, = 3

with the least sum h, + t, + tr(of
course/ Ivan must choose h, : 0). It
follows from the first equation that
t, is odd; from the second equation
we see that tr> 3f 2, so t, > 3. Then
hr=13 + tzllL >3 and t, = 2tz- 3 2 3,
so the total number of strokes is not

less than 9. The numbers hr: t, =

t, :3 satisfy our equations, but we
must make sure that it's really pos-
sible to inflict 3 strokes of each sort
(so that, for instance, Ivan won't
have to chop off two tails when
there's only one tail left). One of the
possible sequences is to chop off one
tail (so that two new tails grow),
then two tails (one new head grows),
then two heads, and then repeat this
series of strokes twice-after each of
the three series the dragon loses one
tail and one head. (V. Dubrovsky)

llleutl'inu
1. The energy per reaction in MeV

is given by

(26.3 MeV)(1.5 . 10 13 |/MeV)
= 4.2.t0_121.

Therefore, the number of reactions
per square meter of the Earth's surface
per second is

I,377Wlrn2 . -= o.o. 1014 m 2s l.
4.2r.t0-12 |

Since there are two neutrinos per reac-
tion, the fluxF of neutrinos at the Earth
is twice this, or 5.5 . 1014 m-2 s-1.

The volume of the author's body is

17 mass _ 75 kg
'-de"s'ity=9oot#-j

= 0.08 m3.

The number of neutrinos in the
author's body at any instant is there-
fore

l/"=T=1.8.10s.

0lJAilTUil/Airsnrfis, llilrTs & s0r.lJTrmr$ 5 g



2. One light-year equals (3

108 mis)(3.15 . 107 s) = 10to m. The
number of neutrinos detected is
equal to

AdN, -N^ --'d ''o 4nd''

where A[ is the number of neutrinos
emitted by the supernova and Au is
the cross-sectional area of the
reconfigured tube:

^ V 4,000 m34 
-_"d- MFp- 1016 m

- 4. 10-13 m2.

Therefore,

N^ = N.4nd'uqAd

_ nn4r(170,000 . 1016 m)2

4 .10-13 m2

= 1.8.1057.

Cipollinr
5. The probability that the chip

makes I moves to the right and /
moves to the left is equal to
(r+1\ I
I I lat+l ,I I lL' ' ' , because this happens i{\r )l
and only rf, in a series of r + J tosses
of the coin, heads turn up exactly r
times, whereas the number of such

[z+])
series is | - | 1r.., for instance,

\r )
" Combinatorics-polynomials-prob -

ability" in the March/April issue,
where the notation C(n, ml was used

/n\
instead of I * I here.) In the exercise,

\m)
t : r + L k : r -1,soz = (t + kllz.

5. Apply the Binomial Theorem
from the aforementioned article.

7. The answer to the first question
is P(k) = L -kln (P(ft) is a linear func-
tion taking the values 1 and 0 at
points 0 and { respectively). The sec-
ond probabili.ty is equal to P(N - k) =
k/N.

8. The segment AB can be re-

moved from all the graphs in figure
5 in the artiele, because the caterpil-
lar sticks at its endpoints. This tums
the question for figures 5a and 6b into
the question of exercise 7 for N = 3
andN=4,respectively.

fi P(kl is the probability that the
caterpillar sticks at point A when it
starts from point k, then for figure 6c,
we have the following equations:

r(r)= jr(z)+]r(a)** ,,

P(2)=ioot*|e1e1,

P(B)=*olrl+]r(a)** o,

which yield P(1) = s/8, P(21 = rl2,
P(3) :318. The probabilities of stick-
ing at B are obtained by switching
points A and B, 1 and 3; they turn
out to be equai to I - P(k), so the
caterpillar sticks somewhere with a
probability l.

Fundamentally the same solution
applies to figure 5d (of course, the
equations must be changed). Here
P(Il = 314, P(21 = r12, and P(31 : Ila.

Royal U'ohlgln
1. White wins as follows:

(1) fB h7 (al

(21 f6 g8
(3) h5 f7
(41 h7 fB (b)

(s) s5 e7
(51 97 e6
(71 h7 f6
(8) g8 e7
(el g5 fB
(10) h7 eB

Notes: (a) ff (t) ... 96, then (2lh9 f7,
and continue from (4).

(b) If (4) ... e5, continue as before.
If (41 ... f6, continue from (B).

2. White wins as follows:
(1) e5 94
(21 t5 h5
(3) f4 95
l4l e5 h6lal
(s) f5 97
16l e6 h8 (b)

l7l h6 98
(B) 96 h8 (c)

(e) 95 h7
(10) [6 gB

(11) h6 f7
(tzl 95 fB (d)

(13) 96 e7
(14) f5 e8

Notes: lallf Wl . . . f7, continue from
ll2l.It l4l ... h7 , continue from 10.

(b)If (6) ... fB, continue from (13).

ff (5) . .. h7, continue {rom (10).
(c)ff (s) ... f8, then l9lh7 e8.
(d) ff (12) ... e6, then (I3l t4 e7 , anLd

continue from (14).

3. Red wins. An article in the next
issue will present an argument sup-
porting this conclusion by solving the
Royal Problem for all m x n chess-
boards, m> n> 3.

l(aleido$cope
1. Each grace had 12 pieces of fruit.
2. The tfueenumbers on everyline

considered in the problem form an
arithmetic sequence with the central
number of the square as its second
term. So the sum of each triple is
three times the central number.

3. The treasury initially held 225
coins.

4. There are24 shortest paths.
5. There are three solutions to this

alphametic. The greatest EULER is
given by 12325551 - 29127
12354678.

5. I visited St. Petersburg on Febru-
ary 1, Riga on February 8, Pskov on
March 1, and Vladimir on March B.

7. The sailboat was named the
Washington and sailed from New
York to Bermuda; the steamer was
named the fefferson and sailed from
London to Boston; the motor boat
was named the Lincoln and sailed
from Newport to Halifax.

8.7,744 : BB2.

9. The youngest child is 5 years
old. The remainders of the ages of all
the children when divided by 5 take
all possible values, so one of the re-
mainders must be 0. This means that
one of the children is 5 years old (aII
the ages are prime numbers!), and the
answer can be only one of the three
numbers 2, 3, or 5. But 2 + 6 = 8 and 3
+ 6 = 9 are not prime numbers.

10. The second car will overtake

00 JUrY/AUEtlsr lssg



Figure 10

the first at the 150-km mark.
11. See figure 10.

12. Note that(* +x+ 1)2 :l*-l)2 +
(2x + ll2 + (* - Il(2.x + 1) and apply the
Law of Cosines.

Atlantic cr'o$$ilt$$
1. There is always a second pair of

ships meeting 4,900 km away from
the first pair.

2. Five steamers (as many as the
number of zrgzag graphs in figure 2 in
the article).

3. In the case of daily departures,
each ship would meet 29 ships during
its one-wayvoyage (including the two
ships it meets at the ports).

Round the clock. The graphs in fig-
ure 1 I show that the hands meet every
l2lll of an hour. So the ffust moment

they coincide is 12/11 o'clock:
l:O5.4545. . . t.u.; and the first moments
they form angles of 180', 90o, and I20o
are 6 I ll o'clock, 3/1 1 o'cloc( and 4l ll
o'cloc( respectively. So the answers are
(a) (6 + lzkllll o'clock, where k :
O, l, ..., 10 (see figure 11), (b)

l3 + 6kllll o'clock, k=0,1,...,ZIi@l
la + J2kllll and (8 + lzklltl o'clock,
k : 0, 1,..., 10 (the two sequences cor-
respond to the two directions in
which an angle of 120" can be mea-
sured).

Strolling ladies. The graphs are
shown in figure 12. We see that the
ladies will meet three times and walk
in the same direction for 6 + 2 + 2 + |
: 11 minutes.

Sir Isaac Newton's problem. The
answer is 35 miles. Using graphs you
can reduce this problem to some
simple geometry (considerations of
similar triangles), but here the alge-
braic solution is just as easy.

A neul lace
(See the Kaleidoscope in the May/

|une issue)
1. No. To get a nonregular tetrahe-

dron with congruent faces, take an
arbttrary acute triangle and fold it

along its midlines (fig.13) so that its
vertices meet at one point. The reader
may enjoy proving that the projection
H of the top of this tetrahedron is the
orthocenter of the original triangle.

2. The answer to both questions is
yes. The height of the recluired pyra-
mid must fall on the point of intersec-
tion of the extensions of two (first
question-fig. 1a) or three (second
cluestion-fig. 15) sides of its base.

Figure 13

0 tlirz 3 4 5 6 7 8 9 10 11 t2

Figure 1r 
time (hours)

Plotted alongthevertical axis is the angalar distance to aach
hand from its initial position (counted clockwise).

distance lm]

- 

Mrs. Fields 

- 

Granny Smith

I 6 10 12 18 20 2425
time lminl

Figure 12
The time intewaTs during which the ladies walked in the
same dfuection are colored red on the time axis.

Figure 14
Quadrilateral ABCD is the base of
pyramid ABCDT; H is the foot of its
altitude.

Figure 15
Nonconvex hexagon ABCDEF is the
base of pyramid ABCDEFT; H is the
foot of its altitude.
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Figure 16

Figure 17

Figure 1B

Figure 19

b

Figure 20

3. No-see the "three-dimensional
cross" in figure 15.

4. By stacking two differently tilted
oblique prisms with congruent bases,
base to base, we'llget a polyhedron
satisfying the "Oxford definition" of
a prism. It's not a prism, but it will
never be convex. A "convex ex-
ample" is shown in figure I7.It car,
be constructed from the cross in the
previous problem. The cross consists
of seven equal cubes: we take only the
central one and add to it six quadrilat-
eral pyramids built on its faces with
the vertices at the centers of the six
other cubes.

A11 twelve faces of the resulting
polyhedron are congruent rhombi.
We can choose any pair of opposite
faces as the "ends" in the Oxford defi

Figure 21

AC

Figure22

nition: they are all "similar, equal,
andparallel." The remaining faces are
the "sides," and of course they are all
"parallelograms."

5. Consider two irregularpyramids
whose bases are congruent equilateral
triangles (but whose other faces are
not congruent). By rotating the base of
one of the pyramids/ we can fit the
pyramids base to base (fig. 1B) in three
different ways, thus creating three dif-
ferent six-faced polyhedrons with the
same set of faces.

5. Yes. If you bend the given figure
at a right angle along all the red lines
in figure 19, you'1lget a cube (its bases
will consist of four triangles each).

7. Figures 20a and 20b show how
the given developments can be trans-
formed into an equilateral triangle
with the same rule of pasting on the
border (each side must be folded in
half), which yields a regular tetrahe-
dron in both cases (compare with
problem 1).

The transformations consist of
cutting the given developments and
pasting the pieces back together di{-
ferently but, of course/ following the
prescribed rule for pasting. The solid
Iines inside the rectangle in figure 20a
and the dotted lines in figure ZOc are
the creases along which the given
polygons should be bent to form the
tetrahedron.

B. See figure 2l for an example.
9. Figure 6 in the statement of
the problem can't be a projection

of a polyhedron, because the
extended lines AB, D C, and

EF must meet at one
point-the point of in-

tersection of the three
b---;- planes ABCD,

a

C

\____-'

fl
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Corrections
Vol.3, No.3:
p.29, col. 1,1.42; col.2,1.23; col..

3, I. 7: for h rcad tt .

p. 35, col. l, l. 7: for r read ... lan
ellipsisl.

Vol.3, No.5:
p. 15, 881 : /or angles ABD arrd BCD

rcad ang)es ABD andBDC.
p. 16, col. 2,1.4:. for kkk read kkk + I.

p. 32: Due to an eroneous back
translation (English to Russian to En-
glish), the name of the polyhedron in
"dways a New Face to Show" (col. 1,

11.6-71 was corrupted. It should read
"shaddock with six beaks." These
beaks are not easy to discover: they are
open, and one of them, {acing up-
wards, is formed by the two triangu-
lar faces of the shaddock in figure 1

that have a common edge AB (one of
them is ABC); the five otherbeaks are
like this one but face five other direc-
tions. One of the big diagonals of the

shaddock is erroneously referred to as
AB in the text (col. 1, 1. 31), in fact it
joins A to the vertex right below B in
that figure.

p.57, col.3, third display equation:
for Avf Lt read AxlLt.

p. 59, B84: Quantum reader
|onathan Wildstrom pointed out that
the answer as printed is incomplete:
the years 8960 and8970 are also solu-
tions. (The year 8950 doesn't quite
make the cut-since centuries begin
with year 1, 8950 falls within the {irst
half of the 90th century.) In our an-
swer we had assumed that the year in
question had already passed.

p. 61, col. 2, 1I.24-25l. loz Writing
fl*) : fl* + flyll ar,d substituting read
Wriringl(x,) = fl* + f(}ll) and substitut-
ing -x for x.

p. 61, col. 2, l. 27 : for fl-x) + flxl rcad
fl-x): flxl.

p. 61, col. 2,11. 4243: for equation
(L) rcad the original equation in the
statement.

Figure 23

Figure 24

The correct location oi point X in
the second question can be found by
using the constn-rction shown in fig-
ure22. The pornts A, B, C, andD,
where the extended edges of the poly-
hedron-a and d,, b andb' c and c,
d and d 

-inrersect/ 
must lie on one

straight the 7, the common line of the
planes ttbcd and arbrcrd' Points A
and B, and so the entire line I = AB,
can be constructed irrespective of the
positlon oiX. Then we can find C and
D at the intersections of 7 with c and
d, dratt c r and d\t and locate X at their
intersection.

10. See figure 23. The nonconvex-
ity of this polyhedron accounts for its
property violating the conditions of
Steinitz's theorem: it has two faces
with two common edges.

1 1. {a) See iigure24; lb) see figure 23
again.

"BULLETIN BOARD"
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opportunities: universities, colleges,
technical schools, vocational schools,
corporate programs/ and trade asso-
ciations.

An in-depth conference program
wiII highlight career opportunities
and trends in health carel business/
science/ engineering, education, law,
and communications. The confer-
ence program will have several tiers,
each addressing the specific needs of
various segments (high school stu-
dents, undergraduates, etc.).

"Today's student consumeris cog-

nizant that his or her post-secondary
educational choices may we1l be the
single most significant investment of
time and capital made in their life-
tirl:e," says Kaureen Duffy, the Ex-
ecutive Director of Communication
Alliance of the Americas. "For stu-
dent consumers, full awareness of
educational, corporate, and industry
opportunities is essential to the effec-
tive execution of their postsecondary
education. There has been immediate
recognition that, unlike existing col-
lege fairs, never have all segments of
this industry assembied at one time,
in one place, to present their pro-
grams and assets to all segments of
their buyers market."

The hrtemationai Student Fairs &
Conferences are scheduled at
McCormick Place in Chicago, March
24-27, 1994, arrd at the Boston World
Trade Center, October 21-23, 1994. For
more information on attending, exhib-
iting or submittrng a"Call.for Presen-
tatiotr," write to Kaureen Duffy, Com-
munication Alliance of the Americas,
Inc., 11435 South Beil, Chicago, IL
60643, or catl3l2 445-2221.
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TOY STORE

Fleiland l'euisiled
Still new forms of flexlife!

by Alexander Panov and Anatoly Kalinin

success: new life forms were discov-
ered! Mr. Flexman compares his dis-
covery to that o{ Adams and
Leverrier (who'd predicted the exist-
ence of a planet later called Nep-
tune), and to the great achievement
of Mendeleyev (who predicted the
existence of previously unknown

chemical elements). Actually, he
places his own discovery even
higher, because he had not only
made a fundamental prediction, he
confirmed it on his own.

One of the newly discovered
flexrings-a ring of triangles and
some of its transformations-can be

ORE THAN A YEAR AGO
we took Quantum readers
on a trip through Flexland,
an exotic country of tricky

flexible and transformable crea-
tures/ many of which can be mod-
eled with paper and glue.l Recently
we received a letter from that funny
Flexlander, Mr. Flexman himself.
You may recall that he was our
guide on our last trip. He tells us he's
a regular reader and admirer of
Quantum and considers this maga-
zine the best publication outside
Flexland. He thinks any magazine,
as a physical object, is a primitive
form of a flexagon, so the very exist-
ence of the magazine business on
Earth suggests long-standing con-
nections between Flexland and this
part of world. (Mr. Flexman even
thinks that the word "magazirTe"
should be replaced by "tlexazrne."l

Mr. Flexman was pleased to read
our reports about the Flexland tour
and was especially impressed by the
description of the "ring of tetrahe-
drons" (|uly/August 1992ll. Spurred
on by this favorable impression, he
published a short paper in his own
magazine Flexum in which he con-
jectured that there should exist
other as yet unknown ring-shaped
forms of flexlife. He gave a hypo-
thetical description of each and de-
lineated their areas of distribution.
Soon he became the head of a special
expedition that scored a brilliant

lSee the Toy Store installments in
issues 4, 5, and 6 of volume 2.
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Figure 2

Figure 3

Figu'e 5

seen in frgure 1. To make it out of
paper/ cut out four strips measuring
3 cm x 42 cm and fold them into
seven 3 cm x 6 cm rectangles, as

shown in figure 2. Glue the rect-
angles together at the ends of the
strip {fig. 3l and make little cuts
along the creases as the arrorvs indi-
care, Pass a string through the cuts,
drarr. it tight, and tie rt up 1iig. -11.

You get a ilexible plece consisting oi
trt'o triangles ior/ more exactly, tri-
angular prisms having a common
edge). Then put the four pieces to-
gether using four connecting strips
(measuring 5 cm x 5 cm) and glue (or
cellophane tape), as shown in fig-
ure 5. The flexring is ready for you
to play with.

Mr. Flexman classifies this repre-
sentative of flex fauna with the ring
of tetrahedrons mentioned above and
conjectures that they have a common

N
Y

ancestor. But the "{lexquare" shown
in figure 6 must bc attributed to an-
other iami11' of flexrings. It's very
simple in str-r-rcture. To make its pa-
per modcl. rake a scluare measuring
3 , I unirs, cut out a unit square in
rhe center and two star-shaped holes
at the adjacent corners/ and color the
model on both sides according to fig-
ure (r. The star-shaped holes should fit
inside the colored circles. Note that
the positions of the holes detcrmine
the way the flexquare is flipped in go-

ing from the top of figure 6 to the bot-
tom.

Mr. Flexman's expedition discov-
ered a remarkable property of thc
fiexquare: it can fold itself into a

unit square that is either blue or rcd
on both sides, depending on the
weather lttg.7). Mr. Flexman says he
asked several ptzzle experts to fig-
ure out how the flexcluare folds it-

Figure 6

EH
Figure 7

self. At {irst glance, without touch-
ing thc model, they usually presume
that this must be quite easy. But
when they spend somc time trying
to fold the thing, they usually blurt
out that therc must be some mis-
take, that the problern is unsolvable.
Only after l'reing rcassured that the
solution exists do they take up the
challenge in earnest, and it gencrally
doesn't take them much timc to
master it.

Mr. Flexman askcd us to offer the
flcxcluare ptzzle to Qunntum read-
ers, which we hereby do with great
pleasure. o

G
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of their tuso seni.or te*m projects.'
curricuh.wn includes s rnix of theory
and practical applicatiorus that fully
prepare studentsfor aeyospace and 

,aoiation careers. r:;

erospace engineering students at Embry-Riddle \
don't have to wait until tomorrow to apply what
they're learning today. The curriculum builds to two

senior design projects that test your
knowledge of aerodynamics, controls, mater-
ials, propulsion and structure as your team
designs the internal and extemal details of an
airplane or spacecraft. Both your imagination
and abilities are put to the test, iust as they
will be in your professional life. Sfe believe
that's what education is all about.

You may know about us, but did you hnous:
ffi We offer over 20 different accredited aviation/aerospace majors at the Bachelor and
Master's levels including aerospace engineering, electrical engineering, engineering
physics, avionics engineering technology, aircraft engineering technology and aviation
computer science.
ffi Our aerospace engineering enrollment at our Daytona Beach, Florida and Prescott,
Arizona campuses is the largest in the United States. We are listed as one of the 18 best
engineering schools in the nation by U.S. Nezps and World Report's 1992 College Guide
called "America's Best Colleges."
ffi Your university life is enriched through many social and professional clubs and
organizations, like our SAE Chapter, that provide the opportunity for a variety of living
and learning experiences, related to your major, outside the classroom.

Want to test your cayeer design? $7rite to us today.

EMBRY.R,D
AERO NAUTI CAL U N IV ERS IN Please send me more information about Embry-Riddle.

Engineering Related Programs: Other Aviation/Aerospace Majors:

Ooer 67 internqtional uniaersity
tesrns entered the 7th Annual Aeyo
Design Cotnpetition, co-hosted by
the Embry-Riddle Society of
Autornotioe Engineering Chapter.
The objectioe of the cornpetition is to
ffi as rnuch u;eight as possible with
q RIC aircraft designed and built
by students.

Electric ol Engineering
students at Embry - Riddle
receizse a cornplete, broad-
based education uith full
laboratory resources qnd
e quiprnent to cornplernent
acadenic study,

Look at us nofi.
Mail to: Embry-Riddle Aeronautical University

Director of University Admissions
600 South Clyde Morris Boulevard
Daytona Beach, FL 321 1 4-3900
Or Call 1-800-222-ERAU
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