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WY OU'RE NEVER TOO OLD TO
swing”—that’s what this classic
photograph seems to be saying. It ap-
peared in the photographic exhibition
“The Family of Man” at the Museum of
Modern Art in 1955. The work of 273
photographers from around the world—
503 photos culled from over two mil-
lion—showed humanity in the breadth
and depth of its common experience:
birth and death, work and play, leaming,
loving, building, arguing i
gamut of life. “The Fa
seen by over nine million
book of the same name is
The exhibition was
Edward Steichen (1879
ary figure in American

ing in lithography and pair
the great Alfred Stieglitz invit
and eleven other photograph
him in founding the Photo-Secession
dedicated to promoting photography as
fine art. The group was open to all styles
and approaches. Steichen himself soon
moved away from soft-edged, sentimen-
tal pictures toward cleaner, more direct
images. In a search for a perfect render-
ing of gradations of black, gray, and
white, he photographed a white cup and
saucer against a black velvet background
more than a thousand times. He also pho-
tographed such celebrities as Greta Garbo
and Charlie Chaplin for Vogue.

Steichen was 70 years old when “The
Family of Man” opened. He married for
the third time at eighty. Steichen felt that
“boredom and disinterest and lack of
awareness are what characterize a super-
annuated mind, no matter what the chro-
nological age may be. Happily, growth is
not something for children only.”

Nor is play, as our swinging couple
demonstrates. Some prefer to swing sit-
ting down, some standing up. In this
photo, taken by Kosti Ruohomaa some-
where in the US, both styles are repre-
sented simultaneously. Here the
woman apparently is keeping the swing
going by pumping her legs. What if she
weren’t there—how would the man
keep swinging? The Toy Store at the
other end of this issue explores the phys-
ics of swinging.
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When we consult a map, usually it's to
find the best route from where we are to
where we want to go. And “best” usually
means “shortest.” Unfortunately (or per-
haps not), in real life the shortest distance
from A to B is generally not a straight
line. Obstacles present themselves: rivers
and mountains if we’re driving; bad
weather or protected air space if we're
flying; trees, fences, and all manner of
things if we’re walking.

Mathematicians suffer no such im-
pediments when they deal with the dis-
tance between points. But they usually
end up wanting to go to n1 places (not just
one) or trying to connect them. Say you
wanted to create the shortest possible
network connecting n points—how
would you do it? The article beginning on
page 4 tackles this very problem.

Speaking of maps, we seem to recall
that you need only four colors when you
make a map . . . the details escape us.
Maybe “The Mapmaker’s Tale” on page
46 will refresh our recollection.
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0f microscopes, e-mail
and word of mouth

Its not enough to have a good product—you have to sell it

N THE JANUARY/FEBRUARY

issue I spoke of the difficulties fac-

ing ex-Soviet science and de-

scribed some of the steps Russian
scientists are taking to ensure the
survival of a prodigious scientific
legacy. I'm pleased to announce that
the National Science Teachers Asso-
ciation, through an opportunity cre-
ated by Quantum magazine and our
colleagues in Moscow, is offering
high-quality Russian scientific equip-
ment for sale in the United States.
The Russian Academy of Sciences
has created Russian—-American Sci-
ence, Inc. (RAS) to serve as its commer-
cial representative in the US. We are
working with RAS in marketing micro-
scopes and other items that Russian
teachers can no longer afford to buy.

I'm very excited about this
project. It will bring a much-needed
infusion of capital into the strapped
Russian economy and establish a
foothold for Russian technology in
the world market. It will help Quan-
tum magazine balance its books (we
do not as yet take in as much as we
spend on the magazine). And it will
offer the US consumer a taste of the
kinds of products the former Soviet
Union is capable of producing, and
at a very reasonable price.

If you're interested in the product line
we will initially be offering, please write
to me. I'll send you a brochure.

2 MAY/JUNE 1993

Feed us!

I've said it more than once, but it
remains true as ever: we want and
need your feedback. When we print
and mail each issue of Quantum, it’s
as if we “shoot an arrow into the air.”
Like the arrow, Quantum “comes to
Earth we know not where.” We need
to know when we hit the target and
when we miss. Bull’s-eyes are nice to
hear about, but we also need to hear
about the shots that land in the next
county. Not only do we want to pro-
vide the best magazine for our current
readers, we need to expand our circu-
lation if we are to survive.

You may have noticed an ad in
the last few issues, calling on all
“modem maniacs” to contact us by
e-mail. T don’t know about you, but
nowadays I write and read more
electronic mail than the paper vari-
ety. We've heard from some of our
readers, but what about the rest of
you? Write! Make it a habit to tell us
which article was your favorite in
each issue, which one fell short. Do
you like the science crossword
puzzle (a feature we added in the
past year)? Let us know a topic you
really want to see covered. We can’t
promise immediate results, but your
input will definitely affect future
issues of Quantum.

So, tell our managing editor, Tim

Weber, what you think. His e-mail
address is

72030.3162@compuserve.com

Take us with you!

‘Summer vacation is almost upon
us, and I'm sure many of you have
travel plans. Why don’t you take
Quantum with you? Work through
the problem that resisted your efforts
during the school year. Catch up on
an article that you skipped. And,
please, show Quantum to lots of
people. We try hard to put the maga-
zine in the hands of people we think
will enjoy it, but word of mouth is a
powerful—perhaps the most power-
ful—way of publicizing a product that
“isn’t for everyone.” Quantum will
probably never be a mass-market maga-
zine, but its audience could certainly be
larger. You know someone who would
like it—tell them about it!

Thanks for your continuing support.
I'wish all our readers a pleasant summer,
exciting and relaxing by turns, and a safe
one. Look for the July/August issue of
Quantum to break up any midsummer
doldrums. It'll have an article on the
“omnipresent and omnipotent neu-
trino” and a tongue-in-cheek investi-
gation of what the Moon is really
made of. Enjoy!

—Bill G. Aldridge
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Bquation!

Have you written an article that
you think belongs in Quantum?
Do you have an unusual topic
that students would find fun and
challenging? Do you know of
anyone who would make a great
Quantum author? Write to us
and we’ll send you the editorial
guidelines for prospective Quan-
tum contributors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in colloquial
English and at a level appropriate
for Quantum’s predominantly
high school readership.

Send your inquiries to:

Managing Editor
Quantum
3140 N. Washington Boulevard

\_ Arlington, VA 22201 J
What's happening? D

Summer study ... competitions ... new
books ... ongoing activities ... clubs and as-
sociations ... free samples ... contests ...
whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

What's on your mind?

Write to us! We want to know what you think
of Quantum. What do you like the most?
What would you like to see more of? And,
yes—what don'tyou like about Quanturm?
We want to make it even better, but we
need your help.

What's our address?

Quantum
National Science Teachers Assoc.
3140 N. Washington Boulevard
Arlington, VA 22201

Be a factor in the
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Shortest networks

The answer o the perennial question:
whats the shortest distance between three (or more) points?

CARTOGRAPHIC MATH

by E. Abakumov, O. Izhboldin, L. Kurlyandchik, and N. Netsvetayev

HIS ARTICLE IS DEVOTED
to the famous Shortest-Net-
work Problem, proposed by
Jacob Steiner, an outstanding
Swiss geometer of the last century:!
The residents of a number of vil-
lages are going to build a system of
roads that would connect every vil-
lage to every other village and
would have the least possible total
length. How should they do this!

Three villages

It’s rather simple to connect three
villages in the shortest way: if all the
angles of the triangle formed by
these villages are less than 120°, its
vertices should be connected to one
point, defined by the condition that
the angles subtended by the sides of
the triangle at this point are each
equal to 120° (fig. 1).

This can be proven using the de-
vice shown in figure 2.2 The three
holes in the table are drilled where
the villages are located on the imagi-
nary map spread on the table. Three
strings are tied together and passed

'The story of his life and work will
soon be published in Quantum.—Ed.

*We've already described it in
“Botanical Geometry,” the
Kaleidoscope in the September/October
1990 issue of Quantum. There you can
also find more on the subject—for
example, the case of four points—as
well as the solutions to some of the
exercises below.—Ed.
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Figure 1

through the holes and are pulled by
equal masses attached to their ends.
When let free, the weights must end
up at the position with the lowest
total potential energy—that is, with
the greatest possible total length of
string below the table. Therefore,
the string on the table’s surface will
indicate the required shortest con-
nection. But why will the angles
between them measure 120°? Note
that there are three forces of equal
magnitude acting on the knot

o

120°

1209

120°

Figure 3

Figure 2

(fig. 3), and they can balance each
other only if they make equal
angles.

Exercise

1. Prove this.

At this point the proof would be
finished, if we were sure that the
knot wouldn’t fall through a hole.
But when could this happen? When
the sum of two of our tension forces
directed along the triangle’s sides
(fig. 4) is not greater (in magnitude,
of course| than the third force. Since

)

0

Figure 4

Art by Yuri Vashchenko
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all the forces are of the same magni-
tude, this is possible only when the
angle between the first two forces is
not less than 120°.

So our discussion of the case of
three villages can be summarized as
follows:

If the angles of the triangle
formed by the given points are all
less than 120°, its vertices should be
connected to the point at which
each side of the triangle subtends an
angle of 120°.

If one of the triangle’s angles is
not less than 120°, the vertex of this
angle should be connected to the
other two vertices.

This completes the solution, but
we want to add three notes.

Norte 1. In actual fact, we've re-
placed the initial question about the
shortest network with the problem
of finding the point with the small-
est sum of distances to three given
points. (This point is called the
Fermat point of the corresponding
triangle).

Before going further, think about
whether this replacement is legiti-
mate. Is a similar reformulation of
the problem for four given points
also legitimate?

NotEe 2. There is another me-
chanical device that “constructs”
the shortest network (for three
points). Instead of drilling holes,
let’s drive three nails into the table
at the same places and stretch a rub-
ber band around them, passing it
through a small ring, as shown in
figure 5. In the absence of friction,
the rubber band will tend to become
as short as possible, which is just
what we need.

Note 3. We've learned how to
find the shortest network in a tri-
angle, yes, but at considerable cost:
we had to damage the table. It would

() )
%
o~

Figure 7 a
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Figure 5

be better to find a purely geometric
construction of the point we need.
One way is shown in figure 6: con-
struct equilateral triangles on the
sides of a given triangle, outside it,
and join their “remote” vertices to
the opposite vertices of the given
triangle. The three lines thus drawn
meet at the Fermat point. Of course,
here we assume that the triangle’s
angles are less than 120°.

Exercises

2. Prove that the lines described
above (AA,, BB,, CC, in figure 6)
have a common point M.

3. Prove that ZAMB = ZBMC =
ZLCMA =120°.

4. Prove that AM + BM + CM =
AA, = BB - CC,.

5.Provethat AX + BX + CX > AM
+ BM + CM for any point X # M (if
the angles of triangle ABC are less
than 120°).

6. Show that if ZBAC > 120°,
then AB + AC < XA + XB + XC for
any X # A.

Clearly, exercises 2, 5, and 6, to-
gether with note 1 above, constitute
a complete geometric solution of
the shortest network problem for
three points.

The properties of a shoriest network

Now let’s proceed to the general
Shortest-Network Problem:

b c

Bl
Figure 6

Connect n points given in the
plane with a network of line seg-
ments of the smallest total length
(the “shortest network”).

For the discussion that follows,
let’s agree on some terms. We define
a network connecting n given points
as a finite set of line segments such
that any two of the given points are
the endpoints of some polygonal
path made up of segments of this
set. The given points will be called
villages; all the other endpoints of
the network’s segments will be
called forks (even if such a fork has
only one or two offshoots). Figures
7a and 7b give examples of net-
works. The diagrams shown in fig-
ures 7c and 7d aren’t “networks” in
our sense.

In figure 7a the fork o is in fact
superfluous (to say nothing of its not
being a “fork” in the usual sense of
the word). It’s also clear that we can
do without the “fork” B (which is
rather a dead-end). These observa-
tions suggest that we can restrict our-
selves to networks whose forks have
not less than three offshoots. More
rigorously, if there are only two seg-
ments that meet at some fork, we can
replace them with one segment join-
ing their endpoints. In so doing, the
total length of the network doesn’t
grow, and the number of two-seg-

?f}i»}
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Figure 8

ment forks becomes smaller by one,
even though the new segment may
cross some of the old segments, cre-
ating new “regular” forks. If a fork is
an endpoint of only one segment, we
can simply remove it, making the to-
tal length smaller.

We can also show that the angle
BAC between two segments AB and
AC of a shortest network cannot be
less than 120°. Otherwise, we could
replace these segments with the
paths through the Fermat point of
triangle ABC. The three points are
connected by this network, and also
by the segments AB, AC. Since the
network through the Fermat point is
the shortest, it must be shorter than
the sum of the two segments (see
figure 8). Hence our replacement
will shorten the entire network. It
follows, in particular, that the num-
ber of segments issuing from a vil-
lage or a fork is never greater than
three (because four or more seg-
ments form at least two angles less
than 120°).

So here are the two main proper-
ties of a shortest network:

ProPERTY 1. Any fork is the com-
mon endpoint of exactly three seg-
ments that make angles of 120°
with each other.

ProperTY 2. There are one, two, or
three segments issuing from every
village; if the number of segments is
two, the angle between them is not
less than 120°, and if the number is
three, the angles between them are
each 120°.

One more property follows from a
simple observation that a network
containing a closed circuit of seg-
ments can be shortened by erasing
any of these segments without break-
ing the connection between villages.
So we have another property:

Figure 9

ProrerTY 3. The segments of a
shortest network never form a
closed circuit.

How many forks can a network have?

We've proven three fundamental
properties of a shortest network. If
you know anything about graphs,
it’s already clear to you that a short-
est network is a tree. For the rest of
our readers, we'll give a definition of
this notion adjusted to our purposes:
atree is a set of line segments on the
plane that has no closed circuits and
is “connected”’—that is, any two of
these segments are connected by a
chain of segments in which every
two neighbors have a common end-
point. The segments making a tree
are called its edges, and their end-
points are the vertices of the tree.

Three different trees are illus-
trated in figure 9. As you can see, for
each of them the number of vertices
V is one greater than the number of
edges E. This is a general property of
trees and can be proven by induction
over the number E. The crux of the
proof is that any tree contains an
edge one of whose vertices does not
belong to any other edge (otherwise,
a closed circuit of edges must ap-
pear); removing this edge together
with its “hanging” vertex, we obtain
anew tree with a smaller number of
edges but the same difference V-,
which must be equal to one by the
induction assumption. The details
of this proof are left to the reader.

For our networks, this means that
the number of villages plus the
number of forks is one greater than
the number of segments.

But we can count the segments
another way: since three segments
emerge from each fork, and at least
one segment emerges from each vil-
lage, the number of segments is not
less than (3f + v)/2 where f and v are

the numbers of forks and villages,
respectively, and we divide by two
because 3f + v accounts for every
segment twice—a segment has two
endpoints. It follows that f+ v -1 >
(3f + v)/2, 0ot f<v —2.

ProperTY 4. The number of forks
is at least two less than the number
of villages.

Exercise

7. Prove the number of forks of a
shortest network is exactly v, - v, -
2, where v, is the number of villages
with one “road” starting at them
and v, is the number of villages with
three “roads.”

Stiortest network in a Square

Now we know enough to be able
to effectively apply our knowledge
to a concrete situation. Consider
four villages located at the vertices
of a square. What is the shortest
network connecting them?

It’s not hard to see that the net-
work will not extend beyond the
square. It follows that there is only
one road issuing from each village.
Otherwise, the two roads issuing
from the same village would form
an angle less than 90°, hence less
than 120°. This contradicts our sec-
ond property of shortest networks.

In the notations of exercise 7,
v, = 4, v, =0, so the number of forks

Figure 10
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is v, - v, - 2 = 2. The only way to
draw segments in accordance with
these requirements is to join each
fork to two villages and to the other
fork, as shown in figure 10. It re-
mains for us to locate exactly the
forks o and B in this figure.

Using Property 2 again, we con-
clude that the six angles in figure 10
are each 120°. Now it’s easy to draw
the entire network (fig. 11).

Four villages

Now let’s solve a more difficult
problem. Four villages are located at
the vertices of a convex quadrilat-
eral whose angles are less than 120°.
What is the shortest network con-
necting them?

All the arguments for the case of
a square are applicable again, and
they yield the same structure for the
network. But now there are two
(generally, distinct) conceivable
ways to draw such a network—see
figures 12a and 12b. For a square
they could be considered the same,
because one of them could be ob-
tained from the other by a 90° rota-
tion of the square.

So which of the two ways is the
one we need? To answer this question
we must simply measure the total
lengths of the two networks and

a

Figure 12

choose the shorter one. But to do this,
we need to know how to construct
the shortest network of a given shape
(say, as in figure 12aj—that is, to cor-
rectly locate forks o and B.

A construction is shown in figure
13, where points A, B, C, and D are
the villages. We note that segments
0A, oB and off form the shortest net-
work for triangle ABB, so o is the
Fermat point of this triangle. Ac-

cording to exercise 3, angle AoB =

120°, so point o lies on the segment
O,B, where O, is the vertex of the
properly constructed equilateral tri-
angle ABO, (see the construction in
figure 6). Similarly, B lies on the line
aO,, where O, is found from the
equilateral triangle CDO,. So points
o and B both lie on the line O,0,.
On the other hand, ZAO B + ZAoB
= 60° + 120° = 180°, so point « lies
on the circumcircle of triangle
ABO,, and, for a similar reason, f
lies on the circumcircle of triangle
CDO,. So what we have to do is con-
struct equilateral triangles ABO,
and CDO, outside the quadrilateral
ABCD; draw the circumcircles of
ABO, and CDO,; and, finally, take
the intersections of the circles with
the line O, O, to be the forks of the
desired network.

The other possible shortest net-
work (for figure 12b) is
constructed in the
same way. Of these
two, the shortest one
yields the answer to the
problem.

It may amuse the
reader to devise a “me-

Figure 13
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chanical” solution to
this problem using a
rubber band, two rings,
and four nails.

Exercises

8. We required that the angles of
ABCD be less than 120°. Why?

9. Prove that the total length of
the shortest network constructed
according to figure 13 is simply
equal to O,0,.

10. Find the length of the shortest
network in a rectangle measuring 3 x 4.

|n a regular pentagon

Now let’s try to find the shortest
network for five villages forming a
regular pentagon. The angles of the
pentagon are each equal to 108° <
120°, so there’s only one segment
from each village again, and the num-
ber of forksisv, -v,-2=5-0-2=
3. Essentially there’s only one con-
nection scheme—the one shown in
figure 14; the other four are obtained
from it by rotations of the pentagon.
It remains for us to find the actual po-
sitions of the forks o, B, v (fig. 15).
We'll apply the idea we’ve used al-
ready: construct equilateral triangles
ABO, and CDO, outside the penta-
gon. An argument similar to one al-
ready given will show that the forks
o and ylie on segments O, B and O,B,
respectively. Hence the three seg-
ments BO,, BO,, and BE form three
angles each measuring 120°, so B is
the Fermat point of triangle O,O,E,
and we can construct it by the
method described above.

Now points o and y can be found

Figure 14
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Figure 15

as the Fermat points of triangle ABB
and CDB, and all that remains is to
join them as in figure 15.

Shortest networks in the general case

How should the Shortest-Net-
work Problem be handled in the
general case of n arbitrarily located
villages? A thoughtful reader must
have noticed that our solutions for
4 and 5 villages consisted of two
steps. First we found the connection
scheme—that is, determined the
possible number of forks and which
forks and villages can be connected
by segments. In the second step, we
used this information to determine
the actual location of the forks. In
the general case we’ll proceed along
the same lines.

What do we have to do in the first
step? As we know, the number of
forks is not greater than n—2, so there
is a finite number of possible connec-
tion schemes (to be more exact,
“graphs”) for the given n points.
Therefore, we can make an exhaus-
tive list of all possible connection
graphs. Figure 16 illustrates a number
of connection graphs for five villages.

In the second step, searching
through the list of graphs, we need
to construct the shortest network
for each of them, measure its length,
and choose the absolutely shortest
one. How is the shortest network for
a particular graph constructed? It’s
sufficient to show how the problem

B B

Figure 16

for n villages can be reduced to the
construction of the network for a
smaller number of villages.

So, suppose we're given some con-
nection graph for n > 4 villages. If it
contains two villages connected by a
segment, then, removing it, we'll ob-
tain two graphs with fewer than n vil-
lages; the problem can be solved for
each of them separately. For, if some
network with the given graph is the
shortest for this graph, then each of
the two subnetworks emerging after
our “surgery” must be the shortest
one among all those that have the
same connection graph. Otherwise,
we could shorten one of the
subnetworks—and thereby the enitre
network—without spoinling the en-
tire connection graph.

If every edge that starts at some
village leads to a fork, there are two
villages connected to the same fork
(because the number of forks is less
than the number of villages). Label
these villages and the fork A, B, and
o, respectively. Consider the third
segment issuing from o. If it leads to
some third vertex C, we place « at
the Fermat point of triangle ABC
and then take away edges 04, oB,
oC, thus dividing the graph into
three mutually disconnected graphs
with a smaller number of vertices
and completing the (first) reduction.
Finally, if the third edge issuing
from o leads to another fork B, we
again apply the method applied re-
peatedly above. We construct the
equilateral triangle ABO, and note
that the fork oo must lie on O,p and
that oA + aB + off = O B (see figure
13 and exercise 4). Now, replacing
two villages A and B by one village
O, and the segments o4, a.B, and of
by OB, we reduce the problem to
constructing the shortest network
for a graph with n - 1 vertices. Hav-
ing done this, we’ll locate all the

B B

forks except o; after that, we find o
at the intersection of O B and the
circumcircle of triangle ABO,.

An alert reader will certainly
have discovered a number of inaccu-
racies in this argument. The follow-
ing exercises will help you fill (and
sometimes, perhaps, become aware
of) the gaps in the construction.

Exercises

11. What is to be done if there are
two or three roads issuing from the
village A (or B) above?

12. There are two equilateral tri-
angles with a side AB. Which of
them must we choose?

13. Does our method of con-
structing a network, given a connec-
tion graph, always yield a “net-
work” in actuality?

14. What should be done if point
O, coincides with some village? Or
if one of the segments Ao or Ba
crosses one of the previously con-
structed segments?

What do existence theorems exist for?

- Afterall this, can we now say that the
Shortest-Network Problem for n points
is completely solved? No, not yet!
Our solution lacks one essential
detail—a proof that the shortest net-
work exists. But is that really an im-
portant question? Yes, it certainly
is: the very algorithm of construc-
tion is based on the existence of the
network we seek. However, one
might come away with the impres-
sion that the fact of existence in it-
self is obvious, and that a proof is
needed simply because mathemati-
cians commonly want to prove ev-
erything. But that impression would
be deceptive. To understand why,
look at the following problem:
Connect two villages by the
shortest network of roads such that
they remain connected even when
the traffic along an arbitrary road in
the network is blocked.
The setting is quite
like the original one, and
C  the problem is undoubt-
edly much simpler—
there are only two vil-
D lages. But the similarity is

CONTINUED ON PAGE 31
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A burst of green

How fast does a leaf grow?

by Alexander Vedenov and Oleg lvanov

O DOUBT MANY OF OUR
readers have noticed how
quickly a tilled and sown field
becomes covered with fresh
verdure. It remains black or brown for
some time. But then little green
sprouts appear, and before your
eyes—in just a week or so—the field
looks like a green carpet. (Of course,
this is contingent on favorable condi-
tions: that most of the seeds germinate,
the soil is moist enough and well fertil-
ized, and the days are sunny.)
Experimental studies have shown
that under constant external condi-
tions (constant lighting, temperature,
and humidity, regular watering, and

lnﬁ lnﬂ
g A g
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Figure 1

At left: “Where are you off to, my dear
Hydrangea?”

It (days)

well-tilled soil), the weight and size of
aplant and its parts increase exponen-
tially with time during the initial
stages of growth. Figure 1 shows the
results of experiments on growing
wheat in a solution of nutrients. The
scale of the abscissa is linear and that
of the ordinate is logarithmic—that
is, the evenly spaced distances on the
horizontal axis show the days since
the start of growth, and the vertical
axis shows the logarithms of the mea-
sured values. Notice that the scale for
In y is linear and that the graphs are
straight lines that can be represented
by

Iny=InA + Cx,

S,
In—
cm” where C is the slope of the line

and In A is the y-intercept. It’s
easy to determine the slope C
from any of the lines by calcu-
lating the rise over the run—
that is, the change in In y di-
vided by the corresponding
time interval. What value do
you get?

We can see in figure 1 that,
beginning with the seventh
day after germination for a
period of three weeks, the to-
tal weight of the plant m, the
dry weight of the plant m,
(that is, the weight of the or-
ganic material remaining after
drying), the dry weight of the
leaves m,, and the area of the
leaves S increase exponentially with
time. In nature, exponential growth is

BIORHYTHMS AND LOGARITHMS

Figure 2

a widespread phenomenon. The
growth of the number of bacteria or
single-cell organisms in a culture
medium is a good example.!

Let’s find the physical explanation
for the exponential growth of plants
and determine the constant C of the
growth rate from the laws of conser-
vation of mass and energy. First we
need to construct a model that re-
flects the reality of plant life and is
convenient for our investigations.
Suppose we consider only one leaf
(whose area is equal to the area of all
leaves of a given plant), a stem, and
roots (fig. 2). Let’s suppose further that
the ratio of the total mass to the dry
mass of the entire plant (as well as that
of its separate parts) is a constant:

m _m
L

m, i

ISee “/[Getting to Know| The Natural
Logarithm” in the November/December
1990 issue of Quantum.—Ed.
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where m, and m are the total mass
and dry mass of the leaf. Finally,
we’ll consider the thickness of the
leaf and the ratio of the leaf’s dry
mass to the plant’s dry mass to be

constants:

m
—O =g,
m

(Such suppositions are based on quan-
titative observations during the pe-
riod of exponential growth of grassy
plants. Of course, one can’t use such
a model for describing the growth of
other plants. For instance, the ratio of
the mass of tree leaves to the mass of
the entire tree is a variable.)

From biology we know that a plant
increases its mass due to the process
of photosynthesis. Organic sub-
stances are formed out of carbon di-
oxide in the air and water in the plant
when light energy is absorbed by the
plant’s leaves. The quantity of dry
organic matter formed Am, is propor-
tional to the light energy absorbed AE:

Am, =7 AE. (1)

If the intensity of the light flux I (the
light energy falling on a unit area per
unit time) is constant, then

AE = IS, - At. 2)

Using our plant model, let’s ex-
press the leaf’s area S, in terms of the
plant’s dry mass m,. The leaf’s area is
equal to the leaf’s volume V| divided
by its thickness d: S, = V,/d. We can
find the volume by using the leaf’s
raw (predried) mass and its density: V|
=m/p (p =1 g/cm?®). And we can ex-
press the leaf’s raw mass in terms of
m,, using the formulas for the coeffi-
cients o, and &: m, = oem,. As aresult,
we get

(3)

Combining equations (1) through (3),
we obtain the equation for the rate of
change in the amount of dry organic
matter:

ysoc]
1’1’1
At pd
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We know from the graph in fig-
ure 1 that the slope C is given by

_ A(lnm,)
At

If you know calculus, you know that
Aln m,) = Am /m, However, you
can obtain this expression without
calculus:

ln m +Am ) Inm,

NESTEN

ln(l +Am,/m,)

(lnm

Il

lll

where we have used the approxima-
tion In (1 + x) = x for x << 1. Therefore,

_ _yeol

m At pd 4]

Thus, the constant for the growth
rate is proportional to the intensity of
the light falling on the plant and de-
pends on the parameters o, €, d, and
v. For wheat, it’s possible to deter-
mine o, €, and d from the graph in fig-
ure 1 by using the values m, m;, m,
and S, for a given day. For example, on
the thirteenth day, m =0.025 g, m, =
0.0043 g, m, -0.0021 g and §, = 1 cm?
(we obtained these values with a cal-
culator). So

a="2—58 g=T"0_049,
mO mO

and we can determine the thickness
of the leaf by using the same values
in the ratio of the leaf’s volume V, =
m,0/p to its area:

d="90%_0.012 cm.

pS,

The value of the photosynthetic
equivalent of light (y) determines how
much the plant’s dry mass increases
when it absorbs a certain amount of
light energy. To gain a better under-
standing of this value, let’s derive it
by examining the energy processes at
play in a plant cell.

As a whole the process of photo-
synthesis can be given by the equa-
tion

H,0+CO, —#*(CH,0)+0,.

On the left side of the equation you
see the molecules of water and carbon
dioxide (certainly familiar to you). On
the right side we have an oxygen
molecule and a minimal structural
group of carbohydrates CH,O. A mol-
ecule of plant sugar (glucose) C.H,,0,
consists of six of these groups—
CH,,0, = 6/CH,0)—and a molecule
of ordinary sugar C ,H,,O,, consists
of 12 such groups. The word “light”
above the arrow means that light en-
ergy must be absorbed for the trans-
formation to occur.

Only the initial and final products
are given in the equation. The entire
process of photosynthesis includes
many intermediate elements and re-
actions. In the cells of higher plants—
more exactly, in their chloroplasts—
molecular “factories” churn out
goods. Protein molecules (enzymes)
in the chloroplasts are the “ma-
chines” that, powered by light energy,
generate electrical energy, carry out elec-
trolysis, and rearrange atoms and
atomic groups into molecules.

Chlorophyll molecules in the chlo-
roplasts absorb light. When one pho-
ton is absorbed by a chlorophyll mol-
ecule, one of the electrons in the
molecule is knocked to a higher en-
ergy level. Ultimately the energy
from these excited electrons is used to
transfer a charge along an electric cir-
cuit consisting primarily of protein
molecules. (Chlorophyll molecules
and the proteins associated with

anode +1,. cathode

%50, H

Figure 3



them play the role of photoelectric
cells, or photoelements, within the
biological cell.) The current flowing
through the circuit electrolyzes water
to form ions. In addition, the current
electrolyzes the substance that carries
hydrogen atoms from the water mol-
ecules to a carbon dioxide molecule.
“A” and “A+"” will stand for a molecule
of the carrier and its ion, respectively.

This electrolysis can be com-
pared with the electrolysis of pure
water, where hydrogen is formed at
the cathode and oxygen at the an-
ode. True, in the usual electrolysis
of pure water and other electrolytes,
the source of the electromotive
force (emf) and the lead wires of the
circuit are external—outside of the
electrolyte—and only the electrodes
are inserted in the electrolyte (fig. 3).
But in the case of a biological cell, the
entire electrolytic circuit is immersed
in the electrolyte—that is, in the ion
solution that fills the cell (fig. 4).

A cell can be imagined as a small
tube. Inside the tube there are emf
sources isolated from the electrolyte,
proteins, and other organic mol-
ecules. The emf sources are the chlo-
rophyll molecules combined with
proteins (cellular photoelements) and
the lead wires are proteins and other
organic molecules. There are also
electrodes that come into contact
with the electrolyte at the ends of the
tube. These electrodes are also or-

Figure 4

ganic molecules. In order to transfer
one electron along the entire electro-
lytic circuit, the energy of two excited
molecules of chlorophyll is needed.
Therefore, the voltage at the electrodes
that is necessary for electrolysis is gen-
erated by two cellular photoelements
connected in series. The following pro-
cesses occur at the electrodes:

cathode: 2H*+ 2A* + 4e = 2AH;
anode: 40H =0, +2H O +4e.

Now we can calculate how many
quanta of light are necessary to ob-
tain one carbohydrate group. Ac-
cording to the equation for photo-
synthesis, two atoms of hydrogen
are to be joined to one molecule of
carbon dioxide. Consequently, two
A ions must be subjected to elec-
trolysis to carry out the transforma-
tion. To do this, four electrons must
be carried along the circuit, and
eight photons are needed to carry
four electrons (you'll recall that two
chlorophyll molecules must be ex-
cited for one electron to be trans-
ferred). The energy of each photon
must exceed 1.8 eV, which is the
minimum energy required to excite
chlorophyll molecules. The current
from the electrolysis produced by
light in green leaves is significant.
Given solar light with an intensity
equal to 400 W/m?, the total electro-
lytic current in all chloroplasts of all
the cells in one square
centimeter is about
0.005 A. This means
that a current equal to
0.15 A flows in a leaf
area of 30 cm?>—as much
as in a penlight, al-
though there is as yet no
technology that can tap
into this current di-
rectly.

In the next phase of
photosynthetic reactions
(called “dark reactions”
because light energy isn’t
needed), hydrogen atoms
are transferred from AH
to the molecule of carbon
dioxide, and thus carbo-
hydrates are formed. The
carrier molecule, in the

form of the A* ion, is again ready to take
part in electrolysis.

The light illuminating a plant is
usually not monochromatic. The por-
tion of the light radiation represented
by quanta capable of exciting chloro-
phyll is called photosynthetically ac-
tive radiation (PAR). The excitation
efficiency of chlorophyll molecules
depends on the energy of the quanta.
Figure 5 shows the distribution of
photons over energies in the flux of
solar radiation—the red curve n(hv)—
and a curve giving the dependence of
chlorophyll excitation efficiency on the
energy of the quanta—the green curve
plhv). With these curves we can calcu-
late the average energy of a quantum of
PAR in solar light—it’s ~2.1 eV. But the
total energy of PAR is approximately
equal to one half of all the energy from
solar radiation falling on the Earth. (We
should note that the proportion of PAR
in the overall radiated energy is different
for different sources of light.)

We can now use equation (1) to de-
termine the photosynthetic equiva-
lent for PAR. Let Am_ be the mass of
one mole of carbohydrates, m, =

Hcwyo =30 8. The energy AE required to
do this is equal to 8 - N, photons with
an average energy of 2.1 eV, where N,
is Avogadro’s number. This gives an
energy of 10 eV = 1.6 - 10°]. Therefore,

0
Ay _ 18 oM.
B g/MJ

’Y =

This calculated value of y can be
observed only under special experi-
mental conditions—when there is no
oxygen in the air surrounding the
plant. Usually a portion of the inter-
mediate products in the chain of

nAp

Figure 5
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photosynthetic reactions is oxidized
by the oxygen in the air and cuts the
production of carbohydrates in half.
This process is called photorespira-
tion. About 30% of the synthesized
carbohydrates is used later by the
plant as a source of energy for synthe-
sizing substances it needs to grow and
for other processes. That’s why vy is
usually smaller than the maximum
value by at least a factor of 3. We'll
take y to be equal to 6 g/MJ.

Now we know everything we need
to know in order to calculate the
growth rate constant C. For the experi-
ments shown in figure 1, the PAR inten-
sity in artificial light was G = 30 W/m”.
Every day the plants were illuminated
for 16 hours, and then for 8 hours they
were in the dark. The daily average
intensity was I = 1.7 MJ/(m? - day).
Substituting numerical values for all
the magnitudes into equation (4), we
obtain C = 0.24 day . Figure 6 shows
the dependence of C on the PAR in-
tensity obtained experimentally. As
you can see, the value of C that we
calculated coincides with the experi-
mental results.

On a bright spring day the PAR
intensity reaches 200 W/m? at noon,
and the average daily intensity I =
3.5 MJ/(m? - day). According to equa-
tion (4), the growth rate constant must
be twice as large under such conditions.
But when the light intensities are
greater, € becomes smaller, because the
relative weight of the roots increases—it’s
necessary to satisfy the increased de-
mands of the plants for mineral nutri-
ents. Therefore, C increases with I
nonlinearly but more slowly. When I =
3.5 MJ/(m? - day), C is 0.3 day.

The calculations given above show

14 MAY/JUNE 1993

that if the conditions are ideal, a plant
can grow by a factorof e’2 = 1% in a
day—that is, it will be a third larger,
and such a change is quite noticeable.
If the conditions are not very favor-
able for the plant to grow—say, C =
0.1 day'—then a noticeable change will
occur in two days (e®!*? = 1.24). This
means that perfectly normal growth
rates cause a perceptible change in the
size of plants practically every day.

Afterword

The problem we solved in this ar-
ticle—determining a plant’s growth

rate—is a simple example of the
kinds of problems solved by the dis-
cipline called agrophysics. It’s a
rather young science where atmo-
spheric physics, soil physics, bio-
physics, plant physiology, and ap-
plied mathematics come together.
Agrophysicists study the growth
and development of individual
plants and of farming regions. They
also seek to learn how vegetation is
affected by external conditions:
light intensity, temperature, soil
moisture, humidity, and wind

speed. (@]

- Why There's A Science
to the Liberal Arts
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but at Beloit she discovered that it also involved working with professors

on scientific research that students elsewhere might experience only in
graduate school. Based on research conducted in her first year, Rona and Professor
George Lisensky co-authored an article for Science Magazine. Like Rona, more
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where students and faculty work to-
gether in a cooperative community
of scientists, scientific discoveries
naturally occur.
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BRAINTEASERS

Just for the fun of it!

B81

Equal sides, equal angles. In a quadrilateral ABCD the sum of the angles
ABD and BCD is 180°, and the sides AD and BC are congruent (see the
figure at right). Prove that angles A and C of the quadrilateral are congru-
ent. (V. Proizvolov)

B&82

Retrochess. A chess knight traversed a 6 x 6 chessboard and returned to the
starting square after visiting all the other squares once. Some of the squares
still bear a trace of the knight’s visit—the number of the square in the
sequence of the knight’s route (see the figure at left). Restore the numbers
of all the squares. (A. Savin)

B83

View of the Moon. In which case is the angular diameter of the Moon
greater: when it’s near its zenith or at the horizon? (V. Surdin)

B84

Calendar puzzle. Denoting different digits by different letters and the same
digits by the same letters, I discovered that in the second half of a certain
century bd there was a year abcd. What was that year? (I. Akulich)

Worming out the truth. There are 12 persons in a room. Some of them
always tell the truth, the others always lie. One of them said, “None of us
is honest”; another said, “There is not more than one honest person here”;
a third said, “There are not more than two honest persons here”; and so on,
until the twelfth said, “There are not more than eleven honest persons
here.” How many honest persons are there in the room? (D. Fomin)

Asnuisy) [eaed Ag Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 59
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M1

The way to weigh. You have 1993
coins, 20 of which are counterfeit. A
counterfeit coin differs from a genu-
ine one only in its weight: it can be
heavier or lighter, but always by ex-
actly 1 gram. You're given a pan bal-
ance with a pointer showing the dif-
ference of the masses on its two pans.
Can you tell whether any single coin
chosen from the given 1993 is genu-
ine or not by weighing only once?
(S. Fomin)

M82

Angled aright. On the sides AC and
AB of an equilateral triangle ABC,
points D and E are given such that
AD :DC = BE : EA = 1: 2. The lines
BD and CE meet at point P. Prove
that angle APC is a right angle.
(A. Krasnodemskaya)

M8E3

Composite powers and divisibility.
Prove that (a) there is an odd number n
such that, for any even number k, none
of the terms of the infinite sequence

Ke+1, k¥ 41, k¥ +1,..

is divisible by n (here k** = k(kk), and so

Figure 1
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on}; (b for any natural number (that is,
positive integer) n there exists a natural
number k such that all the numbers

k+1 kx+1, k¥, ...

are divisible by n. (S. Lavrenchenko)

M&4

Skewb lines. Let’s define a “skewb”
as a hexahedron all of whose six faces
are (arbitrary) quadrilaterals joined
like the faces of a cube (fig. 1).! Prove
that if three “big” diagonals of a
skewb (that is, lines through the pairs
of vertices that don’t lie in one face)
meet at one point, then the fourth big
diagonal also passes through this
point. (V. Dubrovsky)

M85

Roots distinct and real. (a) A quadric
equation without the square term,
x* + ax® + bx + ¢ =0, has four distinct
real roots. Prove that ab < 0. (b} An
equation of the nth degree, n 2 2,
without the term of degree k, a x* +
a_x"l+..+a, X ea X+
+ a, = 0, has n distinct real roots.

Prove thata, ,a, , <0.(V. Vavilov)

. PhySIcs

Strange velocity dependence. A body
is moved slightly from a position of
unstable equilibrium. Its velocity in-
creases according to the formula

v(x) = A/x, where x is the distance
from the starting point and A is a con-
stant. How long will it take for the
body to travel a distance L?
(Z. Rafailov)

The term was coined by the English-
man Tony Durham as a name for his
mechanical puzzle, akin to Rubik’s cube.

P82

Pressure cooker. A small amount of
water is poured into a pressure
cooker, which is then closed tightly
and placed on a burner. The initial
temperature is 20°C. At the moment
when all the water has evaporated,
the temperature T of the pressure
cooker is 115°C, and the internal
pressure is 3 atm. What portion of the
pressure cooker was initially occu-
pied by water? (A. Sheronov)

P83

Fill to capacity. Two capacitors are
connected in series. The first has a
capacitance C, and a maximum volt-
age V. The corresponding values for
the other capacitor are C, and V.
What is the maximum voltage that
this combination of capacitors can be

fed? (I. Slobodetsky)

P84

Ring in a magnetic field. A ring of
diameter d, mass m, and resistance
R falls in a vertical magnetic field
from a great height. The plane of the
ring is always horizontal. Find the
terminal velocity of the ring if the
magnetic field strength B changes
with height H according to B =
B(1 + aH). (L. Slobodetsky)

P85

Drops in a fog. Calculate the number
of water drops in 1 m? of fog if the
visibility is 10 m and the fog settles
in 2 hours. The height of the layer of
fog is 200 m. The air resistance acting
on a drop of water with a radius R
meters, falling with a speed v meters
per second, is 4.3 - Rv newtons.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55




Art by Dmitry Krymov

AT THE
BLACKBOARD |

Keeping cool and Staying put

The physics of two workaday phenomena

F YOU'RE LIKE ME, HARDLY A

day goes by that you don’t say to

yourself “I wonder how that

works?” or “What’s going on
here?” or “Is this really better than
that?” Well, I came across something
in anovel, and something in real life,
that got these questions started in my
mind . ..

Moaring and friction

Probably everybody knows
that when a ship docks, a rope
(called a mooring line) with a
loop at the end is thrown from
the ship and wrapped onto a
post (called a bollard) on the
pier. When the ship comes
quite close to the pier, a
sailor quickly wraps
the other end of the
line in a figure “8”
on a special support
(called a bitt) on deck.
In this way it’s pos-
sible to keep a large
ship near the wharf so
that it doesn’t drift
away. What’s going
on here? Is the sailor

it

by Alexander Buzdin

possessed of superhuman strength?
Many people, including the well-
known French writer Jules Verne,
have been inclined to conclude just
that. Yakov Perelman, whom you've
met in these pages, retold an episode
from Verne’s book Matthias Chandor
in which the strong man and athlete

Matiphu pulled off an amazing feat.
As the Trabokolo, a new ship, was
being launched, our hero prevented it
from colliding with a small pleasure
yacht, which would have been de-
stroyed in the encounter.

“The Trabokolo was sliding quickly
downward. A puff of white smoke from
the friction curled from the front of the
bow, while the stern was already enter-
ing the water of the bay.!

“Out of the blue a man appears,
grabs the mooring line hanging from
the front of the Trabokolo, and tries
to stop the ship. In a moment he
wraps the mooring line around a
metal pipe driven into the ground
and—although he risked being
crushed himself—holds the rope in
his hands with superhuman strength
for 10 seconds.”

Jules Verne was right to empha-
size the role that friction played as
the ship slid down the ramp: the
heating of its bow and the resulting
smoke. But he underestimated the
role of friction (and thus overesti-
mated Matiphu’s role) in describing
the athlete’s heroics.

Let’s try to understand what force
is needed to keep the rope wrapped on
the support (the pipe or bitt).

First we'll neglect friction and con-
sider a stationary section of the rope,
bent by the support into a small angle
Ao (see figure 1). Let’s assume that the
rope has a tension T and that the sup-

'The ship was being launched stern
first.
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port exerts a normal force N. Since
the section of the rope is in equilib-
rium, the net force must be equal to
zero. For small angles, the vector dia-
gram in figure 1 shows that

Nz=TAo

(here we've taken account of the fact
that for small angles sin Ao = Aa).

With friction, a rope can remain
stationary when the forces of tension
to the left and right of the section dif-
fer slightly. A rope begins to slide
when the difference between these
forces reaches the maximum value
for the static friction:

AT = F,_=uN = uTAo,

where 1 is the coefficient of friction
between the rope and the support. It
follows from the last equation that
the rate of change in the tension with
respect to the wrap angle is propor-
tional to the tension:

AT

~T,
Aol
or
AT
—=-—uT.
Ao H

Here the minus sign indicates that
the tension decreases as the wrap
angle increases.

There are many situations in phys-
ics when the rate of change of some
quantity is proportional to the quan-
tity itself. For example, think of radio-
activity: the decrease in the number
of radioactive nuclei per unit time is
proportional to their number. An-
other example is the discharge of a
charged capacitor through a resistor:

T

. T
AU
b\

Figure 1
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the decrease in the capacitor’s charge
is proportional to the current through
the resistor, which in turn is propor-
tional to the charge on the capacitor.
In all these cases there is a very rapid
change in the corresponding quantity.
If, for instance, the rate of change of
the velocity (acceleration) of a body in
motion is constant, then the velocity
increases linearly with time. If the ac-
celeration is proportional to the ve-
locity, the velocity increases much
more rapidly (exponentially).

The same dependence holds true
in our case for the change in the rope’s
tension. (Again, we're dealing here
with the minimum possible differ-
ence between the forces of tension in
the rope—when the rope just barely
starts sliding over the support.] The
great mathematician, engineer,
physicist, and astronomer Leonhard
Euler (1707-1783) was the first to
consider this problem. He showed
that the tension T changes according
to the following law:

T= Toe*““,

where e = 2.72... is the base of the
natural logarithm and T is the initial
tension of the rope (which hasn’t been
wrapped around the support yet).

The angle o (measured in radians)
is linked to the number of turns n of
the rope around the bitt by a simple
relationship: o= 2nn. So, if the rope’s
tension decreases by a factor of k af-
ter one turn—that is,

T 1

1 _ p-0mp —
=e =

T, k
—after n turns it decreases by a fac-

tor of k=

5_55 ’1—;1 _8—2nnu_
L LT

n-1

For a coefficient of friction u = 0.3, for
example, one turn of the rope around
the bitt decreases the tension by a
factor of 6.6. And if two more turns
are made, the tension decreases by a
factor of 43. As the number of turns
increases, the rope’s tension (thanks
to friction) gets smaller and smaller
and gradually tends toward zero.

Returning to Verne’s hero Mati-
phu, we can now say that when he
wrapped the rope on the iron pipe,
he made his job a lot easier. Yakov
Perelman took the data on the
Trabokolo provided by the novel
and made a few calculations. He dis-
covered that if Matiphu managed to
wrap the rope around the pipe three
times, a child could have done what
he did. The same is true of sailors.
They don’t need fantastic strength.
They just need to pay attention and
be quick about wrapping the rope
around the bitt.

I need hardly point out that each of
you encounters this phenomenon
practically every day, whenever you
tie something—shoelaces, a scarf, any
old string. A knot is nothing but a
rope wrapped around a “support” (the
rope itself)!

The heat pump

We're all used to electric space
heaters. All you have to do is plug in
the heater and turn it on to get wel-
come warmth in a chilly room. The
heater turns the energy of the electric
current into heat. The electric
heater’s design is very simple—the
working portion is simply a heating
coil (that is, a resistor). All of the elec-
tric energy is transformed into heat
except for the portion that turns into
luminous radiation, if the coil is
heated enough and emits light. By the
way, from this point of view a light
bulb isn’t as good a heater as an elec-
tric space heater, since several per-
cent of the lamp’s electric power is
expended on luminous radiation.
Nevertheless, no matter how strange
it might be, it’s more of a heater than
a source of light—that is, it heats
more that it illuminates.

The electric heater would seem to
have coped ideally with the problem
of transforming practically all the
electric energy into the required heat.
Would it be possible for us to use a
certain amount of energy and get, say,
twice as much heat, thus cutting
down our expenses for heating? At
first glance this seems out of the ques-
tion—it contradicts the law of con-
versation of energy. However, let’s
not be in too much of a hurry—we




should consider this problem in more
detail. Let’s start with a refrigerator.

A refrigerator takes heat from an
internal reservoir where a low tem-
perature is maintained and releases
the heat into the room. Such a process
can’t take place all by itself. Heat can-
not flow from cold to hot (this is one
of the formulations of the second law
of thermodynamics).

A “reverse” transfer of heat re-
quires a constant supply of energy.
This is the work supplied by the
refrigerator’s compressor. We don’t
need to know all the details of refrig-
erator design, but we should note that
energy is always needed for the device
to function.

Let’s assume that as a result of
work W the refrigerator removed an
amount of heat Q, from the freezing
compartment. According to the law
of conservation of energy, an
amount of heat Q, = Q, + W is re-
leased into the room.

Let’s determine the refrigerator’s
efficiency, using the idea that a refrig-
erator is simply a heat engine work-
ing in reverse.

As you know, a heat engine
(fig. 2) obtains an amount of heat Q,
from a hot reservoir, performs work
W’, and releases an amount of heat
Q,<Q toa cold reservoir. The
maximum efficiency of an ideal heat
engine is equal to

w_Q-Q _T,-T,
Q Q T’

1

nmax =

where T, is the temperature of the hot
reservoir and T, is the temperature of
the cold reservoir.

The efficiency of the refrigeratorm_
is defined by the ratio of the amount
of heat removed from the freezing
compartment (the cold reservoir) to
the work required to accomplish that.
For an ideal refrigerator (fig.3), this is
equal to

hot reservoir

Tl\

Q\l\ |
" heat

. engine .
./ L )

%/

cold reservoir
T2 o Tl

Figure 2

T] :—Ql: Q2 =) ’Ié‘
I max w Ql_QZ T T

1 2

— 1 - nmax
nmax .

Notice that this formula implies that
the refrigerator’s efficiency can be
greater than unity.

Now it’s easy to guess how a re-
frigerator can be used to heat a room
during the fall and winter: you put
the refrigerator’s motor and com-
pressor outside (but keep all the rest
of the device indoors!). When we
perform an amount of work W (tak-
ing energy from the electric circuit)
and bring an amount of heat Q, in
from outside, we transfer an amount
of heat Q, = W + Q, > W into the
room. It’s clear that there isn’t any
contradiction with the law of con-
servation of energy: additional en-
ergy in the form of heat is removed
from the cold, outside air.

A refrigerator that works like this
is called a “heat pump,” since heat
is pumped into the house from out-
side. As a result of the work per-

hot reservoir
T1 > T2

Q

N _

refrigerator
Q,
¥

cold reservoir

T

Figure 3
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formed by the heat pump, it gets
warmer indoors, but outside it gets
even colder (but not much colder, of
course—the atmospheric effect from
one heat pump is negligible). The
heat pump’s efficiency n,  is defined
as the ratio of the amount of heat
brought into the room to the exter-
nal work needed to do that. In the
ideal case this is equal to

. 4. Q _T
hp max w Q] "Q2 ,1;_’11

and always greater than 1.

For example, consider the case
when the temperature of the outside
air is -20°C (T, = 253 K), while inside
the house we need to maintain a
temperature of 20°C (T, = 293 K.
Then Ny = 293/40 = 7.3—that is, by
using electric energy to run the heat
pump, we get seven times more heat
than we do using an electric space
heater. The actual efficiency, of
course, is always lower. Also, the
heat pump doesn’t transform all the
energy consumed into work. Never-
theless, the heat pump is consider-
ably more economical than the elec-
tric heater.

By the way, did you know that
your air conditioner is actually a
heat pump? It pumps heat from the
room, expelling it outside. If its “air
intake” and “exhaust outlet” were
reversed, it would make an eco-
nomical heater during the colder
months.

So why, despite their lower en-
ergy requirements, haven’t heat
pumps replaced electric heaters?
The thing is, electric heaters are ex-
tremely simple and cheap, while a
heat pump is a rather complicated,
bulky, expensive piece of machin-
ery. But mark my words: in the fu-
ture heat pumps will be widely used
and will replace our wasteful elec-

Solar power.

Since 1989, teams of Drexel students
and faculty members have designed, built
and raced three working solar-powered
cars—SunDragon I, [1and I11. We also
have been selected to participate in two
nationally sanctioned solar vehicle races.

We're ready and waiting to tell you
and your students all about our SunDragon
projects and fill you in on: photovoltaics,
aerodynamics, mechanics,
thermodynamics, mathematics, project
management, vehicle design, materials
engineering, advanced composites, fund-

Lesson plansand a show-and-tell set
of transparencies outlining the
development of our solar-powered vehicles
are available for your science and
mathematicsclasses.

For more information about these
unique teaching resources or to obtain
copies for your classes, contact Amy
Watlin, admissions special projects
coordinator, at (215) 895-2400 or write to
Michel Barsoum, associate professor of
materials engineering, 4445 LeBow
Engineering Center, Drexe] University,

iric heaters 0 raisingand energy management. Philadelphia, PA, 19104.
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| The Worm Problem of Leo Moser

Part Ill: From warm blanket to cold steel

S PROMISED IN PART II OF
this account, in this article I'll
describe some of the conjec-
tures known to me, as well as
two more of the “special worms”
you’ll need to keep in mind through-
out your investigations. The conjec-
tured minimal regions shown below
are based on the article cited in part
II. Before discussing them, I'd like to
express my appreciation to George
Poole for introducing me to this prob-
lem many years ago, for sharing his
thoughts with me, and for sending
me a copy of his most recent article.
Figure 1 is a sector of a circle with
central angle 30° and radius 1. Its area
is approximately 0.26180.
Figure 2 is a 30°-60°-90° right tri-
angle with hypotenuse of length

(3+4«/§)/9. Its area is approxi-
mately 0.26350.

Figure 1

Figure 2

by George Berzsenyi

The Worm Problem: Find the
area of the smallest convex
blanket that will cover every
worm of unit length.

Figure 3 is a right triangle with
legs of length 1 and 1/2. Its area is
exactly 0.25.

Figure 4 is a 30°-60°-90° right tri-

angle with hypotenuse (6 +23 ) /9.

Its area is approximately 0.23450.
Note that the first and third of
these triangular regions will auto-
matically accommodate the | |-worm,
as shown in these figures. In addition,
they will also cover the 1-worm of
Besicovitch as shown in figure 5, as
well as the V-worm {known in the lit-
erature as the “broad worm” of
Schaer), shown in figure 6. These are

Figure 3

Figure 4

the two other special worms prom-
ised in the first two parts of this ac-
count. Every viable candidate for the
blanket must also cover them!

In the -worm (of Besicovitch), the

total length of the straight line seg-
ments XX , X|Y , and Y Y is 1; the
worm XX Y| Y is symmetric about Z,

the midpoint of XY |; and LY XZ =

17

arctan(l/(9«/§)).

In figure 6, which shows the V-
worm, PP’Q’Q is a rectangle in which
X and Y are the midpoints of PP’ and
QQ’, respectively, and Q’P’/PP’ =
+ + 4sin($arcsini}); UV is a circu-
lar arc with center P’ and radius Q’P;

CONTINUED ON PAGE 31

X, Y
=i
X Y,
Figure 5
Q Y Q
1% 4
U U
P X r
Figure 6
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The Symmetry of chance

An introduction to geometric probability

by Nikolay Vasilyev

N “COMBINATORICS-POLY-

nomials—probability” (in the last

issue of Quantum), we touched on

the simplest kind of probability
problems—those dealing with ran-
dom experiments that can have a fi-
nite number of equally likely out-
comes. The hypothesis of equal
likelihood in such experiments is
usually based on their intrinsic sym-
metry. In this article we’ll get ac-
quainted with another kind of prob-
lem, in which probabilities can also
be found by using considerations of
symmetry. The number of elemen-
tary outcomes will be infinite,
though, and they’ll be representable
as points in a coordinate plane.

Here are two examples of such
problems.

Date problem. Two friends made an
appointment to meet at Red Square
sometime between 5:00 and 6:00 p.m.
Each of them arrives at some random
moment, waits 20 minutes, and, if the
other one doesn’t arrive, leaves. What is
the probability they’ll meet?

Acute triangle problem. Three
points are chosen at random on the
circumference of a circle. What is the
probability that the triangle with ver-
tices at these points is acute?

But let’s begin with simpler, “fi-
nite” examples that will help intro-
duce (or dust off) some fundamental
concepts in probability theory.

The best way to get acquainted
with probabilities is to play with dice.

212 MAY/JUNE 1893

Since the cube is geometrically
symmetrical, it’s only natural to as-
sume that each of its six faces has the
same chance of turning up (we as-
sume, of course, that our die is fair).
So the probability of rolling, say, a 6
is 1/6; the probability of rolling a
number not less than 3 is 4/6 = 2/3;
the probability of rolling an odd num-
ber is 1/2. (The corresponding
events—sets of “favorable out-
comes”’—are shown in red in rows a,
b, and ¢, respectively, of figure 1.)

If there are no dice at hand, one can
roll a six-sided pencil with the num-
bers 1 to 6 written on its sides. And
it’s easy to imagine a pencil with any
number n of sides.

Suppose we have a device that, after
being put into action, can end up in n
equally likely outcomes. Then, by defi-
nition, the probability of each of these
outcomes is assumed to be 1/n, and the
probability of any event A comprising k
outcomes is equal to k/n.

Of course, for n = 6 it’s easy to sim-
ply draw a chart and count all the nec-
essary outcomes. But when nis large,
one has to use some rules for calcu-
lating probabilities.

Let’s denote by p(A) the probabil-
ity of event A. In general, an event is
just a subset of the set S of all possible
outcomes (p(S) = 1, of course). For a
single toss of the die, S consists of the
six elements 1,2, ..., 6. The simplest
relations between probabilities
emerge from relations between sets—
or, to be more exact, between the
numbers of their elements.

"PLAME LIKELIHRQOQLR

The probability of the event A—
the complement of A (which consists
of all the elements of S that don’t be-
long to A)—is equal to

p(A) =1-plA). (1)

For instance, if A is the event “the roll
is a number divisible by three”—that

is, consists of 3 and 6—then A con-
sists of numbers not divisible by

three; so p(A) = 1/3, p(Z) -4/6=1-

1/3 = 2/3 (in figure 1d the outcomes
constituting A are red, and blue de-

notes A).

The union A U B of A and B is the
event consisting of the occurrence of
one of two events: event A or event
B. If the events are incompatible—
that is, if the sets A and B are dis-
joint—then the following addition
rule clearly holds:

plAUB)=plA)+p(B).  (2)

Figure 1
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If the events A and B are compat-
ible—that is, they have a nonempty
intersection AB—then

plA U B)=p(A) + p(B) - plAB). (3)

(The intersection of A and B—the
event consisting the occurrence of
both event A and event B—is denoted
in probability theory simply by AB.)

Repeated trials

Suppose a fair die was rolled twice,
or that two dice were rolled at the
same time. In each case, two indepen-
dent trials were conducted.

Problem 1. What is the probability
that the first roll is a number not less
than 5 and the second roll a number
not less than 4?

The set S here consists of pairs
(x, v), where x and y are any numbers
from 1 to 6; x is the number that
shows on the first die, y on the sec-
ond. All pairs (x, y) are equally likely,
and there are 6 - 6 = 36 such pairs. It’s
convenient to represent them as a
6 x 6 square array: the unit cell with
coordinates x and y represents the
pair (x, y) (fig. 2). We must choose the
cells satisfying the problem’s condi-
tion x > 5, y > 4. They fill up a rect-
angle of 2 x 3 cells. So 6 cells out of
36 are “favorable,” and the probabil-
ity is

6/36 = 1/6.

In general, if an event A is deter-

mined by the result of a first trial and

B by a second trial (that is, A is a cer-
tain set of columns and B a certain set
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of rows in our array), then the prob-
ability of the simultaneous occur-
rence of A and B is found by the mul-
tiplication rule

PlAB) = p(Alp(B). (4)

As figure 3 illustrates, this equality
means that the ratio of the probabili-

ties of B and B remains the same re-
gardless of whether event A occurs.
This is exactly what is meant by in-
dependence in probability: the mul-
tiplication rule is considered the
definition of the independence of
any events A and B not necessarily
connected with repeated trials. This
rule is also applied in the case of
more than two independent events.
For instance, the probability of roll-
ing a 5 or 6 in each of three tosses of
a die is (1/3)> = 1/27.

Of course, the multiplication rule
works only if the event whose prob-
ability we want to find can be rep-
resented as the intersection of two
independent events. Let’s consider
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Figure 4

two rather more involved examples
based on the same set of outcomes
(the set of pairs (x, y), 1 <x, y <6).
Problem 2. A die is rolled twice.
What is the probability of getting a
number not less than 5 at least once?
The corresponding pairs are col-
ored green in figure 4, so the answer
is 20/36 = 5/9. We can also represent
the event in question as the union
A UA, where A (i=1,2)is “the ith
roll is not less than 5”; then, accord-
ing to the addition rule (3) and by the
independence of A, and A,

Alternatively, one might like to
find the complementary probability

p of rolling not more than 4 in the
first and second toss. This way we
have the intersection of two indepen-
dent events, and so we can apply the

multiplication rule for p; thus, the
probability we need equals

2
1—p=1—(2j —jE 8

Problem 3. Find the probability
that the numbers rolled in two tosses
of a die differ by not more than 1.

The outcomes in question are col-
ored in figure 5—they are 6 cells on
the diagonal x = y and two parallel
lines next to it consisting of 5 cells
each. So the answer is 16/36 = 4/9.
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Rantiom numbens and points:
uniform distribution

Now we’ll turn to random points
on a line segment, a circle, a square
... How are the probabilities defined
in this case? What “events” can one
consider?

Let’s roll a round pencil (a cylin-
der) along a table. Imagine its sur-
face is yellow but a strip (or several
strips) of total width o are colored
red (fig. 6). What is the probability
that the pencil ends up on a red and
not a yellow line? (Here o is an arc,
or angle, measured in, say, degrees.)

Suppose the pencil is not round
but rather has a large number n of
sides, k of which are colored red.
Then the unknown probability
would equal k/n. For a round pencil
the set S of “elementary outcomes”
can be identified with a circle, and
the probability of each particular
outcome—the probability of stop-
ping on a particular line—is zero.
But the probability of stopping on
one of the red lines should naturally
be the ratio o/360°.

In the same way, when we say
that we are choosing a random point
on a line segment (or on a circle) of
length L, we mean that the probabil-
ity of our choosing the point on an
arbitrary segment (or arc) of length
d is d/L. Another way to put this is
to say that the points are uniformly
distributed on the segment or arc.
According to the addition rule, the
probability of hitting any of a num-
ber of disjoint segments of total
length d is also equal to d/L. For
example, the probability that the

Figure 6
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first digit of a random number in the
segment [0, 1] after the decimal
point is a prime number—that is, 2,
3,5, or 7—is equal to 4/10 = 2/5 (in
figure 7 the points satisfying this
condition are colored red: the points
in the interval [0.5, 0.6) have the
digit 5 right after the decimal point,
and so on).

Choosing a random point in a
square or some other figure of area
A is defined similarly: the probabil-
ity that such a point will be in a re-
gion of area a is assumed to be equal
to a/A. Note that both the length
and the area satisfy addition formu-
las (1), (2), and (3) (of course, the 1 in
formula (1) should be replaced by L
or A—the measure of the entire seg-
ment or plane figure). The branch of
probability theory that studies prob-
lems about choosing random points
is called geometric probability.

The independence of events re-
ceives a nice graphic interpretation in
terms of random points. Two random
numbers x and y chosen indepen-
dently in the interval [0, 1] can be
viewed as one random point (x, y) in
the unit square{0<x< , 0 <y <1}:
the probability that x hits an interval
of length a and y hits an interval of
length b, by the multiplication rule,
is equal to the product ab, which is
just the area of the intersection of
two perpendicular strips represent-
ing these events in the square (a
rectangle a x b with sides parallel to
the coordinate axes), or the probabil-
ity that a point (x, y) hits this rect-
angle.

For instance, the probability that
a random number in [0, 1] is not

YA
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Figure 8

more than 0.1 units from the mid-
point of the interval is equal to 0.2
(the points in question fill up the
segment from 0.4 t0 0.6). If xand y
are two random numbers in [0, 1],
the probability that both of them are
not more than 0.1 units from the
point 0.5 equals 0.22 = 0.04, while
the probability that at least one of
them meets this condition is 0.36
(fig. 8). The latter can be found by
adding the area of the rectangles that
make up the “cross” in figure 8; by
formula (3) (or formula (4)): 0.2 + 0.2
0.22=0.4-0.04 = 0.36; or by switch-
ing to complements—Dby the expres-
sion 1 —(1-0.2)* (compare with prob-
lem 2 above).

Date problem

Now we can solve the “date prob-
lem” formulated at the beginning of
the article. Let’s specify it as fol-
lows.

Assume that each of the friends
arrives at Red Square at a random
moment in time chosen in the inter-
val [0, 60] (within 60 minutes of the
agreed-upon hour) and waits 20 min-
utes for the other (if the friend hasn’t
arrived yet). They will meet if the
difference between the moments x
and y of their arrival (in absolute
value) is not greater than 20.

The set of all possible outcomes
of this “experiment” can be repre-
sented as the square 0<x<60,0<y
< 60. Then the set of favorable out-
comes Ix — yl <20 is the part of the
square bounded by the lines y — x =
20 and y — x = 20 parallel to the di-
agonal x = y (fig. 9; compare with
problem 3). The area of this set

YA
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0 20 60
Figure 9
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equals 60? — 40? (the two white tri-
angles put together make a square
with side length 40), so the un-
known probability, equal to the ra-
tio of this area to the total area of the
square, is

2 2
SR
60 3 9

Let’s solve one more problem con-
cerning a random point (x, ).

Problem 4. Find the probability
p = pla) that the sum x + y of two in-
dependent random numbers x and y
on the interval [0, 1] is greater than
the given number a.

The equation x + y = a defines a
line parallel to the diagonal x + y = 1
of our square. The unknown probabil-
ity equals the part of the area of the
square that lies above this line. For
a > 1 this will be a triangle; fora < 1
it’s a pentagon, and it’s easier to cal-
culate the area of the complement.
Draw the corresponding picture and
verify that

(2-af
2

foraz1l,

2
1-% fora<l.
2

Considerations of symmetry:
fioints on a circle

Note that the answer for a = 1 in
the last problem is p(1) = 1/2 (the cor-
responding points of the square lie
above the diagonal). We could guess
this without drawing anything: if x
and y are random numbers in [0, 1],
the condition x + y < 1 can be rewrit-

Figure 10
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ten as x< 1 —y and read as “x is closer
to 0 than y is to 1.” The complemen-
tary condition is obtained by simply
switching the points x and y and the
endpoints 0 and 1 of the segment, or
by reflecting the segment with two
random points chosen in it about its
midpoint. None of these operations
changes the probability of the event in
question. Hence the probabilities of the
event and its complement are equal.

Here’s one more example of this
sort.

Problem 5. Three numbers are cho-
sen at random in the interval [0, 1].
What is the probability that (a) the
number chosen last is the largest of
the three; (b) the numbers were cho-
sen in ascending order?

We could represent random triples
(x, v, z) of chosen numbers as coordi-
nates of a point in the unit cube and
compute the volumes of the cube’s
pieces defined by the appropriate in-
equalities: x<z, y<zinpart (a), x<y
< z in part (b) of the problem. But
that’s not necessary—it’s quite clear
that all six possible orders of our
numbers—x<y<z,x<z<y,y<x< z,
Yy<Z<X,Z<X<YV,Z<Yy<Xx—are
equally likely, and so each has a
probability of 1/6. Thus, the answer
to part (b) is 1/6, and the answer to
part (a) is 1/3.

Acute triangle problem

Let’s turn to the second problem
stated at the beginning of the article.
Clearly, any rotation of the circle
preserves the probability of any
event (the set of triples of the circle’s
points) and the condition of acute-
ness of the triangle. So we can fix
one of the three chosen vertices A,

B
n

0 m o

Figure 11

B, C—say, C—and choose the other
two at random. Their locations can be
given by the angular measures of arcs
CA = o.and CB = B reckoned counter-
clockwise (fig. 10—note that j is the
major arc CB). If the arcs are mea-
sured in radians, a pair (o, B) is a point
in the square 0 < 0. < 27, 0 < B < 21. By
the Inscribed Angle Theorem, the
angles of triangle ABC are equal to
7 —B/2, /2, (B - a)/2 (for the case B > o;
the case o > B is similar—we simply
swap the letters o and B, A and B).
We can now think of the pair of
numbers (o, B) as specifying a point
inside the square 0 < x < 2x, 0 < y < 2.
If o < B, we can restrict this point to
the red region in figure 11. If the
three angles A, B, and C are each
less than /2, we have B > 7, o < T,
and B - o < m. These inequalities
describe the region colored blue in
figure 12. The case o > B gives a re-
gion symmetric to this region with
respect to the diagonal o = B of the
square. Hence the required probabil-
ity is 1/4.

This problem also has another,
strikingly elegant solution that al-
lows one to solve an analogous prob-
lem for n points (see exercise 9 be-
low). I learned about it from the
physicist V. Fok and the mathemati-
cian Y. Chekanov.

Let’s try to figure out the comple-
mentary probability that three points
on a circle are the vertices of an ob-
tuse triangle.

For each point M of circle O con-
sider the diametrically opposite point
M’ and the semicircle whose arc is bi-
sected at M". Note that for any point
D on this semicircle, angle DOM is
obtuse. A triple A, B, C is “obtuse” if

BA
21

0 n
Figure 12
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and only if the semicircles corre-
sponding to points A, B, C have a
nonempty intersection (the blue sec-
tor in figure 13). Indeed, if D belongs
to the intersection, then the three
angles DOA, DOB, and DOC are all
obtuse; such a point exists if and only
if points A, B, C lie on the same semi-
circle (the one corresponding to D) or,
equivalently, if they make an “ob-
tuse” triple.

Let’s choose our random points in
two steps. First, we take at random
three diameters; then, for each diam-
eter independently, we “toss a coin”
and choose one of its endpoints with
a probability of 1/2. We claim that
exactly 6 of 8 possible choices in the
second step will yield an “obtuse”
triple A, B, C.

To prove this, draw three diam-
eters perpendicular to the diameters
chosen in the first step. They divide
the circle into 6 sectors each of which
is the intersection of some three
semicircles corresponding to a certain
choice of points A, B, C. So there are
6 ways to choose three semicircles
with a nonempty intersection, and 6
ways to choose an “obtuse” triple.

Finally, we get a probability of 6/8 =
3/4 for an obtuse triangle and the
complementary probability 1/4 for an
acute triangle.

The number 7c in geometric
probabilities

In problems with a finite number of
outcomes the probabilities are fractions,
usually with a small-integer numerator
and denominator. Such is the case in
many problems in geometric probabil-
ity as well. But to close out this article,

A B

C/

B A

Figure 13

let’s look at two problems whose an-
swers are expressed in terms of the num-
ber w. The first is easy.

Problem 6. A point is tossed at ran-
dom onto a large sheet of paper ruled
by a grid of unit squares. What is the
probability that it will end up less
than 1/2 from the center of some
square?

It will suffice to consider one
square. The points at a distance not
greater than 1/2 from its center fill up
a circle of area /4. And that’s our
answer: the required probability (the
ratio of the area of the circle to that
of the square) is /4.

Problem 7 (Buffon’s needle). A
plane is ruled by strips of width 1. A
needle (line segment) of length 1 is
tossed onto the plane at random.
What is the probability that the
needle will intersect one of the lines?

This problem has a remarkable
answer: 2/n. This result even caused
a spate of experiments to see if the
theory agrees with reality. Try to
prove this answer yourself, or look
into “Delusion or Fraud?” in the Sep-
tember/October 1990 issue of Quan-
tum, where you can find the solution
and an interesting and useful discus-
sion of the statistical results obtained
in the aforementioned experiments.

I leave you with some exercises
similar to the problems we’ve inves-
tigated in this article.

Exercises

1. Find the probability of rolling a
die twice and getting (a) two numbers
whose sum is not less than 10; (b} two
numbers the first of which is divisible
by the second.

2. A passenger comes to a bus stop
at a random moment in time and
waits for a bus from either of two bus
lines. The interval between buses is
10 minutes for one line and 15 min-
utes for the other. Find the probabil-
ity p = p(t) that she will have to wait
at least t minutes. (Assume that the
schedule for cither line is made inde-
pendently of the other.)

3. A line segment is divided into
three equal parts. What is the prob-
ability that three points tossed at ran-
dom onto the segment will hit three
different parts?

4. Four points A, B, C, D are cho-
sen at random on a circle. What is the
probability that the segments AC and
BD intersect each other?

5. Bertrand’s paradox. (a) On a
given diameter drawn in a given
circle a point is chosen at random.
What is the probability that the
chord through this point perpen-
dicular to the diameter is longer
than the radius? (b) Two points are
chosen at random on a circle. What
is the probability that the chord
joining them is longer than the ra-
dius? (¢) Through a random point in
a circle the chord bisected by this
point is drawn. What is the probabil-
ity that this chord is longer than the
radius? Note: These three questions
are variants of the following: what is
the probability that a chord inter-
cepted by a given circle on a random
straight line is longer than the ra-
dius of the circle? Three different
ways of choosing the line lead to
three different answers! (d) Answer
the same question for chords of

length greater than r+/3, where r is
the radius of the circle.

6. The vertices of a triangle are
chosen at random on a given circle.
Find the probability that (a) one of the
angles of the triangle is greater than
30° (b) all its angles are greater than
30% (c) all the angles are less than
120°.

7. What is the probability that two
random points chosen on a segment
divide it into three parts out of which
a triangle can be constructed?

8. A grid of lines divide the plane
into (a) squares, (b) equilateral tri-
angles with side length 1. What is the
probability that a coin of diameter 1
tossed onto the plane covers a node of
the grid?

9. (a) Find the probability that a
convex n-gon with vertices at n ran-
dom points chosen on a given circle
contains its center. (b) Show that n
random points on a sphere lie in one
and the same hemisphere (on one
side of some plane through the
sphere’s center) with a probability of
(n?—n +2)/2"

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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PHYSICS
CONTEST

Animal magnetism

“Ask the female Palme how shee
First did woo her husbands love;
And the Magnet, ask how he

Doth th'obsequious iron move. . ."
—Thomas Stanley (1625-1678)

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE MAGNETIC FORCE IS A

strange beast indeed. It doesn’t

exist at all for neutral particles.

And it only exists for charged
particles if those particles are moving.
Finally, the direction of the force isn’t
toward the magnetic field or away
from the field but “sideways.” This
magnetic force protects us from cos-
mic rays by creating Van Allen belts
of charged particles around the Earth;
entertains us by creating pictures on
our television sets; and provides a vi-
tal component of research in all areas
of physics.

Let’s begin to investigate this mag-
netic force by placing a charged par-
ticle (an electron) near a permanent
magnet. If the particle is stationary,
there is no force. If the electron is
moving to the right and the magnet’s
north pole is behind this page (signi-
tied by dots in figure 1), then the force
is toward the top of the page. But not
for long! As the electron changes its
velocity as a result of this force, the

.
. B

Figure 1
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direction of the force changes as well.
In fact, we observe that the electron
moves in a circle. We conclude that
the force must be a centripetal force.
The magnetic force is always perpen-
dicular to the velocity and to the
magnetic field.

We have a way of describing this
mathematically: the vector cross
product. The magnetic force is

F=gvxB,

where F is the magnetic force, ¢ and
v are the charge and velocity of the
particle, and B is the external mag-
netic field. In fact, by measuring the
force, charge, and velocity, this equa-
tion provides a definition for the mag-
netic field strength. Physicists have
invented a number of different rules
to help remember the direction of a
cross product. One such rule states
that if you rotate the velocity vector
v into the B field vector through the
smaller angle between them in the
same way that you would turn a
screwdriver, the force is in the direc-
tion that the screw would move—for
a positively charged particle. It would
be opposite for a negatively charged
particle. But remember, this is true
only for velocity components that are

perpendicular to the magnetic field.
Charged particles moving parallel to
the magnetic field experience no force
whatsoever.

One way in which magnetic fields
are used in research is in a mass spec-
trometer. A schematic of a mass spec-
trometer is shown in figure 2. As-
sume that we accelerate a particle
with a positive charge ¢ through a
potential difference V. The particle
gains kinetic energy

hmv? = qV.
Once the particle enters the magnetic

field, the magnetic force provides the
centripetal acceleration. Therefore,

mv?
vB= ,
d R
E R 7
V= og
s A
Figure 2

Art by Tomas Bunk







Figure 3

where R is the radius of the particle’s
circular path.

The mass spectrometer allows us
to measure the radius of the particle
and to determine its mass.

Parts of our contest problem were
first given in the International Physics
Olympiad (IPhO) in Czechoslovakia in
1977. This problem also appeared in the
semifinal examination used to select
the 1992 US team for the IPhO.

A. Show that the mass of the par-
ticle is given by

m= qBZRZ «
2V

B. An electron gun accelerates
electrons through a potential differ-
ence V and emits them along the di-
rection AB, as shown in figure 3. We
want the particles to hit the target T
located a distance d from the gun and
at an angle o relative to AB. Find the
strength of the uniform magnetic
field B required for each of the fol-
lowing situations: (a) the field is
perpendicular to the plane defined
by AB and AT; (b) the field is paral-
lel to AT.

C. What are the numerical values
of the magnetic field if V=1,000V,
d =5 cm, and o = 60°?

Please send your solutions to Quan-
tum, 3140 North Washington Boule-
vard, Arlington, VA 22201 within a
month after receipt of this issue. The
best solutions will be noted in this space
and their authors will receive special
certificates from Quantum.

A topless rofler coaster

The contest problem in the No-
vember/December issue of Quantum
was used on the semifinal exam to
select the 1992 US Physics Team that
competed in the XXIII International
Physics Olympiad held in Helsinki,
Finland, during July 1992. Our solu-
tion is modeled after the one submit-
ted by Ben Davenport of the North
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Carolina School of Science and Math-
ematics in Durham.

When the point-mass train leaves
the track, it becomes a projectile
subject only to the force of gravity.
Because of the symmetry of the
problem, we know that the train
will meet the track on the other side
with the correct speed and angle if
the parabola describing the motion
is also symmetric. We can, there-
fore, begin by remembering (or de-
riving) the formula for the range L of
a projectile over flat ground in the
absence of air resistance:

_ 2v”>sinocosa
8

L ¢ (1)

where v is the speed of the train and
gis the usual acceleration due to grav-
ity. Note that the angle of the projec-
tile with respect to the ground is o.
The range of the train must be
equal to the horizontal distance
across the opening in the track, which
we can get from trigonometry:
L =2R sin o. (2)
Equating equations (1) and (2) leads
to the following condition on the
speed of the train at the time it
leaves the track:

gR

2 = .
cosa.

(3]

Since there is no friction, conserva-
tion of mechanical energy requires

H/R
324
3.1+

3
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that the sum of the kinetic energy and
the gravitational potential energy be
the same at height H and at the height
of the end of the track. Therefore,

mgH = mgR(1 + cos o)+ Yamv?.
After canceling the common factor
m, we substitute in the condition on

v? from equation (3):

gR
2cosa,

gH = gR(1+cosa)+

Defining k = H/R, we can simplify the
equation to

k=1+coso+

2coso (4

Substituting o. = 0, we find k = 5/2,
which is the answer we expect to get
from a complete loop by setting the
gravitational force equal to the cen-
tripetal force required for the train to
execute the loop.

The graph of H/R versus o.is given
in figure 4. We have not plotted the
graph beyond 75° so that we can see
the details of the graph in the range of
interest.

To find the value of o for the lim-
iting case of k = 3, we solve the qua-
dratic equation in cos o to obtain

(k-1)+ (k—1)2—2' 5]

CosQ =

Plugging in the value of k = 3, we get
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cosa=1=% Nk
Throwing out the positive root because
lcos ol < 1, we obtain a maximum angle
of 73°, which can be verified on the
graph in figure 4. The graph also tells
us that the angle o can be as small as
we want.

The case k = 2.5 is an interesting
one, since this corresponds to the
minimum height for which the car
can complete the closed loop without
falling off the top. We can also see
from the graph that there are two pos-
sible values of o for this case, since
the curve is multivalued in this range.
We could have anticipated this be-
cause there are two angles, 45° + 9,
that produce the same range in projec-
tile motion. Plugging k = 5/2 into
equation (5) yields

cosa =

e
I+
A=

or
o =0°, 60°.

Notice that this is also the maximum
height for which there are two pos-
sible angles.

The minimum value of k is ob-
tained by setting the argument of the
radical in equation (5] equal to zero
and solving for k:

k=1+2=2.414,

which corresponds to an angle of 45°.
Alternatively, we could set the de-
rivative of equation (4) with respect to
cos o (or o) equal to zero.

Ben states that “this makes sense
physically, since 45° is the optimum
angle for maximum range. That is,
we get the most out of our velocity
if the projectile leaves the track at
this angle.” Even in this case, the
maximum height of the train ex-
ceeds 2R. (o]

“SHORTEST NETWORKS”
CONTINUED FROM PAGE 9

superficial: in this case the shortest
network simply doesn’t exist! (See
figure 17.)

Now we hope you're convinced
not only that it’s necessary to prove
the existence of the shortest net-
work but that the very fact of exist-
ence is far from self-evident.

Unfortunately, we can’t present
the proof here—it’s far beyond the
scope of this article (and the high
school curriculum as well). We only
wanted to demonstrate here the fun-
damental significance of existence
theorems.

In conclusion, we propose three
projects for your own investigation
(a computer might be a great help in
this research).

1. Solve the Shortest-Network
Problem for a regular n-gon.

2. Try to solve the problem of the
shortest connection for a number of
villages when there are obstacles
(say, a round lake).

3. Consider the Shortest-Net-
work Problem for points in space.

And in the end—a few words
about the efficiency of algorithms. It
often happens in mathematics that
there is an algorithm for solving a
problem, but its actual realization
takes too much time. Then it be-
comes a substantial problem to find
quicker algorithms (the develop-
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Figure 17

The smaller the distance a, the shorter
the network!

ment of computers has made such
problems especially important). A
typical example is the “algorithm”
of long multiplication, which all of
you know very well. Nowadays,
much faster multiplication algo-
rithms based on profound math-
ematical ideas (like the Fourier
transform, for instance) have been
discovered. Another example is the
problem of factoring an integer
(which underlies some methods of
coding). Various ways of making the
algorithms for constructing the
shortest network more efficient can
be found in “The Shortest-Network
Problem” by M. W. Bern and R. L.
Graham in Scientific American
(JTanuary 1989).

It should be pointed out, though,
that even the best algorithms found
so far can cope with at most 20-30
points and are unable to construct the
shortest network for a set of about
100 points in a reasonable time. And
it seems likely that a substantial im-
provement is impossible. Q]

“MATH INVESTIGATIONS”
CONTINUED FROM PAGE 21

PU and YV are tangent to this circle;
and U’ and V” are the reflections of
U and V, respectively, in XY. The
base of the rectangle is chosen so
that the total length of the V-worm
PUVYV'UP is 1.

My first challenge to you is this:
Prove that the length of the V-worm
is indeed 1 and that the !-worm
cannot be covered by an equilateral
triangle of sides 1 unit long. After
completing these tasks, you might

carry on: Address the conjectures
above, and put forth your own con-
jectures. I hope your efforts will be
rewarded by success. Otherwise,
you may wish to replace the warm
blanket with the cold steel of a
hammerhead, in search of the shape
and size of that minimal flat surface
that, when it hits the worm, will
smash it from stem to stern, regard-
less of what planar shape it wiggles
into. U
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KALEIDOSCOPE

Always a new face to Show

The multifaceted polyhedron

HE STRANGE FRUIT YOU
see in figure 1 was bred not so
long ago, in 1971, in the “geo-
metric nursery” of the French
mathematician Adrien Douady. He
named his creation the “shaddock! with
six spines.” It’s not just an attractive-
looking species of polyhedron. It has a
remarkable property that apparently
contradicts our intuition (and has found
an application in algebraic geometry).

A two-dimensional illustration
will make things clearer. We say that
a figure (like the shaded polygon in
figure 2) is starlike relative to its in-
terior point O, the “center of the
star,” if it contains the entire segment
joining O to any of its points. A star-
like polygon may not be convex, but
one can always move its vertices
along the rays from the center so as to
make it convex—one can “puff it
out,” so to speak. (For instance, we
can make the polygon inscribed in
some circle—see figure 2). Our com-
mon sense tells us this must be true
for polyhedrons, too. But it isn’t, and
the shaddock provides a counterex-
ample. This “fruit” is a starlike poly-
hedron, relative to its center of sym-
metry—the common midpoint of AB,
CD, and four other “big diagonals”
(see figure 1), but it can’t be “puffed
out”! (Try to figure out why.)

The problems below will afford
you an opportunity to test and exer-
cise your imagination in creating
three-dimensional shapes of your
own and on your own. Often you'll

Named for Captain Shaddock, a
seventeenth-century English ship
commander, the shaddock is a large,
thick-rinded, usually pear-shaped citrus
fruit.—Ed.
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have to decide for yourself whether
the things you're asked about exist at
all! Perhaps they won't be as whim-
sical as the shaddock, but every one
of them will certainly be some sort of
surprise to you. And they’ll help us
acquaint you with some important
theorems about polyhedrons.

1. A triangle with congruent sides
is a regular triangle. Is any tetrahe-
dron with congruent faces a regular
tetrahedron? (That is, are its faces
equilateral triangles?)

2. Can two opposite faces of a quad-
rilateral pyramid be perpendicular to its
base? Can three faces of a hexagonal
pyramid be perpendicular to its base?

3. Can a cube be defined as a poly-
hedron all of whose faces are squares!?

4. The Oxford English Dictionary
defines a prism as “a solid figure of
which the two ends are similar,
equal, and parallel figures, and the
sides are parallelograms.” Do you
agree with that definition?

The weak point of the definitions
C

Figure 1 D

of polyhedrons in terms of their faces
in the last two problems is that the in-
formation is incomplete. For in-
stance, in problem 3 it would have
sufficed to fix the number of faces
(six). In general, according to the clas-
sical Cauchy theorem, a convex poly-
hedron can be uniquely restored
given its faces (their shapes and sizes)
and the order in which they should be
joined to one another. This statement
is not valid for nonconvex polyhe-
drons. And not only that, it turned
out that a polyhedron with rigid faces
can be flexible, which was one of the
greatest surprises in the modern
theory of polyhedrons. (You can read
more on this subject in “Out of
Flexland” in the July/August 1992 issue
of Quantum.) Here’s another, less so-
phisticated variation on this theme.

5. Bill cut a convex cardboard poly-
hedron along its edges and sent the set
of faces thus obtained to Carol. She
glued the faces back together into a
convex polyhedron. Could the two
polyhedrons be different?

What Bill had to do to be sure that
Carol would exactly reconstruct his
polyhedron was to mark the edges
and vertices on different pieces that

Figure 2

Art by Pavel Chernusky
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Figure 3

were to be glued together. When the
surface of a polyhedron, after a num-
ber of straight cuts, is spread out on
the plane, and it’s specified what
points on the boundary of the polygon
(or polygons) obtained should be con-
sidered the same (or should be glued
together), we say we're given a devel-
opment of the polyhedron. The cuts
may not coincide with the edges, and,
of course, one polyhedron has many
different developments.

6. Can the surface of a cube be de-
veloped into the saw-toothed polygon
in figure 3?2

In this problem you had to find the
“gluing rule” that turns the given
polygon into the given polyhedron.
Now try to solve a problem that is, in
a sense, converse to that.

7. Find a polyhedron whose devel-
opment is (a) a rectangle measuring

1 x /3 (fig. 4a), (b) an isosceles tri-
angle with an angle of 120° at the ver-
tex (fig. 4b), if in both cases each side
of the given figure must be folded at
its midpoint and glued to itself (so
that its points symmetric about the
midpoint stick together)?

When is a polygon (or a set of poly-
gons) with some gluing rule the devel-
opment of some convex polyhedron?
One condition is Euler’s famous for-
mulav+e-f=2,wherev, e, and f are
the numbers of vertices, edges, and
faces of the given polygons with
proper account taken of the identifi-

o
. 2

Figure 4
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Figure 5

cation on the borders? (for example, in
figure 4a, v=5, e =4, f = 1). Another
natural requirement is that the sum
of the angles that converge after glu-
ing at one vertex must not exceed
360°. In 1939 the outstanding Soviet
geometer Alexander D. Alexandrov
proved a theorem that made him a
living legend in geometry: these two
simple conditions are not only neces-
sary but also sufficient for the exist-
ence of a convex polyhedron with the
given development. He also proved the
uniqueness of such a polyhedron, thus
generalizing the Cauchy theorem.

The next problems deal with restor-
ing polyhedrons from their drawings.

8. Can a polyhedron have the head-
on view shown in figure 5 and exactly
the same top view?

9. Our artist claims that he drew
the top views of two convex polyhe-
drons in figures 6 and 7 correctly, so
that all their vertices, edges, and faces
(except the far side) are seen. But it
seems to us that the polyhedrons in
these drawings are . . . well, some-
what askew. Has the artist made any
mistakes? If you think there’s a mis-
take in figure 7, can you set it right by
displacing only one vertex X (and the
edges issuing from it)?

Figures 6 and 7 would raise no
doubts if we think of them not as par-
allel projections but as just the net-
works of some polyhedrons—that is,
schematic drawings that show how a
polyhedron’s vertices are connected
with its edges. Then figure 6 is the
network of a triangular prism, while
figure 7 is that of, say, a cube. Notice
that each face of the polyhedron is
represented as a polygon in figure 7
(which is not a plane network). In fig-

>This formula was proven in
“Topology and the Lay of the Land” in
the September/October 1992 issue of
Quantum.

A
Figure 6

Figure 7

Figure 8

ures 6 and 8, which can be drawn in
the plane, one of the faces does not cor-
respond to a polygon inside the network,
but rather to the polygon formed by the
outside edges of the network.

Ernst Steinitz, a German math-
ematician, proved in 1917 that any
network satisfying some inevitable
conditions (like “two faces can have
no more than one common edge,”
“every vertex is an endpoint of at
least three edges,” Euler’s formula,
and so on) represents some convex
polyhedron. But the network in figure
8 doesn’t satisfy these conditions
(why?). And yet . ..

10. Find a polyhedron with this
network.

Finally, one more problem about
polyhedrons having something in
common with a cube.

11. Devise a polyhedron that has as
many vertices, edges, and faces as a
cube but (a) has two pentagonal faces;
(b) has no quadrilateral faces. Q)

ANSWERS, HINTS & SOLUTIONS
IN THE NEXT ISSUE
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The oceanic phone hooth

Can a telephone receiver be as long as the equator?

by Andrey Varlamov and Alexey Malyarovsky

OT SO LONG AGO—ABOUT
45 years ago, to put a number
on it—scientists from the
USSR and US discovered an
amazing phenomenon. Sound waves
propagating in the ocean could some-
times be detected thousands of kilo-
meters from their source. In one of
the more successful experiments, the
sound from an underground explo-
sion created by scientists off the coast
of Australia traveled halfway around
the globe and was recorded by an-
other group of researchers in Ber-
muda, some 19,600 km away (a
record distance for the propagation of
pulsed sound signals). This means
that the intensity of the sound didn’t
change as it traveled away from its
source. What is the mechanism for
such long-distance propagation of
sound? It turns out that the ocean
contains an acoustic waveguide—
that is, a channel along which sound
waves travel practically without at-
tenuation (loss of strength).
Another example of an acoustic
waveguide is the tube used on ships
from time immemorial. The ship’s
captain uses the tube to give orders to
the engine room from the bridge. It’s
interesting that the attenuation of
sound traveling along a waveguide in
air is so small that if we constructed
a tube 750 km long, it could serve as
a “telephone” for calls between Pitts-
burgh and Detroit. But it would be
inconvenient to try to converse over
such a line, because the person at the

other end would need to wait a half-
hour to hear your words.

We should emphasize that the re-
flection of a wave from a waveguide’s
boundaries is a characteristic feature
of the waveguide: it’s because of this
very property that the wave energy
doesn’t radiate in all directions but
only along the given direction.

These examples would lead us to
suppose that the propagation of sound
over extremely large distances in the
ocean is due to some sort of wave-
guide mechanism. But how is such a
gigantic waveguide formed? Under
what conditions does it arise, and
what are the reflective boundaries
that enable the sound waves to travel
so far?

Since the ocean’s surface can re-
flect sound fairly well, it can serve as
the upper boundary of the waveguide.
The ratio of the intensity of a re-
flected wave to that of a wave that
passes through the interface between
two media depends to a great extent
on the densities of these media and
the speed of sound in each of them. If
these media differ greatly (for ex-
ample, the density of air and water
differ by a factor of a thousand, and
their sound velocities differ by a fac-
tor of 4.5), then even when a sound
wave falls perpendicularly on the flat
water—air interface, practically the
entire wave is reflected back into the
water: the intensity of the wave that
passes into the air is only 0.01% of
the incident wave. The reflection is

WANVEGUIDE WONDERS

still stronger when the wave falls ob-
liquely on the interface. But, of
course, the ocean surface can’t be per-
tectly flat because of the ever-present
waves. This causes chaotic reflection
of sound waves at the ocean surface
and disturbs the waveguide nature of
its propagation.

The results aren’t any better when
the sound waves reflect off the ocean
floor. The density of the sediments at
the bottom of the sea is usually
within the range 1.24-2.0 g/cm?, and
the velocity of sound propagation
through these sediments is only 2—
3% less than that in water. So a sig-
nificant amount of the sound wave’s
energy is absorbed by the ocean floor
when it hits the bottom.

The ocean floor reflects sound
weakly and therefore can’t serve as
the lower boundary of the waveguide.
The boundaries of the oceanic wave-
guide must be sought somewhere
between the floor and the surface.
And that’s where they were found.
These boundaries turned out to be
water layers at various depths in the
ocean.

How do sound waves reflect off the
“walls” of the oceanic acoustic
waveguide? To answer this question,
we'll have to examine the mechanism
for sound propagation in the ocean.

Sound in wate

Up to now, as we've talked about
waveguides, our unspoken assump-
tion has been that the speed of sound
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in them is constant. But the speed of
sound in the ocean varies from
1,450 m/s to 1,540 m/s. The speed
depends on the water temperature,
salinity, hydrostatic pressure, and
other factors. The increase in hydro-
static pressure P(z) with depth z, for
instance, leads to an increase in the
speed of sound of 1.6 m/s for every
100 m of depth. An increase in tem-
perature T|z) also leads to an increase
in the speed of sound. However, the
water temperature, as a rule, de-
creases rapidly as one moves from the
upper, well-warmed layers to the
ocean depths, where the temperature
is practically constant.

Due to these two mechanisms—
hydrostatic pressure and tempera-
ture—the dependence of the speed of
sound c¢(z) on ocean depth looks like
that shown in figure 1. Near the sur-
face the overriding influence is that of
the temperature, which drops rapidly.
Here the speed of sound decreases
with depth. As we plunge deeper, the
rate of decrease in temperature slows,
but the hydrostatic pressure contin-
ues to grow. At a certain depth these
two factors balance: the speed of
sound reaches its minimum. As the
depth increases further, the speed
begins to increase due to the rise in
hydrostatic pressure.

We see that the speed of sound in
the ocean depends on the depth, and
this influences the nature of the
sound propagation. To understand
how “sound beams” move in the
ocean, we'll turn to an optical anal-
ogy. We'll examine how a light beam
propagates in a stack of flat parallel
plates with varying indices of refrac-
tion. Then we'll generalize our find-
ings for a medium in which the index

depth (z)

ocean floor

Figure 1
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of refraction varies smoothly.

Light in water

Let’s look at a pile of flat parallel
plates with varying indices of refrac-
tion n, n,, ..., n,, wheren, <n, < ...
< n, (fig. 2). Assume that the beam is
incident on the uppermost plate at an
angle o, relative to the normal. After
refracting at the 0-1 boundary, it
leaves at the angle o, which is also
the incident angle for the 1-2 bound-
ary. Upon refracting at this boundary,
the beam is incident on the 2-3
boundary at the angle o, and so on.
According to Snell’s law, we have

sin o, :i Sin o, :ﬂ
. 7 . !
Sll’lO(.l HO Sll‘lOL2 Hl
simnao, _

sino, - n,
Remembering that the ratio of the
indices of refraction of two media is
inversely proportional to the ratio of
the speed of light in these media,
we'll write these equations in the fol-
lowing form:

sina, ¢, sino; ¢
. ! . 7
sinoy, ¢ sina,
sinoy, _, ¢,
sino, B
(c, > ¢, > ... > c,). Multiplying these

equations by one another, we get

smo, G,

sinao, Cy

Reducing the thickness of each
plate to zero and increasing the num-
ber of plates to infinity, we’ll ap-
proach the generalized law of refrac-
tion (Snell’s law):

¢|z) - sin (0] = ¢(0) - sin ofz),

where ¢[0) is the speed of a light beam
at the point where it enters the me-
dium and ¢(z) is the speed of light at
a distance z from the boundary of the
medium. Thus, as light propagates
through an optical medium with an
increasing index of refraction, the
light beam refracts more and more

o 0
1 n, ¢,
2 n,, ¢,
3 Iy C3
Figure 2

and gets closer and closer to the nor-
mal as the speed of light decreases
(and the index of refraction increases).

If we know how the speed of light
varies in a medium, we can use
Snell’s law to show how any beam
travels in a heterogeneous medium.
Sound beams propagating in a hetero-
geneous medium, where the speed of
sound varies, deflect in exactly the
same way. The ocean is an example
of such a medium.

Watery waveguides

Now let’s get back to the question
of sound propagation in the oceanic
acoustic waveguide. Imagine that the
sound source is located at a depth z_
corresponding to the minimum
sound velocity (fig. 3). How do the
sound beams travel as they leave the
source? The beam propagating along
a horizontal line is straight. But the
beams leaving the source at an angle
with the horizontal will be bent be-
cause of sonic refraction. Since the
speed of sound increases above as
well as below the level z_, the sound
beams will bend in the direction of
the horizontal. At a certain point the
beam will be parallel to the horizon-
tal and after being reflected it will
turn back toward the line z = z_ (see
figure 3).

Thus, the refraction of sound in
the ocean allows a portion of the
sonic energy emitted by the source
to propagate through the water
without rising to the surface or drop-
ping down to the ocean floor. This
means that we have an oceanic
acoustic waveguide. The role of
“walls” in this waveguide is played



ocean floor

Figure 3

by the layers of water at depths
where the sound beam reflects.

The depth z_ where the speed of
sound reaches its minimum is called
the axis of the waveguide. Usually
these depths z_ are in the range of
1,000-1,200 meters, but in the lower
latitudes, where the water is warmer
at a greater depth, the axis can drop
down to 2,000 m. On the other hand,
in the higher latitudes the influence
of temperature on the distribution of
the speed of sound is noticeable only
in the layer closest to the surface, and
therefore the axis rises to a depth of
200-500 m. In the polar latitudes it
rises still closer to the surface.

There are two different types of
waveguide in the ocean. The first type
occurs when the speed of sound near
the surface (c,) is less than that at the
ocean floor (¢ J. This usually occurs in
deep water, where the pressure on the
floor reaches hundreds of atmo-
spheres. As we mentioned above,
sound reflects well from the water—air
interface. So if the ocean surface is
smooth (dead calm), it can serve as
the upper boundary of a waveguide.
The channel then spreads through the
entire layer of water, from the surface
to the floor (see figure 4).

Let’s see which portion of the
sound beam is “captured” by the
channel. We'll rewrite Snell’s law as

c(z)cos ¢, = ¢,cos ¢(z),

where ¢, and ¢(z) are the angles formed
by sound rays with the horizontal at
depths z, and z, respectively. It’s clear
that ¢, = /2 - o, 0(z) = /2 - ofz). If the
source of sound is located on the axis of
the channel [c, = ¢_), the most extreme

ocean floor

Figure 4

sound ray captured by the channel must
have an angle ¢(z) = 0 with the ocean
floor, as shown in figure 4. Therefore, all
rays that leave the source at angles sat-
isfying the condition

Cm
cos¢, 2=
G

enter the channel.

When the water surface is rough,
all the sound beams will scatter from
it. The rays that leave the surface at
larger angles will reach the floor and
be absorbed there. Yet even in this
case the channel can capture all the
rays that fall just short of the rough
surface because of refraction (fig. 5).
The channel spreads from the surface
to a depth z,, which can be deter-
mined from the condition ¢(z,) = c,.
It’s clear that such a channel captures
all sound rays with angles

G
¢, <arccos—=.

=

The second type of waveguide is
a feature of shallow water. It occurs
only when the speed of sound near

c(z)

ocean floor

Figure 6

Figure 5

the surface is greater than that near
the floor (see figure 6). It occupies
the water layer from the floor to a
depth z,, where c[z,) = c.. It's as if we
tlipped the first type of waveguide
upside down.

For certain types of dependence of
the speed of sound on depth, the
waveguide acts on sound beams like
afocusing lens. If the sound source is
located on the axis, the rays leaving
it at different angles will periodically
converge simultaneously at points
along the axis. These points are called
the foci of the channel. So if the speed
of sound in the channel varies with
depth according to a dependence that
is close to being parabolic—c(z) =
c, (1 +%b*z*)—then for rays leaving
the source at small angles with the
horizontal, the foci will be at points
x =x,+nn/b, wheren=1,2, ... and
b is a coefficient whose dimension is
inverse to depth (m™) (fig. 7). This
type of curve for ¢(z) is close to the
actual dependence of the speed of
sound on depth in deep oceanic
acoustic waveguides. Deviations

CONTINUED ON PAGE 50
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ANTHOLOGY

An act of Divine Providence

‘Kepler, in his inquiries, asked questions that none before him,
including Copernicus, has asked. . . . [They were] questions in

physics—not in some preconceived geometrical framework.”
—S. Chandrasekhar, Truth and Beauty

by Yuli Danilov

T HAPPENED ON THE NINTH OF JULY IN 1595.

Johannes Kepler, a young teacher at the Lutheran high

school in the Austrian town of Graz, was solving a

geometrical problem and drew an equilateral triangle
with inscribed and circumscribed circles on the black-
board. At that very moment an idea hit him—an idea that
seemed to be the key to solving the secret of the
universe’s structure: the ratios of the radii of the plan-
etary orbits are determined by the ratios of the radii of
inscribed and circumscribed circles of certain regular
polygons. But Kepler encountered some difficulties on
the path to discovering the Creator’s intentions. The
main problem was that he couldn’t explain the number
of planets. At that time there were six known planets (in-
cluding the Earth), but there were infinitely many regu-
lar polygons—why should some be preferable to others?
And then Kepler turned his attention to solid bodies. As
you know, there are only five regular (convex) polyhe-
drons—just as many as there are intervals between the
six planets. These are the so-called Platonic bodies: tet-
rahedron, cube, octahedron, dodecahedron, and icosahe-
dron. And here, in Kepler’s mind, was the solution to the
“cosmographic mystery”:

The Earth is the measure of all orbits. Let us circumscribe a
dodecahedron around its orbit. The sphere circumscribed about
the dodecahedron is the sphere of Mars. Let us circumscribe a
tetrahedron around the sphere of Mars. The sphere circum-
scribed about the tetrahedron is the sphere of Jupiter. Let us
circumscribe a cube around the sphere of Jupiter. The sphere
circumscribed about the cube is the sphere of Saturn. Let us
insert an icosahedron in the sphere of Earth. The sphere in-
scribed in it is the sphere of Venus. Let us insert an octahe-
dron in the sphere of Venus. The sphere inscribed in it is the
sphere of Mercury.

All that remained was to adjust the thickness of the
spheres, correct the remaining discrepancies, and the like.
To this end Kepler needed observational data.! At that

Kepler never was able to make this scheme work.

time only one person in Europe possessed such data:
Tycho Brahe (1546-1601). But in vain did Kepler send the
famous astronomer a copy of his Mysterium Cosmo-
graphicum. He even paid him a call at the Benatek castle
near Prague. Tycho stubbornly refused to share his pre-
cious observations, compiled over many years. He har-
bored the dream of creating his own theory of the design
of the universe (according to which the Sun revolves
around the Earth and the planets revolve around the Sun).
Nevertheless, he undoubtedly noticed his guest’s talent
and grasp of the facts. How else can one explain the sud-
den about-face? Tycho soon appointed Kepler his new as-
sistant in the most difficult problem facing him: a theory
of Mars, which had withstood the efforts of his other as-
sistant Longomontanus.

So various circumstances forced Kepler to leave Graz
and settle at Benatek, where he became an assistant to
Tycho. After his patron died he inherited the title (and
duties) of Mathematician of His Imperial Majesty and—
more to the point, perhaps—twenty precious volumes of
the most exact astronomical observations.

“I think,” wrote Kepler, “it was an act of Divine
Providence that I arrived just when Longomontanus
was busy with Mars. Only Mars gives us the opportu-
nity to penetrate the secrets of astronomy, which oth-
erwise would forever remain hidden from us.”

Tycho gave Kepler the task of developing a theory of
Mars and assigned Longomontanus the simpler problem
of a theory of the Moon. The culmination of Kepler's work
was his Astronomia Nova, a treatise written in Latin (as
was customary at the time) and published in 16092

2The title page reads in English: A New Astronomy,
Causally Justified, or Celestial Physics, together with
Commentaries on the Movements of the Planet Mars in
Accordance with Observations Made by the Eminent
Tycho Brahe, by Decree and at the Expense of Rudolf I,
Emperor of the Holy Roman Empire etc. Written in Prague
during Many Years of Persistent Investigations by the
Mathematician of His Most Holy Imperial Majesty,
Johannes Kepler.
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When people speak about the Astronomia Nova,
people usually emphasize Kepler’s “beelike industry”
(Einstein), overlooking or forgetting (Bertrand Russell) the
audacity of his ideas and the resoluteness with which he
broke with the age-old tradition of circular motion in as-
tronomy. There is no doubt that such a step called for the
highest sort of courage—courage of mind and spirit. Not
without reason did Kepler, in his allegorical dedication

to the emperor Rudolf II, liken the development of his
theory of Mars to a battle with the terrible god of war
himself. The victor was awarded a pair of trophies: two
laws of planetary motion, now known as Kepler’s first
and second laws.

The excerpt from Astronomia Nova that follows will
give you an idea of Kepler’s battle with Mars and the im-
portance of his victory.

KEPLER

Astronomia Nova

(Excerpt)

Introduction to this treatise

Difficult is the lot of anyone today who writes math-
ematical, especially astronomical, books. If one does
not observe the necessary rigor in terms, explanations,
proofs, and conclusions, the book will not be math-
ematical. If, however, one is rigorous, it is tiring to read
such a book, especially in Latin, which lacks the charm
of the written Greek language. That is why one can so
rarely find appropriate readers nowadays; most people
prefer to turn away from reading altogether. Are there
many mathematicians who have made the effort to
read all of the Conics by Appolonius of Perga?! This
despite the presence of diagrams that make this work
much easier to read than an astronomical treatise.

I consider myself a mathematician, yet when I reread
my treatise, trying to reproduce in my mind the mean-
ing of the proofs I had at one time inserted in the fig-
ures and text, all my mental faculties are strained. But
if one tries to make the text easier to understand, in-
serting paraphrases here and there, this strikes me in
mathematical matters as so much chatter, and to pro-
ceed in this way is to err in the opposite direction.

Indeed, a protracted exposition also hinders compre-
hension, to the same extent, in fact, as a short, com-

Translation and notes by Yuli Danilov. From Johannes
Kepler, Gesammelte Werke, Bd. 3, Astronomia Nova . . .,
Miinchen, 1937.

LApollonius of Perga (ca. 262—ca. 190 B.c.), known by his
contemporaries as “The Great Geometer,” was an eminent
representative of the Alexandrian school of Greek
mathematics. He introduced such terms as parabola,
hyperbola, ellipse, focus (of the hyperbola and ellipse), and
asymptote. His major work was Conics (in eight books).
The first four books have come down to us in the original
Greek; books five through seven have survived in an Arabic
translation; book eight was lost and is known only by
references in other sources.

pressed exposition. The latter slips away from the
mind’s eye, the former distracts it. In the first case there
is not enough light, in the second too much; the eye
either can see nothing or is blinded.

Therefore, I have decided to make it as easy as pos-
sible for the reader to understand my work by prefac-
ing it with a detailed introduction.

I achieve this end in two ways. First of all I give a
table, which provides an overview of all the chapters
in the book. Because the subject of the book is unfa-
miliar to many readers, and because various special
terms, and the various topics discussed herein, are
similar to one another and are interconnected as a
whole and in their details, this table, in my opinion,
will be useful only if, comparing all the terms and all
the topics, one is able to take them in at a glance and
elucidate them by mutual comparison. . . .2

But even this overview will not be equally success-
ful with all readers. To many the table I offer as a guid-
ing thread for orientation in the labyrinth of my book
will seem more tangled than a Gordian knot. Here at
the beginning they are presented with many things in
a summary form that might go unnoticed when the
work is read straight through because they are scattered
throughout the text. This will particularly be true of
those who consider themselves physicists and reproach
me, and Copernicus and the ancient authors even
more, who assert that the Earth moves—they reproach
us for disturbing the very foundation of science. For
these readers I carefully list all the relevant proposi-
tions in the main sections in order to gather before their
eyes the proofs underlying all those conclusions of
mine that they find so detestable.

When they see that I have done this competently,

2The table is omitted here.
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they can either take on the heavy burden of reading and
studying my proofs or trust that I, a professional math-
ematician, have correctly applied a pure geometrical
method. In the latter case they can, according to the
problems they have assigned themselves, turn to the
foundations of proofs proposed here and test them in
detail, bearing in mind that the proofs built on these
foundations will be invalid if the foundations can be
overturned. Thus, I proceed by mixing, as physicists are
wont to do, the possible with the certain and erecting
on this mixed foundation a probable conclusion. Be-
cause in this work I combine celestial physics with as-
tronomy, it is not surprising that many hypothetical
assertions are made. This is in the very nature of phys-
ics, medicine, and other sciences that use a priori sup-
positions along with obvious facts of unquestionable
certainty.

As the reader probably knows, there are two schools
of astronomers. One is headed by Ptolemy and is called
the old school; the other is considered new but is re-
ally very old. The first school considers each planet in
isolation, and for each planet it finds the causes of its
motion along its path. The second school compares the
planets and derives what is common in their motions
from one and the same cause. This school is not uni-
tary. Thus, Copernicus and old Aristarchus,® whom I
join as well, think that the cause of the apparent rest
and comprehensible motion of the planets is the Earth,
where we reside; while Tycho Brahe looks for this
cause in the Sun, near which, according to his suppo-
sition, the eccentric circles* of all five planets® are
linked as if tied in a knot (immaterial, of course, but
with a quantitative sense), and he forces this knot, so

3Aristarchus of Samos (fl. ca. 270 B.c.) was a Greek
astronomer and mathematician, the “Copernicus of
antiquity.” Contrary to the commonly held geocentric
conceptualization of his time, Aristarchus argued that the
Sun stands still at the center of the universe and the Earth
revolves around it. In his work On the Sizes and Distances
of the Sun and Moon (his only extant work), Aristarchus
used considerations of similarity to determine that the
distance from the Sun to the Farth is 18 to 20 times the
distance from the Moon to the Earth. (His estimate was low
by a factor of 20.)

“The ancients thought that the planets, insofar as they
are celestial bodies, could make only the most perfect (by
ancient standards) motion: they must revolve uniformly
around the Farth (the center of the universe) along circular
paths. Astronomers of antiquity tried to explain away the
observed irregularity of planetary motion by asserting that
the revolution is regular when observed from some
equalizing point—the punctum aequans (or simply
equant)—displaced relative to the center. From this came
the ancient term for orbit: the eccentric circle (or simply
excenter).

5As noted above, in Kepler’s time only the five planets
(besides the Earth) visible to the naked eye were known:
Mercury, Venus, Mars, Jupiter, and Saturn. Uranus was
discovered in 1781 by Herschel; the position of Neptune
was predicted by Leverrier (simultaneously by Adams), and
the planet itself observed, in 1846; Pluto was discovered by
Tombaugh in 1930.
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to speak, to revolve together with the Sun around the
stationary Earth.

These three world views have other features that dif-
ferentiate the different schools of thought. These indi-
vidual features, however, can easily be altered and im-
proved so that the three main views of astronomy or
celestial phenomena become practically equivalent
and can be reduced to one and the same thing.

The aim of my treatise is first of all to improve as-
tronomical knowledge in all three forms, especially
with regard to the motion of Mars—in particular, to
bring the values calculated from the tables into agree-
ment with celestial phenomena. This had yet to be
done with sufficient precision. . . .

Having set myself such a goal and having achieved
it, I now proceed to Aristotelian metaphysics—or, to
be exact, celestial physics—and to investigate the natu-
ral causes of motion. On the basis of this investigation
the truth of the Copernican teaching (with minor
changes) and the falsity of the other two can be proven
with utter clarity. . . .

There are many whose piety prevents them from
agreeing with Copernicus. By asserting that the Earth
moves and the Sun stands still, they fear they would
be accusing the Holy Spirit, speaking in the Scriptures,
of lying.

These persons should think about this: insofar as we
obtain our most important and most numerous pieces
of information visually, we cannot separate our speech
from visual impressions. Every day we mostly speak on
the basis of our visual impressions, even though we
know quite well that things are not so. . . . We speak
metaphorically about constellations rising and set-
ting—that is, about things being lifted or lowered;
when we say the Sun is rising, others are saying that it
is setting. Thus, Ptolemy’s adherents say that the plan-
ets stand still if they seem to stay near the same fixed
stars for several days running, even though they con-
sider that the planets are in fact moving straight toward
or away from the Earth during this time. Many authors
talk about the solstice, although they deny that the Sun
really stands still.® There is hardly to be found a zeal-
ous follower of Copernicus who does not say that the
Sun enters the constellation of Cancer or Leo, under-
standing this to mean that the Earth enters the constel-
lation of Virgo or Aquarius. . . .

Thus, the Scriptures speak about normal things
(without any intention of instructing people) in human
language in order to be understandable. It employs ex-
pressions familiar to everybody in order to bring them
Divine Revelation. . . .

People used to think that Psalm 103 is dedicated to
the natural sciences because it refers to natural phe-
nomena. It says there that God set the Earth on its
foundations, which shall not move for all time. But the

6The Latin roots of the word solstice are sol (“sun”) and
status (“having come to a stop”).



psalmist is a stranger to discussions of physical causes.
For he is completely satisfied with the greatness of
God, Who created all this, and sings the praises of the
Creator, listing one after another all the things that can
be seen with the eye. . . .

I also implore my readers not to forget about the
goodness of God, which the psalm so insistently calls
upon us to contemplate,
when they return from the
Temple and enter the
School of Astronomy and
glorify together with me
the wisdom and greatness
of the Creator. I show this
convincingly as I lay out
the picture of the universe,
studying the reasons for er-
rors in visual perception;
and the reader will not only
be able ardently to glorify
God for the solidity and in-
destructibility of the Earth,
as for a gift that constitutes
the happiness of all inani-
mate nature, but to ac-
knowledge the wisdom of
Creator in the motion of
the Earth—so mysterious,
so unusual.

As for those who are too
limited to understand as-
tronomical science or too
timid to believe Coper-
nicus without harming their piety, I can only advise
them to leave the school of astronomy, calmly con-
demn philosophical doctrines as they see fit, and de-
vote themselves to their own affairs. They can de-
nounce our ideas concerning motion in space, go home,
and tend their gardens. Raising their eyes heavenward
(for they see with their eyes only), let them wholeheart-
edly give thanks and praise the Lord, our Creator; let
them remain convinced that they honor God no less
than the astronomer whose God-given gift allows him
to see more clearly with the eyes of wisdom and glo-
rify God in his own way.

For this reason scientists can to some extent accept
Tycho’s opinions about the order of the universe. His
notions lie somewhere in the middle. On the one hand,
they liberate scientists as far as possible from the use-
less collection of innumerable epicycles;” they allow,
as does Copernicus, causes of motion that were un-

"In order to explain the apparent planetary motion and its
cessation, ancient astronomers presented the motion of
planets as a combination of circular revolutions: a planet
moves along a circle (the epicycle), the center of which
moves along another circle (the deferent). More epicycles
were introduced as needed to account for the perceived
motion.

known to Ptolemy; and they leave room for physical
investigations, placing the Sun at the center of the so-
lar system. On the other hand, they are acceptable to
the majority of educated people and eliminate a motion
of the Earth that is difficult to believe—one that cre-
ates difficulties for astronomical theory and throws ce-
lestial physics into greater disarray.

That is all T have to say
about the authority of the
Sacred Scriptures. As for
the opinions of the saints
concerning natural phe-
nomena, I will be brief: in
theology, authorities carry
weight; in philosophy,® ra-
tional foundations carry
weight. . . . For me the
truth is more sacred, and I,
with all due respect to the
Church fathers, prove on a
scientific basis that the
Earth is round and inhab-
ited all over its surface, is
insignificant and small,
and flies through the con-
stellations.

But that is enough on
the truth of the Coperni-
can hypothesis. Now we
should return to the aim
expressed at the beginning
of this introduction. . . .

My tedious work came
to an end only when I had passed through the fourth
stage of physical hypotheses. By extremely painstak-
ing proofs, after working through a great many obser-
vations, I found that the path of the planets in the heav-
ens is not a circle but an oval—or, to be exact, an
ellipse.?

Geometry teaches us that such an orbit emerges if we
assigned the motive force behind each planet the follow-
ing task: to bring the body into an oscillation along the
straight line directed toward the Sun. . . . Q)

By “philosophy” Kepler meant natural philosophy, or
physics.

*Here, almost in passing, Kepler brings about a true
revolution in astronomy, formulating his famous first law of
planetary motion, which broke with a concept of circular
motion that had survived for centuries. Kepler’s first law
states that the planets move along elliptical orbits having
the Sun as one of the foci (common to all the orbits).

In his Astronomia Nova Kepler published also his second
law of planetary motion: the line connecting the Sun and a
planet sweeps out equal areas over equal intervals of time.

Kepler’s third law, derived later and published in 1619 in
his treatise Harmonices Mundi (“Harmonies of the World”),
states that the squares of the periods of revolution of the
planets are proportional to the cubes of their average
distances from the Sun.
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SMILES

The mapmaker's tale

. The Four Color Theorem guarantees that four colors
are enough to distinguish countries on a map—doesnt it?

HE FEATHERED FOLK OF
the faraway planet Zum nest on
its one great continent. Long
ago, Zumbirds of the same
feather stuck together and founded its
four ancient kingdoms: Turquoise,
Ochre, Chartreuse, and the Purple
Federation. Each name describes the
plumage of the populace and the color
in which it is to be shown on maps.
For a touch of verisimilitude, the vast
and sulfurous ocean is always colored
yellow. The map below shows the
lands of Zum as they were be-
fore the tragic Purple
Partitions:

a

The Zumbian cartographer (who
was also the leading Purple math-
ematician) knew that just four col-
ors suffice to color any regions in the
plane such that no abutters are col-
ored alike. Such a map of Zum, how-

_ever, would oblige the Purple Fed-

eration to be put in yellow. This
would not do at all, so all maps of
Zum (like those of Earth) once used
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five colors, with one reserved for wa-
ter.

The inhabitants of the seaside
states of Turquoise, Ochre, and
Chartreuse show little variety in the
tints of their feathers, or, for that
matter, in their temperaments. On
the other claw, the members of the
Federation—a contentious lot—
pride themselves on the variety of




their plumage. The troubles began
when the beloved Purple king was
accidentally beheaded in an exhibi-
tion beak fight. A separatist party
consisting of more brightly plumed

. Zumbirds demanded their own
nestland, Fuchsia. The remainder of
the Purple domain became the Re-
public of the Maroons with the
motto: “Divided We Stand.” The
map below shows the result of the
first partition of Zum:;

The Maroonians, whose lands
were unified by law if not by geog-
raphy, insisted that their two prov-
inces be colored the same. New
maps were duly printed with each of
the five nations shown in its proper
color, but the mapmaker was
puzzled. He found it impossible to
make a map of the lands of Zum
using only four colors. It was, of
course, a purely academic question,
since such a map would not have

been politically correct.

Purple passions, once aroused,
could not be contained. The new
maps were hardly dry when Ma-
roonians of a certain hue demanded
autonomy as well. These Zumbirds
lived in the extreme northwest and
southeast of the old Federation.
When the feathers stopped flying,
the new nation of Magenta was
born. The result is shown as a seven-
color map:

< The map-making mathematician

was beside himself. There was no
possible way to color the six coun-
tries with fewer than six colors! Was
there something wrong with the Four
Color Theorem? His faith in pure
mathematics was shaken, but he had
little time to worry about such mat-
ters. He was kept busy drawing and
redrawing the map of Zum as new
Purple lands proliferated.

Oddly, Zumbirds from Turquoise,
Ochre, and Chartreuse can barely dis-
tinguish one shade of purple from an-
other. They cannot tell bird from bird
among the hundreds of ethnic
ministates that sprout like weeds on
the purple lands. They still use the
ancient maps of Zum.

Moral: Purple Zumbirds and oth-
ers should take care to read the hy-
potheses of a mathematical theorem.
Four colors suffice to color any parti-
tion of the plane into disjoint and
connected regions.
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Formulas for Sin nx and cos nx

Handy, simple, and easy to remember

by Dmitry Fuchs

N THE COURSE OF YOUR SCHOOL WORK, MAY-

be you’ve had to take the sines and cosines of “mul-

tiple angles”—that is, expressions like sin 7x, cos 10x,

and so on. Sometimes—though not always—a rea-
sonable way to solve an equation involving such ex-
pressions is to rewrite them as functions of sin x and
cos x. In principle, this can always be done automati-
cally, using the trigonometric addition formulas (for
cos (x + y) and sin (x + y)). But when you have to apply
even a very simple formula repeatedly, nothing can safe-
guard you from error. The method in this short article for
writing out formulas for sin nx and cos nx is simple, easy
to memorize, time saving, and reliable.

Pascal’s triangle

There’s a good chance you know what this is. Just in
case, let me give you the definition. Pascal’s triangle is the
following number array:

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Its nth row consists of 11 + 1 natural numbers; the numbers
at the ends of each row are ones (so the first row has just two
ones); any other number in the array is the sum of the two
adjacent numbers immediately above it. The most remark-
able property of Pascal’s triangle is that the numbers in its nth
row are the binomial coefficients—that is, the coefficients in
the expansion of (x + 1)* (see “Combinatorics-polynomials—
probability” in the last issue of Quantum):
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(x+ 1) = x+1,

(x+ 1) = x2+2x+ 1,

(x+1F = x> +3x*+3x + 1,

(x+ 1) = X +4x> +6x> +4x + 1,
(x+1P= x®>+5x*+10x%+ 10x> + 5x + 1,

Perhaps you already know this from your precalculus
course.

The formulas

Write the nth row of Pascal’s triangle. (By the way, you
don’t have to count rows to find the nth one: it has the
number 11 in the second place.) After each number in the
row add cos” x, cos”~! x sin X, cos”? x sin’x, ..., sin” X,
respectively. Underline the terms in the even places—the
second, fourth, and so on. Write the terms not underlined
in one row and the underlined ones in another row be-
low the first. Insert minus and plus signs alternately be-
tween the terms in each row (minus before the second
term, plus before the third, and so on). And that’s it—in
the top row you get the expression for cos nx, in the bot-
tom row the expression for sin nx.

Examples. The second row of Pascal’s Triangleis 1, 2,
1. We write:

cos® x 2c0s X sin X sin? x

cos 2x = cos? x — sin? x,
sin 2x = 2cos x sin x.

For n = 3 we write:

cos®x 3cos’xsinx 3cosxsin’?x  sin®x

cos 3x = cos® x — 3cos x sin? x,
sin 3x = 3cos? x sin x — sin® x.



Several formulas for cos nx and sin nx obtained by this
method are given in figure 1. The circled numbers along
the zigzag lines constitute the rows of Pascal’s Triangle.

Exercise. Given the nth row of Pascal’s Triangle, write
the formula expressing tan nx in terms of tan x.

Proving the formulas

As a matter of fact, the above formulas are an imme-
diate consequence of De Moivre’s Theorem (for powers
of complex numbers in polar form—don’t worry if you
don’t know what this means). But basically the same proof
can be rendered in a less advanced way. Here’s a direct
proof by induction over .

For n = 2 the formulas are well known. Nowlet a , a,,
..., a,a__ bethe nth row of Pascal’s Triangle. Assume
that the formulas

COS X = @, COS" X —a, COs" X Sin* X + ...,
sinnx =a, cos”™! xsin x—a, cos”? x sin® x + ...

have been already proven. By the addition formula for
cosines

- cos (n + 1]x = cos (nx + x) = cos nx cos X — sin 11x sin x
= (a,cos? x — a, cos® > x sin’ X + ...Jcos X
—{a, cos” ! x sin x —a, cos"~3 x sin® x + ...)sin x.

Multiplying out and collecting like terms, we get

cos (n + 1)x = a,cos” ! x —(a, + a,)cos” ! x sin’ x
+{a, +a,)cos® 3 xsin*x—....

Similarly, using the formula
sin (n + 1)x = sin 11X €OS X + COS 11X Sin X,
we get

sin (n + 1)x = (a, + a,)cos” x sin x /,

—{a,+a,)cos™ 2 xsin’x +... 7 2_/) 1

7% 31
7Y 641
14§ 10 70 51
16 75 9015 6 1

su+1

T3% 91 35
§ 9 0

7

in x

@ 02 x sind x 'n” x

sin 5x =

s4 X sin x -

Figure 1

Sincea,, a, +a,, a, + a,, a, +a,, ... is just the (n + 1)st row
of Pascal’s triangle, the required formulas for cos (n + 1)x
and sin (n + 1)x are thus proven.
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For the inquisitive only!

To conclude, I present a straightedge-and-compass con-
struction of the regular pentagon. Let x = 2r/5. Then 5x =
2m and sin 5x = 0. According to our formula forn = 5,

sin 5x = 5co0s* x sin x — 10cos? x sin® x + sin® x
= sin x[5cos* x - 10cos? x(1 - cos? x) + (1 — cos® x)?]
= sin x{16cos* x — 12c0s*> x + 1).

Therefore,

sin x{16cos* x — 12cos’ x + 1] = 0,

implying either sin x = 0, or cos x = *, /(3 £/5 ) /8 . Since

n/4 < x < ©n/2, the only suitable possibility is cos x =

5 /(3 -5 ) / 8 . Taking the circumradius of our pentagon as

the unit length, we successively construct the segment

of length . /(3 -5 ) / 8, the arc measuring 2n/5, and finally

the regular pentagon inscribed in a unit circle. The details
of the construction are shown in figure 2.

To be fair, this construction is of no practical use: with
readily available drawing tools it’s almost impossible to

Vo8
1 3_./5 1
8

Figure 2

fact that a regular pentagon can be constructed by com-
pass and straightedge—whereas, say, a regular heptagon
(7-gon) can’t—is interesting in itself. However, the chal-
lenging question of the constructibility of regular poly-

achieve the intended result with any precision. But the

gons lies far beyond the scope of this short article.  [®

from an exact parabolic dependence
in ¢(z) cause the foci along the axis
to be erased.

Applications?

Is it possible to send a sound sig-
nal along an oceanic acoustic
waveguide and receive it at the
point of origin, after it has com-
pletely circled the globe? The an-
swer is a flat no. First and foremost,
the continents present insurmount-
able obstacles, as do the deep valleys
and cavities in the depths of the
Earth’s oceans. So it’s impossible to
choose a direction along which
there would be only one waveguide
around the entire globe. But that
isn’t the only reason. A sound wave
propagating along an oceanic acous-
tic waveguide differs from sound
waves in the “telephone” tubes on
ships that we mentioned at the out-
set. The sound wave traveling from
the bridge to the engine room is one-
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“OCEANIC PHONE BOOTH”
CONTINUED FROM PAGE 39

dimensional, and the area of its
wavefront is constant at any dis-
tance from the source. Therefore,
the strength of the sound will also
be constant at any point along the
tube (heat losses aren’t taken into
account). As for the oceanic acous-
tic waveguide, the sound wave
doesn’t propagate along a straight
line but in all directions in the plane
z=z_.So the wavefront here is a cy-
lindrical surface. Because of this, the
strength of the sound decreases with
distance—that is, the sound is pro-
portional to 1/R, where R is the dis-
tance between the source of the
sound and the point where it’s re-
corded. (Try to obtain this depen-
dence and compare it with the law
of attenuation for a spherical sound
wave in three-dimensional space.)
Another reason for the attenua-
tion of the sound is the damping of
the sound wave as it travels through
the waters of the ocean. Energy from

the wave is transformed into heat
due to the viscosity of the water as
well as other irreversible processes.
Also, a sound wave dissipates in the
ocean because of various heteroge-
neities, such as suspended particles,
air bubbles, plankton, and even the
swim bladders of fish.

Before we close, we should point
out that the underwater sound chan-
nel isn’t the only example of wave-
guides in nature. Long-distance broad-
casting from radio stations is possible
only because of the propagation of radio
waves through the atmosphere by
means of giant waveguides. And
we're sure you've heard of mirages,
even if you’ve never seen one. Under
certain atmospheric conditions,
waveguide channels for electromag-
netic waves in the visible range can
form. That would explain the sudden
appearance of a ship in the middle of
the desert, or a city that springs to life
in the middle of the ocean. Q



HAPPENINGS

The USA Gomputing Olympiad

The new kid on the block of international competitions

T CAME AS A SURPRISE TO

learn in November 1991 that an In-

ternational Computing Olympiad

had existed in Europe for three
years and that the United States had
never participated. The International
Olympiad in Informatics (IOI) was
created in 1989 at a meeting of
UNESCO in Paris, and the first IOI
was held in Pravetz, Bulgaria, in May
1989. It was patterned after the suc-
cessful international olympiads in
mathematics and the natural sci-
ences, which were also conceived by
UNESCO. IOI '90 was held in Minsk,
Byelorussia (now Belarus), and IOI'91
took place in Athens, Greece.

IOI ’'92 was held in Bonn, Ger-
many, and attracted over 170 stu-
dents from 50 countries. T was fortu-
nate enough to be able to quickly
assemble a team, with the help of
Harold Reiter and Patsy Hester in
North Carolina and Barbara Larson in
Virginia, to represent the United
States in Bonn. Two of the team
members, Nate Bronson from North
Carolina and Shawn Smith from Vir-
ginia, came home with gold medals.

I was very impressed with the
quality of IOI ’92. From the minute
our team stepped off the train in
Bonn until we left for Frankfurt ten
days later, we were treated to a
highly organized series of events in-
terspersed with two days of compe-
tition.

On one memorable day, we trav-
eled by bus to Heidelberg and toured
the Heidelberg Castle, the charming

by Donald T. Piele

city center, and the old university. At
noon, lunch was served on a boat as
we rode down the Neckar River, and
the day ended with a reception and
talk on computer graphics, hosted by
the home office of the science pub-
lisher Springer-Verlag. The excite-
ment and enthusiasm expressed by
all the team leaders and students con-
vinced me that IOI was going to be an
important international competition
and that the United States must de-
velop a democratic procedure for
fielding the best US team.

With this goal in mind, I as-
sembled an advisory committee com-
posed of persons actively involved in
computing and contests in the United
States:

Dr. Bob Aiken, Temple University
(Association of Computing Machin-
ery)

Nate Bronson (Duke University—
101’92 gold medalist)

Dr. Marc Brown (Director, Ameri-
can Computer Science League)

Patsy Hester (Enloe High School)

Barbara Larson (Thomas Jefferson
High School of Science and Technology)

Mark Kantrowitz (CS graduate stu-
dent, Carnegie Mellon University)

Dr. Rob Kolstad (USENIX—The
Unix Users Group)

Dr. Harold Reiter (math professor,
University of North Carolina at Char-
lotte)

Shawn Smith (Rice University—
101’92 gold medalist)

Working together, we created the
USA Computing Olympiad (USACO)
in November 1992 and set the follow-
ing goals:

1. Encourage students to study al-
gorithmic computer problem solving.

2. Identify students with outstand-
ing ability in computer problem solv-
ing and algorithm development.

3. Provide an opportunity for out-
standing students to develop their
ability with special training and inter-
national competitions.

To meet these goals, we estab-
lished the following rounds in the
USACO.

Qualifying Round. In this round,
students are invited to solve a set of
five problems within a one-week pe-
riod in February. Those who solve at
least three problems advance to the
competition round. The five prob-
lems are printed in a brochure and
widely circulated with the intention
of motivating students to develop
computer problem-solving skills.

Competition Round. The second
round of USACO is open to those who
have qualified in the first round. It is a
controlled, five-hour competition, con-
ducted by local coordinators on a speci-
fied day in March. The solutions are re-
turned to the USACO and graded by a
team of judges. The top twelve students
advance to the final round.

Final Round. This round is con-
ducted during a one-week training
program held at the University of
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Wisconsin-Parkside in June. Four
students are selected as the team to
represent the United States in the
annual International Olympiad in
Informatics. This year the IOI will be
held in Buenos Aires, Argentina, from
October 13 to 23.

Sfonsorship

We were very fortunate to secure
financial support for the USACO
from the Center for Excellence in
Education, a private nonprofit organi-
zation, under the direction of Joann P.
DiGennaro. CEE was founded by
Admiral H. G. Rickover to encourage
the top high school students in the
United States to excel in science and
mathematics and to nurture interna-
tional understanding among potential
leaders. The center sponsors the Re-
search Science Institute and other
programs.

We sent our plan for the USACO
to many national organizations to get
their endorsement, including

ACM (Association of Computing
Machinery),

ISTE (International Society of
Technology in Education),

USENIX (UNIX Users Associa-
tion),

FOCUS (The Federation of Com-
puting in the United States),

ACSL (The American Computer
Science League).

We published our own newsletter
and sent articles to be published in
The Journal of Computer Science
Education, ISTE Update, USA Math-
ematical Talent Search Newsletter,
and the USENIX Newsletter.

Summep Training Gamp

AtIOI’92 in Bonn I discovered that
most of the other countries had estab-
lished a training program where they
selected their final four team mem-
bers. With financial support from the
Center for Excellence in Education,
we were able to add this feature to the
USACO.

The first summer training program
for the USACO will be held June 13-
20, 1993, at the University of Wiscon-
sin-Parkside. Each student will be
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given a notebook 386 system for use
during the week. Besides a heavy dose
of computer problem-solving chal-
lenges, participants will have time for
recreation, including swimming, ten-
nis, jogging, weight training, bowling,
soccer, and the like.

The twelve finalists will be divided
up into three teams (Red, White, and
Blue) and each assigned a staff mem-
ber. Students will be moved between
teams from time to time so that ev-
eryone gets to work with one another
and with different staff members. The
staff members will be Nate Bronson,
Shawn Smith, and Rob Kolstad.

On Wednesday, June 16, the first
challenge problem will be presented,
and the students will have five hours
to solve it. On Friday, June 18, the
second and final challenge problem
will be given. The rules used at the
international olympiad will be fol-
lowed to grade the results and pick
the top four students. These four will
constitute the team representing the
US at IOI '93. The team will be an-
nounced at an awards banquet on
Saturday, June 19, 1993. In October
we will travel together to Argentina
to participate in the fifth Interna-
tional Olympiad in Informatics
(IOI 793).

Languages

The official languages for 101 '93
are Turbo Pascal, Borland Turbo C/
C++, MicroSoft QuickBASIC, Logo,
and Scheme. Pascal and C are likely
to be the prevalent languages at the
summer camp, since they were the
most popular languages in the quali-
fying round.

Here is a sample problem taken
from the set of five problems used in
the qualifying round of the 1993
USACO. To qualify, students had to
solve at least three of the problems.

Latin squares. A square arrange-
ment of numbers

g W~
W U=
— N Ul R W
N W~ Ul A~
A= WO

is a 5 x 5 Latin square because each

whole number from 1 to 5 appears
once and only once in each row and
column. Write a program that will
compute the number of N x N Latin
squares whose first row is

123456...N.

Your program should work for any
N from 2 to 9. Test your program for
N=4and N=5.

Sample run:

ENTER A WHOLE NUMBER BE-
TWEEN 2 AND 9: 4

THE NUMBER OF 4 X 4 LATIN
SQUARESIS 24

USACO information

Those who have access to the
Internet or Bitnet can use anonymous
FTP to transfer information about the
USACO and IOI from our files at the
University of Wisconsin—Parkside.

On your system type

ftp ftp.uwp.edu

You will be asked to give your name.
Respond

anonymous

When the system asks for your pass-
word, type your e-mail address.

Problem statements and informa-
tion about IOl are located in the direc-
tory pub/contests/ioi. Similarly, prob-
lems and newsletters about the
USACO are located in the directory
pub/contests/usaco.

For example, to transfer all the in-
formation about I0], type

ftp> cd pub/contests/ioi
ftp> dir

ftp> ascii

ftp> mget *

Answer (y) for each document you
want to receive. Sign off with

ftp> quit

Getting involved

The success of the USACO de-
pends heavily on the participation of
local coordinators, who are usually



mathematics and/or computer
teachers in high schools throughout
the United States. We welcome
their enthusiastic support and ap-
plaud them for making this com-
puter problem-solving challenge
available in their area.

Students or teachers who would
like to be placed on the USACO mail-
ing list should send a request to

Dr. D. T. Piele, USACO Director
University of Wisconsin—
Parkside

Box 2000
Kenosha, WI 53141-2000

Phone: 414 595-2231
E-mail: piele@cs.uwp.edu
Fax: 414 595-2056 O

ARML Competition

The American Regions Math
League (ARML) has announced its
1993 competition. This year it will be
held on June 5 at two sites: Pennsyl-
vania State University and the Uni-
versity of lowa. The ARML competi-
tion is the largest on-site event of its
kind in the country, drawing 15-
member teams of high school stu-
dents from every region. Teams are
organized on a local basis. For infor-
mation on organizing an ARML team
or joining an existing team, write to
Joseph Wolfson, Phillips Exeter Acad-
emy, Box 1172, Exeter, NH 03833, or
Barbara Rockow, Bronx High School
of Science, 75 West 205 Street, Bronx,
NY 10468.

The ISEF Program

The International Science and En-
gineering Fair, the “World Series” of
science fairs, is held annually with
over 750 student contestants from
affiliated fairs in the United States
and a number of foreign nations. It
culminates a yearlong selection pro-
cess involving thousands of local, re-
gional, and state fairs, their student
participants, and their judges from
science, medicine, and industry.

The ISEF is for students from
grades 9 through 12, two of whom
have been selected to represent each
of the nearly 400 affiliated fairs. The
fair takes place in May each year; this
year’s event will be held in Missis-
sippi Beach, Mississippi, May 9-15.

The annual contest is for awards,
but ISEF is more than just a competi-

Bulletin board

tion—it’s an educational experience
as well. It is one of the few competi-
tions in the world where the judges
outnumber the contestants. Finalists
say that one of the most enjoyable
(though sometimes scary) aspects is
the opportunity to be interviewed by
the scientists, engineers, doctors, and
mathematicians who form the judg-
ing panels. A number of tours are also
organized for the students and their
adult escorts to universities, research
centers, industry, and places of cul-
tural and historical interest.

For a list of project categories or
information about the local and re-
gional science fairs that are affiliated
with ISEF, write to Science Youth
Programs, Science Service, Inc., 1719
N Street NW, Washington, DC
20036, or call 202 785-22.55.

Science program directory available

Searching for stepping stones to
success in science? Interested in in-
ternships? On the prowl for hands-on
research experience? The 12th edi-
tion of the Science Service Directory
of Student Science Training Pro-
grams (SSTP), a comprehensive list-
ing of 490 programs and internships
for high school students who wish to
pursue careers in science, mathemat-
ics, and engineering, is now available
through Science Service, Inc.

Programs featured in the SSTP
Directory offer detailed classroom
instruction and hands-on laboratory
research in a wide range of subjects.
Workshops on career awareness,
study skills, and motivation are in-

cluded in the curriculum in many of
the programs offered by universities,
research institutions, and corpora-
tions throughout the United States
and abroad. More than 130 of the pro-
grams in this year’s edition of the
SSTP Directory are specifically de-
signed for minority students, women,
and other groups who traditionally
have been underrepresented in the
sciences.

By participating in the classes, work-
shops, and internships featured in the
SSTP Directory, students make valu-
able contacts and work directly with
faculty members and professional re-
search personnel. Students also have
the opportunity to utilize the scien-
tific resources of these institutions
and universities to gain valuable
knowledge in their fields of interest.

Each listing in the SSTP Directory
includes the name of the sponsoring
institution, a broad description of the
activities such as courses, lab work,
field trips, and guest speakers; pro-
gram costs, availability of scholar-
ships and financial aid, and addresses
of key individuals to contact for addi-
tional program information or enroll-
ment procedures.

Nearly 75,000 copies of the 12th
edition of the SSTP Directory have
been sent to schools, libraries, and
guidance counselors. Additional cop-
ies are available for $3 each. To order
copies for yourself or your school,
write to Science Youth Programs,
Science Service, Inc., 1719 N Street
NW, Washington, DC 20036, or call
202 785-2255.
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Across

1 Thick plate

5 Unit of length

10 Before coulomb or volt

14 __ splitting (quibbling)

15 Disintegrate

16 Brassica genus plant

17 Ireland

18 Vetches

19 Church part

20 Solution

22 “Onein___ "

24 Small cut

26 Confused

27 Alpha

31 Ankle bone

35 Distance/time

36 Ancient Jewish vest-
ment

38 Pressure units (abbr.)

39 On_ ___ with (equal)

40 One rude person (2
wds.)

41 Invent (a new phrase)

42 Ancient Scand. horn

43 Construct

44 __ rule (old calc.)

45 Toe preceder

47 A large northern con-
stellation

49 Old automobiles

51 Units of yam

52 Ear bones

56 Blood vessel

60 Prefix for 1012

61 Before nerve or axis

63 Fencing sword

64 “WhenlIwas__ "

65 Person of great size

66 Northern CA’s Santa

67 : Star State

68 Units of distance
69 Fast jets
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System of units
Geologic time division
Pentateuch (alt.)
Swelling in tissues
Circuit element

10 Directionless quantity
11 Hat in India

12 Too

13 Young person

21 City in Oklahoma

23 Radiation shield

25 Military freshman

27 Sacred song

28 Prop in Paris

29 Raises

30 Subdivision of a geo-

logic period

32 Rot
33 Digression
34 Shortest paths between

points

37 Lodging for travelers

change
50 Brown pigment
52 Hydrated amorphous

59 Affirmative votes
62 Hoosier state (abbr.)
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Math
M81

The rule for verifying that a coin is
genuine is as follows. Put the coin in
question aside; then put one half of
the remaining 1992 coins on one pan
of the balance and the other half on
the other pan. If the balance reads an
odd number of grams, the coin in
question is counterfeit; otherwise, it’s
genuine.

Indeed, imagine we replace every
lighter counterfeit coin on the scales
by a heavier one. Each replacement
will change the reading by 2 grams, so
the total change will be an even num-
ber. In the end, when all the counter-
feit coins on the balance are the heavy
ones, it will read I — r grams, where I
and r are the numbers of counterfeit
coins on the left and right pans, re-
spectively. So the initial reading is of
the same parityas I-rorl+r(=(I-z)
+ 2r)—that is, it’s even if the coin in
question is genuine (I + r = 20) and
odd otherwise (I +1r=19).

M8s2

This problem can be solved in
many ways. Perhaps the most artless
is a vector solution. We can express
vector AP intermsof AB and AC
a_ni compute the dot product AP -
PC’" to show that it is equal to zero.
This means that vectors AP and
PC’ are perpendicular.

An elegant and, in fact, shorter
geometric solution is based on the ob-
servation that the quadrilateral AEPD
(fig. 1) can be inscribed in a circle.
Indeed, angles ADB and BEC are con-
gruent, since triangles ADB and BEC
are congruent: AD = BE, AB=BC, LA
= /B = 60°; therefore, ZADP + LAEP
- ZADB +(180° — Z/BEC) = 180°. The
segment AE is the diameter of this
circle, because its midpoint O is equi-
distant from A, D, and E: AO = OF =

ANSWERS,
HINTS &
SOLUTIONS

Figure 1

Y AE = Y, AB = AD, so triangle ADO
is equilateral and OD = OA. It follows
that angle APE, subtended by the di-
ameter, measures 90°.

But perhaps the most beautiful solu-
tion is shown in figure 2. We start with
an equilateral triangle PQR, surround it
with a belt of congruent triangles, and
join alternate vertices of the hexagon
thus obtained to get triangle ABC. Ob-
viously, this triangle is equilateral, and
the extensions of the sides of triangle
PQR divide the sides of ABC in the ra-
tio2: 1 (for instance, the lines of the
figure parallel to line CE divide AB
into three equal parts, so AE : EB =
2 : 1). Thus, triangle ABC in figure
2 satisfies the condition of the prob-
lem, and it’s equally obvious that
LAPC =90°.

How can one come up with a so-
lution like this, one that makes ev-
erything so obvious?
Evidently, only after
solving the problem
in a dull laborious
way. (V. Dubrovsky)

M83

(a) The statement
is true, for instance,
for n = 3. Each term
of the sequence can
be written as k>» + 1
for some natural m,
or as (k™)* + 1. But

Figure 3

Figure 2

the remainder of the square of an in-
teger—in particular, of (k™)—after di-
vision by 3is 0 or 1 (because (3] +1)* =
3(3P2 £ 6l) + 1), so (k™) + 1 is never di-
visible by 3.

(b) For any natural number n let’s
take k = 2n — 1 (so that k is odd).
Then an arbitrary term of our se-
quence has the form k**+! + 1 for
some natural m and, therefore, is divis-
ibleby k + 1 = 2n (because x¥*™*1 + 1 =
(x+ 1)[x2m —x2m-1 e x2m-2 = 4 1)),

M&4

Label the vertices of the given
skewb as in figure 3 so that its diago-
nals are labeled AA , BB,, CC,, and
DD ; let the first three of them have
a common point P.

Note that every two of the three
edges AB, A B, and CD lie in one
plane (because ABCD and A,B,DC
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are simply faces of the skewb and
edges ABand A B, join the endpoints
of the intersecting diagonals AA  and
BB,).In other words, every two of the
(extended) lines AB, A B,, and CD are
either parallel or intersecting. Sup-
pose some two of them intersect; for
instance, lines AB and CD meet at O.
Then O belongs to both planes
ABA B, and CDB A, and, therefore,
to line A B , where they intersect. So
in this case all three lines have a com-
mon point. If no two of the three lines
intersect, all three are parallel to each
other. Of course, this argument can
be generalized to any three lines ev-
ery two of which are coplanar (lie in
one plane), but all three are not (we
implicitly used the last assumption
when we represented line A B, as the
intersection of different planes
ABA B, and CDB A ; they're really
different because otherwise the entire
skewb would be flat).

Now, replacing CD by C D, in the
argument above, we deduce that all
four lines AB, A B, CD, and C D,
either have a common point (if AB
and A B, do so) or are parallel (if AB
and A B, are). In any case, lines CD
and C D, turn out to be coplanar, so
the diagonals CC and DD lie in one
plane. In exactly the same way, from
intersecting diagonals AA and CC,
we find that the diagonals BB, and
DD, Iie in one plane. We also know
by the condition that BB, and CC,
intersect at P, so every two of three
lines BB, CC,, and DD, are coplanar,
but all three are not (since the skewb
is not flat). Since these three lines
cannot be parallel (we know that BB,
and CC, intersect), the argument of
the last paragraph guarantees that
they have a common point. This
means that DD, passes through P,
which completes the proof.

Norte. In this problem “diagonals”
are understood as infinite lines. If we
think of them as segments (which
would be more customary), the state-
ment turns out to be wrong, as fig-
ure 4 shows. The nonconvex skewb
in this figure can be constructed so
that the planes ADD , B DD, and
CDD, are its planes of symmetry.
Then the segments AA,, BB,, and
CC, will meet the extension of seg-

1

56 MAY/JUNE 1893

Figure 4 D

ment DD, at the same point. How-
ever, in a convex skewb two diago-
nals can meet only at an interior
point, so the point P in the solution
above will automatically lie on the
segments AA , BB, CC,and DD,.

M85

The basic fact for the solution is
that if a polynomial of degree n has
n distinct real roots, then its deriva-
tive has n — 1 distinct real roots.

To prove this we note that the
derivative is a polynomial of degree
n — 1 and so has no more thann -1
real roots. On the other hand, there is
a root of the derivative in any inter-
val between two roots of the given
polynomial, because taking equal
(zero) values at the endpoints of this
interval, the polynomial must attain
either the maximum or the mini-
mum value on the interval at one of
its interior points. The derivative at

YA

y = Plx)

y=P'(x)

Figure 5

such a point is zero (fig. 5). It follows
that the number of roots of the de-
rivative is not less than n - 1. Since
this is also its largest possible num-
ber of roots, the derivative must
have exactly n - 1 roots.

(a) The derivative of x* + ax® + bx +
¢ is equal to f{x) = 4x° + 3ax*> + b and
must have three real roots. Rewrite
the equation f{x) = 0 as

-b/x* = 4x + 34,

and sketch the graph of the left side
(for b > 0it’s the red curve in figure 6).
The graph clearly shows thatfor b > 0
and a > 0 the equation has no non-
negative roots and exactly one nega-
tive root; for the case b < 0, a <0 the
situation is quite similar. For b = 0,
the original expression for the deriva-
tive shows that there are exactly two
roots, x = 0 and x = - %, a. So three
roots are possible only for ab < 0. We
also see that the condition ab < 0 is
not sufficient for three roots: in figure
6 the right branch of the red curve
does not intersect the line y = 4x + 3a
even for some negative values of a.

It's easy to make this argument rig-
orous, but this isn’t necessary, since we
consider the general situation below.

(b) The statement can be proven
by induction over n. For n = 2 it’s
easy: a,x* + a, = 0 has two roots only
for a,a, < 0.

Now suppose it’s true for all de-
grees less than some n > 2, and con-
sider an equation of degree n without
the kth powerof x, 1 <k < n:
Pxj=ax*+..+a,  x**'+a_x'+
o+ a,=0.

If it has n real roots, the derivative

YA
y=4x+3a

3a

x Y

y=-b/x% b>0

Figure 6




Plx)=b, x"'+b x""2+... +b,
where b_=(m + 1)am+l hasn -1 real
roots. Since the term with x*-! is lack-
ing in P’(x), by the induction hypoth-
esisb, -b, ,<0.Sofork>1,

bkbk—Z
Gy Gy =m<0~ (1)

The case k = 1 requires special consid-
eration. Let x, x,, ..., x_be the roots
of the polynomial P(X) Then, as is

well known,

Plx)=ax"+..+ax +aq,
—a(X X)(X X)X —x ).

Removing the parentheses on the
right side and equating the coeffi-

cients of the same powers of x, we get

a,=axXx,..X,

0 =a,
=0 (XX, X + XX, X _+.. +
XX,..X )
n-1/
a, -a(XX X AR K P
XX XKJ)

(the sum in the last equation con-
tains all possible products of x/s
taken n -2 at a time|. Note that a, =
0,andsox,#0,1=1, ..., n(otherwise,
Plx) =x*ax*"*+ ...+ a;x +a,) would
have at most n — 1 roots, since the
root x = 0 would have a multiplicity of
atleast two|. Sowe canput y, = 1/x.. You
can check that

0 =a,
—a,y, + ... +7),

a, =aj\yy, +/VX3+

Vo Vo) (2)

We can now finish the proof:

0 =ap?
=aly, +...+y)
2y 2 2
=adyi+...+y 2 +2yy, +Y,, +
S AN
>4y, + 7\ Vs + o+ Y, 1Y)
=2a,a,, (3)
s0 aya, < 0.

In fact the statement of this prob-
lemisa weakened version of a theo-
rem of Newton’s (a partial proof of
which is found in an algebra textbook
written by Lobachevsky—the com-

plete proof wasn’t published until
1866 by Sylvester): if a polynomial
Plx)=ax"+a, x*"'+..+a,hasn
distinct real roots,then for all k, 1 <
k<n-1,

L (n—k+1)(k+1)
T - k)k

G 11+ (4)

This can be proven by induction,
along the same lines as above. For
n=2, k=1, we have to prove a,> -
4a,a, >0, which is just the condition
of the positiveness of the discrimi-
nant of the given quadratic equa-
tion. Further, for n > 2, k > 1, for-
mula (4) immediately follows from
the corresponding inequality for the
coefficients b, b b, , of the de-
rivative of P(x):

k-1 “k-2

. (n-k+1)k
bk—l > (H —k)(k— 1) bkbkfl
(the degree of P’(x)is n—1!), which is
true by the induction hypothesis just
as in the proof of formula (1) above.

Finally, for k = 1 we have to refine

formula (3) above. Summing the ob-
vious inequalities

vi+y?r>2yy, (5)

(which amount to (y, -y > > 0) over all

pairs (i, j), 1 < j, we get

-1y +...+y2)>2yy, +yy, +
& yn—lyu)’

because every y * enters into n - 1

formulas (5). Now dividing this by
-1 and using formula (2) (remem-

bering that a, # 0), we arrive at

@ > az[—2~+2j

-1
'(y1y2+Y1Y3+ ”yn—lyn)
_2n
T o1 %

which is just formula (4) for k = 1.
(V. Dubrovsky)

Physics

P81

Velocity is usually described as a
function of time ¢, but in our case it’s
a function of the coordinate x. This is
an unusual way of looking at it, but
perhaps it yields a well-known kind
of motion. Let’s find out.

Take a very small time period t and
find the acceleration a of the body:

=2 _ B B
At Ax At
It’s clear that the first factor is the de-

rivative of the function v(x) = Ax:
Av _1,1 _ A
Ax 27 x  2Jx°

The second factor is the velocity:

i—:zv(x):A«/}.

Thus,

A«/——ﬁ

= constant.

N—

This means that the body simply
moves with a constant acceleration
and will be at a distance L from the
initial equilibrium position after time

= gz
vV a

P82

In the initial state we can neglect
both the vapor pressure and the vol-
ume the water occupies. We’ll con-
sider that air at atmospheric pres-
sure p, = 1 atm and temperature
T, = 293 K occupies the entire vol-
ume V of the pressure cooker. In the
final state the pressure inside the
cooker 3p, consists of the air pres-
sure and the pressure of completely
evaporated water. Denoting by p, v
and M the density, initial volume,
and molar mass of water, respec-
tively (p = 10° kg/m? M = 18 g/mol),
then for air pressure p, and vapor

A0 A
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pressure p,_in final state we get

gt o _ pVRT
a IIE)’ v MV

By the statement of the problem

D, +D,=3p,

From these formulas we can find the
ratio of the water’s volume to the
pressure cooker’s volume:

}::;%Nu3—7wg):10%
1% PRT T

P83

Since the capacitors are connected
in series, the capacities add as recip-
rocals:

1 1 1
7:74_7,
Cc C C(
C= Clcz
C +C

When connected to a voltage source
V, the charge g on the combination
will be

Since this charge appears on each ca-
pacitor in series, it must not exceed
the maximum charge for either ca-
pacitor: g, = C,V, or g, = C,V,. Let’s
assume that

q, < g,
Then the following relationship
should hold:
Clc‘l Vv
C +C,

<CV,

171/

which can be reworked as

veStby
g

IfC,V, =G,V

,V,, then we get

C2%+C2
— V=N

2

V<
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P84

The force acting on a ring in a mag-
netic field is proportional to the cur-
rent in the ring. The current in turn
is proportional to the electromotive
force € induced in the ring as it
moves, and this emf is proportional to
the rate of change in the magnetic
flux penetrating the plane of the ring,
which means that it’s proportional to
the ring’s velocity. When the force act-
ing on the ring due to the magnetic field
is equal to the force of gravity, the ring
will experience no net force and will
travel at its terminal velocity.

Since the ring’s kinetic energy
doesn’t change while it’s falling at its
terminal velocity, the change in its
gravitational potential energy must be
equal to the heat produced by the cur-
rent in the ring.

Let the ring’s terminal speed be v.
The emf induced by the moving ring is

2= kAP
At

’

where @ is the magnetic flux pen-
etrating the ring and k is a proportion-
ality constant. Then

2 2
@zﬂng:EiJ%ﬂ+aHL
4 4
AD  nd? AH

= 0=
At 4 At
But AH/At = v, so

2
€= k%BOocv,

and the current flowing through the
ring is

knd?B,ov

Tt
R~ 4R

Now let’s write down the energy
conservation law. Let the mass of
the ring be equal to m. The amount
of heat produced in the ring during
time ¢ is equal to ?R¢. If during this
time the height of the ring decreases
by h, then

mgh = PRt.

Since h/t = v, then
mgv = IR,

En2d*Botv?
16R '

mgv =

From this it follows that

_ 16Rmg
Rnd*Blo?

P85

Consider each water drop an
identical nontransparent ball of ra-
dius R. Such a ball has a cross-sec-
tional area of s = tR% This means
that n drops scattered evenly in 1 m?
of air fill an area of (approximately)
S =nnR? This estimate doesn’t take
into account any partial overlap of
the drops, but this isn’t essential for
an approximation.

Since the visibility is 10 m, drops
within a rectangular parallelepiped
with a base of area 1 m? and a length
of 10 m should cover an area of 1 m2.
There are 10n drops in this parallel-
epiped, which cover an area of

10mnR?* =1 m?.
From this follows the value of n:

n= L )
10wR?

(1)

This formula contains the un-
known value R for the radius of a
drop. Let’s find it. Two forces act on
a drop: the constant downward force
of gravity and the upward force of air
resistance, which varies with the ve-
locity of the drop. There comes a
moment during the fall when these
forces counteract each other. After
this the drop’s velocity stops increas-
ing and the drop falls with a constant
velocity, which can be found by
equating the forces of gravity and air
resistance:

mg =43Rv
(m = %mR® is the mass of one drop,

p = 10% kg/m? is the density of water).
From this we get



%nR3pg=4.3RV

and

R? = B4dv =Y m2,
4 mpg  pg

(2)

Since the fog descends over the
course of 2 hours and its initial height
was 200 m, the velocity of the water
drops is

B 200m
st OO o om nfs,
. ~2.36005 = 028 m/s

Plugging this into equation (2), we
find the radius of the drops:

0.028

=1.7-10"° m.
104

Now from equation (1) we can deter-
mine n:

1
n= =
10-3.14-(1.7) -10°

Brainteasers

B81

Cut the quadrilateral along the di-
agonal BD, turn triangle ABD upside
down, and put the piece back so that
its vertices B and D change places
(fig. 7). We get a triangle A’BC, be-
cause ZBDC + £ZBDA’ = 180°. This
triangle is isosceles (A’B= AD = BC),
80 LC = LA = LA.

B82

The answer is shown in figure 8.
It’s found simply by trial and error.

=1.1-10%.

Ad;\—”””

Figure 7

B83

It’s clear from figure 9 that the Moon
subtends a greater angle at the observer’s
position at its zenith than when it is on
the horizon, so its angular diameter is
greater in this position.

B84

A quick search shows that there
is no solution in Arabic numerals
(since bd is the number of a century,
bislor2,butb=1,becausea=1.
So bd = 20; then, from the number
of the year abcd, we get b = 9, which
is a contradiction). So our letters
must stand for Roman numerals. A
further search yields the following
unique answer: a=M, b=X,¢c=C,
d =1, so the year is MXCI (or 1091),
and the century is XI (the 11th).

B85

If there were k honest persons,
the first k statements were wrong
(and so were made by liars) and the
last 12 — k statements were true
(and so were made by honest per-
sons). Therefore, k = 12 — k: there are
k = 6 honest persons in the room.

Networks

(Solutions supplied by the editor)

1. If we draw the three force vec-
tors, one after another, they’ll form an
equilateral triangle.

2-6. The solutions to these exer-
cises can be found in the article “Bo-
tanical Geometry” in the September/
October 1990 issue of Quantum.

17 | 24 3 32 | 11 | 26

2 31 18 25 4 33

23 16 1 10 | 27 12

30 9 28 19 | 34 5

15 | 22 7 36 | 13 | 20

8 29 | 14 | 21 6 35

Figure 8

7. The doubled number of seg-
ments of a shortest network is equal
tov, +2v, + 3v, + 3f on the one hand,
and 2(v, + v, + v, + f— 1) on the other.
Equating the two expressions, we
getf=v, —-v,-2.

8. This requirement was necessary
to ensure that there is only one road
from each village.

9. Use exercise 4.

10. The length of the shortest net-

work is 4 + 3+/3.

11. According to the algorithm de-
scribed in the article, the villages A
and B are chosen under the assump-
tion that there are no roads joining
two villages. Since the number of vil-
lages that are the endpoints of only
one road is still greater than the num-
ber of forks (exercise 7), at least two
of them are connected to the same
fork. We can choose them as A and B.
In fact, if there is a village A with two
or more roads starting at it, we can
cut all these roads. Then the connec-
tion graph will be split into several
disjoint parts, and the problem can be
solved separately for the villages in
each part plus village A. This allows
us to reduce our search to the case when
there is only one road from each village
and this road leads to a fork.

12. Sometimes it’s clear what tri-
angle should be chosen, but it seems
too difficult (if it is indeed possible) to
formalize the rule of choice in the
general situation. So perhaps the best
thing one can do is to consider both
possibilities.

13. The only essential feature of a
“network” (not a “shortest net-
work”!) is connectedness. And this
property isn’t violated when a con-
nection graph is “shortened” according
to the proposed algorithm.

14. The first question has to do with
a very special arrangement of villages.
However, one can conceive of such an
arrangement and such a connection
graph when it’s impossible to avoid

at horizon

at zenith (
%

Moon

2

Y

Earth

Figure 9
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this unpleasant situation by, say,
choosing another pair of villages A
and B. We must confess that the algo-
rithm doesn’t work in this situation,
and we couldn’t find a way to make
it work. Perhaps our readers will have
better luck.

The situation described in the sec-
ond question can simply be discarded:
it can occur only if the connection
graph that is being tested doesn’t cor-
respond to the shortest network.

Symmetry

1. (a) 1/6. Favorable outcomes are
(6, 6), (6, 5), (5, 6), (5, 5), (6, 4), (4, 6).
(b) 5/12. Favorable outcomes are
(6’ 3)/ (6/ 2)/ (41 2)/ and (Hl n)l (n/ 1) for
alln=1,2,...,6.

2. We can assume that the mo-
ment when the passenger comes to
the bus stop is uniformly distributed
in the interval between the arrivals
of buses of either line. Then the
probability of waiting not less than
t minutes for a bus of one line is
(10 - ¢)/10 = 1 - t/10 if t < 10 and
zero if t > 10; for the other line, it’s
1 -t/15if t<15. We're interested in
the intersection of these two events.
Since the two schedules are as-
sumed to be independent, we can
apply the multiplication rule, which
yields the answer (1 —t/10)(1 - t/15)
fort <10 and O for ¢t > 10.

3. Label the three parts of the seg-
ment with the numbers 1,2, 3. Then
any outcome of the experiment in the
problem can be represented as a triple
(k, 1, m), where k, I, and m are the
numbers of the parts hit by the first,
second, and third point, respectively.
There are 3% = 27 outcomes, and all of

Figure 10
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them are equally likely. For favorable
outcomes all three numbers must be
different, and since there are 6 permu-
tations of the numbers 1, 2, 3, the
answer is 6/27 = 2/9.

4. The points A, B, C, D can be
chosen in two steps: first we choose
four points on the circle, then we la-
bel them at random. After point A is
labeled, there are three equally
likely variants for labeling point C,
exactly one of which (opposite to A)
yields intersecting chords. So the
answer is 1/3.

5. A chord of a circle of radius r is
longer than the radius if and only if
its midpoint is at a distance less

than (+/3/2)r from the center (fig.
10). In part (a) the random point
must hit the corresponding portion
of the diameter, in (c) it must fall

into the circle of radius (+/3/2)r. So
the answer in (a) is +/3/2, and in (c)
it is n[(~/3/2 r]2/nz? = 3/4. In part (b)
one of the points can be fixed (point
A in figure 10); this leaves 5/6 of the
circumference (the greater arc BC)
for the other point; so the answer is

5/6. The answers in part (d) are 1/2,
1/3, and 1/4, respectively.

BA
o

51/3

0 =n/3

47r/3

0 /3 4n3 on

Figure 11

6. (a) 1. Any triangle has an angle
greater than 30°—otherwise, the sum
of its angles would be less than 180°.
Parts (b) and (c) can be answered by
using the method applied in the first
solution to the acute triangle prob-
lem. Figure 11 shows the sets of
points (o, B) in the square 0 < o < 27,
0 < B < 2=, satisfying the conditions
of these problems. The answers are:
(b) 1/4 (fig. 11a); (c) 2/3 (fig. 11Db).

7. The answer is 1/4. This prob-
lem is just another form of the acute
triangle problem. Indeed, assume
that the segment is 2x units long.
Then the lengths of its three pieces
can be thought of as the measures o,
B, v of the three arcs into which a
unit circle is divided by three ran-
dom points. The conditions that the
triangle formed by these points is
acute are 0. < T, B < T, Y < . But since
o + B +v=2m, these inequalities can
be rewritten as 200 < 2m =0 + B + Y,
or o < P +v, and, similarly, B<a +7,
v < o+ B, which are just the triangle
inequalities for the pieces of the ini-
tial segment.

8. (a) m/4; (b) ©/2+/3 . The coin cov-
ers a node if the distance from the
coin’s center to the node is not greater
than 1/2 (the radius of the coin). So
part (a) turns out to be equivalent to
problem 6 in the article. In part (b) the
unknown probability is the ratio of
the area of the three shaded sectors in
figure 12 to the area of the triangle.

9. Both problems are solved by using
the technique in the second solution to
the acute triangle problem in the article.
The answer to part (a) is 1 — n/27-!
(there are 27 ways of choosing an
endpoint of each of n diameters and
2n of these ways—the number of
sectors formed by n diameters—

Figure 12




yield the n-gons that do not contain
the center of the circle). The nu-
merator n?> — n + 2 in the answer to
part (b) is the number of parts (“sec-
tors”) into which a sphere is divided
by n great circles no three of which
have a common point. This can be
proven by induction: when a new
great circle is added to k circles al-
ready drawn, it’s cut by the “old”
circles into 2k arcs; each of these
arcs cuts a certain “old” piece of the
sphere in two, thus adding 2k
pieces. So for n circles the number
of piecesis 2 + (2 +4 + ... + 2(n-1))

=n’>-n+2.

(See the Happenings department in
the March/April issue)

1. The main idea in this problem is
that the ratio

_ abc-1
(a-1)(b-1)(c-1)

is always greater than 1 and smaller
than 2 for all sufficiently large values
of a, b, and ¢, so it can be an integer
only for a finite number of triples g,
b, ¢, which can be examined simply
by trial and error.

Lettingo=1/(a-1),p=1/(b-1),
and y=1/(c - 1), and noting that
x/(x -1) =1+ 1/(x — 1), we can
write A as

A =(1+o)(1+B)(L+7)-apy
=l+of+By+yo+o+P+y.

It follows that A > 1 and A decreases
together with any of the arguments o,
B, y—that is, decreases as a, b, or ¢
increases. Now let’s consider three
possibilities for a, the smallest of the
numbers.

(1)a=4. Thenb=5,c>6, s0

4.5.6-1
—<
3.4.5

1<A< 7,

and A cannot be an integer.
(2)a=3.Thenb>=4,cz5, A<
Therefore, A = 2, and we get the fol-
lowing equation for b and ¢: 3bc - 1
=4(b-1)c-1),or(b-4)c-4)=11,

whose only integer solution satisfy-
ing3d<b<cisb=5,¢c=15.

(3) a =2. Similar reasoning yields two
possible values for A: A =2 and A = 3.
In the first case, b and ¢ must satisfy the
equation 2(b + ¢) = 3, which has no in-
teger solutions. In the second case, we
get the equation (b - 3)(c-3) =5, which
has a unique solutionfor2 <b<c: b =
4, ¢ = 8. So the answer is (a, b, c) =
(3,5, 15) or (2, 4, 8).

2. The answer is f{x) = x. This prob-
lem has many seemingly different
solutions. But most of them are fun-
damentally alike. We'll give perhaps
one of the shortest versions, based on
an idea found by two or three Olym-
piad participants.

We can write the given equation as

y = fix* + fly)) - flx)* (1)

In this form, it shows us that f must
be a one-to-one function. For if
fly,) = fly,), then y, = fix* + fly))) -
fixP = fix* + fly,)) - fix)* = y,. Writing
fix)* = fix* + fly)) and substituting, we
find that f{x)* = f{-x)*. But f is one-to-
one, so f{-x) # f(x) only when x = 0.
Hence f{-x) = —f(x), and f is an odd
function.

Suppose now there is some z # 0
such thatfiz) #z. Let y =z if flz) < z
and y = —z if f{z) > z. In both cases f{y)
<y (in the second case, fly) = fl-z) =
~flz) < =z = y), so we can put x =

v —f(y) . Plugging these y and x
into equation (1), we get

fix*+ Aiv)) = Ay -Ay)+Ay))
=fiyl=y+fixP2y,

which contradicts f|y) < y. This con-
tradiction ensures that f{z) = z when-
ever z#0.

Finally, settingx =0, y = 1 in equa-
tion (1), weget 0+ £1))=/1)=1on the
left side and 1 + f|0P on the right side,
which means that f{0) = 0. This com-
pletes the proof that f{x) = x for all x.

3. The answer is n = 33. The total
number of edges joining 9 points to
one another is 9 - 8/2 = 36. If exactly
33 of them are colored, we can choose
three points so that each of the three
uncolored edges has at least one of
these points as its endpoint. Then all

the edges joining the remaining 6
points are colored. But it’s a well-
known fact that in this case 3 of these
6 points are joined by edges of one
color. (Here is the proof: take one of
the six points, A; at least 3 of 5 edges
joining A to the other points—say,
AB, AC, and AD—are the same
color—say, red; then either the tri-
angle BCD is blue, or one of its sides
is red and so forms a red triangle with
two edges issuing from A.) So 33 col-
ored edges always contain a one-color
triangle and, therefore, n < 33.

On the other hand, there is an ex-
ample of a coloring of 32 edges in two
colors that has no one-color triangles.
Such an example can be constructed
step by step, using the following idea.
We start with a set of points with all
the line segments connecting them
colored in one of two colors, but with
no one-color triangles among them.
We add a new vertex B to this graph
by looking at one of the “old” verti-
ces—say, A. As we join B to each old
vertex X, we color edge BX using the
same color as AX was. We leave edge
AB uncolored. This construction can-
not create one-color triangles, be-
cause if the edges of a triangle BXY are
the same color, then this would have
had to be true for triangle AXY too,
which was not allowed for the origi-
nal graph.

Now let’s take the graph shown in
figure 13 and extend it, using this con-
struction four times. We’ll obtain 5 +
4 =9verticesand 10+4+5+6+7 =
32 colored edges with no one-color
triangles. So nn > 32, and we're done.

4. The locus in question (see fig-
ure 14) is the ray [ starting at the point
B of circle C diametrically opposite
the point A where C touches L. The

Figure 13
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direction of the ray is defined by the
condition that its extension beyond B
cuts L at point D symmetrically to A
with respect to M (DM = MA). In
other words, I is parallel to MO,
where O is the center of C; the point
B itself is, of course, excluded.

Let PQR be an arbitrary triangle
circumscribed about circle C with the
base QR lying on line L. Draw the
tangent Q R, to C through point B
(see figure 14) and consider the dila-
tion relative to the center P that takes
triangle PQ,R, into PQR. Clearly,
this dilation takes B into D and the
incircle C of triangle PQR into the
“excircle” of this triangle—that is, the
circle touching side QR (the image of
Q,R,)from the outside and the exten-
sions of sides PQ and PR. So D is the
point of contact of the excircle and
side QR, and A is the point of contact
of the incircle with the same side. It’s
known that QA = RD (both these seg-
ments can be expressed in terms of
side lengths of triangle PQR—this
will be explained below). So the con-
dition QM = MR is equivalent to AM
= MD, which means that point P be-
longs to the locus in question if and
only if it lies on the line DB beyond
point B.

To prove the equality QA = RD,
denote by p the distance from P to
either of the points K or N where C
touches sides PQ and PR (of course,
PK = PN), and denote by g and r the

Figure 14
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similar distances for vertices Q and R
(g = QA =QK,r=RA=RN). Then

Q=g
=g+ 1) +(a+p)-(p+1)]

- %(QR +QP-PR).

Similarly, if p’, ¢’,  are the distances
from P, Q, and R to the points of con-
tact of the excircle with the corre-
sponding sides of triangle PQR, then

RD=r
=l a)+(r-a)-(r-7)]
= %(QR+QP—PR)

=QA.

If we allow that the circle C in the
statement of the problem simply
touches the lines PQ and PR (that is,
is either the in- or excircle of triangle
PQR), the unknown locus would con-
sist of two rays—all the points of line
BD outside circle C. The proof is vir-
tually the same.

5. We'll prove the inequality by
induction over the number of points
ISl in the set S.

For a one-point set (IS| = 1), it’s
trivial.

Now assume that the inequality is
true for all sets S such that IS| < n,
n > 1, and consider a set S such that
IS| = n. Since n > 1, we can choose a
plane parallel to one of coordinate
planes—Ilet it be the xy-plane—not
passing through any point of S and
dividing S into two nonempty subsets
S, and S, (the projection of S onto one
of the coordinate planes must contain
more than one point; then the plane
we need can be taken as perpendicu-
lar to this plane). Denoting the num-
bers of points in the projections of the
sets S, and S, onto the coordinate
planesbyx,, v, z,; X,, ¥, z, (so that x,

=18, ¥, =18,), and so on), we can
wntez <IS),z, <18 ), 1S | =x, +x,, IS |
=V, +Vy and so, by the 1nduct1ve as-
sumption,

ISP = (18,1+1S,1)’
< (\/lelz1 +\[XZYZZZ )2
JX, %y, )2

(v
m(&n+&m+2(&an&ﬂ
(

<18 |

>4

<IS, (x5, +

z

+X,Y, +7,%,)
= |Sz|(X1 +X2)(y1 +y2)
=18, 118,11, .

Here we used the arithmetic mean—

geometric mean inequality /ab <
(a + b)/2.

So the statement has been proven
for IS = n, and thus for all values of |SI.

The continuous version of the
statement of this problem is also true
(and is proven in much the same
way):if V, A, A, A, are the volume
of some body and the areas of its pro-
jections onto the coordinate planes,
then

VISAAA,

This version, as it turns out, was
rather well known (in fact, it was
even published in Kvant, Quantum’s
Russian sister magazine), and some of
the IMO participants used it in their
proofs for the “finite case.”

6. (a) Suppose S(n) > n*— 14 for some
n > 4. Then n? can be represented as
the sum of k = n? - 13 positive square
integers:

2

2 _ 2 2
n°=a, +£12 +...+ak.

Subtracting k ones, we get

n?-k=13

=(a2-1)+(a>-1)+...+(a>-1),
which means that 13 is the sum of
several numbers of the form a2 - 1—
that is, thenumbers 0, 3, 8, 15, ... (the
addends may repeat). But this is not
true. So S(n)<n*-14.

(b) To tackle this problem, we may
note that n*>— 14 >2 whenever n> - 14 >
0, so n* must necessarily be represent-
able as the sum of two squares. But it




is known (see, for instance, “Genea-
logical Threes” in the November/De-
cember 1990 issue of Quantum, or
any other text on Pythagorean triples)
that in this case the number n itself
is a multiple of the sum of two
coprime squares. The first few pos-
sible values of mare 5 = 1% + 2%, 10 =
1243,13=22+32 17 = 12 + 4% The
numbers 5 and 10 don't fit, because
25% and 10? can’t be represented as the
sums of three squares. But it turns out
that 13 can, and that this is the value
we seek for n. Let’s prove it.

Note first that if n? is a sum of k
squares at least one of which is even,
then n? is the sum of k + 3 squares,
because (2m) = m® + m> + m?* + m*. If
we split even squares in this manner,
then, starting with

137 =82+ 82 +4% + 42+ 32

we'll get representations of 132 as the
sum of k squares fork =5, 8, 11, ...,
155 (and even more—up to 64 + 64 +
16 + 16 + 1 = 161); starting with

132=8+8>+42+42+ 22+ 22 + 17,

we'll get the representations for k = 7,
10,13, ..., 154 (in fact, up to k = 169);
and

generates the representations for k =
9,12, 15, ..., 153 (this is where we
can'’t get longer sums: 153 is the num-
ber of terms after all possible splits).
It remains to fill the gaps from 1 to 6:

k=1:132=13%

k=2: 132=122+ 5
k=3:132=12*+4>+ 3%

k=4: 132=10*+ 8+ 22+ 1%
k=6:132=122+3>+22+22+ 22+ 22

It’s not hard to show that 169
cannot be represented as a sum of
156 squares. First of all, none of
these squares can be too large. In
fact, if even one of them were as
large as 16, the sum of the others
would have to be at most 169 - 16 =
153. But there are 155 of them,
which is too many. So we would be

representing 169 as the sum of, say,
al’s,b4’s,and ¢ 9’s. That is, a + 4b
+9c¢=169,and a + b + ¢ = 156. Sub-
tracting these two equations, we
find that 3b + 8c = 13, which has no
solution in integers.

Thus, 13? cannot be represented
as a sum of 156 perfect squares, and
S(13) = 155 = 132 - 14.

(c) Note first that any number m
> 14 is representable as the sum of
numbers of the form x> - 1—that is,
of the numbers 0, 3, 8, 15, ... . (In-
deed, any m > 14 equals either 14 +
3k=8+3(k+2),orl5+3k, orl6+
3k =8+8+3k))

Now let’s prove that any N > 28
can be represented as the sum of k
nonzero squares for all k, N/2 <k <
N - 14. To this effect, rewrite N=a?
+..+a’asN-k=(a>-1)+..+
(a,> - 1), and the inequalities above as
14 < N-k<k. Since N-k > 14, we
can represent N —k as the sum of sev-
eral nonzero terms of the form x2— 1.
The number of these terms is not
greater than N - k <k, so we can add
as many terms 0 = 12— 1 as necessary
to make the total number of terms ex-
actly equal to k. We can then form the
desired representation as a sum of
squares by using the trick from the
first paragraph of this solution.

Setting N = r?, we see that what re-
mains to prove is the existence of rep-

resentations with k=1,2, ..., n?/2 - 1
terms for infinitely many values of n.
But it will be more convenient to prove
directly that §(n) = n* — 14 implies
S(2n) = (2nP - 14, and so any value of n
from part (b) (say, n = 13) generates an
infinite sequence of integers N = n, 2n,
21, ..., such that S(N) = N* - 14.
Ifn*=a?®+ ... +ap2 then, by split-
ting even squares in (2n)* = (2a )* +
... +(2a, ), we can get representations
of (2n)* as the sums of k, k + 3, ..., 4k
terms. Setting k=1,2, ..., m, we'll
obtain representations of (2n)* with
1,2, ... mm+1=(m-2)+3,
m+2=m-1)+3,...,4m -8 =
4m-2),4m -7 =4(m-1) - 3,
4m - 6 terms (working a numerical
example will make this clear). So

S(2n) > 4S(n)-6.

Suppose that S(n) = n*> - 14. Then,
by the solution to part (b), n > 13.
Since (2n)? > 28, there are additive rep-
resentations of (2n with any number of
terms from (2n)/2 to (2n)* — 14. On the
other hand, S(2n)>4S(n)-6 = 4n*- 62 >
(2nP/2. So the equality S(2n) = (2n) - 14
is true.

Now the proof is complete.

There are numbers other than 13,
213,22 13, ... such that S(n) = n* -
14. One of them is n = 17. Try to
verify this.
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TOY STORE

Swinging technigues

“How | do like to go up in a swing,

FEEL PRETTY CONFIDENT IN

asserting that the swing is not a

human invention. Just look at how

apes swing so adroitly among the
vines. I imagine we humans inherited
this form of entertainment from our
ancestors on the evolutionary tree.
The venerable age of this activity
probably has something to do with its
simplicity. This is no high-tech de-
vice! All you need to do is attach a
rope at a height of a few meters, grab
the other end, run, lift your legs—and
off you go, back and forth on your
homemade swing.

But is it as simple as all that? If you
do nothing after taking off from the
ground, the amplitude of the swing’s
oscillations will gradually damp un-
til the swing stops oscillating. Look at
figure 1. You see a swing with a per-
son in the same pose at three sequen-
tial moments: at the extreme left po-

4 A B

, B
Figure 1

64 MAY/JUNE 1883

Up

by Alexey Chernoutsan

sition (point A); at the middle (point
B); and at the extreme right (point C).
The effect of friction at the swing’s
suspension point and air resistance
result in a lowering of the center of
gravity of the swing (together with
the person) at the extreme positions
(compare A with C). This is due to the
gradual decrease in the mechanical
energy of the system. How can we
avoid this? What do we need to do to
start the swing moving without
touching the ground and to keep it
swinging as long as we wish? All we
need to do is lower our bodies’ center of
gravity a little at the extreme positions
and lift it at the middle position. If you're
standing on the swing, you just squat
and straighten up at the right times. If
you squat enough, the amplitude of the
oscillations will increase (fig. 2).

What about if you swing sitting
down? You've known the answer (if

Figure 2

in the air so blue . . .
—Robert Louis Stevenson

N
A l ﬁ:\@%

1

not the reason) since childhood: you
bend and straighten your knees {caus-
ing your center of gravity to move up
and down). In this case the increase in
mechanical energy is due to the work
performed by your muscles: when
you raise your center of gravity at the
middle position, you do more work
than when you lower it at the ex-
treme positions.

To understand why it’s so, we’ll
leave the playground and enter our
home laboratory. We imagine the
simplest model of a person on a
swing, consisting of a mass M at-
tached to a thin thread. To imitate
the way the center of gravity goes up
and down, we’ll run the upper end of
the thread through a small hole at
the swing’s pivot point (fig. 3). As
the need arises we can either pull
the thread up, reducing the
pendulum’s length , or let it out. It’s

[
/ |

Figure 3
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clear why the thread exerts more
force at the middle position: as the
weight moves along the arc, it has a
centripetal acceleration a = v*/I and
the force of the thread must exceed
the force of gravity by ma = mv?/L
A similar phenomenon is observed
when you use a swing: at the middle
position you're pressed against the
seat of the swing (you’ve being af-
fected by the centrifugal force—if
you're familiar with noninertial sys-
tems, you’ll understand what I'm
talking about). Your leg muscles and
feet are strained much more, and
you perform even more work when
you straighten your legs.

Let’s get back to our simplified
model (fig. 3) and do some simple cal-
culations that will help us understand
the conditions under which swinging
occurs. The force of the thread at the
low position is equal to F, = mg +
mv?/], and at the extreme position it
equals F, = mg - cos o (o is the maxi-
mum angle of deviation|). The work
done in one period equals

AW =2(EAI - EAl)

= 2%[1]15;](1 —coso)+ mvz],

where Al is the change in the

pendulum’s length (we assume that
Al/l << 1). The mechanical energy of
the system is equal to the kinetic
energy at the bottom of the swing,
E = mv?*/2, or the gravitational po-
tential energy at the extremes, E =
mgl(1 - cos ). Then

AW _ Al
w 1’

Pay attention now: the relative in-
crease in energy in a period doesn’t de-
pend on whether the pendulum is
swinging strongly or weakly—that is, it
doesn’t depend on the amplitude ¢ This
is very important. Why? If the pendu-
lum isn’t pushed, a certain amount of
energy will be lost during each period
because of the air resistance. Get it? The
pendulum gains some energy here, loses
it there. To increase the amplitude, the
energy gained must be greater than the
energy lost. And this condition remains

the same regardless of the amplitude. So
if the amplitude o decreases by 3% in
one period, then the energy decrease is
approximately 6%. (For small oscilla-
tions, E = o2, This can be understood
by realizing that cos o= 1 — o?/2 for
small o)

To get a pendulum 1 m long to
swing under these conditions, one
merely needs to shorten it by 1 cm at
the middle position and lengthen it at
the extreme position. Once you begin
swinging, you don’t need to squat
lower and lower—you just squat the
same amount each time. . . and you’ll
go higher and higher! Not only that:
even if the swing is stationary, if you
start squatting low enough with a
period that is half the swing’s oscilla-
tion period, the swing will necessar-
ily start oscillating. In the language
of physics, not only can we amplify
the oscillations, we can generate
them as well.

So, by looking closely at a favorite
childhood pastime, we’ve managed to
delve into many features of a signifi-
cant physical phenomenon: paramet-
ric resonance.

Why is it called this? In order for
something to start oscillating, one of
the parameters that determine the
oscillation period must change. It’s
not necessary to change the param-
eter twice in a period—you can do it
just once, or even once over several
periods, though in this case you must
make a more pronounced change in
the parameter.! It doesn’t matter
which parameter we change. For ex-
ample, for an ideal pendulum the os-

cillation period T = 2x,/I/g. There-
fore, we can change not only I but g
as well. (To do this you needn’t try
to change the force of gravity—all
you need to do is hold the suspen-
sion point and give it the necessary
vertical acceleration. Acceleration
upward causes an increase in g in a
noninertial system centered on the
suspension point; acceleration down-
ward causes a decrease.) For an object

!By the way, you may have noticed
that children who swing standing up
usually squat only as they’re swinging
forward—that is, once per period. No
doubt it’s just more comfortable that way.

of mass m suspended from a spring
the oscillation period T = 2n./m/k .
Therefore, we can change either the
spring constant k or the mass of the
object (I leave it to you to figure out
how). In each of these cases, the pa-
rameter must be changed such that
the total work is positive and the
pendulum’s energy increases.

We'll take a step further—after all,
why should we restrict ourselves to
mechanical systems? Let’s look at an
“electronic swing”—that is, an oscil-
lating electric circuit. If the circuit
contains an inductor L and a capaci-
tor C in series, the circuit has a reso-

nant frequency o = 1/~/LC . Therefore,
a periodic change in the capacitance
should, by analogy, lead to an ampli-
fication of the oscillations. We’ll in-
crease the distance between the
plates of the capacitor when its
charge is maximum (corresponding to
the extreme position of our swing—
see figure 1). We'll move the plates
back when the capacitor is not
charged (the middle position). You'll
notice right away that in the first case
we do positive work (oppositely
charged capacitor plates attract), but
in the second case the work will be
equal to zero. If the applied energy is
greater than the heat losses, the oscil-
lations must increase. In the 1930s a
device like this was invented by the
Soviet physicists Mandelshtam and
Papaleksy (although they used an-
other design: to change the capaci-
tance they moved the plates laterally
in opposite directions, thus changing
the effective area of the plates). They
named their device a parametric gen-
erator: not only does the oscillation
amplitude in it increase due to me-
chanical work, oscillations are actu-
ally generated as well. All you need to
do is change the distance between the
plates with the required frequency—
oscillations will arise all by them-
selves (there is always some random
charge on the plates!).

You can see how much useful physi-
cal information can be gotten by just
thinking about the underlying principle
of a simple toy—in this case, a swing.
So spend more time playing with your

little sisters and brothers! Q)




Onty SHare's DAA.L. ScieniFic

Cavcutators Give You Such
An Easy Way To Simpuiry MaTH. |

Sharp introduces the most revolutionary
' scientific calculator advance in over a decade.
D.A.L. It stands for Direct Algebraic Logic. And,
t signifies a vast improvement in the algebraic
ogic currently used in scientific calculators.
oecr wocscmaED  Only Sharp makes this exciting
innovation available on its five
non-programmable models.

Developed in response to requests by
educators, D.A.L. allows the user to enter
equations in the exact order in which they
appear on paper. This greatly 5|mpl|f|es entries
and reduces errors

But most importantly, D.A.L. substantially
reduces the time needed to learn a scientific
calculator. It also makes teaching calculations

faster and easier. These remarkable calcula-
tors provide up to 276 functions
which frees students from
tedious computations.
¥ And gives teachers an

F easier way to make math

/ concepts come alive. What's
' more, the ETS has even ap-

proved usage of these calculators
¥ on several standardized tests
(including PSAT and SAT).
All of Sharp’s D.A.L. models have
Sharp’s leading LCD technology including
alarge 10-digit LCD display with 2-digit
exponent. This high-contrast display is easy to
read and includes 3 or 4 character function
display to indicate type of calculation in pro-
gress. You get highly durable plastic keys on all
models plus protective hard cases on most. Two
even offer Twin Power solar/battery operation.
D.A.L. When it comes to simplifying math,
| nothing scores higher. Which puts Sharp’s DA.L
| Scientific Calculators in a class by themselves.
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For afree booklet on
Sharp's D.A.L. Calculator line, call:
1-800-BE-SHARP.

Or see the following models at your Sharp retailer:
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