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GALLERY O

Diagram of "CRISP" miuoprocessor by AT0T BelL
Laboratories

THE DESIGNERS OF AT&T'S "CRISP" MICROCHIP
I would no doubt be amused to see their "attwork" dis-

played next to a masterpiece by the modem Dutch mas-
ter Piet Mondrian (1872-1944lr. But the design has made
the rounds of museums throughout the US, along with
twenty-nine other microprocessor fiagrams of extraor-
dinary intricacy and vibrant color, as part of the travel-
ing exhibition "Information Art: Diagramming Micro-
chips." The drawings have delighted and confounded
many a viewer. Undisputably the work of human hands,
harmonious andpleasing to the eye, they are but the first
step in producing truly "Iitae" art: silicon chips no larger
than a thumbnail. Packed within that space are as many
as several million electronic components capabie of per-

forming millions of caiculations per second.
So the diagrams are obviously not" artfor art's sake."

Color-coded by layer like multilevel roadmaps, they are
used by engineers for guidance in correcting or verifying
a circuit design. But then, many artists reject that slogan
as well. According to the art histodan H. L. C.laffe,
Mondrian believed that " art canbe a guide to humanity,
that it can work toward eliminating casual (acts of ap-
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"Broadway BoogieWoogie" (194243) by Piet Mondtian

pearance and the arbitrary outlook of the individual, and
thereby substitute a new harmonious view of life for the
conventional tragic conception of existence. To this pur-
pose Mondrian chose the strict and rigid language of ge-

ometry to produce first of all an extreme purity, and on
another level, a Utopia of superb cLarity and force."
Mondrian himself wrote: "One serves mankind by en-
lightening it." The architects of the microcomputer revo-
lution would surely agree.

"Information Art: Diagramming Microchips" has en-
tered the second half of its national tour. Sponsored by
Intel Corporation Foundation ar.d organized by New
York's Museum of Modern Art (MoMA), it is scheduled
to appear at the Chicago Atheneum, April I toMay 2l;
the Laguna Gloria Art Museum in Austin, Texas, |une
12 to |uly 25; the Elvehjem Museum of Art in Madison,
Wisconsin, September 1 to December 4; and the Geor-
gia State University Art Gallery in Atlanta, lanuary 4-
31,1994. The exhibition includes designs by thirteen
manufacturers and universities. For those unable to at-
tend, a 4S-page booklet with 32 color and 10 black-and-
white illustrations is available from MoMA.
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Funny things start happening when you
approach the speed o{ light. The person
sprinting across our cover is doing just
that. (We suspect he's a mathematician
who, right in the middle o{ his workout,
heard about the article "In the Curved
Space of Relativistic Velocities" in the
latest issue of Quantum.l

He probably doesn't feel his relativ-
istic mass increasing, in accordance
with the formula

tTt---0
ttt--

'11 - v'1s' '

where mo ishis rest mass, vis his speed,
and c is the speed of light. But we're cer-
tain he feels the added mass of the bar-
be1ls he's carrying. Why the weights are
in the form o{ clocks is anybody's
guess-until you read the article that
begins on page 4. A-{terwards/ you may
notice some artistic license in the ren-
dering, but it's not the discrepancy in
the times shown . . .
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another NSTA position statement/
"we appreciate the strength and
beauty of cultural pluralism." We
believe (as I've noted in this space)
that " all children can learn and be
successful in science." To this end,
science teachers have the responsibil-
ity to "expose culturally diverse chil-
dren to career opportunities in sci-
ence, technology, and engineering."

Those are our intentions. How
well do we-in particalar, Quan-
tum-Ileup to them?

Well, leafing through the previous
fifteen issues of Quantum, I'm hard-
pressed to find evidence of women
and persons o{ varied ethnic back-
grounds. Perhaps, as a white male, I
tend not to notice the overwhelming
homogeneity o{ images and authors

in our magazine. But I can imagine
hor'v a young \\roman/ say, or African-
American, rvould feel left out. I have
to admit that Quanturz to date may
not look particularly inviting to
nonwhites and nonmales. Readers
initially attracted b,v the content may
end up being repulsed by an unin-
tended, unspoken subtext: "You
don't belong here. "

Quantum is lot a rrhites-only
boys club. Yet that rs the perception
among some of our readers. Sewhat
are we going to do about itl

We are redoubling our eiforts to
find authors who reflect the diversity
of the American people and the world
at large. And if such variet,v is lacking
in some branches of math and sci-
ence, we'll try to proiect an image of

Ilo il$ [llIE $ay. . .

. . . not as we do (yet): On diversity in Quantum

HIS IS A STORY OF GOOD
intentions, and how the road
to-no/ not hell, heaven-is
paved with them.

It is the official position of the Na-
tional Science Teachers Association
that "science teachers must con-
sciously strive to overcome the barri-
ers created by society which discour-
age women from pursuing science for
its career opportunities and for the
enjoyment it brings to involved stu-
dents." One of the ways to "eliminate
sex role stereotnling" is to include
" appropriate role models" in text-
books and other student reading ma-
terial.

NSTA is also working to bring stu-
dents of diverse cultural backgrounds
into the scienti,fic fo1d. As stated in

WOI\IEN SCIENCE NiAJORS ATTENDING A CONFERENCE
on women in science, math, and engineering in Washing-
ton, D.C., in November -1992 were surveyed to flnd out
what they thought the country should do to improve math
and scrence education, The predominant responses:

K_B:

Make math and science more fun, exciting, and inter-
active;

Let girls know that it's okay to like science and math.

High schooi:

Get rnore role models and rnentors who can counsel
students;

Have girls take more math/science courses, spend
-ore time in math/science,

Co ege:
(eep up the encouragement for individual students;
r'lv de more research, lnternship, and lab oppor-
,-- -es

The students were relatively optimistic about careers in
science and math, saying they saw no barriers other than
a lack of money for their education. College faculty who at-
tended, however, when asked to describe the continuing
challenges to the full participation of women in science,
cited penetrating the inner circle and being taken seriously
by colleagues and superiors, dealing with child care and
other family responsibilities; and overcoming the negative
perceptions of women in math and science that girls de-
velop at an early age.

When asked to name their heroes/heroines in math and
science, more than half of the young women were unable
to come up with a single name. Albert Einstein placed a dis-
tant second to "Nobody."

"What Works: Women in Science, Math, and Engineer-
ing" was sponsored by the Women's College Coalition,
1090 Vermont Ave. NW, Third Floor, Washington, DC
20005. This national conference brought together-for the
first time-women science majors, their faculty, and many
of the country's leading women scientists.
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the future. By faithfully presenting
the current state of affairs, we simply
reinforce it. It's a vicious circle that
must be broken: to create a better fu-
ture, we must present that future as
if it already exists!

This won't be as easy as it might
seem. Currently more than half of our
material comes from Russia, which
has not yet entered the crucible of
'lconsciousness raising" in the area of
gender. The articles we receive-
which I hope you'll agree are instruc-
tive and charming-are almost in-
variably by men. The Russian
artwork, beautiful and unique to
Kvant and Quantum, is generaliy by
males, of males-and for males? I
think the artists would say no, but I
can understand how some readers
might feel exciuded and lose heart.

Our efforts must therefore be con-
centrated on the American side. As
more teachers and professors become
larnlliar with Quantum,I hope we
can persuade more o{ them to write
for us-to jot down that curious stray
thought or nagging question, work it
through in a fresh and engaging way,
and share it with our young readers.
Lr my view, the best articles are those
having to do with a person's own re-
search, that take some interesting
aspect and deveiop it in a way that
will appeal to a young person who
aspires to do similar work. Students
need to see the excitement and inter-
est of those who make science and
math their life's work.

Quantum's American field editors
will continue to search for authors
with the special talents needed to
write for us, But if you know of any
potential authors, especially those
who could serve as role models for
young women and ethnicaily diverse
students, please let us know about
them. We'llget in touch with them
in a flash. With your help, and persis-
tence on ourpart/ Ibelieve Quantum
can come to reflect the extraordinary
talent found among alJ of the best sci-
entists and mathematicians in this
heterogeneous world. The road to a
more open and diverse scientific com-
munity of the future is paved with
this intention.

-Bill G. Aldridge
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Whal'$lhal yousee?

On the perceived shape of rapidly moving objects

by B. M. Bolotovsky

AYBE YOU'VE HEARD THE
saying: "Bettet to see once
than hear twice." The mean-
ing is quite clear: someone

can talk to you till they're blue in the
face, but if you want to convince
yourself of something/ you want to
see it with your own eyes. Seeing is
believing.

But can we always believe what
our eyes are telling us? No. Some-
times we see things that just aren't
there. I'm not talking about halluci-
nations or bad vision here. An ob-
server/ of sound mind and possessed
of excellent eyesight, can under cer-
tain conditions see a very distorted
picture of a phenomenon, something
not at all like what is happening in
actual fact.Why? Because the senses
can deceive you. Well, let's put a
movie camera in place of the human
observer. You might think that its
"readings" are obiective. And yet
when we look at the resulting film,
we see the same thing as the observer
whom we doubted and replacedwith
the movie camera.

And what we see on the screen/
and what the observer saw, are not at
all what is actually happening. How

l is that possible?

g I'll give you some examples that
b will show how it's possible. You
3 won't find anything mysterious in
.P the examples. They simply show that
6- we must realLy think about every

E physical observation. We have to try

and understand what instrument
readings mean and use them to recre-
ate the true picture of a phenomenon.

Pltologl'aililtU !ig[t olt fie wiltu
About 20 years ago the American

physicist Michel Duge designed a
photographic shutter that operated at
extraordinarlly fast speeds. Why are
such shutters needed?

If we photograph a stationary ob-
ject or scene, the sharpness of the pic-
ture isn't affected by the length of
time the shutter is open-the "expo-
sure time." The object is stationary,
and the image of the object on the
film is also stationary. So increasing
the exposure time doesn't decrease
the sharpness of the image. But if the
object moves/ that's another story.
Then the image of the object on the
film moves as weli. In this case, the
shorter the exposure timg the sharper
the photograph will be. Conversely,
the longer the exposure time, the
more the image willblur.

On some photographs (usually
photos of running people or speed-
ing cars), the blurring is appropriate.
It emphasizes the speed of the ob-
ject. But as a rule, the faster the ob-
ject, the shorter the exposure time-
that is, the time the shutter is open,
allowing light to enter the camera.
(In this article we won't get side-
tracked by the fact that photo-
graphic film has a determined sen-
sitivity-the "film speed"-and that

you need "faster" film for shorter
exposures. Let's just assume that
the film speed can be chosen to cor-
respond to the necessary exposure
times.)

Let's get back to the fast shutter I
mentioned. Its exposure time was
fantastically short-around 10-tt s. It
was "fantastic," o{ course/ only until
the shutter was invented. A-fter that
it was no longer fantasybut anactaal,
honest-to-goodness achievement. But
what on earth was it good for?

This kind of lightning-quick shut-
ter could be used to photograph ob-
jects that move at velocities ap-
proaching the speed of light. The
image on the film would certainly be
sharp enough. But where can we find
such obfects? They have to be big
enough to show up on a photograph-
say, on the order of 1 cm. But we can't
accelerate bodies that big to velocities
near the speed of light, at least not at
present. That requires an enormous
expenditure of energy. (To accelerate
a body with a mass of I g to half the
speed of light, an energy expenditure
of the order of 1011 | is needed. That's
the energy generated every second by
ten nuclear power plants.) The maxi-
mum velocities of macroscopic bod-
ies under earthly conditions are of the
order of tens of kiiometers per second.
We're able to accelerate electrons to
velocities near the speed of light. But
you can't directly photograph an elec-
tron-it's too small. We need an ob-

OUAIIIUll/l/IIAIURI



ject big enough to see that moves at
almost the speed of light" And Duge,
the inventor of the high-speed shut-
ter, found such an object: light itself!

A laser was used as the light
source. It produced radiation in the
form of extremely brief pulses last-
ing approximately 10-r1 s. The light
pulse emitted by the laser can be vi-
suaiized as some volume filied with
light waves and moving through
space at the speed of light. This vol-
ume is called a wave (or light)
packet. Obviously the packet's
length is equal to I = c'Et where c is
the speed of light and t is the time
interval during which the pulse was
emitted-that is, the pulse width.
Substituting c = 3. 108 m/s and t =
l0-1r s, we get J = 3 mm. It's possible
to photograph a "body" of that size.

The procedure is seemingly quite
simple: we place aeamera off to the
side of the path o{ the "body" of
light, aim at some point along the
path, and shoot at the right mo-
ment. This setup is shown in fig-
ure l. If we use such a setup, how-
ever, we'll see nothing on the film.
Why? Because the image appears on
the film only if light from the mov-
ing body lands on it. This can be "its
own" light, if the body radiates (for
instance, when you take a picture of
a light bulb). If the body doesn't
glow, it must be illuminated, and
then light from the external source
is reflected or scattered from the
body and strikes the film. From fig-
ure I you can see that the light
waves in the packet propagate along
a path that doesn't allow them to
enter the camera's lens. It's also
pointless to shine light from an ex-
ternal source on such a packet-it
neither reflects nor scatters light.
The light waves from an external
source pass through the wave packet

as if it were an incorporeal specter,
changing neither itself nor the
packet.

There was a way around this diffi-
culty. A glass vessel filled with water
is placed along the path of the clump
of light. A {ew drops of milk are added
to the water, which makes it slightly
cloudy, or turbid. This turbid me-
fium scatters light passing through it.
When the clump of light enters such
a vessel with turbid watert the light
waves in the clump begin to scatter
and the clump becomes visible. Now
we can photo$aph it. Of course, the
entire setup mustbeplacedin a com-
pletely dark room so that extraneous
light sources don't interfere with the
procedure.

This kind of setup has produced
some beautiful photographs of tright

"on the wing," as it were. One of
them is reproduced in figure 2. This
is the first photograph in the history
of science that was obtained under
household conditions and repre-
sented an object with a velocity close
to the speed of light (in water the
speed of light is slower than that in a
vacuum by a factor of lln = 314,
where n is the refractive index of
water). During the time of exposure
the light clump in the vessel moved
only 2.2 mm. But the image on the
photograph is "stretched" to more
than2.2mm. The reason for this will
become clear as you read on.

After this, Duge performed an-
other exquisite experiment. He cre-
ated a "dumbbell" made of light and
photographed it.

Tlto fiUltl dumh[ell
Before I describe the results of this

experiment with the dumbbell of
light, let me say a few words about
why such an experimentwas needed.

According to the theory of relativ-

Figure 2
Photograph of a light pulse moving in a
turbid (scattering) medium. The
exposwe time is 10-11 s.

ity a body's l"rrgth, measured in some
frame of reference, depends on the
body's veiocity relative to this frame
of reference. In particular, i{ the body
is at rest and its length is eclual to 10,

then when the body moves with a

velocity v its length will be I :
\^L-A|A, where c is the speed of

light. The factor $-nTA is always

less than unity, so when the body
moves/ its size in the direction of
movement (this is what I meant
when I said "length") is reduced by

the factor U iT -7/4.1 For velocities
reached at present under earthly con-

ditions, the factor lf -@E differs
insigni{icantly from unity. If a body
has a velocity of 10 km/s (the order of
magnitude of the velocity of space ve-

lThis shortening is often called the
Lorentz transformation after the Dutch
physicist and theoretician H. A.
Lorentz, who was one of the first to
predict this effect {in 1892).

Figure 1

With this setup, it is impossible to photograph the light pulse-the light waves in
the packet do not land on the Lens.
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hicles), then this factor is equal to
0.99999999944-that is, it differs
from unity in the tenth place after the
decimal point. So it's difficult to find
the'shortening during movement on
the basis of velocities that are cur-
rently achievable. But this assertion
of the theory of relativity is confirmed
by a great number of consequences
that arise out of it.

The change in a body's size when
it is in motion leads to a change in its
shape. A moving ba[ if its velocity is
close to the speed of lighq must flat-
ten out and turn into a pancake
whose plane is perpendicular to the
direction of travef a cube must change
into a parallelepiped; and so on.

Since we don't have bodies at our
disposal that move at sufficiently
high speeds, it wasn't possible to di-
rectly verify the shape change. But
this phenomenon was subjected to a
rather detailed theoretical analysis.
This analysis showed that the ques-
tion isn't as simple as it seems. The
size of the ball really does decrease in
the direction of movement. But look-
ing at a moving baII, an observer
won't notice this shortening. What
gets in the way is the method of ob-
servation itself.

To understand why this happens,
let's look at some examples that have
a bearing on the question. Imagine a
fine summer day, and we're lounging,
admiring the landscape. Sun shining,
trees rustling, birds singing . . . we
perceive everything simultaneously.

But at the moment we hear a bird
chirp, the bird may actually be silent.
The sound propagates in the air with
a velocity of approximately 340 rnls.
So there is a measurable delay be-
tween the moment thebirdproduces
its warble and the time we perceive

it. We see the Sun at some point in
the sky. But the light from the Sun ac-
tually takes about B minutes to reach
the Earth. So we can't assert that now,
at this very moment, the Sun is right
where we see it.

Here's another example. We're
photographing the starry sky. What
does the photo we make tell us? Do
we think that it reflects the position
of the stars at the very moment we
took the picture? Of c,ourse not. The
light from the distant stars takes tens,
hundreds, thousands ofyears to reach
the Earth. One star may have gone
out long ago, but we won't find out
about it for quite a while. Its light
continues to arrive, and we see this
star on the photograph. Another star
was bom, but its light hasn't reached
us yet, and so it's absent from the
photograph.

The same phenomenon is respon-
sible for all these discrepancies: the
propagation velocity of the signal that
brings us information about the ob-
ject. While the signal is traveling to-
ward us, the obiect's position
changes. If we photograph some ob-
jects that are at different distances
from the can;rerat the information
about the positions of these bodies is
recorded by the light that arrives at
the film simultaneously. But the im-
ages of the bofies on this photograph
reflect the positions of these bodies at
different times. These times are
shifted into the past in relation to the
moment the picture was taken.

Now let's get back to the question
posed earlier: why can't an observer
see the Lorentz transformation?

Everything I've said about photo-
graphing several objects applies as

well to one object that has finite di-
mensions. If the object is stationary
and the exposure time is long enough
so that the signal (light) has time to
reach the lens from the object's most
distant point, we can say with confi-
dence that the photograph correctly
represents both the body's position
and its dimensions. It's anotherrnat-
ter if the object is in motion.

Photographing a moving body
presents a complex scenario. The
different points of the body are de-
picted in the positions they occu-
pied at different times. For instance,
let the body being photographed ap-
proach the camera. Then those
points of the body that are farther
from the lens when the shutter was
opened will seem to lag in compari-
son with the closer points, so that
the images of these points on the
photo correspond to an earlier mo-
ment in time. Thus, on the photo
the object appears stretched in the
direction of travel. It's clear that this
apparent stretching will be particu-
1arly noticeable if the body's veloc-
ity is close to the speed of light.

Calculations showed that the ap-
parent stretching will compensate for
the Lorentz transformation. So an
observer can't see the change in the
shape of a rapidly moving body-a
ball will still look like a ball.

How can we check the correctness
of our reasoning? We need to photo-
graph a moving body whose velocity
is close to the speed of light. In this
case both the shortening in the direc-
tion of travel and the time lag of the
signals from different points of the
body will be more perceptible. And

'k*&## c+

3Figure 3
The,angled mirror 1 divides the incident ligfit packet into two identical parts: half of the packet is raflected toward miror
2, the-other half toward mturor 3. The mirrorc are positioned such that the two light packbts ftavel side by side along
parallel paths. These packets aru connected by the imaginary line BB' , thus forming a " dumbbell" made of light. In-a
medium with a reftactive index n, the dumbbell moves with the velocity c/n.
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that's why Duge and his colleagues
created a dumbbell out of light.

To make the dumbbeli, you just
split one light packet into two
halves-two packets. Then you sepa-

rate these halves to get two wave
packets in parallel motion. And there
you have your light dumbbell (you
have to imagine the rod stretching
between the packets).

You can make the dumbbell with
the system of mirrors shown in fig-
ue 3, for example. The dumbbell's
axis BB'is perpendicular to the line
AA' and is cut in haif by that line.
Rotating the entire system of mir-
rors about the axis AA', we can
change the orientation of the dumb-
beli in the vertical plane perpendicu-
lar to the axis AA'.In figure 3 the
dumbbell is shown in the vertical

Figure 4
Photographs of light dumbbells ouented differ'
ently relative to the camera's line ot' sig,ht. The

exposure time is 10 r1 s.

position; if we turn the system of
mirrors 90' (in either direction rela-
tive to the axis AA'l we get a hori-
zontal dumbbell, and so on.

A light dumbbell was sent into a

vessel filled with turbid water. The
packets in the dumbbell entered the
vessel simultaneously and were
photographed.

Figure 4 presents photographs of
dumbbells turned in different direc-
tions relative to the axis AA'. The
top photo was taken of a vertically
oriented dumbbell, and in the photo
the dumbbell is aiso vertical. The
second photo was taken of a dumb-
beli that was rotated approximately
30'from the vertical position about
the axis AA'.The third photo shows
the image of a dumbbell rotated aP-

proximately 60" from the vertical
position. The bottom photo
depicts a horizonfal dumb-
beli. In all the photos the
light packets in the dumb-
bell are moving from ieft to
right, as in figure 3.

These photos are surprising.
OnIy the top photo perhaps

tumed out the way we'd ex-

pect. The two packets in the
dumbbell are depicted one
above the other-just theway
it should be if we're photo-
graphing a verrically orientated
dumbbell. The other photos
otfer a strange picture of the
phenomenon. The bottom
photo is perhaps the strangesg

so let's look at that one first.
The bottom photo was

taken of a dumbbell lying in
the horizontal plane perpen-
dicular to the line AA' (that
is, parallel to our camera's
line of sight). According to
all the laws of nature known
to us, this photo should
show one spot of light, not
two-at the moment thepic-
ture was taken, the light
packet closer to the camera
blocks the one larther away.
Yet there they are: two pack-
ets flying in formation, one
after the other. The camera
"sees" a dumbbell orientated
parallel to the velocity, while

in fact the dumbbell is orientated per-
pendicular to the velocity.

The images inthe middle two pho-
tos are also unexpected. It's clear that
the closer the dumbbell's axis is to
the horizontal, the more one of them
lags behind the other. Yet we know
from the way we set up the exPeri-
ment that both packets are traveling
at one and the same velocity.

This is all easily explained if we
recall our reasoning about the kind of
information we can extract from a

photo. If we have a photo containing
two objects, one of which is closer to
the camera when the picture was
taken, then the image of the f.arther
one coresponds to an earlier moment
in time. And this is precisely what
we're seeing in the four photographs
in figure 4: the packet of the dumbbeil
that is farther from the lens is de-
picted at afi earLier moment than is
the closerpacket-that is, the farther
packet hadn't yet reached the point
where it would be when the shutter
was tripped. So the image of the far-
ther packet is shifted backward in the
photograph in relation to the image of
the nearer packet.

Now it's clear why the image in
the photo of the light packet (figure 2)

was so blurred. The additional
"smearing" arises because the packet
has length in the direction of the
camera's line of sight.

Sondusion
So you can't always believe your

own eyes. The eye receives visual in-
formation by way of light waves. A
carnera essentially mimics the eye.
From time immemorial people saw
only slowly moving obiects. And
when we say "sIow," we mean slow
compared to the speed of light. In this
sense the fastest earthly motions are

slow, and our vision gives us a correct
representation of an object's shape. But
if an object is moving with a velocity
close to the speed of hghq our eye (and

a carnera as weil) gives a distorted pic-
ture. Aware of this peculiarity of our
vision, we can always make the nec-

essary adiustments and restore the
truth. We just need to exercise due
caution when interpreting the data
suppliedby our senses. O
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[l'norprool codinU

How can we be sure the message is getting through?

by Alexey Tolpygo

HIS ARTICLE IS DEVOTED
to codes. But I'm not going to
talk about deciphering secret
writing-though it's an interest-

ing mathematicalproblem to make it
comparativeiy easy for the addressee

to decipher the code and practically
impossible for everyone else. I'11con-
sider another question: how to trans-
mit information over a distance
through inevitable noise so that the
recipient can understand its meaning
(decode it) in spite of "typos." As a
matter of course, it's desirable to
transfer the maximum amount of in-
formation at minimum cost. And the
origin of this problem can be traced
back to ancient times. Carving letters
on a rock is far from easy work. One
would like to cawe less and say more.
Buthow? Well, one can denotewhole
syllables or words, rather than letters/
by a single symbol. This is the ap-
proach used in hieroglyphic systems
of writing. But then we'd have to
memorize too many symbols . . .

I think you have a pretty clear
idea of the problem before us. To
tackle it mathematically, we have
to render it in the more formal lan-
guage of mathematics.

Code s[ace and mde distanm
First of all, we must establish an

alphabet. It can be the 33-letter Rus-
sian alphabet or the 26-letter English
alphabet, but from the mathematical
point of view it's more natural to use
fewer characters. It will suffice, for
instance, to take the binary Morse
code-a dot and a dash (or zero and
one). So we adopt the following defi-

nition: an alphabet is a fixed set of p
arbitrary characters.

It's desirable thatp be a reiatively
small number (also, for certain alge-
braic reasons, in code theory p is
usually a prime number or the
power of a prime). The characters
can be chosen 

^Ly 
way we like, and

we'll take them to be the numbers
0, 1,2, ..., P - l.

Further, anarbitrary srring of char-

acters of the alphabet will be called a

word. This doesn't conform to the
laws of natural languages: neither in
English, nor in any other real lan-
guages/ do a.U strings of letters make
intelligible words. However, we have
to reckon with distortions of words
when the inJormation is transmit-
ted-for instance, tlpographic errors
introduced as a text is prepared for
publication. So it's only reasonable to
regard any string of characters as a
word-perhaps a senseless one.

So we don't care about the mean-
ing but we'll impose another, formal
restriction on our words that makes
the theory simpler: we'1l assume that
all words are the same length.

The set of all words-both intel-
ligible and senseless-will be called
the code space. The set of words
that make sense (in a real language,
its "vocabulary") in mathematical
code theory is simply called the
code.However, we'll use the words
"vocabulary" arJ "code" inter-
changeably.

Exercise 1. How many words are
there in a code space if the number of
letters in the alphabet is p and the
length of a word is n?

The fundamental notion in code
theory is the so-called Hamming dis-
tance [or i:ust distance) between two
words,l defined as the number of
places in which these words differ
from each 6ther.

For example, the words "absorp-
tion" and "adsorption" are quite close
to each other-not in meaning but in
writing; whereas the word " abeua-
tion" is rather far from them, though
it's a little bit closer to the first of
them. In terms of code distance this
is expressed numerically: the distance
between the first two words is 1; be-
tween the first and third, the distance
is 3 (the symbols in the third, fourth,
and sixth places don't coincide); be-
tween the second and third, the dis-
tance is 4. We'li denote the code dis-
tance between the words a and b as

dla, bl.
Exercise 2. Find the code distance

between the words " drawer" and
"lawyer," "room" ar,d "moor,"
"0ll2l" and"21221."

The vocabularies of natural lan-
guages are out of our control: they are

created by peoples and history. But
the vocabulary, or code, that we're
going to study is to be composed by
us. So what are the properties we'd
like to require of this code? To formu-
late them, we need to introduce two
more notions.

lln mathematics, the terms "space"
and "distance" cat\be used in a very
broad sense. Another example of a very
unusual interpretation of these words
can be {ound in the article "In the
Curved Space of Relativistic
Velocities."
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The cardinality lcl of a code C is
the number of words in the code.
According to Ilf and Petrov, two So-

viet writers whose novels became
classics of Russian satire, Shake-
speare used a code with a cardinaiity
of 12,000, while one of their charac-
ters, Ella the Cannibal-a very pre-
tentious lady of very limited (to put
it mildly) intellectual power-man-
agedwith a code of cardinality30. Of
course, one can hardly get by with
such a small code in reaiity. So our
first requirement of the code is that
its cardinality be as great as possible.
(We can ceftainly enlarge its cardinai-
ity at the expense of increasing n and
p. So to get a mathematically interest-
ing problem/ we must consider these
two numbers fixed.)

Thecode distance d(C)is themini-
mum distance between code words.
The second demand on a code is that
dlclbe as large as possible.

I'11 explain a little later why it's
good to have a large code distance.
Right now I just want to Point out
that the two requirements contradict
each other. And this is how it has to
be if we want to pose a meaty math
problem. The problem consists of
constructing a code with maximal
code fistanc e for agiven cardinality;
or, vice versa/ constructing a code of
maximal cardinality for a given mag-
nitude of code distance.

Why are these requirement so im-
portant? The first is clear enough. As
to the second, let me tell you a his-
torical anecdote.

Reporting on the accession to the
throne of the last tsar, Nicholas II, one
of the provincial Russian newspapers/
through the oversight of a typesetter,
informed its readers that "upon the
head of His Imperial Maiesty was
placed the crow." The next day the
paper explained with deepest apolo-
gies that, of course, one should have
read the report otherwise-as " . . .

was placed the cow." Bad luck! Tho
error corupting the meaning crePt
into the correction/ too! In Russian
the words " crowta," " crow," artd.

"cow" are "lioporr4" "BoPoHa," artd

"KopoBa," so you see that the cause of
the provincial newspaper's troubles
was that the distance from the correct
word to both of the misprinted words
is 1: only one mistaken letter com-
pletely changes the meaning.

I must note, however, that the
newspaper's troubles were of a politi-
cal rather than semantic nature: al-
though the readers laughed at the
amusing errors/ they understood ex-
actly what was being placed on the
royal noggin. And this is due to the re-

dundancy of newspaper text in Rus-
sian, or generally any text in anY
natural language. Imagine that the
word was simply omitted and the re-

port read "upon the brow of H.LM.
was placed." Even then the meaning
would have been clear. In the over-
whelming maiority of literary texts,
the sense is clear despite any typos.
Exceptions are extremely tate anLd are
usualiy deliberately constructed, like
the notorious Latin phrase that was
sent/ as legend has it, to the jailers of
King Edward II " Edwardum occidere
nolite timeru b onum ast. " Depenfi ng
on where you place a comma, it
means either "Don't be afraid to kill
Edward, it's a good deed" or "Don't
kill Edward, it's good for you to re-
frain from this deed."

The redundancy of natural lan-
guages is much greater than that of
mathematical text. Indeed, imagine
seeing the following equality in a

book: "5 + 3 : 3." Clearly, the type-
setter has made an error. But where?
Should you read 9 instead of 5, or 2
instead of one of the 3's? Or, perhaps,

the sign was misprinted and one
should read"5-3 =3"?. Otherread-
ings are also possible.

In code theory the intuitive con-
cept of redundancy has an exact for-
mal definition: the redundancy o{ a
code is the number 1og, (4/lCl)-the
logarithm of the ratio rif the number
of all words to the number of intelli-
gible words. Redundancy is always
positive.

Errordetectiltg codes

Picture a radio operator receiving
a certain text consisting of words in
some code ("intelligible" words).
During the transmission the text was
corrupted by noise, and instead of the
word a, the distorted word a' was Ye-

ceived. Will the operator be able to
correctly decode the message re-
ceived-that is, ascertain that word a'
was indeed a?

Let's offer our operator the follow-
ing decoding scheme. If the received
word a'belongs to the code C, it's
assumed there were no effors and the
word is written down as the true one.
If a'doesn't belong to C, the operator
looks for the code word at the small-
est possible distance from a'and takes
that for the true one. For instance, if
the received word is "wrisc," the oP-

erator decides that the word sent was
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"wrist." It's not inconceivable, of
course/ that the original word was
"brisk," but that would mean two er-
rors at a time (the distance between
"wrisc" and "brisk" is 2). And it's
only natural to assume there was
only one mistake.

Does this scheme always yield the
corect result? If there are no stipula-
tions restricting the code and the con-
ditions of transmission, we certainly
can't gtarantee anything. It might be
that aLL the letters in a word were
transmitted incorrectly. Also, it's not
clear what to do if there are several
words equaliy distant from a': iJ the
word comes through as "bttttor,"
does it mean "butte{' or "b'ttton"?
And so forth.

Under certain conditions, how-
ever, this scheme always yields the
corect result from decoding.

Tnponnm. Let d(C)> 3. Then the
r esuh from decoding according to the
rule described above is always cor-
rect provided that there is not mote
than one eruor in every ftansmitted
word.

Lrdeed, i{ a is the transmittedword
and a'the received one, then d(a, a'l
< 1. On the other hand, for any word
b e C, b * a,wehave dla, b)> 3. A1-

though our distance isn't a " real" one,
it's easy to verify that it satisfies the
Triangle Inequality dla, bl + d(b, cl>
d(a, cl. Applying it to our situation,
we quickly see that a'is closer to a
than to any other word b:

d(a', bl> d(a, bl - dla' , al> 2 > d(a' , al.

Therefore, a' will be decoded as a,
which is just what we need.

According to this theorem/ we,ean
say that a code C with a code distance
d(Cl>3 coruects one efior.

Exercise 3. Prove a more general
theorem: lf d(Cl22r + l, then the code
corects 1 errors.

Now we see why too low a redun-
dancy is undesirable: such a text is
more informative (a good thing,
seemingly), but for that very reason
it's extremely difficult if not impos-
sible to correct errors in the text.
Mathematical texts offer a dramatic
example of this: the typeset versions
sent to the authors for proofing usu-
ally abound in misprints that the
typesetters fail to notice.

On the other hand, too high a re-
dundancy is also undesirable. It's easy
to construct a code that corrects one
or several mistakes: one can simply
repeat each letter of a message a cer-
tain number of times (for instance,
instead of "fox" write "fffooo>oor"); to
corect, say, three errors/ one should
make seven repetitions of each letter.
But this method is obviously
uneconomical.

Now that our task has been out-
lined more clearly,I want to de-
scribe one approach to its solution.
We'll set a certain code distance-
say, 2 or 3-and try to construct a
code with as big a cardinality as pos-
sible. To begin with, we'll consider
a problem involving a code that
doesn't correct effors but enables us
to detect them.

Telephones in a cefiain city have
6-digit numbers. How many tele-
phones can be installed in this city
such that any two numbers diff er in
at least two digits! (This would
mean that a connection doesn't oc-
cur when a number is dialed with a
single error/ so this error can thereby
be detected.)

Lr our terms, a"word" here is any
set of six digits, and "intelligible
word" is the number of an opera-
tional telephone. Obviously, there are
1,000,000 words in all. What's the
greatest number of intelLigible words?

It's easy to see that this number
doesn't exceed 1 00,000-otherwise,
by the so-called pigeonhole principle2
one could find two numbers having
the same first five digits (there are
only 100,000 different S-digit num-
bers), and these two numbers would
differ only in the sixth digit. But can
wefind 100,000 numbers that satisfy
the condition?

This problem was posed at the3lst
Moscow Math Olympiad and was
solved there by only one participant.
In a sense, it's a "classic" olympiad
problem-very difficult to get a
handle on, but once it's solved you
need only a coupie of lines to write it
down. Here, we can simply take all
the numbers whose sum of digits is
divisible by 10,

Indeed, any two such numbers
can't dif{er in a single place, because
the difference between the sums of
figits of abcdef and a,bcdef is a - a1t

which is of course less than 10. On
the other hand, we can put arbitrary
digits in the first five places and
choose the sixth digit so as to make
the total sum divisible by 10. There-
fore, there are as manynumbers divis-
ible by 10 as there are different S-digtt
numbers-that is, 100,000.

Exercise 4. Consider all the tele-
phone numb ers xlxzx.x4xsx, such that
the sum arxr+ a2x2+ a3x3+ a4x4+ asxs

+ arxuis divisible by 10. What num-
bers a,, a2t ..., a6are needed to make
the code single-error-detecting?

Lineal' codes

I want to emphasize one very im-
portant feature of the code above: the
letters of our aiphabet are not just
some s).mbols-they're numbers that
can be put through arithmetic opera-
tions (if only just addition). It's the
algebraic structure of a code that en-
ables us to construct efficient codes,

2See, for instance, "Pigeons in Every
Pigeonhole" in the |anuary 1990 issue
of Quantum.-Ed.
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which is why the whole theory is of-
ten called algebraic code theory.

Let's turn back to the alphabet
with the symbols 0, 1, ..., p - 1. These
symbols canbe viewed as remainders
after divisionby p. Then, to find the
sum of any two of them, we must add
them as ordinary numbers and take
the remainder of the sum when di-
vided byp. Subtraction and multipli-
cation are defined similarly. These
operations are called addition, sub-
tr action, and multiplication mo dulo
p. For example, for p = 5 we write: 3 +

4 =2 (mod 5), 3 . 4=2(mod 5) (because

both3 + 4 : 7 and3 . 4 : l}have a re-
mainder of 2 when divided by 5).3 In
pafiicular, it follows from what's
been said in this article that addition
and multiplication of remainders
obey all the laws that normal arith-
metic operations obey except that
division-the operation inverse to
multiplication-is always possible
only for a prime number p. So from
now on we assume that p is a prime
(that is, the alphabet consists of a

prime number of characters), and
mostlyp will equal2.

As in the above telephone prob-
lem, one can easily construct a code
detecting a single error for two pos-

sible characters 0 ar.d I (p :2): a

word of zeros and ones x1l x2t ...t xn

belongs to C if the number of ones
is even. Clearly, any two such sets
can differ in not less than two places
(more exactly, in an even number of
places)-that is, d(Cl > 2. A more
formal definition of this code is
given by the equation x1 + xz + ... +
xn=O (mod 2), which distinguishes
the words from the code. So we can
say that this code is given by a lin-

sMore details can be found in "Go
Mod with Your Equatiotts" {Quantum,
May/fune r9921.-Ed.

t4

ear equation
Let's extend this idea a little bit. A

code can be defined by a system o{
several linear equations:

=o,- 
0,

=0,

where the unknowns x, and the coef-
ficients a, b i, ..., c, are allregarded as

remainders modulo p. That is, the
coefficients take the values O, L, ...,
p - l, and the equal signs mean that
the left sides of all these equations,
calculated in the conventional way,
are divisible by p-that is, yield zero
remainders when divided by p. We
assume that the number of un-
knowns is much gteater than the
number of equations/ so the system
has a large number of solutions (a1-

though a finite number, of course,
because there are only p" strings (x,,

. . .,*nil. The set of all solutions of such
a system is called alinear code. The
code we constructed above (with d(C)

= 2) is an example of a linear code,
since it's defined by one equation
with n unknowns.

What is the cardinality of a linear
code? Without delving into the
theory of linear systems/ I'11 simply
say that each equation enables us to
express one unknown in terms of
the others. So if there are n un-
knowns and m equations, then (in
general!) the values of n - m un-
knowns may be assigned arbi-
trarily-which can be done in p"-*
ways (compare exercise 1)-while
the remaining m unknowns are
uniquely expressed in terms of the
first n -m unknowns. Thus, thecar-
dinality of the code is p"--, and its

redundancy equals losolg1 lf -l : m.
What does this mean in practice?

Suppose we can assign arbitrarily the
first n - m unknowns. Then you can
write your message in the first n - m
places of each word-you can put
whatever you want there. What are
the other places for? They're called
controlplace-s. When they're filled up
so as to satisfy our system of equa-
tions, they ensure that any error vio-
lating the equations inevitably shows
up. And not only that: later on we'll
see that the proper choice of a system
even allows the person receiving the
message to correct such errors.

In order to understand how many
equations will suffice to correct one or
several elTors/ let's continue to explore
the "geometry" of the code space.

A spherc with radius r and center
a, where a is some word, is defined
as the set of all words b such that
d(a, bl < r.

Apparently, this is just the same
as the usual definition of a sphere.
The unusual thing about it is that a

sphere consists of a finite number of
points; this number is called the
volume and is denoted by V, (r is the
radius of the sphere). It follows that
a sphere ofzero radius has a nonzero
volume Vo: l. Then, as the radius
increases frornzero to one, the vol-
ume remains unchanged, because
there are no points iying a fractional
distance from the center a. But
when r becomes eclual to one, the
volume makes a leap: the sphere
captures the points a unit away from
a. The next leap occurs at r = 2, and
so on. So the sphere of radius r is a
union of a finite number of
"spheres" of radii O, t, 2, ..., p (p is
the largest integer not exceeding r),
and the volume of each sphere is
positive.

For instance, if p : 2, then the

lo,r,* 
a,x, + ... * a, X,,.

I b,x, + b.x, +... + b,,x,.
il'
Icrxr + c,xr +... + crix]i
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sphere o{ radius 1 centered, say, at
zero-the point (0, 0, ..., O)-com-
prises all strings (x, xr, ..., xnl that
differ from thezero string in only one
place. Theyhave theform (0, ...,0,1,
0, ..., 0), and, of course/ their number
equals the number of places-that is,
n. A sphere of radius 2 consists of
words having two ones andn-2ze-
ros, its volume is equal to C(n,21 :
n(n - lll2 (see, for instance, "Com-
binatorics-p olynomials-probabil-
ity" in this issue). So V, : I + n, Vr=
l+n+n(n-lll2.

Exercise 5. Find the volumes of
spheres of radii I and2 for an arbi-
trary p.

Let's recall the single-error-corect-
ing algorithm considered above: a re-
ceived word a'is corrected to a if and
only if a belongs to the code C and
d(a, a'l < l-that is, it a'is contained
in the sphere with rafius 1 centered
at a. Clearly/ a necessary and suffi-
cient condition for this algorithm to
work successfuIly is that unit spheres
with centers at all words of the code
are disjoint. If wewantthe codeto cor-
rect 1 errors, the spheres of radius r
should be disjoint. But then the inequal-
iry I Cl' V,af or lCl<l/V, should hold.
hr particular, fr p = 2 and the code cor-
rects one enor, lCl <2;' l(n + ll.

Take, for instancet n:7. Then
the cardinality of the code must sat-
isfy lCl < 2' lB = 27 - 3 

, so it should be
defined by not less than three equa-
tions. If n is the length of a word in
a code ar;:d mis the number of equa-
tions that define it, then the number
(n - ml I n is called t}rre tr ansmission
rate ot the code rate. It's desfuable to
make this number as large as pos-
sible. But as we've just seen, Ior, say,
n = 7, the rate can't be greater than
4/7. Now I'11 describe a code whose
rate is exactly 417.

The llamminu Code

Consider an arbitrary system of
three ecluations in seven un-
knowns-for example,

lXz iXt =0,

x2+XB +x4 +x5 +x6 = 0,

(x, take two values, 0 and 1, and are
added modulo 2). A word (x, xr, ..., x,l
is included in the code i{ it satisfies all
three equations. What happens if it is
transmitted with one error?

By way of illustration, consider a
solution 1001101 of the system and
make an error in the third piace. The
incorrect word 101110i is no longer
a solution to the given equations.
However, it still satisfies the first and
third ecluations, since they don't in-
volve x, (in other words, their coeffi-
cients of xrarezero). Only the second
equation is violated. In fact, 1et's plug
the ordinates of the incorrect word
into the three equations for a closer
look at what goes awry. We find

+l =0=0
0+1+1+1+0=1+0

+0+1=0=0

Look at the column of "wrong" an-
swers highlighted above:

Io)tlllltt
t0,

This turns out to be the column of
coefficients of x. in the given equa-
tions. And this is no coincidence: af-
ter making an error in the ith place,
a little thought will show that we al-
ways get a column of coefficients of
the ith unknown in the left sides of
our equations.

However, our radio operator, after
receiving the word 1011101, will be
unable to tell exactly where the error
was made: the word 1011001, like the
coffect one 1001101, also belongs to
the code and differs from the received
word in only one place (the fifth). The
reason for this ambiguity is clear: the
columns of coe{ficients o{x, andx, in
our equations are the same.

Well, then all we have to do is cre-
ate a system of equations whose col-
umns of coefficients are all different!

The columns written side by side
form a 3 x7 array of zeros and ones
called the matrix of a system. For
the system considered above, it has
the form

1 101000
0111110
100001 1.

The matrix we need is actually
unique up to the order of its columns,
because there are only 23 : B different
triples of zeros and ones, and one of
them is three zeros (which is sense-
less to use). So we simply write
down ali nonzero triple columns in
any order-say,

1 1 10100
t 101010
101 1001,

and get the required system

X1+x2+ Xs *Xs =0,

Xt+Xz *Xq *Xe =0,

xt +XB+X4 * x, =Q.

The code defined by these equa-
tions is called a H amming code. II we
start with n = 15, we find that lCl <
2ts 116 = 215 - 4 | So ri? : 4. We can thus
use the method outlined above to
construct a Hamming code with the
transmission rate lL f 15. II n :3 1, we
get a code with arateollSlSl, and so
on. Each of them corects one effor/
and the transmission rate approaches
I as n increases. One should be aware,
however, that the longer the words of a
codg the greater the danger that more
than one mistake will be transmitted.

Exercise 6.In the Hamming code
given above, the word 1010101 was re-
ceived. What word was transmitted?

The code that corrects one error
was constructed by R. W. Hamming
in the late 1940s. A new problem
naturally posed itself: how to con-
struct a code that corrects two or
more erors. That turned out to be
much more difficult. It wasn't solved
for another decade. The resulting
codes are called BCH codes in honor
of the mathematicians who invented
them: R. Bose, D. Chaudhuri, andA.
Hocquenghem. But they deserve a
separate article-here we leave the
topic for the time being. O

ANSWERS, HINTS & SOLUTIONS
ON PAGE 61
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MATH
INVESTIGATIONS

TheltUol'm Pt'ohlem ol leo [Ulosel'

Part ll: The story of the shrinking blanket

S PROMISED IN PART I OF
this account, in this article I'11

describe the progress made on
Leo Moser's Worm Problem to

date. In each of the figures, the lin-
ear distance between A and B is 1

unit-the length of the worm. So

they will automatically accommo-
date the worms/ which assume the
shape of a straight line segment. The
corresponding areas are given to
five-decimal-point acelutacy .

Figure 1 is a sector of a circle of
central angle 200 and radius Yzcsc0o,

where 0o is the smaliest positive
root of the equation tan e = 20. The
ar.ea of this sector rs YzOo csc2 00,

whose value is approximately
0.34501. This discovery was made
in 1972 by |ack Wetzel, who has
done much to popularize the Worm
Problem.

A

Figure 1

The purpose of this column is to firect
the attention ol Quantum's readers to
interesting problems in the literature
that deserve to be generalized ar,d
could lead to independent research
and/or science projects in mathemat'
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their resulis
to the author either directly or through

Quantum, which will distribute
among them valuable book prizes ar,df

or {ree subscriptions.

10

by George Berzbenyi

Figure 2 is the union ol an isosce-
les triangle oi altitude L l4 and base I
and a semi-el1ipse of maior axis 1 and
minor axis I I 2. The area of this iigure
is approximately 0.32135.It rr-as dis-

covered by |ohn Garriets shortll aiter
Wetzel announced his drscovery.

Figure 3 is a rhornbus rvith maior

diagonal I anJminordiagonal .'3 3.

The are oi this figure is approxi-
rnatel,v 0.28867. It was discovered
b.v John Garriets and George Poole
around 1974.

Figure 4 is a truncation of the
rhombus in figure 3. In it, CD is par-

allel to AB andls of leng,th 1 - \ 3 2.
The area of this {igure is approxi-
mately 0.28608. This result is also
due to Garriets and Poole and aP-

peared, along with figure 3, in their
loint 1974 article tt The American
Mathematical Monthly.

Finally, figure 5 is a 60' sector of a
circle of radius 112 with a 30'-60o-90'
triangle joined to either side. Its area

is approxim ately 0.27523. This is the
latest discovery, which I referred to in
part 1. It was made by Rick Nonvood

and my friends, George Poole and
Michael Laidacker. Their article ap-

peared on pages 153-62 of Discrete
Computational Geometry, Yol. 7

(l992l.For exact references in the lit-
erature/ the reader is referred to the
references at the end of their article.

My first challenge to Quantum
readers is a minor exercise: verify
that the areas of the shapes in fig-
ures 1 through 5 are as reported. My
second challenge is to show that
each of these shapes will cover the
ll-worm, consisting of three line
segments of length ll3 at right
angles to one another. Next, try to
reconstruct the proofs that each of
these shapes covers all worms of
length 1. Finally, and most impor-
tantly, attempt to make successful
improvements on them and propose
coniectures of your own.

In part III of this account, I'11 tell
you about some of the conjectures
known to me/ and I'11 describe two
other "special worms" that you'll
need to keep in mind as you make
your own conjectures o

A

Figure 4Figure 2

A

Figure 3
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BBO
Neat shearing. You have to make one square out of the three squares-
Z x 2,3 x 3, and 6 x 6-shown in the figure. How can you do this, cutting
the scluares into the smallest possible number of pieces? (V. Proizvolov)

ANSWERS, HINTS & SOLUTIOIVS O/V PAGE 59

Jusl lor lhe lun ol it!

876
Blond and blue-eyed. The proportion of blonds among blue-eyed persons is
greater than among the population as a whole. Is it true that the proportion
of blue-eyed people among blonds is greater than among the entire popula-

877
Long heights. Does there exist a triarrfl.e, two of whose heights are not
shorter than the sides on which they are dropped? If it does, what are its
angles? (A. Savin)

879
Two times two. Each letter in the "alphametic rebus" shown in the figure
stands for some digit-different letters denote different digits, dots denote
arbitrary digits. What number is TWO? (A. Shvetsov)

r+i_*.]i.*_.:llrlrrlltti Itlttr_,1

B7B
'" Dripping hot and cold. Twoidentical iaboratory pipettes are filled with

water to the same level. The water is cold in one pipette and hot in the
other. As the pipettes are emptied, the drops are counted. From which
pipette wili more drops fal1? (A. Buzdin)
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Anagrams of words, numbers, sweet peppers . ADXthing

by Nikolay Vasilyev and Victor Gutenmacher

HIS ARTICLE WILL BE UN-
derstandable to everybody fa-
miliar with the most elemen-
tary algebra. But we're sure that

high school juniors and seniors will
also find it interesting. We're going to
demonstrate how the same combina-
torial formula penetrates a number of
branches of mathematics and its ap-
plications: combinatorial theory,
polynomial d.gebr a, and probability.

tacto1'ials

There is a convenient formula for
calculating the sum of the first n
natural numbers (positive integers):

n(n+l\
1+2+...+n =-;

The product of the first n natural
numbers can't be expressed by a simi-
Iar formula, but this value, which
occurs often in combinatorics and
other mathematical fields, has a spe-
cial notation: n! (read as " nfactorial"l.
The choice of the exclamation mark
perhaps has to do with the magnitude
of this number, which is very large
even for moderate values of n. To
show how fast n! grows with the
growth of n, let's compute it for n
from I to 10:

1!=1,
1t:1 .1:.)
3!:1.2.3=5,
4!:3!.4=24,
5!:4!. 5:120,
5! = 720,
7! :5,040,

l 0 illnur/APnrr rssg

8! :40,320,
gt :362,990,

10! :3,628,800.

The de{inition of n! implies the
following formula, relating the facto-
rials of two subsequent natural num-
bersnandn+1:

(n+1)! :nt.(n+tl. (1)

To find the product of numbers from
1 to n + 1, the product of numbers
from 1 to n must be multiplied by one
morefactor,n+1.

Notice that, pluggingn :0 into (1),

we get 1! : 0! . 1; for this reason it's
assumed that 0! = t. This agreement
proves reasonable and useful in vari-
ous general formulas.

Problems
1. Find n! for n = ll,12.
2. Is it possible for n! to end in ex-

actly five zeros? What is the small-
estn such that the numbern! ends in
six zeros?

3. Prove the formula (n + lll - nl =

n!.n.
4. Find the sum 1 . 1! + 2-2t + ... +

n .n!. (Use the previous problem.)
5. Check the equality

nl. - fr!
k!(n-k!)' (k-l)!(n -k+1)l

- (n+1)!
k!(n-k+1)!

for n = 7, k : 3, and prove it for all
natural n andk,0 < k <n.

6. Find four triples x, 12, z such that
rl . yl : z!. (Substituten = kl - 1 into
formula (1).)

Psrlttttlaliolts
Factorials appear in the most natu-

ral way when we count the number
of permutations of different objects.

Let's take the four letters B, lJ, S,

H and find how many ways they can
be arranged in a row-that is, how
many words can be compiled from
these letters. It turns out that this
number of ways equals 4l = 4.3 .2.
| =z4.Indeed, any one of the four let-
ters can be put in the first place, any
of the three remaining can take the
second place, any of the two unused
ones can take the third place, and fi-
nally the last letter will find itself in
the fourth place. A11 these permuta-
tions are written out in figure 1. Per-
mutations of the letters of some word
are called its anagrams.

Flere's one more example. Con-
sider all the permutations of ten fig-
ures 0, l, 2, 3, 4, 5, 6, 7, 8, 9.They can
be viewed as 10-digit numbers if they
do not begin with zero, arrd as 9-digit
numbers if they do. So in all there are
10! numbers of both kinds.

These examples illustrate a general
statement:

The number of permutations of
n different things is equal to n!.

It's often necessary to select from
all permutations only those possess-

ing a certain property. For instance,
from the anagrams of the word

I
a
l
C
oc
O
C)

r0
o_
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BUSH, written out in figure 1, only
one (besides the word BUSH itself)
makes sense in English: HUBS.
Among the 10! numbers specified
above, there are exactly four that are

divisible by all the numbers from 2 to
lB: 2,438,195,7 6Ot 3,7 85,9 42,160 i
4,7 53,869,120 ; and 4,87 5,39 1,520. T o

find anagrams that make sense, or the
above four numbers among all 101

numbers, onehas to search througlr alot
of cases. Similar problems repeatedly
arise in manufacturing and economics
when optimal variants must be found.

Problems
7. (a)How many anagrams does the

" word" NISELAP have? (b) Find among
them the name of a breed of dog.

B. Find two 9-digit numbers com-
prising all the figures 1,2, 3, 4, 5, 5,

7, 8, 9 such that one of them is 8

times the other one.
9. (a) The vertices of a regular hexa-

gon drawn on the plane are to be labeled
with the letters A, B, C,D, E, F. In how
many ways can this be done? (b) How
many of these ways yield a hexagon
ABCDEF? (The letters can be read either
cioch,vise or counterclockwise. )

10. In how many ways can eight
rooks be piaced on a chessboard so that
none of them attacks another one?

Pel'mutafiiolts trilh neRelilior$

If some letters of a word are the
same, the number of anagrams-pet
mutations with repetitions-is ex-
pressed by a ratio of factorials. For
instance, the number of anagrams of
the word BAOBAB is 6113!2lll = 60.

Why is that? Lr this word the let-
ter B is repeated 3 times, A is repeated
twice, and O occurs once. Imagine
that aIL these letters are different: for
instance, three B's and two A's may

Figure 2

be colored different. Then we'd have
5 distinguishable symbols that can be

ordered in 5l different ways. But then,
each anagram of the word-
OAABBB, BOAABB, AAOBBA, ...-
will correspond to 3l2l permutations
of these symbols lfig.2), because the
three B's in it can berearranged in 3!

ways, while the two A's can be rear-
ranged in 2l ways.

In the general case, the number of
permutations with repetitions is
given by the following formula:

If a word consists of n, letters
Ar, nrletters 42, . . ., n,Ietters A,,
the number of its anagrams
equals

(nr+ry+...+n,)t
nrlnr!...n,1.

Of course, this fortmrlaworks as well
with permutations of anythlng. For ex-

ample, the number of penrrutations of
the figures 0, 0, 0, O, 1, 1,3 is equal to

4!21l

Problems

4l.s 6.7
4t.2

11. How many anagrams do the
following words have: (a) ANA-
GRAM, (b)REGISTER?

12.I{ a mother has 3 bananas, 2
pears/ and2 orunges, in how many
ways can she give the fruit to her
daughter in one week, one piece of
fruit per day?

13. Decode the phrase in the draw-
ing on the previous page, in which
every word is replaced by at ar'agrum.

14. How many ways are there to
make a necklace of one black, two
white, three red, and five blue beads?

ThE [otltgr'ola sum

Permutations of letters (anagrams)

naturally arise when two or more
polynomiais are multiplied, and the
above combinatorial coefficients (the
numbers of anagrams) arise when like
terms are collected.

You knowverywell how to square
the sum of two numbers:

la+blz:a2+Zab+b2.

A similar expression can be obtained
for the square of the sum of three or
more terms. Let's square/ for in-
stance/thesuma+b+c:

(a+b+cl(a+b+cl
=aa+ab+ac+ba+bb+bc+

ca+cb+cc
= az + b2 + cz + Zab + Zbc + 2ac.

A similar formula is valid for
(a + b + c+dlz (infigureSeachmo-
nomial expresses the area of the respec-

tive rectangle). Generally, to compute
thesquare of thesum of n numbers/ you
haveto addtogetherthe squares of all'n
numbers and the doubledproducts of ali
pairs of the numbers.

When a + b + c is meticulously
multiplied by itself twice, the follow-
ing formula emerges:

7!

d
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abcde
db
b2c

b2a

21000
02100
12000

abcde
a3

b,)

c3

30000
03000
00300

la+b+cl'=a'+b3+C
+ 3(azb + azc + bza + b2c + c2a + czbl
+ 5abc.

The coe{ficients 1, 3, and6 that arise
here can be obtained without the
tedious routine of multiplying and
collecting like terms: they're just
the numbers of anagrams, which we
already know. The term a3, say, catr
appear in a unique way-by choos-
ing the Ietter a from each of three
muitiplied sums

la + b + cl(a + b + clla + b + cl.

To obtain the term azb, we must se-

lect b from one of the sums and a
from the other two-that is, the ana-
grams corresponding to this term are
aab, aba, baa; theu number, which
we know to be equal to (2 + llllzll\
= 3, is iust the coefficient of this term.
Finally, the coefficient of. abc is equal
to 3!/(M ! I !) : 6-the number of ana-
grams of a three-letter word whose
letters are all different.

A similar formula can be worked out
for the cube of the sum of a greater num-
ber of terms. For examplg

(a + b + c + d + elt : b' + ...) +
3la2b + ...1+ 5(abc + ...1. (21

The ellipses in each set of parenthe-
ses denote the terms resulting from
the first one (written out) after all
possible letter substitutions.

Now, the general formula:

The coefficient at 4'4...oi, ,

obtainedby raising the sum d1 +

az+ ...+ a,of t terms to thenth
power (here n : fl,+ nr+ ... * r1,t

frr) 0, fir) 0, ...,ff,20), is equal
to the number of anagrams of a
word comprising nrletters A'
n, letters Ar, ..., n,letters A,-
that is, to

n!

"r1,,\L -4

(Naturally, if some number n, equals

0, then of : l, so the letter ar lacks
the corresponding monomial-we re-
mind you that 0! = 1.)

Let's look at formula (2) again. It's
interesting that the question "How
many terms are there within each
pair of parentheses? " is also reduced
to counting permutations with rep-
etitions. Let's write out all our five
letters, and under every letter we'll
write the exponent with which this
letter enters a certain monomial (if
a letter doesn't occur in it at aII, we
write the exponent 0-see the tables
above). Then the monomials in the
parentheses (azb + ...1will be related
to "words" of five figures-one 2,
one 1, and three Os-taken in every
possible order, so the total number of
these monomials equals 5!/(3!M!)=
20; the number of terms in the paren-
theses lo' * ...|will be equal to the
number of anagrams of the "word"
30000-thatis,5!l(4!l!) = 5; and the
number of terms of the f.orm abc
will equal 5!/(3!2! ) = 10.

We can verify that there was no
mistake in our reasoning by counting
the total number of all the monomi-
als before collecting like terms-in
other words, by substituting 1 for ev-
ery letter in (2). Then we'lIget 53 on
the left side of the formula and 5 + 3 .

20 + 6. 10 = i25 on the right side.

Problems
15. Before collecting like terms,

how many terms will appear in mul-
tiplying out the product

(a + b + c + dl(x + y + zl(u + vlz.

(Hint: substitute 1's for the letters.)
16. Find the largest coef{icient of

the polltromials (a) (a + b + c + d + elsi

lbl(a+b+c+dls.
17. Find coefficients K' K, Ks,

K4, Kssuch that (a + b + c + d + ela

= Kr(ao + ...) + Kr(aab + ...) +

Kr(azb2 + ...) + Ko(a'bc + .,.) +

Krlabcd + ...). How many terms

are there in each set of parenthe-
ses? Verify your answer by set-
ting a : b = c : d: e = l.

A way to colnltllt pnolalilllies

As we ai1 know from our everyday
experience, a buttered slice of bread
falls butter down with a probability of
1/2 and butter up with the same prob-
ability. Some people, though, believe
that the probability of the first out-
come is 0.9 and that of the second 0.1 .

But hardly anybody will doubt that
the probability of getting a 6 when
you roll a die is lf 5, and that of get-
ting two 6's in a row is 1/36.

These examples illustrate the gen-
eral idea that aprobability is a num-
ber between 0 and I that expresses
quantitatively the chance of one or
another outcome (like butter up or
down) of some random event (drop-
ping a buttered slice of bread), and
that the sum of the probabilities of all
possible outcomes is equal to 1.

When you're trying to solve a prob-
ability problem, the first thing to do
is assign certarn probabilities to all
"elementary outcomes" of the ran-
dom experiment in question, if they
aren't specified explicitly in the state-
ment of the problem. (For instance,
when a die is said tobefair, it means
that each of its six faces is equally
likely to be rolled and so each has a
probability of 116.l The probabilities
of more complex events are calcu-
lated by using laws of mathematical
probability theory. For a specific kind
of problem, the calcuiation amounts
to raising the sum of several numbers
to some power by using the formulas
considered in the preceding section. It
turns out that the monomials that
arise when you do this all have a defi-
nite probabilistic meaning.

By way of illustration, consider
this (somewhat artificial) example.
Imagine a huge pile of sweet peppers
in your favorite grocery store. You/re
told that 1/3 of them are red, Ll2 are
yellow, and I I 6 are green. If you take
one pepper at random, we naturally
assume the probabilities that it's red
(r), yellow (y), or green (g) are equal to
Ll3,l12, andlf 6, respectively.If you
take two peppers/ one by one, there
are 9 possibilities: rr, ry, rg, yr,W, yg,

abcde
abc
abd
o!"

1

1

1

100
010
001
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Er, Sy, EB.If the pile is big enough, and
if you grab peppers without looking at
them, the probability that the second
pepper in a p air is, say, yellow, doesn't
depend on the color of the first pep-
per and is equal to the proportion of
yellow peppers in the pile-that is, it
equals If 2, no matter what color the
first pepper was. So the probability of
taking say, apau ry (which equals the
portion of such pairs in the set of all
possible pairs) is l12 the portion of
pairs in which the first color is red-
thatis, l12 l13 = i/5. Similarly,the
probabilities of a1l pairs of colors,
listed in the same order as the pairs
above, are equal to

The sum of these numbers is 1. This
is easy to see if you notice that all
these products ffop up when the sum
Il3 + ll2 + ll5 :1 is squared (before
Iike terms are collected).

To find the probability that one of
the peppers is red and the other green,
we have to add together the probabili
ties ofzg ar;Ldgr:

Notice that this operation can be
viewed as a part of the following: take
the square of.lr + y + gl, coliect like
terms (in our particular cas e, rg and gr,
which yieids 2rgl, ar.d then replace
the letters (r and g) with their respec-
tive probabilities.

The rule for caiculating coeffi-
cients in a power of a sum enables
us to find probabilities of longer
combinations, too. For example, if
our farmer chooses at random/ one
after another, five peppers, the prob-
ability that three of them are red,
one is yellow, and one is green can
be computed as

since (5 !/(31 1 I 1 ! ))fyg is the monomial

arising in the simplified expansion of
(r + y + gls after all the anagrams of
firyg are collected.

It's interesting that the cases of "3
red and 2 yellow peppers" andof "2
red, 2 yellow, and 1 green" have the
same probability

sl fl)'fi)' st 1r)'1 r1'r
z,s.l, ) 1.5, - z!zw.l, ) 1.3, A

5
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(These are the 4gost probable combi-
nations of five peppers given the ini-
tial probabilities we've chosen.)

Problem
18. Each edge of a cube measures

6 cm. The three edges passing
through vertexA are divided into seg-

ments of 3 cm,2 cm, and 1 cm/ start-
ingfrom pointA. Thenthe cube is cut
rrrto 27 pieces along the planes paral-
lel to its faces and passing through the
points of division (fig.  ). (a) How
many o{ the pieces will be "boxes"
measuring3 cm x 2 cm x I cm? (b)

What are the other pieces, and how
many pieces of each sort are there?
What are their volumes?

Binomial coeflhioltt$
tr the foregoing we barely touched

on the simplest and, perhaps/ most
important case of two letters. The
coefficients in the expansion of
(a + bl" have a special notation-in
fact, they even have several standard
notations, maybe because they're so
important: C(n, rl,,C,, (!l (and others).
Here we'll use the first of these:1

(a +bl": C(n,\la" + C(n,lla" tb +
... + Cln, rla" 'b' + ... + C(n, nlb".

This formula is the famous binomial
theorcm. The coefficients C(n, z) are

1A while back our readers had an
opportunity to become acquainted with
these coefficients in "Summertime,
and the Choosin'Ain't Easy" by Kurt
Kreith (Quantum, |uly/August 1992).
From that article you can leam how to
find the number of combinations with
repetitions.-Ed.

Figure 4

cal7ed binomial rcfficienx lby the way,
in the general case-with ar arbrtrary
number of letters-the coefficients are
often called multinomiaJ). We know
that Cln, r)-the number of n-letter
words consisting of zletters b arrdn-r
letters a-is given by the formula

C(n. r\ = n!\ ' ' (n-t)r'tl
n(n-l')...(n-r+1)

r!

For instance,

(a + bla : aa + 4a\b + 6a2b2 + 4ab\ + ba,

because

C(4,0) =C(4,4)=aL=1,4!0!

c(4,1) = c(4, s1= lL = 4,
3!1!

AIc(4.2\= " =6.' 2!2!

Binomial coefficients are en-
countered in the most diverse prob-
lems of combinatorics, algebra, ge-

ometry/ calculus, and probability.
There are numerous connections
between them, expressed by beau-
tiful identities. For instance, from
Cln, r) + C(n, r - ll : C(n + l, r) (see

problem 5), it follows that for all natu-
ral n alndr,0 < r < n, Clr, rl + C(r + l, tl
+ ... + C(n, rl = C(n + I, r + 1) (forz:
1, it's just the formula that opens
this article). And, of course, these
numbers will crop up more than
once in the pages of Quantum. A
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PHYSICS BOWL
American Association of Physics Teachers
5112 Berwyn Road
college Park, MD 20740-4100

Please Send_ PHYSICS BOWL contest forms at
$t.ZS eacn for a total of $_ tot

re

Sc

Sc

CltV State Zp Phone

calling AII
Physics Students:
Enter the 1993 PHYSICS BOWL and win
a laser for your school!

Here',s How the
Contest Works:
All students who enter take a
40-question, timed, multiple-choice
test supervised at their school on April
23,1993. Contest questions are based
on topics and concepts in typical high
school physics courses.

The contest is designed to be low
pressure and fun! First and second year
physics students will compete in
separate divisions. Divison I is for first
year students; Division ll is for second
year students. ln each region, students
will compete in one of the two divisions.
A school may enter either or both
divisions as long as it has at least the
minimum number (4) of eligible
students. A school's score in a
division is the sum of the four highest
student scores.

Prizes:
Thirty first-place schools will receive a
laser donated hy Metrologic. First and
second-placq teams will also receive T-
shirts. All students and teachers who
enter the Physics Bowl will receive a
certificate of participation from the
AAPT.

Enter Today! and put your
knowledge to the test!

Here',s How to Enter:
1. Each school must complete and mail
the entry form. A check or school p.O.

for a total calculated at $t.Zs per
student entry must be enclosed. Entry
forms and payment must be received
by March 22,1993.
2. Teachers should reserve a room and
arrange for supervision of the contest
on April 23,1993.
3. The AAPT will ship contest forms
and instructions about two weeks
prior to the contest date. Please notify
the AAPT if you have not received
them by April 17th.
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M76
Applying clas sic ine qualitias. Prov e rhat
if the sum of two positive numbers is

less than theirproducq then the sum is
greater rhan4. (N. Vasilyev)

M77
Curious rcok. A rook visited all n2

squares of an n x n chessboard.
Prove that in so doing it had to
change direction at least 2n - 2
times. (Remember, the rook moves
paraliel to the sides of the chess-
board.) (Y. Khodzinsky, 1Oth grader)

M7B
Summing ordered distances, The
numbers l, 2, ..., 2n - l, 2n are arbi-
trarily split into two groups of n num-
bers each. Let ar< a2< ... < a, be the
numbers of the first group in ascend-
ing order and b, > b2 > ... > b,the
numbers of the second group in de-

scending order. Prove that the sum of
the distances between the corre-
sponding numbers of the two groups/

lar-brl + lar-brl + ... + lan-bol, equals
n'.|Y. Proizvolov)

M79
Equal sides, equal circles. A line
through the vertex B of. an isosceles
triangle ABC IAB = BC) cuts its base

AC at D so that the radius of the
incircle of trianyJeABD equals that of
the excircle of triangle CBD exter'
nally touching side DC (and the ex-
tensions ol BC and BD-see figure 1).

Prove that this radius is 1/4 the height
ft of the triangle dropped from a base

vertex. (I. Sharygin)

M80
Counting L-trles. A square measuring

Flgure

99 x 99 is tiled with figures of three
types made of 3 or 4 unit squares/ as

shown in figure 2. (a) Prove that the
number of figures of the fust tlpe ("I-
tiles") is not less thanl99. (b) Give an

example of a tiling containing exactly
199l-tiles. (D. Fomin)

Physics
P76
Spilng iacket. A spring of length Io
has a great number of identical open
windings. If the spring is hung by

Figure 2

one of its ends, its length increases
by a factor of 1.5. What will the
length of the spring be if it is placed
in a tall vessel with smooth walls?
To what level must water be poured
to cover the spring completely? The
density of the spring is r times that
of water. (S. Krotov)

P77
Puckishbehaviot. A puck of mass M
slides along a smooth horizontal table
with speed %. It hits another puck of
mass 2M. The first puck stops after a
nonelastic collision, but the second
one starts moving and hits stili an-
other puck of mass M (the same as the
first one). What are the velocities of
the pucks after colliding head-on?
(Neglect friction.) (A. Vargin)

P78
Minimeltduam. A miniature oven for
melting metals has aheating element

24 ll,IARCili APBil. r SS3
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of constant power P = 20 W. The oven
is switched on. After the temperature
practically stops rising/ some scraps
of tin of mass M = 50 g are thrown
into the oven and they begin to melt
(the graph of temperature versus time
is given in figure 3). Using these data,
determine the latent heat of melting
for tin. (A. Zilberman)

P79
Norrnal intensity. A system of station-
ary charges is symmetric relative to the
axis OO, . At a great distance from these
charges, at pointA on the axis, the elec-
tric field is E, = 100 V/m; at point B it is
E2= 99 V/m. The distance between A
and B is I : 1 m. Let's move from
point A to a point r = I crn away
from the axis. What is the perpen-
dicular component of the electric
field at this point? (A. Zilberman)

PBO
Rite of passage. N converging lenses
of focal length 2F and N diverging
lenses of focal length -F are placed al-
temately along an axis at a distance
F apart (fig.  ). A beam of parallel light
rays of diameter D enters the system
along the axis. Determine the diam-
eter of the exiting beam. (A. Yershov)

lllllltil
Figure 4
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Solar po\Mer.
Since 1989, teams ofDrexel students

and Faculty members have designed, built
and raced three working solar-powered

cars-SunDragon I, II and III. I7e also

have been selected to participate in two
nationally sanctioned solar vehicle races.

\7e're ready and waiting to tell you
and your studen* all about our SunDragon
projects and filI you in on: photovoltaics,
aerodynamics, mechanics,

thermodynamics, mathematics, project
management, vehicle daign, materials

l.eson plans and a show-and-tell set

of transparencies oudining tle
development of our solar-powered vehicles

are available for your science and

mathematics clases,

For more information about these

unique teaching resources or to obtain
copies foryour classes, contact Amy
\(adin, admissions special projects

coordinator, at (215) 895-2400 orwrite to
Michel Barsoum, asociate professor of
materials en gine ering 4445 LrBow

CallinU all modem lnaltiac$!
What do you like in this or any is-
sue of Quantum? If you find pen-
and-paper comrnunication too
old-fashioned, you can send your
comments/ questions, and sugges-
tlons to the managing editor by
electronic mail at the following
address:

7 2030.3 | 62@compuserve. com

We iook forward to hearing {rom
you.
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The ineuilahilily ol hlack holes

ln fact, why aren't there more of them?

Blackholesarea natural conse- i
quenceofthenarureofgravrry. f /

verse except black holesl E -
Black holes are used in E " /

astrophysics to explain a \g'
number of different ft:
types of highly ener- \
getic astrophysical ob- ...r'r.,::.ri,:.r,;i
jects. Many galaxies

by William A. Hiscock

LACK HOLES ARE TODAY
an essenti al part of modern
theoretical physics and astro-
physics. Yet there are still some

scientists (and many nonscientists)
who find the notion of a black hole
physically unacceptable. They be-
lieve the very idea is too outlandish
to be real. In this article, we'Il see that
some of the most basic properties of
a black hole can be understood in
terms of Newton's law of gravitY and
that the formation of black holes need

not involve ultrahigh-density mat- i
ter or other areas of physics about {
which we currently knowlitde. "f ;

seem to have ex-
tremely luminous and active nuclei.
Depending on their appearance, such
galaxies are classi{ied as quasars, Sey-

fert galaxies, or BL Lac objects. It's
widely believed that the source of
energy powering these active galactic
nuclei is a supermassive black hole,
with a mass between 106 and 10e so-

lar masses. Within our own galaxy,
binary star systems that are bright X-
ray sources are believed to contain
either a neutron star or a black hole.

There exist well-defined (if not yet
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precisely known) upper limits for the
mass of any neutron star, certainly
less than about 3.5 solar masses. The
orbits of several of these binary sys-
tems are well enough determined to
then rule out neutron stars. The best
known is Cyg X-1, so called because
it was the first X-ray source discov-
ered in the constellation Cygnus.r For
many years Cyg X-l was the most
promising candidate for a system con-
taining a black ho1e. The best esti-
mateof themass of theinvisiblg X-ray-
emitting object in the Cyg X-l system
is 16 solar masses/ much greater than
the maximum mass of a neuffon star.

The actual physical notion of a
black hole is a simple one that New-
ton would have understood in his
time. Abiack hole is simply a region
of space where gravity is so intense
that nothing/ not even a photon trav-
eling at the speed of light, can escape
the region. While Einstein/s theory of
gravrty, "general relativity"-a name
that hides the fact that it is a theory
of gravity-is needed to correctly de-
scribe the gravitational physics of
such an object, several key properties
of black holes can be understood in
terms of Newtonian gravity.

Neuutonian ilack ltoles: tlllichell

The first person to consider the
possible existence of an astronomical
object from which light could not es-

cape was the Reverend |ohn Michell,
a British amateur astronomer. In a
letter to Henry Cavendish in 1783,
Michell described a calculation using
Newton's theory of gravity that
showed that a spherical obiect 500
times the radius of the Sun, butwith the
same density, would have an escape
velocity exceeding the speed of light.

Consider a spherical mass of radius
R andmassM.It couldbe aplaneg star,
or soccerball, butwe'll call ita"star" for
convenience. The gravitational poten-
tial energy of a particle of mass m on its
surface is V, where Vis given by

v= GMm
RI

lYou may recall Cyg X-1 from "The
View through a Bamboo Screen" in the
|anuary/February 1992 issue o{
Quantum.-Ed.

and G : 6.57 x 1011 N m2/kg2 is the
gravitational constant. The particle
will be able to reach infinity if it is
projected from the surface with a ve-
locity greatil than or equal to the
escape velocity from the sarface v".
The escape velocity is defined as the
veiocity that will allow the particle to
just reach infinity with no residual
veiocity or kinetic energy. Thus, at
infinity the total energy of the object
should be zero.If the particle has ve-
locity v, at the surface of the star/ then
its total energy at the surface will be
its kinetic energy 1/zmv"2 plus the po-
tential energy defined above. Since
energy is conserved, this total energy
must also be zero:

GMmi-r? - -0.

This expression canbe used to define
the escape velocity from a star with
mass M and radius R by solving for v.:

Note that the mass m of the par-
ticle drops out, as it must, by Gali-
leo's principle of equivalence (all bod-
ies fall with the same acceleration in
a gravitational field). So far, this is
simply standard Newtonian gravita-
tional physics, straight out of any
textbook. In order to leam something
about a "Newtonian black hole," we
must incorporate one other idea: the
notion that there is a maximum uni-
versal velocity at which particles can
travel-namely, the speed of light c.

Imagine holding the mass M constant
in the equation for v"above, while
letting R decrease. As the radius of
the star decreases, the escape velocity
increases. There will be some special
value of R at which the escape veloc-
ity will be equal to the speed of light.
Any star of smallerradius wouldhave
an escape velocity greater than the
speed of lighg and nothing (lighg space-

ships, ...) could escape the object.

fielatiuisliu hlack holes: Schulal'nchild
The special value of R where the

escape velocity is equal to c is called
the Schwarzschild radius, named af-

lzctwv=l \/n

ter KarI Schwarzschild, who discov-
ered the solution that describes the
simplest black hole in Einstein's
theory of gravity. If we set v, equal to
c and solve for the Schwarzschild ra-
dius R, we obtain

, -zGMn^---'S 
CZ 

I

a relation that is true in both New-
tonian gtavrty and Einstein's theory.
If we substitute in the values of G and
c in order to find out just how small
a black hole might be for a given
mass, some remarkable numbers re-
sult. Lr SI units, we find

R, [meters] = (1.48 x lOr'Z)M [kg].

So, for examplg the Schwarzschild
radius of the Sun (mass 1.99 x 1030 kg)
will be about 3 km. For the Earth
(mass 5.98 x 102a kg), the Schwarz-
schild radius is oniy about a centime-
ter. This doesn't mean that there is a
black hole with these dimensions at
the center of the Earth or the Sun.
This is the radius to which we'd have
to compress the entire Earth or Sun to
cause it to become a black hole.

Problem 1. Calculate your own
Schwarzschild radius. Is it larger or
smaller than the size of an atomic
nucleus? Calculate the Schwarz-
schild radius for the Milky Way Gal-
axy (mass 1011 times the mass of the
Sun).

One might expectthe density of art
object the size of the Schwarzschild
radius to be quite high (just imagine
compressing the Earth until all its
mass is con{ined to a sphere the size
of a golf ball). If we assume that the
object has a constant density p

throughout, thenM = fnpR}, which
again, thanks to spherical symmetry,
holds exactly in Einstein's theory (de-

spite the curvature of space-time) as

well as in Newton's.
We can set R = Ry solve for Ry and

then find the density p, as a function
of the mass M for an object at its
Schwarzschild radius:

3c6
I D 32nG3M2
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Substituting in numbers, we again
find some remarkable results: densi-
ties that are cefiainly far greater than
ar,,y for which we have direct labora-
tory experience. If our Sun were to
undergo gravitational collapse to
form ablackhole (which itwould not
do, but that's another story), its den-

sity as it passed the Schwarzschild
radius is inversely proportional to the
square of the mass-that is, smaller
masses yield higher densities.

For comparison, recall that the
density of water is 1 g/cm3 and that
the nucleus of the atom, which is
the densest material studied in the
laboratory, has a density of around
101a g/cm3. This is 1/100 the density
the Sun would have at the Schwarz-
schild radius.

Problem 2. Calctlatethe density of
a collapsing galactic-mass object as it
crosses its Schwarzschild radius.

Pl,inciple ol equiualenm:

Galileo t0 tinsteill
The very large values for the den-

sity of matter at the Schwarzschild
radius is one of the reasons some sci-

entists refuse to take black holes se-

riously. How could anyone pretend
that they know anything about the
properties of matter at such high den-

sities?2 One couldimagine all sorts of
new physical laws coming into PlaY
at such densities that might prevent
the formation of something as absurd

as a black hole. A{ter all, the physics
of ice is rather different from the
physics of steam. Might it not be rea-

sonable to expect that at some high
density, before the black hole forms,
the matter creates avery large inter-
nal pressure, stopping the collapse
and preventing the formation of a
black hole? Many scientists who are

unfamiliar with Einstein's theory of
general relativity have proposed such
ideas as a way to "escape" the idea
that nature may contain such odd
objects as black holes.

However, in the theory o{ general
relativity, avery large pressure (such

rsee the cxceryt from Galileo's "The
Assayer" in the November/Dccember
1992 issue,-Ed.

as it wouid take to halt the coilapse
at these extremely high densities) can
actually strengthen the collaPse
rather than impede it. hr order to un-
derstand this apparently paradoxical
result, we must understand the Ein-
stein equivalenceprinciple, one of the
key ideas on which he built his theory
of general relativity.

The principle of equivalence has

always been a comerstone of our un-
derstanding of gravity, from Galileo
through Einstein. The principle was
first articulated by Galileo, who rec-

ognized that all types of matter fall
with the same acceleration in agravi'
tational field. While Aristotle had
proposed that heavier obiects fall
faster than light objects, Galiieo's
important insight ledhim to consider
separately the effects of gravity and
air resistance. A popular story (but
probably untrue) has it that Galileo
dropped cannonballs from the leaning
tower of Pisa to show that the accel-

eration does not depend on the size or
composition of the obiects.

Testittg the Uinciile nlequiualenm:

Bnaginslry and Panou

Today, the equaiity oi the gravita-

tional acceleration o{ di{{erent types
of rlatter is one o{ the most precisely
known quantities in physics. Experi-
ments conducted by V. B. BraginskY
and V. I. Panov in Moscow in l97l
showed thatplatinum and aluminum
fall toward the Sun with the same
acceleration to better than one part in
1012. This means that if we wrote out
the numerical values of the accelera-
tions of platinum and aluminum,
they would be the same number for at

least the frst l2 digts. Few propenies of
rnatter are known to such precision.

Einstein used Galileo's principle of
ecluivalence-that all forms of matter
respond to gravity (and create gravity)
in the same way-and combined it
with an insight gained from special
relativity: energy and matter are
ecluivalent lE = mcz). Einstein's
equivalence principle states that all
{orms o{ energy (including all forms o{

matter) respond to gravity and create
gravitational fields in the same man-
ner. Only the total amount of mass is

important, not whether it is platinum
or aluminum, "rest mass" energy/
thermal energy/ or even gravitational
potential energy. The notion that the
energy in the gravitational field itself
acts as a source for the gravitational
field was one of the most profound
new ideas in general relativity.

For instance, if we have two can-

nonballs of the same initial mass and
heat one up to a high temPerattue,
then the hot cannonball will attract
a test body more strongly than the
cold cannonball, since it now has
more total energy (and hence more
total mass). The heat energy in the
hot cannonball is equivalent to a

certain additionai amount of mass
(m = Elc2l, and by the Einstein
equivalence principle, all forms of
matter and energy participate equally
in gravity. Thus, the larger mass of
the hot cannonbali produces a stron-
ger gravitational field. The difference
in this case is unmeasurably small
with current technology, but the prin-
ciple applies to all bodies regardless of
size and composition.

The relevance of all this to the for-
mation of black holes is that the
usual method proposed to Prevent
black hole formation is to hypoth-
esize that matter at some high den-
sity develops an exceedingly large
pressure/ which then supports the
star against collapse to form a black
hole. It turns out/ however, that in
Einstein's theory of gravity, the large
pressure that would be required to
stop the collapse actually hastens the
collapse! The intemal pressure in the
collapsing body represents a form of
energy. By E = mcz, there is a mass

associated with that energy/ and thus
the pressure strengthens the gravity
of the collapsing body, causing it to
collapse even more rapidly than it
would otherwisel

In the everyday world, pressure
does act to support obiects, such as

you, me/ the Earth, and the Sun,
against gravitational collapse for two
reasons. First, all of these obiects are

"nonrelativistic"-that is, they are

much larger than their Schwarzschild
radii, so that the gravitational force
trying to collapse the body is not too
large. Second, in allof these objects the
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pressures are small compared to the
mass density of the objects-that is, the
ratto plp} is much less than one.

Problem 3. Calculate theratiopf pc2

for water at room temperature and at-
mospheric pressure. Is the number close
to unity?

Einstein's ecluivalence principle,
supported by the high-precision ex-
periments of the Moscow group and
others, makes it very unlikely that
alarge pressure (or any other form of
internal energy) could prevent the
formation of black holes. Still, we
don't presently know all the details
of the physics of matter at densities
10-100 times the density of the
atomic nucleus. For this reason/ the
apparent discovery of black holes
with extremely large masses in the
centers of many galaxies is exciting
because it provides unassailable evi-
dence for black holes. For any col-
lapsing object with a mass larger
than about 108 solar masses, the
density of the object as it crosses the
Schwarzschild radius is less than
the density of water-1 g/cmt.

While there may be mysteries asso-

ciated with the behanor of matter more
dense than the atomic nucleus, we do
have a good understandrng of matter at
ordinary densities such as 1 g/cm3, and
we know there is nothing in the phys-
ics of such matter that could halt the
collapse and prevent the formation of
a black hole. Even if we someday find
that Einstein's theory is wrong {or
sufficiently strong gravitational fields
(just as we know Newton's theory is
wrong for strong fields), the low den-
sities of matter needed to {orm black
holes of very large mass makes their
existence inevitable. O

Suggestions for further reading
General Relativity from A to B,

Robert Geroch (Chicago: University
of Chicago Press, 1978).

Space, Time d Gravity: The
Theory of the Big Bang d Black
Holes, Robert M. Wald (Chicago:
University of Chicago Press, 1992).

William A. Hiscock is an associate pro-
;fessor o;f physics at Montana State Uni-
versity in Bozeman.
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PHYSICS
CONTEST

]loul ahoul a dale?
"Time is what prevents everything from happening at once."

-John 
Archibald Wheeler

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE SEPTEMBER 1991 DIS-
covery ol a frozen body in the
Tirolean Alps has revived inter-
est in radiocarbon dating (see

"Physics Fights Frauds" in the |anu-
ary lF ebruary issue of Quantuml. The
body was that of a hunter (or possibly
a shepherd). The discovery is particu-
iarly valuable to anthropologists be-
cause the body was virtually intact
and ful1y clothed, and the hunter had
been carrying various articles such as

a bow and arrows. The date of the
hunter's death was determined by
carbon dating to be around 3300 s.c.

Modem techniques of carbon dat-
ing using mass spectroscopy have
greatly reduced the size of the
samples requiredfor dating. The date
for the death of the hunter was deter-
mined with a tissue sample the size
of a tablet of artificial sweetener. Car-
bon dating techniques rely on the
presence of two carbon isotopes in the
atmosphere. The vast majority have
a nucleus contain 6 protons and 5
neutrons. These are designated by the
symbol 12C, where the superscript de-
notes the total number of protons and
neutrons. However, trace amounts of
taC (containing two extra neutrons)
are produced by collisions of cosmic
rays with nitrogen atoms in the upper
atmosphere. Currently the ratio of 1aC

to 12C in the atmosphere is 1.3 x 10 12

to 1.

All plant and animal life interact
with the atmosphere, and the ratio of
the two carbon isotopes in their bod-

30

ies reaches equilibrium with the at-
mosphere. At the time of death, the
ratio of 14C to 12C in a sample of the
plant or animal is therefore equal to
that in the atmosphere. After this the
number of stable 12C atoms in the
sample remains constant. Flowever,
the radioactlve decay of the 1aC

causes their number to decrease expo-
nentially according to the well-
known decay law

N: ALr^',

where { is the original number of
atoms in the sample, N is the num-
ber of atoms remaining after atime f,
and the decay constant i, is aparam-
eter that depends on how rapidly the
atoms decay.

A usefui measure of the decay
rate is the half-life t,,r. This is the
time required for one half of any
sample of radioactive atoms to de-
cay andis independent of the size or
age of the sample. For 1aC the half-
life is measured to be 5,730 years :
1.81 x 1011 s. The decay constant and
the half-life are related by

)" = ln2f tr,r.

Instead of looking at the number of
atoms remaining in a sample, we can
focus on the rate R at which they de-
cay. This canbe obtainedby differen-
tiating the decay law to obtain

where Ro = 1,N0.

This brings us to our contest
problem.

A. Assume that we have isolated a
1-g sample of carbon from a frozen
animal and that the atmospheric ra-
tio of the two carbon isotopes was the
same when the animal died as it is
now. What was the decay rate in de-
cays per minute of the laC shortly af-
ter the animal died?

B. If the curent decay rate is 1 de-
cay pet minute, how many years ago
did the animal die?

Unfortunately, the ratio of the two
isotopes of carbon has not been con-
stant throughout time. It's possible to
determine the dependence by dating
samples from objects with well-deter-
mined ages. These could be such
things as dated historical documents
or tree rings. Let's look at two simpli-
fied scenarios to illustrate the prob-
lems associated with this variability.

C. How does the age of our sample
change iJ the ratio varied linearly in
the past? Assume that the ratio de-
creases by I % of the current value for
each century that we go back in time.

D. How does the age of our sample
change if the atmospheric ratio has
varied sinusoidally in the past? As-
sume a cosine dependence with an
aYerage value equal to the current
value, an amplitude that is 5% of the
current value, and a period of. 528
years.

CONTINUED ON PAGE 41
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KALEIDOSCOPE

[Ulissol'hil
More brainteasers from Perelman

\*r"&

.. "ie*'
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,. ,t

I N THIS INSTALLMENT OF THE

I rd.ido..ope we present more ex-

I m#.:#ft :8ffi:',:-;il,li;
from Yakov Perelman's books For
Young Mathematicians (the first and

s econd hundred puzzlesl.
If you wish, you can mentallY sub-

stitute dollars and cents for rubles and

kopeks without bothering to consult
the current exchange rates-one
ruble contains the same number of
kopeks as a dollar contains cents.

I. Cover price. The price of a
bound book is 2 rubles 50 koPeks.
The book is 2 rubles more exPensive

than its binding. How much does the
cover cost?

2. Lost discount. Ms.IvanovabuYs
all her books from a bookseller she

knows and gets a discount of 20 per-

cent. Beginning |anuary 1, all book
prices will be raised 20 percent.
Ivanova figures now she'll be paying
the same for books as every other
customer did before larruary 1. Is she

rightl

3. Rare coin. A well-known collec-
tor of antiquities was told that a coin
was dugup in Romewith the inscrip-
tion (in Latin): 53 e.c. "This coin is
definitety a {ake," the collector said
without missing a beat. How did she

know, without seeing the coin or
even a picture of it?

4. Asparagus. A customer used to
buy asparagus from a greengrocer in
large bundles, each 40 centimeters
around. She would measure the
bundles to be sure she wasn't being
cheated. One day the greengrocer
didn't have a 4O-centimeter bundle,
so he offered the customer two
smaller bundles, each 20 centimeters
around, for the same price. The cus-

tomer measured both bundles and,

convinced that each of them reaLIY

was 20 centimeters around, Paid the
greengrocer the same amount she
usually paid for the thick bundle of
asparagus. Did she save money or lose

money in this transaction?
5. Carpenters and cabinetmaker

Six carpenters and one cabinetmaker
were hired do sorne work. Each car-
penter earned 20 rubles, while the
cabinetmaker earned 3 rubles more
thanthe averagewage of all seven. How
much did the cabinetmaker eam?

5. Addition and multiplication.
No doubt you've noticed the curious
property of these two equations:

2+2=4,
2x2: 4.

It's the only example of the sum and
product of two integers (bY the waY,

two eclual integers) being equal. But
did you know there are fractions (not
equal, though) that possess the same
property? For instance,

$ ilnl ,r. frvo
\l

V,

]i.'::*u:.:,
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lSee "Hit or Miss" in the
November/December issue.
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3+lVz = 4Vz,

3 xLYz= 4Yz.

Try to find other such numbers.
Don't wor4r-your search won't be in
vain. There are lots of them.

7. Howwas it done! The picture at
left shows a wooden cube made of two
pieces of wood: the upper half has pro-

tuberances that slide tightly into the
grooves of the lower half. Look closely
at the shape and placement of the pro-
tuberances and orplain how the caq)en-

ter managed to join both pieces of wood.
8. The game of 32. This is a game

for two persons. Put 32 matches on
the table. To begin play, the first
player takes 1, 2, 3, or 4 matches.
Then the second player takes as many
matches as she wants but no more
than 4. And so on. The player who
takes the last match wins.

As you can see/ the game is very
simple, but it has an interesting fea-
ture: the first player can always win
by correctly calculating how many
matches to take. What is the optimal
strategy for the first player?

9. The game of 32 reversed. The
game of 32 can be teversed: the piayer
who takes the last match loses. What
is the optimal strategy for the first
player this time?

lO.The game of 27.In this variant
of the game of 32, each player alter-
nately takes no more than 4 matches
from the table. The playerwho has an
even number of matches at the end of
the game is the winner. Again, the
first player can always win if the right
strategy is chosen. What is it?

ll. The game of 27 reversed, The
player with an odd number of
matches at the end wins in this ver-
sion of the game of 27. What is the
optimal sftategy in this case?

12. Mass of a bottle. A bottle fi1led
with gasoline has a mass of 1,000
grams. The same bottle filled with
acid has a mass of 1,500 grams. The
.acid is twice as dense as gasoline.
What is the mass of the bottle?

13. Cherry. The fleshy portion of a
cherry surounds the cherry pit with a
layer of the same thickness as the pit

6$tu
liY
p

itselJ. We1l assume that both the cherry
and the pit are spherical. Can you men-
tally estimate the ratio of the volume of
the flesh to the volume of the pit?

14. Model of the Eiffeltower.The
Eiffel tower in Paris is 300 meters tall
and is made completely of iron
(8,000,000 kilograms of it). Afriend of
mine has an exact copy of the famous
tower. It has a mass of only 1 kilo-
gram. Is it taller or shorter than an
ordinary drinking glass?

15. Sailboat race, Two sailboats
were involved in a race. They had to
sall24 miles in one direction and
24 miles back. The first boat sailed
the entire course at a uniform speed
of 20 mph; the second boat sailed the
first half at 15 mph and the second
half at 24 rnph.The first boat won, al-
though it would seem that the second
boat would 1ag in the first half of the
course by the same amount it gained in
the second, so that the two boats would
arrive at the finish line simultaneously.
Why was the second b oat late?

16. River vs, lake rowing. Rowing
downstream/ a rower covers 5 miles in
10 minutes. The retum trip takes an
hour. So the rower covers 10 miles in 1

hour 10 minutes. How long would it
take the same person to row 10 miles in
still water (say, a lake)?

CONTINUED ON PAGE 40
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the true geometry o{ the space around
us, and it was a matter of experimen-
tation to decide which one of the two
describes our space more exactly.
These ideas of the "Copernicus of
geometry" were of paramount impor-
tance for the future development of
science because they shattered once
and for all the ingrained view that
Euciidean geometry is the only pos-
sible geometry, that it is inherent in
our space or in the way we apprehend
it. And modern science accepts the
possibility that space is indeed non-
Euclidean.

But the "physical embodiment"
I'm going to describe is not the space
we live in. Nor is it an artificial
"rnagrc world," like the one in-
vented by Poincar6 (see Simon
Gindikin's article in the November/
December issue). This space is nev-
ertheless very real. It shows up in
virtually every problem related to
collisions of elementary particles,
and this sort of physical problem is
perhaps the kind that is solved most
often. (I'm not exaggerating-every
day in dozens of laboratories
throughout the world, thousands of
experiments on particle scattering
are conducted.) On the other hand,
this is aYery abstract space: you can
neither feel nor see it. Even to imag-
ine it is rather difficult. The points
that constitute this space are . .

well, for the time being, let's say
they're velocities-a1l possible ve-
locities of moving objects. And this
is why this space is called velocity
space. Its non-Euclidean nature re-
veals itself only when the speeds we
consider are so high that relativistic
effects must be taken into account.
But to get used to this space/ and to
understand what it might be good
for, let's begin with the "New-
tonian, " nonrelativistic case.

A close Bncomlsl' 0lthe $ellar kind, 0r

mlll'slatilli$lir [inemaflic umil$
I'll start with exampie 10-6 from

Physics by Richard Wolfson andlay
M. Pasachoff (Little, Brown and Com-
pany). It's a fairly standard, compara-
tively easy problem but its routine
conservation-law solution in the text-
book takes almost a whole page of
algebraic rigmarole. Here's the prob-
lem (in slightly modified form):

A star B of mass M is a geat dis-
tance from anothu star A of equal
mass and is approaching the second
star at 680 kmls. The two stars un-
dergo a close encounter, and much
later star B is moving at a 35" angle
to its initial direction (fiS. 1).In the
frame of refercnce in which star A is
initially at rcst, find the final speeds
of both stars and the direction of
motion of star A.

Y
a
l
C
o

-C(,
a)

Cd

o_

_o

ln lhe Gtlrtled $pace ol

relaliuistic tlolocitie$

Where two pathfinding concepts intersect

by Vladimir Dubrovsky

HEN THREE MATHEMATI-
cal geniuses 

-B6ly 
ai, Gauss,

and Lobachevsky-shook the
world of classical geometry to

its foundations with their theory of
non-Euclidean geometry, the time
was apparently ripe for this discovery.
They made it independently and al-
most simultaneously. (The dramatic
story of this great discovery was re-
lated by A. D. Alexandrov in the No-
vember/December 1992 issue of
Quantum.l But even if the theory
weren't created theq back in the first
quarter of the 19th century, it would
surely have emerged in the course of
modem research into elementary par-
ticles, where relativistic effects be-
come significant. The fates decreed
that after a lapse of almost a hundred
years, Lobachevsky's "imaginary ge-

ometry t' -a mental construction that
appeared in a purely speculative way
out of efforts to prove Euclid's paral-
1el postulate-has found a remarkable
physical embodiment.

For Lobachevsky, the two versions
of geometry-Euclidean and non-Eu-
clideanl-were equally acceptable as

1As in previous Quantum articles
on this subject, the term "non-
Euclidean" geometry is understood
here in the narrow sense of one
particular kind of geometry other than
the Euclidean: hyperbolic (or Loba-
chevskian) geometry.
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I'11 solve this problem using a "ki-
nematic graph" of the interaction.
Mark an arbrtrary point on the
plane-this wiil represent the center
of mass O of both stars (in this case
it's simply the point halfway between
the stars'centers), orrather, its veloc-
ity. Draw the velocities vo and v, of
the stars with respect to center O as

vectors OR and, d on the plane
(t S.2l. These are two opposite vectors

iOE = -OE), because the net mo-
mentum of any system with respect
to its center of mass is zero: Mvo+
Mo, = 0; of course, this is true at all
times, before, during, and after the
interaction. The center of mass
moves uniformly (this is arewording
of the conservation law for the net
momentum), so it's always repre-
sentedby the same point in the plane.
The stars change their velocities dur-
ing the encounter, but they don't
change their speeds vo and v, with
respect to O, because these speeds
remain equal and the combined ki-
netic energy Mvoz12 + Mvr'12 in the
reference frame O is preserved (the
interaction can be considered elastic).

So vectors OF and G?, equal to
the velocities of the stars a long time
after the encountet can be obtained

simply by rotating 6R arrd 6E
about point O through some angle.

AII fourvectors OA' , Or' , 94,' , and

Oil for* what's called the kine-
matic graph of the interaction. We
see that the tips of the vectors are the
vertices of a rectangle, and all four
vectors issue from its center. But the
problem deals with velocities in the
reference frame A in which the sec-

at
Figure 2

ond star was initially at rest. No prob-
leml The velocity of O in this refer-
ence frame is, obviously, -vo, so by
the velocity addition rule, the veloc-
ity of any object X with respect to A
is the vector sum of its velocity with
respect to O and -vo. In the graph, this

is the sum of vectors Ad and.Of -
that is, Ad + df = 77. So to ob-
tain the kinematic graph in the refer-
ence frame A, we must simply draw
vectors from point A to all the other
points (the red vectors in figure 2).

Now, by the statement of the prob-
lem,IBAB':35" andAB = 680 (with
the proper unit length). Thus,

1. The final speed of star B = AB' -
AB cos 35'= 680 cos 35o 

= 
557 km/s;

2. The " artgle of recoil" of. star A:
IBAA' = 90'- 35o = 55o;

3. The final speed of star A = AA'
AB cos 55" = 680 cos 55o =390 km/s.

What we've done here works as

well for any elastic collision of two
bodies or pafticles of equal mass. In
particular, if it's not a head-on colli-
sion, then in the reference frame
where one of the colliding objects was
initially at rest, they always bounce
apart at right angles.

Further inspection of our diagram
provides us with more information.
For instance, write the Pythagorean
theorem for the right triangle AA'B'i
A'BD : A'A2 + B'A2. The lengths of the
Iegs AA' and AB'are the final speeds
uo and u, of the respective bo&es in
A's referenceframe; the length of the
hypotenuse A'B' : AB is the initial
speed w, of B with respect to A. Sub-
stituting, we get wr' = Eo' + ur2; mul-

tiplying by MlZ, we get

MwL 
=Mu2o *Mutr222

-the law of conservation of energy in
A's reference frame (wo-the initial
speed of body A with respect to it-
self-is zero). Another observation is
that the "scattering angle" ZBOB'
(between the initial and final veloci-
ties of the colliding body B) in the
center-of-mass reference frame is
twice the scattering angle Z"BAB' in
the "lal:oratory" reference frame A
(prove this simple geometric fact
yourself).

These examples illustrate the close
connection between ordinary (nonrela-
tivistic) kinematics and ordinary (Eu-

clidean) geometry. Kinematic graphs
form the bridge between the two.

Now we'll look at the above con-
structionfrom a more general point of
view. To avoid misunderstandings
in what follows, let's agree that all
the moving objects move uniformly
and parallel to one and the same
plane. Confining ourselves to the
two-dimensional case makes our ar-
guments simpler and our diagrams
clearer. The three-dimensional case
can be treated by analogy.

lfinemalhs altd Usolnetry:lhe plane 0l

Figure 1

= uelocities

So how do we render kinematic
notions and facts in geometric lan-
guage? We choose an arbitrary point
O in the plane to represent some ref-
erence frame (it was the "center of
mass" frame of reference in the prob-
lem above) and link every moving
object with some point X so that the

vector d equals (in certain units of
measurement) the vector of this
object's velocity with respect to the
reference frame. Thanks to the clas-
sical velocity addition rule, we can
now find the velocity ol any object
with respect to any reference frame
by drawing the vector from the point
representing the frame to the point
representing the object. We did it for
the reference frame A in figure 2, but
we could just as well do it for any
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A
Figure 3

other reference frame C, as shown in
figure 3. For instance, vector el n
this figure is equal to the initial veloc-
ity of star A in the reference frame
C-we'll denote it vo,". To find the
speed vr,. of A with respect to C, we
can simply measure the distance CA
on the plane, but we can also calcu-
lateit, given sufficient data and using
well-known theorems from plane ge-

ometry-the law of cosines and so on.
All geometric notions can be ex-

pressed in terms of vectors, their
lengths, and the angles between

them. So, if wethinkof avectorff
as the vector vr," of the relative veloc-
ity of corresponding uni{ormly mov-
ing objects, every geometric notion
receives a certain kinematic interpre-
tation.

Now I want to use these interpreta-
ttons asthe definirions of thenotions of
geometry in terms of kinematics.

Imagine some set V whose points
are in a one-to-one correspondence
with all possible velocities. Since ve-
Iocities don't exist by themselves
(they always exist "with respect to
something"), it might be better to say
that each of these points represents a

whole "hetd" of all the objects mov-
ing with one and the same velocity*
that is, stationary with respect to one
another.2 You can visualize V as the
Euclidean "plane of kinematic
graphs," but it isn't necessary, and it
will even turn out to be wrong in the

2A more formal and, in a sense,
simple way to put it woi-rld be to
declare every such "herd" a point of V.
I'm afraid, though, that such strange
"points" would have confused some of
our readers.

relativistic case. I'11 attach the tag
"v-" to everything connected with
the set V, so what I've just described
is v-points. So what is the v-distance
between two v-points A and B? Why,
it's the relative speed v,o : v o,, of an
object represented by one of the v-
points with respect to any object cor-
responding to the other v-point. And
v-angle BAC? It equals the angle be-
tween the corresponding velocity
vectors vr,oandv",o.

In particular, when this angle mea-
sures 0o or 180o, v-points A, B, and C
are y-collinear-that is, they belong
to the same straight v-line. Put in a
different but equivalent way, which
will prove useful later, the v-col-
linearity of three different y-points
means that if some obiects B and C
coruesponding to two of these v-
points meet an obiect A correspond-
ing to the third v-point as they move,
then they necessarily meet each
other.Indeed, from the point of view
of the observer moving with object A,
this obfect is at rest and objects B and
C visit its location, while the direc-
tions in which they move are the
same or opposite-the angle between
v*oand v.,, is 0' or 180'. So for this
observer, B and C move along one and
the same straight path and therefore
have to meet in the past or in dre futurg
since their velocities are diffqsnl (bs-

cause B andC are distinct points).
The set Vsuppliedwith these defi-

nitions of basic geometric notions,
which enable one to give a kinematic
rendering of any statement of geom-
etry, is called the nonrelativistic ve-
locity space.

As for the "plane of kinematic
graphs," it can be regarded as the ex-
act rnap of the two-fimensional ve-
locity space. We don't real1y need it
to define this space, but it makes it
evident that its geometry is Euclid-
ean.

lnlroducinU mlalittily
Now let's try to carry over the geo-

metric method in kinematics to the
relativistic case. I think rnany Quan-
tum readers have heard something
about special relativity, although I
won't assume you have. I just need
the two basic assumptions that form

Einstein's relativity principle:

1. All the laws of nature are the
same in all uniformly movingframes
of reference.

2. A light ray moves with the same
speed c regardless of whether it's
emitted by a moving body or a body
atrestt and this speed is the absolute
speed limit for aLL matter.

Usually that final clause, about the
speed limit, isn't included in the
statement of the theory of relativity:
it can be derived from the constancy
of the speed of light. I could do with-
out it, too. But it makes the subse-
cluent discussion shorter and simpler,
and after all, it's true-so why not
take advantage of it? As to the first
part of the principle, it's not espe-
cially relativistic and is obeyed in
Newtonian mechanics, too. But clas-
sical mechanics implicitly assumes
that interactions can propagate in-
stantaneously-which is all right,
because it deals with speeds so low
compared to c that c can be consid-
ered infinite and relativistic effects
negligible.

When we apply our construction
of velocity space to relativity, every-
thing works smoothly except the
definition of v-distance as relative
speed. Of course, we want y-distances
to satisfy the usual addition rule: AB
= AC + CB whenever C lies on line
AB between A and B. Then the rela-
ttonXY : vr,*would imply the ordinary
velociry addition rule: v na = v 

c r t * v 
n, c-

at least in the one-diniensicinal clie,
where objects A and B move in oppo-
site directions with respect to C. But
this doesn't obey the speed limitl If
the speeds of A and B with respect to
C are, say,0.5c, then this rule wouid
Yieldvilo= l.Zc > c, which is imPos-
sible. So we must stightly generalize
the definition and assume that the
relativistic v-distance between A and
B-whichwillbe denotedby rlA, Bl-
is a certain function R of the relative
speed of the moving objects A andB:

/A, Bl = R(v,ol.

In addition, we'l1 assume that v-dis-
tance satisfies the addition rule
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4A, Bl: r(A, Cl + 4C, Bl

for any y-point C on a y-segment AB.
The unknown function R(v) is in-
tended to correlate the addition of
distances along a line and the relativ-
istic addition of velocities.

These assumptions will suffice for
us to study the geometric structure of
the velocity space V and to find an ex-
plicit expression for R(v). To this end,
let's draw amap o{ the space V as we
did before.

Uelucily lnapflru flrd thu lftin model0l

lloll-tllclid8il ueolll$tl,y
Choose a point O to represent

some uniformly moving observer
(and the coresponding v-point)in the
plane. By the second part of the rela-
tivity principle, whatever velocity
vector measured by the observer is
drawn from the point O, its tip will
lie within the circle of radius c cetr-
tered at O, so the entire rrrap Moof V
constructed by the observer O will
coincide with this circle. O{ course,
the map is not drawn to scale, be-
cause the equality of relative speeds
y att:yotc, which is equivalent to the
equality of corresponding v-distances
r(A, Bl : /C, Dl, does not imply the
equality of Euclidean distances be-
tween corresponding pairs of points
A, B andC, D on the map.3

For instance, according to the map
Mo, the Euclidean distance OA
equals the relative speed vr,,, for any
point A. Flowever, lf a segnient has a
first endpoint on the circumference of
the circle and a second inside the
circle, then, by the second part of the
relativity principle, it corresponds to
the speed of light ct no mattetwhere
the second endpoint may be.

Actually, such a discrepancy be-
tween the map and what's mapped
isn't so unusual. The only kind of
map most of us have ever used-geo-
graphic maps-distort distances and

sRemember, we agreed to call a "v-
point" any moving object represented
by this v-point, and to denote its image
on the map by the same letter,
explicitly indicating exactly what is
meant at each occurrence of the
equation.

shapes on the Earth's surface if the
mapped territory is large enough. And
there's nothing we can do about it,
because a piece of a sphere simply
can't be mapped to scale on a plane
(see "In Search of a Definition of Sur-
face Area" in the March/April l99l
issue of Quantum). Similarly, rela-
tivistic velocity space is impossible to
map to scale on the plane because,
like the sphere, it's also curved. Nev-
ertheless, its map will tell us a 1ot
about its geometry. And it reproduces
correctly some of the features of space
V. In particular, the images on the
map of any three collinear v-points
also lie on one line-a chord of the
circle. This fact isn't at all trivial, be-
cause now we cannot add velocities
as vectors. Its proof is based on the
definition of three collinear v-points
as coresponding to three uniformly
moving objects, every two of which
meet (see figure 4).

Thus, we arrive at a crucial conclu-
sion: the relativistic velocity space
can be mapped on a cfucle so that v-
lines are mapped into chords of this
cfucle.

At this point, readers familiar with
non-Euclidean geometry (through
earlier Qu antum articles, perhaps )

must be heaving a big sigh of relief.
Why? Because the set of all interior
points of a circle, with straight lines
defined as chords, and other geomet-
ric notions defined so as to comply
with this concept of line, is nothing
other than the Klein modei of non-
Euclidean (hyperbolic) geometry. The
geometry so defined obeys a1l the axi-
oms of Euclidean plane geometry ex-
cept the paraliel postulate, which
means that a number (an infinite
number!) of lines not intersecting a
given line can be drawn through a
given point. This is illustrated in fig-
ure 5, which shows several lines
through O "parallel" toline AB.

We're not finished yet! We know
that the geometry of space V is not
Euclidean, because the parallel postu-
late is violated. We stil1 can't be sure,
though, that all the other Euclidean
postulates are valid in velocity space.
Taking for granted that they're satis-
fied in the Klein model (we'11 come
back to this later), we need only prove

Figure 4
V-collineadty on a velocity map.
Considar three obiects A, B, and C
moving with constant velocities v 

^, 
v,.

and v, relative to the observer O. in "

the figure, OA' , OB' . and OC' are
vectorc drawn on the map Mn and
equal to the respective velocities.
Assume that obiects A and B meet
ight at the location of tha observer
when his or her watch rcads zero, and
that A meets C at time t according to
the obsarvet's watch (the lines a, b,
and c in the figure are the paths of the
rcspective obiects). If the v-points
corresponding to the obiects are
collinear, C must also meet B at some
moment s, Denotingby X,,tha position
of obiect X at time u, wefrave A,: C,

B,: co and soefi : TE = oB: - Ol,
Substituting into thevector equation of
uniform moLion, we get (s - L)v.: sv, -
tvo, or s(vr-v) = t(vr-vl. It lollows
that vectors d and Ad orn prcpor-

on the map lie on one line. The
olgument can be rcversed to show that
if points on the map arc collinear, then
the corr esponding v-points are v-
collinear.
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that v-congruent segments in veloc-
ity space are depicted on the map as
segments congruent in the sense of
the Klein mo del, becaase all geomet-
ric motions and their properties can
be e4pressed in terms of points, lines,
and congruence.

As we know, y-segments AB and
CD have equal v-lengths if the cor-
responding reiative speeds are equal:
vzr.: votc. In the Klein model, two
segments are considered congruent if
one of them can be taken into the
other by a transformation of the circle
that preserves the collinearity of
points-that is, takes chords into
chords-because/ by definition, all
such transformations are isometries
( distance-preserving transformations)
in this model. Letk(A, B)be the (non-
Euclidean) fistance between points A
and B in the Klein model; for the time
being its explicit form doesn't mat-
ter for us. If I show that klA, Bl is a
function of relative speed vBtA, it
would mean that the equality vr,, :
v.,, implies klA, Bl = klc, Dl, and our
goal will be attained.

Fix some point A of the rrrap Mo
and consider the transformation of
Mothat sends an arbitrarypointXin
it onto the pointX such that Of =
v*o (according to our agreement, X
aid e on the right denote moving
objects represented by respective
points on the map). Under this trans-
formation point A goes into the cen-
ter O of themap. WritingA'for O, we

can express this as TF : v*o. Ex-
cept for the primes, this is exactly the
relation defining the map Modrawn
by an observer moving with obiect
A! So our transformation turns the
map Mointo Mo. Since every chord
on map Mo represents some v-line,
which in turn is represented by
some chord on map Mo, the trans-
formation preserves lines. There-
fore, from the point of view of the
Klein model, it's an isometry:
k(X, Y : k(X, Y,) for any points X and
Y. In particular, k(A, Bl : k(A', B'l =
k(O, B'1. Now it's not hard to see
that klO, B') depends only onthe
Euclidean length v of OB'(fig. 5).
Indeed, any other point P the same
distance y from O can be obtained

from B'by a rotation about O. Such
a rotation certainly preserves lines
and therefore preserves the non-Eu-
clidean distance k. So k(O, Pl =
k(O, B'lr. Let R(v) = k(O, P) (for any
P such that OP = v). Then k(A, Bl :
RlO, B'1. But, by the definition of
point B', OB' : vrla; so, finally,

k(A, Bl: Rlv,1al,

and we're done: we've conclusively
established that, from the geometric
point of view, two- dimensional rela-
tivistic velocity space is the non-Eu-
clidean (hyp erb olic) plane.

The lormula lol' u-dhlance and

r'olatittisNh uelorily addilion
We can see from the preceding

that the non-Euclidean distance
k(A, Bl between the images of two y-
points on a velocity map can be
taken as the y-distance between the
v-points: k(A, B) satisfies the addition
ruIe and is a function R of the relative
speed vr,r. To find the explicit expres-
sion for'the function R(v), I'[ use an-
other model of non-Euclidean geom-
etry-the one devised by Henri
Poincar6, which was thoroughly de-
scribed in the afticle "Inversion"
(September/October 1992; see also
"The Wonderland of Poincaria" in
the subsequent issue). This model is
also built from the interior points of
some circle (1et it be Mo againl, but
the lines are defined as arcs orthogo-
nal to this circle, not chords, and
isometries are defined as the map-
pings of the circle onto itself preserv-
ing such arcs (they're generated by
reflections in these arcs-see "Irler-
sion"). Figure 5 shows how the Klein
model can be turned into the Poin-
car6 model so that chords become
arcs orthogonalto Mo.It also shows,
togetherwith figwe7, that the "cross
tatio" of points A, B, Ao, Bo (whereAo
and Bo are the endpoints of the chord
through A and Bl, defined as

{ea.eg}=AA. lABnO OJ ,\B BOB

A A.BB
=ooAB.AB,oo

Figure 6
Transforming the Klein model into the
Poincard, model. Consider the sphere
built on the circle Mo as its equator.
From any point A of the ctucle draw
the perpendicular to the equatorial
plane to meet the ""southernhemi-
spheru" at Ar. [oin Arto the "North
Pole" N to meet the ctucle Mo at A-. We
get the two-step tansformation A -+
A, -+ A". The first step convefts a chord
AoBointo the semicircle on diameter
A.B.lying in a vertical plane and thus
ofihogonal to circle Mo. The second
step is infact a "stercographic proiec-
tion"-like the one considered in the
afiicle "" Inversion" rcfeu ed to in the
text, excapt that the plane is passad
not through the " South Pole" but
through the sphere's centu (which
does not make a significant difference).
By the properties of stereographic
proiection, it maps the semicfucle onto
the arc AoBo ofihogonal to Mo, which is
considered a sftaight line in tha
Poincard model. In addition, sterco-
graphic proiection, as a pafiicular case
of invercion, preserves cross ratios-
{A B', A"BJ = lA,B,. A.B.}; while the
lirst step of our tansformation "takes a
squarc rcot" of the cross ratio of points A,
B, A., B.-{A181' A"BJ = {AB' A.BJ1/2' as
saen in figure 7. So {AB, A"B"} :
{A.8., A.BJ'.

A1

Figure 7
By the similarity of triangles A.A,B, AIAB.
and A,AA, AA./AB 

" 
= (AA./ AA r) 

(AA 1l AB ): (A 4,/A p )'P. Similaily, BB 
"/ 

BA" :
(B P "/ 

B /)'z. Multiplying the two equalities
and taking the squorc rcot, we get

{AP 1' A.B"} : (AA.. B 18) /(AP". B 1AJ :
{Aa,e"e1trz.
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is equal to the square of the cross ra-
tio IA-B- , A.B.\, where A" and B- are
the points corresponding to A and B
under the transformation of the mod-
els. You may know from "Inversion"
(if from nowhere else) that the dis-
tance d between A' and B- in the
Poincar6 model is given by the for-
llnraladlA' , B.) = log IA.B. , A,B"\I{the
order of the points on the arc A,Bors
Ao, B' , A- , Bo.With this definition, all
the axioms of non-Euclidean geom-
etry tum out to be true for this model.
So i{ we put

k(A, B)= d(A., B.)

= [loglAB, AoBo],

all of them wiil be satisfied for the
Klein model, and this completes our
construction of that model.

Now it remains to rewrite the last
formula in terms of the relative speed

v : v *o. Recall that klA, Bl = klo, Pl,

where P is any point of the map Mo
such that OP : v.In the notation of
figure 5, the cross ratio in the defini-
tion of k(O, Pl equals

{op.uv) =ug:!Y = 4t *')L--'"') Up.oV (c-v)c

l+vic
l- vf c'

because the radius of the map is OU
: OV = c. We'llget simpler formulas
if we take c as the unit speed and the
logarithm to be natural (the base of
the logarithm determines the unit
length in the model). Finally, we
come up with the following result:

r(A, B)=k(A, e1=f,nfr ,

where v = vort. Note that with the
above convention this formula tums
into the nonrelativistic AB = vo,ofor
small values of v. Sometimes the v-
distance /A, Bl is called "rapidity."
Though it doesn't have any direct
physical sense/ it's more convenient
for calculations than the relative speed.

Solvingthelast equationfor q we obtain
the e:pression for relative speed v in
terms of rapidity r = /A, B):

The function on the right has a spe-

cial taallne-hyp erb oli c t an g ent- and
notation-tanh r. So

v,o: tanhrlA, nl.

This function is similar to the regu-
lar tangent in many ways. Try to
prove/ for instance, the following ad-
dition formula:

tanh(x + y) =
tanhx +tanhy
1+ tanhxtanhy '

which differs foom the formula fortanx
only in the sign in the denominator.

This formula enables us to deduce
the relativistic velocity addition rule.
If obiect B moves with speed v, with
respect to A, and C moves in the
same direction with speed v, relative
to B, what is the speed v of C relative
to A?

Let rt, t, andr be the correspond-
ing rapidities. Since the v-points A, B,

and C lie on one v-line, B between A

and C, r = r 1 + rr. Therefore , v : tat'th r
= tanh lr, + rr); substituting x = rrt y :
r2t vr: tanh t, vz = tanh r, into the
addition formula for the hyperbolic
tangent, we get (for c = I !)

v1+v'
l+ vrv,

Of course, it would be reckless to
try to squeezeinto one article a pre-
sentation of relativity with any com-
pleteness. The geometric method de-
scribed above provides a tool to
explain ali the well-known relativis-
tic effects-time filation, Iength con-
traction, the twin paradox-and to
treat relativistically more difficuit
two-dimensional problems like the
star encounter we considered at the
outset. But my goal was more mod-
est: to show how Einstein's relativity
principle is transformed into the ne-
gation of Euclid's parallel postulate in
velocity space. The fact that these
two great theories-relativity and
hyperbolic geometry-prove to be
intimately connected is pretty im-
pressive, don't you think? O

e1'-l
V_

e)'+I
e' - e-'
e' +e ''

"MISS OR HIT"
CONTINUED FROMPAGE 33

17. tuom N-burg to X-ville. Com-
ing downstreamt a steamboat moves
at 20 mph; going upstreatn, it moves
at 15 mph. The trip frorn N-burg to
X-ville is 5 hours shorter than the
trip from X-ville to N-burg. How far
is N-burg {rom X-ville?

18. All humanity in a square.In
1924 the population of the Earth was
1,800,000,000. Let's imagine that all
the people living at that time gath-
ered in a compact crowd on a plain.
You want to placc thern in a squarc
area, allotting I square meter for ev-
ery 2O persolls (standing close to-
gether, 20 people can fit in such a
square). Without doing any calcula-
tions, try to estimate the size of the
square plot you'd need for this. For
example, would a square with a side
of 100 kilometers be big enough?

19. Parquet-maker. Cutting
squares of wood, a parquet-maker

checks them by comparing the
lengths of the sides. If all four sides
are equal, then he considers the
square to be cut correctly. Is such a
check reliable?

20. Another parquet-maker. An-
other parquet-maker checks her work
in a different way: she measures not
the sides but the diagonals of the
square pieces. If both diagonals are
equal, then the parquet-maker con-
siders the square to be cut correctly.
Do you agree?

21. The thtud paquet-maker. Yet
another parquet-maker checks his
work by comparing the four pieces
created by the diagonals. L: his opin-
ion, the equality of all fourparts proves
that the quadrilateral he cut off is a
square. What do you think? O

ANSWERS, H//VIS & SOLUTIONS
ON PAGE 59
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"HOW ABOUT A DATE!"
CONTINUED FROM PAGE 30

Please send your solutions to
Quantum, 3 140 North Washington
Boulevard, Arlington, YA 2220I
within a month after receipt of this
issue. The best solutions will be
noted in this space and their authors
will receive special certificates from
Quantum.

T[s li[ olile icebmg
The contest problem in the Sep-

tember/October issue asked you to
lower a pencil into a glass of water
while holding it by the eraser. As you
no doubt observed, the pencil will
remain vertical when only a small
part of it is submerged in the water.
As more of the pencil descends, it
reaches an equilibrium angle that is
dependent on the depth.

Ben Davenport from the North
Carolina School for Science and
Mathematics submitted a correct so-

lution to the problem and then pro-
vided an interesting extension that
we'll tempt you with later.

A. The three forces acting on the
pencil are the force of gravity, the
force of buoyancy, and the force of the
pivot. If we choose to take torques
about the point at the top, the force
of the pivot produces no torque and
can be ignored (see figure 1):

Figure 1

Using the moment arms for the
torques about P, we get equation 1 in
the box below. You can divide each
side of equation 1 by sin 0, but you
then must realizethat sin 0 = 0 is a so-

lution to the equation and, therefore,
0 may be ec1ual to 0.

The second solution is

(H)
cos$=l : l.

ILt1-P' P-,

where H < L"tE- pJ%, since cos 0

must be less than or equal to 1.

B. In order to sketch a graph of po-
tential energy versus theta, it's use-
ful to derive the equation for poten-
tial energy-equation 2 in the box.
The extrema of potential energy rep-
resent equilibria. You can get a

sense of this by thinking about
stable points for a roller coaster. For
our pencil in water, we plot the po-
tential energy versus theta on a

Figure 2

spreadsheet for small H and for large
H ltig.2). From the graphs we can
see that for large H, zero degrees is
a stable equilibrium. For smallH,
zero degrees is an unstable equilib-
rium, and the angle given by the re-
lation in part A is the stable equilib-
rium.

C. To solve the last part of the
contest problem, let the submerged
part of the pencil be referred to as S.

Then

where

s=r(1f t =0,
F--nlAo

l r+\
1.. =o l,_- lAg.o ,"'[ Cos0]

Hcost =

Therefore,

We then conclude that the sub-
merged part of the stick is constant-
that is, independent ol H. You can
verify this by actually performing the
experiment.

As we mentioned above,
Ben Davenport challenged
himself (and now we challenge
the rest of our readers) with
what happens if H remains
constant but the pivot point of
the pencil is lowered.

The details of this problem
and the experimental verifica-
tion of the solution can be
found in an article by |oseph
Priest and David F. Griffing in
the April 1990 issue of The Phys-
icsTeacher(pp.210-13). O

I - p,, p,u

1.

2.

r. = -(tsino)(p,rAG). [, - ( 

=t* 
)],,t"r)0.(r - #, )o, =,

ru = -itde

= -\ 4st'p,[ -, * o* [, - | -" ]' 

.l 'l 

,i, eae--l- 2 [-'- o, L'-l t."'e ] ].J'

=Aclp.(1_cose r[r_P,,*& f H)'__l 
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LOOKING BACK

The pruhlem houlrol Anania ol $hit'alr
"On the ancient peak of Ararat

The centuries have come like seconds
And passed on."

-Avetik 
lssahakian

by Yuli Danilov

OME YEARS AGO JOURNALISTS INTER-
viewing celebrities liked to ask them: "What
books would you take with you if you were to go
off on a space flight?" And though the number of

books allowed on the trip varied from 10 to 30, depend-
ing on the type of spacecraft and the generosity of the
interviewer, and celebrities are people of the most var-
ied tastes, ages, and professions, not one of them dared
to say that he or she would want to take with them at
least one book of arithmetic problems.

Some of these people certainly excluded this kind of
literature because they were trained in the humanities
and had nothing but scorn for "numbers" (though se-
cretly afraid of them). Others steered clear of such
pazzle books because they were masters o{ incompa-
rably more difficult branches of modern mathematics
and didn't mind saying for all the world to hear that
they didn't know how to solve mere arithmetic prob-
lems. Professional mathematicians were no exception.
Here's what the Russian mathematician Alexander
Khinchin, a specialist in statistics/ wrote about arith-
metic: "I willingly confess that any time a fifth-grader
asked me to help solve an arithmetic problem, it was
a hard work for me, and sometimes I failed completely.
Of course, Iike most of my friends, I could easily solve
the problem by the natural algebraic route-construct-
ing equations or sets of equations. But we were sup-
posed to avoid using algebraic analysis at all costs! . . .

By the way, it's a fact that is well known and oft repeated
thag as a rule, neither high school graduates, nor students
at teaching co11eges, nor teachers beginning their careers
(nor, I must add, scientific researchers) can solve arith-
metic problems. It seems the only people in the world
who are able to solve them are fifth-grade teachers."

Now, I'm not insisting that a book of arithmetic
problems be included in the bookbag of anyone flying

42

into space. But a sense of justice induces me to recom-
mend one particular problem book, one that will sat-
isfy the most fastidious taste and supply food for
thought sufficient not only for arelatively short flight
to the Moon but for a extended space voyage-say/ to
Venus and back.

0ne lol, llte "road"

They both took out the books they brought for the road.
Kingsley glanced at the Royal Astronomer's book and saw
a bright cover with a group of cutthroats shooting at each
other with revolvers. "God knows what this kind of stuff
leads to," thought Kingsley.

The Royal Astronomer looked at Kingsley's book and
saw the History of Herodotus. "Good Lord, next he'll be
reading Thucydides," thought the Royal Astronomer.

-Fred 
Hoyle, The Black Cloud

The book I'm talking about isn't very big, but its 24
problems constitute 24 elegant miniatures from sev-
enth-century Armenia. Naive and wise at the same
time, rich in striking detail and the bright coloration
of the period, these problems are reminiscent of the
reliefs on the famous monument of Armenian archi-
tecture, the church on the island of Akhtamar in Lake
Van (in what is now Turkey). They are as inseparable
from the image of Armenia as the elegant letters of the
Armenian alphabet, invented by Mesrop Mashtots, or
the songs of Komitas, or the paintings of Saryan.

An edition of these incredibly beautiful problems has
long been a bibliographic rarity. It was published under
the title Problems and Solutions of Vardapetl Anania of

trtylydapett' 
lor "vartabed" ) means teacher or leamed man in

Armenian. (The Armenian language suffers in English from a
dual transliteration scheme. Thus, Mesrop is often rendered as

"Mesrobr" Komitas as "Gomidasr" and so on.)
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Shirak, Armenian Mathematician of
the Seventh Century (translated and
published by I. A. Orbe1i, Petrograd,
1918).

The abundance of close observa-
tions and wide-ranging information
about the way of life and customs of
that remote epoch when Anania of
Shirak lived and worked have actually
rendered a disservice to his problem
book. For many years the book was
known only to researchers in the hu-
manities-specialists in Armenian his-
tory who jealously guarded their trea-
sure and wouldn't let just anyone see
it. Even now, after research by K. P.
Patkanov, the learned monk Father
Haloust, |. I. Orbeli, A. Abramyan, V.
K. Chaloyan, and others has brought
the works of Anania of Shirak to light
in scholarly circles, the general reader
remains ignorant of the very existence
of this remarkable problem book.

Uandapet Anania ol Sltil'aft
Once I fell in love with the art of calculation, I thought

that no philosophical notion can be constructed without
number, considering it the mother of all wisdom.

-Anania 
of Shirak

Among ancient Armenian thinkers, Vardapet
Anania of Shirak stands out because of the breadth of
his ifrterests and the uniclue mathematical orientation
of his work. Some of his works have been preserved.
In addition to the Problems and Solutions, the follow-
ing tracts have found a special place in the estimation
of scholars: OnWeights and Measures, Cosmography
and Calendrical Theory, and Armenian Geography of
the Seventh Century a.o, (the authorship of the last
work was long attributed to another outstanding
thinker of ancient Armenia, Movses of Khoren).

In his autobiography, Anania of Shirak has this to
say about himself:

I, Anania of Shirak, having studied all the science of our
Armenian land and having learned the Holy Scripture inti-
mately, in the expression of the psalmist, 'every day I illu-
minated the eyes of my mind.'Feeling myself lacking in the
art of calculation, I came to the conclusion that it is fruit-
less to study philosophy, the mother of all sciences, without
number. I could find in Armenia neither a man versed in
philosophy nor books that explained the sciences. I there{ore
went to Greece and met in Theodosiople a man named Iliazar
who was well versed in ecclesiastical works. He told me that
in Fourth Armenia2 there lived a {amous mathematician,
Christosatur. I went this person and spent six months with
him. But soon I noticed that Christosatur was a master not

zFourth Armenia was one of {i{teen provinces into which,
acccrrding to Armenian Geography in the Seventh Century
e.o., so-called Great Armenia was divided.

o{ all science but only of certain fragmen-
tary facts.

I then went to Constantinople, where I
met acquaintances who told me: "Why did
you go so far, when much closer to us, in
Trebizon, on the coast of Pontus,3 lives the
Byzantine vardapet Tyukhik. He is full of
wisdom, is known to kings, and knows Ar-
menian literature." I asked them how they
knew this. They answered: "We saw our-
selves that many people traveled long dis-
tances to become pupils of so learned a
man. Indeed, the archdeacon of the patri-
archate of Constantinople, Philagrus/ trav-
eled with us, bringing many young persons
to become pupils of Tyukhik." When I
heard this, I expressed my gratitude to God,
who had quenched the thirst of His slave.

I went to Tyukhik at the monastery of
St. Eugene and explained why I had come.
He received me graciously and said: "I
praise Our Lord that He sent you to learn
and to transplant science in the domain of
St. Gregory; I am glad that all your coun-
try will learn {rom me. I myself lived in
Armenia for many years as a youth. Igno-
rance reigned there." Vardapet Tyukhik

loved me as a son and shared all his thoughts with me. The
Lord bestowed upon me His blessing: I completely assimi-
lated the science of number, and with such success that my
fellow students at the king's cowt began to envy me.

I spent eight years with Tyukhik and studied many books
that had not been translated into our language. For the
vardapet had an innumerable collection of books: secret and
explicit, ecclesiastical and pagan, books on art, history, and
medicine, books of chronologies. Why enumerate them by
title? In a word, there is no book that Tyukhik did not have.
And he had such a gi{t {rom the Holy Spirit for translating
that when he sat down to translate something from the
Greek into Armenian, he did not struggle as other transla-
tors did, and the translation read as i{ the work were written
in that language originally.

Tyukhik told me how he had achieved such vast erudi-
tion and how he had learned the Armenian language. "When
I was young," he said, "I lived in Trebizon, at the court of
the military chief Ioannus Patricus, and for a long time, up
to the accession of Mauritius to the throne, I served as a
military man in Armenia and learned your language and lit-
erature. During one attack by Persian troops on the Greeks,
I was wounded and escaped to Antioch. I lost all my posses-
sions. Praying to the Lord to heal my wounds, I made a prom-
ise: 'If You prolong my liie, I shall dedicate it not to accumu-
lating perishable treasures but to collecting treasures of
knowledge.' And the Lord heard my prayers. After I recov-
ered I went to ferusalem, and from there to Alexandria and
Rome. IJpon returning to Constantinople, I met a famous
philosopher from Athens and studied with him {or many
years. A{ter that I returned to my homeland and began to
teach and instruct my people."

After some years that philosopher died. Not finding a re-
placement for him, the king and his courtiers sent for T1'ukhik
and invited him to assume the teacher's position. Tyukhik,
citing the promise he made to God not to move far from the
city, tumed down the offer. But because of his wide leaming,
people came streaming from all countries to study with him.

And I, the most insigni{icant of all Armenians, having

3"Pontus" (or "Pontus Euxinus") was an old name for the
Black Sea.
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learned from him this powerful science,
desired by kings, brought it to our country,
supported by no one, obligated only to my
own industry, God's help, and the prayers of
the Blessed Educator. And no one thanked
me for my efforts.

Pnollems and solulions
A half and one sixth and one nine-

teenth of all the books were printed on
verg6i one fi{th and one two-hundred-
eighty-fifth-on rag paperi one forty-
fifth and one eight-hundred-fifty-fifth-
on vellum; and {orty-five inscribed
copies-on Dutch paper. And so, find
how many copies were printed in all.

-Imitation of Anania o{ Shirak

A Latin proverb says habent sua fata
Libelli ("books have their own fate").
The fate of. Prcblems and Solutionsby
Anania of Shirak is quite amazing. The
manuscripts of Anania's book were pre-
served only because, according to Arme-
nian historians, "in ancient and medi-
eval Armenia manuscripts were guarded from invaders,
like weapons, and cherished, like one's own children."
Biding their time, the manuscripts lay in the
Matenadaran, a renowned depository of ancient manu-
scripts (now the Mesrop Mashtots Institute of Ancient
Manuscripts). And its hour finally arived. In 1895 the
learned monk Father Haloust used two manuscripts to
publish the problem book, supplementing it with an in-
troduction and commentary. In 1918 the book was trans-
lated into Russiaq edited, annotated, and typeset by Iose{
Orbeli, a prominent scholar (and later a member of the
Academy of Sciences of the USSR).

In the translator's words, the probiems of Anania are
"amusing, ful1 of life, and simple." Orbeli goes on to
say: "The subjects of the problems are generally taken
from everyday life. The scene is predominantly his
homeland Shirak and the surrounding countryside, and
the dramatis personaet if they are named, are the 10-
cal princes-the Kamsarakans, including Nersekh,
who was a contemporary oI Anania." Like other an-
cient authors, Anania of Shirak used only "aliquots"-
that is, fractions with a numerator of 1. When it is
necessary to write fractions with numerators other
than 1, one has to represent it as a sum of aliquots (see
the epigraph above).

Like any true work of art, the problems of Anania
suffer terribly in the retelling. You have to read the origi-
nals (albeit in translation)in their fullglory. So let's open
Anania's problem book-a gift from across the ages.

Problems 1 and B relate to the Armenian uprising
against the Persians in e.o. 572.

Problem 1

My father told me the following story. During the
famous wars between the Armenians and the Persians,

prince ZauraL< Kamsarakan performed
extraordinary heroic deeds. Three
times in a single month he attacked
the Persian troops. The first time, he
struck down half of the Persian army.
The second time, pursuing the Per-
sians, he slaughtered one fourth of the
soldiers. The third time, he destroyed
one eleventh of the Persian army. The
Persians who were still alive, number-
ing two hundred eighty, fled to
Nakhichevan. And so, from this re-
mainder, find how many Persian sol-
diers there were before the massacre.

Problem 8
During the famous Armenian upris-

ing against the Persians, when Zaurak
Kamsarakan killed Suren, one of the
Armenian azatsa sent an envoy to the
Persian king to report the baleful news.
The envoy covered fifty miles in a day.

Fifteen days later, when he learned of this, Zaurak
Kamsarakan sent riders in pursuit to bring the envoy
back. The riders covered eighty miles in a day. And so,
find how many days it took them to catch the envoy.

Problem 1B mentions vessels made of varying
amounts of metal. In the Russian translation, they are
all calIed "dishes." But in the original Armenian, ac-
cording to Orbeli's note, the dishes in the first and sec-
ond instances are called mesurt and in the third in-
stance scutel. Scutel is a common Armenian word, but
mesur had not been encountered in Armenian litera-
ture before Anania's Problems and Solutions.

Problem 18
There was atray in my house. I melted it down and

made other vessels from the metal. From one third I
made a fiieSUr; from one fourth, another mesur, from
one fifth, two goblets; from one sixth, two scutels; and
from two hundred ten drams, I made a bowl. And now,
find the weight of the tray.

Several of the problems reflect the richness of the
Caucasian fauna in Anania's time-for instance, prob-
Lellf /.

Problem 7
Once I was in Marmet, the capital of the

Kamsarakans. Strolling along the bank of the river
Akhuryan, I saw a school of fish and ordered that a net
be cast. We caught a half and a qu'arter of the school,
and all the fishes that slipped out of the net ended up
in a creel. When I looked in the creel, I found forty-five

4" Azatg" were members of one of several strata of
freemen in ancient Armenia.
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fishes. And now, find how many fishes
there were in all.

The temptation is great to Present
all24 problems. But I'11restrain myself
and offer you just one more.

Problem 20 provides some interest-
ing inlormation about the wild animals
that inhabited Armenia at one time but
now extinct for so long that there is no
mention of them even in zoological ref-
erence books. The wild donkey, accord-
ing to the generaliy accepted view,
never roamed the Armenian lands. Yet
Anania of Shirak offers evidence to the
contrary.

Problem 20
The hunting preserve of Nersekh

Kamsarakan, ters of Shirak and
Asharunik, was at the base of the
mountain called Artin. One night great herds of wild
donkey entered the preserve. The hunters could not
cope with the donkeys and, running to the village of
Talin, told Nersekh about them. When he arrived with
his brothers and azats and entered the preserve, they
began killing the wild beasts. Half of the animals were
caught in traps, one fourth were ki1led by arrows. The
young, which constituted one twelfth of all the ani-
mals, were caught alive, and three hundred sixty wild
donkeys were ki1led by spears. And so, find how many
beasts there were at the start of this massacre.

"SEl ilt ty|le hy me, lusel 0rheli"
His biography coulci not be squeezed into the {rame-

work of a bibliography.

-"";::;lnt?,!:i:flT:;2fi

Anyone who is lucky enough to hold a copy llln of
the small printing-n is the solution to the epigraph in
the previous section) of the Russian translation of
Anania of Shirak's Problems and Solutions, a thin book
with yeilowed pages, has probably noticed the variety
of the fonts, the elegance of the borders, and the high
quality of the design, printing, and binding. Such great
attention to detail is characteristic of works that ful-
fill a requirement for a degree in bookmaking. And this
problem book was indeed a kind of diploma attesting
to the professional maturity of the man who created it.
An advertisement at the end of the book reads: "This
book was typeset in December l9l7 at the printing of-
fices of the Russian Academy of Sciences by me, Iosef
Orbeli; the text was also proofread, laid out, and deco-

S"Te{'was the title of the heads of sovereign royal
families in ancient Armenia.

rated with borders by me. Various cir-
cumstances prevented me from carry-
ing this proiect to the end; the final
pages of the book were typeset by M.
Strolman."

Typesetting was neither the first
nor the only profession of the re-
nowned orientalist Iosef Orbeli, who
later became the director of the Her-
mitage Museum in Leningrad. He was
also a cabinetmaker and a locksmith.
Orbeli had already become accluainted
with the famous academic printing
house Typis Academiae, founded in
l72B andknown all over the scientific
world for its rich collection of fonts
and its virtuoso typesetters. In prepar-
ing to pubiish the corpus of ancient
inscriptions preserved on the walls of
Armenian churches, Orbeli found it
necessary to create a new font that
would preserve the unique signs and

ligatures. This complicated work was done by M. G.
Strolman. (Unfortunately the entire set of letters was
destroyed during the blockade of Leningrad in World
War II.)

When Orbeli came to the printing offices of the
Academy of Sciences, times were hard. The only way
to publish the newly translated fuoblems of Anania
was for Orbeli to learn typesetting (he had always been
attractedto the printer's craftl.In1922 Orbeli became
the director of printing at the Academy of Sciences.
Even after he retired, he remained a tireless champion
of Russian academic typography.

Back lo tanlh
This book by definition does not exhaust all the most

important works in this domain. The editor hopes that
those who are guilty of this incompleteness will read these
lines and, stung by shame, will work up, i{ not a collec-
tion like this, at least a monograph.

-V. Bonch-Bruyevich, introduction to the
Russian translation ol Solid-Body

Symmetry by R. Knox and A. Gold

Let's imagine a time when space flight is an every-
day thing, and high schoolers will spend their breaks
as astronauts-in-training in the Perelman crater on the
far side of the Moon. Maybe one of the space travelers
will take this very copy of Quantum, and another,
looking over her shoulder, wili read this article and say
to himself: "This Anania from Shirak seems like a

pretty interesting guy. When I get home I'11 try to find
his problems."

Good luck, my young friend! Anania is sure to en-
tertain you. Perhaps by then there will be more than n
copies of his timeless Prcblems and Solutions. And we
can hope they will be as lovingly printed as the mas-
terpieces created by Iosef Orbeli. O
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IN YOUR HEAD

landatl'$ licen$E plale UillnB

And other mathematical feats of a great physicist

D. LANDAU IS GENERALLY
thought to be one of the great-
est physicists of the 20th cen-

I tury. He obtained fundamental
results in many areas of theoretical
physics, and he was the founder and
head of a Soviet school of theoretical
physicists. He and E. Lifshitz per-
formed a true scientific exploit: they
created an encyclopaedia of theoreti-
cal physics-the famous Landau and
Lifshitz Course of Theoretical Phys-
ics, which has already served several
generations of budding physicists.
Mathematics is a necessary tool for
the theoretical physicist. Without a
command of mathematics, the theo-
retical physicist simply cannot work.
But, of course/ there are varying lev-
els of mastery.

Landau's command of mathemat-
ics was marvelous. If you have a
chance to read his books or his phys-
ics course, you'll understand that he
overcame mathematical problems
easily, or maybe he didn't even feel
them to be problems at all . . .

At the end of the 1940s, when I
was a student at KharkovUniversity,
Landau was very popular among stu-
dents in the physics department. In
the thirties Landau

by M I Kaganov

had worked in Kharkov, giving lec-
tures at the university, so there were
numerous legends (or facts) that
were passed around by word . '"
t-,f mouth. There was one
story about how he
would say in the middle
of his lecture, "The
electron is a little yel-
low ball ." His
voice gave no ir-rdica-

tion that he was talk-
ing nonsense. The
students would diLi-
gently write it
down. Then Landau
would blow up, 1et-

ting them know
what he thought of
them in no unccrtain
terms. There were
also many stories
about his excesses dur-
ing exams.
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Especially popular were the stories
about Landau's mathematical talents.
At that time we studied mathematics
from a book of problems that we stu-
dents nickn arned The T en Author s. It
was considered pretty difficult. In
fact, we didn't always manage to
solve the assigned problems. Well,
there was a legend (or was it true?)
that Landau had solved all the prob-
lems in TheTen Authors twice: once
any old way, arrd once the right way.

And here's what I heard from my
teacher, I. M. Lifshitz, a theoretical
physicist who knew his math cold.

Landau thought there was no need
to make a special study of probability
theory. If you understand the prob-
lem, you can always obtain the an-
swer using standard logic and, if nec-
essary/ differential and integral
calculus.

One time Lifshitz was arguing
with Landau, and he gave him a tough
problem in probabiiity theory.
Landau couldn't give him an answer
off the top of his head. That bothered
him. But that evening he called
Lifshitz andgavehim an original, and
coffect/ solution to the problem. Un-
fortunately I've forgotten the prob-
lem, but I do remember that it wasn't
a trivial one.

Landau believed in his mathemati-
cal abilities and, no doubt, he had
good reason, But sometimes his self-
conJidence would lead him to value
his intuition too highly (at least,
when the problem fidn't require se-

rious thought).
Of all number games for one

player,I remember the license plate
game best of all. No doubt that's be-
cause L. D. Landau taught it to me.
The point of the game is to make an
ecluality out of any four-digit license
plate number. (Soviet license plate
numbers are of the form " AB-CD" -for example, "12-34."l,Here are the
rules: you can use only the arith-
metic, algebraic, and trigonometric
operations learned in school; you'te
not allowed to rearrange the num-
bers; and you have to work out the
solution in your head. Lr other words,
you have to turn " -" into " =" by in-
serting signs known to any high
school student (t, -, X, *, {, 1og, cos,

and so on) between the numbers.
Some numbers are easy-for in-
stance/ 75-31 17 

* 5 = 3 - 1). OrSB-53
(VB = 5 - 3). And here's a number
that doesn't cry out for ink 27-33
(27 = 31. But there are harder num-
bers-for example, 75-33. Both
ways of solving it will seem arcane
to the novice player: 7 - 5 = logt, 3

or7-5= 3l+3.
Passionate players of the license

plate game often argued about which
operations are allowed and which are
prohibited: the problem was, they
didn't know the exact boundaries of
the high school curriculum. In par-
ticular, they argued about the propri-
ety of using the factorial sign "1"
(which came in handy with certain
numbers that stubbornly resisted be-
ing made into an equation).

At the time Landau described the
game to me, he was a brilliant
player. He would come up with an
answer almost as soon as he saw a
license plate, any license plate.l
Still, there were stumpers-for in-
stance, 75-65. Of course, one could
use the function E(x) equal to an in-
tegral part of x: El7 * 5) : E(6 + 51,

but this function wasn't studied at
school. Besides, if the function E(x)
were allowed, the game would get
pretty dull.

The question of an "existence
theorem" came up. I put the question
to Landau: "Is it always possible to
make an equality out of a license
plate number?"

"No," came the emphatic answer.
I was surprised. "So you've proven

the nonexistence theorem? ! "
"No," Landau said with convic-

tion, "but I haven't been able to solve
all the license plates."

Inlected by the license plate game,
I spread the infection among the
young mathematicians of my ac-
quaintance. One of them, Y. Gandel,
took the game quite seriously and
proved the existence theorem. He
showed that, using functions taught
in high school, you can " eqLlate" any
two integral numbers, since there is

IIt's not advisable to play the license
plate game while crossing the street or
driving a car.

a formula for reducing N + 1 to N.
The proof of the reduction for-

mula recluires knowledge of one
trigonometric formula and skill in
dealing with inverse trigonometric
functions-" arc . .." Indeed, J ,l+ t
= secarctanJN.

Alas, atter the existence theorem
was proved the game lost its charm,
because it became possible to equate
any numbers by applying the reduc-
tion formula several times.

I brought the proof to Landau. He
liked it very much, and we dis-
cussed (half in iest) whether it would
be worth publishing it in some sci-
entific journal. "Maybe we
shouldn't," Landau said. "The
mathematicians will be offended.
They're aheady mad at mel"

Before I stop, I'd like to stress
once again that Landau believed in
his mathematical abilities, and his
confidence helped him solve diffi-
cult, important problems-much
more difficult than those in the li-
cense plate game. O

Does your library
have Quantum ?

If not, talk to your librarian!

Quantum is a resource that belongs
in every high school and college
library.

"A first-class 'new' magazine. . .

one can appreciate the meaning of
quality and imaginative challenge.
. .it is for anyone with an interest
in science, particularly math and
physics. Highly recommended. "-
Library fownal

"It should be in every high school
library [and] in most public
Iibraries. .we owe it to our
students to make Quantumwidely
available."-Richard Askey,
Prolessor of Mathematics at the
University of Wisconsin, Madison
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1 2 3 4 5 6 1 8 9 l0 ll

12 t3 l4

15 l6 17

18 t9 20

24 25 26 21 28 29

30 l -)/

33 31 3.5

38 39 40 41. -+ 43 11

45 46 11

48 49 50

5l 52 53

xGr0$$$clBflce

Across

I Before couloml'r or
volt

5 Standard time plus
one hour (abbr.)

8 Seaport in Lebanon

12 European capital
13 Small European deer

14 One who inherits
15 Pigment
16 AJter benz or propyl
17 College near London
18 Latin for openings

19 An iron oxide
21 Element 82

23 Title of respect in
Turkey

2,1 Alrship
26 Beiore nou,
27 _ Lincoln
30 Bil1s

31 Natural source oi
metal

32 Computer time
expender

33 Am. Indian
34 Calendar abbr.

35 Star seen in mitosis

36 Belonging to us

37 Arm bone

38 CroHr.rN"04
,12 Greek letter
45 1,003

46 Pull
47 Fishing reel {to a

Scot.)

48 Slte o{ Lima
49 Person in Togo

50 Med. school sub.

(abbr. 
)

51 Stalk
52 Father

53 Cruel Roman

0own

1 Lone performance
2 Russian emperor
3 LowpH
4 Foot digrt
5 Feeling about finals
6 

- 
and dance

{cheap)
7 Adolescent
8 Greek letter
9 Aborninable

Snowmar-r

10 Violent uproar
I I Sea eagle

19 Transfom (as rn

math)
20 Self

22 Printer's measures

24 Unit of energy
(abbr. 

)

25 Allow
26 P art of a circle
27 Element 85

28 Member of super-

family Apoidea
29 Make a mistake
31 Unit of magnetic

field strength

by David R Martin

32 Military branch
(abbr. 

)

34 Pair

35 Beerlike drink
.36 Isologue of amrno-

nium (su{f.J

37 Single

38 Units of current

39 food regimen
,10 Ireland
4l Home to Hawkeyes
43 Moroccan tree

44 To ipoetically)
47 Layer of hard soil
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AT THE
BLACKBOARD II

The $atEllite paradox

So you think the atmosphere slows a satellite down . . .

S IT MOVES IN THE EARTH'S
upper atmosphere, a satellite is
slowed by the air. Before satellites
were launched, dataon the atmo-

spheric densityataltitudesup to 200 km
were obtained by geophysical rockets.
Later, analysis of satellite motlon pro-
vided these data.

The force of resistance acting on a
satellite in the upper atmosphere is
due to the collisions of airmolecules.
The direction of this force is opposite
the satellite's velocity and can be
written in the form

F = -kv, (1)

where the factork is positive and gen-
erally depends on the velocity. The
greater the cross-sectional area S of a
body and the greater the density p of
the atmosphere, the greater k is.

Let's compare the acceleration
imparted to the satellite by the air
resistance and the Earth's attractive
force. Suppose a satellite of mass m =
100 kg is shaped like a ball with a
cross-sectional area S = 1 m2 and
moves in a circular orbit with a speed
v = 8 km/s at an altitude h = 150 km,
where the density of the atmosphere
is approximately p = 10i kg/m3. To
get a good approximation, we can
takek = Spv. In this case, the absolute
value of the acceleration caused by
the resistance force is

a=kv =sPu' = 6.4. lo-a m/s2.mm

by Y. G. Pavlenko

The attractive force

Mml. = G.-- - (n+a;'

acting on the satellite from the
Earth lM = 5.975 . 102a kg is the
Earth's mass, R :5,371km is the av-
erage radius of the Earth, and G :
6.673 . l0-1t N . m'lkg'is the gravi-
tational constant) gives it an acceL-
eration directed toward the center of
the Earth that is equal to

o" = C !- = 9.35 mls2 .* 
1a+h;'

We see that the so-called "braking"
acceleration is about 1/15,000 of the
centripetal acceleration. Neverthe-
less, the impact of the atmosphere on
the satellite at an altitude of about
160 km is so significarfi that a satel-
lite begins to descend rupidly after
one or two orbits around the Earth.

The first Soviet satellite was
shaped like a ball with a diameter of
58 cm and a mass of 83.5 kg. The
booster rocket was much larger.
You'd think that the rocket, after
achieving its orbit, would fall behind
the satellite, since the rocket has a
greater S and so is affected by greater
air resistance. Observations showed,
however, that the booster was far
ahead of the satellite. Let's try to in-
vestigate this paradox.

Nowadays the motion of satellites
is calculated on computers, since it is

difficult to solve Newton's laws
when the resistance depends on a
body's velocity. However, we can re-
solve the satellite paradox by looking
at the energy of the satellite. If there
is no air resistancg the total mechani-
cal energy E of the satellite is con-
stant:

E _ mvz *( _"**)2 \ r) 
el

= constant/

where -GMmlr is the potential en-
ergy of the satellite at a distance r
from the Earth's center. When air re-
sistance is present, the mechanicai
energy no longer remains constant/
but depends on time: E : E(t). The
change in mechanical energy AE dur-
ing a small displacement As is equal
to the work performed by the resis-
tance:

LE =W = FAs, (3)

where As = y. At. Substituting this
expression and the force from equa-
tion (1), we obtain the expression for
the rate of change in the satellite's
mechanical energy:

AE* _ _kv2. l4lLt

Assume that the satellite has been
placed in a circular orbit with a radius
r. In the absence of any air resistance,
the satellite's speed can be found by

Cd
C'=
oYoY
C6

(d

_o
E

50 1IlARC[/APRil. 1 S93



. .:.. ll ... .:iiir"i::ii.:al-!'ii:...,,,. 
1;1r, . ; 1, ..11.1,ti$;rij,$,- .

Sr* ';: :.i 1i,: t:l:iiiiiiii .'-.'=.',

f,*

:j
.ili

:

l

+
&s;lffi.'

I. *ii.\L
x

, S..
! I!'-t

"{$,. ."*""4

.t{''l:

:i{'
..t.!i

: ... *

':

i1.'-j
i{.1.i

r,.iii

'"i

i$iii
'ii

..!.

--...+'

f Jt.
i :i&'

r
:

J

i;i::Ji
-.#

: i!-' i: "

s
tr+

ii-.,r.iiri:.dfir.i:t'r ::-:]..!r)t l'
I ,.r'l r6ir..l.i,-r.irr -i ,:i

,. |,.i:r.!ier..:.r -.r...,.r '. i. ,

. ,, :-i;.. -rl.::.-.:: i:r::r.ii:-i:.: l'!,1,nl'i,. -.*.-.! -
. i'l:1:.iit,it:....:it:.:.! I l:ri. .

: .,: r: l,iir.:i ii:!:ir::I:i: : :
-1.&

J^!:, :

., .:llli::1.*:::.r,.:irli':rjt,r..:.

r"r' :Ir''li:illi.l::l .;::: fii:-r.

fl

I .*

{

i.

t

5\

f
:r\

:',)F:
.. i.

t .-. .. :

' ..':

1l



equating the centripetal force re-
quired for circular motion to the
gravitational force:

*!1= G4+ = v2 = GA. (s)
ITI

The influence of the atmosphere
leads to a distortion of the satellite's
circular trajectory, transforming it
into a spiral. If the trajectory does not
deviate much from a circle, the rela-
tionship between the speed v(t) and
the radius r(t) is still given by equation
(5) at any moment. Now, however,
the speed and the "radius of the
circle" are functions of time.

Substituting equation (5) into
equation (2), we can write the poten-
tial energy of the satellite in the form

^Mmll =-(j-=-mV'.t

Therdore, the total mechanical enelgy in
equation (1) canbe r,witten in the form

- mv2 , mvzE=-----+l-mv'l=--.2t'2
Let's now calculate the change in the
total mechanieal energy AE of the sat-
ellite that occurs for a very small in-
crease in its speed Av:

^, _-m(v + Lvf ( -r, \
2 \. 2)

-ZmvLv
2

= -mv\v t

mLvz

where we have neglected the term
Ay2 because Av is very small. Divid-
ing both sides of ecluation 16) by a
small time interval At, we obtain

(6)

AE

AI
Lv=-mv-
AI 17l

Equating the expressions in equa-
tions (4) and (71, we get an expres-
sion for the change in the speed of
our satellite:

Lvk
Afm

So we can see that the satellite's
speed increases with time. The
greater the ratio kf m, the faster it in-
creases. The value of. klm is greater
for the booster rocket than for the sat-
ellite, and so the booster's speed in-
creases more rapidly. That's why the
booster passes up the satellite after
carrying it into orbit.

From the relationships we've been
examining, we can draw a conclusion
about how the atmosphere changes
an orbiting satellite's energy. The
force of resistance causes the satellite
to begin to fall. Its speed afld, conse-
quently/ its kinetic energy increase as

it approaches the Earttr, and its poten-
tial energy decreases (remaining nega-
tive). From equation $l or (71we see

that the total mechanical energy also
decreases. So the reduction in poten-
tial energy occurs more rapidly than
the increase in kinetic energy.

Thus, because of the interaction
with the atmosphere, satellites accel-
erate when they descend even though
they don't have any engines. Upon
entering the dense layers of the atmo-
sphere, they burn up just like a

" shooting st ar " (aclut;ally a meteorite).
And that's why people nowadays
have more opportunities to "wish

(8)

f.
g*Mxd$

'l

ri.

t.

i!:

i,
1/.1

)

e
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HAPPENINGS

Behind lhe $cEnE$ al lhe ItUl0

A look at the subtle way problems are selected and graded

LMOSTAYEARAGO, WHEN
it became more or less clear
that in spite of all unforseen
obstacles and difficulties Mos-

cow would be able to host the
33rd hrtemational Mathematical Olym-
piad (IMO), as scheduled several
years ago/ a group of mathemati-
cians from Moscow, St. Petersburg,
and some other places in the former
Soviet Union were invited to take
part in the IMO as official coordina-
tors. These were people who have
been engaged for years in ail kinds of
math contests. I happened to be
among them, and it wasn't until this
invitation that I gave any thought to
how elaborate and carefully de-
signed an event like this must be.

|ust imagine: 350 participants from
65 nations, writing their papers in
their own languages-as different as

\ \\ ll l \leh,1\ llrj)i, il ra! i1.lr i.!r.[ | !r,,r ir ! ( ] til r!ltIr rr

P{ir( rrx. \l,i( riir. l,rLr1

by Vladimir Dubrovsky

Bulgarian and |apanese, Greek and
Hebrew, Indonesian and Danish . . .

And all this diversity, enhanced by
different courses of study, different
educational traditions, different
mentalities , after all, must be re-
duced to the common denominator
of some unified system of scoring
and placing that should satisfy ev-
erybody! It was interesting for me to
get to know how this concealed
mechanism works (and to help it
work), and I thought this would be
interesting for Quantum readers,
too-all the more so because usually
the reports of Olympiads are written
by the participants, so the reader sel-
dom has the opportunity to look at
these competitions from the other
side. (The article by Cecil Rousseau
and Daniel Ullman in the previous
issue of Quantum gives a good idea
of what a team-in particular, the
US team-does before and during
the O1ympiad.)

The problems for the exam are
proposed by participating countries
(except the organizers). They began
to arrive in Moscow in May, and
that was the starting point of the co-
ordinators'work. At this stage, the
task was to select from the 60-70
problems received (not as many as
one might expect, though) a prelimi-
nary list of 20-30 problems with
detailed solutions (sometimes with
commentary) for the jury, which
consists of all team leaders, to make
the final choice.

As usual, a number of problems
were added to this list at the last
moment, a few days before the offi-

cial opening of the competition,
when the team leaders brought
them to Moscow.

The jury spent two days discuss-
ing the problems for the exam. Here
are the results of the final vote (three
problems for each of two days of
competition).

ltttl0 Rnollems...
1. Find all integers a, b, c (I . a .

b < c) such that la - Ilb - 1)(c - 1) is
a divisor of abc - 1. (New Zealandl

2. Let R denote the set of all real
numbers. Find all functions /: R -->
R such that

fl**fbll=y+(f(xll'

for all x, y in R. (India)
3. Consider nine points in space,

no four of which are coplanar. Each
pair of points is joined by an edge
(that is, a line segment), and each
edge is either colored blue or red or
left uncolored. Find the smallest
value of n such that whenever ex-
actly n edges are colored, the set of
colored edges necessarily contains a
triangle all of whose edges have the
same color. (China)

4. In the plane let C be a circle, L
a line tangent to circle C, and M a
point on L Find the locus of all
points P with the following prop-
erty: there exist two points Q, R on
I such that Mis the midpoint of QR
and C is the inscribed circle of tri-
angle PQR. (France)

5. Let S be a finite set of points in
three-dimensional space. Let S,, S,,
S, be the sets consisting of the oi-

\!XIII
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thogonal projections of the points of
S onto the yz-plane, zx-plane, ar;.d
xy-plane, respectively. Prove that

ls12<ls"l .lsyl .ls,l,

where lAl denotes the number of el-
ements in the finite setA. (Note: the
orthogonal projection of a point
onto a plane is the foot of the per-
pendicular from that point to the
plane.)(Italy)

5. For each positive integern, S(n)
is defined as the greatest integer
such that, for every positive integer
k < S(n), n2 can be written as the sum
of k positive square integers.
(a) Prove that S(n) < nz - 14 for each
n>a. (bl Find an integern such that
S(nl = n2 - ru. @l Prove that there are
infiniteiy many integers n such that
S(nl = n2 - 14. (United Kingdom)

The solutions to these prob-
lems will appear in the next
issue.

. . . a]ld [le [e$t0llhe rest
Of course, it was impossible to in-

clude all the interesting problems in
the {inal list, so the jury was forced
to weed out some of them. And in
some cases I was surprised at the se-
lection-tastes (and motives) differ.
So I'd like to share with you at least
one problem from the "leftovers." I
think it was the most interesting-
though perhaps a bit too difficult,
even for an IMO. It was a geometry
problem proposed by China, and it
presents new properties of a rather
well-known construction.

On the sides of a convex quadri-
lateral ABCD with perpendicular
diagonals, the squares ABBTA,
BCCP2, CDD1C2, and DAATD, are
consfiucted externally. Prove that
two convex quadrilaterals, one
bounded by straight lines AB, BC,
CD* DA, and the other one
bounded by AD, DC 1, CB 1, BA, are
congruent.

We'lI publish the solution, along
with other remarkable properties of
this construction, in a future issue
of Quantum.

The delhale task ol$coriltu
As soon as the questions for the

exam were selected, the coordina-
tors set to work devising the guide-
lines for scoring the solutions, trying
to anticipate possible achievements
and flaws in the papers, and assign-
ing the number of points to be
added-or taken away-for them.
The guidelines were explained to
the jury in more detail at a special
meeting. Question 4 generated a

heated argument. It was the oniy
geometric problem, but even this
unique opportunity for "geometers"
to steal the spotlight was spoiled
because the problem had an alge-
braic (coordinate) solution. So the
" algebraically minded" contestants
gained a certain advantage over
"pure geometers." Since there was
only one geometric problem in the
set, this partiality was impossible to
even up, and we came up with a

rather symbolic suggestion: to take
away one point if the answer to
problem 4 is described only by an
equation without being rendered in
geometric terms. Most of the jury
members agreed there was certain
unfairness and that, in general, ge-

ometry should be supported, but
they argued that a solution is a so-
lution no matter how it was ob-
tained or expressed. According to
the regulations, however, the offi-
cial coordinators have the upper
hand in formulating the rules for
grading, so the discussion was some-
what theoretical. After all, our bi-
ased grading really didn't influence
the final results. But maybe it will
influence the selection of problems
in future Olympiads and make it
more balanced.

Until the second round of the
exam/ the jury and the teams stayed
in separate hotels. But the time for
a reunion had come, and while the
contestants were stil1 working, the
team leaders moved to join their as-
sistants (who were taking care of the
teams) and, with the guidelines in
hand, began to check the students'
papers. And in the evening the "co-
ordination" began.

Coondinaling lhe msults
The coordinators/ divided into

small groups responsible for particu-
lar problems, settled down around a
dozen tables in a big hall. There they
received the team leaders and assis-
tants/ who took turns presenting
their teams'papers. Contrary to any
doubts, it turned out that even with-
out knowing the language, but ask-
ing when necessary (usually, in En-
glish) questions like "What is
written where?" one could form a
definite enough opinion about every
answer. So this system proved to be
quite efficient. The coordinators
tried to be strict (one of them,
Dmitry Tereshin, even earned the
nickname "Drl:ritry the Terrible"),
but they were never reproached for
being unfair.

Perhaps the most memorable mo-
ment came during the coordination
of question 5, and it involved the
Chinese team (it was the last prob-
lem on their coordination schedule).
The team leaders figured on a total
of 34 points for this question (four
complete 7-point solutions and a 6-
point solution containing a minor
flawf. But the coordinators discov-
ered that the sixth member of the
teamt whom the leaders thought
had utterly failed on this problem,
had submitted a perfect solution,
and they gave him a full 7-point
score. At this moment everybody at
the table stood up and shook hands:
the coordinators congratulated the
Chinese team.

edals galol'e

Although it had been absoiutely
clear by then that nobody could
challenge the Chinese (not this
time), it was an impressive finishing
touch to the scenario of their over-
all victory-six gold medals and a
total of 240 points out of a possible
252. (By the way, last year Chinese
teams won handily not only the
math but the physics and computer
science international olympiads,
too!) The US team placed second
with 181 points-3 gold and 3 silver
medals; Romania was third (177

54 ilARI[/APRr. rssg



points-2 gold, 2 silver, and 2
bronze medals); the CIS, or former
Soviet (Jnion, was fourth (176
points-2 gold and 3 silver medals);
next came the United Kingdom (158
points-2 gold, 2 silver, and 2
bronze medals) and Russia (158
points-2 gold, 2 silver, ar,d 2
bronze medals).

Three special prizes were estab-
lished by Kvant, the Russian sister

magazineof Quantum, which was
represented at the Olympiad by a
group of members of its editorial
board. The prize for the most elegant
solution to question 1 was awarded to
Pinai Linvong of Thailand; the prize
for the best coordination (checking
and presentation of solutions) went to
Lisa McShine, the leader of the team
from Trinidad and Tobago; and the
prize for the most interestingproblem

at the Olympiad was given to An-
thony Gardiner, the leader of the UK
team, who created question 6.

The coordinators, naturally,
didn't get any medals. But we got
great satisfaction from the favorable
comments on our work {rom all the
team leaders. And it was a joy to
work with such an outstanding
group of mathematicians, young
and-not quite so young. O

Johs in sHm
"I told my kids that they rvill be

living and working in space. They
don't believe me . So, \r,e made a
show about it," says faime
Escalante, the celebrated math
teacher portrayed in the Academy
Award-nominated {ilm "Stand and
Deliver." Escalante, Kathy Bates,
Pat Morita, "Weird Al" Yankovic,
and others host "Living and Work-
ing in Space," a prime-time special
airing on PBS Wednesday, March 31,
at 8:00 r.n. (check local listings).

"Living and Working in Space"
opens the door to the abundance of
opportunities for today's young
people to live and work in space. It
also promotes the study of math and
science in order to cope in a technol-
ogy-based society. "Don't think that
you have to train to be an astronaut
in order to be in space thirty years
from now," says Dr. |ohn Lewis at
the University of Arizona Lunar &
Planetary Lab. "It's not true. If you
train yourself as a chemist or an
engineer or as a restaurant manager/
there rvill be a niche for you. Hu-
manity is going into space."

The one-hour program features a
series of interviews with today's
space pro{essionals, ranging from a
space doctor and the designers of
ground vehicles for Mars, to a
woman who designs space clothes
and a scientist known as the "Iunar
lettuce marr." Also woven through-

Bullelilt hoard
out the program are inventive dra-
matic and humorous vignettes that
play on the interviews with indus-
try professionals. The vignettes ex-
plore what life in a lunar or Martian
habitat might be 1ike.

This program for the entire fam-
ily is funded by ARCO and the US
Department of Energy. Additional
funding for educational materials
and activities is made possible by
NASA. The program is produced by
the Foundation for Advancements
in Science and Education (FASE).

Slry Anmnenes$ lttlesft

The week of Apri125-May t has
been designated Sky Awareness
Week, a national celebration of the
sky. The week provides opportuni-
ties for teachers, students, parents/
nature center staff, television me-
teorologists, and others to look to-
ward the sky and learn how to read
and understand sky processes. Sky
Awareness Week falls during the
same week as National Science and
Technology Week, and around the
same time as Earth Day and other
events focusing on our planet and its
environment.

For more information about Sky
Awareness Week 1993, contact Bar-
bara G. Levine, THINK WEATHER,
Inc., 1522 Baylor Avenue, Rockville,
MD 20850. For a lO-page guide en-
titled "101 Ways to Celebrate Sky
Awareness Week," send $3.00 to
cover printing and mailing costs.

Thinking colnruter$
In December, humans were pit-

ted against computers once again in
the second annual Quest for the
Thinking Computer. In the contest/
judges converse at computer termi-
nals to try to determine which ter-
minals are controlled by people and
which by computers. In 1991, Pro-
grammer foseph Weintraub's pro-
gram "whimsical conversation"
fooled half the judges into thinking
it was a person. Weintraub was also
the 1992 winner-his program
"Men vs. Women" fooled two of
eight judges.

The contest is administered by
the Cambridge Center for Behav-
ioral Studies, with assistance from
The Computer Museum in Boston.
It was inspired by a paper published
in 1950 by the brilliant English
mathematician Alan Turing, one of
the fathers of the modern computer.
The tests so far are restricted, requir-
ing computers to be conversant on
only one topic.

The 1993 contest will be held on
Tuesday, September 21. The dead-
line for receipt of 1993 submissions
is August 1. For more information
and contest requirements, write to
Dr. Robert Epstein, Contest Direc-
tor, Cambridge Center for Behav-
ioral Studies, 11 Waterhouse Street,
Cambridge, MA 02138, or call617
876-27L5.
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M76
This problem has a lot of diJferent

solutions that use simple and well-
known inequalities for positive
numbers:

x+v
f t t*' '

and suchlike. I'11 give four of them:
choose the one most to your liking.

(1) Rewrite the condition ab >

a + bas

la-tllb-1)'1.

Both factors must be positive, because
otherwise the inequalities 0 < a < 1 and
0<b< lwouldimplyb-Illb - 1).1.
Using the inequality between the
arithmetic mean and the geometric
mean of a - I andb - 1 (see, for in-
stance/ the Kaleidoscope in the last
issue), we get

a-1+b -l>2\,,'-(o * l)(b - 1) ,2,

andso a+b>4.
(2) Another rewording of the con-

dition is that the harmonic mettn h oI
a and b is greater than 2:

h=l , *a 1'=?ro-rr.
i2)a+b

But the arithmetic mean is not less
than the harmonic mean (see again
the last Kaleidoscope, or simply note
that la + b)12>Lablla + b) is equiva-
lent to (o - b)t > 0), so

ora+b>4.

Y1/
11 +L>)

' -'l

ANSWERS,
H INTS &

SOLUTIONS

(3) Dividing the given inequality 
M7gby a andby b,we get

a> !+r, b>L+t,ba

and, adding these up,

a+b>? +b-+z>+.ba

(4) Squaring the arithmetic mean-
geometric mean inequality and using
the condition, we obtain

, .,2Ia+bl\-- -/ >ab>a+b.
4

It remains to divide the left and right
sides by a + b lwhichis positive) and
multiply by 4 to arrive again at
a + b>4.

M77
Note that an endpoint of any

straight segment of the rook's route
is either the starting point of the
entire route/ its endpoint, or a point
where it turns. So it suffices to prove
that the route has at least n disioint
straight segments (these have 2n
endpoints, 2 of which at most can be
the endpoints of the route/ so,the re-
maining 2n - 2 must be turning
points).

If each of n horizontal rows of the
chessboard contains a segment of
the rook's route/ then these are just
the required n disjoint segments. If
there is a row with no segments on
it, then each of the n squares of this
row must be crossed by a vertical
segment of the route/ and so we get
n disjoint segments again.

The simplest conceivable route-
all the way from left to right along
the bottom row/ one step up/ all the
way back aiong the second row/ one
step up/ and so on-provides an ex-
ample of exactly 2n - 2 turns.

The trick is that one of the two
numbers aoand bo is always greater
than n, and the other is not. Indeed,
assume/ for instance, that both a o elrrd

boarcnotgreater thann. Then a1l the
numbers a, a2t . . .t au and bp, bp * r, . . .,

boare not greater than n, which is
impossible because we'd have -k +
(n - k + 1) = n + I positive integers not
exceeding n. In the same way we can
show that ao and bo can't both be
greater than n.

So every term of the sum in ques-
tion is the difference of a number
greater that n and a number not ex-
ceeding n. Clearing the absolute va1-

ues and rearranging terms/ we obtain

lar*brl + ... +la,-b,l
: [(, * 1) + (n +21 + ... +2n)

-(1 +2 + ... + nl
: (n + 1)- 1+ (n +21-2

+ ... + 2n-n
: 172.

M79
Let's draw the tangent to the

incircle of triangle A BD parai-lel to AB
(fig. 1); M is the point where it cuts
the base AC.It will suffice to prove

B

s!! 27r2.
2

D z Q-u
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that the tangent runs along the
triangle's midline, or that M is the
midpoint olAC, because the distance
between the midline and the side All
is half the height fi.

Now angle AMR = angle DCF
(each is supplementary to abase angle
of the original triangle). Since the
circles are congruent, it follows that
cluadrilaterals OSMR and PQCF are
congruent. Therefore, AM = x + t-1,

where x is the tangent length frorn A
to the left circle and u is the tangent
length from C to the right circle (see

the figure). So we must prove that
X + L1= AC12.

Using the fact that tangents drawn
to a circle frorn the same point are
congruent/ we can 1abe1 congruent
segments as in the iigure rr,rth the
letters x, y, Z, u {a11 iour rangents to
both circles drawn irom D can be
marked the same way-, because the
circles are congruentl. Nou'rve have

x+1r=lAB-y)+1BF-BC\
=BF-v
=BE*v

a-_LL

:AC-(x*rr)

IAB = BC by the statement of the
problem, BE = BF srnce they are tan-
gents to a circle irom the same point),
so 2(x + tt\ = AC, anrl we're done. (N.
Vasilyev,I. SharyginJ

MBO
(a) We'll prove a more general

fact: the number of I-tiles in any
tiling of a lZn - I) x lZn - 1) square
with tiles of the three given types is
not less than 4n - 1 for any n> 4.ln
particular, for n = 50 this yields the
desired estimate ol 199.

Let's color the big square in four
colors l, 2, 3, 4 as shown in iigure 2.
C1ear11-, no rratter how we fill this
square rtrth our ti1es, any of the big-
ger tiles rr.r11 ahva,vs cover four unit
squares of drlierent colors. So all these
tiles will cover an equal number o{
unit squares of each color. Ho'uvever,
the total numbers of unit squares of
dif{erent coiors are dif{erent, and this
is what underlies the solution.

If a is the number ol l-tiles and b
the number of allthe other tiles, then

x (2n * I ) square can be extended to a
tiling of a(2n + llxl2n + 1) square by
adding exactly 4l-ti1es (forming two
2 x 3 rectangles) and a number of
sma1l squares. So if the initial tiling
contained 4n-l L-tlles, the extended
tiling contains 4n + 3:4(n + 1)- 1 I-
tiles. In particular, for n:50 la99 x
99 square) we thus obtain a tiling
with 199 squares.

For n = 2 or 3, 3(4n - ll > l2n - ll2,
which means that the number of
squares covered by 4n - 1 l-tiles is
greater than the total number of
squares in the figure. This shows that
the number of l-tiles in these cases
must be less than 4n - l.

Physics

P76
Let's hang the spring by one end.

The tension will vary along the
length of the spring. We'lluse the fol-
lowing notation: Mis the mass of the
spring, Nis the total number of wind-
ings, k is the spring constant for the
entire spring and n is the number of
windings from the lower end of the
spring to the point being considered.
At this point the tension is equal to

ry Mg'n-n 
N

The spring constant for one winding
of the spring is N times that of the
entife spring. Then the increase in the
length of this winding will be

^t -Tn -Mq'n-n kN k.N2 '

Summing the change in the lengths
of all the windings, we get

L* Lo= IAJ,, =
M.c N (N+1)

2.k.N2

=UE=Lo- 2k 2'

If the spring is put into a vessel, the
result will be almost the same, but
instead oi lengthening the spring will
decrease in length:

Figure 2

3a + 4b - l2n - 1)r. On the other hand,
each tile contains not more than one
square colored 1, and the total num-
ber of such squares is n2, so a + b> n).
Therefore,

4a 24il-4b
=4t:1-l2n-lP+3a
=4n-l+3a,

or a> 4n - 1, completing the proof.

{b) Figure 3 presents, for the case n

= 4, two ways to tile a 7 x 7 square
with one 4-square tile of either type
and 15 = 149 - aJlS : an - I l-tiles (we
don't show the obvious division of a
2 x 3 rectangle into two l-tiles). Fig-
ure 4 shows how a tiling of a lLn - l)

Figure 3

Figure 4
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If the spring is submerged completely,
then the change of its length can be
estimated by taking into account the
reduction in its apparent weight due
to the buoyant force:

T -I-M"g-M,P-!-oLo-L- 
zk -tvt52lrnr

where p is the density of the spring
and po is the density of water. This
means that the water should reach to
a height

L=L^l+PolP =L^l*l''.'2"2
This formula is vaiid only when the
density of water is less than the den-
sity of the spring; otherwise the
spring will f1oat.

P77
After the first collision, the puck of

mass 2M l"2M-puck" ) will have a
velocity Vof 2 (accordtng to the law of
conservation of momentum). To de-
termine the velocities after the next
collision, it's convenient to use a co-
ordinate system that moves to the
right at the velocity Volz.Iltthis sys-
tem the 2M-ptckis stationary and is
struck by the puck of mass M ("M-
puck") once again (but now the veloc-
ity of the moving puck is half its pre-
vious velocity). It's clear that the
moving puck will stop (in this sys-
tem!); the velocity of the 2M-puck
will be directed to the left and will
eqrtalVof4. hr the laboratory coordi-
nate system, the 2M-puck moves to
the right with a velocity Vol4, andthe
velocity of the M-puckis Vof2.

This calculation can be done
without using a moving coordinate
system. To determine the velocities
directly, one must take into consid-
eration that in a nonelastic collision
a certain fraction of the maximum
elastic energy of the pucks is con-
verted into heat. The calculation is
pretty messy, though.

P78
On the graph we can clearly see

Figure 5

when the scraps of tin were put into
the oven: the temperature dropped
quickly to approximately 230"C-the
melting temperature of tin. The tem-
perature didn't change for almost 12

minutes, since allthe heat absorbed
by the tin was used to melt the tin. To
determine the latent heat of melting,
one needs to calculate what fraction
of the heating element's power is dis-
sipated to the surroundings andwhat
fraction is used to melt the tin. Here
the first part of the graph will be of
help to us: at low oven temperatures
there is little heat exchange with the
surroundings-that is, we can as-
sume that all the power P goes into
heating the oven. On the graph we
can see that initially the temperature
increases approximately 1 degree per
minute (it's convenient to draw a tan-
gent to the curve and measure its
slope). flhen the temperature reaches
230'C (which corresponds to the
melting temperature), the slope of the
curve is about 0.25 degree per minute.
This means that at this temperature
only I14 of the power remains inside
the oven and the remaining 3/4 is dis-
sipated to the surroundings. There-
fore, the latent heat is

0.25. P .t
M

_ 0.25.20 W. 12 min. 50 s/min
5og

=70llg.

In calculating the thermal balance
we didn't take into account the heat
exchange at the moment the oven is
loaded with the tin scraps-the graph
is rather rough and the precision of
our calculations can't be that high.
Nevertheless/ we can estimate the
heat capacity of the oven and con-
vince ourselves that it isn't high (we
can compare the slope of the heating
curve at the melting temperature

when the oven is empty and when
the tin has finished melting).

P79
If we draw the lines of force for the

electrostatic field correctly (fig. 5), the
number of lines crossing a unit area
of a surface is proportional to the per-
pendicular component of the field at
the surface. Consider a long thin cy1-
inder along the axis of the field with
a length t = 1 m and a radius r : 1 cm.
It's on the walls of the cylindrical sur-
face that we want to determine the
perpendicuiar component of the elec-
tric field. The number of lines of force
entering the left end of the cylinder is
Nt: kEJrP, and the number of lines
of force leaving the right end is N, :
kErnP. Since the number of lines en-
tering the cylinder must be equal to
the number leaving the cylinder, the
number of lines N passing through
the wails must be given by

N:{-^1.
Therefore,

kEbvL = knP(Er- Er),

and

a = J, (E, - E") = o.oo5 v/m.
LLr ' 2/

PBO
If a converginglens happens tobe the

first in the beam's path (hg.6al, then af-
ter passing through two lenses the light

58 rrtrncil/APBtr less
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rayswillbeparallel to the axis agairy but
distances from the axis will be cut in
hal{. Thus, afterpassing throug}r Npairs
of lenses the beam's diameter willbe

-Dfl= 
-'2N

If the first lens is diverging (fig. 6b),
therays will move awayfrom the axis
and the beam's diameter will be

d=D.2N.

It's clear that the diameter of the
beam can't become larger than the
diameter of the lenses. There are iimi-
tations in the first case as well: the
light beam can't become arbitrarily
small, because the wave properties of
light prevent it.

Bnaintea$Brs

876
Let abe the number of blond per-

sons with blue e,ves, b the number
of all blonds, c the number of all
blue-eyed people, and n the entire
population. Then by the statement
of theproblem, alc>bf n,or an>bc,
or af b > cin. This means that the
answer to the question is yes.

877
The only kind of triangle that sat-

isfies the condition is an isosceles
right triangle. To prove this, consider
a triangle ABC whose side a = BC is
not longer than the corresponding
height h"andb = CA <ft,. Obviously
no height is longer than any of the
sides drawn from the same vertex of
a triangle. So we can write the follow-
ing string of inequalities:

athnlb<ho<a,

\rc--:. rr--ir.: rhat a = b = h,=hn. But
the ;:--. ':-' ,, = :: is possible if and
on11' 

j 
-- : -:---t-! 't-th h..-thatis, a

is perp.::*-: -,:r : --

B7B
A dro: :=--.

pette u-he:: ::,-'
: - - : 11-

longer counterbalances gravity.
When the temperature of the water
increases, the coefficient of surface
tension and the force of surface ten-
sion decrease. The decrease is no-
ticeable-abortzo1o when the tem-
perature increases from 20oC to
100'C. Thus, the weight of each hot
drop is less than that of a cold drop,
and the number of hot drops is
therefore greater.

There is another process that oc-
curs during heating: the density of
water decreases because of extrlansion.
Generally speaking, this phenom-
enon plays a cofltrary role here. But
the coefficient of thermal expansion
for water is small, so this effect is
much weaker than that due to surface
tension and is practically absent in
this problem.

879
TWO: 425.The last digit of the

number in question, O, is such that
02 ends in O. So it can be equal to 0,
I, 5, ot 6. It's not zero,becatse the
product TWO . O isn't zero ltor a

similar reason/ W and T aren't zero
either). It's not 1, because this prod-
uct is a 4-digit number. It's not 5, be-
cause the products O . O, O'W, and
O .T end in three different numbers.
So O : 6. Now we know that 5 'W
ends in W and 6 .T ends in T. An
easy check shows that T and W can
equal2,4, or B. Since TWO .W and
TWO . T are a3-digit and a 4-digit
numbet, respectively, the only pos-
sibility left is T = 4,W = 2.

880
The answer is shown in figure 7.

l(aleido$co[B
1. The usuai, unthinking answer is

that the cover costs 50 kopeks. But
then the price of the book would be

2 rubles-that is, only t ruble 50 ko-
peks more than the coverl The right
answer is that the cover costs 25 ko-
peks, and the price of the book is 2
rubles 25 kopeks.

2.Itmay seem rather strange, but
nevertheless Ivanova will sti1l pay
less than all the other customers
paid before lanttary 1. She'll receive
a20% reduction on a price that in-
creased 2O%-inother words, she'll
receive a reduction of. 20% of 120Y",
so she'llpaynot 100% b:utonlyg6Yo
of the former price of a book. She'll
get a three-ruble book for 2 rubles 88
kopeks.

3. How could Romans know,
when they supposedly coined that
piece of money in "53 n.c.," that
Christ would be bom 53 years later?

4. The customer guessed wrong.
We'll assume that the asparagus are
allthe same length, so the amount of
the vegetable in a bundle depends on
the cross-sectional area of the bundle,
not on the circumference. Thus, a

bundle with double the circumfer-
ence contains not two but four times
the asparagus as the thin bundle. She
should either have paid half the usual
sum or demanded not two but four
thin bundles of asparagus.

5. We can find the average eamings
of the seven workers by redistributing
their wages among them. This is easy
to do. We just take the three "extra"
rubles away from the cabinetmaker.
By the statement of the problem, this
leaves him with an amount equal to
the desired average. To make the car-
penterc iust as rich, we need only dis-
tribute the extra three rub1es in equal
shares among them. Therefore, we
need to add 50 kopeks to the 20 rubles
eamed by each carpenter-this is the
average eamings of each of the seven.
From this we find that cabinetmaker
earned 20 rubles 50 kopeks plus 3
rubles-that is, 23 rubles 50 kopeks.

5. There are infinitely many pairs of
such numbers. Here are only a
few examples:

4+ll= 5Y,

4xll= 5Yr.ffi
7

H
ffi
Figure
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5+tfi= 6)i,

Sxtl= 6hi

11+1.1 =IZ.I,
11 x 1.1 = 1,2.1)

9+l/o=10%,

9 xlfu =10% i

2l-l/)"=22/n,
Zlxllo=22llo;

101 +1.01 = 102.01,
101 x1.01 =102.01.

In general, if a and b are two such
numbers, then

So if we start with any number a and
letb = llll - llal = alb - l), we'I1 ar-
rive at a pair of numbers with the
given property.

7.The explanation is quite simple,
as you can see from figure B. The pro-
tuberances and grooves aren't ar-
ranged in the shape of a cross, as it

00

seemedwhen we saw the cube as put
together, but diagonally. Such protu-
berances can easily be inserted into
the corresponding grooves.

B. The winning strategy can easily
be found if w e analyze the game from
the end backward. We then see that
lf. after your next-to-last move there
are 5 matches on the table, you're as-

sured of victory: the other player can't
take more than 4 matches, and so you
can take all the remaining matches.
But how do you arrange it so that you
ieave 5 matches after your next-to-
last move? To this end you have to
leave 10 matches after your previous
move. In this case your opponent
can't leave you less than 6 matches,
and you can always leave 5 matches
on your next tum. But how can you
manage to force your opponent to
select from 10 matches? Why, you
have to leave 15 matches after your
previous turn. So, subtracting 5
matches each time, we learn that 20
matches must remain on the table,
and 25 before that, and, finally, 30
matches after the first round, which
means you must take 2 matches in
your first turn.

So this is the winning strategy:
first, take 2 matches; then, after your
opponent has taken some matches,
take enough matches to leave 25t a{-
ter your next tum you leave 20, then
15, 10, and, finally, 5 matches. You
always get the last match. (For more
on this style of reasoning, see "|ewels
in the Crown," on mathematicaltn-
duction, in the |uly/August L992 is-
sue of Quantum.l

9. If the player who takes the last
match loses, then after your next-to-
last move you must leave 5 matches
on the table. In this case your oppo-
nent can't leave you less than 2 or
more than 5 matches, so in your next
tum you can leave the last match. But
how can you manage to leave 6
matches? Youhave to leave 1 1 matches
in your previous tum, and before thaq
15, 21, 25, and 3l matches.

So, when you begin the game, you
take only 1 match, and then you leave
25,21, 16, lI, and 5 matches in your
subsequent turns. The last match
unfailingly goes to your opponent.

10. It's a bit harder to find the win-

ning strategy for this game than for
the game of 32. We need to take the
following two points into account.

(1) If before the end of the game
you have an odd wmber of matches,
thenyou have to leave your opponent
5 matches to ensure your victory. AI-
ter the next move your opponent will
leave 1, 2, 3, ot 4 matches. If 4
matches are le{t, then you take 3
matches and win the game. If 3
matches areleft, then you take them
all and win the game. If 2 matches are
left, then you take 1 match and win
the game.

(2) If before the end of the game
you have an even number of matches,
then you have to leave to your oppo-
nent 5 or 7 rnatches. Let's work
through the rest of the game. If your
opponent leaves 6 matches a{ter the
next tum, then you take 1 match and
the number of your matches becomes
odd. In this case you leave 5 matches,
and your opponent is doomed to de-
feat. Ifyour opponent leaves not 5 but
5 matches, then you take 4 matches
and win the game. If your opponent
leaves 4 matches, then you take them
all and win the game; if 3 matches,
yotttal<e2 and win the game. Finally,
i{your opponent leaves 2 matches, then
you win the game. Your opponent can't
leave fewer than 2 matches.

Now it's not hard to lay out the
winning strategy. If you have an odd
number of matches, you must leave
a number of matches that is 1 less
than a multiple of 6-that is, 5, lL , 17 ,
and 23.If you have an even number
of matches, you must leave a number
of matches that is a multiple of 6 or
1 more than that-6 or7,12 or 13, 18

or 19 , 24 or 25 . Zero can be considered
an even number. From the orrg;naI 27
matches you have to take 2 or 3
matches, then proceed according to
plan. You cannot lose with this strat-
egy. |ust don't letyour opponent take
the initiative.

11. ff the player who holds an odd
number of matches at the end wins,
then you must proceed as follows. If
you have an ev en nambet of matches,
you leave a number of matches that
is one shy of a multiple of 5. If you
have an oddmtmber of matches, you
Ieave a multiple of 5 or a multiple of

a+b 1 1

-f-t-abab

Figure B
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6 plus 1. This will invariably bring
you to victory. When you begin the
game/ you have 0 matches (an even
number). That's why you take 4
matches on your first move and leave
23 to your opponent.

12. From the statement of the
problem we know that, first, the
mass of the bottle plus the mass of
the gasoline equals 1,000 g; second/
because the acid is twice as dense as
gasoline, the mass of the bottle plus
twice the mass of the gasoline
equals 1,600 g.It's clear that the dif-
ference in mass (600 g) is the mass
of the bottle's volume of gasoline.
But the mass oi the bottle with gasoline
is 1,000 g; thereiore, the bottle's mass is
1,000g-600 C = 100 g. Lrdeed, the mass
of the acid (1,600 g - 100 g = 1 ,200 gl is
twice that of the gasolme.

13. The thrckness of a 1ar.er of
cherry flesh is equal ro the diameter
of a cherry pit. There iore, a cherry's
diameter is three urre s that of its pit.
A cherry's volume is 3 x 3 x 3 = 27
times that of its prr. So the volume of
cherry flesh is l- - 1 = 16 umes the
volume of a chent prr.

14. A one kiicsram model o{ the
Eiffel Tower is iar raller than a drink-
ing glass-r-ou na\- be surprised to
leam that it's 1r- rnerers talll In fact,
the volume ,---i rhe model is to the
original as I kg is ro 8,000,000 kg. So

the model's height is to the height of
the actual Eriiel Torver as I is to a

number that, rvhen cubed, equals
8,000 000 Tlus nuinber is 200. Divid-
ing the height of the Eiffel Tower
t300 mlby 200, we get llzm. At first
blush this result may seem strange: a

11,:-rrr piece of iron whose mass is only
1 kg! But here's the rub: in addition to
being tremendously tall, the Eiifel
Tower is remarkably arry, and so it's
relatively unmassive.

15. The second boat finished sec-
ond because it sailed at 24 n;rph for
less time than it did at 16 mph. This
boat sailed at a speed of 24 mph for
24 mil24 mph : t hr, and at a speed
16 rnph lor 24 n;ril16 mph = 17u hr. So
on the first leg it lost more time than
it gained on the second 1eg.

1 6. Travelirg downstream, the rower
covers 1/2 mile per minute; going up-
stream, only 1/ I 2 mile per minute. The

first speed includes the velocity of the
curent, which is subtracted from the
speed upstream. Therefore, I l2 + I ll2-
that is, 7ll2 mlle--dlided by Z-that
is, 7 I 24 mile per minute-is the rower's
speed in still water. So in still water the
rower will cover l0 miles in

10 mi
= 34% min.

7124 milmin

People usually answer that the
rower covers the 10 miles in the same
time as on the river, arguing that the
ioss in speed upstream is compen-
sated by a gain in speed downstream.
But that's faulty reasoning (see the
previous problem).

17. Coming downstream, the
steamboat covers 1 mile in 3 min-
utes, going upstream, it covers 1 mile
in 4 minutes. hr the first instance the
steamboat gains 1 minute with each
mile. Over the entire distance the
steamboat gains 5 hours, or 300 min-
utes. Therefore, the distance from N-
burg to X-ville is 300 miles. hrdeed,

300 mi 300 mi

---=20 

hr-15 hr
i5 mph 20 mph

=5hr.

18. The square's side length must
be one tenth of 100 km. A square
with a 10-km side contains 10,000 x
10,000 : 100,000,000 square meters.
If each square meter has room for 20
people, then such a square contains
20 x 100,000,000 = 2,000,000,000
people-that is, more than the entire
population of the Earth in 1924
( 1,800,000,000). Consequently, ail of
humanity could be placed inside a

square with a side length of 10 km.
19. This kind o{ check is insuffi-

cient. A quadrilateral can satisfy it
without being a square. Figure 9a
shows an example of such a quadri-
lateral. It has equal sides but not
right angles. In geometry such a fig-
ure is called a rhombus. Every
square is a rhombus, but not every
rhombus is a square.

20. This check is as unreliable as

the previous one. The diagonals of a
square/ of course, are equal, but not
every quadrilateruIwith equal diago-

nals is a square (see figure 9b). The
parquet-makers have to use both
checks simultaneously. Then they
could be sure that they've c,ut a real
square: any rhombus with equal di-
agonals is a square.

21. Such a check can only show
that the quadrilateral under consid-
eration has right angles-that is, it's
a rectangle (see figure 9c). But it says
nothing about the equality of its
sides.

CodinU
l. There are I words. (Seg {or in-

stance/ " Combinatorics-polynomi-
als-probability" in this issue.)

2. The distances are 4,2, and2, re-
spectively.

3.II d(Cl 2 2r + l, there cannot be
a word whose distance to two differ-
ent words is < r. If there werg the tri-
angle inequality would guarantee
that these two words would be 2r or
fewer units apart, which is impos-
sible. So decoding is always unique,

Figure 9
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provided that the number o{ errors
doesn't exceed r.

4. The numb ers att az, . . ., au should
be relatively prime to 1O-that is,
they shouldn't be divisibleby 2 or 5.

5. The volumes are (p - l)n and
lp - tl'znln-rll2.

5. Substitution of the given word
into the equation yields the first col-
umn (three ones) of the matrix. So the
effor was made in the first character,
and the coffect word is 0010101.

Black holes
1. If your mass is 50 kg then R, :

7.4 x lOaT m, which is much smaller
than an atomic nucleus (typical nuclear
radii are of the order of 10 15 m). As for
the Schwarzschild radius of the
Milky Way Galaxy, Mr* : 2 x 1030 kg
so M"r,* = 2 x 10at kg. We then find
Rr=2.96x 101a m. This is about 2,000
astronomical units (1 AU equals the
average distance from the Earth to the
Sun) or about 0.03 light-year.

2. ps: 1.8 x 10i kg/m3: 1.8 x
10 6 g/cm3. This is about one
thousandth the density of air.

3. 1 atm: 1.013 x 105 N/m2 =
1.013 x 105 kg/(m . sec2); the density
of water : p : I glcr::rt : 1,000 kg/m3.
Wethenfind plp*:1.13 x 1O'5, which
is certainly much less than one.

Comhinatol'ics
1. 11! = 39,9t6,800, Lzt

479,001,500.
2. The number of zeros at the end

of n! is equal to the number of factors
of 5 in n!. For n = 24 this number is
still 4, but for n = 25 it makes a double
leap and becomes equal to 5. So n!
never ends in exactly 5 zeros, and the
smallest n such that nl ends in 6 ze-
rosisn:25.

3. The given formula is equivalent
to (n + 1)! : n! + nlxn : (n + l)n!,which
is formula (1) in the article.

4. Using the formula from problem
3, the given sum can be rewritten as

(2! - 1!) + (3! -ztl + $t-31) + ...
+ (n + 1)!-n!.

This sum "telescopes": the second
term of each group of two cancels
with the first term of the previous
group. After all the cancellations,
the sum reduces to (n + 1)! - 1! :
(n+1)! -1.

5. We leave this verification to our
readers.

6. Making the suggested substitu-
tion, we find that (k!)! = (kl- 1)!(k!),
which is true for any natural num-
ber k. Lettingx: kl - l, y = k, z = k!
gives us triples of numbers satisfy-
ing the required condition. Setting
k : 1 or 2 gives the trivial solutions
(0, 1, 1), (1, 2, 2lr. Letting k = 3, we
obtain (5, 3, 5li and if k = 4, we ob-
tain 123, 4, 24lr.

7. (al B!; (b) SPANIEL.
B. 123455789 x B = 987654312.
9. {al6! = 720, assuming thatrota-

tions of a given lettering are consid-
ered distinct {rom that lettering; (b) 12
(there are 5 ways to choose vertex A
and2ways to choose the direction of
labeling, or vertex B).

I0. B! (the first rook may sit in any
of B squares of flle a, the second-in
any of 7 squares of file b that do not
1ie in the row where the first rook sits,
and so on).

rI. lalT t l s! ; (bl 8t l l2\'.
12. We must find anagrams for the

"word" BBBPPOO, where each letter
is the initial of one of the fruits. There
are 7ll3l2l2l: 35 of these.

13. READ QUANTUM EVERY
DAY.

14. To get the correct answer/ we
divide the number of permutations
(with repetitions) of the given colors,
N: 11!/5!3l2tll,by ll .2 = 22,be-
cause when we compare the order of
colors on two necldaces, we can start
with any of the 1 1 beads and "tead" rhe

A

colors in either of two directions
(clockwise or counterclockwise). So
in the number 11! every way of mak-
ing a necklace is counted 22 times.
The answer is Nl22: 1,250.

15. Substituting 1's for each let-
ter, each term in the sum will have
a value of 1, so the numerical value
of the sum will be the number o{
terms (before simplification). Here,
this number is 24.

16. The largest coefficientwillbe the
one for which we have the largest num-
ber of ways to choose the letters that
makeup the term. For (a) this is 5l/(1 !)5 =
120 (the coefficient of abcde). For (b) it
is 5ll2l: 50 (the coefficient of azbcd,
ab2cd, and similar monomials).

t7. \: l, Kr= 4, Kr= 6, Ko:12,
Ks = 24; the numbers of terms are
equal to 5,20,10,30, and 5, respec-
tively.

18. (a) 3! = 6. (b) The number of
pieces of each sort is related to the
number multiplying the probabilities
of each color of pepper. In fact, if the
green/ red, and yellow peppers oc-
curred in the ratio 3 : 2 : l, the num-
ber of pieces of each sort would be
identical to the coefficient of the cor-
responding probability. Each piece is
a box whose dimensions are I cm,
2 cm, or 3 cm; if n, of the fimensions
are equal to l, nrto 2, n, to 3 (n > 0;
n\ + n2 + n, = 31, then the volume of
the box equals lnr/nzgns , and the num-
ber of such boxes equals 3lf nrlnrlnu!.

$tomachion
(See the Toy Store in the larutaryf

February issue of Quantuml
1. See figure 10.

FD

Figure 10 B
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2. See figure
3. See figure

11.

t2.
in figure 3 in the article.

The two tetrahedrons in question
are developed from the same "blue-
print," but it's as if one of them is
turned inside out to get the other-
the inside surface of one tetrahedron
corresponds to the outside of the
other.

The unknown number of spots on
the face of the die is 3 (for the "clock-
wise" die) or 4 (for the "counterclock-
wise" die).

Toy $lol'e
The pyramid at the bottom of fig-

ure 13 corresponds to the top drawing
infigure 1 in the article, the one above
it to the other drawing in figure 1; the
pyramid at the top of figure 13 core-
sponds to the quadrilateral pyramid

Figure

B

11

Figure 13

Vol.3, No.3:
Gallery Q: Titian reworked

Bellini's painting [ifteer, years
later.

p. 19: Due to an efitorial over-
sight, the sol]rce of the proof of the
Euclid-Euler Theorem in "A Mag-
nificent Obsession" was omitted.
It was adopted from V. Klee and S.

Wagon, Old and New Unsolved
Problams in Plane Ceometry and
Number Theory (Washington:
Mathematical Association of
America, L99Ll, p. L79.

p.27, col. Z {ootnote: Aproduc-
tion/software glitch caused an ellip-
sis (...) in the second displayed equa-

tion to be printed as the letter tt
p. 60, col. 1, solution 6: The

same glitch caused five ellipses in
the displayed equations to be
printed as the letter t.

p. 32, col. 3, last line:' for

{;.dE ,roa 
^[o'+u')p.p. 60, col. 1, 1. 19: for AAoruad

Ao.
p. 50, col. 2,1. 13: for lfn read

Ll@ + t).
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TOY STORE

ttUaclupyrilmids

Trisecting the stately cube

by Yakov Smorodinsky

hard to make out immediately, I chose
not to try the machinist's patience any
longer and to prepare paper models of
the required pieces myself. It tumed
out that the paper versions were good
enough to use. You can construct
these pieces using the cutouts in fig-
ute 4.

Can you explain how two cutouts
yield three different pieces?

I've talked enough about the
pieces-now 1et's talk about the
puzzle. The pieces made according to
figure I are tetrahedrons, two of
whose faces are congruent 45"-45o
right triangles having one leg in com-
mon and fixed at a right angle. Such

OU SEE, I WANTED TO PLAY
with a simple but nifty 1ittle
ptzzle that I had come across in
one of Maftin Gardner's articles.

So I went to a machine shop and
asked them to make six pieces ac-
cording to the two drawings in figure
l-three of each kind. The machinist
I was dealing with was almost of-
fended-he thought I was trying to
make a fool of him. But joking was
the furthest thing from my mind. The
pieces were drawn according to the
strictest rules of mechanical drawing
(see figure 2 for another example).

Withoutrcading anyfurther, try to
draw these pieces or at least visual-
ize them.

an arrangement of triangles can be
achieved in two different ways that
mirror-reflect each other.

The pieces made accorfing to fig-
ure 3 are quadrilateral pyramids with
square bases, whose heights are con-
gruent to a side of the base and fa1l on
one of the base vertices. (A1l the
pieces are pictured in figure 13 on
page 53.) The problem is to make a

cube out of six of the tetrahedrons or
three of the quadrilateral pyramids. This
isn't difficulg but it's instructive-try it!

Now hold a cube assembled from
three pyramids of the second type
between your thumb and forefinger

In an attempt to simplify the taslg I
decided to have three pieces made (irom
another drawing-figure 3) instead of
six. But since this drawrng also proved

Figure 2

Figure 1
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Figure 5

(fig. 5) and carefully rotate it about the
axis thus arranged-the diagonal of
the cube formed by the longest edges
of the three pyramids. Under 120' and
24O rotations each pyramid will take
the place of its neighbor. In a case like
this we say that the figure (our assem-
b1y of pyramids) has a symmetry axis
of the third order. It's easy to imagine
an apple sliced into three equal parts,
but you've probably never seen the
"trisection" of a cube.

Each piece in this trisection (that
is, each of our quadrilateral pyramids)
has a plane of symmetry-it can be
cut aloqg a plane perpendicular to the
base of the pyramid so that the base
is dissected into two congruent tri-
angles, and the entire pyramid into
two triangular pyramids, which are
just the pieces from figure 1. These
pyramids are mirror images of each
other, so they're congruent, but
they're not identical: you can never/
remaining in our three-dimensional
space/ move one of them so that it
exactly fits the place that was occu-
pied by the other.

It's curious that mirror images in
space are usually rather hard to tell
apart. Ask your friends whether our
fwo mirror tetrahedrons, set a certain
distance apat\ are exactly the same.
You'll see that this question won't be
a simple one for many of them.

Herds anotherway to testyour sense

of orientation. You've seen dice many
timeq no doubq and know that the sum
of the spots on opposite faces of a die is

seven. So, looking at one face, you can
tell how many spots there are on the op-
posite face. How many spots should
thercbe instead of the question mark
in frywe 6! Afiter you get the answer,
compare it with your die.

In answering the last question, per-
haps you noticed that there are two
mirror-symmetrical ways to arrange
the spots on a die (so that the sums on
opposite faces are all equal). This
means there are two t1)es of dice:
ec1ual sums ensure that faces l, 2, arrd
3 of a regular die always have a com-
mon vertex/ and they can be arranged
around this vertex clockwise or coun-
terclockwise (fig. 7). This uniquely
determines the spots on the remain-
ing faces. The dice used in games of
chance are usually "clockwise"-at
least, that's the standard in casinos (so

they say). You can{ind counterclock-
wise dice in board games (or even ir-
regular dice, with di{ferent sums on
opposite faces). Not everyone knows
there's a difference. O

Figure 7

Yakov Smorodinsky, who passed away
in October of last yea4 belonged to that
special class of persons who grow up but
never become adults. Mark Twain,
Alben Einstein, and Lewis Cauoll (to
name only a few) are other examples of
that breed of ""perpetual children." As
they grow older, they keep the child's
abiJity to be astonished by the miracles
of the woild around us, to do strange
things (from the point of view of the
usual grown-up), and to ask questions
that seem silly atffust glancebut are ac-
tually profound. Like all the woild's chil-
dren, they arethereal sages, thekeepers
of wisdom.

A well-known physicist, Professor
Smorodinsky used to play with toys,
solve brainteaserc, and look for shortcuts
in olympiad problems. He was one of the
founders of Kvant, the sister magazine
and forerunner o/ Quantum. He was al-
ways so energetic and curious, younger
in his soul than his much younger col-
leagues. Now suddenly he is gone, but he
has left much behind.

THE TIME I,IAS
COME FOR

OUANTUM

"Quantum will open up a road to some
of the breadth, wonder and excitement
of math and physics."

- William Thurston, Fields Medalist

"A first-class 'new' magazine.... for
anyone with an interest in science....
H ighly recomm"no"o' 

-a,orrry Journar

"[A] great magazine."

-American 
Educator

"l wish Quantum had been around
when lwas a student."

-Sheldon 
GIashow,

Nobel Laureate, Physics
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FOR A BETTER

MATH.AND.SCIENCE
TOMORROW.
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Embry - Ri d dle e ng ine e:ring
use CADD resources to aid in
of their tasa senim,team prajbNts,
cuvvieuluyn includes a tnix oJ theory.'
and practical applications that fully
prepare students for aerospqce
azsiation cqreers.

erospace engineering students at Embry-Riddle \;
don't have to wait until tomorrow to apply what
they're learning today. The curriculum builds to two

pEsBGi{ 
"1,

Ooer 67 international uniaersity
tearns entered the 7th Annual Aero
Design Cornpetition, co-hosted by
the Ernbry-Riddle Society of
Autornotitse Engineering Chaptet'.
The objectizte of the cornpetition is to
ffi as rnuch tueight as lrossible uith
a RIC aircraft designed and built
by students.

Ele ctu' ic ql Eng ine er ing
students at Embry-Riddle
receizte a complete, broad-
bas ed education u.tith full
laboratory resources and
equiprnent to cornplernent
academic study.

EMBIIEB.I
AERONAUTICAL UN

Mail to: Embry-Riddle Aeronautical University
Director of University Admissions
600 South Clyde Morris Boulevard
Daytona Beach, FL 321 1 4-3900
Or Call 1-800-222-ERAU

Circle No. 1 on Reader Service Card

senior design projects that test your
knowledge of aerodynamics, controls, mater-
ials, propulsion and structure as your team
designs the intemal and external details of an
airplane or spacecraft. Both your imagination
and abilities are put to the test, just as they
will be in your professional life. $7e believe
that's what education is all about.

You may know about us, but didyou knoas:
ffi S7e offer over 20 different accredited aviation/aerospace majors at the Bachelor and
Master's levels including aerospace engineering, electrical engineering, engineering
physics, avionics engineering technology, aircraft engineering technology and aviation
computer science.
ffi Our aerospace engineering enrollment at our Da),tona Beach, Florida and Prescott,
Arizona campuses is the largest in the United States. \We are listed as one of the 18 best
engineering schools in the nation by U.S. News and World Report's 1992 College Guide
called "America's Best Colleges."
ffi Your universiry life is enriched through many social and professional clubs and
organizations, like our SAE Chapter, that provide the opportunity for a variety of living
and learning experiences, related to your major, outside the classroom.
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