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The Feast of the Gods (1514) by Giovanni Bellini and Titian

WT HE FEAST OF THE GODS” HAS INTRIGUED ART LOVERS FOR

centuries. It was known that the original painting, by Giovanni Bellini,
was partially reworked by Titian fifteen later, but why? And what was the
extent of that revision? In 1985, when the National Gallery of Art in Wash-
ington decided to clean and repair this Renaissance masterpiece, the oppor-
tunity arose to scrutinize it with advanced scientific techniques. An X-ra-
diograph taken in 1956 had indicated that Bellini originally painted a thicket
of trees in the background. But it also suggested that the painting had been
reworked before Titian (perhaps by Bellini himself).

Before repairing damaged areas, the staff at the National Gallery removed
microscopic samples of pigment, which were subjected to both optical and
chemical microscopy. X-ray diffraction powder analysis and energy-disper-
sion X-ray fluorescence analysis were also conducted. X-radiographs and
infrared reflectographs were made of the “Feast” as well as works by Bellini,
Titian, and Dosso Dossi.

Why Dosso? It turned out that Titian was indeed the second painter to
rework the “Feast.” At right is head conservator David Bull’s reconstruction
of the work after Dosso had repainted the background (from the National
Gallery monograph The Feast of the Gods: Conservation, Examination, and
Interpretation). Dosso’s lush vegetation may have overwhelmed the action
in the foreground. Titian was brought in to set things right, or perhaps sim-
ply to harmonize the Bellini with three other Titians in the collection of
Alfonso d’Este, Duke of Ferrara. For some reason, though, Titian left Dosso’s

pheasan me of his foliage. Analyses also es-
tablished that Bellini made some of the alterations
discernible in the 1956 X-radiograph.

For another look at how scientific tech-
niques expose the underlying truth in works of
art and other things, see “Physics Fights
Frauds” on page 10.
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Voting is no joking matter. But some-
times it may seem that there is an unseen
jester controlling the outcome of free
elections. Maybe it’s because people are
fundamentally unpredictable. No matter
how seriously we approach a choice,
armed with good reasons and the best in-
tentions, the final result can appear
whimsical rather than logical. The way
we balance conflicting data is often a
mystery even to ourselves.

Many commentators have noted the
broad disappointment that often follows
a vote. How can that be? Didn’t the ma-
jority make its choice? Why should most
voters still be unhappy? Well, for one
thing, your favorite candidate may have
been knocked out in the primary elec-
tion, leaving you to vote for your second
choice, at best, in the November ballot-
ing. It may even be a matter of choosing
the lesser of two evils.

There’s more than one way to run an
election, and each approach has its flaws.
Turn to page 4 for an enlightening look
at the mathematics of voting.
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Taking advantage

“Bad times have a scientific value.”—Emerson

HE AIRPLANE IS SOME-

where over the North Sea. Tam

returning to the United States

from my sixth visit to Moscow
in four years. This editorial need not
be written in midair. But I fear that
the profound impressions gained on
this visit will fade too quickly.

I write with a peculiar mix of sad-
ness and anger, hope and despair in-
duced by the impressions of the past
ten days. Russia, as well as the other
republics of the former Soviet Union,
is going through some of the worst
aspects of conversion to a free
economy. Inflation is accelerating:
the ruble has gone from 30 to the dol-
lar in the summer of 1991, to 110 in
March 1992, to 360 upon my arrival
in Moscow on October 19. When I
left, the ruble had reached 400 to the
dollar. The essentials of life are in
short supply, except for those with
dollars or other hard currency. In-
creases in wages have lagged far be-
hind inflation. Times are hard.

Economic and social renewal

On the other hand, I saw signs of
hope. Buildings are under construc-
tion and the infrastructure is being
repaired. New hotels have sprung
into existence, and they are busy.
Many Western and Asian business
people scuttle about, some genuinely
trying to help, but most looking for
ways to make a quick buck off the
Russian people’s misery.

Yet Muscovites seem more spit-
ited. They smile more and seem more
animated. For example, I attended a
performance of Prokofiev’s ballet
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“Cinderella” at the Palace of Con-
gresses in the Kremlin. The dancing
was superb, but there was no orches-
tra in the pit—they were dancing to
a phonograph! My hosts, who were
accustomed to the great Russian tra-
dition of dance and music, were mor-
tified. It was unheard of. But, leaving
the performance, playful and laugh-
ing children could be seen running
here and there, ignoring the barriers
and walkways that guards had en-
forced so strenuously in former times.
And this time no one really cared.
Such perfectly acceptable and normal
chaos with children is surely the first
sign of a free society.

Shameless exploitation

In a more serious vein, I found two
things particularly disturbing. One is
the way the United States, apparently
as a matter of official policy, would
exploit Russian scientists in ways
that are degrading and insulting. The
other is the very likely wholesale
theft of the intellectual property that
Russian scientists, engineers, and
technologists have created over the
past several years. This is perpetrated
by American, German, and Japanese
corporations under the guise of “co-
operation.”

Ilearned of a proposal whereby dis-
tinguished Russian scientists would
be employed on tasks of interest to
the United States—participating, for
instance, in projects to disassemble
and destroy weaponry or to improve
the environment. The idea is to pre-
vent these scientists from leaving
Russia and the other republics, to

hold onto the intellectual resources
needed to create a free economy. It
would also discourage them from
moving to nations like Iraq or Iran to
work on military projects.

Since Russians do not want to
leave their homeland, they would do
it only out of desperation. They
would do it to save their families.
Here’s the problem with the proposal,
though: these distinguished scientists
are being offered ridiculously low
wages—apparently on the order of
$100 a month. Even though this rep-
resents some 40,000 rubles a month
at the current rate of exchange—more
than any of them could make in Rus-
sia—the amount is both inadequate
and insulting. An offer like this was
actually made by an American who
didn’t hesitate to pay a young, rela-
tively uneducated guide-interpreter
$50 a day. Taxi drivers working the
runs from Arbat Street to local hotels
routinely take in as much as $20 a day
(each trip netting $2 or $3).

Now you can understand why
Russian scientists are rejecting offers
to work on behalf of Americans, and
how our image is being tarnished by
this shameless exploitation. We
should take advantage of the situa-
tion, not people.

Protecting marketable ideas

As for intellectual property rights,
while in Moscow I visited several in-
stitutes, including our founding edi-
tor Yuri Ossipyan’s Solid-State Phys-
ics Institute at Chernogolovka, a
village north of Moscow that is home
to nine scientific and technological



institutes. Yuri’s institute is remark-
able in that it’s vertically integrated—
that is, it includes theoreticians, applied
physicists, technologists, and engi-
neers, production as well as research
facilities. An idea can be taken from
theory to production, all in the same
place—something unheard of in US
science or technology, but common in
the most successful American retail
businesses (for instance, Walmart).

At the Solid-State Physics Institute
I saw remarkable processes involving
high-temperature superconductors
and the growth of huge, single crys-
tals of metals like tungsten with prop-
erties never observed in their normal
state. I saw sapphire and ruby crystals
grown with threads, sapphires grown
in the shape of a bead with a hole in
it, and other artificial gems with use-
ful characteristics. Such products of
Russian science are everywhere, and
applications in industry are plentiful.

But new processes and ideas like
these are presently unprotected. The
US could help by providing, as freely
given aid, legal and technical assis-
tance in obtaining American patents.
US patents would provide worldwide
protection for Russians as they try to
create a new economy based on their
own research and development capa-
bilities.

Forging a new partnership

It’s common for Americans and
others to vastly underestimate Rus-
sian science and technology because
of the economic disaster created by
communism. But that is a serious
mistake. These scientists and engi-
neers are among the finest in the
world. They can take inferior tech-
nologies and outperform the best
technologies from other countries.
Consider their success with their
space vehicles and aircraft. They
could just as easily create the best
consumer products in the world.

We must assist the republics of the
former Soviet Union, not just for their
benefit alone. We have much to gain
as well. This bloc of nations will be
the greatest trading partner in the
world in only a few years. Let it be the
main partner of the United States.

—Bill G. Aldridge
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Problems and paradoxes in free elections

by Valery Pakhomov

HEY SAY THAT POLITICS IS
an art. That may be true, by and
large. But it’s not just an art.
The role of mathematics in
politics is more important than you
might think. We all know the basic
principle of democracy: the most
important decisions should be made
by the direct vote of the widest so-
cial strata. Such an approach seems
to satisfy everybody. But in actual
practice, the number of voters who
are discontented after every election
is comparable to, if not greater than,
the number of those satisfied with
its results. Is it just a matter of
chance? Mathematics will help us
examine this question in detail.

The Pules of winning

I'll start with the problem of
choice, in the broadest sense of the
word. It may be the choice of an of-
ficial, a draft constitution or law, an

Table 1
Number of votes
Rank | 5 3 5 4 | Points
1 a a b & 3
2 d d c d 2,
3 c b d b 1
4 b c a a 0
Profile A
4 JANUARY/FEBRUARY 1083

approach to land development, a
winner in a competition, the “per-
son of the year,” and so on. What'’s
really significant is that only one of
several alternatives must be chosen,
and necessarily by a vote.

For the sake of definiteness, let’s
talk about an election. Suppose
there are n voters and m candidates.
Each voter ranks the candidates in a
certain order according to his or her
preference. This system of indi-
vidual preference for a particular
voter x and for, say, three candidates
a, b, and ¢ is written

aibic

where a is the candidate most pre-
ferred by citizen x, b is the second
best, and c is the worst of the three in
x’s opinion (“a £ b” isread “ais bet-
ter (for x) than b”). Summarized in a
table, the systems of indi-

MAJORITY RULES

Democracy and mathematics

get the vote profile A shown in table
1. This profile will serve as the main
“proving ground” for various voting
rules. We'll see that treating this far
from remarkable situation according
to different rules, which all seem
quite reasonable and fair, leads to un-
expectedly different, sometimes op-
posite results.

Relative Majority Rule. Each
voter casts exactly one vote for one
candidate. The candidate receiving
the greatest number of votes wins.

To determine the winner here we
need only the first row of the vote
profile; for profile A, the total number
of votes for each candidate is dis-
played in the second column of table
2. So, according to this rule, the win-
ner is candidate a.

Absolute Majority Rule. Again,
each voter casts one vote for one can-
didate. But a candidate must collect

vidual preference for all 1able 2

voters constitute the vote

profile. For instance, if | c,ndi- | Number Duels against

there are n = 17 voters | date | of wins | Score [ b c d

electing one of m = 4

candidates g, b, ¢, and d, a 8 2% - 8% 89 89

and if 5 voters order the b 5 22 [ 9:8 - 89 512

c};andidﬁtes asa>d>c ; & 4 27 | 98 98 - 98
, 3 other voters as a > . . )

>b>c,another5asb>c g 0 22 | % 158 B¢ -

> d > a, and the remain-
ingd4asc>d>b>a, we

Applying winning rules to Profile A. Entries in
boldface are wins.

Art by Dmitry Krymov






more than half of all votes to win. If
there is no such candidate, a second
round of voting is conducted for the
two candidates who got more votes
than the rest. In the second round, the
winner is determined by a majority
(which is necessarily more than half
of all votes).

Applied to our profile A, this rule
brings candidates a (8 votes) and b
(5 votes—see the second column in
table 2) to victory in the first round.
Crossing out ¢ and d from the profile,
we get the profile A’ for the second
round:

Number of votes

5 3 5 4 B 2
a a b b | =

b b a a R

Profile A’

Profile A’ shows that the election is
won by b.

In this case we had to use not
only the first row of profile A but
also the information about the rela-
tive placement of the winners of the
first round (a and b) in the voters’
opinion. To use the next rule, we'll
need to know the total numbers of
the first, second, ... places in all sys-
tems of individual preference for
each candidate.

Highest Score Rule. All voters
display their entire systems of pref-
erence. A candidate gets 0 points for
last place, 1 point for next-to-last
place, 2 points for third-last, and so
on (the last column in table 1). The
highest total score wins.

A variant of this rule is often
used in sports, when competitors
are ranked first, second, third, and
so on, by a team of judges. The vic-
tor is the competitor whose
rankings have the smallest sum. For
profile A, all the individual scores of
the candidates are given in the third
column of table 2: d wins, ¢ comes
in second, while a and b, our previ-
ous winners, lose by significant
margins.

Now let’s try to compare candi-
dates in pairs. What do the voters
think about, say, d and a? As profile

B JANUARY/FEBRUARRY 1883

A indicates, 8 voters prefer a to d,
but 9 think d is better. We may say
that d wins a “duel” with a by a vote
of 9 to 8. Similarly, comparing d and
b we conclude that d wins even
more convincingly—by a 12-5 vote.
The results of all the duels are pre-
sented in the right part of table 2:
candidate ¢ wins in duels with all of
his rivals.

Condorcet Rule. The candidate
who wins all duels wins the elec-
tion.

This rule is named after the Mar-
quis de Condorcet (1743-1794), a
French philosopher, mathematician,
and political figure of the Age of En-
lightenment, who noticed the para-
doxes that emerge when the winner
of an election is determined accord-
ing to the “duel rule.”

Candidate ¢ wins the election ac-
cording to the Condorcet Rule.
Sometimes it doesn’t determine the
winner, though: Condorcet himself
discovered that some distributions
of votes create “vicious circles”’—
when, say, a beats b, b beats ¢, and
¢ beats a. But the three other rules
aren’t universally applicable ei-
ther—they may fail when two or
more candidates get the same num-
ber of votes or points (which is rare
when the pool of voters is large).

Paratloxes of voting

The four rules we considered
above present four different concepts
of what the best choice is from the
point of view of the “collective
voter.” Not only do they result in four
different candidates winning the elec-
tion, the winner according to one rule
may turn out to be the worst
according to another. For in-
stance, the relative-majority
winner for our vote profile A

Table 3
Number of votes
5 3 5 4 12 5
d d b ¢ . 7 b
c b G d B &
b © d b
Profile B Profile B’

Candidate a withdraws. Profile B
shows the first round of an absolute-
majority election; Profile B'—the
second round, in which d wins.

the problem of choice is fraught
with even more striking twists for
the contenders.

As we already know, the winner
in profile A according to the Abso-
lute Majority Rule is candidate b. It
wouldn’t be unnatural that candi-
date a, who doesn’t stand a chance
to win, withdraws his (or her) can-
didacy. Erasing a from table 1, we
get the vote profile B (table 3). Now
we see that candidates d and b (8
and 5 votes out of 17, respectively)
survive to the second round, where
(see profile B’ in table 3) d wins by 7
votes! So a can manipulate the re-
sult of the election even though a
cannot win.

Problem 1. Think of a similar ex-
ample of manipulation for the High-
est Score Rule.

In the end, the situation verges on
the absurd.

Table 4 presents two vote pro-
files, C and D, differing only in the
last column, where a and b are
switched. You can imagine that per-
suasive agitation for a won over the

is the worst according to

Condorcet, while the abso- &

lute-majority winner has
the lowest total score. So,
with this profile, which-
ever rule we care to use, c

the winner it establishes
may not satisfy more than
half of the voters (who,
naturally, will think an-
other rule is more fair)! But

Table 4
Number of votes Number of votes
5 4 2 6 5 4 2
¢ b b a ¢c b a
a & a b a c
b a c c b a ¢
Profile C Profile D

Two voters (right column) change their minds in
favor of a against b, causing a to lose the election
according to the Absolute Majority Rule.



two voters represented in the last
column to a’s side. According to the
Relative Majority Rule, there is a tie
between a and b under profile C—a
tie unforseen by the rule and thus
unbreakable—whereas the agitation
results in a’s victory (under profile
D). Suppose, however, the winner is
determined by the Absolute Major-
ity Rule. Then, under profile C, a
and b win the first round, and a wins
the second round (check it!). But the
agitation that changed the two
voter’s opinion in favor of a against
b makes a lose: a and ¢ win the first
round, and ¢ the second!

I could have given a lot of other
voting rules and paradoxes to con-
vince you that there are no abso-
lutely perfect rules.! All these con-
siderations suggest the discouraging
(for many) conclusion that democ-
racy—as the expression of the will
of the majority—doesn’t exist at all,
because, as we've seen, the very no-
tion of the “opinion of the majority”
doesn’t exist. Then what’s the at-
traction of democracy for us? Per-
haps the same as its danger—the
possibility of manipulating and in-
fluencing the results of elections
without breaking the law.

A function of collective preference

Now imagine n members of a
parliament working out the priori-
ties of how the state is to finance a
number of social programs. For in-
stance, they may put public health
first, pay for an education program
from the rest of the budget, finance
a housing program from the remain-
der, and so on; or they may arrange
the programs in some other way.
Each member of parliament has an
individual opinion about how the
programs should be ordered. The
problem is to create a ranking that
reflects the collective opinion of the
parliament as a whole.

Mathematically, there’s no dif-
ference between ordering programs
and ordering candidates, so we'll
talk about n voters and m candi-

1See also problem M75 in this issue
and M9 in the May 1990 issue.—Ed.

dates as before. The real distinction
is that now we need not only the
“best” candidate (or program) but a
list of all the candidates in the or-
der of “collective preference.” More
formally, we want to construct a
rule, called a function of collective
preference, assigning a certain “col-

lective” order a £ b to every pos-
sible vote profile P. That is, given a
profile P and any pair of candidates
a and b, this rule must tell us

whether a is better than b (a 5 b),
ais “equal” to b (aZ b), orais

worse than b (a € b). (So now we
allow for a third possibility: “a and
b are equally preferable for the elec-
torate as a whole.”) When it’s clear
that profile P is being considered,
I'll omit P in the notations 2, >, and
$0 on.

Naturally, such a function must
satisfy certain requirements. For in-
stance, in the case of two candidates
a and b, the only reasonable way to
define profile P is to count the num-
ber n_ of voters that prefer a to b and
the number n, of those preferring b
toa,andtoseta>b,a=b,ora<b
ifn >n,n =n, orn <n,, respec-
tively. By the way, it’s not hard to
see that all four rules of voting con-
sidered above coincide in this case,
and our function can be described
quite simply: “If there is a winner in
the election, then the winner is bet-
ter than the loser; otherwise, the
candidates are equal.”

The simplest way to extend this
definition to more than two candi-
dates is as follows. Let S be the set
of candidates, R some “rule to win”
the election. If R(S) is the set of win-
ners according to this rule (there
may be several), all of them are con-
sidered equal and better than all the
rest. Then we exclude these win-
ners from the set S—formally, take
the “difference” S, = S\R(S) of sets S
and R(S}—and apply our rule to the
remainder S, to get the set R(S,) of
candidates that are awarded second
place; again take the difference S, =
S)\R(S,) and determine the “bronze
medalists” R(S,); and so on.

For example, let there be 3 voters
and 4 candidates q, b, ¢, d with the
following vote profile E:

Number of
votes
1 1 1
a d b
b a c
c b d
d ¢ a
Profile E

Let R be the Relative Majority Rule.
Then each of the candidates a, b, d
receives one vote and R(S) = {a, b, d}.
They take first place and the re-
maining candidate ¢ takes second
place, so the collective preference
can be writtenasa=b=d > c.

Problem 2. Apply the above
“method of consecutive exclu-
sions” to profile A (table 1), taking
R to be each of the four rules con-
sidered above. Verify that the re-
sulting collective order for the Rela-
tive Majority Ruleisa > d > ¢ > b,
for the Absolute Majority Rule b >
¢ > d > a, for the Highest Score Rule
d>c > b > a, and for the Condorcet
rulec>d>b>a.

This problem shows again that
different rules give different results
(the first two are opposite). Notice
that the Relative Majority and High-
est Score rules allow a direct ar-
rangement of the candidates accord-
ing to the number of votes or the
score each receives. And these two
methods yield still new orderings:
a>bs>c>dandd>c>a>b!lInad-
dition, the Absolute Majority and
Condorcet rules are inapplicable to
some profiles (like profile E above),
although we allowed for the equiva-
lence of candidates.

Our earlier investigations must
have prepared you for such “minor”
contradictions. But now I'm coming
to a theorem that will astound you.
Roughly speaking, it says that a
function of collective preference
that complies with the conventional
concept of democracy and, at the
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same time, satisfies most reasonable
requirements simply does not exist!

I'll present these natural require-
ments as a set of four axioms of col-
lective preference.

CoMPLETENESS AXIOM. A collective
order must be defined for every pair
of candidates.

TRANSITIVITY AxIOM. If a2 b and b
>c,thenazc.

In other words, we want to be
able to compare any two candi-
dates, and we want an order to be an
order—that is, we want to preclude
the situation in which a is better
than b, b is better than ¢, but ¢ is
better than a.

UNaNmmiTY Axiom. If all voters
think a is better than b, then the
collective opinion must be the
same: a > b.

This unassailable requirement
rules out the function declaring all
candidates equal regardless of the
vote profile.

INDEPENDENCE AxioMm. The final
(collective) order of any two candi-
dates depends only on their mutual
order in individual preferences and
does not depend on the arrange-
ment of other candidates.

This axiom rules out the possi-
bility of manipulations—when, for
instance, the withdrawal of a candi-
date influences the mutual order of
the other candidates.

One example of a function that
obeys all four axioms is the Dicta-
tor Rule, which establishes the or-
der determined by one particular
voter (the “dictator”) without re-
gard to the opinions of other voters.
Of course, we can’t call such a rule
“democratic.”

Another example is the rule for
two candidates considered above (in
this case, transitivity and indepen-
dence are trivial). But this rule is in
fact a rule of choice, not of rank-
ing—it can’t be applied to more
than two candidates.

Arrow's Theorem

The unexpected result I'm going
to prove is that in spite of the ratio-
nality of all our assumptions, the
only rule that satisfies them (and
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applies to any number of candi-
dates) is the Dictator Rule. This
notion traces its lineage to the
American economist Kenneth Ar-
row (b. 1921).

I'll prove Arrow’s Theorem in
three steps. But first, I need to intro-
duce a couple of important defini-
tions. Any subset C of the set V of
all voters will be called a coalition.
A coalition C will be called decisive
for candidate a against b if a > b
whenever all members of the coali-
tion prefer a to b while all other
voters prefer b to a. And, finally, a
coalition that is decisive for any pair
of candidates will be called simply
decisive.

A decisive coalition is almost a
dictating coalition: it imposes its
opinion about any candidates pro-
vided that all other voters are of the
opposite opinion. I'll show that one
can always find a decisive coalition
consisting of only one voter, and
that in fact the opinion of the other
voters is irrelevant.

Step 1. There exist two candi-
dates a and b and a voter such that
the coalition consisting of only this
voter is decisive for a against b.

There is at least one coalition de-
cisive for some pair of candidates—
the coalition V of all voters (it’s de-
cisive by the Unanimity Axiom)].
Since the collection of such coali-
tions contains at least one member,
we can choose from it one coalition
(let’s call it D) that has the smallest
number of members for any coali-
tion that is decisive for some pair of
candidates. This number is greater
than zero, because the empty coali-
tion can’t be decisive for any a and
b (if nobody prefers a to b, then ev-
erybody prefers b to g, and the Una-
nimity Axiom yields a < b, and not
azb).

On the other hand, the minimal
coalition D we've chosen can’t have
more than one voter in it. Indeed,
assume this is not true. Divide D
into a one-voter coalition {v} and
the nonempty coalition E of all
other voters in D. Suppose D is de-
cisive for a against b and consider
the following profile:

Coalition
v}/ E VD
a ¢ b

c
c b a

(Here c is any candidate other than
a or b, and the dots mean arbitrary
arrangements of other candidates—
they are rendered irrelevant by the
Independence Axiom.) Since D is de-
cisive for a against b, all the voters
in D prefer a to b, and all other vot-
ers prefer b to a, we have a > b. If
¢ 2 b, the coalition E would be de-
cisive for ¢ against b, which would
contradict the choice of D as a coa-
lition of minimal size (because E
comprises a smaller number of vot-
ers, and D was chosen to be minimal
over all pairs of voters). Therefore,
b>c.

Now a 2 b, b > ¢, and, by transi-
tivity, a = c. But this means that the
coalition {v}is decisive for a against
¢, in contradiction of the minimal-
ity of D! This contradiction com-
pletes step 1: D consists of only one
voter. Let’s call this voter k.

Step 2. The coalition D = {k} from
step 1 is decisive.

We know that {k} is decisive for a
against b. Take any other candidate
¢, and consider this profile:

{k} V\{k]
a b
b e
c a

According to the choice of {k}, a > b.
And, by the Unanimity Axiom, b >
c. It follows by the Transitivity
Axiom that a > c. Since this result
must not depend on the position of
candidate b (the Independence
Axiom), our function of collective
preference must declare a = ¢ when-
ever k prefers a to ¢ and all the other
voters prefer ¢ to a. This means that



{k} is decisive for a against ¢ for any
candidate c.

Problem 3. Use a similar argu-
ment to prove that {k} is decisive for
d against ¢ for an arbitrary candi-
date d.

So {k} is decisive for any d against
any ¢, and we are ready to take the
last step.

Step 3. Voter k is a dictator.

So far we can’t be sure that the
collective opinion always coincides
with k’s opinion: this was shown to
be true only when all other indi-
vidual opinions are opposite to k’s.
All we have to do is prove that this
dependence on the opinion of the
other voters is only apparent.

Suppose k prefers a to ¢ and ¢ to
b; as to the other voters, let them be-
lieve that candidate c is the best and
think whatever they want about all
the other candidates, including a
and b. Since {k} is a decisive coali-
tion, and a is better than ¢ for k and
worse than c for all the rest, a > ¢; by
the Unanimity Axiom, ¢ > b. Then,
by transitivity, a = b. By the Inde-
pendence Axiom, the collective
opinion about a and b doesn’t de-
pend on c. Thus, we've proven that
for any two candidates a and b, if k
prefers a to b, then, whatever the
other voters think about a and b, the
collective preference puts a higher
than b. And this completes the proof
of Arrow’s Theorem.

So what do we have in the end?
Whereas dictatorship is a suffi-
ciently clear concept satisfying
simple principles, it’s impossible to
define democracy other than as the
alternative to dictatorship. None-
theless, democracy attracts people,
since it is the natural political envi-
ronment for the development of so-
ciety. Only in this environment can
the “strongest” and “wisest” be
naturally selected, because to win
an election or get others to carry out
your decisions, you often need more
than the ability to persuade—you
need to be able to calculate.

But this is democracy’s scourge as
well. Calculation too often allows
manipulation of the results. And
maybe this is why the political

winds in society continually swing
from democratic to dictatorial. (@]

Until last summer Valery Pakhomov
was a professor of mathematics in the
economics department at Moscow State
University. He is now the Russian trade
representative in central Africa. A
mountaineer and collector of classical
music recordings, Dr. Pakhomov also
taught mathematics for many years at
the Kolmogorov Math and Science
School of Moscow University.
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Physics fights frauds

Carbon dating and other revealing techniques

by I. Lalayants and A. Milovanova

OR CHRISTIANS EVERY-

where, Easter is a celebration of

Christ’s resurrection after his

death on the cross. On this day
people in Russia used to give each
other Easter eggs as a sign of prosper-
ity and fertility. In 1885 Tsar
Alexander ITI asked Carl Fabergé, his
court jeweller, to make something
unique to be given as a gift. Follow-
ing the lead of his active imagination,
Fabergé created a miniature master-
piece: an egg decorated with laurel
leaves and white and pink flowers
made from precious stones.

But it could well have been a dark-
green egg on a twisted golden support
decorated with five pansies. Or, per-
haps, a green malachite egg with an
“A” monogram and golden garlands.
The egg’s lid opened, exposing a dark-
green replica of Alexandrovsky Palace
in Tsarskoye Selo. These master-
pieces could be enumerated and de-
scribed endlessly.

Over the course of more than 30
years, Fabergé made over fifty lavishly
decorated eggs for the emperor and
more than 300 simple enamel eggs.
These undecorated eggs are valued
highly nonetheless.

Fabergé died in 1920 in Paris. A
year later, his house in Moscow was
occupied by a young American busi-
nessman, Armand Hammer, who lit-
erally saved the capital of the new-
born republic from hunger. In
exchange for American bread, Ham-
mer would take the tsar’s jewelry,
which was afterwards put on sale in

the fashionable shops of
New York City. Only
ten Fabergé eggs can now
be seen in the Kremlin
museums.

The American pub-
lisher Malcolm Forbes
had eleven Fabergé eggs.
Forbes bought his elev-
enth egg, one that had
belonged to the Russian
emperor, in June 1985 at
the stunning price of
$1,760,000. The news
reached another collec-
tor of Fabergé eggs and
other items of Russian
art, E. Ariet, who owned
some 100 undecorated
eggs. Not long before
Forbes made his pur-
chase, Ariet had bought
his first imperial egg at a
Christie’s auction in
Geneva. It is said to have
been ordered by Tsarina
Alexandra for her hus-
band Nicholas II. Con-
cealed inside the egg was
a figure of the tsar on
horseback. Ariet paid
$2.50,000 for it.

After he heard of Forbes’s purchase,
Ariet got in touch with Christie’s Man-
hattan office, asking the firm to put his
own Fabergé egg on sale. Two weeks
before the auction, however, the staff
at Christie’s announced that the fa-
mous auction house would not sell
the egg: it was a fake.

HISTGRIC AL SEEMTHING

Fabergé’s “Lillies of the Valley Fgg.”

Shroutled in mystery

The disappointment suffered by
one individual is almost nothing
compared to what happened in 1989,
when millions of Catholics learned
that the famous Shroud of Turin, in
which Christ’s body had reputedly
been wrapped when it was taken
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down from the cross, was made 1,300
years too late. This was firmly estab-
lished by accepted scientific methods.
So when the results of physical re-
search on the shroud’s fabric were
shown to Pope John Paul II, he said,
“Make them known.” Two weeks
later the data were published in the
scientific journal Nature.

In case the issue is shrouded in
darkness for you, I'll provide a little
background. In the northern Italian
city of Turin, in a cathedral designed
by Giovanni Battista (Italian for “John
the Baptist,” by the way), a piece of
old linen is kept in a crystal ark. The
cloth is 4 meters long and more than
ameter wide. Its story begins in 1356,
on the estate of the Count de Charnie,
a crusader. The count claimed that it
was the very shroud in which Christ’s
body had been wrapped before it was
entombed. This was confirmed by a
legend according to which the crusad-
ers saw the shroud in the vicinity of
Constantinople in 1203. It seemed
doubtful, however, that the cloth
could be kept more than 1,000 years:
any fabric falls to pieces after 200-300
years.

It should be mentioned that the
bishop of Trois (near Paris) called it a
fake right away. The Vatican, relying
on the bishop’s letter, also doubted its
authenticity. Nevertheless, the
church on the count’s estate (near
Paris) overflowed with pilgrims. No-
body was puzzled by the fact that
Christ was shown bearded on the
shroud. Old Roman pictures depict
him beardless. The same is applicable
to the picture on the walls of Roman
catacombs as well as to the inlay of
the temple at Ravenna, erected at the
end of the 5th century. A crucifix
carved in ivory (approximately a.D.
420) is no exception.

In 1963 a Roman floor inlay was
discovered on the Hinton St. Mary
estate in southwest England. It de-
picted Jesus surrounded by the four
evangelists. To prevent confusion,
Christ was marked by the Greek let-
ters “X” and “P” (the first letters of
Xpiotog) above his head. Again, he is
beardless.

In spite of Pope Clement VIII's ver-
dict (1389) rejecting the shroud’s au-
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A portion of the controversial Shroud of Turin.

thenticity, in 1578 the duke of Savoy
managed to have the shroud trans-
ported to Turin, which became the
capital of Savoy. (The shroud had
been handed down to him by the
Count de Charnie’s granddaughter.)
Coincidentally, in the 16th century
an Italian master painted a picture
depicting Jesus at the foot of the cross,
wrapped in a white cloth. In the up-
per part of the painting, another piece
of white cloth had been drawn. It
bears the imprint of Christ’s body . . .

A great controversy swirled around
the Shroud of Turin and its “imprint”
in the 20th century. In 1931 a reverse
photograph of the man’s face ap-
peared and created quite a furor. An-
other photograph showed an imprint
of the entire body on the shroud. In
the photo the man’s legs were out-
stretched and his arms crossed over
the lower part of his abdomen. Rumor

had it that the imprint on the shroud
was of supernatural origin.

The body was 180 c¢m tall and es-
timated to weigh about 77 kg. A
wound was visible on the left wrist—
was it left by crucifixion? Lash marks
could be seen on his shoulders and
back. There were scratches as well.
This meant that he had been carrying
something heavy and rough just be-
fore his death—was it a cross? In the
1970s, when all these details came to
light, there was no other method of
proving the shroud’s authenticity.
Andyet...

As far back as 1979, W. McCrone
of the University of Chicago proved
by microscopic analysis of the color-
ing that it was a manufactured sub-
stance called “dragon’s blood,” or cin-
nabar. People had learned to make it
in the Middle Ages. In addition, the
shroud contained a gelatin-based



paint (distemper] that wasn’t used for
painting on fabric until the end of the
13th century.

Unfortunately, McCrone’s re-
search received scant attention. Even
scientists wanted to believe that the
shroud was authentic. Still, an
American scientist, E. Jumper of Al-
buquerque, New Mexico, said he
thought it strange that anyone would
take the imprint to be anything but a
drawing.

But it was all circumstantial evi-
dence up to that point. A direct proof
was needed. Why couldn’t scientists
carry out the proper analysis? This
was the 1970s, after all!

Dated by carbon

Well, they did have the neces-
sary tool: carbon dating, which
makes it possible to assign a date to
anything made by humans. This
method was developed by the
American scientist Willard Libby,
who was awarded the 1960 Nobel
Prize in chemistry for it.

Libby’s idea, like all sparks of ge-
nius, is simple. Qur atmosphere is
known to be constantly bombarded
by cosmic radiation. High-energy par-
ticles bumping into the nuclei of at-
oms in the atmosphere knock out
neutrons—nuclear particles with a
mass of 1 atomic mass unit (amu)and
no electrical charge.

It’s common knowledge that the
atmosphere contains 80% nitrogen
(which occupies the seventh position
in the periodic table of the elements).
This means that the nitrogen nucleus
has 7 protons—nuclear particles with
a mass of 1 amu and an electrical
charge of +1. In addition, it has 7 neu-
trons. The scientific shorthand for

nitrogen, YN, means that its atomic

mass is 14 (7 + 7) amu and its nuclear
charge is +7. Carbon is designated as
12C (its mass is 12 amu and its nuclear
charge is +6).

A neutron knocked out of a
nucleus “attacks” a nitrogen atom.
A sort of atomic billiards game be-
gins: a neutron hitting a nitrogen
atom knocks out a proton, but the
neutron gets stuck. This is shown
schematically in the figure at right.

The newly formed nucleus has only
6 protons. We know that an
element’s position in the periodic
table is determined by the nuclear
charge of the element—that is, by
the number of protons. That’s how
cosmic radiation turns atmospheric
nitrogen into carbon.

But this is not ordinary carbon,
with an equal number of protons
and neutrons. The nucleus of this
“new” carbon “C has more neu-
trons than protons and, therefore,
the nucleus is unstable and must
decay. That’s why this type of car-
bon is called radiocarbon—that is,
carbon that decays, emitting high-
energy radiation (from the Latin ra-
dius, which means “ray”).

Radiocarbon is known to decay
very slowly. It takes about 5,730 years
for half of the radioactive carbon 14 to
decay. That is, out of 1,000 atoms,
500 will decay in 5,730 years. That
doesn’t mean, though, that the rest of
the atoms will decay in the next 5,730
years. In fact, only half of the remain-
ing atoms will decay. Therefore, in
11,460 years, about 500 + 250 = 750
nuclei will decay. During the next
5,730 years, half of the remaining half
(about 125 nuclei) will decay, and the
process continues almost endlessly.
So the decay of radiocarbon serves as
a clock.

As is the case with its stable natu-
ral isotope, radiocarbon is oxidized
by atmospheric oxygen. The result-
ing compound—CO,—is absorbed
by plants during photosynthesis (the
process by which plants use the en-
ergy of photons in sunlight to syn-
thesize organic compounds—in par-
ticular, ordinary sugar). While the
plant is living, the ratio of radiocar-
bon atoms to ordinary carbon atoms
in the plant is the same as that in
the atmosphere. The quantity of ra-
diocarbon absorbed by plants is ex-
tremely small—no more than 1 ra-
diocarbon atom per trillion (10'?)
ordinary carbon atoms. So there’s no
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reason to abstain from apples or
other fruits and vegetables out of a
fear that they’re too radioactive.

Carbon is used by plants as links
in the large cellulose molecules they
build. Cellulose is an ingredient in
paper and wood, cotton, flax, and
other natural fibers. Grass is con-
sumed by ruminant animals, from
which leather, tusks, horns, hoofs,
wool, and hair were obtained for
making armor and sword belts,
strings for musical instruments,
jewelry, and so on.

Once the plant or animal ceases
living, there is no longer any ex-
change of CO, with the atmosphere,
and the number of radiocarbon at-
oms decreases steadily due to the ra-
dioactive decay process. If we now
determine the radiocarbon content
of all these old items, we'll get their
ages (actually, the times they were
made) with some small degree of
error. But to date an object we need
to know how much %C was in the
original sample—that is, what the
atmospheric concentration of radio-
carbon atoms was at that time. Un-
fortunately, in most cases scientists
don’t have this information. Here
objects dated by historical evidence
come to the rescue. This is where
we get our reference points.

Gradually the number of such ref-
erence points has grown. But even
today the accuracy of carbon dating is
+30-80 years. When we're trying to
establish the age of very old items,
this error is certainly acceptable. It
often happens, though, that the an-
tiquities are too valuable to be subjected
to carbon dating, since a portion of the
object is burned up in the process. This
is why carbon dating is often applied not
to the object itself but to its surround-
ings—for example, cinders from a fire,
soot from a hearth, and so on.

That’s exactly how researchers
dated the burial grounds of a Cro
Magnon settlement in Moravia. It
turned out to be 28,000 years old. In

+
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Halgenberg, Austria, archeologists
found a soapstone figure of a naked
woman, whose beauty inspired an
ancient artist some 27,000 years ago.
This is the earliest known female
image in European art.

Further refinements

The resolution of carbon dating
increased drastically when modern
computers began to be used in com-
bination with mass-spectrometry,
which makes it possible to “count”
directly the number of “heavy” 4C
atoms. How? By noting the deviation
in the trajectories of the dispersed car-
bon atoms.

Naturally, the lighter the atom, the
easier it is to knock it off its “true
path.” You can demonstrate this eas-
ily yourself. You can change the path
of snowflakes with a slight wave of
your hand. You can’t do that with
raindrops.

Mass-spectrometry reduced the
size of the sample needed by a fac-
tor of 1,000. The older technique re-
quired 1.5 g of pure carbon for the
analysis, whereas mass-spectrom-
etry sometimes needs only 0.5 mg.
The required level of radioactivity in
the sample also changed drastically.
The radioactivity in samples older
than 40,000 years doesn’t differ from
the background radioactivity—that
is, the radioactivity caused by cos-
mic radiation and radioactive con-
tamination.

Actually, the mass-spectrometer
doesn’t detect radioactivity as such—
it determines the number of “heavy”
carbon atoms, which greatly simpli-
fies the problem. It’s no wonder that,
when the scientists presented their
ideas at the Vatican, it was agreed
that the Shroud of Turin be analyzed.

Flax and fiction

Researchers from Zurich, Oxford,
and Tucson (the University of Ari-
zona) took part. Pieces of fabric with
precisely assigned dates were used
as controls. These items were medi-
eval priestly vestments from the
chapel of St. Jean’s Basilica in south-
ern France and linen cloth that was
used to cover the relics of one of the
prophets of Islam.
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Preliminary analysis confirmed
historical evidence about the age of
the vestments and the linen—they
dated from the 11th or 12th century.
Then the researchers proceeded to
the central problem: determining
the age of the Shroud of Turin. The
results indicated that the flax used
for the shroud had been grown
sometime between 1262 and 1384.
The shroud was more than 1,000
years too “young’” to have been used
to wrap the body of Christ. Upon
learning the results of the analysis,
Cardinal Ballestrero, the archbishop
of Turin, said, “I see no reason for
the Church to question the results
or even doubt them.” Interestingly
enough, after the news was pub-
lished pilgrims still lined up to see
the shroud—they wanted to make
sure it hadn’t been damaged. And
the question remained: who indeed
had transferred to cloth the remark-
able image that had captivated gen-
erations of believers—and perhaps
unbelievers?

Art historians think Leonardo da
Vinci did it. The level of skill and
the style of the “portrait” point to
that great master. Remarkable also
is the knowledge of human anatomy
displayed by the artist. Leonardo is
known to have dug up tombs at
night in order to dissect dead bodies
by torchlight. Da Vinci died in
1519—at the beginning of the same
century in which the painting men-
tioned above, with its rendering of
the imprinted shroud, was created.
So the Shroud of Turin still holds
many secrets.

Future generations of scientists
may finally unravel them. How
they’ll do it is merely a question of
time, so it’s hard to predict. Just as
with the Shroud of Turin, even a few
years ago it was hard to believe that
it’s true age could be established.

On the rocks

You may be thinking, “Okay, so
carbon dating is useful when there
is some organic carbon around. But
what about, say, rock paintings with
nothing else nearby? The researcher
doesn’t have access to remnants
from a funeral pyre or anything like

that. What then?” In that case, re-
sponded chemists and anthropolo-
gists at Texas A&M University, you
need to use our new low-tempera-
ture, low-pressure oxygen plasma
method.

This plasma is obtained by irra-
diation at radio frequencies. It
makes it possible to separate the
organic carbon in the paints or
“primer” used by ancient artists and
the carbon from limestone (CaCO,).
At a temperature of 100°C and a
pressure of 4 mm Hg, limestone re-
mains intact, so only organic carbon
is subjected to the mass-spectro-
scopic analysis. This was how a rock
painting in southwest Texas was
dated. Its age—4,000 years (3,865 +
100)—makes it contemporaneous
with the flowering of the ancient
Egyptian civilization halfway
around the globe.

This new technique isn’t restricted
to cave paintings. It can be used to
study drawings on any ceramic sur-
face—for instance, on ancient pot-
tery. The ceramics themselves are
unaffected by the process, but the
colors in the painting may change due
to catalytic oxidation. This can be
repaired, though. For instance, the
ferrous magnetite on vases with black
figures may turn reddish, like ordi-
nary rust. It may be possible to restore
the original color by placing the vase
in a hydrogen chamber.

Lostin the Alps

Carbon dating came in handy
recently when something quite
remarkable was discovered high
up in the Alps. The completely pre-
served corpse of a hunter or herdsman
(presumably prehistoric) was found
partially protruding from the Simi-
laun glacier in Tirol, just inside Italy.
He had a bow, arrows, a copper ax with
a long handle, an implement for light-
inga fire, and other personal belongings
on him or nearby. The body was found
at an altitude of 3.2 km. Never before
had such a well-preserved human body,
untouched by predators or decay, and of
such apparent antiquity, been made
available for scientific analysis.

The man is thought to have been
approximately 20-40 years old; he is
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5 feet 2 inches tall. Small crosses
and wavy lines are tattooed on his
skin. He subsisted on meat and
roughly ground food, judging from
the amount of wear in his teeth. At
first experts at the University of
Innsbruck thought he was a medi-
eval messenger, sent on a mission
through the mountain pass, who
was caught in a sudden snowstorm
and perished.

Carbon dating proved, however,
that he was a contemporary of the
ancient civilizations in the Nile and
Indus valleys (around 2000 B.c.).
Here was an unexpected visitor
from 4,000 years ago! He had leather
shoes, a stone necklace, and a flint
knife at his waist. These last two
items should have immediately
pointed to the great antiquity of the
Tirolean man.

Forging a head

Carbon dating is a strong shield
against forgers who “happen to

Tools lying by the hand of the fozen man fnd in the Italian Alps in September 1991.

find” ancient pieces or items of art
that, because they’re old, acquire
great scientific importance and great
pecuniary value.

There is nothing new under the
sun, in this respect. A collection of
famous frauds was recently exhib-
ited at the British Museum. Egyptol-
ogists, at least, are well acquainted
with counterfeit seals purportedly
used by the pharaohs. The pharaohs
themselves, during the Middle and
New kingdoms, ordered that sculp-
tures from the Old Kingdom be cop-
ied. Visitors to the exhibit saw a
4,000-year-old Babylonian cunei-
form tablet—a copy of one that was
1,000 years older. To make it look
more “authentic,” the imitation
bore an old Sumerian inscription (a
standard warning whose wording
never varied): “If you forge this
document, Enki will plug all your
ducts with slime.” This was serious
stuff—Enki was the supreme deity
in the Sumerian pantheon.

The 19th century was rich in
frauds, even as intense interest in
things historical grew widespread.
Chinese artisans organized a kind of
“production line” of sculptures sold
as antiquities from the Shang dy-
nasty (1766-1112 B.c.) to wealthy
European collectors. Nowadays these
skillful frauds have an artistic value
of their own. Fake Michelangelos and
imitations of other Renaissance art-
ists were particularly popular in the
last century.

A splendid “Man with the
Golden Helmet,” which until re-
cently was considered a genuine
Rembrandt, was also painted at that
time. It’s very hard to determine
whether a work by Rembrandt is an
original. Rembrandt, who lived from
1606 to 1669, was extremely pro-
ductive. In 44 years he produced
hundreds of paintings, about 1,500
drawings, and 300 engravings.
About a hundred students worked
side by side with the master. They

19

QUANTUM/FERTURE




used to write “Rembrandt” on their
works to make the price go up
(Rembrandt let them do it). For in-
stance, Samuel van Hoogstraten put
“Rembrandt” on his “Young
Woman by a Half-Open Door,” and
Jan Lievens did the same with his
“Easter Feast” (1625). It’s no wonder
that, by the turn of the century,
there were literally thousands of
“Rembrandts” floating around—
some well painted, some not.

Art historians made the first in-
ventory of Rembrandt’s work in the
1920s, and only 700 made the cut.
By 1963—300 years after his death—
the number of paintings by
Rembrandt dropped to 420. In 1967
the Rembrandt Research Project
(RRP) started up. Experts think that
when the RRP is through with its
work, the total number of paintings
credited to Rembrandt may drop to
300.

As a result of such activities,
many art museums have “lost”
their Rembrandts—for instance, the
Metropolitan Museum of Art in
New York (“Portrait of a Man” and
“Portrait of a Woman”), the Berlin
State Museum (“Man with the
Golden Helmet”), and the Hermit-
age in St. Petersburg, Russia (“David
and Jonathan” and “Parable of
Vine”).

When a museum removes the
“Rembrandt” label from a painting,
its auction price goes down drasti-
cally (if not its artistic value). The
two portraits at the Met might pre-
viously have sold for at least $3 mil-
lion each. If they were done by Jan
Lievens, Rembrandt’s friend, they
might bring in $600,000 to $800,000
for the pair. If they were done by a
student, Govert Flinck, the pair
would sell for $40,000.

While in London, we visited an
exhibition at the National Gallery
dedicated to the study of Rem-
brandt’s technique and artistry. Be-
sides original Rembrandts, there
were a lot of X-ray, ultraviolet, and
infrared photographs of his works.
We also saw photomicrographs of
the layers of paint that, one after
another, went into the creation of
“Saskia van Ulyenburgh,” the un-
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forgettably beautiful portrait of
Rembrandt’s beloved wife.

An exhibition of original Rem-
brandts was also held at the Altes
Museum in Berlin. Visitors had the
chance to compare Rembrandt with
his students and followers and also
to rack their brains over “Polish Dra-
goon” (1657). Dutch scholars aren’t
sure if it’s a Rembrandt.

Enlisting neutrons . ..

Today art historians and mu-
seum workers have at their disposal
a wide variety of techniques for ana-
lyzing every detail of paintings and
other works of art. Infrared light
exposes what is concealed beneath
the surface layer of paint. X-ray pho-
tography is a great help in learning
the secrets of the old masters. For
instance, Titian’s “Judith” conceals
a portrait of a man (he may be King
Carlos V of Spain). Another paint-
ing shows a woman with four
hands: she was first painted with
her arms folded, then with her arms
apart.

Scholars also have recourse to
neutron activation analysis, in
which an object is bombarded with
fast neutrons that excite the nuclei
of metals.! The resulting energy is
then dispersed, creating a specific
spectrum that distinguishes be-
tween, say, lead and titanium. This
is the basic difference between dif-
ferent types of gesso (the white coat-
ing applied to a bare canvas). Paint-
ers in previous centuries used lead
gessoes, while titanium gesso came
into use in the 1920s. This is one
way of telling a modern copy from
an authentic work painted in the
19th century.

No less famous in this regard is
the color Prussian blue, which
came into use at the end of the 18th
century. At a London exhibition of
frauds, a picture supposedly painted
by Botticelli (14442-1510) was on
display. The Madonna in the paint-
ing looks like a star from the silent
movies. But what really gives the

1See also “Neutrons Seek the
Murderer!” in the May/June 1992
issue.—Ed.

forger’s game away is the Prussian
blue used in painting the Virgin’s
bright-blue garments. This “Botti-
celli” was produced after World
War L.

... and protons

A new technique was developed
recently. It’s called proton-induced
X-ray emission (PIXE). The surface
of a document is irradiated by a nar-
row beam (0.5-1 mm in diameter) of
protons with energies reaching 4.5
MeV. The beam excites the atoms
of metals contained in dyes, pig-
ments, and inks. The priceless
items aren’t threatened by the pro-
cess, since the energy of the beam
is no more than that produced by a
100-watt bulb illuminated for a few
moments at a distance of 0.5 m.
The excited atoms of the metals
emit X rays that are recorded by
detectors. Signals produced by the
detectors are passed on to a com-
puter for further analysis.

PIXE analysis recently helped
scholars from California “read” a
Gutenberg Bible. This particular
volume, kept at Harvard University,
has 42 lines per page (Gutenberg
would vary the layout). The re-
searchers learned that Gutenberg
used large quantities of lead and
copper in making his ink. He mixed
it fresh every day, and this allowed
the scholars to determine the order
in which he printed the pages: after
printing the first sheet on both sides,
consisting of pages 1 and 119, he
printed the next (pages 2 and 120).
Sheets were then sewn into “signa-
tures,” and six signatures were
printed simultaneously. The staff at
the Louvre in Paris would like to .
analyze a 36-line Gutenberg Bible
that was printed before the 42-line
version.

The list goes on. Almost every day
the need arises to verify—or de-
bunk—a claim. In England, a huge
table with elaborate decorations was
thought to have accommodated the
venerable Knights of the Round Table
in King Arthur’s time. Unfortunately,
upon analysis the table turned out to
be 500 years younger than the knights
themselves. (o



BRAINTEASERS

Just for the fun of it

B71

Time machine. “You know,” a friend of mine once said, “the day before
yesterday I was 10 years old, and next year I'll be 13!” Can this be true?
(S. Korshunov)

B72

Mysterious pictographs. What's the rule for drawing this sequence of
' figures? Guess what figure should be drawn next. (A. Zvonkin)

B73

Escaping pools. In karstic regions—that is, areas with irregular limestone
formations, including caverns and underground streams—one can come
upon unusual ponds. During the rainy season they gradually fill with
water, but then they suddenly become surprisingly shallow. Why does that
happen? (A. Buzdin)

B74

Calculating on the way. Alice used to walk to school every morning, and it
took 20 minutes for her from door to door. Once on her way she remem-
bered she was going to show the latest issue of Quantum to her classmates
but had forgotten it at home. She knew that if she continued walking to
school at the same speed, she’d be there 8 minutes before the bell, and if
she went back home for the magazine she’d arrive at school 10 minutes
late. What fraction of the way to school had she walked at that moment in
time? (S. Dvorianinov)

B75

Doublecross. Cut two crosses in the same way, each into four pieces, so
that all eight pieces can be put together to form a similar cross with twice
the area. (L. Mochalov)
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RECREATIONAL MATH

A magnificent oisession

The strange story of perfect (and perfectly useless) numbers

by Michael H. Brill and Michael Stueben

HERE IS A CURIOSITY IN THE HISTORY OF

number theory that intermixes mathematics and re-

ligion. It traces back to the year 1644, to the French

cleric and mathematician Merin Mersenne. Father
Mersenne acted as an important clearinghouse of math-
ematical and philosophical inquiry by carrying on con-
tinuous correspondence (published in eight volumes) with
the great minds of his time: Descartes, Pascal, Galileo,
Huygens. . . But the only piece of mathematics for which
he is remembered is a set of numbers that can be written
in the form 27 — 1, where p is a prime number. These are
Mersenne numbers. The name was chosen by the Cam-
bridge scholar W. W. Rouse Ball because of a reference to
them in the preface to Mersenne’s Cogita physico-
mathematica (Paris, 1644). The first ten Mersenne num-
bers are formed from the first ten prime numbers:

1.M, =22-1 =3 (prime)

2. M,=2%-1=7 (prime)

3.M_=2%-1=23l1 (prime)

4. M, =27-1=127 (prime)

5. M, =21 =2,047 (23 x 89)

6. M, =28-1=8,191 (prime)
7.M,,=2"-1=131,071 (prime)

8. M, =2 -1 = 524,287 (prime)

9. M, =2"—1=8388,607 (47 x 178,481

10. M, = 2 — 1 = 536,870,911 (233 x 1,103 x 2,089)

~N o e '

These numbers are interesting to mathematicians be-
cause some of them can be used to generate the so-called
perfect numbers. And here begins a story that will lead
us back to the good Father.

Curious properties

A perfect number is a positive integer that is equal to
the sum of its positive proper divisors—for example, 6 =
1 + 2 + 3. There are many even perfect numbers, but it is
not known whether odd perfect numbers exist. The cen-
tral theorem was half discovered by Euclid and half dis-
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covered by Leonhard Euler (1707-1783), so Mersenne got
to see only half of the theorem.

Around 300 B.c. Euclid proved that if 27 — 1 is prime,
then 27-1(27 — 1) is an even perfect number. His exact
words (translated from the Greek) are: “If as many num-
bers as we please beginning from a unit be set out con-
tinuously in double proportion, until the sum of all be-
comes prime, and if the sum multiplied into the last make
some number, the product will be perfect.”! Remember,
Euclid had no algebra; he described everything in terms
of geometry and arithmetic. His words will make sense
when we consider the following two sequences:

n=2, 3, 4 5 6, 7,8 .. n ..
Sequence 1: 1, 2, 4, 8, 16,32,64, .., 221 .
Sequence2: 1, 3, 7, 15 31, 63, 127,..., 2°—1, ...

The upper sequence is a sequence of powers of two.
Each element in the lower sequence is the sum of the
upper sequence up to the number immediately above it-
self. Euclid said that if the lower number is prime (for
example, 3, 7,31, 127, ...), then the product of the upper
and lower numbers is a perfect number (2x3 =6,4 x 7 =
28, 16 x 31 = 496, and 64 x 127 = 8,128).

About two thousand years later the Swiss number
wizard Leonhard Euler proved the converse: Any even
perfect number must be of the form described by Euclid—
27 - Y2pr — 1), where 27 - 1 is prime. Notice that if 27 — 1
is a prime, then p is a prime, but the converse is not true.
So for every Mersenne prime M,=2-1 (where p, of
course, is a prime number), we can generate an even per-
fect number, and vice versa. (You should check the proof
in the box at right.)

Problem 1. (a) Prove that the expression 2° — 1 must
be composite if p is even.

'Euclid, Elements, Book 9, proposition 36 (Dover
Publications, 1956, p. 421).



Tre EuctiD-Euter THEOREM. The number 29~ 120 — 1)
is an even perfect number if and only if 29 — 1 is prime.

To prove this theorem it helps to define 6(p) as the
sum of the divisors of p including p itself—for ex-
ample, p(6) = 12, p|7) = 8—and to note that 6(p) x 6{q)
=o(pq) if p and g are relatively prime. (A proof of this
can be found in any book on elementary number
theory.) Then p is perfect if and only if o(p) = 2p.

Proor. Part I (Euclid). Consider the number r =
27 - 127 — 1), where 27— 1 is prime. If 22 — 1 is prime,
then it has only two divisors, itself and 1; therefore,
627 — 1) =1 + 27— 1 = 27. Since the only divisors of a
power of 2 are itself and the smaller powers of 2, we
haveo(2 - 1) =1+2+4+8+...+2° '=2"-1. Now

o[2?- 27 - 1)] = o(2? - Yo[2P - 1) = (27 - 1)27 = 2r.

Therefore, r is a perfect number if 2° — 1 is prime.
Part II (Euler). Conversely, suppose r is an even per-

fect number. Write r as (27~ !)q, where p > 1 and ¢ is

odd. Since g and 27 - ! are relatively prime, we have

2q =2r=0(2"'q)=(2" - 1)o(q).

Therefore, o(q) = 27q/27-' — g + q/(27 — 1). This
implies that q/(2? - 1) is an integer, and g and
q/(2? — 1) are the only divisors of g. In other
words, g = 27 — 1, and ¢ is prime. Thus, r is a
perfect number only if 27 — 1 is prime.

QUANTUM/FEATURE
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(b) Prove that the expression 2° - 1 must be compos-
ite if p is odd and composite.

The only perfect numbers below 33,000,000 are 6, 28, 496,
and 8,128.1t’s easy to write a computer program to search for
these numbers. We need only generate prime numbers p and
check to see if 22 — 1 is prime. But a number is prime if it has
no nonunit divisors less than its square root. So, for example,
if p = 31, we need to examine only the numbers from 2 to
J231 — 1 = 46,341 to see if any of them divides 2°! - 1 =
2,147 483,647. A computer can check these numbers in
seconds and show that none of them is a divisor. There-
fore, 229(23! — 1) is a perfect number.

Perfect numbers have some curious properties. For
example, all even perfect numbers end with the numbers
6 or 28. All even perfect numbers are triangular—that is,
if you had an even perfect number of marbles, you could
arrange them in the form of an equilateral triangle:

-6
s o »
.
v ®
v » & &
« o o o o =28

Problem 2. Prove that even perfect numbers are trian-
gular. (Even perfect numbers are of the form 27~ (22 — 1);
triangular numbers are of the form n(n + 1)/2.)

The sum of the reciprocals of all the divisors of any
perfect number equals 2:

l+l+l+ =2,
1 2 3
1, 1,1 1

Llelel. 2,
1 2 4 7 14 28

1
6
.

This follows from the definition of a perfect number. Let
the perfect number be n, and let its divisors be d_ {includ-
ing n itself). By the definition of a perfect number 1, the
sum of its divisors is 2n (n itself is a proper divisor).
Consider nz di = £, where each term in this sum
is a d for some 1. The sum is none other than Z d, again,

1

1
which is just 2n1. Therefore, 2 - 2, and the sum of the
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reciprocals of all the divisors of any perfect number
equals 2.

All even perfect numbers are equal to the sums of suc-
cessive powers of 2:

6 =21 +22
28 =22 +23+24
496 = 2% + 25+ 26+ 27 + 28
8,128 =26 +27 + 28+ 27 +2104 21 4212
33,550,336 = 212 + 213 4 2 4 4222 4 22 4 02
8,589,869,056 = 216 + 217 4+ 218 4 4 280 4 D31 4 23
137,438,691,328 = 218 + 219 - 220 4 4 23% 4 235 4 236

Problem 3. Prove that even perfect numbers are sums
of successive powers of 2. Hint: consider the well-known
geometric progression of n terms

a(rm -1)
(r-1)
Every even perfect number 27(27 + ! - 1) greater than 6

is the sum of the cubes of the first 272 consecutive odd
numbers:

a+ar+ar®+L +ar*t=

28 =1%+33
496 =13 +33+ 5%+ 73
8,128 =13+3°+5%+ ... +113+13%+15°
33,550,336 =13 + 3% + 5% + ... + 123% + 125% + 127°
8,589,869,056 =13 + 3% + 5% + ... + 5072 + 509% + 511°

Add the digits of a perfect number greater than 6. If the
sum is not a single digit, add the digits of the sum. Con-
tinue until you have a single-digit answer. This is called
the digital root of a number, and the digital root of any
perfect number is 1:

28 52+8=10->1+0=1

496 54+9+6=19-51+9=10-1+0=1

8128 58+1+2+8=19-51+9=10-1+0=1

33,550,336 53+3+5+5+0+3+3+6=28-52+8=10—>1+0=1

These properties were discovered over a period of years
in an attempt to find a pattern of perfect numbers. Un-
fortunately, none of these properties has led to a generat-
ing formula. Perfect numbers have even been analyzed in
other bases. In base two, each even perfect number is n
ones followed by n — 1 zeros:

Base 2: 4,096 2,048 1,024 512 256 128 643216 8 4 2 1
6= 110

28 = 11100
496 = 1 1 1 110000
8,128 = 1 1 1 1 1 1 1000000

Problem 4. Verify that in base two each even perfect
number is n ones followed by n — 1 zeros.



This is an interesting property, but like the other prop-
erties, it’s of no use in finding more perfect numbers.
There are 32 known Mersenne primes and, consequently,
32 known even perfect numbers. Table 1 is a list of the
known even perfect numbers.

The thirteenth even perfect number is 2°2°(252! — 1) and
has 314 digits. Care to calculate it? Part of the informa-
tion for this table comes from the second edition of a 479-
page book called The Book of Prime Number Records.
Books on number theory aren’t usually best sellers, but
the first edition of this one quickly sold out. The other
source is the Journal of Recreational Mathematics (Au-
gust 1961). The study of perfect numbers can produce
methods that are very useful in applied mathematics, but
the properties of perfect numbers are purely recreational.

Odd perfect numbers

All perfect numbers discovered so far are even. No one
knows if there is such a thing as an odd perfect number.
But if one does exist it must be a whopper, because it has
been proven that there are no odd perfect numbers with
fewer than 150 digits. Mathematicians have determined
a large number of properties of an odd perfect number and
so far have found no contradictions. For example:

1. An odd perfect number must have a remainder of 1
when divided by 12 or 4, and a remainder of 9 when di-
vided by 36.

2. It must have at least 150 digits.

3. It must be divisible by at least eight distinct primes.

4. It is not divisible by 105—that is, 3, 5, and 7 cannot
all be factors.

5.1t is divisible by a prime power greater than 102,

6.1f it has exactly n different prime divisors, the small-
est of them must be smaller than n + 1.

Since there may be no such thing as an odd perfect
number, it’s amazing that we have so many theorems
about them.

Problem 5. If an odd perfect number exists and has
exactly 28 prime divisors, what is the largest value that
the smallest prime divisor could take?

A history of perfect numbers

The history of perfect numbers is really the history of
Mersenne primes. Indeed, the largest known prime num-
ber at any time is usually a Mersenne prime. Table 2 sum-
marizes the search for perfect primes through the centu-
ries. The first four perfect numbers were known to the
ancients. The earliest discoverer of prime numbers that
we know about is the German mathematician Regio-
montanus, who found the fifth perfect number and pos-
sibly the sixth in 1456. The sixth and seventh perfect
numbers were determined by the Italian Cataldi (1552—
1626) by the direct procedure of dividing all primes less

Table 1
p  digits n = 001027 1)
1. 2 1 6 =2122-1)
2. 3 2 28 =2223_1)
3; 5 3 496 =225 1)
4. 7 4 8128 =2627 1)
5; 13 8 33550336 =218 _ 1)
6. 17 10 8589869056 = 215217~ 1)
7. 19 12 137438691328 = 218219 1)
8. 31 19  2305843008139952128 =239(231 - 1)
9. 61 37 2658455991569831744654692615953842176 = 260261 _ 1)
10. 89 54 191561942608236107294793378084303638130997321548169216 = 28828 _ 1)
11. 107 65 1316403645856964833723975346045872291022347231838694311778372812.8 =2 1082107 . T}
12. 127 77 14474011154664524427946373126085988481573677491474835889066354349131199152128 = 212602127 _ [}
The search begins here (beyond 10') for an odd perfect number.
13. 521 314 = 050(2521 _ 1)
14. 607 366 = 2606(0607 _ 1)
15. 1279 770 = Q17891279 _ )
16. 2203 1327 = 0220292203 _ 1]
17. 2281 1373 .
18. 3217 1937
19. 4253 2561
20. 4423 2663
21. 9689 5834
22. 9941 5985
23. 11213 6751
24. 19937 12003
25. 21701 13066
26. 23209 13973
27. 44497 26790
28. 86243 51924
29. 110503 66530
30. 132049 79562
31. 216091 130001
32. 756839 455663 = 756838756839 _ 1|
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than the square root of each candidate number. Since
there are 128 primes less than the square root of M,
Cataldi needed 128 divisions to determine if it was
prime. The eighth perfect number was verified by Euler:
2391231 — 1) = 2,305,843,008,139,952,128. In 1811 Peter
Barlow wrote in his book Number Theory that this is “the
greatest thing that will ever be discovered, for as they are
merely curious without being useful it is not likely that
any person will attempt to find one beyond it.” The
twelfth perfect number, 2126(2'>” — 1), has 77 digits and is
the largest perfect number discovered without a com-
puter. It was found in 1876. The next three numbers in
order of discovery are actually smaller. The discovery in
1883 of the ninth perfect number took 54 hours of paper-
and-pencil computation. In 1911 and 1913 the tenth and
eleventh perfect numbers were discovered. The world had
to wait until 1952 for a computer to discover the thir-
teenth perfect number: 2520252 — 1).

In 1952 the National Bureau of Standards’ Western
Automatic Computer (SWAC) was turned loose on the
problem. R. M. Robinson discovered five perfect numbers
that year (the thirteenth through seventeenth). As Albert
H. Beiler describes it,

Dr. D. H. Lehmer, who had spent very many hours on
Mersenne’s numbers, saw the machine do in 48 seconds what
it had taken him over 700 hours of arduous labor with a desk

Table 2
Mp Discoverer Year
1. M, 2
2. M, 2 2
3. M. ? ?
4. M, 1 2
5. M, Regiomontanus (Johann Miiller) 1456
6. M, P. A. Cataldi 1588
7. M, P.A. Cataldi 1588
8. M, L. Euler 1772
9. M, 1. M. Pervushin 1883
10. M, R. E. Powers 1911
11. M, E.Fauquemberque 1913
12. M, E. Lucas 1876
13. M,  R.M. Robinson 1952
14. M, R.M. Robinson 1952
15. M,, R.M. Robinson 1952
16. M,,,, R.M.Robinson 1952
17. M,,, R.M. Robinson 1952
18. M,,, H.Riesel 1957
19. M, A.Hurwitz 1961
20. M,,, A.Hurwitz 1961
21. M, D.B.Gilles 1963
22. M, D.B.Gilles 1963
23. M. D.B.Gilles 1963
24. M, B.Tuckerman 1971
25. M,,,,, Curt Noll and Laura Nickel 1978
26. M,,, CurtNoll 1979
27. M,,,, DavidSlowinski and Harry Nelson 1979
28. M,,,, David Slowinski 1982
29. M, ;s W.N. Colquitt and L. Welsch Jr. 1988
30. M,,,, David Slowinski 1983
31l. M,,, David Slowinski 1985
32. M., David Slowinski 1992
22 JANUARY/FEBRUARY 1983

calculator to demonstrate 20 years before: that 22" — 1 is com-
posite. Mersenne had stated that all eternity would not suffice
to tell if a 15- or 20-digit number is prime. Within a few hours,
SWAC had tested 42 numbers, the smallest of which had 80
digits. It took 13% minutes to determine that 212 — 1 is prime.?

In 1978 two high school students, Curt Noll and Laura
Nickel, discovered the twenty-fifth perfect number. A
year later Noll discovered the twenty-sixth. In 1979 David
Slowinski and Harry Nelson discovered the next perfect
number. In 1983 and again in 1985 Slowinski found two
more perfect numbers, but in 1988 two researchers found
one that was smaller than Slowinski’s discoveries. In early
1992 Slowinski found the thirty-second known Mersenne
prime and is now tied with R. M. Robinson as the cham-
pion discoverer of perfect numbers.

Searching for perfect numhers

In 1876 the Frenchman E. V. Lucas discovered a test
to determine if numbers of the form 27 — 1 are prime. In
1930 the American D. H. Lehmer published an improve-
ment. The method is now known as the Lucas-Lehmer
test for primality. To determine if 22 - 1 is prime, set S =
4 and generate a sequence of p — 2 numbers:

S .. =(52-2)mod (22 -1).

Then 27 — 1 is prime if and only if S,_,=0.

The only problem is that S > will quickly approach
(22 — 12, which is huge. To verify that M__ ..  is a prime,
some of the squares contain nearly a half-million digits!

Problem 6. In the Lucas-Lehmer test, how big will
some of the numbers become in testing M. ? Hint:
since (2° — 2)*is nearly equal to 2%, the question amounts

to asking how many digits are in 2275683,

Number theorists have invented many tricks to speed
up computer searches. For example, it has been shown
that all prime divisors of 27 — 1 must be of the form 8n +
1. Another trick is to work in large bases. Because the
CRAY-1 computer returns an exact 48-bit integer prod-
uct when the operands are 24-bit integers, David
Slowinski decided to work in base 2?* (that is, base
16,777,216) when searching for the twenty-seventh
Mersenne prime. This reduced the size of his numbers
from more than 26,000 digits to less than 2,000 digits.

Problem 7. (a) The twenty-seventh Mersenne prime
M,,,,, = 2°¥7 — 1 contains 26,790 digits when expressed
in base 10. How many digits does it require when ex-
pressed in base 224?

(b) Express M,,,,, = 2**¥7 — 1 in base 2**. Hint: work by
analogy.

Notice that 10000 = 1 mod (10* - 1), so 12345678 =

2Albert H. Beiler, Recreations in the Theory of Numbers:
The Queen of Mathematics Entertains (Dover, 1964), p. 18.



12340000 + 5678 = 1234 x 10* + 5678 = 1234 + 5678 =
6912 (mod 10* - 1). This is no coincidence: again,
001101, mod (2 — 1) = 001, + 101, = 110, = 6,.. And in
general if n (not equal to b? — 1) is represented with 2p
digits in base b, then it’s not hard to see that

nmod (b? — 1) = (first p digits) + (second p digits)

(the case b =10, p = 1 is familiar from elementary arith-
metic). In other words, no division is necessary to calcu-
late the members of the Lucas-Lehmer sequence. It is the
combination of software tricks and fast computers that
make big-game hunting successful in the land of giant
numbers. David Slowinski stated in 1979 that

the CRAY-1 has a tremendous speed advantage over conven-
tional computers. As an indication of the speed of the CRAY-
1, the Lucas-Lehmer test for p = 8191 took 100 hours on the
Mliac-I (D. Wheeler, 1959}, 5.2 hours on an IBM 7090 [1962], 49
minutes on the Illiac-II [1963], 3.17 minutes on the IBM 360/
91[1971], and ten seconds on the CRAY-1[1979]. The author’s
program independently discovered the 26th Mersenne prime,
on February 23, 1979, two weeks (alas) after Noll (sans Nickel).
The check for M,,, ., which had taken Noll eight hours forty
minutes on a CYBER-174, used less than seven minutes on the
CRAY-1.2

Mersenne's conjecture

It isn’t known if there are infinitely many Mersenne
prime numbers. In 1644 Mersenne stated (without proof)
that the only p’s for which Mersenne numbers are prime
arep=2,3,5,7 13,17, 19,31, 67,127, and 257. In 1883
it was proven that 2°' — 1 is a prime and the Mersenne list
was shown to be incomplete; but some speculated (W. W.
Rouse Ball among them) that a copyist had misread
Mersenne’s 61 as a 67. Then in 1903 an American math-
ematician by the name of Frank Nelson Cole settled the
issue with a paper presented to a gathering of his peers.
The mathematical and science fiction writer E. T. Bell
was there and felt obliged to preserve the scene for pos-
terity:

When the chairman called on him for his paper, Cole—who was
always a man of very few words—walked to the board and,
saying nothing, proceeded to chalk up the arithmetic for rais-
ing 2 to the 67th power. Then he carefully subtracted 1. With-
out a word, he moved over to a clear space on the board and
multiplied out, by longhand,

193,707,721 x 761,838,257,287.

The two calculations agreed. For the first time on record, an
audience of the American Mathematical Society vigorously
applauded the author of a paper delivered before it. Cole took
his seat without having uttered a word.

When I asked Cole in 1911 how long it had taken him to

crack M, he said “three years of Sundays.”

¥David Slowinski, “Searching for the 27th Mersenne
Prime,” Journal of Recreational Mathematics, vol. 11, no. 4.

*E. T. Bell, Mathematics: Queen and Servant of Science
(McGraw-Hill, 1951), p. 228.

Just who was this taciturn number-cruncher? Frank
Nelson Cole graduated from Harvard, second in a class of
189. He studied in Germany and returned to teach at
Harvard. Under Cole’s effective leadership, the Harvard
graduate school of mathematics became a world-famous
center of study. Cole was honored by the American Math-
ematical Society with the establishment of an F. N. Cole
prize in mathematics, which is still being awarded. A
strange remark can be found under his name in the Dic-
tionary of Scientific Biography: “He had married in 1888,
but he had largely isolated himself from his family [a wife
and three sons] since 1908. At the time of his death [in
1926], Cole lived in a rooming house under the name of
Edward Mitchell and claimed to be a bookkeeper.”

To return to the subject at hand: Mersenne’s original
list overlooked some primes (for p = 61, 89, 107) and in-
cluded false primes (for p = 67, 257). His conjecture was
proven wrong, but in fact his name is associated with a
surprising curiosity. In the list of Mersenne primes, the
twentieth is 2423 — 1. If the exponent is written in base 26
(because there are 26 letters in the alphabet), then start-
ingwith A=0,B=1,C=2, and continuing to Z = 25, we
can substitute letters for the coefficients:

A B CDEVFGHTIJ] KILM
0 1 2 3 4 5 6 7 8 9 1011 12
N OPQRSTUVWIXY Z
13 14 15 16 17 18 19 20 21 22 23 24 25

If the ghost of Father Mersenne is floating through the
ether, he must occasionally smile at the connection of one
of his numbers with the Word:

4,423 = (6 X 262) + (14 x 261 + (3 x 26°). Q
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M71

Forget Cardano. Solve the cubic
equation

1
X3+x2+x=—-=.
3

(Y. Ionin)

M72

Equal sums of digits. A number b is
obtained from a number a by a per-
mutation of digits. Prove that the fol-
lowing pairs of numbers have equal
sums of digits: (a) 2a and 2b; (b) a/2
and b/2 (if a and b are even); (c) 5a and
5b. (A. Lisitsky)

M73

Right at the incenter. In a right tri-
angle one half of the hypotenuse
(from a vertex to the midpoint of the
hypotenuse) subtends a right angle at
the triangle’s incenter. Find the ratio
of side lengths of the triangle.
(B. Pitskel)

M74

A fifth wheel. An equilateral triangle
is covered by five smaller equilateral
triangles congruent to each other.
Prove that it’s possible to shift
smaller triangles so as to cover the big
one with four of them. (V. Proizvolov)

M75

Democracy and math (cont’d). The
country of Anchuria is divided into
999 electoral districts with equal
numbers of voters; one member of
parliament is elected in each district.

There are three parties A, B, and C
that nominate candidates. Party A is
supported by 15% of all voters, par-
ties B and C by 30% and 55%, respec-
tively. If none of three candidates gets
more than 50% of the vote, a runoff
election is held for the two candidates
that received more votes than the
third one. (The law for the case when
candidates get the same number of
votes is irrelevant for this problem.) In
the runoff, parties A and B support
each other, and C supports A. What
is the greatest and smallest numbers
of each party that can be elected to
the parliament?

Physics

Flight of the bumblebee. A bumble-
bee can fly vertically upward with a
maximum speed v, and downward
with a speed v,. Assuming that the
bumblebee’s “thrust” F does not de-
pend on the direction of flight and the
air resistance is proportional to the
bumblebee’s speed, determine the
bumblebee’s maximum speed when
it flies at an angle o with the horizon-
tal. (B. Korsunsky)

P72

Center of mass of a semicircle. A
closed figure in the form of a semi-
circle and the diameter connecting its
ends was made by bending a piece of
homogeneous thin wire. The radius
of the semicircle is R. At what dis-
tance from the middle of the diameter
does the figure’s center of mass lie?
(A. Chernoutsan)

P73

Vessel within a vessel. Inside a big
vessel filled with helium under pres-
sure P = 1 atm and at temperature i
=300 K there is a smail vessel that has
been evacuated. A small hole opens
briefly in the small vessel and then
closes. Some quantity of helium en-
ters the small vessel. What will the
temperature be inside the small ves-
sel? (The walls of the small vessel do
not allow heat to pass through.)
(E. Butikov)

P74

Hungry for power. An electrical de-
vice D is connected in series to a
220-V AC network and a 100-Q re-
sistor. An ammeter shows a current
of 0.5 A, and a voltmeter shows a
voltage of 200 V. What is the device’s
power consumption? (A. Zilberman)

100

©

a D

P75

Nuclear winter. Suppose that a layer
of soot has accumulated in the upper
atmosphere as a result of widespread
fires and that this layer absorbs prac-
tically all radiation from the Sun.
What would be the average tempera-
ture on Earth? (It is now 300 K.)
(A. Stasenko)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55
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Glancing at the thermometer . . .

Why are we so sensitive to small changes in temperature?

by M. |. Kaganov

NE MORNING I FELT THAT

my room was colder than
usual. Glancing at the ther-
mometer I saw that, in fact, the

air temperature was 19°C instead of
the usual 20°C. Complaining about
the unreliability of my apartment
building’s services, I went to work.
On the way my thoughts returned to
the data from the thermometer, and
I felt that something was wrong . . .
Temperature is a measure of the
thermal motion of molecules. The
average energy of thermal motion of
molecules (for example, of gas in the

air filling a room) is £ kT, where k =
1.4-10*J/K (Boltzmann'’s constant),
and the temperature has to be mea-
sured not in degrees Celsius but in
kelvins, which are shifted relative to
the Celsius scale by -273.16. So the
temperature in my apartment was
about 300 K. And I had felt a tempera-

ture change AT of the order of 537 T —
that is, I felt that the energy of ther-
mal motion of the air molecules
changed by 0.3%! Not only that,
without complicated instruments—
by means of a simple wall thermom-
eter—I verified my sensation: I had
measured the 0.3% change in the
energy of thermal motion of the mol-
ecules . . . I even felt a certain pride,
thinking about the evolution that had
created such sensitive mechanisms
for perceiving temperature.

The importance of temperature for
living organisms is well known: a
change in body temperature of one

Xxsnujeug [ened AQ Uy
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degree is a sign of illness, and the
range of allowable body temperatures
is less than 10 degrees. So it’s quite
natural that living organisms feel
temperature precisely. But how do
they do it?

The wall thermometer gave me a
hint. So let’s start with that. How do
we manage to measure a temperature
change of one degree? Or in the case
of a medical thermometer, 0.1 de-
gree? Here, the measured property is
the change in volume of a liquid (mer-
cury, to be precise). With the increase
or decrease in temperature, its vol-
ume V changes by AV, and the follow-
ing formula holds:

A_V:(x.AT_
1%

The factor o is called the coefficient
of thermal expansion. Its order of
magnitude is about 10 to 10~ K.
There’s only one way (and a very
simple one) to “see” AV/V on the or-
der of 10 and that is to “push” mer-
cury in a thin capillary tube. Then
AV = S - Al, where S is the cross-sec-
tional area and

AZ=KOL'AT
S

is the change in height of the mer-
cury column. If S is small enough,
you can get the required resolution.
The capillary tube acts as an ampli-
fier. If V is of the order of 1 cm?, then
to get Al of the order of 1 mm =
0.1 cm with o - AT of the order of
10, you need a capillary tube with
a cross-sectional area S = 10 cm? A
very simple amplifier!

Now that we understand how the
thermometer works, let’s get back to
living organisms. What acts as the
amplifier in them? The determining
role of temperature in processes of
vital importance is connected with
the fact that the rates W of most
chemical reactions (without which
life would be impossible) have a
strong power-law temperature depen-
dence:

W o< g UT,

The value U, called the activation

energy, is different for every reaction,
but as a rule U greatly exceeds kT.
Without going into details and with-
out looking in any reference books, I
worked it out like this. A chemical
reaction is always a reconstruction of
electronic states. For example, so-
dium (Na) is joined with chlorine (Cl)
to form ordinary table salt (NaCl) in
the following way: an atom of Na
gives an electron to an atom of Cl; the
ions Na* and Cl- attract each other
and create a molecule of NaCl, but
the electrons in a molecule of NaCl
are not distributed around the nuclei
as they are in atoms of Na and CL. To
measure the energy of electrons in an
atom, a special energy scale was cre-
ated: the electron-volt (eV). One eV =
1.6 - 107 J. The characteristic value
of the activation energy U is of the
orderof 1 eV, and kT'is about 1/40 eV
at room temperature.

The relative change in the rate of
a chemical reaction AW/W due to a
relative change in temperature AT/T
is given by!

AW _ U AT
W kT T
For AT/T'=1/300, the relative change
in the rate of the chemical reaction
AW/W = 1/10—that is, it is quite per-
ceptible. Here the factor U/kT serves
as an amplifier. Judging by our senses,

'W(T + AT) is proportional to

u U
—e KT(1+AT/T)

where we have used the first two terms
in the binomial expansion

n(n-1) )
2

(1+x)" =l+nx+ xX+K ,

which holds for x << 1 for all values of
n. So

= W(T)(HI%A—TT],

when U - AT/KT? << 1. We have used
the approximation e* = 1 + x, which is
valid when x << 1.

it’s quite reliable. It must be con-
nected with the fact that there are
many different chemical reactions in
the body, and they are all ({they must
be!) carefully coordinated . . .

So it seemed that I understood ev-
erything and I calmed down . . . But
another idea occurred to me. Until I
had understood (though roughly and
superficially) the mechanisms of am-
plification, I was surprised that I
could feel and measure a relative
change in thermal energy of a mol-
ecule approximately equal to 1/300.
But in fact, we're discussing the
change in the energy not of one but of
all the molecules. The ratio AT/T is
equal to the relative change in the
energy of the gas when its tempera-
ture changes by AT. My new idea was
this: what is the absolute value of the
change in the energy of the gas if the
temperature changed by 1 degree? Of
course, I understood that it’s easy to
answer this question—Joule’s me-
chanical equivalent of heat is well
known. But I wanted to obtain an
emotionally tinged answer, to feel
whether it’s large or not.

I decided to calculate the mass that
can be lifted—say, h = 1 m—from an
expenditure of the amount of energy
needed to heat the air 1°C in a well-
insulated room measuring4 m x5 m
x5 m = 100 m?. The approximate cal-
culation is quite simple. The gas en-
ergy is

E=3NKT,
2

where N is the number of gas par-
ticles; and the change in energy is

AEngk SAT.

It's easy to determine the number of
gas particles in the room. A mole of
gas under normal conditions has the
volume V, = 22.4 liters (22.4 - 10° m?),
so there are 100/(22.4 - 10°%) =5 - 10°
moles of gas in the room. And the
number of molecules in a mole
(Avogadro’s number) is N, = 6 - 10%
mole™. So there are N =3 - 10*” mol-
ecules in the room, and AE=6- 10 J.
Now let’s calculate the desired mass

217

QUANTUM/AT THE BLACKBOARD |




\

ECTIONS OF RAILWAYS OR PAVED ROADS THAT

run in narrow gullies get snowbound even in the ab-
sence of a new snowfall. How does that happen? On the
face of it the answer is clear: snow is transported by the
wind. However, to gain a detailed understanding of this
process, some serious research was needed.

In 1936 an English physicist by the name of Bangold ex-
amined the transport of sand by the wind in a wind tunnel.

It turned out that if the wind speed is less than a cer-
tain velocity v,, the sand doesn’'t move. With a wind
speed greater than
v, but less than an-
other velocity v, the
sand may still stay
put. But if a grain of
sand from some-
where else lands on
this motionless
mass of sand, the
impact knocks sev-
eral other grains into
the air. These grains
get swept up by the
wind, then fall, set-
ting other grains in
motion. Thus the
sand is transported
by the wind. If the
wind speed ex-
ceeds v,, the grains rise up and form a sand-air flux
whose density is rather substantial but decreases with
height. Figure 1 illustrates the trajectories of the grains.

Now it can be explained why gullies fill with snow in
windy weather. In a gully the flow broadens (see figure
2, showing the lines of flow), and that is why its speed
decreases. As a result, the equilibrium between the par-
ticles swept up and the particles falling down breaks
down. The number of falling particles is greater than the
number of rising
particles, and so
the gully gradually
fills with snow.

Analogous pro-
cesses occur when
snow transported
by the wind meets
an obstacle—for
example, atree. An

Figure 2

\

Do you get the drift?

N

upward movement of air occurs near the tree trunk on its
windward side. This leads to the formation of a deep gully
in the snow on the windward side of the trunk. Beyond the
gully and slightly behind the trunk, where the wind speed
is lower, a drift appears.

This phenomenon is used to protect sections of road
in gullies from snowdrifts. At a certain distance a wooden
fence is erected in front of the gully on the windward side.
Beyond the fence a calm zone is created, with a gentle
uniform wind, where all the snow swept by the wind is
deposited.

The motion of sand dunes is explained similarly. Wind
of sufficient force attacks a sand dune and sweeps the
sand up on the windward side. On the leeward side,
where the wind speed is lower, the sand falls. And this
is how, over the course of time, dunes “wander.”

—Lev Aslamazov

g
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using the formula AE = Mgh; M =
6 - 10 kg, or 6 metric tons (!). This
answer made me check the calcula-
tion three times. When I finally be-
lieved that the answer was correct, I
recalled the appeals on television to
conserve heat and the statement from
the film “Life on Earth” that warm-
blooded animals expend the greater
part of the food they eat on keeping
their body temperature constant.
Heat is an expensive pleasure.

Nota bene

Everything you've read up to now
can be considered a slightly organized
stream of consciousness: I worked
out practically everything in my
head. After I had written and reread it,
I thought: students are often fright-
ened by the feeling that physics is a
set of various seemingly disconnected
facts, magnitudes, and relations. And
here I have added to this heap. But I
wanted to bring one very important
idea to your attention.

Modern physics has penetrated so
deeply to the very essence of things
that it can evaluate, and often calcu-
late exactly, innumerable parameters,
constants—everything that science
has accumulated at different stages of
its development (often as experimen-
tally obtained values). To make these
calculations one need only use a few
physical magnitudes bearing the
mighty name of “universal con-
stants.” These are the electron charge
e=1.6-10" C; the electron and pro-
ton masses m_= 10°° kg and m =
1.7 - 10¥ kg; Planck’s constant h =
6.6 - 10°*] - s (more often physicists
use the constant h = h/2r = 1034] - s);
and the speed of light c=3 - 10® m/s.
Just think: all the magnitudes dealing
with macroscopic physics? that can
be measured can in principle be ex-
pressed by means of five universal
constants!® Such calculations are
called calculations from first prin-

2It’s not by chance that we limit
ourselves to macroscopic physics. We still
aren’t able to calculate, for example, the
masses of the elementary particles—
various mesons, hadrons, and so on.

3In the MKS system of units we
also use Coulomb’s constant K =
9 . 10° N - m?/C?, but this can be

ciples. Of course, theory isn’t always
so well developed that such a calcu-
lation can be carried through to the
end with the required accuracy
(which is why I said “in principle”).
But it’s quite clear that the calcula-
tion is possible, and there is no reason
to expect that we’ll come up against
a problem that is unsolvable in prin-
ciple.

I either remembered or looked up
all the physical magnitudes in this
article, but all of them can be ob-
tained by calculating from first prin-
ciples. I'll try to prove this by taking
the activation energy U and the coef-
ficient of thermal expansion o as ex-
amples. We won't go all the way to
the bitter end, since the size of the
atom a can undoubtedly be expressed
by means of the universal constants
listed above. For example, the size of
the hydrogen atom a,, = h?/m Ke*.
You can find this in any book deal-
ing with quantum mechanics.

Let’s begin with the activation en-
ergy U. Since we're not going to de-
velop a theory of the rates of chemi-
cal reactions but just show how the
magnitudes are expressed with uni-
versal constants, we'll set a limit on
the calculation of the ionization en-
ergy of the hydrogen atom U, —that
is, we'll answer the question: what
energy must be expended to wrench
an electron from a proton?

The energy of an electron in a hy-
drogen atom is

_my* Ke?
2 a

E

In the Bohr model of the hydrogen
atom, the centripetal force on the
electron is provided by the electro-
static attraction

mv? Ke?
a a

Therefore,

absorbed into the value for the
electronic charge by a change of units,
as was done in the cgs system of units.
We also choose to use a capital K to
distinguish Coulomb’s constant from
Boltzmann’s constant.—Ed.

1, Ke?
mv?=—.
2 2a

This means that the kinetic energy of
the electron is —1/2 its potential en-
ergy. So the energy is

2
Be B8
2a

Substituting a = a,,, we get

m_K2e*
=g =136V,

The energy needed to reestablish
electron states is usually less than
U, So when we evaluated the rela-
tive change in the rate of a chemical
reaction, we took U to be of the order
of 1 V.

Calculating the coefficient of thermal
expansion is more complicated. It re-
quires that we know the structure of the
expanding object. We'll have to limit
ourselves to the simplest approach,
keeping the main point in mind: that
thermal expansion is the result of the
temperature dependence of the average
equilibrium distance between particles.

So, two particles are situated at a
distance d + x(t) from each other,
where d is the distance between them
when they are stable (at absolute zero)
and x(t) is the instantaneous (at mo-
ment t) deviation of the particle from
the equilibrium position. The force F
acting on the particle resembles the
elastic force acting on a mass fastened
to a spring—it’s proportional to the
displacement of the particle from its
equilibrium position: F = —x - x(t). But
the average force F (for a sufficiently
large period of time) must be equal to

zero.* And this means that x(t) =0 as

well—that is, the average distance
between particles is equal to d and
does not depend on the displacement
of the atoms, and so it does not de-
pend on temperature either. The sci-
entific expression of the this result is:
a harmonic approximation cannot
describe the thermal expansion of
objects.

4If the average force F were not zero,
the particles would have to move
somewhere.
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I have given this strict scientific
statement in order to introduce the
word “approximation.” The point is
that the expression for the force that
we used is approximate. Let’s try to
define it more precisely by taking into
account the components that are
nonlinear relative to the displace-
ment x(t):

F=—x-x(t)+B-xt)+....

The theory based on this formula, or
similar expressions, is called
anharmonic, and the coefficient B is
called an anharmonic coefficient. It
follows from this formula that

x=Px.
K

Therefore,

AV (d+%) -8

Vv d?
:3_§—§E'2
=7 —dKX.

The coefficient 3 appeared because a
body can expand in three directions.
In this expression V is the volume of
the body at T = 0 K. So if we are to
complete the calculation, we must be
able to calculate the values of B, x, and
x*(t). Let’s start with the last one. As
the anharmonic component Bx? is a
small correction (we had to incorpo-
rate it in the force expression only
because the answer without it was
zero), we can say that the potential
energy of movement is k - x%(t}/2, and
the total energy is

_mv?  xkx?
2 2

E

But the average kinetic energy and
the average potential energy are
equal. So

X2 = lE

K

The average energy of oscillatory
motion is kT.° So

5Compare this with the energy 2 kT
for a particle in a gas: the particle is
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AV _

=3B T
vV dg?

Now we have to figure out how to
calculate the 3B/x? factor. This is cer-
tainly the most complicated part of
the problem. But we’ll make the
maximum permissible simplifica-
tions (though even here you’ll have to
take one point on faith).

Suppose we consider ions with
charges +e and —¢ situated a distance
r apart. The electrostatic attractive
force is equal to Ke?/r>. But this force
can’t be the only one—otherwise the
ions would fall on each other. When
they approach each other too closely,
they repel one another, and the law of
repulsion can be explained by equa-
tions of quantum mechanics.

And now we’ve come to the point
where you just have to believe me.
The total force for the ion interac-
tion is

2 1o

2
F:Ke A

If r = d, the force must be equal to
zero. So A = Ke*d® and, finally,

Ke2ds

Ke?
F =
1’2 rlO

Substituting r = d + x, we expand F in
powers of x (limiting ourselves to the
first two powers of x—see footnote 1).
The first power will give us the value
of x and the second power will give
the value of B. Calculate it yourself,
and you’ll see that

AV _3-52 kdT
1% 64 Ke?
—that is,
_352kd
64 Ke*'

The distance d between atoms is ap-
proximately equal to the size of the
atom:d=a=3-10"°m =30nm, and

free—that is, its potential energy is
equal to zero; so there is 2 kT for every

degree of freedom. Here there are only
two degrees of freedom.

when we substitute the values for k,
K, e, and d, we get

o=5-10°K".

Look at the reference tables and you'll
see that the estimate we obtained
(even with our extreme simplifica-
tions) isn’t bad at all.

Well, it seems we're through. But
I'd like to mention that we could
guess the order of magnitude of the
coefficient of thermal expansion o.
Look at the last expression for AV/V.
You can see that the nondimensional
ratio AV/V is approximately equal to
the ratio of the thermal energy kT
(of one particle) to the binding en-
ergy of the particles (here approxi-
mately e2/d?). So we conclude: the
stronger the molecular bonds in the
body, the smaller the coefficient of
thermal expansion. You might notice
this law in the tables, where o is given
together with the melting point for
solid bodies or the boiling point for
liquids. But, of course, such an asser-
tion is not a law of nature. There may
be exceptions to it . . .
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What harmony means

Pythagoras struck a mathematical chord

by Vladimir Dubrovsky and Anatoly Savin

HE RENOWNED PYTHAGO-
ras (6th century B.c.) was not
only a great philosopher and
mathematician. He was per-
haps the first (at least, in European
culture) to study the laws of musi-
cal harmony scientifically. Accord-
ing to one legend, he observed that
three equally taut strings played to-
gether produce a particularly pleas-
ant blend of sounds if their lengths
are in the ratio 6 : 4 : 3. He found a
neat relation between the three
numbers: the reciprocal of the one
in the middle is the arithmetic
mean of the reciprocals of the two
extremes: 1/4 = (1/6 + 1/3)/2. Since
then, the number h = h(a, b) defined
for arbitrary a and b in a similar
way—as h™!' = (a”! + b)/2, or

he 2ab

a+b
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—is called the harmonic mean of a
and b. And this was how the word
“harmony” entered into mathemat-
ics.

The definition of the harmonic
mean can be rewritten in the form
of the so-called continued harmonic
proportion b — h' = h' - a’!, or as
the equation

a-h _a
hob b ()

It’s interesting that the geometric

mean g = g(a, b) = J/ab of numbers
a and b is at the same time the geo-
metric mean of their arithmetic and
harmonic means, m = (a + b)/2 and
h, because mh = ab. It follows that
g lies between m and h. More ex-
actly, m is always the largest
and h the smallest of the
three means:

m>g>h,

if a # b; other-
wise, m=g=h=a
=b.
An apt geometric
interpretation of the
three means makes these
inequalities immediately
evident.

Problem 1. Prove that in an isos-
celes trapezoid ABCD (with AD ||
BC, AB = CD) circumscribed about
a circle, each of the sides AB and CD
is the arithmetic mean m of the
bases, the height is the geometric
mean g of the bases, and the projec-
tion of the height onto AB or CD is
the harmonic mean h of the bases.
Derive m > g > h.

All three means, together with
one more—the quadratic mean

qla, b)=/(a+b)/2—can be alterna-




Figure 1

tively illustrated as segments in a
trapezoid parallel to its bases a and
b (fig. 1). It’s well known that the
median m is the arithmetic mean of
a and b: m = (a + b)/2. The segment
g splitting the trapezoid into two
trapezoids similar to each other is
the geometric mean of the bases, be-
cause the bases of the two smaller
trapezoids are in the same ratio: a/g
= g/b. Further, segment g is drawn
to bisect the area of the trapezoid.

Problem 2. Show that g is the
quadratic mean q(a, b) of the bases,
and that segment ¢ is closer to, and
segment g further from, the longer
base than the median m (implying
g >m> g).

The harmonic mean h(a, b) is rep-
resented in figure 1 by the segment
h through the intersection point of
the trapezoid’s diagonals. To prove
this, extend the sides AB and CD of
the trapezoid in figure 2 to meet at
P. From similar triangles APD, HPK,
and BPC (the notations are indicated
in the figure),

a:h:b=AD:HK:BC=PA:PH:PB.

This observation, together with a
little algebra, means that it will suf-
fice to show that PH is the har-
monic mean of PA and PB, or, ap-
plying equation (1), that

HA PA-PH PA )
BH PH-PB PB’ 2]

We’ve mentioned that the right
side equals AD/BC. The left side is
equal to OA/OC (because lines HO
and BC are parallel), and so, by the
similarity of triangles AOD and
COB, to AD/BC too, thus complet-
ing the proof.

Figure 2

Problem 3. In figure 2, let OH =t
and OK = u. Use similar triangles
such as ABC, AOH and BAD, BOH
to show that 1/a + 1/b =1/t = 1/1,
giving another proof that t is the
harmonic mean of a and b.

Points A, B, H, and P are an ex-
ample of a so-called harmonic range
of points, defined as any four col-
linear points (A, B; H, P) satisfying

PA-HB _
PB-HA

—1/ (3)

where the segments on the left side
should be regarded as directed seg-
ments (that is, their lengths should
be assigned so that the segments of
the same direction—for instance,
PA, PB, and HA in figure 2—receive
the same sign, while those of the
opposite direction—HB in figure 2—
receive the opposite sign). With this
sign convention, condition (3) implies
equalities (2) irrespective of the order
of the four points (for instance, HA =
PA - PH turns out to be valid for any
three points along a line). Therefore,

Figure 4

Figure 3

for any harmonic range (A, B; H, P)
the (directed) segment PH is the har-
monic mean of PA and PB.

And not only that! Clearly, we
can swap points in the pairs (A, B)
and (H, P), and swap the pairs, with-
out violating equality (3). So these
rearrangements yield new harmonic
ranges of the same points taken in a
different order, and new harmonic
means too. All in all there are four
harmonic means hidden in a har-
monic range: the directed segment
from any of the four points to its
“mate” is the harmonic mean of the
directed segments from this point to
the points of the other pair.

A simple way to complete a har-
monic range (A, B; H, P) given three
of its points—say, A, B, P—and, by
doing so, to construct h(PA, PB)is
shown in figure 3. It’s done with a
ruler alone. We draw two arbitrary
lines through A and B, intersecting
at point Q. Then draw any line
through P, intersecting QA and QB
in C, and D, respectively. Find the
intersection O, of AC, and BD;
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Figure 5

then line QO, cuts AB at H.

Indeed, let figure 3 be drawn on a
sheet of glass with line PA running
along its edge. Stand the glass up-
right on a plane surface (fig. 4) and
shine a light on it from point L (the
same height above the plane as
point Q in our diagram). Now look
at the shadow cast by the diagram
on the plane. Since the shadow of a
straight line is again a straight line,
the entire shadow is basically the
same as the original drawing except
that lines meeting at Q become par-
allel in the shadow (because the ray
LQ is parallel to the plane). So if we
perform the construction on the
glass, the corresponding shadows
will reproduce figure 2, in which H
indeed completes the harmonic
range (A, B; H, P).

Figures 3 and 4 show the case of
P outside segment AB; but if you
switch the labels of points P and H,
C,and O,, you'll see at once that the
method works as well for the third
point given between A and B.

This “optical” proof leads us di-
rectly to geometrical optics, where
the harmonic mean presents itself in
a very important and useful formula.

Figure 5 shows the construction
of the image of a candle (it could be
any other object) in a converging
thin lens by the ray-tracing method.
We follow the path of three rays of
candlelight: the ray parallel to the
lens’s principal axis (horizontal line)
is refracted to go through the focal
point beyond the lens; the ray
through the focal point in front of
the lens becomes parallel to the axis;
and the ray pointing at the center of
the lens goes through without devi-
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ating. The three rays always meet at
the same point, and this is where
the image is formed. This is how the
lens works—just take it for granted,
if you haven’t studied it yet. But
look at the figure formed by the rays,
the lens, and the axis! Do you recog-
nize it? Of course you do! This is our
trapezoid again. And free of charge
we get the thin-lens equation: the
distance between the focal points, or
double focal length 2f, is the har-
monic mean of the object distance o
and image distance i. This is usually
written as

1 1 1

o i f

Another, simpler, physical applica-
tion of the harmonic mean emerges
when we calculate an average speed.
What's the average speed v of a jogger
who runs the first half of his daily
route at a speed v, and the second half
at a speed v,? The answer that springs
tomind first, v=(v, + v,)/2,is wrong!
Indeed, dividing the total length of
the route—say, 2I—by the total
elapsed time, we get

By

- 21 (vt vyt -
2l/v, +21/v, B 2

= h(vlvz).

Problem 4. An oval running track
consists of two long parallel straight
segments and two short curved seg-
ments connecting them. If the wind
blows along the straight segments of
the track, is it easier or harder for a
runner to show the same time per
lap as in calm weather? (Neglect the
effect of the wind on the curved seg-
ments; assume the runner’s speed
with respect to the air is constant
along the track.)

Before asking one more question
that’s partly physical, we must in-
troduce the sequences that relate to
the harmonic mean as arithmetic
and geometric sequences relate to
the corresponding kinds of mean—
that is, sequences whose every term
except the first is the harmonic
mean of its neighbors. They’re
called harmonic sequences and can
equivalently be defined as consist-
ing of the reciprocals of the terms of
an arithmetic sequence. The sim-
plest of them—1, 1/2, 1/3, ...—can
be obtained geometrically by way of
the beautiful Brianchon construc-
tion shown in figure 6.

Problem 5. The lines AA and BB,
in figure 6 are parallel, and AA = 1.
Points A, A, ... are constructed suc-
cessively as shown in the figure (red
lines illustrate the construction of A,
after A,). Prove that AA_=1/n.

Adding up successive terms of
this sequence, we can obtain an ar-

B

Figure 6

A

N

A A, A, A AA, A




Figure 7

bitrarily large number. In other

words, the harmonic series 1 + 1/2

+1/3 + ... is divergent, or the se-

quence S =1+ 1/2+ ...+ 1/n ap-

proaches infinity as n — oo.
Problem 6. Show that

1 1
n+2

+ L > l’

n+l 2n 2
and use this estimate to prove the
divergence of the harmonic series.

Here's a popular trick question:
how far might a staircase of bricks
laid one upon another, one brick per
layer, protrude over its base without
tumbling down? The answer is sur-
prising: infinitely far! Figure 7 illus-
trates such a “leaning tower”: the
( + 1)st brick counted from the top
is shifted by 1/n with respect to the
nth one, where the unit measure is
half the length of a brick. Of course,
such a tower of 1 + 1 bricks overhangs
alengthof S =1+1/2+... 1/n, which
can be made arbitrarily long.

Problem 7. Show that the leaning
tower of bricks doesn’t topple down.

In fact, the underpinning of
Pythagoras’s discovery of the har-
monic mean in the course of his mu-
sical experiments was the harmonic
sequence 1, 1/2, 1/3, ... . The point
is that a sounding string clamped at
both ends vibrates not only with its
whole length but also with its
halves, thirds, quarters, and so on.
Similar things can be said of other
acoustic devices, including the hu-
man ear. So the sounds produced by
three strings whose lengths form the
harmonic proportion are in a certain
sense related to each other—a sense
discerned by the ear as harmony. Of
course, this is but a very rough ex-
planation of the subtlest matter of
musical harmony.
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Solar power.

Since 1989, teams of Drexel students
and faculty members have designed, built
and raced three working solar-powered
cars—SunDragon I, I and I11. Wealso
have been selected to participate in two
nationally sanctioned solar vehicle races.

We're ready and waiting to tell you
and your students all about our SunDragon
projects and fill you in on: photovoltaics,
aerodynamics, mechanics,
thermodynamics, mathematics, project
management, vehicle design, materials
engineering, advanced composites, fund-
raising and energy management.

Lesson plansand a show-and-tell set
of transparencies outlining the
development of our solar-powered vehicles
are available for your science and
mathematics classes.

For more information about these
unique teaching resources or to obtain
copies for your classes, contact Amy
Watlin, admissions special projects
coordinator, at (215) 895-2400 or write to
Michel Barsoum, associate professor of
materials engineering, 4445 LeBow
Engineering Center, Drexel University,
Philadelphia, PA, 19104.
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Tactile microscopes

A sophisticated way to “feel your way around”

by A. Volodin

E HAVE ALWAYS BEEN
interested in the microcosm—
the world of things that can-
not be seen with the naked
eye. Research into the nature of the
microcosm cannot be overestimated.
It has saved mankind from many ter-
rible diseases, helped engineers to cre-
ate the miracles of microelectronics,
and allowed scientists to understand
the nature of most of the phenomena
that take place in the visible world.
But in order to understand the
structure of the microcosm, we first
of all must be able to see it. Wishing
to see this invisible world, in 1674
the Dutch researcher Antonie van
Leeuwenhoek invented the optical
microscope, which you’ve certainly
had occasion to use in your biology
lab. It contains a system of refracting
lenses that magnify the image of an
object. Centuries passed, and the op-
tical microscope worked so well in so
many areas of science that it became
a symbol of the scientific pursuit. Its
capabilities were limited, however—
it could reach only to the micron
level. Scientists were just as inter-
ested in the submicron region, where
dimensions are measured in nanom-
eters. But today’s optical microscopes
differ little from Leeuwenhoek’s first
microscope. His could enlarge an
image by a factor of 200, while its
modern counterpart can’t manage a
magnification factor greater than
1,000. What's going on here?

Abbe's prohibition

Over 100 years ago the German
physicist and optician Ernst Abbe
proved that there are fundamental
limitations for any microscope work-
ing with light (or any other radiation)
focused by lenses. The most impor-
tant restriction is caused by diffrac-
tion—the ability of a wave to envelop
the object. It “hides” details that are
less than half the radiation’s wave-
length. As the wavelength of visible
light is about half a micron, you can’t
see an object less than 0.1 micron in
size with an optical microscope.

So to enter the submicron world,
it’s logical to use radiation of shorter
wavelength—for example, X-rays or
an electron flux (like all elementary
particles, the electron is also a wave).
In the 1930s, electron microscopy
made its appearance.

“Particles” of any radiation, re-
gardless of its origin, have a universal
characteristic: their energy. The
higher the energy, the shorter the
wavelength. An instrument built on
the principle of the optical micro-
scope but working with an electron
beam reflected by special magnetic
lenses is called an electron micro-
scope. Electron waves are shorter
than light waves by a factor of about
1,000, so the magnification with the
best electron microscopes is up to
1,000,000x.

But it wasn’t so easy to get to that

SENSING TECHN|IQLUES

point. An electron microscope is
thousands of times larger, more ex-
pensive, and more complicated than
an optical microscope. It also suffers
from a serious flaw. It destroys the
object being examined. Electrons
with energies of tens of electron-volts
kill all living things. They also cause
defects in crystals, disrupting the
regular placement of the atoms. Nev-
ertheless, electron microscopy has
made it possible to take a great inves-
tigative step into the submicron
world.

But—was there some other way to
plumb the depths of this miniature
universe?

How Abbes prohihition was overcome
In the middle of the 1980s, the de-
velopment of microscopic instru-
ments changed direction sharply. Ear-
lier progress had been achieved
within the framework of Abbe’s pro-
hibition by decreasing the wave-
length of the radiation that forms the
image in the microscope. Now this
prohibition was simply evaded. A
new generation of microscopes—
scanning probe microscopes—ap-
peared. These devices made it pos-
sible to investigate a surface from a
very close distance. Microscopes had
previously been based on sight; these
new instruments were based on
touch. They not only show the
shape and location of the smallest
details of an object, they also provide
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information on other characteristics
of the object. For instance, the mag-
netic probe microscope “feels” the
heterogeneity of an object’s magneti-
zation; the electrical probe micro-
scope senses the microdistribution of
electric fields; the thermal probe mi-
croscope can tell the difference in
temperature; and so on. As a result,
every basic physical parameter has a
corresponding probe microscope.
Probe microscopes based on electron
tunneling and forces of interatomic
interaction even allow us to see indi-
vidual atoms.

But we're getting ahead of our-
selves. Let’s take a closer look at the
optical probe microscope.

Feeling with light

Imagine a nontransparent conical
sheet with a tiny hole in the tip, its
diameter less than half the wave-
length of light (fig. 1). If we transmit
light through such a cone, the light
won’t get very far—the light wave
won’t “crawl” through a hole of this
size, so it will reflect back. Light can
still be found on the other side of the
hole, but only close by—about half a
wavelength. The new generation of
optical microscopes makes use of this
“sagging” light. (This sagging is quan-
tum-mechanical in nature. It is char-
acteristic of any wave or particle and
is called “tunneling.”)

Let’s place the object we want to
examine near the hole, at a distance
less than its diameter. A spot of light,
approximately equal in size to the
diameter of the hole, will appear on
its surface. Light reflected by the ob-
ject can be caught by a photocon-

verter—an instrument that converts
weak light fluxes into an elec-
trical signal. This signal can be ampli-
fied and again be depicted as a light
spot on a monitor screen. The bright-
ness of the point on the screen will
correspond to the intensity of the cap-
tured light.

Now let’s move the point-probe
along the surface of the object, line by
line. The spot of light from the probe
will run along the surface. This pro-
cedure is called “scanning” the sur-
face. If the path traveled is marked by
points of different brightness on the
monitor screen, we'll obtain an image
of the surface. The resolution of the
image corresponds to the diameter of
the spot illuminating the surface—
less than A/2. (The size of the small-
est visible detail of an object is called
the resolution of the microscope.)

So Abbe’s prohibition was over-
come. The new instrument that
made it possible was called the near-
field optical scanning microscope. As
paradoxical as it may seem, this mi-
croscope allows us to see details that
are much smaller than the wave-
length of light!

Piezoelectric fingers

How can the surface of an object be
scanned so precisely? That’s where
piezoelectric manipulators come in.
The simplest of these is shown in fig-
ure 2. It’s made of a special ceramic
whose size changes slightly with
changes in the applied electric field.
The manipulator is placed between
two capacitor plates, which are often
simply electrodes in the form of thin
metal layers. By changing the voltage

Figure 1
The near-field optical scanning microscope. 1—incident light; 2—“sagging” light;
3—object under investigation; 4—photoconverter; 5—amplifier; 6—monitor.
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Figure 2
Piezoelectric manipulator. 1—elec-
trodes; 2—piezoceramics.

between the electrodes by 0.1 V, you
can increase the length of the bar by
0.1 nm—that is, by the diameter of an
atom. (The metal layer on the surface
is thin enough so as not to interfere
with this displacement.)

A simple device made of three
manipulator bars connected perpen-
dicularly (fig. 3) can move the probe,
situated at the point of intersection,
in any spatial direction. Three driving
voltages V, V , and V_determine the

w Vy z
coordinates x, y, and z of the probe’s
position. By changing the voltages V_
and V , we can move the probe along
the surface of the object under inves-
tigation, scanning it along parallel
lines at a given distance from one
another (like the beam inside a tele-
vision set). The voltage V,, on the
other hand, moves the probe up and
down. If V_is constant, the scanned
surface moves toward or away from
the probe because of the object’s un-
evenness. This presents a problem for
the recording system, though—the
signal changes drastically, and the

Figure 3

Scanning probe microscope. 1—object
under investigation; 2—probe; 3—
monitor; 4—feedback system.



probe may even collide with a large
bump on the object. To get around
this, an element of “self-control,” or
negative feedback, is introduced. It
forces the probe to move up and down
according to the surface relief.

Touching aioms

Let’s take a closer look at this
feedback mechanism, taking the
scanning tunneling microscope as
an example. This was in fact the
first probe microscope. G. Binning
and G. Rorer, working at IBM in
Zurich, Switzerland, were awarded
a Nobel Prize for their work on this
invention. The probe in this micro-
scope is an extremely sharp metal
needle. The role of the hole in the
probe of the optical scanning micro-
scope is played here by the tip of the
needle, from which (playing the role
light played) quantum-mechanical
waves of electrons contained in the
metal of the point “sag” (fig. 4). The
length of these electron waves is
smaller than the wavelength of light
by a factor of about 1,000, and so
they can “illuminate” an area that
is correspondingly smaller than the
area accessible to the optical probe.
When such an electron wave
touches the surface being investi-
gated (at distances of about 1 nm
between the probe and the surface),
an electron from the point can jump
onto the surface—that is, it “tun-
nels.” Tunneling means that an elec-
tric current arises in the probe-sur-
face circuit—a very weak current
(several billionths of an ampere). But
amplification of such a current pre-
sents no problem to modern electron-
ics. It’s important that it has a pro-

1

I
Figure 4

Probe of tunneling scanning microscope. 1—
“enlarged” point; 2—atoms; 3—electron clouds.
At left: the point (electron-microscopic photo).
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nounced dependence on the distance
between the surface and the point of
the probe. Decreasing the distance by
0.1-0.2 nm—that is, the size of an
atom—increases the tunnel current
by a factor of a thousand. This depen-
dence is described by an exponential
function with base e =2.718... .
Now let’s get back to the feed-
back mechanism that ensures the
proper functioning of any probe mi-
croscope. It’s a rather complicated
and sensitive electronic circuit that
registers the change in the tunnel
current and the varying voltage V,
applied to the vertical manipulator.
The piezoelectric manipulator shifts
the probe so that the tunnel current
remains constant. This is possible
only if the distance between the
probe and the surface remains con-
stant. So the feedback mechanism
does not allow the probe either to
move too far away from the surface
or to collide with it. Because of the
extreme sensitivity of the tunnel
current to the distance from the sur-
face, the precision of the feedback
mechanism system is very high—
0.01-0.001 nm. As a result, the
point moves along a trajectory that
closely mimics the relief of the
scanned surface. As the voltage V is
proportional to the height of the
point above the surface at a given
moment, it provides a good measure
of the relief. Information on surface

Figure 5

relief is fed to a computer and, after
processing (filtering out noise and
parasitic signals), is drawn on a
monitor as the “topographic map”
of the surface (fig. 5). Itis sometimes
rendered as a half-tone image, in
which the height of the relief is
marked by the intensity of coloration.

Scientists have used scanning
tunneling microscopes to obtain
detailed images of the surfaces of
many crystal and polymer mate-
rials with resolution down to the
atomic level. The scanning tun-
neling microscope provides the
unprecedented magnification of
100,000,000x!

Researchers have already gotten
used to the fact that the piezoelec-
tric manipulators can be shifted
with a precision corresponding to
the size of an atom. They have even
learned to use the point of the tun-
neling microscope as a working tool
in the nanometer microcosm. The
point—one atom wide—can be posi-
tioned at exactly the chosen place in
a molecule and slice it in two. An
atom can be caught and carried to
where one wants it. In an IBM labo-
ratory scientists managed to make
inscriptions out of chains of atoms.
One such inscription—the IBM
logo—was made of separate atoms
of xenon on a surface of nickel crys-
tal. Chaotically distributed atoms of
xenon adhering to the nickel were

“Topographic map” of the surface of a molybdenum disulfide crystal.
This image was taken in a student lab at Montana State University
by H. David Sheets and Darryl L. Steinert.
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Figure 6

Probe of the atomic force microscope.
1—diamond grain; 2—atoms; 3—
spring strip; 4—point; 5—electron
clouds.

collected by the point of the tunnel-
ing microscope. To prevent dis-
placement of atoms on the surface
as a result of thermal motion, the
experiment was conducted at a very
low temperature (-269°C). This was
just a publicity stunt, of course, but
it demonstrates the development of
nanotechnology—the ability to con-
struct artificial structures in the mi-
crocosm that will become the basis
of fantastically small electronic de-
vices.

Feeling atomic repulsion

Although the scanning tunneling
microscope has many attractive fea-
tures, it still suffers from one very
serious defect: it can be used only
with electrically conductive materi-
als. But most materials are covered
with an insulating layer of oxides.
Biological objects that are of interest
to researchers likewise conduct
electricity rather poorly. Can the
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Figure 7

AFM image of a video disk master.
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scanning tunneling microscope feel
“nonconducting” atoms? Yes, it
can. One need only place a diamond
grain, attached to a thin metal strip,
between the point of the microscope
and the surface of the object under
investigation (fig. 6). The sharp
point of the grain will be repulsed by
the electron clouds of the surface at-
oms. Of course, the grain must be
brought so close that the electron
clouds at its tip and those of the sur-
face overlap. The metal strip acts as
a spring, pressing the grain against
the surface.

Now let’s scan the surface with
this piggyback probe. The grain will
move up and down to follow the un-
evenness of the surface. Its move-
ment will be recorded by the change
in the tunneling current flowing from
the point on the metal strip. This mi-
croscope is called an atomic force mi-
croscope (AFM), and it has a feedback
mechanism much like the one in the
scanning tunneling microscope. By
moving this probe vertically, the sys-
tem maintains a constant separation
between the strip and the grain (and
therefore keeps the repulsive force
constant as well).

The atomic force microscope also
has extremely high, atomic resolu-
tion. Figure 7 gives you the chance to
take a close look at a common me-
dium for storing information. Digital
data are recorded on a video disk (as
on an audio CD) by means of tiny
holes on its surface.
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Figure 8

Bits under a microscope

You undoubtedly know what a “bit”
of information is. When information is
recorded by a computer on a disk, the
surface layer of the disk contains mag-
netized and unmagnetized regions of
micron and submicron size. But you
can't see anything, no matter which mi-
Croscope you use.

Well, a new instrument has ap-
peared—the magnetic force micro-
scope—that can “touch” these mag-
netic regions on the disk. It’s easy to
turn the atomic force microscope into
a magnetic force microscope—just re-
place the diamond grain with a grain
of magnetic material (iron or nickel).
The magnetic grain will feel the influ-
ence of the fields of the magnetized
regions. By scanning the surface of the
disk, we can obtain a map of the dis-
tribution of magnetic forces—bytes
and bits of information made visible
(fig. 8).

So now you’ve been introduced to
the large and powerful family of
scanning probe microscopes. In
spite of their relative youth, they are
already capable of some pretty
amazing feats. As they “grow up,”
no doubt they’ll open up the micro-
cosm of atoms and molecules for us.
But they’ll also give us the opportu-
nity to work in that miniature
world—to change it and use it in a
wide variety of applications.
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Magnetic Force Microscope on Hard Disk

Height

Image of a hard disk taken by a magnetic force microscope.
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MATH
INVESTIGATIONS

The Worm Problem of Leo Mosen

Part I: This just about covers it!

EO MOSER WAS ONE OF THE

most imaginative and creative of

mathematicians, and his won-

derful problems still intrigue
many of us long after his untimely
death. One of these is known as his
Worm Problem. It appeared in 1966
as problem 9 in a set of mimeo-
graphed noted entitled “Poorly For-
mulated Unsolved Problems in Com-
binatorial Geometry,” a collection of
fifty well-thought-out challenges to
tellow mathematicians. In this prob-
lem he asked: What is the region of
smallest area that will accommodate
every arc of length 1? More precisely,
the region is usually restricted to a
convex region (in which every seg-
ment connecting a pair of points in
the region is in the region), and the arc
is understood to be planar. My pre-
terred formulation of Moser’s prob-
lem is: Find the area of the smallest
convex blanket that will cover every
worm of unit length.

This famous and elusive problem
remains unsolved, in spite of many
excellent efforts during the last 25
years. First it was shown that a circu-

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either directly or through
Quantum, which will distribute
among them valuable book prizes and/
or free subscriptions.

by George Berzsenyi

lar disk of diameter 1 will cover the
worm; to see this, place the center of
the circle at the midpoint of the
worm. Then it was shown that the
square of diagonal 1 will also cover
the worm; the proof of this fact is a bit
more difficult. Next it was shown
that a semidisk of diameter 1 will also
do the job; this accomplishment also
called for some very clever reasoning.
My next challenge to my readers is:
Verify the above claims indepen-
dently. You will thus experience the
first few steps of the initial progress
made on the problem.

In part II of this account, I'll de-
scribe five more steps of the progress,
including the latest one, which re-
duced the area of the minimum re-
gion to 0.27524. This is the record to
date, and I'm particularly happy that
two of my longtime friends and
former colleagues were instrumental
in achieving this result. I'll credit

them more properly in part II. In part
III, I'll offer you some of their conjec-
tures. For the present, I'm being pur-
posefully vague, since I don’t want to
spoil your fun in making your own
discoveries. It's often best not to be
aware of the methods of attack at-
tempted by others, but to explore
uncharted territories on your own.
You should be encouraged by the fact
that most of the results obtained thus
far required no “fancy tools of math-
ematics,” merely a bit of geometry,
some trigonometry, and a healthy
dose of careful reasoning.

In closing, I wish to warn my read-
ers that the area of the minimal cover
cannot be reduced below 0.21946.
(This lower bound was established
several years ago.) Thus, any blanket
of a smaller area will necessarily leave
part of some worm exposed to the el-
ements. We wouldn’t want our worm
to catch a cold!
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PHYSICS
CONTEST

Row, Pow, Pow your hoat

“It is not possible to step twice into the same river."—Heraclitus

by Arthur Eisenkraft and Larry D. Kirkpatrick

NE OF THE EARLY ARGU-

ments against a spinning Earth

held that objects would not fall

straight down. Given that we
now know (with the help of Era-
tosthenes) that our home planet has
a diameter of 6,500 km (4,000 miles),
then parts of our planet must be mov-
ing at 1,700 km/hr (1,000 mph). If the
critics had been correct and you drop
an object that takes 0.5 s to reach the
ground, the object would land 240 m
behind you. Along comes Galileo to
refute what appears to be common
sense.

Galileo proposes that a person
climb the mast of a ship. If the ship
is not moving and a ball is dropped, it
will certainly fall straight down. The
defenders of the stationary Earth
would then predict that if the ship
were moving, the ball dropped from
the mast would land toward the rear
of the boat. This is because, they
would say, the boat glides forward
while the ball is descending. Galileo
suggested the correct behavior. The
ball maintains the original horizontal
motion of the ship and lands in the
identical location as when the ship
stood still.

If this works for a ship, it should also
work for the Earth. The vertical motion
is independent of the horizontal motion.
A ball on a stationary ship or a gliding
ship will land in the same place whether
the ship is moving or stationary. This
may seem obvious to some of our read-
ers, but it is quite subtle and still con-
founds many people.
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Imagine hopping aboard a rowboat
and paddling from one shore to the
opposite shore with no current. The
trip takes you 15 minutes. If you re-
turn to the river and venture across
again, paddling to the opposite shore
with the same strokes, but with a stiff
current dragging you downstream,
will you arrive at the opposite shore
in less time, in more time, or in the
same time? You probably recognize
that you would land further down-
stream on this second journey. Since
you traveled further, maybe it should
take more time. But your velocity is
actually the sum (the vector sum!) of
your paddling velocity and the veloc-
ity of the current. With this faster
speed, maybe the journey should take
less time. Or perhaps, the longer dis-
tance is exactly compensated by the
greater speed and you arrive at the
opposite shore in the same time. Our
readers can use the fact that the mo-
tion across the river and the motion
downstream are perpendicular to
each other and are therefore unaf-
fected by each other. The time is de-
termined by the motion across the
river independent of the speed of the
current. The current determines
where the boat lands downstream,
but does not change the time.

Once again, this is quite subtle,
and our readers should attempt to
explain the solution of this puzzle to
people not accustomed to thinking
the way physicists do. If you can con-
vince someone of this, then you, as a
teacher, must really understand it.

Let’s complicate the situation.
What happens if you don’t paddle
straight across the river, but rather
choose to paddle at some angle? Now
you'll find that there is a component
of your velocity that helps you across
the river and a component that takes
you upstream or downstream. In this
way, you can head upstream and end
your journey directly across from
where you embarked.

So here is our contest problem for
this issue. Assume that you wish to
end up directly across the river and
that you were permitted to walk on
the far shore if you land upstream or
downstream. What path takes the
least time? Let’s add some specific
numbers (suggested by Resnick and
Halliday in their Fundamentals of
Physics): the river is 500 m wide;
your rowing speed is 3,000 m/h; the
river flows at 2,000 m/h; and your
walking speed on the opposite shore
is 5,000 m/h.

A. Solve for the possible range of
angles qualitatively.

B. Describe the path quantita-
tively.

C. Calculate this minimum length
of time.

“. .. Merrily, merrily, merrily,
merrily, life is but a dream.”

Please send your solutions to Quan-
tum, 3140 North Washington Boule-
vard, Arlington, VA 22201 within a
month after receipt of this issue. The
best solutions will be noted in this space
and their authors will receive special
certificates from Quantum.

Art by Tomas Bunk
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Sources, sinks, and gaussian spheres

A completely correct solution to
the contest problem in the July/Au-
gust issue was submitted by Eric
Joanis of Gatineau, Quebec.

A. Because we have a spherically
symmetric distribution of charge, we
choose a spherical gaussian surface of
radius r centered on the spherical
charge distribution. We can then use
the result given in the statement of
the problem:

q
E4mr? = e
: i
where
4
qm:pV:pgnae’. (2)

Combining these two equations and
solving for the electric field E, we get

asp
E =—, 3
36, 3)

where we have added the subscript
“0” to indicate that this is the value
outside the sphere—that is, forr > a.

We can show that this has the
same form as Coulomb’s law by sub-
stituting the value of p from equation
(2) into equation (3).

B. We can use the same technique
to find the electric field E, inside the
sphere (r < a) if we remember that
only the charge inside the gaussian
sphere contributes to the field. There-
fore, the enclosed charge is given by

Qoo = P’
enc 3 /
where we use the radius r of the
gaussian sphere instead of the radius
a of the complete sphere as before.
Therefore,

p
E =—"/.
e, (4)

At the surface of the sphere r = a and

E=E =2
(8] 1 380
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as expected.

C. The only complication caused
by the spherical hole at the center of
the sphere is in the calculation of
the enclosed charge. We can calcu-
late this charge by taking the charge
of the complete sphere and subtract-
ing off the contribution due to the
hole. There are three regions. Out-
side the sphere (r 2 a) we have

4 ., 4
= 2 nadp - L b3
Dene 3TWP 37T p

= g—np(cﬁ - b?),

with the resulting electric field

E= M.

3¢e, 1
In the spherical shell (b <r < a) we
have

4 . 4
= 2o - T pbe
Denc 3Tffp 875 p

= %ﬂ:p(r3 -b3).

Inside the spherical hole (r<a) E =
0, since there is no enclosed charge.

D. When the hole is moved off-
center, we must be careful to re-
member the vector nature of electric
fields. Inside the bigger sphere (as-
sumed to be completely filled with
charge p), the electric field E is

given by equation (4), but now we
write it in vector form:

E =Lr,
B 3g,

where r is a radial vector from the
origin to the point of interest. We
now express this in terms of rectan-
gular coordinates:

E, = %%(X, v, z).

We can do the same thing for the
smaller sphere of negative charge,
but we must remember that the cen-
ter of this sphere has been shifted to
X=c

E:—_P

5= 3, (x-c,y,2).

0

When we add the two contributions
to the field, we find that the y- and
z-components cancel, and we are
left with a constant x-component:

E=E, +E, =%(c,0,0).
0

Notice the surprising result that the
electric field inside the hole has a
constant value independent of the
size of the hole, the size of the larger
sphere, and the location within the
hole. It depends only on the amount
of offset and the charge density. (@]
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AT THE
BLACKBOARD ||

The science of the jump-shot .,

Kinematics on the basketball court

by Roman Vinokur

T HAPPENED

at the end of the

last century in
Springfield, Mas-
sachusetts. Students at
the local college loved
to play baseball and foot-
ball, but bad weather often
forced their gym classes in-
doors. To make the classes
in the confined space of the
gymnasium more enjoyable, an in-
structor by the name of James
Naismith invented a new game that
didn’t require a large playing area.
The point of the game was to throw
a balLinto a basket. In 1891, the year
of its birth, the “basket” in basketball
was an actual peach basket. Al-
though the rules have changed
somewhat and the basket has

Art by Sergey Ivanov
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evolved into an abstraction of its
former self, the basic thrust of bas-
ketball remains unchanged: tossing
the ball into the basket.

In addition to basketball games
themselves, another form of compe-
tition became popular in the US:
shooting contests. In 1977 Ted Mar-
tin made 2,036 free throws in a row.
A year later, Fred Newman made
only 88 straight—with his eyes
closed! Other countries can boast of
hot shooters too: Drazan Petrovic of
Yugoslavia and the Muscovite
Sergey Belov display a nice touch
with the basketball.

If you want to be a good shooter,
inborn talent is obviously impor-
tant. But you also have to work at
the technique of shooting. For ex-
ample, Drazan Petrovic would go to

the gym every morning and take 500
shots at the hoop from various spots
on the court. Practice makes perfect,
as they say, but a grasp of theory
doesn’t hurt either. Let’s see if we
can work out a simple theory of ac-
curate basketball shooting.

The main phases of the ball’s
movement when it is tossed with one
hand are shown in the picture. We
need to find the best angle 6 with the
horizontal that produces the most ac-
curate shot.

We'll restrict ourselves to an ap-
proximation based on elementary
physics and mathematics. The
height of the hoop above the floor is
H =3.05 m (or 10 feet—the same
height at which Naismith nailed the
peach basket in Springfield). The in-
ner diameter of the hoop D = 0.45 m,




and the diameter of the basketball is
about half that. Suppose the ball en-
ters the hoop at an angle ¢ with the
horizontal and the trajectory of the
ball’s center lies in the vertical plane
passing through the center of the
hoop. (We’ll ignore possible devia-
tions of the ball from this plane, as-
suming that the reason for a bad
shot is that it’s either overthrown or
underthrown.)

The condition under which the
ball passes through the hoop without
touching it can be written as

ALS]:B(I— 1 j, (1)
2 2sin¢

where AL is the deviation of the ball’s
center O from the hoop’s center A.
This condition makes sense if ¢ > 30°.
If ¢ < 30°, the ball will definitely hit
the rim and—what usually happens
(especially when the ball’s velocity is
large enough when it hits the rim}—
bounce off without touching the net.
If we increase the angle ¢, we increase
our chances of getting the ball into
the basket, since I increases as well.
So, if ¢ = 40°, then I = 0.05 m; at ¢ =
60°,1=0.095 m—almost double the
first. The maximum value of [ =
0.112 m (for ¢ = 90°).

It’s obvious that the angle ¢ in-
creases as the angle 0 (the angle at
which the player tosses the ball at the
basket) grows steeper. But if you try
to shoot at an extremely steep angle
(6= 70°), it’s rather difficult to put the
ball through the hoop—that is, if
you're any distance from the basket.
Sometimes it’s hard not only to make
a basket but just to get the ball to the
rim—it takes a great deal of effort.
When basketball players shoot at
steep angles, it’s not because they like
to—it’s because of the long arms of
the opposing players.

To simplify things, though, we can
neglect such obstacles to a basketball
shot. This usually happens when a
player is far from the basket and, thus,
far from the defending players. And
let’s also neglect the air resistance at
this stage of our analysis, even though
its influence (unlike that of opposing
players) increases with distance from
the basket.

48 JANUARY/FEBRUARY 1083

Let the basketball leave the
player’s hand at time t,, when the
ball’s center is at point B. It reaches
the center of the hoop (point A) in
time t. The initial speed of the ball is
V and the distance of the shot (the
projection of segment BA on the hori-
zontal plane) is equal to L. Here we
are examining a “clean” shot—that
is, one that is not banked off the
backboard. We can write the kine-
matic equations describing the move-
ment of a material point thrown at an
angle 0 with the horizontal:

L=(Vcosb)t,

2
h=Ltano =(Vsin6)t —%.

Here g = 9.81 m/s? is the accelera-
tion due to gravity, 0 is the value in
question (the angle at which the ball
leaves the player’s hand), and & is
the height of the hoop’s center rela-
tive to the initial point of the ball’s
trajectory (B).

The angle ¢ at which the ball en-
ters the hoop is determined by the
equation

‘VYA‘ ~ ‘Vsine—gt‘
V.,  Vcos®

XA

tan¢ =

7

where V_, and V , are the horizontal
and vertical components, respec-
tively, of the ball’s velocity at point A.
The kinematic equations can be
transformed (by eliminating the un-
known t) into

- V2 sin(20 - o) - sino

g coso, o (2

¢ = arctan (tan 6 - 2 tan o). (3)

Let’s analyze these equations to
arrive at some useful conclusions. It
follows! from equation (2] that when
20 — o = 90°, the distance for a good
shot is achieved with the minimum
velocity and, consequently, with the

ITo show this, solve the equation
for V2 and set the first derivative with
respect to 8 equal to zero, or use
graphical techniques.—Ed.

least expenditure of energy. So the
optimal initial angle for the shot is

o, O
0=0,, =45+ (4)

The angle o = arctan (h/L) is shown in
the picture and depends on the player’s
height and, if the player jumps while
shooting, the height of the jump. The
angle o also depends on L. In the case
of a long shot (h << L), this angle is
pretty small, and, in accordance with
equation (4), the optimal initial angle
of the shot equals about 45° (or per-
haps a few degrees more).

Let’s check this conclusion, as-
suming the ball is at a height of 2 m
in the initial phase of the shot (which
would be the case if you're not a gi-
ant and you shoot without jumping).
Then h=3.05-2.0=1.05 m. Taking
the distance L = 6 m, we get o =
arctan (1.05/6) = 10°—that is (see
equation (4)), 8, =45° +5°="50". Sub-
stituting this result in equation (2),
we calculate that the initial speed of
the ball should (in our case) be equal
to 8.37 m/s. If you're able to run this
fast, you’d run the 100-meter dash in
11.9 seconds—not bad for the average
athlete, but far short of the world
record. Unlike track-and-field events,
though, high speeds aren’t necessary
here: the greater the ball’s initial
speed, the greater its speed when it
enters the basket and the more likely
it is to bounce off if it touches the rim.

It’s interesting that when the ini-
tial angle is optimal, the initial veloc-
ity of the ball is minimal. It’s a nice
discovery—you could find it by ana-
lyzing equation (2). But the main ad-
vantage of using the optimal angle is
a surprising phenomenon: the length
of the shot depends hardly at all on
slight deviations of the initial angle
from the optimal value! This result is
especially useful because unfortu-
nately (or fortunately), we aren’t ro-
bots—we make mistakes, and not
just during basketball games.

Let’s look at a shot at angle 6 (not
necessarily optimal) and initial veloc-
ity V that goes right through the
middle of the hoop. If the shot is made
at an angle 6 + A9, where A8 is a slight
deviation, the ball’s center will cross
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the horizontal plane that includes the
hoop not at the hoop’s center but
somewhere else. So the length of seg-
ment BA will be equal to L + AL,
where AL is small. Using equation (2)
(see the appendix, part 1), we get

AL =

A8 - cos(28 - a) - (AB)2 sin(26 - o) ‘ (5)

L-2
sin(26 — o) - sina

(Here A9 is expressed in radians.)

It follows from equation (5) that
the error caused by the angular devia-
tion is proportional to the length of
the shot. This isn’t surprising. But
here’s an interesting result. If we ig-
nore the term in equation (5) that in-
cludes the very small value (A6, then
if6=6,, we come upon a paradox (at
first glance): AL = 0. It's amazing, re-
ally: shooting at an angle 6__, you
can’t miss—as long as you jucfge the
initial velocity correctly. But if we do
not neglect any part of equation (5),
we get

2L(A8)*

L (6)
1-sina

AL=-

Thus, AL depends on the deviation
A®, albeit insignificantly. So the main
problem is to limit the deviation A.
How much deviation is acceptable?
Let’s estimate it for the special case
o = 0°, L = 6 m. From equation (4), it
follows that the optimal angle is 45°.
Using equation (3), we get ¢ = 45° as
well. Substituting the necessary data
in equations (1) and (6), we get, finally,
IABl < 4.2°2

Is this possible? Experience says
that it is, but let’s check it. We won't
even need a basketball.

Mark two points B and A on a
sheet of paper. Put the tip of a
ballpoint pen on point B and, keeping
your eye on point A, quickly draw a
line connecting these points. The re-
sulting line 1 (fig. 1) isn’t an ideal
straight line, of course, and maybe
doesn’t even pass through point A.
Now take a straightedge and draw the
straight lines BA and BC, which ap-

2The result in radians was translated
into degrees by multiplying by 180°/x.

C 1
/
B
Figure 1

proximately coincide with line 1
where it begins. Measure the angle
ABC with a protractor. It probably
won’t be more than 3° to 4°. With a
little practice, you can get even bet-
ter results.

Although this little experiment
has no direct relation to basketball, it
nevertheless characterizes the preci-
sion of your hand’s movement in a
visually assigned direction. It’s not
the same as shooting a basketball, but
it’s encouraging.

Let’s get back to our formulas and
find the angle ¢ at which the ball enters
the hoop if it is tossed at the optimal
angle 6 = §_ = 45° + /2. After some
straightforward trigonometric transfor-
mations (appendix, part 2}, using equa-
tions (2] and (4], we get

0(0,, ) = 450—%.

This means that for o > 30°, a shot at
the optimal angle will not be accu-
rate, because in this case ¢ < 30° and
the ball won’t be able to go through
the hoop cleanly. Even if o= 20° (that
is, 0 = 35°), our chances aren’t great
because I will be relatively small (see
equation (1)).

Similar situations (characterized
by a steep angle o) arise when one is
shooting from a short distance (not
more than 2 m). What should we do?
Since it’s easier to make a basket
from close in, it’s not so important to
achieve the optimal angle. We can
shoot at steeper angles. And we can
improve the shooting conditions by
jumping: not only do we move the
ball’s center closer to the hoop’s level
(that is, you diminish the angle a), we
also get up over the defenders.

Another way to decrease the angle
for short shots is to artificially in-
crease the length of the shot. You do
this by banking the ball off the
backboard. In figure 2, you can see the
projection of the ball’s trajectory on

the horizontal plane (for a perfectly
elastic collision). The ball is tossed at
the hoop’s mirror image. It’s clear
that IBAl < IBA’l. Naturally the differ-
ence between |BA’l and IBAl is less the
bigger IBAI is. So bank shots are useful
only from rather short distances.

In all our calculations we have ne-
glected air resistance. But we all
know how significant this factor is in
many physical phenomena. For in-
stance, a rifle bullet would travel ten
times farther if there were no atmo-
sphere. The air resistance depends on
the shape of the moving body (think
of the streamlined shapes of racing
cars and airplanes), on the cross sec-
tion perpendicular to the direction of
travel (which is why a bicyclist bends
over while racing), and especially on
the body’s velocity. You've probably
noticed that the air changes the tra-
jectory of tennis balls, soccer balls,
and so on. A basketball is influenced
by air to a lesser degree, primarily
because its motion is much slower. A
ball acquires a higher initial velocity
when hit or kicked than when pushed
by the fingers. So tennis balls travel as
fast as 30 m/s, while a basketball usu-
ally moves no faster than 10 m/s.

To account for air resistance in a
basketball shot, we’d need to resort
to differential equations. Let’s just
look at some results of such an
analysis. Although air resistance
shortens the distance a ball travels,
its influence on the optimal angle of
a shot is insignificant in actuality.
For example, the optimal angle cal-
culated according to equation (4) for
a shot from 6-7 m away is only
about 2-3° less.

The movement of a ball in prin-
ciple also depends on its rotation

hoop's mirror
hoop image
Py .
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about its center. The adjacent layers
of air become involved in this rota-
tion; this combines with the head-on
movement of the air against the ball
to produce a force acting on the ball
perpendicular to its trajectory. Be-
cause a well-executed shot imparts a
slight reverse rotation to the ball, this
force produces a slight “lift” that may
partially compensate the effect of air
resistance. At any rate, the role of a
ball’s rotation is much more pro-
nounced in tennis, baseball, golf, and
other sports in which balls of lower
mass are propelled at much higher
speeds.

I hope this article has convinced
you that it’s not so hard to mix busi-
ness with pleasure, science with
sports, study with games.

Appendix
1. The change in the length of the

shot in the situation mentioned in the
article is

AL=L"-L

e sin(26’ - o) —sino

g cosa
V2 sin(26— o) -sina
g cosal
_i sin(26’— o) —sin(26 - o)
- sin(26-a)-sino.

Transforming the difference of sines in
the numerator of the resulting equation,
we get

sin (26’ — o) — sin (26 — «)
=2 cos (20 + AB — o) sin (A6)
=2[cos (28 - o) cos (AB)
—sin (26 — o) sin (A8)] sin (A8).

If we express A6 in radians, then the ap-
proximate equations cos (A8) = 1 and
sin (AB) = A@ are valid (since A8 << 1.
Using them in the formulas derived
above, we can obtain equation (5).

2. Substituting = 6, = 45° + &/2 in
equation (3), we get

cp(em) = arctan(taneopt - Ztanoc)

~ 1+tan(0/2)  4tan(oy/2)
arctan( 1-tan(e/2) 1-tan*(0y/2) ]
— 1-tan(oy/2)
1+ tan(o/2)
=45°-2.
2

Calling all modem
maniacs!

What did you like in this issue
of Quantum? If you find pen-
and-paper communication too
old-fashioned, you can send
your comments, questions, and
suggestions to the managing
editor by electronic mail at the
following address:

72030.3162@compuserve.com

We look forward to hearing
from you.

N J

SUMMER STUDY IN RUSSIA AND THE U.S.

A unique opportunity awaits advanced mathematics and science students and teachers interested in

participating in a summer institute in the U. S. or Russia. The program will feature three weeks of advanced
classes in mathematics, physics, and molecular biology taught by prominent Russian and American
professors, trips to major scientific laboratories, as well as many cultural and recreational activities.
Following the three-week study program, there will be a one-week cultural program in Washington, DC,
or St. Petersburg.

The U.S. session will take place from June 27 to July 24, 1993, in LongIsland, NY. The Russian portion
of the program will take place from July 6 to August 3, 1993, at Moscow State University.

Scholarships Available!

For more information and application, please fill out the coupon below and mail to: Dr. Edward Lozansky,
International Educational Network, 1800 Connecticut Avenue, NW, Washington, DC 20009, Phone: 202-
362-7855, Fax: 202-364-0200.

Please send me brochures to distribute among interested high school teachers and students.

Last Name First
Address City
State Zip code Phone number

I am a teacher or a student
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HAPPENINGS

IS team places second at IMD

Moscow hosts an international celebration of math talent

by Cecil Rousseau and Daniel Ullman

HE 33RD INTERNATIONAL

Mathematical Olympiad (IMO)

was held last summer in Mos-

cow, Russia, where six high
school students representing the US
performed with distinction and
earned a combined team score second
only to that of China. This year’s
IMO team from the US was com-
posed of Wei-Hwa Huang of North
Potomac, Maryland; Kiran Kedlaya of
Silver Spring, Maryland; Robert
(Bobby) Kleinberg of Wales Center,
New York; Sergey Levin of Provi-
dence, Rhode Island; Lenhard (Lenny)
Ng of Chapel Hill, North Carolina;
and Andrew Schultz of Evanston, II-
linois. Kiran, Bobby, and Lenny had
all represented the US last year at the
32nd IMO in Sweden, all earning sil-
ver medals. This year they brought
home gold. (Kiran, in fact, had earned
a gold medal in 1990 at the 31st IMO
in Beijing, China, before he was a
sophomore in high school.) Wei-Hwa,
Sergey, and Andrew all earned silver
medals in Moscow. This ties the 1986
team for best American medal perfor-
mance at an IMO.

Kiran and Sergey are currently
freshmen at Harvard, while Andrew
attends the University of Illinois.
Wei-Hwa, Bobby, and Lenny are all
seniors in high school, which means
of course that they are eligible to rep-
resent the US next year at the 34th
IMO in Istanbul, Turkey.

Historic and modern Moscow

The team arrived at its hotel, lo-
cated about five miles from the Krem-
lin, on the evening of July 10. The

days of July 11, 12, and 13 were de-
voted to tours of Moscow sites of his-
toric interest, primarily the gardens,
museums, and churches of the tsars.
The opening ceremony of the IMO
was on July 14. This is the forum for
the official welcome by the Russian
hosts, speeches by Russian mathemati-
cal dignitaries, and entertainment in the
best Russian tradition. We enjoyed spec-
tacular performances of folk singers and
dancers, some ballet, and an act from
the famed Moscow circus.

The organizers of this 33rd IMO
overcame many obstacles. It was four
years ago that the 1992 IMO was of-
ficially slated for Moscow, but it was
unclear for most of these four years
exactly which country Moscow
would be in. The collapse of the Rus-

The US IMO team in their “autograph shirts.” Left to right: Andrew Schultz,

sian economy forced other con-
straints on the organizers. But they
beat the odds and the event tran-
spired, owing to the volunteer efforts
of dozens of Russian mathematicians,
most of whom themselves grew up
supported by a network of local, re-
gional, and national olympiads that is
the envy of the rest of the world. In
Russia there have been olympiads for
all age groups at all levels for many
years. This has undoubtedly been a
major factor in the development of
the world-renowned Russian com-
munity of research mathematicians.

The competitive portion of the
olympiad took place on July 15 and
16. On each day the participants had
4Y5 hours to do three problems.

On the evening following the first

Kiran Kedlaya, Lenny Ng, Wei-Hwa Huang, Sergey Levin, and Bobby Kleinberg.
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day of the exam, the US team
couldn’t hide its disappointment. The
exam looked relatively easy, and dis-
cussion with members of other teams
suggested that, although the Ameri-
can team had done well, their total
team score would be lower than that
of the teams from the Common-
wealth of Independent States (CIS),
China, Germany, Romania, Russia,
the United Kingdom, and perhaps
others. The US team has competed
for 18 years at the IMO, only once fin-
ishing below fifth place. This fact was
not lost on the team.

US team turns it around

The second day of the exam
boosted the US team’s morale. Two
of the problems on that day were es-
pecially tough, yet the Americans did
almost as well as they had on the first
day. Other teams had faltered. And
after all the problems were scored, the
US team slipped into second place,
ahead of Romania, the CIS, and the
UK but still far behind China.

This was a real cause for celebra-
tion. The team earned all gold and
silver medals, a consistent perfor-
mance that had not been accom-
plished by a US team since 1986.
(Gold medals are awarded to the top
1/12 of the participants, silver medals
to the next 1/6). There was plenty of
rejoicing. Amidst the frequent reports
that American students are far behind
their international peers in math-
ematics, it certainly is nice to learn
that our best students are as good as
those from anywhere in the world.

It's a common American bias to
think that talents of whatever type
are innate rather than acquired. This
undervalues the effort of those who
excel and unnecessarily discourages
those who falter. Mathematics is
learned. Those who learn a lot may be
able to win competitions and may be
able to make major contributions to
the discipline. It’s not a matter of luck
but rather a matter of hard work and
dedication. Students should recog-
nize that what it takes to excel in
mathematics is not special mental
faculties but motivation and support.

On the days of July 17 and 18, with
the pressure of the exam off their shoul-
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ders, the team enjoyed a boat ride and
some tours while the team leaders and
official coordinators began the arduous
task of scoring the papers.

The closing ceremony took place
in the afternoon of July 20. The orga-
nizing committee awarded the med-
als. Numerous dignitaries spoke
about international friendship and
cooperation and using mathematics
to solve the problems of the world.
There was more traditional entertain-
ment. And early on the morning of
July 21, the team headed home.

The road to IM0

The six students who represented
the US in Moscow earned a place on
the IMO team by high achievement
on a series of mathematical competi-
tions, beginning with the American
High School Mathematics Exam
(AHSME), a 30-question, multiple-
choice contest conducted in February
1992. Over 350,000 students partici-
pated in this event. Wei-Hwa, Bobby,
and Lenny all wrote perfect papers on
the AHSME, as did Ren Shi of Los
Angeles, California.

Participants whose score on the
AHSME exam exceeded 100 (out of a
possible 150) were then invited to
take the American Invitational Math-
ematics Exam (AIME), a 15-question,
three-hour exam administered in March
1992, each of whose answers is an inte-
ger from 0 to 999. This year, 4,669 stu-
dents qualified to take the AIME.

From these competitors, 138 of the
highest scorers were invited to par-
ticipate in the USA Mathematical
Olympiad (USAMO), a five-question,
3%-hour contest administered in April,
whose problems require written an-
swers containing complete justifica-
tions. From this pool of high-achiev-
ing students, 25 were selected to take
part in a monthlong training session,
the Mathematical Olympiad Program
(MOP), held at the US Naval Acad-
emy in Annapolis, Maryland.

Enrichment rather than acceleration

The 25 students chosen for the
MOP were kept busy. They were
bombarded with four hours of class
per weekday and three or four Olym-
piad-style tests per week. In addition,

“team contests”—a MOP tradition
involving the presentation of solu-
tions at the blackboard—were sched-
uled once or twice a week. One after-
noon at the MOP was devoted to
solving problems from the latest issue
of the American Mathematical
Monthly. Twice students were asked
to compose their own original prob-
lems. In between these mathematical
activities, soccer, frisbee, chess, and
bridge were popular pastimes.

All told, the four weeks are in-
tended to enrich rather than acceler-
ate the students. The focus is on en-
joying mathematics rather than
training in test-taking skills. The pri-
mary goal at the MOP is not victory
at the IMO but promoting interest in
mathematics.

The first three afternoons at the
MOP were devoted to three qualify-
ing tests which were used, together
with the USAMO score, to select the
six members of the IMO team. This
year, as last, every one of the team mem-
bers was a MOP veteran. In fact, Kiran,
Bobby, and Andrew had been to two
previous MOPs and Lenny to three.

The MOP ended on July 7, and the
members of the IMO team had a few
days to catch their breath before de-
parting for Moscow on July 9.

In addition to the six team mem-
bers, the following students attended
the MOP this year: Jeremy Bem of
Ithaca, New York; Ruth Britto-
Pacumio of Binghamton, New York;
Hal Burch of Ponca City, Oklahoma;
Christopher Chang of Palo Alto, Cali-
fornia; Hank Chien of Forest Hills,
New York; Timothy Chklovski of St.
Louis Park, Minnesota; Matthew
Crawford of Birmingham, Alabama;
Andrew Dittmer of Vienna, Virginia;
Craig Helfgott of Teaneck, New Jer-
sey; Alex Heneveld of Savannah,
Georgia; Jacob Lurie of Bethesda,
Maryland; Elizabeth Mann of Silver
Spring, Maryland; Adam Meyerson of
Severna Park, Maryland; Akira Negi of
Charlotte, North Carolina; Daniel
Schepler of Beavercreek, Ohio; Jade
Vinson of Savannah, Georgia; Stephen
Wang of St. Charles, Illinois; Jonathan
Weinstein of Lexington, Massachusetts;
and Huan Yao of Honolulu, Hawaii.

The MOP was directed by professors



Anne Hudson of Armstrong State Col-
lege, Cecil Rousseau of Memphis State
University, and Daniel Ullman of
George Washington University. Profes-
sors Rousseau and Ullman accompa-
nied the team to the IMO.

What the IMO means

The IMO is more a celebration of
mathematical talent than a competi-
tion for mathematical supremacy.

The team scores are unofficial and
informal, and the international rival-
ries are friendly and good-natured.
The focus is on cultural exchange,
friendships, and mathematics. The
competition is there to invigorate the
exchange, intensify the friendships,
and deepen the mathematics.

The real impact of the IMO has little
to do with winning and losing. The
importance of the IMO is as a forum for

recognizing mathematical achievement
in the same sort of way that our culture
recognizes athletic achievement. Math-
ematics is required to support the scien-
tific, business, and health enterprises, in-
creasingly with deeper mathematics.

We must foster mathematical
achievement and encourage the de-
velopment of the next generation of
mathematicians. Our welfare de-
pends on it.

PROMYS at Boston University

Boston University’s 1993 Program
in Mathematics for Young Scientists
(PROMYS) will be held June 27 to
August 7. A residential program de-
signed for 60 high school students
entering grades 10 through 12,
PROMYS offers a lively mathemati-
cal environment in which ambitious
high school students explore the cre-
ative world of mathematics.

Through their intensive efforts to
solve a large assortment of unusually
challenging problems in number
theory, the participants practice nu-
merical exploration, formulation and
critique of conjectures, and tech-
niques of proof and generalization.
More experienced participants may
also study combinatorics and modern
geometry. Problem sets are accompa-
nied by daily lectures given by re-
search mathematicians, and a highly
competent staff of counselors lives in
the dormitories and is always available
to discuss mathematics with students.

Admission decisions will be based on
applicants’ solutions to a set of challeng-
ing problems included with the applica-
tion packet, teacher recommendations,
high school transcripts, and student es-
says explaining their interest in the pro-
gram. Application materials can be ob-
tained by writing to PROMYS,
Department of Mathematics, Boston
University, 111 Cummington Street,
Boston, MA 02215, or by calling 617
353-2563. Applications will be accepted
from March 1 until June 1, 1993.

Bulletin board

Science bulletin board

A new nationwide electronic bul-
letin board system for science teach-
ers and students has been created by
the US Department of Energy’s
Argonne National Laboratory.
Called NEWTON, the bulletin
board is free and open to anyone
who teaches or studies science,
computer science, mathematics, or
technology at any level.

NEWTON services for students
include “Ask a Scientist,” where call-
ers can leave questions to be an-
swered by scientists as part of a grow-
ing collection of questions and
answers everyone can read; discus-
sion of hobbies and other special in-
terests; local and worldwide elec-
tronic mail over Internet; electronic
exchange of computer files and soft-
ware; and news about Argonne’s edu-
cational and scientific programs. Ser-
vices for teachers include ideas for
classroom demonstrations, activities,
and field trips; on-line conferences
with teachers and scientists; calen-
dars of conferences, lectures, and
workshops; and several Argonne pub-
lications.

To use NEWTON, you need a
telephone, a computer with a mo-
dem, and communications soft-
ware. The phone number for access
to NEWTON is 708 252-8241; mo-
dem settings are N, 8, 1, F. It can
also be reached over Internet at the
address “newton.dep.anl.gov” (or
“130.202.92.50”).

FUTURES: math in cargers

Enthusiastic math students are
often faced with a question: where
will they be able to use higher math
once they graduate? There are the
well-known technical fields such as
the many branches of engineering,
but what about animal care, ocean
exploration, and physical fitness? As
a series of educational videos called
FUTURES shows, math is intrinsic
to these and other careers.

Through interviews with profes-
sionals in dozens of fields, from
graphics to space exploration, FU-
TURES shows that careers using
math don’t have to be dull office jobs;
in fact, people using math have some
of the most exciting jobs around. In
the “Advanced Transportation” epi-
sode, Drs. James Powell and Gordon
Danby discuss the principles they
used in inventing magnetic levitation
vehicles; and in “Puture Habitats,”
the late Dr. Gerard O'Neill tells us
that we would technically be able to
establish colonies in space in the next
ten years. Their hard work in study-
ing math, these professionals say, has
enabled them to have creative jobs
they love.

The 24 shows in the FUTURES
series are produced by the Foundation
for Advancements in Science and
Education (FASE). To find out how
you can see FUTURES, call 213 965-
8794, or write to FASE Productions,
4801 Wilshire Boulevard, Suite 215,
Los Angeles, CA 90010.
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Across

1 One who fears (suff.)
6 Protective ditches
11 Experimental _____

16 Brother of Moses

17 A gazelle

18 Make straight

19 Traditional repair-
man

22 Building wings

23 ___ Franklin (abbr.)

24 All of us are able (2
wds.)

25 Hello!

26 Head coverings

27 Dental org. (abbr.)

30 Ancient calculator

34 Military branch

35 The Standard ___

37 Future site of large
accelerator?

38 Finished

39 Instrument part

40 ___ James (Am.
Revolution states-
man)

41 Units of length

42 A nomadic Moslem
person

43 Supreme ETs (3
wds.)

49 Used to be Persia

50 Country in
Indochina

51 End of an axis

52 Miserly

55 Fertilizer (abbr.)

56 Oils (slang])

57 Computer codes
(abbr.)

58 Blows on

59 Goes by

60 Yang’s partner

61 Charles Lamb

62 Element 103 (abbr.)

63 Movie award

65 Female sheep

67 Long story

71 Not classical (2
wds.)

76 City in N.Y.

77 High tidal wave in
an estuary

78 Greek letter

by David R. Martin

1

X oSS science

9 |10 11 |12

13 |14 |15

Gris

18

Uliei ' plaeQ €661 ©

Down

1 Step
2 The ___effect
3 Type of exam
4 A bump (or Bruce
Springsteen)
5 Naval off. (abbr.)
6 Weapon of the
Middle Ages
7 Algerian sea port
8 Be in poor health
9 Wave guide
propagation
10 Drowsy
11 ___equation (for ion
density)
12 Verve
13 Element 50
14 One (comb. form)
15 Chest muscle (slang)
20 A wading bird
21 Units of volume
(abbr.)
25 Jan ___ (Bohemian
religious reformer)
26 Lyrical passage of
music

79 Unit of length 27 Sum

80 Nose 28 A differential
81 More sage operator
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29 Tavern drink

30 Fund. Particle

31 Greek letter

32 The optic ____

33 Object from a mold

34 Holiday song

35 Just

36 Son of Jocasta

38 College bigwig

39 Knobs

41 Become raveled

42, After square or
granny

44 Units of energy

45 Units of corn

46 People of wealth
(Brit. slang)

47 Joy

48 A school term
(abbr.)

52 Watch secretly

53 Three (comb. form)

54 Charged particle

55 A just person (2
wds.)

56 Ancient Roman
guardian spirit

58 Burning gases

59 Earnest request

61 French coin

63 One time

64 Large ball of plasma
65 Beige

66 Hone

67 ___Valley (city in

Cal))

68 Experts
69 Thickness

70 Like a wing
71 City in Iran
72, Am. Indian

73 River island
74 Self

75 Here's partner

SOLUTION IN THE
NEXT ISSUE

SOLUTION TO THE
NOVEMBER/DECEMBER PUZZLE
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Clearly the equation can be re-
written in the form 3x® + 3x> + 3x +
1=0, or (x+ 1) =-2x% It follows that

x + 1 = -3/2x, so the equation has
the unique real root

M72

We start with the following
lemma: Let S(x) be the sum of digits
of a positive integer x, and N(x) be the
number of its digits that are greater
than 4. Then

S(2x) = 2S(x) — IN(x).

To prove this, imagine we add a num-
ber x to itself, digit by digit. The sum
of the digits in the result S(2x) may
differ from 25(x) only if in some deci-
mal places a 1 is carried to the next
place. A carry from the kth place oc-
curs if and only if the digit in this
placeis5,6,7,8, or9, and in this case
the 10 appearing at this point in the
kth place of the sum x + x is replaced
by a 1 in the (k + 1)st place. So each
carry diminishes 25(x) by 9, the num-
ber of carries being equal to Nix),
which yields the formula stated in the
lemma. The following example illus-
trates this reasoning:

Ll
71983
+ 71983

143966

x=71983

28(x) =14 +2+18+16+6 =56

S§2x)=1+4+3+9+6+6=29

Nix) =3, 50 §2x]) =29 =56 -27
= 28(x) - IN[x]

ANSWERS,
HINTS &
SOLUTIONS

Now it’s easy to complete the solu-
tion as follows.

(a) Since S(a) = §(b), N{a) = N(b), we
have §(2a) = S(2b) by the formula in
the lemma.

(b) Rewriting the formula as S(x)
= [S(2x) + 9N(x]]/2, and substituting
a/2 and b/2 for x, we see that all we
have to do here is prove N(a/2) =
N[b/2). Take another look at the
proof of the lemma above, and you'll
see that the kth digit of x is greater
than 4 if and only if the (k + 1)st digit
of 2x is odd (because of the carry). So
Nia/2) and N|b/2) are equal to the num-
bers of odd digits in @ and b, respectively,
which are obviously the same.

(c) Clearly S(10x) = S(x), so, by the
statement in section (b),

S(5a) = ${10a/2) = S{10b/2) = S(5b).

M73

In figure 1, ABC is the given tri-
angle, I and M are its incenter and the
midpoint of its hypotenuse AB, and
angle BIM is the right angle from the
statement. We'll prove that

BC:CA:AB=3:4:5,

To this end, we'll show that tan o =
1/3, where o denotes half the measure
of angle A of the triangle. Then

& =tan A=
CA

7.3

% 4
and the ratio CA/AB is found from
the Pythagorean theorem.

Noting that angle BIA equals 180°
— (o + B) = 135° (since 200 + 2B = 90°),
we get the measure of angle MIA =
135°-90° = 45°. The law of sines for
triangle AMI yields

2tanao
1-tan?o

Figure 1

sinae. _ MI _ MI
sin45° AM MB

=sinf = sin(45°-a)

=sin45°. cosa —cos45° - sina
2 .
=-——(coso—sina),
2
or

coso —sina
5 .

Now, dividing by cos o and solving
for tan o = sin o,/cos o, we get the re-
quired equality tan o = 1/3.

This solution can be readily gener-
alized for any given value of the angle
BIM. But a nice, simple answer like
the one we’ve obtained often implies
the existence of a nice geometrical
solution without calculations. Such a
solution follows.

Draw a line through the incenter I
and the midpoint N of the hypot-
enuse BM of the right triangle BIM
(see figure 1). It is known that N is the
circumcenter of this triangle, so IN =
NB and, therefore, /NIB = Z/NBI =
ZCBI (since BI is the bisector of the
angle B). It follows that line NI is par-
allel to BC, so it divides the sides AB
and AC in the same ratio:

sing, =

CL_BN___ BN _1
LA NA NM+MA 3
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(because MA = MB = 2BN). But CL =
LI, since NL is perpendicular to AC,
ZLLCI=Y%/£ACB = 45°, and so CLI is
an isosceles right triangle. Finally,
tan o = tan £LLAI = IL/LA = 1/3.
(V. Dubrovsky)

M74

Consider six points: the vertices
of the triangle and the midpoints of
its sides (fig. 2). One of the five
smaller triangles must cover two (or
more) of these six points. Therefore,
its side length is not less than half
the side length of the big triangle. So
each of the four triangles into which
the big triangle is divided by its mid-
lines can be covered by one of the
smaller triangles.

[ ]
[

Figure 2
M75

Party C can win any number of seats
from 100 to 999, party B any number
less than 900, and party A can get any
number of seats less than 600.

Candidates of party C can win in
all 999 districts if, for instance, the
fraction of voters supporting each
party is the same in all districts, as
shown in figure 3a. Let’s estimate
from above the number of the dis-
tricts where party C can lose. If x is
the number of districts in which party
C is supported by not more than a half
of the voters, then the total number
of its supporters—0.55 - 999N, where
N is the number of voters in a dis-
trict—is not greater than xN/2 +
(999 — x)N = 999N — xN/2. It follows
that x<2-0.45-999 = 899.1. So can-
didates of party C necessarily win in
at least 100 districts. Figure 3b shows
the distribution of votes such that C
wins exactly 100 seats: in each of 899
districts C is supported by N/2 - 3
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voters, A by N/6 + 1 voters, B by N/3
+ 2 voters; in the remaining dis-
tricts—from the 900th to the 999th—
everybody votes for C. In order that
the supporters of C get the votes of
55% of all voters, the number N must
satisfy 899(N/2 - 3) + 100N = 0.55N -
999, from which we get N = 53,940.

Clearly, parties A and B may not
win a single seat (fig. 3a) and can’t win
more than 899 seats (at least 100 seats
always go to C). Party B can win all of
these 899 seats, if all candidates of A
drop out after the first round, and so
supporters of A will vote for B in the
second round (fig. 3b).

It remains to figure out the maxi-

mum number y of the districts in
which party A’s candidate can win.
To win in a district, a candidate must
have at least N/4 supporters (other-
wise, either one of the remaining two
candidates gets more than N/2 votes
and wins in the first round, or each of
them gets more than N/4 votes, and
so the first candidate drops out). So
y - NJ/4 doesn’t exceed the total num-
ber of party A’s supporters, 0.15 -
999N. It follows that y<4 . 0.15 - 999
=599.4—that is, y <599, because y is
an integer. The example of y = 599 is
seen in figure 3c: in districts 1
through 599, parties A, B, and C have
N/4 +8, N/4, and N/2 — 8 supporters,

b
1 899 999
B
1 599 999
Figure 3




respectively; and if we take N =
11,980, so that 599 - (N/4 + 8] =
0.15 - 999N, the total number of sup-
porters of party A will total exactly
15% of all voters, as required. We can
easily distribute votes between par-
ties B and C in the remaining 400 dis-
tricts so as to make the number of B’s
supporters less than that of C’s in
each district but total 30% of the en-
tire electorate (which is an integer).

Phiysics

When the bumblebee flies vertically
upward with a constant speed v,, the air
resistance is directed downward:
F-mg-k-v, =0

When it flies downward,
F+mg-k-v,=0

Solving these two equations for the

thrust F and the force of gravity mg,
we obtain

sz(v +v,)
2 ’
mg=]<(V2_V1).

Now, we consider the general case.
If the bumblebee flies at a constant
speed V at an angle o with the hori-
zontal (see figure 4), then the net force
acting on the bumblebee must be
ZEr0:

F+mg-kV=0.

Using horizontal and vertical compo-
nents, we have

Figure 4

V=

vV, -V 2sin20L+4V-V —(v, - v,)-sina
2 1 1 2 2 1

energy, calculated by the
two different methods—

2

Mgh =mgR - o

Fsin 6 = kV sin o + mg,
Fcos 8 =kVcos a.

Squaring each equation and adding
them together, we get
F? = (mgpP + (kVP + 2mgkV - sin o.

From this we obtain the final expres-
sion for V (see box above).

P72

You don’t need to do any extensive
calculations to determine the posi-
tion of the figure’s center of mass—
simple notions concerning energy are
sufficient. Let’s suspend the figure
along the horizontal axis passing
through the semicircle’s center O,
perpendicular to its plane. The
figure’s center of gravity C is located
under the point of suspension at a
distance X from it (we must find the
value of X). Let’s rotate the figure
about the suspension point by a very
small angle o, as shown in figure 5.
The center of gravity rises by the dis-
tance h = X - (1 — cos o). On the other
hand, the diameter’s center of gravity
remains at the same place, and the
change in the semicircle’s center of
gravity is determined by the fact that
a tiny piece (whose length is R - o)
moves from the left to the right. Its
center of gravity rises by the distance
R-0/2-(-R-0/2) =R - o. If mass of
the entire figure is M, then the mass
of the piece is

_ MR-« =M-oc
2R+mR 2+m

Equating the changes in the potential

Ra

of sl —1°
R

Figure 5

—and taking into account that 1 —
cos o =2 - sin? (0/2) = 02/2 (for small
angles), we get

T1+m2

P73

Under the conditions stated in the
problem, the gas inside the vessel is
not very rarefied. This means that the
gas that enters the vessel is pushed
into it by external pressure (see fig-
ure 6). The work W performed by the
pressure can be expressed in terms of
the number of moles n of gas inside
the vessel:

W=P,-V=n-R-T,,

where V is the volume of n moles of
gas at temperature T, and pressure P,
We neglect the heat exchange be-
tween this portion of the gas and the
environment because of the short time
involved. Then the internal energy of
this gas will increase by the amount of
work:

nC, T =nC, T,+W
=n-C, T)+n-R-T,

=n(C, +R) T,
- :TO_CV+R:5.5.
* G 3

v

P74

Voltage across the resistor is 100 Q -
0.5 A = 50 V. The sum of the voltages
across the resistor and the device equals
the circuit voltage of 220 V. Let’s draw

Figure 6
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220
200

(]

50
Figure 7

the vector diagram and find the angle
between voltage across the device and
current in the network (fig. 7). The phase
of this current coincides with the phase
of the voltage across the resisistor:

502 +200*-2-50-200 - cos ¢ = 2207,
cos 6 =-0.3.

Now we can find the amount of
power the device consumes from the
network:

P=V-I-|cos¢|=30W.

P75

To get a rough estimate, we can
use the fact that the temperature on
Earth is such that it leads to a balance
between two processes: (1) absorption
of solar energy falling on the Earth’s
surface and (2) radiation of energy
from the Earth into the surrounding
space. If the Earth is surrounded by a
layer of soot, the solar energy will be
absorbed by this layer. The layer in
turn radiates the absorbed energy
partly from its inner surface, partly
from its outer. So only half of the en-
ergy absorbed by the layer of soot falls
on the Earth: the energy emitted from
its inner surface. Because half as
much energy reaches the Earth, the
temperature on Earth will decrease by

afactor of 4/2 (radiated energy is pro-
portional to the fourth power of the
temperature) and will be

T
T =—%L =250 K=-23°C.
x i/z

It’s very important that the Earth’s
radiation at such a temperature is
concentrated in the infrared range of
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wavelengths. In this range, the layer
of soot is practically transparent.

Brainteasers

B71

Yes, it can. My friend’s birthday is
on December 31, and our conversa-
tion took place on January 1.

B72

If you cover the left half of each
pictograph (which is the reflection of
the right half—see figure 8a), you’ll
immediately recognize the sequence
1,2, ..., 7 in a special kind of simpli-
fied writing. (Actually, this is the stan-
dard way the digits of a zip code must
be written on an envelope in Russia so
they can be read by a machine.) So the
next figure in the line must be 8 plus its
mirror image (fig. 8b).

Figure 8 a b
B73

The unusual behavior of the water
described in the problem can be ex-
plained by the siphon principle. Fig-
ure 9 is a schematic drawing of a
karstic cavity that periodically emp-
ties the pool. Water fills the pool up
to the level AA’; after that, the siphon
is “switched on” and almost all the
water leaves the pool. Pools where
karstic cavities form siphons as de-
scribed above are called intermittent
pools.

B74

The difference between the time it
would take to go back home and then

Figure 9

to school and the time to go straight to
school is 10 + 8 = 18 minutes. The dif-
ference between the corresponding dis-
tances is simply twice the distance from
the spot where Alice remembered about
Quantum to her home. So this spot is
9 minutes away from home, which is
9/20 of the entire distance to school.

B75

The required slices are shown in
figure 10.

959 B

Figure 10

Democracy

1. For profile P, candidate a gets
the highest score (9 points) and ¢ is
second with 8 points. If b withdraws
his candidacy, we get profile P,, where
cwins with 7 points. Of course, there are
many other examples.

Number of votes
Points | 2 1 2 1
4 a c | - -
3 b d|a ¢
2 c e c
1 d al|d e
0 e b|le a

Profile P, Profile P,

2. If R is the Relative Majority
Rule, R(S) = {a}, § = {b, ¢, d}, the pro-
file after a is excluded is A,. Now R(S)
= {d}, and the profile after the exclu-
sion of d is A,, which shows that c
wins the third step and b is last.

Number of votes
5 3 5 4

d d b ¢

¢c b ¢

b ¢ d b
Profile A



Number of votes
5 3 5 4
¢c b b ¢
b ¢ c b
Profile A,

Other rules are treated similarly.

3. Consider the profile in which k
prefers d to g, a to ¢, and all the other
voters prefer ¢ to d, d to a. Since {k} is
decisive for a against ¢, a > ¢. By Una-
nimity, d > a. So, by Transitivity, d >
c. Eliminating a by Independence, we
conclude that d > ¢ whenever k prefers
d to ¢ and all the other voters don't.

1. (a) If p = 2k, the expression
2% — 1 = (2% — 1)(2% + 1), which is
just the difference of two squares.

(b) First convince yourself that
2% _1=075_1=(2F—1=(2"-1)x
[(27)* + (27 + (27> + (27) + 1]. Then in
general we see that 2791 = (27— 1) x
[(27)2-1 4+ (27)2-2 4 (2P)9-3 4 ... + (27) + 1].

2.Since 22427~ 1) = 27(27 - 1)/2 =
n(n + 1)/2 for n = 2» — 1, all perfect
numbers are triangular.

3. An even perfect number is express-
ible as 27-1(27 - 1) = 27-"[(22 - 1)/(2 - 1)).
This is just the sum of p terms in a
geometric series starting with 27!
and proceeding with the common
ratio 2: 2771 + 27 4 2P+l 4 4 Q-1
Therefore, all even perfect numbers
are equal to the sums of successive
powers of 2.

4. This is merely a restatement of
the previously proved fact that even
perfect numbers are sums of succes-
sive powers of 2.

5. The smallest prime divisor must be
23 or less, because the largest number less
than 29 (28 + 1] that is prime is 23.

6. The question of how many dig-
its are in 27 (p = 756,839) is equivalent
to asking what is x + 1 in the expres-
sion 107 = 2%, Taking the logarithm to
base 10 of both sides yields x =
2p log, 2, or461,082 digits in this case.

7. (a) M,,,., requires 1,855 digits
when represented in base 224 because
44,497 + 24 = 1,854.04... . In other
words, (224)!%54 is less than 2447 — 1,

but (2185 is greater than 244497 — 1.
And since the positional notation
starts at zero, we need 1,854 + 1 dig-
its to represent M, ..

(b) Notice that 21° - 1 in base 23 is
1,777. By analogy, if z is the largest
digit in the base (z = 2% - 1), then the
base 2* representation of (2447 - 1)
is a 1 followed by 1,854 z’s.

Kaleidoscope

1. Since the given trapezoid is cir-
cumscribed about a circle (fig. 11),
2AB=AB+CD=AD+BC=a+b,so0
AB=m =(a+b)/2. The height can be
found from the Pythagorean theorem
in the right triangle ABE, in which
AE = (a - b)/2 (to see why, drop the
height from C):

BE? = AB* - AF?

:(a;bjz_(a;b)z

=ab,

s0 BE = g = </ab . By the similarity of
right triangles BFE and BEA, BF/BE
= BE/BA, or BF = BE*/BA = g*/m =
2ab/(a + b) = h. So the inequalities
m > g > h are reduced to AB > BE >
BF, which is obvious. We note that
this argument holds for any two
positive numbers a and b, because
one can always use them as the
bases of an isosceles trapezoid that
possesses an inscribed circle.

2. Extend the sides of the trapezoid
to meet at P (fig. 12). The areas of the
similar triangles APD, QPR, and BPC
are proportional to the squares of

B b C
B/ b
g
F
A E D
: > a
(a—b)/2
Figure 11

their corresponding parts—in particu-
lar, to a?, g%, and b? respectively. On
the other hand, area(APD) -
area(QPR) = arealAQRD) =
area(QBCR) = area(QPR) - area(BPC),
which means that 2> — ¢> = g*— b or

q = (@ +D?)/2. Further, consider

the ratios of the distances from each
of the segments g, m, and g to the
bases b and a of the trapezoid (b < a—
see figure 1 in the article). For seg-
ment g, this ratio is the ratio of simi-
larity of the two smaller trapezoids:
b/g < 1. For segment m, this is exactly
1, obviously; for segment g, it is
greater than 1, because the upper trap-
ezoid has the smaller sum of bases (b
+ g < g + a), but the same area as the
lower one, so its height must be
greater.

3. From similar triangles ABC, AOH,
t/b = BH/AB. From similar triangles
BAD, BOH, t/a = HA/AB. Adding, we
have t/a + t/b=(BH + HA)/AB =1, or
1/t = 1/a + 1/b. A similar argument
will show that 1/u=1/a + 1/b. Hence
t=u=Y%h,and 2/h = 1/a + 1/b. Solv-
ing for h shows that h is the harmonic
mean of a and b.

4. If the athlete’s speed with re-
spect to the air is v and the wind
speed is u, we can assume that half of
the track is run at a speed of v + u and
the other half at a speed of v — u. So
the average speed is the harmonic
mean of v + u and v — u, which is less
than the arithmetic mean v. This
means that the runner must work
harder to show the same average
speed as in calm weather.

5. For n > 2, the red part of figure 6
in the article shows that point A__,
completes the harmonic range (4, A ;
A, A, ) Therefore, AA_is the har-
monic mean of AA  and AA__, so
that 1/AA_is the arithmetic mean of
1/AA  and 1/AA_.

10

Figure 12
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The case n = 2 requires special treat-
ment. If we draw line TU parallel to AA,
through R (T lying on A B, U on AB,,
and R on OA,), then we proved, as part
of problem 3, that TR = RU. Hence OR
is a median in triangle OTU. Since tri-
angle OA A is obtained from OTU by
adilation about point O, this means that
OA, is a median in triangle OAA, too,
s0AA, =1/2.

Thus, 1/AA,, 1/AA,, ... is an arith-
metic sequence such that 1/AA =1,
1/AA, =2, ...—thatis, the sequence 1,
2,3,....501/AA_=n,and AA =1/n.

You may have noticed that the con-
struction of A, does not really differ
from that of its successors, yet we had
to speak about it differently. We can fix
this if we take for AA_ a “point at infin-
ity” on line AA , so that AA = =, and
1/AA,=0(A, A, A, and A, provide the
limiting case of an ordinary harmonic
range).

6. Obviously

1 1 1

n+l

+ +L +
n+2 2n

2L+—1—+L +L
2n 2n 2n

From this estimate it follows that the
sum of the first 2* terms of the se-
quence 1, 1/2, 1/3, ... is greater than
(k+1)/2:

1 1 1 1
l+=—+=+—+L +—
T3 T

1 (1 1]
=l+=+| =4+
2 3 4
+(l+l+l+lj+L
5 6 7 8
1 1
*(m“ +z—kj
> K+l
2

so it can be made arbitrarily large.
7.1t suffices to show that the cen-
ter of gravity of any “subtower” of n
upper bricks falls exactly on the edge
of the (n + 1)st brick (counting from
the top). We'll prove it by induction.
For n = 1 this is certainly true. As-
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sume that it’s true for the tower of n
bricks. What happens when we add
the next brick from below? The cen-
ter of gravity moves 1/(n + 1) the dis-
tance from its old position C to the
center O of the (n + 1)st brick (because
the n-brick tower is n times heavier
than one added brick—see figure 13
for n = 2). Since it was exactly above
the edge of the (n + 1)st brick, by the
inductive assumption, the center of
gravity now falls on a point shifted by
1/n of a unit from this edge. This is
just where the edge of the next—that
is, (n + 2)Jnd—Dbrick is set.

C

d

r

Figure 13

Hit or miss

(See the Kaleidoscope in the No-
vember/December issue)

1. The usual answer is that a log
twice as thick but half as short weighs
the same. But that’s wrong. By dou-
bling the transverse size (diameter) of
a log, the weight becomes four times
greater; by halving the length of a log,
the weight is reduced by a factor of
only two. So the thickened, shortened
log doubles in weight in comparison
with the longer, thinner log—that is,
it weighs 60 kilograms.

2. When immersed in water, any
(solid) iron object loses an eighth of its
weight. So the weights under water
will weigh only 7% of their former
weight, and the nails also 74 of their
former weight. Because the weights
were a tenth as heavy as the nails, un-
derwater they remain a tenth as heavy
as the nails. As a result, the decimal
scale remains balanced underwater.

3. Let’s follow the movement of
the hands at twelve o’clock. At that
moment the hands coincide. Because
the hour hand moves a twelfth as fast
as the minute hand (the hour hand
completes a revolution in 12 hours,
the minute hand in 1 hour), then in
the next hour the hands cannot meet.

Figure 14

But after one hour, the hour hand is
positioned as in figure 14, after hav-
ing gone through ¥, of a complete
revolution; the minute hand has
made a complete revolution and
stands again as in figure 14—a twelfth
of a revolution behind the hour hand.
Now the conditions of the race are
different than before: the hour hand
moves more slowly than the minute
hand, but it is situated in front of it,
and the minute hand must overtake
it. If the race continued an entire
hour, then the minute hand would
make a complete revolution and the
hour hand would only make ¥, of a
revolution—that is, the minute hand
would make ¥, of a revolution more.
In order to overtake the hour hand,
the minute hand has to travel farther
than the hour hand, but only the 4,
of a revolution that separates them. It
doesn’t need a full hour to accomplish
that; it needs less time in the same
proportion as ¥, is less than 1},—that
is, ¥,. So the hands meet in }, of an
hour—that is, in 60/11 = 53, minutes.

Therefore, the hands meet 5%,
minutes after one hour passes—that
is, at 5%, minutes past one o’clock.

When will the hands meet next?
This meeting will take place 1 hour,
53, minutes later—that is, 2:101%;
the next will once again take place
1 hour, 5%, minutes later—that is, at
3:16%,; and so on. There will be
eleven such meetings, the eleventh
one occurring 1}, x 11 = 12 hours af-
ter the first one—that is, at twelve
o’clock; in other words, the eleventh
meeting coincides with the very first
one, and then the entire process re-
peats itself.

Here are the times when the hands
coincide:



Ist meeting—1:05%,,
2nd meeting—2:101%,,
3rd meeting—3:16%(,,
4th meeting—4:21%,,
5th meeting—5:27%,,
6th meeting—6:32%(,,
7th meeting—7:38%,,
8th meeting—8:437%/,,
9th meeting—9:49 Y,
10th meeting—10:544,
11th meeting—12:00.

A short way to see this solution is
to count the number of times the
hands meet (eleven) and divide the 12
hours by this number.

4. The solution to this problem is
similar to that of the previous one.
Let’s begin again at twelve o’clock,
when the hands coincide. It’s neces-
sary to calculate the time the minute
hand needs to overtake the hour hand
by exactly half a revolution—in this
case, the hands will point in opposite
directions. We've seen (in the previ-
ous problem) that in one hour the
minute hand goes 1Y, of the way to-
ward catching the hour hand; in order
to catch up by 4 of a revolution, less
than a full hour is needed—Iless in the
same proportion as % isless than 1Y,
thatis, ¢, of an hour is needed. So the
hands point in opposite directions for
the first time in ¢, of an hour after
twelve o’clock—at 328, minutes
past 12:00. Look at the clock at ex-
actly 328{, past 12:00 and you'll con-
vince yourself that the hands point in
opposite directions.

Is this the only time the hands
point in opposite directions? By no
means! They take the same relative
position 328{, minutes after each co-
incidence (or meeting). As we've
seen, there are 11 such meetings ev-
ery 12 hours; so the hands point in
opposite directions 11 times every 12
hours. It’s easy to find these times:

12:00 + 328, minutes = 12:32%,,
1:05%, +328%, minutes = 1:38%,,
2:101%, + 328/, minutes = 2:437%{,,
3:16%, + 328, minutes = 3:49 Y,

—you can compute the rest of them
yourself.

5. The usual answer is “7 sec-
onds,” but that’s wrong. When the
clock strikes three we observe two
intervals: (1) between the first and the
second strikes; (2) between the second
and the third strikes. Both intervals
together last 3 seconds. Therefore,
each of them lasts half as long—that
is, 1} seconds. When the clock
strikes 7:00, we have 6 such intervals,
and 6 x 1 seconds make 9 seconds.
Consequently, the clock strikes
7:00—that is, it makes 7 strikes—in
9 seconds.

6. The row of peas would be
much longer than a dinner table.
The diameter of a pea is approxi-
mately ¥ cm to ¥ cm. If we take the
larger number, then in a cube with
an edge length of 1 ¢cm one can pack
at least 2 x 2 x 2 = 8 peas (packed
loosely; with tight packing, the
number will increase). So in a glass
with a volume of 200 ¢cm?, the num-
ber of peas is likely to be at least
1,600 (the exact number will depend
on the shape of the glass and how
the peas are packed). Lining the peas
up in a row, we'll get a length of
¥ x 1,600 cm = 800 cm, or 8 m—
much longer than your ordinary din-
ner table.

If we use % cm as a pea’s diam-
eter, then one can probably fit at
least 3 x 3 x 3 = 27 peas in a cubic
centimeter; and in a glass, at least
5,400 peas. The length of a row of
such peas is Y4 x 5,400 cm =
1,800 cm, or 18 m—even more than
when the size of an individual pea
was taken to be larger.

7. Not only a house—you could
encircle an entire town with these
leaves lined up in a row, because
such a row would reach about
10 km! There are at least 200,000—
300,000 leaves on an old tree. Even
if we choose the lower bound of
200,000 and consider each leaf to be
5 cm wide, the row will extend
125,000 cm—that is, 12,500 m, or
12 % km.

8. A million steps will take you
much farther than 10 km—farther
even than 100 km. If your step is

about %, m, then 1,000,000 steps is
750 km. That’s just about the dis-
tance from New York City to Wash-
ington, D.C. (as the crow flies).

9. Both men counted the same
number of passers-by. The one stand-
ing at the door counted people com-
ing from both directions, and the one
pacing back and forth counted these
same people coming toward him.

10. This problem yields readily to
algebra. We give here a more intuitive
arithmetic solution.

If the child is now a third the age
of the parent, then the parent is
older by the doubled age of the child.
Five years ago the parent was, of
course, older than the child by the
doubled present age of the child,
since the difference in their ages re-
mains the same. On the other hand,
at that time the parent was four
times older than the child; therefore,
the parent was older by the tripled
age of the child at that time. Conse-
quently, the doubled present age of
the child is equal to the child’s
tripled former age; in other words,
the child is now 14 times older than
five years ago. It’s not hard to see
that five years is half the child’s
former age; this means that five
years ago the child was 10 years old
and is now 15 years old.

Thus, the child is now 15 years
old and the parent is 45 years old;
five years ago the parent was 40
years old and the child was 10 years
old—that is, a fourth as old.

11. Mercury is much heavier than
water; so we would expect that mer-
cury will pour out more quickly. But
Toricelli knew that this line of
thinking is wrong: the rate at which
it pours out doesn’t depend on the
density of the fluid. It’s determined
by Toricelli’s formula

v=.2gh,

where v is the velocity of the escap-
ing stream, g is the acceleration due
to gravity, and h is the height of the
fluid in the vessel. As we can see, den-
sity isn’t involved in the formula.
This paradoxical law becomes
quite understandable, however, if we
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take into account the fact that the
driving force is the weight of the up-
per layers of fluid. For the heavier
fluid, this force is greater than for the
lighter fluid, but the mass put into
motion in the first case is also greater
than in the second case and by the
same factor. It’s not surprising that
the accelerations and, consequently,
the velocities in both cases turn out
to be equal.

12. A fire engine can’t pump boil-
ing water, because there will be vapor
with a partial pressure of 1 atm under
the piston instead of rarified air.

13. It has often been written and
said that the same temperature—
4°C—reigns year-round at the bottom
of deep rivers, because at this tem-
perature water has the greatest den-
sity. This is true for standing reser-
voirs of fresh water. But in
rivers—despite what many textbooks
say—the distribution of temperature
is something else entirely. In river
water there is not only the visible lon-
gitudinal current, there are also the
transverse currents. All the water in
the river is constantly being stirred;
that’s why its temperature near the
bottom is the same as at the surface.
As M. A. Velikanov (author of Land
Hydrology) says, “for all oscillations
of the air temperature, these oscilla-
tions very quickly penetrate down to
the bottom of a stream, and the most
exact thermometers could not record
the difference in temperature of dif-
ferent layers of water even at consid-
erable depths.”

So the correct answer is this: at the
bottom of a very deep river, the water in
summer is warmer than in winter by
the same number of degrees as the sum-
mer air is warmer than the winter air.

14. At high temperatures, steel
beams lose a considerable portion of
their strength. At 500°C the fracture
strength of steel is half that at 0°C; at
600°C—a third; at 700°C—about a
seventh. (Here are more exact data: if
we take the strength at 0°C to be 1,
then at 500°C the strength is 0.45; at
600°C—only 0.3; and at 700°C—
0.15.) So in a fire, steel structures col-
lapse under their own weight.

15. Most people are sure that
steam is white, and so they’re very
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surprised to hear that steam is abso-
lutely transparent, invisible, and, con-
sequently, colorless. The white fog
that is usually called “steam” is really
not vapor in the physical sense but
water dispersed into small droplets.
Clouds also consist not of steam but
of minute droplets of water.

16. This isn’t a trick question but a
perfectly serious problem in physics. As
amatch burns, heat develops and energy
is liberated. How many joules does a
burning matchstick develop per second?
In other words, what is the power of a
burning matchstick in watts? As you
see, there’s no funny business in this
problem.

There’s no reason to think the en-
ergy is ridiculously small. It’s not
hard to see that it’s actually rather
significant. Here are the calculations.
A matchstick weighs about 100 mg,
or 0.1 g (its weight can be determined
by just weighing it, or—if you don’t
have a scale—by measuring the vol-
ume of a match and assuming a specific
gravity of 0.5). The thermal output of
wood can be taken as 3,000 cal/g. It can
easily be determined that a match
burns for about 20 s. So from 300 cal
(3,000 x 0.1) liberated while the
match burns, in 1 second we get
300 cal +20= 15 cal. Each calorie cor-
responds to 4.2 joules; thus, the
power of a burning matchstick is
4.2 J/cal x 15 cal = 63 W. Conse-
quently, the burning matchstick suzr-
passes a 50-watt light bulb in power.

17. The solubility of the overwhelm-
ing majority of solids in water increases
with temperature; for example, at 0°C
sugar can be dissolved in water to a con-
centration of 64%, and at 100°C to a
concentration of 83%. Salt, however, is
an exception; its solubility in water is al-
most independent of temperature: at
0°C, it is soluble to a concentration of
26%; at 100°C—to 28%. At 40°C and
70°C equal amounts of salt can be dis-
solved—namely, to a concentration of
27%.

18. The sound we hear when we
put a cup or shell to our ear is due to
the fact that these objects are resona-
tors amplifying numerous sounds in
our environment, which we usually
don’t notice because they’re so weak.
This mixed sound resembles the roar

of the sea, which gave rise to numer-
ous legends about the “sea’” trapped
inside seashells.

19. It would seem that nothing sur-
passes black velvet in blackness or snow
in whiteness. But these classic examples
of black and white, dark and light,
present themselves quite differently
when approached with an impartial
physical instrument—a photometer.
Then it turns out that the blackest vel-
vet in sunlight is Jighter than the purest
snow in moonlight.

This is because a black surface,
however dark it may seem, doesn’t
completely absorb all the incident
rays of visible light. Even soot and
platinum black—the blackest colors
known—diffuse about 1-2% of inci-
dent light. Let’s take the figure 1%
and assume that snow diffuses all
100% of incident light (which is, of
course, an exaggeration—new-fallen
snow diffuses about 80% of incident
light). It’s known that the Sun’s illu-
mination is 400,000 times stronger
than the Moon’s. Therefore, 1% of
sunlight diffused by black velvet is
1,000 times stronger than 100% of
moonlight diffused by snow. In other
words, black velvet in sunlight is
many times lighter than snow illumi-
nated by the Moon.

The same is true, naturally, not
only of snow but of the very whitest
paints (the lightest of which diffuse
91% of incident light). Because no
surface (if it hasn’t been heated) can
reflect more light than falls on it, and
the Moon sends 1/400,000 of the
Sun’s light, then the existence of
white paint that is lighter—as objec-
tively measured—in moonlight than
the blackest paint in sunlight is in-
conceivable.

20. In order for gold to lose its char-
acteristic yellow color, one has to
observe it in light from which yellow
rays have been excluded. Newton
achieved this by blocking the yellow
color of the spectral band, letting the
other colors pass, and bringing them
together again with a lens. “If one
stops yellow rays before they enter
the lens,” Newton wrote, “then gold
(illuminated by the other rays) ap-
pears as white as silver.”
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Gorrections

Vol. 3, no. 1:

p. 58, col. 1, L. 11: for figure 4
read figure 5.

p. 60, col. 1, third line from bot-
tom: for triangle CBD read triangle
CBD,.

Vol. 2, no. 6:

An editorial mishap resulted in an
error in the solution to problem 4 in
the article “Summertime, and the
Choosin’ Ain’t Easy” (p. 61). There is
no need to multiply the number of
arrangements of 0’s and 1’s by six, so
there are actually only 28 ways for
the rich father to distribute six pen-
nies to his three children. Many
thanks to reader Marnold Ostby for
pointing this out.

Vol. 2, no. 5:

Reader Douglas Mcllory gives a
beautifully intuitive solution to
problem M55 (see pages 19 and 57).
Mcllory says:

First, consider the two-dimen-
sional problem, where the planets are
unit discs in the plane. Wrap a string
tightly around the outside of the set of
planets. The string will take on a
shape that consists of straight seg-
ments between planets alternating
with arcs in contact with planets. The
arcs touch precisely the regions of the
planets from which no other planets
can be seen. These are of course also
the regions that cannot be seen from
any other planet. Now shrink the
lengths of the straight segments to
zero so that only the arcs remain. To-

gether the arcs form a circle. (They
have the same radius, join smoothly,
and enclose an area of the plane.) Thus
the measure of the regions in question
is equal to the measure of the bound-
ary of one disc.

The three-dimensional problem is
solved the same way, by stretching a
rubber sheet around the configuration
of spheres and shrinking all the
flattenable (plane and cylindrical)
parts until only spherical parts are left.
These spherical parts arose from the
original regions of invisibility. To-
gether they form a sphere. (Like the
arcs, they have the same radius, join
smoothly, and enclose a volume in
space.)

Armed with this intuition, which
puts the invisible regions in one-to-
one correspondance with the surface
of a sphere, one can easily fill in the
details.

Vol. 2, no. 3:

Some typographical errors crept
into the solution to problem M43
(p. 79). The hidden edges issuing
from point Q in the cube are not
QX, QY, and QZ: they are not
named by points in the diagram.
The points A, A, A, A, A, A,
mentioned at the end of the third
paragraph are, in fact, points A,
A Al Al A/ A, Plane PXZ re-
ferred to in the next paragraph
should be plane QWZ, and line
K’M’ is the intersection of the
plane determined by K’, M’, and L’
with this plane.
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The Stomachion

~ TOY STORE_

If you stay calm, this “infuriating” game cannot cause heartburn

HE “STOMACHION” CAN

rightfully be considered the

grandaddy of slice-and-rearrange

games. One familiar member of
that family is the tangram.! The
stomachion is more than 2,000 years
old and has certainly passed the test
of time. I'd like to introduce you to
this ancient but not decrepit game. It
is a true classic.

Let's get started

Figure 1 shows the most common
“raw material” for the stomachion: a
rectangle ABCD whose side lengths
have a ratio of 1 to 2. Sometimes a
square or even an arbitrary parallelo-
gram is used instead of such a rect-
angle. Whichever initial figure is cho-
sen, though, the way it’s sliced up
remains the same.

Let ABCD be an arbitrary paral-
lelogram, F and E the midpoints of its
sides AD and BC. (Figure 1 shows a
rectangle ABCD, but you can easily
imagine it to be any parallelogram.)
Drawing the line EF, divide the initial
parallelogram into parallelograms
ABEF and FECD. Draw the diagonals
AC, BF, and FC. Let L and R be the
points of intersection of diagonal AC
with diagonal BF and line EF.
Through the midpoint G of the line
BE draw a line parallel to the side AB
of the initial parallelogram that meets
diagonal BF at the point H, and a seg-
ment GK of line GA (K is the point of
intersection of line GA and diagonal
BF). Finally, join the corner B to the

1See the Toy Store in the Septem-
ber/October 1992 issue.—Ed.
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. posed strictly in ac-
cordance with this
indispensable rule.
When you've mas-
tered the secrets of
stomachion mosa-
ics by uncovering
their structure,
you’ll be in a posi-

B e E
Figure 1

How to create stomachion pieces.

midpoint M of AL, thus dividing par-
allelogram ABEF into seven pieces.

Let N and O be the midpoints of
line segments CD and FC. Draw lines
ON and OE. Let Q be the point of
intersection of line OF with diagonal
AC, and let P be the point of intersec-
tion of line BO with side CD of the
initial parallelogram. Draw line OP.
Then parallelogram FECD is also di-
vided into seven pieces.

Thus the initial parallelogram
ABCD is divided into 14 pieces.

In creating new figures, you can
flip over pieces of the initial figure.
But you must use all 14 pieces. All the
silhouettes you see in figures 2

Figure 2
Hen.

Figure 3
Windmill,

¢ tion to construct
your own figures.

A Dt o history

Among geometric puzzles, the
stomachion is notable not only for
its venerable age but for its distin-
guished origin.

The game was known in ancient
times. It’s also mentioned by Ro-
man writers in the 4th through 6th
centuries A.D. It was thought that
the stomachion was invented by
Archimedes, but for a long time
there was no documented support
for this assertion.

In 1899 the Swiss historian
Heinrich Suter, working in the li-
braries of Berlin and Cambridge,
found an Arabic manuscript with
fragments of a treatise entitled

Figure 4

Rooster.




“Archimedes’s Book on the Divi-
sion of the Stomachion Figure into
Fourteen Pieces that are in Rational
Proportions to It.” But some histo-
rians expressed skepticism that the
work belonged to Archimedes. All
doubts were swept away when the
well-known Danish historian of
mathematics I. Heiberg found the
Greek original of some fragments of
Archimedes’s work—and he made
the discovery without leaving his
own study.

Heiberg was drawn by a short item
published in 1899 in a volume of the
catalogues of the Jerusalem library. In
it a researcher at St. Petersburg Uni-
versity, Papadopoulo-Kerameus,
noted the existence of a manuscript
from the Monastery of the Assump-
tion in Constantinople. The bulk of
this manuscript was a palimpsest. (A
palimpsest is created when writing is
erased from a parchment and a new
text is written over it.) According to
the historian S. Y. Lurie, “due to his
ignorance of mathematics and the
history of the natural sciences,
Papadopoulo had been interested
only in the upper, Christian text and
published only a small excerpt from
the lower, erased but quite readable
text in the catalogue of the Jerusalem
library. But the excerpt was all that
Heiberg needed to show that the

erased portion was a text by Archi-
medes.”

It wasn’t until 1906 that Heiberg
was able to take alook at the original
manuscript. It was impossible to see
any trace of the original (underlying)
text on 29 of 177 sheets. On nine
other sheets the earlier text was hope-
lessly damaged when erased and only
individual words can be read. But the
underlying text is quite legible on the
rest of the sheets.

Investigating the original manu-
script and a photograph of it, Heiberg
managed to establish the content of
the main body of the manuscript.

Heiberg’s scholarly achievement
rescued the following works of
Archimedes from virtual oblivion:
“On the Sphere and Cylinder” (the
greater part), “On Spirals” (almost
complete), “On Measuring the
Circle” and “On the Equilibrium of
Plane Figures” (fragments), and “On
Floating Bodies” and “Message to
Eratosthenes” (significant portions).
Among the restored texts were two
theorems from Archimedes’s book on
the stomachion.

By the way, Heiberg’s discovery
put an end to the long controversy
about the correct name of this
“Archimedean game”: stomachion
(“infuriating”), ostomachion (“battle
of bone pieces”), or synthemachion
(“collection of scraps”). The word
“stomachion” appears in the frag-
ment found by Heiberg.

Fragment from " Stomachion”

“Because the so-called stomachion
contains a number of investigations
about rearranging the figures it com-
prises, I deemed it necessary first of
all to explain the number of pieces
and show which figure each of them
is similar to. Then I determined
which pairs of angles are needed to
create a right angle. Further, I in-
tended to exhaustively examine all
conceivable instances in which
pieces of the stomachion can abut
one another and determine whether
the sides of the abutting pieces lie on
a single line or whether the deviation
from the straight line is so small as to
be unnoticeable. These questions re-
quire rigorous proofs, and if the devia-

tion from a straight line is small and
therefore cannot be seen by the eye,
then such incomplete abutment is
considered admissible.

“Because any piece can be replaced
with another that is equal to it and
has the same angles, it is possible to
compose many different figures . . . .
Sometimes two figures taken to-
gether are equal and similar to one
figure, or two figures taken together
are equal and similar to two figures.
This enables us to construct many
figures by interchanging pieces of the
stomachion.”

Archimedean problems

The division of the stomachion fig-
ure proposed by Archimedes (fig. 1)
has this property: the areas of all 14
pieces are rational fractions of the
area of the initial figure.

Problem 1. Prove that the areas of
the separate pieces of the initial par-
allelogram, expressed in 1/48th parts
of its area, have the values of the red
numbers in figure 1.

The following problem is taken
from Geometrical Puzzles and
Paralogisms (1912) by Emile Fourret.

Problem 2. Group the stomachion
pieces such that the areas of the
newly composed figures can be ex-
pressed in 1/48th parts of the initial
parallelogram (a) by three equal inte-
gers; (b) by three consecutive integers;
(c) by integers from 1 to 8 and by the
integer 12.

All three parts of problem 2 can be
answered without tearing apart the ini-
tial parallelogram—one need only draw
the borderlines between the pieces. (@)
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Soar into Science with NSTA!

An Introduction to Electricity
by Larry E. Schafer

Why do rubbed balloons stick to the wall? What is a short circuit? Spark your
interest in electricity with this new book from NSTA. Explore static electricity in
the first module before seeing that static electricity can move as current electric-
ity, investigated in the second module. These 25 hands-on activities use readily An Introduction
available materials and make Taking Charge a fun exploration of basic electricity. to Electnicily
The unique historical approach of the first module shows how we developd our
modern ideas of electricity by introducing the ideas of early explorers of electric-
ity like Ben Franklin. In the second module, discover how light bulbs work, and
use bulbs and batteries to construct and analyze simple circuits. (grades 5-10)
#PB-96, 1992, 155 pp. $18.95

LARRY B SCHAE

e
NATIONAL SCIENCE TEACHERS ANROCIATION

An Introduction to Aerodynamics
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by Wayne Hoskings

Go fly a kite! The clear instructions in these 18 projects transform trash bags,
dowels, and tape into high-flying lessons in aerodynamics. Let Flights of Imagina-
tion add a springtime lift to you study of flight. (grades 5-12)
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by P. Sean Smith

Why does Earth have seasons? What is a light year? Why does the Moon have
phases? The hands-on, teacher-tested activities of Project Earth Science:
Astronomy, bring the concepts of astronomy down to Earth. Background infor-
mation, supplementary readings, and suggestions for further study and integrat-
ing other disciplines provide a framework to launch a successful study of as-
tronomy. The guiding theme of this book is Earth’s uniqueness among the
planets of the Solar System. But instead of stating this, Asfronomy presents
concepts and then uses that foundation to examine Earth in the context of our
Solar System, as just another planet. In this light, Earth’s unique qualities shine through. (grades 5-10)
#PB-90, 1992, 160 pp. $18.50
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