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ll t the age of 15, Claude Monet had already achieved a degree
fl o{ artistic success. He sold some caricatures. They were well
drawn, and they showed a keenly observant mind at work. But
i{ the painter Eugdne Boudin hadn't befriended him, Monet
might have continued to sketch amusing portraits-might
never have become the innovator in oils who helped change the
course of modem art.

Boudin introduced Monet to the practice of painting out-o{-
doors, which was uncommon at the time. For the next 50 years,
Monet tumed his powers o{ observation on the play of iight and
color, water and sky, the subtle ef{ects of atmosphere and
weather. He would paint a single subject under various light-
ing and weather conditions-ordinary haystacks, for instance,
or the Rouen Cathedral. The sets of paintings constitute a vi-

Bridge over a Pool of W ater Lilies ll899lby Claude Monet

sual fissertation on the act of visual perception and the trans-
formation o{ subiective impressions into pigmented canvas.

Late in 1i{e Monet created the famous garden that was to be
his last refuge. This teeming piece of environmental art was
tended by five gardeners. hr the midst of the abundant vegeta-
tion was a pond with water lilies, over which a green fapanese
bridge gently arched. The painting above is one of many stud-
ies Monet made of this tranquil scene.

You may not have noticed the two-dimensional frog on a
lily pad directly below the bridge. When it finally jumps up
toward the bridge, it will be a very long jump-in {act, an
infinite one. It's a rare Poincailan fuog, not visible to the na-
ked eye. Turn to page 20 and you'll leam more about Poincaria
(if not frogs).
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One after another/ they appeared in the
sky, eliciting comment and superstitious
dread as they had since time immemo-
rial. But the three comets of 1618 occupy
a special place in the history of science.
They were immortalized in a series of
polemical tracts on the nature of comets
and, more generally, the proper approach
to scienti{ic questions.

Galileo was moved to respond to the
opening salvo in the debate and, as it
tumed out, guessed wrong about comets.
He hypothesized that they are terrestrial
phenomena, not visitors from the far
reaches of the galaxy. BttinThe Assayer,
his major contribution to the contro-
versy, Galileo succeeded in making a case
for a new, open approach to science-one
based on observational data and math-
ematical reasoning rather than armchair
metaphysics and established authority.

The excerpt fromThe Assayer rnthe
Anthology is Galileo's parable about the
search for knowledge: the more we leam,
the more careful we become in proclaim-
ing The Truth.
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To erl' is hulnalt

To correct is divine

I N THE SUMMER OF 19921
I .ordrr"t"d workshops for middle-
I levet teachers in Houston, Texas.
I the workshops included lab work
as well as discussion of basic concepts
in physics, including astronomy.
During one of these sessions I as-

serted something that, as it turned
out/ was not true. Whenlrealizedlhad
made a mistake andhadfoundhow to
corect ig I sent an apologetic letter to
the 77 teachers intheworkshop. Here's
a slightly revised excerpt:

You may remember that when I was
doing my physics workshops there in
fune, I gave you a little quiz. One of the
questions was: "When are shadows cast
toward the south in Houston?" We told
you, and I elaborated on the assertion that
shadows wouldneverbe cast toward the
south in Houston. We said that this was
because the maximum angle of tilt of the
Earth's axis with the pole of the ecliptic
was 23.45o. I assured you that since
Houston was at29.77' north latitude, we
were short some 6.32o.

When I arrived home in fune, I went
out on my boat. I was anchored for the
day and was watching the sun set in the
west. I was about 38'north latitude. I
noticed that the Sun was much too far
north, and shadows were quite clearly
cast toward the south. This happened to
be on |une 21, the longest day of the year.
I started the engine, reversed the prop,
and strained the anchor line, steering so

that the boat would take a heading
toward the setting Sun. From the
compass reading, taking into account
local declination, the Sun was setting at
about 304'. That would be 34" north of
due west. From what I had told you, that
angle should have been 6.32" south o{
wesg or about 264'. Tlne Sun was setting

40' further toward the north than I
thought it should have been. My compass

certainly does not create erors that large.
Irealizedthat what I had asserted at the
workshop was wrong!

At first I tried to construct a model,
using a ball. Then I tried to find some way
to calculate the angles involved. The
more I thought about this problem, the
more I realized that I needed to use
vectors and do geometry. A{ter doing all
of that worll I found the solution. . . .

Now, how fid I arrive at my con-
clusion? Send us your solution to this
problem. It should give times for sun-
rise and sunset, shadow lengths, and
other such in{ormation as a function
o{ latitude and time of day (based

upon longitude). We'll publish the

most interesting and ciearly written
solution to this problem. Try to take
into account the fact that the Earth is
not a sphere (although spherical-Earth
solutions will be accepted as well).

Teachers make mistakes. AIter all,
we're not the source of knowledge-
nature isl What troubles me the most
is that nobody challenged my unsup-
ported, wrong assertion. You must
always ask questions and challenge
things that sound fishy, or look like
cardboard props with nothing behind
them. Admit it when you don't know
the facts or don't understand a con-
cept. Ignorance isn't bliss. But when
we recognize it, we've taken the first
step toward solid knowledge.

-8il1G. Aldridge
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aIly only people who have never cogi-
tated, pondered, or worked at difficult
problems are capable of admiring their
own sagacity. Success comes easily to
those who place no difficult problems or
serious goals before themselves.

Now I'm going to tell you a story
of human thickheadedness and ge-
nius, a story much more significant
than the things I've just been talking
about. I'll be talking about one of the
greatest achievements of the human
spirit, in which first-class talents and
true geniuses took part. Our topic will
be non-Euclidean geometry and its
2,000-year-p1us history. But first
there's something I'd like to explain.

Ittlhat h lohacheuslfialt geolnelt'y?

You probably know by now that
Lobachevskian geometry is the geom-
etry obtained from Euclidean geom-
etry by changing only one axiom-
the parallel axiom. Lobachevsky took
the following as an axiom: if a point
is not on a given line, then there are
at least two straight lines parallel to
the given line that pass through the
point. The statements/ or theorems,
derived from Euclidean foundations
altered in this way constittte Loba-
chevskian geometry.It's all very
simple, isn't it? It trips off the tongue
easily and clearly. But the difficulty
lies in the {act that Lobachevsky's
axiom doesn't correspond to our vi-
sual notions. And so the conclusions
drawn from it (the many theorems of
Lobachevskian geometry) tum out to
be unconventional and hard to imag-

ine. The real meaning of this geom-
etry is not at all clear from the simple
formal definition given above.

Lobachevsky himself called his
geometryim aginary. He considered it
a theory that could be applied to real
space. Couldbe. . . but there simply
were no practicai applications. So the
logical consistency of his geometry
remained unestablished. No matter
how deeply Lobachevsky developed
his theory, a contradiction still might
show up later.

The reai meaning and logical con-
sistency of Lobachevskian geometry
follow from a simple model of it de-
vised by the German mathematician
Felix Klein. Here's the model.

The interior of a circle (fig. 1) is
taken to be a "plafle," all the points
of the interior stand for "points,"
and chords are "straight lines"-of
course/ their ends are excluded,
since only the inside of the circle is
under consideration. "Isometries"
are taken to be the transformations of
the circle that take it into itself and
chords into chords. Correspondingly,

The dal'k putnlel' 0l culttlerlional ulisdom

How even a genius can fail to see-or share-a new truth

by A. D. Alexandrov

NY PERSON WHO HAS
worked with mathematics-
solving problems, demonstrat-
ing propositions, developing

new concepts-has certainly had oc-
casion (andnot just one)tobe amazed
by one's own dullness. You think the
problem through, again and again, but
can't solve it, and when you leam the
answer you think: "Whata dummy I
am! Why didn't I think of that?" Or
sometimesyou think and thinkandfi-
nally solve it, and you're glad, but you
still think "What a numbskull l am!
Why didn't I thinl< of that sooner?"

Problems are one thing, but en-
tirely new concepts are another. Sup-
pose you're working on some prob-
lems, but it never occurs to you to
look at them from another angle or
from a more general point of view.
And so you never formulate the gen-
eral concepts that would clear up a
whole family of problems. If-oh,
joy!-you happen to figure them out,
you're surprised: "Why didn't this
occurtome earlter?" Andif someone
else already thought of it, then no
matter how gratified you are by the
march of science, you're angry with
yourseif: "How could I have missed
thatl What a blockhead I arnl"

In short, anyone who has thought
hard, pondered deeply, and searched
thoroughly for an answer knows how
thick and du1l a person can be. Usu-

Opposite (I to r): |6nos B61yai,
Nikolay Lobachevsky, and Carl
Iriedrich Gauss. Figure 1
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geometrical figures mapped onto
one another by such transforma-
tions are called "congruent."

Any theorem of Lobachevskian
plane geometry becomes, in this
model, a theorem of Euclidean geom-

etry. This general statement is proved
by verifying the validity of the axioms
of Lobachevskian geometry in the
model.l The fact that the parallel
axiom fails in this model is immedi-
ately seen from figure 2: through the
point C outside the straight line (that
is, chord) AB there are an infinite
number of "straight lines" (chords)
that do not intersect AB.

I

I

l

Figure 2

Therefore, if there is a contradiction
in Lobachevskian geometry the same
contradiction (rendered into the "lan-
guage of the circle") emerges in EucLid-

ean geometry as well. So Lobachevskian
geometry has real meaning-as much
meaning as geometry applied to real ob-
jects can have.

Lobachevskian geometry is as con-
sistent as Euclidean geometry, and
has the same degree of real, experi-
mentally established meaning.

tnom Eudid to Lolatheuslty
Back in the 4th centuryB.c. Euclid

himself stated the "parallel axiom"
(his Fifth Postulate) as foilows: f a

straight line crosses two straigfit lines
and forms interior opposite angles
who se sum is les s than two ngfit angJes,

then, when indefinitely produced, these

lines will meet on the side where tha
angles ara less than two dght angJes.

We've given Euclid's formulation of the

lYou can read more about models o{
axiomatic systems/ and models of non-
Euclidean geometry in particular, in
the article by Vladimir Boltyansky in
the last issue of Quantum. See also the
article by Simon Gindikin, "The
Wonderland o{ Poincaria," in this issue

statement only to show how compli
cated it is. Other postulates are much
simpler and their formulations are
shorter-for example, the First Postu-
late: A straight line can be drawn
through any two points.

Naturally attempts were made to
get rid of this rather complicated FiJth
Postulate, to derive it from other fun-
damental premises of geometry. I
think Euclid made such attempts
himself, or, in any case, they were
undertaken aheady in his lifetime.
Some Arab authors mentioned
Archimedes's treatise "On Parallels"
(3rd century n.c. ) where, presumably,
the Fifth Postulate was deduced from
some simpler premises.

Attempts to prove the Fifth Postu-
late continued from that point on,
over the course of 2,000 years. A 1ot

of scientists took up the challenge.
Here's a partial list: the Greeks
Ptolemy (2nd century e.o.-the very
Ptolemy who created the Ptolemaic
system in astronomy) and Proclus
(5th century); the Arab al-Khaisam
(1Oth century); the Persian (or Tadiik)
Omar Khayryam (11th century or be-
ginning of the 12th century-the
same Omar Khayyam who is known
as a great poet), the Azerbaliant at'
Tousi (13th century); the German
Clavius-schlussel ( 15 14-from here
on the date of the treatise is given);
the Italians Cataldi (1503), Borelli
(1658), and Vitale (1680); the English-
man Wallis (155311, the Italian
Saccheri (1733)r the German Lambert
(l756lr the Frenchmen Bertrand
(17 7 Bl and Legendr e (17 94, 1 823 ); the
Russian Guryev (l799l. All their at-
tempts amounted to the deduction of
the Fi{th Postulate from some other
assumption. Many of them didn't no-
tice this and thought they had suc-
ceeded in proving the postulate. Others,
who were more penetrating and criticaf
formulated the statement from which
the Fi{th Postulate had been deduced-
as, for instance, Omar Khayyam did.

In the 17th and l8th centuries, as

mathematics developed rapidly, the
search for a proof intensified. An Ital-
ian monk-a teacher of mathematics
and grammar by the name of
Girolamo Saccheri-made sigri{icant
efforts. The treatise containing his

attempt at a proof of the Fifth Postu-
late appeared in 1733-the year of his
death. Its title was Euclid Cleansed of
All Blemishes, or A Geometrical At-
tempt to Establish the Ffust Principles
of All Geomety.Fielyrng on his pre-
decessors' works, Saccherri tried to
prove the Fifth Postuiateby reductio
ad abswdum: having drawn a con-
clusion equivalent to negating the
Fifth Postulate, he deduced conse-
quences from it, trying to come to a
contradiction. But as the negation of
the Fifth Postulate is Lobachevsky's
axiom, his (Saccheri's) conclusions
were nothing more or less than some
theorems of Lobachevskian geom-
etry. In other words, Saccheri was
developing a new geometry without
lgali zing what he was doing. He failed
to come to a contradictioq heneverthe-
less concluded that he had proved the
Fifth Postulate, although he apparently
wasn't too sure of this himself.

The 18th century saw a rash of
treatises on the theory o{parallels (55

of them!). The most prominent
among themwas writtenbythe Ger-
man mathemati.cian, physicist, and
astronomer |ohann Heinrich Lambert
in 1766. Attempting a proof of the
Fifth Postulate by reductio ad
absurdum, he deduced many conse-
quences from its negation. We might
say it was Lambert who built the
foundations of Lobachevskian geom-
etry. There was no contradiction in
his conclusions, and he fidn't think
he had found any (unlike almost all of
his predecessors). Lambert even ex-
pressed the thought that he "almost
must draw the conclusion" that the
hypothesis he tried to refute is "valid
on some imaginary sphere." Never-
theless, he was still certain that geom-

etry based on the negation of the Fifth
Postulate is impossible. His paper, how-
ever, didn't prove this conviction. So

Lambert was apparently dissatisfied
with his work and didn't pubJish it. It
was published nine years after his
death-20 years after it was written.
Lambert came very close to discovering
a new geometry/ but didn't.

The German mathematicians
Schweikart (1818) and Taurinus
( i 825 ) fi,lly reahzed the possibility o{
non-Euclidean geometry, but they
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never expressly stated that the theory
they posited would be just as logically
rigorous as Euclidean geometry.

Carl Friedrich Gauss, according to
his own testimony, began analyzing
the theory of parallels in 1792.ludg-
ing from his correspondence, we can
conclude that he was gradually ap-
proaching the idea that a proof of the
Fifth Postulate is impossible. In i817
he wrote to Olbers: "I am coming
closer and closer to the conviction
that the necessity of our geometry
cannot be provery at least by a human
reasoner and for human reason."
Since he wrote "I am coming closer
and closer," he clearly hadn't reached
that conviction yet. He wrote further:
"Perhaps in another life we might
come upon other views of the nature
of space that are inaccessible now.
Till then, geometry must be ranked
not with arithmetic, which is purely
a priori, but with mechanics . . ." At
the same time he moved non-Euclid-
ean geometry forward considerably.
But it wasn't until 1824, ina letter to
Taurinus, that he wrote quite defi-
nitely that non-Euclidean geometry,
"in which the sum of angles in a tri-
angle is less than 180o, is quite logi-
cal" and that he had "developed it for
himself rather satisfactorily. " Never-
theless, it wasn't until 1831 that he
set down his deductions (albeit
briefly); and he never published any-
thing on non-Euciidean geometry. In
1829, in a letter to Bessel, Gauss
wrote: "I fear the Boeotians will bel-
low if I express my views."2 He was
afraid of losing his authority in the
scientific community.

While Gauss was busy writing all
this, a man was found who not only
developed a quite satisfactory geom-
etry negating the Fifth Postulate, and
not only came to the conclusion that
this geometry was absolutely logical;
he also reported his ideas to a scien-
tific gathering without fear of any-
body "bellowing." It was Nikoiay
Ivanovich Lobachevsky, who came to
the conclusion as early as 1824 that

2The inhabitants of Boeotia, a
province of ancient Greece, were said
to be incredibly stupid. "Boeotians"
was a term of abuse in Gauss's time.

non-Euclidean geometry was feasible.
On February 11,1826, he submitted
his report to the physical and math-
ematical department of Kazan Uni-
versity. This report was enlarged in his
paper "On Elements of Geometry,"
which was published in the Pzoc eedings
of Kazan University from February
1829 through August 1830.

In 1 835-38 Lobachevsky published
an elaborated statement of his theory,
"New Elements of Geometry with a
Complete Theory of Parallels." He
wrote in the preface: "The fruitless
efforts since Euclid's time, over the
course of two thousand years, have
led me to suspect that the notions
themselves do not contain the truth
that people have tried to prove and
that, like other physical laws, can be
verified only by experiment-for ex-
ample, by Astronomical observa-
tions." Lobachevsky regarded the
problem of verification of any geom-
etry as a matter of experience.3 He
considered his geometry a possible
theory of the properties of real
space-that is, of the structure of cor-
responding relations between mate-
rial bodies and phenomena.

Almost simultaneously with
Lobachevsky, in 1825 the young
Hungarian mathematician f6nos
B6lyaia came upon the same geom-
etry. In 1832 B61yai stated his conclu-
sions and published them as an ap-
pendix to his father's textbook on
geometry. His father, Farkas B6lyai,
sent the textbook to Gauss. The lat-
ter approved |6nos B6lyai's results
but at the same time said that he
had been aware of this for a long
time. Realizing the significance of
his discovery,l6nos thought Gauss
was taking credit for the discovery.
From that point he stopped working
on non-Euclidean geometry for a
long time. But Lobachevsky contin-
ued to develop his geometry and to
publish papers presenting his ideas
right up until he died.

One shouldn't be surprised that
the new geometry seemed impos-
sible. Look at figure 3: clearly, the

3The Russian word opyt can mean
either experience or experiment.-Ed.

aPronounced YAH-nosh BO-yai.-Ed.

straight line CM is certain to cross the
Iine AB when extended far enough.
The reverse assumption seems ab-
surd. There can be no such thing as
non-Euclidean geometry! Which
makes Lobachevsky's and B6lyai's
idea all the more bold-they decided
to allow such "absurdity." Nowa-
days, when the straightforward mean-
ing of non-Euclidean geometry is
common knowledge, you don't need
to be bold at all-all you need is the
merest capability of abstract thought.

Figure 3

Fnom leliel to prool

And so Lobachevsky and B6iyai
openly, and Gauss in his letters, ex-
pressed their conviction that non-Eu-
clidean geometry is valid and devel-
oped it further. Nevertheless, until the
real meaning of the new geometry was
fo,-{ this great discoverywas left hang-
ing: Lobachevskian geometry was noth-
ing more than an imagnary construct.

In 1839-40 two papers appeared,
written by F. Minding a professor at
Derpt (Tartu) University. In them he
examined certain special surfaces:
surfaces of constant negative curva-
ture. In essence/ Minding came to the
conclusion that the geometry on such
surfaces is actually the geometry of
Lobachevsky, though he didn't state
this explicitly. It's interesting to note
that two years before Minding's pa-
pers were published, one of
Lobachevsky's works was published
in the very same journal!

In 1854, upon taking the post of
professor at Gottingen University,
Bernhard Riemann delivered a trial
lecture, as was the custom. It was
entitled "Hypotheses Constituting
the Principles of Geometry." Thelec-
turewas a treasure trove of fruitful ideas:
from a general conceptualization of
mathematical space to statements
that anticipate the general theory of
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relativity. In addition, Riemann intro-
duced the general theory of a certain
kind of space (now called Riemann
spacel, which includes, as the simplest
instances, Euclidean and Lobachev-
skian space and so-called spherical
space. Riemann gave apurely analyrcal
definition of these kinds of space; in es-

sence, this meant that Lobachevskian
geometry is as consistent as mathemati-
cal analysis.

But nobody understood Riemann's
lecture, or noticed it. Only one man
listened to it with great interest and
left the hall deep in thought. It was
the 7 7 -year-old Gauss. Riemann's lec-
ture wasn't published until 1868, two
years after his death. But then it imme-
diately made a tremendous impression
and inspired the rapid development of
the theory introduced there.

In 1857 Codazzi developed
Minding's ideas, but he didn't com-
pare his results with non-Euclidean
geometry. Maybe he didn't know about
ig even though some of Lobachevsky's
works had been published in French and

German, and B61yai's paper was issued
in Latin in 1832.

It wasn't until 1868 that Beltrami,
relying on Minding and Codazzi,
made the necessary comparisons and
produced a detailed proof that
Lobachevskian geometry holds for
surfaces of constant negative curva-
ture (like the one in figure 4).

Beltrami's results were analytical,
however, and far from elementary

geometry/ far from Euclid. Three
years later Klein noticed his model on
a circle, which was described at the
beginning of this article. Later Poincar6
found another interesting model that
rnvolved complex numbers.s

So, 40 years after the publication of
the first papers by Lobachevsky and
B6lyai, their conviction was proved
and their geometry was acknowl-
edged throughout the world.

Genius

The idea that some geometry other
than that of Euclid was even think-
able dawned on Lambert as early as

17 66; inthe first half of the 19th cen-
tury the same idea was proposed by
Schweikart, Taurinus, Gauss, Loba-
chevsky, and B61yai.

To formulate an idea refuting a uni-
versally accepted idea is a great gift in
and of itsel{. But it isn't science yet-
only an idea. Science requires the trans-
formation of an idea into theory, just as

engineering requires the transformation
of an idea into an invention.

Genius is not merely a flight of
fancy but persistence-steady work
supported by inspiration, and rnspira-
tion fortified by hard work.
Copemicus expressed the notion that
the Sun, not the Earth, is at the cen-
ter of the solar system (an idea ex-
pressed by Aristarchus of Samos way
back in the 3rd century n.c.), but he
went on to construct the Copemican
system and give an exact description
of a planet's motion around the Sun
that agreed with observations. The
same is true with Lobachevsky. Not
only did he express his belie{ in the
possible existence of non-Euclidean
geometry, he also constructed that ge-

ometry. And just as Copernicus
opened a new path in astronomy/
Ieading to the modern concept of a
universe with many "worlds," plan-
etary systems, galaxies, and so on,
Lobachevsky blazed a trall in geom-

etry, leading to the creation of manY
different "geometries," the most var-
ied geometrical theories of "imagi-
nary" space-topological, Riemann,
Finsler . . . there's no counting them.

sSee "The Wonderland.of Poincari4"
page 20.

In the 1860s and 1870s, when math-
ematicians began to reconstruct ge-

ometry in eamest, Lobachevsky was
called "the Copemicus of geometry,"
and iustifiably so. We mustn't forget,
of course, that a new geometry was de-

veloped and published by B6lyai as wel1,

but the credit goes to Lobachevsky be-

cause he did it earlier, and thereafter he

continued his investigations and contin-
ued to publish his results.

The appearance of non-Euclidean
geometry marked the beginning of a
revolutionary transformation of ge-

ometry. As happens with every revo-
lution, reactionary elements arose
along with the forces bearing the
revolution forward. |ust when the
new geometrywas about to be discov-
ered, the philosophy of Immanuel
Kant appeared on the scene. In 1781,
inhrs Critique of Pure Reason, Kant
held that geometry is a priori linde-
pendent of experience) and deduced
from this the apriority of space itself,
as an a priori form of contemplation.
Any geometry other than the one in-
herent in this form oi contemplation
seemed unthinkable.

Lobachevsky openly opposed these
views. Like all great scientists, he was
a philosopher: science can't make
progress without philosophy. The
appearaflce of the new geometry rc'
sulted in unknown and as yet incon-
ceivable ways of proceeding in sci-
ence. The revolution took hold.
Genius is revolution, and revolution
is genius in action.

Dullness

The history of the Fi{th Postulate
and non-Euclidean geometry demon-
strates human genius, but it also
shows the mind's clumsiness (if not
outright dullness).

To begin with, most attempts to
prove the Fifth Postulate were based
on errors. To the authors it appeared
that they had found a proof. This
persisted even to the beginning of
the 19th century. Only a few real-
tzedthat they were relying on addi-
tional assumptions equivalent to
the Fifth Postulate and explicitly
formulated them.

The most characteristic example is
Saccheri: along with his deep and re-

clla,bllc
cr+p+y < 180'

Figure 4
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fined conclusions concerning non-
Euclidean geometry, he still ends up
concluding that he had succeeded in
taking the hypothesis that denies the
Fifth Postulate and "pulling it out by
the roots," cleansing Euclid of his
"blemishes" in the process.

When non-Euclidean geometry
was discovered and promulgated,
and questions about its real mean-
ing arose, dimwittedness showed
itself in fuli force.

In1827 Gauss developed the prin-
ciples of the general theory of geom-
etry on surfaces in which the shortest
curves play the part of straight seg-
ments. In particular, he proved that
on a surface of negative curvature/ the
sum of the angles of a triangle is less
than 180'. He knew also that it was
the same in non-Euclidean geometry.
But he didn't compare those conclu-
sions, nor did he surmise that non-Eu-
clidean geometry must be realized on
certain surfaces. If he had grasped the
idea, the proof would not have been diJ-
ficult for him, a mathematician of ex-
traordinary intellectual power.

Such a phenomenon is rather com-
mon. It doesn't occur to people to
compare things that seem quite dif-
ferent but, upon scrupulous examina-
tion, prove to be closely connected or
even coincident.

It was the same with non-Euclid-
ean geometry and geometry on sur-
faces with constant negative curva-
ture. Neither Minding and Codazzi,
nor even Lobachevsky, made such a
comparison! It was Beltrami who did
it 40 years after Gauss's work.

Meanwhiie, in 1859 Cayley cre-
ated a theory of distance containing a
model of Lobachevskian geometry,
but he didn't realize it because he
hadn't iuxtaposed his theory and
Lobachevskian geometry. And later,
in 1861, he published a paper on
Lobachevskian geometryl

In wasn't until 1871 that, after
making such a comparison, Klein
came upon a simple model in a
circle. This elementary model
settles the question of the unprov-
ability of the Fifth Postulate. That's
where it all ended-there lies the
final resting place of the 2,000-year
problem that tortured the world's

greatest mathematical mindsl
Nowadays there are people who

are stiil trying to "prove" the Fifth
Postulate and who besiege mathema-
ticians with their "results." But since
the problem of the Fifth Postulate is
solved by the model rn a circle and it's
not difficult for anyone to understand
this solution, al1 the so-called "proofs"
and "resu1ts" can't be relegated to
mental clumsiness but to plain o1d
stupidity, without ruling out the pos-
sibility that the authors are bona fide
medical cases. Stupidity is not the
same as dullness. Mental clumsiness
can be characteristic even of geniuses:
this is all too readily apparent from
the history of the Fifth Postulate and
non-Euclidean geometry.

Character
Gauss, B6lyai, and Lobachevsky

are the three mathematicians who
discovered non-Euclidean geometry.
Three persons-three personalities.

Friedrich Gauss was a mathema-
tician of extraordinary ability. He
called "the great Gauss," princeps
mathematicotum ("first among
mathematicians"), the "prince of
mathematisians."

But for all his mathematical
power, Gauss was intellectually cau-
tious and indecisive by nature. He
spent more than 30 years investigat-
ing the theory of parallels before he
decided to express, even to himself,
his firm conviction that non-Euclid-
ean geometry is valid. Then there was
another kind of caution-cowardice,
which kept him from publishing his
results f.or tear of rousing the
Boeotians against him.

|anos B6lyai contrasts sharply with
Gauss. He was only 23 years old
when he came up with non-Euclid-
ean geometry (Gauss did it at the age
of 47, Lobachevsky at 3I). Loba-
chevsky was 32 when he began pub-
lishing, B6lyat was 30, and Gauss
never published on this topic during
his lifetime. B6lyai's paper on non-
Euclidean geometry was brilliantiy
written-if anything, it was rather
too concise. The brilliance of his tal-
ent coresponded to other features of
his passionate nature. He was an
army officer-one of the proud Hun-

garian hussars-and a duelist. Once
he managed to get into a sword fight
with several opponents. He fought
them, one after the other. He had re-
served the right to play the violin be-
tween duels to restore flexibility to
his hand. He ended up pinning them
all(not to death, though).

Pride ruined B6lyai-not because
he was killed in a duel, but because
his pride extended to his mathemat-
ics. As was mentioned above, after
hearing Gauss's response to his work
on non-Euclidean geometry, B6lyai
concluded that Gauss had simply ap-
propriated his discovery. When one of
Lobachevsky's books was published
in German, he thought it was Gauss
who had taken the pseudonym
"Lobachevsky" and had stolen his
(B61yai's) results. Besides the discov-
ery of non-Euclidean geometry,
B6lyai wrote another mathematical
paper with ideas that were ahead of
their time, but the paper wasn't done
properly. During his last year of life,
his mind became clouded. He died in
1850, at the age of 58.

Lobachevsky differed greatly
from both Gauss and B6lyai: he
combined boldness with persistence
and thoroughness, the power of
theoretical thought with a strong
will. His discovery was not ac-
cepted, and he was thought to be a
bit crazy, as Chernyshevsky charac-
terized him.6 Recognition from
Gauss came later. But Lobachevsky
wasn't abashed and continued his
" crazy" research ott " crazy" geom-
etry and continued publishing his
papers after his first {undamental
work appeared in 1829-30. He went
blind in his old age and had to dic-
tate his last book, Pangeomefty.

Lobachevsky was known for more
than his scientific activity. For 18
years he was rector of KazanUniver-
sity, showing outstanding energy,
administrative dexterity, nd an un-
derstanding of the challenges in-
volved in educating the younger gen-
eration. During the dif{icult times of
a cholera epidemic in 1835, his ener-
getic and competent behavior seemed

6See the beginning of "The
Wonderland o{ Poincaria."
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unlikely for a man who dealt with
imaginary geometry/ one of the most
abstract fields in the most abstract of
sciences-mathematics. But maybe
we shouldn't be so surprised. A strong
wi[ necessary for resolute action under
hard conditions, is just as necessary for
developing and defending one's scien-
tific convictions and the truth in the face

of bellowing Boeotians.
Talent and genius are not merely

specific capabilities, but a matter of
character as well. Magellan and
Nansen needed determination to sail
to unknown lands; theorists need in-
tellectual determination to think the
"improbable" and develop it in spite
of established views and traditions,
and sometimes even despite their
own doubts. But to be convinced of
one's own ideas isn't enough; the
ideas must be communicated to oth-
ers. And this step also requires deter-
mination, because people often mis-
understand/ or toss awayt or even
ridicule, new ideas and results. And
one's colleagues are often the first to
do it-scholars who are convinced of
the incontrovertibility of their views,
sure of their intellectual infallibility.
They are the academic Babbitts occu-
pying prestigious chairs at universi-
ties-the Boeotians whom Gauss
didn't dare stand up to.

Even though Gauss had nothing to
fear except the uncomplimentary
opinions of his colleagues, he never-
theless concealed his scientific con-
victions-he hid the truth. He be-
haved wiseiy from the point of view
of philistines-past or present-who
pursue occupations in science (or in
any other field, for that matter).

Real science recluires boldness of
thought and boldness in openly profess-

ing a bold thought. The history of the
Fifth Postulate and non-Euclidean ge-

ometry shows how many difficulties
must be overcome even by bold-think-
ing people to reach truths that seem so

simple once they have been discovered.
It shows how the most brilliant minds
are capable of dull thought. So great sci-

entists combine boldness of thought
with modesty in assessing their own
achievements. Along with laws and
axioms, we would do well to leam that
lessonfrom the history of science. CI
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re terface between two different media
is split into two ruys. a reflected ray
and arefractedray.If the original ray
propagates in a medium with a

greater refractive index n, the re-
fracted ray is bent toward the inter-
face more than the reflected ray is.
Also, rays incident at the interface at
very oblique angles do not even form
refracted rays-all the energy is re-
flected back into the medium it
comes from (rays 2 and} in figure 1).

The interface for such rays works ex-
actly like an ideal mirror. This is
what physicists cail total intemal re-
flection. The medium with the
greater refractive index n is called
optically more dense. This term is
iustified by the fact that light propa-
gates in this medium at a slower
speed v (we recall thatv: cf n,where
c :3 . 108 m/s is the speed of light in
a vacuum).

Only one step separates these
simple general considerations from
the subject at hand. The "classical"
optical fiber is a thin, two-layer glass

thread. It has a core region with an
index of refraction n slightly higher
than that of its surrounding sheath
(figure 2). Because of this higher re-
fractive index, rays that enter the end
of the fiber at a shallow angle to the
central axis are reflected back into the
core when they strike the interface
between the core and the sheath. We
can see from geometric consider-
ations that if a ray is reflected back
into the core at its first encounter
with the inter{ace, it will continue to
be conJined indefinitely (ray 1 in fig-
ure}l. Naturally the trajectory of each

Figure 1

Light rays striking an interface. The two media have
rcfuactive indices n , and n, (n , , n,). Ray 1" is split into the
rcflected ruy 1' and'the refracied ray 1": for ray 2, the
refracted ray 2" is in the plane of the interface between the
metiia; all the energy of ruy 3 is ftansformed into the enerw
of the reflected ruy 3'. All the ruys that strike the interface
at angJes shallower than that of ray 2 meet the condition for
tot al i nt etnal r efle cti on.
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Words hanging by a thread-of light

by Yury Nosov

IBER.OPTIC COMMUNICA-
tion is a fundamentally new type
of inJormation exchange with vir-
tually inexhaustible possibilities.

It's an instructive outgrowth of the
scientific revolution, embodying the
hopes of humankind for a worldwide
communication system. Today
there's not a single developed country
in the world that isn't working on a
fiber-optic system, and every edu-
cated person has heard of this marvel
of the twentieth century. But it's one
thing to know about something, an-
other thing to know something. So,

listen up! I'm going to take you into
the what, where, when, how, and
why of fiber-optic communication.

It's much easier to leam about sci-
ence from our own experiences. So

imagine diving deep into a river or an
ocean. After the water calms down,
Iook back at the world you just left.
If you look directly overhead, you'll see

the brightness of the sufirmer sky, the
sun higJr abovg an{ i{ you're lucky, a
sea gull skimming over the water. But
if you look up at an angle, you'll see

nothing but the surface of the water,
which from the inside seems like a

murky, fluttering mirror. Your ey e carr' t
escape from this "watery prison." And
so we've managed to combine the
pleasant and the useful: we've had a
nice swim and we've gotten ac-
quainted with the physical phenom-
enon of total internal reflection.

One of the most basic of the "op-
tical ABCs" is the fact that a light ray
(ray 1 in figure 1) incident at the in-

Figure 2
Light traveling aTong a two-layer fiber
optic. Ray 7, owing to total intemaT
rcflection, caroms from side to side and is
confined to the corc of the fibu optic. The
out-of-aperture ruy 2 gradually loses its
energy, passing it to the rays that leak into
the sheath.
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ray undergoing total intemal reflec-
tion is a single broken line, but the
energy of all these rays propagates
along the fiber's axis.

Irr this way a flux of light that fi-
verges only slightly and enters one
end of the fiber passes through the
core without diminution and exits
the other end of the fiber. The fiber
functions here as a light guide, called
afiber optic. Orre of the popularizers
of fiber optics {iguratively compared
the light raypassing along the optical
fiber to a bullet racing through a

metal pipg ricocheting o{f its walls.
Now we can give some math-

ematical polish to this physical pic-
ture. Consider the geometry shown in
figure 3, in which a light ray is inci-
dent on the end of the fiber at an
angle Q' to the axis of the fiber. In
your textbooks you usually encoun-
ter Snell's law in the form

n, sin 0, : n, sin 0r,

where the angles 0, and 0, are mea-
sured relative to the normal to the
interface. But Snell's law can also be
stated in terms of the angles that the
rays make with the interface itself.
Applying Snell's law in this form to
the rays at point A, we have the gen-

eral expression

n1 cos Q' = rTrcos Q"'

The critical angle $" for total intemal
reflection is found by setting 0" : 0.

Therefore,

\
COSQ^ = 

-'nt

Applying Snell's law in the usual
form to the rays at point B yields

sin Q = n, sin $''

For the critical case, the angle of in-
cidence Q = 0o is grven by

sinQo = n, sinQ"

=J41.
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Figure 3
The geometry for calculatingthe
numeilcal apertwe for a fiber optic.

Since the values of n, and nrare usu-
ally close to each other, we can obtain
an approximate formula

sinQn =

= lLn Ltt,

whereAn :frt-fiz.The term sinQo on
the left side of this equation is called
the numerical aperture. The greater
this quantity, the larger the portion of
the light flux from a source that is
" captured" by a fiber optic. Rays that
deviate from the fiber's axis at angles
smaller than Qo are called aperture
tays (also "channelized" or "di-
rected"). Out-of-aperture rays (for ex-

ample, ray 2 in hgorc 2), on the other
hand, leak out. At each encounter with
the sheath, part of the energy of such a
ray is refracted into the sheath until all
its energy is lost. If a two-layer fiber op-

tic is bent slightly, this scenario remains
valid except {or a sma11 decrease in Qo.

This unusual curved propagation
of light was first demonstrated as far
back as 1870 by the Englishman |ohn
Tyndall. You can reproduce his ex-
periment if you like (see frgure 4).
A{ter what was said above, it's clear
that the stream of water is the "core"
and the surrounding air is the
"sheath" of a light guide, and that it
shines because the air-water interface
shakes slightly, which leads to distur-
bances here and there that disrupt
total intemal reflection so that light
can escape from the water.

"That's all very fine," you may be
saylng. "But arrows in a figure are one
thing, actual rays of light are another.
Tyndall's experiment merely demon-
strates the principle of total internal
reflection, not a practical method of
transmitting light along curvilinear
paths." And you're right: it took sci-

entists a long time to understand that
this principle is the best one and to
develop the technology to make use
of it. Before this they wasted a lot of
effort trying to manufacture tubes
with polished inner walls or with
countless mirrors built in (sort of like
a periscope, but more complicated).

The first fiber optics were made in
the early 1950s. A cylindrical glass
rod was slipped inside a glass tube;
the compositions of the glasses in the
rod and pipe were selected so as to
provide a higher refractive index n for
the rod. Then this assembly was
heated while being rotated in the
flame of a gas bumer to {orm a solid
glass rod, which was stretched into a

thread as the glass softened. When the
rod is stretched, the thickness of the
sheath (the tube) decreases as much
as the diameter of the core (rod) does.

When you first encounter such fibers,
you are struck by how they seem to
belie their "glassy genealogy," for
they are strong as steel and flexible
enough to be wound onto a pencil,
and they can reliably transmit a flux
of light. Of course, a hair-thin fiber
can't transmit a great deal of light, so

individual {ibers are combined into
braids, cemented and poLished at their
ends. The fibers can be assembled
into braids either chaotically, without
any order, or regularly, according to
some rule. If chaotically, the cables
obtained can be used only to transport
light fluxes (for example, for lighting
places with difficult access). Cables
with orderly arranged fibers can be

Figure 4
Tyndall's experiment. (If you try to
ruproduce this experiment, inwhich
ligfit propagates inside a stream of
water, make sure that your cufient
Teads are protected against contact
with the water.)

(nr+ n )(nr- n")
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used to transmit images. And by ar-
ranging the fibers in a cabie in certain
ways, it's possible to process images
(superposition, decomposition, trans-
formation, and so on). Some of the
applications of glass fibers are well
known. No doul:t you've seen fiber
lamps, or maybe you've been forced
to become acquainted (not so pleas-
antly) with a medical endoscope for
examining the inside of the stomach.
Fiber optics have also found their way
into industry (instrumentation, com-
puters) and into our everyday life.
They have become an indispensable
part of humancivilization in the sec-
ond half of the twentieth century.

Despite the attractive properties of
these cables, they are only "short-
range weapons" because a mere I to
2 meters o{ such a cable are enough
to attenuate the flux of light by a half.
One can easily calculate that only a
millionth of the energy put into a
100-meter-long cable reaches the
other end-there's no point thinking
of a communication system with
such losses. However, dreamers
arefl't deterred by the obvious, and
scientists persisted in searching for
ways to solve this problem. An added
impulse was provided by the arrival
of lasers in I 960. With their powerful,
sharp light beams, lasers seemed spe-
cially made for optical communica-
tion. And that's how it began: a laser
was placed on the roof of one sky-
scraper and a photoreceptor on the
roof of another. Voil)-an optical
telephonel The problem was, it
worked onlywhen there was nothing
in the way: fog, rain, snow, buildings,
hills . . . Besides, such a telephone
could not transmit signals over large
distances. No one played with this
toy for long-it was too costly.

But in 1966 an Englishmen by the
name of Kao combined (in his head)
a laser and a fiber optic, and he pre-
dicted the possibility of a new type of
communication if only . . . if only
the fibers were a thousand times
more transparent.

Let's make a detour to get ac-
quainted with some numerical esti-
mates. In radio, acoustics, and com-
munication science a dimensionless
unit-the decibel (dB)-is used to

compare two values of the same
physical characteristic. A decibel is
defined as l0 times the logarithm of
the ratio of two power levels. Applied
to fiber optics, it may be defined as

B = 10los#,

where P. and e",, .tr#r the power
of the light at the entrance and exit,
respectively, of the fiber optic. It's
convenient to use this kind of charac-
teristic of signal attenuation (that is,
a logarithmic one) when designing
complex systems/ since it replaces
the operation of multiplication with
the simpler operation of addition.
Here's an example. Let a transmission
line consist of three sections. The first
section attenuates the signal by a fac-
tor of 10; the second section reduces
the power level of the signal by a fac-
tor of 1,000, and the third section by
a f.actor of 2. The whole line attenu-
ates the signal by afactor ol 10 x 1,000
x2, orby 10 + 30 + 3 = 43 dB. An ad-
ditional advantage is that the new
characteristic helps scientists avoid
large numbers, which they generally
don't like. The index of fiber transpar-
ency is the attenuation of a light sig-
nal per unit length of fiber b : Bl1,
measured in decibels per kilometer.

So in effecg Kao was asking for a
transparency index b < 20 dB/km.
Typical fiber-optic cables had an in-
dex b : 1,500 dB/km, and normal
window glass has an index b =
100,000 dB/km. Fortunately, we live
in technological times, which means
that any problem correctly posed gets
solved, sooner or later.

I:nl97O Coming Class, an Ameri-
can company/ announced that it had
created a fiber with a transparency
indexb= 15 dB/km. Talkaboutasen-
sation! So the year 1970 marks the
beginning o{ the era of fiber-optic
communication.

The company had given up on the
idea of using multicomponent glass
{or this purpose/ since it showed no
prospects, and concentrated its efforts
on quattz (silicon dioxide, or SiOrl.
Coming scientists developed a tech-
nique whereby a mixture of
tetrachlorosilane (SiClo) and oxygen is

fed through a heated qtrafiz tube. Lr
the high-temperature zone (where
T = 1,400'C) this mixture undergoes
a reaction to form extremely pure
qrlartz, which unif ormly precipitates
onto the walls of the tube (fig. 5). By
adding other reagents containing bo-
ron, phosphorous/ germanium, and
fluorine to the mixture, you can
" dopte" the quartz to precisely control
its refractive index. After a qvattz
layer of the required thickness and
composition has precipitated on the
walls, the tube is reheated to collapse
it into a solid rod, or "blank." This
blank is then softened by heating and
drawn through a system o{ dies until
it forms a fiber several kilometers
long. The fiber is typically about
0.125 mm in diameter, and the diam-
eter of its core is about 0.05 mm. In
the final stage, the fiber is drawn
through an extruder with a polymer
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Figure 5
Stages of manufacfitre of two-layer
quartz fibers.
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melt and leaves the extruder coated
with a protective jacket. Finally, the
fibers-a few or hundreds-are
twisted together with strengthening
fibers and coated with several layers
of polymer, and the fiber-optic cable
is ready for action.

On the face of it, the process is
quite logical and simple beyond
words. But in fact, the machinery
needed to manufacture the blanks is
a highly complex, computerized set
of equipment including a gas purifica-
tion system that ensures "semicon-
ductor" purity and sterilityl as well as

dozens of instruments for controlling
and regulating the process. You'd be
even more impressed if you saw the
three-story building where the blanks
are drawn out to form the fibers.
When you watch the operators in pro-

tective blue overalls ascending to the
upper level in a vibrating telescopic el-

evator, it makes you think of asffonauts
about to get into their spacecraft.

The success of this qrtartztechnol-
ogy triggered a "steeplechase" among
scientists, engineers, and company
managers. It seemed that every three
months a new fantastic record was
set, only to be forgotten after another
three months. Finally, the transpar-
ency index stopped dead at 0.la dB[<m.
Two kilometers of this fiber is more
transparent than a freshly washed
window! A lot o{ work went into this
achievement-EarLy on it was discov-
ered that the redder the light, the
smaller the attenuation in the quartz.
The situation is even better in the
invisible infrared region (fig. 5). The
absorption peaks can be explained by
the inevitable presence of trace water
in the qlJartz- They're not crucial,
though, since one can always tune
the wavelength to a valley between
the absorption peaks. It was in one of
these valleys, at l, = 1.55 pm, that the
record transparency of 0.14 dB/km
was achieved, although for almost a

decade all research was done in the
region i" = 0.85 pm, and scientists con-
tented themselves with a transparency

lThat is, the kind of clean
atmosphere required for the
manu{acture of semiconductors and
other computer components.-Ed.

b (dB/km)

of.b =2 dB/k-.Why? Here we come
uponproblems that lie outside the fiber
but are closely linked with it.

A fiber optic, in and of itself, is not
a communication line. You also need
a generator and a detector of iight sig-
nals-in other words, a transmitter
and a receiver. When superpure fibers
appeared in the early seventies, semi-
conductor technology dominated the
electronics industry. When "part-
ners" were needed for the fiber, it was
only natural to choose a laser and a
photodiode-both semiconductors,
naturally.

The semiconductor lasers of the
early seventies-even the best of
them (heterojunction lasers)-
weren't as developed as the transis-
tors and integrated circuits of the
time. They were not efficient, not
coherent,z and not durable. The only
purpose they served was to validate
certain general principles of quantum
electronics; they were absolutely use-
less for technical applications. The
development of fiber-optic communi-
cation logically required a technologi-
cal revolution in the world of lasers.
And that revolution in fact occurred.
Step by step, all the "nots" in the list
above were eliminated. It happened
first with heterojunction lasers radi-
ating at a wavelength l, = 0.85 Pm.
These lasers aheady existed in the
" preflber" period. Then heterojunc-
tion lasers operating at ?u = 1.3 pm to

'1A light source is called coherent if
it produces light waves whose phases
correlate in time and/or space.

0.8 1.0 t.2 t.4 t.6

1.55 pm were de-
veloped specifi-
callyfor communi-
cation purposes. In
parallel with
(sometimes, even
ahead o{}improve-
ments in laser
technology, photo-
detectors were also

x (pm) significantly im-
proved.

subsidiary components. The laser had
to be turned on and off quickly, so

special excitation circuj.ts rvere in-
vented; the signal receir,ed irom the
photodiode is generall,v too weak to
be processed any further and needs to
be amplified and transiormed, so a
whole series of highly sensitive inte-
grated circuits was developed; the fi-
bers, transmitters, and receivers had
to be combined into a s)-stem, so op-
tical connectors, splitters, and
switches were devised.

Taken together, all these elements
formed the basis of a new branch of
technology, and fiber-optic commu-
nication sprang to life. Already in
1972 a ten-kilometer fiber-optic line
went into operation in England. Sev-

eral years later a 1,0OO-kilometer sys-

tem was inaugurated on the east
coast of the US, The newspapers
bubbled over with reports on ad-
vances in fiber-optic communication
systems.

It soon became evident, however,
that achieving a small attenuation of
the optical signal, which makes long
lines possible, is only half the battle.
The rallying cry of the "fiber steeple-
chase"-more transparent, still more
transparent, still more!-didn't tell
the whole story.

Information is transmitted along
the fiber in short flashes of light, or
pulses. The higher the number of
pulses transmitted over a line per uni.t
time, the greater the capacity of the
line, which is measured in bits per
second. Let's tum back to figure 2. If
the fiber is transparent enough, ray I

10

Figure 6 In addition to
Absorption spectrum of quortz fiber. Such a spectrum is these main ele-
usually plotted on a semilogarithmic scaTe"because of the ments, a commu-
pronounced and distinctive dependence of its transparcncv -.-- .:'- .

G tni *ii"length of the optical radiation. nlcatlon system
needed a host of
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(which undergoes multiple total in-
ternal reflections and caroms from
side to side) and ray 0 (which propa-
gates in the fiber along its axis and
normally travels a shorter distance)
will both reach the other end of the fi-
ber. No energy was wasted, and that's
great. The only problem is, these two
rays will not reach the other end si-
multaneously, because their paths are
different. This wili cause the pulse to
spread out: the rectilinear light pulse,
strictly defined in time, blurs and
turns into a bell-shaped pulse. The
adjacent pulses will overlap and par-
tially or even completely merge with
one another, which leads to distortion
of the information transmitted over
the fiber.

There is yet another mechanism
that causes the pulses to spread. Light
waves of different wavelengths travel
in quartz (as in most other sub-
stances) at slightly different speeds.
Although a laser is considered a

source of monochromatic light, it
nevertheless emits light in a narrow
range of wavelengths. Al1 these phe-
nomena-the nonuniformity of light
propagation, which is caused by the
fiber geometry, and the physical prop-
erties of quartz-are combined in the
term "dispersion of the fiber optic."
Dispersion is very undesirable in
communication systems, and its sig-
nificance increases with the length of
the fiber-optic line. Worst of all, it
appeared to be impossible in principle
to eliminate dispersion in fiber optics.
"Don't ride your horses so hard!"
came the jeers from the sidelines-
from those who preferred to stick
with traditional means of communi-
cation. But the riders in the fiber-op-
tic steeplechase didn't rein in, they
went to the whip: they were deter-
mined to unravel the intricacies of
dispersion. They developed a

unimodal fiber with an extremely
thin core. In this fiber the rays travel
almost strictly parallel to the fiber's
axis, and so they got rid of the first
component of dispersion. Then they
jumped over the ravine with )" =
1.55 pm (fig. 5) and got rid of the sec-
ond source of dispersion, since quafiz
is all but indifferent to wavelength in
this region.

The switch from rather inefficient
first-generation lines ()" = 0.85 pm) to
second-generation lines (1" = 1.55 pm)
was a turning point in the history of
{iber-optic communication. It oc-
curred in the early eighties and
marked the beginning of the trium-
phant procession of fiber optics
through the boundless fields of the
communications world. For ex-
ample, here are the characteristics of
one of the fiber-optic lines of that
time: the amount of information it
could transmit per second in coded
digital form is equivalent to the text
of aII the volumes of the Encyclo-
padia Britannica. Signal regenera-
tors were 150 km apart; today this
distance is closer to 300 km, and the
1,000-kilometer mark will probably
be reached in the near future! Also,
the line capacity mentioned above is
far from being the limit-fibers have
already been created in laboratories
that can transmit several million
phone calls simultaneously. It's hard
to believe that all this is being done
by a glass fiber one-tenth the thick-
ness of a human hair.

It didn't take long for trunk lines of
fiber optic cables to be laid. The trans-
Atlantic line TAT-8, connecting the
US and Great Britain, has been oper-
ating for several 1redrs now; a fiber-
optic semicircle connects ten coun-
tries of the Mediterranean regiory and
fiber optics have brought |apan, the
US, Australia, and New Zealand
closer together. And these are just a
few examples of the longest fiber-op-
tic trunk lines.

Fiber optics are convenient for
short-distance communication lines
as well. They can be used in intemal
communication networks in facto-
ries and offices and on board airplanes
and ships. Using glass fibers, you can
transmit information between com-
puters. The replacement of metallic
telephone cables with fiber-optic
cables is paving the way for cable tele-
vision, including high-definition TV.

Still another remarkable feature
becomes apparent in short fiber-optic
lines: they are "electrically her-
metic." This simply means that fiber-
optic lines are completely immune to
electromagnetic intederence from

Iightning, sparks from electrical de-
vices, radio waves, "cross-talk" from
nearby metallic cables, and so on.
Sometimes it is this one advantage of
fiber over metal cables that causes
engineers to lay a fiber-optic line. If
the line is to be in an electromagneti-
cally dirty environment, they really
have no choice.

On the other hand, fiber optics do
not emit any radiation, so you can't
eavesdrop on a fiber-optic line. Nowa-
days, when inJormation is the most
valuable commodity around, its pro-
prietors are prepared to pay a lot for
protection against unauthorized ac-
CCSS.

There's still more. Fiber-optic lines
can be made extremely iight and
compact-nearly one-hundredth the
weight of metallic lines. This allows
{undamentally novel solutions to
many aeronautical problems-for
example, the communication line to
a spacecraft in the initial stage of its
flight, when radio communication is
hampered by powerful launch inter-
ference. After fulfilling its function,
the fiber line is simply tom away.

Another application that wouldbe
easy to implement is to //tie down" a
meteorological balloon that rises to
an altitude ol2-3 km. Why not, if a
kilometer of a fiber-optic cable
weighs less than a kilogram and can
withstand shear loads of 30-40 kg?

Ultimately, quartz fibers should be
quite cheap, since the raw material
for this product is ordinary sand.
Right now, it's true, optical fiber is
much more expensive than copper
wire, but this is to be expected when a
technologically complexnewproduct is
first put into production. So we can only
speak of potential low cost. But therl
metal cables made of copper and lead
will neverbe exactly cheap.

Fiber-optic communication sys-
tems, with all their remarkable prop-
erties, initiated a technological boom
comparable in its breadth and dura-
tion to the explosions caused by the
personal computer/ VCR, and televi-
sion. One of the proponents of this
new type of communication places it
on the same level as the invention of
the steam engine, the electric light
bulb,thetransistor... O
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MATH
INVESTIGATIONS

The ltotion ol uiuinity
As with everything, it's bigger in Texas

by George Berzsenyi

HE SEVENTH INTERNA-
tional Congress on Math-
ematics Education was held at
the Universit6 Laval, in

Qu6bec, Canada, August 17-23, i
1992. One of the highlights of the j
program was the conferment of A
an honorary degree on Henry ;:!i
Pollak, in recognition of his @i'j
distinguished contributions to &-
mathematics education. In tr
this column, I'11 share with
my readers a really nice problem
areahe described to me some years
ago. When I asked him about it in
Qu6bec, he assured me that as far as

he knows, this problem area is still
awaiting serious mathematical in-
vestigations.

In 1987, as the chairman of the
Texas section of the Mathematical
Association of America, I had in-
vited Henry to present a minicourse
to the members of the section. Fol-
lowing his presentation, we talked
about the size of Texas, and he re-
marked that Minneapolis is in the
vicinity of Texas in the sense that
there are two cities in Texas (nota-
bly, Texline and Brownsville) that
are {urther from one another than
Minneapolis is from one of them.

More mathematically, one may
say that a point P is in the vicinity
of a set S i{ there are two points X
and Y in S such that the distance
dlx, Yl between X and Y is greater
than or equal to dlP, X). We will
denote by y(S) the set of all points in
the vicinity of S.

Even if we restrict our attention
to planar sets, there are many inter-
esting cluestions which readily come
to mind. Some of these are listed be-
low as possible appetizers.

1. What is V(Slii S is a segment?
What if S is a circular/ square/ or tri-
angular region? What if S is semicir-
cular or elliptic?

2.What is Y(Y(S)}for each of the
regions S named above?

I

,. .{ -- \'\ ,,_! (-- !\_r-'/
..:/

'r 'i..\',

i.,

set of 7?

One can also explore the notion
of vicinity in three dimensions, in
discrete sets, with respect to differ-
ent measures of distance (for ex-
ample, in "taxicab geometry"l), as

well as in more general settings. The
possibilities are endless, and I look
forward to learning more about
them from my readers. O

llf you're not acquainted with this
simple non-Euclidean geometry/ you
might look for Taxicab Geometryby
Eugene F. Krause (New York: Dover
Publications, 1986) in your library or
bookstore.

o
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3. Is V(S) of constant
width if S is?

4. Caln V(Slbe arectan-
gular region for some S? A
triangular region?

5. Can two different
sets have the same vi-
cinity?

5. What if S is con-
cave?

7. Is V(S) a subset of
V(7)wheneverSisasub-



BRAINTEASERS

Justlol'lhelunol il!

866
A feminist equation. Solve the number rebus SHE = (HE)'z, in
which the same letters designate the same digits, different letters
denote dilferent digits. (A. Savin)

B6B
Musical thermos. When we fill a thermos with water, we hear a
sound. How will its tone change while the thermos is being filled?
(A. Buzdin, S. Krotov)

867
Making squares. Take a piece of cardboard and cut out the poly-
gons at left. Then try to fit the pieces together to make a square
(1) using each piece except the small square once, (b) using each of
all five pieces once, (c)using each of the five pieces twice. (The
numbers I alrd2 in the figure denote the relative dimensions of the
pieces.) (V. Dubrovsky)

870
Coins on a checkerboard. A number of coins are placed on each
square of a checkerboard such that the sums on every two squares
having a common side differ by one cent. Given that the sum on
one of the squares is 3 cents, and on another one 17 cents, find the
total amount of money on both diagonals o{ the checkerboard.
(V. Proizvolov)

869
In search of special parrs. Find the smallest positive integer such
that the sum of its digits and that of the subsequent integer are
both divisibleby 17. (G. Galperin)
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large. They measured the assertions
of Lobachevskian geometry by the
yardstick of their geometric intu-
ition-and gained an inexhaustible
source for exercising their wit.
Nikolay Chemyshevsky (a writer and
Literary critic, one of the leaders of
revolutionary movement of 1860s in
Russia)wrote to his sons from exile
that the whole city of Kazan was
making fun of Lobachevsky: "What is
this 'curvature of a ray' or'curved
space'? What is this geometry with-
out the axiom of parallel lines?" FIe
compares it to "squaring boots" and
"extracting the roots of the boot
tops," and says this is as absurd as

"writing in Russian without verbs"
(this is a gibe at the geat Russian poet
Afanasy Fet, with his famous poem
written without a single verb: "Whis-
pers, timid breathing, the trills of
nightingales . . ./'which also appar-
ently "kept them in stitches").

A new stage in the development of
non-Euclidean geometry came with
the construction of its first models.2
Today, we take these as a means to
prove the consistency of hyperbolic
geometry, but they were notable not
only for this. Even considered favor-
ably, Lobachevskian geometry
seemed too sophisticated, divorced
from the rest of mathematics, while

2You can find more on models in the
article "Tuming the Incredible into the
Obvious" in the last issue of
Quantum.-Ed.

the Caley-Klein model (see the article
"The Dark Power of Conventional
Wisdom" in this issue) showed that
it quite naturally emerges from pro-
jective geometry/ which was very
popular at the time! On the other
hand, an examination of a model
whose basic concepts were built from
the notions of our habitual Euclidean
geometry made it possible to replace
a formal axiomatic presentation of
non-Euclidean geometry with a more
visual one.

Another model was devised by
Henri Poincar6 while he was explor-
ing some purely analytical problems
of the theory of functions of a com-
plex variable. Unexpectedly, he dis-
covered that transformations appear-
ing in his work could be interpreted
as "displacements" (to be more accu-
rate, isometriesl in the hyperbolic
plane. This discovery made such a
strong impression on him that he re-
called long afterward how it had
come into his mind-"without, it
seems/ being preceded by arry
thoughts on the topic," as he
mounted the footboard of an omnibus
during an excursion to Coutances.
Ten years later Poincar6 made a re-
markable addition to his model by
providing its "physical" background.
And that is the subiect of this article.

[rcunsion inh plryshs

Our geometric concepts have
physical prerequisites. For example,

The tnloltdel'laltd ul Puincal'ia

"l have described an imaginary world whose inhabitants would
inevitably have come to create Lobachevskian geometry."

-Henri 
Poincare

by Simon Gindikin

HEN THE STORY OF
Lobachevskian (or hyper-
bolicl) geometry is recounted
nowadays, one might get the

impression that non-Euclidean geom-
etry would have been favorably re-
ceived if only its creators had proven
its consistency. But what discon-
certed the critics in the first place was
not the absence of such a proof.
People were used to thinking that
geometry deals with the real space
around us and that this space is cor-
rectly described by Euclidean geom-
etry. It is significant that Gauss set
geometry apart from other branches
of mathematics, considering it an
experimental science like mechanics.
But in so doing, Gauss, as well as

Lobachevsky and B61yai, was aware
that, first, there's room for logically
coherent geometric constructions
that do not reflect physical reality-
" imagjnary" geometries; and, second,
it's not so unquestionable that Euclid-
ean geometry is the one that applies
in our world on the astronomical
scale.

But this insight, perceivedby only
a few mathematicians, lay entirely
beyond the grasp of the public at

lThe intemationally accepted name
for this kind of non-Euclidean
geometry is "hyperbolic"; Russian
authors, for obvious reasons, call it
"Lobachevskian, " while Hungarians
prefer to attribute it to their compatriot
B67yai.-Ed.
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we perceive light beams as straight
lines. A light beam striking your eye

seems to be a straight line even i-f it
has been refracted on its way (say,

coming from the air into the water).
To dispel this illusion one must set up
an experimeng or look at what's haP-

pening from a different perspective.

Suppose the upper half-plane
(y , 0) is filled with an optically het-
erogeneous medium in which the
speed of light c(x, yl at point lx, yl
varies according to the law c(x, yl = y
{no matter what the beam's direc-
tion). By Fermat's principle, the path
of a light ray between two points is
the one that takes the least time. It
can be shown that in our medium,
where c(x, yl: y, the light will propa-
gate between two points along the
curves I (fig. 1) such that

sincx(/) 
= k, (1)

v

where cr(y) is the angle between the
tangent to L atthe ordinate y and the
vertical, and k is the same for all the
points of I.

Formula (1 ) must ring a bell for read-
ers familiar with Snell's law o{ rehac-
tion at the interface of two media:
sin cr,/sin a': ctf cz, where c, and cx, are
the speed of the inciilent light ray and the
angle it makes with the perpendicular to
the interface, respectively; and c, and o,
are similar values for the refracted ruy.
Poincar6's medium may be visualized as

comprising an infinite number of infi-
nitely thin hoizontallayers with a speed
of light y in the layer at a height of y.
Snell's law applied to the interface of two
adjacent layers yields confition (1). Con-
dition (1) is valid for any circle whose
center lies on the x-axis (that is, perpen-
dicular to this axis). For any such circle,
k = Llr, where r is its radius. For k = 0 we
get vertical lines. One can prove that no
other curve satisfies condition (1); this
fact has a physical explanation, too-for
instance: the light propagates from a
given point in a given direction along a
unique path. (Snell's law is used in "The
Talking Wave of the Future" and the
Physics Contest solution in this issue
and in "A Snail That Moves Like Light"
in the September/October 1991 issue.)

The circles perpendicular to thex-
axis and vertical lines (more exactly,
their halves in the upper haif-plane)

Figure 1

will play the leading roles in our
story.

"Poiltcal'ia" and its geolnstry

Poincard's world (I'll name it
Poincarial is the upper half-plane
lk, yl: y > 0) without the border y :
0 (this is importanltl.s Poincailans,
the creatures inhabiting Poincaria,
perceive upper semicircles with cen-
ters on the x-axis and vertical rays as

"straight lines" lfig. 21. We'll desig-
nate them as p-lines. P-lines seem
infinite to Poincarians (it takes an
infinite amount of time for light to
travel along an entirepJine); the end-
points of p-lines-and the entire x-
axis as well-are invisible. So

Poincarians think their land extends
to infinity in every direction. We'll
call the invisible points of ap-line its
Winitely distant points. For a p-Iine
represented by a vertical ray, one of
these is *a s,ecial "Point at in{in-
ity" added to the plane and common
to all such p-lines. A p-line is
uniquely determined by its pair of
infinitely distant points (why?); this
enables us to denote it by Lla, bl,
where real numbers a and b arethe co-

ordinates of two infinitely distant points
on the x-axis (one of them may be -).

Together with the Poincarians,
let's try to construct the geometry of
their space. )ust as with us, who
have lived in Euclidean space/ some
statements seem obvious to Poin-
carians-they accept them without
proof, as axioms, and deduce more
involved statements (theorems)
from them. Looking at Poincaria
from the outside, we'll see all these
statements differently (for instance,

3One could consider the three-
dimensional world as well, but it's
easier to draw pictures il the plane, so
for this reason we'Il deal exclusively
with"flat" creatures.

Figure 2

their p-lines are our semicircles or
rays), so we'll translate Poincarian
formulations into our "prosaic" Eu-
clidean language and prove them in
our own way.

For example, Poincarians know
there's a unique p-line through any
two distinct points. For us this means
that through any two points of the
half-plane there is a unique semi-
circle perpendicular to its border or a
vertical ray (prove it using figure 2).

Notice that the physical explanation
of this statement, based on the fact
that light travels between two points
along a single path, is the same for
Poincarians and for us. (This explana-
tion is not a proof, though, from the
geometric point of view.| It's easy to
check that all the axioms of Euclid-
ean geometry regarding the relative
position of points and lines and the
order of points on a line are valid in
Poincaria, too.

To get used to Poincaria, consider two
p-half-planes into which ap-line fivides
Poincaria; verify that the endpoints of a
p-segment lie in two different p-hali-
planes sharing a borderp-line if and only
if the p-segrnent crosses the bordering p-
line; draw p-triangles and p-polygons;
think aboutp-convexity, if you're famil-
iar with " rtormal" convexity. (Use figures
3a and 3b.)

The distinction between the ge-

ometry of Poincaria and Euclidean
geometry becomes mani{est r,r.hen we
look at the relative position of twop-
lines. We aheady know that two dif-
ferentp-lines can intersect in no more
than one point. If they do not inter-
sect, they may either have a common
in{inite (invisible) point or no com-
mon points at all, even on the invis-
ible border. kr the first case we call
them parallel; in the second case-
superparallel. Given ap-line L{a, bl,
there are only two p-lines (corre-
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tant properties, which it shares with
the usual Euclidean distance:

p(A, Bl: pB, Al;
If B lies on a p-segment AC, then
p(A, Bl + p@, Cl = p(A, C) (the
light goes fromAto C alongap-
line and passes through point B on
its way);

(3) For anypoints A, B, C, the triangle
inequality p(A, Bl + p@, Cl >
p(A, Cl holds, and the equality
here is valid only when B lies on
p-segment AC (because the light's
pathfromA to Cbyway of B can-
not take less time than the short-
est "straight" path ACl.

This distance p is the primary one
for Poincarians (note that light propa-
gates at unit speed relative to this dis-
tance), so they have no reason to ex-
press p in terms of something else.
Bl;;tfor us it's natural to express p in
terms of our Euclidean distance. This
isn't very easy: we have to deal with
nonuniJorm propagation of light, so
to compute the travel time we need
to calculate integrals.I'11give just the
final expression:

p(A, B) =t"fi , lzl

where r : AB (Euclidean distance) and
I : AB',8' being the reflection of B in
thex-axis; the logarithm is taken over
the base e (a ditferent base yields a
value of p that differs by a constant
factorl. Euclidean fistance is remark-
able for the numerous transforma-
tions that preserve it-the term for
such a transformation is isometry.
Let's see how isometries look in
Poincaria. These p-isometries are
transformations that preserve the p-
distance p and, consequentl, takep-
lines into p-lines.

Let's begin with isometries that
don't leave any points in place. First
of all, these are ordinary translations
alongthex-axis:T,lx, yl:k + a, yl.
They preserve both Euclidean dis-
tance and the speed o{ light c(x, yl =
y. Thus the travel time of light be-
tween any two points A and B-that
is, the p-distance p(A, Bl-remains
unchanged. Translations take p-lines

into p-lines, of course. On the other
hand, the dilation D ok, rl : (bx, byl,
b > 0, with center (0, 0), which mul-
tiplies both Euclidean distances and
the speed of light c(x, yl = y by the
constant b. It is not surprisin& then/
that it also retains the travel time of
light, orp-distance. Formula l2l anda
little algebra will verify this. So what
looks a dilation (with its center on the
x-axis) to us appears to be an isometry
to Poincarians. Using these two kinds
of p-isometries, one can move any
point into any place. For instance,
point (xo, )zo) is taken into (0, 1) under
the p-isometry lk - xol I vo, v I rol.

The set of allp-lines fal1s into two
classes with respect to the p-
isometries introduced-we'11 call
them p-shifts. The p-shift of a semi-
circle is always a semicircle, and the
p-shift of a ray is always a ray (why?).
But we camot, by means of p-shifts,
transform p-lines of one sort (semi-
circles) into those of the other sort
(rays). So let's add another kind of p-
isometry-p -reflection in ap-line. For
a p-line that is a ray, this is a regular
line reflection;for asemicircle, it's an
inversion.

For instance, the p-reflection inp-line
Ll-L, 1) is the inversion in the circle with
center O : (0, 0) and radius 1: by defini-
tion, it takes any point A+ O into point
A' onray OA such that OA'. OA = 1. A
detailed discussion of this transformation
and its properties can be found in the ar-
ticle "Inversion" in the last issue of
Quantum. These properties will be used
in what follows without special com-
ments and references, for the most part.
In that same article you can find another
version of the Poincar6 model. Problem
1 below explains the connections be-
tween the two versions.

Inversion takes circles and lines
into circles or lines and preserves the
angles between them. In the language
of Poincaria this implies that the p-
reflection of p-line L(a, bl in p-line
L(-1, ll is p-line Lllla, L lbl.In par-
ticular, p-line L(a, Ol (a semicircle for
, 7 -) is taken intop -bne L(l I a, *l (a

ray). So p-reflection maps Poincaria
onto itself and mapsp-lines into other
p-iines. Also, it can be verified thatp-
reflections do not change the p-dis-
tance p. llntact, it can be shown that
any transformation of Poincaria that

Figure 3

sponding to in{initely distant points
a and b) through a point outside it
that are parallel to L(a, bl lIiS.4) and
an in-finite number of superparallels
lying "between'/ the two parallels.
Thus, the axiom of parallels does not
hold in Poincaria. (For us, the observ-
ery this comesasno su4lrise-wehrow
what Poincarians don't: that their
//lines" aren't "genuine"!) This allows
us to hope that the geometry of Poin-
caria will tum out to be hyperbolic.

The main thingwehave to do now
is to define what "distance// and
"isometry" mean in Poincaria.

[hlancs$ and isumHnies
From the optical point of view the

most natural measure of distance be-
tween two points A and B in Poin-
caria is the time it takes light to travel
from A to B: ap-line wiII then indeed
be the shortest line between its
points. It follows from physical con-
siderations that the distance p(A, B)
thus defined has the following impor-

superparallel to L parallel to L
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takes p-lines into p-lines preserves
p-there are no dilations; and this is
one of the principal distinctions be-
tween hyperbolic and Euclidean ge-

ometry.)
Combining p-shifts with p-reflec-

tions, we carr cteate new types of p-
isometries that then suffice to take
anyp-line into anyp-line, and even to
fit a p-ray given on the first p-line
onto a p-ray on the second p-line
(prove it!). It can be shown that any
p-isometry can be represented as a
combination of successive p-shifts
and p-reflections.

Using p-isometries, Poincarians
can"lay" ap-segment AB overp-seg-
ment A,B, of equalp-length (whenp-
ray AB is fitted onto p-ray ArB,point
B automatically hits B, because
p(A, B) = p(A, B,)). Similarly, p-tn-
angle AB C can be laid over p-ffiangle
AlBrCri{ they satisfy the side-angle-
side (SAS) or angle-side-angle (ASA)
condition of congluence. (Notice that
the Poincarian measure of angles is
the same as their Euclidean measure/
because the latter is preserved under
p-isometries. You can get an idea of p-
congruence from figure 5.) Thus,
Poincarians can prove the SAS and
ASA properties of triangles in much
the same way we do. As for the side-

side-side (SSS) test, our usual proof
involves the compass-and-ruler con-
struction based on the fact that two
circles intersect in no more than two
points. Fortunately, p-circles tum out
to be just the plain Euclidean circles

{lying entirely in the upper half-plane)
although theirp-centers do not coin-
cide with their Euclidean centers.
(This is not entirely simple-see
problem 2 below.) So the SSS test for
congruence of triangles in Poincaria
presents no problem either. But
there's .one more test-the angle-
angle-angle (AAA) test in Poincaria:
two p-triangles are congruent if
their corresponding angles are con-
gruent! (See problem 7.) In particu-
lar, the area of a triangle in Poincaria
is determined by its angles o, p, and
y. In hlperbolic geometry the sum of
a triangle's angles is /ess than n
(problem 5). The difference ru -
(cr * F + y) is called the angular
defect of the tiangla. It behaves like
an area-that is, if a triangle is cut
into two triangles by a line through
its vertex (fig.5l, then both its area
and its angular defect will be equal
to the sums of the areas or the angu-
lar defects, respectively, of the two
pieces obtained. It can be deduced
from this fact that the area of a tri-

ffi..ffi \@Jx
n - (o + p + y) = [7r - (o, + 0 + v)] + tn - (p + \r+ y)l

Figure 6

angle in hyperbolic geometry is pro-
portional to its defect.

So you see that in some respects
Euclidean and non-Euclidean (hyper-
bolic) geometries are quite similar to
one another, while in other respects
they are totally different or even op-
posite. I suggest that you continue
your exploration of Poincaria by tak-
ing a crack at the problems in the fi
nal section.

$olid olieds in Poinual,ia

So far we have been guided by op-
tical prerequisites in all our geometri-
cal considerations. It should be em-
phasized that the reason Poincarian
geometry proved to be non-Euclidean
is not that the optical laws differ from
ours: Poincaria is constructed ("simu-
lated"l in our own world, and we do
not change the laws of physics! The
optical illusions of Poincarians are
due to the optical heterogeneity of
their world.

Figure 5
The so-called "modular figure" discovercd by Gauss that plays an impofiant role in the theory of functions of a complex variable
and number theory. From the Poincarian point of uiew this is a tiling of two copies of a hyperbolic plane with isosceles p-triangJes
whoselegs areparuJJel andwhosebase angles are 60. (Adiacenttrianglas arcp-strrruneuic aboutthefu common side.) As amatter
of cowse, there aru no such uiangles in the Euclidean plane. Apgoaching the border between the half-planes, the p-triangJes keep
getting smaller and smaller in thetu Euclidean (but not Poincarian!) size. Try to figwe out how to draw this figwe yowself !
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Although the most vivid represen-
tation of a straight line is undoubt-
ediy a light beam, we nevertheless do
not measure distances by the travel
time of light-we use a ruler. It would
probably be worthwhile for Poin-
carians to acquire a ruler, too. Of
course/ they will make their ruler " p-
straight"; that is, it will have the
shape of a segment of a p-line. But if
Poincarian objects move in the same
way ours do, then when such a ruler
is moved to another place, it will no
longer have the shape of nearby p-
Iines and so will not be " p-straight."
To a Poincarian, a solid object will
seem to change its shape when it
moves. So how should a Poincarian
react to this? The concept of a solid
object has to be reconciled somehow
with the geometry of Poincaria; oth-
erwise, Poincarians will have to be-
lieve in supernatural powers. Henri
Poincar6 thought of an ingenious way
out of *ris seeminglyhopeless situation:
he made useof thermal expansion.

Let all solid objects in Poincaria
have the same coefficient of thermal
expansion and zero thermal conduc-
tivity, and let their dimensions be
proportional to their absolute tem-
perature 7. (Notice that under these
circumstances Poincarians will be
unable to measure temperature with
an ordinary thermometer, because
such a measurement presupposes
comparing the expansion of objects
with different coefficients of thermal
expansion. ) The distinguishing char-

acteristic of a solid object is that when
it moves in a medium with constant
temperature, the (Euclidean| distance
AB between any two of its points A
and B remains the same. When an
object moves from a region at tem-
perature I to a region at temperature
T, the distance between its points
changes by afactor of TJT,i in other
words, the ratio ABIT is preserved.
But what happens when an object
moves in a medium whose tempera-
ture varies from point to point? What
value is preserved under these condi-
tions? Supposg forinstance, that on
one side of a certain line m the tem-
perature of the medium is 7,, on the
other side Tr. Let Abe a point of a
sufficiently large object located at
temperature 7, and B a point at tem-
perature Tr. Consider a broken line
ACB with node C on line m, and a
vahrc r rf T, + r rf T,where r, = AC, r z =
CB are the (Euclidean) lengths of the
segments of our broken line. It tums
out that when the object moves in
such a medium, what is preserved is
the minimum value of rrlT, + rr/7,
taken over oJl broken lines AC B with
node C on line m. (Try to figure out
why!) This situation can be com-
pared with the propagation of light
in a two-layer medium: if the speed
of light in one layer is numericaliy
equal to 7, and in the other to T,
then rrf T, + rrf Tris just the time it
takes the light to travel from A to C
and then to B, andthe minimum of
this expression, by Fermat's prin-

ciple, is the time it takes the light
to travel from A "straight" to B-
but, of course/ refracting on line m
according to Snell's law.

Extending this analogy to a me-
dium with continuously varying tem-
perature/ assume that every point
(x, y) inPoincaria is held at constant
absolute temperature T(x, y) : y.
Then, owing to these temperature
conditions, the Poincarian travel time
of light between any two fixed points
A and B of a solid (in our usual sense)
object will always be the same, no
matter where and how this object is
located, whiie the Euclidean distance
AB willnot. But this time is exactly
the p-distance! So for Poincarians
(who can't feel differences in tempera-
ture!) the dimensions of an object
moving in such a medium are pre-
served, which means that it is "p-
solid." What remains is to ensure that
all objects have low heat capacities
and move so slowly as to stay in ther-
mal equilibrium, and that the varia-
tion in temperature is imperceptible
for Poincarians. As a result, Poin-
carians wiII be unable not only to see
the border of their world but to ever
reach it: approaching the border, the
temperature tends to absolute zero;
therefore, the dimensions of objects
will also approach zero, while their
proportions will be retained.

Henri Poincar€tiedto ru1e out ev-
ery possibility for Poincarians to dis-
cover that their non-Euclidean world
is nothing but a construction in our
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Euclidean one. But did he make al-
lowances for everything? If you dis-
cover any possibilities he failed to
take into account/ let us know.

lhun lunn

In solving the following problems
you may find it helpful to draw the
con{iguration in a position more con-
venient from the Euclidean point of
view (although all positions are indis-
tinguishable for Poincarians). For in-
stance, we can always assume that
one of thep-lines under consideration
is a vertical ray, ar'd so on. AIso,
sometimes it's better to use the "cit-
c;sLar" version of the Poincar6 model,
which is discussed in the article "In-
version" in the September/October
issue. The first problem explains how
to pass from one version to the other.

1. Verify that inversion in a circle
co lyrng in the lower half-plane tums
the Poincar6 model in the upperhaU-
plane, which is considered here, into
the Poincar6 model in some circle o
(the model described in "Inver-
sion")-that is, it maps the upper
half-plane onto the interior of a circle
cr, p-lines into circular arcs orthogo-
nal to o (or into diameters of u); and
thep-fistanee p(A, B) is equal to the
p-distance dlA', B'l between the in-
verses A' arrd B' of points A arrd B,

measured according to the formula
grven in "Inversion."

2. Using the model in a circlg prove

that Poincarian circles are Euclidean
circles lying in the upper half-plane.

Prove statements 3 through 10.

3. (al All the p-lines perpendicular
to a givenp-line are superparaliel; (b)

for any two superparallels there is a
unique common p-perpendicular
(fig.7l.

4. Three p-bisectors of a p-triangle
meet at one point, the center of the
inscribed circle. What can You say

Figure 7

28
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Figure 8

about the circumcircle of ap-tiangle?
Does it always exist?

5. The base angles of an isosceles
triangle are equal, and its bisector
drawn from the vertex opposite to the
base is also a median and an altitude.

5. The sum of the angles of. a p-tri-
angle is less than n.

7. If triangle s ABC and AB, C, have
a common angle at vertexA (B, lying
ort p-ray AB, Ct on ACI and equal
angles at vertices B andB, C and C'
respectively, then they coincide (B =
B, C : C,). Derive the AAA test for
congruence of p-triangies. (Hint: if

triangles ABC anLd ABtCl do not co-
incide, consider qua driTateral, BB rC ,C
and prove that statement 6 above is
violated.)

8. Let L(a, bl, Lla, brl, L(a, brl be
three parallel p-lines (fig. 8). Then
there exists a p-isometrY taking
L(a, bl into itself, and Lla, b,) into
rla, brl. (This means that one cannot
correctly define the "distance" be-
tween parallels in hyperbolic geom-
etry.l

9. P-distance plA, Bl is preserved
under p-reflections and satisfies the
equality p(A, Bl + p@, Cl = p(A, Cl
for any B onp-segmerrtAC.

1 0. The perpenficular proiection of
a p-line I, onto a p-line L is a p-half-
line if the lines are parallel, and a fi-
nite interval if they are not. O
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HOW DO YOU
FIGURE?

Challsltue$ in physics and malh

tlllAIll Plrysics

M66
Looking for order.In a one-round
volleyball tournament each of the
eight participating teams played
each other. Prove that one can
choose four teams A, B, C, D out of
the eight such that A has beaten B,
C, and D i B hasbeaten C and D; and
C has beaten D.

M67
Intercecting p arabolas. Two parabo-
las on the plane have perpendicular
lines of symmetry and four common
points. Prove that thesefourpoints lie
on one circle. (L. Kuptsov)

M68
suggestive cofficients. For any posi-

tive a andb prove the inecluality 2"1a

+ 3{6 > sPl6. (N. vasilyev)

An arithmetic inequality. Let o(nl
be the sum of ail the positive divi-
sors of a number n (including I and
n) and Q(n) the number of positive
integers coprime with a and not
greater than n. Prove that o(n) + S(n)
> 2n. (V. Lev)

M70
Tr ap ezoidal spfingboar d. In trap-
ezoid ABCD, diagonal AC is equal
to leg BC and H is the midpoint of
base AB. A variable line through FI
intersects line AD at P arrdline BD
at Q. Show that angles ACP and
QCB are either equal or supplemen-
tary. (I. Sharygin) 

Figure

P66
Wedges and a washer. The inclined
surfaces of two movable wedges of
the same mass M meet the horizon-
tal plane smoothly (fig. 1). A washer
of mass m slides down the left-hand
wedge from a height h. To what maxi-
mum height will the washer rise
along the right-hand wedge? (Ignore
the influence of friction.)

Figure 1

P67
To hft a load. A rope is thrown over
a fixed, horizontal beam and fastened
to a mass m = 5kg(see figure 2). The
minimum force required to keep the
mass from falling is F, = 40 N. What
is the minimum force F, required to
pull the mass upward? (4. Buzdin)

P68
Second skin. The surface of a space
station is a blackened sphere in which
a temperature ? = 500 K is main-
tained due to the operation of equip-
ment in the station. According to
Stefan's law, the rate at which heat is
given off from a unit surface area is
proportional to the fourth power of
the thermodynamic temperature. De-
termine the temperattre T, of the
surface if the station is enveloped by
a thin spherical black shell of nearly
the same radius as the radius of the
station. (A. Buzdin)

P69
Folded sheet.Imagine you take a
very thin, square dielectric sheet
that has a uniform charge on its sur-
face and fold it twice so that you get
a square whose sides are half as long
as the original square. How much
does its energy increase (or de-
crease)? (S. Krotov)

P70
Moon shadow. What is the velocity
of the Moon's shadow on the Earth,s
surface during atotal eclipse of the
Sun? The eclipse is observed at the
equator. For simplicity, the Earth's
axis is taken to be perpendicular to
the orbits of the Earth and the
Moon.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 54
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PHYSICS
CONTEST

A topless t'oller Goaslen

"And in their motions harmony divine"
--,John Milton, Paradise Lost

by Arthur Eisenkraft and Larry D. Kirkpatrick

,.\I

*,
u

HY IS IT THAT AMUSE.
ment park rides are such fun
for some and a horror for oth-
ers? Why will some of us rush

to a park to try the newest/ most
frightening ride while others will only
begrudgingly accept a ride on a ferris
wheel? One of us (LDK) enioys roller
coasters so much that he sPent 1.5

hours navigating on the New York
subway system to take a 1.8-minute
ride on the Cyclone at Coney Island.
And this was an old-fashioned,
wooden roller coaster!

The amusement park rides can
take on an added dimension of inter-
est and fun when you try to under-
stand the physics inherent in the de-

signs. Many amusement Parks now
have activities created by members
of the American Association of
Physics Teachers and the National
Science Teachers Association that
serve as guides for field trips for
physics classes across the county. In
these activities, people build accei-
erometers/ predict and measure
speeds, and record heart beat
changes as you spin around, flip uP-
side down, or watch the floor droP
from under you. The rides provide
many opportunities for testing the
ideas of physics in "real-world" situ-
ations.

Next summer, the International
Physics Olympiad will be held in
Williamsburg, Virginia. During a re-

spite from the grueling five-hour ex-

ams, the best high school students
from approximately 40 countries
will spend a day at Busch Gardens
enjoying themselves as they ride
and try to explain the physics in the
park.

Designing an amusement park
ride is quite a challenge. The ride
must be entertaining and sate. Mo&
ern roller coasters have added a new
dimension to roller coaster ridingby
adding such things as loops and
corkscrews. These require readers of
Quantum, as future ride designers,
to apply knowledge of circular mo-
tion and centripetal acceleration in
addition to the conservation of me-
chanical energy in analyzing the
rides. Of course/ in order to do this
in a simple way we can make a

number of assumptions such as
(1) there are no frictional forces (in-
cluding air resistancel, (21the ki-
netic energy of the wheels can be ne-
glected, (3) the train of roller coaster
cars stays on the track without the
safety rail, and (4) the train is a point
mass. The last assumption allows us
to neglect such things as the rota-
tional kinetic energy/ the angular
momentum, and the orientation of
the train.

Up to now, all of the roller coast-
ers of the world use a continuous
track. But that does not restrict our
imagination. Let's imagine that we

remove the top portion of the track
in a vertical loop, creating the so-
called topless roiler coaster. This
allows us to combine the PhYsics of
circular motion in a gravrtational
field with that of projectile motion.

Assume that the vertical loop is
a circle with a radius R and that the
portion that is missing has an angle
2cx, centered about the top of the loop
as shown in figure 1.

A. From what height H must a

car be released so that it will leave
the loop at one side of the gap and
still arrive at the other side of the
gap to continue the trip? Check Your
answer by setting cr = 0 to see i{ you
get the expected result for a com-
plete roller coaster.

B. It is useful to analyze the prob-
lem using the dimensionless ratio
H/R because this sets the scale for
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the roller coaster. Draw a graph of
H/R versus cn.

C. For what range of angle cr is this
possible if the height is restricted to
H < 3R?,

D. Discuss the motion for the case
H = sRlz.

E. Discuss the motion for the case

whenHis aminimum.
Please send your solutions to

Quantum, 3 140 North Washington
Boulevard, Arlington, YA 22201
within a month after receipt of this
issue. The best solutions will be
noted in this space and their authors
will receive special certificates from
Quantum.

Sftalc, l'atlle, and nofl

In the May/|une Contest Problem,
we asked you to investigate earth-
quake behavior.

A. In part A, you were asked to
calculate the time it would take for P
or S waves emanatingfrom the earth-
quake location E to reach an observa-
tion point X. From figure 2 we can see

that

EX = 2R sin 0.

Therefore,

- _ 2Rsin0
v

where v = vpfor P waves and v = vs

for S waves. This is valid provided
that X is at an angular separation
less than or equal to X, defined by
the tangentialray to the liquid core.
From figure 2, X' has an angular

separation given by

zo = zcos-,[R').(R/

B. Given the delay time between P
and S waves/ you were next asked to
deduce the angular separation of E
and X. Using the result from part A,

- _ 2Rsin0
v

we can express the time delay as

. (r 1)
\Ys vt')

Substituting the data given, we get

t;r=z(6870)ff - I )rine.' '[6.31 10.85/

Thereforg the angular separation of E

andXis

20 - 17.84.

This result is less than

z"or-,[&) = zcos-,( 
3470) 

= 14.,
\. R, (6370 )

and consequently the seismic wave is
not refracted through the core.

C. If a second set of P and S waves
had a longer deLay, readers first had
to hypothesize an explanation for
the second set of delayed waves and
then see if the result is consistent
with the time delay given in part B.

The observations are most likely
due to reflections from the mantle-
core interface. Using the symbols in
figure 3, we can express the time de-
lay Lt' as

^t,=(ED+oxrf-L-!)' '(r', vr)
(' 1)

=zEDl -l--i- l.
\v' vP )

In tiangleBYD,

(EDI' : (R sin O)'z + (R cos e - R")2

= R2 + R"2 - 2RR" cos 0,

since sin2 0 + cos2 0 = 1. Therefore,

&'= 2!8'z +&'z JRR. coself -f'l
[', vp )

Using equation (1), we get

Lt
Lt'=

RsinO

= 395.7 s:5 min 37 s.

Thus, the subsequent interval produced
by reflection of seismic waves at the
mantle-<ore interface is consistent with
an angular separation of 17.84.

D. Since a P wave is able to travel
through the core, you were asked to
draw thepath of the refractedPwaves
and derive the relation between the
angle of incidence and the angular
separation of E anLdX.

From figure 4, we get

Figure 2
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0:ZAOC+ZEOA
=(90-rl + (i-o). (21

The law of refraction (Snell's law)
gives

sinz - L ,ar
t.1 Isln-r v ..c?

From triangle EAO and the
sines, we get

law of
l-tgure 5

,o' = ,o '. (41sinu sini I ''

Substituting equations (3) and (4)into
(2)yrelds

E. Our most talented readers were

then asked to draw a graph of the rela-
tionship e4pressed in part D and to com-
ment on thephysical consequences.

Substituting i = 0' into equation
(5) gives0:90'; i=90" gives0=
90.8". Substituting numerical values
for i = 0o to i = 90o, one finds a mini-
mum value at 55o and the corre-
sponding minimum value of 0: 0*,-
='75.8'(f=ls. s). As 0 has a minimuH
value of 75.8o, observers at positions
for which 2e < 151.6' will not ob-
serve the earthquake as seismic
waves. For 20 < II4, however, the

57" 75.8' 90.

180" 90

Figure 6

direct, nonrefracted waves will
reach the observer.

F. Finally, readers were asked to
sketch a comparison of the travel times
for P and S waves for all angles. In this
sketch (fig. 6) we can get a better sense
of the "shadow" regionwhereno earth-
quake waves will be observed. O

o = eo _.ir_,[r*).i,r,
lu' )

+i-sin-,[&)sini. 
(5]
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HIS MOTLEY COLLECTION
of problems is borrowed from
two books by the great Yakov
Perelman, F or Young Mathema-

ticians: The First Hundred Puzzles

ll924l and Do You Know Physics!
1r934-3s1.1

A11 of them seem pretty innocent,
but they're not as easy as they 1ook.
When you come up with an answer/

KALEIDOSCOPE

llil or lni$$

Take aim at these tricky problems
from a master teaser

give it a second thought: did I hit the
bull's eye, or did I miss the target en-
tirely?

l. Weight of a 1og. A round log
weighs 30 kilograms. How much
would it weigh if it were twice as
thick but half as long?

2. B aiance underwater. One hun-
dred kilograms of iron nails are
weighed on a decimal balance (a bal-
ance'with one arm ten times the
length of the other) with iron
weights in the other dish. The scale
is immersed in water. WiiI the scale
remain balanced?

3. Hands together. At twelve
o'clock one hand covers the other
one. But as you may have noticed,
this isn't the only time the hands
coincide: they run after one another
all day long and line up several
times a day. Can you name ail the
times when this occurs?

4. Hands apart. On the other
hand, at six o'clock the hands point
in opposite directions. Does this
happen only at 6 o'clock, ot are
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lBooks by this prolific popular2er o{
math and science are continually
reprinted in English as well as Russian-
for example, Mathematics Can Be Fun
(Moscow: Mir Publishers, 1985) and its
companion volume Plyvcs Can Be Fttn.
The latter can be obtained from Victor
Kamkin Bookstore, 4956 Boiling Brook
Parkway, Rockville, MD 20852, phone
301 881-5973. (The former is currently
out of stock.)-Id.
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there other times when such an ar-
rangement of the hands is possible?

5. Tfuee and seven. A cloc,k takes
three seconds to strike three. How
long does it take to strike seven?

{}ust in case, I warn you that this
problem isn't a joke and there is no
"ttap."l

6. A glass of peas. No doubt
you've held a pea in your hand, and
more often you've held a glass, so
you're acquainted with their dimen-
sions. Imagine a glass filled to the
brim with peas, and then imagine all
these peas lined up in a row. What
do you think-will this row be
longer or shorter than your dinner
table?

7. Tree leaves.If we tear all the
leaves off some old tree-say, alin-
den-and line them up in a rowt
how long, approximately, would
such a row be? For example, would
it encircle a house?

8. A million steps. You know, of

rounds the fire with a layer of steam/
which prevents the influx of fresh
air. With this in mind, maybe the
fire department should come with
barrels of boiling water and pump
that onto the burning buildings-
what do you think?

13. Bottom water. When is the
water at the bottom of a deep river
warmer-in the summer or winter?

L4. Heating steel. Why do steel
structures collapse in a fire, even
though steel doesn't burn or melt in
the flames?

15. Steamy color. What color is
steam?

16. Match power. What is the
power of a burning matchstick?

17. Salting water. Can you dis-
solve more salt in water at 40oC or
water atTO'C?

course/ what a million -<ul o=- ^ E-=.o-
is, and you know the t;" 1 e' ,- 5 t , t

/t l:-l*,1 ?1 I"r1 :*i 'r.&ltt+ ' ',' "" l
/ P stride. And because \&1l" ^f I:11'r:Y :l::1','11 ifr ',, r^the other, it won't be fitr: --t:ri* -
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--d swer this question: {l i{
,r now far will a million ,l i i 1 \
i steps take you-more I { / i{.','i,U' i

I than l0 kilometers, or I i i 
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,

\i, Iess? \ Ju 9.who counts more! .-*J ,\-*". v v tfw vuutaLn attutor -*{

6 In one hour, two men i , a
counted all the people-""-,***.*.L"---* - :" t'
them stood near the ,, ., 4' '?- :, '.'

door to his house, the other paced ' _;') / 
*

back and forth along the sidern all<. -4
Who counted more passers-by?

10. Oldblock and chrp. My child
is a third as old as I, but five years 18. Noisy shell.Why do we hear
ago was a fourth my age. How old is the " sea" when we hold a cup or
my child now? shell to our ears?

ll. Escape speeds. Which liquid, 19. Snow andblackvelvet.What
water or mercury/ will empty out of is lighter, black velvet on a sunny
a funnel sooner/ if the heights of the day or pure snow on a moonlit
liquids are the same? night?

12. Boiling fire extinguisher.Boll- 20. Color change. When does gold
ing water extinguishes a fire more have the color of silver? - O
rapidiy than cold watert because it
immediately removes the heat of ANSWERS, HINTS & SOLUTIONS
evaporation from the flame and sur- lN THE NEXT /SSUE
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[Ulalhematics in liuinU oruanisms

Does your kitty calculate vectors faster than you?

by M. Berkinblit and E. Glagoleva

HE NATURAL WORLD HAS
contrived a great many "inven-
tions" that people could under-
stand and repeat only with a

rather sophisticated level of devel-
opment in science and technology.
For instance, the echo location prin-
ciple is used by dolphins and bats,
but in technology it appeared only
in the twentieth century. Many spe-
cies of snakes catch their prey by
infrared radiation, while devices for
night vision ate a recent develop-
ment. And the list goes on. Not long
ago the belief was prevalent that
nature did not invent the wheel;
that technology had been taking its
own course. But then it was discov-
ered that the flagella of bacteria ro-
tate in special "bearings," which
means that the wheel was also in-
vented by nature at the earliest
stages of evolution. There is a spe-
cial branch of science called bionics
that studies "nature's patentsr" so to
speak. It turns out that some of
these patents find practical applica-
tion in "human" technology as well.

We can find phenomena in living
organisms that would lead us to be-
lieve that nature made the first patent
applications for electronic computerc.
These natural "devices" perform op-
erations very much like the math-
ematical operations we tend to think
of as achievements of human science.
They in fact are electrotic, since their
operation is based on electrical phe-
nomena in the organism. It looks like
arepeat of the story of the invention
of the wheel.

In this article we'lltellyou about
some operations of this kind: how
nerve cells can count; how the eye
takes logarithms and why; and how
the brain of a catand a monkey (and
a human as well) makes use of vec-
tors and trigonometric functions.
Maybe some readers will conclude
that it's not necessary to study these
things, since they were given to liv-
ing organisms bynature. But maybe
others (and we hope there are more
of these)would like to know about
the mathematical and biological as-
pects of the matter.

llow neul'ons counl

Our first acquaintance with
mathematics is counting:

One, two, buckle my shoe,
Three, four, shut the door . . .

Andthe simplestnumbers seem tobe
the natural numbers. Even negative
numbers made a slow entry into
mathematics. They were known to
the mathematicians of India in the
early Middle Ages, but the negative
numbers penetrated into European
science only in the thirteenth and
fourteenth centuries, and they
weren't exactly warmly received
when they got there. They were
called "eroneous" or "absurd" num-
bers. But little by little the negative
numbers affirmed theirright to exist.
They became commonplace, and not
just for experts. The "cutting edge" of
medieval science draws no blood in
elementary schools today.

But in living organisms, every-
thing is the other way around: it is
natural and simple for the nerve cell
(neuron) to carry out operations
with positive and negative real
"numbers." But in order to count
even to two/ a system consisting of
several neurons-a primitive
brain-is required.

How does a neuron operate? Like
any cell, the neuron is separated
from the external intercellular me-
dium by a special envelope, or mem-
brane. There is a difference in poten-
tial between the inner contents of
the cell and the external medium. If
the cell is not being activated, the
difference in potential across its
membrane does not change. This
steady-state potential difference is
called the "resting potential." It's
natural to take this resting potential
as zero (just as zero ott the Celsius
temperature scale was taken to be the
point at which ice melts).

Other nerve cells-stimulating
and inhibiting cells-can influence
a neuron. The signals received from
these cells cause changes in the dif-
ference in potentiai across the mem-
brane in opposite directions. When
different signals arrive at the neuron
simultaneously, they are combined
and the sign is naturally taken into
account-that is, the neuron sums
the positive and negative signals it
receives. This sum can be either
positive or negative.

An interesting feature of a neu-
ron-as opposed to artificial sum-
ming devices from the ancient abacus
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to the modem computer-is that the
neuron doesn't remember the sum for
long. When the extemal signals cease,

the accumulated sum starts to de-

crease in absolutevalue until the neu-
ron retums to its resting potential (the

potential across the membrane tends
to the value we have taken to be zero).

This "memory loss" in a neuron
is related to the fact that the neuron
is not supposed to keep information,
it's supposed to transform and trans-
mit it. The neuron transmits the re-

ceived signal to other cells of the
neural network (to "target" or "ad-
dressee" cells). Depending on the
method of signal transmission,
there are two different types of neu-
rons with different operating prin-
ciples: analog neurons and threshold
neurons.

An analog neuron acts upon the
target cells with a signal Propor-
tional to the accumulated sum, but
only when this sum is positive. If
the sum is negative, it is not Passed
on-the neuron is inhibited. This
rule of signal transformation by ana-
log neurons can be described by the
formula

l(x+lxl)v= z '

where x is the accumulated poten-
tial di{ference, y is the value of the
transmitted signal, and k is a propor-
tionality tactor.

Threshold neurons operate differ-
ently. This kind of neuron "keeps si-
lent" until the sum of the incoming
signals reaches a certain positive
value-the "threshold." Then the
neuron becomes excited and sends
alongits exit appendage/ the axon/ an
electric pulse (always of the same
value) that acts on the target celIs.
A{ter excitation, the neuron rests and
keeps silent for some time regardless
of whether other cells are acting on it
or not. And after that, when the accu-
mulated sum exceeds the threshold
value, the neuron sends the next elec-
tric pulse. As a result, depending on
the value and duration of the input
signal, and depending on the neuron's
characteristics, the output is in the
form of a pulse train of constant am-

plitude but varying frequency. Thus,
threshold neurons code information
by using a signal's frequency-a
noutrivial method of information
coding.

Iust as with the continuous out-
put signal of analog neurons/ the fre-
quency change carries information
only about the value of the input
signal that varies continuously.
Flowever, it's known that animals
also react to discrete stimuli. For
example, they know how to react to/
say/ every third stimulus. It's natu-
ral to suppose that there are devices
in the neural system that can count/
so that they will react differently,
for instance, to twofold and onefold
actions. Our current understanding
of the principles of neural function
allows us to assert that such a

"simple" (from the human point of
view) operation as counting is beyond
the reach of a single nerve cell. Lack
of space prevents us from describing
the device consisting of several neu-
rons that is capable of responfing to,
say/ every second stimulus.

Eyes and logs

Visual receptors, and others as

well (acoustic, temperature, and so

on) receive signals from the environ-
ment. They must convey visual in-
formation to the brain precisely and
quickly. Transmission of the signals
from the eye to the brain is initiated
by threshold neurons-the analog
approach is inappropriate for con-
veying signals over comparatively
long distances. The impulses of
threshold neurons/ as was men-
tioned, are identical, and the data
about the input value are conveyed
by these neurons by changing the
pulse frequency.

Here a problem arises. Luminos-
ity at twilight, when things are
barely visible, is about a billionth
(10r) the luminosity in bright sun-
light. But the maximum frequency
of a neuron's operation is 1,000 im-
pulses per second. It's easy to see

that it's impossible to convey infor-
mation by changing the frecluency of
neural operation in proportion to
luminosity: if in bright light the
impulse frequency is maximum

(1,000 impulses per second), then
after reducing the luminosity by a
factor of one million a signal will be
received only once every fifteen
minutes. But by that time it's com-
pletely irrelevant!

Well, maybe such arL arrar,ge'
ment of a visual system would be
reasonable if different elements and
neurons in the system operated in
their own range of luminosity: some
of them in twilight, others on
cloudy days, still others in bright
sunlight. Simple calcuiation shows
that if one impulse per second is
taken as the lower frequency limit
of neural operation necessary for
timely transmission of the informa-
tion, then it will take one million
neurons to cover araflge of luminos-
ity thatvaries by a factor of a billion.
And all of this without any margin
of error, without any duplication of
neural operation! But the main
thing is that at every moment only
one cell from a million will be in
operation and the remaining
999,999 cells "won't be earning
their keep": living mechanisms, in
contrast to technological ones, ex-
pend energy (their "gasoline") not
only while they are in operation;
and the efficient use of energy is one
of the primary conditions for sur-
vival in the biological world.

So it turns out that the linear
dependance between input and out-
put in human vision isn't expedient.
And, in fact, nattte uses another
relationship-one expressed by a
function that is rather complicated
by textbook standards.

This functional dependence was
established experiment alLy in 1932
by the English scientist H. Hartiine.
Figure 1 shows the results of his re-
search. Hartline recorded the im-
pulses running along a single nerve
fiber from the eye to the brain of
horseshoe crabs (sea arthropods
similar to the extinct trilobites). The
graph shows the dependence of the
impulse frequency on the brightness
of the light.

"Excuse me!" you say. "The gtaph
is a straight line, which means that
it's a linear function." Not so fast!
Look closely at the scale of the hori-
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Figure 1

630 5,300 63,000

zontal axis-it is not linear. One in-
crement corresponds to a change in
the argument (brightness) not by the
same value but by the same ratio.
When there is a linear dependence,
equal increments of the argument
correspond to equal increments of the
function-that is to say, a linear de-
pendence converts an arithmetic se-
quence of arguments into an arith-
metic sequence of function values.

When we deal with the exponen-
tial functiotr y : a", a :ulnif.orrrr tatio
of the values of the function corre-
sponds to equal increments of the
argument. For instance, under con-
stant habitat conditions and with
unlimited resources/ any population
increases exponentialiy. The num-
ber of individuals increases yearly
by some value, such as 10 percent-
that is, the population at the end of
the year is 1.1 times that at the be-
ginning of the year. In other words,
an exponential function "trans-
lates" an arithmetic sequence into a
geometric one.

In our graph the situation is the
reverse: the frequency of neural im-
pulses changes by the same value
when the stimulus changes by the
same ratio. This means we're deal-
ing with a function inverse to the
exponential-that is, with a loga-
rithmic function. In other words,
the neurons of the horseshoe crab's
eye convert a geometric progression
of stimuli into an arithmetic se-
quence of signals.

This characteristic of the visual
receptors/ developed in the course of
evolution, allows the eye to operate
efficiently and economically, and it
offers the possibility of correctly per-
ceiving contrast. Suppose a light ob-

ject and a dark one di{fer from each
other by a factcr of ten in their abili-
ties to reflect light. Then a light ob-
ject will reflect ten times more light
than a dark object in both bright sun
and twilight. Therefore, the com-
parative brightness of these objects
does not change. The distance be-
tween corresponding points on the
abscissa does not change either. And
this means that the frequency differ-
ence of the operation of the recep-
tors illuminated by these two ob-
iects will remain unchanged under
different luminosities. So the ability
to take the logarithm of a number al-
lows the eye not only to operate
over a wide range of luminosity but
to distinguish, under conditions of
low luminosity, objects whose abso-
lute difference in luminosity is very
small.

It',s interesting that the depen-
dence described above between the
external signal (stimulus) and the
signal perceived by the brain (sensa-

tion) was first found by psycholo-
gists. The eighteenth-century
French scientist Pierre Bouguer
made the discovery. At the begin-
ning of the nineteenth century the
German physiologist and psycholo-
gist Ernst Weber made a careful
study of the relation between stimu-
lus and sensation. He attempted to
ascertain how some stimulus must
change for a person to perceive this
change. It turned out that the ratio
of the change in the magnitude o{
the stimulus to its original magni-
tude is given by

N _t_

I 
--l

where,Iis a measure of the stimulus,
AI is the incremental change in the
stimulus, and k is a constant, called
theWeber constant.

The Weber constant depends on
which receptor is stimulated. For in-
stance, in perceiving weight, k = | 130.
This means that when a person is
holding a load of 100 g, a change is
perceived when the weight is in-
creased by 3.3 g for a load of 200 g an
increase of.6.7 g is needed. For the
pitch of sound, the Weber constant

equals 0.003, for loudness, it equals
0.09. There are Weber constants for
other sensations as weII.

Working from Weber's results, an-
other German physiologist and psy-
chologist, Gustav Fechner, formu-
lated the well-known Weber-Fechner
law: Sensation increases in an arith-
metic progression when stimulation
increases in a geomeftic ptogression.
This law was published in Fechner's
book Elements of Psychophysics in
1859. In the same book the math-
ematical expression o{ the law is also
presented:

E=alogl+b,

where E is the measure of a sensation,
a and b are constants, and 1 is the
measure of the stimulation.

Ittlhaldoe$ a catnsgd ttsclor$ Ior?
The word "vector" is just ababy,

one might say. It seems to have ap-
peared for the first time in 1845 in
a work by the English mathemati-
cian Sir William Rowan Hamilton.
But the corresponding concept was
used in physics several centuries
earlier in connection with investiga-
tions of the law of composition o{
forces (the parallelogram rule). We
learned about vectors in the animal
kingdom only very recently.

It all began with cats. In 19BB a
Canadian scientist, |. Macpherson,
carried out an interesting experi-
ment. She put a cat on a special plat-
form, pushed the platform in some
direction, and watched how the cat
kept its balance.

Suppose she pushes the platform
forward. The cat's feet, together
with the platform, begin to move
forward, but its body remains in
place. Then the cat, in order to re-
store the center of gravity to its ini-
tial correct position above the sup-
port points, activates the muscles in
its legs and moves its body forward
by pushing on the platform. If the
platform is pushed to the right, the
center of gravity will deflect to the
left relative to the support and the
cat's legs should produce a force di-
rected to the right.

0l|AlllIUlil/ttlTUBt il



How do a cat's legs actually work
as it tries to keep its balance?

The most natural thing is to sup-
pose that each of its hind legs,1
when pushing forward, produces a

force directed forward; the sum of
the two forces returns the body to
the correct position (see figure 2a). If
the platform is pushed to the right,
each hind leg produces a force di-
rected to the right, and so on. This
hypothesis jibes with the fact that a

cat has powerful muscles that move
its hind legs forward or backward
(used for walki.ng and jumping) as

well as muscles that turn the leg
outward or toward the body's axis.

Macpherson elucidated what in
fact occurs. It turned out that the
actual scenario is quite different:
when the platform is pushed, regard-
less of the direction, the cat's hind
legs produce forces directed along
two lines (one line for each leg) at
angles of 45" to the body's axis. Even
in the simplest case, when the plat-
form is pushed straight forward, the
forces produced by the legs are di-

rlt was found that when it restores
its center of gravity, a cat uses its
forefeet as passive supports. Only the
hind legs work actively.
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rected not forward
but again at an
angle of 45' to the
body's axis (see fig-
ure 2b). Only their
sum has the neces-
sary direction and
magnitude. Figure
2c shows how a
force perpendicular
to the body is pro-
duced. A force di-
rected at an angle of
30' to the body's
axis is shown in
figure 2d.

So the cat's ner-
vous system solves
the following prob-
lem. Whentheplat-
form is pushed, the
information re-
ceived from various
receptors makes it
possible to deter-

mine the needed vector (force). Then
this vector is laid along the fixed co'
ordinate axis. When this method is
used, only one number needs to be
transmitted to each of the cat's hind
legs. This number is the magnitude
of the force (positive or negative)
that the leg must produce along its
fixed axis.

This is a relatively simple pic-
ture. But life is full of unexpected
things! Having {igured out which
muscles produce this fixed direc-
tion, one would think that it would
always occur in the simplest way.
The muscles that move the leg for-
ward and in could produce forces in

0.5F 0.5F
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one direction, and the muscles that
move the leg back and out could
produce forces in the opposite direc-
tion. The different magnitudes
would be produced by proportion-
aily changing the forces developed
by these muscles-"multiplying by
a number." Macpherson got another
unexpected result. She found that
different muscles can take part in
producing a given magnitude of
force for a single leg. The combina-
tion changes, depending on the di-
rection of the push.

What is the point of such a com-
plicated (from our point of view) so-
lution? That is a question that re-
mains to be answered. But here
we've seen an instance of a general
biological principle: avoid rigid
schemes, and always keep an over-
stock of degrees of freedom.

Ueclol's in tfie primate ll'ain
The difficulties one encounters in

explaining how this or that problem
is actually solved have to do with the
factthat it's very difficult to look in-
side the "control center"-that is, the
brain itself. In this sense the brain is
still a "black box." We can see the
problem presented to the brain, and
we can see what result it produces,
but we have almost no idea what is
happening inside the brain.

Researchers wanted to see more
directly how neurons function in
solving certain problems. The
American scientist A. Georgopoulos
recently advanced our understand-
ing in this area with a series of
clever experiments involving a
trained monkey. The monkey's leg
was placed at a certain point on a

table, and electric lights were placed
at various points around the table.
The monkey was trained to move its
leg toward any bulb that flashed. At
the same time the researcher re-
corded through implanted elec-
trodes the activity (impulse fre-
quency) of the nerve cells of the
cerebral cortex in the area that con-
trols leg movement.

Georgopoulos found that the ac-
tivity of most of the cells in this part
of the brain depends on the direction
of leg movement. This dependence
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is clear-cut: for every cell there is a
direction of movement such that
the activity is maximal; with other
directions the activity decreases ap-
proximately as the cosine of the
angle between this direction and the
direction of the maximum activity.2
For the directions where the cosine
is negative, the cell generally stops
sending impulses.

It turns out that a certait vector
of maximum activity A-o is linked
with every cell in the cerebral cor-
tex (fig. 3). When it's necessary to
move the leg in another direction-
that is, when some unit vector of
the direction e is given, the cell finds
the projection A*o in this direc-
tion-that is, it "computes" the sca-
lar product A*o . €. Having ciarified
this point, Georgopoulos posed the
inverse problem: is it possible to
determine the direction of leg move-
ment by monitoring the activity of
the nerve cells? Mathematically this
problem could be formulated as a
question about the existence of the
function inverse to the given func-
tion. It's clear that it's impossible to
determine the direction of move-
ment by looking at the activity of a
single cell: first, the cosine is an
even function and has no inverse
function. Indeed, if the direction of
the maximum activity is straight
ahead, for instance, and the neural
activity is one half of the maximum,
then it's known that the leg moves
at an angle of 60o to the primary di-
rection, but whether to the right or
left it's impossible to determine.
Second, one cell has too large a

" dead 7gy1g't-1]r..g zone where the
cell keeps silent. But if several cells
are monitored, it's possible to deter-
mine the direction in which the leg
is moving (and even to predict this
direction, since the cells begin to

2The proportionality of the
frequency of the activity of the nerve
cells to the cosine of either angle was
known before Georgopoulos's work.
For instance, as early as 1981 neurons
were discovered in the brain stem that
were linked with twitching in the eye:
the change in their activity depends
on the direction of the twitch by the
cosine law.

Figure 3

work a tenth of a second before the
leg starts to move). We leave it to
our readers to solve the following
problem: what is the minimum
number of cells needed to determine
the direction of movement for any
case? (Of course, we posed the prob-
lem in mathematical garb, so to
speak, which as always simplifies
the situation-just as we have sim-
plified throughout this article.)

The fact that one can use neural
activity not only to determine
where the leg is moving but to pre-
dict where the monkey is about to
move it-to read its thoughts about
moving it-allowed Georgopoulos
to conduct another experiment, and
it was an elegant one.

As early as I97I the American
psychologists R. Sheppard and
l. Metzler had discovered a phe-
nomenon that they termed "mental
rotation." Subjects in an experiment
were shown two figures and asked:
are they different {igures or are they
the same figure but rotated by some
angle? The response time turned out
to be a linear function of the magni-
tude of the angle of rotation of one
figure relative to the other.

In another variant of the experi-
ment/ the letter R or its mirror re-
flection.fl were shown. The subjects
had to determine quicldy what let-
ter it was. In addition, this letter was
shown in various orientations. And
in this case the response time was
proportional to the angle of rotation
relative to the "normal" position.

The researchers supposed that
the subject in such experiments
mentally rotates an image of the fig-
ure being perceived (and, according
to a series of psychological experi-

ments, probably not the figure itself
but a model of it stored in the
memory) with a constant angular
velocity. They even determined this
velocity: 450'/s. It's impossibie to
prove the hypothesis of "mental ro-
tation" by such experiments, how-
ever, since it's still not clear what's
going on in the subjects'heads.

Now that he had a way of "spy-
ing" on the operation of neurons in
a monkey's brain, Georgopoulos col-
lected data in 1989 that support the
hypothesis of mental rotation.

The monkey was subsequently
trained to stretch its leg not toward
a lit bulb but toward the one that is
located at an angle of 90' to it. The
researchers were able to discover
what occurs in the monkey's brain
from the moment the bulb lights up
until the leg starts to move. After
the flash, the vector is directed
straight toward the bulb, then it be-
gins to rotate, and when it turns 90o
the leg begins to move. The velocity
of the vector rotation was about
730"1s-that is, it was of the same
order as in the psychological experi-
ments with humans.

Thus, as these experiments have
shown, the brain can also perform
geometric transformations (in fact,
not merely rotations but evidently
many others-for example, the
transformation of similitudel.

We'Il drop another hint about the
mathematical abiiities of the brain.
Parallel processing in computers is
undergoing furious development
right now. But when a person picks
up an object, the brain simulta-
neously controls the shoulder, el-
bow, and fingers-now that's paral-
lel processing!

[ondusion
As we've seen, the processes of

converting, transmitting, and using
information for control purposes oc-
cur inside living organisms. Evolu-
tion has graduaily selected success-
ful forms of data processing, and
these forms are rather like math-
ematical operations. And it is these
clever products of evolution that we
have called "mathematics in living
organisms." O

direction of
maxlmum
activity

direction of motion
A=A .coscr

d max
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POSTER

$pace phy$ics:

a tloyaue ol aduenlure

A pictorial overview to close ISY 1992 and open new perspectives

by M. Frank Watt lreton, Sue Cox Kauffman, Ron Morse, and Mark Pesses

HE AGE OF SPACE EXPLORATION HAS SEEN A
dramatic increase in our knowledge of space phys-
ics-the scientific study of magnetic and electric
phenomena that occur in outer space/ in the upper

atmosphere of planets, and on the Sun. Space physicists
use ground-based observatories, balloons, rockets, satel-
lites, and deep-space probes to study many phenomena
both remotely and directly where they occur.

The origins and deveiopment of space physics are
closely tied to the birth and growth o{ NASA itself. Re-
search in space physics began at NASA in 1958, using
data transmitted by the NASA satellites Explorer I and
Explorer Itr. These data revealed belts of radiation trapped
inside the Earth's magnetic field. These belts were named
after their discoverer, Dr. |ames Van Allen of the Univer-
sity of lowa. At about the same time, Dr. Eugene Parker
of the University of Chicago demonstrated that the Sun's
corona theoretically had to be continuously expanding
at supersonic speeds. His conclusions were subsequently
confirmed by NASA satellite dat4 and "solar wind"-the
name for this extended solar atmosphere-became a

commonplace term.

tttlhaldoe$ the rustol' shutlt?

The poster includes a tour of the solar system and
cuffent research in various areas of soiar physics. Begin-

The poster inserted in this issue of Quantum rounds
out our celebration o{ Intemational Space Year. It is
one of three backdrop panels created by Dale Glasgow
for the NASA exhibit booth at NSTA's 1991 national
convention in Boston. The poster was originally devel-
oped from the artwork and distributed at the Boston
meeting. The National Science Foundation generously
provided {unds to reprint the poster {or the benefit of
Quantum readers. Our thanks to the American Geo-
physical Union for initiating this poster project and
providing the accompanying text.

ning in the lower-left comer of the poster is the Sun, rep-
resented by the yellow surface we call the photosphere
and red structures called prominences. The filamentary
structures flowing outward from the Sun are coronal
streamersi the longer structures are solar wind streams.

All nine planets are shown, from Mercury (closest to
the Sun) to Pluto (farthest awayl. The wispy envelope
flowing around each planet is its magnetosphere. Three
comets are shown; Halley's comet is the one closest to
Uranus. The solar wind causes the tails of both comets
and magnetospheres to point away hom the Sun.

Space is often referred to as a gteat "yoid," yet the
poster shows a fu1l, active scene. Is space truly empty
anywhere? Why?

The Ulysses spacecraft is depicted flying by |upiter in
February 1992 onits way to the Sun (it willfly over its
poles in l994l.Yoyager 2 is shown as it flew by Neptune
in August 1989 on its joumey out of the solar system.

The arc near the top of the poster is the heliopause-
the plasma boundary of our solar system. Beyond the
heliopause, in interstellar space/ are the Crab Nebula and
a pulsar. The yellow and red "waves" emanating from
these objects depict cosmic rays that are believed to be
acceleratedbythe obiects. Thepaths are "kinky" because
cosmic rays are charged particles that scatter in interplan-
etary and interstellar space. Also visible in the poster are
hundreds of stars.

Photos and figures related to areas of current research
are shown on the right side of the poster.

SRace $]tu[h aurora otsel'uailions
This dramatic photo, taken from the space shuttle

(mission STS-39), shows the northern auroral display.
Most shuttle missions are flown at lower latitudes, and
so the northern latitudes of the Earth are not visible.
Mission STS-39 was flown at a higher latitude, making
it possible to photograph the aurora through the cargobay
window. The photo plainly shows the white crescent
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shape o{ an autota generated by energetic electrons that
have been accelerated along the Earth's magnetic field.
(Notice also the glow visible on the shuttle engine pods
and tail surfacg produced by chemical interactions rather
than the motion of charged particles.)

Gl'ound-lased solal' sludies
Solar research, such as that done at the pictured

McMath solar telescope at Kitt Peak National Observa-
tory, Arizona, is necessary {or understanding the Sun's
atmosphere and corona. Filtered photographs in the red
iight of H-alpha (6553 A) show the intricate filamentary
structure and dymamics at the Sun's surface and chromo-
sphere, which form the underpinning of the coronal
structures that we observe with ultraviolet and X-ray
instruments from space.

Snound-lased ionoWfiel,ic sludies
The Sondrestrom Radar Facility is located above the

Arctic Circle in southwestem Greenland. The facility is
a maior hub for upper-atmospheric and solar-terrestrial
research. The principal instrument is the 33-meter fully
steerable parabolic antenna featured in the photo. The
antenna is complemented by a wide range o{ instrumen-
tation, including spectrometers, imagers, interferom-
eters/ magnetometers/ riometers, and a lidar. The
Sondrestrom facility is operated for the National Science
Foundation by SRI Intemational and is the largest NSF-
supported facfity north of the Arctic Circle. This radar
is capable of measuring electron density, electron and ion
temperature/ Doppler velocities, and other parameters of
the upper atmosphere and ionosphere.

AnhmNic lalloon flighm to fie edUe otfie atmosilme
Scienti{ic experiments dealing with space can often be

performed inexpensively through the use of balloons. The
focus of the Antarctic balloon program has been on so-
lar physics and cosmic rays. The largest balloons used in
these studies reach an average altitude of39 km and carry
payloads weighing more than 2,2501<9.

The High-Resolution Gamma-Ray and Hard X-Ray
Spectrometer (HIREGS) is an intemational collaborative
investigation designed to make detailed measurements
of the X rays and gamma rays produced when particles
accelerated by solar flares collide with the solar atmo-
sphere. The goal of the lengthy HIREGS balloon flights
is to provide abetterunderstanding of the conditions and
mechanisms responsible for producing solar flares and
accelerating particles to high energies.

In the first flight, on |anu ary l0 , 1992 , a I , 70O-kilogram
payload was launched on an 830,000-cubic-meter, he-
lium-filled balloon and circumnavigated the Antarctic
continent in 13 days, 17 hours. A second flight is planned
for December 1992.

Why do you think such circumnavigation is possible
with only a balloon?

Another investigation performed by balloon flights
over Antarctica was designed to study the isotopic

composition of the cosmic rays. A balloon-borne pay-
load, Magnetic Passive Isotope Experiment (MAGPIE),
was {Iown over Antarctica in December 1991. Mea-
surements to determine the origin of cosmic rays and
how they might have been accelerated to their remark-
ably high energies were conducted during this flight.
Analysis of the data from the MAGPIE flight is cur-
rently underway.

Sunding roclnflfliUlrls inlo neal' s[are
The multistage launch featured in the time-lapse

photo took place in 1984 at NASA's Poker Flats launch
facility in Alaska. A camera focused on the rocket, its
shutter stopped open for over 20 minutes, records the
dramatic liftoff, staging, and release of the experiments,
along with the faint traces of stars and an auroral dis-
play. The first stage was a US Navy surplus Terrier
rocket; the second stage was a Canadian-bui1t Black
Brant; and the third stage was propelled by a Canadian
Nihka motor. The sounding rocket reached an altitude
of approximately 1,000 km in l0 minutes. The upper
stage, which contained the payload/ was assembled at
NASA's Wallops Island, Virginia, facility. The 135-ki-
logram payload contained instrumentation to track the
rocket and to launch the two experimental devices
released into space. The first release occurred 340 sec-
onds into the flight; the second release occurred 685
seconds after launch. In the releases a high-temperature
chemical reaction rapidly ejected barium, whlch is
then ionized by solar ultraviolet radiation. Resonance
fluorescence o{ these ions produces a faint glow of light,
and the ions are aligned by the Earth's magnetic field.
The space physicists pafticipating in this experiment
were studying the alignment and convection of ions in
the Earth's magnetic field by tracking the glowing
clouds. As you study the photograph, observe the arcs
described by the first, second, and third stages and the
location of the experiment releases. The rocket is ac-
tually gaining altitude during the flight, reaching an
apogee of about 1,000 km. Why do you think it appears
that the experiments are lower in altitude than the
stages/ even though you know they were conducted at
a higher altitude? (Try to figure it out yourself, then
compare your findings with ours on page 51.)

Dah interpmflation: taffi$ Uan Allen l'adiatim lslts
This figure is based on data provided by Dr. |ames Van

Allen and shows the counting rate of charged particle
detectors flown in Explorers I, III, and IV and Pioneer 3.
In this {igure, the blue sphere represents the Earth, the
red zone the inner belt, and the yellow zone the outer belt
of the Van Allen radiation be1ts.

The horizontal white lines represent the trajectory
of Pioneer3 (launched toward the Moon in 1959)-the
lower line showing the outbound path and the upper
line the return path. The numbers running h orizontally
are the distances from the center of the Earth in units
of Earth radii.
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What do you think a plot of Pioneer 3 data would look
like?

Tfieol'eticalmodels:lal'lide lnotiun ilt lhs radiation hells
The formula shown on the poster is for the conserva-

tion of the first adiabatic invariant of a charged particle
moving in a magnetic field. Any charged particle mov-
ing through any magnetic field will experience a force
perpendicular to its direction o{ motion (direction of ve-
locity vector). The angle between the velocity vector and
the magnetic field vector is given the symbol cx and is
called the particle pitch angle. This perpendicular force
causes the particle's motion to continually deflect to the
right or left, depending on the sign of the electric charge
and direction of the magnetic fie1d. The resulting motion
is spiral. The intensity of the force F depends on the
amount of electrical charge q, the speed V, the strength
B of the magnetic field, and the pitch angle cr:

F = BVq sina.

These quantities are related by a variety of natural "laws"
that carr be expressed mathematically. An important
mathematical relationship used by space physicists
studying such phenomena is cal1ed "the conseryation of
the first adiabatic invariant." This relationship combines
the laws of conservation of energy and conservation o{
momentum. It states that

tmVz sirP a
lBl = constant/

where m is the mass of the particle; Vis the speed, which
is the magnitude of the velocity vector v; u is the pitch
angle between v and B; and IBI is the magnitude (strength)
of the magnetic field vector B. The formula is valid as
long as changes in the magnetic field are slow on the time
scale of one 350o spiral motion of the particle. As a
charged particle moves in the Earth's magnetic field, it
spirals toward one of the Earth's magnetic poles. The
spiral path gets tighter as the mag[etic field intensifies
closer to Earth. (Why is this?) Eventually, but stiil far
above the Earth's surface, the magnetic field gets strong
enough that the particle "bounces" back, spiraling in a
great curved path toward the other magnetic pole of the
Earth. The bounce point occurs when B in the math-
ematical relationship above gets large enough so that
sin cr equals 1. (At what angle would this be?) The pro-
cess is repeated at the other pole, and the particles are
trapped in the Earth's magnetic field at different loca-
tions, depending on their mass and charge. Areas where
the particles are concentrated are called radiation belts
or Van Allen belts.

[aneers in space p[ysics

To prepare for the graduate degree necessary for a ca-
reer in space physics/ you should take as many math-
ematics and basic science courses as possible in high

school. Courses in algebra, geometry/ trigonometry, cal-
culus, computer science, chemistry, Earth science, and
physics atevery strongly recommended. In addition, it's
important to develop the strong communication skills
that will be essential in describing new discoveries for
other scientists and writing proposals to obtain funding
for research.

After receiving an undergraduate degree, a prospec-
tive space physicist should pursue a doctor of philoso-
phy degree {Ph.D.l in physics with a specialization in
space physics. Most doctoral programs take three to
five years to complete, and graduate students very of-
ten earn their tuition/ room, and board by working as
either a research assistant or teaching assistant. After
earning a Ph.D. the next step is usually a two- to four-
year postdoctoral position, roughly equivalent to a
medical doctor's r"rid"rcy. O

M. Frank Watt ketoo, manager of precollege education at the
American Geophysical Union, coordinated this Quantum
poster proiect. Sue Cox Kauffman is an education specialist
and lr[,:ark Pesses is a senior staff scientist at Space Applica-
tions InternationaT Corporation in Washington, D.C. Ron
Morse is an adiunct professor in the science teaching depart-
ment at Syracuse University.
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ANTHOLOGY

The "a$$ayer" tnlgiUhs IhB lauls
"The /ess people know and understand about such matters,
the more positively they attempt to reason about them

by Yuli Danilov

N OUTSTANDING MATHEMATICIAN OF OUR
time, Hermann Weyl, once complained that the
style of modern mathematical works reminds him
of prison cells fi1led with dead electric light that ren-

ders all details equal because they don't cast any shadows.
WeyI himself preferred " a soft landscape under the open
sky" and wrote in perfect refined German reminiscent of
Hermann Hesse, and while in exile in America he la-
mented "the fetters of a foreign language that he did not
hear {rom the cradle."

The excerpt below is taken from a small but important
work by one of founders of a new physics based not on a
reference to someone's authority but on observation and
mathematical calculation: Galileo Galilei 11564*L6421.
Galileo wrote the treatise in 1523 and gave it a title that
might seem strange at first sight: "The Assayer/ in which
with a delicate and precise scale will be weighed the
things contained in The Astronomical and Philosophical
Balance of Lothario Sarsi of Siquenza." Reading ig we get
an inkling of why Galileo's countrFmen hold this relatively
ndected work in high esteem, and why Italians consider
Galilss one of the creators of the Italian literary language.

The excerpt is a parable presented as an argument in a
scientific dispute on the nature of comets. To set the stage:
at the end of 1618 three comets appeared one after another
in the sky over Italy. The third comet was observed from
November 1618 to larluary 1619 and was especially
bright. The universal interest in these "tailed stars"
stimulated the renewal of an old debate about the nature
of comets. According to Aristotle, everything that is per-
ishable and transient-capable of being bom and passing
away-belongs to the sublunar world. The celestial,
translunar world contains all that is etemal, permanent/
and perfect. If a comet is a real body, then, because it ap-
pears and disappears, in the framework of the Aristotelian
conception it can belong only to the sublunar world. It's
quite a different matter if a comet, as Galileo supposed,
is an optical illusion, aplay of light in evaporations ris-
ing to the upper layers of the atmosphere: an incorporeal
vision could, without any contradiction, appear in the
translunar world as well. A secondary question, it would

seem, acquired primary importancg which explains why
the ensuing discussion was so keen. The moral o{
Galileo's parable is clear: if the main character cannot un-
derstand how a cicada in his hands produces its song how
can one speak with certainty about the nature of comets
that arc out of reach, high above the Earth? "[T]he num-
ber of things known and understood," wrote Galileo, fin-
ishing the thought quoted above, "renders [people] more
cautious in passing judgment about anything new."

What makes "The Assayer" so interesting is its pas-
sionate and at the same time inconspicuous profession of
a new scientific method.t At one point Galileo lets drop
a remark in the spirit of Democritus's atomistic theory,
according to which all that exists is the result of a mix-
ing of elements devoid of any qualitative fifferences. At
another, he caustically mocks how his opponent adheres
to proofs based on the opinions of others, even i-f these oth-
ers happen to be the greatest Romanpoets-Virgil, Ovid,
Seneca, Horace. Elsewhere Galileo pens his famous phrase
about the open book of the universg accessible only to those
who know the language of mathematics:

It seems to me that I discern in Sarsi a firm belief that in phi-
losophizing it is essential to support oneself upon the opin-
ion of some celebrated author, as if when our minds are not
wedded to the reasoning of some other person they ought to
remain completely barren and sterile. Possibly he thinks that
philosophy is a book of fiction created by some man, like the
lliad or Oilando Furiosoz-books in which the least impor-
tant thing is whether what is written in them is true. Well,
Sig. Sarsi, that is not the way matters stand. Philosophy is
written in this grand book-I mean the universe-which
stands continually open to our gaze, but it cannot be under-
stood unless one first leams to comprehend the language and
interpret the characters in which it is written. It is written in
the language of mathematics, and its characters are triangles,

1At least it escaped Pope Urban Vltr's (perhaps drowsy)
attention-he would ask to have "The Assayer" read to him
at mealtimes. And it even slipped past the unblinking eye of
the Inquisition.

'zThis epic poem by Ludovico Ariosto (1474-1533lwas a
favorite of Galileo's and reflects most closely his own
aesthetic views.
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circles, and other geometrical figures, without which it is hu-
manly impossible to understand a single word of it; without
these, one is wandering about in a dark labyrinth.s

[r the polemics that {ollowed, the new scientific method
was defended by Galileo and his pupil Mario Guiducci. The
defender of the scholastic tradition was an influential profes-
sorof mathematics atthe Collegio Romano, Horatio (Orazio)

Grassi, who published a treatise entitled "The Astronomical

and PhilosophicalBaLarce" under the pseudonym Lotario
Sarsi. Lr criticizing certain of Guiducci's assertions, whose
book resonated ciearly with Galilean motifs (ex ungue
leonem-' ' you can tell a lion by its claws " ), Sarsi rhetorically
"weighed" them. kr response, the infuriated Galileo s]iced his
opponent's treatise into 53 fragments and figuratively
weighed each of them with the especially sensitive balance
usedby assayers (persons who analyze substances for one or
more specific components)-thus the title.

rIEil
The assayer
(Excerpt)

f here once lived, in a very solrtaryplace, a man endowed
I by nature with extraordinary curiosity and a very pen-
etrating mind. He raised many birds as a hobby, much
enjoying their songs, and he used to observe with great
admiration the happy contrivance by which they would
transform at will the very air they breathed into a variety
of sweet songs. Close to his house one evening, he
chanced to hear a delicate sound, and, being unable to
imagine what it could be except some small bird, he set
out to capture it. Arriving at the road, he found a shep-
herdboywho was blowrng into a kind of hollow stick and
moving his fingers about on the wood, thus drawing from
it avariety of notes similar to those of a bird, though by
quite a different method. Ptzzled, and led on by his natu-
ral curiosity, he gave the boy a caif in exchange for his
recorder and retired to solitude. Realizing that if he had
not chanced to meet the boy he would never have leamed
of the existence of two methods for forming musical notes
and very sweet songs, he tried traveling far from his home
in the hope of meeting with some new adventure. The
very next day he happened to pass near a small hut, and,
hearing a similar tone within, he went inside to find out
whether it was a recorder or a blackbird. Therehefounda
boy holding a bow in his right hand and sawing upon some
fibres stretched upon a concave piece of wood. The fingers of
the left hand (which supported the instrument) were moving,
and without blowing the boy was drawing from it various
notes, and most sweet ones too. Now, you who are partici
pating in this man's mind and sharing in his curiosity, iudge
his astonishmentl Finding himself to have two unexpected
new ways of forming tones and melodies, he began to believe
that still others miCht exj.st in nature. His wonder increased
when upon entering a certain temple he glanced behind the
gates to ieam what it was that had sounded, and perceived

sThe Conftoversy on the Comets of 1618, Stillman Drake
and C. D. O'Malley, trans., Philadeiphia: University of
Pennsylvania Press, 1960, pp.183-84. This quotation from
"The Assayet," and the excerpt that follows lpp.235-361,
were translated from the Italian by Stillman Drake.

that the noise had emanated from the hrnges andfasterungs
as he had opened the gate. Again, impelled by curiosity, he
entered an inn expecting to see someone lighdybowing the
strings of a violin, and instead saw a man rubbing the tip of
his fingerround therim of agoblet and drawingfothfrom it
a very sweet sound. And later he observed that wasps, mos-
quitoes, and flies did not form separate notes from their
breaths, as didhis original birds, but made steady tones by the
swift beating of their wings.

In proportion as his amazement grew, his belief dimin-
ished that he knew how sounds were created; nor could
all his previous experience have sufficed to make him
understand or even believe that crickets, which do not fly,
could draw their sweet and sonorous shrilling not from
breath but from a scraping of wings. And when he had al-
most come to believe that there could be no further ways
of forming notes-after having observed in addition to
what has been recounted numerous organs/ trumpets/
fifes, stringed instruments of various sorts, and even that
little iron tongue which when placed between the teeth
makes strange use of the buccal cavity as a sounding box
and of the breath as a vehicle of sound-when, I say, he
believed that he had seen everything, he found himself
more than ever wrapped in ignorance and bafflement upon
capturing in his hand a cicada, for neither by closing its
mouth nor by stopping its wings could he diminish its
strident sound, and yet he could not see it move either its
scales or any other parts. At length, lifting up the armor of
its chest and seeing beneath this some thin, hard ligaments,
he believed that the sound was coming from a shaking of
thesg and he resolved to break them in order to silence it. But
everything failed until, driving the needle too deep, he trans-
fixed the creature and took away its Life with its voice, so that
even then he could not make sure whether the song had origi-
nated in those ligaments. Thereupon his knowledge was
reduced to such diffidence that when asked how sounds
are generated he used to reply tolerantly that although he
knew some of the ways, he was certain that many more
existed which were unknown and unimaginable. O
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All brought to you by dry friction-don't leave home without it

E COME ACROSS FRICTION
at every step. Or better yet, we
can't take a step without fric-
tion. But in spite of the crucial

role friction plays in our life, we still
don't have a complete picture of how
friction arises. It's not because fric-
tion is so complicated by naturei it/s
just that experiments with friction
ate Yery sensitive to the surfaces
used-that's why they're so hard to
reproduce.

F{ere's an example. The English
physicist Hardy investigated the tem-
perature dependence of friction be-
tween glass plates. He carefully
washed the plates with bleach (cal-
cium hypochlorite solution) and
rinsed them with water, removing
grease and other impurities. Friction
increased with temperature. The ex-
periment was repeated many times,
and the results obtained were ap-
proximately the same. But once, while
washing the plateg Hardy rubbed them
with his fingers. Friction stopped de-
pending on temperature. Flardy thought
that by rubbing the plates he had re-
moved ayery thin layer o{ glass with
altered properties due to the interaction
with bleach and water.

When we talk about friction, we
can distinguish three siightly differ-
ent phenomena: resistance when a
body is moving in liquid or gas-this
is called fluid friction ; resistance that
arises when a body slides over a sur-
face-sliding or dry friction; and re-
sistance that arises when a body

by l. Slobodetsky

rolls-rolling ftiction. This article is
devoted to dry friction.

The first investigations of friction
that we know about were performed
by Leonardo da Vinci approximately
450 years ago. He measured the fric-
tional force acting on wooden blocks
as they slid across a board. Placing the
blocks on their various faces, he dis-
covered the independence of the fric-
tional force on the area of the sur{ace
touching the board. But da Vinci
never published his results. They be-
came known only a{ter the classical
laws of friction were discovered by
the French scientists Guillaume
Amontons and Charles-Augustin de
Coulomb.

These laws were as {ollows. (1} The
frictional force F is directly propor-
tional to the force N-the normal
(perpenficular) force of the body on
the surface over which it is moving:
F= kN, wherek is a dimensionless co-
efficient called the coefficient o{ fric-
tion. (2) The frictional {orce does not
depend on the atea of. contact be-
tween the surfaces. (3)The coefficient
of friction depends on the properties
of the surfaces that rub together.
(a)The frictional force does not de-
pend on the body's velocity.

Three hundred years of friction re-
search have coroborated the validity
of the first three laws proposed by
Amontons and Coulomb. Only the
last one proved to be incorrect. But
that was fiscovered much later, when
railroads came on the scene and en-

gineers noticed that the trains didn't
behave as they expected when they
applied the brakes.

Amontons and Coulomb ex-
plained the nature of friction rather
simply. Both surfaces are uneven-
they are covered with small bumps
and pits. When a body is in motion,
the bumps slide over one another, and
so the body keeps going up and down.
A certain force must be applied to
drag the body onto these "hills." If the
bumps are larger, the force must be
increased as wel1. But this explana-
tion contradicts one very important
phenomenon: mechanical energy is
expended on friction. A cube sliding
over a horizontal surface stops. Its
mechanicai energy is transformed
into heat by the friction. But in going
up and down, the body doesn't use up
its energy. Think o{ a roller coaster.
When the cars roll down, their poten-
tial energy is converted into kinetic
energy and they go faste4 when the
cars go up the next hill, their kinetic
energy is converted back into poten-
tial energy. The mechanical energy of
the cars decreases because of friction,
not because they are going up and
down. The movement of one body on
the surface of anotheris analogous. Here
again the energy loss can have nothing
to do with the fact that thebumps of one
body climb up the bumps of the other.

There are still other objections. For
examplg simple experiments to mea-
sure the frictional force between two
polished glass plates showed that af-
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ter the surfaces were polished even
more, the frictional force at first
didn't changg and then it increased-
it didn't decrease the way we/d expect
from the model proposed by Amon-
tons and Coulomb.

The mechanism of friction is
much more complicated. Because of
the unevenness of the surfaces, they
come in contact only at individual
points on the tops of the bumps. Here
molecules of the two bodies are sepa-

(*,-*-

rated by distances approximately
equal to the intermolecular distance
within the bodies themselves, and
the molecules interact. A stable bond
is formed, which is broken when one
body is pushed. While the body is
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moving/ bonds are continuously
formed and broken. At the same time
molecular oscillations arise. And
that's where the mechanical energy
goes-into these oscillations.

The actual areao{, contact is usu-
ally from 1,000 to 2,000 square mi-
crons. In practice it doesn't depend on
the size of the body-it's deterrnined
by the nature o{ the surfaces, their fin-
ish, the temperature, and the normal
force. If we press the surfaces to-
gether, the bumps are crushed and the
act;aal atea of contact increases. So
does the frictional force.

If the roughness of the surfaces is
considerable, the mechanical catch-
ing of the hills begins to play alarge
role in increasing the frictional force.
During movement the hills are
crushed, and this gives rise to molecu-
lar oscillations as well.

Now the experiment with the pol-
ished glass plates makes sense. When
the surfaces were still rough, the num-
ber of contact points was smal! after a
good poJishing, that number increased.

Here's another example of increas-
ing the frictional force byworking the
surface. If we take two metal bars
with clean polished surfaces, they
stick together. Here friction is great,
because the actual area of contact is
large. The molecular bonding forces
responsible for friction tum the two
bars into a monolith!1

You can do the following experi-
ment at home. Tie a string to the
stem of a wine glass. Put it on a piece
of glass and pull it. Now moisten the
piece of glass and the base of the wine
glass with water, which will wash off
any grease and dirt. Pull the wine
glass again. Now it's much more dil-
ficult to do it. It's hard to break a clean
glass-glass contact. I{you look closely
at the surface, you may even notice
scratches. It was easier to rip out pieces
of glass than to break contact!

The model of friction we've been
using is rather crude. We fidn't stop
to look at molecular diffusion-that
is, the penetration of molecules of one
body into the other; the role of elec-
trical charges that arise on touching

1In its literal sense (a "single
stone" ).-Ed.

surfaces; the role of lubrication and
how a lubricant works. These are still
open questions/ to some extent. We
can onlywonderwhy such a compli-
cated phenomenon as friction is de-
scribed by such a simple law: F = kN.
And though the coefficient of friction
isn't really constant and changes a bit
from one point on the surface to an-
other, we can make pretty good esti-
mates of frictional forces for the many
surfaces we come across so often in
technical applications.

Dry friction has one important
peculiarity: static filction. Whereas
friction arises in a liquid or gas only
when the body is in motion, and it's
possible to move it with very little
force, with dry friction a body starts
to move onlywhen the component of
the applied force F parallel to the sur-
face exceeds a certain rnagnitude (see

figure 1). Until the body starts to slidg
the frictional force is ec1ua1 to the par-
allel component of the applied force
but in the opposite direction. When
the applied force is increased, the
static ftictional force also increases
until it reaches its maximum value,
usually greater than ftN, at which
point the body begins to slide. After
that the frictional force is equal to ftN.

This is often forgotten when the
time comes to solve problems. Ques-
tion: "What frictional force acts on a
table weighing 300 N if the coeffi-
cient of friction is 0.4?." Most stu-
dents will confidently answer: "120
N." Wrong! The frictional force is
equal to zero-otherwise the table
would move in the direction of the
frictional force, since there are no
other horizontal forces.

So, to move a body at rest/ we must
apply a force greater than the maxi-
mum possible static frictional force
caused by the sftength of the molecu-
iar bonds. But what i{ the body is al-
ready moving? What force must be
applied to make the body move in a

A.r F

different direction? It tums out to be
infinitesimal. This can be explained
by the f.act that the frictional force
can't exceed the static frictional force.

Try this simple experiment. Take
a book and put one edge on another,
thicker book. You'Il get an inclined
plane. Now attach a thread to a
matchbox and put the matchbox on
the inclined plane. If the box slides,
decrease the angle o{ inclination-use
a thinner book for support. PulI the
box to the side. It will slide downward
too! Decrease the angle of inclination
and pull the thread again. The same
phenomenon occurs. The box slides
down even with very small angles of
inclination. The frictional force that
held the box on the plane has some-
how become very small.

Let's try to figure out what's going
on here. If the matchbox moved only
horizontally, it would be acted upon
by a frictional force antiparallel to the
velocity and equal to kN. To prevent
the box from sliding down, there
must be a frictional force acting on it
that is firected up the inclined plane
and equal to the component of the
weight of the box parallel to the in-
clined plane. The resultant of these two
frictional forces wouldbe more thankN,
and that can't be true. So the box must
slide down the inclinedplane.

Let's take a block, attach a string
to it, and put the block on a horizon-
tal plane. Pull it by the string so that
it has a constant velocity v, (fiS. 2).
Applying a force perpendicular tovlt
we can make the block move in this
direction with the velocity vr. The
frictional force will be equal to kN
and will have the direction opposite
to the velocity v of the block relative
to the plane (v = v, + vr). Let's break
the frictional force into two compo-
nents along the directions of veloci-
ties v, and vr:

Fr=FtcosB, F,=FosinB,

E
It
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where p is the angle between the ve-
locities v, and v, and tan B : vrf vr.

The component F1 of the frictional
force counteracts the tension in the
string and the component F2 counter-
acts the "sideways" force applied to
the block. Since

sinP =

then

F^=F,1tf

from which we get

tano(
' '"Jk' -tanzcl

(Of course, this holds only if tan o <
k, because atlarger angles ofinclina-
tion the frictional force can't hold the
box on the plane.)

At small angles of inclination
(such that tan a, << k),

tano(vz=vt 
k

-that is, the speed at which the box
slides dov'.n the inclined plane is propor-
tional to the speed at which it moves
across the inclinedplane and to the tan-
gent of the angle of inclination.

This conclusion can easily be
proved by experiment. In uniform
motion the fisplacement of a body is
proportional to its velocity, and the
ratio of the speeds vrarrdvrwiii equal
the ratio of the distances it travels in
these directions.

This phenomenon is {arfromrare.
For examplg it's known that when an
electric motor is suddenly stopped,
the drive belt often jumps off the pul-
leys. Why? When the motor is
stopped, the belt stafts to slide rela-
tive to the pulleys, and it doesn't take
much force to pull the belt sideways.
Since the pulleys and the belt are usu-
ally set a little askew, this force is a
component of the tension in the belt.
Here are some other examples. When
you want to pull a nail out of the wall
without pliers, you bend it and puII,
simultaneously tuming it about its
axis. For the same reason, a car skids
and goes out of control when you
brake hard. The wheels are sliding
over the road/ arrd alaterd,force arises
due to the unevenness of the road.

Now 1et's look at the last Amontons-
Coulomb iaw: "the frictional force does
not depend on the speed of the body."
This isn't quite true.

The question of how the frictionai
force is related to speed is of great
practical significance. And though
experiments in this area encounter
many specific complications, they are
justified by the application of the in-
formation obtained to the theory of

metal cutting, to calculations of the
movement of bullets and shells in the
barrels of weapons, and so on.

It's generally thought that to start
a body moving you must apply a
greater force than is necessary to pull
it at a constant speed. In most cases
this has to do with impurities on the
surfaces of the bodies being rubbed to-
gether. For example, such a sharp in-
crease in the frictional force is not
observed with pure metals.

Experiments with the motion of a
bullet in a barrel demonstrated that as

the bullet's velocity increases, the
frictional force decreases-at first
quickly, then more and more slowly;
but at speeds exceeding 100 m/s, it
starts inc,reasing. Figure 4 shows the
graph of frictional force versus veloc-
ity. It can be roughly expiained by the
factthat in the area of contact a great
deal of heat is released. At speeds of
about 100 m/s, the temperature of the
contact area may be several thousand
degrees, ar;Ld aLayer of molten metal
forms between the surfaces. Dry fric-
tion turns into fluid friction. And at
high speeds, liquid friction is propor-
tional to the square of the velocity.

It's interesting that the depen-
dence of the frictional {orce on veloc-
ity is approximately the same for a
violinbow and string. That's whywe
can listen to music performed on
bowed instruments like the violin,
cello, or viola.

When the motion of the bow is
uniform, it pulls the string aside and
stretches it (fig. 5). As the stretch in-
creases/ the frictional force between
the bow and string increases. When
the frictional force reac,hes the maxi-
mum/ the string starts to slide rela-
tive to the bow. If the frictional force
didn't depend on the relative speed of

u2

vr
a.)/,.ill
! (v, I

nv,
" ",lv! +vl

fr rr.. v,, then angle B is small and
sin B = tan P. 

'r 
this case

Fr=Fttanp= kN?,
vr

and the component of the frictional
force that prevents the block from
moving sideways is proportional to
the speed of this movement. So we
get a scenario identical to the one for
small velocities with liquid friction.
This means that a moving block can
be made to move also in the perpen-
dicular direction by applying an in-
finitesimally small f orce.

An interesting conclusion can be
drawn for a box sliding on an inclined
plane (fig. 3). Here Fr: W sin cx, and
N = W cos 0( (I4l is the weight o{ the
box and cr is the plane's angle relative
to the horizontal). So

Wsing = k. I4lcoso, -2-,lvi +v;
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Figure 5

the bow and string, then obviously
the displacement of the string from
the equilibrium position would not
change.

But when sliding occurs, the fric-
tion decreases. That's why the string
starts to move to the equilibrium po-
sition. The relative speed of the string
increases, which decreases the fric-
tional force. And when the string re-
bounds, its speed relative to the bow
decreases, and the bow grabs the
string again. Then everything repeats.
And that's how vibrations are gener-

ated in the string. These are sustained
vibrations, because the energy lost by
the stringwhile sliding is continuously
replenishedby thework of the frictional
force pulling the string to the position at
which the string breaks free.

On that happy note, I'11bring this
article on dry friction to a close. We
still don't understand it completely,
but we can describe it with laws that
give us acc;'lrrateenough results. And
this allows us to ercplain manyphysical
phenomena and to make the calcula-
tions necessary to build machines.

Problems
1. Why does a car turn when its

front wheels tum?
2.Balance a stick horizontally on

your outstretched index fingers.
Slowly move your right hand to the
left. Why does the stick also move/
and why does it remain balanced?2

3. Draw a graph of the dependence
of the frictional force acting on a
block placed on an inclined plane on
the plane's angle of inclination.

4.Draw a graph of the dependence
of the frictional force acting on a
block placed on a horizontal plane on
the angle between the applied force
and horizontal. The applied force is

2See also "What the Seesaw Taught"
in the |anuary lFebruary 1991 issue of
Quantum.-Ed.
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less thantheweightof thebloc\ and
the angle varies from 0 to nfZ.

Figure 6

5. Pipes that
break during
the drilling of
wells can be
lifted out by
means of the
device shown
in figure 6. The

C hinged arms
AB andAC are
attached to a
cable at point
A. The pipe
moves upward
because of the
friction o{ the
arms against
thepipe. Deter-

mine the condition under which this
mechanism can lift pipes of any
weight. Naturally, you can assume
that the cable is strong enough.

6. A small cube of mass m is placed

on a rough inclined plane whose
angle of inclination is cr. The coe{fi-
cient of friction is k = 2 tar. o. Define
the minimum horizontal force F (see

figure 7) needed to move the cube.

7. A flywheel of rafius R : 20 cm
is mounted on a fixed axle o{ radius r
:2 crll.. You can remove the flywheel
by pulling it with a force F = 1,000 N.
To make it easier to remove the fly-
wheel, a force Fl : 80 N is applied to
its rim, creating a torque relative to
the axle. What is the minimum force
F, needed to pull the flywheel along
the axle?

8. Why does a badly lubricated
doorsqueak? O
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HAPPENINGS
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lnlel'ltalional Physics 0lympiad
Exciting challenges and reindeer steaks in Helsinki

MERICAN PHYSICS STU-
dents once again proved them-
selves to be among the best in
the world at the XXIII Interna-

tional Physics Olympiad held in
Helsinki, Finland, on fuly 5-13 ,1992.
All five members of the US Physics
Team won awards, including 2 gold
medals, 1 silver medal, and 2 honor-
able mentions. In this year's Olym-
piad 177 competitors from 37 coun-
tries won a total of 13 gold medals, 19

silver medals, 25 bronze medals, and
33 honorable mentions.

The US effort was led by the gold
medal performance of Eric Miller (San

Rafael, California), who scored 41 out

by Larry D. Kirkpatrick

of a possible 50 points. Eric's score
was fifth in the world and quite close
to the top scorc of 44. As a junior Eric
won abronze medal at the Olympiad
held in Havana, Cuba. Next year Eric
will attend Harvard University. The
second gold medal was won by
Szymon Rusinkiewicz (Houston,
Texas). The fact that Szlrmon came to
the United States at the age of five from
Polandwas not lost on thePolish team
as they tried to claim a share of the gold
medal. Szymon will be attending
Comell Universityin the fall.

The silver medal was won by
Michael Schulz of Baldwin, New
York, who will be attending MIT this

fall. The two iuniors on the team,
Carwil |ames (East Cleveland, Ohio)
and Dean |ens (Ankeny, Iowa), were
awarded honorable mentions. Carwii
has decided to pass up his last year of
high school to attend Northwestem
University, but Dean hopes to retum
to next year's team and bring along
his twin brother Steve.

Team leaders for the US Physics
T eam are Larry Kirkpatrick (Montana
State University) and Avi Hauser
(AT&T Bell Laboratories). They are
assisted by Ted Vittatoe (Liberfiiile
High School, Libertyville, Illinois).
The US Physics Team is organizedby
the American Association of Physics
Teachers. Funding is organized by the
American Institute of Physics, which
received major contributions from
AT&T and IBM.

The silam
The Olympiad exam consists of a

theoretical exam that counts for 60%
of the total and an experimental
exam. On the first exam day, students
were asked to solve three very diffi-
cult problems in five hours without
the aid of any books or tables. The
first problem involved a satellite that
had four masses in a ferris wheel ar-
rangement. The masses rotated about
the center of mass as the entire satel-
lite orbited the Earth. The masses
could be pulled or pushed by motors

A report on the 1992 Intemational
Mathematics Olympiad will appear in
the next issue.

Left to right: Avi Hauser, Michael Schulz, Szymon Rusinkiewicz, Dean lens, Eric
Miller, Carwil lames, Larry Kbkpatrick.
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so that their distances to the center
changed. The students were asked to
calculate the forces on each mass, the
work performed by the motors, and
the resultant effects on the motion of
the satellite.

The second problem required the
students to analyze the vibrational
modes of linear molecules using a

model in which the forces between
nearest atomic neighbors are approxi-
matedby springs. The third theoreti-
cal problem concerned the heating
and cooling of a satellite in near-Earth
orbit. After calculating the equilib-
rium temperature of the satellite, as-

suming that it was a black body, the
students calculated what changes
would occur with various suggested
coatings on the surface. The top theo-
retical score was 26.5 o:ut of a maxi-
mum of 30 points.

Two days later the students were
asked to solve two experimental
problems in 2.5 hours each. The first
problem used an ingenious device in
which a falling mass compressed a
piezoelectric device that, in tum, pro-
duced a spark across an adjustable
gap. The students investigated the
relationship between the potentiai
difference generated by the piezoelec-
tric device and the spacing of the gap.

The second experimental problem
required the students to investigate
the transmission properties of colored
filters after determining the groove
spacing of a piece of a compact disk.
They were also required to investigate
the diffraction produced by a fine wire
mesh. The top experimental score was
19.25 o*of amaximum of 20points.

Only eleven countries were able to
win five awards (gold-silver-bronze-
honorable mention) each: Australia (0-
1-1+), China (5-o-o-o), Czechoslova-
l<a V2-2-ll, Germany ( 1-G4-0), Great
Britain (0-4-1-0), Hungary (G{_2-31,
Netherlands (U2-2-ll, Romania ( 1-1-
1-2), Russia (3-1-1*0), Ukraine ( 1-3-1-
0), and the US (2-1-0-2).

One of the higlrlights of this year's
Olympiad was the participation of
teams from several nations that had
only recently gained their indepen-
dence: Croati4 Estonia, Lithrrania, Rus-
si4 Slovenia, andUlraine. Our world is
certainly changing!

Beindem altd sattltos

The US Physics Team arrived in
Helsinki on |uly 3 in time to take a

walking tour of Helsinki and attend
the Fourth of |ulypicnic sponsored by
the American Embassy. The next day
was spent on a second walking tour,
a practice experiment in the hotel,
and dinner at a Finnish restaurant/
where some of the tearn tasted rein-
deer meat for the first time. The team
leaders also enjoyed participating in
the Finnish tradition of the sauna.
(There is approximately one sauna for
every four people in Finland.)

Besides the examinations and the
opportunity to meet talented physics
students from around the world, the
students were treated to tours/ recep-
tions, visits to the Heureka Science
Center and the fortress on
Suomenlinna Island, and musical and
dance entertainment. One night the
students and leaders were treated to
a traditional sauna party.

Selection and Faining
The selection of the team began in

November when the AAPT sent in-
vitations to physics teachers across
the US soliciting nominations of the
best physics students in the country.
The first selection examination was
administeredto 444 students. The
exam consisted of30 very challenging
multiple-choice questions and four
open-response problems. The top 75

students were given a second, harder
examination in March. This exam
consisted of four open-response ques-

tions to be answered in 60 minutes
and two very difficult problems to be
completed in two hours. The top 20
students were then invited to take
part in a weeklong training camp at
the University of Maryland during
the last week in May. (In contrast, the
Chinese train for five months, and the
Russian team holds three training
sessions for a total of five weeks.)

During the training camp the stu-
dents enjoyed problem-solving ses-

sions; tutorial lectures on optics, in-
terference, thermodynamics, AC
electricity, and selected topics in
modern physics; frequent examina-
tions; and a trip to Washington, D.C.,

to visit the Presidential Science Ad-
visor, the Secretary of Education, and
the Associate Director of the Na-
tional Science Foundation. The stu-
dents also had the opportunity to hear
about the frontiers of physics from
prominent scientists from the Uni-
versity of Maryland, AT&T BelI
Laboratories, and IBM's Thomas |.
Watson Research Center.

Ihs lgg3 colnpstiliolt

The United States will host the )Oil/
hrtemational Physics Olympiad at the
College of William and Mary in
Williamsburg Virginia, from |uly I G-l B,

1993. Students interested in becoming
members of the US Physics Team
should contact their fuh school phys-

ics teacher or Maria Elena Khoury,
American Association of Physics
Teachers, 5i12 Berwyn Road, College
Park, MD 207 40 by December 3 1.

1$02 Plrysic$ Isotn
The 1992 US Physics Olympiad

Team drew its members from all
across the country. In the list below,
members who represented the team
inHelsinki are marked by an asterisk;
each member's physics teacher is
noted in parentheses.

Ibrahim Abdullah, Stuyvesant
High School, New York City (Mr.
Tarrendash)

Michael S. Agney (alternate),
Meiboume High Schooi, Melboume,
Florida (Carolyn A. Ronchetti)

Keith Bradley, Parkway North
High School, Creve Coeur, Missouri
(David Lay)

Robert T. Brockman II, St. |ohn's
Schoof Houstoq Texas (MarkKinsey)

Mary Pat Campbell, NC School of
Science and Math, Durham, North
Carolina (HuSh Haskell)

Chang Shih Chan, Northeast High
School, Philadelphia, Pennsylvania
(RaiG. Rajan)

Eric Scott Dickson, Long Beach
Polytech, Long Beach, California
(|ames R. Outwater)

*Carwil 
)ames, honoruble men-

tion, Hawken School, Gate Mills,
Ohio (Robert Shurtz)

*Dean W. |ens, honorable men-
tron, Ankeny High School, Ankeny,
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Iowa (D. F. Savage)
Glenn L. Kashan, Riverdale Coun-

try School, Bronx, NewYork (Sankar
Sengupta)

|ose M. Lotenzo, Miami Sunset
Senior High School, Miami, Florida
(David )ones)

*Eric Miller , gold medal, San Fran-
cisco University High School, San
Francisco, California (Tucker Hiatt)

Daniel f. Rabinowitz, Cherry Hill

High SchoolWest, CherryHill, New
|ersey (Hirendra Chatterjee)

*Szymon Rusinkiewicz, gold
medal, Bellaire High School, Bellaire,
Texas (|ohn E. Beam)

*Michael B. Schulz, silver medal,
BaldwinHigh School, Baldwin, New
York (Dominick |. Capozzll

David Scott, New Trier High Schoo|
Winnetka, Illinois (Alan A. Brix)

Noam Shomron, Mt. Olive

High School, Flanders, New |er-
sey (Ronald Gounaud)

Michail Sunitsky, Stuyvesant
High School, New York City (Mr.
Tarrendash)

Milorad Todorovich, Libertyville
High School, Libertyville, Illinois
(Theodore W. Vittitoe)

Victoria Yung, Cherry HilI High
School West, Cherry Hill, New |ersey
(Hirendra Chatterjee) O

thsfi sitsp mtual,d a lllolel Prize
The Institute o{ Physics of the Pol-

ish Academy of Sciences has orga-
nized a research competition in phys-
ics to encouragehigh school students
to conduct research projects on their
own. The competition is open to all
students who have not begun their
university studies or reached the age

of 21 before March 31,1993.
Papers describing the research do

not have a specified format or con-
tent, but must have a single author
and not exceed 20 typewritten
(double-spaced) pages. Each paper
must be in English and contain the
name/ birthdate, and home address of
the author and the name and address
of the author's school. All papers will
be evaluated by the organizing com-
mittee and prizes awarded to the best
papers. Winners will receive an invi-
tation to spend one month at the In-
stitute of Physics with all expenses
paid. However, winners will be re-
sponsible for their own travel ex-
penses to and from Warsaw, Poland.

Two copies of the research paper
must be sent by March 31, 1993 to

Dr. Waldemar Gorzkowski
Secretary General of "First Step"
Institute of Physics
Poiish Academy of Sciences
al. Lotnikow 32146 (PL) 02-668

Warczawa
POLAND

Additional information is avail-
able by writing to Dr. Gorzkowski
or contacting him via e-mail at
gor zl<@pl anif 5 1 . b i tn et.

Bullelin [oal'd

tt'om eUU tr-whal?
How does a microscopicfertilized

egg turn into a f1y, a chicken/ you or
me? Using the latest techniques of
molecular biology, scientists are be-
ginning to find new answers. Their
findings are described in the S5-page
report From Egg to Adult, published
by the Howard Hughes Mefical Insti-
tute. The full-color report tells about
the dialogue between sperm and egg
that leads to fiertilization-one of the
first examples of cell-cell communi-
cation. It describes the mother's role
in enabling a fly embryo to know its
head from its tail. The report also
shows how scientists are discovering
what makes individual ce1ls of an
embryo migratg divide, or die. Such
research is bringing new insights to the
old question of how much is determined
by herediry how much by the environ-
ment. A separate article describes the
development of the worlds most com-
plex system-the brain.

For a free copy of From Egg to
Adult, write to the Howard Hughes
Medical Institute, Communications
Office, 670l Rockledge Drive,
Bethesda, MD 20817.

Conset'uation tips

The Appalachian Mountain Club
has published The Conservation-
works Book: Pructical Conservation
Tips for the Home and Outdoors,
written by Lisa Capone and illus-
trated by Cady Goldfield. This easy-
to-read ecology handbook combines
advice for conservation at home with
tips for protecting the countryside

when hiking or camping. There are
dozens of suggestions for simple, ef-
fective changes everyone can make to
reduce waste/ save energy, and con-
serve resources. Humorous cartoons
serve to illustrate the book's concepts
while entertaining the reader.

The Conservationworks Book is
available {or $7.95 in bookstores, or by
contacting the publisher direcdy. Write
to Appalachian Mountain Club Books,
5 |oy Streeg Boston, MA 02108.

Comlutalional chemistry
Chemists are obtaining better

tools with which to study the proper-
ties and structure of molecules. In-
stead of spending months developing,
screening, and examining molecules
in the lab, they can model and ana-
lyze alternative molecular structures
using HyperChem, a computer-aided
chemistry package for PCs. Hyper-
Chem integrates sophisticated model-
building and visualization capabilities
with advanced computational methods,
including molecular dynamics and clas-
sical and semiempirical quantum me-
chanics.

HypeChem runs under the Microsoft
Windowsffi interface on 386- and486-
class PCs. It features an open ardritecture
and a built-in scripting language that al-
lowsusers andsoftware developers to ex-
tend and tailor HyperChem to meet spe-
cializedneeds.

To request a demo disk or more in-
formation about HyperChern, write to
Autodesk, Lrc., Education Deparnleng
2320 Martnship Way, Sausalito, CA
94955, or call 800 424-9737.

O U A IJ T l, lil /II A P P t II I II G S 53



tUIalh

M66
Since the total number of victories

of all teams equals the total number
of defeats, and each team played
seven games, the average number of
wins per team is 3Yz. So at least one
team-we'll call it A-has won at
least four games. Similarly, the aver-
age number of victories per team in
the games between the four teams
beaten by A is lYz, so one of them-
team B-has defeated at least two of
the others. Of these two teams/ one-
team C-defeated the other, team D.
The teams A, B, C, D constitute the
desired four.

The statement of the problem is
easily generalized: if 2" 1 teams
played in a tournament, then n
teams A1, ..., Ancanbe chosen such
that each of them has beaten all the
teams with greater numbers.

o
/ tr,

,r" 

ttttt.

,','
," 

ttt,

:<-- ------\.
Figure 1

ANSWERS,
H INTS &

SOLUTIONS

An interesting question is whether
the total number N of teams in this
statement can be less than2;' - t. The
toumament diagrams in figures 1 and
2 (where each arrow is drawn from a
winner to a loser) show that for n = 3,
N= 3 = 22 -L, andfor 17:4t N =7 =23

- 1, our statement proves to be wrong.
(Note that in both figures the arrange-
ment of affows is the same for all
teams/ and in figure 2 any tlrree teams
beaten by a fourth form the diagram in
figure 1.) So in these two cases/ 2" - 1 is
the smallest admissible value of N.
The cases of n : 5, 6, ... areleft to the
reader.

M67
We can view the parabolas' lines of

symmetry as the rectangular coordi-
nate axes (see figure 3). Then the
equations of the parabolas will be x =
ayP + b la > 0, b < 0) and y = c* + d (c
,0, d < 0). The coordinates (x, yl ot
any common point of the parabolas

satisfy both these equations and,
therefore, the equation obtained by
dividing the first equation by a, the
second one by c, and adding them
together:

11
I

4d' 4bz

bd
AC

Since all the terms on the right side
are positive, this equation defines a
circle with center Z(llZa, ll2cl and
radius equal to the square root of the
right side. So all the common points
of the parabolas lie on this circle.

M68
It is always possible to choose x

a:ndy such that a: xto arrdb = yls.
Plugging these into the inequality in
question-

2-f + \sf >S*JF

-and 
dividing this by l, we arrive at

the inequality

fltl=2t5-5P+3>0,

where t = rly, 0. We must prove that
fltl>0.

A standard approach is to use cal-
culus. The derivative f(tl = 10t(f - 1 )

is negative for 0 < t < 1, positive for
t > 1, and equals 0 for t = 1. So this
function takes its minimal value at
the point t : 1, and this value is
fli) = 0 (see the graph in figure 4l; for
all the bther positive values of t,
f(tl > fltl:o.

0

Figure 4

/ I \2 / I \',
I x---- I +l v- |

\ Zal \' 2c)

x v . b d+'=Y'+ +x'+
ACAC

y=c?+d,c>o

Figure 3 x=af+b,a>O

Figure 2
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Completing the squares, we arrive at



A more elementary proof, though
a bit trickier, involves factoring the
polynomial/(t):

fltl=ft- ll'z(213 + 4P + 6t+ 3l

-both 
factors are obviously nonnega-

tive. Perhaps the simplest proof, how-
ever/ starts with the (not quite el-
ementary) lact that the arithmetic
mean of n positive numbers is never
less than their geometric mean.l Tak-

ing the five numbers ^la, JA, 116,

48, \16, we find that

zJi tzV6 = s,@ (qrbf5 \I\

=SJab,

which is equivalent to the above re-
sult. This last method of proof can be
generalized for the case of k positive
numbers alr azt ..., ao to show that

p{llh + pra!/o, + ...+ poaloo

> P(orq...oo)Yn,

where p1, p2, ..., poare positive inte-
gers, p is their sum.

M69
Write out all the divisors of n in

increasing order: I : dr. dr. ... . do

= n. Note thatnf dr= dx- r, ..., nldo:
d' alad dx= n. The number of Posi-
tive integers not exceeding n and
divisible by d, is equal to nf d,, so the
number of integers that are not
coprime with n-that is, n - Q(n)-
is not greater than

fi -fi -...-frdr' dr' ' dk

= dt _r+ do_r+...+ d,

= o(n)-n

Thus,

n -0h) <o(nl-n,

1An elegant proof of the arithmetic-
geometric mean inequality was given by
Cauchy. See, for example, Beckenbach
and Bellman, An Intoduction to
Ine qu akties {Washington: Mathematical
Association of America, 195L, pp. 47 40),

and we're done.
Note that for a prime p this esti-

mate is precise: obl : p + l, Qbl : p -
L, c(pl + (1bl:zp.Are there any other
numbers for which equality holds?

M70
Let K be the intersection of the

variable line with CD, and let lineAB
intersect CP and CQ atM and N, re-
spectively. We will show that AM =
BN. Ihowing this, we can use consid-
erations of symmetry (or congruent
triangles) to show that angles ACM
and BCN are equal. The angles ACP
and BCQ (grven in the problem) are
either identical to these angles or
supplementary to them.

To show that AM = BN, we can use
various pairs of similar triangles to
find that

DC 
=DP _DK

AM AP AH

and

DC 
=DQ _DK

BN BQ BH,

Since AH = BH, it follows that AM =
BN.

This problem can also be solved
without any calculations at aLl, by
going "off into space" (see the article
of that name in the |anuary lEebruary
1992 issue). We consider a central
projection of our plane onto some
other plane p, passing through line
AB.We choose the center of projec-
tion O such that plane OCD will be
parallel to p. Under this central pro-
jection (see figures 5a and 5b), both C
and D map onto points at infinity, so
the images of any two lines passing
through point C will be parallel, as
will the images of any two lines pass-

ing through D. Figure 5b shows the
parallellines that are images of MC
and NC. It also shows parallel lines
PA and Q?, which are the images of
AD andBD, respectively.

Therefore, the images P' artd Q' of
points P and Q will be symmetric
with respect to H. Using figure 5b, we
can see that points M and N (which
are left fixed by our central projection)
are therefore also symmetric with

Figure 5
respect to H. This means that AM =

B{, and our result follows.
To find out more about properties

of central projections, see, for ex-
ample, Geometric Tr ansf ormations
by I. M. Yaglom (Washington: Math-
ematical Association of America,
1973lr. (I. Sharygin, V. Dubrovsky)

Plrysics

P66
Since there is no friction, there are

no extemal forces acting on the sys-
tem in the horizontal direction (fig. 5).

[r order to determine the velocity v of
the left wedge and the velocity u of the
washer immediately after the desceng
we can use the energy and momentum
conservation laws:

Figure 6
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Mvz muz ,

t*f=msh' Mv=m*

At the moment the washer reaches

its maximum heighth** on the right-
hand wedge, the velocities of the
washer and the wedge are equal.
Therefore, conservation of momen-
tum can be written in the form

mu:(M + mlV,

where V is the velocity of the washer
and the right-hand wedge. Let's also

use conservation of energy on the
right-hand side:

mt*

being proportional to the largest ten-
sion-thatis, F": kI{. This means that
Ft:W -kW, andtheratio of thelargest
tension to the smallest tension is a con-

stantgivenby WlFr= 1/(1 -7<).
In the second case, when we want

to lift the load, the two ends of the
rope reverse roles as the frictional
force is now opposite the apPlied
force Fr. The ratio of the largest ten-
sion F, to the smallest tension I4l
must b; the same as it was in the first
case: FrfW = WlF, From this we get

F^ =W' = 90 N."F,

P6B
The total amount of heat Q emit-

ted into space per unit time remains
unchanged, since it is determined by
the energy transformed into heat in
the operation of the station's equip-
ment. Since only the outer surface of
the shell radiates into space and this
radiation depends only on its tem-
perature/ the temperature of the shell
must be equal to the initial tempera-
ture T = 500 K of the station. How-
ever, the shell radiates the same
amount of heat Q inward. This radia-
tion reaches the surface of the station
and is absorbed. Therefore, the total
amount of heat supplied to the sta-

tion per unit time is the sum o{ the
heat Q from the equipment and the
amount of heat Q absorbed at its in-
ner surface-that is, it is equal to2Q.
According to the conservation of en-

ergy, the same amount of heat must
be radiated from the surface of the
station. Therefore,

a14
2Q=1'

Figure 7

Take two arbitrary small areas

lfis. Tl on a charged square sheet; the
ateas ate S, and S, respectively, and
the distance between them is r. Then
the interaction energy of the two se-

lected areas is

^r^r - t (os'Xos')
u"D 

4Tceo r '

where o is the surface density of the
charge.

For the folded sheet, we'll take
two areas corresponding to the first
pair; the areas are Sr' = Srl4 and Sr'=
Sr/4, respectively, and the distance
is r' = r12. Then the interaction en-
ergy of the new pair of areas is

nw.'^ = I
12 4nt n

(o'si)(o'si)
T,

S,Sro'

=M!^v, +mgh^*.

Solving the four simultaneous equa-

tions leads to the expression for the
maximumheighth-*:

M2
t! - t!-..mu -- 

QW+ m)r.

P67
The mass has a weightW : mg =

50 N that is larger than the aPPIied

force F, = 40 N. The difference of
20 N must be supplied by the fric-
tional force between the rope and the
beam. You might guess that F, : 60 N
+ 20 N : B0 N because the frictional
force teverses direction when you try
to pull the mass upward. This is a
good first approximation, but the
value is too small. As you pull harder
on the rope, the rope is pulled tighter
against the beam, increasing the fric-
tional force. Therefore, we need to
take a closer look at the problem to
get a better answer.

A complete calculation of the fric-
tional forces as a function of the po- where { is the required temperature
sition around the beam is rather com- of the station's shell. Finally, we get
plex as the tension in the roPe
changes from F, atthe left end of the T, ={2iT = 500 K.
rope to W = mg atthe right end. (This
must be true since each end of the
rope is in equilibriu-"8;;;r;,; P69
solve this problem it is sufficient to Theelectrostaticpotentialenergyof
note that the frictional force at each a charged body is known to be equal to
point is proportional to the tension in the total potential energy of the interac-

the rope at that point. Therefore, we tionof allpossiblepairsof smallcharged
can take the total frictional force Fo as areas constituting the charged body.

 neo rl2

=ZLWz

(we've taken into consideration the
fact that aiter folding the sheet the
surface density of the charge is four
timeslarger:d=4o).

Therefore, the contribution to the
total energy of any pair of areas in the
second case will be twice that of the
corresponding pair of areas in the first
case. Thus, the total energy of the
sheet after folding is twice the total
energy before folding.

We'lI obtainthe same answer i{we
use fimensional analysis. (See "The
Power of Dimensional Thinking" in
the May/)une 1992 issue.) We'll take
into account the fact that the total en-

ergy of a uniformly charged square
will be proportional to the square of
its total charge and inverseh propor-
tional to the length of its side. After
folding it in half we'll get a situation

o
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Figure B

similar to the initial one. The total
charge of the square is unchanged, while
the dimensions have been halved. Thus,
the total energy of the square is doubled.

P70
To calculate the velocity of the

Moon's shadow we'll take the dis-
tance between the Moon and the
Earth to be R, = 384,000 km and the
period of rotation around the Earth to
b" f, = 28 days : 2,419 ,200 s (see fig-
ure 8). Similarlywe'llassume that the
Eaflfi.'s radius R, = 6400 km and that the
Eardr completes a full rotation about its
axis in the time T, = L day = 85,400 s.

Then the velocity of the Moon's revo-
lution along a circular orbit is

2nR-
v, =? =995mf s,,7,

and the linear velocity of points on
the Earth's surface is

2nR^
vn =--?=465mls.,7,

(In the area on theEarth's surfacewhere
the Moon's shadow is observed, both
velocities are in the same direction.)

As the Sun's rays can be considered
paraliel and the Moon's dimensions
are small, the shadow of the Moon
moves over the Earth's surface at
noon at the velocity

v=vr.

This is a speed of approximateiy 1,200
mph!

Bl'ainlea$Br$

866
Let HE = x, then x2 - x is a three-

digit number ending in two zeros-
that is, it's divisible by 100. Since x2

- x = x(x - 1) is a product of two
coprime numbers, one of them must
be divisible by 25 andthe other one
by 4.If x orx - I equals 25k, where
k > 2, then the product x(x - 1) >
50 . 49 and consists of more than
three digits. So either x - | = 25 and
x=26 (which isn't divisibleby 41, or
x = 25 and x - I :24, which yields
the unique solution: 625 = 252.
(V. Dubrovsky)

867
See figures 9a through 9c.

868
The cavity of the thermos can be

considered a resonator that amplifies
sound frequencies close to the natu-
ral frequencies of the cavity- When
you fill the thermos, the noise pro-
duced by the tiquid has a wide spec-
trum of frequencies; but only the fre-
quencies close to the resonant
frequencies are amplified and are
therefore audible to us. Whilethether-
mos is beingfilled, the length of the cav-
ity decreases andthewavelengths of the
resonant ftequencies become shorter as

well. As a result, the pitch of the tone
shouldget higher.

869
If the last two digits of a number

arcnot99, then, in passing to the next
higher number, we eitherincrease the
digit-sum by 1 or (if the last digit was
9) decrease it by 8. So at least one of
two such "nextnumbers" can'tbe di-
visible by 17. When a number ending
in 99 (but rrot 999lris increased by 1,

the digit-sum decreases by 9 + 9 - I :
17, which is just what we need. How-
ever, numbers ending in 999 (but not
9999l,when increased by 1, decrease
their digit-sum by 25, which is not
divisible by I 7. Thereforg wewant the
smallest number ending in 00 whose
digit-sum is divisible by 17. This is
8,90Q sotheansweris 8,900- 1 :8,899.

870
We canrotate the checkerboard so

that the square A with the sum o{ 3
cents will be locatedbelow and to the
left of the square B with 17 cents
(fig. 10). Let's move fuorr, A to B by

B

-v, =r*(2' - 1 l= 530 m s.' [4 Tr)

B

A

r I
r I

A
A I

10 11 t2 13 t4 15 t6 t7

9 10 11 t2 13 t4 15 t6

8 9 10 11 T2 13 14 15

7 8 9 10 11 t2 13 l4

6 7 8 9 10 11 t2 13

5 6 7 8 9 10 11 lz

4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10

Figure 9 Figure 10
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making one-square steps up or to the
right. Since every step changes the
sum inrthe cunent square by one and
the numbers of right steps and up
steps are both not greater than7, the
total increase of the sum is not greater

thanT + 7 = l4.Infact, it is exactly 14
(17 - }i. Therefore, squares A and B
must be the bottom left and top right
squares of the checkerboard, and
whichever path we choose, each step
must increase the sum by one; so af-
ter any n steps we find ourselves in a
square with the sum of 3 + n cents.
This uniquely determines the arange-
ment of sums-see figure 10. So the
answeris (3 + 5 + ... + l7l+ 8. 10 = 150.

Pnincat'ia
1. The first two assettions are

simply particular cases of the funda-
mental properties of inversion men-
tioned in the article.

Further, recall that p-distance
d(A, Bl for the circular version of the
Poincar6 model was defined in the ar-

ticle "Lrversion" (in the last issue) as

d(A, Bl:InlAB, ab\,

wherelAb, ab\:(Aa. Bbll$b . Balis
the "cross ratio" of four points: A, B,

and the "endpoints" a attdb of p-
lilne AB (B lying between A and
a). First note that exactly the
same {ormula can be applied in
the case of the model in the up-
per half-plane to compute the p-
distance plA, Bl betweenpointsA
a:ndB onp-line L{a, bl (fig. 11). In-
deed, by definition,

O(A, B\=1NAB,+ AB
y\--t "t --- AB, _ AB,

where B'is the reflection of B in the
x-axis. If L(a, bl is a semicircle with
diameter D = ab, then in thenotation
of figure 1 1, by the extended law of sines

AB : D sir, lZAbBl: D sin (cr - 0),
AB'=Dsin(cr+0),and

p(A, B)= ln
sin(o + p)+ sin(o - P)

sin(u + B)- sin(cr - B)

, sinacosp
- 

16-

cos o sinB

, tantx
= ln-

tanp

, AalAb
=III..."_

Bal Bb

=tn1e.n, ou1.

The case w}rrer,L(a, bl is aray la: *
or b = *l is left to the reader (we make
the agreementthat A*IB- - 11.

A11 that remains is to note that
the inversion 1 transforming one
model into the other preserves cross
ratios (like any inversion) and takes
the "endpoints" of a p-line in one
model into those of its image, ap-hne
in the other model.

2. Since the inversion.I considered
in the above solution preserves p-dis-
tances, computed by the formulas for
the corresponding models, .I takes p-
circles of one model into those of the
other. Like any inversion, it also takes
Euclidean circles into Euclidean
circles. So we can use either model to
prove that p-circles are Euclidean
circles. The circular model is more
convenient. If O is the center of the
circle representing the entire p-plane
in this model, then anyp-circle with
center O is a Euclidean circle, be-
cause the condition d(O, Xl: con-

stant is equivalent to OX: constant.
Ap-circle rowith center C other than
O can be obtained from somep-circle
rrlo with center O under the p-reflec-
tion taking O into C. We know that
rrro is a Euclidean circle. So itsp-reflec-
tion ro is also a Euclidean circle.

3. One of two perpendicular p-lines
can always be represented as a ray (by

applying an appropriate p-isometry, i-f
necessary). Then the other one/ clearly,
willbe a semicircle centered at the end-
point of this ray. So all p-lines perpen-

dicular to a givenp-line (problem (a)) can
be represented as concentric semicircles
(fig. 12). h probiem (b), if one of the given
p-lines is taken to be a ray, then the
other one is semicircle (fig. 13), and the
requiredp-line perpendicular to both the
given ones is uniquely constructible as

the semicircle whose center O is the
endpoint of the ray and whose radius
OT is the tangent to the grven semi-
circle from O.

4. The statement about bisectors
can be proved in exactly the same
way as the similar Euclidean theo-
rem, because the proof does not in-
volve the parallel postulate. But the
latter is involved in the Euclidean
proof that perpendicular bisectors of
two sides of a triangle intersect. And
in facg thep-circumcircle of ap-triangle,
coinciding with the Euclidean circle
through its vertices, may not fit entirely
into the upper half-plane: in this case the
p-triangle has no p-circumcircle.

5. Apply the Euclidean proof-par-
alleis are not involved.

6. As in problem 2, it is consistent
and more convenient here to use the
circular model. The proof was given
in "Inversion" (see exercise 8 there).

7. Suppose p-triangles ABC and
ABtCldo not coincide. To be definite,
let B, lie on p-segment AB, and sup-
pose first that p-lines BC and BrC,
have a common point D (possibly in-
finite)-see figure 14a. Then IBBrD
+ ZDBrA is equal to n (this is easy to

Figure'12Figure 11

o
Figure 13
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Figure 14

see iJ we draw the Euclidean lines tan-
gent to the two circles at B,). But
ZDBTA is equal to lB, so ZB +

IBB.D = lr. This makes the sum of
the angles of p-trianglesBBrD gteater
than r. But in non-Euclidean geom-
etry this sum must be less than r. If
BC ar;.d B,C, do not intersect (fig.
l4b), the sum of theangles of p-quad-
rilateral BBIC.C is equal to 2n,
whereas it must be less than 2n (be-

cause the quadrilateral is composed of
two p-triangles BCB, and CBrCrl.

hr the general case, for arry two p-
triangles ABC and AlBtCt having
equal corresponding angles, we can
always find a p-isometry that fits
angleBAC onto angle BrAtCl. Then,
by the above argument, vertices B and
C must hit 81 an.d C, so the p-tri-
angles are p-congruent, thus proving
the AAAtest.

8. Suppose the p-isometry taking
Lla, bl into rayl{0, -}maps f(a, brl
and L(a, brl lnto L(0, crl and Ll}, crl,
respectively (fig. 15). If the numbers c,
and crare of the same sign, the p-shi{t
D o, k : crl c,Leaves L( 0, -) in its place
and maps L(O , crl onto I(0, czl. If cl
and crare o{ different signs, the p-re-
flection in I(0, -) must be performed
before the p-shift.

9. P-reflections are inversions, and
as was explained in the solution to
problem 1, inversions preserve thep-
distance p.

To prove the equality p(A, Cl:
p(A, Bl + p(8, Cl,we can use the fol-

0

Figure 15

lowing formula, which was proven
rncidentally during the solution of prob-
lem l above: plA, Bl:ln (tan o,ltanB|
For the case when thep-line is a semi-
circle, this formula quickly leads to
the desired result. If thep-line is a ray,
the equality directly follows from the
definition of p.

10. Again, as in problems 3 and B,

we can represent p-line Ln as a ray
I(0, -). Then aIIp-lines perpendicu-
lar to Io are semicircles centered at 0,
so the statement of the problem fol-
lows from figures 16a for intersecting
p-lines, 16b for parallel p-lines, and
l5c {or superparallel p-lines.

$queaky dool's
1. Let's spJrt thetrictionalforces act-

ing on the car's front wheels into two
components: F,, whrch are j.n the
wheel's plane , andF , which are perpen-
dicular to the wheel's plane isee trgure
17). The forces F, cause the wheels to
rotatet and the forces { tum the car.

-b

Figure 16

F,tr

Figure 17

2.If the stick's center of gravityis not
haifway between the fingers, then the
pressure of the stick is di-fferent for the
two fingers. The frictional forces of the
fingers acting on the stick are different
as well. The stick is shifted toward the
side where the friction is less.

3. As long as the block is not slid-
ing along the plane, the frictional
force is equal to the projection of the
block's weight onto the inclined
plane Fo = I4l sin o (fig. 18a). The block
begins to slide when the frictional
force reaches the maximum value of
static friction Fo = kN = kl4l cos g. The
condition kl4l cos u: W sin s is sat-
isfied. Therefore, the block begins to
slide when the slope of the plane is
a : arctar.t k. After that the fric-
tional force will be equal to F,, :
kN = kW cos o (fig. 18b).

The angle a: arctar'k at which
the block begins to slide is called the
"angle of repose." It also has another
geometric meaning: if a force that
makes an angle less than the angle of

0

Figure.lB

-b
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Figure 19

repose with the vertical is applied to
a block on a horizontal plane, it's im-
possible to move the block no matter
how great the force is. Flere's how we
can prove it. Let's place an observer
on an inclined plane with a block
resting on it, and let's increase the
slope of the plane. In the observer's
coordinate system/ alotce at an angle
cr to the plane acts on the body lying
on the plane, which the observer
takes to be horizontal. If tan cr < k
(that is, a < arctafi k), then the block
does not slide along the plane no
matter how great a force is applied.

4. See figure 19.

5. The cable acts on the rods with
forces F, and Frthat depend on the
pipe's weight. These forces are di-
rected along the rods (fig. 20). There-
fore, if the angle between the rods and
the perpendicular to the pipe's surface
is less than cr = arctar,k (k being the
coefficient of friction of the rods with
the pipe), then the rods will not slide
along the pipe no matter how great
the forces F, and F rare and no matter
how heavy the pipe is (see the solu-
tion to problem 3). This is sometimes
referred to as "wedging."

You could use the same principle

Figure 20

80 ilottn'tBE[/[tctilBtn lssz

to make a simple and handy clasp for
holding maps or blueprints. You
would need to make two metallic
yokes (see figure 21) and nail them to
the wall. Put a smallball in each of
them. A blueprint inserted into the
slot will be pressed by the ball against
theboard. ff the angle crformedby the
inclined face of the yoke relative to
the vertical is such that tar,}a < k
(where k is the coefficient of friction
between the ball and the blueprint),
then the blueprint will be held by the
force of friction against the ball no
matter how heavy the blueprint and
no matter how small the friction of
the blueprint with the wall. To take
the blueprint out of the clasp, just
push the ball up slightly with the tip
of a pencil or pen.

5. The cube begins to slide when
the resultant of force F and the com-
ponent of the cube's weight that is
parallel to the inclined plane I4l sin cr

is equal to the maximum static fric-
tional force:

kl//cosu = {W\it12 or + Fz .

From this we get

F=@
= 

^FBW 
'sing.

7. 600 N.
B. The explanation for a door's

squeaks is analogous to that for the
sound emitted by a violin string.

lnuension
(See the September/October issue

of Quantuml
1.(a) The result follows from the

similarity of triangles OAX and
oAx'.

(b) The triangles XOA andAOX
in figure 3 in the article are isosce-
les and have a common angle at O,
so they are similar, which implies
that OXIOA = OAIoX .

2. If the given inversions take point
X successively into X, arrd X, then
oxz = Rrz I ox 1 = (Rr2 I R rzlox.

3. The first statement is a combi-
nation of two well-known theorems:

Figure 21

one on intersecting chords, the other
on extended chords. It foliows from
the similarity of triangles PAA' arLd

PB'B, where A' ar;Ld B' are the points
of intersection of another line
through P with a given circle ro. If the
line PAB is drawn through the center
O of ro, then PA PB equals
(OP + rl(OP - rl = Otr -P forPout-
side the ctcle and P - Olz for P inside
the circle (r is the radius).

Now imagine that point P in the
situation above is the center of some
inversion 1. Consider another inver-
sion.[, with the same center and the

radius R = ",[PT:IA = ^rcF'=A
Then, if P lies outside a, B = Ir(Al for
any line through P, because B is on
the ray PA and PA . PB = R2 . So in this
case 1,(rrl) = or, and {rrl) : {1,(ro)). But by
exercise 2, two successive inversions
with the same center result in one
dilation, so the inverse {co) of ro is a
circle coinciding with a dilation of ro.

If P lies inside o, the reasoning is the
same except that in this case {ro) =
Illflll,where o/ is the circle sl,rnmet-
ric to rrr about point P: the point B'
symmetric to B about P lies on ray
PA, satisfies PB' .PA = PB'PA = R2,

and so is the /,-invers e of. A. Thus, {ro)
is the dilation of ro'relative to center
P; and so the dilation of ro by some
negative factor.

4. After the suggested inversion we
getfigxe22, in which the rafius 1 of
o/, the inverse of ro, is evidently equal
to BCl4 = al4, and the power of A
with respect to co' is AT : l\alal'z :

F2

o.N
a,



Figure22

(251161a'z. So the radius of ro equals
l(AB'zlATl = lalLs)a.

5. (a) Circle rrl through A is orthogo-
nal to ol, i{ and only if it passes through
the inverse A' of A. So i A' * A (A does
not lie on or,), the required circle is the
one through A, A', andB.If A Lies on ro,

and B does not/ we draw ol through A,
B, and B'(the inverse of B). Fina11y, if
both points A arfi B lie on ot,, the cen-
ter of ro can be found as the intersection
of the tangents to 0J1 at A and B. Note
that the solution is always unique.

{b) Circle o must pass through the
inverses of A in rrl, and ror. Special
cases are left to the reader.

(c) The construction for the general
case is shown in figure 23. We draw
an arbitrary circle through A and B tn-
tersecting ro, in M and N and extend
AB andMN to intersect at O. Then O
is the center oi the desired circle rrt,

and O7-the tangent to ro,-is its ra-
dius (OA . OB = OM'ON = OT'1.

5. Let B', C' , D' be the inverses of
B, C, D in a circle with center A.
Then B'D'< B'C' + C'D', the exact
equality being tnie if and only if C'
lies on segment B'D'. What remains
is to express the side lengths of tri-
angle B'C'D'in terms of the lengths
of the sides and diagonals of ABCD.

7. Reflection in the equator is a
particular case of inversion on the

sphere, so the reasoning in the para-
graph preceding the exercise is appli-
cable. The reader is invited to work
out a direct proof using similar tri-
angles and suchlike.

B. Verifying the equality d(A, Bl:
d(8, Al is straightforward if we take
into account that when the labels A
and B are swapped, so are Ao and Bo.

By the definition of d(A, B), the in-
equality in question reduces to
R(A, Bl.R(A, C).RlC, B). Wemay
think of point C as the center of circle
o-by exercise 5c, there is always ap-
line that reflects C into the above cen-
ter, and p-reflection preserves p-dis-
tances. For this particular central
location of C, in the notation of figure
24, R(A, C) reduces to a single ratio
AMIAI{, since CM = CN. It's not dif-
ficult to prove thatAM> AAoandAN
. ABo. These inequalities imply that
RlA, C) > AAolABo. Similarly,
RlC, Bl > BBol BAo.The product of the
right sides of the last two rnequalities
is just RlA, B).

9. As in the preceding exercise, it
will suffice to consider a p-triang).e
ABC with a vertex at the center of cx.

It's not hard to see, in figure 24, that
in this case the sum of the angles of
thep-triangle ABC ts less than that of
the conventional triangle ABC.

10. Letp-triangl es ABC arrd A rB rC,
have equal angles at the vertices A
andA' and equal corresponding sides
issuing from these vertices ld(A, Bl:
dlAl' Bt), dlA, C):(A' C1)1, We must
present a combination of p-reflections
thatmap ABC onto AtBtCr Suppose
first that A = Ar: O, where O is the
center of cr. Then sides AB and ArB,
as well as AC and ArC' are normal
straight segments of equai (Euclidean)

length, allissuingfrom O; so rna:r:-.:
ABC = OBC andArB,.Cr= OB C .:.
congruent by the Euclidean sice-
angle-side test. Therefore/ they can
be put in coincidenceby at most t\\.o
reflections inlines through O (which,
in this caset are p-teflections as weli):
the reflection in the bisector of angle
BOBt, and then, if needed, in line
OB,. In the general case, by exercise
5c, we can find p-lines 1 and 1, p-re-
flecting points A and A,, respectively,
into O (andtriang1esABC andArBrC,
into OB'C' and OB"C"). Now p-re-
flect triangle ABC in 7 to get OB'C',
then map the latter onto OB"C" by
means of one or two p-reflections (as

above), and p-reflect OB" C" in 1r. The
result is triangle A1B1C1, obtained in
four orfewerp-reflections. In facg three
p-reflections will always suffice: a little
thought will show that the reflection
Irom OB'C' to ArBrC, can be done di-
rectly (rather than via OB'C'1.

S[acephy$ic$
As the rocket travels downrange, it

goes over the Earth's horizon. To
demonstrate this, construct a semi-
circle with a l2-centimeter radius and
label the center O. Construct a line at
90o from the base 1ine, starting at
point O, that bisects the arc at point
I. Construct second line I S-centime-
ters long from point O at anangle of
30o from line OI and label its other
endpointA. Line OA should intersect
the semicircle and extend beyond it
(see figure 25). Measure 8 cm from
point O along OA, mark a point, and
label it X. The distance from point X
to point I should be about 5.5 cm.
Using that distance as the radius
and point X as the center/ start at
the point L ar'd construct at7 arc

o
A,

Figure 25Figure 23 Figure24
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that intersects the semicircle a sec-

ond time. That arc will represent the
path of the rocket after liftoff. The
rocket's apogee would be at the point
where OA intersects the second
semicircle. If you are standing near
the liftoff point I, your line of sight
extended to the apogee falls below the
path of the rocket. Figure 25 is not
drawn to scale and does not represent
the actual path of the rocket, but it
serves to demonstrate the illusion
created by the rocket's fhght.

Vol.2, no.5:
p. 25, col. 2, Il. 33-34: for

(r! + tlln- rl ruad(r? + tll(n- tl;
fo, (n5 + 3)(n'z+ 1) read
(n5+311fu'z+ll

p. 56, col. 2, 1. 20 (counting the
displayed equation as one line):

for circle Orread circle O,
Vol.2, no.6:
p. 14, col. 1,1.30: for counted

by Srread countedby S,

Vol.3, no. 1:

p.39, col. 1, 112: in the second
sentence Martin Gelfandwas in-
explicably renamed Andrew; he
remains Martin.
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TOY STORE

$linkinU arotlnd

Put some spring in your walk-and vice versa

OST OF THE TOYS PRES-
ented so far in our Toy Store
have been mathematical. But
physical toys are just as inter-

esting. And the most interesting are
those that look plain and simple but,
when put into action, behave in a

strange and unexpected way. The ex-
planation for such behavior some-
times requires a full-fledged mini-
theory, often far from trivial.

The Slinky" is just such a toy-a
loosely coiled spring with 50-100
coils of diameter24 inches.I'm sure
most if not all of you have seen and
played with a Slinky. Its very low
spring constant makes it possible to
perform interesting and instructive
experiments that wouldn't be pos-
sible with an ordinary spring.

The most curious thing is that a

Slinky can "walk" down steps or an
incline. A1l you have to do is to put
the Slinkyupright at the edge of a step
and gently push its upper end toward
the lower step. The Slinkywillimme-
diately start walking down, by gradu-

aIly "flowing" over the upper step
down to the lower one. When the top
of the spring flows over the edge, it de-

scribes an arc in the air, falls down
onto the next step, and the motion
continues (fis. 1).

Clearly, the main explanation of
this effect is that, because of its low
elasticity, a Slinky has no time to
damp the horizontal component of
the velocity of its upper end, which
enabies it to tumble over onto the
next step. Such a walking spring can
be likened to a self-oscillating system
drawing its kinetic energy from the

by Diar Chokin

potential. I'11 evaluate some dynami-
cal parameters of a Stinky.

First, let's consider the portion of
the spring's mass that participates in
the motion. To this end I'il start with
the following problem.

If a Slinky is suspended by its up-
per end (fig.2l, how is its mass distrib-
uted along its length?

Consider the nth coil of the spring
(counting from the bottom). If its
height is Ax,, and its spring constant
and mass are Ak and Lm,respectively
(they are the same for all coils), then,
by Hooke's law,

Ak'Ax" = nLm'g.

So the mean linear density \ of the
nth coil equals

where N is the total number of coils
and k is the spring constant of the

entire Slinky (think why Ak = Nk).
Let's find the height x, of the nth coil
above the lower end of the spring.
Since Ax" = ngAmlN<, the height is
equal to

x,=Lx,+M,+"'+Axr-,

=N!1'8(t+2+...+n-t)Ak\
_ (M/N)s n(n - 1)

kN2

-Mg n'
= zk Nr'

where M is the mass of the entire
spring. (It's interesting that the full
length of the suspended spring, I =
Mgl\kl, turns out to be half the
length of a similar massless spring
with a mass M suspended at its end.)

So we see that the section of a sus-
pended Slinky of height x : x, above
its bottom end will consist of approxi-

matelyn : NirENi coils. There-

Figure 2

^ Lm Ak Nft
lL 

--n Lx, ng ng'
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fore, i.ts mass m(x) equals

m(x) = nLm = "ff =

(Now the linear density ),lx) at height
x can be found by differentiattngmlxl:

)"(x) = m'(x) =

Or, if you haven't studied the deriva-
tive yet, you can obtain this formula
simply by cornparing the above equa-
tions for )... = i(x.I and :r,..1

To estimate the mass of the spring
that participates in the motion, as-

sume that the portion in question is
equivalent to a freell' suspended
springwhose length equals the height
h of one step. Using the erpression for
m(x), we find that the unknolvn mass
is equal to

m= m(h)=, TMEE

and the ratio oi this mass to the total
mass is

m
M1

The smaller the portion of the
Slinky's mass that participates in the
motion, the more stable its walk. So
to improve the "walking ability" of
the toy, our equation indicates that
we should diminish the spring con-
stant, increase the spdng's mass, and
start the spring from steps that arerr't
too high. It would be even better to do
it, say, on |upiter-to increase the
acceleration of gravity g. For a real
spring, takingft : 10 cm and L = I m,
we get mf M=0.3.

Another question I tried to answer
was this: what is the time 7 it takes
for a Slinky to take one step? I don't
want to tire the reader with calcula-
tions any longer (they may not be
very appropriate in the Toy Store)-
I'll just announce my result,

and invite you to prove (or, rnaybe,
disprove) it yourself. It's interesting
that this time doesn't depend on the
height of the step and is of the same
order as the period o{ the spring's free
oscillations, or as the free-fall time of
a body dropped from a height I. Set-
ting for instance, I = I m, we get T=
0.5 s, which is supported by experiment.

Another no less important experi-
ment with a Slinky is modeling lon-
gitudinal mechanical waves. Stretch
the spring and compress one of its
coi1s. You'1l initiate a propagating
wave of alternating stretc.hes and

compressions, which will be reflected
at the ends of the spring. One of the
properties that can be illustrated in
this experiment is that a decrease in
the medium's density leads to an in-
crease in the speed of the longitudinal
waves. To verify this, stretch the
Slinky slightly-the wave speed will
increase noticeably. O

When he vwete this article, Diar Chokin
was a senior in the Republic High School
for Physics and Mathematics in the city
of Alma-Ata (Kazakhstan). He is now a
student in the physics department at
Moscow State Univer sity.
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Mail to: Embry-Riddle Aeronautical University
Direcior of University Admissions
600 South Clyde Morris Boulevard
Dayiona Beach, FL 321 1 4-3900
Or Call 1-800-222-ERAU
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senior design projects that test your
knowledge of aerodynamics, controls, mater-
ials, propulsion and structure as your team
designs the internal and external details ofan
airplane or spacecraft. Both your imagination
and abilities are put to the test, iust as they
will be in your professional life. \ile believe
that's what education is all about.

fl Graduate

Please send me more lnformation about Embry-Riddle.
Engineering Related Programs: Other Aviation/Aerospace Majors:

Ooer 67 international unioersity
teams entered the 7th Annual Aero
Design Competition, co-hosted bY
the Enrbry-Riddle Society of
Autotn o tio e Eng ine er ing C h apter.
The objectioe of the cotngetition is to
ffi as tnuch useight as Possible uith
a RIC aircraft designed and built
by students.
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You may know about us, but did you hnous:
ffi \7e offei over 20 different accredited aviation/aerospace majors at the Bachelor and

Master's levels including aerospace engineering, electrical engineering, engineering
physics, avionics engineering technology, aircraft engineering technology and aviation

Electrical Engineering computer science.
students at Embry-Riddle ffi Our aerospace engineering enrollment at our Daytona Beach, Florida and Prescott,

receioe a cornpleie, broad- Arizona.u-pu.r iJthe largest in the United States. rJTe are listed as one of the 18 best

based educatfon u:ithfull engineering ichools in the nation by U.S. News and World Report's 1992 College Guide

laboratory resources qnd called "America's Best Colleges."

equipmeit to contplentent ffi Your university life is enriched through many social and professional clubs and-

aioi"mi" study. organizations, lilie our SAE Chapter, that provide the opportunity for a variety of living
and learning experiences, related to your major, outside the classroom.
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