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GALLERY O

(ca. 1900-10)
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calendar form. Each winter
the count keeper would con- I

sult with the members of his ',

tribe and select the most im-
portant event of the past year. 

.

He would then depict that f
event on an animal hide or, '#

later, on muslin cloth. The E
winter count thus served as a "#
pictoriai aid to tribal memory. #

The Upper Yanktonai
(Nakota) who created this
winter count were part of the
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Sioux confederation of tribes inhabiting the northern
Great Plains and western prairies. It is curious that the
count was not kept line by line, but rather in spiral fash-
ion, beginning in the lower-right corner. The count
keeper was destined to run out of room in the center of
the history.

The winter count spans at least two generations of
Yanktonai life. The first entry corresponds to the year
1823 and is labeled "they left the com standing.,, In that
year the Yanktonai attacked an Arikara village in con-
junction with a punitive federal campaign 1ed by Colo-
nel Leavenworth. The Yanktonai took all but the bad
corn from the fields nearby. In 1833, according to the
pictograph and the caption, "the stars fel1.,, The famous
Leonid meteor shower was visible thatyear throughout
North America. The entries for l8B7 and 1838 translate
as " great scabs on them" and "scabs on them.,, A small-
pox epidemic had claimed many victims in the
Yanktonai community during those years.

t D . ..t. \J, /../ \. . f n, \ t,,tL

It is evident that a drastic change occurred in lB77
(the pictograph in the second row from the top, just
right oi centerl. A thick 1a1,er of snow covers a cabin,
representing an unr-tsua11y harsh wintcr-thc
Yanktonai's iirst on a reservation. A reservation-style
cabin is depicted ior each ,vear thereafter, and most of
the entries mark the de ath oi members of the tribc. The
pictographs were supplementecl by captions some time
after this, when transhteration of Nakota words was
standardized.

Like all histories, written or deprcted, the winter
colrnt is meant to take us back in time. The unbroken,
linear form of the corrnt is much likc a strict chrono-
logical narration, but unlike the sentences in most lan-
guages/ the viewer moves backward as casily as forward
in this pictorial account.

Mental time travel is commonplace, though perhaps
no less rnysterious because of it. What about physical
tirne travel? Sec page 50.
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by Mikhail Shubin

Scientific Method

Dinosaurs in lhe [aystarlr
by Stephen Jay Gould

Beyond Euclid

Tul'nin$ t[s inrl'edille inlo tfie ohuious
byVladimir Boltyansky

Physics in the Field34C over art by Leonid Ttshkov

A mathematician trekking across a land-
scape? Or a map maker wandering in an
abstraction? Whether he's a topologist or
a topographer, he's driven by a sense of
place (topos in Greek).

The word "topic" stems from the
same root. In the branch of classical phi-
losophy devoted to rhetoric, topics were
"places" where various types of argu-
ments were "stored." So-called special
topics were restricted in application (to
the law courts/ for instance), but com-
mon topics, or commonplaces, were valid
in any situation. One could use a com-
monplace like cause and effect to explore
and speak about anything.

A more colloquial meaning o{ com-
monplace is "an obvious statement.// It
may harbor ambiguities, but its virtue lies
in being widely accepted or acceptable at
first blush. A commonplace can serve as a
nice starting point for serious inqutry.

A commonplace in science says that
theories are based on dat4 not vice versa.
Stephen fay Gould makes a case for vice
versa {page 10). And everyone knows that
topologists and topographers toil in two
completely di{{erent fields. Mikhail
Shubin takes their shared root as his
point of departure in "Topology and the
Lay of the Land."
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Reflections on policy in a political season

Scienco illtd tanaliuism

cal action on the part of porverful
groups or individuals, u'e aI1 have
much to fear.

I see two areas of concern in the
United States at this time. First are
the "animal rights" proponents; then
there are those in the fanatical reli-
grous right, especially those who have
been able to inlluence political deci-
sions of the Bush Administration.

Animals in research
The animal rights groups assert

that human weifare is no more im-
portant than that of other animals
on Earth and that, therefore, ani-
mals should not be used for research
that is in any way harm{ul to them,
even when such research offers
great promise in saving human lives
or leads to important discoveries
that improve the lives of suffering
human beings. There are literally
thousands of exampies of how re-
search on animals has directly
benefitted humans, from better de-
signs in engineering to life-saving
antibiotics and antiviral vaccines. It
is sadly ludicrous to assign some
special restrictions on human uti-
Lizationof other life forms for food or
research, given the web of interdepen-
dence, often quite violent, among the
thousands of species that depend on
other species {or their survival.

None of this requires gratuitous
or clearly unnecessary imposition of
pain or death on other life forms.

But human survival as a species is

iust as important to the survival of
other life forms as others might be
in the chain oi ecological interde-
pendence. When rre behave so as to
sustain this species, we are fulfilling
our obligation to liie itself.

telal lissue research
The other, perhaps more serious,

area of concerrr is the threat from
the fanatical religious right, espe-
cially as it relates to research on
human fetuses.

In the United States, as well as in
most other industrialized nations of
the world, abortion is a legal right.
Millions of abortions are performed
in the US each year. Some of these
abortions are performed because of
serious defects orproblems with the
fetus. In other cases, women choose
to have an abortion for personal rea-
sons, and such reasons are entirely
private. I believe that, under our
constitution and laws, no one has a
right to question the privacy of
these decisions.

In |une 1992, President George
Bush, acceding to the demands of
the fanatical religious right, along
with those of the so-called right-to-
life proponents, vetoed a law that
would have allowed fetal tissue
{rom abortions to be used in medi-
cal research. He declared that, in
effect, any such tissue should come
from defective fetuses only. One

CIENCE HAS ALWAYS
served humankind. From the
times when natural philoso-
phy and technologywere inex-

tricably linked, to the present, when
science and engineering both have
numerous fields and subfields, their
primary purpose remains to serve
human wel{are. In a real sense, such
service of a human activity to hu-
man needs is but a reflection of our
place among the thousands of life
forms seeking evolutionary sur-
vival. We are driven to such modes
of behavior because it sustains our
very existence.

The education of one generation
of humans by the previous genera-
tion is the means by which our cul-
tures of science and technology ad-
yance. Each new generation steps in
and advances our basic knowledge
and the technology that sustains
and supports our lives. But each new
generation also has the capacity to
bring forth ignorance and supersti-
tion of massive proportions, leading
us to another thousand years of in-
tellectual backwardness, like the
Dark Ages of our not-so-distant past.

Several events in recent times
may be signs that ignorance, super-
stition, and a complete failure to
understand science may move our
society toward such a dark and dan-
gerous period. When that ignorance
and superstition is manifested as

ianatical or deeply prejudiced politi-

stPItitBtfl /0cI[8tR 1 ss2



obviously flawed argument put for-
ward by the Bush Administration
was that somehow, if fetal tissue
were used for medical research,
women would get pregnant more of-
ten and have abortions more often.

In making this veto, President
Bush acted against the desires and
will of the vast majority of Ameri-
cans, and in opposition to the major-
ity of both the House of Represen-
tatives and Senate. It is sad that the
bill could not receive enough votes
to be overridden in the House. And
so the President and a small minor-
ity of House members have success-
fully doomed thousands of living
human beings to suffering andearly
death. They have helped delay the
chance of preventing and control-
ling some of the horrible diseases for
which fetal tissue research offers
such great promise. Parkinson's dis-
ease and diabetes are the two areas
where fetal tissue research appears
to be most promising. There is evi-
dence that both diseases may be
controlled by fetal tissue implants,
allowing people with these diseases
to avoid the deterioration that leads
to early disability and death.

I am particularly outraged at the
unthinking and cruel act o{ the
President of the United States be-
cause my own grandson has diabe-
tes. This gentle little boy must face
daily bloodletting from his fragile
fingers, shots twice a day, and the
regular crises of control, not to men-
tion future loss of limbs, blindness,
and a premature death, when we are
on the verge of fetal research that
could give him a normal life. Let
Mr. Bush justify his un{eeling and
thoughtless political act to this
little boyl

As future scientists, you must be
ever on guard against political pres-
sure from fanatics, or others who do
not understand science, who seek to
interfere with your legitimate re-
search. As the brightest of our next
generation, you will be the ones
who save, if not my grandson, then
perhaps his children, from the
dreaded diseases that plague us.
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TopoloUy and lhe lay ol lhe land

A mathematician on the topographer's turf

by Mikhall Shubin

HE TITLE OF THIS ARTICLE IS SOMEWHAT
controversial: topology (unlike topographl I doesn't
have to do with relief maps of the Earth's suriace. It's not
concerned with terrain at all. This branch of mathemat-

ics explores properties of geometric figures that are usually re-

garded as the most {undamental-the properties preserved un-

der very general ktnds of transformation. These nansiormations,

called topological t ansformations, or homeottorphtsms, are de-

fined as one-to-one mappings that, together rrjth their inverses,

are continuous. (To get a good grip on this notion, as rvell as other

important topoiogical ideas, see "Flexible rn the Face oi Adversity"
in the September/October 1990 issue of Quarru:r.\

Objects that look cluite different on the outside can have the
same topological properties, if they can be turned into one

I

another by way of a continu-
ous deformation. Martin
Gardner once described to-
pologists as mathematicians
who can't tell a coffee cup
from a doughnut. Sometimes
topological properties and
values arise as combinations
of quite simple geometrical
properties and values. This
just happens to be the case
with Euler's famous theorem
on polyhedrons (Theorem 2

below). But I'11 begin with an-
other example of this sort-a
theorem from "Morse
theory."r And here is where
terrain-the "lay of the
land"-comes into play.

On geographical maps
the relief of the landscape is
usually shown by means of

Figure 1

!
-ca
trp
co
G)J

!r

.l

-hl

i jhlr 'v

lHarold Marston Morse (1892-19771, at outstanding American
mathematician, created a theory that later took his name and
represents an important branch of modem topology.
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Figure 2 a
Examples of geographic surfaces.

ahitude lines-that is, lines connect-
ing points on the map that represent
points on the Earth at the same alti-
tude above sea level (fig. 1). The
mathematical model for a bounded
region of the Earth's surface is a geo-
metrical surface in space defined by
an equation of the form z : f(x, yl.
Examples of such surfaces are shown
in figure 2. Solid lines on each surface
are sets of points lying at the given
heightz = constant; the altitude lines
are their projections onto the (x, y)-
plane. (Dotted lines on the surfaces
are the lines of steepest descent and
are perpendicular to the altitude
lines.) To sum up: an aititude line
is a set of points (x, y) satisfying an

equation /(x, I) = constant; the con-
stants in these equations in effect
"enumerate" the respective alti-
tude lines. In figure 2 the families
of altitude lines are placed under
the corresponding surfaces.

To formulate our first theorem, we
must get acquainted with different
types of points on a surface with re-
spect to changes in the surface height
near the points. The first three
types-summits, basins, and moun-
tain passes (figures 3a through 3c)-
xe " ctitical" or "equilibrium" points
in our "landscape": ifyou set a ball at
any such point, it will remain there
forever (though the equilibrium is
stable only for basins). For each kind

d

of point I'11give both a graphical de-
scription and a more rigorous defini-
tion in terms of altitude lines.

A summit is shown in figure 3a. It
might seem that a summit can be
defined simply as the highest point in
its neighborhood. However, the
structure of the sur{ace around such
a maximum point can be much more
complicated than that in figure 3a.
For instance, one can imagine a maxi-
mum point that is the accumulation
point of a sequence of other maxi-
mum points with increasing altitudes
(that is, a limiting case of figwe 4,
with iniinitely many smaller peaks):
any neighborhood of such a point
contains other maximum points. To

b

z
Û
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Figure 4

exclude such situations/ we define a

summit as a point that is the highest
one in its vicinity, and in addition,
the altitude lines around it are ar
ranged as in figure la-that is, they
are closed non-self-intersecting
nested curves embracing the point,
their respective heights decreasing as

we recede from it: Zo> Zt> zz> ... .

A basin (fig. 3b) is an upside-down
summit-it becomes a summit when
the sign of the function flx, yl is
changed. So it's a point such that the
neighboring altitude lines look as in
figure 3b (which is the same as in fig-
we 3al, but their heights increase as

they move away from the point: zo <

Zt<Zr< "'
A mountain pass (fig. 3c) can be

described as a point surrounded by
teffain that looks like a saddle.2
Whereas the altitude lines passing
through a summit or basin degener-
ate into a single point, the altitude
lines through a pass P consist o{ two
intersecting lines. These lines (or

rather their tangents
at Pl divide the
neighborhood into
two pairs of vertical
angles. Movingaway
from P in any direc-
tion lying in one of
these pairs of angles,
we ascend; moving
along directions that
fill up the other pair
of angles, we de-
scend: in figure 3c, ...
Z_z<Z_t<Zo<Zr<Zz

The fourth type of
point is the most common. Unlike
what happens at critical points, a ball
set at such a point will ro11 down,
since the surface at this point is slop-
ing. We call such a point a slope
point. The structure of altitude lines
near aslope point is seen in figure 3d.
In particular, the altitude line passing

through the point itself consists of
one piece, and the height of the neigh-
boring aititude lines change mono-
tonicaliy as we move them along a
path through the slope point: in fig-

As a rule, almost all points on a
map are slopepoints. For example, all
basins, summits, and passes are iso-
lated and surroundedby slope points.

Of course, there are other tlPes of
points in addition to the four types
defined above. For instance/ some
maps have plateaus (entire regions
whose points are allat the same alti-
tude) or ridges (a line, rather than a
point, of maximum altitude-see fig-
ureZcl, or even "tickier" points, like

the triple pass in figure 2d or the
string of descending summits in fig-
ure 4. But all points that are not slope
points (other than summits, basins,
and passes) can be removed by chang-
ing the terrain ever so slightly: the
"bad" points either disappear or turn
into a number of summits, basins,
and passes.a So it's reasonable to re-
strict ourselves to only these three
types of critical points in addition to
slope points.

Now we can formulate the main
theorem in this article-one of the
simplest theorems in Morse theory.

Turoxr.n l. Figure 5 depicts an is'
land whose every point is either a
slope point, a summit, a basin, or a
mountain pass, and in addition all
the points of its coastline are slope
points. If S, B, and P are the nuntbers
of summits, basins, and passes. re-
spectively, then

S+B-P=1

Pnoor. To make the proof clearer,
I'11 divide it into three steps.

l. Reconstntcl[:i :]ii terrain. Let's
change the tenam oi dee islandwithout
changrng the numbers S, B, and P so as

to satisfy the follorr-utg conditions:

(a) A11 the summits are the same
height equal to the altitude of
Mount Er-erest, the highest
mountain on Earth);

(b) Al1 the basrns are at sea level;
(c) A11 the passes are at different al-

titudes.

Condition (a) is the easiest to sat-
isll: u'e simply add some earth on top
of our hills and mountains to make

2Topologists sometimes call this a
saddle point.-Ed.

3A more formal description can be
grven in terms of topological
transformations: the {amily of altitude
lines near a slope point can be obtained
by way of such transformation from a
family of parallel lines; similarly,
altitude lines near a summit or basin
can be obtained from a {amily of
concentric circles and, near a mountain
pass, {rom a family o{ hyperbolas with
common as)rynptotes.

aThis fact is rigorously formulated
and proved in Morse theory, but we
won't need that theorem here.

S+B-P=6+2-7=

Figure 5
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Figure 6

them reach the necessary Everestian
altitude (fis. 5).At the same time ler's
dig a pit at the bottom of each basin
to reach the depth of the Earth's deep-
est trough (the Marianas trench in the
Pacific Ocean). This willbeneeded to
ensure that condition (b) is satisfied,
which is not that easy: trying to fill up
the basins (to raise their level), we
may stumble upon apass. But there's
a simple way out: drain the sea
around the island. We can assume
that the island has steep underwater
cliffs that go as deep as the Marianas
trench. Then the sea can simply be
drained to this depth, and all the ba-
sins are at the (new) sea level.

To satisfy condition (clwe must be
able to slightly lift or depress the
neighborhood of a given mountain
pass without touching other critical
points or creating new summits, ba-
sins, or passes. To this effect, let's
draw two circles of radii r and 2r with
small enough z and centered at the
pass. Points outside the bigger circle
will be left intact; part of the surface
inside the inner circle will be lifted or
depressed as required; and the ring

Figure 7
Lifting a mountain pass. The black
part of the swface is lifted sliglttly as a
rigid curved plate; the gray part (think
of it as being made of a thin rubber
sheet) is stretched slightly fuom the
fixed outu boundary.

between the circles is a sort of con-
nective tissue (see figure 7).

Thus, we can suppose conditions
lal, bl, and (c) to be true.

2. Thebigflood.Imagine that rain
gradually inundates the island so that
the water level in the basins and in
the sea uniformly rises from the ini-
tial "sea level" to the height of
Everest. Lakes appear in the basins in
the island's interior, and the island is
divided into smaller islands by the
dsing water. Let's watch the change
in the number of islands and lakes
(natwally, we won't consider the sea

a lake).
Right after the flood begins, a lake

is formed in every basin. So the ini-
tial number of lakes is B. By the end
of the flood all the lakes become con-
nected with the se4 and only the tops
of all the mountains are still tower-
ing above the water (that's why we
raised them up!). We can draw up the
following table.

Lakes Islands

Beginning of
flood

B I

Before full
inundation

0 s

3. Flooding a mountain pass,
When do the numbers of lakes and
islands change? Clearly, not as long
as only slope points are flooded. What
happens when a mountain pass is
flooded (fig. B)? Notice that only one
pass can be flooded at a time, since all
these points are at different altitudes.
So there are two possibilities:

(a) Water from a single lake, or
from the sea, flows togetherfrom two
directions; then the number of lakes
doesn't change, but a new island ap-
pears (fig.9a);

(b) Two different lakes flow to-
gether (fig. 9b); then the number of
lakes decreases by one, while the
number of islands remains the same.

Thus, when water comes to a
mountain pass, either the number of
lakes decreases by one or the number
of islands increases by one. Since the
total change in these numbers is B
and S - 1, respectively, we have P = B
+ (S - l)-that is, S + B - P: 1, com-
pleting the proof.

Conorrexv. If every point on the
Earth is either a slope point, a sum-
mit, a basin, or a mountain pass,
then

S+B-P:2,

Pnoor. Drain the sea and all the
lakes and pour some water into the
bottom of the deepest basin to make
a single lake. We can regard this lake
as the sea and all the land as one is-
land. Then the entire Earth has as
many summits and mountain passes

as the island and has one more basin
than the island. Now use Theorem 1.

An important example of terrain
to which this corollary can be applied
is any polyhedron containing a point
O whose perpendicular projections
onto each face and each edge lie in-
side this face or edge (andnot on their
extensions). If the altitude at a given
point of the polyhedron is defined as

the distance from O to this point,

Figure B Figure 9
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then the vertices of the polyhedron
are the summits of this terrain, the
projections of point O onto the faces
are basins, and the projections of O
onto the edges are mountain passes.
(Check it yourself!) This observation
yields the following theorem.

THsonsN{ 2 (Euler's theorem on
polyhedronsl. Let F, V, and E be the
numberc of faces, vefiices, and edges
of a convex polyhedron. Then

F+V-E=2.

So far we've proved this theorem
only for a special class of polyhedrons
that satisfy the additional condition
above. The proof for the general case
is given below; it is easily derived
from the next theorem.

THEonE^,I 3 (Euler's theorem on
maps). Let there be a political maps
of an island bounded by a closed
curve and satisfying the following
conditions:

(a) The number of countries is
greater than or equal to 2;

(b) Each country is bounded by a
closed curve without self-inter-
sections;

(c) None of the countries lies inside
another (like Monaco or the
Vatican).

If C is the number of countries, N is
the numb er of nodes (iunction points
of tlaee or more counfties or the sea),
and B is the number of borders (that
is, segments of borders between two
nodes, counting the borders with the
sea), then

C+N-B=1.

Figure 10a shows a map drawn
from this theorem (C = N =2, B = 3lr.

Pnoor or TnEonEA 3. Let's con-
struct a landscape on the map such
that each country contains exactly
one basin, each border contains ex-
actly one mountain pass (borders
with the sea can be shifted a bit in-
land), and over each node there is a

sThat is, a map showing the
countries in diJferent colors (as opposed
to a topographic map).-Ed.

Figure 10

summit. This canbe done as follows:
etect a watchtower shaped like the
Eiffel tower over each node; build
ramparts along the borders descend-
ing toward the midpoint of each bor-
der, gently sloping down on both
sides; and dig a basin inside each
country, its slopes smoothly merging
with the slopes of ramparts. (Such a
landscape for the map in figure 10a is
shown in figure 10b.)Now we apply
Theorem 1 and we're done.

Conorr.env. If a political map
draytm on a spherc has not less than
3 countries and satisfies conditions
(b) and (c) of Theorem 3, then for this
map

C+N-B:2.

Pnoor. Let's think of one of the
countries as a sea and the rest of the
globe as one island. Then Theorem 3
is applicable and quickly leads to the
desired result.

Nowwe can goback andprove the
previous theorem.

Pnoor or TnEonrn 2 (f.or an arbi-
trary convex polyhedron). Take a
point O inside the given polyhedron
and a large sphere whose center is at
O. Project the polyhedron onto the
sphere from point O (the projection of
some point X is defined as the point
where the ray OXmeets the sphere).
In this way we obtain a spherical po-
Iitical map whose countries and bor-
ders are the projections of the faces
and edges of thepolyhedron. To com-
plete the proof, apply the above cor-
ollary to this map.

Problems
1. State and prove assertions analo-

gous to the corollaries to theorems 1 and
3 for the case of a torus (the surface of a
doughnut shape-see figure 1 1).

flgure r r

Figure 12

2. Do the saure for a "sphere with
p handles" iiigure 12 shows a sphere
with three handles). O
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Dinosiltlr'$ in lhe hayslaclr

Does it matter whether a world ends with a bang or a whimper?

by Stephen Jay Gould

HE FASHION INDUSTRY
thrives on our need to proclaim
an identity from our most per-
sonal space. For academics, who

by stereotype (although not always in
actuality) scorn the sartorial mode,
office doors serve the same function.
Professorial entranceways are fes-
tooned with testimonies of deepest
beliefs and strongest commitments.
We may, as a profession, have a de-
served reputation for lengthy and ten-
dentious proclamation, but our office
doors feature the gentler approach of
humor or epigram. The staples of this
genre are cartoons (with Gary Larson
as the unchallenged nfimerc uno for
scientific doors) and quotations from
gurus of the profession.

Somehow, I have never been able
to put someone else's cleverness so
close to my soul. I wear white T-
shirts, and although I wrote the pref-
ace to one of Gary Larson's Far Side
collections, I would never identify
my portal with his brilliance. But I do
have a favorite quotation-one fit for
shouting from the housetops (if not
for inscription on the doorway).

My favorite line, from Darwin of
course/ requires a little explication.
Geology, in the late eighteenth cen-
tury, had been deluged with a rash of
comprehensive, but mostly fatuous,
"theories of the earth"-extended
speculations about everything, gener-

Reprinted with permission from
Natwal History, March 1992.
Copyright @ 1992 by the American
Museum of Natural History.

ated largely from armchairs. When
the Geological Society of London was
inaugurated in the early nineteenth
century/ the founding members over-
reacted to this admitted blight by
essentially banning all theoretical

':.

1$r-

discussion from their proceedings.
Geologists, they ruled, should first
establish the facts of our planet's his-
tory by direct observation, and then,
at some future time when the bulk of
accumulated information becomes
sufficiently dense, move to theories

and explanations.
Darwin, who had such a keen

i understanding of fruitful proce-
g dure in science, knew in his guts

$ that theory and observation are
' Siamese twins. They are inter-

twined and continually interact-
ing; one cannot perform first while

the other rr-aits in the wrngs.
In a letter to Henry

Farvcett in 1861, Dar-
,'"1- lvin reflected on the

I false view of ear-
A

lG''1gf.

fr lier geologists. In
G'-,1 so doing, he out-

? hned his own con-
,E ception of proper

, scientific procedure

I' in the best one-liner
/74
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ever penned. The last sentence is in-
delibly impressed on the portal to my
psyche.

About thirty years ago there was much
talk that geologists ought only to observe
and not theorize; and I well remember
someone saying that at this rate a man
might as well go into a gravel-pit and
count the pebbles and describe the colors.
How odd it is that anyone should not see
that all observation must be for or against
some view if it is to be of any service!

The point should be obvious.
Immanuel Kant, in a famous quip,
said that concepts without percepts
are empty/ whereas percepts without
concepts are blind. The world is so
complex; why should we strive to
comprehend with only half our tools?
Let our minds play with ideas, let our
senses $ather in{ormation, and let the
rich interaction proceed as it must
(for the mind processes what the
senses gather, while a disembodied
brain, devoid of aII external input,
would be a soryz instrument indeed).

Yet scientists have apeculiar stake
in emphasizing fact over theory, per-
cept over concept-and Darwin
wrote to Fawcett to counteract this
odd but effective mythology. Scien-
tists often strive for special status by
claiming a unique form of objectivity
inherent in a supposedly universal
procedure called the scientific
method. We attain this objectivityby
clearing the mind of all preconcep-
tion and then simply seeing in a pure
and un{ettered way, what nature pre-
sents. This image may be beguiling,
but the ciaim is chimerical and ulti-
mately haughty and divisive. For the
myth of pure perception raises scien-
tists to a pinnacle above all other
struggling intellectuals, who must
remain mired in constraints of cul-
ture and psyche.

But followers of the myth are ulti-
mately hurt and limited, for the im-
mense complexity of the world can-
not be grasped or ordered without
concepts. "A11 observation must be
for or against some view if it is to be
of any service!" Objectivity is not an
unobtainable emptying of mindbut a
willingness to abandon a set of pref-
erences when the world seems to
workin aconfiaryway,

The U'ohlem olmass Blttiltfiiolt$

This Darwinian theme of neces-
sary interaction between theory and
observation gains strong support
from a scientist's standard "take" on
the value of original theories. Sure,
we love them for the usual "big" rea-
sons-because they change our inter-
pretation of the world and lead us to
order things differently. But ask any
practicing scientist, and you will
probably get a different primary an-
swer, fot we are hung up on the de-
tails and rhythms of our daily work,
and we don't think about ultimates
very often. We love original theories
because they suggest new, different,
and tractabie ways to make observa-
tions. By posing new questions, they
expand our range of ordinary activity.
Theories drive us to seek new infor-
mation that onlybecomes relevant as

data either for or against a hot idea.
Data adjudicate theory, but theory
also drives and inspires data. Both
Kant and Darwin were right.

I bring up this personal
favorite among quota-
tions because my pro-
fession of paleontology

M has recently witnessed
a fine example of theory confirmed
by data that no one ever thought of
collecting before the theory itself de-
manded such a test. (Please note the
{undamental difference between de-
manding a test and guaranteeing the
result. The test might just as well
have failed, thus dooming the theory.
Good theories invite a challenge but
do not bias the outcome. In this case,
the test succeeded twice, and the
theory has gained strength.) Ironi-
cally, this pafiiculil new theory
would have been anathema to Dar-
win himself, but such a genial and
generous manwould, I am sure, have
gladly taken his immediate lumps in
exchange for such a fine example of
his generality about theory and obser-
vation, and for the excitement of any
idea so full of juicy implications.

We have known since the dawn
of modern paleontology that short
stretches of geological time feature
extinctions of substantial percent-
ages of life-up to 96 percent of

marine invertebrate species in the
granddaddy of all such events, the
late Permian debacle some 225 mil-
lion years ago. These "mass
extinctions " wete originally ex-
plained, in a literal and
common-sense sort of.way, as prod-
ucts of catastrophic events/ and
therefore truly sudden. As Darwin's
idea of gradualistic evolution re-
placed this earlier catastrophism,
paleontologists sought to mitigate
the evidence of mass dying with a

reading more congenial to Darwin's
preference for slow and steady. The
periods of enhanced extinction were
not denied-how could theybe in the
face of such evidence?-but they
were reinterpreted as more spread out
in time and less intense in effect: in
short, as intensifications of ordinary
processes/ rather than impositions of
true and rare catastrophes.

In the Origin of Species (1859),
Darwin rejected "the old notion of
all the inhabitants of the earth hav-
ing been swept away at successive
periods by catastrophes," as well he
might, given the extreme view of
total annihilation, with its antievo-
lutionary implication of a new cre-
ation to start life again. But
Darwin's preferences for gradualism
were also extreme and false:

We have every reason to believe . . . that
species and groups of species gradually
disappear, one after another, first from
one spot/ then from another, and finally
from the world.

Darwin himself had to admit the ap-
parent exceptions:

In some cases, however, the extermina-
tion of whole groups of beings, as of the
ammonifes towards the close of the
secondary period, has been wonderfully
sudden.

We now come to the central irony
that inspired this essay. So long as

Darwin's gradualistic view of mass ex-
tinction prevailed, paleontoi og;cal data,
read literally, could not refute the basic
premise of gradualism-the "spreading
out" of extinctions over a good stretch
of time before the boundary, rather than
a sharp concentration of disappear-
ances right at the boundary itself. For
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the geological record is highly imper-
fect and only a tiny fraction of iiving
creatures ever become fossils. As a
consequence of this imperfection,
even a truly sudden and simulta-
neous extinction of numerous species
will be recorded as a more gradual
decline in the fossil record. This
claim may sound paradoxical, but
consider the following argument and
circumstance.

Some species are very common
and easily preserved as fossils; we
may/ on a.veraget find specimens in
every inch of strata. But other species
will be rare and poorly preserved, and
we might encounter their fossils only
once every 100 feet or so. Now sup-
pose that all these species died sud-
denly at the same tirne, alter 400 feet
of sediment had been deposited in an
ocean basin. Would we expect to find
the most direct evidence for mass
extinc,tion-that is, fossils of all spe-
cies through all 400 feet of strata right
up to the very top of the sequence? Of
course not.

Common species would pervade
the strata to the top, for we expect to
find theirfossiis in everyinch of sedi-
ment. But even if rare species live
right to the end, they oniy contribute
a fossii every 100 feet or so. In other
words, a rare species may have lived
through 400 feet, but its last fossil
may be entombed 100 feet below the
upper boundary. We might then
falseiy assume that this rare species
died out after three-fourths of the to-
tal time had elapsed.

Generalizing this argument/ we
may assert that the rarer the species,
the more likely that its last fossil ap-
pears in older sediments even if the
species actually lived to the upper
boundary. If all species died at once,
we will still find a graded andappar-
ently gradualistic sequence of disap-
pearances/ the rare species going first
and the common forms persisting as
fossils right to the upper boundary.
This phenomenon-a classic example
of the old principle that things are sel-
dom what they seem and that literal
appearances often obscure reality-
even has a rurme: the Signor-Lrpps ef-
fecg to honor two of my paleontologi-
cal buddies, Phil Signor and |ere Lipps,

T[e Aluaru ]typolhesis

who first worked out the mathematical
details of how aliteral petering-out
might represent a tniy sudden and si-
multaneous disappearance.

We can now sense the
power of Darwin's argu-
ment about needing
theories to guide obser-
vations. We say, in our
that old theories die

.<,-

mythoiogy,
when new observations derail them.
But too often, indeed I would say usu-
a1ly, theories act as straitiackets to
channel observations toward their
support and to forestall data that
might refute them. Such theories
cannot be rejected from within, for
we will not conceptualize the poten-
tially refuting observations. If we ac-
cept Darwinian gradualism in mass
extinctions, and therefore never real-
izethat a graded series of fossil disap-
pearances might, by the Signor-Lipps
effect, actually represent a sudden
wipeout, how will we ever come to
consider the catastrophic altemative?
For we will be smugly satisfied that we
haye "hatd" data to prove gradualistic
decline in species numbers.

New theories are to this concep-
tual block what Harry Houdini was
to straitjackets. We escape by import-
ing a new theory and by making the
different kinds of observations that
any novel outlook must suggest. For
"a11 observation must be for against
some view," and a new view can
therefore engender original observa-
tions. I am not making an abstract
point or waving arms for my favorite
Darwinian motto. Recently, two
lovely examples with the same mes-
sage have been published by a pair of
my closest colleagues: studies of am-
monites and dinosaurs through the
last great extinction.

Anyone who keeps up with press
reports on hot items in science
knows that a new catastrophic theory
of mass extinction has illuminated
the paleontological world (and graced
the cover of. Time magazinel during
the past decade. In 1980, the father-
son (and physicist-geologist) team of
Luis and Walter Alvarez published,
with colleagues Frank Asaro and

Helen Michel, their argument and
supporting data for extraterrestrial
impact of an asteroid or comet as
the cause of the Cretaceous-Ter-
tiary extinction, most recent of the
great mass dyings and the time of
extinction for dinosaurs along with
some 50 percent of marine inverte-
brate species.

This proposal unleashed a furious
debate that cannot be summarized in
apage, much less an entire essa, or
even a book. Yet I think it fair to say
that the idea of extraterrestrial im-
pact has weathered this storm splen-
didly and continually increased in
strength and supporting evidence. At
this point, very few scientists deny
that an impact occurred, and debate
has largely shifted to whether the im-
pact caused the extinction in toto (or
only acted as a coup de grAce for a
process aheady in the works), and
whether other mass extinctions may
have had a similar cause.

New forms o{ supporting evidence
are reported on a monthly basis in
almost every issue of mafor joumals.
In the past few weeks we have
learned about minute &amonds in
sediments from the impact boundary.
Diamonds are a form of pure carbon
produced under immense pressures
that impacts, and no other known
process active at the earth's surface,
can generate. This discovery may rep-
resent the literal fulfillment of that
Beaties classic about psychic halluci-
nations, "Lucy in the Sky with Dia-
monds" (and its obvious acronym).
Lucy is, literally, light-and the im-
pact was quite a blast. Moreover, the
smoking gun may now have been 1o-

cated as a massive ctater in the Gul{
of Mexico, off the Yucat6n Peninsula.

Paleontologists, with very few ex-
ceptions, reacted negatively/ to say
the least, and Luis .Llvarez, a virtual
model for the stereotype of the self-
assured physicist, was fit to be tied.
Luis, in retrospect, was also mostly
right, so I forgive his fulminations
against my profession. I if I may toot
my hom, was among his few initial
supporters/ but not for the right rea-
son of better insight into the evi-
dence. Catastrophic extincti.on sim-
ply matched my idiosyncratic
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My colleagues may
have disliked the Alva-
rez hypothesis with
unconcealed vigor, but
we are an honorable lot,

and as debate intensified and favor-
able evidence accumulated, paleon-
tologists had to take another look at
their previous convictions. Many
new kinds of observations can be
made, but let us focus on the sim-
plest, most obvious, and most literal
example. In the light of new prestige
for impact and sudden termination,
the Signor-Lipps argument began to
sink in, and paleontologists realized
that catastrophic wipeouts might be
recorded as gradual declines in the
fossil record.

How then to break the impasse of
this indecisive broad appearance of
petering-out? Many procedures, some
rather subtle and mathem atical, have
been proposed and pursued, but why
not start with the most direct ap-
proach. IIrarc species actually lived
right to the impact boundary but
have not yet been recorded from the
uppermost stratat why not look a
whole lot harder. The obvious anal-
ogy to the usual clich6 suggests itself.
If I search for a single needle in the
haystack by sampling ten handfuls of
hay, I have very little chance of locat-
ing it. But if I take apart the stack,
straw by straw, I will recover the
needle. Similarly, if I really search

',il:fl'lili f #lJ',X1?f,'i:,ijili iJ Am m on ires at An masedd m . . .

tion: ammonites and dinosaurs.
Both had been prominently cited as
support for gradual extinction to-
ward the boundary. hr each case, the
Alvarez hypothesis inspired a closer
look via the dismember-the-haystack
method, andin each case, this greater
scrutiny yielded evidence of persis-
tence to the boundary and potentially
catastrophic death.

Ammonites are cepha-
lopods (mollusks classi-
fied in the same goup
as squids and octo-
puses) with coiled ex-

temai shells closely resembling those
of their nearest living relative, the
chambered nautilus. They were a
prominent, and often dominant,
group of marine predators, and their
beautiful fossil shells have always
been prized by collectors. They
arose in mid-Paleozoic times and
had nearly become extinct twice be-
fore-in two other mass dyings at
the end of the Permian and of the
Triassic periods. But a lineage or
two had scraped by each time. At
the Cretaceous-Tertiary boundary,
however, all lineages succumbed,
and to cite Wordsworth from an-
other context, there "passed away a
g1ory from the earth."

My friend and colleague Peter
Ward, paleontologist from the Uni-
versity of Washington, is one of the
world's experts on ammonite extinc-
tion; a vigorous, committed man who
adores fieldwork and could never be
accused of laziness on the outcrop.
Peter didn't care much for A\varez at
first, largely because his ammonites
seemed to peter out and disappear
entirely some thirty feet below the
boundary at his favorite site, the cliffs
of. Zumaya on the Bay of Biscay in
Spain. In 1 983, Peter wrote an article
for Scientific American entitled "The
Extinction of the Ammonites." He
stated his opposition to the Alvarcz
theory, then so new and controver-
sial, atleast as an explanation for the
death of ammonites:

The fossil record suggests, however, that
the extinction of the ammonites was a

preference for rapidity, born of the
debate over punctuated equilibrium
(see my essay of August 1991 [in
Natwal History]). After all, my col-
leagues had been supporting Darwin-
ian gradualism for a cefltury | and the
fossil record, read 1iterally, seemed to
indicate a petering-out o{ most
groups before the boundary. How
could an impact cause the extinction
if most species were already dead?
But the exffaterresffial impact theory
soon proved its mettle in the most
sublime way of all: by Darwin's cri-
terion of provoking new observations
that no one had thought of making
under old views. The theory, in short,
engendered its own test and broke the
straitjacket of previous certainty.

every inch of sediment in every
known locality, I might eventually
find even the rarest species right near
the boundary-i{ it truly survived.

This all seems rather obvious. I
cannot possibly argue that such an
approach was unthinkable before the
ALvarez hypothesis. I cannot claim
that conceptual blinders of gradual-
ism made it impossible even to imag-

becomes so appealing precisely
through its entirely pedestrian char-
acter. I could cite many fancy cases of
original theories that open entirely
new worlds of observation: think of
Galileo's telescope and all the impos-
sible phenomena thus revealed. In
this case, the Alvarez theory sug-
gested little more than hard work.

So why wasn't the effort expended
before? Paleontologists are an indus-
trious 1ot; we have faults aplenty, but
laziness in the field is not among
them. We do love to {ind fossils; this
is why most of us entered the profes-
sion in the first place. We didn't scru-
tinize every inch of sediment for the
most basic of all scienti{ic reasons.
Life is short and the world is im-
ffierrS€; you can't spend your career
on a single cliff face. The essence of
science is intelligent sampling, not
sitting in a single place and trying to
get every last one. Under Darwinian
gradualism, intelligent sampling fol-
lowed the usual handful-from-the-
haystack method. The results ob-
tained matched the expectations of
theory, and conceptual satisfaction
(in retrospect, one might say "sloth")
set in. No impetus existed for the
much more laborious dismember-
the-entire-haystack method, a cluite
unusual approach in science. We
could have worked this way, but we
didn't because we had no reason to do
so. The .Nlvarez theory made this
unusual approach necessary. It
forced us to look in a differentway.
"A11 observation must be for or
against some view if it is to be of any
service! "

Consider two premier ex-
amples-the best-known marine
terrestrial groups to disappear in
the Cretaceous-Tertiarv extinc-
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consequence not of this catastrophe but
of sweeping changes in the late Creta-
ceous marine ecosystem. . . . Studies o{
the fossils from the stratigraphic sections
atZumayain Spain suggest they became
extinct long be{ore the proposed impact
of the meteoritic body.

But Peter, as one of the smartest
and most honorable men I know, also
acknowledged the limits of such
"negative evidence." A conclusion
based on not finding something has
the great virtue of unambiguous po-
tential refutation. Peter wrote: "This
evidence is negative and could be
overtumed by the finding of a single
new ammonite specimen."

Without the impact hypothesis,
Peter would have had no impetus to
search these upper thirty feet of sec-
tion with any more care. Extinctions
were supposed to be gradual, and
thirty feet of missing ammonites
made perfect sense, so why look any
further. But the impact hypothesis,
with its clear prediction of ammonite
suryival right up to the boundary it-
self, demanded more intense scrutiny
of the thirty-foot haystack. In 1985,
Peter was still touting sequential dis-
appearance: "Ammonites. . . appear
to have become extinct in this basin
well before the K/T [Cretaceous-Ter-
tiary] boundary, supporting a more
gradualistic view of the K/T extinc-
tions" (Palaios, vol. 1, pp. 87-92).

But Peter and his fieid partners,
inspired byAlvxez (if onlyby a hope
of disproving the impact hlpothesis),
worked on through the haystack:
"The remaining part of the Creta-
ceous section was well exposed and
vigorously searched and quarried."
Finally, later in 1986, they found a
single specimen just three feet below
the boundary. It was crushed, and
they couldn't tell for certain whether
it was an ammonite or a nautiloid,
but this specimen did proclaim a
need for even more careful search.
(Since nautiloids obviously survived
the extinction-the chambered nau-
tilus still lives today-such a fossil
right at the boundary would occasion
no surprise.)

Peter started a much more intense
search in 1987, and the ammonites
began to turn up-mostly lousy

specimens and very rare, but clearly
present right up to the boundary. Pe-
ter writes in a book just published:

Finally, on a rainy day, I found a fragment
of an ammonite within inches of the clay
layer marking the boundary. Slowly, over
the years, several more were found in the
highest levels of Cretaceous strata at
Ztrnaya. Ammonites appeared to have
been present for Armageddon after all.

Peter then took the obvious next
step: look elsewhere. Zurrraya con-
tained ammonites right up to the end,
but not copiously, perhaps for reasons
of local habitat rather than global
abundance. Peter had looked in sec-
tions west of Zumaya and found no
latest Cretaceous ammonites (an-
other reason for his earlier acceptance
of gradual extinction). But noq he
extended his fieldwork to the east,
toward the border of Spain and
France. (Agarn, these eastem sections
were known and had always been
available for study, but Peter needed
the impetus of Alvarez to ask the
right questions and to develop a need
for making these further observa-
tions.) Peter studied two new sec-
tions, at Hendaye on the Spanish-
French border and right on the yuppie
beaches of Biaritz in France. He
found an abundance of ammonites just
below the boundary line of the great
extinction. He writes in his new book:

A{ter my experience at Zurr,aya, wherc
years of searching yielded only the slight-
est evidence . . . near the Cretaceous-
Tertiary boundary, I was overjoyed to find
a source of ammonites within the last
meter of Cretaceous rock during the {irst
hour at Hendaye.

,r1., We professionals may
care more about am-
monites, but dino-
saurs fire the popular

,.1in:il,i:.}i imagination. No argu-
ment against Alvarez has therefore
been more prominent, or more per-
suasive, than the persistent claim
by most (but not all) dinosaur
specialists that the great beasts,
with the possible exception of a

straggler or two/ were gone long

...allddin0saul's,100

before the supposed impact.
I well remember the dinosaur men

advancing their supposed smoking
gun of a "th-ree-meter gap"-the bar-
ren strata between the last-known
dinosaur bone and the impact bound-
ary. And I recall Luis Alvarez explod-
ing in rage and with ample justice (for
I felt a bit ashamed of my paleonto-
logical colleagues and their very bad
argument). The last bone, after all, is
not the last animal, but rather a
sample from which we might be able
to estimate the probable later sur-
vival of creatures not yet found as
fossils. After all, if my colleague
throws a thousand bottles overboard
and I later pick up one on an isiand
fifty miles away,Ido not assume that
he only tossed a single bottle. But if I
know the time of his throw and the
pattem of currents, I might be able to
make a rough estimate of how many
he originally dropped overboard. The
chance of any animal becoming a
fossil is surely much smaller than
the probability of my finding even
one bottle. A11 science is intelligent
inference: excessive literalism is a

delusion, not a humble bowing to
evidence.

Again, as with Peter Ward and the
ammonites, the best empirical ap-
proach would order a stop to the
shouting arrd organize a massive ef-
fort to dismember the haystack by
looking for dinosaur bones in every
inch of latest Cretaceous rocks. Peter
means "Tock" in Latin, so maybe
men of this name are predisposed to
a paleontolo gqcalcareer. Another Pe-
tet, my friend and colleague Peter
Sheehan of the Milwaukee Public
Museum, has been guiding such a
project for years. |ust last month
(I write this essay in December
1991), he published his much awaited
results (see "Sudden Extinction of the
Dinosaurs: Latest Cretaceous, Upper
Great Plains, IJ.S.A.," by P. M.
Sheehan, D. E. Fastovsky, R. G.
Hoffmann, C. D. Berghaus, and D. L.
Gabriel, Science, November 8, 1991,
pp.835-39).

Dinosaurs are almost always rarer
than marine creatures/ and this hay-
stack really has to be pulled apart
fragment by fragment and over a
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broad area. The National Science
Foundation and other funding agen-
cies simply do not supply grant
money at such a scale for projects
that lack experimental glamor, what-
ever their importance. So Peter
(Sheehan this time) availed himself of
a wonderful resource that mere am-
monites could never command. I will
tell this story in his words:

We co-opted the longstanding volunteer-
based "Dig-a-Dinosaur" program at the
Milwaukee Public Museum. Sixteen to
25 carefully trained and closely super-
vised volunteers and 10 to 12 staff mem-
bers were present during each of 7 two-
week field sessions during three
summers. The primary objective o{ each
volunteer was to search a predetermined
area for all bone visible on the sur{ace.
The volunteers were awayed in "search
patty" fashion across exposures so that
all outcrops were surveyed systemati-
cally. Associated with the field parties
were geologists whose function was to
measure stratigraphic sections and iden-
tify facies.

I cannot think of a more efficient
and effective way to tackle a geologi-
cal haystack. Peter's personrrel logged
15,000 hours of fieldwork and have
provided our first adequate sampling
of dinosaur fossils in uppermost Cre-
taceous rocks. They worked in the
Hell Creek Formation in Montana
and North Dakota, the classic strata
for latest Cretaceous dinosaurs. They
studied each environment separately,
with best evidence available from
stream channels and floodplains.
They divided the entire section into
thirds, with the upper third extending
right up to the impact boundary, and
asked whether a steady decline oc-
curred through the three units, leav-
ing an impoverished fauna when the
asteroid struck. Again, I will1et their
terse conclusion, summarizing so
much intense effort, speak for itself:

Because there is no signi{icant change
between the lower, middle, and upper
thirds of the formation, we reject the
hypothesis that the dinosaurian part oI
the ecosystem was deteriorating during
the latest Cretaceous. These findings are
consistent with an abrupt extinction sce-
nario.

You can always say, "So what;
T. S. Eliotwaswrong; someworlds at

least end with a bang, not a whim-
per./' But this distinction makes all
the difference, for bangs and whim-
pers have such divergent conse-
quences. Peter Ward sets the right
theme in his final statement on the
nonnecessary demise of ammonites:

Their history was one o{ such uncom-
mon and clever adaptation that they
should have survived, somewhere, at
some great depth. The nautiloids did. It
is my prejudice that the ammonites
would have, save for a catastrophe that
changed the rules 55 million years ago. In
their long history they survived every-
thing else the earth threw at them. Perhaps
it was something from outer space, not the
earth, that finally brought them down.

The true philistine may still say,

"So what; no impact and we stil1
have both ammonites and nauti-
loids. What do I care. I had never
even heard of nautiloids before read-
ing this essay.'/ Think about dino-
saurs and start caring. No impact to
terminate their still-vigorous diver-

sity and perhaps they survive to the
present. (Why not? They had done
well for more than 100 million
years, and the earth has only added
another 55 million since then.) If
they survive/ mammals almost
surely remain as small and insignifi-
cant as they were during the entire
100 million years of dinosaurian
domination. And if mammals stay
so small, restricted, and unendowed
with consciousness/ then surely no
humans emerge to proclaim their
indifference. Or to name their boys
Peter. Or to ponder the nature of
science and the proper interaction
between fact and theory. Too dumb
to try and too busy scrounging for
the next meal and hiding from that
nasty Velociraptor. O

Stephen [ay Gotldteaches biology, geol-
ogy, and the history of science at
Haward Univercity, He is the author of
The Panda's Thumb, The Mismeasure of
Man, and many othu books.
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HOW DO YOU
FIGURE?

Challgltuo$ in physics and malh

tlllAIll
M61
Repeating sums of digits. Prove that
in any infinite arithmetic sequence of
positive integers/ one can always find
two numbers with equal sums of dig-
its. (S. Genkin)

M62
This is some yearl/ Prove that
l992tl - lggltt is divisible by 1993
(n!! denotes the product of all posi-
tive integers not greater than n and
of thesameparityasn:nl! =n.(n -
2l .fu - 4l . ...). (V. Proizvolov)

M63
All you needis l . . . The diameter AB
of a semicircle is arbitrarily divided
into two parts, AC and CB, on which
two other semicircles are constructed

{fig. 1). Find the diameter of a circle
inscribed in a curvilinear triangle
formed by the three semicircles,
given only the distance J from this
circle's center to line AB.

M64
Orderingroots. Let a, b, and c be the
roots of the equations

COS a: at
sincosb=b,
cossinc=c,

lying in the interval lO, nlLl. With-
out any calculations, arrange them
in increasing order. (S. Gessen)

M65
Circles enctucledby cfucles. Prove that
(a) it is possible to plot a finite number
of nonintersecting circles on theplane
so that each of them touches (extemally)
exactly five of the others; (b) you cannot
replace the numberfive inpart (a)with
six. (D. Fomin)

Physics
P61
Rubbq cord.Two athletes are stand-
ing at points A and B holding a rub-
ber cord. At a signal, runner A moves
eastward with a velocity vo = I m/s,
and runner B moves southward with
a constant acceleration. Determine
the acceleration if it is known that a
knot C tied on the cord passed point
D (the scale is given in figure 2).
(S. Krotov)

2m

Figure 2

P62
Flying top. A conical top is rapidly
rotating about its axis on a smooth
table (fig. 3). At what velocity v of its
forward motion does the top not hit
the table as it falls off the edge? The
top's axis remains verticaf its dimen-
sions are shown in the figure.
(A.Zilbermanl

P63
B Low-pressure retoft. A spherical re-

tort with a volume of 1 liter was

r'lou

Figure 3

pumped out and sealed. A monomo-
iecular layer of air remained on the
retort's walls. What is the approxi-
mate pressure within the retort when
heated to 300'C if it is known that at
such a temperature the retort walls
are totally free of gas? (A. Mitrofanov)

P64
Battery charyer. To charge a storage
battery with emf t : 12 V from a
power source with a voltage V = 5Y,
a circuit was constructed by using a
coil with inductance L : t henry, a
diode D, and a switch K that periodi-
cally opens and closes at equal time
intervals xt: xz= 0.01 s (fig.a). Deter-
mine the average current I"u charging
the battery. (A. Zilberman)

LD

Figure 4

P65
Blowin' in the wind. Why is it haid
to hear words shouted into the wind?
(A. Buzdin)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 57

A

Figure 1
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SM I LES

Doinuil lhehal'dtntay

"Among twenty towering buildings
The only moving thing
Was the plummeting barometer."

-Steven 
Wallace, "Eight Ways of

Looking at a Blackboard"

by M. Tulchinsky

HIS ARTICLE OFFERS SEV-
eral (eight) methods of solving a
problem of great theoretical as
well as practical importance:

how to measure the height of a
multistory building with a suffi-
ciently long rope and a l-meter-long
mercury barometer.

Some of these methods are appli-
cable to a wide range of analogous
problems (measuring the height of
the Eiffei Tower, the Empire State
Building, Mt. Everest, etc.).

Method I (a trivial one). Go up to
the roof of the building, tie your
rope to the barometer, and lower it

to ground level. Then lift it up and
measure the length of the rope.

Method 2 (a straightforward one|.
Holding the barometer vertically, go
up the stairs and mark the length of
the case on the wall. Counting the
number of marks, you will obtain
the height of the building.

Note: If you measure the height
of one floor in this way and multi-
ply its height by the number of
floors, the error will be too large.

Method 3 (an aerostatic one).
Measure the atmospheric pressure
at ground level and at roof level. Fig-
ure out the height of the building ac-
cording to the change in the barom-
eter readings.

Method 4 (a geometrical one).
Take the barometer outside on a
sunny day. Stand it up vertically.
Measure the length of its shadow
and the shadow of the building. Us-
ing the similarity of triangles, calcu-
late the height of the building.

Method 5 {a sociological one).
Ask all the tenants to estimate the
height; Find the arithmetical mean.
Promise to give your barometer as a
prize.

Method 6 (a kinematic one). De-
termine yourpulse rate. Then count
the number of heartbeats while the

vertically oriented barometer falls
from the roof of the building. Calcu-
late the height using the formula
h = gt2l2.

Method 7 (abueaucratic one).
Write to the persons who are in
charge of the building. Ask them to
look into the architectural docu-
ments and tell you the height. (Re-
member, your barometer was bro-
ken in your "kinematic" attempt at
measurement.)

Method 8 {a pedagogical one).
Perhaps our readers will devise their
own methods and send us descrip-
tions... O
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How many geometries do you know?

by Vladimir Boltyansky

DITOR,S NOTE:THIS IS THE
first of a series of articles dedi-
cated to the bicentenary of the
great Russian mathematician

Nikolay Lobachevsky (17 9 2-L B 551,
one of the creators of non-Euclidean
geometry. It wiil introduce you to
the problem of testing an axiomatic
system (in this case, non-Euclidean
geometry)by constructing a model
of it. Upcoming issues of Quantum
will bring you the historical and
mathematical details of Loba-
chevsky's discovery, its physical
interpretations, and applications.
(See also the Anthology department
in the last issue.)

A[ "odd" associalion
In a certain town an association

was founded that united philatelists,
numismatists, collectors of the eyes
of needles and all other things worth
collecting. It was decided that the
association's administration must
consist of an odd number of people
{which is convenient for voting).
A1so, it was decided that the admin-
istration should be accommodated in
one building and every member o{ the
administration should have a sepa-
rate intercom unit. A switchboard
was considered an unjustifiable
luxury, but to keep the intercom sys-
tem from becoming too complicated,
each member was supposed to be
connected directly to three others.

"Well," one of the founders said, "I
think this alrangement is convenient
enough."

"What I like best about it," said
another founder, a famous collector
of mathematical curios, "is that the
proposed scheme can be described by
a set of abstract axioms. Look, we
have three primary notions-/mem-
ber,' 'line,' /g61ngg1/-and we want
the following three axioms to hold:

1. The number of members is odd;
2. Each line connects exactly two

members;
3. Each member is connected to

exactly three members."

"But is this set of axioms very use-
ful? Is it possible, for instance, to de-
duce from it any theorems that would
make a 'theory'that reflects the op-
eration of our administration? "

"Sure, here's a theoremforyou! By
axiom 1 there exists at least one
member (zero is att even number!).
Then, axiom 3 ensures there are three
more members, making the total not
less than four. Fina11y, applying
axiom 1 once again we conclude that
the total numbu of members is not
less than five. And this is the first
theorem of our 'theory.' "

"I see. This statement can indeed
be considered a theorem, since it was
proven-that is, logically derived
from axioms."

"Here's another example oI a very
simple theorem: among any five
members there arc always two who
aru not connected by a line."

"Well, that's pretty obvious-
otherwise, there will be at least four

lines leading to each of these five
members."

"Exactly! By the way, how did you
put it? A line 'leads' to a member?
Within the framework of our set of
axioms we can give an accurate defi-
nition of this situation: iJA is a mem-
ber and line l connects this member
to some other memb eq the pair (A, 1l

wi1lbe called alead."
"So now we can say that every

member A belongs to exactly three
leads (A, 1rl, (A,lrl, (A,1r). And that's
what we mean when we say that
there are three lines lL, 12,l3leading to
A (axiom 3)."

"Wonderfull" The collector of
mathematical curios (the Collector,
for short) grinned contentedly.

"Continuing your line of reason-
ing, I can formulate the following
theorem: thetotalnumber of leads is
odd. Afuer all, the number of mem-
bers is odd (axiom 1), and each of
them belongs to exactly three leads."

A11 of a sudden the Collector
tumedgloomy and said in a downcast
tone, "lJn{ortunately, I can also prove
that the number of leads is even: each
line (connecting, for instance, A and
B) belongs to two leads-(A, 1) and
(8, 1)-so the number of leads is
twice the number of lines."

"But that conffadicts the previous
theoreml"

"That's the problem! Our axioms
tum out tobe inconsistent, because
we can deduce two mutually contra-
dictory theorems from them. Too
bad! Our theory falls to pieces: it's
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simply impossible to create the com-
munication system described by axi-
oms 1, 2, and3."

Chalt[iru ailoln$

"But what should we do? Allow
the number of administrators to be
even? But we tried so hard to avoid
thatl"

"There's another way out," the
Collector answered. "Let's leave axi-
oms 1 and 2 as they are, but replace
the third axiom with

3'. Each member is connected to
exactly four other members.

"Of course, we'll have to lay a
gteater number of lines, but in retum
we'll make our set of axioms consis-
tent, and three of the theorems-with
a slight modification-will remain
valid. As before, the total number of
members is not less than five, two of
any six (not five!) members are not
connected with a line, and the total
number of leads wiilbe even (without
any contradictions!). We can go on
and prove other theorems as we11."

"But, with your permission, how
can you be sure there are no contra-
dictions whatsoever? True, the num-
ber of leads is no longer a problem;
but, perhaps, proving new theorems
over and over again we'll nevertheless
come across a contradiction some-
time.You'renot saying you know in
advance all the theorems that can
ever be deduced from the new axi-
oms, are you? And if you're not, who
can guarantee the absence of contra-
dictions?"

"Oh, I'm absolutely certain about
this! I'li tell you why I'm so confi-

^.s637 I 2
g+rl_k-.\-1..t-

dent. You don't doubt the 'correct-
ness' of arithmetic, do you? "

"Of course not. But what does
arithmetic have to do with our asso-

ciation?"
"|ust this. I'm going to construct a

model, as mathematicians say, of our
set of axioms from the 'material' of
arithmetic. By the way, how many
members, approximately, will the
administration include?"

"Not less than 30, I think."
"Great! I suggest we consider the

numbers l, 2, ...,37 as the'members';
for convenience I'11 plot them on a
circle (fig. 1), so that 37 is followed by
1. Now I define a'Iine' as a pair of
number such that one of them is next
to/ or one person away from, the other
along this circle. For instance, the
pairs (1, 3!,, (36, 3711, (37,21arc'Iines,'
while (3, 6) isn't a'line'-3 and 5
stand too far apafi."

"I think I see what you're getting
at. This model, as you call it, com-
prises 37'members'-an odd number
(as required by axiom 1). Each'line'
connects exactly two members
(axiom 2) because a pair consists of
two members. And it's clear that ex-
actly four'lines' lead to every'mem-
ber' (axiom 3') as illustrated in fig-
ure 2. Thus, all three axioms 1,2, and
3 hold for this model. But why does

this guarantee the consistency of the
axioms in question?"

"|ust because the model is made of
numbers! If two contradictory theo-
rems could be derived from our axi-
oms, this contradiction would come
out in our model, too. It would mean
we could obtain a contradiction
while reasoning about numb er s. Brtt
you don't doubt the infallibility of
arithmetic, do you?"

"Well, now your arguments are
clear to me. And so, let me, please,
repeat them in a general form, so to
speak. You consider two theories, P
and Q. Theory P-in our case, arith-
metic-doesn't raise any doubts, and

can be regarded as unshakable and in-
fallible; theory Q, on the other hand,
is a new one, defined by a list of axi-
oms. We want to obtain guarantees
that Q is a consistent theory. For this
purpose the following technique is
applied: using notions from theory P
as 'building materral,'we try to con-
struct a model of theory Q-that is,
choose some notions of P that repre-
senttheprimarynotions of Q, so that
all the axioms of Q hold for them. If
we're able to do it, the consistency of
theory Q is proven."

A sFange geolnstry

"We've digressed a bit from dis-
cussing questions about our associa-
tion. But because I collect math-
ematical curios, I'd like to offer you
one of them-a rather unusual model
of geometry."

"I'11be glad to take a look at it."
"Imagine that one point, O, is re-

moved (mathematicians would say
deletedl from the plane. (Of course, it
actually stays in place but we pretend
it's not a'point.')All the otherpoints
(distinct from O) are considered
'points'in our model."

"And this is the whole point of
your model?!"

"Wait a minute. Every circle pass-
ing through the deleted point O wili
be now called a'straight line' (includ-
ing'circles of infinite radius'-that is,
regular straight lines passing through
O). Some of the new'straight lines'
are illustrated in figure 3."

"This is really unusual. We take
deliberately cuwed ltnes and declare
thern' su aight.' But what for? "

"Let's try, for example, to draw a

'straight line' through two points A
and B. How can we do it?"

"You want the 'line' to pass
through A and B. In addition, since
it's a 'line,' it must contain O. This
means we have to draw a circle
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Figure 4

through three points A, B, O ([ig. al.
A child could do it!"

"What's important is that such a
'line' always exists and is unique.
Right?"

"Right. Three points uniquely de-
termine a circle as long as they don't
belong to a regular straight line; but
if they do, the'line'we need is sim-
ply this regular line, a 'circle of infi-
nite radius.' "

"And so this model satisfies the
following axiom: there is one and
only one line passing through any
two different points."

"I think I'm getting interested in
your curio."

"Now look at figure 5, which shows
a uiangJe ABC. Each of its angles is
equal to the corresponding angle at
point O. So their sum equals the sum of
the marked angles at point O.Btttthey
add up to a straight anglet. Which
means that the sum is 180 degrees."

" Amazing,!"
"Notice also that in this model

there's only one 'straight line' that
doesn't intersect a given 'ltne' a and
passes tfuough a given point A out-
side a. It's the circle touching the given

'line' a at point O {fig. 6):point O is
counted out/ so the two 'Iines'in the fig-
ure have no common'poir1ts."'

"This means that the parallel pos-
tulate is valid in your model too?"

"Absolutely. And not only this
postulate: all the axioms (and, conse-
quently, all the theorems) of the ge-

Figure 5 \

ometry studied at school-Euclidean
geometry/ named after the thinker
who was the first to lay it out system-
atically more than 2,000 years ago.
And so all the statements of Euclid-
ean geometry hold in this model, too.
But I haven't finished describing it. It
wasn't specified how to measure dis-
tances, what triangles shouldbe con-
sidered isosceles, and so on. Besides,
we shouldhave added a special'point
at infinity'instead of the deleted
point O to make the model complete.
But the essence of the matter must be
clear enough: I've constructed a
model of the usual (Euclidean) geom-
etry."

"MayI say then that what you've
done was to take the usual geometry
as the original theory P and construct
from its own 'material' a model of
this very theory?"

"Exactly. And the reason I told you
about this model was just to show it's
not so unnatural to cail curved lines
'straight' in some models. "1

Lobarheu$ky3 tl,agedy

"And now one more curio from
my collection. It's a geometry discov-
ered by the great Russian mathema-
tician Nikolay Lobachevsky. "2

" Asfar as I know he constructed a
geometryinwhich there is more than
one line through a point outside a
given line parallel to rt (fig. 7)."

"Right. But although ail his argu'

1In fact, this unusual model of the
usual geometry is simply the image of
the Euclidean plane after invercion, a

remarkable trans{ormation discussed in
the article that begins on page 40.

2It was also discovered by Gauss and
B61yai, but Lobachevsky was the first
to publish his results. That's why this
geometry, usually called hyperbolic
geometry, is sometimes-for instance,
in this article-re{erred to as

"Lobachevskian geometry. "

Figure 6

ments were logicaliy irreproachable,
during his lifetime he failed to gain
recognition for his ideas. His conclu-
sions seemed too weird to his col-
leagues (to say nothing of layper-
sons)."

"Can you give an example?"
"Well, for example, parallel lines

approach each other (fig. B)-one can
even construct a triangle with paral-
lel sides (fig. 9). And though the lines
in figure 9 are curyed, there are
straight lines in Lobachevskian ge-

ometry situated in just this way. In
addition, the sum of the triangle's
angles is always less than 180 degrees,

and so on, and so forth."
"But that's not the way it is in re-

ality, now, is it?"
"There! There! That's just what

Lobachevsky's contemporaries said.
But he was aware that what matters
is whether the geometry obtained
from a set of axioms laid at its basis
is consistent or not. Besides, any ar
gument like "this isn't the way it is
in realrty" is based entirely on the
factthat our observations cover only
a small part of space in which there
is simply no marked difference be-
tween Lobachevsky's and Euclid's ge-

ometries {possible differences would
lie beyond the limits of measuring ac-
curacy.) By the way, modem physics
continues to confirm it."

"That's surprising! But if I under-
stood you correctly, you were going
to talk about a purely mathematical
confirmation that Lobachevskian ge-

ometry is correct."

Figure 7 Figure B
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Figure 9

"More precisely, that it's consis-
tent."

"Oh, I see! Apparently, you want
to say one can build a model of
Lobachevskian geometry from the
'material' of some other theory P
whose corectness we don't doubt."

"Exactly! And this theory is Eu-
clidean geometry!"

"We11, did Lobachevsky know
about that?"

"No, he didn't. But he built an-
other remarkable model. From the
'material' of his geometry he man-
aged to construct a model of Euclid-
ean geometry."

"So, if people had been sure of the
impeccability of Lobachevskian ge-

ometry, but doubted the validity of
Euclidean geometry/ this model
could have convinced them that Eu-
clidean geometry is consistent too!
But it would have been better the
other way around!"

Jusflimdelayed

"Now you see that Lobachevsky
was fully aware of what a model is
and how the consistency of his geom-

etry could be proven. Taking Euclid-
ean geometryas the originaltheory P,

Figure 10

one had to construct from its 'mate-
rial' a model of theory Q, Loba-
chevskian geometry. But Loba-
chevsky failed to do it. Such models
were found only after his death."

"Who did it?"
"Beltrami, Cayley, Klein,

Poincar6, and others."
"Are these models very compli-

cated?"
"Not really. For instance, take the

model discovered by the outstanding
French mathematician Henri
Poincar6 (1854-l9l2l. Its points are
the interior points of some circie C.

'Lines' are defined as follows: take a
circle (or a straight line) perpendicu-
lar to circle C; then its arc (or seg-
ment) intercepted by C is called a

'line' (see figure 10, showing several
'lines')."

"This model is similar to the
model of Euclidean geometry dis-
cussed earlier. 'Lines'there were also
circles."

"And not only that. It can also be
proven for this model that there is a
single 'line' through any two points A
and B (fig. 11). One can consider tri-
angles, and figure 12 shows there are
infinitely many'lines' through a

pointA outside agiven line a andnot
intersecting it. Two of them (those
touching 'Iine' a at points on the cir-
cumference of C (in a certain sense/

at infinity) are said to be 'parallel' to
a. Andfigure 13 illustrates an'infinite
triangle'whose sides are parallel to
each other. In short, this is indeed a

model of Lobachevskian geometry.
Of course, my description is far from
complete-I ought to explain how to
measure lengths, define the congru-
enc,e of figures, and so on.3 But the
general idea of the model was pre-
sented correctly."

"What about the other mathema-
ticians you named-were thefu mod-
els the same?"

"Not at all! Nowadays, many dif-
ferent models of Lobachevskian ge-

ometry are known. For instance,
Cayley and Klein created a model
that also involved only interior
points of a circle, but with truly
'straight' lines-all chords of the

//l

3For these and other definitions, see
the article "Inversion."
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circle (without thetu endpoints). In
this model, it's even easier to see
that there are infinitely many'lines'
through a point outside a given'line'
a not intersecting a (fig.Ial. But it's
more difficult to measure angles in
this model than in Poincar6's."

"Your'mathematical curios' are

very curious indeed. Now I under-
stand the significance of Loba-
chevsky's discovery. He not only con-
structed a very unusual geometry, he
originated the search for other new
'geometries.' I've heard that math-
ematicians today study all kinds of
different spaces and geometries,

which are applied in physics and
other branches of science. I guess in
your collection, too, there are many
wonderful spaces/ geometries, and
mathematical'worlds."'

"There certainly are! But we'1l talk
about them some other time." O

IN THE LAB

Can ulhite he hlacfiBr lhalt hlack?
Here's a simple way to find out

ET'S START WITH A VERY
simple observation. Take sheets
of white and black paper, put
them near each other, and make

the room completely dark. Then you
won't see them, because both sheets
will be ec1ually black.

It would seem that there are no
conditions in which the white sheet
of paper can be blacker than the black
one. And yet this isn't the case. Try
to think it through and devise an ex-
periment in which white tums out to
be blacker than black. But first read
the following passage.

A body that completely absorbs
incident radiation at arry frequency
and any temperature is called ablack
body.We understand that this is an
idealization-that absolutely black
bodies do not exist in nature. Bodies
that we usually call black (soot, black
paper/ black velvet, and so on) are
actually gray-that is, they partially
absorb and partially scatter incident
light. So to answer the question we've
posed, we could, for example, take a
sheet of whitepaper andmake abody
that is closer to being a biack body
than black paper is. Now the solution
is almost self-evident.

A spherical cavity with a smal1

by V. V. Mayer

opening tums out to be a goodmodel
of a black body. If the opening is no
larger than 1/10 of the diameter of the
cavity, then (according to the corre-
sponding calculation) a light beam
entering the hole would be able to
exit only after repeated scattering and
reflection. But every time the beam of
light touches a wa11, liglrt energy is par-
tially absorbed, so the amount of light
that escapes theboxis insignificant. So

we can say that the hole in the cavity
absorbs light of any frecluency almost
completely, just like a black body.

You can construct such an experi-
mental device. Glue together pieces
of cardboard to form a box with ap-
proximate dimensions 100 mm x 100
mm x 100 mm, and construct a 1id
that flips open. Cover the inside with

white paper and paint the outside
black (with Lrdia ink or gouache) or
cover it with the black paper that
comes with photographic paper to
protect it from light. Make a hole
with a diameter of not more than 10
mm in the lid. Below is a rendering of
such a box.

To perform the demonstration,
shine a table lamp on the lid. The
hole will seem to be blacker than the
black lid. Open the lid, and everybody
will see that behind the hole is-
white paper, which really was "blacker
than black" in the experiment!

There is a simpler way to observe
this phenomenon. Take a white porce-
lain cup and c,overit with ablackpaper
lid that has a small hole in it-the effect
will be practically the same. O
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The lip ol the iceheru

-Samuel 
Taylor Coleridge, "The Rime of the Ancient Mariner"

by Arthur Eisenkraft and Larry D. Kirkpatrick

LOUDS FLOAT IN THE SKY.
Rocks plunge to the bottom of
lakes. Childrer' gaze at the sky
as a helium balloon rises and

rises, wondering what its future will
be. Physicists also wonder about such
things. And as they wonder, they
think about gravity, buoyancy, sink-
ing and floating.1

One of the first people to ponder
floating and sinking was Archimedes.
It's difficult to believe that Archi-
medes was once so consumed by his
king's challenge of determining the
constituency of the royal crown that
in his burst of insight, he jumped out
of the bathtub and ran through the
town screaming "Eureka!" If you
heard such a commotion outside and
then observed a naked man running
down the street screaming a Greek
word or even its English equivalent
("I found it!"), what would you do?

Your first thought probably involves
locking doors or callingpolice. When
you found out that this was the reac-
tion of a wise man after figuring out
whether the king's crown was pure
gold or an alloy, I can't imagine many
people unlocking their doors or hang-
ing up the phone: "It's okay, dear-
iust a wise man discovering a new
law of physics."

Archimedes's law was a great
achievement. Everybody knew that
an object dropped in water made the

rSee "Boy-oh-buoyancy!" in the
September/October 1990 issue of
Quantum.

PHYSICS
CONTEST

"And ice, mast-high, came floating by,
As green as emerald."

water level rise (that is, it displaced
some water). But Archimedes was the
first to recognize that the amount of
water displaced is related to the
object's volume in avery precise way!

You can try to "discover" Archi-
medes's law, and we promise you
won't have to take a bath or run
through your town. Gather 100 pen-
nies. Fill a glass with water. Carefully
place the pennies in the water. What
happens when 50 pennies are placed
in water? What happens when 100
pennies areplacedin water? Does the
water rise? Does the water spill out of
the glass? How much water? Can you
find the relationship between the
water and the pennies? That was part
of Archimedes's challenge.

We know that when you try to
submerge a table tennis ball in water,
it will find its way to the surface. A
well-designed boat will float. The
same boat, with lots of cargo, may
sink. Why is it that some people find
floating in water easier than others?

One helpfuL way o{. analyzing
floating and sinking is to note that in
a container of water, the water at
each level of the container is, in ef-
fect, floating at that leveI. Physicists
would say that the water at each
depth is in equilibrium. The buoyant
force on any piece of water pushing it
up rnust be exactly equal to the gravi-
tational force or weight of the piece
of water puliing it down. We then
conclude that the pressure (force per
areal o{ the water increases with

depth. The bottom of a submerged
object experiences a higher pressure
than its top. The difference in pres-
sure pushes the object up. Gravity is
pulling the object down. Since the piece
of water moves neither up nor down,
the force due to the pressure differences
must exactly equal the weight.

The pressure at the top of the piece
of water is equal to p and the pressure
at the bottom of the piece of water is
equal to p + Lp. This difference in
pressure provides the upward force
that must be equal to the weight of
the piece of water:

(p*LplA-pA=m*g=p*Vg.

If we assume that the piece of water
is a slab of length J, width w, and
height Ah, then

(p+LplA-pA=p*Atks,
ap = p#Ah.

Since the density of the water and the
acceleration due to gravity are con-
stant, we can conclude that the pres-
sure change is proportional to the
change in depth of the water.

If we now replace our piece of wa-
terwith an identically shapedpiece of
wood, we know that the upward force
on the wood is identical to the up-
ward force on the piece of water. This
is due to the pressure difference be-
tween the top of the wood and the
bottom of the wood. The weight of
the wood may be different than the
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weight of the piece of water. If the
wood weighs iess than the equivalent
volume of water, the buoyant force
prevails and pushes the wood to the
surface. If the wood weighs more
than the equivalent volume of water,
the force of. gravity prevails and the
wood sinks to the bottom.

And so we have theoretically de-
rived Archimedes's principle: A body
in watu (or any fluid) will have a
buoyant force equal to the weigftt of
the fluid that it displaces. When
Archimedes sat in his bathtub and
displaced that bath water, he reached
this same conclusion.
Anybody feel like shout-
ing "Eureka"?

Have you ever won-
dered how much of an
ice cube is beneath the
water? Or, maybe, how
much of an iceberg is be-
low the surface? The den-
sity of ice is 0.92 glcm'.
The density of ocean water
is 1.04 glcmt.Assume
that the weight of the
iceberg is I4l, its volume
is V,, and its density is
p,; the volume of the dis-
placed water is V*; and
the density of the dis-
placed water is p*. Then

Wr= prVrB.

The buoyant force equals

Fu = p*V*g.

Since the buoyant force
equals the weight,

P.VE= P*V*S,

Assuming the densities
of ice and water given
abovg

v* 
-o.92 = o.gg.vi 1.04

We conclude that 88% of
the iceberg is below the
surface, or that we see

only the "tip of the iceberg."
Our contest problem relates to

buoyancy and the tendency oI atall
object floating on the surface to tip
over. If the mast of a ship tilts due to
a strong wind or a waYet the sub-
merged part of the ship will no longer
be directly below the center of mass.
The buoyant force and the weight
will exert torques on the ship that
could cause it to capsize.

We can simulate this tilting ship
by considering what happens if you
hold a pencil at its tip and lower the
other end into a large pail o{ water. At

first we expect that the pencil will
remain vertical. As more of the pen-
cil enters the water, the pencil will
have a tendency to tilt in the water.
If the pivot is at a given height above
the water, the pencil will choose a
specific stable angle. Don't believe
us-try itl

The contest problem has three
parts:

A. What is the relationship be-
tween the angle of the pencil and the
height of the pivot above the water?

B. Why is this position stable?
C. What happens to the fraction of
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the submerged pencil as the pivot is
lowered?

Please send your solutions to
Quantum, 3 140 North Washington
Boulevard, Arlington, YA 22201
within a month after receipt of this
issue. The best solutions will be
noted in this space and their authors
will receive special certificates from
Quantum.

The ulamshellmil'nol's
In the March/April issue we asked

you to find the separation of two
spherical mirrors that would produce
a real image in a hole in the upper
mirror. Furthermore, the image was
to be the same size as the object. If
you want to experiment with the
mirrors, they are available from
Edmonds Scientific Company (101 E.

Gloucester Pike, Barrington, N|
08007-1380) as the Optic Mirage
litem A72,381) for $42.95.

Since both mirrors are required to
obtain the image, we know that the
image is formedby two reflections-
one from the upper mirror followed
by one from the lower mirror. Since
the only dimension in theproblem is
the focal length of the mirrors, let's
choose to express all other distances
in units of the focal length. If we as-

sume that the mirrors are separated
by ,f, the object distance s, for the
image produced by the upper mirror
(mirror 1)is also nf.T}ire image dis-
tance s', can be {ound from the mir-
ror formula:

111
sr si f'

Therefore,
nf

^, -D, - 

-.

' n-l

For n > 1, the image will be real and
located below the surface of the lower
mirror (mirror 2). The image acts as

an object for the lower mirror with an
object distance

. n(n-Z\ .
sz=nl -sl- 'nit l.

Using the mirror formula a second
time, we locate the image formed by
the lower mirror:

. , n(n-z)
a, 

- 
+

"2-t n7 -3nal.
However, the conditions of the prob-
lem require that

s'z: nf'

This yields a quadratic equation in n
with the roots n = I andn : 3.

The solution n = 1 is the one actu-
ally used in the Optic Mirage. If we go

back and look at our mathematics for
this case, we find that the image pro-
duced by the upper mirror is located
at in{inity. Therefore, the rays form-
ing the image leave the upper mirror
parallel to each other, as shown infig-
ure 1. These parallel rays atefocused
by the lower mirror to form an image
at its focal point, which is located in
the hole in the upper mirror. Notice
the symmetry of the problem. Inter-
changing the image and the object
has no effect.

If we take a few liberties with in-
finities, we can use the formula for
the magnification of the image

-s'llf=-
s

to find the magnification at each
stage and then multiply them to-
gether to get the overall magnifica-
tion. For this case, we obtain m : -1,
indicating that the image is inverted.
Observation of the image shows that
this is correct.

The solution n: 3 is a surprise to
many students. The ray diagram for
this case is shown in figure 2. The
upper mirror forms a real image mid-
way between the mirrors that has a
magni{icatio n of -l I 2 . The lower mir-
ror then forms an image in the hole
with a magnification of -2. Therefore,
the overall magnification is +1 and
the image is erect. Notice once again
the symmetry of the problem. The
upper half of figure 2 is just a mirror
reflection of the lower half. This

Figure 2

must be the case for all solutions to
this problem.

Additional solutions can be
found by letting the light reflect
two, three, four, or more times from
each mirror. In each case/ symmetry
requires that the rays be parallel,
forming an image at infinity, or they
form an image midwaybetween the
mirrors. For more information
about these solutions/ we refer you
to the article by Andrzej Sieradzan
inThe Physics Teachu (November
1990, page 534). o
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IN YOUR HEAD

The Ualng ol hop

Wacky wordplay for the mathematrcally minded

by Sheldon Lee Glashow

ATHEMATICS IS A POWERFUL TOOL, A WAY
of thinking and a variety of high art, but there's
no such thing as alanguage of mathematics. No
formula says "dinner is served" or "a lion is

loose!" On the otherhand, themathematics of language
is serious stuff to linguists and can also be an amusing and
instructive form of wordplay. The fun began forty years

ago when I was an innocent freshman at Comell.

"BEBOPBOP?" asked a fellow nerd.
"Precisely what might you have in mind?" I responded

(perhaps more colloquially than this).
"It's a common English word in a substitution cipher,"

he expiained.
"NONSENSEI" said I in a trice-and so began the saga

of the game of bop and this tongue-in-cheek study of the
structure and spelling of words.

Human speech consists of a sequence
of sounds that phonetic languages tran-
scribe as a string of symbols chosen from

.$ a commonly agreed upon alphabet or
gJ syllabary. Grouped by spaces and punc-
f tuation marks, they form words and sen-

tences. Symbols vary in size and sub-
stance from language to language. For
example, Hebrew letters are consonants/
while Sanskrit signs signify syilables. En-
glish uses 2Slettersi other alphabets have
more or fewer letters:

Italian 2l
Hebrew 22
Korean 24

Russian 33

|apanese 46
Sanskrit 48

We don't need so many letters. The
book of life, as writ in our genes/ makes
do with four chemical signs. Computer
jocks and radio hams cart " say" anything
in a binary system (like the Morse code)
with just two symbols. Speech, however,
involves lots of different sounds. Pho-
netic tongues use many letters because
they try, with varying degrees of success,
to link each sound to its own sign. Alan-
guage with only a few letters would be
ponderous, aphonetic, anathema to our
poetic sensibility, and useless for the
game of bop.

Bop is not so much a contest as a
voyage of discovery in an utterly
deconstructed literary sea. It deals
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solely with the letter sequences of words and not at all
with how they sound or what they mean. We call an
arbitrary series of p letters a pword. Those found in
books are simply words. The properties of words and
pwords relevant to the game of bop are those left in-
tactby arbitrary permutations of the letters of the al-
phabet. Let me explain what I mean.

A substitution cipher is an easilybroken kind of code.
Every letter of a message is switched for another accord-
ing to a fixed rule. Identical (or different) letters of the
original become identical (or different) letters of the se-

cret script. Since English has over a million words, we
simplify our analysis of their letter sequences by defin-
ing two words to J:e bopwise equivalent if they're tumed
into one another by such a coding process, as in

bebopbop: nonsenset
mammal: pepperl
Harvard: warfare.

Humanists who are compelled to compose essays using
only equivalent words could scarce do worse than this:

Avast, idiot! Enemy ozone icing papal cache
again. Every ninth papu bible awash,

wherein each word is equivalentto BEBOP.
Our relation between pwords shares three vital prop-

erties with ordinary numerical equality. If. x, y, and z are
pwords, it's easy to see that

x: x (reflexivity),
x = yimplies 1, = x (symmetry),
x : y and y = z implies x = Z (transitivity).

These define what mathematicians call an equivalence
relation.It groups pwords into disjoint sets such that
members of the same set are equivalent to each other,
while those of different sets are not. We call each such set
of equivalent pwords a p-letter form, or pform.

Words of one letter, like l and a, are aIL of the same
form. All two-letter words are equivalent to me except
for oo,t which once signified the last letter of the Greek
alphabet (as you'll recall from "The Greek Alphabet" in
the March/April issue of Quantum). Onward and upward
to three-letter words, four of whose forms are e>rhibited in

See the eel, Pop!

The fifth and last 3-form is a tripied letter like ooo.
There's no such word in my dictionary. Indeed, I assert
that there is no English word of any length (excluding
arabic numberc) with a uiple letterl We declare this to be
an axiom andhereby exclude from considerationpwords and
forms involving three consecutive identical letters.2

Let N(p, zn) be the number of distinct pforms (subject

lAlso possibl e is ' ee, a colloquial contraction of ye.
2The German snow owl, or sneeeule, rarely seen in

Kaaawa (rhymes with "cut the power"), Hawal| proves that
my rule has exceptions.

to triple-letter exclusion) of pwords using m different let-
ters. Nis straightforward to work out for small values of
p and m. We've aheady done so for p = 2 and p = 3.
Table 1 shows Nlp, ml for p < 7.

Table 1: Values of N(p, m)for p <7

Every four-letter word belongs to one of twelve forms,
of which five have two distinct letters and one has four.
Any four-letter word withtfuee different letters belongs
to one of the six remainiag 4-forms. As their exemplars,
we introduce the "bop-forms" BBOP, BOPB, BOPO,
BOPP, OBOP and the "boop-{orm " BOOP.It's a cinch to
findwords equivalent to eachof these4-forms. The sentence

Baby ens that eels sell here

uses every one.
Before we hunker down to the study of bigger and bet-

ter words, here are some puzzles to ponder. If you find
them worth your effort, read on!

BOProblems
1. Find a four-letter word in each form with only two

distinct letters-that is, words ecluivalent to BOOB,
BOBB, BOBO, andBBOB. (I give up on BBOO.)

2.'V'/hat is the longest word you can find containing
precisely two different letters?

3. What is the longest word you can find that contains
no string of three distinct abutting letters?

4. Find a word equivalent to each of the following six-
teen pwords: BOPBOPB, BLOPBOP, PLOPBOP,
MBOPBOP, BOPABOPA, BOPABOP, BOPABOB,
BOPAPOB, MBOPABOPA, BOPSTOP, BOPBOX,
POPUPBOP, BOPANDBOP, BOOPPS, BOPEEP,
BOOBOOPrc.

5. Show that N(m + I, m) = mlm + lll2.
6. Show that Nlp + 2, 2l = Nb + l, 2l + N(p, 2l for all p > 2 .

7. Consider a word built from more than three differ-
ent letters. Let I be the length of its shortest consecutive
string containing four different letters. For example,
L(inane) = 5 and L(asinine) = 4. Find a word with the larg-
est r value You can' (Patjt-tl 

- - -
Focus on words using just three different letters. Most

3-letter and many 4-ietter words are like this, and you can
easily find familiar words in any chosen form. We won't

m=2 m=3 m=4 m=5 m:6
n:9 1

p:3 3 1

p=4 5 6 1

p= 5 B 22 10 1

p=6 13 69 61 15 1
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have such resounding success later on, when we deal with
larger words of this category.

We assign a uniquecanonicalform to everyword, how-
ever 1ong, that uses three distinct but never tripled letters.
A word is of bop form if its three distinct letters abut one
another somewhere in the word. Identification of the first
occurrence of that sequence asbop defines a substitution
code for the entire word and specifies its canonical form.

If the three distinct letters never abut, the word is of
boop form. The first occurrence of a string equivalent to
boop defines the code. Every pword made from three or
more letters contains a string equivalent to either bop
(whereupon it's of bop form) or boop (whereupon it's of
boop form, unless it also has a bop). A few examples may
clari{y these assignments. Bopless reeve is of boop form
BOOPO, while boopish testees is of bop form
BOPBOOP. Seems seems to have a boop but is of bop
f.orm P B B OP. Finally, murmur is equivalent to P B O P B O
and OPBOPB, but its form is BOPBOP.

We can't easily and elegantly classify words using more
letters because the shortest string containingfow differ-
ent letters can be equivalent to bopa, boopa, bopoppa,
bopooppopa, and so on adinfinitum. This is why we stick
to words using three letters.

Let's hunt for words corresponding to s-forms using
three letters. We know from the table above that N(5, 3)
= 22.Here are my offerings for all but one of the 18 bop
and 4 boop forms. Get ready! Here come the bops.

Table 2: Bop S{orms and their words

And now for the boops.

Table 3: Boop S-forms and their words

Cocao is an altemate spelling of socoa (along with ca-
cao and cocco). Annd,e is a French year and accented to
boot. Eette, says the Oxford English Dictionary, is an an-
tique form of eat.

Six-letter words begin to get out of hand. Of the sixty-
nine 6-forms using three letters, 58 are bop and 11 are
boop. After an inordinate waste of time-which would
have been far better spent seeking a Theory of Every-
thing-I managed a weak D. Table 4 constitutes my 54%
solution to the Great Bop Problem.

Some of the words in table 4 are oI dubious or distant
provenance. Amtaam is acronymic for Advanced
Medium-Range Air-to-Air Missile; caccia is Italian for
hmt; andada andllenen are forms of the Spanish verbs
for walk and fill. Englishmen once said gr egge and tenent
f.or aggravate and tenet in the good old days when easses
were earthworms. Sheesh is a variant of shish, as in
shish kabob ; Sashas are Russian Alexanders familiarly
known; kokakos fly the New Zealand skies; elevde is
raised Frenchwise. Emeses is when several people vomit;
atefire is a sma11 French htll; anatta is a red-orange dye.
Unlucky eelers retum home eeless (not to say eelless) to eette
oofuoo, an oddly spelled (if no better tasting) variery of okra.

Let's not neglect the boops. Many gaps remain to be
filled by Quantum wordsmiths.

Table 5: Boop G{orms and their words

Table 4. Bop G{orms and their words

BBOPBP = ? BOPOBO = r€ver€ OBOPBP = sestet

OBOPOP = emeses

BOPPBP : easses

BOPBBO = amraam BOPPOO : settee

BOPBOO = testee OBBOPB: teethe

BOPBOP = murmur

OBBOPP = appall

BOPBPP=? OBOPBB=?

BOPOBP = natant OBOPOB: kokako

BBOPPB=? BOPOPB=tenent OBOPPB=?

BOPPOP = powwow PBBOPP = ?

BBOPB = eerie BOPBP = tests OBOPB = cocao

BBOPO = llama BOPOB = kayak OBOPO = rarer

BBOPP: ? BOPOO = melee OBOPP = arnass

BOBOP = cocoa BOPOP = queue OBBOP = teeth

BOPBB = fluff BOPPB = sel1s OOBOP: eeled

BOPBO = onion BOPPO = freer PBBOP = hooch

BOOPOP = seeded OBOOPO = sasses

OUAlllIU]Il/Illl YOUR IIIAO 2g

BOOPP = ann6e BOOPO = error 
]

BOBOPO =papaya BOPPBO = sheesh OOBOPO = ?

BOOPPB= ? OBOOPP:tattoo

BOOPOO = assess OBBOOP = ?



Table 6: Some big bops and boops

BBOPBBO: eel-weel BOPOBBOB = refefler

BOBBOOP = coccoon BOPOBOO = referee

BOBBOPB=sissies I SOpOppOP=benennen

BOBBOPOB : pepperer BOPPBOPP = greegree

BOBOPBOBO : tete-a-tete BOPPOBO = mottomo

BOBOPOB = rerefer BOPPOOB = settees

BOBOPPOB = susurrus BOPPOOP = lessees

BOOBOOP = muumuus BOPPOPB = ginning

BOOBOPOP = teeterer OBBOPOB = Essenes

BOOPOOPO = assesses OBBOPPO = efferre

BOPBBOO = feo{{ee OBBOPPOBO : attaccata

BOPBBOP=checch6 I OBOOBOP=nennend

BOPBOBO = tastata OBOPBPO = sestets

BOPBOOP = testees OOBBOPP = eelless

BOPBOPB = entente PBBOPBB = essless

BOPBOPBOP = cha-cha-cha PBBOPBBO = pooh-pooh

BOPBOPO=Barbara I pOOSOppOP=seeresses

Who would dare make a systematic study of larger
words made of three letters? Most of the many forms
are wordless/ except perhaps in Polynesian tongues.
Table 6 is my hard-won gathering of big bop words
with a few boops thrown in for zest. A growing inter-
national contingent includes the French tAte-d-tAte and
ent ent e t |apanes e m otto m o ( much ), and b othr n enn en d
andbenennenfrom the German nennen (name). The
cha-cha-cha is a Spanish-Caribbean dance. To Italians,
attaccata is devoted, tastata is a feel, and checche is
whatever.

Efferre means to emit, coccoon is a documented vari-
ant spelling, while Barbara and her far from essless
Essenes are proper. Rerefer and teeterer are weak, but
better than unlisted rercfercr, rcreferee and lesseeless.
Some African charms are greegrees just as eel-weels are
misspelt wheels with which ingenious eelers avert
eellessness' 

********
My essay is done, but not the game of bop. Many won-

derful words remain to be found. Someone more skillful
than I may figure out a general formula for N. Readers
{indingbiggerbop words orbetterbop games should send
them to me c/o Quantum.
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BRAINTEASERS

Jusl lol' the lun ol il!

861
Zoo at home. Mademoiselle Dubois loves
pets. A11 her pets but two are dogs, all but
two are cats, and all but two are parrots.
Those that are not dogs, cats/ or parrots
are cockroaches. She has more than two
pets. How many pets of each kind does
she own? (A. Rudinskaya)

862
To make a parallelogram. A convex quadrilateral is
cut along a diagonal, a congruent quadrilateral is cut
along the other diagonal. Put the four pieces together
to make a parallelogram. (V. Proizvolov)

B6s
Cubes in water. You have two small cube-shaped
plastic blocks of the same dimensions. The first
block, floating in water, is submerged 2 cm; the
second block is submerged only I cm. How deep will
the lower block be submerged if the first block is
placed on the second? What about the reverse (the
second block is placed on the first)? (N. Dolbilin)

864
Monochromatic vertices. A11 the points of a circle are
arbitrarily painted in two colors. Prove there is an
isosceles triangle inscribed in the circle whose
vertices are all the same color. (I. Tonov [Bulgaria])

865
Squarcs in a rcw. Ar-
range the integers 1

through 15 in a row so
that the sum of any two
adjacent integers is a
perfect square. How
many ways can this be
done? (B. Recam6n

ISwaziland])

ANSWERS, HINTS &
SOLUTIONS ON PAGE 60
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The$ul'yol adeuldrop

"l dream of Jeanie with the light brown hair,
Floating, like a vapor, on the soft summer air."

-Stephen 
Foster

by A. A. Abrikosov

E COME ACROSS THE
processes of evaporation and
condensation literally at
every step we take. And

though most of us probably think
right away of a boiling kettle, the
most important example of these
processes is the water cycle in
nature: without it life on Earth
would be, at the very least, different.

The heat of the Sun evaporates
moisture at the Earth's surface, and
then diffusion and convection cur-
rents carry the water vapor to the
upper layers of the atmosphere. As
the vapor travels upward, the air tem-
perature decreases, the vapor con-
denses, and clouds are formed. Drops
inside the clouds coalesce and gro:w,

which leads to rain-and that com-
pletes the cycle.

We'll be looking at one of the most
important links in the chain: the for-
mation of drops in cooling water va-
por. But first we need to recall one
important notion.

You know that saturated vapor is
the vapor that is in equilibrium with
the liquid phase. There is a definite
value of this saturated vapor pressure
p'(Tl for every temperature 7 (fig. 1).

The line p'(T) divides the p-T plane
into regions corresponding to the liq-
uid and gaseous states.

The equilibrium of liquid and gas

provides an example of dynamic
equilibrium. Molecules are con-
stantly exchanged between the two
phases at the liquid-vapor interface-

it's as if the processes of evaporation
and condensation ate running
counter to each other. If the vapor is
saturated, the flow of particles is the
same in both directions and the
amount of the substance in each
phase remains constant.

So the concentration of saturated
vapor is determined by the rate of
evaporation per unit area of the liq-
uid-that is, the saturated vapor den-
sity is a measure of the volatiJity of
the substance.

"Tglncannihalism" alnong droN: its

qualitalil,s asflect

Now we can move on to the main
topic of this article: the influence of
surface shape on the ecluilibrium of
the liquid and gas phases. Surface de-

formation, as it turns out, leads to a
change in the saturated vapor pres-

sure. Let's look at an example.
Imagine that there are two practi-

cally spherical droplets of the same

Figure 1

Phase diagram for the liquid-gas
system.

size under a bell jar. We already know
that the apparent invariability of this
system is deceptive. hr reality there is
vapor under the bell jar, and mol-
ecules, after leaving one drop, can
easily reach the other. Is dynamic
equilibrium stable in this case?

First, 1et's bring energy consider-
ations to bear on the situation. The
free surface of the drop has the energy

E.(r):oS=4rrto,

where o is the coefficient of surface
tension and S : hr,P rsthe surface area

for a sphere with radius r. It's easy to
show that the minimum energy
would be that of a single drop with
doubied mass, and in our case the to-

tal surface area is V2 times larger.
Theoretically this could mean that

the equilibrium is unstable. But is
there a mechanism that could lead to
a directed transfer of the substance if,
because of fluctuation, the symmetry
is broken and the droplets become
even slightly different?

Yes, there is such a mechanism.
We're going to prove that the rate of
evaporation depends on the shape of
the evaporating surface. On a highly
curved surface, which is the case with
a small drop, this process is more in-
tensive. The counterflow of mol-
ecules (condensation) is in tum deter-
mined only by the vapor density

At right: "Falling from the leaf, the
dewdrop cries out in terror.'/
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under the bell jar andis the same for
both drops. I{ the radii of the drops are

different, the drops cannot simulta-
neously be in equilibrium with the
vapor. The larger drop will be more
stable and willbe able to gradually
devour the smaller one, even with-
out touching it. Such long-distance
feasting might be called "telecan-
nibalism."

lUlathemathal hasis: l(eluin's lol'mula

The law of conservation of energy
permits us to calculate a coffection to
the vapor pressure necessitated by
the surface deformation. Let's ana-
lyze the machine depicted in figure 2.

It is a "perpetual-motion machine,"
and its only shortcoming (so the in-
ventor thought) is its 1ow power.

The Parisian Academy of Sciences
has rejected such devices for more
than two centuries (since 1775). The
law of conservation of energy guaran-
tees that they won't work. But some-
times it's useful to find where the
inventor made an error-the concrete
physical principle that wasn't taken
into account. Methodologically this
resembles an indirect proof, which is
common in mathematics.

The general idea of this perpetual-
motion machine is the following. A
capillary tube made of a nonwettable
material is immersed in a container
partially filled with a volatile liquid.
The level of the liquid in the capillary
tube will be lower than in the con-
tainer by

Figure 2
P r o p o s e d p erp etu al- motion m achin e.

,20
h-

t
Pgr

where p, is the density of the liquid, r
is the rafius of the capillary tube, and
g is the acceleration due to gravity.
The vapor above the surface of the
liquid has the pressure p'(7), while
over the meniscus in the capillary
tube its pressure will be greater by

Lp = p"gh,

where p" is the saturated vapor den-
sity (according to the Clausius-
Clapelron-Mendeleyev equation po =
p"(TlMlRT, where M is the molar
mass of the liquid and R is the univer-
sal gas constant). According to the
inventor's conception, the excess va-
por will cause condensation in the
capillary tube, and so the liquid will
begin to circulate in the system.

This line of thought has only one
weak spot: the inventor didn't take
into account the effect mentioned in
the previous section. Let's compare
molecules near the surface of the liq-
uid in the vessel and in the capillary
tube (fig. 3). It's evident that in case
(al any molecule has more neighbors,
which are linked with it by intermo-
lecular forces. And this means that in
case (b) it is easier for a molecule to
leave the liquid, the rate of evapora-
tion is greater/ and in order to com-
pensate for it, a gteater counterflow of
particles is necessary.

The law of conservation of energy
asserts that there is no directed circu-
lation in the system. We come to the
conclusion that the equilibrium pres-
sure of the vapor above the convex
surface of the liquid is

p^(r)= p'(T)+ np

b

Figure 3
A molecule at a flat surface (a) is
linkedwith more molecules than at a
convex suiace (b),

por pressure depends not only on the
temperature but also on the curvature
of the surface.

Now let's suppose that the in-
terface is concave. After placing
a wettable capillary tube in ourper-
petual-motion machinq we immedi-
ately obtain the result in which the
added element {p has the opposite sign:

zo p"(T)
p.(r) = p. (r) _;ri-

If the radii of curvature are not too
small, our equations are equivalent to
the more exact equation

26M

P(r) = P" (T)e r QtRr 
t

obtained by Lord Kelvin in 1871. The
radius of curvature is taken with a

"+" sign for a convex surface and with
a"-" signfor a concave surface.

For the given liquid we can obtain
the characteristicvalue of the radius of
curvature at which a correction to the
pressure becomes comparable to the va-
por pressure above a flat surface:

* tT\_ 2o po _ZoM _Z:yL,o\, / - p"(T) p, - p,RT RT

(here V, is the molar volume of the
liquid phase). The magnitude of ro
depends on temperature only, since o
and V rare functions of temperature.

=p.(r)-?4:

z1A\

(1) ThElir$tlllllllsrical sslilllat8$

(Notice that gravitational accelera-
tion g has dropped out of the final
answer/ although it was present in
intermediate calculations. )

Analysis of the perpetual-motion
machine was the shortest path to our
goal. But the formula obtained is univer-
sal in nature: for a given liqui{ the va-

Let's discuss the magnitude of
the effect discovered and determine
whether it plays any noticeable role
in real life. The values of o, p,, po, po,

and ro for water at different tempera-
tures are given in the table on the
next page. At first it seems that the
radius zo is discouragingly small-it
is simply unobservable (it's less
than the wavelength of visible light

30 stPItiltBtR/0cI0BER 1 gs2



Table

by afactor of several hundred). But
a ball of this size contains

N(,0)=t-;o,t

- i02 molecules of water

(lf" = 0.0 ' 1023mole-r is Avogadro's
number and p : 0.018 kg is the mo-
lar mass of water). We can't help re-
joicing at this result, and here's why.

While deriving the basic formula,
we implicitly assumed that the sys-
tem was macroscopic. We can talk
about surface tension and vapor pres-
sure only if the deformed portion o{
the surface contains a sufficient num-
ber of molecules. The value of N(ro)
obtained proves that it is true for
practically allr > ro.

But where could the properties of
deformed menisci be revealed? It's
certainly pointless to try to manufac-
fixe a single capillary tube of radius
zo. But we can manage here with less
exotic means.

First of all, it isn't necessary to
have a proper capTllary net/ so we can
try using a porous substance. Silica
gel-a wettable material consisting of
sintered gtanules of SiOr-can sewe
as an example. The size of the granuies
canvaryfrom 2.10-7 to 10{cm, andthe
spaces between them are even

Figure 4
Silica gel (SiO,) collects moisture in
the spaces between granules.

abo,re this sub-
stance must de-

crease significantly. So by means of
silica gel one can create a dry atmo-
sphere for storing hygroscopic sub-
stances, sa, or to protect metals ftom
corrosion. Silica gel can also be used
to remove gases and other impurities
from the air in industrial plants as
well as in the home.

I[e l'eal imp0l'tance d t[e imauiltflry

$urlace
We meet another example of the

influence of the interface on the prop-
erties of a liquid-vapor system in a
case where this interface is not yet
f ormed-in supersaturated vapor.

If a saturated vapor is in contact
with the liquid, cooling or compres-
sion causes condensation. The states
of this system are described by the
points p"(Tl in the phase diagram
(fig. 1 ). But if the iiquidphase is absent,
we can supercaturate vapor by isother-
mically compressing it or cooling it in
a constantvolume. Formula (1)h"lp. us
understand what this means.

Vapor whose pressure exceeds
p"(T) will be saturated with respect to
drops of radius

-./ --\ 2o po
TtPt=---------h 

-
-\r/ p-n"(T)p,

= 
p'(T)

P- o'1r)ro@\

Such drops are called critical em-
bryos. (You'll recall that smaller
drops evaporate readily.)

The number of molecules inside
the embryo is

( ^o \3
N(r)=l _=I ru(r,).

\p-p".)

If the degree of supersaturation is
l)Y"-that is, (p - p'llpo = 0.1, then
N(r) is of the order of 105 molecules.

In the gas phase the same number of
molecules occupies a volume several
thousands of times larger than in the
liquid phase. You see that the {orma-
tion of a crttical embryo is rather
problematic, since the vapor mol-
ecules are not likely to suddenly
want to " crowd together." So super-
saturated vapor can stay in its ener-
getically unprofitable, so-called
metastable state for a long time.

Real condensation/ however, pro-
ceeds a bit differently. Let's try to es-
timate the characteristic size of the
droplets that lead to fog and dew. Sup-
pose that the humidity the previous
evening was 100%-that is, the par-
tial pressure of vapor in the air was
p'(7"1, where I is the evening tem-
perature. By morning the tempera-
ture had decreased by AT degrees. At
a temperature T^: T.- LT, vapor at a
pressure ofp'(?]) is supersaturated, since
the pressure of saturated vapor decreases
with temperature andp"([) ,p'(4).

To determine the size of the em-
bryo under these conditions, we need
to know how saturated vapor pres-
sure depends on temperature. This is
determined by the Clapeyron-
Clausius equation:

dp'(r) q
dT = 

T(v" -v)'
Here q is the molar latent heat of
evaporation of the given liquid, V, and
V, are molar volumes of the liquid
and the saturated vapor.

This means that afterthe decreasein
temperature of a4 the pressure was
greater than the equilibrium pressureby

LP =---A-LT,' T"IV, -Vt)

and the radius of the critical embryo is

For an initial temperatue of.293Klo:
72.5 . l}-s Ilm', q = 44.0. 1C)3 |/mole)
with an ovemight temperatue decrease
of 5 degrees, we get r = 3rr.

Now we understand that the pwely
fluctuational formation of an embryo
containingN=6.|G molecules is un-

293 72.5 1.00

373 58.8 0.96

r7.3 2.33

598 101.3

smaller-of the
orderof ro (fig.4).If
water yapor can
penetrate the
spaces between
granules, the va-
por pressure

o. 105

fillr:,'l

273

1.1

0.7

2o--( r \r=-v.l l.q 'IA7l
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lil<e1y. So we come to the conclusion
that there must be a mechanism that
f acilitates condensation.

Th ancimlSmeks tsach u$

)ason, the fabled hero of the story
of the Golden Fleece, sowed the field
of Ares with dragon teeth, in accor-
dance with an order from r€etes/ king
of Colchis. (Ares was the ancient
Greek god of war, better known by
his Roman name Mars.)The treach-
erous plan of zEetes came to light as

soon as the first shoots appeared: the
seeds sprouted armed warriors, ready
for battle with anyone they saw. |a-
son was saved by a ruse suggested to
him by the sorceress Medea. A stone
thrown into the center of the field
attracted the attention of the war-
riors, and they tumed their weapons
against one another.

This is actually apretty good pic-
ture of the collapse of the metastable
phase. Any real medium contains
some inhomogeneities. The labora-
tory container may have defects or
impurities on the walls; the atmo-
sphere contains microscopic specks
of dust. During cooling condensation
begins around these centers, which
play the part of embryos and stimu-
late the transition to the stable phase.

So metastable states are rarely ob-
sewed in nature. Painstaking prepa-

ration is needed to investigate them
in the laboratory, because the further
the system is from equilibrium, the
smaller the inhomogeneities and de-

fects that become troublesome.

S[pping hacl(

Now let's try to get away from the
real-lifebut too concrete example and
generaltze our results. They tum out
to bear a relation not only to the gas-
liquid transition we discussed but to
practically all first-order phase tran-

l "First-otder" phase transitions are
those from one phase state to another in
which such characteristics of the
substance as density or concentration
change abruptly; a definite amount o{
heat per unit mass is liberated or absorbed
during this process. Examples o{ such
transitions are evaporation and
condensatioq melting and solidification,
sublimation and condensation into the
solid phase, and so on.

sitions.t lnfact, we've been talking
about effects caused by additional
energy at the phase interface. For a

system only slightiy out of equilib-
rium, the phase transition may start
only near alien defects, and the criti-
cal size of the embryo is inversely
proportional to the deviation from
ecluilibrium. That's why there isn't a
speck of dust in the air on a dewy sum-
mer moming and in winter even the
smallest twigs are decorated with frost.

This sensitivity of metastable
states to the presence of embryos
found a practical application. For a
long time elementary particles were
detected by means of the Wilson
cloud chamber, which contained the
supercooled vapor of some liquid as

its working medium. When a charged
particle passed through the chamber,
it caused condensation, which made
its track visible. Now the Wilson
cloud chamber has been replaced by
more sensitive bubble chambers. In
bubble chambers a superheated liquid
(for instance, liquid hydrogen), which is
a densermedium, is usedfor detection.
Theparticle tracks reveal themselves as

chains of bubbles (the hydrogen boils).
Another example is the cultiva-

tion of high-quality monocrystals. A
small seed monocrystal is immersed
in a near-equilibrium melt,2 where it
becomes the only center of crystalli-
zation. (If there is no seed, the melt
could be cooled down to T= 0.57.",,r*
be{ore cry stallization starts. ) But,
alas, you pay for high quality with
long growth times. It takes several
weeks or even months to grow alatge
monocrystal.

A cnnclusion, hul not a linale

Before typing the final period in this
article,I should clear up one point. Up
to now we have discussed how drop for-
mation begins. But when does it end?

Why are all dewdrops so much alike in
the moming? What stops their growth?

We made sure that the larger the radius
of a drop becomes, the more greedily it
"drinks." So there must be some addi-
tional factor that determines the maxi-
mum size.

2The nearer to equilibrium the melt
is, the better the crystals obtained and
the longer they will grow.

You needn't go far afield for the
answer. Up to now, we haven't taken
into account the in{luence of gravity
on a dewdrop. But the flattened form
of large drops suggests that this isn't
always permissible.

Let's try to estimate how long we
can neglect the gravitational energy.
For a spherical drop the gravitational
energy E* is

L
Er = lrusp9r

and, since it is proportional to /, it
must inevitably exceed the surface
energy E" = 4nflo as r increases.

To find the limiting value of the
radius, let's equate the energy of a
dewdrop to the total energy of two
"half-drops" into which it could
separate:

L
E(l)=4szo+lntaP*

(r I {L isthe radius of the half-drop). So

, = @-=0.5 cm..**_! 
pg

At first glance it seems to be too large
for a dewdrop. But we haven't taken
all the factors into account, of course.
In particular, the size of a drop de-
pends on the wettability of the sur-
face where it forms. Besides, very
large drops simply can't stay on the
leaves and blades of grass-they iust
slide off. But in its order of magnitude
the estimate we made is quite credible.

Here we can intemrpt our tale. Not
because it's over-it's only the story of
one dewdrop that's over. But evenwith
this droplet we see that no step in sci-
ence can ever be the final one.

After each answer/ the question
arises: what else?

Beautiful dreamer, wakeunto me,
Stailight and dewdrop arewaiting

for thee.

-stephen 
Foster Q

,lo"(*l'o.1nf *.J"*lL \i2/ 3 \i_, .l
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MATH
INVESTIGATIONS

Pel'iudic lunctions in hidinU

Can you root them out?

by George Berzsenyi

f(x + tl * f(* - r) = ^[S/("), 
then

/ is periodic.
After solving these problems, the

reader should also gain some insights
into the creationof problems andwon-
der what other numbers beside JB
might lead to periodic behavior. I have
done some such investigations prior
to posing this problem in the
USAMTS, and my colleague Dr. |ohn
Rickert (another former student-par-
ticipant in the "Competition Cor-
ner" ever so long ago) did a lot more.

this curiosityl My next chailenge to
my readers is to fo11ow his example:
Find all constants kfor which the dif-
ference equation flx + 1) + flx - ll =
kflx) implies periodic behavior.

In closing, I wish to commend this
bright young man and his teacher for
their serious and thoughtful response.
I would urge my readers to further
their discoveries and find other differ-
ence equations whose solutions are
necessarily periodic. Such investiga-
tions may even lead to separate pub-

HE FOLLOWING PROBLEM
appeared in my "Competition
Comer" in the December 1990
issue of the now defunct Math-

ematics Student journal of the Na-
tional Council of Teachers of Math-
ematics. It is offered here as a first
challenge to my readers: Suppose that
the function /satisfies the functional
equation fla, b) = fla + b, b - a) for all
real numbers a and b, and define gby
glxl = fl4",0). Show that g is periodic.

This problem was originally sub-
mitted by one of my former contes-
tants, Martin Gelfand, who was a
high school student at that time.
Since then, Andrew went on to re-
ceive a Ph.D. in physics (Cornell,
l9B9), andhe is presently on the fac-
ulty of the University of Illinois.
Andrew's problem was too good to be
discarded after one use/ so I went on
to pose the following problem in the
most recent round of the USA Math-
ematical Talent Search (USAMTS,
featured via Consortiuml. It is offered
here as our second challenge: Ptove
that if /is a nonconstant real-valued
function such that for all real x,

The purpose of this column is to direct
the attention o{ Quantum's readers to
interesting problems in the literature
that deserve to be generalized ar,d
could lead to independent research
and/or science projects in mathemat-
ics. Students who succeed in unravel-
ing the phenomena presented are en-
couraged to communicate their results
to the author either firectly or through
Quantum, which will distribute
among them valuable book prizes ar,df
or free subscriptions.

But I was happiest for extensions com-
municated to meby the teacherof a stu-
dent in less favorable circumstances.
This student attends a juvenile court
school in a major city in the southwest-
em US, doing mathematics at a level
several grades below others his age in
pubJic or private schools. Nevertheless,
after solving the original problem, he
has gone on (widr drehelp of his teacher)
to discover the general pattem behind

lications. Recently, one of my read-
ers, Michael Filaset4 was led to some
wonderful results based on my "Tri-
angles of Differences" (see page 30 in
the May/|une issue of Quantumli
while another regular reader, Brian
Platt, obtained similarly publishable
results related to my "Restricted Dis-
tances// (see page 31 of the lanuaryl
Februaryissue).Ihope that many oth-
ers will follow their examples. CI
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GETTING TO KNOW

IGURE 1 ILLUSTRATES THE
dramatic changes suffered by a

plain chessboard when it is in-
verted in a circle. Although the

pitiless transformation of inversion
tums the inside of the circle out (and

the outside in) and bends straight
lines into circles, somehow it con-
trives to preserve some fundamental
features of figures-for instance, the

lnuel'$iolt

A most useful kind of transformation

by Vladimir Dubrovsky

magnitudes of angles between
cufv€S; and we can usually recognize
an object in its inverse-the image
under inversion. Owing to its remark-
able properties, inversion often sim-
plifies the solutions of rather difficult
geometrical problems (like math
challenge M53). And Quantumhas
aLready presented two of its numer-
ous applications: in "Constructions

with Compass Alone" (May 1990),
Dmitry Fuchs showed how to per-
form an arbitrary compass-and-ruler
geometric construction without a

ruler; andYury Solovyov, in "Making
the Crooked Straight" (November/
December 1990), used inversion to
explain the work of some hinge
mechanisms that convert circular
motion into rectilinear. The reason I
invite you to revisit this wonderful
transformation now is that it's indis-
pensable for understanding the so-

called Poincar6 model of non-Euclid-
ean geometry/ which wili be
discussed in detail in the next issue
ol Quantum (see also the article by
Vladi-mir Boltyansky on p. 18).

lnuentin0 poinls

By definition, the inverse of a point
X in a circle a with center O andra-
dius R is the point X on the ruy OX
such that

ox.ox=R2.

The transformation.i, (or IoR) assign-
ing to every point its inverse is called
inversion; ro, O, and R are the circle,
centert andrudius of inversion.

We see at once that inversion
keeps all the points of ct in their
places; all the other points except the
center O can be paired so that one
point of each pair lies inside ro and the
other outside, and either of them is
the other's inverse.

To visualize better what hap-
pens to the plane when it is in-
verted, note that the nearer aFigure 1
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point is to the center, the further
away its inverse is. As a point ap-
proaches the center, its inverse re-
cedes to infinity. It is therefore rea-
sonable-and convenient-to add to
the plane a special idealpoint at in-
finity P_ that will serve as the in-
verse of the inversion center O. (The
inverse of { is O.)

In a coordinate system whose ori-
gin is at the center of inversion IoR,
the inverse of point (x, y) is given by
the formula

,\(Rr*Rzv)
\x',Y') =[", ** ,;+F | (1]

Indeed, the coordinates (/, 5/l arepro-
portional to (x, yl with a positive fac-
tor of. R2ll* + t'\, so points lx, yl and
V, y'l lie on the same ray from the
origin. A little algebra shows that the
product of their distances from the
origin, ,fxn +yT ."[x'+y, , equals
R2. A geometric construction of the
inverse X of a point X outside ro is il-
lustrated in figure 2: we draw a tan-
ger:rt XA to rrr and drop the perpen-
dicular AX' from A to OX. This
construction is easily reversed to find
X given X' inside ro. Another con-

A

Figure 3
Construction of the inverse X of point X
in cfucle awith compass alone. Druw a
cfucle tfuough O centered at. X and two
more cfucles tfuough O centered at the
points A and B wherc thefbst ctucle
meets @. X is the second point of
intersection of the last two cfucles.

struction, with compass alone, is
shown in figure 3: it's even simpler,
but it only works with points X such
that the circle with radius XO cen-
tered at X intersects o (the compass-
alone construction for the other
case-OX < R l2-canbefound in the
aforementioned article by Fuchs).

Exercises
1. Prove that point X is indeed the

inverse o{ X in ro (a} in figore 2 and (b) in
fisure 3.

2. Prove that two successive inver-
sions with the same center O and radii R,
and R, result in one dilation of the plane
relative to center Oby afactor otlRrlRr),.

lnuel'tin0 circle$
One of the most remarkable and use-

fu1 properties of inversion can be con-
cisely stated as follows: the inverse of a
ctcle is a circle. The term " citcle" in
this short formulation must be under-
stood in the generalized sense to include
straight lines, which are thought of as

"circles" that pass through the pornt at
infinity P- *d have an inJinite radius.
Since { is the inverse
of the center of inver-
sion, we can make the
following statement:
the inverse of a line or
a circle through the
center of inversion is a
Iine, andtheinverceof
any other line or circle

is a ("finite") circle.
I'11 give a proof using coordinates

that is simple, comprehensive, and
rather short, though it lacks the
beauty of the purely geometric ap-
proach.

Consider a circle with center C
and radius z. Let the origin of the co-
ordinates be at the center O of inver-
sion, and let the x-axis pass through
C, so that C has the coordinates (d, 0 )

ld = OC) see figure 4). To write an
equation for the locus described by
the inverse Q(x, yl of a point P fiac-
ing the given circle, notice that P is
the inverse of Q, so the coordinates
(d, )/l ol P are given by formula (1).

On the other hand, the equation CP
= f of. the given circle yields

(d-dl'+y'z=f,

or, after plugging in formula (l),

( Rr, ,)' ( Rru )'
l--dl +l- ' t -!/
[r'*y' " ) [*'* y' )

1-/l { -.{,'

=C'
-U
Ct)

o
o
fo
l
Cair

Figure 2

Figure 4
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After routine juggling of variables and
coefficients, we arrive at the equation

W -Pl(* + fl -ZRtdx+ Ra = 0. (21

The value p = d' - rz = OCz - 12 is
called tlae power of point O with re-
spect to the circle (with center C and
radius r). If O is outside the circle, the
power p equals the square of the
length of a tangent OTfrom O to the
circle (consider the right triangle
TOC infigure 4); see also exercise 3.

In the case of a circle passing
through O, the power p (of O with
respect to the circle) ecluals 0, so equa-
tion (2) takes the form

R2^' 2d

and defines a straight line perpen-
dicular to the x-axis-that is, to line
oc (fig. s).

If O is not on the circle, we can
divide equation (2lbv p = & - P + 0
and, after completing the square, get
the equation

( p.rd\' ^ R4dz R4 Rar2
I ^-- I T y
t p) p2 p p''

or

(x-kd)' +yz :(kr)z, k=R' .,p

This is the equation of the circle with
center (l<d, 0) and radius lklr. So the in-
verse of a cfucle not passingtfuougfi the
center O of inv er sion coincides with the
dilation of this circleby a factor of k =

R2 lp rclative to the center O. (But notice
that separate points of a circle are

Figure 5
A cfucle tfuougfi the center of invercion
that is invefied into a line. A dfuect
geometric proof of this fact followsftom
the similarity of nghttriangJes OAP and
OQB. (Complete this goof on yow own. )

mapped differently by an inversion and
the corresponding dilation-for in-
stance/ in figure 4 the inverse of P is

Q, while the dilation takes Pinto Q,.
A1so, the inverse of the circle's center
never coincides with the center of the
circle's inverse.)

All that remains is to notice that
any line not through O in a suitable
coordinate system can be represented
in the form x = R'ld and therefore is
inverted into some circle through O;
and any line through O is obviously
self-inverse. This completes the proof
of the statement at the beginning of
this section.

Exercises
3. An arbitrary line through a given

point P cuts a given circle ro in points A
and B. Prove that the product PA. PB
does not depend on the line and equals
the power of P with respect to co if P lies
outside the circle, and the negative of this
power if P lies inside the circle. Using this
statement and exercise 2, give another
proo{ that circles are inverted into circles.

4. Find the radius of circle ot in figure
6 given the side length a of the square
ABCD (AEB is a semicircle, arc AEC is
centered at D). (Hint: invert the figure in
a circle with center A and radius AB.)

Let's look more closely at the
circles inverted onto themselves. Of
course/ the circle of inversion ro is
self-inverse-all its points stay fixed;
and this is the only self-inverse circle
with center O. In the general case,

using the fact that the inversion of
a circle can be replaced by its dila-
tion by a factor of k = R2f p, we de-
duce that a circle rrl, with center
other than O is self-inverse if and
only if the respective factork is eclual
to l, or p = & - ? : R2. Geometrrcally,

DC

this means that point O lies outside
circle ro, (d , rl, and a taflgeflt OT
drawn from O to rrr, is a radius of or

(because p: OP-see figure 7). The
tangents to co and or at their point of
intersection T (TC and TO n figure
7) are perpendicular; such circles are
called orthogonal to each other.
Thus, a ctucle distinct frcm a is self-
tnverce if and only if it is orthogonal to
ol. (By the way, this is true for lines-
"circles of infinite radius"-as well;
lines througfu O are orthogonal to ro.)

Now we cdn describe inversion in
terms of orthogonal circles: point Q
is the inverse of P in a if any ctucle
through P and Q is orthogonal to a.
(The inverse of such a circle will
egain pass through P and Q and, in ad-

dition, intersect o at the same points
as the original circle, which stay
fixed.) Notice that point P here can be
the point at infinity; then Q is the
center of ro, and the circles through P
and Q tum out to be straight lines-
extended diameters of ro, which,
needless to say, are orthogonal to ro.

Inversion in a circle and reflection in
a line thus share a common property.
If points P and Q are images of each
other (with respect to either sort of
transformation), then any circle
through P and Q is orthogonal to the
circle of inversion or line of reflec-
tion. For this reason, inversion is
sometimes called "reflection in a
citcle," and two points inverse to
each other in some circle are said to
be "symmetric about this circle."

Exercise
5. Given points A and B and circles ot,

and {D, construct a circle co {a) through A
and B orthogonal to ro,; (b) through A or-
thogonal to or, and r,rr; {c) orthogonal to ro,

andinvertingA into B.

A

Figure 6 Figure 7
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AB,C

Figure B

As an example of how inversion is
applied to solving geometric prob-
lems, let's express the distance dbe-
tween the centerc O and I of the cir-
cumcircle and incfucle of a uiangle
ABC, given their respective radii R
and r.

Let A' B' C rbe the points of con-
tact of the incircle with the sides of
the given triangle (fig. 8). Comparing
triangle IC rA wit}i, triangle OAX in
figure 2, we see that the inverse of
vertex A in the incircle is the mid-
point A'of segment B,C,; similarly,
the inverses of B and C are the mid-
points of C rA, and ArB' It follows
that the circumcircle of triarrgle ABC
is inverted into the circumcircle of
A'B'C'. Since triangle A'B'C' is half as
big as triangle ArBrC, (the sides of the
former are the midlines of the latter),
the circumradius of A?'C'is half the
circumradius of ArB rC r-that is, half
the inradius of. ABC, or rfZ. On the
other hand, by the formulas above
for the inverse of a circle, the
circumradius of A'B'C' ecluals the
circumradius of ABC times 12f lpl,
wherep - & - R2 < 0 is the power of
the center of inversion l with re-
spect to the circumcircle of ABC.
So we arrive at the eq,latiorL rfz =
R . *l(R2 - d'1, yielding the fol-
lowing formula:

* = Rz -2Rr,

one of the numerous formulas bear-
ing the name of the great Leonhard
Euler.

lnuel'ling altules

Consider a circle o, a point P on it,
their respective inverses o' and P',
and line 1 = OP through the center of
inversion O (fig. 9). It appears from

the figure that the angle between rrl

and 1 at P-that is, between the tan-
gent to ro to P and J-is equal to the
angle between rrl' and I at P. And this
is easy to prove: both these angles are
equal to the angie between a and I at
their second point of intersection Q
(the angle at P is taken into the angle
at Q under the reflection in the diam-
eter of ro perpendicular to 1, and the
angle at Q is taken into the angle at P
under the dilation relative to O taking
ro into ro', which always exists).

Now consider the angle between
any two circles (that is, between their
tangents) at one of their points of in-
tersection P. Any such angle can be
represented as the sum (or difference)
of the angles between line 1= OP and
the circles (fig. t0). These angles are
equal to the corresponding angles be-
tweenl and the inverses of the circles,
so the angle between our circles
equals the angle between their in-
verses. In other words, invercion pte-
serves angles between circles.

Now recall that if two
points P and P'are sym-
metric about a circle o,
then any circle through
them is orthogonal to ot
(fig. 11a). Inverting the
entire configuration in an
xbitrary circle, we obtain
points Q and Q'such that
any circle through them

is orthogonal to the inverse of ro-
that is, points symmetric about the
inverse of ro. In particular, choosing
the center of inversion on o/ we turn
or into a straight line and points P and
P into Q and Q'symmetric to each
other about this line (fig. 11b). In this
sense/ invercion can be invetted into
line reflection.

Figure 1'1

I'I1 use this connection between
the two kinds of transformation to
explain how to draw a circle rrl

through three given points A, B, C
with compass alone.

It suffices to construct the center
O of the required circle ro (fig. 121.

b

Figure 10

Actually, the same is true for the
angle between a circle and a line, or
between two lines, or, generally, be-
tween any two curves. (We can draw
two circles touching the curves at
their point of intersection; then the
angle between the circles wili be
equal to the angie between the
curves/ and the inverses of the circles
will touch the inverses of the curves.
So the angle between the inverted
curves equals the angie between the
inverted circles; and since the angle
between the circles is preserved, so is
the angle between the curves,)

The preservation of angles implies
the preservation of orthogonality.

Figure 9
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Note that the inverse of O in or is the
point at infinity {. Therefore, the in-
verses of O and { in an arbitrary circle
al1 are qrnmetric about the inverse of co

in ro,. If r.rr, is the circle through B with
center A, then /., (P- ) = A, 1,,(B) =

B, 1., (ro) is the iine through B (in fig-

ure I2l, and f,, (C) is a point on this

line, here labeled C'. So O'= 1., (O)

is tlne reflection of A in line BC'. To
summarize, the order of construction
is as follows: draw circle rrl,, construct
the inverse C' of C in ol, (by the
method in figure 3), then the reflec-
tion O' of A about lrne BC' (as the
second intersection of the circles
through A centered at B and C'), ard
finaliy the inverse of O'in o,, which
is the desired center O.

This construction, together with
that of figure 3, enables us to translate
an arbttrary compass-and-ruler con-
struction into a compass-alone con-
struction with only one reservation:
we'llconsider a straight line as "hav-
ing been constructed" 7f any two of
its points have been constructed. Sup-
pose, for instance, we must find the
intersection point P of two straight
lines AB and CD,given only the four
points A, B, C, D. We draw an arbi-
trary circle ro with some center O,
construct inverses A', B' , C' , D' of the
given points in this circle (by the
method in figure 3), draw two
circles-through O, A', B' and
through O, C', D'-by the method
presented above, and finally invert
their second point of intersection P'
in circle rrl. The inverse of P is the de-

sired point P, because ro inverts lines
AB and CD into circles OA'B' and
OC'D', and consequentiypoint P into
P. Similarly/ one can construct inter-
section points of a circle and a line
through two given points. So we can
replace every application of a ruler in a
given sequence of compass-and-ruler
constructions by a compass-alone con-
struction yielding the same new points.
In the end we'll get exactly the same
configuration as if weusedaruler except
that straight lines willbe representedby
pairs of their points (in accordance with
our agreemcnt).

More on constructions with com-
pass alone can be found in the article
by Fuchs mentioned at the beginning
of this articie.

lnuerlinU distancns
Of course, distances-unlike

angles-are not preserved under in-
version. What's more, the distance
between the inverses A' and B' of.

points AandB cannotbe expressed
in terms of the distance AB onlyi it
depends also on how far points A
andB arefrom the center O of inver-
sion. But the formula f.or A'B'is eas-

ily deduced from figure 13. Tri-
angles OAB and OB' A' in this figure
are similar {they have a common
angle, and OAIOB' : OBf OA'be-
cause OA . OA' : OB .OB'). So

A',B',f AB = OB',IOA : RrlpB . OAl,
where R is the radius of inversion.
Finally,

A,B, - Rz

oA.on'AB' (3)

Exercise
5. Prove that for any four points A, B,

C, D in the plane

AB.CD + AD.BC> AC.BD,

the inequality turns into an equality if
and only 1I ABCD is a quadrilateral in-
scribed in a circle (the last statement is
Ptolemyrs theorem). (Hint: invert in a

circle with center A and apply the for-
mula for the distance between inverses.)

I'll use formula (3) to prove that a
certain combination of the distances
between four points is preserved un-
der inversion. This fact, which seems
rather artificial at first glance, tums
to be very helpful later.

Let's choose four points A, B, C, D
and invert them in some circle o, with
center O. Let's call their inverses A' , B' ,
C', D', respectively. By formula (3),

A,B, = R' .AB,
OA.OB

B,C, = R, .BC.
OB.OC

Dividing, we find

A',B',f B',C', : (OCIOA) . (ABlBCl.

In other words, the ratio ABIBC after
inversion is multiplied by a factor
that does not depend on B. Therefore,
if we divide this ratio by the like ra-
tio for points A, C, andD (instead of
B), this factor will cancel out, so the
"ratio of two ratios"

AB.AD
BC. DC

will remain invariant under inversion
(the skeptical reader is invited to do
the algebr4 which wili bear this out).
This expression, which we denote by
lAC, BDl, is called the double rutio or
uoss ratioof points A, C, B, D, in that
order.

lnueHiru$pilce
The definition of inversion can be

extended to space without the slight-
est change. We can repeat our calcu-
lations with coordinates (including,
where necessary/ the third coordi-
nate) to prove that the inverce of a
spherc is a spherc if it does not pass

through the centu of invercion, and
a plane if it does. A simpler proof is
obtained by just rotating figures 4 and
5 about the line through O and C,rhe
center of inversion and the center of the
circle. Then the circle describes a
sphere, and its inverse describes the in-
verse of this sphere, which is either a
plane or a sphere, depending on whether
the first sphere passes through O.

As to circles and straight lines
themselves, their inverses in a sphere
conform to literally the same rule as

in the planar case. But this must be
proven separately, since the center of
inversion may not lie in the same
plane as the inverted circle. The
proof, though/ presents no problem. A
circle (or iine) can be thought of as the
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intersection of two spheres (planes),

and the inverse of an intersection is
the intersection of the respective in-
verses. So the inverse of a circle or a
line is the intersection of two spheres,

or a sphere and a plane, or two planes
(depending on the relative position of
the inversion center)-that is, a circle
or a line.

I leave it to the reader to prove that
inversion in space preserves angles
between curves. The proof is analo-
gous to that in the two-dimensional
case.

Now consider a sphere passing
through the center N of a larger
sphere and touching it from the in-
side at point S (points N and S may be
thought of as the North and South
Poles of the first sphere). When the
smaller sphere is inverted in the
larger one, it is mapped onto the
plane touching both spheres at S (see

figure 14, in which the larger
sphere-the sphere of inversion-is
not shown). This mapping, it turns
out, can be described without refer-
ring to inversion, simply as the cen-
tral projection of the smaller sphere
onto the plane from point N: each
point P of the sphere other than N is
mapped onto the point Q where line
NP meets the plane. Such a projection
of a sphere onto its tangent plane
from the point of the sphere diametri-
cally opposite to the point of contact
is calied a stereographic proi ection.

It follows from the properties of
inversion that the stereographic pro-
jection maps circles on the sphere
into circles or lines on the plane and
preserves angles between curves.
This makes stereographic projection
helpful both with "pure" geometrical
problems (like problem M55 in this
issue) and with problems of a more

practical nature-say, for drawing
geographic maps.

Two points of a sphere are called
symmeftic about a given circle a on
the sphere if any circle through them
is orthogonal to rrl. By the preserva-
tion of angles, stereographic proiec-
tions of such points are symmetric
about the proiection of ro (in the
plane). So an "inversion on the
sphere" is projected into an inversion
or line reflection on the plane, and
vice versa. To make this correspon-
dence complete, we must assume the
stereographic projection of the pole N
to be the point at infinity, which is
only natural. Thus, the sphere is ac-

tually a more suitable "ground" for
considering inversions than the
plane, because on the sphere the inver-
sion is a one-to-one mapplng without
any additionalidealpoints. We see also
why, from the "inversive" point of
view, the point at infinity is absolutely
equivalent to any "good finite" point.

Exercise
7. Let ro be the " eqt)ator't corresponding

to thepoles Nand S, and ro, its stereographic
projection from N. Prove that the reflection
of the sphere about the plane t}rough ro is
transformed under this projection into in-
version of the plane in o,.

lnuerliltg tfie Hnallel po$lulflte

The intrinsic kinship of inversion
and line reflection is most dramati-
cally displayed in the model of non-
Euclidean (hyperbolic) geometry, dis-
covered in the early 1880s by the
great French mathematician Henri
Poincar6 when he was studying a cer-
tain class of functions of a complex
variable. In this model, a certain fam-
ily of inversions plays exactly the
same role as line reflections in the
regular, Euclidean geometry. The
Poincar6 model provides a geometric
system with its own concepts of
lines, distances, and angles. These are

different from the ones we're used to,
but nevertheless satisfy all the usual
axioms of Euclidean geometry with
the one (albeit critical) exception of
the parallel postulate, which is "in-
verted," so to speak. Instead of the
uniqueness of a line passing through
a given point and parallel to a given

line, it is assumed that through a
point not on a given line I there is
morc than one line parallel to l.I'Il
skip deliberations about why it's so

important to have a model for a sys-
tem of axioms-in particul ar, for that
of non-Euclidean geometry. This is
thoroughly discussed in Boltyansky's
article (page 18), where the Poincar6
model has been introduced. Now that
we've gotten to know inversion,
Poincar6's construction can be de-
scribed in more detail.

It would be quite appropriate and
helpful to think of it as a "stage pro-
duction" of a rather bizarce "play"
entitled "Non-Euclidean Geometry. "
So, to begin with, we must choose a
stage for the show-the counterpart
o{ the entire plane in Euclidean geom-
etry. For the model in question it's
the interior of some circle u. (We'il
see in the end that the stage for the
Poincar6 model is, in fact, transform-
able and may tum into a half-plane.)
The role o{line reflections is assigned
to inversions that map cr, onto itself-
that is, totheinversions in cfucles or-
thogonal ro o (which naturally in-
clude conventional reflections in
diameters of o). This is the decisive
choice that determines the rest of the
casting. For instance, it implies that
the part of straight lines must be
played by the circles orthogonal to s
(or rather, to their arcs intercepted by
o) and to diameters of cr. All of these
will be called p-lines, and we'll use
thetagp- to label the counterparts of
various geometric obiects in the
Poincar6 model-for instattce, "p-
plane" for the interior of o, and so on.

We can immediately test the valid-
ity of Euclidean axioms for p-lines.
And most of them prove to be true.
For example, by the solution to exer-
cise 5a, there is a unique p-iine
through any two points. Also, a point
on a p-line evidently divides it into
two arcs (p-raysl, and ap-line divides
the p-plane into two areas (p-half-
planesl such that two points 1ie in the
same area (on one side of the p-line)
i{ and only if t}i.e p-segment joining
them (define it yourself!) does not
cross the p-line. Non-Euclideanism
shows up as soon as we touch onpar-
allelism. As shown in figure 15, one

0t|AlllIUltl/ttIIlt'lG I0 l(il0ftl ...
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can always draw twop-lines through
each of the endpoints of a p-line I and

a point P not on it. The "endPoints"
in fact do not belong to the P-Plane,
so the two p-lines actuallY never
meet l. These p-lines (labeled P, and
p, in figure 15) are called parallel to
l, whlle thepJines that have no com-
mon points with l, even taking into
account the circumference of a, are

called superparallel to l. One way or
the other, we see that the parallel pos-

tulate is violated. So our "staging" ap-

pears to be correct.
Now we're coming to distances/

angles, and other notions connected
with measurement. The definitions
of p-distances and p-angles are sug-

gested by the fact that line reflec-
tion preserves Euclidean distances
and angles. As for p-reflection (that
is, inversion), we've seen that it, too,
preserves the Euclidean measure of
angles between curves. So it's onlY
reasonable (and even inevitable) sim-
ply to set the p-measure of an angle
between intersecting p-lines to be

equal to its Euclidean measure.
The def initi on o{ ttre p - di s t anc e is

trickier because Euclidean fistances
are changed by inversion' What we
need is a function dlA, Bl of Pairs of
p-points that satisfies at least the fol-
lowing two requirements:

(1) It must remain unchanged bYP-
reflections (inversions);

(21 dlA, Cl + dlC,B) mustbe equal to
dlA, Bl whenever C lies ot a P-
segment AB.

Now it's time to make use of the

cross ratio we've been holding in re-

serve. Let Ao and B, be the ""rd-
points" of a p-iine AB, arrd let Ao be

further from A than from B (fis. 15).

Then the uoss ratio of A, B, Ao, Bs,

R(A, B) = {AB, AoBo} = ffi , #,
depends only onA andB andmatches
condition (1), because if A'andB'are
the p-reflections of A and B in some
p-line (fig. 16), then the "endpoints"
of thep-line through themwillbe the
p-reflections of Ao and Bo, respec-
tively, in the samep-line {whY?); and

since the cross ratio is Preserved,
R(A" B',l = R(A, Bl.

But condition (2) fails for R(A, Bl:
to computeR(A, BlgivenR(A, Cl and
R(C, Bl for C on ap-segment AB,we
have to multiply the given values
rather than add them uP:

R(A, Bl : R(A, C) . R(C, B)

(the "endpoints" are the same for all
three pairs AB, AC, CB, and "single
ratios" are multiPlied: AArf AoB :
IAA^I A 

"Cl' 
(CA ol AoBll. Fortunately,

Cod hai granted us a standard waY of
converting multiplication into addi-
tion. Taking the iogarithm of R, we
derive a function

dlA, Bl = logR(A, B)

that meets both conditions (1) and (2),

since log xy : 1og x + Log Y fot x, Y > 0.

The base of the logarithm makes no
difference-it merely fixes the unit of
p-length. The only constraint is that
the base must be greater than 1 to en-

sure that p-distances are positive,
since the definition of R imPlies
R(A, Bl > 1 for A + Bl. By the waY,

with this definition of thep-distancg
it turns out that bounded arcs repre-

senting straight lines in the Poincar6
model arc of infinite iength' WhY?

When point B in figure 15 recedes
fuom A to Ao, R(A, B) varies directlY
as BnBf AnB ind so increases indefi-
nitely, making dlA, Bl do the same.

At this point I'11stop. A1l the lead-

ing roles in our "play" have been cast,

so the way is clear for You to make
your own explorations; the exercises

Figure 16

below may help you get started. In
the next issue of Quantum You'l1
meet the Poincar6 model once
again-this time in a half-plane in-
stead of a circle. You'l1see that it has

a neat physical interpretation. Geo-

meffically, the two versions are abso-

luteiy equivalent: one is obtained
from the other by way of inversion
that tums circle o into a half-plane,
and vice versa.

Exercises
8. Prove that dlA, Bl = dlB, Al, and that

d(A, Bl < dlA, C) + dlC, B) when C does

not lie on p-segment AB.
9. Prove that the angles of ap-triangle

always add up to a value less than 180'.

10. Two figures in the p-plane are p'
congruent i{ one o{ them can be mapped

onto the other by a number o{ successive
p-reflections. Prove the side-angle-sidg
iest for p-congruence of p-triangles. OI

ANSWERS, H//VIS & SOLUTIONS
IN THE NEXT /SSUE

Does your library
have Quantum ?

If not, talk to your librarian!

Quantumis aresource that belongs
in every high school and col,lege
library. )'Highly recommended. "-
Library fournal

Share the

OUANTUM
expenence!
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Figure 15
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BLACKBOARD

A lrio ul lopics
Questions of mass, electricity, and time

lltlhalis lhe cenler 0lmass?
I F YOU THROW A STONE AT AN ANGLE TO THE
I horizon, it's going to fly along aparabola, as you well
know. But what if you throw a long stick, giving it a good
flick to make it twirl as it flies? Different points of the
stick will move differently in rather intricate trajectories,
of course; but the flight of the stick as a whole will pretty
much be like the flight of the stone: ascent, maximum
elevation, descent. Not only that, if you neglect air resis-
tateet there is a point on the stick that moves exactly the
sarne as the stone flying freely along a parabola. This point
is the stick's center of mass.

A center of mass exists for every body, and for any sys-
tem of bodies as well. It has some very interesting prop-
erties, some of which we'll look at in this article.

Let's begin with determining the position of the cen-
ter of mass. Consider a system of material points with
masses mrl . . ., mn lf we know their coordinates, how can
we determine the coordinates of this "most important
point"? Here's what the answer looks iike:

m.x. + m-x. +...+ m x
-.ll//D|,cnr m.+m)+..-+mn

AT THE

with analogous expressions for the y"-- and z"*-coordi-
nates. You'll see why the center of mass is defined in this
particular waylater, when we consider its dlrramic prop-
erties. For now, let's get used to expression ( 1 ) by discuss-
ing some questions related to it.

(a) In the case of two point masses m, and m, their
center of mass lies along the line connecting the points
and is closer to the point with greater mass (see figure 1);

the ratio of the distances from the center of mass to the
two points is the inverse ratio of their masses (you can
check all this your-
self). It's clear that
in the general case
the center of mass
is to be found some-
where between the
points of a system,
and its position de-
pends on the spatial

mI+ m2
-zl -tl

ml+ m2

ml centu of mass mz

(1)

Figure 1

distribution of the masses.
(b) Atl the material points have "equal rights" in de-

termining the position of the center of mass. If the
masses are distributed symmetrically with respect to
some point in space, it is this point that is the center
of mass. For example, the center of mass of a uniform
sphere coincides with its center (the same is true for a
cylinder, a cube, and so on).

(c) One more comment. It tums out (try and prove this
fact on your own) that the position of the center of mass
remains unchanged if we single out a part of the system
and concentrate aII its mass at one point-its center of
mass. For example, the center of mass of a wire triangle
coincides with the center of mass of the system consist-
ing of three points situated at the midpoints of the
triangle's sides (the masses of the points being eclual to
the masses of the corresponding sides).

Now let's move on to what is most important-an exami-
nation of the physical properties of the center of mass.

Let the points be displaced through distances s1, ..., s,
in a small time interval At. From equation (1) the displace-
ment of the center of mass is seen to be equal to

f<a
fc
o
-c.
O
6
(U

o_

_o
E

^ fltsr + m,sl +...+ /?lr,sls=cm ml + m2+... + mt1ffi,_
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(recall that projections of the displacement vector are
equal to the changes in the corresponding coordinates).
Dividing the displacement by the time interval At, we find
the velocity of the center of mass:

m.v.+m)v2+...+mnvn
v=rr lolcm m\+ mz+...+ mn tLt

Notice what's sitting there in the numerator: the system's
total momentum P. Expression (2) can therefore be rewrit-
ten as

P: lmr+ m2+ ... + m,lv.*. (3)

So the first property is: if the entire mass of the system
is to be mentally concentrated at its center of mass, the
momentum of this imaginary point will be equal to the
total momentum of the system. What does this mean? We
know, for instance, that the momentrm of a closed system
is conserved. This means that if the system is closed, the
velocity of its center of mass vcm remains constant.

Let's look at an example. A uni{orm thin rod of length
J stands vertically on a smooth floor lfig. 21. Then it is
released and falls down flat. How can one calculate the
distance through which the bottom end of the rod wi1l be
displaced at the moment the rod hits the floor? The rod
by itself does not form a closed system, but since it is
subjected only to vertical forces, the horizontal compo-
nent of its momentum does not change-in our case it
remains zero. So the center of mass does not move in the

Figure 2

horizontal direction-
that is, the center of
the rod will hit the
floor exactly at the
pointwhere thebottom
end was when the rod
was released, and the
bottom end will be dis-
placed the distance/2.

Let's look at other properties of the center of mass.
Consider a system of two material points with masses m1

arrdmr. Let this system be open-that is, let's assume that
each point of the system experiences the action of both
intemal and external forces. Starting from Newton's sec-
ond law, 1et's write the change in the momentum of each
point in time At:

mrAvr: (F, * E,,l\t,
mrLvr: (F, * Fz\l\t,

where F, and F, are extemal forces, F,, is the force exerted
by the second point on the first, and F, is the opposite.

According to Newton's third law, F,, = -Fr' so the
change in the total momentum of the system equals

AP = mrAvr + mrLvr: (F, + FrlAt

-that is, only external forces can change the system's
momentum. On the other hand, expression (3) implies

AP: (m, + mr)Av"-.

From this an expression for the center of mass that is
analogous to Newton's second law can be obtained:

lmr+ mrlLv"-: (F, +FrlLt,

which can be rewritten in the more familiar form

F,+F,:(m,*^rlt". (41

This is our most important result: the center of mass
moves as if all the system's mass were concentrated at it
and allthe extemal forces were applied to it. Take note:
not allforces, oily externalforces. The internal forces do
not influence the motion of the center of mass. This is
why in many cases the motion of the center of mass tums
out to be so simple.

This property of the center of mass finds many appli-
cations. For example, now you probably understand why
the center of the stick thrown at an angle to the horizon
moves-just as a stone does-along a paraboia. Neglect-
ing the force of friction between the stick and the air, the
only external force is that of gravity mg, and so the accel-
eration of both the stick and the stone equals g regard-
less of the stick's rotation.

Let's look at an example of this. A construction crane
is positioning a heavy slab on the construction site. To
tum the slab properly, two workers push the slab at points
A andB with equal (in magnitude) forces (fig. 3). What is
the point about which the slab begins to rotate? We guar-
antee that many of you will immediately answer, "Point
C, of course, which is haifway between points A and 8."
Not so fastl The coffect answer is: point O-the slab's

center of mass.
Look at equation
(4). Since the sum of
the external forces
equals zeto, the ac-
celeration of the
center of mass
should also be

zero-it is this point that will remain at rest.
In conclusion, I'11 offer one other "convenience" of the

center of mass. As we saw from equation (3), the total mo-
mentum of a system of bodies in the reference system
associated with its center of mass equals zero. The mo-
tion in such a reference system naturally looks simpler,
since the system as a whole in this case is at rest. This
method is especially convenient when the system is
closed. In this case the acceleration of the center of mass
equals zero (see equation (a)) and the reference system
associated with it is inertial. For example, a head-on col-
lision between two elastic balls in such a system looks
so simple that we can immediateiy guess the answer: af-
ter the collision the balls will fly apart with the veloci-
ties they had before the collision. Can you figure out why?

-A.I. Chemutsan

Figure 3
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]low does eleclric cttrt'ettlllow in a lnetal?
THIS QUESTION USUALLY PRESENTS NO DIFFI-
I culty for students. How does it flow? It's simple. If you

create a di{ference in potential between two ends of a con-
ductor (for instancg a metallic one), an eiectric field arises
in the conductor. This field acts upon free electrons in the
metal and gives them an acceleration directed toward the
end whose potential is greater (the charge on electrons is
negative). So a motion of the charges arise, and this is
what we call electric current.

We can't say that this answer isvwong. The words are
alltrue enough. Yet this answer, which seems exhaustive
at first glance, gives rise to a pack of other questions and
objections. Let's try to straighten things out.

How do electrons in a conductor move when a dif-
ference in potential is created across its ends? It would
seem that they are accelerated, since they are con-
stantly under the influence of the force F = eE (E is the
strength of the electric field in the conductor). But on
the other hand, if this is actually the case, the current
through any cross section should increase with time,
which contradicts Ohm's law: the curent induced in
a conductor by a constant difference of potentials is
constant and equals I = V I R. Now what? Let s recallwhat
we lmow of the intemal structure of a metal.

The valence electrons of atoms in a metal are weakly
coupled with the atoms they belong to. So when the crys-
tal lattice is formed, they are easily tom away to form a
rather dense electronic gas (even if each atom gives up
only one electron, their concentration in such a gas would
be of the order of n - 102e per cubic meter/ which you can
easiiy check). When we spoke above about a curent flow-
ing through meta1, we considered the electrons to be free.
In a certain sense this is true, but we mustn't forget the
ion crystal lattice surrounding the electrons.

The classical electronic theory of resistance in metals,
formulated in the late nineteenth and early twentieth cen-
turies, says that electrons induced to move by an elec,tric

fieldundergo colli-
sions with the
ions of the crystal
lattice. In some o{
these collisions,
electrons give all
of the kinetic en-
ergy acquired from
the electric field to
the lattice. It is
these.collisions- Figure 4
called effective-
that are responsible for resistance in metals. The other
collisions are not essential for understanding the flow of
cuffent through metals (they change only the direction
of the electron's velocity but not its magnitude).

Let the average time between collisions be r. Then we
can imagine the following model of the motion of an elec-
tron in a metal in which an electric field is created. Dur-
ing the time interval between 0 and t, the electron moves
with acceleration a = eElm, and so the projection of its
velocity opposite to the electric field E increases linearly
with time: v = at: eEtf m. At the moment t, the electron
collides with an ion andgives all its kinetic energy to the
lattice. Then it is accelerated again by the electric field
and the whole process is repeated. The plot of the time
dependence of the velocity of this ordered motion is given
in figure 4. Such motion is, in fact, equivalent to a uni-
form drift of electrons in the direction opposite to the field
with velocity v^, = eEr,f (2tn). Let's calculate the strength
of the current associated with this motion.

The number of electrons passing through a cross sec-
tion S in time At is AN = nSv At. These electrons trans-
fer charge Lq: eLN = n"Sr^iLt. So the curent flowing
through the conductor is equal to

I=!q =rTav s=r"'x sE.at av 2m

The quantity

,_I _nezr,'s2m
is called the current density.

The coefficient of the field strength E, which is com-
posed only of the microscopic characteristics of the metaf
is simply the inverse of the metal's resistivity.

So some things seem clearer now. Some questions re-
main, however. For example, let's estimate the average
drift velocity of the electrons. Let a current 1 = 10 A flow
through a copper conductor with a cross section of
1 0 mm2, and let the concentration of electrons n = 1.67 .

102e per cubic meter. Then the average velocity is

,*=*=O.O4mm/s.

If we determine the time between effective collisions on
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the basis of the experimentally measured resistivity p =
1.7 . 10-8 O . m, we get t - 10-1a s. And if we assume that
the mean free path between effective collisions is covered
with an ayeragevelocity v", - 0.1 mm/s, we arrive at the
absurd conclusion that the distance between two succes-
sive collisions of an electron is 1 = v^.iE - 10-18 m, which is
many orders of magnitude smaller ilan the distance be-
tween the ions in the lattice. So once again we have over-
looked something. And what we failed to take into ac-
count is that electron-gas particles in a metal, like the
particles of an ideal gas in a vessel, are in continuous cha-
otic motion. But even if we make use of this analogy and
substitute the value of the mean thermal velocity v. :
"tgW@ for v^,in the expression f.or 1, itwill stil1be in-
sufficient to obtain a value consistent with experimen-
tal data (prove this on your own).

We have exhausted all the possibilities of classical
physics. Infact, a consistent theory of the resistance of
metals was constructed only in the middle of the twen-
tieth century by means of ideas from quantum physics.
It turns out that electrons in a metal move with huge
velocities v - 0.01c (where c is the speed of light in a
vacuum). This chaotic motion of the particles of the
electron-gas is purely of quantum rather than thermal
origin-it does not stop even at absolute zero. Even
with such enormous velocities of chaotic electron
motion, though, the average charge transfer through
any cross section is still equal to zero when no electric
field is present. When an electric field is activated, the
ordered drift of electrons in the direction opposite the
field is superimposed on this chaotic motion as de-
scribed above. It is the large velocity of chaotic motion
that accounts for the distance between two successive
collisions. This distance for the copper conductor we
chose is several dozen (maybe even several hundred) in-
teratomic distances, which seems reasonable.

And one last surprise. According to the laws of quan-
tum mechanics, an electron in an ideal periodic crys-
tal lattice moves such that it never collides with the
ions forming it. Well-what do we do now with all our
previous mental constructs? How do electrons transfer
their energy to the lattice?

It turns out that at 1ow temperatures the electrons
collide with the atoms of impurities and other defects
that arc always present in a crystal lattice. If these de-
fects are removed, the resistivity of a crystalline metal
can be reduced to infinitesimally small values. At room
temperature, electrons are basically scattered on oscrl-
lations of the lattice.In an ideal (immobile) lattice,
electrons might somehow arrange their behavior so as
to bypass all periodically situated ions; but if the ions are
also involved in thermal oscillations, there is no way for the
electrons to keep track of the chaotic movement of the ions,
and so the electrons inevitably collide with ions.

Such are the reefs we encounter when we look more
closely at questions that seem so simple.

-Andrey 
Varlamov

lime mac[ines and llte theory 0lnelattiuity
ONe OT THE MoST IMPoRTANT STATEMENTS
[f of the special theory of relativity says that the simul-
taneity of spatially separated events is relative-that is,
it depends on the reference system of the observer. This
assertion, as well as many others about the theory of rela-
tivity, seems strange/ even paradoxical, and in any case
it flies in the face o{ common sense. Why?

From the very beginning, science fiction's favorite de-
vice has been "time travel." Many authors use it to cre-
ate a beautiful "time paradox"-a chain of events that
absurdly ioops back on itself. For example, the heroine in
a story travels to the previous century and gets acquainted
with a nice boy who, as she knows, will eventually make
great discoveries. And, sure enough, it all happens, but
only because the girl, who has a good memory, tells the
boy all the details of each discovery which she already
knows from "future" textbooks and monographs. As you
well understand, nobody discovered anything. Because of
time travel, an effect (the heroine knowing the details of
a discovery) changes places with its cause (the discovery
itself), so that the effect precedes the cause-a paradox.

In order to avoid such paradoxes/ common sense sug-
gests, the past and the future must not change places.

"Hey,waitaminute!" you say. "In this case something
is wrong with the theory of relativity. After all, the rela-
tivity of simultaneity implies that the sequence of events
in time can be different for various observers."

Let's make this clearerwith a concrete example. Con-
sider a very long immobile platform A, with two photo-
detectors at its ends, and two trains B and C that move
to the right and to the left, respectively. At some moment
a light flashes exactly in the middle of the platform. We'll
call it event No. 1. Then event No. 2 is the detection of
the flash by the left detector, and event No. 3 is the de-
tection by the right one. It's clear that in the reference
system centered on the platform, events No. 2 and No. 3

\

,a.\"

@

50 srPTrllllBtn/08r0BrR 1 sg2



arc simultaneous.In the system
associated with train B moving to
the right, however, event No. 3
takes place eailier thartevent No. 2,
since in this system the right detec-
tor moves toward the light ray and
the left detector moves away from
it. On the other hand, in the system
associated with train C moving to
the left, event No. 3 ocaxs later
than event No. 2. The point is, of
course/ that for all three observers,
the light moves at the same speed
(according to the second postulate
of the special theory of relativity).

So accordrng to the theory of relativity, the very notion
of "earlier-later" is relative. An event that occurre d " ear-
lier" in one reference system may tum out to have oc-
curred "Iater" in another.

"This all looks very strange," you say. "We've already
seen that switching places in time is fraught with dire
consequences."

Don't worry t it's not as bad as all that. Despite the fact
that the special theory oi relativity discards the absolute
aspect of the notions "earlier-later" and "simulta-
neously," it neverbreaks the causal relationships between
events. If one event results from another, then in any ref-
erence system the resulting event rvr1l always occur
"Iater." Take note that in all three reierence systems (A,
B, and C) event No. 1 {the emission of light) takes place
earlier than events No. 2 and No. 3 (the detection of this
light). It occurs earlier from the standpoint of any ob-
server-in no reference system can the light be iirst de-
tected by a detector and then emitted by a source. The
conclusion is clear: it would be wrong to asserr that any
two events can, by changing the reference system/
switch places in time.

Well, when is it possible and when isn't it? Let's work
from the opposite direction and establish when it is that
a cause-and-effect relationship exists between events.

In classical (pre-Einstein) physics, this question had a
simple answer: if one event takes place later than another,
that event may be the consequence of the earlier one re-
gardless of where the events occur. There was no reason
to think that the transmission speed of information (sig-
nais) is limited. So even if event B occurred a great dis-
tance from event 14l it is possible to send information
about this event to point B at a speed sufficient for it to
arrive before event B. It tums out that any disruption of
the "earlierlater/' sequencing in time could lead to a dis-
ruption of causal relationships. So it's natural that the
concepts " earlier-late{' and "simultaneously" in classi-
cal physics were absolute-that is, they could not depend
on the reference system (see figure 5a).

In accordance with the theory of relativity, no signal
can propagate at aspeed greater than the speed of light (c).

This statement implies that the condition of a possible
causal link between events changes. If a light beam from

causally linked x

Past events
{may influence A}

ial
Figure 5
Diagram of the absolute (independent of ruference system) classification of
events. For simplicity only one spatial coordinate has been kept-that is, each
event coflesponds to a point on the "space (x)-time (t)" plane.

Absolute f,l,lr. 1..,.r,,.
that A may influence)

Absolute past (events
that may influence A)

point A arrives at point B before the event takes place,
event A can influence event B. Precisely in such a case
event B is considered causally linked with event A. Let's
write down this condition as follows:

tu-t^>res, [)-o- c,

where r* is the distance between the points where events
A andB occur. The condition

to-tn>b ([),c

implies that event A may be caused by event D-that is,
event D may be causally linked with event A, but in re-
verse order. In the case

Itn -tol.k, (m)' ^ c'

events A and K, even if they are not simultaneous/ are
completely independent of each other, since no
information about the event can reach the location of
the other one before it begins.

A11 these relations are illustrated schematically in fig-
ure 5b. For example, if event B is linked with event A by
relationship (I), the same relationship binds these events
in any other reference system-the condition of causal
relationship cannot be changed. So the domain of events
B is called the "absolute future" with respect to eventA.
Similarly, an event D that can affect event A occurs ear-
lier than A tor any observer. But event K, which is not
linked with event Aby any causal relationship, can be
made simultaneous with event A ltry to prove this on
your own) or can even change places in time with it, and
this will not lead to any paradoxes.

And so we/ve had a chance to convince ourselves that
the cited statement of the special theory of relativity
doesn't lead to any contradiction with common sense
when we analyzeit care{ully. Of course, we had to modify
common sense itself a little bit.

-A.I. Chemutsan
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LOOKING BACK

"ArEtnle almusl IheFE, Caplailt?."

The geographical errors of Christopher Columbus

EOPLE BELIEVE A LOT OF
things about Columbus that iust
aren't true. For instance, that he
proved the Earth is round and that

people needhaveno fear of fahng off the
end of the world. Another is the legend
that he convinced Queen Isabella of
Spain to bankroll his project by balanc-
ing an egg on its point. Most people as-

sume, at any rate, that Columbus knew
where he was going in the fateful year
of 1492. But didhe?

by Glenn M. Edwards

Perhaps the greatest event of the
fiJteenth century before the Europe-
ans discovered the Americas was the
Turkish conquest of the Middle East.
After the great city of Constantinople
fell to them in 1453, the Turks were
sitting squarely on the only east-west
trade route known to the Europeans.
The Portuguese were try1ng to break
the Turkish monopoly on trade with
the East as they slowly felt their way
down the western coast of Africa,

hoping to circumnavigate the vast
continent and reach Asia.

It was a risky venture. No one in
Portugal, or anywhere else in Europe,
knew much about the world even
close to home. Geographers in an-
cient Greece and Rome had written
that there was no great southern
ocean/ but that southern Africa ex-
tended eastward and linked up with
Asia. The Indian Ocean would then
be a large inland sea. If these ancient
authorities were right (and no one

was in a position to
say they were
wrong), the route
aroundAfricawas a
dead end. The time

and treasure spent on this quest
would come to nothing.

T|te 0l,eek uuot'ld

It was theoretically possible to sail
west to go east/ since people had
known for years that the world is
round. The Pythagorean Brother-
hood, a group of mystics and math-
ematicians devoted to the memory of
the Greek geometer and philosopher
Pythagoras, began to believe around
450 s.c. that the Earth is a sphere. The
sphere, theybelieved, is the "perfect
solid" and the only proper shape for
humanity's habitat.

Other Greeks put more weight on
observation. Alexander the Great ex-
tended Greek knowledge of the globe
as far as the Indus River, and he must
have felt he was very near the end of
the inhabited world when he got
there. Of the many cities he founded
and named after himself, here he cre-
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ated Uttermost Alexandria.
Not that Alexander and his troops

ever thought thel- lvere in danger of
falling off the edge of the world.
Alexander's teacher, Aristotle (prob-
ably the greatest scientist of the an-
cient world), knew that the
Pythagoreans had postulated a globu-
lar Earth on philosophical grounds.
But he had better reasons for agreeing
with them: the shadow on the surface
of the Moon during an eclipse is
curved. Aristotle knew that only a

sphere would always cast such a
shadow. He also noted that new con-
stellations become visible as a trav-
eler moves south.

Aristotle had other reasons for be-
lieving in a round Earth. For instance/
his theory of physics held that every-
thing tends toward the center of the
universe-which, for him, corre-
sponded to the center of the Earth.
And he was not alone among the an-
cients in his belief.l So, i-f theEarthwas
thought almost certainly to be a spherg
the question almost automatically
arises: how big a sphere is it?

Aristotle had said that the distance
from Spain to India was not large/
though we don't know why he made
that claim. (This idea influenced the
medieval thinkers Roger Bacon and
Pierre D'Ailly, who in turn influ-
enced Columbus.) In his treatise De
Caelo ("On the Heavens"), Aristotle
wrote that certain mathematicians
had calculated the circumference of
the Earth as 400,000 stadia (one "sta-
dium" was generally taken to equal
600 Greek feet, or about lBB meters).

Aristotle and Alexander bring us
to Egypt/ where the conqueror
founded the most celebrated of his
Alexandrias. Under the leadership
of the last Egyptian dynasty, the
Ptolemies, it became the greatest

lAdrastias o{ Aphrodisias noted that
celestial bodies rise sooner in the east, and
that a lunar eclipse can be seen later in
the evening by an observer in the east. If
the Earth were flat, he pointed out, all
observers would see the edipse at the
same time. Pliny the Elder, the Roman
naturalist, observed that sailors can see
the tops o{ mountains before they see the
towns at their bases, and that sailors atop
a mast can see these things before sailors
on deck can.

center of learning the ancient world
ever knew. And it was here that
work on the problems of geography
began in earnest.

Eratosthenes (276-194 n.c.) was
working therewhenhe computed the
circumference of the Earth. See the
May/|une 1992 issue of Quantumfor
an account of his efforts (in the article
"The Universe Discovered"). But er-
rors in his initial data were respon-
sible for alarge error in his final re-
sult. AJter arriving at a circumference
of 250,000 stadia, he then rounded it
ttp to 252,000. Why? Because it is
evenly divided by 360-the number
of degees in a circle. His calculations
gave him the result that each degree
of the Earth's circumference is 700
stadialong.Inf.act, it is closer to 594.

DeUmes otunmflainty
What does all this have to do with

Columbus? |ust this: it was now pos-
sible to determine one's latitude-
that is, how far north of the equator
one is. (Figure 1 illustrates how lati-
tude is related to the equator and the
elevation of the pole above the hori-
zon.)The invention of an astronomi-
cal computer called the astrolabe (by
Hipparchus in 140 e.c.) made it pos-
sible to determine latitude simply
and with a fair degree of precision.
This device remained in use until the
seventeenth century and in the Is-
lamic world for some two centudes
more. In the northern hemisphere,
where the Greeks lived, one could eas-

ily locate the north pole because a star,
Polaris, happens to be very close to it.

If you want to knowwhereyou are
on the globe, however, you need to
know your longitude-that is, how
far east or west of any given point you
are. And if you want to do that, you
have to know what time it is some-
place else. The ancients theorized
(correctly) that observers could see
the same eclipse and note the differ-
ence in loca1 time. For each hour of
difference, the observers would be
located 15 degrees apart (the 360 de-
grees in a circle divided by the 24
hours in adayl.As apractical matter,
though, this is almost impossible
without mechanical clocks or instan-
taneous communication. So the an-

cients never made any measure-
ments of longitude that could be
cal1ed close, let alone precise.2

Posidonius measured the Earth
less exactly than Eratosthenes did-
he came up with a figure of 180,000
stadia. (This number was taken up by
the later geographers Marinus of Tyre
and Ptolemy, and it influenced Co-
lumbus greatly.) Posidonius mea-
sured the angle of a cefiainstar above
the horizon as seen in different cities,
but as with Hipparchus, substantial
errors in his initial data led to seri-
ously flawed results (in hindsight).
Nevertheless, Marinus of Tyre was
su.fficiently convincedby the work of
Posidonius to use his figure for the arc
distance between Alexandria and
Rhodes-l/48 of the circumference,

zenith

equator

Figure 1

To all appearances, the Earth sits in the
center of a huge sphere that rctates
aroundus. Observers assume this to be a
celestiol spherewhose axis of rotation
passes tfuoug! the spherc at diametri-
cally opposed points-the north and
south poles that lie above the conespond-
tngpoles of the terrestrial globe. The
celutial sphere,like ow globe, is diuided
inhalf by an equatoL whichkes above
the tprestrial equator. But for an
obsewer therc is a horizontal plane,
called thehorizon, that intersects the
celestial sphere. Therc is also a vertical
line that transfixes the obsewer and
intersects the celestial sphere at a point
dfu ectly ov erhe ad-the zenith-and
dfuectly under the obsewer's feet-the
nadfu. These are the poles of the horizon
cfucle. (The angle 0 is the terrestrial
latitude in degees.)

2Hipparchus had noted that an ecJipse
seen at Carthage at one hour was seen on
the Tigris River tfuee hours later, local
time. This would mean the two places are
45 degrees apart, whereas the true figwe is
closer to 30.

north pole

south pole
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Be mone cleuel'lhan Chl'is!

by Yakov Perelman

ll ll HnrsroPHER coLUMBUS
I -was a oreat man." the student
ll*ro," rn an essay. He orscov-

ered America and made an egg
stand up." The student was equally
amazed by both achievements. On
the other hand, MarkTwain didn't see
anything remarkable in the fact that
Columbus discovered America: "lt
would have been surprising if he
hadn'tfoundil."

But I would venture to say that the
second feat of the great mariner isn't
such a big deal. Do you know how
Columbus made the egg stand on
end? He just pushed it against the
table, breaking the shell on the bot-
tom. So he obviously changed the
shape of the egg. But how can one
stand an egg up without changing its

shape? The intrepid voyager didn't
solve fhaf problem.

And yet this is incomparably
easier than discovering America, or
even a tiny island, for that matter, l'll
show you three ways of doing it: one
for cooked eggs, one for raw eggs,
and one for either kind.

To make a cooked egg stand up,
all you have to do is spin it like a top:
the egg will rotate upright and will
stay in that position as long as it is
spinning. After two or three tries, it's
pretty easy to do the trick.

You can't use this method to make
a raw egg stand up. A raw egg, as
you've no doubt noticed, doesn't spin
too well. ln fact, this gives us a fool-
proof way of determining whether an

egg is raw or cooked without break-
ing the shell. The liquid contents of a
raw egg resist being drawn into the
rapid spinning motion of the shell,
and so they brake the shell, so to
speak. We have to find another
method of standing the egg up. And
here it ls. Shake the egg vigorously
several times. The yolk will tear its

delicate sack and will spread inside
the egg. Then hold the egg upright,
blunt end down, for a little while-the

yolk, which is denser than the white,
will drop tothe bottom of the egg and
collect there. Because of this, the
egg's center of gravity is lowered
and the egg is more stable than it
was before this operation.

Finally, the third method of stand-
ing an egg on end. Put a cork back
in a wine bottle, put the egg on the
cork, and on top of that put another
cork with two forks stuck in it f rom op-
posite sides. This entire "system" (as

a physicistwould say) is rather stable
and preserves its equilibrium even if
you carefullytip the bottle over. Why
don't the egg and the cork fall? For

the same reason a pencil can stand
on its point if you stick a penknife in

it just the right way. "The system's
center of grav-
ity is below its
point of sup-
port"-that's
how a physi-
cist would ex-
plain it. This
means that the
point at which
the force of
gravity is ap-
plied is located
below the
olace where 1 #,W
ihe system is =-k-m-
being held up. You can test this law
of equilibrium with many objects,
combining them in such a way that
the heavy parts are lower than the
point of support. The objects will stay
put stably in the most startling posi-

tions.
And so you now have three ad-

vantages over Columbus in the art of
making an egg stand up. As for dis-
covering new continents, he has only
one advantage over you: merely the

fact that he discovered America.

From the book For Young Physicists,
published in 1929.-Ed.

or about 7.5 degrees (as opposed to the
more accurate lf 60, or 5.25 degrees).

Eanly aftempl$ al lnamald]lu
This Marinus is an important fig-

ure in our story though he was not as

influential as his brilliant successor
Ptolemy. Marinus made a point of
interviewing visitors to Alexandria to
leam what he could of the lands they
had traveled in. He was interested in
making more accurate maps/ and he
was the first after Hipparchus to di-
vide the Earth into squares of longi
tude and latitude.

Marinus and Ptolemy understood
that one problem with their map
project was that the lines on it were
straight-which could not, of course,
correspond to the realities of a globe.
Ptolemy devised a system in which lati-
tude lines were parallel and longitude
lines were curved to more acourateLy
reflect the curvature of the Earh.

There was much else to improve
in their map system. When Ptolemy
gave the coordinates for a place, he
based them not on observation but
on travelers' reports of ground dis-
tances. (Remembert an accrlrate
method of determining longitude
wasn't devised until the eighteenth
century.) And in general Ptolemy
followed Posidonius's error of mak-
ing each degree equal 500 stadia
(rather than 594l. So when he heard
that two places were 500 stadia
apart,hewould make them one de-
gree apart on his map. Ptolemy also
overestimated the length of the in-
habited world-i80 degrees from
the Canary Islands (his starting
point, or prime meridian) to the
$eat Chinese trading city of Sera.
(Marinus had estimated the distance
at 225 degrees; the correct figure is
closer to 125 degrees.)

Columbus used as many sources
as he could in estimating the Earth's
circumference: Aristotle, Hip-
parchus, Eratosthenes, Ptolemy, and
the Greek geographer Strabo, whose
work had been recovered in the Re-
naissance and was very popular. He
also learned from the Moslems of
North Africa and the Middle East,
who had leamed, absorbed, and con-
tinued the work of the ancient
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Greeks and Romans at a time when
much of this culturewas lostin Europe.
Forinstance, the great caliph al-Mamtrn
in the ninth century organized several
attempts to determine the length of a

degreg arriving at a result of 56 fo miles.
Columbus made use of later medi-

eval sources as well. His own copies
of two works, Imago Mundi ("Image
of the World")by Pierre D'Ailly and
Historia Rerum Ubique Gestarum
("History of Deeds") by Pope Pius II,
were filled with marginal notes writ-
ten by Columbus and his brothers.
The Historiawas a somewhat critical
digest of Ptolemy's Geography and
also incorporated in{ormation from
Marco Polo's travels.

To sail or nol to sail
Was it feasible to sail \\-est ro get

to the east? \\ias Asia close enoughi
To find out, Columbus had to deter-
mine hou' iar eastu-ard Asra ex-
tended. Subtractrng that distance
from an estr.mate oi the Earth's cir-
cumference, he rr-ould know how
far he had to sail to reach Asia from
the other direction. Let's see how Co-
lumbus dealt rrrth a iactor that played
a crucial role rn al-i lls calculations.

Columbus took the length of a

degree to be 56r, miles {an error
that goes back to al-Mamun). He
noted in the margin ollmago Mundi
that he had verified this measure-
ment himself-a statement many
writers have considered a lie be-
cause the value is wrong. The great
German naturalist Alexander von
Humboldt said that Columbus's
measurements agreed with the Arab
estimate because he "knew in ad-
vance what he wanted to iind." But
given the resources of his own time,
Columbus could indeed have made
his own measurements and come to
the same false conclusion.

Columbus wrote that he had sailed
south flom Lisbon toward Guilea sev-
eral times. He "noted with care the
route followed, according to the cus-
toms of pilots and navrgators, and took
the elevation of the sun many times
with a quadrant and other instruments,
and I found agreement with Alfraganus

fhis source for a1-Mamun's figure (a1-

Fargani in Arabicl-Ed.l. That is to say,

each degree corresponds to 56/, mi7es,

wherefore credence should be given to
this measurement."

Columbus had used the same
method for determining the Earth's
circumference as Eratosthenes and al-
Mamun's geographers had. In each
case they determined their location
astronomically, traveled a certain dis-
tance along what they thought was
the same longitude, and then deter-
mined their new location astronomi-
cally. It's a matter of easy arithmetic
to compute the length of a degree. A1-
Mamun's workers apparently took
several measurements, getting a

slightly di{ferent result each time-
from 55 to 57 /, miles. The figure
they decided to accept falls right in
the middle of this range.

One advantage Columbus had
over these earlier geographers,
though, was that he had an interval of
40 degrees of arc to work with. Era-

tosthenes had only seven. Columbus
made his measurements along the
line from Lisbon to the islands of Los
Idolos. Ptolemy had estimated that
Lisbon was 40 degrees 15 minutes
north latitude, and a famous map
made by Martin Behaim in l492had
placed it at slightly above 40 degrees.
It is actualiy at 38 degrees 42 minutes
(a minute is 1/50 of a degree). The
Portuguese had estimated that Los
Idolos was at I degree 5 minutes
north, whereas it is actually at 9 de-
grees 30 minutes. So Columbus
thought that the difference between
these two points is 39 degrees 10 min-
uteq when it is closer to 29 degrees 12

minutes. Thiswas thefirst of his errors.
The second came from the way he

estimated distance, which probably
came from the dead reckoning of Por-
tuguese sailors. Columbus thought
that the distance from Lisbon to Los
Idolos is 2,192 miles. And since the

Figure 2
Martin B ehaim's cnnception of the AtJantic O cean. From Columbus by F elipe
Femandez-Arunesto, ptblished by Oxford University Press, 1991, Reproduced by
parmission of Oxford University Prcss.
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angular distance between them was
erroneously believed to be 39 degrees
10 minutes, he got a result of about
55 miles to a degree. This was close
enough to al-Mamun's figure to ef-
fectively con{irm it. So the circum-
ference of the globe was determined
to be about 20,400 miles (5621
miles/degree x 350 degrees) rather
than 25,000.

Columbus based his estimate of
the length of Asia on the reports of
Marco Polo and others, and the clues-
tion hangs on the distance one as-
signs to a degree. The Bartholomew
Columbus map of 1503 notes that
Christopher Columbus and Marinus
of Tyre both gave the distance from
Cape St. Vincent,to Cattigara as 15

hours, or 225 degrees. Ptolemy had
said 12 hours, or 180 degrees, but
Columbus (using his own calculation
for the iength of a degree) had decided
that Marinus was correct. Martin
Behaim had followed Ptolemy in put-
ting Cattigara on the 180th meridian,
but he also estimated the further dis-
tance to Mangi as 50 degrees; thus,
the known world extended some 240
degrees from west to east. At 55%
miles to the degree (the figure Behaim
used), the breadth of the known
world was 16,000 miles at the equa-
tor. Columbus took this distance, but
divided it by his own measurement of
562l rniles to the degree, which gave
him 283 degrees as the distance from
the west coast of Spain eastward to
the coast of China.

To this figure Columbus added
Marco Polo's inflated estimate of the
distance from the Chinese coast to
Cipangu (as |apan was then called by
Europeans) and determined that he
would have to sail only some 2,500
miles before he reached |apan. This
was well within the technical capa-
bilities of fifteenth-century sailors.
(These distances are reflected in fig-
ure 2, which gives a portion of Mar-
tin Behaim's map.)

But Columbus-a man of the
Middle Ages-was aiso something of
a mystic. He noted in the margin of
Imago Mundi, and repeated in a let-
ter in 1503, that the world is six parts
dry land to only one part water (cit-
ing the fourth chapter of the apocry-

phal Book of Esdras). For religious rea-
sons, then, he expected the watery
distance from Spain to Asia to be only
one seventh the circumference of the
Earth, which he reckoned at 17,50O
miles at the latitude he wouldbe sail-
ing at. This would put Asia about
2,500 miles west of Spain. So, for Co-
lumbus, science and religion neatly
supported each other and made his
venture plausible.

The scholar G. E. Nunn wrote that
Columbus was "painstaking in his
inquiries" and used the best in{orma-

tion available to him. He also hap-
pens to have been wrong: |apan is
actually about 10,600 miles west of
Spain. But fate intervened, placing the
New World between him and his goal.

The resg as they say, is history. O

Glenn M. Edwatds vnote his doctoral
dissertation on a medieval astronomical
ueatise and has taught at the univercity
level evu since receiving his Ph.D. in
history fuom the University of Southem
California. Dr. Edwards also works as a
supervising production editor for
SpringerV erlag N ew Y ork.
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f} on" Penn kneu that college rvould require a lot oi reading ar.rd rrnting-
K b", at Beloit she discoverici that rt al.o inlolved uorkrng'rrith p.ol"rio.,
l\ o, scientific research that students elserrhere might erieriencle oni1,'in
graduate school. Based on research .ondu.ied in her lirst r.ear, Rona and Professor
Georgc Liscnskv co-author.'d an article lor Science Magazine. Like Rona, more
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member of the Oherlin 50," Keck Ceologv Consortiurn, antl Pov N{ic1-Statcs
Sciencc Consortium, pror,ides science students n'ith a 1:12 professor to student
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gcthcr in a coopcrati\.c commrLnitv
of s. renti.t', s. rentrfrr di\.o\erie.
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M61
Let a be the first term and d the

dilference of the arithmetic sequence.
Evidently d 2 0. Then all the terms of
the form a + l}"d with large enough
n (such that 10" > al har.e the same
sum oi drgrts equal to the sum oi all
digits of a and d.

M62
Since 199211 = \1993-1) 11993-

3) i1993 - 51,.... r1993-1991),this
number has the same remainder
when dir ided bv 1993 as the prod-
uct 1-1 l,-3"-5 1...i-1991 

) = (-L1',n"1', .

7991 1. = I991ll. Therefore, 19921! -
199l,:t. has a remarnder of zero when
divided bv 1993.

The number 1992 here can be re-
piaced rrith anr- multiple of 4. For all
the other even numbers n (of the form
4k + 2\ \\-e must change the sign:
(a - 11ll - rllrs drr.isiblebyn + 1.

M63
If you tried to solve this problem

by way of calculations, you'll cer-
tainly appreciate the solution below.
It's based on the transformation
calledinversior {see page 40 rn this is-
sue) and it is perhaps one of the most
beautiful applications oi this transfor-
mation.

Let's invert the diagram to the
problem 1fig. 1) in some circle wrth
center C {we'll choose its radius later
on). The inverses of semicircles AC

ANSWERS,
H INTS &

SOLUTIONS

A' B'

Figure 2

ar;Ld BC are the rays
starting at points A'
and B'on line AB
(inverses of AandBl
and perpendicular
to this line, and the
inverse of semi-
circle AB is the
semicircle with di-
ameter A'B' (tig.2l.
The circle in ques-

tion, or, inverts into a circle ro'touch-
ing the two rays and the semicircle
A'B'.It's clear that the diameter of o/
is equal to A'B', and so it's equal to
the distance from the center of o:'to
A'B'.Butwe can choose the radius of
the circle of inversion so that to in-
verts into itself! (It suffices to make
it equal to the length of the tangent
from C to o-see the article men-
tioned above). Then <o' coincides
with ro, and so the diameter of ot

equals 1. (V. Dubrovsky)

M64
The answer is b < a < c. To prove

it, recall that sin x I X, and cos x
monotonically decreases for all x in
the interval {O, nl}l. Plugging cos x
instead of x into the above inequality,
and taking the cosine of both its parts,
we get

sin cos x < cos x/
cos sin x > cos x/

respectively. It follows that

b=sincosb<cosb,
c:cossinc>cosc,

OI

cos b- b > O =cos 4- a > cos c - c.

But the function y = cos x-x decreases
on the interval (0, nlLl, so b < a < c.

M65
(a) The required arrangement of

circles is shown in figure 3. But a fig-

ure is not a proof, and we have to pro-
vide rigorous arguments confirming
the existence of such an arrange-
ment-that is, to compute the radii
and distances between the centers of
the circles; or, at least/ to prove that
the equations defining them are solv-
abie. This is far from easy to do with the
traditional methods of school geometry.
The solution given below is based on
ideas presented in the articles "Off into
Space" (f anuary lF ebruary 1992) arrd " In-
version" (this issue).

Take a regular dodecahedron with
circles inscribed in each of its faces
(fig. a). This set of 12 circles evidently
solves the problem except that they
don't 1ie in the plane. They do, how-
ever, lie on the sphere touching all
the edges of the dodecahedron, and a
sphere can be converted into a plane
(so that circles remain circles) by way
of stereographic projection (see page
45). So the desired configuration can
be obtained from our set of the 12

Figure 1
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circles as its stereographic projection
from any point on the sphere that
does not lie inside any of the circles.
In particular, when the center of pro-
jection lies on the line through the
sphere's center and any vertex of the
dodecahedron, the projection yields
figure 3. If we project from the point
lying on the line joining the centers
of the sphere and one of the circles,
we get figure 4. Incidentally, the ex-
istence of this conliguration is easy to
prove strictly without "going off into
space." But it doesn't immediately
solve the problem because the biggest
circle contains a1l the rest. But invert-
ing the entire picture with respect to
the appropriate center (for instance,
point O in figure 5) will produce what
we want.

(b) To begin with, suppose the re-
cluired arrangement exists and not all
of the circles are congruent to one
another. Then we can find a circle of
the smallest radius r that touches at
least one circle of another radius r,
(rr, ,1. Let O and O, be their centers,

Figure 6

58

and iet 02, ..., O, be the centers of ali
the other circles touching circle O in
clockwise order (fig.6). Then OrOr=

i:i{ f"*;*li;3ft ;i :1#"T P 6 1

r, O ,O ris the longest side in triangle
OO.O2 and the opposite angle
OtOO2is its largest angie. It follows
that ZOrOOr, 60o. Similarly, angles
O2OO3, OaOO4, ..., O600l are not
less than 50". Then the sum of all six
angles is greater than 360o, which is
impossible.

So all the circles must be of the
same radius. But in this case each of
them must be surrounded by the
other six, like circle O in figure 6, and
this is possible only with an infinite
number of circles; otherwise, we'd be
able to find a "border" circle that is
not completely surrounded.

Thus, assuming the existence of a
solution, we always arrive at a contra-
diction. (V. Dubrovsky, D. Fomin)

Another approach to this problem
comes from graph theory and uses
Euler's well-known formula V + F =
E + 2, where V, E, andF are the num-
ber of vertices, edges, and faces (includ-
ing the infinite face) of a finite graph.

Suppose that a finite con{iguration
of n circles exists, each of which
touches exactly six of the others ex-
temally. If we connect the center of
each circle to the center of each of its
six neighbors, we get a graph. We
now use a standard technique in
problems of this kind: that of count-
ing the edges of the graph in two dif-
ferent ways. On the one hand, each
vertex is connected to exactly six
other vertices. This observation
would give 6V as the number of
edges, except that it counts each edge
twice: once for each endpoint. Thus
E:3V, orV = El3. Now we count the
edges again, using the faces of the
graph. Since each face has at least
three sides, E would be at least 3F-
except that we have again counted
each edge twice. So E is atleastSFf 2,
or F is atmost2Ef 3.

So we have found thatV + F <El3
+ 2El3 = E, which contradicts Euler's
formula. We can have no such con-
figuration. (Our thanks to Noam
Elkies of Harvard University for con-
tributing this alternate solution. )

Physics

At any moment while it is moving
the cord is strained uni{ormly; thus,
the ratio of the distances between
knot C and the ends of the cord will
not change over time. Figure 7 shows

Figure 7
mentAS,

that initially this
ratio is

lACl:lCDl=l:4.

It's evident that
the displacement
Ax of the knot east-
wardis determined
by the displace-

of runner A, and at any mo-

ment it equals % of this displace-
ment-that is,

44
Ax = -AS =!V^t.5 " s',

Using the scale given in the figurg we
see that point D has moved from
point C a distance Ax = 4 m eastward.
Thus, the knotpassedpoint D at time

5Axt-"=:-5s4r,
after the runners started moving.

The displacement Ay of the knot
southward is determined by the dis-
placement AS, of runner B, and at arry

moment Ay -- %As". Uri"g the scale, we
see that during the time t = 5 s the knot
moved a distance Ly =2 m southward
from the initialposition (point C). Thus,
movingwith acceleration a during t:
5 s, runner B covered the distance AS..

= SLy:10 m-that is,

latz = LS2 'r'

and so

AS ona=2--!=:Y p;1lsz =0.8 m./s2.*2s
P62

When the top falls off the table, it
moves along a parabola (its rotation
merely stabilized the vertical posi-

4m
---------9

i2m
o

Figure 5
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tion of the top's axis) (fig. 8). The hori-
zontalproiection v, of the top's veloc-
ity will be equal to the velocity v of
its movement along the table; the
vertic,al position of the top as a func-
tion of time is given byy= gPlz.The
top will not hit the edge of the table if
during the time r, during which it
falls a distance H, its horizontal dis-
placement v; is greater than or equal
to r. (You should convince yourself
that this is correct.) We'll write this
condition as follows:

Vxt=V'E>ft X=

Thus, the velocity of the top's hori-
zorrtal movement should satisfy the
following condition:

y)

P63
The number oi molecules that re-

mained on the u-alls rs approxrmatell-
equal to -\ -- -l;iR: Jr rr-here R =
0.06 m is the radrus oi the retort and
d - 10r m 1. rhc Jiameter ot a gas

molecule. Aiter the gas is removed
from the rr.a11s, the concentration of
molecules in the retort will be

Nr3" v *R'
and the unknown pressure will be

3k7P=nkT-;;=40 N mr.

Here k = 1.38 . 10 r3 J/K is Boltz-

mann's constant andT= 500 K.
Let's compare this pressure with

the normal atmospheric pressure p0 =
10s N/m2:

L=9-10-4.
po - 10s

This simple example shows how
much a "Yacuutrla" deteriorates in a

sealed vessel i{ the gas is not removed
from its wal1s beforehand.

P64
To determine the average curent

charging the battery, it/s necessary to
determine the charge sent to the bat-
tery during one cycle.

When the switch is closed, the coil
is directly connected to the power
source/ and the emf across the induc-
tor is equal to V. This means that the
current t}rough the coil increases lin-
early with time. Because there is no
current in the coilat the moment the
switch is closed, we get

_v
I =-t.

L

By the time the switch is opened, the
current is

t:Y,-o L -t'

AIter the switch is opened, the diode
allows current to flow to the battery.
The emf across the inductor is equal
to the difference between the voltage
across the power source and that of
the battery: V - t. Since the emf is
now in the opposite direction, curent
in the coil decreases linearly with
time according to

I=l^-': J 
1.UL

Because the rate of decrease of the
current (when the switch is open) is
greater than the rate of increase (when
the switch is closed), the current will
drop to zero before the switch is closed
and the diode switches off. Since the
battery is charging as long as 1> Q we
can find the time of charging r, {rom the
condition

-, -v --,o - ,,yr

from which it follows that

v
' tl-V '

The charge passing through the bat-
tery during this time is

Lo=I t.=11^ v-r.
r r\' 2u,_v I

_ \ v2r?

2 L(: -v)'

So the average current charging the
battery is

-Lo
a\'

t1 -r l')

= 8.9 mA.

vr"?
2L(:: - V)(t, + t, )

P65
This problem has a long history-

the phenomenon evaded a correct
explanation for many, many years.
First off, it's worth noting that the
velocity of even a strong wind (say,
20 m/s)is much less than the speed
of sound (330 m/s). The fact that sound
travels a bit faster with the wind than
against it is o{no impoltance.

The correct answer was obtained
by the English physicist G. G. Stokes
in 1 85 7. The gist of the matter is that
the wind speed changes with alti-
tude-it is slower near the surface of
the Earth and increases with distance
above the ground. (This is due to the
friction between the layers of air and
the ground, as well as the friction
within the air itself.) Let's see how
this infiuences the propagation of a
vertical wave front of the sound mov-
ing against the wind (see figure 9).

The upper part of the wave, being
further from the Earth's surface,

TV
L5 Figure 9
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propagates more slowly than the
lower part. As a result, the upper part
of the wave front is tilted backward.

Because the direction of the sound
wave is always perpendicular to its
wave front, the sound waves that
would normally propagate along the
Earth's surface will be deflected up-
ward when the wind is blowing
(fig. e).

Stokes's explanation was con-
firmed convincingly by the experi-
ments of another famous English
physicist, Osbome Reymolds. As the
sound source Reynolds used an elec-
tric bell, which could be raised or
lowered. He discovered that the bell
could be heard against the wind at a
much greater distance if it was raised
high above the ground.

Another scientist who extensively
studied the influence of the wind on
the propagation of sound was |ohn
Tyndall, a brilliant iecturer and popu-
larizer of science. In his experiments
he also used a bell (though not an
electric one). When he was some dis-
tance upwind of the bell, he was able
to hear the bell only when he climbed
a ladder. Tyndall's experiments
clearly demonstrated that sound
waves really are diverted upward
when they travel into the wind.

Bnaintea$El'$

861
Mlle Dubois has one dog, one cat,

one parot/ and no cockroaches.

862
Il ABCD is one of the given quad-

rilaterals (see figure 10), then translat-
ing triangle ABD by vector AC into
triangle CBD, we get the required
parallelogram BB rD ,D: its parts BBr C
and DD ,C are congruent to the pieces

B,

D

Figure 10

C'A'B' and C'A'D', respectively, of
the second quadrilateral A'B' C'D' .

B6s
The stacked blocks will be sub-

merged 3 cm in both cases.

864
Consider an inscribed regular pen-

tagon (fig. 11). At least three of its
vertices are the same color (because
there are only two colors). But any
three of its vertices form an isosceles
triangle.

865
Since we will be adding numbers

bigger than 1 and less than 15, the
onlyperfect squares we can getarc4,
9, 16, a;;.d25.If a, b, ard c are three
numbers in our row, then bothb + a
atdb + c mustbeperfect squares, and
a cattnot equal c. A quick check
shows thatb cannot equal 8 or 9: tor
every other choice of b, thereare two
numbers in the required range that
can be added to b to get a perfect
square.

Therefore, the numbers 8 and 9
must be at either end of the row. This
determines the order of the integers:

8 1 15 10 6 3 t3 t2 4 s LL t427 9

The only other way to get the re-
quired result is to read this solution
backwards.

lhleido$mrc
1. See figure 12.
2. The water in the gap between

the pieces of glass that are stuck to-
gether moistens the glass, and the
free (lateral) surface of the water along
the edges of the glass is concave. Sur-
face tension prevents one from pull-
ing the pieces apafi.If" you immerse
the pieces of glass in water, the con-
cave lateral surface of the water layer
will disappear, and with it the con-
sftaining forces of surface tension.

3. Place the ball in some water. If
the air bubble is shifted relative to the
center, the ball will always tum over
so that the cavity is in the highest
possible position.

Figure 11

4. The speed of the escaping air is
higher when the pressure in the air
mattress is greater. But the pressure
is lower in the second case.

5. Moisten the ball and roli it along
the floor. Measure the iength I of the
track after one revolution. The ball's
diameter d = lln.

6. A sugar solution has a greater
surface tension than pure water, and
the surface tension pul1s the matches
toward one another. With a soap so-
lution, the surface tension decreases.

7. The brightness of the fabric de-
pends on the luminosity-that is, on
the angle of incidence. This angle
varies for different parts of the flutter-
ing flag and so stripes appear.

8. Holding the coffee grinder in
your hand, you feel a little kick
when you turn it on that tends to
turn the coffee grinder in the direc-
tion opposite to the direction of ro-
tation of the rotor.

9. The surface of the puddle re-
flects light like a mirror, which is
why the light from the headlights is
directed almost completely away
from the driver. Asphalt, on the
other hand, diffuses the light, and a
portion of that light reaches the
driver's eyes.

10. With alternating current/ a
magnet brought up to the bulb
causes the filament to oscillate and
its outline will become indistinct.
With direct current, the filament

80 StPItl'l0tR/0CI00tR I SS2
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will be seen distinctly because it is
displaced only slightly from its
original position.

1 1. While the thermos is
uncorked, the freed-up portion of its
volume fills with cold air; when the
thermos is recorked, the air inside
heats up, its pressure increases, and
this internal pressure pushes the
cork out.

Bop
l. Deed, sass I mama, and eefe, an

obsolete synonym for easy, which I
never said these problems were.

2. Deeded and muumuu are good,
but deedeed (the euphemistic d- - - -d
sometimes standing for damnedl and
the lovely town of Orrororo in South
Australia are even better.

3. The longest I know of is as-
sesses.

4. Sixteen everyday words, as
promised: alfalf a, Iranian, hashish,
singing, couscous, derider, decided,
r epap er, table able, angling, onions,
nonunion, blendable, cooLly, pi-
azza, assassins.

Beribert or chercher are the
equals of couscous; the alfalfa a\ter-
native to entente was suggested to
me by Isaac Asimov.

5. Think of a word with m + I let-
ters, m of them distinct. Its form is
speciiied by i and l, the first and sec-
ond positions of the repeated letter.
The number of forms is the number
of pairs satisfying I < i. i < m + 1.

6.Let A(p) [B(p)] be the number of
pforms using one or two letters that
do ldo notlbegin with a double letter.
Evidently A(l) = 0 and Al2) : Bll)
= Bl2) = i . Proceed by induction. Add-
ing one letter to the beginning of a
pword, we find Alp + I J = B(p) and
Blp + ll = A\p) + B\p\. These results
yield

Alp+2)+B(p+2j
= lA(p * r) + Blp+ 1)l + [A(p) * Bbil.

For p > 2, there are no pwords using
only one letter and A(p) * Blp)
= Nlp,2).

7. L(assessed) :8, but Mrssissrppr
beats it by one.

BULLETIN BOARD
Imagine standing in the vortex
of a 70-foot-high tornado or
crawling through a pitch-black,
100-foot tunnel with only your
sense of touch as a guide. These
are only two of the attractions
at the newliberty Science Cen-
ter just outside New York City.
The four-story structure encom-
passes three exhibit areas fea-
turing an expanding geodesic
sphere, a 17O-foot observation
tower, and the world's largest
Omnimax theater. The center
also offers outreach programs to
schools nationwide (for ex-
ample, students can bec,ome
"penpals" with corporate scien-
tists). For information, write to
Liberty Science Center, Liberty
StatePark,251 Phillip St., |ersey
City, NJ 07304-4529, or call20t
451-0005. . . . For hands-on,
high-energy exhibits in north-
ern Illinois, check out the new
Commonwealrfi Edison Power
House, adjacent to the Zion
Nuclear Generating Station on
the shore of Lake Michigan. The
30,000-square-foot education
center boasts a working geyser
demonstrating the power of
thermal energy, exhibits on
how humans have harnessed

energy through the ages, and
much more. The Power House
also features a resource center/
conference rooms/ and an audi-
torium for presentations to
school groups. For information,
write to Steve Solomon, Com-
monwealth Edison, Northern
Division, 1000 Skokie Blvd.,
Northbrook, IL 60052-4103, or
call 708 746-7080-. . . There's
a fascinating story underfoot,
and geologist James Sadd aims
to spill the beans in "Earth Re.
vealed," a new public television
series and college course. Pro-
fessor Sadd will examine how
Earth's dynamic interacting sys-
tems relate in the development
of life and how they help us un-
lock the secrets of our environ-
ment. The 26 half-hour pro-
grams will cover such topics as
plate tectonics, the rock cycle,
the forces that shape the Earth's
features, the pace of geologic
change, and the importance of
preserving Earth's natural re-
sources. Check your newspaper
for information on local broad-
cast. For information on pur-
chasing the series on videocas-
sette/ or taking the course for
credit, call I 800 LEARNER.
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TOY STORE
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What would Pythagoras have thought?

by Alexey Panov

I .\1 SL F.E YOU RECOG\IZE

I iii= r:;;l iitIl 
;. ;i;:,f ;

T-- \l)
\_,
Figure 5

comes a popular
przzle, ttie ian-
gramr thought to
have been in-
vented io China
about 4,fiX) years
ago. (In tact, ac- Figure 1

cording to r-:::r: research, it origi-
nated in E,:,,:. and is onlY a few
centuries oii l-:: rangram usually
comes with a .-: :,: silhouettes, the

Figure 2

nost interesting
or ighich are o{
;eop1e or ani-
ina1s, that the
;1aver must con-
iiruct from all
ser-en pieces. One
oi my favorite
shapes, "woman
rtith a fan," is
seen in figure 2.
Orving to its uni-
versal popularity,
the tangram has
generated many
spinoffs, and one

of them-under the not very apt
name of pythagoras-has become
part of my collection of puzzles.l

lThis puzzle was manufactured in
Russia, and I don't know if it's
available in the US, but in any case
it's very easy to make yourself.

Pl,thagoras (the
game I is also a

square cut into
seven pleces, but
in a drfierent \{'ay
(fig. 3J. In the list
of shapes to be as-

sembled from the
Figure 3

seven pythagoras pieces, one item-
No. 51 (fig. a)-proved to be a real
challenge. I spent a lot of time try-
ing to put it together, but the best I
could manage was the shape in fig-
ure 5. In the end I began to doubt
whether it could be done at all.

Eventually I found help in one of
Martin Gardner's books, where I
read about two Chinese mathema-
ticians who in 1942 published a list
of. all convex polygons that can be

a

Figure 6

constructed from the seven tangram
pieces. Their idea was to subdivide
all the pieces into isosceles right tri-
angles congruent with the two
smallest triangles of the tangram
(iis. 6a). By a subtle argument the au-
thors showed that from the 16 tri-
angles thus obtained one can make
20 different {noncongruent) convex
polygons. Then it's not difficult to ex-
amine these polygons one by one to
find that only 13 of them can be tiled
by the tangram pieces.

The pieces of pythagoras can be
divided into the same l6 triangles
{fig. 6b). Figure No. 51 is a convex
polygon, so if it doesn't occur
among the 20 polygons mentioned
above, it will be all the more impos-
sible to create it out of the
pythagoras pieces.

Let's make a complete list of
these 20 polygons.

An experiment will help us. Pre-
parc a large enough number of con-
gruent 45"-45o right triangles and try
to make polygons out of them. You'Il

.K
Figure 7

Figure 4
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discover that convex polygons appear
only when any two neighboring tri-
angles have a whole common side
(as in figure 7al.If a leg of one tri-
angle borders on the hypotenuse of
the other, or if the adjacent sides of
the two triangles are congruent but
do not exactly fit each other (frg.7bl,
a convex polygon won't emerge.
This "tiling rule" is a clue to a de-
scription of the polygons in ques-
tion. But it's rather difficult to
prove/ and we'll accept it just as an
experimental faEt.

Now lay an arbitrary convex
polygon tiled by our triangles over a
grid of squares whose sides are equal
in length to the legs of the triangles
so that the vertices of one of the tri-
angles match some three nodes of
the grid (fig. 8). Then by the tiling
rule the vertices of all the other tri-
angles will also fall on nodes of the
grid. Since all the angles of the poly-
gon are composed of the angles of
45"-45" right triangles, they can
measure only 45o, 90o, or 135' (be-
cause the angles of a convexpolygon
are always less than 180'). There-
fore, the polygon can be represented
as a rectangle whose sides iie on the
grid lines and whose corners are
truncated, the cuts making a 45'
angle with the grid lines (fig. B). If
the neighboring lines of the grid are
assumed to be one unit apart, the
side lengths of the rectangle will be
some integers a and b. To com-
pletely define the polygon one has to
specify four more nonnegative inte-
gers x, y, z, andw-the lengths of the
legs o{ the truncated comers. The area
A of thepolygonis then easily expressed
in terms of these six numbers:

S=ab-Vl*+5P+22+vtfll.

For the polygons in question the

b

<>w
Figure

04

area equals the total area of the 15
isosceles right triangles with a unit
Ieg: A :Yz.16 = 8. So our problem
underwent a surprising transforma-
tion from a prnely geometric problem
of tiling a polygon to an arithmetic
problem of finding nonnegative inte-
ger roots of the equation

2ab - 16 = * * t' + z2 + vtP. (1)

There is, of course/ one more condi-
tion to be met: each side of the rect-
angle must be not less than the sum
of the two segments (iegs of trun-
cated corners) cut off from it. This
condition yields four additional in-
eclualities:

x+y<at
y + z<b,
z+wSa,
w + x<b. l2l

From here on/ geometry and arith-
metic will walk hand in hand.

First let's figure out the possible
dimensions of our rectangle. On the
one hand, its area must be not less
than that of the poiygon in question:

ab 2 B. (3)

(This inequality can also be directly
deduced from equation (1).) On the
other hand, after cutting off corners
of the largest possible total area, the
remaining part of the rectangle
must have art area not exceeding 8.
It's clear from figure 9 that the total
area of two comers bordering on one
side of the rectangle is not grearer
than the area of the 45'-45" right tri-
angle whose legs are congruent with
this side. So to obtain the smallest
(in area) nonempty remainder, one
must truncate the rectangle as in
figure 10a for a < b, and as in figure
10b for a = b.Itthe first case, the re-

Figure 10

mainder is a parallelogram of area
a(b - ali in the second case, it is a
trapezoid of area a -Yz. So the side
lengths a and b of the rectangle
must satisfy the inequalities

a{b - al<8 l4l

fora<b,and

a-tlZ<B (s)

lor a : b. (Try to derive (a) and (5)

from (1)and (2).)

All the pairs of positive integers
(a, bl satisfying inequalities (3) and
(a) or (3) and (5) can be found easily
by a simple search. For instance, for
a: L,we'll find that b>B andb - |( B, so b: B or 9;for a:2, thepos-
sible values of. b are 4, 5, or5; and so
on. In all, there are 19 such pairs:
(1, B), (1,9l,, {2, 4ll, (2, 51, (2, 5ll,
(3,31, B, 4), (3, 5:l, $, 41, 14, 51,
(4, 51, (5, 5), (5, 6ll, rc, 6ll, 16,71,
(7,7ll, (7, B), (8, 8), (8, 9).

For each of these pairs, according
to equation (1), we must find all the
instances of the number 2ab - 16 as
the sum of four squares * + y2 + zz
+ ttP and then check inequalities (2),

or draw a rectangle measuring a x b
and find all truncations of its cor-
ners that leave a polygon of area 8.
(By the way,lor some of the 19 pairs
(a, bl it is impossible to come up
with the appropriate x, y, Z, and w.)
The resuits of this search are sum-
marized in the table, which con-
tains a list of all 20 convex polygons
that can be assembled from 16 con-
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gruent -1i'-+i' i-ii:t rliangles. The
nurlbers de tcrnrn:r: the dimen-
sions oi the rectar:,cs correspond-
ing to our polr-gons .::t j Lrt rhe tri-
angles cut oii irom the n ar-t given
in the first six columns T:re p6l1--
gons that can be tiled :r the pieces
of the tangram or pIrh.r_:,.i.;ts .1re
checkmarkecl in the -ast rr..'c, co1-
Lrmns. 1Tr,v to pror e :l:.r ::.s: rrro
columns are corr'ac:.

We dor-t't e \-e n ne irl :h; -.:r trr r:,

columns. thou-h ilrrl-.-- t- t-.- :

the 20 polvgon. hl- .r.,..r.\ -,. -i:
sides like the rnr sro ioLr. riiLrr. \,,
511 (Draw them anc11-ou'11 see.'

But my story has a happl- encllng.
Before me is a recently purchase d,
brand-new version of pythagoras.
Aha! In the new instructions the
drawing for figure No. 51 is exactly
like my figure 5! But I look on the
bright side: ii the old instructions
hadn't been in error, this article
would never have been written. Q

l), 'z./,/
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Solar power.
Sincc 1989, teams olDrexel srudenm

and laculn members have designed, built
:rnd raccd rhree ri orking solar-powered
cars--\unDra€:on I. II and III. Ve also
hl. h-. .s...rc1r,, paniiipate in rwo
r:aiir ral 1,,-'.:nirio ned solar vehicle races.

Ii-: rc rcaJ.,'and ri,aiting to tell you
:rJ i ,:ur tr,-rJcnrs all about our SunDragon
r:c ie.ri and frll vou in on: photovoltaics,
;i rr-di-nami6, mechan ies,

t\cr nru.lr nami;. m:rhcmati.r. project
managemenr. vehicle design, materials
rngineering adranced composites, fu nd-
raising and energ/ management.

kson plans and a show-and-tell ser

oItransparencies outlining the
development of our solar-powered vehicles
are available for your science and
mathematics clases.

For more information about these

unique teaching resources or to obain
copies fo r your classes, conact Amy
\7arlin, admissions special projects
coordinator, at (215) 595-2400 or write ro
Michel Barsoum, asociate professor of
marerials en gine ering 4445 bB ow
Engineering C-enter, Drexel Universiry,
Philadelphia, PA, I 91 04.
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! +t stud.nt Winners in Alll

I rio, Place: one $10,000 Award

I SeconO Place: Five $3,000 Awards

I ffrird Place:Ten $500 Awards

! rourth Place: 25 $100 Cash Awards
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All Entrants Receive a Gift

Entry Deadline: January 22,1993

For more information write to:

Duracell/NSTA Scholarship Competiti on

1 742 Connecticut Avenue, NW

Washington, DC 20009

JI
{, tl; I


