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Peaceable Kingdom by Edward Hicks (ca. 1834)

HEN EDWARD HICKS DIED IN 1849, THOUSANDS

attended his funeral. It’s safe to say that most of the
mourners came to honor not a painter but a preacher. A de-
vout man and a powerful speaker, Hicks was better known
in his lifetime for his pious words than his peaceful land-
scapes. He even had his doubts whether art is compatible with
religion. But he managed to convince himself that painting
can bring meaning to life by illustrating moral ideas—and
proceeded to paint like the devil!

Hicks was a Quaker, and his pacifist beliefs are evident in
“Peaceable Kingdom.” He believed that the state of Pennsyl-
vania in the New World was the fulfillment of the Biblical
prophecy: “The wolf also shall dwell with the lamb, and the
leopard shall lie down with the kid; the calf and the young lion
and the fatling together; and a little child shall lead them . . .”
(Is. 11:6-9). Hicks depicted this favorite passage again and
again, perhaps as many as 100 times. More than two dozen

versions of “Peaceable Kingdom” painted by Hicks are
known to exist. (The theme has been treated by others—for
instance, Henri Rousseau.)

Hicks began his artistic career applying paint to coaches and
signs, not canvas. He was not formally trained, so his work is
variously labeled “primitive,” “folk,” or “naive.” Although the
terms sound condescending, art historians use them simply to
denote a genre, not to indicate their relative merit. In fact, you
can find entire wings in museums devoted to “primitive” art.

On page 18, you'll encounter an altogether different picture
of the animal kindgom. Whereas the prophet has the lion “eat
straw like the ox,” the sharks and mackerels in Constantine
Bogdanov’s article behave quite naturally.

And did you notice the river meandering in the background?
Any child knows that rivers never flow in a straight line. But
why do they curve the way they do? Turn to page 34 for a glass
of tea and an answer.




QUANTUM

JULY/AUGUST 1992 VOLUME 2, NUMBER 6

FEATURES

4 Mountaintop Truths

Friction, fear triends, and falling
by John Wylie

10 Mathematical Induction |

Jewels in the crown
by Mark Saul

18 Law ofthe Jungle
The world according to Malthus and Volterra

by Constantine Bogdanov

38 Mathematical Induction Il

Cover art by Sergey Ivanov

At the very beginning of The Curves of w“al ﬂ"l me l:llllllllllllll‘ saV?

Life (Dover Publications), Thomas An- by Mikhail Gerver
drea Cook freely admits that his knowl-
edge of botany and biology was “as slight
as his skill in mathematics or his erudi-

tion in the development of art” when he D E P A R T M E N T S

began his monumental study of the spi-

ral. Since he could not hope to know four 2 P“h"shm’l's Pagﬂ 43 Sm"Es

or more scientific disciplines thoroughly, Betial Bxiial Bead oll whont i

he thought it more prudent to specialize ] E Mamema"ﬂal s“pnmsﬂs

3 "
mnone bt have. the e Fibonacci strikes again! 44 A“""]I“gv
thy with each.” He invites experts to cor- A wrinkle in reality

rect his errors and proceeds in the hope 24 thsms Contest

that “the artist or the architect will con- Soutrces, sinks, and 49 At the Blackboard Il
sider the biologist in a kindlier light, and gaussian spheres Vavilov’s paradox
that the mathematician and the botanist ]
mayledowniopehent 21 How Do You Figure? o1 Student Corner

This generous scholar has kindly i
pointed us in at least three directions: to 28 At the Blackboard | Summing up .
the cover story, beginning on page 4; to Summertime, and the 53 Mﬂlll IHVESII!]MI[IIIS
Gallery Q; and to the Publisher’s Page. choosin’ ain’t easy Triangles of sums
Cook goes on to write: “When Captain ;
Scott was in winter quarters near the 31 BI‘EIIIIIEEISHI‘S 54 I“"EX
South Pole, he overheard a biologist of his . . .
party offering their geologist a pairof 04  KAIBill0Scope 08 Answers, Hints & Solutions
socks for a little sound instruction in ge- Wake up!
ology. So fruitful an attitude of mind need 33 Tﬂv Sllll‘l‘.
not be limited to the Antarctic region.” 34 I" “]H I-ah Out of Flexland
Amen! Meandering down to the sea

QUANTUM/CONTENTS 1




PUBLISHER'S
PAGE

Photosynthesism

The “interleaving” of scientific and mathematical disciplines

SK RESEARCH SCIENTISTS

or mathematicians to identify

themselves. After giving their

names, they will most likely
add a clarifying label: nuclear theo-
rist; ergodic theoretician; topologist;
theorist in combinatorial analysis;
low-temperature, solid-state experi-
mental physicist; geneticist; molecu-
lar biologist; and so on. Likewise, we
have the traditional, broad subject
areas like physics, chemistry, biology,
and the Earth and space sciences (as-
tronomy, geology, meteorology,
oceanography). There is no such thing
as the “compleat scientist,” it seems.

Are the various scientific disciplines
and subjects really distinct? Are they
disjoint? And what about science as a
whole? What are the relationships
among the branches of science?

There’s a lot of talk today about
the importance of learning science
from the perspective of overarching
themes, such as energy; or of integrat-
ing the sciences to avoid the “arbitrary
boundaries” of the many disciplines and
subdisciplines. Yet researchers inevita-
bly narrow their focus. Do they in fact
restrict their work to their own sub-
fields?

In mathematics, research special-
ization is almost always the route to
successful results. A specialist in
combinatorics is working in a hybrid
subfield between partition theory in
the mathematical subfield of number
theory and a supposedly separate sub-
field called combinatorial analysis.
How then should the serious student
learn mathematics as an integrated or
theme-oriented subject? When does
the specialization occur? And does
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one ever really work exclusively in a
subfield?

It’s not hard to identify certain gen-
eral processes used by scientists to
produce what we might call scientific
products. In varying sequences, we
observe, classify, measure, infer, con-
trol variables, hypothesize, develop
models and theories, and make pre-
dictions. As a result of these pro-
cesses, we create terms, determine
facts, invent concepts, find certain
empirical laws, produce models and
theories, and apply these in a variety
of situations.

A law in science is a definitive as-
sertion of a relationship that has
been repeatedly challenged but has
never been denied. A careful analy-
sis of elementary textbooks in sci-
ence shows that there are very few
fundamental laws of science. Most
of these are in physics—for example,
Newton'’s laws of motion (F = ma
[second law]), the law of universal

gravitation (F=G ;2 =), Coulomb’s
law (F o q;‘jz |, and so on. The quan-

titative character of physical law al-
lows a natural correspondence be-
tween pure mathematics and the
sciences, enabling science to use
math as a tool. The other sciences
are largely applications of those fun-
damental laws in a sequence that
broadens across the fields as you
move among physics and chemistry
and biology and the Earth sciences.

Now consider a specific area of sci-
ence that is regarded as fundamental
knowledge: photosynthesis. Here is a
subject that is supposedly “biology.”

Yet it is inextricably linked with, and
usually studied as part of, other sub-
jects (for example, biophysics, physi-
cal chemistry, biochemistry).

The pure biology of photosynthesis
is quite narrow. Terminology and clas-
sification predominate: autotrophs,
chlorophyll, carotenes, accessory pig-
ments, chloroplasts, grana, stroma . . .
Athigher levels of abstraction, there are
enormously complex biological pro-
cesses that also occur in photosynthesis,
some indirectly linked with nitrogen-
fixing bacteria.

The chemistry of photosynthesis
involves complex organic reactions,
requiring inputs of carbon dioxide and
water and producing, after a series of
steps, sugars and oxygen. These reac-
tions require the active involvement
of two different kinds of chlorophyll
and can occur only from exposure to
artificial or natural light. When we
begin to talk about light, we enter the
realm of physics. The incidence of
certain wavelengths of the electro-
magnetic spectrum is essential to the
process of photosynthesis. The inter-
action of light of these wavelengths with
the chlorophyll involves electron exci-
tation by photons. The “light reactions”
of photosynthesis, as well as the “dark
reactions,” involve energy exchange and
the synthesis of molecules in the plant.

The overall linked process of pho-
tosynthesis reduces carbon dioxide
with hydrogen taken from water and
thus releases oxygen from the water.
The removal of carbon dioxide from
the atmosphere when the carbon
atoms are tied up in carbohydrates,
such as sugars and cellulose, and the
subsequent decay and deposition of




carbon compounds in the land and
waters of the Earth are part of the car-
bon cycle in the Earth sciences.

The point is this: how can you leam
the biology of photosynthesis without
also applying laws of physics and chem-
istry, and how could you study the car-
bon cycle in the Earth sciences without
photosynthesis? Where is the narrow
discipline in all this?

Now the crucial questions: What's
the best way to learn science? Should
the physics be learned concurrently,
and as you need it, while you learn
chemistry? And should the chemistry
and additional physics be learned con-
currently, as you need it, while you
learn biology? And should the phys-
ics, chemistry, and biology be learned
concurrently, as you need it, as you
learn the Earth sciences?

These questions get at the essence
of the issue of learning separate dis-
ciplines versus learning integrated
science. How do you decide if the
empirical gas laws—Ilaws used in all
four broad subject areas—belong to
physics, chemistry, biology, or one of
the Earth sciences? If the same laws
are applicable in all areas, what differ-
ence can it possibly make?

And what about specialization for
the serious student? As you learn the
sciences and the mathematics needed
to understand them, there must be
areas where interesting but unan-
swered questions arise in your mind.
When those questions are connected
to our understanding of an important
area of science like photosynthesis,
narrow, specialized research can often
provide the missing link to a better
understanding of the phenomenon.
Without the larger perspective, the
significance of narrow research is of-
ten lost. Indeed there have been times
in the past when such research results
have been found in the literature
years after its need was identified.

I haven't tried to answer the ques-
tions I've raised. I'm committed to the
notion of learning fundamental science
first and using it in applications later. It
would be interesting to know how
bright, inquisitive students feel about
such matters. Write to Quantum and
tell us what you think.

—Bill G. Aldridge
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Friction, fear, friends,

and falling

Contemplations of a climbing physicist

by John Wylie

LIKE FEW THINGS BETTER

than to discover that wildly di-

verse elements in nature have a

thread of physics in common. It
doesn’t matter if I am the first to
make such a discovery—most of the
time I find that I'm about 200-300
years after the fact. The satisfaction
comes from doing it on my own and
relating it to my own experiences.

I've been learning the rudiments of
rock climbing and mountaineering.
Now here is an arena ripe with good
science, from atmospheric physics to
the dynamics of avalanches to the
mechanics of the body while climb-
ing to the technology of modern rope
production. On a recent trip to the
mountains, I found myself at one
point standing on a very steep rock
slope surveying the glacier some 600
meters below when, being a physicist,
I had cause to reflect on the friction
that was responsible for my state of
well being.

Friction

Recently there has been a surge in
interest in the sport of rock climbing.
As with many other sports that have
become popular, its growth has been
accompanied by a technological revo-
lution in the gear required (although,
as in many sports, “desired” is per-
haps a better word). Arguably the big-
gest change in the sport has been the
introduction of high-friction climbing
shoes. Unlike the heavy lug-soled
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hiking boots that have been used for
years, these shoes are very light-
weight and have a smooth rubber sole
that has much in common with the
slick tires used on racing cars. The
impact these shoes have had on the
sport can be illustrated by the tradi-
tional block-on-an-inclined-plane
problem.

Consider one of the new-genera-
tion rock shoes on a rock plane, in-
clined at an angle 6 to the horizontal.
A standard treatment would allow
one to calculate the maximum angle
for which the shoe will not slide
down the plane. Balancing the com-
ponents of the forces along the in-
clined plane (fig. 1), one finds

mg sin 6 = uN = umg cos 6,

where 1 is the coefficient of static fric-
tion between the sole of the shoe and
the surface of the inclined plane. This

\

F.=uN

A

Xng cos 6
Figure 1

A climbing shoe on an inclined plane.
The shoe won't slide down if the
component of the force of gravity
directed down the plane is balanced by
the frictional force directed up the plane.

MOUNTAINTOP TRUTHS

gives tan 6 = |, This isn’t a startling
result until one realizes that u= 1.2
for this new rubber on smooth gran-
ite. This corresponds to an angle of 50
degrees! It’s disconcerting for the nov-
ice but commonplace for an experi-
enced climber to walk up (or down) a
slope approaching this angle.

We can now understand the phys-
ics behind every good climber’s style.
They keep their bodies out and away
from the rock. A natural inclination,
on the other hand, is to cling desper-
ately to the rock face and pull oneself
into the wall (fig. 2). In pushing her
body away from the rock, our climber
puts most, if not all, of her weight
onto her feet—onto her expensive
rubber climbing shoes. The greater
normal force on the climber’s feet re-
sults in an increased frictional force.
The poor climber distributes too
much weight onto her hands, where

Figure 2

Two possible stances for a climber on a
steep slope. The poor stance doesn’t
distribute the bulk of the climber’s weight
onto her feet, and the reduced frictional
force is likely to cause her to slip.



the friction isn’t nearly as good . . .
and is likely to get worse as the
climber gets nervous.

Fortunately not all climbing is on
such easy ground. The most exciting
climbing is done on more vertical ter-
rain. The rule is still “keep your feet
on the rock.” A good example of this
is chimney or corner climbing. In
these situations a climber finds him-
self between two opposing rock walls
and must use his legs to stem be-
tween them. The climber in figure 3
must ascend between two parallel
walls. This chimney is wide enough
to allow the stance shown; narrower
chimneys may require the climber to
adopt a style in which his back and
one foot are on one wall and the other
foot is pressed against the opposing
wall. In any case, the principle of op-
position is the same. The climber in
figure 4 is using the stemming stance
to climb a steep corner. To under-
stand the physics behind either situ-
ation, let’s look at the forces acting on
the chimney climber’s leg.

For the climber in figure 3 to re-
main in a comfortable equilibrium,
the resultant force on his leg due to
the rock wall should be directed
along the long bones of his straight

resultant

Figure 3

A climber using a stemming stance in
a wide chimney. The stance is very
comfortable and can be easily main-
tained if the resultant force of the rock
wall on the climber’s foot is directed
along the length of the climber’s leg.

Figure 4

The author using a stemmming stance to ascend a steep corner. His hands and
arms are being used only for balance. The author’s partner (or “second”) is below
and out of the picture, paying out rope as needed and ready to catch a fall.

leg. As in the last problem, we find
that this requires that tan 6 = u.
Here the climber faces some deci-
sions, however. At an angle of less
than this amount, the frictional
force is larger and the climber is
more secure, but at the expense of
increased stresses in the climber’s
legs and hips. Certainly the
climber’s general flexibility is a fac-
tor as well.

Each climber has an optimal angle,
arrived at naturally through experi-
ence, with which they are most com-
fortable with regard to their flexibil-
ity, security, and stress. To climb a
wider (or narrower) chimney, how-
ever, a climber is forced to vary from
this angle. Wouldn'’t it be nice if a
climber could extend or contract the

length of his legs so as always to be
using his optimal angle while climb-
ing? This is the impetus (sort of) for
the next most important revolution
in climbing technology, but first a
little bit about fear and climbing
methodology.

Feap

With solid climbing technique,
strength, and absolute confidence,
climbers would have no use for ropes
and all the other bits of gear that are
used for safety. The truth is that all
competent climbers go “solo” to one
extent or another, but most prefer the
safety of a rope, particularly when on
new or challenging routes or when
falling rocks present a hazard.

As a climber leads upward, trailing
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arope out behind her, she must some-
how attach the rope to the rock so
that if she falls, she will tumble only
twice the distance from her last point
of attachment. A climbing partner or
“second” is below, paying out the
rope as required, ready to catch a fall.
One of the traditional methods for
attaching the rope to the rock has
been with pitons. A piton (pro-
nounced PEE-tahn) is a steel spike
hammered into a crack or crevice in
the rock. A snap-link aluminum ring
called a carabiner (kah-rah-BEE-ner) is
attached to a hole in the protruding
head of the piton, and the rope is
clipped through it. Climbers have al-
ways appreciated that this method isnot
an entirely acceptable arrangement.
First, it’s hard work to drive pitons
into rock; second, they damage the
rock to a significant degree. The past
decade has seen the energetic devel-
opment of clean “protection”—that
is, small aluminum chocks and nuts
that serve much the same purpose as
pitons but can be placed and removed
without undue effort and without
damaging the rock. Most of these
pieces of protection must be wedged
into small cracks and crevices in the
rock, and the rope must be attached
to them with carabiners. Figure 5

rock crevice

‘&”g@ nut on cable
=
\\ carabiner

rope

Figure 5

An aluminum nut on a wire cable,
wedged into a constriction in a crack.
The rope passes through a carabiner
clipped to the wire cable. In the event of
a fall, the downward load on the nut will
only cause it to wedge more tightly, yet
it’s easily removed. In most cases a sling
will be used to connect the carabiner to
the cable to prevent the nut from
working loose as the rope bounces about.

B JULY/AUGUST 1882

Figure 6
A Friend, a nut, and a carabiner. Notice the springs on the Friend. These merely
hold the device in place in the absence of a large load.

shows how a rope could be anchored
to the rock by these methods. (If you
look back at figure 4 again, you can
see the carabiner attached to a sling,
which in turn is attached to the pro-
tection in the rock wall between the
climber’s legs.)

One bugaboo that remained un-
solved for quite some time was pro-
tecting parallel-sided cracks into
which neither pitons nor these new
pieces of protection could be wedged.
These cracks are essentially very nar-
row chimneys (1-10 cm wide). Many
such possible crack climbs remained
unscaled as few climbers were bold
enough to lead them without protec-
tion. An elegant solution would be to
invent a device that mimics a
climber’s solution to the problem: a
piece that uses friction to remain in
place under a load. And this brings us
to one of the most beautiful applica-
tions of physics in all of climbing.

Friends

The solution might go something
like this. Let’s create a device with
two cams (legs) hinged on a central
shaft (body) that mimics the climber
in figure 3. The climber, you'll recall,
had his legs at an optimal angle only
for one particular width of crack. Our
device should be usable in a range of
crack widths and always function at

its optimal angle 6. In the case of our
device (see figures 6 and 7), this opti-
mal angle will depend on its design,
the materials it’s made of, and the
stress its axle can withstand. Cer-
tainly the cams must be designed
with an expanding radius r so as to
maintain a constant angle 6 as the

Figure 7

A Friend in a vertical, parallel-sided
crack. This is the classic placement for
a Friend. The figure shows the forces
acting on the Friend under a load. The
most important consideration in
designing a Friend is the angle 6
between the cam’s radial arm and the
normal to the rock wall (the tangent to
the cam’s curve).




width of the crack widens. Such de-
vices have been developed and carry
the generic label “spring-loaded
camming devices.” One of the most
popular of these is marketed under
the name Friend.™ The name is so
apt I'll use it in the rest of this article.
(In figure 4, you can see a small Friend
placed in the vertical crack in the
rock wall at leg level and another in
a roof crack just above eye level. A
properly placed Friend is out of sight!)
Let’s look in some detail at the
forces that act on a Friend when it’s
placed in a vertical crack as in figure
7. There is anormal force N due to the
wall, a reaction force R acting on the
axle, aload weight W, and a frictional
force F, = uN between the rock and the
cam. Balancing horizontal and vertical
components of these forces gives

R=N,
W =uN.

Choosing a pivot at the point of con-
tact between the rock and cam allows
us to write the torque equation

Rrsin 6 = Wr cos 6.

Combining these three equations
yields the fundamental design re-
quirement of a Friend:

tan O = u = constant.

What must the shape of the cam be to
satisfy this requirement? Any math-
ematician will know the answer im-
mediately. (Being a physicist, I first
worked out the solution and then felt
silly when I found out how well
known the answer is!)

The shape of a cam is the logarith-
mic spiral

r = r, exp(—o. tan 6),

as expressed in the polar coordinates
(r, o). Here 0 is the angle that the
curve’s radial arm makes with the
normal to the tangent at any point on
the curve. This angle is a constant!
Since we have already found that our
Friend must satisfy the expression
tan 0 = u, we have the equation of a
Friend’s spiral in terms of the coeffi-

cient of friction: 1.00

1 = 1, exp(-op). 0.75

This curve is shown in 0.50

figure 8. For this graph, a
value of i = 0.3 was chosen.
Physically, this corresponds

to an aluminum cam on 0.00

smooth granite. Different

brands of camming devices TS

have slightly varying con-
tact angles, which give them
each a unique character. Su-
perimposed on the plot is a
sketch of an actual cam.

0.25

-0.50
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Figure 8

Mathematicians know A plot of a logarithmic spiral. A contact angle

this curve well—it has been
studied since 1638, first by
René Descartes and later by
Jakob  Bernoulli  and
Evangelista Torricelli. The
logarithmic (or equiangular) spiral has
anumber of other interesting proper-
ties that are worthy of further inves-
tigation. The shape of the spiral is in-
dependent of the scaling parameterr,,
and the origin is an asymptotic point.
The spiral continuously approaches
the origin but never arrives. A student
could then look at the scaling proper-
ties of this spiral by plotting ever in-
creasing magnifications of the neigh-
borhood around the origin. The shape
of the spiral is independent of scale!
In this sense, the spiral has much in
common with a fractal.!

Friends are in fact produced in a
range of sizes for cracks of varying
widths; the cam shapes are all sec-
tions of the same spiral. A Friend,
properly placed, will undergo struc-
tural failure before it slips out of a
parallel-sided crack. This failure oc-
curs at a load of well over 1,000 kg.

So there I am on the rock face, con-
templating all of this, when it occurs
to me that in a serious fall, I could
very easily generate a load well in
excess of this. That’s where the rope
comes in.

Falling

Imagine taking a fall onto a rope
with little or no dynamic character-

1See the feature article on fractals in
the last issue of Quantum.—Ed.

6 = 17° is used. This corresponds to a coeffi-
cient of friction u = 0.3. The shape of an actual
cam is superimposed on the plot; its axle
corresponds to the origin of the curve. Cams of
various sizes are all sections of the same curve.

istics—that is, a rope that doesn’t
stretch. Suppose that after falling
some distance, a climber attains a
downward momentum that is ar-
rested and reduced to zero in a time
At by the action of the rope. Denoting
the change in the climber’s momen-
tum by Ap, we see that the average
force F = Ap/At exerted on the
climber and on the protection attach-
ing the rope to the rock can be im-
mense if the time is small and fall is
great. Quite apart from being a crip-
pling experience, the load placed on
the protection may cause it to fail or
pull free of the rock, which could ren-
der the experience fatal.

That’s why climbers use dynamic
ropes. The initial potential energy
that a climber carries into a fall is, to
a very good approximation, com-
pletely dissipated as heat as the rope
stretches. Indeed, one of the dangers
of a fall is the heat generated, which
can damage a nylon rope. Static ropes,
in contrast, are used when one must
climb on the rope itself. Cavers use
static ropes, as do rescue personnel.
Remember that rock climbers don’t
often use their ropes to aid in the
climb—they bring them along to pro-
vide protection in case of a fall. Ropes
are manufactured to very specific tol-
erances, and a wise climber is always
relating these to the climbing situa-
tion at hand.
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The UTAA (an international alpine
standards association) sets the follow-
ing criteria for a rope to bear their
approval. A mass of 80 kg held by
2.8 m of rope falling 5 m must gen-
erate an impact force of no more than
1,200 kg on the first such test fall. We
forgive them for using kilograms as a
unit of force; the figure should be
about 12 kN. Moreover, a rope is
rated by the number of such consecu-
tive test falls it can survive (usually
eight or nine). A little physics helps il-
lustrate the design considerations
that go into a modern climbing rope.

The quality of a rope is character-
ized by its rope modulus M = EA—the
product of its Young’s modulus E and
its cross-sectional area A. Typically,
M = 40 kN. Young’s modulus is de-
fined as

FI
AAl’

where F is the tension in a rope of
length I that induces an extension of
the rope by Al The ratio of the height
of a fall to the length of the rope be-
tween a leader and his second is
called the fall factor and describes the
seriousness of the fall. Ata fall factor
of ¢ = 2, the height of the fall is twice
the length of the rope (that is, there can
be no intermediate points of protection
between a leader and his second).

Energy considerations require the
work done by the rope in arresting the
fall to match the fall’s potential en-
ergy. That is, mgh = FAl, where m is
the mass of the climber and h is the
height of the fall. The tension in the
rope is then F = mg + mgh/Al, since
the rope must arrest the fall and sup-
port the climber’s weight. From the
definition of the rope modulus we
have Al = FI/M, so that

Mmgh
F=mg+
R
mgo
=mg+—2=1,
8 F

In solving for F we choose the F > 0
solution from the resulting quadratic

9.
mg mg
F=—=4 || == | +0M .
2\/(2] oMimg
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With the UIAA test data, we calcu-
late that F = 8,000 N and Al = 56 cm
for a fall of factor ¢ = 1.8. This corre-
sponds to a percentage stretch of
about 20%. The most serious, or “fac-
tor two,” fall puts both the leader and
the second in peril. The nylon fibers
in the core of a climbing rope may be
stretched beyond their elastic limit,
or they may tear altogether. Under
less threatening conditions, a climber
can count on a 5-10% give in the rope
to ease the impact. In all of this we
have ignored the mass of the rope it-
self (about 73 g/m). It makes an inter-
esting problem to determine its sig-
nificance in climbing practice.

What do we learn from this? A
“gafe” fall isn’t necessarily a short
one; it’s one with a small fall factor.
A long length of rope between the
leader and the second, with protec-
tion placed just below the leader,
would result in a small impact force
on the climber and the protection. So
climbers will tend to take more risks
or “run it out” when they are far
above their second than otherwise.
One must move very conservatively
and place protection frequently at the
beginning of a pitch of climbing
(when just starting out to climb
higher than one’s second).

So how trustworthy is a Friend?
Clearly, under the circumstances of a
severe fall, not very. But with an ap-
propriate understanding of rope and
friction physics, it’s truly one of a
climber’s best friends!

Questions

Two rock climbers are climbing a
steep face. The leader is secured by a
rope that is held by the attentive sec-
ond positioned directly below. The
rope between them is 10 m long and
passes through a carabiner connected
to a Friend placed in a crack in the
rock 6 m below the leader (fig.9). The
mass of the leader’s body and gear is
80 kg. The leader, tired after an in-
spired stretch of climbing, loses her
grip and falls off the rock wall. The
rope tied to a harness around her
waist catches her fall (straight down).
The jerk she experiences is called a
catching shock and is lessened by the
elasticity of the rope.

leader

Figure 9

1. What is the fall factor ¢ for this
accident?

2. What is the value of the catch-
ing shock?

3. What is the deceleration of the
leader due to the rope as a fraction of
the acceleration due to gravity?

4. How much does the rope
stretch?

5. Describe how a fall with a fall
factor ¢ = 0 may occur and calculate
the catching shock in this case. (@

Dr. John Wylie teaches at The Toronto
French School and is the director of the
Canadian Chemistry and Physics Olym-
piad.
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MATHEMATICAL INDUCTION |

Jewels in the crown

The beauty of inductive reasoning Kl

4
by Mark Saul A

T HAS BEEN SAID THAT Problem 1. Show that, for
mathematics is the queen of the anynatural numberN,1+2+3
sciences. If this is true, then she +...+N=N[N + 1)/2.

must wear a crown. What jewels Proof by induction. Part 1:
shall we place in her crown!?
Mathematics abounds in beautiful 1=1(2)/2,
results. Rather than selecting any 1+2=2(3)/2
specific beauty, we should find a 1+2+3=3(4)/2.
prominent place in the crown for
beauties on a larger, more general Part 2: Suppose that the

scale. Among these might be the proposition is true for
method of mathematical induction.

Mathematical induction is a
method of proof allowed us by the
very definition of the natural num-
bers: each number is followed by a
“mext” number. A proof by induction
begins with the observation that a
certain proposition depends on a vari-
able (we'll call it N) that takes on posi-
tive integral values. If this proposition
is true when N = 1, and if, for every
positive integral value of k, the truth
of the proposition for N = k implies its
truth for N = k + 1, then we say that
the proposition has been proved by
mathematical induction.

It can be shown that the principle
of mathematical induction—the fact
that such a procedure establishes the
truth of a statement—is equivalent to
several very basic propositions about
the natural numbers. It’s amazing
how many intricate proofs can be
based on this simple elemental prin-
ciple.

And how does this gem appear
in the average high school text-
book? Typically, we find a
problem like this. .
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Al IiwmarL £



Aouen| Aableg Ag Uy

N = k; thatis, suppose 1 +2 + 3 + ...
+k+(k+1)=k(k + 1)/2. We can add
the term (k + 1) to each side of this
equality. We find that

1+2+3+...+k+(k+1)
=k(k+1)/2 +(k +1)
=(k+ 1)(k/2+ 1)
=(k + 1)[(k + 2)/2].

Since this is exactly the form pre-
dicted by the original assertion, the
proof by induction is complete.

One practices on more and more
complicated problems of this nature.
One finds that the “hard part” of the
proof lies in establishing that the ex-
pression obtained by adding the next
term is identical to the prediction of
the proposition. This is accomplished
by algebraic manipulation, and one
quickly gets the idea that mathemati-
cal induction is a thinly disguised
version of those dull exercises in sim-
plifying algebraic expressions that
one must practice but offer no delight
or surprise.

And so the bright gem of the math-
ematical crown is used to cut glass.

This dreary sort of introduction
tails to exhibit two key facets of
mathematical induction. One of
these facets is the element of discov-
ery that an inductive situation can
provide. For example, suppose the
same problem were posed like this.

Problem 2. The first “triangular”

number is 1:
[ ]

The second triangular number is 3:
[ ]
® [ ]

The third triangular number is 6:

Find the 100th triangular number.

In this presentation the problem is
still open: the reader must observe a
pattern, formulate a hypothesis, and
then explain what makes the pattern
reproduce itself (the inductive step).
For example, we may try to factor the
triangular numbers:

1=1,

3 =1x3,
6 =2x3,
10 =2 x5,
15 =3 x5,

and note a pattern emerging in the
tactors. A shrewd guess at the alge-
braic form of the factors will give the
game away, and the routine of induc-
tion, as discussed above, takes over.
But before this, we have had the joy
of discovery, of putting together the
pieces of a puzzle. It is this joy that
George Polya celebrated in his monu-
mental work Induction and Analogy
in Mathematics, in which you can
tind many more such examples.

A second facet of mathematical
induction that’s concealed by the
usual textbook treatment is its gener-
ality. Mathematical induction is not
simply a technique used to sum se-
ries. It can be used in a wide variety
of situations and in discussing diverse
types of mathematical objects.

The collection of problems offered
below can serve as an introduction to
induction as discovery and to the many
situations in which induction can be
applied. I may have omitted your favor-
ite bit of induction. In fact, I have delib-
erately omitted what is perhaps the
greatest inductive tour-de-force in the
history of mathematics: Cauchy’s proof
of the arithmetic mean-geometric
mean inequality. This you can look up
elsewhere (for example, see Beckenbach
and Bellman).!

Each example presents an opportu-
nity to make a general conjecture out
of an observed pattern. In this sort of
induction problem, the first part of
the proof (“grounding” the induction
in the first few cases) is simply a rep-
etition of the process that generated
the initial observations. But since it’s
part of the formal proof, I feel com-
pelled to mention it each time.

Example 1. Compute the numeri-
cal value of
100 -(99 — (98 - (97 -
(.= (3=(2=1)) ...

1See also “What Did the Conductor
Say?” and math challenge M58 in this
issue.—Ed.

Solution. We note that

el
§if=1) =3,
4-(3-2-1)) =2,
5-(4-(3-(2-1))=3

and make a guess.
Conjecture. For any natural num-
ber N,

N-(N-1-(N-2—(N-3-
[..=(3=(2-1)...0)
= N/2if Nis even,
(N +1)/2 if N is odd.

Proof by induction. Part 1: This
part was completed in forming the
conjecture.

Part 2: Suppose the proposition is
true for N = k. That is,

k-(k-1-(k-2-(k-3-
(..=3=(2-1))... )
= k/2 if k is even,
(k + 1)/2 if k is odd.

Then we look at the expression for
N=k+1:

k+l-(k=(k-1-(k-2~(k-3-
(=B =2-1))... )

If k is even, this is equal to k + 1 —
(k/2) = (k + 2)/2, which is what the
proposition would predict (since k +
1 is odd). If k is odd, this is equal to k
+1—(k+1)/2 =k +1)/2, which again
accords with the prediction of the
proposition.

Another way to formalize this
problem is to create a sequence:

a =1,

a,=2-1,
a,=3-(2-1),
a,=4-(3-(2-1)),

and, ingeneral, a =n-a__ . Thisisa
recursive definition: each term of the
sequence (except the first) is defined
using the previous term. Problem 2
above is asking for the value of a,,,.
As we'll see, inductive proofs work
well with such recursive definitions.

Challenge 1. Compute the numeri-
cal value of

100* - (992 — (982 - (972 —

(o= (32— (22 = 17)) ... ).
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Example 2. The Fibonacci num-
bers are defined as follows:

F -1,
F _+F ,forn>2.

Fl

Fn = 1 n-

Find all the even Fibonacci numbers.
Solution. Let’s calculate the first

ten Fibonacci numbers:

1,1,2,3,5,8, 13,21, 34, 55.

By observation, we find that the sub-
scripts of the even Fibonacci numbers
are exactly the multiples of 3.

Conjecture. F, is even if and only
if n is a multiple of 3.

Proof by induction. Part 1: This is
established above, forn=1, 2, 3.

Part 2: Suppose we know that the
conjecture is true for every value of
N less than 3k. I'll show that it’s
also true for every value of N less
than 3k + 3. By the induction hy-
pothesis F,, ,and F,,  are both odd.
So their sum, whichis F,, ,, is even.
Also by the induction hypothesis F,,
is even, while F,, | is odd. So their
sum, which is F, |, must be odd.
The same type of argument will
show that F,,  is odd.

This proof displays two variants of
the principle of mathematical induc-
tion. First, we include in the induc-
tion hypothesis not only the assump-
tion that the proposition is true for
the case N = k but also the assump-
tion that it’s true for certain natural
number less than or equal to k. It
turns out that this stronger assump-
tion, even if it includes all the natu-
ral numbers less than or equal to k,
also allows us to proceed inductively.

The second variant in this proof is
the fact that the induction proceeds
in a “skip-step” fashion: we prove the
conjeeture for F, ,; By ., andFy, .
separately. Together, the three cases
will cover all the positive integers.

Challenge 2. Which Fibonacci
numbers are multiples of 5? Which
are multiples of 7?

Challenge 3. Make a general con-
jecture about which Fibonacci num-
bers are divisible by a given number
d. Test your conjecture forn=4, 6, 8,
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9, 10, 11. How general a statement
can you make about when d divides
F?

Challenge 4. What would happen
if we changed the first two terms of
the Fibonacci sequence but left the
rule of formation the same? That is,
suppose we define the “Gibonacci
numbers” as follows:

& =9
8 =_2/
g =8 _,+g, ,forn>2

Or suppose we chose two other num-
bers for the first two terms of the se-
quence, then proceeded “fibonaccily”
to form the rest of the sequence.

How many of the observations
given above still hold?

Example 3. Let f{x] = 2x + 1. Com-
pute fifix)), Afifix))), and fif{fifix]))). Each
of these functions is of the form ax +
b. What do you notice about the co-
efficients? Does the pattern continue?

Solution. By direct computation
we find that

fiflx)) = 4x + 3,
ffix))) = 8x +7,
fifififx))) = 16x + 15.

Conjecture. If f (x) = 2x + 1 and f, x)
=f(f, ,(x)), then f (x) = 2"x + 27 — 1.

Proof by induction. Part 1: This is
demonstrated above.

Part 2: Suppose f, = 2°x + 27— 1.
Then f, | (x] =f[f (x)) = 2(2x + 27— 1)
+1=27"1x+ 2741 -2 +1=2"+1x 4
27+ 11, which is what the conjec-
ture predicted.

Challenge 5. Define

_4x-3
2x+1

A(x)

and form the functions f, f,, ... as
before. These are now somewhat
more complicated since they depend
on four real numbers, not just two.
Can you give a rule of formation for
the four sequences of coefficients
now? (Hint: if you know about matrix
multiplication, compare the first few
terms of the series with the powers of

2. 1
trix multiplication.)

the matrix [ ] using ordinary ma-

Example 4. In the kingdom of
Aveugle, the Bourgnes are kings. That
is, King Bourgne XXIII (the twenty-
third of that name) was preceded by
King Bourgne XXII, who was pre-
ceded by Bourgne XXI. In fact, all the
23 kings of the present dynasty had the
same name. Before that, they also had
the name Bourgne, but they didn’t keep
count of their number. The Bourgnes
have been kings in the kingdom of
Aveugle since the late Jurassic.

The first King Bourgne (he had al-
ready lost track of his number) had a
box full of diamonds. When he died,
one diamond was given to his favor-
ite servant, exactly half the remaining
diamonds were sold to help the poor,
and the rest became the property of
the king’s (unique) heir, who became
the new King Bourgne. This estab-
lished a tradition. Over the years, the
remaining diamonds were never
touched except when King Bourgne N
died. When this happened, one dia-
mond was given to a servant and half
of the remaining diamonds were do-
nated to charity. The rest of the dia-
monds became the property of King
Bourgne N + 1. This tradition has con-
tinued down to the present. If King
Bourgne XXIII has exactly one dia-
mond, how many diamonds did
Bourgne I have? [Wisconsin Math-
ematics, Engineering, and Science
Talent Search (1982)]

Solution. If Bourgne XXIII has one
diamond, then Bourgne XXII must
have had 1 + 1 + 1 = 3 diamonds;
Bourgne XXI must have had3 +3 + 1
= 7 diamonds; and Bourgne XX had 7
+7 + 1 =15 diamonds.

Conjecture. N Bourgnes ago, the
king had 22+ — 1 diamonds.

Proof by induction. Part 1: This
portion of the proof is demonstrated
in the calculations above.

Part 2: Suppose that k Bourgnes
ago, the king had 2%+! — 1 diamonds.
How did he get his diamonds? The
king before him must have had
2(2k+ 1~ 1)+ 1 =22 -1 diamonds.
This is exactly what the conjecture
would predict.




In the specific case described, the
first king is 20 kings before the
present one, so he had 22! — 1 dia-
monds.

Challenge 6. What can you say
about the number of diamonds
owned by King Bourgne I if the
present King Bourgne (whose number
is forgotten) has r diamonds left?

Example 5. A farmer has harvested
a number of apples. He is paid for
them in the following peculiar fash-
ion. He is allowed to divide the apples
into two piles, in any way he chooses.
The number of apples in each pile is
counted and the two numbers are
multiplied together. This product is
converted into dollars, and the farmer
receives this number of dollars as a
partial payment.

The farmer is then allowed to
choose one of the two piles he has just
created and separate this pile into two
smaller piles. Again, these two new,
smaller piles are counted and the
numbers are multiplied together.
This product is converted into dollars,
and the farmer receives this number
of dollars as continued payment for
his apples.

Now there are three piles of
apples. The farmer is allowed to
choose one of the piles and separate
it into two piles. These are counted,
the product is taken, and the farmer
receives this number of dollars as
continued payment.

This elaborate process is continued
until the piles each have a single
apple. In particular, any pile of two
apples must eventually be separated
into two “piles” of one apple each.
This final separation of the two apples
will contribute 1 x 1 = 1 dollar to the
farmer’s payment.

If the farmer has 100 apples, how
should he perform the divisions to get
the best price for his apples? What is
that price? [Kvant, problem M100
(1987, No. 1)]

Solution. Trying a few simple
cases (two or three apples), we find
that it doesn’t matter how the subdi-
vision is done and that the payment
is always n{n + 1)/2 for n apples (the
nth “triangular” number).

Conjecture. The payment for n
apples is always the nth triangular
number.

Proof by induction. Part 1: This
portion is left to the reader.

Part 2: We choose a “strong” in-
duction hypothesis, as in example 2.
Suppose that the payment for d
apples is d(d + 1)/2, independent of
the mode of division, for every num-
ber d < k. We take k + 1 apple and di-
vide them into two piles in any way
at all. Suppose these piles have a
apples and b apples. Then a + b = k,
and both a and b are less than k. So
the induction hypothesis applies to
the division of each of these piles.
From subdividing these piles, we get
ala + 1)/2 and b(b + 1)/2 dollars. We
also get ab dollars from the product
of the first two piles. This gives us a
total of ala + 1)/2 + b(b + 1)/2 + ab dol-
lars for the payment. We then have

ala+1)/2+ b(b+1)/2 + ab
=(a>+a+ b*+ b+ 2ab)/2
=[(a*+ 2ab + b*) + (a + b)}/2
=(a+Db)a+b+1)2
=k(k +1)/2,

as predicted by the conjecture.

This proof demonstrates the power
of a well-chosen induction hypoth-
esis.

Example 6. Three lines that are not
coincident (that is, do not pass
through the same point) and no two
of which are parallel divide a plane
into 7 regions. Into how many regions
do n lines divide a plane if they are in
general position (no two are parallel
and no three are coincident)?

Solution. We find the following
values:

Lines Regions
1 2
2 4
3 7
4 11

It isn’t hard to conjecture that the
number of regions created by n planes
is given by (n* + n + 2)/2 regions—for
example, by comparing this sequence
with the “triangular” numbers dis-
cussed above.

To prove this, we assume that any

k lines in general position divide a
plane into (k* + k + 2)/2 regions and
see what happens when we add a new
line. Clearly, the new line intersects
each of the k old lines once (to be in
general position) and so is divided
into k + 1 parts. Each of these parts
divides one of the old regions in two,
thus creating a new region. So there
will be k + 1 new regions. We have
now reduced the problem to an alge-
braic identity:

(R2+k+2)/2+(k+1)
=[(k+1P+(k+1)+2]/2,

which is easy to verify.

Challenge 7. A set of three circles
is such that every pair of circles inter-
sects in two distinct points. Into how
many regions do these three circles
divide the plane? Into how many re-
gions do n circles divide the plane if
every pair of them intersects in two
distinct points?

Challenge 8. The same as chal-
lenge 7, but replace the circles with
triangles.

Challenge 9. The same as the pre-
vious challenge, but replace the tri-
angles with parabolas.

Example 7. Find a formula for the
sum of the first n Fibonacci numbers.
Solution. We note that

1=1,
1+1=2,
1+1+2=4,
1+1+2+3=7,

1+1+2+3+5=12,

and note that each result is one less
than a Fibonacci number.
Conjecture.F, +F,+...+F =F - 1.
The first few cases are already es-
tablished. To complete the induction,
weadd F_ | to each side of the equa-
tion above. On the right we get F_ |
+F _,-1,whichisequaltoF -1

by the definition of F__.. The induc-
tion is complete.

Challenge 10. What is the sum of
the first n Gibonacci numbers? (See
example 2 and challenge 4.
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Figure 1

Challenge 11. Find a formula for
the sum of the squares of the first n
Fibonacci numbers, or a more general
Fibonacci-type sequence. Prove that
your formula is valid.

Example 8. Starting with the set
S0=11,2,3,4,5,6,7,8,9, 10}, form
as many subsets as possible, subject
to the restriction that no two ele-
ments of any subset differ by 1. For ex-
ample, the subset {1, 3, 5}is allowed, but
not the subset {1, 3, 4}. In particular, the
“singleton” subsets are all allowed, as is
the null set (since no two of their ele-
ments differ by 1). How many such sub-
sets are there? [Canadian Mathematical
Olympiad (1985)]

Solution. We choose to answer a
more general question. How may
such subsets of the set {1, 2, 3, ..., n}
are there? Call this number S_. Then,
by direct count, S, =2, S,=3, S, =5,
S, = 8.1t looks like the S s are really
the F ’s (the Fibonacci numbers) in
disguise. But why?

It’s not hard to show that the se-
quence S, will satisfy the Fibonacci
recursion. Suppose we knew S, and
S,. How would we count S, 7 Surely
any “good” subset counted by S, is
still counted by S, and this will ac-
count for all the good subsets that
don’t include the number 10. How
many subsets are there that do in-
clude 10? Well, if we cross out the
number 10 in each such subset,
we’ll have a good subset counted by
S, because the initial subset (which
contained 10) didn’t contain 9—it
was “good.” So S, counts just those
good subsets of S, that include the new

10
element 10. Therefore, S, + S, = S, can
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be quickly made general, and S, turns
out to be 144.

Challenge 12. Pierre Le Fou, the
chef at Le Quincaillerie, knows how
to prepare only two dishes: porcupine
en colere and koala bonne femme. He
prepares one of these dishes every
evening. House rules allow him to
serve the same dish twice in a row,
but never three times in a row.

Pierre is charged with planning the
menus for five straight days. How many
such menus can he plan? How many
menus can he plan for n days in a row?

Example 9. A rural county con-
tains several towns connected by one-
lane roads. To avoid head-on colli-
sions, the county government has
decided that every road can be trav-
eled in only one direction. To save
money, they decide that no two
towns should be connected by more
than one road. To save road signs, the
roads intersect only at the towns they
connect: wherever two roads cross,
the county has built overpasses, so
that you can “change”roads only at a
town. In addition, roads must be built
so that one can get from any town to
any other town, passing through at
most one more town.

1. Show how the required roads
can be built for a county with three
towns.

2. Show that the required roads
cannot be built if the county has two
or four towns.

3. Show that the required roads can
be built if the county contains any
(natural) number of towns greater
than four.

Figure 3

Solution. See figure 1 forn =5 and
figure 2 for n = 6.

Using mathematical induction, we
assume that the required network can
be drawn for any county of k towns. Fig-
ure 3 illustrates the situation for a
county with k + 2 towns. We can show
that the required network exists by des-
ignating two of these as “new” towns
(here they are labeled A and B) and
thinking of the other k towns as “old”
towns. By the induction hypothesis, the
old towns can be connected by a net-
work as required. Suppose this network
has been drawn in, under the shaded
“cloud” in the figure. We can include
the two new towns by connecting new
town A to each old town and each old
town to new town B. A final connection
of B to A completes the network. We
have shown that if the required network
can be drawn for any k towns, then it
can be drawn for any k + 2 towns. Since
we have proved the assertion for two
consecutive integers, this completes the
induction. Q)
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MATHEMATICAL
SURPRISES

Fibonacci Strikes again!

And again, and again . . .

by Elliott Ostler and Neal Grandgenett

UMBER SEQUENCES HAVE

long provided mathematicians

with thought-provoking prob-

lems and interesting applica-
tions to the real world. One particu-
lar sequence, the Fibonacci series, is
especially interesting and powerful in
its mathematical applications. After
a short brainstorming session, we de-
cided to write down just a few of our
favorite applications of this amazing
number sequence.

The Fibonacci series is easily pro-
duced by starting with 1 and adding
the last two numbers to produce the
next number in the sequence: 1, 1, 2,
3,5,8,13,21, 34, 55, ... . The series
was first discovered by Leonardo of
Pisa (better known as Fibonacci) in
the early 1200s. It was given as a so-
lution to a now famous problem
posed by Fibonacci, commonly
known as the “rabbit problem.” It
reads:

How many pairs of rabbits will
be produced in a year, beginning
with a single pair, if in every
month each pair bears a new
pair that becomes reproductive
from the second month on?

Figure 1

Fibonacci rabbit propagation. We start
with one pair of rabbits at the beginning
of the first month. At the end of month 1
there is still only one pair, since the
rabbits are not reproductive until the
second month. At the end of month 2
there are now two pairs, since the first
pair has become reproductive, while the
second pair is not yet reproductive. The
figure could be continued indefinitely.

The first few months of the solu-
tion are shown in figure 1. Notice
how the pairs present at each month
correspond to the Fibonacci series.

By continuing the rabbit-pro-
ducing process, the following
numbers of rabbits are born at
the end of each of the months
inayear:1,1,2,3,5,8,13,21,
34, 55, 89, 144, 233. So the
answer to the problem is
that a total of 233 pairs of
rabbits would exist at the
end of twelve months.
The sequence could eas-
ily be continued to find
the resultant pairs for
any number of
months, since the
Fibonacci series is
infinite.

N

The functional notation for the
series was first noted by Johannes
Kepler in 1611. It was given as f, +
fo..=1,., where f_is the nth Fi-

bonacci number, f, = 0, and f, =

1. The Fibonacci series has
been found to appear in many
branches of mathematics and
can be associated with a
great variety of applica-

B tions. Below are some ex-
amples of Fibonacci
== numbers in probabil-
ity, geometry, mea-
surement, matrix al-
gebra, architecture,
and natural objects.

Prabability

- Fibonacci
numbers have

ole
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Figure 2
The Fibonacci series from the diago-
nals of Pascal’s triangle.

been found to appear in a variety of
probability and combinatorial prob-
lems. Many of the classic problems in
these areas are binomial in nature,
such as coin-toss problems. The dis-
tributions of the solutions to these
problems typically relate to the bino-
mial theorem and can be derived from
the coefficients in the expansion of
Pascal’s triangle. Close observation of
this triangle shows that the Fibonacci
series can be obtained by summing
the elements of the diagonals, as illus-
trated in figure 2.

The fact that this sequence is gen-
erated in the diagonals of Pascal’s tri-
angle indicates that it may also be
found in the solutions to problems
related to binomial distributions.
Here is one such problem:

If a coin is flipped N times and
the resulting patterns are re-
corded in order as the coin is
flipped, how many unique se-

quences of heads and tails are
possible if the coin can never
land on heads two or more
times in a row?

Table 1 lists all possible sequences
for each given number of flips. The Fi-
bonacci series can be seen as the
number of appropriate sequences at
each of the consecutive number of
flips. Using this continuing pattern,
the number of unique sequences for
any number of flips can be deter-
mined.

Geometry

Another area in which the Fi-
bonacci series commonly appears is
geometry. In the following example,
the four diagrams illustrate how the
Fibonacci numbers appear in increas-
ingly larger five-point stars con-
structed from regular pentagons.
When the length of the side of the ini-
tial pentagon is a Fibonacci number
of 5 or greater, approximates of Fi-
bonacci numbers are generated as the
stars are constructed. Figure 3 illus-
trates this process.

In figure 3a, a triangle is drawn
between points A, B, and C. It can be
shown that the length of segments
AC and AB is approximately eight.
An identical triangle can then be
drawn between points B, C, and D,
creating the first point of the star.
Triangles ABC and ABD are congru-
ent and symmetric with respect to
segment BC. The same process is
then followed for each of the remain-
ing sides of the original pentagon, pro-
ducing figure 3b.

Figure 3

The Fibonacci series in the measurements of recursive pentagons and stars. Note that
the relationship is only an approximate one. Since angle ABC = 72° and AB = 8, cos
72° should equal the ratio of 2.5 : 8 (0.3125). In actuality, this ratio only approximates
the cosine of 72°, which is 0.309017. If larger Fibonacci numbers are used, such as 89
and 144, the ratio obtained (0.309028) more closely approximates cos 72°.
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Table 1
| Number | Sequences without ‘
of flips consecutive heads | Total
1 (H), (T) 2
2 HT), (TH), (TT) | 3
3 | [HTT),(THT), s
(TTH), (HTH), (TTT)
(HTTT), (THTT),
4 (TTHT), (TTTH), 8
(HTHT), (HTTH),
' (THTH), (TTTT)

(HTTTT), (THTTT),
(TTHTT), (TTTHT),
(TTTTH), (HTHTT), \

5 (HTTHT), (HTTTH), | 13
(THTHT), (THTTH),
(TTHTH), (HTHTH),
(TTTTT) 1

At this point, you can see that all
of the resulting measurements ap-
proximate Fibonacci numbers. Figure
3c shows the points of the star joined
to make a new pentagon. The mea-
surements approximate Fibonacci
numbers, but are not exact, as shown
in figure 3d. Repeating the process
from figure 3a, one can construct a
new star from the new pentagon
shown in figure 3c. This process will
infinitely generate stars and penta-
gons that more and more closely ap-
proximate Fibonacci numbers as
measurements, provided that the
original pentagon had a Fibonacci
number of at least 5 as the length of
its sides.

Measurement

In the area of measurement, the
Fibonacci series can be used as a
quick conversion table for changing
between kilometers and miles. The
series can be used to estimate the con-
version of miles to kilometers by us-
ing any pair of consecutive numbers
in the series. For example, 3 miles is
roughly 5 kilometers; 5 miles is
roughly 8 kilometers; 8 miles is
roughly 13 kilometers; and so on.
This conversion table works because
of the similarity in value between the
ratio of two consecutive Fibonacci
numbers (1.618 as the numbers in-
crease) and the general conversion




Table 2

dlometers| 1 [ 1 /2 3 [ 5 | 8

13 21 34 55

miles 1 1 2 3 5

8 13 21 34

ratio

‘1 2 |15

1.66‘ 1.6

1.625 1.617

1.615 | 1.619 ‘ 1.618

factor for changing miles to kilome-
ters (1.609). Since the conversion fac-
tor of miles to kilometers has a value
that’s only 0.009 different from the
Fibonacci ratio of 1.618, the Fibonacci
series can act as a quick and reason-
ably accurate conversion table for
miles to kilometers (see table 2).

Architecture

The ratio observed between con-
secutive Fibonacci numbers isn’t just
useful as a mere conversion table.
This ratio is a famous number that’s
commonly referred to as the “golden
ratio” or “golden section” and has
greatly influenced architecture and
art through the ages.! This ratio, often
associated with the so-called “golden
rectangle,” has intrigued scholars for
many years. The Parthenon in Ath-
ens fits within the golden rectangle—
its dimensions are related to the
golden ratio (fig. 4). This ratio is found
in many other ancient and modern
buildings as well.

Matrix algebra

On a more theoretical level, the
Fibonacci series can be seen in certain
problems in linear algebra. For in-
stance, the sequence is generated by
using a standard 2 x 2 matrix that’s
raised to the power of N. This gener-
ating matrix consists of three identical

[ M M m M M M m m mmm]

Figure 4

The Parthenon at Athens inside a
rectangle whose dimensions match the
golden ratio.

!See the Kaleidoscope and Gallery Q
in the January/February 1991 issue of
Quantum.—Ed.

nonzero elements in the first three po-
sitions and a zero in the last position:

11
F= !
i o)
All the elements produced will be
Fibonacci numbers. Here is the gen-

erating matrix raised to the fifth
power:

3oL ey -9
536 G e )

Notice that all the numbers produced
in each resulting matrix are Fibonacci
numbers, but in particular the top left
element (printed in bold) gives each
consecutive term of the Fibonacci
series.

Nature

In nature, Fibonacci numbers have
been found to be directly associated
with the natural spirals in objects
such as pine cones, pineapples, and
daisy blossoms. Figure 5 illustrates
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Figure 5

how these numbers appear in the
head of most daisy blossoms. The in-
dividual florets of the blossom create
two spirals—one clockwise set and
one counterclockwise set. The clock-
wise set contains 21 spirals—a Fi-
bonacci number; and the counter-
clockwise set contains 34
spirals—the next consecutive Fi-
bonacci number.

This double spiraling pattern with
aratio of 21 : 34 representing consecu-
tive Fibonacci numbers also appears
in pine cones, where the ratiois 5: 8,
and in pineapples, where the ratio is
8 : 13. The Fibonacci series occurs in
many other plant patterns, such as
the leaves of a cherry tree, the petals
of a tulip, and the long branches of a
willow.

In this article we’ve explored just
a few of the applications of the Fi-
bonacci series in mathematics. Its
appearance in the world of art is no
less impressive. This series, with its
associated golden ratio, can be found
in a wide variety of classic works—
for instance, in paintings by
Leonardo da Vinci. With a little re-
search one can become truly fasci-
nated by the diversity of its manifes-
tations. The  mathematical
applications alone are so varied and
extensive that an entire journal is
devoted to them: The Fibonacci
Quarterly.

Why does the Fibonacci series
occur so often in our world?

CONTINUED ON PAGE 30

Fibonacci numbers occurring in the 21 : 34 double spiraling pattern of a daisy
blossom. The daisy’s spiraling pattern (a) usually consists of 21 clockwise spirals

(b) and 34 counterclockwise spirals (c).
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The world according to
Malthus and Volerra

The mathematical theory of
the struggle for existence

by Constantine Bogdanov

TTEMPTS AT A MATHE-

matical description of the dy-

namics of densities of certain

biological populations and asso-
ciations have a remarkable history.
One of the first models of the dynam-
ics of population growth belongs to
Thomas Robert Malthus (1766-
1834), an English cleric and econo-
mist.

In An Essay on the Principle of Popu-
Iation (1798), Malthus stated that in
human society, and in the living world
as a whole, there exists an absolute law
of limitless reproduction of individuals.
Furthermore, the population of the
Earth grows in a geometric progression,
while the means of subsistence increase
arithmetically.

Generalizing from the role of bio-
logical factors in the reproduction of
a population, Malthus painted the
severe consequences of the law of
population he discovered. He thought
that human society too often inter-
feres with the workings of nature, and
he argued for the abolition of laws in
England that provide for the suste-
nance of the poor. “After the public
notice which I have proposed had
been given, and the system of poor-
laws had ceased with regard to the ris-
ing generation,” Malthus wrote in the
revised edition of his Essay, “if a man
chose to marry, without a prospect of
being able to support a family, he
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should have the most perfect liberty
so to do. Though to marry, in this
case, is, in my opinion, clearly an
immoral act, yet it is not one which
society can justly take upon itself to
prevent or punish; because the pun-
ishment provided for it by the laws of
nature falls directly and most severely
upon the individual who commits
the act, and through him, only more
remotely and feebly, on the society.
When nature shall govern and punish
for us, it is a very miserable ambition
to wish to snatch the rod from her
hand and draw upon ourselves the
odium of executioner.” In Malthus’s
view, such a person “erred in the face
of the most clear and precise warn-
ing” and has no right to complain to
anyone—he has “no claim of right on
society for the smallest portion of
food, beyond that which his labor
would fairly purchase.”

In its mathematical form, the
Malthusian model is quite simple.
Let N(t) be the total number of a
population at time t. According to
Malthus, the growth rate of the popu-
lation is directly proportional to the
population, or

dN/dt = aN,
where a is the difference between the

birth rate and the death rate. Integrat-
ing this equation, we get

AW OF THE  JUN&GLE

Nit) = N(0)e*,

where N(0) is the population density
at time t = 0. It’s evident that
Malthus’s model with a > 0 gives an
infinite growth of population, which
is never observed in natural popula-
tions, where the resources providing
for the growth are always limited.

Subsequent research has shown
that the population changes in the
plant and animal kingdoms cannot be
described by Malthus’s law; rather,
the reproduction of each species
changes so that the species survives
in the process of evolution.

The first success of mathematical
ecology—the science of the relation-
ships among living organisms and the
associations they create among them-
selves and with the environment—
was the Volterra-Lotke model pro-
posed by Vito Volterra in his book
The Mathematical Theory of the
Struggle for Existence (1931). The bi-
ography of this scientist, known for
his classic studies in integral calculus
and functional analysis, is interesting
in its own right. In many respects it
exemplifies the title of his famous
book.

Vito Volterra was born in Italy in
1860. His father died when Vito was
two, and the family was left with
practically no means of sustenance.
Yet, in spite of the difficulties, Vito



succeeded in obtaining an education.

He had learned differential calcu-
lus while still a teenager; not know-
ing integral calculus, he discovered it
on his own. He graduated with hon-
ors from the science department of
Florence University. Volterra quickly

became world-famous for his publica-
tions in various fields of pure math-
ematics. But he was also interested in
various problems of applied math-
ematics.

In 1925, in conversations with
Umberto D’Ancona, a young zoolo-

gist, he learned a curious fact from the
statistics of Adriatic fish markets. It
turned out that during World War I
and immediately after, when the fish-
ing trade had been sharply curtailed,
the relative number of predatory fish
in the catch had risen. To explain
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this, Volterra proposed a mathemati-
cal model describing the relations
between predator and prey and the
changes in their populations over
time. Mathematical ecology became
his main interest, and he devoted
himself to this subject for the rest of
his life.

Volterra’s personality combined
the talent of a researcher and the tem-
perament of a political activist. In
1905 he was the youngest senator in
the Kingdom of Italy. Expressing pro-
gressive views, he actively opposed
fascism and was the only senator to
vote against the transfer of power to
Mussolini in 1922. After that, he be-
came a political émigré in France. In
an attempt to enhance the image of
the fascist dictatorship, Mussolini
invited Volterra to return to Italy,
promising honors and titles. But the
scientist refused to return, offering an
enduring example of honesty and
principle in political life. Volterra
died in 1940.

Predator and prey

One portion of Volterra’s math-
ematical ecology is devoted to analyz-
ing the “interrelations” of predator
and prey. I think you'll find it inter-
esting to learn how Volterra himself
solved this problem. Then we'll try to
solve the same problem “without
even thinking”—by means of a com-
puter. So—let’s get started!

Let there be two types of animals,
one of which feeds on the other
(predator and prey). Under this condi-
tion, the relative growth of the num-
ber of prey living in isolation (in the
absence of predators) per unit time
equals e ; at the same time, the preda-
tors, living apart from their prey,
gradually die of starvation, and the
relative decrease in their population
per unit time equals e,.

As soon as the predators and the
prey begin to live in close contact
with one another, the changes in their
populations become interdependent.
In this case, the rate of growth of the
prey population will depend on the
size of the predator population and
will decrease as that population in-
creases. The inverse relation will oc-
cur when there is a relative increase
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in the predator population; the in-
crease can be considered proportional
to the prey population. All this can be
written as

dN,/dt = N (e, - a,N,),
dN,/dt =-N,(e,—a,N,), (1)

where N, and N, are the numbers of
prey and predators, respectively, at
the time ¢; a, and a, are constants.

Unfortunately, it’s impossible to
solve the system of equations (1)}—
that is, to find an analytic expression
for N,(t) and N, (t). But we shouldn’t
despair, since we can always make
the problem just a little bit easier.
Take a close look at system (1) and
you'll have no trouble finding one of
the solutions of the system—the sta-
tionary one.

If we assume that the numbers of
predators and prey don’t change over
time, the left sides of (1) become zero,
while the right sides tell us that such
an equilibrium is possible only if N,
=e,/a,and N, = e /a . So we've found
one of the solutions of system (1).

Now let’s assume that the preda-
tor-prey system has somehow gotten
close to equilibrium and the predator
and prey populations deviate only
slightly from the corresponding sta-
tionary values. Letn =N, —e¢,/a, x =
N, - e /a,; then, after substituting n
and x for N, and N, in system (1) and
ignoring nx in comparison with the
other terms, we get

dn/dt = —xae,/a,,
dx/dt = ne,a,/a,. (2)

Let’s introduce a new variable v =
na,e /a,. After substitution, system
(2) will be changed into

dv/dt = -e ex,
dx/dt = v. (3)

But now let’s recall the system of
equations describing the motion of a
mass on a spring. Let x be the dis-
placement of the center of mass from
the equilibrium position and v be its
velocity. Of course these equations
can describe the motion of such a
mass on a spring if e e, is equal to the
ratio of the spring constant to the
mass. This means that the solutions
of our system of equations coincide

with the solution of the “textbook
problem” for the oscillation of a mass
on a spring.

The coincidence of the equations
describing the oscillation of a mass on
a spring and the numbers of individu-
als in the predator-prey system en-
ables us to state that the numbers of
predators and prey should oscillate

with a period of 211:/ eey . In addi-
tion, it’s known that the oscillation of
the velocity of a mass on a spring
leads the oscillation of its coordinate
by one fourth of the period. Therefore,
the oscillations of the prey population
must also lead the oscillations of the
predator population by one fourth of
the period.

So the solutions of the Volterra—
Lotke system of equations are oscil-
lations of predator and prey popula-
tions, shifted in phase relative to one

another, with a period of 27r/ \/EE :
Of course, when the amplitude of
these oscillations increases, they stop
being sinusoidal; their period, how-
ever, stays nearly the same.

You must admit, though, that the
predator—prey system is unlikely to
serve as such an unfading generator of
oscillations! Do you think perhaps
that modeling the relations between
the predator and prey by means of the
system of equations (1) greatly over-
simplifies the situation?

Let's forget the equations

Indeed, let’s forget the equations.
Let’s imagine that we have a hypo-
thetical two-dimensional ocean cut
into equal squares by perpendicular
lines (fig. 1). Our ocean is inhabited by
only two species: harmless mackerels
and sharks that devour them. In addi-
tion, at each intersection of the lines
(node) there can be only one of these
species at a given time or none of them.,
Now I'll describe the behavior of the
animals I've put into our ocean.

1. Mackerels and sharks can swim,
moving from one node to an adjacent
node per unit time. A mackerel
moves in a probabilistic way to one of
the unoccupied adjacent nodes. A
shark, on the other hand, first deter-
mines whether there is a mackerel
next to it; if there is, the shark swims



to that node and devours the mack-
erel. If there are no mackerels at the
adjacent nodes, the shark swims in a
probabilistic way to any of the adja-
cent nodes.

2. The sharks and mackerels “ma-
ture,” and their age increases by one
unit after each cycle takes place.
(What this cycle is will be explained
a bit later.) Upon reaching maturity
(T for a mackerel and T for a shark),
each fish brings one offspring into the
world, and the next offspring can be
born only after a time interval equal
to the age of maturity. A newborn is
initially located at any of the nodes
neighboring on the mother’s node;
after that it obeys all the same laws
as the other fish.

3. If a shark has caught no mack-
erels during a certain number S of
consecutive periods, it dies of starva-
tion. A mackerel in our ocean can die
only in the mouth of a shark, since it

\ O 4

feeds on plankton that is always
available in excess.

4. The ocean is rectangular and fi-
nite; a fish that happens to be near the
shore never throws itself ashore,
while any fish that wants to do so out
of despair appears immediately on the
opposite side of the ocean. In other
words, our ocean covers the surface of
a toroidal planet.

So the conditions of life for the
ocean inhabitants have been defined.
And now life begins! At random we
(1) distribute sharks and mackerels
throughout the ocean, (2) set the age
of each fish, and (3) define how long
each shark can live without eating a
mackerel before it dies of starvation.
Of course, all this will be done by a
computer, which will keep track of
life in our imaginary ocean.

The first cycle of ocean life begins.
Let the mackerels first move one step
and, if the time has come, breed; then

»
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Figure 1

Two-dimensional ocean inhabited by sharks and mackerels.

the sharks begin to hunt. At the end
of the first cycle we'll update our
numbers, subtracting the sharks that
have died of starvation and the mack-
erels that have been eaten, and adding
the newborn fish. After that, the next
cycle can begin; and so on. As a result,
we (that is, the computer) can follow
how the shark and mackerel popula-
tions in the ocean change as time
passes.

Figure 2 shows the results of such
a computer model for different values
of T and T_ (the values of S, as well
as the initial shark and mackerel
populations, were constant and equal
to 5, 20, and 200, respectively). We
can see that the numbers of sharks
and mackerels in the ocean oscillate
with a certain frequency, and that the
maximum population of mackerels
always occurs slightly before that of
the sharks.

Also, by analyzing the changes in
the parameters in figures 2a-2g, we
can conclude that the period of oscil-
lation of the numbers of fish is pro-
portional to (T_T ) Indeed, a four-
fold increase in T _ (compare figures
2a and 2b) has led to twofold growth
in the oscillation period. The same
changes take place if T increases
(compare figures 2a and 2c) and if T,
and T _ increase simultaneously (see
figure 2d).

However, the oscillations are not
always as smooth as those in figures
2a-2f, Often the oscillations cease, or
their periods start to vary widely (see,
for example, figure 2¢). In some cases,
all the sharks by a twist of fate hap-
pen to be far away from their prey and
perish, and the mackerel population
begins to grow steadily until they
occupy the entire ocean.

Figure 2f shows the results of the
modeling if we assume that the fish
have become “cautious”—that is,
they look around before they make
their next move. If there is a shark
next to the fish, it will swim in the
opposite direction. Under such an al-
gorithm for fish behavior, significant
and regular oscillations of population
occur much less often.

Thus, a computer model of the
“real” life of a predator—prey system
has given almost the same results as
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Figure 2

Population dynamics of the imaginary ocean (results of computer modeling). The
population sizes are arrayed along the ordinate; along the abscissa—time (in
relative units). T_ and T, are the periods of time (in relative units) that mackerels
and sharks, respectively, must live before each has a single offspring. The upper
curves are the mackerel population, the lower curves—the shark population.

Volterra’s equations, although it has
highlighted several situations not
described by these equations.

Why don’t we notice such acute
changes in the animal populations
around us? After all, judging from the
graphs in figures 2a-2b, we would
conclude that the number of preda-
tors and prey must change by factors
of 10 or more! The answer is simple.
Volterra’s equations and our model
described the life of an isolated soci-
ety consisting of one species of preda-
tor feeding on just one species of prey.
Very rarely does this happen. More
often several species of predators live
in one territory, and they feed on sev-
eral species of animals, including
predators.

Each predator—prey system has its
own frequency and phase of oscilla-
tions. If there are many such systems,
and if they interfere with one another,
the oscillations of population of ani-
mals are lessened. This happens by
the same mechanism as when pendu-
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lums oscillating with different peri-
ods damp one another.
Nevertheless, it does happen that,
in a large territory, one species of
predator encounters only one species
of prey. As a result, their populations
change drastically as time passes,
which is in complete agreement with
the Volterra-Lotke model. A classic
example of this would be the lynx-
hare society in the Hudson Bay region
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of North America. Figure 3 shows
how a North American company’s
annual catch of lynx and hares
changed over 50 years.

Ecological chaos

We've gotten used to thinking that
if a process is described by an equa-
tion (that is, we have found, for in-
stance, the relation between forces
and displacement), we can predict
with absolute precision what will
happen in the future. Classical ex-
amples of this predictability are the
harmonic oscillator and the motion
of celestial bodies.

Yet the existence of an equation
doesn’t always allow us to predict
everything. Far from it. Several dy-
namical processes, even though
they’re described by seemingly ex-
plicit equations, are chaotic by na-
ture. I'll illustrate this idea by solving
one of Volterra’s ecological equations.

Let a population of one species of
animals inhabit a certain territory. If
the territory were arbitrarily large,
then according to Malthus’s law the
rate of growth of the population per
unit time would be a constant a. But
the finite dimensions of the territory
mean that, as the population grows,
the animals begin to suffer from a
shortage of food and the birth rate
decreases as a result.

So in a linear approximation, the
equation describing changes in the
population N of animals can be writ-
ten as

dN/dt = (a~bNIN, (4]

1850
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where b is a coefficient taking into
account the decrease in the birth rate
that occurs when the population
grows on a limited territory.
Although it’s impossible to solve
equation (4) analytically, nothing is
impossible for a computer. The only
thing left is to transform (4) into an
equation the computer understands
better. Let the life of this animal
population be divided into equal periods
that we'll take to be units. If N, and
N, ., are the animal populations
during two consecutive periods, it
follows from equation (4) that

N

t+

,—N,=(a-bNN..

After the substitution N = n(1 + a)/b,
we get

n, ,=kn(l-n), (5)

t

where k=1 +a.

Equation (5) enables our computer
to track the changes in the population
period by period, but we have to re-
member that after we've normed the
population 1, it varies from O to 1.
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The range of solutions to equation
(5) is very broad and depends on the
value of k. So, if 0 < k < 1, animals are
condemned to extinction regardless
of the size of their initial population.
If 1 < k < 3, the number of animals n
will eventually converge to a certain
limit, equal to (k — 1)/k, that does not
depend on the initial conditions
(fig. 4a).

But the most interesting things
happen to our animal population
when k becomes greater than 3. For
example, when 3 < k < 3.4, the popula-
tion, after a transitional period, begins to
oscillate between two
fixed wvalues, and

parameter k increases further, the
number of fixed levels increases con-
tinuously and the changes in population
become chaotic (fig. 4d).

One feature that distinguishes the
chaotic process from a normal, pre-
dictable process is the very strong
dependence on the initial values. As
was mentioned above, the behavior of
the system for k < 3.57 does not de-
pend very much on the initial values;
when there is chaos, (k > 3.57), even
a 1% difference in the initial values
makes the processes entirely different
after a certain time.

And one last question is: do cha-
otic processes occur in nature? Of
course, and plenty of them. The
changes in the populations of many
animals, from one-celled creatures to
mammals, are chaotic (see, for ex-
ample, figures 2e and 2f). But maybe
the most impressive illustrations of
chaotic processes are the periodic epi-
demics that befall us. Figure 5 is
drawn from data on continuous
monthly observations of measles
cases in New York City from 1928 to
1964.

The point is, the number of cases
can be assumed to be proportional to
the virus population in the given ter-
ritory. Yet the reproduction rate of
viruses in that territory depends en-
tirely on the number of people in it
and the degree of contact among
them. In addition, every winter hu-
man resistance to infection decreases,
while the frequency of contacts
among people increases.

CONTINUED ON PAGE 30

25,000
these oscillations are

not damped over
time; they resemble
the oscillations in the
predator-prey system
(fig. 4b).

When k becomes
slightly greater than
3.4, the animal popu-
lation begins to oscil-

disease cases per month

late regularly be-
tween four fixed
values (fig. 4c). As the

1928

Figure 5

1964
years
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PHYSICS
CONTEST

sources, Sinks, and gaussian Spheres

“l do not perceive in any part of space, whether vacant or filled with
matter, anything but forces and the lines in which they are exerted.”

—Michael Faraday

by Arthur Eisenkraft and Larry D. Kirkpatrick

HEN YOU VISIT AN ART
gallery, you can gain an en-
hanced appreciation of a
sculpture by comparing views
from different angles. Likewise, it’s
often useful in physics to compare
two different physical systems with
the same mathematics in order to de-
velop a better physical feeling for
both. A prime example of this occurs
with electrostatics and hydrodynamics.

Let’s consider the steady-state flow
of an incompressible fluid. Wateris a
very good approximation. Conserva-
tion of mass requires that the flow of
mass into the volume be equal to the
flow of mass out of the volume. An-
other way of stating this is that the
net flow of mass—or flux—through
the surface must be zero.

This is true unless there are
sources or sinks inside the volume. If
there are sources, the net flow of fluid
through the surface must be posi-
tive—that is, there must be a net flow
out of the volume. On the other hand,
if the region contains a sink, the net
flow will be inward, or negative. In
general, the net flow will just be the
sum of the positive contributions due
to the sources and the negative con-
tributions due to the sinks. If we let
p represent the density of the fluid
and v the velocity of the fluid at each
point in space, this can be written in
mathematical terms as

ZanAA: Z(sources + sinks),
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where AA is a small piece of the sur-
face, v_is the component of the veloc-
ity normal to the surface element (v_
is positive when it points out of the
volume). Only the sources and sinks
inside the volume are included on the
right side. In the notation of calculus
we get

J.pvndAz'[(sources + sinks)dV.

Even though nothing is flowing in
the case of the electrostatic field sur-
rounding a distribution of electric
charge, the mathematical equation is
the same. We can think of the electric
field E as the analogue of the flow of
mass (pv)in the fluid. In the electric case,
the sources and sinks are charges; posi-
tive charges are sources of the electric
field, and negative charges are sinks.
This is all stated in Gauss's law:

Y E,da=denc,
€9

where g, isa proportionality constant
that depends on the units and q__ is
the net charge inside the volume.
Note that it is easy to understand that
only the charges inside the volume
affect the sum by appealing to the
case of the fluid. By analogy with fluid
flow, the sum on the left side of the
equation is called the “flux.”

In cases of high symmetry, Gauss’s
law is very useful for finding the elec-
tric field due to a collection of point
charges or a distribution of charge. As

an example, let’s calculate the elec-
tric field surrounding a positive point
charge g located at the origin. Let’s
choose our surface to be a sphere of
radius r centered on the origin to
match the symmetry of the charge
distribution. Because of the symme-
try, we expect that the electric field
will point radially outward and have
the same value at all points on the
surface. Therefore, the sum on the left
side is easy to calculate:

Y E,AA=E) AA=EA=E4nr.

Setting this equal to the right side
and solving for E, we get

__ 1l a
4rmey 12’

which we recognize as Coulomb’s
law.

For our contest problem, we apply
Gauss’s law to find the electric field for
several different cases with spherical
symmetry. The key to all but the last
part is figuring out how much charge is
enclosed in the gaussian sphere.

A. Find the electric field at all
points outside a sphere of radius a
that contains a uniform density of
charge p and show that it has the
same form as Coulomb’s law.

B. Find the electric field at all
points inside this sphere. Does the
value at the surface agree with the
value found in part A?

Art by Tomas Bunk







C. Now assume that a spherical
region of radius b has been removed
from the center of the sphere. What is
the electric field at all points in space?

D. As a final challenge, find the
electric field at all points inside the
hole when the hole is moved off cen-
ter. Assume that it is moved a dis-
tance c in the +x direction, but not so
far that the hole penetrates the sur-
face. (Hint: consider the superposition
of a complete sphere with charge den-
sity p and a “hole” formed by a smaller
sphere with charge density —p.)

Please send your solutions to
Quantum 3140 North Washington
Boulevard, Arlington, VA 22201
within a month after receipt of this
issue. The best solutions will receive
special certificates from Quantum.

What goes up.. ..

Here's the solution to the problem
posed in the January/February issue.
A. In order for a satellite probe to
escape from the Earth, the sum of the
kinetic energy and potential energy
must be greater than or equal to zero:

Gm.,m
A7 e

1
2, 1A% RO
ZGmE
Vp =,
V Ro

where mis the mass of the probe, v_is
its velocity, m_ is the mass of the Earth,
and R , is the radius of the Earth.

B. The condition for the probe to es-
cape from the solar system is similar to
that of escaping the Earth. In this case,
however, the potential energy function
is related to the mass of the Sun:

2Gmyg
E

0,

Figure 1
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where my is the mass of the Sun, R,
is the Earth-Sun distance, and v_ is
the probe’s velocity relative to the
Sun. The Earth’s velocity about the
Sun can be determined by recogniz-
ing that the gravitational attraction of
the Sun holds the Earth in orbit:

mEV}Z3 _ Gmpmyg

Ry R
v = |CTs
Rg

The escape velocity can now be writ-

ten
VLI = VE\/E.

Since the probe can be shot in the di-
rection of the Earth’s orbital velocity,
the required velocity is diminished by
the value of the Earth’s velocity:

vy =ve(v2-1)=12.3 kmys,

where v’ is the probe’s velocity rela-
tive to the Earth.

C.Letv, and v,” be the velocities
of launching the probe in the Sun’s
and Earth’s system of reference, re-
spectively. Thenv, =v,” + v, (see part
B). From the conservation of angular
momentum of the probe

mPVbRE =my, Ry,

(R,, is the Mars-Sun distance) and the
conservation of energy

myvy  Gmymg

2 Rg
mp(V|2| + Vi) _ Gmymg
2 Ry '

we get, for the parallel component of
the velocity (fig. 1),

v, =(v, +vr

and, for the perpendicular compo-
nent,

V= \/(Vb’ +VE)2(1—1‘2)—2V]25(1—1‘),

wherer =R /R .

D. The minimum velocity of the
probe in the Mars system of reference
to escape from the solar systemis v ”

=Vm (\/5 - 1) in the direction parallel

to the orbit of Mars (v,, is the veloc-
ity of Mars around the Sun). The role
of Mars is thus to change the veloc-
ity of the probe so that it leaves its
gravitational field with this velocity.

In the Mars system, the energy of
the probe is conserved. That is not
true, however, in the Sun’s system, in
which this encounter can be consid-
ered an elastic collision between
Mars and the probe. The velocity of
the probe before it enters the gravita-
tional field of Mars is therefore, in the
Mars system, equal to the velocity
with which the probe leaves its gravi-
tational field. The components of the
former velocity are v ” = v and v,” =

v, — V., SO

I wm/

Using the expressions for v, and v,
from part C, we can now find the re-
lation between the launching veloc-
ity from the Earth v,” and the veloc-

ity v,” = va(v2 -1):
(vb’ + VE)Z(I—IZ) —2v3(1-1)+ v
+ (vb' + ijzrz - ZVM(Vb' + VE)I
=vii(3-242).

The velocity of Mars around the Sun

is vy, = \/Gmy /Ry = /1vy, and the

equation for v, takes the form
2
(Vb' + VE) - ZI\EVE(Vb' + VE)
+(22r-2)vf =0.

The physically relevant solution is

vy =VE(1’\/;—1+\/I3+2—2\/51‘]

=5.5 km/s. Q)




HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M56

Splitting reciprocals. (a) Prove that for
any integer a > 1 the equation

1 1 1
——_—==
X y a

has at least three positive integer so-
lutions (x, y).

(b) Find the number of positive in-
teger solutions of this equation for
a=1992. (M. Slavinsky)

M57

One plus one exceeds two. Does
there exist a figure F that can’t cover
a semicircle of radius 1, while two
copies of F are enough to cover an
entire unit circle, in the case of (a) an
arbitrary plane set F, (b) a convex F?
(N. Vasilyev, A. Samosvat)

M58

Decreasing squares. For any nonnega-
tivenumbers a, >a,>...2a_>0, prove
the following inequalities:

(a)al’-alr+a’2(a —a,+a)f,

(b)a*-ar+alr-a?
>(a,—a,+a,-a,),

(c)a?-a?+..—(-1fa?
>(a,-a,+..—(-1fa P

(L. Kurliandchik)

M59

All kinds of centers. Given three
points O, I, and E in the plane, con-
struct a triangle such that its circum-
center is at O, its incenter is at I, and
one of its excenters is at E. (An
excenter is the center of an escribed
circle of a triangle—a circle tangent to
one side of the triangle and to the ex-
tensions of the other two sides. Every

triangle has three such circles.)
(B. Martynov)

M60

Coloring a chessboard. A square of
size n x n ruled with a grid of unit
squares is colored by using n colors
(each cell is colored in one of the col-
ors or not colored at all). A coloring is
called regular if there are no two
squares of the same color in any row
or any column. Is it possible to com-
plete a regular coloring if k unit
squares have already been regularly
colored for (a) k = -1, (b) k = n* -
2, (c] k =n? (D. Logachev)

. Phiysics

Running ant. An ant runs from an
anthill in a straight line so that its
speed is inversely proportional to the
distance from the center of the ant-
hill. At the moment the ant is at point
A atadistance ], = 1 m from the cen-
ter of the anthill, its speed is equal to
v, =2 cm/s. How long will it take for
the ant to run from point A to point
B at a distance ], = 2 m from the cen-
ter of the anthill. (S. Krotov)

PE7

Jumping wheel. A small weight of
mass m is fitted on the rim of a mas-
sive wheel of mass M (M/m = 15).
How fast must the wheel be rolling
before it jumps up off the surface?

P58

Nitrogen and oxygen. A mixture of
gases, consisting of m, = 100 g of ni-
trogen and an unknown amount of
oxygen, is subjected to isothermal
compression at a temperature
T =744 K. Figure 1 shows the de-

pendence of the gas mixture’s pres-
sure on its volume (in relative units).
Let’s determine the mass of oxygen

mg, . To do this we have to calculate
the saturated vapor pressure of oxy-
gen po, at this temperature.

Note: T = 74.4 K is the boiling
point of liquid nitrogen at normal
pressure; oxygen boils at a higher
temperature. (A. Buzdin)

DA

0
Figure 1

P59

Mercury watch. Two columns of
mercury separated by a drop of elec-
trolytic solution Hgl are in a capillary
tube. The inner diameter of the tube
is d = 0.3 mm. The tube is connected
by a resistor with resistance R = 390
kQ to a battery with electromotive
force ¢ = 10 V. How much time will
it take for the drop to move one notch
on the scale (see figure 2)?
(E. Yunosov, I. Yaminsky)

lcm

Figure 2
CONTINUED ON PAGE 30
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Summertime, and the choosin’ ain't easy

An ice cream counting problem

ARD ON THE HEELS OF

McDonald’s and Pizza Hut, an

American company made fa-

mous by its trademark num-
ber—31—has opened several stores in
Russia. Muscovites are said to relish
ice cream, even in the chill of winter,
and many people might frequent
Baskin-Robbins primarily for the
thirty-one different flavors of ice
cream it pledges to keep on hand. As
a thoughtful reader of Quantum,
though, you’ll realize that such a
store offers far more than thirty-one
different options.

When we contemplate cups or
cones with several scoops, the num-
ber of possibilities begins quite lit-
erally to multiply. For example, in
specifying a two-scoop cone, we
have to make two choices: first the
flavor of the bottom scoop, then the
flavor of the top scoop. Since the
laws of physics obligate us to eat the
top scoop (at least,
most of it) before
eating the bottom
scoop, a straw-
berry-chocolate
cone must be
regarded as
distinct from
chocolate-
strawberry.

28 JULY/AUGUST 1982

by Kurt Kreith

With this understanding, it’s clear
that Baskin-Robbins offers 31 x 31 =
961 different kinds of two-scoop
cones.

An important combinatorial rule
arises when we impose the following
constraint on the construction of ice
cream cones: At most one scoop of
any single flavor is allowed. This rule
reduces somewhat the number of
two-scoop cones available, since
thirty-one possibilities (cones with
both scoops of a single flavor) are no
longer allowed. In other words, 961 —
31 = 930 different two-scoop cones
are now available.

This answer could also
have been derived directly

from our multiplication e

rule. To see this we again regard the
construction of two-scoop cones to be
a two-stage process, in which the first
stage again allows for 31 different
outcomes, but the second stage al-
lows for only 30. According to the
multiplication rule, the composite
process allows for 31 x 30 = 930 dif-
ferent outcomes. Fortunately, this is
the same answer as before.

A subtle point you may have noted
is that the two stages of constructing
a cone aren’t “independent”—that is,
the outcome of the first stage of such
a process affects the set of possible
outcomes in the second stage. (Hav-
ing chosen chocolate for the first

scoop, you may not choose choco-
late for the second.) However,
the number of outcomes al-
lowable in the second
stage is 30, no matter
“% what flavor you chose in
the first stage, and that is
all that’s needed for us to
make our multiplication
rule applicable.

At this point we're
ready to generalize. If an
ice cream store has N dif-
ferent fla-
- vors and we
choose to
purchase a
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cone with K scoops, the number of
possible outcomes depends on
whether we're allowed to repeat fla-
vors. If repetition is allowed, then
the number of options is NX. If, how-
ever, repetition is not allowed, then
the number of outcomes is

NX(N-1)x...x(N-K+1).

This answer is often referred to as “the
number of permutations of N things
taken K at a time” and written as

N!
Py =——nu.
NET(N-K)!

Our ice cream saga might end here
except for the fact that many people
prefer to eat their ice cream from cups
rather than from cones. One reason
for preferring cups is that they allow
you to eat the various scoops in any
order. That is, a strawberry—chocolate
cup is the same as a chocolate-straw-
berry cup.

Let’s return to our counting prob-
lem, keeping this new circumstance
in mind. If we insist, as we did to ar-
rive at permutations, that only one
scoop of any flavor is allowed, then
the answer is a familiar one: each
three-scoop cup corresponds to 3! =6
different three-scoop cones. To arrive
at the number of different three-scoop
cups that are possible, we simply di-
vide our previous answer of 31 x 30 x
29 = 26,970 by 3! to get 4,495. Those
of you who have studied combinato-
rics will recognize this problem as
one of “choosing 3 things from 31,”
which corresponds to the combinato-
rial formula

31!
Gy=—
sI™9™ g1.a281

and is read “thirty-one choose three.”
These ideas generalize readily to
choosing K flavors from N and the
combinatorial formula

N!
Cr=—r—.
NZET KI(N-K)!

To complete this problem, we
need to remove the rather arbitrary
restriction on the choice of flavors.

Why should one not be able to order
two scoops of chocolate and one
scoop of strawberry in a cup? Given
this rather fundamental right, how
many different K-scoop cups can one
generate from N different flavors?

Surprisingly, the answer to this
question appears not to correspond to
any of the well-known counting rules
of combinatorial analysis. We can,
however, answer the question rather
easily for two-scoop cups and 31 fla-
vors. As we've already seen, there are
961 different cones, of which

31 have two scoops of the same flavor
and
930 have two scoops of different flavors.

Converting from cones to cups has
the effect of halving the number of
possibilities with two scoops of differ-
ent flavors while leaving the number
of possibilities with two scoops of the
same flavor unchanged. That is, our
answer is now

31+%:31+465=496.

This kind of analysis is also pos-
sible for three-scoop cups. I leave it to
you to confirm that the answer is now

31 + 930 + 4,495 = 5,456.

But such a direct approach is rather
awkward for dealing with the general
problem of K scoops selected from N
flavors when repeated flavors are al-
lowed and the order doesn’t matter—
that is, when we'’re eating K scoops
from a cup rather than a cone.

To address this general problem
we conceive of an ice cream order
form in which the N flavors are listed
horizontally. Reducing the number of
flavors from 31 to 6 makes such a
form look like this:

mint | coffee

\
When we want to order a scoop of a

certain flavor, we put “0” under its
name. For example, an order form

vanilla | chocolate | strawberry | peach

corresponding to a cup with two
scoops of chocolate and one scoop of
peach would be

peach | mint | coffee

vanilla | chocolate | strawberry

00 | 0 |

After a while we might get so fa-
miliar with this system that we could
eliminate the top line. To place the
order above, we’d simply write

‘ 00 0 |
| |

Can you figure out the order corre-
sponding to this?

(It calls for one scoop of chocolate,
strawberry, and coffee.)

And how about the very hungry
customer who, not restricted to three
scoops, orders the following?

00 0 00 00

What these order forms show is
that there is a one-to-one correspon-
dence between three-scoop cups cho-
sen from six different flavors and se-
quences of three zeros (corresponding
to the scoops) and five ones (corre-
sponding to the dividers between the
six flavors on our order form). In other
words, the abstract versions of such

cups of ice cream are sequences of the
form

(0,1,1,0,0,1,1, 1).

While less attractive than the real
thing, this representation has some
mathematical advantages. In particu-
lar, we can readily determine the
number of three-scoop cups that six
flavors generate by counting the
number of sequences consisting of
three zeros and five ones.

One way to do this is to revise our
order form to one used only for choos-
ing three scoops from among six fla-
vors. Such a form consists simply of
3 + 5 = 8 boxes arranged horizontally:

29
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The way we use this form is to choose
three of the boxes in which to enter
zeros and then enter ones in the re-
maining five boxes—for example,

1|OO 1,1 ]1/|1)0

Each such choice corresponds to “a
sequence of three zeros and five
ones,” and since we're “choosing
three boxes from eight” in which to
enter our zeros, the number of such
choices is ,C, = 8!/3! - 5! = 56.

The advantage of this approach is
that it allows for a direct generaliza-
tion to the problem of N flavors and
K scoops. An order form for N flavors
requires N — 1 dividers among the N
flavors. So it corresponds to a sequence
of K zeros and (N — 1) ones. Since the
number of such sequences is

_ (N -1+K)!
N—1+KCK - (N—].)'K' ’

this is also the number of K-scoop
cups that can be produced with N fla-
vors when more than one scoop of a
flavor is allowed. In the case K =3 and
N =31, we get

!
C=—&= 5,456
30!-3!

as before.
After all this work we deserve to
sit back and enjoy some ice cream!

Problems

One of the interesting features of the
counting rules we’ve developed is that
they arise in a great variety of situations.
Recognizing situations that correspond
to combinations, permutations, or re-
lated counting rules is an important
mathematical skill. But one has to accept
that there are counting problems that,
though very similar to those we have
solved, may not correspond to any of
these or, in fact, to any (known) rule.

Which of the following problems can
you solve and generalize with the skills
you’ve developed in thinking about ice
cream?

1. A poor father has three pennies and six

30 JULY/AUBUST 1892

children. In how many ways can he distrib-
ute the three pennies to six children?

2. Repeat problem 1 under the as-
sumption that the father gives at most
one coin to each child.

3. Repeat problems 1 and 2 under the
assumption that the father has a penny,
anickel, and a dime.

4. A rich father has six pennies and
three children. In how many ways can he
distribute six pennies to three children?

5. Repeat problem 4 under the as-
sumption that the father gives at least
one coin to each child.

6. Repeat problems 4 and 5 under the
assumption that the father has one
penny, one nickel, one dime, one quarter,
one half dollar, and one silver dollar. Q)

ANSWERS ON PAGE 61

Kurt Kreith teaches mathematics at the
University of California—Davis.

“FIBONACCI STRIKES AGAIN!”
CONTINUED FROM PAGE 17

Mathematicians haven’t vyet
unraveled this mystery. We may
never fully understand why this
series or the related golden ratio are
so prevalent, but it would appear
that the Fibonacci series is truly a
mathematical phenomenon worthy
of continued study and special
recognition.

A few teachers we know have
even given the Fibonacci series a
place of honor on their classroom
bulletin boards. One of them has
gone so far as to hold a “Fibonacci
Day,” giving students the opportu-
nity to research and present infor-
mation on different applications of
the Fibonacci series. While some
math skeptics may secretly believe
that number-series problems really
don’t relate much to real life, the
Fibonacci series strikes again and
again to show them otherwise! [@

Elliott Ostler, M.S., teaches mathemat-
ics at Elk Horn-Kimballton High
School in Elk Horn, Iowa, and is pur-
suing a doctorate in mathematics edu-
cation at the University of South Da-
kota. Neal Grandgenett earned a Ph.D.
from Iowa State University and is now
an assistant professor of mathematics
education at the University of Ne-
braska at Omaha.

“CHALLENGES IN PHYSICS AND
MATH”
CONTINUED FROM PAGE 27

P60

Reflecting cone. The inner surface of
a cone coated with a reflective layer
forms a conical mirror. A thin incan-
descent filament is aligned along the
axis of the cone. Determine the mini-
mum angle o of the cone such that
the rays emitted by the filament will
be reflected from the conical surface
no more than once. (D. V. Belov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 56

“MALTHUS AND VOLTERRA”
CONTINUED FROM PAGE 23

So the man-virus system differs
from the system described in the pre-
ceding paragraphs only in its periodic
changes in the parameter k. However,
that makes the analysis of this sys-
tem much more complicated, taking
it far beyond the limits of this article.
Still, T think you'll take my word for
it (perhaps out of fatigue) that the so-
lutions of equations describing epi-
demic processes can be either regular
oscillations or completely chaotic os-
cillations, depending on the values of
the parameters.

As you’ve probably already
guessed, chaotic solutions are charac-
teristic of nonlinear differential equa-
tions—that is, those in which the
function (in our example, the popula-
tion N) is a power other than one. So
chaos isn’t something characteristic
only of living nature. In the material
world, too, a great many processes
continuously change from regular
(periodic) to chaotic. Some examples
are water dripping from a faucet, tur-
bulent flows of liquid and gas, and the
circulation of our planet’s atmo-
sphere.

Long live the human being, an ex-
ample of a nonlinear system and thus
capable of the most unpredictable
actions! And long live Nature, ever
gladdening us with its unpredictable
beauty!
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BRAINTEASERS

Just for the fun of t

B56

Square anniversary. In the year x> my nephew will be x years of age. In
what year was he born? (L. Kurliandchik)

B57

In search of consensus. Is there a temperature expressed by the same
number of degrees in both the Celsius and Fahrenheit scales? (We remind
you that these two uniform scales can be defined by the melting point of
ice, which is 0°C or 32°F, and the boiling point of water, which is 100°C or
212°F.) (A. Savin]

B58

Dirty windshield. Sometimes a car’s windshield gets dirty when blobs of
muddy water are tossed up by other vehicles, reducing visibility. Yet the
experienced driver doesn’t turn on the windshield wipers right away and
avoids getting the glass wet for as long as possible. Why? (S. Krotov)

B59

Cheap remake. The figure at right shows two flags measuring 9 x 12. Cut
the flag on the left into four pieces so that you could stitch them together
to make the flag on the right. (A. Shvetsov)

B60

Greed punished. Koshchei the Immortal, a greedy and malicious tsar-
sorcerer (and an indispensable character in Russian fairy tales), buried his
ill-gotten treasure in a hole 1 meter deep. That didn’t seem safe enough for
him, so he dug his treasure up, deepened the hole to 2 meters, and buried
his hoard again. He was still worried, so he dug up his hoard, made the
hole 3 meters deep, and hid his treasure once more. But he just couldn’t
stop—he kept increasing the depth of the hole, to 4 m, 5 m, 6 m, and so on,
each time extracting his property and burying it again, until on the 1,001st
day he died of exhaustion. It's known that Koshchei digs a hole n meters
deep in n? days. How deep was his treasure when he dropped dead? (Ne-
glect the time needed to refill the hole each time.) (D. Fuchs)

ANSWERS, HINTS & SOLUTIONS ON PAGE 60
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KALEIDOSCOPE

\Vake up!

It's time for a pop quiz

by Anatoly Savin

ES, WE KNOW IT’'S VACA-

tion time. But we also know

that, as the bees drone into

their final months and the air
settles over you like a wool blanket,
the blood stops circulating in the
brain. We're into the lazy days of
summer, and let’s face it—you're
bored. So here are a dozen
recreational problems to be solved
without pencil and paper. All you
need is a nice shady place.

And we offer you three games for
when the weather is cooler and
physical exercise becomes an ac-
ceptable choice. (Rest assured, the
exercise proposed is quite modest!)
Each game has a winning strategy—
it simply depends on who goes first.
We think you’ll enjoy trying to fig-
ure it out.

If you're going to be at a summer
camp or school, maybe you’d like to
share these problems and games
with your acquaintances there. A
fun competition might be a wel-
come diversion from more strenu-
ous, unsummerlike activities, and
it’s an amusing way to get to know
each other.

Problems

1. The number 606 is written on
a sheet of paper. What operation
must be performed to make the
number 3/2 times greater?
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2. What mathematical sign must
be put between the digits 5 and 6 to
obtain a number greater than 5 but
smaller than 6?2

3. It takes four seconds for a clock
to strike three times. How long will
it take this clock to strike nine
times?

4, The sum of the three numbers
1,2, and 3 equals their product. Are
there any other such triples of inte-
gers?

5.1have two coins in my pocket,
whose value totals 15 cents. Is it
possible that one of them isn’t a
dime?

6. How many times must one
shoot at the target in the illustra-
tion, and what circles must one hit,
in order to score exactly 100 points?

7. The Moscow TV tower is 530 m
high and weighs 30,000 metric tons.
How many grams does a scale model,
made of the same material, weigh if
the model is 53 cm high?

8. I have a box of nails, a box of
screws, and a box of nuts. Each box
had a label telling what’s inside.
Then my little brother switched the
labels so that none of them corre-
sponds with the contents of its box.
Is it possible to figure out what’s in
each box after opening only one of
them?




Art by Edward Nazarov

9. Find the smallest positive inte-
ger that becomes the square of an in-
teger when multiplied by 2 and the
cube of an integer when multiplied
by 3.

10. Six glasses are lined up on a
shelf: three of them are filled with
water and the other three are empty
(see the illustration). Touching only
one glass, how can one arrange them
so that glasses with water alternate
with empty ones?

11. Find two numbers whose
sum, product, and ratio are equal to
each other.

12. A glass of water is set on a
stool covered with a napkin. How
can one remove the napkin, leaving
the glass on the stool, without
touching the glass?

Games

1. You have two piles of rocks.
Two players take turns (1) removing
one of the piles from the playing
area and (2) dividing the remaining
pile into two piles. The player who
can’t divide a pile (since it consists
of only one rock) loses.

2. Several pegs are driven into the
ground, and the two players have
some string. Each player takes turns
tying together pairs of pegs that
haven’t been connected earlier. The
player who creates a closed figure
wins.

3. Two players pluck petals from
a daisy, tearing off one or two neigh-
boring petals at a time. The player
who plucks the last petal wins. [@]

ANSWERS, HINTS & SOLUTIONS
ON PAGE 60
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Meandering down to the sea

The wandering ways of rivers

AS ANYONE EVER SEEN A

river that doesn’t have any

bends in it? A short portion of

a river can certainly cut a rela-
tively straight path, but there are no
rivers that have absolutely no bends
in them. Even if the river flows
through a plain, it often loops
around, and these bends are often
repeated with a definite period. The
shoreline at these bends is also cu-
rious: one bank tends to be steep,
while the other slopes gently. How
can we explain these peculiarities of
river behavior?

Hydrodynamics is the branch of
physics that deals with the motion of
liquids. Although it’s a well-devel-
oped science, rivers are such compli-
cated natural features that even hy-
drodynamics can’t explain all the
peculiarities of their behavior. Never-
theless, it can answer many of our
questions.

You may be surprised to learn that
the problem of meanders was
investigated by Albert Einstein. In a
report delivered in 1926 at a meeting

b
Figure 1
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by Lev Aslamazov

of the Prussian Academy of Sciences,
Einstein compared the movement of
water swirling in a glass and in a
riverbed. This analogy allowed him to
explain why rivers tend to acquire a
meandering shape.

Let’s try to understand this phe-
nomenon, at least qualitatively. And
let’s start with a glass of tea.

Tea Ieaves in a glass

Make a glass of tea with loose tea
leaves (not in a bag), stir it well, and
remove the spoon. The water will
gradually stop and the tea leaves will
gather in the center at the bottom of
the glass. What made them gather
there? To answer this question, we
need to determine the shape the
water’s surface takes as it swirls in a
glass.

This experiment with the tea
shows that the surface of a liquid—in
this case, water—is curved. It’s easy
to understand why that is. In order to
make the molecules of water move in
circular motion, the net force acting
on each molecule must provide the
centripetal acceleration. Let’s con-
sider a cube of mass Am situated in
the liquid at a distance r from the axis
of rotation (the gray square in figure
1). At an angular speed of rotation o,
the centripetal acceleration of the
cube is w’r. This acceleration is cre-
ated by the difference in the pressures
acting on the faces of the cube (the left
and right faces in figure 1). So

Am-o’r=F -F,=[p -p,)-As, (1)

where As is the area of one face. The
pressures p, and p, are determined by
the heights h and h, to the surface of
the liquid:

p,=pgh, p,=psgh, (2)

where p is the density of the liquid
and g is the acceleration due to grav-
ity. F, must exceed F, so h, must ex-
ceed h,—that is, the surface of the
rotating liquid must be curved, as
shown in figure 1. The greater the
speed of rotation, the greater the
surface’s curvature.

We can find the shape of the
curved surface of a liquid. It turns out
to be a paraboloid—that is, a surface
with a parabolic cross section. (Try to
prove it yourself. You can check your
proof by looking on page 61.)

While we stir tea with the spoon,
we keep the liquid swirling. But when
we remove the spoon from the glass,
the friction between layers of the lig-
uid (its viscosity) and the friction of
the liquid with the sides and bottom
of the glass converts the liquid’s ki-
netic energy into heat, and the liquid
gradually stops swirling.

As the frequency of rotation de-
creases, the surface of the liquid flat-
tens out. Vortex currents appear
within the liquid (their directions are
shown in figure 1b). The vortex cur-
rents form because of the difference
in the friction of the liquid at the bot-
tom of the glass and at the surface.
The liquid decelerates more near the
bottom, where the friction is greater,
than near the surface. So, even though

Art by Elena Trofimova







the particles of liquid are equal dis-
tances from the axis of rotation, they
have different speeds: particles that
are closer to the bottom are slower
than those near the surface. But the
net force due to the pressure differ-
ences acting on all these particles is
the same. This force can’t cause the
necessary centripetal acceleration for
all the particles (as in the case of tum-
ing the entire liquid with the same
angular speed). Near the surface the
angular speed is too large, and par-
ticles of water are thrown to the sides
of the glass; near the bottom the an-
gular speed is too small, and the re-
sultant force makes the water move
to the center.

So tea leaves gather at the center of
the bottom of the glass because
they’re drawn there by vortex cur-
rents that arise during deceleration.
Of course, this is a simplified version
of what occurs, but it accurately re-
flects the gist of the phenomenon.

How riverbeds change

Now let’s look at how water
moves at a bend in a river. A picture
forms that is quite similar to that of
our glass of tea. The surface of the
water inclines toward the bend so
that pressure differences create the
necessary centripetal acceleration.
(Figure 2 shows the cross section of
the river at the bend.) And just like in
the glass of tea, the velocity of the
water near the bottom is less than
that near the surface of the river (the
velocity distribution by depth is
shown in figure 2; the vertical plane
normal to the cross section of the
river is depicted in red). Near the sur-
face the net force due to the pressure
difference can’t move the water par-
ticles along the circumference, so
water is “thrown” to the far shore (the
one that’s farther from the center of
the bend). Near the bottom, on the
other hand, the velocity is small, so
the water moves toward the near
shore (the one nearer to the center of
the bend). So this additional circula-
tion of water appears in addition to
the main flow, as demonstrated in the
glass of tea. Figure 2 shows the direc-
tion of water circulation in the plane
of the river’s cross section.
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Figure 2

This type of water circulation
causes soil erosion. As a result, the far
shore disintegrates as the ground
there is undermined, while soil gradu-
ally settles along the near shore, form-
ing an ever thicker layer (recall the tea
leaves in the glass!). The shape of the
riverbed changes, acquiring the cross
section shown in figure 3.

It's also interesting to observe how
the velocity of the water flow varies
across the breadth of the river (from
bank to bank). In straight stretches,
the water flows most quickly in the
middle of the river. At a bend, the line
of fastest flow shifts to the far shore.
This happens because it’s more dif-
ficult to turn fast-moving water par-
ticles than slow-moving ones. A
larger centripetal acceleration is
needed. But where the velocity of the
flow is greater, the circulation of the
water, and consequently the soil ero-
sion, is also greater. That’s why the
fastest place in a riverbed is usually
the deepest—a fact well known to
river pilots.

Soil erosion along the far shore and
sedimentation along the near shore
causes a gradual shift of the entire
riverbed away from the center of the
bend, thereby increasing the river’s
meander. Figure 3 shows the cross
section of the same place in a real
riverbed in different years. You can see
clearly the gradual shift of the riverbed
and the increase in its meander.

15 near shore

So even a small bend created by
chance—Dby a landslide or a fallen
tree, for example—will increase. The
straight flow of a river across a plain
is unstable.

How meanders are formed

The shape of a riverbed is largely
determined by the relief of the terrain
it flows through. A river flowing
through an uneven landscape mean-
ders in order to avoid high places and
fill low places. It “chooses” the path
with the maximum slope.

But how do rivers flow along a
plain? How does the instability of a
straight flow described above influ-
ence the shape of a river? The insta-
bility increases as the river grows in
length and the river begins to mean-
der. It’s natural to think that in the
ideal case (an absolutely flat, homo-
geneous surface), a periodic curve
must appear. What will it look like?

Geologists have put forth the
proposition that at their meanders,
rivers flowing through plains should
look like a bent ruler.

Take a steel ruler and bring its ends
together. The ruler will bend as in fig-
ure 4. This elastic bending is called
Euler bending after the great math-
ematician Leonhard Euler (1707-
1783), who described this phenom-
enon theoretically. The shape of the
bent ruler is described by a special
curve. This Euler curve has a wonder-
ful feature: of all the possible curves
of a given length connecting given
points, it has the smallest curvature
on average. If we measure the angu-
lar deflection 6 at equal intervals
along the curve (fig. 4) and add up the
squares of the angular deflections,
we’ll obtain the minimum sum for
the Euler curve. This “economical”

far shore
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Figure 4

bending of the Euler curve was the
basis for the hypothesis about the
shape of riverbeds.

To test this hypothesis, geologists
modeled a changing riverbed. They
used an artificial channel of water in
a homogeneous medium made of
small particles held together so that

it was easily eroded. Soon the straight
channel began to meander, and the
shape of the bend was described by
the Euler curve (fig. 5). Of course,
under actual conditions such perfec-
tion in the shape of a riverbed isn’t
attainable (because of the heterogene-
ity of the soil, for instance). But riv-
ers flowing through a plain usually
meander and form a periodic struc-
ture. In figure 6 you can see a real ri-
verbed and the Euler curve (the
dashed line) approximating the shape
of the riverbed.

You may be interested to know
that the term “meander” originated
in ancient times and comes from the
Meander, a river in Turkey famous

Figure 5

Figure 6

for its twists and turns (now called
the Menderes). The periodic deflec-
tions of ocean currents and of the
brooks that form on the surfaces of
glaciers are also called meanders. In
each of these cases, random pro-
cesses in a homogeneous medium
cause a periodic structure to form;
and though the reasons for the cre-
ation of meanders can differ, the
shape of the resulting periodic
curves is always the same.
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What did the conductor say?

MATHEMATICAL

INDUCTION Il

The trains of thought of lazy wise guys with dirty faces

by Mikhail Gerver

1. Mathematical induction

“You know what nights in
Ukraine are like . . .” Oska began
with great feeling.

“No! No, we don’t!” came several
voices from the audience. “Tell us!
Please, tell us!”

“No—you don’t know what
they're like!” Oska continued, a bit
taken aback.

“Of course we don’t,” the mothers
agreed. “How could we? We never had
time for book-learning.”

—L. Kassil, The Black Book
and Schwambrania

Do you know what mathematical
induction is?

“We know, we know!” I seem to
hear my readers answer. “Let the first
in a line be a woman, and let a
woman follow every woman in the
line. Then all the people in the line
are women!” This is a humorous ren-
dering of the principle of mathemati-
cal induction. And here is a serious
one: “Let there be a sequence of state-
ments Y, Y, Y,, .... Let the first state-
ment Y, be true, and let every true
statement Y, be followed by a true
statement Y, . Then all statements
Y are true.”

Well, then. This is indeed so. Since
true statement Y, _ , follows each true
statement Y,, and since statement Y,
is true, statement Y, is true; and be-
cause Y, is true, Y, is true; but then Y,
following Y,, is true; and so forth.

And yet I say (you'll forgive me,
won’t you?): “No, you don’t! You
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don’t know what mathematical in-
duction is!” Let’s just check it out. A
number of trials await you: in sec-
tions 2 and 3 they’re simpler, in sec-
tions 4 and 5 more complex.

2. Hocus-pocus

If it says “buffalo” on an elephant’s
cage, don't believe your own eyes.
—Kozma Prutkov, Aphorisms

Using mathematical induction,
one can provide a theoretical basis for
the following amazing trick.

Cut out 999 identical cards. Write
1 on 111 cards, write 2 on 111 cards,
and so forth; on the last 111 cards
write 9. Turn over all the cards, fig-
ures down, and shuffle them thor-
oughly. Then choose at random n
cards, where n is a whole number
from 1 to 100, and put them on the
table, figures up. The figures written
on all n chosen cards will unfailingly
be the same! No matter how many
times you repeat this trick, and what-
ever nn you choose (1 <n <100), the
result will invariably be the same:
only one figure will appear on n cards.
You can check it experimentally at
your leisure. Now I'll prove this re-
markable fact by induction.

We must prove the statement Y :
The same figure shows up on all n cho-
sen cards (1< n< 100). Actually, there
are 100 statements here: Y, ..., Y, (de-
pending on what value n takes).

Obviously, our statement is valid

for n = 1. This is no surprise: if only
one card is turned up, then one figure
will of course show up.

Now let’s prove that if statement
Y, is true for n = k (where k is any
integer from 1 to 99), then it’s true for
n=k+1.

Put k + 1 cards on the table, figures
up. Take away one card for the time
being (let’s call it A). Then k cards
remain on the table. By the induction
hypothesis, the same figure (some fig-
ure X) is written on all of them.

Thus, the figure X is written on all
the cards except, maybe, card A.

Now, replace one of the k cards on
the table with card A. Again, k cards
are on the table, so the same figure
(which we’ve denoted by X) is written
on all of them by the inductive hy-
pothesis. In particular, the figure X is
written on card A, which was re-
moved the first time and has now re-
turned to the table.

Thus, the figure X is written on
card A, too.

So the figure X is written on all n
cards (n =k + 1), and the proof is com-
plete.

In the terms introduced in sec-
tion 1, statement Y is true, and ev-
ery true statement Y, (1 < k< 99)is
followed by the true statement
Y, . ,- Consequently, all statements
Y, are true (1 < n < 100). And as
amazing as our trick with cards is,
now it’s always bound to succeed—
it’s been proven!

Art by Pavel Chernusky
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3. Using our fingers

Out of the sack tumbled a large, very
angry two-toed sloth.

—Gerald Durrell,

Three Tickets to Adventure

By an argument similar to that in
section 2, one can prove quite a num-
ber of surprising theorems. For in-
stance, it isn’t difficult to establish
that all numbers are equal to each
other or that all girls have the same
color eyes.

I think this last statement is worth
dwelling on. So let’s bring together n
absolutely random girls. Then (we'll
prove it in a minute) each and every one
of them will have the same color eyes.

For nn = 1 this statement is obvious
(though insipid). I'll explain the tran-
sition fromn =k ton = k + 1 literally
“on our fingers.” To do this, let’s take
k=4 k+1 =5 (since [—and probably
you—have five fingers per hand.)
Now we can “play” the proof, follow-
ing the illustration below and replac-
ing the girls with our fingers.

According to the induction hy-
pothesis the eyes of any four girls are
the same color. Bring together five
completely random girls A, B, C, D,
and E (hand number 1 in the illustra-
tion). Then any four of them have the
same color eyes. In particular, the
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eyes of all the girls except A are the
same color as those of C (hand 2), and
the eyes of all the girls except E are
the same color as those of C (hand 3).
So the eyes of any five girls are the
same color.

For greater values of k the proof
proceeds unchanged (except that if
you want to play it “on your fingers,”
you might have to ask some friends
to help out).

Exercises

1. If you doubt the validity of the
statement proved above, “you can try
the experimental approach by look-
ing into the eyes of some girls”
(George Polya, Mathematics and
Plausible Reasoning).

2. If the name of the biologist and
writer Gerald Durrell wasn’t familiar
to you before, then the epigraph to
section 3 has already played its pri-
mary role: I strongly advise you to get
acquainted as soon as possible with
Durrell’s books, which are interesting
and full of his own brand of gentle
humor. In choosing the epigraph T had
another end in view, though, besides
pure propaganda. What do you think
it was?

(Hint: the epigraph is related to the
title of section 3, to its contents, and
to the contents of section 2. Any as-

sociations with the title of section 4,
however, are coincidental.)

4. Lazy sages

Three ladies A, B, and"C with dirty
faces are sitting in a compartment of
a railway car, and all three are laugh-
ing. Suddenly, A thinks: “Why doesn’t
B understand that C is laughing at
her?—Oh, my Lord! They’re laughing
at me.”
—7J. E. Littlewood,
A Mathematician’s Miscellany

N sages are traveling in a railroad
car. A pretty landscape lies beyond
the windows. From time to time the
train dives into a tunnel, taking one’s
breath away. All the sages have gath-
ered in the corridor, looking out the
window—ijust looking, looking . . .

Suddenly in one of the tunnels
there’s a roar, and smoke, and dust!
Dirt is pouring through the windows.
After they leave the tunnel, the con-
ductor comes in. “Somebody here has
gotten dirty,” he says. “Unfortu-
nately, we don’t have any water on
the train. But we’ll be having some
long stops now, so itll be possible to
get off the train and wash up.”

Now, I should tell you there was
little to choose among our sages: all
were as wise as they were lazy. None
of them would go get cleaned up for
no good reason (if he didn’t know for
sure he’s dirty). Nor would he ask
anyone if his face is clean or dirty—
why should he bother other people
and trouble himself? It’s easier to fig-
ure it out.!

So what will the sages do after the
conductor’s announcement?

1 claim that if n of them have dirty
faces, then all these n sages will get
off the train to wash at exactly the
nth stop.

We'll prove this statement by in-
duction.

The case n = 1. For n = 1 the state-
ment is obvious. Sage S, with a dirty
face learns from the conductor’s an-
nouncement that there are passengers
with dirty faces in the car. Having

Perhaps one more feature of our
decent sages should be mentioned: it’s
true they’re lazy, but not so lazy as to stay
dirty in the train when there’s an
opportunity to go out and wash up!—Ed.




taken a look at those around him, he
discovers that their faces are clean. So
the dirty face must be his. He gets off
to wash at the first stop.

Transition fromn=kton=k + 1.
Let’s show that if the statement
is true for n = k, then it’s true for
n=k+ 1.

Let sages S, ..., S,, , have dirty
faces. Then S, , | sees k dirty faces (S,
..., §,) around and thinks: “There are
two possibilities:

1. My face is clean.
2. My face is dirty.

In the first case all the k sages with
dirty faces that I see will get off to
wash at the kth stop, since by the in-
duction hypothesis the statement is
true for n = k.

“Since the first case is possible, I
must get off neither at the kth stop
nor earlier: if I am clean, it would be
an unpardonable waste of energy.
Any intelligent person not given to
pointless bustling* would come to
the same conclusion if they were in
my place.

“But of course the second case is
possible as well: my face might be
dirty too. But then each of the soiled
sages S,, ..., S, sees k dirty faces
around him. In this situation none of
these wise and unhurried sages will
get off to wash at the kth stop (see the
previous paragraph).

“So, if sages S, ..., S, don’t get off
to wash at the kth stop, then I am
dirty and I must go wash. I'll wait
until the kth stop. If nobody gets off
to wash, I'll have to get off at the
next—{k + 1)th—stop and wash my
face!”

All the sages with dirty faces rea-
son identically. And so all of them
will get off to wash at the (k + 1)th
stop, completing the proof.

Problems
1. Let’s change our story slightly.
Since he knows that the people
traveling in the train are sages, and
since he’s seen that many of them are
soiled, the conductor decides to

2Evidently this is how he thinks of
his own laziness.

shorten his announcement.

“Why should I say that somebody
is soiled,” he thinks, “when they can
see for themselves?” So he skips the
first phrase of the announcement.

Can we maintain as before that if
exactly n people have dirty faces, then
they’ll get out to wash at the nth
stop?

2. Let’s change the story another
way.

Suppose that just when the train
was passing through this nasty tun-
nel, some of the sages were in their
compartments—looking out the win-
dow, taking anap . . .

By a lucky chance, everybody
heard the loud voice of the conductor
as he made his announcement in full,
but no one could guarantee that the
others heard it too. Some time later
(even before the first stop) all the
sages gathered in the corridor . . .

The question is the same as in
problem 1.

Warning. If you want to solve these
problems yourself (without hints),
don’t read section 5 for now.

5. What did the conductor say?

“_..He thought I thought he thought
Islept.”

—Coventry Patmore, “The Kiss”

(in The Angel in the House)

Imagine now that our sages on
their own—without the conductor’s
telling them—Lknew that there was
no water on the train and that after
the tunnels there’d be a series of long
stops where one could wash up. Sup-
pose also that more than one person
got soiled in the dusty tunnel. Then
the sages were apparently none the
wiser after the conductor’s announce-
ment!

So what then? If the conductor
didn’t come by, would the n soiled
sages go to wash at the nth stop?

The temptation is strong to answer
“yes”: since nothing has changed in
the problem’s condition, the answer
must not change either—or so it
seems. But common sense tells us
that without the conductor’s infor-
mation, none of the lazy sages is
likely to go out to wash! And then
again, what does that mean: “nothing

has changed in the condition”? After
all, in one of the variants the conduc-
tor didn’t show up at all, while in the
other he came and said something!

So, what did he say?!

Apparently this question can’t be
answered by exclamations alone. So
let’s coolly and scrupulously analyze
the simplest possible case of n =2 (we
can’t set n = 1, since it’s given that
more than one person got dirty).

Case n = 2. The faces of sages S
and S, are dirty. They see each other,
and therefore each of them indeed
knows that someone is dirty.

Let’s take the point of view of S,
and repeat the reasoning of section 4.

“There are two possibilities:

1. My face is clean.
2. My face is dirty.

In the first case S, sees only clean
faces, but he knows that someone got
dirty. Therefore .. .”

Hold on! Yes, in fact, S, knows that
someone got dirty, but how does S,
know about it? How does S, happen
to know S, knows someone got dirty?

It seems at last we’ve stumbled
onto a clue.

If the conductor had come by, his
information wasn’t news to S, and
S,—that’s true. But S, saw S, listening
to the announcement. And that’s why,
if the conductor had come by, then S,
knows S, knows someone got dirty.

But if the conductor didn’t come by,
there’s no way for S, to learn about it.
Indeed, we know that S,’s face is dirty,
and so we know S, knows someone
(maybe just S,, but maybe he too) has
gotten soiled. But S, has to allow that
his face might be clean, which means
that S, sees only clean faces. Andif |
doesn’t see any dirty faces, and the con-
ductor didn’t come by, then there’s no
way for 8, to learn that someone is dirty.
Therefore, if the conductor didn’t come
by, then S, can’t learn that S, knows
someone is dirty.

Exercise. In the case n = 2 suppose
sages S, and S, got dirty, sage S
didn’t, and the conductor didn’t
come by. Which of the following
statements is true?

(a) S, knows S knows someone
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got dirty.

(b) S knows S, knows someone
got dirty.

(c) S, knows S knows S, knows
someone got dirty.

(d) S, knows S, knows someone
didn’t get dirty.

Further analysis. When n > 2, each
sage, even without the conductor’s
announcement, learns not only that
someone got dirty but also that all the
rest know about it. For instance, let
there be three dirty sages S, S,, S..
Then S, knows S, sees S,’s dirty face,
which means that S, knows S, knows
someone (say, S,) got dirty.

The difference between the two
possibilities—did or didn’t the con-
ductor come—becomes even more
subtle for n > 2. Let’s give its exact
formulation for n = 3:

Case n = 3. If the conductor came
by, then S, knows S, knows S, knows
someone got dirty; if he didn’t, then
S, can’t find out about it.

Exercise. Verify the last statement.

General case. A famous philoso-
pher once noted, “If a person says the
phrase ‘I'm thinking about how I'm
thinking about . . .,’ then at the third
or fourth iteration the speaker loses
the sense of what'’s being said.”

In the general case we’'ll have to
deal with not just three or four but
with n iterations. Denote by U the
following statement: S_knows S, _,
knows . .. S, knows §, knows some-
one got dirty.

Then the difference between the
two variants being compared can be
formulated as follows:

Suppose the conductor had come
by and sages S, ... S, (and maybe
somebody else) have dirty faces.
Then statement U_ is true.

Suppose the conductor didn’t
come by and the faces of sages S,, ...,
S_(and no one else’s) are dirty. Then
statement U is false.

We'll prove this theorem by induc-
tion.

For n = 1 it’s obvious: if the con-
ductor had come by, S, knows from
his announcement that someone got
dirty; if the conductor didn’t come by
and only S, has a dirty face, then
there’s no way for him to know about

42 JULY/AUGUST 1992

it. So in the first case U _ is true, and
in the second case it isn't.

The transition fromn =k ton =
k + 1 is performed as follows.

First case (the conductor came by).
Thefacesof S, ..., S, aredirty. This
means, in particular, that the faces of
S, ..., S, are dirty, and we can apply
the induction hypothesis, according
to which statement U, is true. Sage
S, . , know this, of course—that is,
S, . knows S, knows...S,knows S,
knows someone got dirty. Which is to
say, the statement U, | is true.

Second case (the conductor didn’t
come by). Sage S, may assume that
his face is clean. If so, then from the
point of view of S, |, only k sages S,
..., S, have dirty faces. Therefore, by
the induction hypothesis, statement
U, is false. Thus, having assumed
that his face is clean, S, , | is com-
pelled to assume that S, doesn’t know
whether S, knows. .. S, knows S,
knows someone got dirty.? In other
words, S, , , doesn’t know whether S,
knows S, , knows . .. S, knows S,
knows someone got dirty. And this
means that statement U, | is false.

The proof is complete.

At the same time we've finally fig-
ured out what the conductor said.
The larger n is, the more the sages
learned from his announcement (that
is, “those that have ears to hear”).

6. Dotting the i's

The reader who has managed to
struggle through all these word mazes
to the end of section 5 will hardly need
the following explanations. Still, for the
sake of completeness, here they are.

1. In section 3, the transition from
k=4tok+1=>5isabsolutely correct.
It’s also true that for greater k’s the
proof holds without alterations. And
it’s also easy to pass fromn=2ton=
3andfromn=3ton=4."Only” one
transition doesn’t work: fromn =1 to
n = 2. It can’t work because for n =2
the statement is wrong: any two gitls
don’t have eyes of the same color.

But if, nevertheless, you try to re-

®In fact, S, knows about it; that is, in
actual fact—and not from the point of
view of S, , ,, who supposes his face to

be clean—statement U, is true. Check
it yourself.

peat the proof “on your fingers” for
this case, nothing will come of it (in
section 3 we joined A and E by a
“bridge” C:both A and E happened to
have eyes the same color as C’s; if
there are only two “fingers,” there’s
no such bridge).

The two-toed sloth from the epi-
graph was supposed to draw your at-
tention to this exclusive case.

2.In section 2, statement Y is true,
whereas all the statements Y_starting
from the second are false. The transi-
tion fromn =k ton = k + 1 was cor-
rectly established only for k = 2. It
fails for k = 1: when card A is removed
from the table, only one card remains;
and only one figure is written on this
card, but it’s not necessarily X.

3. Problem 1 in section 4 is virtu-
ally equivalent to the problem exam-
ined in section 5, if we put aside the
question of whether S, knew that S,
knew that one can wash up at a stop
and not in the train (and if he did, then
the question is whether S, knew
about it, and so on). If the conductor
didn’t announce that “someone has
gotten dirty,” none of the sages will
go out to wash (neither at the nth nor
at any other stop).

Nobody will go out to wash up in
the setting of problem 2 from section
4 either—that is, in the case when
n > 1 and not all of the n soiled sages
are together when the conductor
makes his announcement. The proof
is similar to that from section 5 ex-
cept that induction must begin from
n =2. (For n =1 the only soiled sage
will go out to wash up at the first stop
no matter where he was when the an-
nouncement was made.)

4.In the first exercise from section
5, statements (a), (b), and (d) are true;
statement (c) is false.

5. Along with statement U_ (which
is true if the conductor had come by
and false if he didn’t) one can consider
awholesetofn! (1-2- ... n) state-
ments obtained from U by all pos-
sible permutations of the letters S|,
..., S_. Any of these statements can also
be used to tell one of the two variants
compared in section 5 from the other.
For instance, we could work with the
statement S, knows S, knows ... S
knows someone got dirty.”

n



Each of these n! statements consists
of n iterations. Shorter statements (of
less than n iterations) aren’t enough to
distinguish between the variants in
which the conductor did or didn’t come
by.Forinstance, U, | is true even with-

out the conductor’s announcement,
since S, knows S, , knows...S
knows S knows S_got dirty.

6. The amused lady from the epi-
graph to section 4 figured out her face
was dirty even though there was no

2

conductor to make any announce-
ments. The part of the conductor was
played by the unrestrained laughter of
her companions. Staid sages, of
course, would never take such un-
seemly liberties!

SMILES

Firal Extral
Read all about it

New result in ancient theory!

WO ARTICLES IN THIS ISSUE OF QUANTUM

are devoted to the method of mathematical induc-

tion. Recently I came across a miraculous application

of this method to elementary number theory: I
proved that if the product of several integers is divisible
by some integer, then at least one of the factors in the
product must be divisible by this integer.

Here’s the proof of this theorem by the method of in-
duction in its “strong” variant (see examples 2 and 5 in
the article “Jewels in the Crown” in this issue).

Let N be the number of factors in the product. For
N =1, there’s nothing to prove. Suppose the theorem
is true for all values of N less than k. For N = k, con-
sider the product a a,...a, _ a, of integers, which is di-
visible by some number b. Leta = a,...a, |; then aa,
is divisible by b, and by the induction hypothesis (for
N = 2] either g, is divisible by b (and we're done) or a
is divisible by b; then, by the hypothesis, for N=k -1
one of the numbera,, ..., a, , is divisible by b, com-
pleting the proof.

Everything would be wonderful if not for a “minor dis-
agreement with experiment”—the number 6 divides the
product 3 - 4 = 12 but doesn’t divide any of the factors 3
and 4. What went wrong: the inductive method? the
proof? Or, maybe, we should revise all our notions of di-
visibility . ..

Think about it. Then go ahead and look for the answer
somewhere in this issue. (Can you imagine where?)

—V. Dubrovsky
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ANTHOLOGY

A wrinkle in reality

“‘Space is the universal form of the existence of matter
and, consequently, when the problem
of the properties of space is raised,
no domain of facts can be separated artificially.”
—A. D. Alexandrov, “Non-Euclidean Geometry,”
in Mathematics: lts Contents, Methods and Meaning

by Yuli Danilov

OR MORE THAN TWO MILLENIA ONLY ONE

geometry was known: the geometry so nicely laid out

in Euclid’s Elements. Fuclidean geometry was con-

sidered the geometry of real space because there sim-
ply wasn’t any other geometry, and the Elements were
taken as a model of scientific exposition worthy of imi-
tation. For example, Spinoza wrote his Ethics in a “geo-
metrical manner”’—that is, he imitated the style and
structure of Euclid’s famous treatise.

Later a lot of weak spots were discovered in the Ele-
ments, and this is quite understandable: what is consid-
ered a strict result depends on the historical epoch. Great
controversy arose in connection with famous “parallel
postulate.” Many mathematicians tried to deduce this
“stubborn” postulate from the other axioms and postu-
lates, but in vain. Step by step a set of geometrical theo-
rems was found that didn’t depend on the parallel postu-
late and therefore must be valid whether or not the
dubious postulate is correct. Such theorems constitute so-
called absolute geometry—that is, geometry that doesn’t
depend on the postulate on parallels.

At last two noncontradictory versions of non-Euclid-
ean geometry (geometry without Euclid’s postulate on
parallels) were created. One was created by the Hungar-
ian officer Janos Bolyai (1802-1860), who was the son of
a friend of the “prince of mathematicians” Karl Friedrich
Gauss. The other was the brainchild of the Russian
mathematician Nicolay Lobachevsky (1792-1856).

The following fragment is taken from one of
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Lobachevsky’s papers on his new geometry, which he
called “imaginary.” Its publication can be considered our
modest tribute to the memory of a great scientist as his
200th birthday approaches (December 1).

The world was slow to acknowledge the creators of
non-Euclidean geometry. The idea of the existence of
“other” geometries was too bizarre, almost unbearable.
(By the way, Gauss confessed in a letter to Bolyai’s father
that he also developed his own approach to non-Euclid-
ean geometry but never published it because he was afraid
of “rousing the Boeotians” (the inhabitants of a province
in ancient Greece whose mental endowments were
thought to be rather meager).

The discovery of non-Euclidean geometry put forward
some very deep and important questions. What is geom-
etry? How many different geometries are possible? Which
geometry corresponds to the real world? The answers will
be given in later installment of this department.

Lobachevsky called his geometry “imaginary” in order
to distinguish it from the usual Euclidean geometry. Us-
ing astronomical observations, he showed that Euclidean
geometry is valid with very great accuracy. But
Lobachevsky’s “imaginary” geometry governs some sur-
faces—for example, the pseudosphere, which resembles
a funnel (see the illustration on page 46)—and is the “real”
geometry for high-speed elementary particles. But that’s
another story.

Translation and notes by Yuli Danilov



LOBACHEVSKY

New elements of geometry
with a complete theory of parallels

(Excerpt)

I t is generally known that the theory of parallels in Ge-
ometry has up to now remained incomplete. The fruit-
less efforts since Euclid’s time, over the course of two
thousand years, has led me to suspect that the notions
themselves do not contain the truth that people have tried
to prove and that, like other physical laws, can be veri-
fied only by experiment—for example, by Astronomical
observations. Convinced at last of the validity of my
guess, and considering this difficult problem to be com-
pletely solved, I wrote a dissertation on this topic in 1826.!
The application of this new theory to analytics can be
found also in papers entitled “On the Elements of Geom-
etry” published in the Proceedings of Kazan University
for 1829 and 1830. The main conclusion, at which I ar-
rived by supposing that lines are dependent on angles,
allows the existence of Geometry in a broader sense than
was first presented by Euclid. I named the science in this
extended form Imaginary Geometry, which includes, as
a particular case, Practical Geometry with its restriction
in the usual assumptions demanded by actual measure-
ment. I undertook to prove the sufficiency of the new
elements? in a work not long ago published in the Pro-
ceedings of Kazan University. Wishing to achieve this
goal if not by a direct path then at least by the shortest
backward path, I preferred at that time to proceed from
hypothetical foundations to equations for all the relations
and to expressions for any Geometrical quantity. If my dis-
covery brought no other benefit than repairing a deficiency
in the original doctrine, then at least the attention continu-
ously paid to this subject obligates me to present a detailed
account. I will begin by examining previous theories.

It is easy to prove that two straight lines, inclined at
the same angle to a third line, never meet, as they are
therefore perpendicular to one line. Euclid supposed, on
the contrary, that two lines inclined unequally to a third
line must always intersect. In order to convince
themselves of the validity of this last sentence, people
tried different means, either attempting to find in advance
the sum of the angles in the triangle, or comparing infinite
planes in the apertures of the angles and between the
perpendicules?® or allowing the dependence of the angles
only on the content of the sides,* or, finally, giving new
properties to the straight line in addition to its definition.
Some of these proofs might be called ingenious, but all of
them are false—insufficient in their foundations and
lacking the required rigor; there is not one among them
that, combining simplicity with conclusiveness, could be
recommended to beginners.

In 1800 Legendre published the third edition of his
Geometry, in which he included a theorem that the sum
of the angles in any triangle could not be more than n—
that is, two right angles. There he proved also that the sum
of the angles could not be less than &, but he lost sight of the
fact that the lines could pass each other without making a
triangle and at the same time the value of the sum of the
angles, derived by the other method, would be some sort of
absurdity. That is why I do not consider it necessary to ex-
pand here upon this error, which Legendre himself admitted
later, saying that, while the chosen foundations are beyond
question, he met some obstacles that he could not overcome.
In the Compte rendus of the French Academy in 1833, he
added a theorem that the sum of the angles must be 7 in all

The first version of Lobachevsky’s Geometry was
completed in 1823, but the authorities of Kazan University
did not allow its publication. On February 23, 1826,
Lobachevsky delivered a report entitled “ A Brief Statement
of the Elements of Geometry with a Rigorous Proof of the
Theorem on Parallels” at a session of the physics and
mathematics department, but this report, too, was denied
publication. It wasn’t until 1829 that the work excerpted
here was printed in the Proceedings of Kazan University.

’Here “beginnings” is translated as “elements,” just as
the term was translated into English from Euclid’s Greek;
elsewhere, as context demands, it is translated as
“foundations.”

3Perpendicule” is an older version of the term
“perpendicular.”

*The “content of a side” is here used to mean the length
of a side.
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triangles if it is 7 in some single triangle. It had been neces-
sary for me to prove the same thing in my theory, which I
wrote about in 1826. I even think that Legendre had several
times found himself on the very path Thad chosen with such
success; but prejudices in favor of the
generally accepted assumptions no
doubt made him continually force a
conclusion or fill the gaps in a way
that was inadmissible even with the
new assumption. . . .

There arose the idea of accept-
ing as a foundation in the theory of
parallels the notion that the angles
in triangle must depend on the
content of the sides. At first glance
such a hypothesis seems as simple
as it is necessary; but when we
delve into our notions and learn
what they are based on, then we are forced to call them
arbitrary as all the others that were embraced earlier. In
nature we directly comprehend only motion, without
which we could comprehend nothing through our senses.
So all other notions—for example, geometrical notions—
are created by our mind artificially and are taken to be as-
pects of motion; therefore, space by itself, separately, does
not exist for us. So there cannot be any contradiction in
our minds when we suppose that some forces in nature
follow one Geometry and others follow their own special
Geometry.S In order to make this idea clearer, let us sup-
pose that, as many people believe, attractive forces
weaken as they propagate along a sphere. In practical Ge-
ometry the area of the sphere is taken to be 4nr? for a se-
midiameter r, so the force must diminish in content as
the inverse square of distance. In imaginary Geometry I
found the surface of the sphere to be

re-eF,

and it may be that molecular forces, whose diversity will
depend on the number e (always extremely large), obeys
such a Geometry.® . . .

If the difficult problem of parallelism must be solved
experimentally, the method proposed by Legendre—lay-
ing a semidiameter six times around a circle—without
any doubt must be considered insufficient. In my Ele-
ments of Geometry I proved, using Astronomical obser-
vations, that in a triangle with sides as large as the dis-
tance from the Earth to the Sun, the sum of the angles
cannot differ from two right angles by more than 0.000003
second of a degree. This difference varies geometrically
with the sides of the triangle, and therefore the practical
Geometry used previously, as I mentioned before, is more

than adequate for actual measurements. One can come
to such a conclusion by means of propositions that are
simple enough and consistent with the foundations of the
science, although a complete theory demands that the se-
quence of education be changed,
and that Trigonometry be added
here.

Among the shortcomings of the
theory of parallels is the definition
of parallelism itself. But, contrary
to Legendre’s suspicions, this
shortcoming does not depend in
any way on any defect in the defi-
nition of a line, nor on those de-
fects, I would add, that were hid-
den in the original notions and that
I intend to point out here and try,
to the extent I can, to correct.

One usually begins Geometry by giving three exten-
sions to bodies, two extensions to surfaces, one extension
to lines, and no extension to a point. Calling the three ex-
tensions length, width, and height, and taking these
names to mean three coordinates, people hurry to com-
municate this premature notion with words that every-
day language gives a certain meaning, but one that is in-
definite for exact science. Indeed, how can one clearly
imagine measuring a length without knowing what a
straight line is?” How can one say anything about width,
or height, without saying a word in advance about
perpendicules, or planes, or about perpendicules in one
plane and in different planes? Finally, if there is no exten-
sion at all in a point, then what remains in it such that a
point could be the subject of consideration? Let us say that
every person clearly imagines a straight line without giv-
ing any account of what a line is; but how, using a straight
line, is one now to designate one extension in a curved
line and two extensions in a curved surface?

It is true that there is no need to require that length,
width, height be mutually perpendicular: it is sufficient
to take them as being lines in different directions. But this
case presents difficulties it its own. Keeping to the rule
of not borrowing prematurely from those notions that
must be developed later, the question arises: how are we
to express the requirement that the three dimensions of
bodies belong to three straight lines in different planes?
In addition, the different directions of two segments from
the point where the line breaks must not be confused with
a double extension in a plane. And, finally, how are we
to define adequately what we mean by “direction” or
“angle’’? In sum: space, extension, place, body, surface,
line, point, direction, and angle are the words with which

5These words can be considered prophetic: as is well
known now, the space of relativistic particles—that is,
particles moving at velocities close to the speed of light—is
governed by Lobachevsky’s geometry.

*Here Lobachevsky is not using the letter e to denote the
base of the system of natural logarithms; rather, eis a
number related to a circle’s radius r by the formular = 1/In e.

"The shortcomings of the “naive” Euclidean definition (“a
line is length without width,” and so on) were known long
ago. Constructive criticism at the beginning of the 20th
century brought to light such unusual objects as the Peano
curve, which passes through all the points of a square, and
curves that are nowhere differentiable, among many others.
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Geometry begins, but no clear understanding is ever at-
tached to them

It is possible, however, to view all these objects from
another direction. One must keep in mind that the obscu-
rity of the notions here is caused
by an abstractness that is superflu-
ous when they are applied in ac-
tual measurements and, therefore,
was introduced into the theory for
no good reason. Surfaces, lines,
and points, as they are defined in
Geometry, exist only in our imagi-
nation; but when we perform ac-
tual measurements of surfaces and
lines, we use bodies. That is why
we must speak about surfaces,
lines, and points only as they are
understood in actual measure-
ment, and then we can hold those notions that are directly
linked in our minds with the notion of bodies, to which
our imagination has become accustomed, and which we
can directly verify in nature, without embracing other no-
tions that are artificial and extraneous. But with these
new notions the science acquires a new direction from
the very beginning, which it follows until it turns into
analytics. So the manner of teaching takes on a quite
different aspect. I will try to explain what sort of trans-
formation this is.

There are two approaches in Mathematics: analysis and
synthesis. The distinguishing feature of analysis consists
of the equations that serve as the first foundation for any
assertion and lead to all conclusions. Synthesis, or method
of construction, requires that very representation that is
directly connected in our minds with the first (that is, fun-
damental) notions. The main benefit of analysis is that,
starting from equations, one always moves directly to the
proposed goal. Synthesis is not subjected to any general
rules, but one necessarily has to start from synthesis in
order to reach, having found an equation, that borderline
after which everything turns into the science of numbers.
For example, one proves in Geometry that two
perpendicules do not intersect; that if some parts of tri-
angles are equal, then the triangles are identical. But it
would be vain to try to consider such cases, or the entire
theory of parallels, analytically. Such an approach will
never be successful, just as one cannot avoid synthesis in
measuring planes delimited by straight lines, or in mea-
suring bodies delimited by planes. It stands to reason that
in synthesis one must turn to analysis for help; neverthe-
less, it is indisputable that analysis can never be the only
tool in the foundations of Geometry and Mechanics. To
a certain extent Geometry will always contain some-
thing properly geometrical that cannot be separated
from it. One can restrict the scope of synthesis, but it
is impossible to eliminate it completely. But even in
this attempt to replace synthesis with analysis, one
must not be so hasty as to introduce functions any time
when it is only possible to foresee a dependence, not
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knowing what it consists of, let alone how it will be ex-
pressed. With this restriction on analysis we designate
the true goal and proper place for another method that
alone will found the science on such notions, from
which reasoning draws all the
rest, deducing from new data
from the initial data and enlarging
the limits of our knowledge infi-
nitely in all directions. The initial
data will undoubtedly be those
notions we acquire in nature
through our senses. Our mind can
and must reduce them to the
smallest number so that they
could serve as a solid foundation
for science. But usually no one
follows the synthetic approach in
this form, obeying all the rules
mentioned here; people prefer to bring in analysis, even
if prematurely, and to assume the development, albeit
incomplete, of the notions that constitute our natural
mind and that only need be given names, without going
into broad explanations and not bothering with precision
in defining them. But if ease and simplicity induce us to
choose such a method of instruction, then strict truth will
always have its own advantage, which it is sometimes
necessary to use.
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AT THE
BLACKBOARD |

Vavilov's paradox

On paper, it’s a violation of the energy conservation law

by V. A. Fabrikant

HE NOTION OF PARALLEL

light beams with finite cross sec-

tions is frequently and fruitfully

applied in geometrical optics.
Not only that, even in the theory of
such a wave phenomenon as interfer-
ence it’s permissible in many cases to
make use of this notion.

In many cases, yes, but not in every
case. A very instructive optical paradox
is discussed in The Microstructure of
Light by the brilliant Russian physicist
S.1. Vavilov (1891-1951).

Let me just remind you briefly of
what an interference pattern looks like
and the energetics involved. Interfer-
ence, as we know, results from the su-
perimposition of waves. As far as elec-
tromagnetic waves are concerned, both
the electric and magnetic fields oscillate.
At every point in space and at every
moment in time these quantities
determine the energy of the electro-
magnetic field. An electromagnetic
wave transfers energy, and we can
introduce the idea of the density of
the energy flux. This is the name
we give to the energy of a field pass-
ing through a unit area per unit time.

Every wave is also characterized by
its phase. If two light beams have a
constant phase difference, we say that
the beams are coherent.

In the interference pattern that
arises when two coherent light beams
are superimposed, the light energy is
spatially redistributed. In the bright
bands the energy is greater than the
sum of the energies of the component
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energy-flux density

Figure 1

beams; in the dark bands, the oppo-
site is true. The excess energy in the
bright bands is compensated by the
lower energy in the dark bands. The
total energy distributed throughout
the entire interference pattern is
equal to the sum of the energies of the
two interfering beams.

Figure 1 shows the dependence of
the energy-flux density in the inter-
ference pattern on the displacement
along the screen on which it is ob-
served. This pattern was obtained
with two coherent light beams of
equal energy. The dashed line indi-
cates the sum of the energy-flux den-
sities of the two beams. The portions
of the curve above this dashed line
correspond to the bright interference
bands, and the portions of the curve
lying below the line correspond to the
dark bands. The total energy distrib-
uted throughout the interference pat-
tern is given by the area under the
curve. This area is equal to the area
under the dashed line. The require-
ment of nature’s strict “book-
keeper”—the law of conservation of
energy—is unswervingly fulfilled.

Now let’s move on to Vavilov’s
paradox. Imagine two absolutely co-

Figure 2 £ A

Figure 3
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o =

displacement along the screen

herent, narrow light beams of width
a that intersect at a small angle o
(fig. 2). The area ABCD is where the
interference occurs.

In order to observe the interference
pattern, we place a screen perpendicu-
lar to the plane of the drawing and
passing through points A and C. The
interference pattern will consist of
alternating straight bright and dark
bands filling the screen from point A
to point C (fig. 3).

The distribution of the energy-flux
density corresponds to the diagram in
figure 1. If at point D (fig. 2) both
beams have the same phase, the
phase difference at points lying along
the line BD will be equal to zero. So
line BD corresponds to the middle of
the central bright band. In the middle
of the neighboring dark band, the phase
difference must be equal to —that is,
the light oscillations in both beams
must be completely out of phase. The
phase difference A¢ is equal to the path
difference AL for both waves to the given
point divided by the wavelength A and
multiplied by 27

gL
Ap=2m o (1)

A phase delay of 2r corresponds to
a path difference of A. From formula
(1)it follows that, in the middle of the
interference pattern of the dark band
nearest the center, AL must be equal
to A/2.

Let’s calculate the path difference
at point A. The parallel beam can be
considered to consist of plane waves
perpendicular to the direction of the
light beam. Now let’s draw one of the
wave surfaces (whose phases are
equal) of the first beam through point
D (fig. 2). Points D and A’ lie on this
wave surface.

The paths taken by both beams to
point D are equal. In order to get to

point A, the wave surface of the first
beam must travel the extra distance
A’A after passing through point D.
The wave surface of the second beam
must travel the extra distance DA
after passing through point D. So we
obtain the path difference

AL=DA-AA=-2 __¢€
sinoe  tano
2asin®* % o (2)
=——<% =gatan—.
sino 2

It’s clear that the same path differ-
ence, but with the opposite sign, will
hold at point C. Now let’s begin to
decrease angle . As we can see from
formula (2), AL will decrease as well.
For small o the path difference AL can
become equal to A/4. Then the entire
region from point A to point C will be
filled with a single bright interference
band. Consequently, the energy will
everywhere exceed the sum of the
energies of the two intersecting
beams. There is no compensation
from the formation of dark bands,
since there aren’t any!

We can also obtain a negative re-
sult, so to speak, if we take intersect-
ing beams with an initial phase differ-
ence of n. Then the region from A to
C will be filled with a dark interfer-
ence band. In the first case, it’s hard
to understand where energy comes
from; in the second case, where it dis-
appears to.

Both cases clearly contradict the
law of conservation of energy. There
must be some defect in our reasoning
that causes this apparent violation of
one of the basic laws of nature. To
understand what’s going on here, let’s
write formula (2) for the case when AL
= A/4 and use the fact that o is small
(tan o= o for small o

A ao
PR 3]

We’ll show that in order to fulfill the

condition AL = A/4, the angle oo must
indeed be very small.

CONTINUED ON PAGE 62



STUDENT
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Summing up

The possibilities of one-time digital use

OME TIME AGO I WAS
reading an old computer maga-
zine and came across the follow-
ing contest problem: Write a
computer program that will find all
of the valid addition expressions of
the form a + b = ¢ such that each digit
from 1 to 9 is used exactly once. The
expression 124 + 659 = 783 is an ex-
ample. Actually, the author was look-
ing for the fastest program that would
print all valid expressions. However,
I was struck by the mathematics of
the problem. Writing a brute-force al-
gorithm to find all such expressions
didn’t interest me as much. I worked
on the contest question as a math-
ematical, not programming, chal-
lenge.
To find all of these expressions, we
must begin by considering three
forms:

ABCD ABC ABC
E DE DEF (1)
FGHI FGHI GHI

where A through I represent different
digits. It isn’t difficult to see that the
first two of these digits don’t have a
solution. So we're left with finding all
solutions to ABC + DEF = GHI. Let’s
assume the first addend is always less
than the second addend. This way, no
equations will be double-counted be-
cause of commutativity.

I spent some time on this puzzle
and came up with a surprisingly large
number of expressions of the desired
form. I then yielded to curiosity and
wrote a program to confirm what I
had found on paper. Indeed, I had dis-

by Mark Lucianovic

covered them all—there were 168 of
them. (Actually, my program found
twice as many, because it considered
a+b=candb + a = c to be different
expressions.)

I thought the problem was solved.
But I looked again and noticed some
very peculiar properties. First of all, in
each of the 168 expressions, the sum
was divisible by 9. Can you prove
this? (Hint: use the fact that a num-
ber and the sum of its digits leave the
same remainder when divided by 9.)

Notice also that the 168 equations
can be grouped in sets of four based on
the sums. For the original example
(1), the expressions

124 129 154 159
659 654 629 G4
783 783 783 783

make a group. So once we have found
one valid expression, three more can
be generated.

I found another very interesting
property, for which I haven’t discov-
ered a satisfactory explanation. In
every single expression, carrying
takes place exactly once. That is, it’s
always necessary to carry from either
the ones to the tens column or the
tens to the hundreds. Can you explain
why?

With this fact in mind, we can ac-
tually place the 168 into groups of
eight, not four. Here’s how: for each
expression, there is one column that
doesn’t involve carrying. (It’s either
the ones or the hundreds.) We can
move this column to the other end
and create four new expressions.

The eight-member group for the
original example includes the four in
(2) plus

241 246 291 296
506 591 546 541
837 837 837 837

Finally, why 168? I mean, what
makes this number so special?
Clearly, based on my other findings,
the number of valid expressions must
be divisible by 8. But can you find a
method of predicting mathematically
why there are this number of expres-
sions? This seems to be a pretty
simple problem, but there are so
many intricacies involved. Please let
me know if you can find a way to ex-
plain this.

Here are some other questions to
consider.

e Each sum is, of course, divisible
by 9. This means that the sum of its
digits can be either 9 or 18. But in
actuality, all valid sums have digits
that add up to 18. Why?

¢ Some valid sums, like 783, have
eight valid expressions. Four of these
are listed in (2) above. Others, like
639, have only four. What causes this
distinction?

At the time he wrote this piece, Mark
Lucianovic was a senior at Thomas
Jefferson High School for Science and
Technology in Fairfax, Virginia. He is
now a student at Princeton University
and also uses his digits to manipulate
the valves of the French horn.
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MATH
INVESTIGATIONS

Tmangles of Sums

And onward to pyramids

N MY PREVIOUS COLUMN

(“Triangles of Differences” on page

30 of the May/June issue of Quan-

tum), I presented a problem as it
originally occurred to me, allowing
my readers to start from scratch. The
purpose of this column is to restate
that problem in a slightly different
form, obtained by rotating the tri-
angles of numbers to obtain “tri-
angles of sums” rather than differ-
ences. Thus, for example,

6 10 15 23 43
4 5 8 20
1 3 12
2 9
7
becomes
7 2 1 4 6
9 3 5 10
12 8 15
20 23
43

One of the advantages of this new
form is that the numbers in its first row
are smaller and their influence on the
number at the apex can be analyzed
more efficiently. In fact, one can prove
that if the first row consists of the se-
quence n, n,, ..., nn,, then the number
at the apex is given by the formula

.

i=l

Verification of this fact is left to my
readers as a warm-up exercise. Our
original problem can then be restated
as follows: Foreachk=1,2,3, ..., find
the smallest value of N, so that all

by George Berzsenyi

15

Figure 1

numbers in the resulting triangle of
sums are distinct positive integers.

In view of the formula above, it is
clear that the middle entries of the
sequence n,, 1,, ..., n, have a greater
influence on the size of N, than those
on either end. Consequently, in
search of such triangles one may wish
to start with smaller positive integers
and then add larger ones on each end.
This leads to the idea of embedding
smaller triangles (of numbers) in
larger ones, and hence forming them
recursively. Figure 1 exemplifies this
development for even k; unfortu-
nately, it is slightly flawed since N, is
definitely 3 rather than 4.

For odd &, the recursion is flawless
for the presently known values of N,;
theyare N =1, N,=8, N, =43, N, =
212, and N, = 1,000, and it is conjec-
tured that N, = 4,562. The second
challenge is to verify this claim by
using the witnesses given in “Tri-
angles of Differences.”

Yet another advantage of switch-
ing to triangles of sums is the possi-
bility of extending our inquiries to
higher dimensions. One such exten-
sion is exemplified by figure 2, where
each number is the sum of the four

numbers at the corners of the square
directly above it (for example, 17
=9 +2+ 1 +5). Your final challenge
is to determine whether it is always
possible to arrange the numbers 1, 2,
3, ..., n*in the top layer so that the re-
sulting “pyramid of sums” consists of
distinct integers and the number at
the apex is as small as possible.

Figure 2 62

In closing, I wish to express my
appreciation to my mathematical
friends Basil Rennie, Stanley
Rabinowitz, and Stan’s former col-
leagues at Digital Equipment Corpo-
ration, for recasting my original prob-
lem in its present, much more
trackable form. O)
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The A-maze-ing Rubik’s Cube (a
new variation), Vladimir Dubrov-
sky, Sep/Oct91, p64 (Toy Store)

Baby, It’s Cold Out There! (“cosmic
cold” and thermal radiation), Albert
Stasenko, Mar/Apr92, p12 (Feature)

Calculating 7 (the contribution of
Christiaan Huygens), Valery Vavilov,
May/Jun92, p44 (Looking Back)
Catch as Catch Can (the theory of
gravitational capture), Y. Osipov,
Jan/Feb92, p38 (Looking Back)

The Clamshell Mitrors (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, Mar/Apr92, p48 (Physics
Contest)

Classic Writings from the History of
Science (Plutarch’s “Concerning the
Face Which Appears in the Orb of the
Moon”), Yuli Danilov, Mar/Apr92,
p42 (Anthology)

A Conversation in a Streetcar (“lucky
tickets” in Leningrad), A. Savin and L.
Fink, Mar/Apr92, p23 (In Your Head)
Criminal Geometry, or A Matter of
Principle (Sherlock Holmes displays
math prowess), D. V. Fomin,
Sep/Oct91, p46 (Smiles)

Differing Differences (math chal-
lenge|, George Berzsenyi, Nov/Dec91,
p30 (Math Investigation)

Direct Current Events (DC ma-
chines), I. Slobodetsky, Mar/Apr92,
p52 (At the Blackboard)

Divisive Devices (Euclid’s algorithm,
greatest common divisor, and funda-
mental theorem of arithmetic), V. N.
Vaguten, Sep/Oct91, p36 (Feature)
Double, Double Toil and Trouble
(boundary boiling of two liquids), A.
Buzdin and V. Sorokin, May/Jun92,
p52 (In the Lab)

The Duke and His Chicken Incuba-
tor (seventeenth-century Florentine
thermoscopes), Alexander Buzdin,
Sep/Oct91, p51 (Looking Back)
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East and West of Pythagoras by 30°
(math challenge), George Berzsenyi,
Mar/Apr92, p51 (Math Investigations)
Extra! Extra! Read All About It! (in-
ductive incompetence), Vladimir
Dubrovsky, Jul/Aug92, p43 (Smiles)

Fibonacci Strikes Again! (curious oc-
currences of a famous number se-
quence), Elliott Ostler and Neal
Grandgenett, Jul/Aug92, pl5 (Math-
ematical Surprises)

Forcing the Issue (Newtonian me-
chanics), Mar/Apr92, p32 (Kaleido-
scope)

The Fruits of Kepler’'s Struggle (dis-
covering the laws of orbital motion),
B. E. Belonuchkin, Jan/Feb92, p18
(Feature)

Friction, Fear, Friends, and Falling
(mountaineering physics), John
Wylie, Jul/Aug92, p4 (Feature)
Further Adventures in Flexland (two-
way hinges and flexchains), Alexey
Panov, May/Jun92, p64 (Toy Store)

Getting It Together with
“Polyominoes” (approach to tiling
problems based on group theory),
Dmitry V. Fomin, Nov/Dec91, p20
(Feature)

Glittering Performances (XXII Inter-
national Physics Olympiad), Arthur
Eisenkraft and Larry D. Kirkpatrick,
Nov/Dec91, p53 (Happenings)
Global Change (commentary on
events in the former Soviet Union),
Bill G. Aldridge, Mar/Apr92, p2
(Publisher’s Page)

Going Around in Circles (math chal-
lenge), George Berzsenyi, Sep/Oct91,
p35 (Math Investigations)

Go “Mod” with Your Equations (re-
mainders and congruences), Andrey
Yegorov, May/Jun92, p24 (Feature)
Grand Illusions (apparent viola-
tions of light’s speed limit), A. D.
Chernin, Jan/Feb92, p24 (At the
Blackboard)

The Greek Alphabet (a physicist’s
guide), Sheldon Lee Glashow,
Mar/Apr92, p40 (Getting to Know . . )

Halving It All (curiosities of planar
bisection), Mark E. Kidwell and Mark
D. Meyerson, Mar/Apr92, p6 (Fea-
ture)

Halving Some More (segments of
constant area), Dmitry Fuchs and
Sergey Tabachnikov, Mar/Apr92, p26
(Feature)

Heart Waves (behavior of electrical
waves in the heart), A. S. Mikhailov,
Nov/Dec91, p12 (Feature)

Holes in Graphs (functions that are
both continuous and discontinuous),
Michael H. Brill and Michael
Stueben, Sep/Oct91, pl12 (Feature)

Is This What Fermat Did? (fast factor-
ization), B. A. Kordemsky, Sep/Oct91,
pl7 (At the Blackboard)

It All Depends on Your Attitude (get-
ting oriented in outer space), Bernice
Kastner, Jan/Feb92, p12 (Feature)

Jewels in the Crown (mathematical
induction), Mark Saul, Jul/Aug92,
pl0 (Feature)

Launch into International Space
Year! (guide to ISY activities),
Jan/Feb92, p53 (Happenings)
The Leaky Pendulum (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, Nov/Dec91, p28 (Phys-
ics Contest)

Learning About (Not By) Osmosis
(discovery and applications),
Alexander Borovoy, Nov/Dec91, p48
(In the Lab)

Make Yourself Useful, Diana (the
Moon as a radio telescope antenna), P.
V. Bliokh, Mar/Apr92, p34 (Feature)
Marching Orders (finite group
primer), Alexey Sosinsky,
Nov/Dec91, p6 (Feature)



Meandering down to the Sea (natural
curvature of riverbeds), Lev
Aslamazov, Jul/Aug92, p34 (In the
Lab)

Meeting No Resistance (high-
temperature superconductivity),
Alexander Buzdin and Andrey
Varlamov, Sep/Oct91, p6 (Feature)
A Meeting of Minds (US-Soviet sci-
ence teachers conference), Bill G.
Aldridge, Sep/Oct91, p4 (Publisher’s
Page)

Nature’s Fireworks (inner workings
of the auroras), A. K. Kikoyin,
Jan/Feb92, p50 (Feature)

Neutrons Seek the Murderer! (neutron
activation analysis), A. S. Shteinberg,
May/Jun92, p20 (In the Lab)

Off into Space (jumping out of the
plane), Vladimir Dubrovsky and Igor
Sharygin, Jan/Feb92, p44 (Feature)
One, Two, Many (“primitive” count-
ing method of scientists), May/Jun92,
p32 (Kaleidoscope)

Ornamental Groups (Escher and sym-
metry groups), Vladimir Dubrovsky,
Nov/Dec91, p32 (Kaleidoscope)

Out of Flexland (“gasping sea star”
and more), Vladimir Dubrovsky,
Jul/Aug92, p63 (Toy Store)

Patterns of Predictability (symmetry,
anisotropy, and Ohm’s law), S. N.
Lykov and D. A. Parshin, Nov/Dec91,
p36 (Feature)

Photosynthesism (artificial barriers
between disciplines), Bill G. Aldridge,
Jul/Aug92, p2 (Publisher’s Page)
Portrait of Three Puzzle Graces
(Rubiklike games and group theory),
Vladimir Dubrovsky, Nov/Dec91,
p63 (Toy Store)

The Power of Dimensional Thinking
(problem-solving method), Yuli Bruk
and Albert Stasenko, May/Jun92, p34
(Feature)

The Power of Likeness (strengths and
weaknesses of analogy), S. R.
Filonovich, Sep/Oct91, p22 (Feature)

Reaching Back (extending a helping
hand), Bill G. Aldridge, Nov/Dec91,
p5 (Publisher’s Page)

Reflection and Refraction (a look at
optics), Sep/Oct91, p32 (Kaleido-
scope)

Restricted Distances (math chal-
lenge), George Berzsenyi, Jan/Feb92,
p31 (Math Investigations)

The Riddle of the Etruscans (gold
spheres on jewelry), A. S. Alexandrov,
Sep/Oct91, p42 (In the Lab)

A Ride on Sierpinski’s Carpet (fractals
in the mind and in nature), I. M.
Sokolov, May/Jun92, p6 (Feature)
Russian Bazaar (economic hard
times), Bill G. Aldridge, May/Jun92,
p2 (Publisher’s Page)

Science vs. the UFO (solving a
tranformational puzzle), Will Oakley,
Jan/Feb92, p84 (Toy Store)

Shake, Rattle, and Roll (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, May/Jun92, p40 (Physics
Contest)

The Short, Turbulent Life of Evariste
Galois (a revolutionary in politics and
math), Y. P. Solovyov, Nov/Dec91,
p42 (Looking Back)

A Snail That Moves Like Light (phys-
ics challenge), Arthur Eisenkraft and
Larry D. Kirkpatrick, Sep/Oct91, p28
(Physics Contest)

Sources, Sinks, and Gaussian Spheres
(physics challenge), Arthur Eisenkraft
and Larry D. Kirkpatrick, Jul/Aug92,
p24 (Physics Contest)

Summertime, and the Choosin’ Ain’t
Easy (ice cream counting problem),
Kurt Kreith, Jul/Aug92, p28 (At the
Blackboard)

Summing Up (curiosities of single-
digit addition), Mark Lucianovic,
Jul/Aug92, p51 (Student Corner)

Tartu in the Summer of 91 (math
program for American and Soviet stu-
dents), Mark Saul, Mar/Apr92, p56
(Happenings)

To Flexland with Mr. Flexman
(two flexible toys), Alexey Panov,
Mar/Apr92, p64 (Toy Store)
Triangles of Differences (math chal-
lenge), George Berzsenyi, May/Jun92,
p30 (Math Investigations)

Triangles of Sums (math challenge),
George Berzsenyi, Jul/Aug92, p53
(Math Investigations)

The Universe Discovered (from
contemplation to calculation],
Yury Solovyov, May/Jun92, p12
(Feature)

A Universe of Questions (what we
know about the universe), Yakov
Zeldovich, Jan/Feb92, p6 (Feature)

Vavilov’s Paradox (apparent violation
of energy conservation law), V. A.
Fabrikant, Jul/Aug92, p49 (At the
Blackboard)

The View through a Bamboo Screen
(birth of the modulation collimator),
Minoru Oda, Jan/Feb92, p34 (Feature)

Wake Up! (brainteasers for vacation-
ers), Anatoly Savin, Jul/Aug92, p32
(Kaleidoscope)

Welcome to International Space
Year! (introduction to special ISY is-
sue of Quantum), L. A. Fisk, Jan/
Feb92, p2 (Guest Page)

What Did the Conductor Say? (math-
ematical induction), Mikhail Gerver,
Jul/Aug92, p38 (Feature)

What Goes Up... (physics challenge),
Arthur Fisenkraft and Larry D.
Kirkpatrick, Jan/Feb92, p32 (Physics
Contest)

The Wolf, the Baron, and Isaac New-
ton (action and reaction and more), V.
A. Fabrikant, Nov/Dec91, p24
(Smiles)

The World according to Malthus and
Volterra (mathematical theory of the
struggle for existence), Constantine
Bogdanov, Jul/Aug92, p18 (Feature)
A Wrinkle in Reality (excerpt from
Lobachevsky’s New Elements of Ge-
ometry), Yuli Danilov, Jul/Aug92,
p44 (Anthology)

Correction®

The Toy Store correction in the Janu-
ary/February issue should have referred
to the September/October issue.
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(a) For any positive integer a > 1,
the three pairs (24, 24a), (a + 1, ala + 1)),
and (ala + 1), a + 1) are all different and
satisfy the given equation.

" (b) We'll prove that, in general, the
number of solutions for the equation
1/x + 1/y = 1/a is equal to the number
of divisors of 42. In particular, for a =
1992 =23 3 - 83 this number is equal to
7-3-3 =63, because any divisor of 1992?
can be represented as 2% - 37 - 83™ where
k can take seven values 0, 1,2, ..., 6; nn
and m can each take 3 values0, 1, 2; and
the value of each exponent is chosen in-
dependently.

To prove this statement, rewrite
the equation in the form ax+ ay = xy,
or

xy—ax—ay =0,
Xy - ax —ay + a* = @,
a’=(x-ally-a).

It’s not hard to see now that distinct
ordered pairs of factors of a2 give dis-
tinct pairs of solutions for x and y,
which proves our assertion. The solu-
tion to part (a) of this problem can be
obtained as a special case of part (b),
if we think of 4 as a prime number.

Notice that the number of factor-
izations of ¢? into two factors equals
the number of divisors of 4% (M. Slav-
insky, A. Vaintrob)

M57

The answer to both questions (a) and
(b) is yes. Examples are shown in figure
1 for (a) and figure 2 for (b). In addition
to the “propeller” and the ancient Chi-
nese symbol yin-yang (fig. 1), whose
areas are half the areas of the whole

Figure 1
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Figure 2

circles, the following degenerate ex-
ample satisfies the problem’s condition
too: a circle of radius 1 and center O
from which three vertices of an equilat-
eral triangle with center O are deleted.
In figure 2 the unit circle is divided into
four arcs of angular measure g, €, @ — ¢,
7t —¢ (for the figure on the left, £ = ©/2),
and the “convex hull” of two
nonadjacent arcs is constructed. Taking
asmall enough €, we can make the area
of this figure arbitrarily close to that of
the semicircle.

Obviously, two copies of each of
these figures can cover a unit circle.
Suppose that some figure F covers the
semicircle. Then it must cover the
diameter of the semicircle. This
means that the unit circle C from
which F is cut (as shown in figures 1
and 2) must match exactly the unit
circle from which the semicircle is
cut. So F must contain a semicircle of
the circle C, which is not the case.
(N. Vasilyev)

M58

We begin with an algebraic proof.

(a) Substitute x for a, and consider
the difference between the left and
right parts of the inequality as a func-
tion of x:

fix)=a*-a?+x*—(a,—a, +x

The quadratic terms x* cancel out
here, so this function is actually lin-

()

\

Figure 3

ear (its graph is sketched in figure 3).
To prove f,(x) 20 for 0 < x < a,, it suf-
fices to verify £,(0) 2 0 and f,{a,) > 0,
which is easy:

f,l0) =a*-a?-(a, - a,)
=(a,-a,) 2a,20,
f3(£12) = alz - a12 = 0. (1)

(b) Likewise, consider the function

fix)=a?-a2+a?-%
—la,-a,+a,-xP

This is a quadratic function of the
form f,(x) =—2x> + px + g (see the graph
in figure 4). Again, the inequality
f\x) =0for 0 <x<a, will be proved if
we show that it’s valid at the end-
points of this interval. Now, f,(x) 2 0
is exactly inequality (a), and f,(a,) 2 0
coincides with inequality (1) above.

(%)

/]
\

70 a
Figure 4

(c) Proceeding in the same way,
consider the function

fix)=at-a}+..
+(-1Pa? -(-1Fx*-(a,-a,+...
+ (_l)naH71 _ (—I)HX)Z.

This function is linear for odd n and
has the form -2x> + p x + g, for even
n. So to prove that f (x) is nonnegative
ontheinterval 0<x<a__,itsuffices
to verify conditions f (0) 2 0 and
fla ) >0 atits endpoints. But
these two inequalities coincide with
the statement of the problem for the first
n-1and n -2 numbers, respectively,
of the sequence a, 2a,2...2 a,_ >a_.

From here, the general statement
emerges by the principle of math-
ematical induction, in the following
version: if a statement depending on
nisvalidforn=n andn=n +1, and




its validity for n— 1 and n - 2 implies
its validity for n, then it’s true for all
n >n,. In our case, n, = 2 [inequality
(1) above], n, + 1 = 3 [part (a) of the
problem; part (b) is, in fact, the case of
n = 4], and the “inductive step” was
proved above.

Figures 5 and 6 illustrate, for the case
n =7, an elegant geometric solution.

Figure 5

The left part (a> - a?) + (a,> — a,?)
+ ... of our inequality is the total area
of the shaded trapezoids in figure 5
(two adjacent trapezoids fill the gap
between the square a, x a, and the
square a, _, x a, ). The right part
(a,-a,+a,—a,+.. ) istheareaofa
square whose side length equals the
sum of the heights of every other trap-
ezoid along the bottom of the original
square. This square can be cut into
trapezoids with the same heights
(fig. 6) but with shorter (or not longer)
bases.

Figure 6

So the right part does not exceed
the left part.

A slight adjustment to this argu-
ment is necessary for cases where n is
an even integer. (N. Vasilyev)

M59

Suppose ABC is the required tri-
angle and point E lies inside angle
BAC (fig. 7). Since both points I and
E are equidistant from lines BA and
BC, lines BI and BE are the bisectors
of the interior and exterior angles of

Figure 7

the triangle at vertex B, so ZIBE = 90°.
Similarly, ZICE = 90°. It follows that
the quadrilateral BICE is inscribed in
the circle with diameter IE, and the
midpoint M of IE is the center of the
circle. Angle IMB is an exterior angle
of isosceles triangle MBE, so

LIMB = Z/MBE + Z/MEB
=2/MBE =2/IEB = 2/ICB

(the last equality follows from the
Inscribed Angle Theorem: angles IEB
and ICB intercept the same arc IB).
Since CI bisects angle ACB,
2/ICB = LACB, and so ZAMB =
ZIMB = Z/ACB, which means that
points A, C, M, and B lie on the same
circle—the circumcircle of triangle
ABC.

Now, given points O, I, and E, we
find the midpoint M of segment IE.
Then two of the vertices of the un-
known triangle are the points of inter-
section of two circles: with center O
and radius OM, and with center M
and radius MI = ME; the third vertex
is the second intersection point of the
first circle and line EI. This argument
is easily reversed to show that this
construction yields the required tri-
angle if point T lies inside the circle
(O, OM). The reader is invited to in-
vestigate the situation in which point
I'is on or outside the circle with cen-
ter O and radius OM. The original
problem has no solution in this situ-
ation. (V. Dubrovsky)

Me0

(a) Yes, it’s always possible. We'll
even prove a more general statement:

if all the cells of the n x n square,
except for some cells of one row (or
column), are regularly colored, then
the coloring of the entire square can
be completed in the regular way.
Let the uncolored cells lie, for in-
stance, in the first row. Paint each of
them with the color that doesn’t yet
occur in its column. We must prove
that there are no two cells of the same
color in the first row—say, no two red
cells. To this effect, consider the
(n — 1) x nn rectangle obtained from
the square by erasing the first row.
Since the initial coloring was regular,
each of n— 1 rows of the rectangle has
exactly one red cell, so the total num-
ber of red cells in the rectangle is
n - 1. At the same time, each of n
columns in the rectangle has no more
than one red cell, and so only one of
the columns doesn’t contain a red
cell. It follows that only one cell of

Figure 8

Figure 9

(b), (c) In-these two cases the an-
swer, in general, is no, as the ex-
amples in figures 8 and 9 show (the
figures show n = 6, but it’s clear, of
course, what should be done for an
arbitrary n). Evidently the answer is
negative for any number of initially
colored cells between n and n? -2 (as
a counterexample, one can take a
coloring “intermediate” between
those shown in the figures). On the
other hand, it seems quite evident
that a regular coloring of fewer than
n cells can be regularly completed,
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though it’s not so easy to prove it ac-
curately. It’s an even more interest-
ing problem to find some simple
necessary and sufficient conditions
for a coloring to be completed.
(N. Vasilyev)

Physics

The ant’s speed doesn’t change lin-
early. Therefore, its average speed is
different on the different sections of
its path, and so in our solution we
can’t use the usual formulas for aver-
age velocity.

Let’s break the ant’s path from
point A to point B into small parts,
each of which the ant covers in the
same interval of time At. Then At =
Allv_(Al), where v, (Al is the average
speed over the given distance Al This
formula suggests an approach to the
solution: let’s draw the curve of the
dependence of 1/v, (Al on I for the
path from point A to point B. This
graph is a straight line segment (fig.
10). The shaded area in figure 10 is
numerically equal to the required
time. It’s not difficult to find it:

. /vy +1/v2

D) (L-14)
1 1
=l —+—= (L -1
[2V1+2V1 ]1](2 )
_L-r (1 _1h
2V1]1 V2 Vl ‘Zl i

This means that the ant will run from
1y A

av

14

1/21

0

Figure 10
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point A to point B in the time

4-1

:—2~2-10“28=75 S.

P57

Since the weight’s mass is much
less than the wheel’s mass, we can
ignore the weight’s gravitational force
on the wheel’s motion and assume
that the wheel rolls with a constant
velocity. In this case the acceleration
of the weight in the coordinate sys-
tem centered on the Earth is equal to
the centripetal acceleration of the
weight in the coordinate system cen-
tered on the rolling wheel—that is,

(v is the wheel’s velocity, R is its ra-
dius). The acceleration is supplied by
the force of gravity mg and the reac-
tion of the wheel N (fig. 11a).

The weight acts on the wheel with
aforce Q (fig. 11b) numerically equal
to the force N but oriented in the op-
posite direction. It’s clear that the
wheel jumps up if the vertical compo-
nent of force Q is larger than the
gravitational force Mg on the wheel.
The vertical component of force Q is
maximum and equal to Q at the mo-
ment when the weight is at the top of
the wheel. So the velocity at which
the wheel will jump up is determined
from the equation

Qz=Mg. (1)

Applying Newton’s second law to
the weight at the highest point, we
can write (see figure 11c)

%
4

mg+N=m—,
8 R

which yields

V2
N=m|—-g|.
m[R :

Since Q = N, equation (1) can be ex-
pressed in the form

2
A%
m| L —g |> Mg,

mg

Figure 11

from which we get

v > /Rg(%+lj =4./Rg.

P58

Let’s refer to the characteristic
points on the curve as illustrated in
figure 12. At V <V, the pressure of the
gas mixture doesn’t change, which
means that both oxygen and nitrogen
condense, and the pressure is equal to
the sum of the saturated vapor pres-
sure of the oxygen p, o, and nitrogen

D, N, at T = 74.4 K. Since the given
temperature is the boiling point of lig-
uid nitrogen, p, N, =P, which is the
atmospheric pressure (100 kPa). The
breaks in the graph at the points
(V,, p,) and (V,, p,) are evidence of
the phase transitions and gas conden-
sations: if for V < V both gases con-
densed, then for V, < V < V, one gas
condensed, and for V > V, condensa-
tion does not occur. Suppose that at
the point (p,, V) nitrogen liquefies;
then oxygen liquified at the point



DA

0
Figure 12

(p,, V,), and we can write down the
equations

p1 = ps, O, +p0/
D,=Ds, 0, + PNy, (1)

where py;, is the partial pressure of
the nitrogen at the point (V,, p,). In-
sofar as nitrogen is only in the gas-
eous state on the section V,V,, then
according to Boyle’s law we can write

Substituting this value in equations
(1) and dividing those equations by
one another (using the expressions
p,/p,=7/4and V /V, = 1/2), we find

Ps, o, :%pO =17 kPa.

If we had assumed that at the point
(V,, p,) oxygen condenses, we would
get ps o, = 6p,, which is easy to
check. This contradicts the fact that
oxygen boils at a higher tempera-
ture—the saturated vapor pressure
of oxygen at T = 74.4 K must be less
than p,.

Let’s find the mass of oxygen my, .

The point (p,, V,) corresponds to the
onset of oxygen condensation—that
is, its pressure is equal to Ps o,, and
in this case all oxygen is in the gas-
eous state. According to the
Clausius-Clapeyron-Mendeleyev
law,

o T, 2)
o,

Ds, O2V2 =

where lo, is the molar mass of oxy-
gen. For nitrogen the condensation
begins at the point (p,, V), which
means that

my

Py =—2RT, 3]
MUN
9

where [y, is the molar mass of nitro-
gen. Dividing equation (2) by equa-
tion (3) and taking into consideration
that Uy, /Ho, = 7/8 and D5 o, = p,/6,
we determine the mass of the oxygen
to be

8
=— =38 g.
mp, 21 N, g

P59

The electrical current in the elec-
trolyte is produced by mass transfer.
In this case the metallic mercury
from the electrolytic solution is re-
duced on the cathode, and oxidation
occurs on the anode. In accordance
with Faraday’s law of electrolysis, the
mass m of mercury produced on the
cathode in time t is equal to

m=——1It, (1)
Fn

where F =9.65 - 10* C/mol is the Fara-
day number, M = 0.201 kg/mol is the
molar mass of mercury, n = 2 is the
valency of mercury, and I is the cur-
rent. Since the resistance of the me-
tallic mercury and electrolyte and the
internal resistance of the source are
negligibly small compared to R, the
current I is equal to

£

The production of mercury on the
cathode and its dissolution on the
anode causes the drop of electrolyte
to move to the anode side. The dis-
tance I the drop shifts is related to the
mass of the mercury produced on the

cathode by the relation
nd*
=p—1I
m=p=—r1, (3

where p = 13.6 - 10° kg/m? is the den-
sity of mercury.

From equations (1) through (3} we
find the time it takes the drop of elec-

trolyte to move the distance I:

s nd*FnpRI
4Me

Substituting the values given in the
original statement of the problem,
and taking I = 1 cm, we get

t =100 hr.

Such “mercury watches” are used
in electronics as miniature timers.
They’re also used to measure the
charge in a circuit over an extended
period of time.

P60

Let’s consider a certain glowing
point A of the filament and an arbi-
trary ray AB emerging from it. We
draw a plane through the ray and the
filament. It follows from geometrical
considerations that with all possible
reflections, the given ray will remain
in the constructed plane (fig. 13). Af-
ter the first reflection at the conical
surface, the ray AB will propagate as
if it emerged from point A’—that is,
the virtual image of point A. The nec-
essary condition for preventing any of
the rays emerging from A from land-
ing on the mirror is that point A’
must not be higher than the straight
line OC—that is, the second genera-
tor of the cone, lying in the plane of the
ray (point O is the vertex of the conical
surface). This requires

ZA’OD+ ZAOD+ ZAOC
=3%>180°.
2

Consequently, o, >120°.

mi

Figure 13
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Brainteasers

B56

In 1980. The nephew was born in the
year x> —x. So x> —x < 1992.<x2, A quick
trial-and-error shows that x = 45.

B57

The temperature ¢, in Fahrenheit
is a linear function of the temperature
t.in Celsius: t, = at_ + b. Coefficients
a and b can be found by equating the
temperatures of the freezing point
and boiling point: t, = (9/5)t_ + 32.
Equation t,_ = t_ yields 40°F = 40°C.

B58

At first the small drops of dirty wa-
ter hitting the windshield don’t spread
over it because the dry glass isn't wet
enough. The windshield wipers
moisten all the glass they touch, and the
drops of dirty water hitting the wet glass
disintegrate due to capillary action. Be-
cause of the drastic reduction in visibil-
ity, experienced drivers hold off turning
on the wipers.

B59

See figure 14.

B60

When Koshchei died, he left the
treasure on the surface.

The first hole was dugin one day, the
second in 2 = 4 days, the thirdin 3% =9
days, andsoon. Soin 1 +22+3%+... +
132 = 819 days, Koshchei buried his
hoard at a depth of 13 m. Then he dug
it up (819 + 13* = 988 < 1,001), but died
before he could bury it 14 m down, be-
cause 819 + 142 = 1,015 > 1,001.

Friction

1. The fall factor can be found from

Figure 14
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the length of the rope I= 10 m and the
height of the fall h = 12 m. The fall
factor ¢ = h/I = 1.2. This is a pretty
serious fall. Generally climbers don’t
like taking falls with fall factors
greater than 1. Apart from the dangers
involved, it means replacing expen-
sive equipment more frequently be-
cause ropes that have been stressed by
a serious fall must be viewed with
suspicion.

2. Substituting numerical values
into the equation for the generated
force derived in the article gives F =
6,543 N, a figure well within the
safety limits.

3. The deceleration ratio is

a_F—mg_73

8 mg

Bungee jumpers (who jump head-first
off bridges and towers with a tether
attached to their ankles) use very elas-
tic cords and don’t approach these
kinds of accelerations.

4. The extension is Al = FI/M
= 1.64 m, or about 16%.

5. A ¢ = 0 fall means the height of
the fall is zero. A climber secured by
a tight rope and level with her protec-
tion slips, and the catching shock is
just her own weight mg.

Kaleidoscope

Problems

1. Turn the number upside down.

2. The decimal point.

3. 16 seconds. The interval be-
tween two strikes is 2 seconds. The
number of intervals is one less than
the number of strikes.

4.Yes, there are—for instance, (-1,
-2, -3), or (a, 0, —a) for any integer a.

5. Of course it is: the coin that
isn’t a dime is a nickel, but the other
one is in fact a dime!

6. One must shoot 6 times and
score 17 four times and 16 twice.

7. 30 grams. We use the fact that
the ratio of the masses (that is, vol-
umes) of similar figures is the cube
of the ratio of the sides of the figures.

8. Yes. If, say, in the box labeled
“nails” you find screws, then the
“nuts” box must have nails in it,

and the “screws” box must contain
nuts.

9. 72. If the number is N, then the
number of factors of 2 in N must be
an odd multiple of 3, and the num-
ber of factors of 3 must be both even
and one less than a multiple of 3.

10. Pour water from the second
glass into the fifth.

11.1/2 and 1.

12. Roll up the napkin, gently
pushing the glass with the part
that’s rolled up.

Winning strategies for games

1.If initially both piles are “odd”
(that is, consist of odd numbers of
rocks), the first player loses: no mat-
ter what his move is, he’ll leave two
piles, at least one of which is
“even”; then the second player can
divide it into two odd piles and take
away another pile, restoring the ini-
tial situation. A little reflection will
show that this implies that the sec-
ond player will always be able to
make a move.

If initially at least one of the piles
is even, then the first player divides
it into two odd piles, creating a los-
ing position for the second player (by
the above argument).

2. If there’s a peg tied to two
other pegs, the player who plays
next wins by binding together these
pegs. So the game will continue as
long as there are at least two “free”
pegs (that is, pegs that are tied to
only one other peg). It will take n/2
moves for an even number n of
pegs, and (n - 1)/2 moves for odd n.
So the first player wins if n is divis-
ible by 4 (that is, n/2 is even) or if n
has a remainder of 1 when divided
by 4 (thatis, (n - 1)/2 is even). If the
remainder is 2 or 3, the second
player wins.

3. The second player always wins.
After the first player makes his
move, the second one can tear off
one or two petals in such a way that
the remaining petals are divided
into two equal parts. Then the sec-
ond player can always repeat each
move of the first player on the other
half of the flower.



|ce cream

1. The father can include exactly one,
exactly two, or exactly three children in
his distribution. If he chooses one child
to give all three pennies to, he can make
his distribution in six ways. If he
chooses two children, he must give one
penny to a first and two pennies to a
second. That is, he is choosing an or-
dered pair of children. There are six
ways of making the first choice, and, by
the multiplication principle, five ways
of making the second; so he has 30 ways
to choose altogether. If he gives a single
penny to each of three children, he is
choosing a subset of three from a set of
six children. This allows for ,C, =20 pos-
sible choices. Altogether, he has 6 + 30
+20 = 56 possible choices.

2. This problem reduces to the
third case above, so there are 20 pos-
sible ways to make the distribution.

3. We can distinguish the same
cases as in problem 1. There are six
ways in which the father can give all
his coins to one child. If he chooses
exactly two children to favor, one
child gets a single coin, and the other
gets two coins. SO we can again con-
sider the children as an ordered pair,
and there are 30 such ordered pairs
possible. We then choose one of the
three coins to give to the first of the
ordered pair, leaving the other coins
for the second child. There are three
ways of doing this for each ordered
pair, making 60 possibilities alto-
gether. Finally, he can choose three
children in 20 ways, then match one
of the three coins with each of the
three chosen children. There are six
ways to do this, so there are 120 ways
to include three children in the distri-
bution. This makes 6 + 60 + 120 = 186
ways to distribute the coins.

4. We can diagram the coins as fol-
lows:

000000

We want to separate the coins into
three sets, some of which may be
empty. We can then match each set
with one of the children. Since there
will be six ways to make this match,
the total number of possibilities will

be six times the number of “parti-
tions” of the coins.

To count these partitions, we can
use the “order form” device by put-
ting a “stick” between subsets. There
are seven places to put a stick, and
each stick can go anywhere (two ad-
jacent sticks will include the null set
between them, so one child gets no
pennies). So we must choose two po-
sitions out of seven for the sticks. For
choices in which these positions are
distinct, the number is .C, = 21. But
there are seven more positions where
the sticks are adjacent, making
21 + 7 = 28 possible partitions of the
coins. So there are 6 x 28 = 168 ways
to distribute the coins.

5. We can use the same device for
this problem if we agree that the
sticks cannot be adjacent and that
neither can be at the beginning or the
end of the row of coins. We must
choose two out of five positions for
the sticks, to give a total of ten pos-
sible ways to distribute the coins.

6. For each coin, there are three
choices of a child to give it to. This
will make 3¢ = 729 possibilities for
distribution of the coins, including
cases where one or two children get
no coin at all.

Let’s count these cases, which are
prohibited in problem 5. There are three
cases in which one greedy child gets all
the coins. If one child is excluded, then
we can repeat the previous argument,
except that now there are only two
choices for a recipient for each coin. This
makes 2° = 64 possibilities if any one
child is left out. But this count includes
the two cases in which another child is
also left out, so there are really only 62
possibilities in this case. Now there are
three ways to leave out a child, so there
are in all 3 x 62 = 186 ways to distribute
the coins to exactly two children, and
189 “forbidden” cases (in which some
children are left out). So there are 729 —
189 = 540 ways to distribute the coins,
if each child must get at least one coin.

Meandering

Let’s find the shape of the rotating
liquid in the glass with angular veloc-
ity o (see figure 1 in the article). If the

linear dimension of the chosen region
is Ar, then its mass is equal to

Am=p-As-Ar.

Using this expression, from equations
(1) and (2) (see page 34) we get

2
A =27 Ar.
g
So the local slope of the surface pro-
file increases proportionally with the
distance r from the axis of rotation:

().)2

tano=—=—r.
Ar g

If we take the height of the liquid
level at the axis to be h, the height at
a distance r from the axis can be ob-
tained by adding the product of r and
the average value of tan a. To calcu-
late the average value of a linear func-
tion, it’s sufficient to calculate the
value at the midpoint of its range.
And so we get

2
h(r)= hy +";_gfr.

It’s clear that the dependence of h(r) is
quadratic on r and is graphically repre-
sented by a parabola. (Those who are
familiar with integral calculus can inte-
grate the expression for h(r) from r=0to
r =rto get the same result.)

It’s curious that the parabolic
shape of a rotating liquid was put to
practical use in creating a special kind
of telescope. The renowned Ameri-
can physicist Robert Wood con-
structed a telescope with a parabolic
mirror by putting a rotating container
of mercury at the bottom of a well.

Smiles

The second part of the inductive
argument presented implies that
k > 2, because it refers to the valid-
ity of the induction hypothesis for
N = 2. So there’s a gap between the
initial value N = 1 and the values
(N > 2} involved in the second part of
the proof. This is one more example
of a bad inductive proof, similar to
those considered in the article “What
Did the Conductor Say?” on page 38.
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Dimensional
thinking

(See the May/June issue of Quan-
tum)

1. The minimum period of rota-
tion corresponds to the maximum
angular frequency: o, = 2n/T,. The
relation between w, M, R, and the
gravitational constant G is simply
found from considerations of dimen-
sionality and takes the form
w2 =< GM/R? (the dimensions of G
are easily found from the law of
gravity.) The numerical estimates
for a planet with the same param-
eters as Earth are obtained if we con-
sider that G =6.7 - 10°"' N - m?/kg?,
M=6-10"kg, R=6.4-10° km. We
suggest that you calculate how
many times slower the Earth would
rotate as a result and consider the
question of what would happen if
we could manage to rotate the Earth
with © > o,

2. In addition to the geometrical
similarity of the tuning forks, we
have to take into account that they
are made of the same material and
that they have the same elasticity
characteristics and density (Young’s
modulus E is the natural elastic prop-
erty). If L is the length of the tuning
fork’s leg, then from dimensional
considerations the formula for the fre-
quency gives

So the ratio of the frequencies of geo-
metrically similar tuning forks is in-
verse to the ratio of the corresponding
lengths and is equal to 1 : 3. We might
also point out that the ratio E/p is the
square of the speed of sound in that
solid. Then the previous formula be-
comes quite clear. The oscillation
period of the tuning fork T o '—
that is, it’s simply determined by the
time it takes for the sound wave to
travel the length of the tuning fork.
Now think of why the geometrical
similarity of the tuning forks was em-
phasized in stating the problem.
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Might something change if the cross
sections of the legs of the tuning forks
aren’t similar?

3. We'll assume that the period T
is determined by the pressure p, the
energy E released by the explosion,
and the water density p. Here the den-
sity plays the role of a mass character-
istic. Writing T e p*p"E? and compar-
ing the dimensions of the left and
right sides of this formula, we get
T o pPp2E'S3, If we take into ac-
count that the water pressure p is re-
lated to the depth H by the relation
p = pgH, we arrive at the formula

si6[ E v3
(e (7]

The gas bubble created by the explo-
sion will expand until the internal

pressure becomes equal to the pres-
sure of the surrounding water. Using
dimensional considerations, we again
get a rough but reasonable estimate
for the internal pressure by dividing
the energy E by the bubble’s volume:
D, > E/r. Since the order of magni-
tude of p,  is equal to the external
pressure p = pgH: (E/r}) < pgH. From
this we get 1® «< E/pgH. So the size
of the bubble is proportional to
H-'3 In our estimates we ne-
glected the change in water den-
sity p with depth.

4. The pressure at the center of a
star of mass M and radius R is ex-
pressed by the formula p «« GM?/R*
obtained directly by the dimensional
method. We'll let you do the numeri-
cal estimates for this problem and
problem 5 yourself.

“VAVILOV’S PARADOX” CONTINUED FROM PAGE 50

As is evident from formula (3),

=ik, (4)
2a

Suppose a=1cm, A =5-10% cm; then

o =2.5-10"rad.

So problems with the law of con-
servation of energy arise when the
angle between beams is of the order
of the ratio of the wavelength to the
beam width.

The solution to the paradox is
that you can’t use the notion of an
ideal parallel beam of finite cross
section with such small angles.
We'll fail in any attempt to actually
produce such beams. Because of dif-
fraction, the limitation on the size
of the beam necessarily causes it to
diverge. The diffraction angle ¢ is de-
termined by formula (4). Therefore,
the angle o at which the beams in-
tersect can be determined with a
precision only of the order of angle
¢. As long as o >> ¢, the divergence
of the intersecting beams can be ne-
glected. But when o becomes com-
parable to ¢, the idea of a narrow
parallel beam becomes meaningless.

If diffraction hadn’t been discov-
ered, we could, on the basis of the
law of conservation of energy, not
only surmise that it exists but ob-
tain the fundamental rule governing
the size of the diffraction angle (the
angle of divergence). This is a good
example of how the law of conserva-
tion of energy can serve as a reliable
guiding star in physics.

If we take actual light beams,
we'll certainly never contradict the
law of conservation of energy. In ex-
periments of this type, we’ll always
end up with a spatial redistribution
of the energy flux. ()
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TOY STORE

Out of Flextand

The third and last of Mrr. Flexman s twisty tours

EFORE WE END OUR
magical Flexland tour, Mr.
Flexman wants to take us into
the deepest recesses of this
realm of surprises. This area is still
buzzing from the sensation caused
when it was discovered some 15
years ago. The region is inhabited by
flexors, or flexible polyhedrons,
whose existence was much doubted,
even denied, by generations of
mathematicians, starting with the
great authority Leonhard Euler.
So we begin our last trip with an
investigation of a “pseudo-flexor”
(so to speak].

A ring of tetrahedrons

This amusing toy, described in
Mathematical Recreations and Es-
says by W. W. Rouse Ball and H. S.
M. Coxeter, is seen in figure 1. Its
most remarkable feature is its flex-
ibility—it can be twisted as the ar-
rows in the figure show, intriguingly
changing shape. The ring of tetrahe-
drons is easily made out of a paper
strip with two rows of triangles
drawn on it (see figure 2): just bend
the paper up along the dotted lines
and down along the solid lines, fold
it along the creases, and paste the
flaps to the corresponding edges ac-

Articles by V. Zalgaller, N. Dolbilin,
and A. Panov, published in Kvant
magazine, and research articles on the
problem of the rigidity of polyhedrons
were used in preparing this installment
of the Toy Store.

by Vladimir Dubrovsky

cording to the color scheme. This
model helps us understand what
flexibility in a polyhedron means.
The term means that the polyhe-
dron can be bent so that its faces
stay rigid—retain their shape and
size—while the angles between
them change. So the ring of tetrahe-
drons is a flexible polyhedron. Yet
it’s not a genuine flexor, because it’s
not even a polyhedron in the strict
mathematical sense. Some edges of
our ring are sides of four faces at a
time, whereas the definition of a
polyhedron (too complicated to be
cited here in full) requires that every
edge be a side to two faces, if it’s an
interior edge, or to one face, ifit’s a
border edge. It’s clear, though, that
a polyhedron with a border can be
flexible—take, for instance, two
squares with a common side. So the
problem of rigidity or flexibility has to
do with closed polyhedrons—those
having no border. The history of this
problem began with a conjecture.

Euler's rigidity conjecture

This conjecture, proposed by
Euler in 1766, reads: “A closed spa-
tial figure does not admit any

Figure 1

changes until it tears.” By a “closed
spatial figure” Euler meant what is
now called a closed surface. But the
assumption seemed especially
sound for closed polyhedral sur-
faces—in particular, for simple poly-
hedrons. A polyhedron is called
simple if it is “topologically equiva-
lent” to a sphere—that is, if we
made it out of thin rubber and in-
flate it, it would swell into a sphere.
If we designate vertices as V, edges
as E, and faces as F, Euler’s formula

V-E+F=1

is always true for a simple polyhe-
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dron.! Conversely, this equation im-
plies the simplicity of a polyhedron.

In 1813, Euler’s conjecture re-
ceived a powerful confirmation
when Augustin Louis Cauchy
proved that any convex polyhedron
is rigid. Actually, Cauchy proved
even more than that: he showed, in
a very ingenious way, that any two
convex polyhedrons whose respec-
tive faces are congruent and are
joined to each other in the same or-
der are congruent. So you can’t bend
a convex polyhedron, because such
a bending would yield new convex
polyhedrons with the same shapes,
sizes, and order of the faces. Convex-
ity is indispensable to Cauchy’s
theorem, as the following example
shows.

Imagine an open cube box cov-
ered with a lid in the shape of a low
quadrilateral pyramid. Now take off
the lid, turn it over, and cover the
box again. We get a pair of different
polyhedrons that satisfy all the con-
ditions of Cauchy’s theorem but are
not congruent. This is possible only
because one of them is not convex.
However, both of these “covered
boxes” are rigid, and neither can be
transformed into the other. A more
interesting example, ostensibly re-
futing the rigidity conjecture, was
given in 1962 by the prominent So-
viet geometers A. D. Alexandrov
and S. M. Vladimirova.

A gasping sea sta

This polyhedron has 20 congru-
ent triangular faces combined to
form an “angular sea star” (fig. 3). A
paper model of this creature can ex-
ist in two basic states (shown in the
figure) that can be “snapped” into
one another by squeezing the
thicker one in the vertical direction
and the thinner one horizontally. If
the paper isn’t too stiff, the transfor-
mation seems very smooth, creating
the impression of flexibility. But
this model is misleading.

Suppose we fix the side lengths g,
b, ¢ of a face of our sea star (fig. 3).

This will be proved in the article
“Topology and the Lay of the Land” in
the next issue (in the corollary to
Theorem 3 there).—Ed.
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Figure 3

What can we say now about its
shape as a whole? When we look at
it from the top, we see a star divided
into 10 congruent triangles (fig. 4).
Consider one of them (shaded in the
figure). One of its sides, g, is the side
of the face whose projection forms
this triangle. We also know the op-
posite angle, which obviously mea-
sures 360°/10 = 36°. As for the other
two sides, b, and ¢, (the projections
of the sides b and ¢ of the face), it's
easy to figure out by the Pythag-
orean Theorem that the difference
of their squares is the same as for
sidesband c:c*-b?=c*- b~

Let’s try to construct a triangle
from these data. Draw a line seg-
ment BC of length a. Then the op-
posite vertex A of the triangle lies on
the intersection of two loci: the lo-
cus of points A such that angle BAC
measures 36°, and the locus of
points A such that AB> - AC? = ¢? -
b?. The first locus is an arc (more
exactly, two arcs symmetric with
respect to line BC); the second locus
is a line perpendicular to BC; and
their intersection depends on the
given parameters a, b, and c.

Without going into more detail
(which would be a good exercise in
geometry for the reader), I'll present
the result: if

2 12
1< E 2b <— L =1.70,
a sin36°

then our construction yields exactly
two noncongruent triangles. So in
this case exactly two starlike poly-
hedrons can be assembled from the
same set of 20 triangles—just as

Figure 4

with the cube and its pyramidal lid.
This means that theoretically both
states of the sea star are perfectly
rigid. The model can “breathe,”
transforming from one state to the
other, merely because of the elastic-
ity of the material and the relatively
small range of changes it undergoes
during the transformation. (Mr.
Flexman says the sea star is always
hanging around the door of the
Flexor Club but is never admitted.)
Here are good parameters for
making a model of the sea star: a =
54,b=59,c=9.1.

Flexors

Crucial new advances in the
study of the rigidity problem were
made not too long ago. In 1975,
Herman Gluck proved that “almost
all” simple polyhedrons are rigid.
That didn’t mean “absolutely all,”
but, in a sense, it “almost proved”
Euler’s conjecture. Yet, unexpect-
edly, just two years later the conjec-
ture was refuted when Robert
Connelly from Cornell University
constructed an example of a flexible
polyhedron. The first flexors had a

Figure 5



Figure 6

very intricate structure, like the one
shown in figure 5. But in 1978 Klaus
Steffen created a simpler flexor with
only 9 vertices (fig. 6). You can make
a model of it using figures 7 and 8.
Cut out the three pieces in figure
7—their appropriate dimensions are
a=12,b=10,¢c=5d=11,e=17
(flaps for gluing the pieces together

valley appears at the white circle on
the colored side and a peak appears
at the black circle. Do the same
with the blue piece. You'll end up
with two pieces that fit together
exactly. Nest the pieces so that the
colored sides are visible (fig. 8). Tape
the edges b of one piece to the cor-
responding edges b of the other one.
Pull apart the free vertices, using the
flexibility of the pieces, and attach
the yellow piece in between to edges
a. That completes the assembly. I

must warn you, though, that the
“range of flexibility” of this (and
other) models is rather limited and
can be less than you expect.

An interesting feature of all
known flexors is that their volumes
remain the same after any deforma-
tion. It has been conjectured that
this property is valid for all flexors.

At this point we'll say good-bye to
Mzr. Flexman and leave Flexland, per-
haps to come back some time and
make still other discoveries. Q)

Why Beloit College

Mathematics Produces

Real-World Results

a
= t Beloit, students are used to tackling real-world problems. Just ask
- Athe College’s mathematics modeling team, which won the Operations
Research Society of Americas Prize for best paper in last school year’s
a major international modeling competition. For 72 hours the team labored
virtually non-stop in a competition sponsored by the Consortium for Math-

ematics and Its Applications that involved 256 participants from around the
world. In the final tally, the Beloiters solution to the problem of planning the
most economical communications network took the honors. Mathematics—
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The Results Speak For Themselves.

Champion math modelers (from left) Christopher
Smith, Timothy McGrath, and Monica Menzies
with their coach, Professor Philip D. Straffin Jr

Figure 7

aren’t shown and won’t be needed if
you use cellophane tape). Tape to-
gether the pairs of adjacent edges
marked ¢ on the red piece so that a

For more information about Beloit College, call or write:
14800+356+0751 [in Wisconsin call collect 608+363+2500]
' Beloit, Wisconsin 563511
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