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GALLERY O

Procris and the Unicorn (c. I 520)
byBemardino Luini

ll CCORDING TO ONE LEGEND, the
fl u.rj.orn runs so swiftly no hunter can
harm it, but it bows submissively when ap-
proached by a virgin. The maiden in this
fresco by Bemardino Luini {d. 1532) is clearly
unaware of the ways of fantastic beasts-she
raises her arm to protect herself. Through a

trick of perspective, the point of the beast's
horn seems perilously close to her out-
stretched hand.

Procris and the Unicorn is one of a series
of frescoes about the i11-fated lovers
Cephalus and Procris. Cephalus took great
delight in hunting, and Procris gave hirn a

javelin that never iailed to hit rts mark (origi-
nally a gift from the goddess Diana). But
Procris came to suspect that Cephalus had
another lover in the u-oods where he spent
so much of his trme. She went to the {orest
and hid in a br-rsh to u-atch him. Hearing a

rustling, Cephalr-rs mistook her for his prey
and kil1ed her ruth the javelin she had lov-
ingly gir.en him.

The unicom lir-es on as an evocative and
enigmatlc srnbol. It was first depicted on
Assl.rian relieis and has appeared in Chinese
as u,eLI as European art through the ages. The
first descrrption in Greek literature was
penned rn the irith century a.c. by Ctesias
(who mar- actr-ral11-have been describing the
Indian rhrnocerosl. Ctesias says the
monokeros ,rr-hrch became unicornis in
Latin) has a rrhrte bodr', a purple head, and
blue eyes; iroil rts iorehead protrudes a

cubit-long hom, red at the tip, black in the
middle, and lvhite at the base. It rvas thought
that those who drink Irom its horn are
protected from stomach trouble, epilepsy,
and poison.

Believe it or not, all this has something to
do with the Kaleidoscope in this issue.

Ndtjondl (:dllery al Art, Wxhlngton lCcilectictt cti SotnLtel H. (/cssl O Na;A
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C over art by Leonid Ttshkov

Who ioesn'tlike fractals? In addition to
making abstract mathematics stunningly
visual, they have opened new paths to an
understanding of the physical world.
Fractals are intimately related to chaos
theory, which explores the intercon-
nected order and disorder in phenomena
as diverse as plant growth and the behav-
ior of weather systems.

One young woman who likes fractals
is Ashley Reiter of North Carolina, who
wrote the winning paper in the 1991
Westinghouse Science Talent Search.
Ashley used a certain definition of di-
mension (the "Hausdorff dimension")
and found a research article in which this
dimension was determined empirically.
She obtained contradictory theoretical
result. In the course of investigating
this discrepancy, Ashley determined
the dimensions of fractals generated by
Pascal's triangle and its higher-dimen-
sion analogues.

Tum to page 6 for a look at this hot
topic. (The wild hair on the cover is a

f anci{ul rendering of dif{usion-
controlled aggregation, which is
discussed in the article.)
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I N MARCH, DURING ONE OF

! *y p.rrocirc vrsrts to ivioscow, i
I nra a chance to visit Izmaylovo
I PrrL, located northeast of the
Kremlin on the outskirts of the
city. In the old dayslzmaylovo was
a baronial estate, in Soviet times it
became a public recreational {acil-
ity; now it's a huge open-air bazaar
and {lea market. Everything is for
sale: icons, quiits, coins, stamp col-
lections, furniture, clothing, Com-
munist Party memorabilia . . .

Cnacenue yronapulux-
Eeno pyK caMhx yronapqux-

Vlnaf u llerpon

A drowning man must use
his own arms to save himself-

llf and Petrov

The Izmaylovo phenomenon
isn't unique. Muscovites are gath-
ering elsewhere to buy and sell in
this rudimentary market economy.
Entire city blocks in Moscow are
set aside for such trade in private-
one might say personal-property.
It's an astonishing sight.

I had mixed feelings as I worked
my way through the dense, shuf-
fling mass of bundled-up human-
ity. I admired the Russian people's
will to survive, their patience, their
solidarity in bad times, their pecu-
liar blend of optimism and fatal-
ism. But I couldn't helf feeling sad
as I saw them selling their personal
belongings in the street. It seemed
as if they were selling their past-
their family histories as well as

B u1pxoil monacrupt
co cBouM ycTaBoM He xo4flr-

pyccKafl nocfloBl4Lla

Don't bring your rules
to our monastery-

Russian saying

Many economic "monks " irom
the West have been eager to In rru>e
their rules on the shamblin-q Rus-
sian economy. They in>iit on a

transition to a lcind oi frcc mar-
ket" that doesn't even exist in the
West. They would in eiiect make

A small portion of the uowd at lzmaylovo Park. I would estimate that there
werc at least 30,000 people there.

Hussian hazaar

Further notes of an American traveler

therr shared national experience-
for their daily bread.

There is talk of redistributing
land to those who can farm it prop-
er1y. But my friends in Moscorr,
toid rne any action would be too
late for the spring planting. They
said the {oodstu{fs people had put
away were depleted this past win-
ter. Amid the political talk that the
Russian econom\r l-i11 likely turn
the corner in srx months to ayearl
Muscovites are already thinking
ahead to the lr.inter ol'92-'93 and
wondering horv they will get by.

ll!AY JlJitt lgg2



aid and loans contingent on a high
unemployment rate and the re-
moval of social programs/ most of
which constitute the kind of
"safety net" that has become (after
years of struggle) an integral part of
the Western democracies.

Other economists caution the
Russians against a headlong dive
into market capitalism without ad-
equately protecting the weakest
members of their society. But their
voices seem lost in the chorus
cheering Russia on to a harsh new
economic plan, one that gives {ree
rein to well-positioned Russians
and non-Russians to exploit this
potentially rich but unstable land.

Conoaffi 1acnauu He KopMnr-
pyccKafl nocnoB[Lla

Nightingales don't live on fairy tales-
Russian saying

While in Moscow I attended sev-
eral wonderful performances of bal-
let and folk dance. The theaters
were packed with ordinary people,
not VIPs. They had paid 5-8 rubles
to get in-less than 10 cents at the
current exchange rate. I feared I was
seeing the last instances of open
access to the arts in Russia. When
monetary reforms take hold, tickets
will cost hundreds of rubles, just as

theater and symphony tickets in
the US cost $25 {or more), putting
them out o{ the teach of many
working people.

True, Russia and the other repub-
lics in the Commonwealth of Inde-
pendent States need a new class of
businessmen and economists if they
are to join the world economy and
materially improve the lives of their
citizens. [rdividual initiative and self-
interest are important values in a
market economy. But I hope the
people of the CIS don't lose sight of
other values that have produced gteat
scientists, artists, and thinkers. One
such value is concern for the com-
mon good and for those at the bottom
of society. You can't pull yourself up
by your ownbootstraps i{you have no
boots.

-Bilt G. Aidridge
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The objects in figure 3 are also self-
similar. They're called the Sierpinski
triangle and the universal Sierpinski
cTirve, or "Sierpinski carptet," after the
Folish mathematician Waclaw
Sierpinski (1882-19691. You can see

how they're constructed: the first is
obtained by repeatedly joining the
midpoints of the sides of correspond-
ing equilateral triangles; the second is
obtained by infinitely repeating the
procedure of cutting out the center
portion of a square divided into nine
square parts.

Now let's get back to the Koch
curve and try to determine its length
with a compass. We can do this, for
example, by opening the feet of the
compass to some length l" and mark-
ing off steps of length )" along the seg-
ments of the curve. The length I of
the curve is then approximately )un,

A l'ide olt Siel'pinski,s carpel

And a cruise along an infinite coastline

by l. M. Sokolov

HE OBJECTS CALLED
"fractals" were initially created
in the imagination of mathema-
ticians at the beginning of this

century. Hardly anyone would have
thought that there might be anything
like these far-fetched and elegant
curves in nature. And though this
article will mostly touch on physical
systems/ it will have to begin with a
short, nonrigorous mathematical in-
troduction.

Sefi$milal'ily
A self-similar geometrical figure

(or solid) is a figure that can be cut
into a finite number of identical fig-
ures similar to it.

Let me remind you of the general
definition of similarity: two figures
are called similar if they have the
same shapg even though their sizes
may be different; so one of them is an
enlarged or diminished copy of the
other. More exactly, one o{ two simi-
lar figures can be mapped onto the
other so that the distance between
any two of its points is increased or
decreased in the same ratio, called the
rutio of similarity. Examples of self-
similar figures are given in figure 1: a

I

Y

2_

straightline segment, an equilateral tri-
angle, a square, and a cube.

The object presented in figure 2
looks a bit more complicated, but it's
constructed quite simply. We start
with an equilateral triangle with side
length 1o and repeat (to infinity) the
following procedure: every straight
segment of the curve obtained on the
previous step is divided into three
parts and the middle part is replaced
by two segments of length 1/3, where
I is the length of the initial segment.
The first stages of this procedure are
seen in figure 2. At the nth stage the
curve becomes a polygonal line con-
sisting of 3 . 4" line segments, each
1o/3" units long, andits totallenghis

L:31o1413P.

This polygonal line is calledthe Koch
triadic curve or Koch snowflake lat-
ter the Swedish mathematician who
invented it).

Strictly speaking, the Koch snow-
flake isn't a self-similar object accord-
ing to our definition above. But it
consists of three self-similar curves
"g own" from the three sides of the
initial triangle: each of the four seg-
ments that replaced a side of the ini-
tial triangle at the first step of con-
struction eventually yields a curve
similar to the one produced by the
whole side (with aratio o{ 1/3). More-
over, arLy segment of the polygonal
curve obtained at the nth step of the
construction also produced a similar
curvg the ratio of similaritybeing3-.Figure 1 Figure 2

OllAIlIIll1I/l/IIATlJfit



Figure 3

where n is the number of steps we've
taken. The value of l, is called the
scale of measurement.

Let's see how this process looks
when used on a circle of radius R : 1.

For l": 1.0 m, we find L:A:r:6 m.
For i": 0.1 m, we get L = 6.2 m; and
for l. = 0.001 m, we get I : 6.28 m. As
)" + 0, I tends to the limit of ZnR:
6.28318... m.

But if we try to repeat the same
procedure with the Koch curve,
we'll be convinced that there is no
limit that could be considered the
length of the curve. Choosing the
scale )" = lol3", we find that the
measured length of the curve is
equal to the length of a polygonal
line corresponding to the nth stage
of construction-I : 31ol4l3)"; so it
grows indefinitely as fl -) -.

Attempts to measure the lengths
of other self-similar curves would
give analogous results: as the scale of
measurement decreases, the length
of the curve increases without limit.

Here I should point out one very
important factor that distinguishes
a real self-similar object from an
ideal mathematical one: real obiects
have a minimum scale of measure-
ment l,*,..

For example, let's take the actual
process of constructing the Koch
curve with paper and pencil. Suppose
we construct a curve starting with a
triangle whose side is 1.0 m long and
use a pencil that produces a line ao :
0.1 mm = 10-4 m wide. From the
mathematical point of view, the pro-
cedure for constructing the curve can
last for ever. But the real process will
stop as soon as the length of a straight
segment between two neighboring
corners becomes comparable to the
width of the line. It's easy to calculate
that this will occur at step n: ln (1ol

aol lht 3 = 9. The length of our line will
be I = 40 m. So the real self-similar
curve has a finite length.

Now let's return to ideal math-
ematical objects. The formula for the
length of the Koch curve can be ex-
pressed as

L: AXn, (1)

whereA :]fotn+llns, cx:ln 4/1n 3 - 1.

(You can prove to yourself that this
expression is equivalent to the for-
mula I :31r(4131".l'The exponent cr

has to do with the dimension of the
curve.

ltIhalh dimensinn?

There are several definitions of di-
mension, based on completely differ-
ent ideas. Let's take a look at a few of
them.

The first definition has to do with
the number of coordinates needed to
unambiguously locate a point. In our
space this number is three; on the
plane, two coordinates are enough; on
a straight line, only one coordinate is
needed. hr this sense space is three-di-
mensional, a plane is two-dimen-
sional, and a line is one-dimensional.
Naturally, according to this defini-
tion, dimension is always an integer
number.

A second way of defining dimen-
sion is based on the observation that
in order to cut a figure into discon-
nected parts/ one merely has to re-
move a setwhose dimension is 1 less
than that of the figure. For instance,
to dissect a line one merely removes
one of its points; to dissect a plane
figure, we can cut it along some
cufve; and to dissect a solid, we can

cut it along some surface. So dimen-
sion can be defined inductively: the
dimension 0 is assigned to a single
point, or more generully, to any finite
or infinite but countable set (that is,
a set whose points can be enumerated
by the numbers L,2,3,...); and the
dimension of any other set is assumed
to be 1 more than the dimension of
the section dividing it into discon-
nected parts. Such a dimension,
called inductive, again is always an
integer.

Now let's move on to a third, and
for us the most interesting, definition
of dimension---orrather, to the defini-
tion of a whole class of like notions
of dimension. The simplest of them
is the dimension of self-similarity.

The dimension of self-similarity D
can be defined by the formula

^_ 
lnNu- , tffrn

where N is the number of identical
parts into which the given self-simi-
lar object can be partitioned and n is
the ratio of simiiarity of the object to
its parts. Look at figure l. Cutting a

square as depicted there, we divide
it into N: 4 squares with sides half
as long as those of the original
square (" : 2l.The cube with side
length I consists of N: 8 cubes
with side length I 12 (n: 2). So the
dimension of self-simllaity f.or a
square is ln 4/1n 2 : 2i for a cube
it's ln 8lln2 : 3; afld, obviously,
the dimension of a straight line seg-
ment is 1.

If we calculate the dimension of
the objects shown in figures 2 and
3 in the same way/ we'll see that
the dimension of any segment of
the Koch curve (and the dimension
of the whole curve)is D = Ln 4lln 3

= I .2518; for the Sierpinski triangle
it's ln Sl1,r,2 = l.5\49i for the
Sierpinski carpet it's ln 8/ln 3 =
1.8727. These strange curves have a
fractional dimension.

Now let's go back to formula (1) for
the length of the Koch curve. Using
the above definition of dimension D
we can rewrite the formula as

L:31oD?'"1 -D.

trtrtrtrtrtrtr!D
oEo oEo oEo
tr!trtrtrtrtrtrtr
ntrtrtrtrtr
ol ln lof_-]orl
!DtrtrDtr
otrtrtrtrtrtrtrD
oEo oEo oEo
trtrtrtrtrtrtrtrtr
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We see that the rate ofgrowth of the
measured length of a self-similar
curve as a function of the decreasing
scale of measurement depends on the
dimension D of the curve. More ex-
actly, L l)"-which is approximately
the number of steps we made with
or.]r compass in measuring the curve-
is proportional to )"-D. And this
prompts a new definition of dimen-
sion.

llow do tllo lnea$ttre dimension?

The dimension of self-similarity
can be determined only for very regu-
lar objects that are constructed ac-
cording to definite rules. If the devia-
tions from regularity are sma1l, the
object can be considered approxi-
mately self-similar. But what happens
if they're large?

Let's use another definition of di-
mension, one that is often used to
experimentally measure the dimen-
sion of various physical systems.

The space in which the investi-
gated object is situated is divided into
boxes with side iength l, (for instancg
a square grid with side L is drawn on
the plane of a photo of the object).
Boxes that contain points of the ob-

ject are tallied. The partition is re-
peated at a smaller scale ),'< )" (fig. a).
The dependence of the number of
boxes containingpoints of the object
on the size of the box is expressed by
the law N = AI-D, where A is a con-
stant and D is the unknown dimen-
sion. Investigating a flat region with
area S (such as the triangle in fig-
ure 41, we can easily prove that N =
S/1,2, so D : 2. For a line segment, N
: BLI)", where I is the length of the
line segment and B is a coefficient
that depends on its orientation. A
line segment's dimension D is 1. If
we repeat this procedure with the
objects in figures 2 and}, we'll obtain
values of D coinciding with their di-
mension of self-similarity. To deter-
mine the dimensions of real ob-
jects, the graph of ln N as a

function of -ln l. is drawn. It is a

straight line whose slope give us the
value of D.

llJaturallnaclals

In 1961 an article by the English
scientist L. Richardson ( 1BB1-1953)
appeared that was devoted to the
measurement of the length of coast-
lines. The author proved that the
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measured length of a seacoast in-
creases as the scale decreases accord-
ing to the law L: Al.* (Richardson's
law), where the exponent cr for the
British coast/ for example, equals
0.24; for the Australian coast it's 0.13.
And though this law resembles the
formulas for the length of self-similar
curves/ this work o{ Richardson ex-
isted independently. In physics there
were some other examples related to
self-similar objects. But it was ail so
piecemeal . . .

Everything changed drastically
with the publication of a book by
Benoit Mandelbrot (a French math-
ematician now working in the

United States). It was
published in 1975 in
French and in 1977 inBn-
glish. This book brought
together many math-
ematical and physical ex-
amples and made them
the common property of
scientists everywhere.
But Mandelbrot's greatest
service was thinking up a
name for all this.

Maybe you remember
the primary contribution
of the character Athos in
Twanty Years Later by
Dumas-he came up with
a name for the operation:
"The Family Affair." This
stroke was considered
equal to the sword of
d'Artagnan and the money
of Porthos. To coin a good
name is a great achieve-
ment.

For objects of non-
integral dimension-or

A close-up view of broccoli Romanesco, a cross between cauliflower and broccoli. This
hybrid displays a striking dagrae of self-similailty: the individual nodules are smaller
versions of the entire cluster; the nodules are in turn composed of smaller nodules shaped
like the larger ones; and so on. (From Fractals for the Classroom by Peitgen, lfirgens, and
S aup e, N ew Y ork : Springer -V erlag, 1 99 2 )
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The obiect at left is an instance of di;t'fuslon-controlled aggregation of zinc at the intert'ace betrreen Lt solutiott of zinc sttlt'ate

and n-buty1-acetate. The figure at right is a computer simulation of the same phenomenon based on the Btownian lnotion
of single particles. (Frcm Fractals {or the Classroom/

rathert for obiects whose dimension
measured by the last of the above
methods is greater than their
topological dimension-Mandelbrot
invented the word "Itactal." This
word comes from the Latin word
fr actu s-fu actional, broken.

Mandeibrot's first book was called
Fr actaTs : F otm, Chance, Dimension.
His second, published in 1982, was
entitled The fuactal Geomeuy of
Nature-and the title couldn't have
been more apt.

Many geographical objects have
fuactal properties: shorelines, rivers,
mountains, canyons. The borders of
countries, iJ they correspond to natu-
ral landmarks and aren't drawn on the
map with a ruler and then determined
on location (like the border between
EgWt and Sudan), are also fractals.
The length of the Portuguese-spanish
border (given in Portuguese reference
books) and the length of the Spanish-
Portuguese border (according to offi-
cial Spanish data) differ by 20% be-
cause of the different scales used. This
proves once again that the notion of
the length of {ractal curves doesn't
make too much sense.

It tumed out that cuwes like the

Koch curve are the rule rather than
the exception in nature. It's clear that
the seif-similarity of real natural ob-

iects is violated by accidental devia-
tions from strict regularity. For ex-
amplg differentparts of a coast aren't
identical-they just resemble each
other. And all real systems have a

minimum scale of measurement.
These circumstances should be taken
into account when you analyze arry
physical situation.

In order to discuss the fractal prop-
erties of a system, the difference be-
tween the minimum and maximum
scales must be large enough. If we
take a shoreline, the maximum scale
will be about 1,000 km = 106 m, and
the minimum scale, determined by
the instability of the shore because of
waves/ tides, and so on, is of the order
of 1-10 m. These scales differ by afac-
tor of a millionl

Another example of fractal curves
is the visible edge of a cloud. Here the
difference between the minimum and
maximum scales is even larger: there
are data on ciouds from several hun-
dred meters across/ which have vis-
ible details of about I m, to the size
of the Earth (cyclonic regions). The di-

mension of a cloud edge is D = L35.
So far we've limited our fiscussion

to fractal curves, by and large-that is,
to extremely convoluted lines like
the Koch curve; our geographic ex-
amples were mainly curiosities. But
there are many physical processes
that create more complicated and
more impor tant fr actal structures.

No doubt many of you have grown
crystals from a saturated solution. If
the soiution isn't oversaturated and
it's well mixed, then a beautiful, regu-
lar crystal will grow from a "seed"
hangrng on a thread immersed in the
soluti.on. The crystal grows because
some molecules in the course of their
thermal motion approach places on
the surface where they can "stick,"
occupying the most advantageous po-

sition with regard to their energy
state. Of course/ most of the mol-
ecules land in less favorable places,

but sooner or later they move back
into the solution because their bonds
with the crysta1 aren't sffong enough.
Due to this equilibratory growth we
obtain a crystal without cavities and
with perfectly smooth, flat facets.

II crystallization and dissolution
aten't in equilibrium (which can
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occur with rap rd cry stallization f rom
an oversaturated solution or crystal-
lizattonfrom the gas phase), crystals
of another type appear. You've seen
the frosty overcoat you freezer ac-
quires from time to time, and the icy
pattems onyourwindows in thewin-
ter. These rather porous formations
arise from the condensation of water
in the air. At first, separate clusters of
molecules are formed; then they mul-
tiply and unitg and the clusters cre-
ate patterns. The conditions for the
$owth of clusters resemble the con-
ditions for the formation of snow-
flakes in clouds.

This process of growth, called dif-
fusion-controlled aggregatioq causes
the formation of small fractal-shaped
crystals called dendrites. The fractal
dimension of dendritic crystals is de-
termined by the specific mechanisms
of their growth. Depending on the
interaction of the molecules forming
the crystal and on the size of the crys-
tal, the dendrite may have a random,
irregrrlar form or, on the other hand,
it may seem to be a perfectly regular
figure-like a snor,vflake, for example.
But in realtty we can speak of the
regularform of a snowflake onlyif the
scale is large enough (the size of the
snowflake itseif); on a smaller scale
there is no regularity-this is a reflec-
tion of the random processes that led
to its formation.

The existence of aminimum scale
(which in this case may be of the
same order as, or much lxger that, a
molecule) means that total number
of molecules in a crystal (or its mass)
depends on its size according to the
law N-", - M - 1D. So we can deter-
mine the dimension of dendritic crys-
tals by using the dependence of their
mass on their size.

Shapes that look very much like
dendritic crystals can arise in dielec-
trics. If a strong spark strikes a dielec-
tricplate, it leaves a distinct pattem
on the surface-so-called Lichtenberg
figures, named after the German
physicist and experimenter who dis-
covered them in the 18th century.
The resemblance of Lichtenberg fig-
ures and dendritic crystals is no acci-
dent-their formation is theoretically
described by similar equations.

The fractal dimension is a very
important and measurable character-
istic of a physical system. It can also
be calculated by means of various
theoretical models. By comparing the
measured and calculated values, one
can decide which model is better. In
addition, when we calculate the
physical properties of fu actaL systems
(for example, the resilience o{ snow
and other porous materials), we can
use a mathematical method devei-
oped specially for this instance.

Many systems that have long
been used for prac,tical purposes have
fuactal properties. For example, the
surface of activated charcoal, usedas
an absorbent in protective masks, is
hactal.Its dimension is greater than
2; ithas an extremely large area (for-
mally in{inite, in the sense that the
Koch curve is infinite); and it has
holes of all sizes that can catch and
firmly hold particles of any size, from
a speck of dust to a large molecule.
The surfaces of many solid catalysts
used in chemistry also are fractal.
Their catalytic activity depends on
the fractal properties of their surfaces,
which are determinedby the method
used to prepare and process them.

We've gotten to know many ob-

iects of noninteger dimension. So the
question arises: is the space we live
in three-dimensional? We can give a

de{inite answer to this question. The
kactal dimension of space deter-
mines the expression of many {amil-
iar physical laws. For example, the
exponent 2 in the denominator of

coulomb'slawF =hT "r"
fact D - 1, where D is the fractal di-
mension of space. Analysis o{ data
collected to verify physical laws
whose formulas depend on the di-
mension o{ space have shown that its
dimension dif{ers from 3 by not more
than 10-to. Our space is indeed "very
three-dimensional."

ln$ead nla conclusion
The history of the study oI fractal

systems is rather instructive. At first
fractals seemed like a mental game of
those engaged in pure mathematics,
and researchers in the natural

sciences showed no interest in these
objects. At the same time, there were
some poorly understood facts (like the
immeasurability o{ coastlines) that
weren't important enough to attract
general attention and not interesting
enough to investigate for their own
sake. The number of such facts kept
growing, but they were still isolated
and of little interest. Then they were
given an all-encompassing name and
soon (after only 10 years!) the "tractal
boom" began in physics. One
scientist even called fractals the
infection of the late 20th century.

Why did fractals catch on? First of
all, it turned out that we're sur-
rounded by such systems and that we
encounter them practically every day.
Second, such objects have many un-
usual properties. Without under-
standing these properties, we can't
understand even such simple things
as the shapes of clouds or snowflakes.
Third, everything turned out to be
more complicated than it seemed at
first: a fuactaI must be described not
by a single fuactal dimension but by
a setr a spectrum of different dimen-
sions, each of which becomes equal
to the dimension o{ Euclidean space
as soon as we pass from fractals to
ordinary bodies. The different proper-
ties of fuactal systems depend on the
different dimensions. Fourth . . .

Fifth . . . Tenth . . . -new ques-
tions arise more quickly than the old
ones are answered.

Many theories have passed
through the stage of accumulating
questions be{ore achieving harmony
and completion. So the best time for
fractals is still to come. O
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The uniuer$o discouered

How misconceptions about the heavens
were stripped away, one by one

by Yury Solovyov

F ALL THE IMAGES of nature
that unfold before the human
eye, the most magnificent is the
view of the starry sky. From

ancient times this sight has stirred
the human imagination, evoking that
powerful curent of thought we now
cali science. How did mankind pen-
etrate the secret of the universe, the
secret of the motion of the heavenly
bodies?

The first notions of the ancients
about the universe were based on
what was directly visible. The an-
cient Egyptians and Babylonians
identified the universe with the
Earth, which they took to be an enor-
mous disk floating in a boundless
ocean. They envisioned the sky as an
overturned cup resting on a plane,
the inner surface of the cup sprinkled
with stars. The stars form ordered
configurations, called constellations.
The constellations remain un-
changed with each passing day, year,
or even century. During the night the
stars rotate about a stationary point,
located nowadays near the North
Star, as if the cup as a whole were
rotating about an axis that passes
through this point and the observer's
eye. Careful observations show that
the cup makes a complete rotation in
23 hours, 56 minutes.

Because of the cup's rotation,
some stars set in the west while oth-
ers are rising in the east. These obser-
vations make one think that the cup
is part of a complete sphere and that

12

the stars are distributed on its surface.
This sphere is called the celestial
sphere or the sphere of fixed stars. The
two stationary points at which the
celestial sphere intersects the rotation
axis are called the celestial poles. An
imaginary circle on the celestial
sphere whose points are equidistant
from both poles is calied the celestial
equato.

Sp[mimlEarllt
So, observations of the diurnal

(daity) rotations of the stars led an-
cient astronomers to the concept of
the celestiai sphere. But it was harder
for them to draw the conclusion that
the Earth is shaped like a ball. An-
cient Greek philosophers came up
with this idea as early as the begin-
ning of the fifth century n.c. They re-
lied on accounts of travelers who no-
ticed that the height of the north
celestial pole increased as they moved

direction of the direttion of the

to the north and decreased as they
moved southward (fig. 1).

The first true measurement of the
Earth's radius was carried out by Era-
tosthenes lca. 276-ca. 194 s.c.l, a

Greek who was a native of Syene
(now Aswan) in southern Egypt.
While stili a youth, he noticed that in
Syene everyyear at noon on )une 21

the Sun stays exactly overhead and
that tree trunks cast no shadows.
Later, in Alexandria, which is in
northern Egypt, he discovered that
shadows don't disappear there on the
same date, and it dawned on him (a
stroke of genius!) that this is due to
the c,urvature of the Earth's surface.
Alexandria is 770 km north of Syene,
so when the Sun is at its zenith over
Syene, it must be some angle away
{rom the zenith over Alexandria.
This angle a, can be measured by ob-
serving the shadow cast by a tree
trunk or column at Alexandrialfrg.zl
at the moment when no shadow is
cast at Syene (at noon on |une 21).
Angles u and B are equal as alternate
interior angles formed by a line inter-
secting two parallel lines. The mea-
sured angle was cx, = 7o, so an angle of
7o whose vertex lay at the center of
the Earth swept a circular arc 770 km
long on the Earth's surface. Since a

full circle comprises 360o, the Earth's
circumference must be 39,600 km,
and its radius must be about 6,400
km {precise modem values are 40,200
km for the circumference ar.d 5,378
km for the radius).

horipn at point B . horiTon at point A

Figure 1
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The idea of a spherical Earth made
it possibie to simplify the geometric
model of the universe. It was only
natural to take the terrestrial and ce-

lestial spheres to be concentric and
the rotation axis of the celestial
sphere to be an extension of the
Earth's polar axis.

lllandenin$ $ans
Besides fixed stars, we can also see

heavenly bodies on the celestiai
sphere that change their positions
from day to day. These bodies are

called planets because planetes in
ancient Greek means "wanderer."
Seven such "wandering stars" were
known from ancient times: the
Moon, Metcury, Venus, the Sun,
Mars, |upiter, arrd Satum.

To understand how the Sun
moves along the celestial sphere, let's
recall that a day (divided ir.to 24
hours) is the periodbetween two suc-
cessive sunrises. Since the celestial
sphere makes a full rotation about its
axis in slightly less than a day 123

hours and 56 minutes), the Sun must
move along the celestial sphere in
the direction opposite to the sphere's
rotation. That's why every daY the
Sun rises four minutes later than the
stars that rose with the Sun the daY

before. By marking the position of
the Sun with respect to the stars ev-

ery day at sunrise/ we can trace its
trajectory along the celestial sphere.
The trajectory tums out to be another

circle whose center coincides with
the Earth's center, while its plane is
tilted at an angle of23"3}'to the ce-

lestial equator. Along this circle,
called the ecliptic, the Sun moves
from west to east with an almost
constant angular velocity, approxi-
mately equal to 1o per day, and
makes a full revolution in about 355
days,6 hours.

The Moon also continually moves
with respect to the stars. Its orbit is
likewise a circle with the Earth at its
center. The plane of the circle is
tilted at an angle of 5o to that of the
ecliptic (fig. 3). The Moon moves al-
most uni{ormly along its trajectory
in the same direction as the Sun (that
is, opposite to the diumal rotation of
the celestial sphere), making a full
turn in slightly more than 27 days.
Because of this motion/ the Moon,
like the Sun, falls behind the stars in
their diurnal rotation, though the
time lag for the Moon is greater: it's
not 4 minutes, as for the Sun, but al-
most a full hour.

The other five wandering stars also
move along the celestial sphere, but
their motions are much more intri-
cate than those of the Sun and Moon
(fig. aal.Ancient astronomers divided
these five planets into two groups-
the in{erior planets (Mercury and Ve-
nus) and the superior planets (Mars,

)upiter, and Satum) according to their

circle on the celastial sphere tihed at
5o to the plane of the ecliptic. The axis
OM perpendicular to the plane of the
Moon's orbit rotates about the axis
OE perpandicular to the plane of the
ecliptic, describing a cona with a
period of 18.6 years.

apparent motions/ which are consid-
erably di{ferent. (As a matter o{ fact,
this difference is explainedby the dif-
ferent positions of the two kinds of
planets with respect to the Sun and
the Earth: the inferior planets are
those nearest the Sun, while the su-
perior planets are further from the
Sun than the Earth is.)

Figures 4b and 4c show the two
kinds of planetary traiectories plotted
against the background of the fixed
stars. As with the Sun and Moon, it's
important to keep in mind that ali
the planets, together with the fixed
stars, participate in the diumal rota-
tion. So, when we talk about the
planets' motion along the celestial
sphere, we in effect subtract this ro-
tation from the motions actually ob-
served.

The in{erior planets, Mercury and
Venus, don't deviate far {rom the
Sun. The angular distance between a

planet and the Sun is called the
planet's elongation---+astem or west-
ern, depending on whether the planet
is located to the east or to the west of
the Sun. The maximum elongation
for Mercury is 28o; for Venus-47o.
When an inferior planet's eastern
elongation is greatest, it can be ob-

served soon after sunset in the west-
ern sky, and it sets a little a{ter the
Sun does. Dayby day itmoves, at first
slowly, then more quickly, west-
ward-that is, against the Sun's mo-
tion. This type of planetary motion is
calledretrograde. As the days pass, it
gradually approaches the Sun, hides
in its rays, and can no longer be seen.

At this momentthe infeilor coniunc-
tion of the planet and the Sun occurs.
Some time after the inferior conjunc-
tion the planet becomes visible
again-this time in the east, shortly
before sunrise. Meanwhile the planet
continues its retrograde motion,
gradually getting {arther away from
the Sun. After its retrogression slows
and it reaches its greatest western
elongation, the planet stops and
switches to dfu ect motion ( eastward).
At first it moves slowly, then its
motion gradually gets faster. Its dis-
tance from the Sun decreases, and fi-
nally it hides in the moming rays of
the Sun-that is, its suPefior con-

Alexandria

Figure 2
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the apparent motion of the planets
without too much difficulty. (Try to
do it!) Imagine, though, the feat of
these ancient astronomers. Their
work was based on wrong misleading
ideas, yet they not only contrived to
explain their observations coherently,
they managed to predict planetary
motion with remarkable precision
(grven their starting point).

til'st mndels 0l lhe uilitlsrse: [tldlrus
The first model of the universe

was extremely simple. Extended ob-
servations convinced the ancient
Greeks that the other planets were
spherical like the Earth. In addition,
over time so much data was accumu-
lated about the two seemingly largest
heavenly bodies-the Sun and the
Moon-that they began to be consid-
ered "relatives" of the Earth. There
was no reason to consider the other
wandering stars dissimilar to the Sun
and Moon. So, it was thought, all of
them are more or less like the Earth,
and the differences in their apparent
sizes can be explained by their di{fer-
ent distances from the Earth.

But these huge bodies, eternally
hurtling above our heads as they
circle the Earth, must be attached
pretty firmly to something. The ce-
Iestial sphere didn't seem suited for
this purpose, since the planets move
independently of it. This is why the
Greeks imagined seven new
spheres-one for each planet-con-
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Figure 4
Different kinds of loops in the apparent paths of the planets are shown in
figwe 4a; portions of the uaiectoiles of Mercury and Mars in 1988 are depicted
in figuras 4b and 4c.

junction with the Sun occurs. Some
time later, it can be seen once again
in the evening twilight. As it contin-
ues to move directly, theplanet loses
speed. After reaching its maximum
distance to the east (that is, its great-
est eastern elongation), the planet
stops, changes direction (against the
Sun's motion), and the process starts
all over again. The period of one such
"oscillation" is 88 days for Mercury
and225 days for Venus.

The apparent motion of the supe-
rior planets is rather different. When
a superior planet is seen after sunset
in the westem sky, its motion among
the stars is direct-that is, from west
to east, iust like the Sun. But it moves
more slowly than the Sun, so the Sun
catches up and the planet is lost to
our sight for some time, since it rises
and sets at almost the same time as

the Sun. After the Sun has passed the
planet, the planet can be seen in the
east before sunrise. The speed of its
direct motion gradually decreases, the
planet stops, and then it starts its ret-
rograde motion among the stars from
east to west. Some time later the
planet stops again and switches to
direct motion; the sun overtakes it
again from the west, and the planet
once again ceases to be seen. These
phenomena are repeated, over and
over, in exactly the same order.

Armed with our modern under-
standing of the solar system/ one
could explain all the peculiarities of

centric with the sphere of fixed stars
but smaller. A11 seven planetary
spheres take part in the motion of the
celestial sphere, which makes one
rotation a day, and they also go
through their own independent mo-
tions.

This model later gave rise to the
idea of the "music of the spheres."
The Greeks related each of the seven
planetary spheres to one of the tones
of the octave, and the sphere of fixed
stars represented the eighth tone.
The Greek philosophers thought that
the huge hollow spheres to which
bodies as large as the Sun and Moon
(and all the other planets) ate at-
tached should give out sounds as
they rotate, just as the spinning
wheels of a mechanical device do.
The different tones produced in this
way combine to create a splendid
melody whose powerful sounds fill
the whole universe. And only we-
imperfect Earth-dwellers-are unable
to hear the sounds of this heavenly
music, the eternal delight of the
OllT nPian gods.

As more knowledge about the
motion of heavenly bodies was ac-
quired, the idea of spheres constitut-
ing the order in the universe had to be
elaborated further. An unshakable
underpinning of the ancient Greek
worldview was the conviction that
the Earth is the center of everything
the principal body in the universe. So

the only way to explain all the nu-
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merous complications discovered by
ancient astronomers-the irregular
motions of the planets, their retro-
gressions, and so on-was to insert
new spheres that would influence
one and the same heavenly body by
their combined motion. Eudoxus
(408?-355? n.c.) constructed a new
system of the universe, consisting of
27 spheres: three spheres for the Sun,
three for the Moon, four spheres for
each of the remaining five planets,
and one large sphere for the fixed
stars. It soon became clear, however,
that 27 spheres are insufficient to
describe the apparent motion of the
planets. So Callipus soon added an-
other 22 spheres to those proposed by
Eudoxus. As time passed, the heav-
enly machine became more and
more complicated. Eventually the
need for a simpler, clearer description
made itself acutely fe1t.

Ilts Bccultlricities ol llippamhus
All the ideas of the ancients about

the universe were based on the prin-
ciple of uniform circular motion.
This principle was first shaken by
the Alexandrian astronomer and
mathematician Hipparchus (2nd cen-
tury e.c.), who discovered that the
seasons of the yearvary in duration.
Hipparchus was the first to find the
Sun's perigee and apogee and to estab-
lish that the Sun moves faster near
the perigee than near the apogee. But
the axiom of uniform motion was too
deeply embedded in the flesh and
blood of ancient science for
Hipparchus to venture to destroy it.

To explain his discoveries,
Hipparchus resorted to another
method. He assumed that the Sun
moves uniformly in a circle whose
center does not coincide with the
Earth's center but lies somewhere in
free space outside it. Then, indeed,
the Sun would seem to move irregu-
larly-faster in the portion of the
circle nearer the Earth and slower in
the opposite portion. Figure 5 illus-
trates this mechanism: the center of
the Sun's motion is at the intersec-
tion of the broken 1ines, whiie the
solid lines coincide at the Earth's cen-
ter. By trial-and-error we can find the
location of the point at which an ob-

serverwould see the aforemen-
tioned peculiarities of the
Sun's motion/ even though in
reality it's still uniform circu-
lar motion. Hipparchus called
the line connecting the perigee autu.mnal

and apogee the line of apsides equtnox

(pronounced AP-sih-deez). He
called the ratio of the distance

vernol
eqtinctx

between the center of the solar
orbit and the Earth's center,
measured along this line to the

apogee

Figure 5

orbit's radius, the eccentricity
of the orbit. These terms have been re-
tained in astronomical discourse
down to the present.

As with the Sun, Hipparchus
placed the center of the Moon's orbit
outside the Earth. He calculated the
eccentricity, perigee, and apogee of its
orbit and the direction of the line of
apsides. Hipparchus determined the
motions of the Sun and Moon with
an accr;;racy surprising for that time.
For instance, with the data
Hipparchus obtained one could cal-
culate to within a day the dates of the
full moon for the present time-
some 2,000 years later. The great
Alexandrian astronomer also began
to study the motions of otherplanets,
which present much greater difficul-
ties. But it was Claudius Ptolemaeus,
or Ptolemy (2nd century e.o.), follow-
ing in Hipparchus's footsteps, who
succeeded in making significant
progress in this djrection.

Tlte Ptohmaic sys|Bln
Ptolemy's system of the

universe, which reigned {or
1,500 years without being
doubted by anybody, was
based on Hipparchus's ob-
servations and calculations.
Ptolemy set forth his sys-
tem in He mathematike
synt axis ("the mathemati-
cal, collection"), which
eventually became known
as Ho megas astronomos
(" the great astronomer" ). In
the ninth century/ Arab as-

tronomers used the Greek
superlative M egiste to refet
to the book. When the Ara-
bic definite article al was
added, the title became

Almagest, the name still used today.
Up to the end of the Middle Ages this
work was honored almost on a level
with divine revelation. It was consid-
ered a crime to doubt the words of the
Almagest.

Four postulates underlie the Ptole-
maic system:

1. The Earth is at the center of the
universe.

2.The Earth is at rest.
3. A11 the heavenly bodies move

around the Earth.
4. The motion of heavenly bodies

proceeds in circles with constant ve-
locities-that is, uniformly.

Ptolemy based his system on
Hipparchus's eccentric circles.
However, according to Ptolemy,
none of the luminaries (except the
Sun) revolves directly along such a
circle; this is the path of the center
of another circle along which the
planet moves (fig. 5). This "other
circle"-the planet's orbit-is

The Ptolemaic system
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calied the epicycle; the circle traced
by the center of an epicycle is called
the deferent The Sun's deferent and
the deferents and epicycles of the
other planets lie inside the sphere of
fixed stars.

The diumal motion of all the heav-
enly bodies was explained by the ro-
tation of the universe as a whole
about the stationary Earth. The direct
and retrograde motions of planets
were explained as follows.

Let aplanet at some moment be at
point P, of its epicycle (fig. 71, andlet
the center of the epicycle be at point
N, of the deferent. The planet re-
volves about point N, with anguiar
velocity u, and point N,, as the cen-
ter o{ the epicycle, revolves about the
Earth with angular velocity ro. In the
course of the uniform circular motion
of both P, ,rrd N,, the planet describes
a loop that will be seen by an observer
in a proiection onto the celestial
sphere. Why the loop forms is obvi-
ous: at point P, the motions along the
epicycle and the de{erent are directed
similarly-from right to left. After de-
scribing the 180" are, the planet
moves along its epicycle from left to
right. If the angular velocity a is
greater than crl, the direction of the
apparent motion near Prchanges-
the planet's motion is retrograde.

For each planet Ptolemy worked
out the relative sizes of the radii of its
epicycle and deferent, the position of
the deferent's center, and the speeds
of the planet's motion along the epi-
cycle and deferent so that the result-
ing motion, when observed from the
Earth, would match the actual appat
ent motion. This turned out to be
possible under certain conditions,
which Ptolemy took as postulates.
These postulates are as follows:

1. The centers of the epicycles of
the inferior planets lie on the line di-
rected from the Earth to the Sun.

2. The radii of the epicycles of all
the superior planets, drawn to their
positions, are paraliel to the same di-
rection.

So the direction to the Sun tumed
out to bepreeminent in the Ptolemaic
system.

The Ptolemaic system not only
clualitatively expiained the apparent

motions of the planets, it also made
it possible to calculate their positions
in the future with a rather high accu-
racy. Discrepancies between theory
and observation that arose as the pre-
cision of observations improved were
eliminated at the expense of making
the system more complex. For ex-
ample, certain irregularities in the
apparent motions of the planets were
attributed to the existence of second-
ary epicycles: the original epicycle of
a given planet was thus considered
the path of the center of a second epi-
cycle, along which the planet actually
moves. When even such a construct
was insufficient for a planet, a third
epicycle was introduced, and a fourth,
and so on, until the position of the
planet in the iast epicycle produced

more or less acceptable agreement
with observations. By the beginning
of the 16th century the Ptolemaic
system comprised 40 circles in all.

Let's retum to the Almagest arrd
look at a table (below) with the num-
bers Ptolemy gave for planetary mo-
tions along their epicycles and the
motions of the epicycles themselves
along their deferents.

A surprising fact leaps out at us:
for the inferior planets (Mercury and
Venus) the motion of the epicycle's
center proceeds at the same rate as
the motion of the Sun around the
Earth. For the superiorplanets (Mars,

|upiter and Saturn) these numbers
differ, but the sums of both motions
give the very same value-that of the
Sun's motion. Consequently/ the
motion of the Sun is contained in all
the planetary motions. Such a phe-
nomenon naturally seemed very
strange. The obvious question arises:
isn't there a common cause for all
these equal values?

Doubtless many ancient andmedi-
eval thinkers posed just such a ques-
tion. For instance, the ancient as-
tronomer Aristarchus proposed
that the Sun occupies the central po-
sition in the universe. However, the
first person who dared to develop, in
a mathematically rigorous wa, the
idea that all the planets revolve
around the Sun was the Polish astro-
nomical genius Nicolaus Copemicus
(t473-rs43).

Planets
Diurnal motion
along epicycles

Diurnal motion of
epicycle's center
along deferent Sum

Sun 0000'00.0" 0059'09.3" 0059'08.3"

Mercury 3"06',24.1" 0059'08.3" 4"05',32.4"

Venus 0036'59.4" 0059'09.3" lo36'07.1',

Mars 0"27'41.7' 0"31'26.6" 0059'09.3"

|upiter 0'54'09.0" 004'59.2" 0"59'08.3"

Saturn 0"57'0'/.7" 0"02'00.6" 0059'09.3'
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Copemicus's lifework, On Revolu-
tions of Celestial Sphercs, was pub-
lished in 1543, not long before his
death. In it Copemicus elaborated his
understanding of the Earth's motion
and laid the foundation for a new as-

tronomy. The system of the universe
he constructed is called heliocentric
and is based on the following state-
ments:

1. The Sun rather than the Earth is
at the center of the universe.

2. The spherical Earth rotates
about its axis, and this rotation ac-

counts for the seeming daily motion
of the heavenly bodies.

3. The Earth and ali the otherplan-
ets revolve about the Sun, and this
revolution accounts for the apparent
motion of the Sun among the stars.

4. All the motions are represented
as combinations of uniform circular
motions.

5. The seeming direct and retro-
grade planetary motions belongnot to
the planets but to the Earth.

In addition, Copernicus believed
that the Moon revolves around the
Earth and that they both revolve
around the Sun.

The postulate of uniform circular
motion forced Copernicus, like
Ptolemy, to resort to epicycles and to
shift the centers of the deferent
circles with respect to the Sun's cen-
ter. As a result, the Copernican
model was no simpler than
Ptolemy's old model-suffice it to
say that it contained 48 circles in-
stead of the 40 circles in the geocen-

tric system. Nor was it any more ac-

curate. But it contained what the
geocentric system lacked-the grain
of scienti{ic truth that grew into the
tree of a new astronomy.

By a twist of. tate, the task of con-
firming Copemicus's conclusion fell
to the Danish scientist Tycho Brahe
(1545-1601), one of the greatest as-

tronomers of all time, who had very
solid grounds for not accepting the
heliocentric system. His main argu-
ment against Copernicus amounted
to this: if the Earth were revolving
around the Sun, then Venus and Mer-
cury would have phases like the

Moon's, which no serious astronomer
had ever observed. These arguments
sounded convincing, and although
the predicted phases actually do exist
(as we know now), the lack of optical
instruments prevented their detec-
tion. Nonetheless, it was the precise
observations of Tycho Brahe that
eventually justified Copernicus's
point of view. The data gathered by
Brahe allowed his student fohannes
Kepler to announce, after eight years

of work, that each planetary orbit is

an ellipse with the Sun at one focus,
and that the line joining the Sun and
a planet sweeps out equal areas in
equal times. And this was how the
Pythagorean harmony of perfect cir-
cular orbits centered at the God-given
special location of our planet fell by
the wayside. In turn, Kepler's laws
(much more than the falling apple of
lore) formed the foundation of
Newton's law of gravity, which for
almost three centuries has been the
basis of physics and cosmology. O
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f)an Schroeder
Astronomer and Phvsicist
Hubble Space Telescope Research

Team Member
Beloit College Graduate and Professor

A nlv one scientist who's not
\J aifiliar"d with a major
research university was on
NASA's team that built the
$I-billion Hubble space tele-
scope. He's Dan Schroeder,
who went from Kiel, Wiscon-
sin (population 3,087) to
Beloit College [population
1,100) and the top ofhis
profession. A world-class
researcher, he's also a great
teacher, three times voted
Beloit College's "Teacher
of the Yearl' He's just one
reason that this historic
Wisconsin school ranks
among America's top 50
undergraduate colleges in
producing graduate scientists
and is a place young men
and women learn to reach
for the stars.

Beloit
College

The Results Speak For Themselves.
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M51
Penultimately even. Prove that for
any integerz > 2, the next-to-last digit
of 3" is even. (V. Piachko)

M52
Factors, s7lms, equal powers. The
positive integers a, b, c, and d satisfy
the equality ab : cd. Prove that the
number aleez + btee2 + creez + dteez is
composite. {A. Anjans)

M53
Tfuo cfucles inside a third. Lrside a
circle there are two intersecting
circles. One of them touches the big
circle in point A, the other in point B.
Prove that if segment AB meets the
smaller circles at one of their com-
mon points (fig. 1), then the sum of
their radii equals the radius of the big
circle. Is the converse true?
(A. Vesyolov)

M54
Skinny r ectangles, A continuous and
monotonic function is defined on the
closed interval [0, U and takes values
in the same interval. Prove that, for

atty n, its graph can be covered by n
rectangles of area l/n2 whose sides are
parallel to the coordinate axes.
(A. Anjans)

M55
Out of sight. All planets of some
plxtetary system are spheres of unit
radius. Mark on each of the pianets
the set of points that are invisible
from any point on any of the other
planets. Prove that the sum of the
areas of all these sets is equal to the
surface erea of one planet.

Physics

P51
Bouncing dumbbell A dumbbell
consisting of a weightless bar with
identical small bal1s at both ends
stands vertically on a smooth level
table. A horizontal velocity y is im-
parted to the upper ball by hitting it.
What is the minimum bar length for
which the lowerball of the dumbbell
loses contact with the table immedi-
ately after the upper ball is struck?
(A. Zilberman)

P52
Cable on a table. A cable is thrown
over a cylinder so that some of the
cable is on the table and some is on
the floor. After the cable is released it
begins to move without friction. Find
the speed of the cable after uniform
motion has been established. The
table height is equal to h (fig. 2l
(A. Zilberman)

P53
Vapor over sahed water.It is well
known that if ordinary water is salted,
its boiling point rises. Will the density
of saturated water vapor be higher or
lower at the boiling point?
(A. Buzdin, S. Krotov)

P54
Thermal oscillations. A set of experi-
ments was performed to examine the
properties of a nonlinear resistor.
First, the dependence ofits resistance
on temperature was studied. It was
found that as the temperature in-
creased, the resistance instanta-
neously jumped from R, = 50 Q to R,
= 100 O at t, = 100'C; as the resistor
was cooled, a corresponding drop was
found to occur at t2- 99oC (see figure
3). In another experiment a constant
voltage Vf 60 V was applied to the
resistor, and its temperature turned

_ 99 100
l-igure 3

CONTINUED ON PAGE 23
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Records of neutron activation analysis

by A. S. Shteinberg

HE TITLE OF THIS ARTICLE was prompted by a
detective story-if you're patient, you'll read all
about it before too long. But for now we'll deal with
things rather distinct from criminology and look at

how the chemical structure of a substance can be deter-
mined-that is, how one can recognize what elements

are present in a sample and in what proportions.
You know from studying chemistry that this can be

done by means of chemical reactions that are character-
istic of certain substances and elements-methods of so-

called "wet chemistry." In some cases/ though, it's dif-
ficult to apply these techniques-for example, when one

has to chemically analyze a.very small sample, or when
a high degree of precision is needed in simultaneously
analyzing several elements, or if one has to detect one

" alierl" atom among a million or 100 million atoms and

determine what kind it is.
Such situations are by no means speculative. In par-

ticular, they arise in modem semiconductor technology.
More and more often it's said that after the stone/ btonze,
and iron ages, the silicon age has arrived. Today's elec-

tronics wouid be impossible without miniature inte-
grated circuits, in which silicon plays an essential role.

But the properties of these circuits are acutely dependent
on incredibly small amounts of various admixtures.
Without the ability to determine very precisely the com-
position of small silicon samples, progress in developing
new generations of computer would be impossible.

So how is it done?

It has been known ior about 100 years that physical
methods often tum out to be the most effective in chemi-
cal analysis. And among these, a true champion in sen-

sitivity is neutron activation analysis (NAA). Before I
describe how it works, let's recall how the atomic
nucleus is structured.

The nucleus of an atom consists of positively charged
protons and electrically neutral neutrons. The number of
protons determines the atom's nuclear charge and is its
basic characteristic. One element differs from another
mainiy because of the number of protons in its nucleus.
Hydrogen (H), the first element in Mendeleyev's table,
has one proton in its nucleus; helium (He), the second,

has two; and so on. Well, how many neutrons does the
nucleus contain? It turns out that different numbers of
neutrons can be contained in nuclei of the same element.
Nuclei with the same number of protons and different
numbers of neutrons are called isotopes.

Let me give you an example. There are always two
protons in the helium nucleus. The number of neutrons
can be 1,2,4, or 6i that is, there are {our i.sotopes of he-

Iium: 3He, aHe, 6He, and sHe (the superscripts show the
total number of protons and neutrons). Tin has the record
number of isotopes at 10, xenon has 9, both cadmium and

tellurium have 8, and so forth. Under natural conditions,
different isotopes aren't distributed uni{ormly. As a rule,
one single isotope has the lion's share (90% or more) of
all natural deposits of an element.

The chemical properties of an element's isotopes are

identical. As for their physical properties, the differences
can be very noticeable. For instance, the atomic weights
of various isotopes are different because of the " extra"
neutrons. But for us, this isn't the main issue. A great

many isotopes have an amazrngproperty-radioactivity.
They are a source of radiation no one can see or feel, but
it can be detected with special instruments. The simplest
of these detectors are the photographic plate and the Gei-
ger counter. I won't get into the question of the nature
of radiation. The topic is complex and lies outside the
framework of this article. But to keep things clear, you
can imagine radiation as a flow of invisible particles.

The emission of any radioactive isotope is specific to
the highest degree. That is its individual portrait-as
unique as a human fingerprint. The most characteristic
{eatures of this portrait are the emission energy (for us,

the energy of the particles) and the half-life.
It's rather easy to explain what an element's half-life

is. A detector can not only register the emission but also

measure its intensity-that is, determine how many
particles have fallen on a unit ol ateaduring a unit of time.
The greater the intensity, the more often the Geiger
counter clicks. The time it takes for an isotope's emission
intensity to decrease by a half is called its half-life (denoted

by 7, ,). During this time, half of the radioactive nuclei
have decayed. Half-lives differ from one isotope to
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another-from fractions of a second to millions of years.

There are special detectors that not only measure the
intensity of an emission but also construct its spectrum-
a graph of the dependence of an emission's intensity on
its energy. Figure 1 is an example of such a spectrum. The
sharp peaks of intensity (called spectral lines) correspond
to the emissions of different isotopes. Each line can easily
be linked with the corresponding isotope by means of
previously compiled tables (this was how the isotopes
marked in figure 1 were "recognized"l.

So the constr[ction of an emission spectrum solves
the problem of qualitative chemical analysis of a
sampie-that is, it allows us to determine what radioac-
tive elements it contains.

Everything I've told you so far should convince you of
at least one thing: if the samples consist of radioactive
isotopes, it's rather easy to qualitatively determine their
content by their spectra. But here's the problem: "no?
mal" samples consist o{ nonradioactive isotopes. So to
perform an analysis, they have to be activated-that is,
made radioactive. There are various methods of actla-
tion. The simplest is to bombard the sample with neu-
trons in areactor. Since neutrons are electrically neutral,
they can penetrate the positively charged nucleus and
make the isotope radioactive.

Emission spectra can also be used for quantitative
analysis-to determine the number of atoms of this or
that isotope in the sample. The emission intensity of an
isotope is directly proportional to the number of nuclei
in it. Using standard samples (samples containing a

known amount of the given element), one can construct
a graph of this relation by activating them. By measur-
ing the isotope's emission intensity in the test sample,
which was activated simultaneously with the standard
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sample, one can easily determine the amount of the given
isotope from the graph. (A{ter what I've told you about
the half-life, you should understand why activation of the
test sample and activation of the standard sample are
periormed simultaneously. If this condition isn't fulfilled,
one would have to introduce a coffection to take the half-
life into account.)

This method of qualitative and quantitative analysis
is the one I mentioned earlier-neutron activation analy-
sis (NAA). The table above lists the elements that have
to be detected and quanti{ied in silicon. The third column
shows the NAA sensitivity for each element (that is, the
minimum concentration for detection). One cubic cen-

timeter of silicon contains roughly 1023 atoms, so you can

see for yourself the record-breaking sensitivity of NAA.
Figure 2 gives NAA data on impurity levels in silicon

from three American firms that supply silicon to the elec-

tronics industry. Relatively high concentrations of some
elements-iron and chromium in particular-recluire
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Neutron activation analysis of silicon impurities

Basic
natural
isotope

Detected
isotope

Sensitivity
(atoms/cm3) Half-life

%Na 2aNa 1 x 1012 15 hours

3eK 42K 1 x 1013 12.4 hours

52Cr 51Cr 5 x 1012 27.7 days

56Fe 5eFe 1 x 1014 44.6 days

seCo 6oCo 2 x 10tl 5.27 yearc

63Cu and 65Cu 6aCu 2xl0t2 12.7 hours

6aZn 6sZn 1 x 1013 244 days

isAs 76,4.s I x l01o 26.3 hours

8oBr 82Br 5 x 1010 35.3 hours

esMo eeMo 1 x 1011 66.2 hours

108Ag 110Ag 2 x 1011 252 days

122Sb 124Sb 5 x l0to 50.4 days

181Ta 182Ta 1 x 1010 115 days

18sW 18IM 2 x 1011 23.9 hours

le7Au 1e8Au 2xl}e 2.7 days

202H9 203H9 1 x 1011 47 days
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that the silicon be purified further before it can be used
in integrated circuits. Otherwise, the computer won't be
worthy of your trust.

And finally-the promised detective story.
On May 13, 1 958, in the Canadian city of Edmundston,

near the Canadian-American border, the corpse of a 16-
year-oid girl, Gaetane Bouchard, was {ound. An American
by the name of |ohn Follman, who traveled frequently to
Edmundston on business, was suspected on the basis of
circumstantial evidence. Follman categorically denied
having anything to do with the crime. The investigation
was badly in need of physical evidence.

- CHALLENGES IN PHYSICS AND MATH"
CONTINUED FROMPAGE 19

out to be t, : 80'C. Finally, when voltage V, = B0 V was
applied to the resistor, spontaneous curent oscillations
were detected in the circuit. Determine the period of these
oscillations as well as the maximum value of the current.
The air temperature in the laboratory is constant at to =
20'C. The rate of heat loss from the resistor is propor-
tional to the difference between its temperature and the
temperature of the surrounding air. The resistor's heat
capacity is C = 3IlK.(A. Buzdin)

P55
Say "cheese"l It's dangerous to photograph atiger at a
distance of iess than 20 m. If you were using a classic cam-
era obscura with an aperture that is I mm in diameter,
how large must the camera be so that the tiger comes out
striped in the photograph? The distance between the
stripes on the tiger is equal to 20 cm. (A. Stasenko)

ANSWERS, H//VIS & SOLUTIOIVS O/V PAGE 56

o supplier 7

o supplier2
a supplier3

Upon careful examination of
Bouchard's co{pse/ a single hair found
in the girl's tightly clenched fist. It
could belong only to her or to the
murderer.

Is it possible to unmistakably
identify a person by a single hair? The
police put this question to NAA spe-
cialist Robert |ervie. The answer re-
quired some special research. The
basic idea was that every person's
hair has its own characteristic set of
microelements in unique concentra-
tions. To prove it, |ervie had to inves-

ce Ta w Au tigatethehairofhundredsofpeople.
The concentrations of the character-
istic microelements-arsenic, so-
dium, copper/ zinc, bromine-in hu-

man hair is less than one atom in a hundred million.
No other method but NAA could solve the problem of
identifying a man by his hair.

As a result of painstaking work, it was proved that the
hair in the victim's hand belonged to Follman, and this
became the decisive evidence of his guilt. O
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l [iuhion witlt a l'emaiilsl'
If a = qb + r, where a, b, q, r ate

integers, and 0 < t . lb l, we say that
a has been divided by b with a re-
mainder of r. For instance, dividing 5

by 7 weget 5 = O . 7 + 5; ilvrding-224
by-9 we get-224 = 15 (-9)+ 1; and

o'

U

=

x

=o

so forth.
If the remainder is zero-a: qb-

we say that a is divisible by b.It's
obvious but important that for any
integerc k and l the number ka + lb
is divisible by c whenever a and b
are divisible by c. Here's how this
fact can be used.

Problem 1. For certain values of n,
the numbers 7n + I and Bn + 3 have
a common divisor d, d * l. Find d.

Solution. Since 7(Bn + 3l -
BlTn + 1) : 13 is divisibie by d+1,
and 13 is a prime number, d:13.

As a matter of course, n xtd dhere
were assumed to be integers. I'il
make this assumption throughout
the articie: all the numbers consid-
ered will be integers, although at
times it willbe convenient to men-
tion it again.

Exercise 2. Divide with a remain-
der: (a) 1931 by 17,lbl -295 by 31, (c)

-1,005 by -98.
Exercise 3. The number I7x + 3y

is divisible by 51. Prove that the
same is true for Bx + 5y.

Exercise 4. Find the remainders in
dividing (al nby n - 1 and by n - 2;
(bl n2 + n + lby n+ 1 andn + 2; (cl na

+1byn+3(n>80).
Exercise 5. Find all integers n such

that the numbers lal (n2 + 1)(n - 1),
(b) (ns + 3lln2 + 1) are integers.

Congruenms

Consider the following problem.
Problem 2.What is the last digit

of 2eee7

Solution. Write out consecutive
powers of two:

2,4, B, 16,32,64, ....

We see that the last digits of these
numbers are repeated after every four
numbers, so the last digit of 2" de-
pends only on the remainder of the
exponenta when dividedby 4. Since
999 : 4 . 249 + 3, the answer to this
problem is 23 : B (that is, the third
number in the string above).

In this example the set of all expo-
nents was partitioned into four
classes consisting of numbers of the
form

4k,4k + l,4k +2,4k + 3.

Generally, for any positive integer
m all integer numbers (not necessar-
i1y positive!) fall into m classes: each
class comprises all the numbers hav-
ing the same remainder when di-
vided by m.

Here are these classes:

(0)The numbers a of the form
a:km,

(1) The numbers a of the form

(m - ll The numbers a of the form
a:km+(m-l|

Clearly, any number belongs to
one of these classes. The difference

0o "lnod" ttuilh yuur Equaliolt$

The modus operandi of moduli

by Andrey Yegorov

N MONDAY, September 2,
l99I,I was making some long-
range plans, and I had to figure
out what day of week the 20th

of December, 1992, wili be. I had no
calendar at hand andwas forced to get
busy computing. I knew that the in-
terval from September 2, 1991, to
December 20,1992, is 28 + 31 + 30 +
20 + 355 = 475 days, or 67 fullweeks
and 6 days more (475 : 67 .7 + 5). So

I concluded that December 20, 1992,
will be a Sunday.

Squaring a multidigit number, a

student obtained 46,991,075. The
teacher, glancing into the student's
notebook, said, "Your answer's
wrong!" How did the teacher know?

Exercise 1. Think about whether
the square of an integer can end in 75.

The soiutions to both of these un-
sophisticated problems, as well as
many others, are based on consider-
ations of divisibility. Not long ago we
touched on this subject (see "Divi-
sive Devices" in the September/Oc-
tober l99l issue of Quantuml. This
time we'll examine it from another
angle. But the starting point is the
same: we must begin with a short
reminder about division with and
without remainders.
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between two arbitrarynumbers from
one and the same class is divisible by
m, while the difference between
numbers from different classes is not
divisible by m.

Drrxnror.i. If the differcnce be-
tweenintegers a andb is diuisibleby
m, then the numbers a and b ate
said to be congruent modulo m.

In Latin, modulo is the ablative
case of modulus; in mathematics, it
means "with respect to a moduius of
. . ." This is the notation for congru-
ence modulo m:

a=b(modml.

The numbers a and b are congru-
ent modulo m1[ and only if they be-
Iong to the same class-that is, have
the same remainders when divided
by m. In other words , a=b (mod m)
means that a: b + km for some in-
teger k.

For instance,2T =7 (mod 10), 78 =
5(mod24l,6=0 (mod3),25 =-4 (mod
zel.

Exercise 6. Prove that (al as :
a (mod 6), (b) as = a (mod 5) for all
natural numbers a.

Exercise 7. Prove that 21oo :3roo
modulo 5, 13,2ll.

Exercise 8. Prove that 1110 - I is
divisible by 100.

Exercise 9. Let S(N) be the sum of
the digits in the number N. Prove
that N= S(N)modulo 3 and9.

Exercise 10. Let S(A) : S(5A). Prove
thatA=0(mod9).

Exercise 11. The decimal notation
of a certain number consists of
(al l99l or (bl 1992 ones and some
number o{ zeros. Can this number be
the square of an integer?

Exercise 12. Prove the following
test for divisibility by ll: a =

anan_l...oo : 0 (mod 11) i{ and only i{
Fll"a,+ (-ll"-ta,_r+ ... + aois divisible
by 11. (The bar over the expression
means that the symbols below stand
for decimal digits, which stand next
to each other to indicate place value
as if they were numerals.)

Pl.orurlies ol conurueltces
Many of the properties of

congruences are quite similar to

those of regular equations:
L. Ifa=b(modmlandfu:

c (mod m), then a:c(modml.

Further, if. a : b (mod ml and c :
d (mod m), then

2. a+c=b+d(modml,
3. a-c=b-d(rr,odml,
4. ac=bd(modml.

That is, congruences can be added,
subtracted, and multiplied just like
regular equations.

For example, let's prove propery 4.
Since a =b, c= d, the differences a -
b and c - d arc divisible by m. From
ac - bd = a(c - dl + d(a - bl, it f.ol-
lows that ac - bd is divisible by m, or

ac=fufl (mod m).

Exercise 13. Proveproperties 1,2,
and 3.

Let a =b (mod m). The above prop-
erties imply

5. ak = bk (mod m).

Sometimes common factors of
both parts of a congruence can be
canceled out:

5.Il ac=bc(rnodml, and the num-
bers c and m are coprime,l then a =
b (mod ml;

7.If a= b (modm) anda=ka.,,b =
kb, m = km, for some positive inte-
gerk, then ar=b, (modm,).

Lr other words, both parts of a congru-
ence and its modulus can be reduced
by their common factor.

Let's prove property 5. The num-
ber c(a - b) is divisibleby mi c atdm
are coprime. Thereforg a - b is divis-
ible by m: a=b (modml.

Exercise 14. Prove property 7.
Summing up, we can say that for

any algebraic expression obtained
from integers a, b, c by means of
addition, subtr action, and multipli-
cation, it is possible to rcplace these

lTwo natural numbers are called
"coprime" or "relatively prime" if
they have no common factor other
than 1.

numbers withtheir remainderc when
they are divided by m without
changing the remainder obtained
when the entire expression is di-
vided by m.

Consider two applications of this
statement.

Problem 3. Find the remainder
when

N= (12 + r)(2J + 1)(3'z+ 1)... (1,00CP + 1)

is divided by 3.
Solution. The above statement

implies that, modulo 3,

N= (1'+ l)saa ' (2' * 11"'. (32 + lpea
:.)334. /)333.1333

- o667 - ln2$33 . 2-12 l_1333.r_o

Problem 4. For what positive in-
tegers n is the number Bn + 3 fivis-
ible by 13? (Compare this with prob-
lem 1.)

Solution. The above properties
give the following chain of equiva-
lent congruences:

8n+3=0(mod13),
8n =-3 (mod 13),

64n = -24 (mod 13) (we've multi-
plied by B, which is coprime
with 13),

-n = -11 (mod 13) (since 64 =
-1 (mod 13) and -24 =
-11 (mod 13)),

and, finally,

n=ll (mod 13).

Indeed, ifr: 13k + 11, then 8a +
3 : 8(13k + 11) +3 : i04k + 9l =
13(8k + 11). So 8n + 3 is divisible by
13 if and only if n : 13k + 11.

Exercise 15. Find the remainders
of (alZtez - 1 modulo 17 , (bl (32o + 1 1)5s

modulo 13.

Exercise 16. Prove that (a) 250 + I is
divisible by L25, (bl2a8 - 1 is divisible

by 105, (cl23" + I is divisible by 3. * t

but is not divisible by 3" * ,.

Exercise 17. Find all prime num-
bers p such that 20pz + 1 is also a
prime.
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Exercise 18. Prove that (a) 11eel +

zteet +... + 301ee1 is divisible by 31;
(b) 1* + 2- +... + (n -1)- is divisible
bynforanyodd mandn.

Exercise 19. For what positive in-
tegers n is the number 2U + 16" -3" -
1 divisible by 323?

Exercise 20. Prove that 52" * 1 +

$n + 1 . T- t is divisible by 19 for any
positive integer n.

Exercise 21. For what values of n
can the fraction {iSn + 2l l$an + 3) be
simplified?

The Chinese Hemaindm T[eol'em
Consider m terms of an arithmetic

sequence

a, a + d, ..., a t (m - lld,

where a and d are integers. The fol-
lowing theorem is often very helpful:

Trm,onEnn l.If d is coprimewith m,
then the sequence a, a + d, ..., a +
(m - 1)d contains exactly one num-
ber divisibleby m,

Pnoor. The difference between the
kth and lth terms of the sequence is
equal to d(k - 1l and is not divisible by
m; otherwise m would divide k - 1,

wirich is impossible, since lf - I I .
m. Consequently, no two numbers in
the sequence are congruent with each
other and, there{ore, all these num-
bers have different remainders
modulo m. So they represent all the
classes modulo m-that is, each of
the remainders 0, I,2, ..., m - 1 is
congruent with exactly one of the
numbers in the sequence.

Thus, we've proved evqn a some-
what stronger statement than theo-
rem 1.

Exercise 22. Find all triples of
primes of the formp, p + 2, p + 4.

Exercise 23. Find a finite arith-
metic sequence of maximal length
consisting of prime numbers and hav-
ing a difference of 6.

Exercise 24.Fifteen prime num-
bers make an arithmetic sequence
with a difference of d. Prove that
d > 30,000.

Now let's apply theorem 1 to
prove the so-called Chinese Re-
mainder Theorem. This theorem
was already known more than 2/000
years ago in China.

THBonmn 2. Given n numberc m,
m2, ..., mn copfime with each other
and n numbers r1, r2, ..., t,such that
0 3 rrS mr- 1 (i : 1, 2, ..., n). Then
there exists a numbet N whose rc-
mainder when dividedby mris r,for
all i = L, 2, ..., n.

In other words, N = r, (mod m,) for
alli=L,2,...,fi.

Pnoor. Let's use induction over n.
For n = 1 the statement of the theo-
rem is trivial. Suppose it's true for n
: k - 1 and consider n: k. By the in-
ductive assumption, there exists a
number M such that

M= ri(modm,) fori : l, 2, ..., k - L.

Let d: mlmz...mk_ ,. Consider the
numbers

M, M + d, M + 2d, ..., M + lmu- lld.

Since d is coprime with mo, it foliows
from the proof of theorem I that one
of these numbers, .A{, has the remain-
der ro when divided by mo.At the
same time, N= M (mod m,) for any i
: l, ..., k - 1, so the remainder of N
divided by m,, i < k, is r,, completing
the proof.

|ust one more theorem.
TnEonEm 3. For any numbers m,

m2, ..., m, coptime with each othet
and any temaindets 11, 12, ..., rn
modulo m1, mp ..., rrTnt one can find
n successive numbers a, a + L, ..., a +
n-lsuchthata=rt(modmr), a * 1

= r, (mod rr72), ..., a + n - 1 = r, (mod
m).n'

In other words, for any set of
pairwise coprime moduli rr1r1 fi)2t ...t
mnt o\te can find n consecutive posi-
tive integers that would yield any
desired remainders when divided by
frl'ffi|' ...' fi)ot respectively.

Pnoor. By the Chinese Remainder
Theorem there is a number a such
that

a =tr(rnodmrl,
a =.rz- I (mod mr),

a =r,-n + I (modm,).

Then the numbers a, a + 1, ...t a + n-
1 satisfy the requirement of our theo-
rem.

Exercise 25. Prove that (a) among
any 10, (blamongany 16 consecutive
positive integers there is a number
that is coprime with all the other
numbers. (c)Is this statement true for
arry 17 consecutive positive integers?

Exercise 26. Prove that f.or any n
there are n consecutive positive inte-
gers each of which is divisible by the
square of some integer other than 1.

Exercise 27. Is there a moment in
the day when the hour, minute, and
second hands of a correctly running
watch make angles of 120" with one
other?

Exercise 28. Find the least positive
integer yielding the remainders 1,2,
4, 6 when divided by 2, 3, 5, T,respec-
tively.

Exercise 29. Find the least positive
even number a such that the numbers
a + l, a + 2, a + 3, a + 4,a + 5 are divis-
ible by 3, 5,7, 11, 13, respectively.

llow to $oltte colt$l'tlg[Ge$
In problem 4 we found all integers

n such that 8n + 3 is divisible by 13.

That is, we solved for r the congru-
ence

Bn+3=0(modt3).

Nowwe can generalize this problem.
Let a andm be coprime numbers.

We want to solve {or n the congru-
ence

an=b (modm)

for arbitrary b.
By theorem 1 there exists some k

such that ak = I (mod m). Multiply-
ing the two sides of the given congru-
ence by k, we get

lakln:n=bk (modm),

which means

n =bk + ml,

where l is an arbitrary integer.
Of course, the question arises:

How can we find k for a particular
congruence?
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If m is not too large, this can be
done simply by trial-and-error. As to
the general solution, you can find it,
albeit in implicit form, in the article
"Divisive Devices" mentioned
above. There it was shown that for
any two coprime numbers a and b
there exist integers x andy such that
ax + yb = 1; a1so, it was explained how
the numbers x and y can be found by
means of Euclid's algorithm. Switch-
ing to our notatior! we replace b with
m (coprime with a) and x with k.
Then the equation ak + 1an = 1 can be
rewritten in the form of a congruence:
ak = I (mod m)-the very one we
wanted to solve.

Problem 5. Solve the congruence

32n:7 (mod 37).

Solution. Since 32: -5 (mod 37),

we can rewrite the congruence in the
form

5n: -7 = 30 (mod 37),

or

n= 6 (mod37l

(we've canceled out the factor 5 legiti-
matelybecause 5 and37 are coprime).

Linear equations with integer co-
efficients, also discussed in "Divisive
Devices," can be solved by reducing
them to congruences.

koblem 6. Findallpairs of integers
x, y satisfying the equation 7x - 23y
: 131.

Solution. Since23:2 (mod 7l,I3L
: -2 (mod 71, the given equation can
be rewritten as -2y: -2 (mod 71, or y
= 1 (mod 7).

Thus, y = I + 7k for anr- rr:;..: -

Now we can easily find r:

7x - 23lr + 7k) = 13 i,
7x=154+23.7k,

and finally,

x=22+23k, y:I+7k.

Exercise 30. Solve the congruences
(aJ ).7x: 19 (mod 371, (bl L47x =
63 (mod 29).

Exercise 31. Solve for integers x
and y (a) 7x + 8y = 1, (b) 13x - ISy =
16, lc) 257x + l8y : 175.

Exercise 32. Solve for integers x, y,
and z the system of equations

{3x+sr -72=t,
Jx - 9r-- llz = 2. O

ANSWERS, HINTS & SOLUTIONS
AN PAGE 59

Srudal Po$en 0ffer
You enjoy Quantum-

why not let everyone know it?
The cover of the May l99O issue of Quantum is now available
as a poster! It features a color-blind bull piercing a hyperbolic pa-
raboloid. (What does it mean? You'll have to read "The Geom-
etry of Population Genetics" in the same issue to find out!) This
striking image was created by Sergey Ivanov/ one of. Quantum's
regular illustrators.

Please send me poster(s) at $5.00 each:

Name

Address

Actual Dimensions: 25 x 33 inches

City State Zip

Please return this form to

Quantum Poster Offer
ATTN: Matthew Price

Springer-Verlag New York, Inc.
175 Fi{th Avenue

New York, NY 10010
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BRAINTEASERS

Jusl lol' Ihe lun ol it!
851
Crush on a map. The population o{ the United States is more than
200 million. It would seem that on a map with a scale of 1 : 5,000,000
(1 centimeter to 50 kilometers) there should be enough room for
1/5,000,000 as many people-that is, for rnore than 40. But you can
check experimentally that five persons would have some difficulty squeez-
ing onto such a map, and ten would find it impossible. Why? (G. Galperin)

852
Divisibility test. Ptove that a number is divisible by 13 if and only rt, after
deleting its last digit and adding 4 times this last digit to the remainder,
we get a number divisible by 13. (B. Goncharenko)

Twilight in the mountains. Mountaineers say that high up in the moun-
tains, twilight is noticeably shorter than down on the plains. What, in
your opinion, is the reason for this? (A. Buzdin)

855
From points to playerc. Two precocious students from an elementary
school took part in a chess championship at a nearby university. Each
participant plays each of the others oflce; x win is worth one point, a draw
is worth half a point, and players receive no points for a loss. The com-
bined score of the elementary school students was 5.5; the scores of the
university students all happened to be the same. How many university
students participated in the championship? (A. Markosian)

854
Pythagoras revisited. The figure at left shows a right triangle with three
squares on its sides; the vertices of the squares are ioined to form three
triangles. Prove that these triangles have equal areas. (N. Avilov)

o
m
o_{
A)

o_

z
0)
N
0)
oANSWERS, H//VIS & SOLUTIOIVS OiV PAGE 59
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MATH
INVESTIGATIONS

Tl'ianules ol diflereltce$
And witnesses for the minimum

by George Berzsenyi

TISN'TDIFFICULT TO SHOW that if n )3 andk 2 1

are integers, and if one calculates the {orward differ-
ences of the members of the sequence

l, n, n2, flu, ..., r1k-'

and successive forward differences thereof, then all the
entries of the resulting triangle of numbers will be dis-
tinct positive integers. I posed this as a probiem in a re-
cent round of the USA Mathematical Talent Search, and
I wish to pose it now as the first challenge in this column.
The triangle of differences coresponding to (n, kl: (3,61

is shown below:

1392781243
261854t62

4 t2 35 108
82472

L6 48
32

As a second challenge, I wish to pose a more general,
though abit morevague, question: Forwhat other "natu-
rally arising" sequences of positive integers is it true that
all successive forward differences are distinct positive
integers?"

Some years ago, when I first thought of this problem,
I imposed yet another confition on the members of such
sequences: I wanted their largest members to be as small
as possible. In particular, I found that for k : | , 2, 3, 4, 5,
ard 6, this minimal value is No : 1, 3, 8, 20, 43, and 98,
respectively. As one can see from its complete table of
di{ferences, shown below, the sequence (10, 12, 17, 26,
46,98, is such a "witness" for A{u = 98, whose minimality
was established by a computer search:

Can you show that for each value of N, the witnesses
come in pairs?

Subsequent to my findings, one of my mathematical
friends, Dr. Stanley Rabinowitz, was able to determine
the next three values of No-they are N, :212, N8 : 465,
andN, : 1,000. Thevalue of N,o: 2,l44was conjectured
by a colleague of his; and a search by Dr. Basil Rennie,
editor of the lnewl [ames Cook MathematicaT Notes
llCMNl, suggests that N,, = 4,562. Can you verify the
values of N,o and {, *d extend these findings?

I reported the first ten values of Af, in the |une 1984
issue of /CMN (pp. a05aaO55) and gave there a listing of
some of the witnesses. Apart from the trivial (1) for N,,
and (1, 3) and (2, 3) for Atr, I conclude now with a com-
plete listing of exactly half of them for 3 a k I 9 ; upon con-
structing their compiete tables of diJferences, and recall-
ing that witnesses come in pairs, you should have no
difficulty in listing the remaining ones.

k = 3:(2, 3, B)

k : 4: (2, 5,9,2O>, <4, 5, 8,20>, <4, 6,9,20>
k : 5: (5, 10, 15, 23, 43)
k = 5: (8, 14, 21, 32, 52, 98,
k = 7: (lL, 18,27,39, 59, 102,212>
k = B: (15, 25,37, 54, 80, 126,224, 465>
k :9: (17,28, 46,73, ll2, 171,273,485, 1,000),

(17, 30, 49, 78, 122, lB9, 299, 5ll, 1,000)

There are many interesting relationships among these
witnesses and the resulting complete tables of differ-
ences. I encourage you to investigate them. O

The purpose of this column is to direct the atten-
tiorr ol Quantum's readers to iqteresting problems
in the literature that deserve to be generalized and
could lead to independent research and/or science
proiects in mathematics. Students who succeed in
unraveling the phenomena presented are encour-
aged to communicate their results to the author ei-
ther directly or through Quantum, which will dis-
tribute among them valuable book prizes and/or free
subscriptions.

45
20

26

11

17t210
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Florida Institute of Gchnology has everything you'd expect
from a university. Incl.rdttg a lot of degrees - both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D., specializing in Science, Engineering,
Business, Psychology and Aviation. Our modem campus is

located on Floridds famous Space Coast, in the heart of one
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No*, add an annual avexage temperature of 75 degrees,

miles of clean, uncrowded beaches, and every water sport
you can think of, and you know why students prefer F.lT,
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The potnlsl' ol dimensional lhinfiinu

"ln physics . . . there is no place for muddled thinking . .

Those who really understand the nature of a given
phenomenon must obtain the basic laws from
d i mensional considerations. "

by Yuli Bruk and Albert Stasenko

T SCIENTIFIC SEMINARS ANd

conferences, where new theo-
retical or experimental findings
are discussed, just about every

paper begins with a qualitative de-
scription and estimate of the effect
the speaker wants to talk about. In
even the most thorough paper, lec-
ture, or articlg it's impossible to re-
port all the experimental details or all
the theoretical "tricks" that were es-

sential in conducting the research or
solving various problems. Yet there
are certain points one must always
address without waiting for queries
from the listeners or readers.

First and foremost/ one must offer
an evaluation of the order of magni-
tude of the anticipated effect; simple
extreme cases; and the nature of the
functional connections among the
cluantities determining the phenom-
enon. Essentially, analysis of these
ciosely interlinked questions is what
we call the clualitative description of
the physical situation.

One of the most effective methods
for conducting this analysis is the di-
mensional method. We'll look at its
underpinnings in this article. It isn't
an exaggeration to say that dimen-
sional analysis is extremely efficient,
sparing mountains of paper for the
theorist and saving money and time
for the experimenter. Rapid estima-

-Enrico 
Fermi

tion of the scale of a phenomenon,
development of the principal frame-
work of the experiment, discovery of
the quaiitative and functional rela-
tions, restoration of forgotten formu-
las during examinations-these are
only a few of the merits and applica-
tions of fimensional analysis.

Analysis of dimensions has been
used in physics since Newton's time.
In fact, it was Newton who formu-
lated the principle of similarity,
which is closely linked with dimen-
sional analysis. We'll illustrate
Newton's principle with a very
simple and well-understood example.

Imagine that a body of mass m
moves in a straight line under the
action of a constant force F. If the
body's initial velocity is zero and the
velocity a{ter it travels a distance s is
equal to % we can write the equation
for the law of conservation of energy
as mf 12: Fs. So we see there's a

functional relation among the cluan-
tities of v, F, m, attd s.

Now let's suppose that we don't
yet know the energy conservation
law (or don't want to use it), but we
do know that there exists a func-
tional dependence among v, F, m, arrd
s. Very often (but not always, of
course!) the functional dependence of
the physical quantities is a power
law. Let's assume that this is the

case here. We can put it another way:
we consider that the formula deter-
mining the velocity v as a function of
F, m, ands takes the {orm

v n Fmvs.. (1)

Here x, y, arrd zare numbers we have
yet to determine. The "*" sign
means that the left side of the for-
mula is proportional to the right
side-that is, v : k7mvY,where k is
a numerical coefficient. Since ft is a
dimensionless quantity, naturally
it's impossible to determine this
coefficient by means of dimen-
sional analysis.

Of course, the left and right sides
o{ equation (1) must be measured in
the same units-that is, they must
have the same dimension. We'Il
measure v in meters/second, F in
newtons/ m in kilograms, and s in
meters. In other words, we'll choose
the dimensions for the quantities v,
F, m, ands as follows: [v] = m/s = m
x sr, [F] = N: kS x m x s-2, [m] : LS,

[s] = m. (The symbol [A]means the di-
mension of the quantity A.l Then we
can write the condition that the di-
mensions of the left and right sides of
formula (1)are the same:

m.s-1 = kg.m'.s-k.kgr. -'
=kgt.Y'mx+t'Sh.

oj
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You'll notice that now we've written an equality.
The left side doesn't have any kilogrami, ro ih. right side

mustn't have any either. This means that

x + y:0.

The meters on the right side are raised to the powerx + z, artd.
on the left they're raised to the power 1, so

x+z=1.

Likewise, from a comparison of the exponents for seconds, it
follows that

2x: -1.

These equations allow us to solve for the numbers x, y, and z:

x: lf2, y: -L12, z: ll2.

Now we can write the final formula:

( F \lz ,,"Y*l - | s'"
\m)

Squaring both sides of this equation, we find that

,Fn *^t,

or mtP * Fs. In this last formuia you,ll easily recog-
nize the law of conservation of energy, but with-
out the numerical coefficient.

{

The similarity principle formulated by
Newton states that the ratio v2fs is directly
proportional to the ratio F lm.By way of
example, let's consider two bodies
with different masses m, and
m2, and let's apply
different

/rtIIllntOlJ[ilTlJ
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forces F, andF rto them such that the
ratios Frf m, and Frf mrare the same.

The bodies will begin to move under
the action of these forces. If the ini-
tial velocities of the bodies are equal
to zerot then the velocities attained
after they travel a distance s will be

the same. We arrived at the similar-
ity law by equatrng the dimensions of
the right and left sides of the formula
describing the link between the val-
ues for the final velocity and the val-
ues for the force, mass, and distance
traveled.

Although dimensional analysis
was introduced back when the
groundwork for classical mechanics
was being laid, it wasn't effectively
applied in problem solving until the
end of the last century. The great
physicist )ohn William Strutt (Lord

Rayteigh) deserves much of the credit
for popularizing this method and us-

ing it to solve important and interest-
ing problems. Rayleigh wrote in I 91 5

that he often wondered at how little
attention is paid to the Profound
similarity principle, even by promi-
nent scientists. It often happens, he
said, that the results of painstaking
research are presented as newly dis-
covered "laws" when they could
have been obtained a prioriin a few
minutes.

It's impossible to accuse Present-
day physicists of neglecting the simi-
larity principle and dimensional
analysis. Let's take a look at two
classic problems that are often called

"Rayleigh problems. " Of course, Lord
Rayleigh examined many more Prob-
lems, and he used dimensional
analysis to solve many of them. But
the ones we'll discuss below are typi-
cal. From these and other examPles,

we'll get a better feel for when and
how to use dimensional analysis in
solving problems.

fiayhiUlr proilem 1: ostillalions 0l a

lallon a sll'illu

Figure 1

The mass M of the ball is much
greater than the mass of the string.
The string is pulled and released'
Obviously the ball will oscillate. If
the amplitude of these oscillations is
much smaller than the string's
length, the process will be harmonic.

Rayleigh showed how to find the
dependence of the oscillation fre-
quency ro on the string tension F, the
ball's mass M, andthe lengthJ. Now
we'll reproduce his line of thinking.

Let's suppose that the quantities
a, F, M, andl are linked by a Power
law dependence:

a * FMYP (21

The exponents x, y, and z ate the
numbers we have to find. As we did
above, let's write the dimensions of
the quantities of interest to us in any
system of units-for examPle, in the
SI system:

[ro] = t-',
lFl: N = ks'm's-',
M: Ls,

[/]= m'

If formula (2)expresses the actualphysi-
calLaw, then the dimensions on the
right andleft sides of this formula must
be the same-that is, the following
ecluationis correct:

11 = kg".m,. S-k. kgr.*,
=kS-Y.m'*z.g-2x.

There are no meters and kilo-
grams on the left side of this equa-

tion, and the seconds have an exPo-

nent of 1. This means that the
following equations are satisfied by
the numbers x, y, artd z:

x+Y=0, x+ z=O, 2x:-1.

Solving this system/ we get

We've already mentioned that we
had to replace the equal signwith the
proportionality symbol because we
don't know the numerical coeffi-
cient. It's interesting, though, that
the exact formula for the frequency
differs from the one we found only by

atactor of Ji kt* = zFlMll.In other
wotds, we can conclude that we've
obtained an estimate for rrl that isn't
just qualitative (in the sense that it
depends on the quantities F, M, and
1)but quantitative as well. The order
of magnitude found lor F, M, and 1

gives us the correct value for the fre-
quency. (We'li do more with order-of-
magnitude estimates later.) In simple
problems, coefficients that can't be

determined by dimensional analysis
can be considered numbers of the
first order of magnitude. We should
bear in mind that this isn't a strict
rule. We can come to our ultimate
conclusion about the value of the
numerical coefficient only by means
of other considerations. (By the way,
in the example we looked at in the
introductory section above, the nu-
merical coefficient in the formuia for
the velocity v as a function of the
force, mass, and distance traveled is
close to 1 as we11.)

Needless to say/ instead of the fre-
quency rrr we could use the oscilla-
tion period T : 2nf a, which is
uniquely related to it, and look for the
exponential dependence of the period
7 on the string tension F, mass M,
and length l. The {actor 2rc doesn't
"spoil" (nor does it "improve"!) the
formula obtained by dimensional
analysis-we still can't write the nu-
merical coefficient without strictly
solving the equation for the osciliations.

Another simple and well-known
example-oscillations of a math-
ematical pendulum-offers an inter-
esting case. We could obtain the pre-

cise formula for the oscillation
frecluency ol= Sll by using dimen-
sional analysis. The numerical coef-

ficient that can't be determined bY

dimensional analysis is eclual to 1. If
from the outset we tried to find how
the oscillation period of the math-
ematical pendulum was linked with
its length / and the free-fa1l accelera-

tion g, we would arrive at the for-

Let a string be stretched between
pointsA andB (fig. 1). Thetensionof x = lf2, y: -112, z = -112.
the string is F. A heavy ball is at-
tached in the middle of this string at Therefore,
point C. The lengh of the segment
AC lafi similarly CB) is equal to 1. $6 Ftt2M-1t271t2.
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mula T * ,flf g, which differs from
the exact solution by a factor of Zn.
Yet it doesn't follow from this ex-
ample that it's more advantageous to
use the oscillation frequency than
the period when dimensional analy-
sis is used; the appearance of the fac-
tor2n is linked only with the defini-
tion rrr = 2nlT.

Let/s retum to the Rayleigh prob-
lem and state once more the assump-
tions allowing us to solve it by di-
mensional analysis. First, we
assumed that a link in fact exists be-
tween the quantities o, F, M, and 1.

Second, we considered the formula
expressing this connection to be a
power law: rrl * PM'P.

Dimensional analysis helps us
find the functional relations among
different physical quantities, but
only when these relations are power
laws. Fortunately, there are many
such relations in nature, and dimen-
sional analysis should become our
reliable assistant.

ThB "N - l(- l" t'[lg
The idea of the dimension of a

physical quantity is introduced when
certain basic physical quantities have
aheady been chosen and their units
of measurement have been deter-
mined. In mechanics/ we consider
mass/ length, and time the tradi-
tional basic quantities. These cluan-
tities are measured in the SI system
in kilograms/ meters/ and seconds; in
the CGS system-in grams, centi-
meters/ and seconds.

We'1i remind you that the basic
units of measurement in each system
(the basic dimensions) are called the
units of measurement (dimensions)
for the basic quantities. The units of
measurement for all other nonbasic
quantities are expressed in the basic
units of measurement. For example,
in the SI system the unit o{ mea-
surement for force, the newton, is
kg . m/s2, and the unit of measure-
ment for energy, the joulg is (g. m2/s2;
while in the CGS system these are
the dyne, which is g . cm/s2, and the
erg which is g. cm2/s2. Units such as
the dyne and the erg are called de-
rived units.

If we're dealing with problems in

which nonmechanical quantities ap-
pear (electrical charge, temperature/
and so on), we can increase the num-
ber of basic quantities. Current is in-
cluded in the basic quantities in the
SI system (it's measured in amperes),
as is temperature (measured in
kelvins), and so on.

Generally, the basic quantities and
their units of measurement can be
chosen in a variety of ways. Much
depends on convenience, tradition,
and current standards and conven-
tions. We'd like to emphasize that
one can use dimensional analysis in
any system of units. One must, of
course/ write the expressions for the
dimensions of dif{erent quantities in
the same system every time.

Let's imagine that in some prob-
lem we have to find the functional
dependence among N quantities. As-
suming that this dependence is a
power law, we car, try to solve the
problem by dimensional analysis. ff
the dimensions of the all N quanti-
ties are expressed through the di-
mension of K of thebasic quantities,
and if N - K: 1, then there exists a
single formula defining the exponen-
tial dependence among the N quan-
tities, and this formula can be found
by using dimensional analysis.

It's not hard to convince ourselves
that this is true. We write the general
form of the desired formula as fol-
lows: one of the quantities is on the
left side, and the product of the pow-
ers of the other N- I cluantities is on
the right side. The exponents are still
unknown. The number of unknown
exponents is N - 1. To determine
these exponents we need N- I equa-
tions. We obtain each ecluation by
comparing the exponents on the left
and right sides of the equation for one
of the basic dimensions. If we have
exactlyN- 1 dimensions in ourprob-
lem, then we obtain exactly the
number of equations we need. These
equations arelinear, but the exist-
ence and uniqueness of the solution
of the system of such equations guar-
antee the existence and uniqueness
of the power law in question. The ex-
amples given above illustrate this
ru1e quite we1l. When we write the
formulas v n Fmv s. or (D € FMrP, we

hadN= 4 quantities each time, while
the number of unknown exponents
N- 1 : 3 coincided with the number
of basic dimensions K: 3 (kg, m, s).
The systems of three linear equations
for the three variables each had a
single solution, and the final formu-
las for v and ro also were the only
ones possible. So we'1l always be able
to build only one formula for the four
functionally connected quantities i{
the number of basic dimensions en-
countered in the problem equals 3.

Bayleigh U'obhm 2: oscillations ota

sp[el'hal dl'ophl
Let a drop fiow from a round open-

ing (fig. 2).It'snatural to assume that
the drop must be spherical in the
equilibrium state because this makes
the surface energy a minimum and
any system tends to the state with
minimum energy. Even very small
deformations of the drop lead to pul-
sations due to
surfase ten-
sion, so the
shape of the
drop changes
periodically.
We.. assume
that the oscil-
lations con-
tinue long
enough and
theirdamping

G

o\vis small. Fioure 2
What inter-
ests us is the frequency (or period) of
the process. This frequency can de-
pend, obviously, on the surface ten-
sion of the liquid o, the density of the
liquid p, and the radius of the drop r.r
We'lllook for this dependence in the
form

an o"pvf .

Let's write the dimensions of a1l the
quantities in the SI system:

tPossibly a question has occurred to
you: why not assume that the
frequency can depend also on the force
of gravity acting on the drop? It's an
appropriate question, and we promise
to discuss it below.
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lrol= s',
[o] :N. m-1 = fu . m. sr. mr = kg. s',
[p] = kg.m*,
[r]= *.

The number of linked quantities
we're looking for is again one more
than the number of basic dimen-
sions. From the N- K: 1 rule it foi-
lows that the formula obtained for
the frequency must be unique. The
equations for determiningx, y, xrdz
are obtained from the condition

s, : kg".s--.kgr.miy.m,
: kg" * Y. S-k. m4Y ' '.

There are three equations for the
three variables:

-2x : -I, x + Y = O, -3Y + z = O.

This system has the unique solution

x=1f2, y=-112, z=-812.

Finally, we get the formuia for the
oscillation frequency:

This formula also suggests a pos-
sible method of experimentally deter-
mining o. We need to know the den-
sity of the liquid p and the radius of
the drop r, and we need to determine
the frequency ro experimentally. We
don't know the numerical coefficient
in this formula, but this isn't a seri-
ous obstacle. We can determine it, for
instance, from an experiment with a
liquid whose surface tension is
known.

Essentially we're faced now with
a simple case of modeling-we can
simuiate the oscillations of the drop
of liquid being studied by means of
the oscillations of a drop of liquid
with known o and p. We can also
compare the oscillations of the drop's
shape for the two di{ferent liquids.

We can interpret the formula for
the oscillation frequency roin another
way. Let's write it as follows:

Since o and p are parameters that
characterizethe liquid and so are the
same for drops of this liquid of differ-
ent sizes, we come to the conclusion
that the periods T, = 2nf a, and Tr:
2nf lr.rof the oscillations of two drops
of the same liquid and their radii r,
andrrare linked by the correlation

4 :t_r] rf

-the squares of the oscillation peri-
ods of the two drops are proportional
to the cubes of their dimensions!
Does this remind you of one of
Kepler's laws? It's a strained analogy
perhaps, but we're talking about pe-

riodic processes in both cases!
We'Il make one more observation.

Even as we're writing out the set of
quantities whose interrelation we're
trying to find, we have to realtze
what's essential to the concrete
physical phenomenon and what's
not. If we're talking about dynamics
{for example, oscillations), then the
characteristics of force and mass
must appear in the problem. In the
problem about the oscillations of a
drop, o played the role of the force
characteristic; p, the liquid's density,
played the role of the mass character-
istic. Essentially, we considered the
oscillations to be governed by the
surface tension only. The solution
obtained undoubtedly applies to a
drop oscillating in a spaceship. Does
it work for a drop near the Earth?
Shouidn't we also take gravity into
account?

Let's think it through. The force of
gravity is F- * pt'g while the surface
tension is f, * or. Clearly, for small
enough r the surface tension is
greater than the force of gravity.
Omitting the numerical coefficient,
let's state the inequality expressing
the condition for which we can ne-
glect gravity: or >> pCg. This inequal-
ity is equivalent to r << (o/pg)t/2. 1ry9

can state that, for small enough
drops, gravity should not influence
the oscillations. How big can a drop
of water get before we can no longer
use the formula obtained above for
the oscillation frecluency? Try to es-

timate this maximum size on your
own.

T[e oscillatiolt Fsquemy olatumh

nuclei

It tums out we can use the for-
mula for the osciilation frequency of
a drop to determine the oscillation
frequency of atomic nuclei.

In the droplet model of the atom's
nucleus, the nucleus is considered a

drop of nuclear material-a "Iic1uid"
consisting of protons and neutrons.
Surface tension keeps the nuclear
dropiet from decaying.

Nucleons (protons and neutrons)
are inside the nucleus in a bound
state. This means that a certain en-
ergy must be expended to pull them
away from each other. This energy is
equal to r = 13 . 10-13 joules per
nucleon. The radius of the nucleus is
r = 10-14 m, the proton mass is m- =
1.7 . lo 27 kg. tei's try to use all tfis
inJormation to calculate typical oscil-
Iation frequencies of atomic nuclei-
the droplets of nuclear material.z

We couid use the same formula for
the oscillation frequency of a droplet
of nuclear material as for the oscilla-
tions of drops of an ordinary liquid if
only we could leam to calculate the
surface tension of the "nuclear liq-
uid." The total surface energy in the
drop model must be of the same or-
der of magnitude as the binding en-
ergy of all particles inside the drop. If
the number of nucleons in the
nucleus is A (the mass number), then
the total binding energ.y of ail the
nucleons is Ag and the surface en-
ergy of the nuclear droplet is of the
same order of magnitude as Ae. Di-
viding it by the surface area of the
drop S : 4nf , we obtain an estimate
of the surface tension o * Ael4nrz.
The mass o{ a nucleus consisting of

2At this point we're interested only
in the qualitative dependence of the
oscillation frequency on the
parameters of the nucleus and the
quantitative order-of -magnitude
estimate; therefore, we can neglect the
difference between the masses of the
proton and neutron and consider the
mass of the nucleon equal to that of
the proton/ {or instance.

6r,
- x t'OJ'.
p
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A nucleons is close to Am^, and the
volume of the nucleus is (4/a)ruf; so
the density of the "nuclear liquid" is
of the order of p * 34*,/4nt'. Substi-
tuting the expressions obtained for o
and p in the formula, we get the re-
sult we were looking for:

)"

The typical " rrt)clea{' frequencies
are close to 102 s-1. Check that the
formula written here leads to a simi-
lar result-assuming a numerical co-
efficient (which we didn't determine)
of the order of 1.

[lllgtgl$ "almg" alld "acro$$"

The probiems we considered up to
now were in essence solved identi-
cally and uniquely. Don't think it,s
always that way. In some situations
the N- K: 1 rule doesn't hold and
so we must have recourse to new
ideas. One idea is to try to increase the
number of basic quantities-that is, to
study the problem in a system with a
larger number of basic dimensions.

To illustrate this idea, let's look at
two simple problems.

No doubt you're acquainted with
the first problem. Let's imagine that
a ball falls from a table of height H
onto the floor. The velocity of the ball
is horizontnl and equal to vo at the
moment it falls off the table. Obvi-
ously we can correlate the distance it
flies with H and vn. Do these simple
calculations before reading any further.

Finished? Now think-is it pos-
sible to find the connection between
H and vousing dimensional analysis?
Let's try. Let the distance that it flies
be equal to xo. Undoubtedly the free-
fall acceleration I is an essential
quantity in this problem along with
H and vn. The answer shouldn,t de-
pend on the ball's mass, since this is
a purely kinematic problem. So we,ve
got four quantities: xo, vo, H, and g.
The equations for the dimensions of
ali these quantities consist only of
meters and seconds-that is, N = 4,

K=2, andN- K:2> Mf wewrite
xo n vo"I:l9g, then we can get only two
equations for the three variables a, B,
y. What do we do now?

Let's introduce separate quantities
for measuring the vertical and horizon-
tal distances: we'll measure distances
along the horizontal axis x in "hoizon-
tal" meters m" and distances along the
vertical axis y in "r{ertical" meters m-
(fu.3).Then the dimensions are Y

[4J= **'
[vo] : m,s',
lHl: m .

v,

[sJ: m,sr.

Now the basic dimensions are m,,
m,, and s-for N: 4 we now have
K = 3. The formula xo * yo"F#g leads
to the condition

IIl, : IIt"q ' S*. mrF . m/. f'zt
=mro.S{-2rlmu1it.

The system of equations

cr:1, -s-2y=0, P*y:0
has the single solution

0

Figure 3
m

It's convenient to introduce again
the "longitudinal" and "transverse,,
lengths. Let's take the molecules to
be little spheres and let's follow one
of them. We'll measure the distance
along the molecule-ball/s trajectory
in "longitudinal meters "-m,,. Obvi -

ously the oniy molecules tliat can
"block" the movement of our chosen
molecule are those in the cylinder
whose axis is parallel to the traiectory
and whose base is the cross section of
the molecule-ball perpendicular to
the trajectory. The area of this cross
section is proportional to 12. In this
situation it's natural to suppose that
r is measured in "transverse
meters//-mr. Then the volume is
measured in units of m, . m 2 and the
dimension n is m,,-r . -r'lr. Att", ther"
considerations we've got two basic
dimensions-m,, and m -for three
quantities 1, r, aid n. That's enough
{or us to obtain the simple formula
linking them. It's not difficult to
verify that this formula is

m
_)

t(x
0) e:l 

-J.lr I, mo

, ,lz1l e lx-l- l.
,\.1% )

%

CI=1,

and we get the following answer:

Xo*vo

Compare this solution with the
answer you got by exact calculation.

The second problem that illus-
trates the same idea has to do with
the kinetic theory of gases. Molecules
of gas are finite in size and can collide
with each other even in a rarefied gas.
The average distance the molecules
travel between two consecutive col-
lisions is called the mean free path.
We want to knowhow the mean free
path I depends on the size of mol-
ecules r and their concentration n.

Let's write the dimensions: [n] :
m-, [] = m, k] = m. When we try to
link I r, artdn, we again find that the
N- K = I rule doesn't hold: N: 3 and
K = l-there is only one basic dimen-
sion (meters) in the problem.

P=;, v = -;,

-1' ,r)'

H
o

Pl'olhms altd recolnlntndations
Now you're acquainted with the

basic elements of dimensional analy-
sis and how to solve problems with
it. We'Il emphasize again that the for-
mulas obtained by such consider-
ations allow one to make quantita-
tive estimates as well. You have to be
careful, of course, but it would be a

CONTINUED ON PAGE 43
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PHYSICS
CONTEST

Shake, ratllg, and l'oll
"She stood in silence, listning to the voices of the ground

-William 
Blake, "The Book of Thel"

by Arthur Eisenkraft and Larry D. Kirkpatrick

NE PERSON DESCRIBED how
the bedroom wa1l moved across
the room. Another watched as a

huge wave of concrete traveled
along the highway. We all saw the
massive destruction when one bridge
roadway collapsed on top of another.
The earthquake in the San Francisco
area that coincided with the 1989
World Series gave us a glimpse of the
power and energy in our planet.

hr the fury of the destruction, the
Earth is whispering secrets about its
composition. The Earth is not soiid
rock. The Earth is not of uniform
density. Longitudinal and transverse
waves/ called P ar'd S waves, travel
through the Earth as a result of the
quake. The differences in P and S

wave behaviors can give us clues
about the structure of the Earth
while also allowing us to locate the
epicenter of the quake.

Although the speeds of the P and
S waves vary withln the Earth, the P
waves always travel faster than the S

waves. This fact gives us the ability
to locate the epicenter of the quake.
By knowing the relative speeds of the
P and S waves and measuring the
delay in the arrival of the S waves, we
can determine the distance from the
epicenter. Here's an analogy. If you
run at 3 m/s and a friend walks at
1 m/s, you will always arrive at a
given location before your friend. If
you arrive 10 seconds earlier, the dis-
tance traveled was 15 meters. If you

arrive2} seconds earlier, the distance
traveled was 30 meters.

Let's assume that the epicenter is
near the Earth's surface and that the
P and S waves have constant but un-
equal velocities. If at one location on
the Earth the waves arrive with a
time difference of 2 minutes, we
know that the epicenter of the quake
must be situated a specified distance
from this location. But in which di-
rection? We don't know. We there-
fore trace the circumference of a
circle on the surface with a radius
specified by this time delay. The epi-
center can be located on any part of
this circumference. If we have a sec-
ond location with a (different) time
delay, this will provide us with a sec-
ond circle. A third location and a

third circle will uniquely determine
the actual point location of the epi-
center.

The P waves are able to travel
through solids and liquids, while the
S waves travel only through solids.
The P waves ariv e atLocations on the
opposite side of the Earth; the S

waves do not. This information leads
us to conclude that a portion of the
interior of the Earth is liquid. By carc-
fully observing where the P waves
travel and where the S waves do not,
we can infer more about the size of
this liquid core of the Earth.

More curious is the observation
that there are positions on the Earth
where neither the P nor the S waves

arrive. These shadow zones are some-
how protected from disturbances at
some locations. What could cause
such a shadow region? One explana-
tion is that the P waves travel at a
different speed within the liquid core.
A P wave traveling from a solid
mantle into a liquid core will change
speeds and change direction (that is,
they will refract). The result of this
refraction is the creation of the
shadow region.

Professor Cyril Isenberg, academic
leader of the British Physics Olym-
piad Team, challenged students
worldwide in the 1986 Intemational
Physics Olympiad with a problem
about the P and S waves of an earth-
quake. We present parts of that prob-
lem as a challenge to our readers.

Let's assume that the Earth is
composed of a central liquid spheri-
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cal core of radius R" that is sur-
rounded by a solid, homogeneous
mantle of radius R. The velocities of
the S and P waves through the
mantle are v 

" 
and v, respectively. An

earthcluake occrrs at point E on the
surface of the Earth and produces P
and S seismic waves. A seismologist
observes the waves at locationX. The
angular separation between E and X
measured from the center of the
Earth O is 20, as shown in figure 1.

(A) Our beginning physics stu-
dents should try to show that the
seismic waves that travel through the
mantle in a straight line arive atx at
a time t (the travel time after the
earthquake) given by t : 2R sin 0 lv fior
0 < arccos (R"/R), where v: v, for the
P waves and v, for the S waves.

(B) After an earthquake an ob-
server measures the time delay be-
tween the arrival of the S wave and
the P wave as 2 minutes, 11 seconds.
Deduce the angular separation of the
earthquake from the observer using
these data:

R = 6,370 km
R"= 3,470km
vo = 10.85 km/s
vr: 5.31 km/s

(C) The observer in part B notices
that at some time after the arrival of
the P and S waves, there are two fur-
ther recordings on the seismometer
separated by a time interval of 5 min-
utes, 37 seconds. Explain this result
and verify that it is indeed associated
with the angular separation deter-
mined in part B.

(Dl For those of you who wish to
plunge deeper, draw the path of a seis-
mic P wave that arrives at an ob-
server, where 0 < arccos lR"lRl, after
two refractions at the mantle-core
interface. Obtain a relation for P
waves between 0 and r, the angle of
incidence of the seismic P wave at
the mantle-core interface.

(E) For our advanced problem solv-
ers, using the data above and the ad-
ditional tact that the speed of the P
waves in the liquid core is 9.02 km/s,
draw a graph of 0 versus r. Comment
on the physical consequences of the
form of this graph for observers

stationed at different points on the
Earth's surface.

(F) Sketch the variation of the
travel time taken by the P and S

waves as a function of 0 for 0 < e < 90
degrees.

Send your answers to Quantum,
3140 North Washington Boulevard,
Arlington, VAzz2;Ol.If you're a stu-
dent, please indicate your grade.

The loaliy Endulum
Very good solutions were submit-

ted to our contest problem in the No-
vember/December issue by Ben Dav-
enport (Charlotte, North Carolina),
Samuel Dorsett (Mitchell, Indiana),
and |esse Tseng (Little Rock, Arkan-
sas). We also received a packet of so-
lutions from Campbell High School
in Campbell, Missouri.

Webeginby calculating the length
of time t*o it takes for the fluid to
run out of the container. This is
given by the initial mass Mo of the
fluid divided by the rate r at which
the fluid runs out. Therefore,

M, _Irap-mrx ITT

where p is the density of the fluid. In
order to avoid writing this set of con-
stants repeatedly, let's define a new
dimensionless, timelike variable t by
the relationship

1=_J_, o<t<1.
f-o

In terms of t, the mass M remain-

1,.24

t.2

1.16

t.t2

1.08

r.04

1

Figure 2

ing as a function of time is given by

M(tl = MJt -r)

and the height I of the fluid as a func-
tion of time is given by

l(tl :La(t - r,l.

Since the center of mass of the fluid
is located at its geometrical center/
the lengh of the pendulum is given
by

1(t\I(t;=4+a--!--In+at'z

This expression could have been
written down directly by realizing
that the center of mass moves from
Loto Lo + a at a uniJorm rate during
the "time" t.

Under the simplifying assump-
tions of this problem, the period of
the pendulum is

,=rnP=ro

where To = 2n1[ffi is the initial pe-

riod of the pendulum. The graph of
the period versus time is shown as

the upper curve in figure 2lor the
case Io = 2a. Although the curve ap-
pears to be straight, it actually has a
slight curve due to the square root.
Note that the period is not defined
after the fluid has all run out as the
pendulum no longer has any mass.

When the container has a mass

\)
a.

\)
t\?

s
F

0.4 0.6

normalized time

-aTI+-
4

massless container

massive container
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Mo,we must calculate the combined
center of mass x"- of the remaining
fluid and the mass of the container

_ _r\xr*'rr4xIncm- 
** *- 

t

where the subscripts "c" attd "t" re-
fer to the containff and fluid, respec-
tively. If we choose to calculate the
center of mass x"* relative to the cen-
ter of the container, we have x^ : 0
and

I\$(l-t)ar
^"- - /\6 + A/6(i- r)

, t(t- r)
2-t

Thereforg the period of the pendu-
lum as a function of time is

" DIMEN SIONAL THINKIN G"
CONTINUED FROM PAGE 39

mistake not to use the fact that the about its axis. Take into consideration that
numeric coefficients in formulas of_ the existence of such huge ,,balls,, as the

ten tum out to be of order unitv. planets depends on the gravitational inter-

rt goes without d;; tli'".,i- ffi111,'j,y;ffi::tli:j'l:Tr:*1,ff x
mation, the construction of simple rotationperiod{oraplanetwhosemassand
models, and the use of analogies are radius are equal to the Earth's? Work out an

only the first steps in studying physi- order-of-magnitude estimate.

cal processes. A irrore pr."ir."rrra rig ^^?: 
The linear dimensions of two geo-

orous examination 
"i il;h;# t1.fT:l* :}Tl'fl'*Tl :it?: j.,:[:l"'f :l

ena must follow. We don't want you these tuning forks differ?
to get the impression that dimen- 3. Find the dependence of the pulsation
sional analysis is omnipotent. Before period of a gas bubble formed at a point ex-

using it in any o{ its forms, you *i^t^t"" 
deep underwater if energy E was

sh ould try t o i,,,a gr, e til; ; ry:i JJ [iT::f,fl:1"'lt".Xn'#n:T: ",';l]:l;process more clearly and think hard bubble. How does the pulsation period ie-
about the characteristics that are of pend on the depth H?

interest. Only on this condition can 4. Estimate the pressure in the center of

One hOpe to SuCCeed. a star of mass M and radius R' Calculate the

we leave you with some problems :?",'Hi.i::'*ii,:iffiir?. f il,t ?,$;
to think about on your own. and a neutron star (R" = 20 km). hhe masses

problems :f.:1","*,1',t#trJi:li 
neutron star are,=.ffiffi

This function is shown by the lower
curve in figure 2. Note that the maxi-
mum period occurs about 60% of the
way through the timeperiodand that
the maximum period is less than for
the case with the massless container.
Note also that the period retums to
its initial value when the fluid has
completely run out. You probably
anticipated this because the center of
mass must retum to the center of the
container.

Those of youwho know some cal-
culus can differentiate the expression
for the center of mass to find that it
reaches its maximum value when

x=2-Ji=0.586.

Notice that this maximum occurs
58.6% of the way through the time
period independent of the rate of flow.
This value can now be substituted
back into the expression for the pe-
riod to find its maximum value

rT1 Tlmu - ro

1. find the formula describing the rela-
tion be*veen a planet's mass M, its radius
R, and the minimum period of rotation

5. Compare the surface tension of the
"nuclear liquid" fiscussed above and that
of water. O

ANSWERS IN THE
JULY/AUGUST /SSUE

,*(s-z'[')o
h

The Pillbug Projectu A
Guide to Investigation
by Robin Burnett
illustrated bg Sergeg laanoa

They don't bite, they aren't slimy, they
don't slither, and they are kind of cute-
to some people, anyway. They're
pillbugs-p erfect classroom pets to
introduce your students to what science
is really all about-learning directly from the world around them.

The Pillbug Project is an innovative approach to introducinS
scientific inquiry. Concepts of cooperative learning, a variety of
assessment techniques, and reproducible pages to form individual
student logbooks give this volume a solid pedagogical framework.
(grades 3-7)
#PB-93, 7992,1L2 pp. $16.50

All orders must include a postage and handling fee of 93,50 for the first
booh ond $1 ertra for eoch additionol booh. Orders of $25 or less must be
prepaid, Orders to be billed must include a purchase order, Send order to
Publicotion Sales, NSTA, 1742 Connecticut Aae., NW, Washington, DC
20009 or coll (202) 328-5800,We hope you enjoyed thinking

about the leaky pendulum. O
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LOOKING BACK

calculatingn
The contribution of Chilstiaan Huygens

IN HIS FAMOUS TREATISE
lMeasurement of the Circle,

1fl,.",1TJfl?ff :::,:;:ji';1,fl:
uity, gave the following approxima-
tion for the value of n:

s1q. n . af9.7L 70',

or, in decimals,

3.14084507 < n < 3.142857 14.

(The correct value of r to eight deci-
mals is 3.14159265.) He created the
classic and, perhaps/ the most natu-
ral method for computing n: since it
is the length of a circle of diameter l,
this number can be approximated by
the perimetersp, and q,of rcgtlar n-
sided polygons inscribed in and cir-
cumscribed about this circumference
(fig. 1), so for n > 3,

D <1I<CILn

As the number n of sides in-
creases, the polygons approach a
circle, and their perimeters mono-
tonically approachn. So, in principlg

by Valery Vavilov

we can attairras small an error as we
want by choosing a sufficiently large
n. [As obvious as they seem, these
considerations tum out to be rather
difficult to corroborate thoroughly
when treated more rigorously-
you'llhardly find a geometry text-
book in which it's proven that, say,
the sequence pohas a limit. For this
reason/ we've inserted a more de-
tailed discussion of the definition o{
n fbeginning on the next page), which
can be regarded as a sort of introduc-
tion and postscript to this article.-
Ed.1

To obtain his approximation,
which remained unsurpassed for
many centuries, Archimedes had to
compute the perimeters of inscribed
and circumscribed 95-gons; in fact,

^10 -1
" 7t' Pso < Qge < 37'

His followers, in their struggle for an
ever more accurate approximation,
managed to improve it by increasing
the number of sides. (A short history
of these efforts can be found in the
Kaleidoscope of the |anuarylEebruary
1991 issue of Quantum.) But in 1654
a totally unexpected result was dis-
covered by the great Dutch scientist
and mathematician Christiaan
Huygens (who was only 25 years old
at the time): to get the precision
Archimedes had attained in comput-
ing ri, regular l2-gons will suffice.
This result was published in his trea-
tise On the Discovercd Size of the
Circle (De Ctuculi Magnitudine
Inventa). Huygens achieved his

result only by improving the tech-
nique {or calculating the perimeters
of regular polygons. His work was
based on new ideas, which were fur-
ther developed in our time. His basic
idea can be formulated as follows.

Sincep, < fi < eofor all n > 3, n lies
in the interval (p,, e,l. Let's divide
this interval into three equal parts
(fig. 21. Can we say in advance which
of these parts contains the number n?

(2/3)p,+ (1/3)q, (U3)pn+ e/3)qn

t) a

Figure 2

One of the main results of Huygens,s
work is that n always lies in the left
interval-that is, for all n> 3,

2tn.ZP"+7Qn. {1)

It is this fundamental inequality that
allowed Huygens to surpass
Archimedes. Let's prove Huygens,s
result and then consider some related
problems.

The pl'ool ol lfle lluygens lormula
I'11 break the proof of inequality ( 1)

down into several steps. Throughout
the article, parentheses will denote
the areas of polygons; so (XYZ) is the
area of triangle XYZ, and so on. The
term "segment" will be used for a
portion of a circle cut off by a chord.

CONTINUED ON PAGE 48
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ltllhal isrc?
The first section of this note is a sort

o{ preamble to "Calculating n"; the
second part is a kind of afterword.

TltB doliltitiolt
Some students, when they are asked

to prove that 3 < n < 4, say something
like "There's nothing to prove, because
everyone knows that fi = 3.14." This
answer reminds me of my friend's fa-
vorite story about a handbook for for-
esters/ which gave, along with lots of
other useful information, an approxi-
mate formula for estimating the vol-
ume of a tree: V = rcDzhl4, where D is
the diameter of the tree, fi is its height,
and n is " amathematical constant that
for pine trees is assumed to be equal
to 3."

To tackle the problem of estimating
the number n correctly, one must start
with a definition of n. The most com-
mon one {though not the only one) de-
fines ru as the ratio of the circumference
of a circle to its diameter. (Of course/
it must be accompanied by a justifica-
tion-that is, a proof that this ratio is
the same for all circles.) Now one may,
and even should, ask what's the length
of a circumference? This question aiso
has a standard answer: it is the value
approached by the sequence of perim-
eters p, of regular n-sided polygons
inscribed in the circle as n approaches
infinity; in other words, the limit of
this 'sequence. In particul x, f.or a cucle
of diameter 1, this limit simply equals
q and this will be the case we'll exam-
ine further.

So now we have the accurate defini-
tion we wanted. But it doesn't help us
much, because we don't know how the
sequence p, approaches n: do the in-
equalities 3 < p s< 4 imply a similar es-

timation of r or don't they? Also, now
that we've stepped onto the path of
mathematical rigor, we should go ail
the way to the end and justify the defi-
nition of the circumference, too-that
is, prove that the sequence pa does ap-
proach some value after all To this end
it suffices to show that this sequence
is monotonic (in the case o|p,, increas-
ing) andbounded; then the existence of
the limit will follow from the well-

known Weierstrass theorem-one of
the first theorems on limitst. The
bor.rndedness of the perimetersp, is the
easier part of the matter'. p nfor any n is
less than the perimeter of an arbitrary
circumscribed polygon because, in gen-
eral, the perimeter of any convex poly-
gon is less than the perimeter of any
polygon containing it. (To prove the
last statement/ one can turn the outer
polygon into the inner one by succes-
sively cutting off pieces along the sides
of the inner polygon, as in figure 1,

where the numbers indicate the order
of the cuts-each cut diminishes the
perimeter of the outerpolygon, since a
straight line is the shortest distance
between two points.)

But what about the monotonic
growth? Clearly, p,< pz,for any n> 3,
because the inscribed 2n-gon can be
always constructed so as to contain the
n-gon (see figure 1 in "Calculatingn"l
by adding n midpoints of its circum-
circle arcs subtendedby its sides to the
n vertices of the n-gon. Thus, any sub-
sequence of the sequetce pn obtained
by consecutive duplication of the num-
ber of sides-that is, any subsequence

of the form pp,ps, pq,, ..., ptk, ...-
inc*eases monotonically. So we can
sin,ply confine ourselves to one of
these bounded and increasing subse-
quences-sa, the subsequelce p3, p6l

Pe, ..., Pz.z', ..., and define n as the
limit of this subsequence.

lThis theorem can be found in any
beginning book on real analysis-for
example, Real Variables by |ohn M. H.
Olmsted (New York: Appleton-
Century-Cro fits, 19 561.-E d.

Such a definition is absolutely cor-
rect, though somewhat clumsy: it
leaves us in the dark as to whether the

limits of other such sequences (llke pr"

or P5.2" ) are the same; and we still
haven't proved that the sequencep, has
any limit at all. However, this defini-
tion allows us to determine n to any
desired accuracy (for instance/ to prove
the inequalities with which we started:
3 < n < 4). Indeed, since it's the limit of

the strictly increasing sequence P3 2",
the number n is greater than any of its
t€flIlS; in particular , fr > Pa: 3 (the side
length of a regular inscribed hexagon is
equal to the radius, which is lf2ir.ou
case). On the other hand, as we've
mentioned, the perimeter eo ol any cu-
cumscribed regular polygon is greater
than any of the perimeters p-t so it's
not less than their limit j$pa .2, = n.

In particulat, for a circumscribed
square we have Qq:4> x. To prove the
strict inequaliff n . 4, one can insert
the perimeter q, of the circumscribed
octagon between n and qo: n 1q* and
Q6 < Qa,and also Q^. Qnfor anY n 2 3
(the 2n-gon can be obtained by cutting
off all the comers of the n-gon, thus di-
minishing its perimeter-see figure 1

in "Calculating ri").
By the way, we'Ye come across an

important inequality here: q, > qrn,

which means that 41 . z" is a decreasing

sequence and, therefore, has a limit.
This fact can be used to prove (at lastl )

that the sequencepk land q,l converges
to some limit.

First, we notice that

O . q,- p,= p,ll - e,lp,l -+ 0

as n --> -, because thep,'s are bounded,
and q,f p,is the ratio of similarity of the
circumscri.bed regular n-gon to the in-
scribed regular n-gon and, obviously,
tends to I as n + -. In particular, as

k -+ -, Qe.zk - P3.2x -+0, so ]im 43.ro

= ;1Tl', * = n. Now, P, < Qs.4, lor

aftyn>3,k>0,sop < l**srro =n,
in the same wayr the inequality qn >

P3.6 implie" qo) n fot any n 2 3. Fi-

nally,0 an-p,< qn- p,--+0 asn -)-/
which means that !\*0" does exist

and equals n. Similarly, l*n" = n
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a'z* =z-rEA*

-o

_1

_a

a-2 roots

Thus, the number n is the limit of
the following expression as m -+ @:

I D -.m
2L zn+r - 2

This formul, i, t .rrr,'rtrl but not too
convenient for calculations. We'1I see
below that it's much better to compute
both perimeters pn and q" simulta-
neously: the calculations will be sim-
pler; both the lower and upper bounds
will be obtained; and we'llbe able to
apply the Huygens formula, which is
more exact (see "Calculating r").

Look at figure 5 in "Calculatingn."
We can assume that the chord AB in
this figure is a side of a regular in-
scribed 2n-gon, so AB = ar,. Then seg-
ments BC and CA are halves of two
sides of the regular circumscribed 2n-
gon/ so BD : 2BC = bz,-the side
length of the circumscribed 2n-gon.
Nso, it's ciear that segments AH and
BE are halves of sides of the inscribed
and circumscribed n -gon, respectively:
AH : a,12, BE = b,12. By the formula
obtained in step 4 oi the proof of the
Huygens formula in "Calculatirrg fi,"
BD is the harmonic mean2 of AH and

21f a and b are positive real
numbers, then their geometric mean is

defined 
^, Job, while their harmonic

mean is 2ablla + b). It's not hard to
show that the harmonic mean of two
numbers is never greater than their
geometric mean. For a fuller
discussion see, for example, An
Introduction to Inequalities by Edwin
Beckenbach and Richard Bellman
{MAA New Mathematical Llbrary,
L96t).-Ed.

So, with some effort we've managed

to prove that the equality lim P, can

be correctly adopted as a definition of
the number n. The proof that p, in-
creases is even more sophisticated and
lies outside the scope of this note.

You may want to return to the ar-
ticle at this point and meet me here
again when you're through.

llands-on cotnpttliltu
Now we'll follow in the ancient

footsteps of Archimedes (and follow up
on the definition of n presented in the
first section of this note). To find an
approximate value of n, one can calcu-
late the perimeters po of regular n-gons
inscribed in a circle.

Figure 2 suggests an efficient way to
perform these calculations. Denote by
a, the side length of such an n-gon for
a circle of radius 1. Then in figure 2 we
can label AB =a^, AC = a,f z.Applying
the Pythagorean theorem to the right
triangles ABC and OAC (where O is
the circle's center), we get

d.,= Anz

= ACz +BCz

-2
=?+(on_oc)z

4

+-(z- ,F-6)

BE, so

,.- _ z. a" 12.b" 12 
= lhfu,,b),arl2+b,12

where h denotes the harmonic mean.
Multiplying both parts by 2n, we get

t' -t r t-lI P"'+Q"'I
ezn =h(pn, o)=l , l.(z)

(Check this formula yourself.) Further,
the right triangles AHB arrd BAD are
similar IzBAH = ZABDI. Therefore,
AB: AH = BD : AB, so AB2 = BD : AH,
OI

o,,=F+=r(o*,?),

where g denotes the geometric mean.
Multiply the last {ormula by 2n again:

Pr,= 8(P,, Q*1.

So we start with some small k, find
ep and po, and then successively com-
pute the harmonic and geometric
means of the last two terms of the
emerging sequence ep, pp, e2p, p21,, eap,
pq,, .... The results for k = 3 are pre-
sented in table I in "Calculatingn."
The limiting value of this sequence, as

we know very welI, is 2w, where r is,
of course, the radius of the circle in
question. I advise you to check table 1

on your own-the most primitive cal-
culator will suffice; and if you choose
the right sequence of calculations/ you
won't even have to write down any in-
termediate results-just the values of
the perimeters. As a theoretical exer-
cise, try to prove that when we start
with two arbitrary numbers q andp, q
> p > O, the limit of our sequence is

(rrl'[,f -f) .,,""o, (plq).what
will the limit be if we replace the har-
monic mean in our procedure with the
arithmetic mean? (In this case, the
limit is called the Schwab mean of the
initial numbers q and p.l

-Vladimir 
Dubrovsky

=*.(,F+)'
l2

=z-zlr-ff
_4

So we can start with some k-gon and,
using this formula over and or,er, irnd
the side length and the perimeter ior
the k . Z"-gon for an arbitraril,v large n.
Then the perimeter will be an approri-
mation of 2n. In particular, for k = ,l-
that is, starting with a square tr,hose

side length is ar= ,{2-we get

4-a?",t"

z+...+Ji.

a-o?,

Figure 2
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CONT/NUED FROM PAGE 45

Step 1. Let MAB be an isosceles
triangle inscribed in a segment cut off
from a circle by the triangle's base
AB, and let CKL be the triangle
formed by the tangents to the circle
at points A, B, and M lfr5.3). Then

(MABI <2{CKL).

C

AHB
Figure 3

Pnoor. Draw the altitude CH. By
the similarity of triangles CKI and
CAB,

AB
Figure 4
four more triangles, all congruent to
AMtMz, where M, is the midpoint of
arc AMri and so on. If Ro is the area
of triangle ABM, R, is the area ot
AMM., R, the areaolAMrM, andRo
the area of each of two triangl.es added
at the nth step, then

Ro + 2R, + 22Rr+ ... + 2?R,+ ... : S.

Similarly, let's approximate the seg-
ment from the outside by cutting
pieces from triangle ABC (the blue
triangles in figure 4), making the cuts
along the tangents at points M, M1,
and all the other vertices of the red
triangles as they appear during the
process of approximation. If Bo is the
area of triangle KLC, and B' 8 r, ... are
the areas of the successive blue tri-
angles, then

Br+28r+228r+...
+ 2"8,+ ... = (ABCI - s.

By inequality (2) in the first step of
the proof, Ro<2Bn; multiplying by 2'
and summing over all n, we get s <
\\(ABCI - sl, so s < (zlTllABCl.

Step 3. Now, at last, we can get
the length lou ol arc AB. Let's prove
the following lemma of Huygens,
which is interesting in its own right
(refer to figure 5): 

E

LEMMA. If AH is the perpendicular
dropped from A onto the diameter
BF of the circle and D is the point
where the extended chord FA meets
the tangent at B, then

1)
1o, <:-AH+lBD. 14)o

Pr.oor. The arc length 1o, canbe
represented as the area S of the sec-
tor OAB of the given circle (O is its
center) divided by rl2-half the
circle's radius. Indeed, If I ABC :0
(in radian measure), then arc AB =

lelznl(zru1= r0, while the area of
AOB: l0lLxl(nr'zl = 0rz12, so arc AB
: {area of sector}i (z l2l. So let's calcu-
late the area S. Since tangents CA
and CB to circle O are equal, the mid-
point C of the hypotenuse BD of right
triangle ABD is equidistant from B
and A. Therefore, ABC is just the
same isosceles triangle with respect
to the circular segmentAB as the one
we considered in the previous steps,
and the area of the segment s <

lzl3\ABCI by inequality (3). It fol-
lows that the area of the sector is

5 = (oar) + s < (oar) *l1eac)
J

= ltoes) *l1oeca1,
oo

where IOACBI is the area of quadri-
Lateral OACB. Now

bea\ = !og. AH = AH.! .22',
(oece) = z(oac) = BC. r = ro. ;,
and therefore

7,, --L .!en*?ao.42 3 3

Step 4. In the situation established
in the previous step (fig. 5), let the
extensions of the radius OA and the
tangent BD meet at E. Then

PRooE. AII we need to do is show
that BD is less than the arithmetic
mean IAH + BE)12 of AH and BE,

\2)

AB,HM
KL.MC
AC AK
KC KC
(. AK\ AK

=llr-l-I KC) KC

Since the tangents I(A and KM xe of
equal length, AKIKC : KMIKC < l.
It follows that the last expression in
the equalities above is less than2.

Step 2. The area s of the circular
segmentAMB in figure 3 satisfies the
inequality

,.1(eac1. (3)
(l

Pr.oop. Let's approximate the seg-
ment from the inside by the se-
quence of inscribed polygons ob-
tained by adding isosceles triangles
(colored red in figure 4) constructed
on the sides of the previous polygon,
starting with the triangle A BM.Fust,
we add triangle AMM,, where M, is
the midpoint of arc AM, and do like-
wise for the side MBi then we add

(rwee)
....=.....--....-....:=

(cxL)

=

., 
1

I ^- <a AH +:BE.
aa
JJ
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since in this case, according to in-
equaiity (4),

]^,.!AH*2 AH+BE
332

=!au*!aa.
Some fancy algebra will allow us to
compute BD.By the similarity of tri-
angles FBD andFHA and of OBE and
OHA, we have

BD= AH.FB = AH 2Fo
FH FO+OH

zAH zAH
L+OHIOB l+AHIBE
2AH.BE
AH+BE'

The last expression is called the
harmonicmeanof a = AH andb: BE
(see footnot e 2 on page 47)i it's quite
easy to prove that the harmonic
mean of positive numbers a and b
never exceeds their arithmetic mean:

(o-b)'t2+2ab

Multipiying this by n, we get the
basic Huygens formula in inequal-
ity (1).

ln rursuitolaccul'acy
We've established that the num-

ber n lies in the first third of intewal
lp,, q,l for all n > 3. To determine its
location more exactly, consider the
ratio of the lengths of intervals (n, q,)
and (p,, ru). Calculations show that
this ratio, (q,- nllfu - p,), is quite
close to 2 for large enough n (see

tables 1 and2l. Based on these calcu-
lations we can suppose with cer-
tainty that this ratio approaches 2 as

n increases indefinitely-that is,

lim Y' 'u =2. I(ln+* Tt_ pn t"t

I'11 prove this fact using some el-
ementary calculus.

Inspecting figure 5, in which seg-
ments AA, and EE, can be consid-
ered sides of an inscribed and a cir-
cumscribed n-gon/ respectively, we
find p, = n sin nln, Q, = n tan nf n.
So

Qn-fr -
IE- Pn

1

;{7/")
sin(n/n) - (nln) cos(xl n)

("ld-sin(n/n)
Table 2

Asn -+ -, thefirstfactoronthedght
side of this equation approaches I
(cos x -+ 1 as x -+ 0). So it suffices to
show that

f(*) =
slnx-xcosx -+2x-sinx

as x -+ 0 (I replaced ru/n with x). A
little later, I'll prove the following
estimates: for any x > 0,

x3 x3 ,5x- 
G 

<stnx.r- 6*120,(6)

r- *'< 
cosx .t-t*t. t7\2224

These inequalities imply sin x = x -
*f 6, cos s = I - *12, and so sinx-
x cos x = f f3,x - sin x 

= 
f 16 (the

Table 1

1^^ =21^,.2(1au*1srl[3 3 )

=?na,*1rr,.a1
JJ

2ab .
a+b- a+b

(a+bf a+b
2(a+b) 2

Now for the last step/ in which we
derive inequality (1).

Step 5. Let AArbe a side of a regu-
lar inscribed n-gon/ and 1et it be par-
allel to side EE, of the reguiar n-gon
circumscribed about the same circle
so that its sides are parallel to those
of the inscribed n-gon (fig. 6). Figure
5 can be obtained from figure 5 by
adding its reflection through the di-
ameter FB. So the length of arc AA,
is

E

o\

A

E1 Table 3

0lJ[ilIUit/t00 til il[ BAct(

n t) o

3
6
12

24
48
95
192
384
758
1,536
3,072

2.5980762t
3.00000000
3.10s82854
3.13262861
3.13935020
3.14103 19s
3.14145247
3.14155760
3.14158389
3.L4159046
3.14t592t0

s.1961s242
3.4641Ot61
3.21539030
3.1s965994
3.1460862r
3.1427t459
3.14t87304
3.14t66274
3.t4l6tol7
3.14t59703
3.t4t59374

n (q,,- n)l(x - p,,1

3
5
12

24
48

95
192
384
768
1,536
3,072

3.780t2440
2.27772383
2.06345553
2.01ss29s9
2.00386204
2.00096424
2.00024098
2.0006024
2.0000150
2.00000375
2.00000094

2\
n ;Pt,+;Ll ,,

JJ

3 3.454L0t615t37
6 3.L54700538379
t2 3.142349t30544
24 3.t4l6390s6219
48 3.141595540408
95 3.14159283380
t92 3.141592664850
384 3.141592654293
768 3.14t592653633
t,535 3.14t592653592
3,072 3.t4t592653589

Figure 6
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error of approximation is negligibly
small with respect to t'). Thus,

--3 lo
f(x\=^ J,o =2.

x" 16

To prove inequalities (61 and l7l,
consider the function

,/ \ xj x5
/o(x,)=-srnx+x- G 

* 
nO

and its iterated derivatives

_.2 _.4

fr(*) = fi G) =-cosx * r- + + fi ,

3

fr(*)=fi6)=sinx- "*+,
__2

/.(r)= tiG)=cosx-r*i,

fo?)=fi G)=-sinx+x.

By the well-known inecluality, sin x
< x for x > 0. So the derivative f o@l of
the function /r(x) is positive for x > 0,

which means that f ,lxl increases {or
x > 0. Butlr(01 : O, solr(x) > 0 forx > 0.
This just happens to be the left in-
equaiity of inequality (7). Applying
exactly the same argument to func-
tion f ,(xl and its derivative f ukl, we
prove f ,lxl > 0 for x > 0, which is the
left inequality of inequality (6). Simi-
Iarly, f ,(xl > 0 and f okl, O, which are
the right inequaiities of inequalities
l7l and (5), respectively, which com-
pletes the proof of equation (5).

Equation (5) brings us to the fol-
lowing qualitative conclusion: tfte
number n, lying in the interval (p,,
(2I3)p,+ (1ls)ct), for all sufficiently
Targe values of n is located much
closer to the right end of the interval
than to the left end.

Tlte etlhiency 0ltlte lluygens l0nmula

It's interesting to compare the two
approximate formulas for n:

fi=n.,_Ent

which might be called the
Archimedes formula, and

2tn=7Pn+ 
,Q",

which Huygens obtained in the work
mentioned above.l

The greater efficiency of the sec-
ond formula can be shown by direct
computation. It's really exciting to do
this work yourself with your calcula-
tor, and i-f you follow the guidelines
on pages 4647 ("What Is n?"1, you'll
complete your own tables 1 and 3 in
no time at all (in these two tables the
corect decimal digits of rc are printed
in bold).

Another way to compare the
efficiency of the Archimedes and
Huygens formulas doesn't require
any numeric calculations of p, an;d q,
at all. One can derive and use so-
called a priori estimates of the
accutacy of the formulas-that id,
inequalities that allow one to
estimate the differences fi - poan'd
(2l\lp" + (l l3)q,- rc in terms of n in
advance, without computing them.
Such estimates allow us to plan
calculations, and this is their special
advantage: from them we can find
how big fl must be for the desired

^ccrrracy 
to be achieved. Using

inequalities (5) and (71 and carryLng
out simple arithmetic calculations,
it's easy to obtain the following a
prioriestimates (you could do it as an
exercise):

56
,, <TC-P, 1--T, (B)n- n-

2164
,P"+1Q" -n' no. (9)

It follows immediately from
these inequalities that the rate of
convergence of the difference
(2l3lp"+lll}lq,-ntozero asn -+ @

is greater than that of the difference
,II_D

1Actually, the work of Archimedes
has reached us as a fragment
containing three statements. Only one
of them can be regarded as an
indication of which o{ the two
values-pn^ or qn,,-he considered an
approximation oI r. And this value is
qn,, rather than pro. But historians think
that this statement was added to the
text later. Besides, it's pretty likely
that qs'was preferable to pru simply
because the Archimedean approxi-
mation for the former {22171 is simpler
than for the latter 122317ll.-Ed.

To compare these rates, let's find
the values of n that will ensure an
accu-racy of r to, say, the nearest
hundredth. Since n - p, < 6f n2, to
calculate rc using the Archimedes
formula to the desired accutacy
it's enough to take n such that
5ln' . 10-2-that is, n ) 25. Us-
ing the Huygens formula, it's
enough to choose n such that 64f na
< 10-2-that is, n> 9.

You can see from this example, as

well as from inequalities (B) and(91,
that the Huygens formula gives us
the desired accuracy more quickly.

You can try to obtain your own
formulas for n using polynomial ap-
proximations for sin x and cos x. For
example, from inequality (6) one can
derive

with some constant c. It's interesting
that this estimate involves only in-
scribed regular polygons.

The keen observation made by
Huygens-that the circumference is
half as fx hom the perimeter of the
inscribed regular n-gon as from that
of the circumscribed regular poly-
gon-was generalized not so long
ago. It was proven that a similar state-
ment is true for any smooth curve
(without comers)bounding a convex
figure. More exactly, it reads like this.

Let I be the length of a convex
closed curve without comers/ { the
maximum of the perimeters of n-
sided polygons inscribed in the curve,
and Q, the minimum of the perim-
eters of circumscribed r-gons. (Poly-
gons with such extremal perimeters
do exist!)Then

1. Q--Lum - '-2.
.-- T -D-n

The proof of this and many other
interesting theorems can be found
in the book Lagerungen in der
Ebene, auf der Kugel und im Raum
by L. Fejes Toth (Springer-Verlag, in
German). Al

ln-4Pz'- P'1. ',I 3 ln*
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IN THE LAB II

Douhlg, douhle luil and lrouhle

Boiling a witch's brew of toluene and water

HE PROCESS OF BOILINC is
familiar to everyone. The water
in a kettle is said to be boiling
when an intensive formation of

vapor occurs throughout the liquid.
Here lies the principal difference be-
tween boiling and evaporation: with
evaporation the processes of vaporiza-
tion take place on the open surface
only, whereas boiling begins when
the saturated vapor pressure in the
bubbles becomes equal to the exter-
nal (atmospheric) pressure.l If the
saturated vapor pressure is lower
than the atmospheric pressure, the
bubbles that randomly appear in the
liquid collapse and disappear.

Boundal,y loiling
It's well known that every liquid

is characterizedby a definite boiling
point at a specific atmospheric pres-
sure. For example, water boils at
100'C at normal atmospheric pres-
sure (po : 760 mm-Hg), while the
boiling point of toluene (CrHr) is
111.C.

What's the boiling point of a "mix-
ture" of toluene and water (two liq-
uids that don't actually mix). You
might suppose the boiling point is

lActually, for the bubbles to grow
the vapor pressure in them must
exceed the sum of the atmospheric
pressure/ the pressure o{ the liquid
lying above, and the pressure caused
by the surface tension of the liquid. In
most cases/ though, the second and
third pressures are much less than the
atmospheric pressure and so we can
neglect them.

by A. Buzdin and V. Sorokin

somewhere between 100'C and
111'C. But if you pour toluene into a
test tube containing water (toluene's
density is lower, so it will form the
upper layer of the "mixture") arrd
heat the tube in awater bath, you'l1
find that boiling begins at approxi-
mately 95"C! (You'llhave to use a
sufficiently precise thermometer. )

What's going on here? The experi-
ment itself suggests the answer. If
you watch carefully, you'll notice
that boiling begins at the boundary
dividing the two liquids. Here we're
dealing with so-called "boundary
boiling." In this case the gas bubble
appearing at the boundary forms from
both water and toluene, and the
bubble contains saturated vapor of
each liquid. At the boiling point, the
vapor pressure in the bubble equals
the sum of the partial saturated vapor
pressures of toluene p,(Tol and water
P-(Tol:

Po: P,lTbl + P*(T,ol,

which is Dalton's law. So the satu-
rated vapor pressure of water and
toluene (each taken separately) must
be lower than the atmospheric pres-
sure, which means that theboundary
boiling point I is lower than the boil-
ing point of toluene or water.

The following experiment is par-
ticularly impressive. Put some carbon
tetrachloride (CClo), whose boiling
point is 76.7'C, in a test tube, and
then pour some water on top of it. To
make the boundary more distinct,
you can color the carbon tetrachloride

9.9.-p-9_
Figure 1

with an iodine
solution before-
hand (fis. 1).
When the test
tube is heated in
a water bath,
boundaryboiling
starts at only
65'C. When you
do this experi-
ment, make sure
you heat the wa-
ter gradually so
you don't cause
"bump" boiling
of the liquids,
which could re-
sult in splatter-
mg.

When heating the water bath you
should always use a hot plate; never
use an open flame (Bunsen bumer or
alcohol lamp).

Carbon tetrachloride and toluene
are among the reagents that can be
found in any high school chemistry
Iab. But you should keep in mind that
they're hazardous and must be
handled with cate. Use small
amounts and conduct the experi-
ments in a hood.

It's interesting that the bubbles rise
to the surface and burst. The carbon
tetrachloride vapor then condenses,
and the drops sink.

An experiment for observing
boundary boiling that's easy to do
involves kerosene poured on top of
water in a test tube (the kerosene can
be colored with a drop of iodine solu-
tion). You can see quite clearly that

52 [lAY/JUI'II 1S92



65

Figure 2

boiling begins at the boundary, but
the boundary boiling point is so close
to the boiling point of water that you
must heat it slowly.

Is it possibie to predict the bound-
ary boiling point? It's easy for carbon
tetrachloride and water lf you happen
to have data on the dependence of the
saturated vapor pressure o{ these liq-
uids on temperature.

Figure 2 shows a graph of the tem-
perature dependence of saturated va-
por pressure for carbon tetrachloride
and water (black lines); the red line
shows the sum of the two:

p.lT) = p, n o(T)+ R ccL, (7).

The point where the sum intersects
the line p : p 

o 
: 7 60mm-Hg gives the

boiling point at the boundary of the
water and carbon tetrachloride: 7o :
55"C. The vapor pressure of IlO is
190 mm-Hg while the vaporpressure
of CClo is 570 mm-Hg; the sum equals
the normal atinospheric pressure.

Un{ortunately a simple calculation
like this doesn't always lead to the
actual result. Quite often you have to
consider the mutual solubility of the
components.

It's curious that i{ you continue the
boundary boiling for some time,
you'll notice that carbon tetrachloride
boils away more quickly than water
does. Why? Try to estimate relative
rate at which the two liquids boil
away (the density p of CCln is 1,500
kg/m3).

satunaleduarul'

u,0$$[r8
We're used to deter-

mining the saturated
vapor pressure of water
by just looking it up in
a book. But can we ob-
tain the temperature de-
pendence of the satu-
rated vapor pressure
ourselves? That is, can
we do an experiment
and compile our own
reference table?

Let's look at one of
the simplestmethods of
obtaining such a rela-

tionship. We'1lneed a beaker, a gradu-
ated test tube, a thermometer, a ring
stand and clamp, and a hot plate.

Fill the beaker with cold water and
place it on the coldhot plate.Partially
fill the graduated test tube with wa-
ter and, turning it upside-down, place
it in the beaker. Use the clamp to
keep itinplace. Put the thermometer
in the beaker and clamp it in place as
wel1. Begin heating the beaker. As the
temperature rises, record the change
in volume of the vapor in the tube.

The vapor in the tube is a mixture
of air and saturated water vapor. The
total pressure, naturally, equals the
atmospheric pressure (we can neglect
the pressure of the water column-it
amounts to only a few millimeters):
p0= p^(Tl + p"(7, wherep"(T)is the air
pressure in the tube and p"(7) is the
saturated vapor pressure at tempera-
ture 7. At the start of the experiment
you can neglect the water vapor pres-
sure (at 20"C it equals only 17 mm-
Hg). As the temperature increases, the
contribution of the water vapor in-
CICASCS.

Using the Clausius-Clapeyron-
Mendeleyev equation, we can write
out the following statement for the
air in the test tube:

wherepo is the initial pressure (equal
to the atmospheric pressure), Vo and
Tn are the initial volume and initial
air temperature/ respectively. Now
that we know how the volume and
temperature change, we can find the
saturated vapor pressure at the given
temperature:

p,= po(r-:+l'"t rov)

This relationship between satu-
rated vapor pressure and temperature
that we found experimentally agrees
with the reference table. If the tem-
perature is higher than BO'C, the er-
ror is less than 5"/". Low tempera-
tures cause a deterioration in
acaJracy.

Why does this happen? Think
about what causes the error and try to
come up with ways of improving the
accutacy of our method. O

,d
ff

PoVo - P^V
ToT

1/ TV^ Ifl-ngPa-P0 rl T I
v t()

=u
CN
o
(o
o

0):l
o
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Be$tlls ol tuenlyfour [hallenge
In our September/October issue,

we gaveyou the opportunity to show
off your math skill and ability by
playrng Twenty-Four@, a game where
teams of players must add, subtract,
multiply, and/or divide to arri.ve at
the solution of 24.We received more
than 30 entries, from classes at all
grade levels, and we judged them in
two categories: Bth grade and below,
and 9th grade and above. Due to space
limitations, we were unable to report
the outcome in the March/April is-
sue. Here are the results.

8th grade and below. Grand Pilze:
Bernadette Vachetto's 8th grade at
Churchvilie-Chili Middle School in
Churchville, New York. Frrst Run-
ner-Up: Mr. Kuster's Bth grade at
Churchville-Chili Middle School in
Churchville, New York. Second Run-
ner-up: Sherry Welch's 8th grade at
Gates-Chili Middle School in Roch-
ester, New York. Third Runner-Up:
Phyllis Perkins's 5th-6th grade at
University Elementary School in
Bloomington, Indiana. Fourth Run-
ner-[Jp: Paul Larson's Bth grade/peri-
ods 2 and 3 atLoyalPublic School in
Loyal, Wisconsin.

9th grade and above. Grand Prize:

|ean Kahn's 9th-l}th grade at
Shoreham-Wading River High School
in Shoreham, New York. Frzst Run-
ner-[Jp : Thomas Morrow's 10th-12th
gade at East High School in Roches-
ter, New York. Second Runner-Up:
Mr. Detzel's 10th grade/period 4 at
Shaler Area Senior High School in
Pittsburgh, Pennsylvani a. Thtud Run-
ner-[Jp: Mrs. Schilstra's 9th gradel
period 1 at Penfield High School in
Penfield, New York. Fourth Runner
Up; Mrs. Schilstra's 9th grade/period
4 at Penfield High School.

HAPPENINGS

Bulletilt Buard

Prizes were generously donated by
the Eastman Kodak Company-2lst
Century Learning Challenge. Con-
gratulations and thanks to all who
participated.

The fiah tol'e$ lmpenafliue

For years scientists and conserva-
tionists have been spreading theword
about the plight of tropical rain for-
ests. Now there is an educational
study unit and video to heip students
understand the complex and urgent
issues surrounding the rain forest cri-
sis.

"The Rain Forest lmperative," de-

veloped by the nonprofit Conserva-
tion Intemational and sponsored by
McDonald's Corporation, challenges
students to learn more about tropical
rain forests, their modern day eco-
nomic and cultural value, and the
threat of deforestation. The 25-
minute video highlights the Amazo-
nian rain forest in Brazil and is accom-
panied by a study unit providing
classroom activities in life science,
geography, and social science cur-
ricula. The imperative encourages
students to define the many issues
contributing to deforestation and
identify its real-world solutions.

To order "The Rain Forest Impera-
tive, " send $ 9.9 5 to McDonald's Edu-
cation Resource Center, PO Box 8002,
St. Charles, IL 6017 4-8002, or call 800
627-7545.

0ueglol' fie l[inking Com[uilm
Humans wil,l be pitted against

computers once again in the second
annual Quest for the Thinking Com-
puter. The contest, administered by
the Cambridge Center for Behavioral

Studies, will be held in November at
the Computer Museum in Boston,
which features a collection of vintage
computers and robots with over 100
hands-on exhibits illustrating the
evolution and impact of computers.

Last year's contest drew an audi-
ence of more than 200 people. Ten
judges conversed at each of eight com-
puter terminals in an attempt to de-

termine which terminals were con-
trolled by people and which by
computers. Then they ranked the ter-
minals according to how human-Iike
the conversations were. As expected,
the two hidden humans had the high-
est overall rankings. But, surprisingly,
one of the six computers {ooled half
the judges into thinking it was a per-
son. And three of the judges thought
one of the humans was a computer!

The contest was inspired by a pa-
per published in 1950 by the English
mathematician Aian Turing, one of
the creators of the modern computer.
The 1992 contest will be a restricted
one, requiring computers to be con-
versant on only one topic in order to
give them a fighting chance of deceiv-
ing the judges. The1992 winnerwill
receive abronze medal and $2,000.
Periodically, an open-ended test will
be held.If a computer can fool iudges
into thinking it's a person in an open-
ended test, at least $100,000 will be
awarded to the designers of the sys-
tem, and the contest will be abol-
ished.

Lively debate surrounds the con-
test: will we have the right to tum off
a winning errtry?. Who should get the
prize, the designer or the computer?
Could the winning computer be con-
sidered "intelligent " or " self-aware"
or "conscious"?

Applications for the 1992 cornpe-
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tition mustbe postmarked by fuly31.
Submissions willbe evaluated and
screened, and no more than ten final-
ists will be selected by September 30.
A printout of the conversations gen-
erated during the 1991 competition is
available for a nominal fee; a diskette
is also available. For an application
and additionai information, contact
Kathleen Towne at the Cambridge
Center for Behavioral Studies, 11
Waterhouse Street, Cambridge, MA
02138, orcall 617 491-9020.

Plrysimlsimulations on fie ltllac

Students can now formulate com-
plex motion experiments on the
Macintosh and see the results of their
experiments in fulI animation. Inter-
active PhysicsrM II, a new software
package from Ihowledge Revolution,
is a complete motion laboratory that
simulates and measures objects in
motion, driven by physical laws. The
software includes a new simulation
enging research-level modeling capa-
bilities, and custom experiment
authoring tools.

Interactive Physics lets users draw
and build any number of obiects on a
Macintosh screen (squares, rockets,
cars), define motion parameters for
each object (mass, elasticity, chargg
velocity), set the environment of an
experiment lgravity, air resistance,
electrostatics), and then immediately
"rlJfl" the experiment, simulating
how the objects would interact in re-
ality. The dynamic simulation engine
mathematically creates smooth
animationlike simulations, whose
measurement data can be displayed
simultaneously in graphical meter,
or table format.

Interactive Physics is available
from Knowledge Revolution and
Macintosh resellers for a suggested
retail price of $399. For additional
information contact Knowledge
Revolution, 15 Brush Placg San Fran-
cisco, CA 94103, or call BO0 7 56-6615.

0unamll rscoultizes yomu inusntut'$
Six talented high school juniors

and seniors with interests in mechan-
ics and electronics are winners in the

tenth annual Duracell NSTA Schol-
arship Competition. To enter, a 9-
12th grade student had to design and
build a device that is energy efficient,
practicd., and powered by one or more
Duracell batteries. Over 500 inven-
tions were submitted. The devices
illustrate the inventiveness and cre-
ativity of American high school stu-
dents today.

The {irst-place sc,holarship of
$10,000 was awarded to Curt
Klaustermeier, a senior at Triad High
School in Illinois, for his Battery-Pow-
ered Adjustable Wrench. Aided by a
gear run from a small battery-pow-
ered motor, the wrench opens and
closes with ease. Five second-place
winners each received a $3,000 schol-
arship: Sean Burrows, a junior at
Shoreham Wading-River High School
in New Yor19 invented a visual detec-
tion and warning device; Richard
Peirce, also a junior and Shoreham
Wading-River High School, created
radio-controlled life preserve4 Glenn
Scott Simmonds, a senior at the
North Carolina School of Science and
Mathematics, designed an emergency
system that detects,light and noise
levels and responds by tuming on its
own light; William Thomas Chi, a
senior at Mission San |ose High
School in Cali{ornia, developed a
small portable device that neatly ad-
ministers eye drops; and Daniel |acob
Shapiro, a junior at Beaverton High
School in Oregon, devised a portable
alarm that safeguards books by
sounding an B5-decibel buzzer when
tilted. Ten students were given $500
scholarships, and 25 students re-
ceived $100 cash awards.

To find out how to enter the elev-
enth annual Duracell NSTA Scholar-
ship Competition, write to Katie
Rapp, National Science Teachers As-
sociation, L7 42 Connecticut Avenue
NW, Washington/ DC 20009, or call
202328-sBO0.

-Compiled 
by Elisabeth Tobia

Be a lactor in the

OUANTUM
Bqllation!

Have you written an article that
you think belongs in Quantum!
Do you have an unusual topic
that students would find fun and
challenging? Do you know o{
anyone who would make a great

Quantum author? Write to us
and we'll send you the editorial
guidelines for prospective Quan-
tum contributors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in collocluial
English and at a level appropriate
{or Quanturn's predominantly
high school readership.

Send your inquiries to:

Managing Editor
Quantum

3140 N. Washington Boulevard
Arlington, YA 22201

IllRalS fiappetting?
Summer study ... competitions ... new books
,,, ongoing activities ... clubs and associa-
tions .., free samples ... contests ... whatever
it is, if you think it's of interest to Quantum
readers, let us know about itl Help us fill
Happenings and the Bulletin Board with
short news items, firsthand reports, and
announcements of upcoming events.

trtlhal$ oll yottr tniltd?
Write to us! We want to know what you think
oI Quantum. What do you like the most?
What would you like to see more ofl And,
yes-what don't you like about QuantunP
We want to make it even better, but we need
your help.

ltllltaffi ottr oddres$?

Quantum
National Science Teachers Assoc.

3140 N. Washington Boulevard
Arlington, VA 22201

Be a laclol' in tfie

OUANTUM
oqllalioll!
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M51
Let's use induction over r?. For n =

3 the statement to be proved is true:
33 : 27, and 2 is an even number.
Now assume that the next-to-last
digit of the number N = 3" is even,
and prove that the same is true for 3N
: 34 + 1. Let ab be the last two digits
of N. Then the two iast digits of 3N
coincide with those of the number
3(l0a + bl = 30a + 3b, and since a is
even, the next-to-last digit of 3Nis of
the same parity as the next-to-last
digit of 3b. Write out the first few
powers of 3:

31 =3, 32:9, 33 =27, 34 = 8I.

Their last digits are 3, 9, 7 , I, and
they'Il keep repeating periodically: 35

ends in 3, and so on. These are in fact
the values taken by b, so 3b equals 9,

27 ,21, or 3. The next-to-last digits of
these numbers are all even (for 9 and
3 they're simply 0), which completes
the proof by induction.

M52
Since the number c divides ab, it

can be represented as a product uv,
where u divides a andw divides b (we

can take for u the greatest common
divisor of a and cl. Let w = af u, t : b f vi
then d = ablc: wt.It follows that

a1992 + bteez + c1e92 + dlee2

: luwl'n" + lwltooz + (uvlleez + lw4rooz
: (utooz + lee2){vteez * ff rrl,

so the sum in question can be fac-
tored.

M53
Denote by O, O t, O, the centers of

the given circles and by r, r' r2thetr
respective radii (fig. I ). If segment AB
meets circles O, and O, at their com-
mon point C, then isosceles triangles

ANSWERS,
HINTS &

SOLUTIONS

OAB, OtAC, O.BC are similarto one
another (triangles OAB and OlAC,
say, have a common angle at vertex
A). So the opposite sides of quadrilat-
eral OOrCOrareparullel and, there-
fore, congruent (by a property of the
parallelogram). It follows that

r : OA= OOt+ OrA: OrC + OrA
= 12+ Ir

The converse is also true: tl r : rr
+ 12, then segmentAB passes through
one of the common points of the
smaller circles. To prove it, construct
the parallelogram C)O tC' O 2', whose
vertices C' and Or'lie on segnlents
AB and OB, respectively (clearly this
can always be done in a unique way).
Triangles OrAC' andC),'C'B are simi-
lar to isosceles triangle OAB, so

OtC' = OrA: r,

which means that C'Iies on ctcle O,
and

Or'B:O2'C':OOr=OA-Oi
:t-f =t- -1 -2t

which means that Or'= Oz and that
C'lies on circle O, which is what we
had to prove. (V. Dubrovsky)

M54
The proof is based on the following

idea: for any two points A(a, flall and

Blb, flbD on the graph of the given
function I (fig. 2), the rectangle /A, Bl
with diagonalAB covers the segment
AB of the graph, its area S satisfying

0ablx
Figure 2

inequality zJS <w + h, where w:
b - aisits "width" ar;Ldh:flbl-flal
is its height; this inequality is a direct
consequence of the well-known in-
equality of arithmetic and geometric

means: J*h <(w + hlll. [This in-
equality follows from the fact
that squares are never negative:

lJi * 
^tTl' 

= w + h + zJwh > o,

so (w + hl12>- J-a . fnlt holds so
longas wandh>0.-Ed.l

We'li demonstrate two ways of
using this idea. Assume for the time
being that l{0):0, (t) : 1.

(1) Extend function f onto the
whole positive half-axis so it remains
continuous and monotonic (for in-
stance, we can define flxl : " for x >

1). Assign the label Ao to the initial
point (0, 0) of its $aph. Take points
41, A2, ..., A,orr the graPh such that
the area of each rectang)e /A, ,, A,l,
i : l, 2,..., n, equals 1/n2. Such points
exist because the function is continu-
ous and monotonic and grows indefi-
nitely. (When point P moves along
the graph, starting fuom A, _ ,, t}rre area

otr(A, ,, P)grows indefinitely, taking
on all intermediate values, I f nz arnong
them.) For each of these rectangles, the
sum of the width and height is not

5 $ mAY/Jtllrt rosz



less than 2$l * : 2f n, sothe sum of
the coordinates of pointA,, which are
equal to the sums of all widths and all
heights, is not less than2. Therefore,
at least one of these coordinates is not
less than 1, which means thatA- lies
on the extension of the graph ant the
rectangles cover the $aph.

(21 Let's choose the points Bn, 8,,
..., B, on the Saph, starting with Bo(0,
0), such that the sum of the width and
height of each rec,tangle 4Bj ,, B,l, i
: l, 2, ..., n is 2ln. (Point B, is simply
the point where the graph intersects
the line y = 2iln-x; in partiaiar, Bn

is the endpoint (1, 1) of the graph-see
figure 3.) The area of each of the rect-
angles is not greater than [(w + hllz],
: I ln'. Dilating the rectangles, if nec-
essary/ to make their areas exactly
lf n2, we'll get the required covering.

Figure 3

II f(01 , 0 or /( 1 ) < 1, the graph must
be completed by vertical segments to
form a continuous curve joining
points (0, 0)and (1, 1) (fig.4). Similarly,
a curve can be made out of the graph
of any monotonic function (not nec-
essarily continuous-see figure 5).

0

Figure 4

0

Figure 5

Both arguments work with these
curves as wel1. (N. Vasilyev,
V. Dubrovsky)

M55
Consider two arbitrary planets. Let

P and Q be their centers. Point X on
the planet centered at P andpoint Y
on the other will be called cone-
sponding{ the rays PX and QYhave
the same direction (fig. 5). The regions
on the two planets that are not visible
from the other planet are obviously
two "exterior" hemispheres cut on
the planets by the planes through P
and Q perpendicular to line PQ;
they're shaded in figure 5. Of any two

"equator"

corresponding points on our two plan-
ets (except points on the "eqrtators"
of the hemispheres), only one can
belong to the respective nonvisible
hemisphere. As to the points of the
"eqLlatots," it's a matter of conven-
tion whether such a point is visible
from the other planet (that is, {rom
the corresponding point on the other
planet's equator); but since there are
only a finite number of such equators
for all pairs of planets, their total area
iszero, so we can and will simply dis-
regardthem.

Now, take an auxiliaryunit sphere
S and denote by 1o the set of its points
coresponding to the points on planet
P that are not visible from anv other

Figure 7

planet (frg.7l.It suffices to show that
the sets 1, for all planets cover sphere
S without gaps and overlaps; or that,
except for the boundary points of re-
gions 1o (which are disregarded), every
point X of sphere S belongs to one and
only one set 1r.

If Xbelongs simultaneously to two
sets 1, and 1o, then the points on plan-
ets P and Q corresponding to X are
each out of sight from the other
planet, which is impossible, as we've
seen above. So there are no overlaps.

Finally, take an arbitrarypointXof
S. Suppose for convenience that the
radius OXis pointing upward (fig. B).

Figure B

Let Ube the uppermost planet; then
point Y on this planet corresponding
to X is completely out o{ sight-oth-
erwise, the planet from which it is
seen would be above U. So X belongs
to 1, and the covering of sphere S has
no gaps. (V. Dubrovsky)

Physics

P51
After the horizontal velocity v is

imparted to the upper bal1, the balls

.f(0)

X

OFigure 6
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*,,
2l-o

-that is,

1<t
1o

will revolve about the center of mass
of the system/ which in tum moves
forward with speed vl2.II the upper
ball immediately loses contact with
the tab1e, the onlyforce acting on the
system is the force of gravity. It im-
parts acceleration g to the system and
therefore to the lower ball. For the
lower ball to lose contact with the
table, its centripetal acceleration
must be greater than g.

hr the coordinate system moving
with the velocity of the center of
mass, both balls have velocities v/2
that are equal in magnitude, and the
centripetal acceleration equals

fu12)' vL

12 21'

The lower ball will lose contact with
the table if

P52
The simplest way to solve this

problem is to use Newton's second
law. Lr a time At a length of cable A/
: vAt is put into motion. If the mass
per unit length of cable is denoted by

Lr, the mass of the iength of cable Al
is equal to Lm = pAJ : pvAt. This
means that a change in momentum
Lmv: pv2At is given to the mass Am
in time Ar. The impulse that causes
this change in momentum is due to
the difference between the force of
gravity acting on the left and right
portions of the cable. This di{ference
is equal to mgh. According to
Newton's second law we can write

pf Lt = trtghLt.

From this we get

v = JiE.

P53
Considering that the gas density is

p: Mlv,we canwrite the equation of

state for water vapor in the form P =

lplprlRT,where p and p are the density
and molar mass of watervapor. Boil-
ing takes place when the saturated
vapor pressure becomes equal to the
atmospheric pressure. If the boiling
point of the salted water has been
raised and the atmospheric pressure is
constant, the density of the saturated
water vapor must decrease.

P54
The thermal power generated

when the cuffent passes through the
resistor is partially spent on heating
the resistor and partially released to
the surroundings. Lr the state of ther-
mal equiiibrium (when the resistor's
temperature remains constant) all the
power is released to the surroundings.

Let's denote the proportionality
factor between the power generated
in the resistor and the difference be-
tween the temperatures of the resis-
tor and the surrounding air by cr. At a
temperature ,3 : 80'C the resistance
equals Rr : 50 Q (see figure 9). Then
from the equality

rz2

A=a(t.-ro)Rr \r

we get

o= ,V? , =1.2 
Y

&(ta - to) O.K

The spontaneous current oscilla-
tions with the voltage V, : B0 V across

the resistor are caused by the oscilla-
tions of its resistance. When the tem-
perature of the resistor reaches t, :
100'C, its resistance jumps abruptly
from R, = 50 C} to R, : 100 Q. As a
result, the thermal power generated
in the resistor decreases, and the re-
sistor begins to cool because the rate

at which energy is being generated in
the resistor is less than the rate at
which energy is released to the sur-
roundings. When the resistor's tem-
perature falls to tz: 99"C, its resis-
tance changes abruptly from 100 o
back to 50 Q. The thermal power dis-
sipated in the resistor increases, and
the resistor heats up again because
the rate of energy generation is now
greater than the rate of energy release.

At a temperature t1 : 100'C the resis-
tance jumps again, and the entirepro-
cess is repeated.

The period of the oscillations in
the circuit equals

T:xr+,E2t

where t, is the time it takes the
resistor's temperature to increase
from t, to t/ and t, is the time it takes
the resistor to cool from t, to fr. Let's
write the corresponding equations for
the heat balance:

V??r,= t,cr(t,- t)+C(t,-t ),
f(1

v?
?"r= r2u(t1- t)-C(t, -tr)
A2

(since the relative change in the
resistor's temperature is small, we
can assume that the thermal power
released to the surroundings is con-
stant and equals cr{t, - to)). Substitut-
ing the given numerical values, we
find

trt= xr= 0'1 s = T =O'2 s'

The maximum value of the cur-
rent is obviously equal to

I^^- -b =1.6 A,'ruD nl

and the minimum value is

R (f))

1.6

0.8

0

Figure
0.1 0.2

10

1(A)
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=o

C]
il

-Vf _'L =0.84.^rr[n 
R2

Figure 10 shows the graph of the time
dependence of current in the circuit.

P55
A camera obscura is simply a box

with a pinhole aperture. A broad
beam of light rays reflect from every
point of the object and strike the pho-
tographic film inside the camera (fig.
11). For the tiger to appear striped in

Figure 11

the photograph, the beams coming
from the nearest points oi adjacent
stripes on the tiger must not overlap
on the fi1m. Thereiore, the film must
be a distance r from the aperture that
is greater than ditan G, where d is the
diameter of the aperture.

Since

Bl'ainlea$Br$

851
The area of a map with the scale

1 : k is I fi{ that ofthe territory it rep-
resents. The number of people that
can fit in a certain region is propor-
tional to its area. So if this region is
as big as the map in the problem, its
"population" will be about
(2 . l0\1Q5. 1012)= 0.000008person.

852
Let the given number be n = l1a +

b (b is the last digit). Then the de-
scribed operation yields m = a + 4b.
Since4n-m =39ais amultipleof 13,
the divisibilityby 13 of thenumberm
is equivalent to that of the number 4n
and, therefote, of n.

853
Twilight is the period of

semidarkness between sunset and
nightfall. The daylight at this time of
day is the result of sunlight being dis-
persed by the atmosphere at high a1-

titudes, where the Sun has not yet set
behind the horizon. High up in the
mountains the atmospheric layer
over the Earth is thinner and the pe-
riod of its illumination after sunset is
shorter. So twilight in the mountains
is shorter too. (Planets devoid of at-
mosphere have no twilight at all, nor
does the Moon.)

854
In the notation of figure 12 the

area of triangle I is equal to
(llzlac sin (180'-ul:lllzlac sin o,
which is the area oI the shaded tri-
angle. Similarly, one can show that
the other two triangles are also
equal in ateato the shaded one. (Ac-
tually, triangle 3 is even congruent
to it.) (V. Dubrovsky)

855
If x is the unknown number of

university students, then each of x +
2 participants in the championship
played x + 1 games, so their total
score/ equal to the total number of
games, is (x + 2l(x + lll2. The total
score of the x university students

equals (x + 2)(x + 1ll2 - 5.5 :
(Llzl(* + 3x- 11) and is equally
distributed among them: each of
themgot (llzl(x + 3 - 11/x)points.
This must be an integer number of
half points, so 11 is divisible by x. If
follows that x: 11 (in the case of x :
1, the score of each university student
would be negative).

0o "Illod"
l. No, it can't. If the square of an

integer ends in 5, then this integer has
theform IOn+ 5, so the square equals
(10n + 5 )'z 

: 100(n'z +nl + 25, and its
second last digit is 2, not 7.

2. (a) The quotient q: ll3, the re-
mainderr : 10; (b) q : -10, r : lii @l q: ll, t :73.

3. (I7x * 3yl .22: Bx + 6. 6lx +
5y + 5ly = (Bx + Syl + 6L(5x + y), so
l7x + 3y and Bx + 5y are both divis-
ible by 61.

a. @l I and}; (bl n'+ n + I =
n(n + ll + 1, remainder : 1; nz + n +
l:ln - 1)(n + 2l + 3, remainder=3;
(c)na+ 1:(nt - 3nz + 9n-271(n + 3l
+ 82, n + 3 > 82,remainder = 82.

5.(al(n'+ lll{n- 1)= n+l+ 2f
(n - 1) is a whole number when n
:3,2,0, or-1; (bln: l, Q -1, orJ.

5. (al a3 - a: (a - lla(a + 1) is di-
visible by 2 ard by 3 (therefore, by
6l as aproduct of three consecutive
numbers, so a3 and ahave equal re-
mainders modulo 6. (bl as * a :

Figure 12

12
tanG =

L+ x'

then

Zd(L+ x)x>
1

From this we get

2dLX)-^'tr',-4\'
'1.' 1)

Since2dll << 1, we canneglectZdfl
as compared to 1 in the denominator
o{ the formula. We then get

2dLx>4 =20 cm.
1

So the camera must measure at least
20 cm from front to back.
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a{aa - ll : a(a'- ll(az + ll
la - llala + Illaz + | ), and az+l=
a2 - 4 - la - zl(a + 2) (mod 5); one
of the 5 consecutive numbers a - 2,
a - L, ..., a + 2 is always divisibleby 5.

7.ztT=4sotBtoo:950- (5 + 4)5o,and
the last number is obviously congru-
ent to 4so modulo 5, 3too = (5 -
2 )too 

* 5N + 2roo for some integer N;
3s = 243 :2lI + 32 :211 + 25, so 31oo

: l2ll + 2sl2o:2100 (mod 211).
8. 1110 - 1 = (11-1)

(11e + 1 18 + ... + 11 + 1). The first
f.actor is 10; the second factor is the
sum of 10 numbers each ending in 1,

so it ends in 0 and is divisible by 10
too, which means that the product is
divisible by 100.

9. ForN: ,1y- ,, .2, / wehaveN

- s(Iv) = an.lu t a,_ t. lff- 1 + ... +
ar-antan_t+... +do) :a,(IU - 1)*
ao- t(10" 

- 
' - 1) + ... + at.(10- 1), but

1tr - 1 :99...9 (k nines) and is divis-
ible by 9 (and by 3).

10. By theprevious exercise, S(5A)

- S(A) = 5A - A = 4A (mod 9). So if
S(5A) and S(A)yield the same remain-
ders when divided by 9, then 9 divides
4A and, therefore, A.

11. (a) By exercise 10, if N is any
number in cluestion, then N= S(N) =
20 =2 (mod 3). But the square of any
number either is divisible by 3 or has
a remainder of 1 when divided by 3,
because (3k t 1lr2 :3(3kz t 2k) + 1.

So N is not a square.
(b) The answer is again no. hr this

case the sum of digits 1 + 9 + 9 + 2 is
fivisible by 3 but not divisibleby 9,
which is impossible for the square of
an integer.

12. Foilow the solution to exercise
9 and use the divisibility of 10k - 1 :
LI . 9090...9 (k nines) and 102ft . 1 + 1

: 10.(162r - 1) + 11 by 11.
L5. (al2tooz - l:154e8 - 1 = (-11+rs -

1 =0 (mod 17). (blSince33 = 27= 1

(mod 13), (320 + 1 1)5s = [(33)6 . 32 - 2l5s
:7ss _ 4gz7 .7:1027 .7 

=(_3l|22 
.7:_7

= 5 (mod 13).

16. (a) 25o + I : lzto1s + I : l,O24s +
1 : 245 + 1 : (24+ll(24a -
243 + 242 -24 + 1) (mod 125). The
first factor is 25; the second factor di-
visibleby 5, since 24=-I {mod 5); so
the product is divisible by 125.

(blNote that 105 :3 . 5 . 7. Now,

248 - | (-t1o'- 1 :0 (mod 31,248 - | :
424 - | = (-l)'o - 1 = 0 (mod 5|, and 2+8

- 1 : 816- 1 = 116- 1 :0 (mod 7l,so2a8

- 1 is divisible by 3, 5, and7.
(c)Use induction overn > 0. As the

equation

23" + | = (Ze"' + t)(23"' 2 - 2."-' + 1)

shows, the crucial point is to prove
that the second factor on the right
side is divisible by 3 but not by 9. Find
its remainders:

.z-1 ^ .n-12" o -2o +1
. . aa_l_t . cn 1

=(-1)" "-(-1)" +1

=3=0(mod3);
.n-l ^ .n-12"'"-2" +1

n )^ ^n 2

=8' '-8' +1

=1-(-1)+1=3(mod9).

17 . p : S,since for any integern not
divisibleby 3,20n2 + 1 is divisibleby
J.

18. For n:2k + l, l* + 2* + ... +
ln - ll* = [1- + (n - 1)-] +12- + (n -
2l*l * ...+ [k- + ln - kl-): [1- + (-
ll*l + 12- * (-2lr-1+ ... + [k- * (-k)-] :
0 (modm).

19. The number n must be even,
which follows from the {ollowing re-
lations: 323 : 17 . 19,2U + 15" - 3" -
1 = 3' + {-1)" - 3" - l" (mod 17); 20" +
16" - 3"- 1 : 1" + (-3), - 3" - |
(mod 19).

2fr.5h* 1 *ln+ 2.2"- 1 :2y.5 +@- 1

.33 =@-'(6. 5 + 271=0 (mod 19).

21. Any common divisor of 15n +

2 and l4n + 3 also divides lln + 2 -
(l4n + 3l = n-l andl4n+3- I4ln -
ll : 17,iso n - 1 must be divisible by
17, or n = I + 17ft. The fraction in
question can be simpiified for any
such n.

22.p = 3 (consider remainders
modulo 3).

23.5,tt,17,23,29. Any 5 succes-
sive terms of the sequence in question
have di{ferent remainders when di-
vided by 5; therefore, one of them
must be divisible by 5. Since it is
prime, it must be equal to 5.

24.8y theorem 1, the di{ference d
can't be coprime with m : 15 or with
any smaller number. So d 2 2. 3 . 5 .

7 .tL.13 = 30,030.

25. (al Any number dividing a and
b must also divide a - b, so a prime
common divisor of any two of our 10
consecutive integers divides a num-
ber not greater than 9 and therefore
can be equal only to 2,3,5, or 7. Five
of the given integers are odd; only two
of them can be divisible by 3; on€ can
be divisible by 5, and one by 7. This
leaves at least one odd number not
divisible by any of the numbers 3, 5,
74,34-arrd this number is coprime
with all the rest.

(b) The proof is similar to that in
part lal above but needs more subtle
reasoning. Let the fust of the numbers
in question be even/ and iet a1t a2t ...t
a, be the odd numbers in increasing
order. Possible common divisors are
2, 3, 5, 7, lI, L3. The number 3 can
divide at most three of the numbers
ay a2r ...t ari 5 andT cata each divide
two of them at most; 11 and 13 can
each divide one at most (because, for
instance, if 11 divides two numbers,
a* and ao, thenla* - a,l> 221.

But none of the numbers az, au as

can have 11 or 13 as a common divi-
sor with any other of our 15 numbers,
since ar- 11< ar-1, ar+ll , or.
Suppose none of the 16 numbers is
coprime with the rest. Then 3 must
divide one of the numbers a, ao, ar; 5
must divide another one; and 7 must
divide the third. Therefore, 7 divides
only one of the numbers att azt ... t a8.

Now, the best we can do is to assurne
that 5 divides two numbers-c., and
ar; and 3 divides three other num-
bers-a, ao, ari thett 7 divides ar. But
13 can divide neither ar(ar+ 13 > arl
nor a6(a6- 13 < ar- 1), so one of these
two numbers is coprime with all the
rest. The argument is almost the
same if the first 16 numbers are odd.

(c) Each of 17 numbers 2,184,
2,185, ...,2,200 has a common divi-
sor with any other.

25. Use theorem 3.
27. No.
28. -1 + 2.3.5.7 =209.
29.788.
30. (a)x :12 + 37k, (bl x: 17 + 29k

for any integer k.
31. (a) x: -l + 8k, y : | -7k; lbl x =

7 +l1k,y=5+l3k;lclx=-l + l8k,y
= 24 -257k.
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32. x: -17 + ll9k, y:9 - 5lk, z =
-l + 7k.

Tal'tu'01
Here are the answers to the prob-

lems posed in the article "Tartu in the
Summer of '91" in the last issue. The
answers (as well as the questions)
were prepared by Ilya Itenberg and
Dmitry Fomin, who were kind
enough to share them with
Quantum's readers.

1. Refer to frgure 13.Ii IBAL =
ICDK, then quaddlateralAKLD can
be inscribed in a crrcle and IADL +

IAKL = 180'. Since ,'{Dl + IBCL =
180" (linesAD andBC are paral1el), we
must have IAKL : IBCL. Similarly,
ZBKL= IADL, andzBKI . ZBCL=
180". This means that quadrangle
BCLK is also c.vc1ic. Thus rr.e have
ZCKD = 180" _ I.+KD - IBKC =
1BO'* ZALD _ Z.BLC = IBLA,

BC
Figure 13

2. The sum of these numbers is
zerol so they cannot be positive si-
multaneously.

3. The given algebraic condition
on F implies that if A= F(x) for some
real x (that is, if A is in the range of
F), then F(Al: llA.We'Tlprove now
that there exists real x such that F(x)
= 500. It then follows that F(500) :
1/s00.

We know that F(1,0001 :999.
Therefore F(9991 : L I 999.The func-
tion F is continuous, and 999 ar-:d
I1999 are in its range. So (by the In-
termediate Value Theorem of
analysis) the number 500 is in its
range as well, and F(500) = 1/500.

4. The beginning of the game is
determined: 2 -+ 3 -+ 4.Let's suppose
that the second player has a winning
strategy. If the first player replaces 4
with 5, the sec,ond player must re-
place 5 with 6. A winning strategy

must therefore involve leaving the
number 6 on the blackboard. But the
first player can arrange to achieve
this position by replacing the 4 with
5 instead of 5. Thus the secondplayer
cannot have a winning strategy. Since
the numbers on the blackboard keep
increasing, someone must win. So
there must exist a winning sftategy
for the first player.

5. If x ar.d y are positive real
numbers, then it isn't difficult to
show that llx + lly > alk + y). In-
deed, (x - yl'> 0 (the square of a
real number is never negative), so

x2 -zxy+ 5? >0,

,' + f z2xy,

x2 +2xy+f >+ry,

(r* y)'24xy,
rt2
\x+ yf _ 4xy

"v|;i'4*7'x+v I 1 4
l\

xy x y x+y

So we have

l 1 4t6 4 415
A B C D A+B C D

> t5 
+16- A+B+C' D

64
A+ B+C+D

5. We can reformulate the ques-
tion as follows: There exist nonnega-
tive integers X, y, zt tit vt w, t such
that

A:x+2y+52+l}u+2Ov
+ 50w+ 100f,

B=x+y+Z+u+v+w+t.

Then

1008: 100r + 100w+ 100v
+ 100u + lOOz + 100y+ 100x,

or

1008 = 1(100r) + 2(50w) + 5l20vl
+ 10(10u) +20l5zl
+ 50(2yl + i00x,

so it's possible to take l00r one-cent
coins, 50w two-cent coins, 20v five-
cent coins, ..., and x dollars, which is
a set of A coins worth B dollars.

7. Let's denote the given
70,000,000-di gi t number by A and the
sum of all natural numbers having at
most 7 digits by B. Direct division
shows that the number 9,999,999 is
divisible by 239. We use this fact to
show that A is congruent to B
modulo 239.Let's mentally dissect
the decimal representation of A into
ten million septuples, representing
all 7-digit numbers: a, a2r ast ...t
dro,ooo,ooo. Then we have

A = a, + (107)ar+ (101a)a, + ...
+ (i 07 ,n?rrrrlo,,o,ooo,ooo.

Since 107 is congruent to 1 modulo
239, we know that 107ft is also con-
gruent to 1 for every natural k. So A
is congruent to al + a2 + a" i ...
* dro.ooo.ooo = B'

Now, the number B is divisible by
239,because all natural numbers less
than 9,999,999 car. be divided into
pairs with the sum of each pair equal
to 9,999,999. So A is also divisible by
239.

8. We fix an initial city A and con-
sider all cities 8,, 82, ..., Bkwhere the
roads starting fuornAend. These cities,
togetherwidr the roads fromA to each
Br lorm a system that we'Il call S.

Now consider the cities Cy, C2, ...,
C*[eachof which differ from the cit-
ies already in S), which are endpoints
of the roads starting from B' 82, ...,
Bu. Let's add these to the system S,

together with the roads from each B,
to each C-: one new road for each clty
added. Continuing in this way, we'll
end by including all N cities in sys-
tem S, together with N- 1 roads: one
road ending at each city except forA.

Similarly, we can construct an-
other system 7 of cities and roads by
traveling "backwards." Starting at
the same initial city A, we consider
all cities B'r, B'2, ..., B'^from which a
road leads to 

"i{y 
e.fh"r" cities, to-

gether with the roads from each B', to
A,for^a system that we'll callT.

Now consider the cities C'1, C'2, ...,
C'*, (each of which differs from the
cities already in T) from which a road
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ieads to one of the cities B',. We add
these to the system !, together with
the roads from each C. to each B.: one
new road for each ciiy added. 'Con-

tinuing in this way, we'llend by in-
cluding all N cities in system 7, to-
gether with N - 1 roads: one road
ending at each city except for A.

Now we take the union of S and 7.
This union contains all N cities, and
we can easily get from one city to
another, staying on roads in S and T-
for examplg by passing through city
A. The union of S and 7 contains at
most 2N- 2 roads (some of the roads
in S may also be in T). So there is at
least one road not included in the
union of S and T, and this road can be
closed without affecting the given
property.

9. Let's consider first 2;'+ 1 natu-
ral numbers. We assign to each of
them-say, P-a certain string of
lengthn consisting of ones and zeroes
defined as follows: i{ P belongs to Ao,

then the kth symbol in the string is
equal to 1; otherwise, thekth s1.rnbol
wi1l be 0.

Now there are 2" possible strings
of lengthn, each of whose symbols is
either 0 or 1, and we are looking at a
collection of.Z" + 1 of these. There-
fore, the pigeonhole principle assures
us that there exist two natural num-
bersXand Ysuch that corresponding
strings are equal. These numbers are
the desired ones. This simple argu-
ment completes the proof.

10. The basic idea of the solution
is the common but important idea of
an invadant, which appears in both
mathematics and science.

Let's define a quantity S as the
sum of the number of piles and the
number of stones. At each move we
decrease the number of stones by
one, but we increase the number of
piles by one. So S remains invariant,
no matter what moves we may
make.

The initial value of S is 1,002. Sup-
pose it were possibLe, after a number
of moves, to obtain exactly n piles,
each containing exactly 3 stones.
Then there would be 3n stones alto-
gether, and S would be equal to n +
3n, or 4n.Butthe number 1,O02 can-
not be represented as 4nlfor a natu-

ral number n), since it is not a mul-
tiple of 4,

This contradiction shows it is im-
possible to end up with piles consist-
ing of exactly three stones each.

11. You can trust him. In fact,
we'll construct such an orchard. In
this solutiorl we'll refer to a distance
of ten meters as a "unit."

We first pick a point for the posi-
tion of an apple tree, then plant ten
pear trees around a unit circle cen-
tered at the apple tree and located at
the vertices of a regular decagon. We
now construct the required orchard
in eleven steps. At each step, we'll
create several copies of the orchard at
the previous step/ then "erase" the
previous step.

As a second step, we draw ten unit
vectors/ each directed along one of
the sides of the decagon in the first
orchard. We then translate the ten
pear trees/ and the apple tree, ten
times: once along each unit vector.
Finally, we erase the original decagon
and the apple tree at its center.

What is the result of this opera-
tion? The decagon has ten images,
making 100 pear trees. The original
apple tree also has ten images, mak-
ing 10 apple trees. But there are in
fact more apple trees to be planted.
To see this, we follow the ten images
of one of the pear trees from step 1.

Each image is a pear tree that is one
unit {rom the original treg in a direc-
tion parallel to the decagon of step 1.

Thus the images all lie on a circle of
unit radius, and we can plant an
apple tree at the center of this
circle-this (step-2) apple tree is
planted at the spot where a (step-l)
pear tree originally stood. hr this way,
we have in fact 20 apple trees, tather
than 10, in the step-2 orchard.

We now take step 3 in exactly the
same way we took step 2. The step-
2 orchard can be viewed as ten deca-
gons of pear trees/ the images of the
original (step- 1 ) decagon-plus some
all-important apple trees, which we'll
ignore for the time being. We select
one decagon, draw ten unit vectors
along its sides, and translate the step-
2 orchard ten times. We then erase
the step-2 configuration. What re-
mains is ten copies of the 100 step-2

pear trees, making 1,000 step-3 pear
trees. Let's count the apple trees in
step 3. Certainly there are 10 copies
of each of the 20 step-2 apple trees,
making 200 apples trees for step 3.
But we can look at the set of images
of each step-2 pear tree. These form
a decagon of ten pear trees/ each one
unit from where the step-2 pear ttee
stood. We can there{ore replant this
spot with a (step-3) apple tree. Since
there were 100 step-2 pear trees/ we
must plant 100 new (step-3) apple
trees, making 300 apple trees in all.

We continue deriving step 4 from
step 3, step 5 from step 4, and so on/
keeping track of the number of apple
trees and the number of pear trees at
each step:

Step Apple trees Pear trees
i110
2 20 100
3 300 1,000
4 4. lff 104

io
11

io,o
1011

io. ro,
11 . 1010

At step 10 we have equal numbers of
apple and pear trees, while at step 11

the number of apple trees overtakes
the number of pear trees.

There's one case that's an excep-
tion to this process. It may happen
that at a given step, two of the new
pear trees accidentally coincide. It
would be very difficult to predict
this collision geometrically, but it
doesn't matter. The construction
doesn't depend on the exact direc-
tion of the translation vectors, only
on the fact that they are of unit
length and that there are ten images
for each pear tree. Thus, if any two
vectors take two pear trees from
step n onto the same spot in step n
+ 1, simply adjust the direction of
one of the vectors by a degree or two
so that the new pear trees don't co-
incide. This is always possible,
since there are only a finite number
of ways two pear trees can coincide.
If we make one translated copy of
the step-n orchard through this new
direction, we can continue the con-
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struction as described.
12. (al Let's label ail the centers

of these squares and look at the ver-
tical lines on the chessboard. The
centers of the squares/ being iattice
points, lie on these vertical lines.
Since there are 9 such lines and 55
centers/ the pigeonhole principle
assures us that we can find 7 centers
on the same vertical line (since 55
>54:9x51.

So on this vertical line, 7 of the
9 Lattice points are labeled. The
same pigeonhole principle shows us
that there must be three consecu-
tive labeled points on the line.

This means that we can delete
one of the three squares of which
these are the centers: the one in the
middle.

Figure 14

(b) We mark 15 squares on the
board (12 white and 4 black) as in
figure 14. Because the white squares
are too far apart, no 2 x 2 square can
cover more than one of them, so
there are 12 squares covering the 12
white boxes, and it can be easily
checked that there are exactly 8
boxes on the border that are not
covered with these 12 squares. So
there must be 8 other squares con-
taining these remaini.ng boxes on
the border. We now have 20 squares
covering the "border region," form-
ing a frame with the width 2. In the
central 6 x 5 square we must simi-
larly have four different squares
containing the four black boxes.
These squares cover 16 of 36 centrai
boxes, and it's now possible to pick
20 squares-one for each remaining
central box-to obtain 24 squares
covering the entire central 6 x 5
square. Because 20 + 24 = 44, we carr
delete one of 45 given squares so

Figure 15

that board remains covered.
(c) The exact answer is 38. We

can choose 3B lattice points for the
centers of the 2 x 2 sqtares (fig. i5)
so that if we delete any 2 x 2 square,
the board does not remain covered.
For more than 38 squares/ one can
always be deleted, no matter how
they are arranged. The case-by-case
proof is too long to give here.
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TOY STORE

Ful'lher aduenlul'es in tlexland
With our accommodating and tireless guide, Mr. Flexman

AST TIME MR. FLEXMAN ac.
quainted us with the hexa-
flexagon. Now we'll meet other
kinds of flexagon. Mr. Flexman

assures me he has lots of interesting
things in store for us. He begins with
the simplest.

Alwo-way ]tinue

Take a piece of stif{ paper and cut
out two rectangles measuring 2.5 crn
x 5 cm and two strips measuring 1

cm x 7 cm. Fold each of the narrow
strips at both ends to form square
flaps. Color each rectangle blue on
one side, red on the other; color the
flaps of the strips blue and the rest of
the strips red on both sides. Glue the
flaps at opposite comers of the bot-
tom side of one rectangle as in figure
1. Then wrap the strips around the
rectangle l{ig.2), put the second rect-

r7__-----------i----1 . 7
Figure 1

84

by Alexey Panov

angle, blue surface up/ on top of the
first one, and glue the free flaps to
this surface (fig. 3). And there you
have a "two-way hinge." This might
be called the simplest flexagon, be-
cause it has only two stable states. To
change the state of the open flexagon,
you have to draw thefar edges of the
rectangles together (fig. 4) and open it
from the other side. Mr. Flexman has
noticed that by assigning the value 0
to one state and the value 1 to the
other, you turn the flexagon into a
"btt" of computer memory. So, he
says, it's only natural to join together
a number of such bits to form abyte.
I think that's pretty reasonable-let's
follow his advice.

tlexchain
Prepare some more two-color rect-

angles and strips-half of the strips
red with blue flaps, the other half
blue with red flaps. Take the flexagon
you made (I'm assuming you fol-
lowed along with us and actually
made a two-way hinge), put it on a
table as shown in figure 3, and glue
two blue strips to the two free comers
of the bottom surface of the upper
rectangle. Wrap the strips aroundthis
rectangle, put the next one (red side
up) on top, bend the strips, and paste
the flaps to the upper surface. You get
a chain of three rectangles. Then at-
tach another one to the upper rect-
angle of the chain with the red strips
such that the new upper surface is
blue, and continue in this way, alter-
nating the colors of the rectangles
and strips, until a long enough chain
appears (say, eight or nine "bits").
When set on a table edgewise, the Figure 5

chain whimsically curves and at the
slightest touch will change its shape
(fig. 5). If it's made of n + I rectangles,
it has n joints and can exist in 2"
states. For, say, n = 21, ithas 22o =
1,048,576 different states. (You can
do the computation for n = 8.) Mr.
Flexman has inJormed me that he's
now working on a flexcomputer with
a flexchain memor!; he's going to
supply all of Flexland with them
soon. But what's more exciting for
me is another property of flexchains.

%EEF.
@

Figure 2

ffi
Figure 3

Figure 4
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thxons
Take a flexchain in any state and

stretch it by pulling it apart at its
ends. It willrun through a series of
states/ ending up in a certain stable
state-for instance, like the one in
figure 6. A stable state is a rectilinear

chain at some of
whose joints
single rectangles
stick out. The
rectangles that
stick out like
that will be
called "flexons,"
andwe'llcall the
whole stable
configuration a

"flexon state."
These flexons
have two re-
markable {ea-
tures:

1. They can
move along a
flexchain.

2. When the
flexons collide,
they're annihi-
lated.

To make a
flexon move/
push its outer
edge toward the
flexchain (fig.7l,
activating the
hinge and caus-
rng the flexon to
join the chain
while the nelgh-
boring rectangle
springs out. This

Figure 6 creates the im-
" pre s sion that

the "disturbed' link shiits along the
ilexchain. As the ilexon runs along,
it changes the iiexchain's co1or.
When two flexons collide, the.v r-an-
ish, but the ilexchain becomes two
units (rectangles) longer.

Mr. Flexman is also a specialist in
flexphysics. He says that the flexon's
length is the fundamental length in
the flexuniverse, and at present he is
exploring the behavior of closed
ilexchains with fiexon perturbations.

Figure 7

By the way, one kind of closed
flexchain can be made out of squares
(instead of rectangles). These chains
are much more diverse because, in
constructing such a chain, we can
join the next square to any of the
three free edges of the previous one.
The simplest closed flexchain is
made of four squares and eight strips.
Instead of detailed instructions on
how to assemble it, Mr. Flexman sup-

plied us only with figures 8 and 9. He
says it's a special challenge for
Flexland visitors to restore the con-
struction and color scheme of this
flexagon using these figures. His only
hint is that figure 9 shows all four pos-
sible colorings of the surfaces of the
flexagon, and that the colorings of the
two surfaces are(A, B) in the first state,
(8, Cl rlathe second, (C D) in the thir{
and(D,A)in thefourth. O
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