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Procris and the Unicorn (c. 1520)
by Bernardino Luini

CCORDING TO ONE LEGEND, the

unicorn runs so swiftly no hunter can
harm it, but it bows submissively when ap-
proached by a virgin. The maiden in this
fresco by Bernardino Luini (d. 1532)is clearly
unaware of the ways of fantastic beasts—she
raises her arm to protect herself. Through a
trick of perspective, the point of the beast’s
horn seems perilously close to her out-
stretched hand.

Procris and the Unicorn is one of a series
of frescoes about the ill-fated lovers
Cephalus and Procris. Cephalus took great
delight in hunting, and Procris gave him a
javelin that never failed to hit its mark (origi-
nally a gift from the goddess Diana). But
Procris came to suspect that Cephalus had
another lover in the woods where he spent
so much of his time. She went to the forest
and hid in a bush to watch him. Hearing a
rustling, Cephalus mistook her for his prey
and killed her with the javelin she had lov-
ingly given him.

The unicorn lives on as an evocative and
enigmatic symbol. It was first depicted on
Assyrian reliefs and has appeared in Chinese
as well as European art through the ages. The
first description in Greek literature was
penned in the fifth century s.c. by Ctesias
(who may actually have been describing the
Indian rhinoceros). Ctesias says the
monokeros (which became unicornis in
Latin) has a white body, a purple head, and
blue eyes; from its forehead protrudes a
cubit-long horn, red at the tip, black in the
middle, and white at the base. It was thought
that those who drink from its horn are
protected from stomach trouble, epilepsy,
and poison.

Believe it or not, all this has something to
do with the Kaleidoscope in this issue.
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Who doesn’t like fractals? In addition to
making abstract mathematics stunningly
visual, they have opened new paths to an
understanding of the physical world.
Fractals are intimately related to chaos
theory, which explores the intercon-
nected order and disorder in phenomena
as diverse as plant growth and the behav-
ior of weather systems.

One young woman who likes fractals
is Ashley Reiter of North Carolina, who
wrote the winning paper in the 1991
Westinghouse Science Talent Search.
Ashley used a certain definition of di-
mension (the “Hausdorff dimension”)
and found a research article in which this
dimension was determined empirically.
She obtained contradictory theoretical
result. In the course of investigating
this discrepancy, Ashley determined
the dimensions of fractals generated by
Pascal’s triangle and its higher-dimen-
sion analogues.

Turn to page 6 for a look at this hot
topic. (The wild hair on the cover is a
fanciful rendering of diffusion-
controlled aggregation, which is
discussed in the article.)
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Russian bazaar

Further notes of an American traveler

N MARCH, DURING ONE OF
my periodic visits to Moscow, I
had a chance to visit Izmaylovo
Park, located northeast of the
Kremlin on the outskirts of the
city. In the old days Izmaylovo was
a baronial estate; in Soviet times it
became a public recreational facil-
ity; now it’s a huge open-air bazaar
and flea market. Everything is for
sale: icons, quilts, coins, stamp col-
lections, furniture, clothing, Com-
munist Party memorabilia . . .

CriaceHne yTonarmoLmx—
HAEs10 PYK caMux Yy TOnaLmx—
Wnbch n MNeTpos

A drowning man must use
his own arms to save himself—
[If and Petrov

The Izmaylovo phenomenon
isn’t unique. Muscovites are gath-
ering elsewhere to buy and sell in
this rudimentary market economy.
Entire city blocks in Moscow are
set aside for such trade in private—
one might say personal—property.
It’s an astonishing sight.

I had mixed feelings as T worked
my way through the dense, shuf-
fling mass of bundled-up human-
ity. I admired the Russian people’s
will to survive, their patience, their
solidarity in bad times, their pecu-
liar blend of optimism and fatal-
ism. But I couldn’t help feeling sad
as I saw them selling their personal
belongings in the street. It seemed
as if they were selling their past—
their family histories as well as
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their shared national experience—
for their daily bread.

There is talk of redistributing
land to those who can farm it prop-
erly. But my friends in Moscow
told me any action would be too
late for the spring planting. They
said the foodstuffs people had put
away were depleted this past win-
ter. Amid the political talk that the
Russian economy will likely turn
the corner in six months to a year,
Muscovites are already thinking
ahead to the winter of ‘92-"93 and
wondering how they will get by.

B yy»xout MOHacCTbipb
CO CBOUM YCTaBOM He XOAAT—
pycckanA nocnosuua

Don't bring your rules
fo our monastery—
Russian saying

Many economic “monks” from
the West have been eager to impose
their rules on the shambling Rus-
sian economy. They insist on a
transition to a kind of “free mar-
ket” that doesn’t even exist in the
West. They would in effect make

A small portion of the crowd at Izmaylovo Park. I would estimate that there

were at least 30,000 people there.




aid and loans contingent on a high
unemployment rate and the re-
moval of social programs, most of
which constitute the kind of
“safety net” that has become (after
years of struggle) an integral part of
the Western democracies.

Other economists caution the
Russians against a headlong dive
into market capitalism without ad-
equately protecting the weakest
members of their society. But their
voices seem lost in the chorus
cheering Russia on to a harsh new
economic plan, one that gives free
rein to well-positioned Russians
and non-Russians to exploit this
potentially rich but unstable land.

ConoBbA 6aCHAMU HE KOPMAT—
pycckanA nocnosumua

Nightingales don't live on fairy tales—
Russian saying

While in Moscow I attended sev-
eral wonderful performances of bal-
let and folk dance. The theaters
were packed with ordinary people,
not VIPs. They had paid 6-8 rubles
to get in—less than 10 cents at the
current exchange rate. I feared I was
seeing the last instances of open
access to the arts in Russia. When
monetary reforms take hold, tickets
will cost hundreds of rubles, just as
theater and symphony tickets in
the US cost $25 (or more), putting
them out of the reach of many
working people.

True, Russia and the other repub-
lics in the Commonwealth of Inde-
pendent States need a new class of
businessmen and economists if they
are to join the world economy and
materially improve the lives of their
citizens. Individual initiative and self-
interest are important values in a
market economy. But I hope the
people of the CIS don’t lose sight of
other values that have produced great
scientists, artists, and thinkers. One
such value is concern for the com-
mon good and for those at the bottom
of society. You can’t pull yourself up
by your own bootstraps if you have no
boots.

—Bill G. Aldridge
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machines, torque, and center of gravity are introduced with the first-time student
of mechanics in mind. The 30 informal, hands—on activities make the sometimes
intimidating subject of mechanics immediately accessible—and fun—for teachers
and students. Show your students the Evidence of Energy that is all around them
and they will see just how exciting learning can be. (grades 6-10) #PB-80, 1990,
200 pp. $16.50

Evidence of Energy

Earth: The Water Planet

Designed for middle—level Earth Science teachers, this book investigates how water
shapes our planet and our daily lives. Included are hands—on experiments challeng-
ing you to purify swampwater, conservation—oriented activities showing how much
water is wasted by a dripping faucet, and a role—playing activity in which students
present opposing arguments at a town meeting. Appropriate for both inservice
workshop and classroom use, the 29 activities are close-to-life and fun, designed
to heighten environmental awareness, and demonstrate that there is indeed water,
water everywhere on Earth. (grades 6—10) #PB-76, 1989, 204 pp. $16.50 P e e
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And a cruise along an infinite coastline

by I. M. Sokolov

HE OBJECTS CALLED

“fractals” were initially created

in the imagination of mathema-

ticians at the beginning of this
century. Hardly anyone would have
thought that there might be anything
like these far-fetched and elegant
curves in nature. And though this
article will mostly touch on physical
systems, it will have to begin with a
short, nonrigorous mathematical in-
troduction.

Self-similanity

A self-similar geometrical figure
(or solid) is a figure that can be cut
into a finite number of identical fig-
ures similar to it.

Let me remind you of the general
definition of similarity: two figures
are called similar if they have the
same shape, even though their sizes
may be different; so one of them is an
enlarged or diminished copy of the
other. More exactly, one of two simi-
lar figures can be mapped onto the
other so that the distance between
any two of its points is increased or
decreased in the same ratio, called the
ratio of similarity. Examples of self-
similar figures are given in figure 1: a

A B
2 A v

2 4 A 4[] s (7

Figure 1

straight line segment, an equilateral tri-
angle, a square, and a cube.

The object presented in figure 2
looks a bit more complicated, butit’s
constructed quite simply. We start
with an equilateral triangle with side
length I, and repeat (to infinity) the
following procedure: every straight
segment of the curve obtained on the
previous step is divided into three
parts and the middle part is replaced
by two segments of length 1/3, where
1is the length of the initial segment.
The first stages of this procedure are
seen in figure 2. At the nth stage the
curve becomes a polygonal line con-
sisting of 3 - 47 line segments, each
1,/3" units long, and its total length is

L =31 4/3).

This polygonal line is called the Koch
triadic curve or Koch snowflake (af-
ter the Swedish mathematician who
invented it).

Strictly speaking, the Koch snow-
flake isn’t a self-similar object accord-
ing to our definition above. But it
consists of three self-similar curves
“grown” from the three sides of the
initial triangle: each of the four seg-
ments that replaced a side of the ini-
tial triangle at the first step of con-
struction eventually yields a curve
similar to the one produced by the
whole side (with a ratio of 1/3). More-
over, any segment of the polygonal
curve obtained at the nth step of the
construction also produced a similar
curve, the ratio of similarity being 3=.

CHAOS & ORDER

A ride on Sierpingki's carpet

The objects in figure 3 are also self-
similar. They're called the Sierpinski
triangle and the universal Sierpinski
curve, or “Sierpinski carpet,” after the
Polish mathematician Waclaw
Sierpinski (1882-1969). You can see
how they’re constructed: the first is
obtained by repeatedly joining the
midpoints of the sides of correspond-
ing equilateral triangles; the second is
obtained by infinitely repeating the
procedure of cutting out the center
portion of a square divided into nine
square parts.

Now let’s get back to the Koch
curve and try to determine its length
with a compass. We can do this, for
example, by opening the feet of the
compass to some length A and mark-
ing off steps of length A along the seg-
ments of the curve. The length L of
the curve is then approximately An,

) X

Figure 2
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Figure 3

where n is the number of steps we've
taken. The value of A is called the
scale of measurement.

Let’s see how this process looks
when used on a circle of radius R = 1.
ForA=10m, we find L = An = 6 m.
For A = 0.1 m, we get L = 6.2 m; and
for A=0.001 m, we get L = 6.28 m. As
A — 0, L tends to the limit of 2nR =
6.28318... m.

But if we try to repeat the same
procedure with the Koch curve,
we'll be convinced that there is no
limit that could be considered the
length of the curve. Choosing the
scale A = 1,/37, we find that the
measured length of the curve is
equal to the length of a polygonal
line corresponding to the nth stage
of construction—L = 31 (4/3); so it
grows indefinitely as n — oo,

Attempts to measure the lengths
of other self-similar curves would
give analogous results: as the scale of
measurement decreases, the length
of the curve increases without limit.

Here I should point out one very
important factor that distinguishes
a real self-similar object from an
ideal mathematical one: real objects
have a minimum scale of measure-
ment A . .

min
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For example, let’s take the actual
process of constructing the Koch
curve with paper and pencil. Suppose
we construct a curve starting with a
triangle whose side is 1.0 m long and
use a pencil that produces a line a, =
0.1 mm = 10* m wide. From the
mathematical point of view, the pro-
cedure for constructing the curve can
last for ever. But the real process will
stop as soon as the length of a straight
segment between two neighboring
corners becomes comparable to the
width of the line. It's easy to calculate
that this will occur at step n = In (I,/
a,)/In 3 =9. The length of our line will
be L = 40 m. So the real self-similar
curve has a finite length.

Now let’s return to ideal math-
ematical objects. The formula for the
length of the Koch curve can be ex-
pressed as

L=A\e, (1)

where A =3]»#/1"3 o=In4/ln 3 - 1.
(You can prove to yourself that this
expression is equivalent to the for-
mula L = 3] (4/3)".) The exponent o
has to do with the dimension of the
curve.

What is dimension?

There are several definitions of di-
mension, based on completely differ-
ent ideas. Let’s take a look at a few of
them.

The first definition has to do with
the number of coordinates needed to
unambiguously locate a point. In our
space this number is three; on the
plane, two coordinates are enough; on
a straight line, only one coordinate is
needed. In this sense space is three-di-
mensional, a plane is two-dimen-
sional, and a line is one-dimensional.
Naturally, according to this defini-
tion, dimension is always an integer
number.

A second way of defining dimen-
sion is based on the observation that
in order to cut a figure into discon-
nected parts, one merely has to re-
move a set whose dimension is 1 less
than that of the figure. For instance,
to dissect a line one merely removes
one of its points; to dissect a plane
figure, we can cut it along some
curve; and to dissect a solid, we can

cut it along some surface. So dimen-
sion can be defined inductively: the
dimension O is assigned to a single
point, or more generally, to any finite
or infinite but countable set (that is,
a set whose points can be enumerated
by the numbers 1, 2, 3, ...); and the
dimension of any other set is assumed
to be 1 more than the dimension of
the section dividing it into discon-
nected parts. Such a dimension,
called inductive, again is always an
integer.

Now let’s move on to a third, and
for us the most interesting, definition
of dimension—or rather, to the defini-
tion of a whole class of like notions
of dimension. The simplest of them
is the dimension of self-similarity.

The dimension of self-similarity D
can be defined by the formula

Dzlan
Inn

where N is the number of identical
parts into which the given self-simi-
lar object can be partitioned and n is
the ratio of similarity of the object to
its parts. Look at figure 1. Cutting a
square as depicted there, we divide
itinto N = 4 squares with sides half
as long as those of the original
square (n = 2). The cube with side
length 1 consists of N = 8 cubes
with side length 1/2 (n = 2). So the
dimension of self-similarity for a
square is In 4/In 2 = 2; for a cube
it’s In 8/In 2 = 3; and, obviously,
the dimension of a straight line seg-
ment is 1.

If we calculate the dimension of
the objects shown in figures 2 and
3 in the same way, we’ll see that
the dimension of any segment of
the Koch curve (and the dimension
of the whole curve)is D = 1n 4/In 3
= 1.2618; for the Sierpinski triangle
it’s In 3/In 2 = 1.5849; for the
Sierpinski carpet it’s In 8/In 3 =
1.8727. These strange curves have a
fractional dimension.

Now let’s go back to formula (1) for
the length of the Koch curve. Using
the above definition of dimension D
we can rewrite the formula as

L =3I\ -P.
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We see that the rate of growth of the
measured length of a self-similar
curve as a function of the decreasing
scale of measurement depends on the
dimension D of the curve. More ex-
actly, L/A—which is approximately
the number of steps we made with
our compass in measuring the curve—
is proportional to AP, And this
prompts a new definition of dimen-
sion.

How do we measure dimension?

The dimension of self-similarity
can be determined only for very regu-
lar objects that are constructed ac-
cording to definite rules. If the devia-
tions from regularity are small, the
object can be considered approxi-
mately self-similar. But what happens
if they’re large?

Let’s use another definition of di-
mension, one that is often used to
experimentally measure the dimen-
sion of various physical systems.

The space in which the investi-
gated object is situated is divided into
boxes with side length A (for instance,
a square grid with side A is drawn on
the plane of a photo of the object).
Boxes that contain points of the ob-

A close-up view of broccoli Romanesco, a cross between cauliflower and broccoli. This
hybrid displays a striking degree of self-similarity: the individual nodules are smaller
versions of the entire cluster; the nodules are in turn composed of smaller nodules shaped
like the larger ones; and so on. (From Fractals for the Classroom by Peitgen, Jiirgens, and

Saupe, New York: Springer-Verlag, 1992)

ject are tallied. The partition is re-
peated at a smaller scale X' < A (fig. 4).
The dependence of the number of
boxes containing points of the object
on the size of the box is expressed by
the law N = AA?, where A is a con-
stant and D is the unknown dimen-
sion. Investigating a flat region with
area S (such as the triangle in fig-
ure 4), we can easily prove that N =
S/3?, so D = 2. For a line segment, N
= BL/\, where L is the length of the
line segment and B is a coefficient
that depends on its orientation. A
line segment’s dimension D is 1. If
we repeat this procedure with the
objects in figures 2 and 3, we'll obtain
values of D coinciding with their di-
mension of self-similarity. To deter-
mine the dimensions of real ob-
jects, the graph of In N as a
function of —In A is drawn. It is a
straight line whose slope give us the
value of D.

Natural fractals

In 1961 an article by the English
scientist L. Richardson (1881-1953)
appeared that was devoted to the
measurement of the length of coast-
lines. The author proved that the

Fal
>
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N
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measured length of a seacoast in-
creases as the scale decreases accord-
ing to the law L = AX* (Richardson’s
law), where the exponent o for the
British coast, for example, equals
0.24; for the Australian coast it’s 0.13.
And though this law resembles the
formulas for the length of self-similar
curves, this work of Richardson ex-
isted independently. In physics there
were some other examples related to
self-similar objects. But it was all so
piecemeal . ..

Everything changed drastically
with the publication of a book by
Benoit Mandelbrot (a French math-
ematician now working in the
United States]. It was
published in 1975 in
French and in 1977 in En-
glish. This book brought
together many math-
ematical and physical ex-
amples and made them
the common property of
scientists everywhere.
But Mandelbrot’s greatest
service was thinking up a
name for all this.

Maybe you remember
the primary contribution
of the character Athos in
Twenty Years Later by
Dumas—he came up with
a name for the operation:
“The Family Affair.” This
stroke was considered
equal to the sword of
d’Artagnan and the money
of Porthos. To coin a good
name is a great achieve-
ment.

For objects of non-
integral dimension—or

QUANTUM/FEATURE g
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The object at left is an instance of diffusion-controlled aggregation of zinc at the interface between a solution of zinc sulfate
and n-butyl-acetate. The figure at right is a computer simulation of the same phenomenon based on the Brownian motion
of single particles. (From Fractals for the Classroom)

rather, for objects whose dimension
measured by the last of the above
methods is greater than their
topological dimension—Mandelbrot
invented the word “fractal.” This
word comes from the Latin word
fractus—fractional, broken.

Mandelbrot’s first book was called
Fractals: Form, Chance, Dimension.
His second, published in 1982, was
entitled The Fractal Geometry of
Nature—and the title couldn’t have
been more apt.

Many geographical objects have
fractal properties: shorelines, rivers,
mountains, canyons. The borders of
countries, if they correspond to natu-
ral landmarks and aren’t drawn on the
map with a ruler and then determined
on location (like the border between
Egypt and Sudan), are also fractals.
The length of the Portuguese-Spanish
border (given in Portuguese reference
books) and the length of the Spanish—
Portuguese border (according to offi-
cial Spanish data) differ by 20% be-
cause of the different scales used. This
proves once again that the notion of
the length of fractal curves doesn’t
make too much sense.

It turned out that curves like the
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Koch curve are the rule rather than
the exception in nature. It’s clear that
the self-similarity of real natural ob-
jects is violated by accidental devia-
tions from strict regularity. For ex-
ample, different parts of a coast aren’t
identical—they just resemble each
other. And all real systems have a
minimum scale of measurement.
These circumstances should be taken
into account when you analyze any
physical situation.

In order to discuss the fractal prop-
erties of a system, the difference be-
tween the minimum and maximum
scales must be large enough. If we
take a shoreline, the maximum scale
will be about 1,000 km = 10° m, and
the minimum scale, determined by
the instability of the shore because of
waves, tides, and so on, is of the order
of 1 m. These scales differ by a fac-
tor of a million!

Another example of fractal curves
is the visible edge of a cloud. Here the
difference between the minimum and
maximum scales is even larger: there
are data on clouds from several hun-
dred meters across, which have vis-
ible details of about 1 m, to the size
of the Earth (cyclonic regions). The di-

mension of a cloud edge is D = 1.35.

So far we've limited our discussion
to fractal curves, by and large—that is,
to extremely convoluted lines like
the Koch curve; our geographic ex-
amples were mainly curiosities. But
there are many physical processes
that create more complicated and
more important fractal structures.

No doubt many of you have grown
crystals from a saturated solution. If
the solution isn’t oversaturated and
it’s well mixed, then a beautiful, regu-
lar crystal will grow from a “seed”
hanging on a thread immersed in the
solution. The crystal grows because
some molecules in the course of their
thermal motion approach places on
the surface where they can “stick,”
occupying the most advantageous po-
sition with regard to their energy
state. Of course, most of the mol-
ecules land in less favorable places,
but sooner or later they move back
into the solution because their bonds
with the crystal aren’t strong enough.
Due to this equilibratory growth we
obtain a crystal without cavities and
with perfectly smooth, flat facets.

If crystallization and dissolution
aren’t in equilibrium (which can



occur with rapid crystallization from
an oversaturated solution or crystal-
lization from the gas phase), crystals
of another type appear. You've seen
the frosty overcoat your freezer ac-
quires from time to time, and the icy
patterns on your windows in the win-
ter. These rather porous formations
arise from the condensation of water
in the air. At first, separate clusters of
molecules are formed; then they mul-
tiply and unite, and the clusters cre-
ate patterns. The conditions for the
growth of clusters resemble the con-
ditions for the formation of snow-
flakes in clouds.

This process of growth, called dif-
fusion-controlled aggregation, causes
the formation of small fractal-shaped
crystals called dendrites. The fractal
dimension of dendritic crystals is de-
termined by the specific mechanisms
of their growth. Depending on the
interaction of the molecules forming
the crystal and on the size of the crys-
tal, the dendrite may have a random,
irregular form or, on the other hand,
it may seem to be a perfectly regular
figure—like a snowflake, for example.
But in reality we can speak of the
regular form of a snowflake only if the
scale is large enough (the size of the
snowflake itself]; on a smaller scale
there is no regularity—this is a reflec-
tion of the random processes that led
to its formation.

The existence of a minimum scale
(which in this case may be of the
same order as, or much larger than, a
molecule) means that total number
of molecules in a crystal (or its mass)
depends on its size according to the
law N_ ~ M ~ I°. So we can deter-
mine the dimension of dendritic crys-
tals by using the dependence of their
mass on their size.

Shapes that look very much like
dendritic crystals can arise in dielec-
trics. If a strong spark strikes a dielec-
tric plate, it leaves a distinct pattern
on the surface—so-called Lichtenberg
figures, named after the German
physicist and experimenter who dis-
covered them in the 18th century.
The resemblance of Lichtenberg fig-
ures and dendritic crystals is no acci-
dent—their formation is theoretically
described by similar equations.

The fractal dimension is a very
important and measurable character-
istic of a physical system. It can also
be calculated by means of various
theoretical models. By comparing the
measured and calculated values, one
can decide which model is better. In
addition, when we calculate the
physical properties of fractal systems
(for example, the resilience of snow
and other porous materials), we can
use a mathematical method devel-
oped specially for this instance.

Many systems that have long
been used for practical purposes have
fractal properties. For example, the
surface of activated charcoal, used as
an absorbent in protective masks, is
fractal. Its dimension is greater than
2; it has an extremely large area (for-
mally infinite, in the sense that the
Koch curve is infinite); and it has
holes of all sizes that can catch and
firmly hold particles of any size, from
a speck of dust to a large molecule.
The surfaces of many solid catalysts
used in chemistry also are fractal.
Their catalytic activity depends on
the fractal properties of their surfaces,
which are determined by the method
used to prepare and process them.

We've gotten to know many ob-
jects of noninteger dimension. So the
question arises: is the space we live
in three-dimensional? We can give a
definite answer to this question. The
fractal dimension of space deter-
mines the expression of many famil-
iar physical laws. For example, the
exponent 2 in the denominator of
s ,
dme, 2 1sin
fact D — 1, where D is the fractal di-
mension of space. Analysis of data
collected to verify physical laws
whose formulas depend on the di-
mension of space have shown that its
dimension differs from 3 by not more
than 10-'°. Our space is indeed “very
three-dimensional.”

Coulomb’s law F =

Instead of a conclusion

The history of the study of fractal
systems is rather instructive. At first
fractals seemed like a mental game of
those engaged in pure mathematics,
and researchers in the natural

sciences showed no interest in these
objects. At the same time, there were
some poorly understood facts (like the
immeasurability of coastlines) that
weren’t important enough to attract
general attention and not interesting
enough to investigate for their own
sake. The number of such facts kept
growing, but they were still isolated
and of little interest. Then they were
given an all-encompassing name and
soon (after only 10 years!) the “fractal
boom” began in physics. One
scientist even called fractals the
infection of the late 20th century.

Why did fractals catch on? First of
all, it turned out that we’re sur-
rounded by such systems and that we
encounter them practically every day.
Second, such objects have many un-
usual properties. Without under-
standing these properties, we can’t
understand even such simple things
as the shapes of clouds or snowflakes.
Third, everything turned out to be
more complicated than it seemed at
first: a fractal must be described not
by a single fractal dimension but by
a set, a spectrum of different dimen-
sions, each of which becomes equal
to the dimension of Euclidean space
as soon as we pass from fractals to
ordinary bodies. The different proper-
ties of fractal systems depend on the
different dimensions. Fourth . . .
Fifth ... Tenth ... —new ques-
tions arise more quickly than the old
ones are answered.

Many theories have passed
through the stage of accumulating
questions before achieving harmony
and completion. So the best time for
fractals is still to come. Ol
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The universe tiscovered

How misconceptions about the heavens
were stripped away, one by one

by Yury Solovyov

F ALL THE IMAGES of nature

that unfold before the human

eye, the most magnificent is the

view of the starry sky. From
ancient times this sight has stirred
the human imagination, evoking that
powerful current of thought we now
call science. How did mankind pen-
etrate the secret of the universe, the
secret of the motion of the heavenly
bodies?

The first notions of the ancients
about the universe were based on
what was directly visible. The an-
cient Egyptians and Babylonians
identified the universe with the
Earth, which they took to be an enor-
mous disk floating in a boundless
ocean. They envisioned the sky as an
overturned cup resting on a plane,
the inner surface of the cup sprinkled
with stars. The stars form ordered
configurations, called constellations.
The constellations remain un-
changed with each passing day, year,
or even century. During the night the
stars rotate about a stationary point,
located nowadays near the North
Star, as if the cup as a whole were
rotating about an axis that passes
through this point and the observer’s
eye. Careful observations show that
the cup makes a complete rotation in
23 hours, 56 minutes.

Because of the cup’s rotation,
some stars set in the west while oth-
ers are rising in the east. These obser-
vations make one think that the cup
is part of a complete sphere and that
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the stars are distributed on its surface.
This sphere is called the celestial
sphere or the sphere of fixed stars. The
two stationary points at which the
celestial sphere intersects the rotation
axis are called the celestial poles. An
imaginary circle on the celestial
sphere whose points are equidistant
from both poles is called the celestial
equator.

Spherical Earth

So, observations of the diurnal
(daily) rotations of the stars led an-
cient astronomers to the concept of
the celestial sphere. But it was harder
for them to draw the conclusion that
the Earth is shaped like a ball. An-
cient Greek philosophers came up
with this idea as early as the begin-
ning of the fifth century s.c. They re-
lied on accounts of travelers who no-
ticed that the height of the north
celestial pole increased as they moved

direction of the
horizon at point B

direction of the
horizon at point A

direction of the
North celestial
pole A

Figure 1

CONTEMPLATION & CALCULATION

to the north and decreased as they
moved southward (fig. 1).

The first true measurement of the
Earth’s radius was carried out by Era-
tosthenes (ca. 276-ca. 194 B.c.), a
Greek who was a native of Syene
(now Aswan) in southern Egypt.
While still a youth, he noticed that in
Syene every year at noon on June 21
the Sun stays exactly overhead and
that tree trunks cast no shadows.
Later, in Alexandria, which is in
northern Egypt, he discovered that
shadows don't disappear there on the
same date, and it dawned on him (a
stroke of genius!| that this is due to
the curvature of the Earth’s surface.
Alexandria is 770 km north of Syene,
so when the Sun is at its zenith over
Syene, it must be some angle away
from the zenith over Alexandria.
This angle o can be measured by ob-
serving the shadow cast by a tree
trunk or column at Alexandria (fig. 2)
at the moment when no shadow is
cast at Syene (at noon on June 21).
Angles o and [ are equal as alternate
interior angles formed by a line inter-
secting two parallel lines. The mea-
sured angle was o = 7°, so an angle of
7° whose vertex lay at the center of
the Earth swept a circular arc 770 km
long on the Earth’s surface. Since a
full circle comprises 360°, the Earth’s
circumference must be 39,600 km,
and its radius must be about 6,400
km (precise modern values are 40,200
km for the circumference and 6,378
km for the radius).

Art by Elena Trofimova
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The idea of a spherical Earth made
it possible to simplify the geometric
model of the universe. It was only
natural to take the terrestrial and ce-
lestial spheres to be concentric and
the rotation axis of the celestial
sphere to be an extension of the
Earth’s polar axis.

Wandering Stars

Besides fixed stars, we can also see
heavenly bodies on the celestial
sphere that change their positions
from day to day. These bodies are
called planets because planetes in
ancient Greek means “wanderer.”
Seven such “wandering stars” were
known from ancient times: the
Moon, Mercury, Venus, the Sun,
Mars, Jupiter, and Saturn.

To understand how the Sun
moves along the celestial sphere, let’s
recall that a day (divided into 24
hours) is the period between two suc-
cessive sunrises. Since the celestial
sphere makes a full rotation about its
axis in slightly less than a day (23
hours and 56 minutes), the Sun must
move along the celestial sphere in
the direction opposite to the sphere’s
rotation. That’s why every day the
Sun rises four minutes later than the
stars that rose with the Sun the day
before. By marking the position of
the Sun with respect to the stars ev-
ery day at sunrise, we can trace its
trajectory along the celestial sphere.
The trajectory turns out to be another
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circle whose center coincides with
the Earth’s center, while its plane is
tilted at an angle of 23°30’ to the ce-
lestial equator. Along this circle,
called the ecliptic, the Sun moves
from west to east with an almost
constant angular velocity, approxi-
mately equal to 1° per day, and
makes a full revolution in about 365
days, 6 hours.

The Moon also continually moves
with respect to the stars. Its orbit is
likewise a circle with the Earth at its
center. The plane of the circle is
tilted at an angle of 5° to that of the
ecliptic (fig. 3). The Moon moves al-
most uniformly along its trajectory
in the same direction as the Sun (that
is, opposite to the diurnal rotation of
the celestial sphere), making a full
turn in slightly more than 27 days.
Because of this motion, the Moon,
like the Sun, falls behind the stars in
their diurnal rotation, though the
time lag for the Moon is greater: it’s
not 4 minutes, as for the Sun, but al-
most a full hour.

The other five wandering stars also
move along the celestial sphere, but
their motions are much more intri-
cate than those of the Sun and Moon
(fig. 4a). Ancient astronomers divided
these five planets into two groups—
the inferior planets (Mercury and Ve-
nus) and the superior planets (Mars,
Jupiter, and Saturn) according to their
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Figure 3
The trajectory of the Moon is a great
circle on the celestial sphere tilted at
5° to the plane of the ecliptic. The axis
OM perpendicular to the plane of the
Moon’s orbit rotates about the axis
OE perpendicular to the plane of the
ecliptic, describing a cone with a
period of 18.6 years.

apparent motions, which are consid-
erably different. (As a matter of fact,
this difference is explained by the dif-
ferent positions of the two kinds of
planets with respect to the Sun and
the Earth: the inferior planets are
those nearest the Sun, while the su-
perior planets are further from the
Sun than the Earth is.)

Figures 4b and 4c show the two
kinds of planetary trajectories plotted
against the background of the fixed
stars. As with the Sun and Moon, it’s
important to keep in mind that all
the planets, together with the fixed
stars, participate in the diurnal rota-
tion. So, when we talk about the
planets’ motion along the celestial
sphere, we in effect subtract this ro-
tation from the motions actually ob-
served.

The inferior planets, Mercury and
Venus, don’t deviate far from the
Sun. The angular distance between a
planet and the Sun is called the
planet’s elongation—eastern or west-
ern, depending on whether the planet
is located to the east or to the west of
the Sun. The maximum elongation
for Mercury is 28°; for Venus—47°.
When an inferior planet’s eastern
elongation is greatest, it can be ob-
served soon after sunset in the west-
ern sky, and it sets a little after the
Sun does. Day by day it moves, at first
slowly, then more quickly, west-
ward—that is, against the Sun’s mo-
tion. This type of planetary motion is
called retrograde. As the days pass, it
gradually approaches the Sun, hides
in its rays, and can no longer be seen.
At this moment the inferior conjunc-
tion of the planet and the Sun occurs.
Some time after the inferior conjunc-
tion the planet becomes visible
again—this time in the east, shortly
before sunrise. Meanwhile the planet
continues its retrograde motion,
gradually getting farther away from
the Sun. After its retrogression slows
and it reaches its greatest western
elongation, the planet stops and
switches to direct motion (eastward).
At first it moves slowly, then its
motion gradually gets faster. Its dis-
tance from the Sun decreases, and fi-
nally it hides in the morning rays of
the Sun—that is, its superior con-




|

A

A
A

A

A

A

junction with the Sun occurs. Some
time later, it can be seen once again
in the evening twilight. As it contin-
ues to move directly, the planet loses
speed. After reaching its maximum
distance to the east (that is, its great-
est eastern elongation), the planet
stops, changes direction (against the
Sun’s motion), and the process starts
all over again. The period of one such
“oscillation” is 88 days for Mercury
and 225 days for Venus.

The apparent motion of the supe-
rior planets is rather different. When
a superior planet is seen after sunset
in the western sky, its motion among
the stars is direct—that is, from west
to east, just like the Sun. But it moves
more slowly than the Sun, so the Sun
catches up and the planet is lost to
our sight for some time, since it rises
and sets at almost the same time as
the Sun. After the Sun has passed the
planet, the planet can be seen in the
east before sunrise. The speed of its
direct motion gradually decreases, the
planet stops, and then it starts its ret-
rograde motion among the stars from
east to west. Some time later the
planet stops again and switches to
direct motion; the sun overtakes it
again from the west, and the planet
once again ceases to be seen. These
phenomena are repeated, over and
over, in exactly the same order.

Armed with our modern under-
standing of the solar system, one
could explain all the peculiarities of
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Different kinds of loops in the apparent paths of the planets are shown in
figure 4a; portions of the trajectories of Mercury and Mars in 1988 are depicted

in figures 4b and 4c.

the apparent motion of the planets
without too much difficulty. (Try to
do it!) Imagine, though, the feat of
these ancient astronomers. Their
work was based on wrong, misleading
ideas, yet they not only contrived to
explain their observations coherently,
they managed to predict planetary
motion with remarkable precision
(given their starting point).

First motels of the universe; Eutoxus

The first model of the universe
was extremely simple. Extended ob-
servations convinced the ancient
Greeks that the other planets were
spherical like the Earth. In addition,
over time so much data was accumus-
lated about the two seemingly largest
heavenly bodies—the Sun and the
Moon—that they began to be consid-
ered “relatives” of the Earth. There
was no reason to consider the other
wandering stars dissimilar to the Sun
and Moon. So, it was thought, all of
them are more or less like the Earth,
and the differences in their apparent
sizes can be explained by their differ-
ent distances from the Earth.

But these huge bodies, eternally
hurtling above our heads as they
circle the Earth, must be attached
pretty firmly to something. The ce-
lestial sphere didn’t seem suited for
this purpose, since the planets move
independently of it. This is why the
Greeks imagined seven new
spheres—one for each planet—con-

centric with the sphere of fixed stars
but smaller. All seven planetary
spheres take part in the motion of the
celestial sphere, which makes one
rotation a day, and they also go
through their own independent mo-
tions.

This model later gave rise to the
idea of the “music of the spheres.”
The Greeks related each of the seven
planetary spheres to one of the tones
of the octave, and the sphere of fixed
stars represented the eighth tone.
The Greek philosophers thought that
the huge hollow spheres to which
bodies as large as the Sun and Moon
(and all the other planets) are at-
tached should give out sounds as
they rotate, just as the spinning
wheels of a mechanical device do.
The different tones produced in this
way combine to create a splendid
melody whose powerful sounds fill
the whole universe. And only we—
imperfect Earth-dwellers—are unable
to hear the sounds of this heavenly
music, the eternal delight of the
Olympian gods.

As more knowledge about the
motion of heavenly bodies was ac-
quired, the idea of spheres constitut-
ing the order in the universe had to be
elaborated further. An unshakable
underpinning of the ancient Greek
worldview was the conviction that
the Earth is the center of everything,
the principal body in the universe. So
the only way to explain all the nu-
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merous complications discovered by
ancient astronomers—the irregular
motions of the planets, their retro-
gressions, and so on—was to insert
new spheres that would influence
one and the same heavenly body by
their combined motion. Eudoxus
(4082-355? B.C.) constructed a new
system of the universe, consisting of
27 spheres: three spheres for the Sun,
three for the Moon, four spheres for
each of the remaining five planets,
and one large sphere for the fixed
stars. It soon became clear, however,
that 27 spheres are insufficient to
describe the apparent motion of the
planets. So Callipus soon added an-
other 22 spheres to those proposed by
Eudoxus. As time passed, the heav-
enly machine became more and
more complicated. Eventually the
need for a simpler, clearer description
made itself acutely felt.

The eccentricities of Hipparchus

All the ideas of the ancients about
the universe were based on the prin-
ciple of uniform circular motion.
This principle was first shaken by
the Alexandrian astronomer and
mathematician Hipparchus (2nd cen-
tury B.c.), who discovered that the
seasons of the year vary in duration.
Hipparchus was the first to find the
Sun’s perigee and apogee and to estab-
lish that the Sun moves faster near
the perigee than near the apogee. But
the axiom of uniform motion was too
deeply embedded in the flesh and
blood of ancient science for
Hipparchus to venture to destroy it.

To explain his discoveries,
Hipparchus resorted to another
method. He assumed that the Sun
moves uniformly in a circle whose
center does not coincide with the
Earth’s center but lies somewhere in
free space outside it. Then, indeed,
the Sun would seem to move irregu-
larly—faster in the portion of the
circle nearer the Earth and slower in
the opposite portion. Figure 5 illus-
trates this mechanism: the center of
the Sun’s motion is at the intersec-
tion of the broken lines, while the
solid lines coincide at the Earth’s cen-
ter. By trial-and-error we can find the
location of the point at which an ob-
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server would see the aforemen-
tioned peculiarities of the
Sun’s motion, even though in
reality it’s still uniform circu-
lar motion. Hipparchus called
the line connecting the perigee

autumnal

perigee

. vernal

and apogee the line of apsides ~ €4"inox oo equinox
(pronounced AP-sih-deez). He S FRADTR winter

called the ratio of the distance e

between the center of the solar apogee Foo Sun

orbit and the Earth’s center, _,

measured along this line to the Figure 5

orbit’s radius, the eccentricity

of the orbit. These terms have been re-
tained in astronomical discourse
down to the present.

As with the Sun, Hipparchus
placed the center of the Moon’s orbit
outside the Earth. He calculated the
eccentricity, perigee, and apogee of its
orbit and the direction of the line of
apsides. Hipparchus determined the
motions of the Sun and Moon with
an accuracy surprising for that time.
For instance, with the data
Hipparchus obtained one could cal-
culate to within a day the dates of the
full moon for the present time—
some 2,000 years later. The great
Alexandrian astronomer also began
to study the motions of other planets,
which present much greater difficul-
ties. But it was Claudius Ptolemaeus,
or Ptolemy (2nd century A.p.), follow-
ing in Hipparchus’s footsteps, who
succeeded in making significant
progress in this direction.

The Ptolemaic system

Ptolemy’s system of the
universe, which reigned for
1,500 years without being
doubted by anybody, was
based on Hipparchus’s ob-
servations and calculations.
Ptolemy set forth his sys-
tem in He mathematike
syntaxis (“the mathemati-
cal collection”), which
eventually became known
as Ho megas astronomos
(“the great astronomer”). In
the ninth century, Arab as-
tronomers used the Greek
superlative Megiste to refer
to the book. When the Ara-
bic definite article al was
added, the title became

Almagest, the name still used today.
Up to the end of the Middle Ages this
work was honored almost on a level
with divine revelation. It was consid-
ered a crime to doubt the words of the
Almagest.

Four postulates underlie the Ptole-
maic system:

1. The Earth is at the center of the
universe.

2. The Earth is at rest.

3. All the heavenly bodies move
around the Earth.

4. The motion of heavenly bodies
proceeds in circles with constant ve-
locities—that is, uniformly.

Ptolemy based his system on
Hipparchus’s eccentric circles.
However, according to Ptolemy,
none of the luminaries (except the
Sun) revolves directly along such a
circle; this is the path of the center
of another circle along which the
planet moves (fig. 6). This “other
circle”—the planet’s orbit—is

e Jupiter T~

Figure 6

The Ptolemaic system.



called the epicycle; the circle traced
by the center of an epicycle is called
the deferent. The Sun’s deferent and
the deferents and epicycles of the
other planets lie inside the sphere of
fixed stars.

The diurnal motion of all the heav-
enly bodies was explained by the ro-
tation of the universe as a whole
about the stationary Earth. The direct
and retrograde motions of planets
were explained as follows.

Let a planet at some moment be at
point P, of its epicycle (fig. 7), and let
the center of the epicycle be at point
N, of the deferent. The planet re-
volves about point N, with angular
velocity a, and point N, as the cen-
ter of the epicycle, revolves about the
Earth with angular velocity o. In the
course of the uniform circular motion
of both P, and N, the planet describes
aloop that will be seen by an observer
in a projection onto the celestial
sphere. Why the loop forms is obvi-
ous: at point P, the motions along the
epicycle and the deferent are directed
similarly—from right to left. After de-
scribing the 180° arc, the planet
moves along its epicycle from left to
right. If the angular velocity o is
greater than o, the direction of the
apparent motion near P, changes—
the planet’s motion is retrograde.

For each planet Ptolemy worked
out the relative sizes of the radii of its
epicycle and deferent, the position of
the deferent’s center, and the speeds
of the planet’s motion along the epi-
cycle and deferent so that the result-
ing motion, when observed from the
Earth, would match the actual appar-
ent motion. This turned out to be
possible under certain conditions,
which Ptolemy took as postulates.
These postulates are as follows:

1. The centers of the epicycles of
the inferior planets lie on the line di-
rected from the Earth to the Sun.

2. The radii of the epicycles of all
the superior planets, drawn to their
positions, are parallel to the same di-
rection.

So the direction to the Sun turned
out to be preeminent in the Ptolemaic
system.

The Ptolemaic system not only
qualitatively explained the apparent

Figure 7

motions of the planets, it also made
it possible to calculate their positions
in the future with a rather high accu-
racy. Discrepancies between theory
and observation that arose as the pre-
cision of observations improved were
eliminated at the expense of making
the system more complex. For ex-
ample, certain irregularities in the
apparent motions of the planets were
attributed to the existence of second-
ary epicycles: the original epicycle of
a given planet was thus considered
the path of the center of a second epi-
cycle, along which the planet actually
moves. When even such a construct
was insufficient for a planet, a third
epicycle was introduced, and a fourth,
and so on, until the position of the
planet in the last epicycle produced

more or less acceptable agreement
with observations. By the beginning
of the 16th century the Ptolemaic
system comprised 40 circles in all.

Let’s return to the Almagest and
look at a table (below) with the num-
bers Ptolemy gave for planetary mo-
tions along their epicycles and the
motions of the epicycles themselves
along their deferents.

A surprising fact leaps out at us:
for the inferior planets (Mercury and
Venus) the motion of the epicycle’s
center proceeds at the same rate as
the motion of the Sun around the
Earth. For the superior planets (Mars,
Jupiter and Saturn) these numbers
differ, but the sums of both motions
give the very same value—that of the
Sun’s motion. Consequently, the
motion of the Sun is contained in all
the planetary motions. Such a phe-
nomenon naturally seemed very
strange. The obvious question arises:
isn’t there a common cause for all
these equal values?

Doubtless many ancient and medi-
eval thinkers posed just such a ques-
tion. For instance, the ancient as-
tronomer Aristarchus proposed
that the Sun occupies the central po-
sition in the universe. However, the
tirst person who dared to develop, in
a mathematically rigorous way, the
idea that all the planets revolve
around the Sun was the Polish astro-
nomical genius Nicolaus Copemicus
(1473-1543).

Diurnal motion of
Diurnal motion | epicycle's center

Planets along epicycles along deferent Sum
Sun 0°0000.0” 0°5908.3” 0°59°08.3”
Mercury 3°06"24.1” 0°5908.3” 4°0532.4”
Venus 0°36"59.4” 0°5908.3” 1°36707.7”
Mars 0°27°41.7" 0°31"26.6" 0°59'08.3”
Jupiter 0°5409.0” 0°04’59.2” 0°59°08.3”
Saturn 0°57'07.7” 0°02°00.6” 0°59'08.3”

QUANTUM/FEATURE 17




The Copernican system

Copemicus’s lifework, On Revolu-
tions of Celestial Spheres, was pub-
lished in 1543, not long before his
death. In it Copernicus elaborated his
understanding of the Earth’s motion
and laid the foundation for a new as-
tronomy. The system of the universe
he constructed is called heliocentric
and is based on the following state-
ments:

1. The Sun rather than the Earth is
at the center of the universe.

2. The spherical Earth rotates
about its axis, and this rotation ac-
counts for the seeming daily motion
of the heavenly bodies.

3. The Earth and all the other plan-
ets revolve about the Sun, and this
revolution accounts for the apparent
motion of the Sun among the stars.

4. All the motions are represented
as combinations of uniform circular
motions.

5. The seeming direct and retro-
grade planetary motions belong not to
the planets but to the Earth.

In addition, Copernicus believed
that the Moon revolves around the
Earth and that they both revolve
around the Sun.

The postulate of uniform circular
motion forced Copernicus, like
Ptolemy, to resort to epicycles and to
shift the centers of the deferent
circles with respect to the Sun’s cen-
ter. As a result, the Copernican
model was no simpler than
Ptolemy’s old model—suffice it to
say that it contained 48 circles in-
stead of the 40 circles in the geocen-
tric system. Nor was it any more ac-
curate. But it contained what the
geocentric system lacked—the grain
of scientific truth that grew into the
tree of a new astronomy.

By a twist of fate, the task of con-
firming Copernicus’s conclusion fell
to the Danish scientist Tycho Brahe
(1546-1601), one of the greatest as-
tronomers of all time, who had very
solid grounds for not accepting the
heliocentric system. His main argu-
ment against Copernicus amounted
to this: if the Earth were revolving
around the Sun, then Venus and Mer-
cury would have phases like the
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Moon’s, which no serious astronomer
had ever observed. These arguments
sounded convincing, and although
the predicted phases actually do exist
(as we know now), the lack of optical
instruments prevented their detec-
tion. Nonetheless, it was the precise
observations of Tycho Brahe that
eventually justified Copernicus’s
point of view. The data gathered by
Brahe allowed his student Johannes
Kepler to announce, after eight years
of work, that each planetary orbit is

an ellipse with the Sun at one focus,
and that the line joining the Sun and
a planet sweeps out equal areas in
equal times. And this was how the
Pythagorean harmony of perfect cir-
cular orbits centered at the God-given
special location of our planet fell by
the wayside. In turn, Kepler's laws
(much more than the falling apple of
lore) formed the foundation of
Newton’s law of gravity, which for
almost three centuries has been the
basis of physics and cosmology. (@)
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

Math
M51

Penultimately even. Prove that for
any integer n > 2, the next-to-last digit
of 32 is even. (V. Plachko)

M52

Factors, sums, equal powers. The
positive integers a, b, ¢, and d satisfy
the equality ab = cd. Prove that the
number a1992 & b1992 4 61992 & d1992 j.S
composite. (A. Anjans)

M53

Two circles inside a third. Inside a
circle there are two intersecting
circles. One of them touches the big
circle in point A, the other in point B.
Prove that if segment AB meets the
smaller circles at one of their com-
mon points (fig. 1), then the sum of
their radii equals the radius of the big

circle. Is the converse true?
(A. Vesyolov)

A 'B
Figure 1

M54

Skinny rectangles. A continuous and
monotonic function is defined on the
closed interval [0, 1] and takes values
in the same interval. Prove that, for

any n, its graph can be covered by n
rectangles of area 1/n?> whose sides are
parallel to the coordinate axes.
(A. Anjans)

M55

Out of sight. All planets of some
planetary system are spheres of unit
radius. Mark on each of the planets
the set of points that are invisible
from any point on any of the other
planets. Prove that the sum of the
areas of all these sets is equal to the
surface area of one planet.

Physics

Bouncing dumbbell. A dumbbell
consisting of a weightless bar with
identical small balls at both ends
stands vertically on a smooth level
table. A horizontal velocity v is im-
parted to the upper ball by hitting it.
What is the minimum bar length for
which the lower ball of the dumbbell
loses contact with the table immedi-
ately after the upper ball is struck?
(A. Zilberman)

)
N
%M-*_

s,

Figure 2

P52

Cable on a table. A cable is thrown
over a cylinder so that some of the
cable is on the table and some is on
the floor. After the cable is released it
begins to move without friction. Find
the speed of the cable after uniform
motion has been established. The
table height is equal to h (fig. 2)
(A. Zilberman)

P53

Vapor over salted water. It is well
known that if ordinary water is salted,
its boiling point rises. Will the density
of saturated water vapor be higher or
lower at the boiling point?
(A. Buzdin, S. Krotov)

P54

Thermal oscillations. A set of experi-
ments was performed to examine the
properties of a nonlinear resistor.
First, the dependence of its resistance
on temperature was studied. It was
found that as the temperature in-
creased, the resistance instanta-
neously jumped from R, =50 Qto R,
=100 Q at t, = 100°C; as the resistor
was cooled, a corresponding drop was
found to occur at t, = 99°C (see figure
3). In another experiment a constant
voltage V = 60 V was applied to the
resistor, and its temperature turned

R (Q)
A
100 |-
Y A
50 ————l
[
. g
100 t (°C)

Figure 3

CONTINUED ON PAGE 23
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IN THE LAB |

Neutrons seek the murderer!

Records of neutron activation analysis

by A. S. Shteinberg

HE TITLE OF THIS ARTICLE was prompted by a

detective story—if you're patient, you'll read all

about it before too long. But for now we’'ll deal with

things rather distinct from criminology and look at
how the chemical structure of a substance can be deter-
mined—that is, how one can recognize what elements
are present in a sample and in what proportions.

You know from studying chemistry that this can be
done by means of chemical reactions that are character-
istic of certain substances and elements—methods of so-
called “wet chemistry.” In some cases, though, it’s dif-
ficult to apply these techniques—for example, when one
has to chemically analyze a very small sample, or when
a high degree of precision is needed in simultaneously
analyzing several elements, or if one has to detect one
“3lien” atom among a million or 100 million atoms and
determine what kind it is.

Such situations are by no means speculative. In par-
ticular, they arise in modern semiconductor technology.
More and more often it’s said that after the stone, bronze,
and iron ages, the silicon age has arrived. Today’s elec-
tronics would be impossible without miniature inte-
grated circuits, in which silicon plays an essential role.
But the properties of these circuits are acutely dependent
on incredibly small amounts of various admixtures.
Without the ability to determine very precisely the com-
position of small silicon samples, progress in developing
new generations of computer would be impossible.

So how is it done?

It has been known for about 100 years that physical
methods often turn out to be the most effective in chemi-
cal analysis. And among these, a true champion in sen-
sitivity is neutron activation analysis (NAA). Before I
describe how it works, let’s recall how the atomic
nucleus is structured.

The nucleus of an atom consists of positively charged
protons and electrically neutral neutrons. The number of
protons determines the atom’s nuclear charge and is its
basic characteristic. One element differs from another
mainly because of the number of protons in its nucleus.
Hydrogen (H), the first element in Mendeleyev’s table,
has one proton in its nucleus; helium (He), the second,
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has two; and so on. Well, how many neutrons does the
nucleus contain? It turns out that different numbers of
neutrons can be contained in nuclei of the same element.
Nuclei with the same number of protons and different
numbers of neutrons are called isotopes.

Let me give you an example. There are always two
protons in the helium nucleus. The number of neutrons
can be 1, 2, 4, or 6; that is, there are four isotopes of he-
lium: *He, ‘He, ‘He, and ®He (the superscripts show the
total number of protons and neutrons). Tin has the record
number of isotopes at 10, xenon has 9, both cadmium and
tellurium have 8, and so forth. Under natural conditions,
different isotopes aren’t distributed uniformly. As a rule,
one single isotope has the lion’s share (90% or more) of
all natural deposits of an element.

The chemical properties of an element’s isotopes are
identical. As for their physical properties, the differences
can be very noticeable. For instance, the atomic weights
of various isotopes are different because of the “extra”
neutrons. But for us, this isn’t the main issue. A great
many isotopes have an amazing property—radioactivity.
They are a source of radiation no one can see or feel, but
it can be detected with special instruments. The simplest
of these detectors are the photographic plate and the Gei-
ger counter. I won't get into the question of the nature
of radiation. The topic is complex and lies outside the
framework of this article. But to keep things clear, you
can imagine radiation as a flow of invisible particles.

The emission of any radioactive isotope is specific to
the highest degree. That is its individual portrait—as
unique as a human fingerprint. The most characteristic
features of this portrait are the emission energy (for us,
the energy of the particles) and the half-life.

It’s rather easy to explain what an element’s half-life
is. A detector can not only register the emission but also
measure its intensity—that is, determine how many
particles have fallen on a unit of area during a unit of time.
The greater the intensity, the more often the Geiger
counter clicks. The time it takes for an isotope’s emission
intensity to decrease by a half is called its half-life (denoted
by T, ). During this time, half of the radioactive nuclei

1/2
have decayed. Half-lives differ from one isotope to

Art by Pavel Chernusky
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another—from fractions of a second to millions of years.
There are special detectors that not only measure the
intensity of an emission but also construct its spectrum—
a graph of the dependence of an emission’s intensity on
its energy. Figure 1 is an example of such a spectrum. The
sharp peaks of intensity (called spectral lines) correspond
to the emissions of different isotopes. Each line can easily
be linked with the corresponding isotope by means of
previously compiled tables (this was how the isotopes
marked in figure 1 were “recognized”).

So the construction of an emission spectrum solves
the problem of qualitative chemical analysis of a
sample—that is, it allows us to determine what radioac-
tive elements it contains.

Everything I've told you so far should convince you of
at least one thing: if the samples consist of radioactive
isotopes, it’s rather easy to qualitatively determine their
content by their spectra. But here’s the problem: “nor-
mal” samples consist of nonradioactive isotopes. So to
perform an analysis, they have to be activated—that is,
made radioactive. There are various methods of activa-
tion. The simplest is to bombard the sample with neu-
trons in a reactor. Since neutrons are electrically neutral,
they can penetrate the positively charged nucleus and
make the isotope radioactive.

Emission spectra can also be used for quantitative
analysis—to determine the number of atoms of this or
that isotope in the sample. The emission intensity of an
isotope is directly proportional to the number of nuclei
in it. Using standard samples (samples containing a
known amount of the given element), one can construct
a graph of this relation by activating them. By measur-
ing the isotope’s emission intensity in the test sample,
which was activated simultaneously with the standard
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Figure 1
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Neutron activation analysis of silicon impurities

Basic
natural Detected | Sensitivity
isotope isotope | (atoms/cm?®) | Half-life
Na %Na 1x 101 15 hours
¥K 2K 1x10%8 12.4 hours
2Cr SICr 5x 101 27.7 days
Fe ¥Fe 1x 10% 44.6 days
¥Co %Co 2 x 104 5.27 years
8Cu and ®*Cu| %Cu 2 x 1012 12.7 hours
47Zn %7Zn 1x108 244 days
As °As 1 x10% 26.3 hours
8By 82Br 5x 10 35.3 hours
*%Mo Mo 1x 10t 66.2 hours
05A g H0Ag 2 x 10U 252 days
1228h 1248 5x10%° 60.4 days
1815 180Ty 1 x 1010 115 days
185W W 2 x 104 23.9 hours
¥7Au 8Au 2% 10° 2.7 days
wg o 1 x 10" 47 days

sample, one can easily determine the amount of the given
isotope from the graph. (After what I've told you about
the half-life, you should understand why activation of the
test sample and activation of the standard sample are
performed simultaneously. If this condition isn’t fulfilled,
one would have to introduce a correction to take the half-
life into account.)

This method of qualitative and quantitative analysis
is the one I mentioned earlier—neutron activation analy-
sis (NAA). The table above lists the elements that have
to be detected and quantified in silicon. The third column
shows the NAA sensitivity for each element (that is, the
minimum concentration for detection). One cubic cen-
timeter of silicon contains roughly 10? atoms, so you can
see for yourself the record-breaking sensitivity of NAA.

Figure 2 gives NAA data on impurity levels in silicon
from three American firms that supply silicon to the elec-
tronics industry. Relatively high concentrations of some
elements—iron and chromium in particular—require




1017 Upon careful examination of
Bouchard’s corpse, a single hair found
1016 in the girl’s tightly clenched fist. It
o supplier 1 could belong only to her or to the

m’g 101 @ supplier 2 ——  murderer.
3 éi ~ ' o supplier 3 Is it possible to unmistakably
g 104 —% 5 ¥ identify a person by a single hair? The
< ) police put this question to NAA spe-
5 10 ¢ | cialist Robert Jervie. The answer re-
g " s $ & quired some special research. The
§ 10 be . ) basic idea was that every person’s
§ " 8 g; hair has its own characteristic set of
10 [] microelements in unique concentra-
1010 I T 5 tions. To prove it, Jervie had to inves-
Na K Sc Cr Fe Co Cu Zn As Br Mo Ag Sb La Ce Ta W Au tigate the hair of hundreds of people.
Figure 2 The concentrations of the character-

that the silicon be purified further before it can be used
in integrated circuits. Otherwise, the computer won’t be
worthy of your trust.

And finally—the promised detective story.

On May 13, 1958, in the Canadian city of Edmundston,
near the Canadian-American border, the corpse of a 16-
year-old girl, Gaetane Bouchard, was found. An American
by the name of John Follman, who traveled frequently to
Edmundston on business, was suspected on the basis of
circumstantial evidence. Follman categorically denied
having anything to do with the crime. The investigation
was badly in need of physical evidence.

“CHALLENGES IN PHYSICS AND MATH”
CONTINUED FROM PAGE 19

out to be ¢, = 80°C. Finally, when voltage V, = 80 V was
applied to the resistor, spontaneous current oscillations
were detected in the circuit. Determine the period of these
oscillations as well as the maximum value of the current.
The air temperature in the laboratory is constant at ¢, =
20°C. The rate of heat loss from the resistor is propoz-
tional to the difference between its temperature and the
temperature of the surrounding air. The resistor’s heat
capacity is C = 3 J/K. (A. Buzdin)

P55

Say “cheese”! It’s dangerous to photograph a tiger at a
distance of less than 20 m. If you were using a classic cam-
era obscura with an aperture that is 1 mm in diameter,
how large must the camera be so that the tiger comes out
striped in the photograph? The distance between the
stripes on the tiger is equal to 20 cm. (A. Stasenko)

ANSWERS, HINTS & SOLUTIONS ON PAGE 56

istic microelements—arsenic, so-

dium, copper, zinc, bromine—in hu-

man hair is less than one atom in a hundred million.

No other method but NAA could solve the problem of
identifying a man by his hair.

As aresult of painstaking work, it was proved that the

hair in the victim’s hand belonged to Follman, and this

became the decisive evidence of his guilt. (e
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REMAINDERS & CONGRUENCES

Go “mod” with your equations

The modus operandi of moduli

by Andrey Yegorov

N MONDAY, September 2,

1991, I was making some long-

range plans, and I had to figure

out what day of week the 20th
of December, 1992, will be. I had no
calendar at hand and was forced to get
busy computing. I knew that the in-
terval from September 2, 1991, to
December 20, 1992, is 28 + 31 + 30 +
20 + 366 = 475 days, or 67 full weeks
and 6 days more (475 =67 - 7 + 6). So
I concluded that December 20, 1992,
will be a Sunday.

Squaring a multidigit number, a
student obtained 46,991,075. The
teacher, glancing into the student’s
notebook, said, “Your answer’s
wrong!” How did the teacher know?

Exercise 1. Think about whether
the square of an integer can end in 75.

The solutions to both of these un-
sophisticated problems, as well as
many others, are based on consider-
ations of divisibility. Not long ago we
touched on this subject (see “Divi-
sive Devices” in the September/Oc-
tober 1991 issue of Quantum). This
time we'll examine it from another
angle. But the starting point is the
same: we must begin with a short
reminder about division with and
without remainders.

Division with a remainder

If a =gb +r, wherea, b, q, r are
integers, and 0<r < |b|, we say that
a has been divided by b with a re-
mainder of r. For instance, dividing 5
by 7weget5=0-7 +5; dividing 224
by -9 we get -224 = 15 - (-9) + 1; and

so forth.

If the remainder is zero—a = gb—
we say that a is divisible by b. It’s
obvious but important that for any
integers k and I the number ka + Ib
is divisible by ¢ whenever a and b
are divisible by c. Here’s how this
fact can be used.

Problem 1. For certain values of
the numbers 7n + 1 and 8n + 3 have
a common divisor d, d # 1. Find d.

Solution. Since 7(8n + 3) -
8(7n + 1) = 13 is divisible by d # 1,
and 13 is a prime number, d = 13.

As amatter of course, n and d here
were assumed to be integers. I'll
make this assumption throughout
the article: all the numbers consid-
ered will be integers, although at
times it will be convenient to men-
tion it again.

Exercise 2. Divide with a remain-
der: (a) 1931 by 17, (b) =295 by 31, (c)
~1,005 by —98.

Exercise 3. The number 17x + 3y
is divisible by 61. Prove that the
same is true for 8x + 5y.

Exercise 4. Find the remainders in
dividing (a) n by n — 1 and by n - 2;
(b)m*+n+1byn+1landn+2;(c)n*
+1Dbyn+3(n=80).

Exercise 5. Find all integers n such
that the numbers (a) (n®> + 1)(n - 1),
(b) (n® + 3)(n® + 1) are integers.

Congruences

Consider the following problem.
Problem 2. What is the last digit
of 292

Solution. Write out consecutive
powers of two:

2,4,8,16,32,64, ...

We see that the last digits of these
numbers are repeated after every four
numbers, so the last digit of 27 de-
pends only on the remainder of the
exponent n when divided by 4. Since
999 = 4 - 249 + 3, the answer to this
problem is 23 = 8 (that is, the third
number in the string above).

In this example the set of all expo-
nents was partitioned into four
classes consisting of numbers of the
form

4k, 4k + 1,4k + 2, 4k + 3.

Generally, for any positive integer
m all integer numbers (not necessar-
ily positive!) fall into m classes: each
class comprises all the numbers hav-
ing the same remainder when di-
vided by m.

Here are these classes:

(0) The numbers a of the form

a=km,
(1) The numbers a of the form
a=km+1,

(r.n — 1) The numbers a of the form
a=km+(m-1).

Clearly, any number belongs to
one of these classes. The difference

25
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between two arbitrary numbers from
one and the same class is divisible by
m, while the difference between
numbers from different classes is not
divisible by m.

DerntTioN. If the difference be-
tween integers a and b is divisible by
m, then the numbers a and b are
said to be congruent modulo m.

In Latin, modulo is the ablative
case of modulus; in mathematics, it
means “with respect to a modulus of
...” This is the notation for congru-
ence modulo m:

a=b (mod m).

The numbers a and b are congru-
ent modulo m if and only if they be-
long to the same class—that is, have
the same remainders when divided
by m. In other words, a = b (mod m)
means that a = b + km for some in-
teger k.

For instance, 27 =7 (mod 10), 78 =
6{mod 24), 6=0(mod 3), 25 =—4 (mod
29).

Exercise 6. Prove that (a) a® =
a (mod 6), (b) @® = a (mod 5) for all
natural numbers a.

Exercise 7. Prove that 2100 = 3100
modulo 5, 13, 211.

Exercise 8. Prove that 119 -1 is
divisible by 100.

Exercise 9. Let S(N) be the sum of
the digits in the number N. Prove
that N = S(N) modulo 3 and 9.

Exercise 10. Let S(A) = S(5A). Prove
that A =0 (mod 9).

Exercise 11. The decimal notation
of a certain number consists of
(a) 1991 or (b) 1992 ones and some
number of zeros. Can this number be
the square of an integer?

Exercise 12. Prove the following
test for divisibility by 11: a =

aydy_y...dg =0 (mod 11) if and only if
(~1a, +(-1)"a, +... +a,is divisible
by 11. (The bar over the expression
means that the symbols below stand
for decimal digits, which stand next
to each other to indicate place value
as if they were numerals.)

Properties of congruences

Many of the properties of
congruences are quite similar to
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those of regular equations:
1.If a =b (mod m) and b
¢ (mod m), then a = ¢ (mod m).

Further, if a = b ([mod m) and ¢ =
d (mod m), then

2. a+c=b+d(modm),
3. a-c=b-d(mod m),
4. ac=bd (mod m).

That is, congruences can be added,
subtracted, and multiplied just like
regular equations.

For example, let’s prove property 4.
Since a=b, ¢ =d, the differences a -
b and ¢ - d are divisible by m. From
ac - bd = alc - d) + dla - b), it fol-
lows that ac - bd is divisible by m, or

ac = bd (mod m).

Exercise 13. Prove properties 1, 2,
and 3.

Let a=b (mod m). The above prop-
erties imply

5. a* = b* (mod m).

Sometimes common factors of
both parts of a congruence can be
canceled out:

6.1f ac = bc (mod m), and the num-
bers ¢ and m are coprime,’ then a =
b (mod m);

7.fa=b(modm)anda=ka, b=
kb,, m = km, for some positive inte-
ger k, then a = b, (mod m,).

In other words, both parts of a congru-
ence and its modulus can be reduced
by their common factor.

Let’s prove property 6. The num-
ber c(a - b) is divisible by m; ¢ and m
are coprime. Therefore, a - b is divis-
ible by m: a = b (mod m).

Exercise 14. Prove property 7.

Summing up, we can say that for
any algebraic expression obtained
from integers a, b, ¢ by means of
addition, subtraction, and multipli-
cation, it is possible to replace these

'Two natural numbers are called
“coprime” or “relatively prime” if
they have no common factor other
than 1.

numbers with their remainders when
they are divided by m without
changing the remainder obtained
when the entire expression is di-
vided by m.

Consider two applications of this
statement.

Problem 3. Find the remainder
when

N=(1+1)2*+1)3*+ 1) ... (1,000 + 1)

is divided by 3.
Solution. The above statement
implies that, modulo 3,

N=(12+ 1% (22 4 1P (32 4 1
= 0334, 9333 _ 1333
= 0667 = (023 . 9
=1%8.2=2,

Problem 4. For what positive in-
tegers n is the number 8n + 3 divis-
ible by 13? (Compare this with prob-
lem 1))

Solution. The above properties
give the following chain of equiva-
lent congruences:

8n +3=0(mod 13),

8n=-3 (mod 13),

64n =-24 (mod 13) (we’ve multi-
plied by 8, which is coprime
with 13),

-n=-11 (mod 13} (since 64
-1 (mod 13) and -24
-11 {mod 13})),

I

and, finally,
n=11 (mod 13).

Indeed, if n = 13k + 11, then 8n +
3 =8(13k + 11) + 3 = 104k + 91 =
13(8k + 11). So 8n + 3 is divisible by
13 if and only if n = 13k + 11.

Exercise 15. Find the remainders
of (a) 212~ 1 modulo 17, (b) (320 + 11)%
modulo 13.

Exercise 16. Prove that (a) 20 + 1 is
divisible by 125, (b) 2 -1 is divisible

by 105, (c) 2% 1+ 11is divisible by 37 +1
but is not divisible by 37+ 2,

Exercise 17. Find all prime num-
bers p such that 20p* + 1 is also a
prime.




Exercise 18. Prove that (a) 1! +
21991 4+ 30" is divisible by 31;
(b) 1m + 2m + ... + (n —1}m is divisible
by n for any odd m and n.

Exercise 19. For what positive in-
tegers i1 is the number 207 + 162 - 3" -
1 divisible by 3237

Exercise 20. Prove that 5+ ! +
37+ 1.92n-114g divisible by 19 for any
positive integer n.

Exercise 21. For what values of n
can the fraction (15n + 2)/(14n + 3) be
simplified?

The Chinese Remainder Theorem

Consider m terms of an arithmetic
sequence

a,a+d, .., a+(m-1)d,

where a and d are integers. The fol-
lowing theorem is often very helpful:

TueoreM 1. If d is coprime with m,
then the sequence a, a + d, ..., a +
(m — 1)d contains exactly one num-
ber divisible by m.

Proor. The difference between the
kth and Ith terms of the sequence is
equal to d(k - 1) and is not divisible by
m; otherwise m would divide k -,
which is impossible, since |k - I| <
m. Consequently, no two numbers in
the sequence are congruent with each
other and, therefore, all these num-
bers have different remainders
modulo m. So they represent all the
classes modulo m—that is, each of
the remainders 0, 1, 2, ..., m -1 is
congruent with exactly one of the
numbers in the sequence.

Thus, we've proved even a some-
what stronger statement than theo-
rem 1.

Exercise 22. Find all triples of
primes of the form p, p+2, p + 4.

Exercise 23. Find a finite arith-
metic sequence of maximal length
consisting of prime numbers and hav-
ing a difference of 6.

Exercise 24. Fifteen prime num-
bers make an arithmetic sequence
with a difference of d. Prove that
d > 30,000.

Now let’s apply theorem 1 to
prove the so-called Chinese Re-
mainder Theorem. This theorem
was already known more than 2,000
years ago in China.

Tueorem 2. Given n numbers T,
m,, ..., m_ coprime with each other
and n numbersr, r,, ..., r, such that
0<r<m-1(i=12, ..,n) Then
there exists a number N whose re-
mainder when divided by m, is r, for
alli=1,2, .., n

In other words, N=r, (mod m ) for
alli=1,2, ..., n.

Proor. Let’s use induction over .
For nn = 1 the statement of the theo-
rem is trivial. Suppose it’s true for n
=k -1 and consider n = k. By the in-
ductive assumption, there exists a
number M such that

M=r (modm)fori=1,2,.. k-1

Letd = mm,...m, . Consider the
numbers

M, M+d M+2d, ..., M+(m,-1)d.

Since d is coprime with m,, it follows
from the proof of theorem 1 that one
of these numbers, N, has the remain-
der r, when divided by m,. At the
same time, N = M (mod m ) for any i
=1, ..., k-1, so the remainder of N
divided by m,, i < k, is r, completing
the proof.

Just one more theorem.

TueoreM 3. For any numbers m,
m,, ..., m_ coprime with each other
and any remainders r, 1,, ..., I,
modulo m, m,, ..., m_, one can find
n successive numbersa, a+ 1, ..., a+
n-1suchthata=r,(modm,), a + 1
=r1,(modm,), .., a+n-1=r (mod
m ).

In other words, for any set of
pairwise coprime modulim,, m,, ...,
m_, one can find n consecutive posi-
tive integers that would yield any
desired remainders when divided by
m,, m,, ..., m, respectively.

Proor. By the Chinese Remainder
Theorem there is a number a such
that

a=r (modm,)
a=r,-1(modm,),

asr —n+1{modm ).

Then the numbersa,a+1, ..., a+n-
1 satisfy the requirement of our theo-
rem.

Exercise 25. Prove that (a) among
any 10, (b) among any 16 consecutive
positive integers there is a number
that is coprime with all the other
numbers. (c)Is this statement true for
any 17 consecutive positive integers?

Exercise 26. Prove that for any n
there are n consecutive positive inte-
gers each of which is divisible by the
square of some integer other than 1.

Exercise 27. Is there a moment in
the day when the hour, minute, and
second hands of a correctly running
watch make angles of 120° with one
other?

Exercise 28. Find the least positive
integer yielding the remainders 1, 2,
4, 6 when divided by 2, 3, 5, 7, respec-
tively.

Exercise 29. Find the least positive
even number a such that the numbers
a+1l,a+2,a+3,a+4,a+5 are divis-
ible by 3, 5, 7, 11, 13, respectively.

How to Solve congruences

In problem 4 we found all integers
n such that 8n + 3 is divisible by 13.
That is, we solved for n the congru-
ence

8n +3=0(mod 13).

Now we can generalize this problem.

Let a and m be coprime numbers.
We want to solve for n the congru-
ence

an =b (mod m)

for arbitrary b.

By theorem 1 there exists some k
such that ak = 1 (mod m). Multiply-
ing the two sides of the given congru-
ence by k, we get

(ak)n = n = bk (mod m),
which means
n=bk+ml,
where I is an arbitrary integer.
Of course, the question arises:

How can we find k for a particular
congruence!?
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If m is not too large, this can be
done simply by trial-and-error. As to
the general solution, you can find it,
albeit in implicit form, in the article
“Divisive Devices” mentioned
above. There it was shown that for
any two coprime numbers a and b
there exist integers x and y such that
ax +yb =1; also, it was explained how
the numbers x and y can be found by
means of Euclid’s algorithm. Switch-
ing to our notation, we replace b with
m (coprime with a) and x with k.
Then the equation ak + ym =1 can be
rewritten in the form of a congruence:
ak = 1 (mod m)—the very one we
wanted to solve.

Problem 5. Solve the congruence

32n=7 (mod 37).

Solution. Since 32 = -5 (mod 37),

we can rewrite the congruence in the
form

5n=-7 =30 (mod 37),
or
n=6(mod 37)

(we've canceled out the factor 5 legiti-
mately because 5 and 37 are coprime).

Linear equations with integer co-
efficients, also discussed in “Divisive
Devices,” can be solved by reducing
them to congruences.

Problem 6. Find all pairs of integers
x, y satisfying the equation 7x — 23y
=131.

Solution. Since 23=2 (mod 7), 131
=-2 (mod 7), the given equation can
be rewritten as 2y =-2 (mod 7), or y
=1 (mod 7).

Thus, y = 1 + 7k for any integer =
Now we can easily find x:

7x—-23(1 + 7k) = 131,
7x=154 +23 -7k,

and finally,
x=22+23k, y=1+7k.

Exercise 30. Solve the congruences
(a) 17x = 19 {mod 37), (b) 147x =
63 (mod 29).

Exercise 31. Solve for integers x
andy(a) 7x + 8y = 1, (b) 13x - 15y =
16, (c) 257x + 18y = 175.

Exercise 32. Solve for integers x, v,
and z the system of equations

3x+5y-7z=],
4x+9y+11z=2. @
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BRAINTEASERS

Just for the fun of it

Crush on a map. The population of the United States is more than
3 200 million. It would seem that on a map with a scale of 1 : 5,000,000 L L wan
(1 centimeter to 50 kilometers) there should be enough room for g 7 R w,\
1/5,000,000 as many people—that is, for more than 40. But you can .. W 4
check experimentally that five persons would have some difficulty squeez-
ing onto such a map, and ten would find it impossible. Why? (G. Galperin)

B52

Divisibility test. Prove that a number is divisible by 13 if and only if, after
deleting its last digit and adding 4 times this last digit to the remainder,
we get a number divisible by 13. (B. Goncharenko)

Twilight in the mountains. Mountaineers say that high up in the moun-
tains, twilight is noticeably shorter than down on the plains. What, in
your opinion, is the reason for this? (A. Buzdin)

B54

Pythagoras revisited. The figure at left shows a right triangle with three
squares on its sides; the vertices of the squares are joined to form three
triangles. Prove that these triangles have equal areas. (N. Avilov)

¢ From points to players. Two precocious students from an elementary
school took part in a chess championship at a nearby university. Each
participant plays each of the others once; a win is worth one point, a draw
is worth half a point, and players receive no points for a loss. The com-
bined score of the elementary school students was 6.5; the scores of the
university students all happened to be the same. How many university
students participated in the championship? (A. Markosian)
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MATH
INVESTIGATIONS

Tmangles of ditferences

And witnesses for the minimum

by George Berzsenyi

TISN'T DIFFICULT TO SHOW thatifn>3andk > 1
are integers, and if one calculates the forward differ-
ences of the members of the sequence
1,nnnd .. ok !

and successive forward differences thereof, then all the
entries of the resulting triangle of numbers will be dis-
tinct positive integers. I posed this as a problem in a re-
cent round of the USA Mathematical Talent Search, and
I'wish to pose it now as the first challenge in this column.
The triangle of differences corresponding to (n, k) = (3, 6)
is shown below:

1 3 9 27 81 243
2 6 18 54 162
4 12 36 108
8 24 72
16 48
32

As a second challenge, I wish to pose a more general,
though a bit more vague, question: For what other “natu-
rally arising” sequences of positive integers is it true that
all successive forward differences are distinct positive
integers?”

Some years ago, when I first thought of this problem,
Iimposed yet another condition on the members of such
sequences: I wanted their largest members to be as small
as possible. In particular, I found thatfork =1, 2, 3, 4, 5,
and 6, this minimal value is N, = 1, 3, 8, 20, 43, and 98,
respectively. As one can see from its complete table of
differences, shown below, the sequence (10, 12, 17, 26,
46, 98) is such a “witness” for N, = 98, whose minimality
was established by a computer search:

10 12 17 26 46 98
2 5 9 20 52
3 4 11 32
1 7 21
6 14
8

30 MAY/JUNE 1992

Can you show that for each value of
come in pairs?

Subsequent to my findings, one of my mathematical
friends, Dr. Stanley Rabinowitz, was able to determine
the next three values of N, —they are N, =212, N, = 465,
and N, = 1,000. The value of N,=2, 144 was eon)eetured
by a colleague of his; and a search by Dr. Basil Rennie,
editor of the (new) James Cook Mathematical Notes
(JCMN), suggests that N, = 4,562. Can you verify the
values of N jand N, and extend these findings?

I reported the first ten values of N, in the June 1984
issue of JCMN (pp. 4054-4055) and gave there a listing of
some of the witnesses. Apart from the trivial (1) for N,,
and (1, 3) and (2, 3) for N, I conclude now with a com-
plete listing of exactly half of them for 3 <k <9; upon con-
structing their complete tables of differences, and recall-
ing that witnesses come in pairs, you should have no
difficulty in listing the remaining ones.

N,, the witnesses

k=3:Q2,3,8)

k=4:(2,5,9,20),4,5,8,20),,6,9,20)

k =5:(6,10, 15, 23, 43)

k=6:(8, 14, 21,32, 52, 98)

k=7:(11, 18,27, 39, 59, 102, 212)

k =8:(15,25,37, 54, 80, 126, 224, 465)

k=9:(17,28,46,73,112,171,273, 485, 1,000),

(17,30, 49, 78, 122, 189, 299, 511, 1,000)

There are many interesting relationships among these

witnesses and the resulting complete tables of differ-

ences. I encourage you to investigate them. (@

The purpose of this column is to direct the atten-
tion of Quantum’s readers to interesting problems
in the literature that deserve to be generalized and
could lead to independent research and/or science
projects in mathematics. Students who succeed in
unraveling the phenomena presented are encour-
aged to communicate their results to the author ei-
ther directly or through Quantum, which will dis-
tribute among them valuable book prizes and/or free
subscriptions.
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WAYS & MEANS

The power of dimensional thinking

“In physics

... there is no place for muddled thinking. . . .

Those who really understand the nature of a given
phenomenon must obtain the basic laws from
dimensional considerations.”

—Fnrico Fermi

by Yuli Bruk and Albert Stasenko

T SCIENTIFIC SEMINARS and

conferences, where new theo-

retical or experimental findings

are discussed, just about every
paper begins with a qualitative de-
scription and estimate of the effect
the speaker wants to talk about. In
even the most thorough paper, lec-
ture, or article, it’s impossible to re-
port all the experimental details or all
the theoretical “tricks” that were es-
sential in conducting the research or
solving various problems. Yet there
are certain points one must always
address without waiting for queries
from the listeners or readers.

First and foremost, one must offer
an evaluation of the order of magni-
tude of the anticipated effect; simple
extreme cases; and the nature of the
functional connections among the
quantities determining the phenom-
enon. Essentially, analysis of these
closely interlinked questions is what
we call the qualitative description of
the physical situation.

One of the most effective methods
for conducting this analysis is the di-
mensional method. We'll look at its
underpinnings in this article. It isn’t
an exaggeration to say that dimen-
sional analysis is extremely efficient,
sparing mountains of paper for the
theorist and saving money and time
for the experimenter. Rapid estima-
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tion of the scale of a phenomenon,
development of the principal frame-
work of the experiment, discovery of
the qualitative and functional rela-
tions, restoration of forgotten formu-
las during examinations—these are
only a few of the merits and applica-
tions of dimensional analysis.

Analysis of dimensions has been
used in physics since Newton’s time.
In fact, it was Newton who formu-
lated the principle of similarity,
which is closely linked with dimen-
sional analysis. We’ll illustrate
Newton’s principle with a very
simple and well-understood example.

Imagine that a body of mass m
moves in a straight line under the
action of a constant force F. If the
body’s initial velocity is zero and the
velocity after it travels a distance s is
equal to v, we can write the equation
for the law of conservation of energy
as mv?*/2 = Fs. So we see there’s a
functional relation among the quan-
tities of v, F, m, and s.

Now let’s suppose that we don’t
yet know the energy conservation
law (or don’t want to use it), but we
do know that there exists a func-
tional dependence among v, F, m, and
s. Very often (but not always, of
course!) the functional dependence of
the physical quantities is a power
law. Let’s assume that this is the

case here. We can put it another way:
we consider that the formula deter-
mining the velocity v as a function of
F, m, and s takes the form

v < PFms?. (1)

Here x, y, and z are numbers we have
yet to determine. The “o<” sign
means that the left side of the for-
mula is proportional to the right
side—that is, v = kFFm’s?, where k is
anumerical coefficient. Since k is a
dimensionless quantity, naturally
it’s impossible to determine this
coefficient by means of dimen-
sional analysis.

Of course, the left and right sides
of equation (1) must be measured in
the same units—that is, they must
have the same dimension. We'll
measure v in meters/second, F in
newtons, m in kilograms, and s in
meters. In other words, we’ll choose
the dimensions for the quantities v,
F, m, and s as follows: [v] = m/s =m
x s, [F]= N =kg xm xs?, [m] = kg,
[s] = m. (The symbol [A] means the di-
mension of the quantity A.) Then we
can write the condition that the di-
mensions of the left and right sides of
formula (1) are the same:

m s =kg - m* s> kg' - m?
=kgx+y_mx+zls—2x.

Art by Leonid Tishkov
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You'll notice that now we’ve written an equality.
The left side doesn’t have any kilograms, so the right side
mustn’t have any either. This means that

x+y=0.

The meters on the right side are raised to the power x + z, and
on the left they’re raised to the power 1, so

xX+z=1.

Likewise, from a comparison of the exponents for seconds, it
follows that

—2x=-1.

These equations allow us to solve for the numbers x, y, and z:

x-1/2,y=--1/2 z-1/2,

Now we can write the final formula:

12
Vx[i] o2,
m

Squaring both sides of this equation, we find that

VZOC—F—S,
m

or mv” e Fs. In this last formula you'll easily recog-
nize the law of conservation of energy, but with-
out the numerical coefficient.

The similarity principle formulated by
Newton states that the ratio v?/s is directly
proportional to the ratio F/m. By way of
example, let’s consider two bodies
with different masses m, and
m,, and let’s apply
different

| TisHkov
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forces F, and F, to them such that the
ratios F,/m, and F,/m, are the same.
The bodies will begin to move under
the action of these forces. If the ini-
tial velocities of the bodies are equal
to zero, then the velocities attained
after they travel a distance s will be
the same. We arrived at the similar-
ity law by equating the dimensions of
the right and left sides of the formula
describing the link between the val-
ues for the final velocity and the val-
ues for the force, mass, and distance
traveled.

Although dimensional analysis
was introduced back when the
groundwork for classical mechanics
was being laid, it wasn’t effectively
applied in problem solving until the
end of the last century. The great
physicist John William Strutt (Lord
Rayleigh) deserves much of the credit
for popularizing this method and us-
ing it to solve important and interest-
ing problems. Rayleigh wrote in 1915
that he often wondered at how little
attention is paid to the profound
similarity principle, even by promi-
nent scientists. It often happens, he
said, that the results of painstaking
research are presented as newly dis-
covered “laws” when they could
have been obtained a priori in a few
minutes.

It’s impossible to accuse present-
day physicists of neglecting the simi-
larity principle and dimensional
analysis. Let’s take a look at two
classic problems that are often called
“Rayleigh problems.” Of course, Lord
Rayleigh examined many more prob-
lems, and he used dimensional
analysis to solve many of them. But
the ones we'll discuss below are typi-
cal. From these and other examples,
we'll get a better feel for when and
how to use dimensional analysis in
solving problems.

Rayleigh problem 1: oscillations of a
hiall on 2 String

Let a string be stretched between
points A and B (fig. 1). The tension of
the string is F. A heavy ball is at-
tached in the middle of this string at
point C. The length of the segment
AC (and similarly CB) is equal to I.
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A -
Figure 1

The mass M of the ball is much
greater than the mass of the string.
The string is pulled and released.
Obviously the ball will oscillate. If
the amplitude of these oscillations is
much smaller than the string’s
length, the process will be harmonic.

Rayleigh showed how to find the
dependence of the oscillation fre-
quency o on the string tension F, the
ball’s mass M, and the length I. Now
we’ll reproduce his line of thinking.

Let’s suppose that the quantities
o, F, M, and I are linked by a power
law dependence:

® o< FFMYF (2)

The exponents x, y, and z are the
numbers we have to find. As we did
above, let’s write the dimensions of
the quantities of interest to us in any
system of units—for example, in the
SI system:

[@] =7,
[F]=N=kg-m-s?,
[M] = kg,

[I] = m.

If formula (2) expresses the actual physi-
cal law, then the dimensions on the
right and left sides of this formula must
be the same—that is, the following
equation is correct:

S—l - kgx .mX- szX . kgv . m?
= kgx +Y.mEtE- Sflx.

There are no meters and kilo-
grams on the left side of this equa-
tion, and the seconds have an expo-
nent of 1. This means that the
following equations are satisfied by
the numbers x, y, and z:

x+y=0 x+z=0, 2x=-1.
Solving this system, we get
x=1/2, y=-1/2, z=-1/2.
Therefore,

W o< FI/ZM—I/ZJ—l/Z.

We've already mentioned that we
had to replace the equal sign with the
proportionality symbol because we
don’t know the numerical coeffi-
cient. It's interesting, though, that
the exact formula for the frequency
differs from the one we found only by

a factor of V2 (@? = 2F/MI). In other
words, we can conclude that we've
obtained an estimate for ® that isn’t
just qualitative (in the sense that it
depends on the quantities F, M, and
]) but quantitative as well. The order
of magnitude found for F, M, and I
gives us the correct value for the fre-
quency. (We’'ll do more with order-of-
magnitude estimates later.) In simple
problems, coefficients that can’t be
determined by dimensional analysis
can be considered numbers of the
first order of magnitude. We should
bear in mind that this isn’t a strict
rule. We can come to our ultimate
conclusion about the value of the
numerical coefficient only by means
of other considerations. (By the way,
in the example we looked at in the
introductory section above, the nu-
merical coefficient in the formula for
the velocity v as a function of the
force, mass, and distance traveled is
close to 1 as well.)

Needless to say, instead of the fre-
quency o we could use the oscilla-
tion period T = 2n/®, which is
uniquely related to it, and look for the
exponential dependence of the period
T on the string tension F, mass M,
and length 1. The factor 2 doesn’t
“spoil” (nor does it “improve”!) the
formula obtained by dimensional
analysis—we still can’t write the nu-
merical coefficient without strictly
solving the equation for the oscillations.

Another simple and well-known
example—oscillations of a math-
ematical pendulum—offers an inter-
esting case. We could obtain the pre-
cise formula for the oscillation
frequency w?= g/I by using dimen-
sional analysis. The numerical coef-
ficient that can’t be determined by
dimensional analysis is equal to 1. If
from the outset we tried to find how
the oscillation period of the math-
ematical pendulum was linked with
its length I and the free-fall accelera-
tion g, we would arrive at the for-



mula T o« VI/g , which differs from
the exact solution by a factor of 2x.
Yet it doesn’t follow from this ex-
ample that it’s more advantageous to
use the oscillation frequency than
the period when dimensional analy-
sis is used; the appearance of the fac-
tor 2x is linked only with the defini-
tion @ = 21t/ T.

Let’s return to the Rayleigh prob-
lem and state once more the assump-
tions allowing us to solve it by di-
mensional analysis. First, we
assumed that a link in fact exists be-
tween the quantities o, F, M, and 1.
Second, we considered the formula
expressing this connection to be a
power law: @ o« FFMVE,

Dimensional analysis helps us
find the functional relations among
different physical quantities, but
only when these relations are power
laws. Fortunately, there are many
such relations in nature, and dimen-
sional analysis should become our
reliable assistant.

The “N—K=1" rule

The idea of the dimension of a
physical quantity is introduced when
certain basic physical quantities have
already been chosen and their units
of measurement have been deter-
mined. In mechanics, we consider
mass, length, and time the tradi-
tional basic quantities. These quan-
tities are measured in the SI system
in kilograms, meters, and seconds; in
the CGS system—in grams, centi-
meters, and seconds.

We'll remind you that the basic
units of measurement in each system
(the basic dimensions) are called the
units of measurement (dimensions)
for the basic quantities. The units of
measurement for all other nonbasic
quantities are expressed in the basic
units of measurement. For example,
in the SI system the unit of mea-
surement for force, the newton, is
kg - m/s?, and the unit of measure-
ment for energy, the joule, is kg - m*/s%;
while in the CGS system these are
the dyne, which is g - cm/s?, and the
erg, which is g- cm?/s%. Units such as
the dyne and the erg are called de-
rived units.

If we're dealing with problems in

which nonmechanical quantities ap-
pear (electrical charge, temperature,
and so on), we can increase the num-
ber of basic quantities. Current is in-
cluded in the basic quantities in the
SIsystem (it’s measured in amperes),
as is temperature (measured in
kelvins), and so on.

Generally, the basic quantities and
their units of measurement can be
chosen in a variety of ways. Much
depends on convenience, tradition,
and current standards and conven-
tions. We'd like to emphasize that
one can use dimensional analysis in
any system of units. One must, of
course, write the expressions for the
dimensions of different quantities in
the same system every time.

Let’s imagine that in some prob-
lem we have to find the functional
dependence among N quantities. As-
suming that this dependence is a
power law, we can try to solve the
problem by dimensional analysis. If
the dimensions of the all N quanti-
ties are expressed through the di-
mension of K of the basic quantities,
and if N - K = 1, then there exists a
single formula defining the exponen-
tial dependence among the N quan-
tities, and this formula can be found
by using dimensional analysis.

It’s not hard to convince ourselves
that this is true. We write the general
form of the desired formula as fol-
lows: one of the quantities is on the
left side, and the product of the pow-
ers of the other N — 1 quantities is on
the right side. The exponents are still
unknown. The number of unknown
exponents is N — 1. To determine
these exponents we need N - 1 equa-
tions. We obtain each equation by
comparing the exponents on the left
and right sides of the equation for one
of the basic dimensions. If we have
exactly N -1 dimensions in our prob-
lem, then we obtain exactly the
number of equations we need. These
equations are linear, but the exist-
ence and uniqueness of the solution
of the system of such equations guar-
antee the existence and uniqueness
of the power law in question. The ex-
amples given above illustrate this
rule quite well. When we write the
formulas v« Fm’s* or @ < FMVE, we

had N = 4 quantities each time, while
the number of unknown exponents
N -1 =3 coincided with the number
of basic dimensions K = 3 (kg, m, s).
The systems of three linear equations
for the three variables each had a
single solution, and the final formu-
las for v and o also were the only
ones possible. So we’ll always be able
to build only one formula for the four
functionally connected quantities if
the number of basic dimensions en-
countered in the problem equals 3.

Rayleigh problem 2: oscillations of a
spherical droplet

Let a drop flow from a round open-
ing (fig. 2). It’s natural to assume that
the drop must be spherical in the
equilibrium state because this makes
the surface energy a minimum and
any system tends to the state with
minimum energy. Even very small
deformations of the drop lead to pul-
sations due to
surface ten-
sion, so the
shape of the
drop changes
periodically.
We, assume
that the oscil-
lations con-
tinue long
enough and
their damping @
is small. Figure 2
What inter-
ests us is the frequency (or period) of
the process. This frequency can de-
pend, obviously, on the surface ten-
sion of the liquid o, the density of the
liquid p, and the radius of the drop r.!
We'll look for this dependence in the
form

o < G*p'r7.

Let’s write the dimensions of all the
quantities in the SI system:

"Possibly a question has occurred to
you: why not assume that the
frequency can depend also on the force
of gravity acting on the drop? It’s an
appropriate question, and we promise
to discuss it below.
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[(’0] = SVI/

[6]=N-m'=kg-m-s? - m'=kg-s?
[p] = kg - m?,

(7] = m.

The number of linked quantities
we’re looking for is again one more
than the number of basic dimen-
sions. From the N - K = 1 rule it fol-
lows that the formula obtained for
the frequency must be unique. The
equations for determining x, y, and z
are obtained from the condition

st =kgr s kg’ - m™¥ - m?
- kgx +y. S~2X . m—Sy +z

There are three equations for the
three variables:

2x=-1, x+y=0, 3y+z=0.
This system has the unique solution
x=1/2, y=-1/2, z=-3/2.

Finally, we get the formula for the
oscillation frequency:

This formula also suggests a pos-
sible method of experimentally deter-
mining 6. We need to know the den-
sity of the liquid p and the radius of
the drop r, and we need to determine
the frequency o experimentally. We
don’t know the numerical coefficient
in this formula, but this isn’t a seri-
ous obstacle. We can determine it, for
instance, from an experiment with a
liquid whose surface tension is
known.

Essentially we're faced now with
a simple case of modeling—we can
simulate the oscillations of the drop
of liquid being studied by means of
the oscillations of a drop of liquid
with known ¢ and p. We can also
compare the oscillations of the drop’s
shape for the two different liquids.

We can interpret the formula for
the oscillation frequency m in another
way. Let’s write it as follows:

G
= < 3’
p
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Since ¢ and p are parameters that
characterize the liquid and so are the
same for drops of this liquid of differ-
ent sizes, we come to the conclusion
that the periods T, = 2n/o, and T, =
2m/o, of the oscillations of two drops
of the same liquid and their radii r,

and z, are linked by the correlation

2 3
I _5

2 3
Iy 15

—the squares of the oscillation peri-
ods of the two drops are proportional
to the cubes of their dimensions!
Does this remind you of one of
Kepler’s laws? It’s a strained analogy
perhaps, but we're talking about pe-
riodic processes in both cases!

We'll make one more observation.
Even as we're writing out the set of
quantities whose interrelation we're
trying to find, we have to realize
what’s essential to the concrete
physical phenomenon and what’s
not. If we're talking about dynamics
(for example, oscillations), then the
characteristics of force and mass
must appear in the problem. In the
problem about the oscillations of a
drop, o played the role of the force
characteristic; p, the liquid’s density,
played the role of the mass character-
istic. Essentially, we considered the
oscillations to be governed by the
surface tension only. The solution
obtained undoubtedly applies to a
drop oscillating in a spaceship. Does
it work for a drop near the Earth?
Shouldn’t we also take gravity into
account!?

Let’s think it through. The force of
gravity is F < pr'g, while the surface
tension is F, o or. Clearly, for small
enough r the surface tension is
greater than the force of gravity.
Omitting the numerical coefficient,
let’s state the inequality expressing
the condition for which we can ne-
glect gravity: or >> prig. This inequal-
ity is equivalent to r << (o/pg)'?. We
can state that, for small enough
drops, gravity should not influence
the oscillations. How big can a drop
of water get before we can no longer
use the formula obtained above for
the oscillation frequency? Try to es-

timate this maximum size on your
own.

The oscillation frequency of atomic
NuClei

It turns out we can use the for-
mula for the oscillation frequency of
a drop to determine the oscillation
frequency of atomic nuclei.

In the droplet model of the atom’s
nucleus, the nucleus is considered a
drop of nuclear material—a “liquid”
consisting of protons and neutrons.
Surface tension keeps the nuclear
droplet from decaying.

Nucleons (protons and neutrons)
are inside the nucleus in a bound
state. This means that a certain en-
ergy must be expended to pull them
away from each other. This energy is
equal to € = 13 - 103 joules per
nucleon. The radius of the nucleus is
r = 10 m; the proton mass is m_=
1.7 - 10 kg. Let’s try to use all this
information to calculate typical oscil-
lation frequencies of atomic nuclei—
the droplets of nuclear material 2

We could use the same formula for
the oscillation frequency of a droplet
of nuclear material as for the oscilla-
tions of drops of an ordinary liquid if
only we could learn to calculate the
surface tension of the “nuclear lig-
uid.” The total surface energy in the
drop model must be of the same or-
der of magnitude as the binding en-
ergy of all particles inside the drop. If
the number of nucleons in the
nucleus is A (the mass number), then
the total binding energy of all the
nucleons is Ag, and the surface en-
ergy of the nuclear droplet is of the
same order of magnitude as Ae. Di-
viding it by the surface area of the
drop S = 4nr?, we obtain an estimate
of the surface tension ¢ « Ag/4nr?.
The mass of a nucleus consisting of

2At this point we're interested only
in the qualitative dependence of the
oscillation frequency on the
parameters of the nucleus and the
quantitative order-of-magnitude
estimate; therefore, we can neglect the
difference between the masses of the
proton and neutron and consider the
mass of the nucleon equal to that of
the proton, for instance.




A nucleons is close to Am_, and the
volume of the nucleus is (4/3)nz% so
the density of the “nuclear liquid” is
of the order of p < 3Am J4mr®. Substi-
tuting the expressions obtained for &
and p in the formula, we get the re-
sult we were looking for:

12
ﬁr[mp)

The typical “nuclear” frequencies
are close to 10?* s7. Check that the
formula written here leads to a simi-
lar result—assuming a numerical co-
efficient (which we didn’t determine)
of the order of 1.

Meters “along” and “across”

The problems we considered up to
now were in essence solved identi-
cally and uniquely. Don’t think it’s
always that way. In some situations
the N - K = 1 rule doesn’t hold, and
so we must have recourse to new
ideas. One idea is to try to increase the
number of basic quantities—that is, to
study the problem in a system with a
larger number of basic dimensions.

To illustrate this idea, let’s look at
two simple problems.

No doubt you're acquainted with
the first problem. Let’s imagine that
a ball falls from a table of height H
onto the floor. The velocity of the ball
is horizontal and equal to v, at the
moment it falls off the table. Obvi-
ously we can correlate the distance it
flies with H and v,. Do these simple
calculations before readmg any further.

Finished? Now think—is it pos-
sible to find the connection between
H and v, using dimensional analysis?
Let’s try. Let the distance that it flies
be equal to x,. Undoubtedly the free-
fall acceleration g is an essential
quantity in this problem along with
H and v,. The answer shouldn’t de-
pend on the ball’s mass, since this is
apurely kinematic problem. So we’ve
got four quantities: x vy, H, and g.
The equations for the dimensions of
all these quantities consist only of
meters and seconds—that is, N = 4,

K=2,and N-K=2> 1! If we write
x, o< v,“HPg", then we can get only two
equations for the three variables o, B,
v. What do we do now?

Let’s introduce separate quantities
for measuring the vertical and horizon-
tal distances: we’ll measure distances
along the horizontal axis x in “horizon-

tal” meters m_and distances along the
vertical axis y in “vertical” meters m,
(fig. 3). Then the dimensions are

[Xo] =m,
[v]=mgs?,
[H] = my/
[g]=m s>

Now the basic dimensions are m,
m, and s—for N = 4 we now have
K= 3 The formula x, o< v,*HPg' leads
to the condition

m =m®*-s*-

X

—m

mP.-m?. s
y y
L§e-2r.m By,
;

The system of equations
o=1, -0-2y=0, B+y=0
has the single solution

1 .,.1
5 V=5

and we get the following answer:

H
Xg <V g

Compare this solution with the
answer you got by exact calculation.

The second problem that illus-
trates the same idea has to do with
the kinetic theory of gases. Molecules
of gas are finite in size and can collide
with each other even in a rarefied gas.
The average distance the molecules
travel between two consecutive col-
lisions is called the mean free path.
We want to know how the mean free
path I depends on the size of mol-
ecules r and their concentration n.

Let’s write the dimensions: [n] =
m?, [I] = m, [r] = m. When we try to
link 1, r, and n, we again find that the
N-K=1ruledoesn’'thold: N=3 and
K = 1—there is only one basic dimen-
sion (meters) in the problem.

m, A
H | i
0 X, m
Figure 3

It’s convenient to introduce again
the “longitudinal” and “transverse”
lengths. Let’s take the molecules to
be little spheres and let’s follow one
of them. We'll measure the distance
along the molecule-ball’s trajectory
in “longitudinal meters”’— —m,. Obvi-
ously the only molecules that can
“block” the movement of our chosen
molecule are those in the cylinder
whose axis is parallel to the trajectory
and whose base is the cross section of
the molecule-ball perpendicular to
the trajectory. The area of this cross
section is proportional to 72. In this
situation it’s natural to suppose that
r is measured in “transverse
meters”—m . Then the volume is
measured in uruts of m -m ?and the

dimension nis m™-m; o After these
considerations we’ve got two basic
dimensions—mH and m —for three
quantities J, 7, and n. That’s enough
for us to obtain the simple formula
linking them. It’s not difficult to

verify that this formula is

1

Joo s

111’2

Problems and recommendations

Now you're acquainted with the
basic elements of dimensional analy-
sis and how to solve problems with
it. We'll emphasize again that the for-
mulas obtained by such consider-
ations allow one to make quantita-
tive estimates as well. You have to be
careful, of course, but it would be a

CONTINUED ON PAGE 43
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PHYSICS
CONTEST

Shake rattle, and roll

“She stood in silence, listning to the voices of the ground . . .”
—William Blake, “The Book of Thel”

by Arthur Eisenkraft and Larry D. Kirkpatrick

NE PERSON DESCRIBED how
the bedroom wall moved across
the room. Another watched as a
huge wave of concrete traveled
along the highway. We all saw the
massive destruction when one bridge
roadway collapsed on top of another.
The earthquake in the San Francisco
area that coincided with the 1989
World Series gave us a glimpse of the
power and energy in our planet.

In the fury of the destruction, the
Earth is whispering secrets about its
composition. The Earth is not solid
rock. The Earth is not of uniform
density. Longitudinal and transverse
waves, called P and S waves, travel
through the Earth as a result of the
quake. The differences in P and S
wave behaviors can give us clues
about the structure of the Earth
while also allowing us to locate the
epicenter of the quake.

Although the speeds of the P and
S waves vary within the Earth, the P
waves always travel faster than the S
waves. This fact gives us the ability
to locate the epicenter of the quake.
By knowing the relative speeds of the
P and S waves and measuring the
delay in the arrival of the S waves, we
can determine the distance from the
epicenter. Here’s an analogy. If you
run at 3 m/s and a friend walks at
1 m/s, you will always arrive at a
given location before your friend. If
you arrive 10 seconds earlier, the dis-
tance traveled was 15 meters. If you
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arrive 20 seconds earlier, the distance
traveled was 30 meters.

Let’s assume that the epicenter is
near the Earth’s surface and that the
P and S waves have constant but un-
equal velocities. If at one location on
the Earth the waves arrive with a
time difference of 2 minutes, we
know that the epicenter of the quake
must be situated a specified distance
from this location. But in which di-
rection? We don’t know. We there-
fore trace the circumference of a
circle on the surface with a radius
specified by this time delay. The epi-
center can be located on any part of
this circumference. If we have a sec-
ond location with a (different) time
delay, this will provide us with a sec-
ond circle. A third location and a
third circle will uniquely determine
the actual point location of the epi-
center.

The P waves are able to travel
through solids and liquids, while the
S waves travel only through solids.
The P waves arrive at locations on the
opposite side of the Earth; the S
waves do not. This information leads
us to conclude that a portion of the
interior of the Earth is liquid. By care-
fully observing where the P waves
travel and where the S waves do not,
we can infer more about the size of
this liquid core of the Earth.

More curious is the observation
that there are positions on the Earth
where neither the P nor the S waves

arrive. These shadow zones are some-
how protected from disturbances at
some locations. What could cause
such a shadow region? One explana-
tion is that the P waves travel at a
different speed within the liquid core.
A P wave traveling from a solid
mantle into a liquid core will change
speeds and change direction (that is,
they will refract). The result of this
refraction is the creation of the
shadow region.

Professor Cyril Isenberg, academic
leader of the British Physics Olym-
piad Team, challenged students
worldwide in the 1986 International
Physics Olympiad with a problem
about the P and S waves of an earth-
quake. We present parts of that prob-
lem as a challenge to our readers.

Let’s assume that the Earth is
composed of a central liquid spheri-

Figure 1

Art by Tomas Bunk







cal core of radius R_ that is sur-
rounded by a solid, homogeneous
mantle of radius R. The velocities of
the S and P waves through the
mantle are v, and v,, respectively. An
earthquake occurs at point E on the
surface of the Earth and produces P
and S seismic waves. A seismologist
observes the waves at location X. The
angular separation between E and X
measured from the center of the
Earth O is 26, as shown in figure 1.

(A) Our beginning physics stu-
dents should try to show that the
seismic waves that travel through the
mantle in a straight line arrive at X at
a time t (the travel time after the
earthquake) given by ¢ = 2R sin /v for
0 <arccos (R /R), where v = v, for the
P waves and v, for the S waves.

(B) After an earthquake an ob-
server measures the time delay be-
tween the arrival of the S wave and
the P wave as 2 minutes, 11 seconds.
Deduce the angular separation of the
earthquake from the observer using
these data:

R =6,370 km
R =3,470 km
v, =10.85 km/s
v, =6.31 km/s

(C) The observer in part B notices
that at some time after the arrival of
the P and S waves, there are two fur-
ther recordings on the seismometer
separated by a time interval of 6 min-
utes, 37 seconds. Explain this result
and verify that it is indeed associated
with the angular separation deter-
mined in part B.

(D) For those of you who wish to
plunge deeper, draw the path of a seis-
mic P wave that arrives at an ob-
server, where 6 < arccos (R /R), after
two refractions at the mantle-core
interface. Obtain a relation for P
waves between 6 and i, the angle of
incidence of the seismic P wave at
the mantle—core interface.

(E) For our advanced problem solv-
ers, using the data above and the ad-
ditional fact that the speed of the P
waves in the liquid core is 9.02 km/s,
draw a graph of 8 versus i. Comment
on the physical consequences of the
form of this graph for observers
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stationed at different points on the
Earth’s surface.

(F) Sketch the variation of the
travel time taken by the P and S
waves as a function of 6 for 0 <0 <90
degrees.

Send your answers to Quantum,
3140 North Washington Boulevard,
Arlington, VA 22201. If you're a stu-
dent, please indicate your grade.

The leaky pendulum

Very good solutions were submit-
ted to our contest problem in the No-
vember/December issue by Ben Dav-
enport (Charlotte, North Carolina),
Samuel Dorsett (Mitchell, Indiana),
and Jesse Tseng (Little Rock, Arkan-
sas). We also received a packet of so-
lutions from Campbell High School
in Campbell, Missouri.

We begin by calculating the length
of time t___ it takes for the fluid to
run out of the container. This is
given by the initial mass M, of the
fluid divided by the rate r at which
the fluid runs out. Therefore,

My _8cp
max — 7 - 7 i

where p is the density of the fluid. In
order to avoid writing this set of con-
stants repeatedly, let’s define a new
dimensionless, timelike variable t by
the relationship

t
‘C=t y

max

0<1t<l.

In terms of 1, the mass M remain-

ing as a function of time is given by
M(t) = M(1 1)

and the height ] of the fluid as a func-
tion of time is given by

1(t) = 2a(1 - 1).

Since the center of mass of the fluid
is located at its geometrical center,
the length of the pendulum is given

by
1t)

L(t)=Ly+a- 5

=L, +ar.

This expression could have been
written down directly by realizing
that the center of mass moves from
L, to L, + a at a uniform rate during
the “time” 1.

Under the simplifying assump-
tions of this problem, the period of
the pendulum is

T:Zn\/l‘)ﬂn
8

=T0\/1+ﬂ,
I,

where T = 214/ L, /g is the initial pe-
riod of the pendulum. The graph of
the period versus time is shown as
the upper curve in figure 2 for the
case L, = 2a. Although the curve ap-
pears to be straight, it actually has a
slight curve due to the square root.
Note that the period is not defined
after the fluid has all run out as the
pendulum no longer has any mass.
When the container has a mass

1.24 -
i massless container
3 127
g L
- 1.16 +
Y
N r
¥ 112+
S I
S
= 1.08 t
i massive container
1.04 ¢
1 I 1 1 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1
Figure 2 normalized time



M, we must calculate the combined
center of mass x__ of the remaining
fluid and the mass of the container

_Imx, + Xy
cm ’

m, +

X

where the subscripts “c” and “f" re-
fer to the container and fluid, respec-
tively. If we choose to calculate the
center of mass x__ relative to the cen-
ter of the container, we have x_= 0
and

_ My(1-1)at
My+ My(1-1)
—4 T(1-1) _
2-1

Xem

Therefore, the period of the pendu-
lum as a function of time is

B +m:(l—t)
T=T,,1 LG

This function is shown by the lower
curve in figure 2. Note that the maxi-
mum period occurs about 60% of the
way through the time period and that
the maximum period is less than for
the case with the massless container.
Note also that the period returns to
its initial value when the fluid has
completely run out. You probably
anticipated this because the center of
mass must return to the center of the
container.

Those of you who know some cal-
culus can differentiate the expression
for the center of mass to find that it
reaches its maximum value when

1=2-+/2 =0.586.

Notice that this maximum occurs
58.6% of the way through the time
period independent of the rate of flow.
This value can now be substituted
back into the expression for the pe-
riod to find its maximum value

(3-2v2)a

Trnax ZTO 1+T

We hope you enjoyed thinking
about the leaky pendulum. O]

“DIMENSIONAL THINKING”
CONTINUED FROM PAGE 39

mistake not to use the fact that the
numeric coefficients in formulas of-
ten turn out to be of order unity.

It goes without saying that esti-
mation, the construction of simple
models, and the use of analogies are
only the first steps in studying physi-
cal processes. A more precise and rig-
orous examination of the phenom-
ena must follow. We don’t want you
to get the impression that dimen-
sional analysis is omnipotent. Before
using it in any of its forms, you
should try to imagine the physical
process more clearly and think hard
about the characteristics that are of
interest. Only on this condition can
one hope to succeed.

We leave you with some problems
to think about on your own.

Problems

1. Find the formula describing the rela-
tion between a planet’s mass M, its radius
R, and the minimum period of rotation

about its axis. Take into consideration that
the existence of such huge “balls” as the
planets depends on the gravitational inter-
action of the particles from which these
“balls” are made. What is the minimum
rotation period for a planet whose mass and
radius are equal to the Earth’s? Work out an
order-of-magnitude estimate.

2. The linear dimensions of two geo-
metrically similar steel tuning forks differ
by a factor of 3. How do the frequencies of
these tuning forks differ?

3. Find the dependence of the pulsation
period of a gas bubble formed at a point ex-
plosion deep underwater if energy E was
released and the water pressure equals p.
Also estimate the maximum size of the gas
bubble. How does the pulsation period de-
pend on the depth H?

4. Estimate the pressure in the center of
a star of mass M and radius R. Calculate the
same thing for the Sun (M, = 2. - 10 kg, R,
=7 10° km), a white dwarf (R, = 10° km),
and a neutron star (R =20 km). The masses
of the white dwarf and neutron star are
close to that of the Sun.

5. Compare the surface tension of the
“nuclear liquid” discussed above and that
of water.

ANSWERS IN THE
JULY/AUGUST ISSUE

The Pillbug Project: A

Guide to Investigation
by Robin Burnett
illustrated by Sergey Ivanov

to some people, anyway. They’re

(grades 3-7)
#PB-93, 1992, 112 pp. $16.50

20009 or call (202) 328-5800.

They don’t bite, they aren’t slimy, they
don’t slither, and they are kind of cute—

pillbugs—perfect classroom pets to
introduce your students to what science
is really all about—Ilearning directly from the world around them.
The Pillbug Project is an innovative approach to introducing
scientific inquiry. Concepts of cooperative learning, a variety of
assessment techniques, and reproducible pages to form individual
student logbooks give this volume a solid pedagogical framework.

wE
BLIBUG -
| PROECTY .
e ,

All orders must include a postage and handling fee of $3.50 for the first
book and $1 extra for each additional book. Orders of $25 or less must be
prepaid. Orders to be billed must include a purchase order. Send order to
Publication Sales, NSTA, 1742 Connecticut Ave., NW, Washington, DC
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LOOKING BACK

Galculating 7o

The contribution of Christiaan Huygens

N HIS FAMOUS TREATISE

Measurement of the Circle,

Archimedes (ca. 287-212 B.c.), the

greatest mathematician of antig-
uity, gave the following approxima-
tion for the value of n:

10 10
LY
71" <°7g

or, in decimals,

3.14084507 < 1t < 3.14285714.

(The correct value of n to eight deci-
mals is 3.14159265.) He created the
classic and, perhaps, the most natu-
ral method for computing : since it
is the length of a circle of diameter 1,
this number can be approximated by
the perimeters p_and g, of regular n-
sided polygons inscribed in and cir-
cumscribed about this circumference
(fig. 1), so forn =3,

pn<n<qn'

As the number n of sides in-
creases, the polygons approach a
circle, and their perimeters mono-
tonically approach . So, in principle,

Figure 1

by Valery Vavilov

we can attain as small an error as we
want by choosing a sufficiently large
n. [As obvious as they seem, these
considerations turn out to be rather
difficult to corroborate thoroughly
when treated more rigorously—
you’ll hardly find a geometry text-
book in which it’s proven that, say,
the sequence p_has a limit. For this
reason, we’ve inserted a more de-
tailed discussion of the definition of
n (beginning on the next page), which
can be regarded as a sort of introduc-
tion and postscript to this article.—
Ed.]

To obtain his approximation,
which remained unsurpassed for
many centuries, Archimedes had to
compute the perimeters of inscribed
and circumscribed 96-gons; in fact,

317—?< Dos < Jog <3%.
His followers, in their struggle for an
€Ver more accurate approximation,
managed to improve it by increasing
the number of sides. (A short history
of these efforts can be found in the
Kaleidoscope of the January/February
1991 issue of Quantum.)But in 1654
a totally unexpected result was dis-
covered by the great Dutch scientist
and mathematician Christiaan
Huygens (who was only 25 years old
at the time): to get the precision
Archimedes had attained in comput-
ing =, regular 12-gons will suffice.
This result was published in his trea-
tise On the Discovered Size of the
Circle (De Circuli Magnitudine
Inventa). Huygens achieved his

result only by improving the tech-
nique for calculating the perimeters
of regular polygons. His work was
based on new ideas, which were fur-
ther developed in our time. His basic
idea can be formulated as follows.
Sincep <m<q, foralln>3, nlies
in the interval (p,, q ). Let’s divide
this interval into three equal parts
(fig. 2). Can we say in advance which
of these parts contains the number nt?

(2/3)pn + (1/3)qn 173)p, + (2/3)qn

. el

pl’l ql’l

Figure 2

One of the main results of Huygens's
work is that © always lies in the left
interval—that is, for all n > 3,

n< By ¥ E q (1)
3= o3
It is this fundamental inequality that
allowed Huygens to surpass
Archimedes. Let’s prove Huygens’s
result and then consider some related
problems.

The proof of the Huygens formula

I'll break the proof of inequality (1)
down into several steps. Throughout
the article, parentheses will denote
the areas of polygons; so (XYZ) is the
area of triangle XYZ, and so on. The
term “segment” will be used for a
portion of a circle cut off by a chord.

CONTINUED ON PAGE 48
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What is 7c?

The first section of this note is a sort
of preamble to “Calculating n”; the
second part is a kind of afterword.

The definition

Some students, when they are asked
to prove that 3 < 7t < 4, say something
like “There’s nothing to prove, because
everyone knows that n = 3.14.” This
answer reminds me of my friend’s fa-
vorite story about a handbook for for-
esters, which gave, along with lots of
other useful information, an approxi-
mate formula for estimating the vol-
ume of a tree: V = nD*h/4, where D is
the diameter of the tree, h is its height,
and ©is “a mathematical constant that
for pine trees is assumed to be equal
to 3.”

To tackle the problem of estimating
the number r correctly, one must start
with a definition of n. The most com-
mon one (though not the only one) de-
fines m as the ratio of the circumference
of a circle to its diameter. (Of course,
it must be accompanied by a justifica-
tion—that is, a proof that this ratio is
the same for all circles.) Now one may,
and even should, ask: what’s the length
of a circumference? This question also
has a standard answer: it is the value
approached by the sequence of perim-
eters p_ of regular n-sided polygons
inscribed in the circle as n approaches
infinity; in other words, the limit of
this sequence. In particular, for a circle
of diameter 1, this limit simply equals
7w, and this will be the case we’ll exam-
ine further.

So now we have the accurate defini-
tion we wanted. But it doesn’t help us
much, because we don’t know how the
sequence p, approaches m: do the in-
equalities 3 < p, < 4 imply a similar es-
timation of « or don’t they? Also, now
that we’ve stepped onto the path of
mathematical rigor, we should go all
the way to the end and justify the defi-
nition of the circumference, too—that
is, prove that the sequence p_ does ap-
proach some value after all. To this end
it suffices to show that this sequence
is monotonic (in the case of p , increas-
ing) and bounded; then the existence of
the limit will follow from the well-

known Weierstrass theorem—one of
the first theorems on limits!. The
boundedness of the perimeters p, is the
easier part of the matter: p_for anynis
less than the perimeter of an arbitrary
circumscribed polygon because, in gen-
eral, the perimeter of any convex poly-
gon is less than the perimeter of any
polygon containing it. (To prove the
last statement, one can turn the outer
polygon into the inner one by succes-
sively cutting off pieces along the sides
of the inner polygon, as in figure 1,
where the numbers indicate the order
of the cuts—each cut diminishes the
perimeter of the outer polygon, since a
straight line is the shortest distance
between two points.)

Figure 1

But what about the monotonic
growth? Clearly, p, < p, for anyn >3,
because the inscribed 2n-gon can be
always constructed so as to contain the
n-gon (see figure 1 in “Calculating n”)
by adding n midpoints of its circum-
circle arcs subtended by its sides to the
n vertices of the n-gon. Thus, any sub-
sequence of the sequence p_ obtained
by consecutive duplication of the num-
ber of sides—that is, any subsequence
of the foff B, By Py = Pyagr -
increases monotonically. So we can
simply confine ourselves to one of
these bounded and increasing subse-
quences—say, the subsequence p,, p,,

Dy -
limit of this subsequence.

., P3.0n, ..., and define  as the

'This theorem can be found in any
beginning book on real analysis—for
example, Real Variables by John M. H.
Olmsted (New York: Appleton-
Century-Crofts, 1956).—Ed.

Such a definition is absolutely cor-
rect, though somewhat clumsy: it
leaves us in the dark as to whether the

limits of other such sequences (like Don

or Ps.on) are the same; and we still
haven’t proved that the sequence p_ has
any limit at all. However, this defini-
tion allows us to determine 7 to any
desired accuracy (for instance, to prove
the inequalities with which we started:
3 < w < 4). Indeed, since it’s the limit of

the strictly increasing sequence Pj.91,

the number = is greater than any of its
terms; in particular, © > p, = 3 {the side
length of a regular inscribed hexagon is
equal to the radius, which is 1/2 in our
case). On the other hand, as we’ve
mentioned, the perimeter g, of any cir-
cumscribed regular polygon is greater
than any of the perimeters p_, so it’s

not less than their limit lim p, .. = 7.
n—eo <’

In particular, for a circumscribed
square we have g, = 4 >n. To prove the
strict inequality & < 4, one can insert
the perimeter g, of the circumscribed
octagon between m and ¢, © < g, and
g,<q, and also g, < g foranyn >3
(the 2n-gon can be obtained by cutting
off all the corners of the n-gon, thus di-
minishing its perimeter—see figure 1
in “Calculating ©”).

By the way, we’ve come across an
important inequality here: g, > g, ,
which means that 4, 5= is a decreasing

sequence and, therefore, has a limit.
This fact can be used to prove (at last!)
that the sequence p, (and g ) converges
to some limit.

First, we notice that

0<q,-p,=p,1—q,/p,) =0

as n — oo, because the p ’s are bounded,
and g /p,_ is the ratio of similarity of the
circumscribed regular n-gon to the in-
scribed regular n-gon and, obviously,
tends to 1 as n — . In particular, as

k — o0, g gk — P39k =0, 50 %gﬂoqs.zk

= %ﬂpg.zk = m. Now, p_< g 5« for

anyn=3,k>0,s0p, < k]'i_r)riqg.zk =
in the same way, the inequality gq_ >
D3 o« implies g, >« for any n > 3. Fi-
nally,O<n-p < q,-p,—0asn— e,

which means that il_r)r:opn does exist

and equals &t. Similarly, ,111_r>13° dn =T
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So, with some effort we’ve managed
to prove that the equality il_ﬂrolo Dn can

be correctly adopted as a definition of
the number . The proof that p_ in-
creases is even more sophisticated and
lies outside the scope of this note.

You may want to return to the ar-
ticle at this point and meet me here
again when you're through.

Hands-on computing

Now we'll follow in the ancient
footsteps of Archimedes (and follow up
on the definition of n presented in the
first section of this note). To find an
approximate value of w, one can calcu-
late the perimeters p_of regular n-gons
inscribed in a circle.

Figure 2 suggests an efficient way to
perform these calculations. Denote by
a, the side length of such an n-gon for
a circle of radius 1. Then in figure 2 we
can label AB =a, , AC = a /2. Applying
the Pythagorean theorem to the right
triangles ABC and OAC (where O is
the circle’s center), we get

a%n = AB?

= AC* +BC?
2
= %f— +(0B-00)

So we can start with some k-gon and,
using this formula over and over, find
the side length and the perimeter for
the k - 27-gon for an arbitrarily large n.
Then the perimeter will be an approxi-
mation of 2. In particular, for k = 4—
that is, starting with a square whose

side length is a, = \/p—we get

Figure 2

agn = 2—,/4—(1%,,_1
= 2—\/4—(2-,/4—11;_2 j
= 2—,12+,/4-a§n,2

2+\/2+~--+\[2+\/4—a‘%

= D= 2+\/2+---+\/§.

n-2 roots

:2—

-

Thus, the number = is the limit of
the following expression as m — co:

Lp o =omfa o 2siv2.
b) 2

m roots

This formula is beautiful but not too
convenient for calculations. We'll see
below that it’s much better to compute
both perimeters p, and g, simulta-
neously: the calculations will be sim-
pler; both the lower and upper bounds
will be obtained; and we’ll be able to
apply the Huygens formula, which is
more exact (see “Calculating ©”).
Look at figure 5 in “Calculating r.”
We can assume that the chord AB in
this figure is a side of a regular in-
scribed 2n-gon, so AB = a, . Then seg-
ments BC and CA are halves of two
sides of the regular circumscribed 21n-
gon, so BD = 2BC = b, —the side
length of the circumscribed 2n-gon.
Also, it’s clear that segments AH and
BE are halves of sides of the inscribed
and circumscribed n-gon, respectively:
AH =a [2, BE = b /2. By the formula
obtained in step 4 of the proof of the
Huygens formula in “Calculating w,”
BD is the harmonic mean? of AH and

Af a and b are positive real
numbers, then their geometric mean is

defined as /ab, while their harmonic
mean is 2ab/(a + b). It's not hard to
show that the harmonic mean of two
numbers is never greater than their
geometric mean. For a fuller
discussion see, for example, An
Introduction to Inequalities by Edwin
Beckenbach and Richard Bellman
(MAA New Mathematical Library,
1961).—Ed.

BE, so N

— 2'an/Z'bn/2 _l
bZn - an/2+bn/2 - zh(an/ bn )I

where h denotes the harmonic mean.
Multiplying both parts by 2n, we get

-1
-1, -1
+
Qon = h(pn/ QH) = [pLQ"q_n} L
(Check this formula yourself.) Further,
the right triangles AHB and BAD are
similar (¢BAH = ZABD). Therefore,
AB:AH =BD :AB,so AB*=BD : AH,

or
a a
dn =\ bZn ?n = g(bZHJ _217_)/

where g denotes the geometric mean.
Multiply the last formula by 21 again:

p,,= 8P, q,,)

So we start with some small &, find
q, and p,, and then successively com-
pute the harmonic and geometric
means of the last two terms of the
emerging sequence q,, Py, 9y Py Dy
Dy --- - The results for k = 3 are pre-
sented in table 1 in “Calculating n.”
The limiting value of this sequence, as
we know very well, is 2nr, where 1 is,
of course, the radius of the circle in
question. I advise you to check table 1
on your own—the most primitive cal-
culator will suffice; and if you choose
the right sequence of calculations, you
won’t even have to write down any in-
termediate results—just the values of
the perimeters. As a theoretical exer-
cise, try to prove that when we start
with two arbitrary numbers g and p, ¢
> p > 0, the limit of our sequence is

(qp/v QZ—PZ) - arccos (p/q). What

will the limit be if we replace the har-
monic mean in our procedure with the
arithmetic mean? (In this case, the
limit is called the Schwab mean of the
initial numbers g and p.)

—Vladimir Dubrovsky

Y,

1
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CONTINUED FROM PAGE 45

Step 1. Let MAB be an isosceles
triangle inscribed in a segment cut off
from a circle by the triangle’s base
AB, and let CKL be the triangle
formed by the tangents to the circle
at points A, B, and M (fig. 3). Then

(MAB) < 2(CKL). (2)
C

Proor. Draw the altitude CH. By
the similarity of triangles CKL and
CAB,

(MAB):AB-HM
(CKL) KL-MC
_AC AK
" KC KC

( AK) AK

=1+ g

KC

Since the tangents KA and KM are of
equal length, AK/KC = KM/KC < 1.
It follows that the last expression in
the equalities above is less than 2.
Step 2. The area s of the circular
segment AMB in figure 3 satisfies the
inequality
<(4Bc) )

Proor. Let’s approximate the seg-
ment from the inside by the se-
quence of inscribed polygons ob-
tained by adding isosceles triangles
(colored red in figure 4) constructed
on the sides of the previous polygon,
starting with the triangle ABM. First,
we add triangle AMM,, where M, is
the midpoint of arc AM, and do like-
wise for the side MB; then we add
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A
Figure 4
four more triangles, all congruent to
AM M,, where M, is the midpoint of
arc AM; and so on. If R, is the area
of triangle ABM, R, is the area of
AMM,, R, the area of AMM,, and R
the area of each of two tnangles added
at the nth step, then

R, +2R, +2°R +...+2°R +..=8.

Similarly, let’s approximate the seg-
ment from the outside by cutting
pieces from triangle ABC (the blue
triangles in figure 4), making the cuts
along the tangents at points M, M,
and all the other vertices of the red
triangles as they appear during the
process of approximation. If B is the
area of triangle KLC, and B, B,, ... are
the areas of the successive blue tri-
angles, then

B,+2B +2°B, + ...
+2°B_+...=(ABC)-s.

By inequality (2) in the first step of
the proof, R < 2B ; multiplying by 2~
and summing over all n, we get s <
2J(ABC) - 5], so s < (2/3](ABC).

Step 3. Now, at last, we can get
the length I,, of arc AB. Let’s prove
the following lemma of Huygens,
which is interesting in its own right
(refer to figure 5):

E

F
Figure 5

Lemma. If AH is the perpendicular
dropped from A onto the diameter
BF of the circle and D is the point
where the extended chord FA meets
the tangent at B, then

1 2
1 —AH+~=BD.
AB < 3 3 (4)

Proor. The arc length 1, can be
represented as the area S of the sec-
tor OAB of the given circle (O is its
center) divided by r/2—half the
circle’s radius. Indeed, if £ ABC = 9
(in radian measure), then arc AB =
(8/2m)(2nr) = 6, while the area of
AOB = (0/2n)(nr?) = 6r2/2, so arc AB
= (area of sector)/(z/2). So let’s calcu-
late the area S. Since tangents CA
and CB to circle O are equal, the mid-
point C of the hypotenuse BD of right
triangle ABD is equidistant from B
and A. Therefore, ABC is just the
same isosceles triangle with respect
to the circular segment AB as the one
we considered in the previous steps,
and the area of the segment s <
(2/3)(ABC) by inequality (3). It fol-
lows that the area of the sector is

S=(OAB)+s<(OAB)+ %(ABC)

= é(OAB) + %(OACB),

where (OACB] is the area of quadri-
lateral OACB. Now

(OAB):%:OB-AH:AH-%,

(OACB)=2(0OBC)=BC r= BD%,
and therefore
s 1 2
i AH+ZBD.
4B= 70 3 3

Step 4. In the situation established
in the previous step (fig. 5), let the
extensions of the radius OA and the
tangent BD meet at E. Then

2 1
lig <= AH+—BE.
AB <7 3

Proor. All we need to do is show
that BD is less than the arithmetic
mean (AH + BE)/2 of AH and BE,




since in this case, according to in-
equality (4),
Liz <lAH+%7AH+BE
3 3 2
=2 AH+ L BE.
3 3

_2 44, +1ER,
3 3

Multiplying this by n, we get the

2

2 X4

b'¢
1- = 4=
<CO8X < (7)

24"

These inequalities imply sin x = x —
x°/6, cos s =1 — x*/2, and so sin x —
x cos x = x°/3, x — sin x = x3/6 (the

Some fancy algebra will allow us to . i 2
H f 1-
compute BD. By the similarity of tri- })tam((i) uygens tormuld in.inequa n D, q,
angles FBD and FHA and of OBEand 7 '
OHA, we have In pursuit of accuracy 3 2.59807621 | 5.19615242
We've established that the num- 6 3.00000000 | 3.46410161
BD=AH- FB _ AH 2FO ber = lies in the first third of interval 12 3.10582854 | 3.21539030
FH FO+OH (p,, g, for all n > 3. To determine its 24| 3.13262861 | 3.15965994
___2AH _ 2AH location more exactly, consider the | 48 3.13935020 | 3.14608621
" 1+OH/OB 1+ AH/BE ratio of the lengths of intervals (r, g, ) ?62 g'ﬂlggé% giﬁgl;ﬁi
9AH-BE and (p , w). Calculations show that 9 14145247 3. 730
e it _ _ : : 384 | 3.14155760 | 3.14166274
AH+BE' this ratio, (g, — n)/[r - p,), is quite
close to 2 for large enough n (see 768 | 3.14158389 | 3.14161017
.. tables 1 and 2). Based on these calcu- 1,536| 3.14159046 | 3.14159703
The last expression is called the lations we can suppose with cer- 3,072| 3.14159210 | 3.14159374
hamflomc me;zn it = AE ar}c} b= BE tainty that this ratio approaches 2 as
iss footfiots 4 ofi page 47) it's qUIt€ ) increases indefinitely—that is, Table 1
easy to prove that the harmonic
mean of positive numbers a and b lim da=T _y
e - : im-=2— =2,
never exceeds their arithmetic mean: P (5) n (q,-m)/m-p)
5 1
oz < (o) )2+ %ab I'll prove this fact using some el- 3 3.78012440
a+b a+b ementary calculus. 6 2.27772383
_(a+ b)* _a+b Inspecting figure 6, in which seg- 12 2.06345553
“20a+h) 2 ments AA, and EE, can be consid- 24 2.01552959
ered sides of an inscribed and a cir- 48 2.00386204
. . cumscribed n-gon, respectively, we 96 2.00096424
Now for theilast step, in which we Find . =7 @i T, 7, = A bk 192 2.00024098
derive inequality (1). o z 384 2.0006024
Step 5. Let AA be a side of a regu- 768 2.0000150
lar inscribed n-gon, and let it be par- 4n —T _ 1536 2.00000376
allel to side EE, of the regular n-gon 7-—p, 3'072 2.00000094
circumscribed about the same circle 1 sin(n/n) — (v/n) cos(n/n) ’
so that its sides are parallel to those e d (nn) — s’in(n/n) '
of the inscribed n-gon (fig. 6). Figure ! d : Table 2
G can b.e obtalne.d from figure 5 by Asn — o, the first factor on the right
adding its reflection through the di- side of this cquation approaches 1
ameter 8. 5o the length of arc A4, (cos x — 1 as x — 0). So it suffices to a 3Pt 340
is
show that
‘ 3 3.464101615137
f(X) _SIX—XCOSX s, 6 3.154700538379
X—-sinx 12 3.142349130544

24 3.141639056219

as x — 0 (I replaced n/n with x). A 48 3.141595540408

little later, I'll prove the following 96 3.14159283380
F estimates: for any x > 0, 192 3.141592664850
384 3.141592654293
B o8 5 768 3.141592653633
X-——<sinx<x-——+7o5, (6] | 1536 3.141592653592
3,072 3.141592653589

Figure 6 £, Table 3
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error of approximation is negligibly
small with respect to x°). Thus,

3/

X /3
=——=9,

f(x) 77

To prove inequalities (6] and (7),
consider the function

3 5

. x° | X
=— +x—— 4
fo(x)=—sinx+x 7

and its iterated derivatives

-

filx)=f (X)z—cosx+1—X7+—i-4—,

o) = () =simx -+ 5,
2

frlx)=f (x)= COSX—1+XT,
f,(x)=f; (x) = -sinx +x.

By the well-known inequality, sin x
< x for x > 0. So the derivative f,(x) of
the function f,(x] is positive for x > 0,
which means that f,(x) increases for
x>0.Butf,(0)=0,s0f,(x)>0forx > 0.
This just happens to be the left in-
equality of inequality (7). Applying
exactly the same argument to func-
tion f,(x) and its derivative f,(x), we
prove f,(x) > 0 for x > 0, which is the
left inequality of inequality (6). Simi-
larly, f,(x) > 0 and f (x) > O, which are
the right inequalities of inequalities
(7) and (6), respectively, which com-
pletes the proof of equation (5).

Equation (5) brings us to the fol-
lowing qualitative conclusion: the
number m, lying in the interval (p,,
(2/3)p, + (1/3)q,), for all sufficiently
large values of n is located much
closer to the right end of the interval
than to the left end.

The efficiency of the Huygens formula

It’s interesting to compare the two
approximate formulas for m:
n=p,

which might be called
Archimedes formula, and

the

9 1
TE:gpn_*—ECInl
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which Huygens obtained in the work
mentioned above.!

The greater efficiency of the sec-
ond formula can be shown by direct
computation. It’s really exciting to do
this work yourself with your calcula-
tor, and if you follow the guidelines
on pages 4647 (“What Is n2”), you'll
complete your own tables 1 and 3 in
no time at all (in these two tables the
correct decimal digits of m are printed
in bold).

Another way to compare the
efficiency of the Archimedes and
Huygens formulas doesn’t require
any numeric calculations of p_and g
at all. One can derive and use so-
called a priori estimates of the
accuracy of the formulas—that is,
inequalities that allow one to
estimate the differences n - p, and
(2/3)p, +(1/3)q, — min terms of n in
advance, without computing them.
Such estimates allow us to plan
calculations, and this is their special
advantage: from them we can find
how big n must be for the desired
accuracy to be achieved. Using
inequalities (6) and (7) and carrying
out simple arithmetic calculations,
it’s easy to obtain the following a
priori estimates (you could do it as an
exercise):

i<n_p <£ {8)
H2 n 1’12’
2y sdy ne®
3 n 3 n H4

It follows immediately from
these inequalities that the rate of
convergence of the difference
(2/3)p, +(1/3)q,—ntozeroasn — oo
is greater than that of the difference
T-p,.

Actually, the work of Archimedes
has reached us as a fragment
containing three statements. Only one
of them can be regarded as an
indication of which of the two
values—p, or q,—he considered an
approximation of 1. And this value is
q,, rather than p,.. But historians think
that this statement was added to the
text later. Besides, it’s pretty likely
that g, was preferable to p,, simply
because the Archimedean approxi-
mation for the former (22/7) is simpler
than for the latter (223/71).—Ed.

To compare these rates, let’s find
the values of n that will ensure an
accuracy of & to, say, the nearest
hundredth. Since n — p_ < 6/n? to
calculate m using the Archimedes
formula to the desired accuracy
it’s enough to take n such that
6/n* < 102—that is, n > 25. Us-
ing the Huygens formula, it’s
enough to choose n such that 64/n*
< 102—that is, n 2 9.

You can see from this example, as
well as from inequalities (8) and (9),
that the Huygens formula gives us
the desired accuracy more quickly.

You can try to obtain your own
formulas for n using polynomial ap-
proximations for sin x and cos x. For
example, from inequality (6) one can
derive

C
<7

n

m— 4p2n — Dn
3

with some constant c. It’s interesting
that this estimate involves only in-
scribed regular polygons.

The keen observation made by
Huygens—that the circumference is
half as far from the perimeter of the
inscribed regular n-gon as from that
of the circumscribed regular poly-
gon—was generalized not so long
ago. It was proven that a similar state-
ment is true for any smooth curve
(without corners) bounding a convex
figure. More exactly, it reads like this.

Let L be the length of a convex
closed curve without corners, P, the
maximum of the perimeters of n-
sided polygons inscribed in the curve,
and Q, the minimum of the perim-
eters of circumscribed n-gons. (Poly-
gons with such extremal perimeters
do exist!) Then
lim Gods, 2.

n—e L—P
The proof of this and many other
interesting theorems can be found
in the book Lagerungen in der
Ebene, auf der Kugel und im Raum
by L. Fejes Toth (Springer-Verlag, in
German). Q)
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IN THE LAB I

Double, double toil and trouble

Boiling a witch's brew of toluene and water

HE PROCESS OF BOILING is

familiar to everyone. The water

in a kettle is said to be boiling

when an intensive formation of
vapor occurs throughout the liquid.
Here lies the principal difference be-
tween boiling and evaporation: with
evaporation the processes of vaporiza-
tion take place on the open surface
only, whereas boiling begins when
the saturated vapor pressure in the
bubbles becomes equal to the exter-
nal (atmospheric) pressure.! If the
saturated vapor pressure is lower
than the atmospheric pressure, the
bubbles that randomly appear in the
liquid collapse and disappear.

Boundary boiling

It’s well known that every liquid
is characterized by a definite boiling
point at a specific atmospheric pres-
sure. For example, water boils at
100°C at normal atmospheric pres-
sure (p, = 760 mm-Hg), while the
boiling point of toluene (C H,) is
111°C.

What's the boiling point of a “mix-
ture” of toluene and water {two lig-
uids that don’t actually mix). You
might suppose the boiling point is

'Actually, for the bubbles to grow
the vapor pressure in them must
exceed the sum of the atmospheric
pressure, the pressure of the liquid
lying above, and the pressure caused
by the surface tension of the liquid. In
most cases, though, the second and
third pressures are much less than the
atmospheric pressure and so we can
neglect them.
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somewhere between 100°C and
111°C. But if you pour toluene into a
test tube containing water (toluene’s
density is lower, so it will form the
upper layer of the “mixture”) and
heat the tube in a water bath, you'll
find that boiling begins at approxi-
mately 95°C! (You’ll have to use a
sufficiently precise thermometer.)
What’s going on here? The experi-
ment itself suggests the answer. If
you watch carefully, you'll notice
that boiling begins at the boundary
dividing the two liquids. Here we're
dealing with so-called “boundary
boiling.” In this case the gas bubble
appearing at the boundary forms from
both water and toluene, and the
bubble contains saturated vapor of
each liquid. At the boiling point, the
vapor pressure in the bubble equals
the sum of the partial saturated vapor
pressures of toluene p (7)) and water

p(T,):
p,=plT,) +p,(T,)

which is Dalton’s law. So the satu-
rated vapor pressure of water and
toluene (each taken separately) must
be lower than the atmospheric pres-
sure, which means that the boundary
boiling point T, is lower than the boil-
ing point of toluene or water.

The following experiment is par-
ticularly impressive. Put some carbon
tetrachloride (CCl,), whose boiling
point is 76.7°C, in a test tube, and
then pour some water on top of it. To
make the boundary more distinct,
you can color the carbon tetrachloride

with an iodine
solution before-
hand  (fig. 1).
When the test
tube is heated in
a water bath,
boundary boiling
starts at only
65°C. When you
do this experi-
ment, make sure
you heat the wa-
ter gradually so
you don’t cause
“bump” boiling
of the liquids,
which could re-
sult in splatter-
ing.

When heating the water bath you
should always use a hot plate; never
use an open flame (Bunsen burner or
alcohol lamp).

Carbon tetrachloride and toluene
are among the reagents that can be
found in any high school chemistry
lab. But you should keep in mind that
they’re hazardous and must be
handled with care. Use small
amounts and conduct the experi-
ments in a hood.

It’s interesting that the bubbles rise
to the surface and burst. The carbon
tetrachloride vapor then condenses,
and the drops sink.

An experiment for observing
boundary boiling that’s easy to do
involves kerosene poured on top of
water in a test tube (the kerosene can
be colored with a drop of iodine solu-
tion). You can see quite clearly that

—

Q0
Figure 1

|
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by just looking it up in
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ourselves? That is, can

we do an experiment

-
_,//\/; + and compile our own
10 20 40 60 80 100 £(°C) reference table?
65 Let’s look at one of
Figure 2 the simplest methods of

boiling begins at the boundary, but
the boundary boiling point is so close
to the boiling point of water that you
must heat it slowly.

Is it possible to predict the bound-
ary boiling point? It’s easy for carbon
tetrachloride and water if you happen
to have data on the dependence of the
saturated vapor pressure of these lig-
uids on temperature.

Figure 2 shows a graph of the tem-
perature dependence of saturated va-
por pressure for carbon tetrachloride
and water (black lines); the red line
shows the sum of the two:

pq(T) =D HZO(T) + D5 ccl (T)

The point where the sum intersects
the line p = p, = 760 mm-Hg gives the
boiling point at the boundary of the
water and carbon tetrachloride: T, =
65°C. The vapor pressure of H,O is
190 mm-Hg, while the vapor pressure
of CCl, is 570 mm-Hg; the sum equals
the normal atmospheric pressure.

Unfortunately a simple calculation
like this doesn’t always lead to the
actual result. Quite often you have to
consider the mutual solubility of the
components.

It’s curious that if you continue the
boundary boiling for some time,
you'll notice that carbon tetrachloride
boils away more quickly than water
does. Why? Try to estimate relative
rate at which the two liquids boil
away (the density p of CCl, is 1,600
kg/m3).

obtaining such a rela-
tionship. We'll need a beaker, a gradu-
ated test tube, a thermometer, a ring
stand and clamp, and a hot plate.

Fill the beaker with cold water and
place it on the cold hot plate. Partially
fill the graduated test tube with wa-
ter and, turning it upside-down, place
it in the beaker. Use the clamp to
keep it in place. Put the thermometer
in the beaker and clamp it in place as
well. Begin heating the beaker. As the
temperature rises, record the change
in volume of the vapor in the tube.

The vapor in the tube is a mixture
of air and saturated water vapor. The
total pressure, naturally, equals the
atmospheric pressure (we can neglect
the pressure of the water column—it
amounts to only a few millimeters):
py=p,T) +p(T), where p (T)is the air
pressure in the tube and p (T) is the
saturated vapor pressure at tempera-
ture T. At the start of the experiment
you can neglect the water vapor pres-
sure (at 20°C it equals only 17 mm-
Hg). As the temperature increases, the
contribution of the water vapor in-
creases.

Using the Clausius-Clapeyron-
Mendeleyev equation, we can write
out the following statement for the
air in the test tube:

Vo _ y A4
T T
and
N7
pa 0 Vv TO Y

where p, is the initial pressure (equal
to the atmospheric pressure), V, and
T, are the initial volume and initial
air temperature, respectively. Now
that we know how the volume and
temperature change, we can find the

. saturated vapor pressure at the given

temperature:

= 1__1_i0_
Dy Po( TOV]

This relationship between satu-
rated vapor pressure and temperature
that we found experimentally agrees
with the reference table. If the tem-
perature is higher than 80°C, the er-
ror is less than 5%. Low tempera-
tures cause a deterioration in
accuracy.

Why does this happen? Think
about what causes the error and try to
come up with ways of improving the
accuracy of our method. O]
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Results of Twenty-Four Challenge

In our September/October issue,
we gave you the opportunity to show
off your math skill and ability by
playing Twenty-Four® a game where
teams of players must add, subtract,
multiply, and/or divide to arrive at
the solution of 24. We received more
than 30 entries, from classes at all
grade levels, and we judged them in
two categories: 8th grade and below,
and 9th grade and above. Due to space
limitations, we were unable to report
the outcome in the March/April is-
sue. Here are the results.

8th grade and below. Grand Prize:
Bernadette Vachetto’s 8th grade at
Churchville-Chili Middle School in
Churchville, New York. First Run-
ner-Up: Mr. Kuster’s 8th grade at
Churchville-Chili Middle School in
Churchville, New York. Second Run-
ner-Up: Sherry Welch’s 8th grade at
Gates-Chili Middle School in Roch-
ester, New York. Third Runner-Up:
Phyllis Perkins’s 5th-6th grade at
University Elementary School in
Bloomington, Indiana. Fourth Run-
ner-Up: Paul Larson’s 8th grade/peri-
ods 2 and 3 at Loyal Public School in
Loyal, Wisconsin.

9th grade and above. Grand Prize:
Jean Kahn’s 9th-12th grade at
Shoreham-Wading River High School
in Shoreham, New York. First Run-
ner-Up: Thomas Morrow’s 10th-12th
grade at East High School in Roches-
ter, New York. Second Runner-Up:
Mzr. Detzel’s 10th grade/period 4 at
Shaler Area Senior High School in
Pittsburgh, Pennsylvania. Third Run-
ner-Up: Mrs. Schilstra’s 9th grade/
period 1 at Penfield High School in
Penfield, New York. Fourth Runner-
Up: Mrs. Schilstra’s 9th grade/period
4 at Penfield High School.
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Prizes were generously donated by
the Eastman Kodak Company-21st
Century Learning Challenge. Con-
gratulations and thanks to all who
participated.

The Rain Forest Imperative

For years scientists and conserva-
tionists have been spreading the word
about the plight of tropical rain for-
ests. Now there is an educational
study unit and video to help students
understand the complex and urgent
issues surrounding the rain forest cri-
sis.

“The Rain Forest Imperative,” de-
veloped by the nonprofit Conserva-
tion International and sponsored by
McDonald’s Corporation, challenges
students to learn more about tropical
rain forests, their modern day eco-
nomic and cultural value, and the
threat of deforestation. The 25-
minute video highlights the Amazo-
nian rain forest in Brazil and is accom-
panied by a study unit providing
classroom activities in life science,
geography, and social science cur-
ricula. The imperative encourages
students to define the many issues
contributing to deforestation and
identify its real-world solutions.

To order “The Rain Forest Impera-
tive,” send $9.95 to McDonald’s Edu-
cation Resource Center, PO Box 8002,
St. Charles, IL 60174-8002, or call 800
627-7646.

Quest for the Thinking Computer

Humans will be pitted against
computers once again in the second
annual Quest for the Thinking Com-
puter. The contest, administered by
the Cambridge Center for Behavioral

Studies, will be held in November at
the Computer Museum in Boston,
which features a collection of vintage
computers and robots with over 100
hands-on exhibits illustrating the
evolution and impact of computers.

Last year’s contest drew an audi-
ence of more than 200 people. Ten
judges conversed at each of eight com-
puter terminals in an attempt to de-
termine which terminals were con-
trolled by people and which by
computers. Then they ranked the ter-
minals according to how human-like
the conversations were. As expected,
the two hidden humans had the high-
est overall rankings. But, surprisingly,
one of the six computers fooled half
the judges into thinking it was a per-
son. And three of the judges thought
one of the humans was a computer!

The contest was inspired by a pa-
per published in 1950 by the English
mathematician Alan Turing, one of
the creators of the modern computer.
The 1992 contest will be a restricted
one, requiring computers to be con-
versant on only one topic in order to
give them a fighting chance of deceiv-
ing the judges. The 1992 winner will
receive a bronze medal and $2,000.
Periodically, an open-ended test will
be held. If a computer can fool judges
into thinking it’s a person in an open-
ended test, at least $100,000 will be
awarded to the designers of the sys-
tem, and the contest will be abol-
ished.

Lively debate surrounds the con-
test: will we have the right to turn off
a winning entry? Who should get the
prize, the designer or the computer?
Could the winning computer be con-
sidered “intelligent” or “self-aware”
or “conscious”?

Applications for the 1992 compe-



tition must be postmarked by July 31.
Submissions will be evaluated and
screened, and no more than ten final-
ists will be selected by September 30.
A printout of the conversations gen-
erated during the 1991 competition is
available for a nominal fee; a diskette
is also available. For an application
and additional information, contact
Kathleen Towne at the Cambridge
Center for Behavioral Studies, 11
Waterhouse Street, Cambridge, MA
02138, or call 617 491-9020.

Physical simulations on the Mac

Students can now formulate com-
plex motion experiments on the
Macintosh and see the results of their
experiments in full animation. Inter-
active Physics™ II, a new software
package from Knowledge Revolution,
is a complete motion laboratory that
simulates and measures objects in
motion, driven by physical laws. The
software includes a new simulation
engine, research-level modeling capa-
bilities, and custom experiment
authoring tools.

Interactive Physics lets users draw
and build any number of objects on a
Macintosh screen (squares, rockets,
cars), define motion parameters for
each object (mass, elasticity, charge,
velocity), set the environment of an
experiment (gravity, air resistance,
electrostatics), and then immediately
“run” the experiment, simulating
how the objects would interact in re-
ality. The dynamic simulation engine
mathematically creates smooth
animationlike simulations, whose
measurement data can be displayed
simultaneously in graphical, meter,
or table format.

Interactive Physics is available
from Knowledge Revolution and
Macintosh resellers for a suggested
retail price of $399. For additional
information contact Knowledge
Revolution, 15 Brush Place, San Fran-
cisco, CA 94103, or call 800 766-6615.

Duracell recognizes young inventors

Six talented high school juniors
and seniors with interests in mechan-
ics and electronics are winners in the

tenth annual Duracell NSTA Schol-
arship Competition. To enter, a 9-
12th grade student had to design and
build a device that is energy efficient,
practical, and powered by one or more
Duracell batteries. Over 500 inven-
tions were submitted. The devices
illustrate the inventiveness and cre-
ativity of American high school stu-
dents today.

The first-place scholarship of
$10,000 was awarded to Curt
Klaustermeier, a senior at Triad High
School in Tllinois, for his Battery-Pow-
ered Adjustable Wrench. Aided by a
gear run from a small battery-pow-
ered motor, the wrench opens and
closes with ease. Five second-place
winners each received a $3,000 schol-
arship: Sean Burrows, a junior at
Shoreham Wading-River High School
in New York, invented a visual detec-
tion and warning device; Richard
Peirce, also a junior and Shoreham
Wading-River High School, created
radio-controlled life preserver; Glenn
Scott Simmonds, a senior at the
North Carolina School of Science and
Mathematics, designed an emergency
system that detects light and noise
levels and responds by turning on its
own light; William Thomas Chi, a
senior at Mission San Jose High
School in California, developed a
small portable device that neatly ad-
ministers eye drops; and Daniel Jacob
Shapiro, a junior at Beaverton High
School in Oregon, devised a portable
alarm that safeguards books by
sounding an 85-decibel buzzer when
tilted. Ten students were given $500
scholarships, and 25 students re-
ceived $100 cash awards.

To find out how to enter the elev-
enth annual Duracell NSTA Scholar-
ship Competition, write to Katie
Rapp, National Science Teachers As-
sociation, 1742 Connecticut Avenue
NW, Washington, DC 20009, or call
202 32.8-5800.

—Compiled by Elisabeth Tobia

\
J

Beafactorinte

QUANTUNI

equation!

Have you written an article that
you think belongs in Quantum?
Do you have an unusual topic
that students would find fun and
challenging? Do you know of
anyone who would make a great
Quantum author? Write to us
and we’ll send you the editorial
guidelines for prospective Quan-
tum contributors. Scientists and
teachers in any country are in-
vited to submit material, but it
must be written in colloquial
English and at a level appropriate
for Quantum’s predominantly
high school readership.

Send your inquiries to:

Managing Editor
Quantum
3140 N. Washington Boulevard

k Arlington, VA 22201 j
@« What's happening? 3

Summer study ... competitions ... new books
...ongoing activities ... clubs and associa-
tions ... free samples ... contests ... whatever
it is, if you think it's of interest to Quantum
readers, let us know about it! Help us fill
Happenings and the Bulletin Board with
short news items, firsthand reports, and
announcements of upcoming events.

What's on your mind?

Write to us! We want to know what you think
of Quantum. What do you like the most?
What would you like to see more of? And,
yes—what don’t you like about Quanturn’?
We want to make it even better, but we need
your help.

What's our address?

Quantum
National Science Teachers Assoc.
3140 N. Washington Boulevard
Arlington, VA 22201

Be a factor in the

QUANTUM

equation!
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Math
M51

Let’s use induction over n. For n =
3 the statement to be proved is true:
3% =27, and 2 is an even number.
Now assume that the next-to-last
digit of the number N = 37 is even,
and prove that the same is true for 3N
=37+ 1 Let ab be the last two digits
of N. Then the two last digits of 3N
coincide with those of the number
3(10a + b)=30a + 3b, and since a is
even, the next-to-last digit of 3N is of
the same parity as the next-to-last
digit of 3b. Write out the first few
powers of 3:

31=3, 32=9, 3%=27, 3*=81.

Their last digits are 3, 9, 7, 1, and
they’ll keep repeating periodically: 3°
ends in 3, and so on. These are in fact
the values taken by b, so 3b equals 9,
27,21, or 3. The next-to-last digits of
these numbers are all even (for 9 and
3 they’re simply 0, which completes
the proof by induction.

M52

Since the number ¢ divides ab, it
can be represented as a product uv,
where u divides a and w divides b (we
can take for u the greatest common
divisor of a and ¢). Let w=afu, t=b/v;
then d = ab/c = wt. It follows that

a1992 4 b1992 I C1992 + d1992
s (uW)1992 + (Vt)1992 + (uv)l992 i (Wt)1992
= (u1992 + t1992)(vl992 + W1992),

so the sum in question can be fac-
tored.

M53

Denote by O, O, O, the centers of
the given circles and by 7, r, z, their
respective radii (fig. 1). If segment AB
meets circles O, and O, at their com-

mon point C, then isosceles triangles
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Figure 1

OAB, O,AC, O,BC are similar to one
another (triangles OAB and O ,AC,
say, have a common angle at vertex
A). So the opposite sides of quadrilat-
eral OO,CO, are parallel and, there-
fore, congruent (by a property of the
parallelogram). It follows that

r=0A-00,+0A=0,C+0A

=1’2 +1’1.

The converse is also true: if r = 1|
+1,, then segment AB passes through
one of the common points of the
smaller circles. To prove it, construct
the parallelogram OO,C’O,’, whose
vertices C” and O, lie on segments
AB and OB, respectively (clearly this
can always be done in a unique way).
Triangles O AC’ and O,’C’B are simi-
lar to isosceles triangle OAB, so

0,C’=0A=r1,

which means that C’ lies on circle O,
and

O,B =0,C"=00,=0A-0A
=r-1=1,

which means that O, = O, and that
C’lies on circle O,, which is what we
had to prove. (V. Dubrovsky)

M54

The proof is based on the following
idea: for any two points A(a, fla)) and

B(b, f(b)) on the graph of the given
function f (fig. 2, the rectangle r(A, B)
with diagonal AB covers the segment
AB of the graph, its area S satisfying

AY

fla)

0 a b 1
Figure 2

inequality 24/S < w + h, where w =
b — aisits “width” and h = f{b) - fla)
is its height; this inequality is a direct
consequence of the well-known in-
equality of arithmetic and geometric

means: Vvwh < (w + h)/2.[This in-
equality follows from the fact
that squares are never negative:
(Vv + VR = w+ h +2Jwh 20,
so (w + h)/2 = v'wh . This holds so
long as w and h > 0.—Ed.]

We'll demonstrate two ways of
using this idea. Assume for the time
being that f(0) = 0, f{1) = 1.

(1) Extend function f onto the
whole positive half-axis so it remains
continuous and monotonic (for in-
stance, we can define f(x) = x for x >
1). Assign the label A, to the initial
point (0, 0) of its graph. Take points
A, A, .., A onthe graph such that
the area of each rectangle /A, , A),
i=1,2, ..., 1, equals 1/n” Such points
exist because the function is continu-
ous and monotonic and grows indefi-
nitely. (When point P moves along
the graph, starting from A, , the area
of7{A, |, P) grows indefinitely, taking
on all intermediate values, 1/n? among
them.) For each of these rectangles, the
sum of the width and height is not



less than 24/1/n* =2/n, so the sum of

the coordinates of point A_, which are
equal to the sums of all widths and all
heights, is not less than 2. Therefore,
at least one of these coordinates is not
less than 1, which means that A_lies
on the extension of the graph and the
rectangles cover the graph.

(2] Let’s choose the points B, B,,
..., B, on the graph, starting with B, |0,
0), such that the sum of the width and
height of each rectangle 7(B, ,, B), i
=1,2,...,nis 2/n. (Point B, is simply
the point where the graph intersects
the line y = 2i/n - x; in particular, B,
is the endpoint (1, 1) of the graph—see
figure 3.) The area of each of the rect-
angles is not greater than [(w + h)/22
= 1/n% Dilating the rectangles, if nec-
essary, to make their areas exactly
1/n* we'll get the required covering.

>,
>
X

[e;
0~

Figure 3

If f0) >0orf{1) < 1, the graph must
be completed by vertical segments to
form a continuous curve joining
points (0, 0)and (1, 1) (fig. 4). Similarly,
a curve can be made out of the graph
of any monotonic function (not nec-
essarily continuous—see figure 5).

AY
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Figure 4
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Figure 5

Both arguments work with these
curves as well. (N. Vasilyev,
V. Dubrovsky)

M55

Consider two arbitrary planets. Let
P and Q be their centers. Point X on
the planet centered at P and point Y
on the other will be called corre-
sponding if the rays PX and QY have
the same direction (fig. 6). The regions
on the two planets that are not visible
from the other planet are obviously
two “exterior” hemispheres cut on
the planets by the planes through P
and Q perpendicular to line PQ;
they’re shaded in figure 6. Of any two

T

"equator"

AL

Figure 6

corresponding points on our two plan-
ets (except points on the “equators”
of the hemispheres), only one can
belong to the respective nonvisible
hemisphere. As to the points of the
“equators,” it’s a matter of conven-
tion whether such a point is visible
from the other planet (that is, from
the corresponding point on the other
planet’s equator); but since there are
only a finite number of such equators
for all pairs of planets, their total area
is zero, so we can and will simply dis-
regard them.

Now, take an auxiliary unit sphere
§ and denote by I, the set of its points
corresponding to the points on planet
P that are not visible from any other

Figure 7

planet (fig. 7). It suffices to show that
the sets I, for all planets cover sphere
S without gaps and overlaps; or that,
except for the boundary points of re-
gions I, (which are disregarded), every
point X of sphere S belongs to one and
only one set I,

If X belongs simultaneously to two
sets [, and I ,, then the points on plan-
ets P and Q corresponding to X are
each out of sight from the other
planet, which is impossible, as we've
seen above. So there are no overlaps.

Finally, take an arbitrary point X of
S. Suppose for convenience that the
radius OX is pointing upward (fig. 8).

Figure 8

Let U be the uppermost planet; then
point Y on this planet corresponding
to X is completely out of sight—oth-
erwise, the planet from which it is
seen would be above U. So X belongs
to I, and the covering of sphere S has
no gaps. (V. Dubrovsky)

Physics

After the horizontal velocity v is
imparted to the upper ball, the balls
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will revolve about the center of mass
of the system, which in turn moves
forward with speed v/2. If the upper
ball immediately loses contact with
the table, the only force acting on the
system is the force of gravity. It im-
parts acceleration g to the system and
therefore to the lower ball. For the
lower ball to lose contact with the
table, its centripetal acceleration
must be greater than g.

In the coordinate system moving
with the velocity of the center of
mass, both balls have velocities v/2
that are equal in magnitude, and the
centripetal acceleration equals

(v2) _v*

<=2 al

The lower ball will lose contact with
the table if

—that is,

1,

2g

P52

The simplest way to solve this
problem is to use Newton’s second
law. In a time At a length of cable Al
= VAt is put into motion. If the mass
per unit length of cable is denoted by
u, the mass of the length of cable Al
is equal to Am = pAl = uvAt. This
means that a change in momentum
Amv = uv?At is given to the mass Am
in time At. The impulse that causes
this change in momentum is due to
the difference between the force of
gravity acting on the left and right
portions of the cable. This difference
is equal to mgh. According to
Newton’s second law we can write

Uv2At = ughAt.

From this we get

v =4/gh.
P53

Considering that the gas density is
p = M/V, we can write the equation of
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state for water vapor in the form p =
(p/u)RT, where p and  are the density
and molar mass of water vapor. Boil-
ing takes place when the saturated
vapor pressure becomes equal to the
atmospheric pressure. If the boiling
point of the salted water has been
raised and the atmospheric pressure is
constant, the density of the saturated
water vapor must decrease.

P54

The thermal power generated
when the current passes through the
resistor is partially spent on heating
the resistor and partially released to
the surroundings. In the state of ther-
mal equilibrium (when the resistor’s
temperature remains constant) all the
power is released to the surroundings.

Let’s denote the proportionality
factor between the power generated
in the resistor and the difference be-
tween the temperatures of the resis-
tor and the surrounding air by o.. At a
temperature t, = 80°C the resistance
equals R, = 50 Q (see figure 9). Then
from the equality

V2
?11 =0tz —tp)
we get
2
o= Vi =12 b ;
Ri(t3—tp) Q-K

The spontaneous current oscilla-
tions with the voltage V, =80V across
the resistor are caused by the oscilla-
tions of its resistance. When the tem-
perature of the resistor reaches t, =
100°C, its resistance jumps abruptly
from R =50 Qto R, =100 Q. As a
result, the thermal power generated
in the resistor decreases, and the re-
sistor begins to cool because the rate

R (Q)
A

100 |- € ——
Y A

50 - =
|
. N
99 100 t (°C)

Figure 9

at which energy is being generated in
the resistor is less than the rate at
which energy is released to the sur-
roundings. When the resistor’s tem-
perature falls to t, = 99°C, its resis-
tance changes abruptly from 100 Q
back to 50 Q. The thermal power dis-
sipated in the resistor increases, and
the resistor heats up again because
the rate of energy generation is now
greater than the rate of energy release.
At a temperature t, = 100°C the resis-
tance jumps again, and the entire pro-
cess is repeated.

The period of the oscillations in
the circuit equals

T=1+1,

where 1, is the time it takes the
resistor’s temperature to increase
fromt, tot,, and 1, is the time it takes
the resistor to cool from ¢, to t,. Let's
write the corresponding equations for
the heat balance:

VZ

?2171 =10t; —19) +C(t; — 1),
1
2
2

\%
R2 Ty = Ty0ty — 1) — C(t; — 1)

(since the relative change in the
resistor’s temperature is small, we
can assume that the thermal power
released to the surroundings is con-
stant and equals oft, — t)). Substitut-

ing the given numerical values, we
find

tl=12§0.ls:>T50.23.

The maximum value of the cur-
rent is obviously equal to

and the minimum value is

I1(A)
A
1.6
08} - - .L
| | | i |
| | | | |
| | | I | -
0 01 02 03 04 05 1(s
Figure 10



1%
Lin =R_i:08 A.
Figure 10 shows the graph of the time
dependence of current in the circuit.

P55

A camera obscura is simply a box
with a pinhole aperture. A broad
beam of light rays reflect from every
point of the object and strike the pho-
tographic film inside the camera (fig.
11). For the tiger to appear striped in

-

\T’% L

— ‘x\;\"‘

20 cm

i

Figure 11

the photograph, the beams coming
from the nearest points of adjacent
stripes on the tiger must not overlap
on the film. Therefore, the film must
be a distance x from the aperture that
is greater than d/tan o, where d is the
diameter of the aperture.

Since
12
tano = ——,
L+x
then
2d(L
. @

From this we get

2dL
2d
.22
Z( i j

Since 2d/I << 1, we can neglect 2d/I
as compared to 1 in the denominator
of the formula. We then get

X p—a———

X>-2}£=20 cm

So the camera must measure at least
20 cm from front to back.

Brainteasers

B51

The area of a map with the scale
1 : kis 1/k*that of the territory it rep-
resents. The number of people that
can fit in a certain region is propor-
tional to its area. So if this region is
as big as the map in the problem, its
“population” will be about
(2 - 10%)/(25 - 10") = 0.000008 person.

B52

Let the given number be n = 10a +
b (b is the last digit). Then the de-
scribed operation vields m = a + 4b.
Since 4n —m = 39a is a multiple of 13,
the divisibility by 13 of the number m
is equivalent to that of the number 4n
and, therefore, of n.

B53

Twilight is the period of
semidarkness between sunset and
nightfall. The daylight at this time of
day is the result of sunlight being dis-
persed by the atmosphere at high al-
titudes, where the Sun has not yet set
behind the horizon. High up in the
mountains the atmospheric layer
over the Earth is thinner and the pe-
riod of its illumination after sunset is
shorter. So twilight in the mountains
is shorter too. (Planets devoid of at-
mosphere have no twilight at all, nor
does the Moon.)

B54

In the notation of figure 12 the
area of triangle 1 is equal to
(1/2)ac sin (180°—0)=(1/2)ac sin «,
which is the area of the shaded tri-
angle. Similarly, one can show that
the other two triangles are also
equal in area to the shaded one. (Ac-
tually, triangle 3 is even congruent
to it.) (V. Dubrovsky)

B55

If x is the unknown number of
university students, then each of x +
2 participants in the championship
played x + 1 games, so their total
score, equal to the total number of
games, is (x + 2)(x + 1)/2. The total
score of the x university students
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equals (x + 2)(x + 1)/2 - 6.5 =
(1/2)(x*> + 3x - 11) and is equally
distributed among them: each of
them got (1/2)(x + 3 - 11/x) points.
This must be an integer number of
half points, so 11 is divisible by x. If
follows that x = 11 (in the case of x =
1, the score of each university student
would be negative).

G0 “'mod”

1. No, it can’t. If the square of an
integer ends in 5, then this integer has
the form 10n + 5, so the square equals
(10n + 5)* = 100(n* +n) + 25, and its
second last digit is 2, not 7.

2. (a) The quotient g = 113, the re-
mainderr=10; (b) g=-10,r=15; (c) q
=11,r=73.

3.(17x + 3y)-22 = 8x +6- 61x +
5y +6ly =(8x + 5y)+61(6x + y), so
17x + 3y and 8x + 5y are both divis-
ible by 61.

4.(a)1and 2; (b)n®>+n+1 =
n(n + 1)+ 1, remainder = 1; n> + n +
l=(n-1)(n+2)+ 3, remainder=3;
(c)n*+1=(n*- 3> + 9n-27)(n + 3)
+82,n+3 > 82, remainder = 82.

5.(a)(m®*+ 1)/[n-1)=n+1+ 2/
(n - 1) is a whole number when n
=3,2,0,0r-1;(bjn=1,0,-1, or-3.

6.(a)a*~a=(a - 1)ala + 1)1is di-
visible by 2 and by 3 (therefore, by
6) as a product of three consecutive
numbers, so a® and a have equal re-
mainders modulo 6. (b) a° — a =

180°- o

Figure 12

0d




ala* - 1) = ala®>- 1)(a*>+ 1) =
(a- 1)ala + 1){a*+ 1), and a®>+ 1=
a’> -4 =(a - 2)(a +2)(mod 5); one
of the 5 consecutive numbers a - 2,
a-1, ..., a+2isalwaysdivisible by 5.

7. 2100 450 310 _ 9% _ (5 1 4)50 and
the last number is obviously congru-
ent to 4°° modulo 5; 31 = (5-

2)10 = 5N + 2100 for some integer N;
3°=243=211+32=211 +25 s0 3%
_ (211 + 259 = 219 {mod 211).

8. 110 — 1 = (11-1)
(11°+ 11% + ... + 11 + 1). The first
factor is 10; the second factor is the
sum of 10 numbers each ending in 1,
so it ends in 0 and is divisible by 10
too, which means that the product is
divisible by 100.

9.ForN= ii_}mw P3.9n,wehave N
-SN)=a,-10°+a, _ -10"- '+ ...+
a,-a +a,  +..+a)=a(l0"-1)+
a, (10°-'-1)+...+a -(10-1), but
105-1=99...9 (k nines) and is divis-
ible by 9 (and by 3).

10. By the previous exercise, S(5A)
- S{A)=5A - A = 4A (mod 9). So if
S(5A)and S(A) yield the same remain-
ders when divided by 9, then 9 divides
4A and, therefore, A.

11. (a) By exercise 10, if N is any
number in question, then N = S(N]) =
20 =2 (mod 3). But the square of any
number either is divisible by 3 or has
a remainder of 1 when divided by 3,
because (3k + 1) = 3(3k* + 2k) + 1.
So N is not a square.

(b) The answer is again no. In this
case the sum of digits 1 + 9 +9 + 2 is
divisible by 3 but not divisible by 9,
which is impossible for the square of
an integer.

12. Follow the solution to exercise
9 and use the divisibility of 10%* -1 =
11-9090...9 (k nines) and 10%+ ! + 1
-10-(10% - 1) + 11 by 11.

15.(a) 2192 -1 = 168 = 1 = [~1}** -
1=0(mod 17). (b) SinceS3=27E 1
(mod 13), (3% + 11)5=[(3%)6 - 3% — 2J®
=7%=497.7=107-7=| 3)27 7=-7
=6 (mod 13).

16. (a) 2% + 1 = (2198 + 1 = 1,045 +
1 = 245 + 1 = (24 + 1)(24* -
243 + 24~ 24 + 1) (mod 125). The
first factor is 25; the second factor di-
visible by 5, since 24 =-1 (mod 5); so
the product is divisible by 125.

(b) Note that 105 =3 -5 - 7. Now,
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2% -1 (-1} -1=0(mod3),2% -1 =
4% _1=(-1*-1=0(mod 5), and 2
~1=8%_1=1%6_1=0(mod 7], s0 2%
-1 is divisible by 3, 5, and 7.

(c) Use induction over n>0. As the
equation

2% +1=(2% +1)(2 2 - 2% 41)

shows, the crucial point is to prove
that the second factor on the right
side is divisible by 3 but not by 9. Find
its remainders:

pE_gF 4
- (_1)3n~1_2 B (_1)31171 +1
=3=0(mod3);

g _gF 4]
=82 g% 11

=1-(-1)+1=3(mod9).

17. p =3, since for any integer n not
divisible by 3, 20n? + 1 is divisible by
3.

18. Forn =2k +1, 1™ + 2™ 4+ |
(n=1=[1"+ (n- 1] +[27+ (n -

2+ o+ K2+ n - kK] =(1m+ (-
1] + 27 + (<2)m] + ... + [k™ + (k)7 =
0 (mod m).

19. The number n must be even,
which follows from the following re-
lations: 323 = 17 - 19, 207 + 162 - 32 -

1=3"+(- 1)“ 37— 1" (mod 17); 20" +
16" -3 -1 =17+ (-3)" =32 -1
(mod 19).

20.5%+ 14 30+2.0n-1-950.5 1 601
.3=6"-16-5+27)=0 (mod 19).

21. Any common divisor of 151 +
2 and 14n + 3 also divides 151 + 2. —
(l4n+3)=n-land14n+3- 14{n -

1) = 17; so n- 1 must be divisible by
17, or n = 1 + 17k. The fraction in
question can be simplified for any
such n.

22. p = 3 (consider remainders
modulo 3).

23.5,11,17,23,29. Any 5 succes-
sive terms of the sequence in question
have different remainders when di-
vided by 5; therefore, one of them
must be divisible by 5. Since it is
prime, it must be equal to 5.

24. By theorem 1, the difference d
can’t be coprime with m = 15 or with
any smaller number. Sod>2-3-5-
7-11-13 =30,030.

25. (a) Any number dividing a and
b must also divide a - b, so a prime
common divisor of any two of our 10
consecutive integers divides a num-
ber not greater than 9 and therefore
can be equal only to 2, 3, 5, or 7. Five
of the given integers are odd; only two
of them can be divisible by 3; one can
be divisible by 5, and one by 7. This
leaves at least one odd number not
divisible by any of the numbers 3, 5,
74,34—and this number is coprime
with all the rest.

(b) The proof is similar to that in
part (a) above but needs more subtle
reasoning. Let the first of the numbers
in question be even, andleta, a,, ...,
a, be the odd numbers in increasing
order. Possible common divisors are
2,3,5,7,11,13. The number 3 can
divide at most three of the numbers
a,a, .., ag;5and 7 can each divide
two of them at most; 11 and 13 can
each divide one at most (because, for
instance, if 11 divides two numbers,
a_anda,thenja_- a|>22).

"But none of the numbers a, a, a
can have 11 or 13 as a common d1v1
sor with any other of our 16 numbers,
since a, - 11 <a -1, a,+11 > a,.
Suppose none of the 16 nurnbers 1s
coprime with the rest. Then 3 must
divide one of the numbers a,, a,, a,; 5
must divide another one; and 7 must
divide the third. Therefore, 7 divides
only one of the numbersa, a,, ..., a,.
Now, the best we can do is to assume
that 5 divides two numbers—a, and
a,; and 3 divides three other num-
bers—a,, a,, a,; then 7 divides a_. But
13 can divide neither g, (a, + 13 > a,)
nor a(a,—13 <a, - 1), so one of these
two numbers is coprime with all the
rest. The argument is almost the
same if the first 16 numbers are odd.

(c) Each of 17 numbers 2,184,
2,185, ..., 2,200 has a common divi-
sor with any other.

26. Use theorem 3.

27. No.

28.-1+2-3-5-7=2009.

29. 788.

30.(a)x =12+ 37Kk, (b) x= 17 + 29k
for any integer k.

3l.(a)x=-1+8k,y=1-7k;(b)x=
7+15k, y=5+13k;(c)x=-1+18k,y
=24 -257k.



32.x=-17+118k,y=9-61k, z=

Tart '91

Here are the answers to the prob-
lems posed in the article “Tartu in the
Summer of ‘91" in the last issue. The
answers (as well as the questions)
were prepared by Ilya Itenberg and
Dmitry Fomin, who were kind
enough to share them with
Quantum’s readers.

1. Refer to figure 13. If ZBAL =
ZCDK, then quadrilateral AKLD can
be inscribed in a circle and ZADL +
ZAKL =180°. Since ZADL + Z/BCL =
180° (lines AD and BC are parallel), we
must have ZAKL = Z/BCL. Similarly,
ZBKL =/ADL, and #/BKL + ZBCL =
180°. This means that quadrangle
BCLK is also cyclic. Thus we have
ZCKD =180° - LAKD - £ZBKC =
180°- LALD - ZBLC = £BLA.

A D
L

B c
Figure 13

2. The sum of these numbers is
zero, so they cannot be positive si-
multaneously.

3. The given algebraic condition
on Fimplies that if A = F(x) for some
real x (that is, if A is in the range of
F), then F(A) = 1/A. We'll prove now
that there exists real x such that F(x)
= 500. It then follows that F(500) =
1/500.

We know that F(1,000) = 999.
Therefore F(999) = 1/999. The func-
tion F is continuous, and 999 and
1/999 are in its range. So (by the In-
termediate Value Theorem of
analysis) the number 500 is in its
range as well, and F(500) = 1/500.

4. The beginning of the game is
determined: 2 — 3 — 4. Let’s suppose
that the second player has a winning
strategy. If the first player replaces 4
with 5, the second player must re-
place 5 with 6. A winning strategy

must therefore involve leaving the
number 6 on the blackboard. But the
first player can arrange to achieve
this position by replacing the 4 with
6 instead of 5. Thus the second player
cannot have a winning strategy. Since
the numbers on the blackboard keep
increasing, someone must win. So
there must exist a winning strategy
for the first player.

5. If x and y are positive real
numbers, then it isn’t difficult to
show that 1/x + 1/y 2 4/(x + y). In-
deed, (x — y)*> =2 0 (the square of a
real number is never negative), so

x2 - 2xy+ y2 20,
x2 + y? 2 2xy,

X2+2xy+ 2 >4xy,
(x+y) 2 4xy,

(X + Y)2 5 4xy
xy(x+y) xy(x+y)’
xty_ 1.1, 4

Xy X y XxX+y

So we have
1 1 4 16 4 4 16
—t—t—t—>———+—
A B C D A+B C D
16 16
B B
A+B+C D
> 64
A+B+C+D

6. We can reformulate the ques-
tion as follows: There exist nonnega-
tive integers x, v, z, u, v, w, t such
that

A=x+2y+5z+10u + 20v
+ 50w + 100¢,
B=x+y+z+u+v+w+t

Then

100B = 100t + 100w + 100v
+100u + 100z + 100y + 100z,

or
100B = 1{100¢) + 2(50w] + 5(20v]

+10(10u) + 20(5z)
+ 50(2y) + 100x,

s0 it’s possible to take 100t one-cent
coins, 50w two-cent coins, 20v five-
cent coins, ..., and x dollars, which is
a set of A coins worth B dollars.

7. Let’s denote the given
70,000,000-digit number by A and the
sum of all natural numbers having at
most 7 digits by B. Direct division
shows that the number 9,999,999 is
divisible by 239. We use this fact to
show that A is congruent to B
modulo 239. Let’s mentally dissect
the decimal representation of A into
ten million septuples, representing
all 7-digit numbers: a, a,, a

1,000, 000° Then we have

97 EYARIRY)

A=a +(107)a, + (10%)a, + ...
+ (107 9999999)&10,000,000'

Since 107 is congruent to 1 modulo

239, we know that 107* is also con-

gruent to 1 for every natural k. So A

is congruent to a, + a, + a, + ...

* Q19000000 = B.

Now, the number B is divisible by
239, because all natural numbers less
than 9,999,999 can be divided into
pairs with the sum of each pair equal
t09,999,999. So A is also divisible by
239.

8. We fix an initial city A and con-
sider all cities B, B,, ..., B, where the
roads starting from A end. These cities,
together with the roads from A to each
B, form a system that we’ll call S.

Now consider the cities C,, C,, ...,
C,, [each of which differ from the cit-
ies already in S), which are endpoints
of the roads starting from B,, B,,
B,. Let’s add these to the system S,
together with the roads from each B,
to each C:: one new road for each city
added. Continuing in this way, we’ll
end by including all N cities in sys-
tem S, together with N —1 roads: one
road ending at each city except for A.

Similarly, we can construct an-
other system T of cities and roads by
traveling “backwards.” Starting at
the same initial city A, we consider
all gities BY; B; wy B’ from which a
road leads to city A. These cities, to-
gether with the roads from each B, to
A, form a system that we’ll call T.

Now consider the cities ', C’,, ...,
C’_, (each of which differs from the
cities already in T) from which a road
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leads to one of the cities B’,. We add
these to the system T, together with
the roads from each C, to each B : one
new road for each city added. Con-
tinuing in this way, we’ll end by in-
cluding all N cities in system T, to-
gether with N - 1 roads: one road
ending at each city except for A.

Now we take the union of Sand T.
This union contains all N cities, and
we can easily get from one city to
another, staying on roads in S and T—
for example, by passing through city
A. The union of S and T contains at
most 2N — 2 roads (some of the roads
in § may also be in T). So there is at
least one road not included in the
union of S and T, and this road can be
closed without affecting the given
property.

9. Let’s consider first 27 + 1 natu-
ral numbers. We assign to each of
them—say, P—a certain string of
length n consisting of ones and zeroes
defined as follows: if P belongs to A4,,
then the kth symbol in the string is
equal to 1; otherwise, the kth symbol
will be 0.

Now there are 27 possible strings
of length n, each of whose symbols is
either O or 1, and we are looking at a
collection of 2" + 1 of these. There-
fore, the pigeonhole principle assures
us that there exist two natural num-
bers X and Y such that corresponding
strings are equal. These numbers are
the desired ones. This simple argu-
ment completes the proof.

10. The basic idea of the solution
is the common but important idea of
an invariant, which appears in both
mathematics and science.

Let’s define a quantity S as the
sum of the number of piles and the
number of stones. At each move we
decrease the number of stones by
one, but we increase the number of
piles by one. So S remains invariant,
no matter what moves we may
make.

The initial value of S is 1,002. Sup-
pose it were possible, after a number
of moves, to obtain exactly n piles,
each containing exactly 3 stones.
Then there would be 3n stones alto-
gether, and S would be equal to n +
3n, or 4n. But the number 1,002 can-
not be represented as 4n (for a natu-
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ral number n), since it is not a mul-
tiple of 4.

This contradiction shows it is im-
possible to end up with piles consist-
ing of exactly three stones each.

11. You can trust him. In fact,
we'll construct such an orchard. In
this solution, we'll refer to a distance
of ten meters as a “unit.”

We first pick a point for the posi-
tion of an apple tree, then plant ten
pear trees around a unit circle cen-
tered at the apple tree and located at
the vertices of a regular decagon. We
now construct the required orchard
in eleven steps. At each step, we'll
create several copies of the orchard at
the previous step, then “erase” the
previous step.

As a second step, we draw ten unit
vectors, each directed along one of
the sides of the decagon in the first
orchard. We then translate the ten
pear trees, and the apple tree, ten
times: once along each unit vector.
Finally, we erase the original decagon
and the apple tree at its center.

What is the result of this opera-
tion? The decagon has ten images,
making 100 pear trees. The original
apple tree also has ten images, mak-
ing 10 apple trees. But there are in
fact more apple trees to be planted.
To see this, we follow the ten images
of one of the pear trees from step 1.
Each image is a pear tree that is one
unit from the original tree, in a direc-
tion parallel to the decagon of step 1.
Thus the images all lie on a circle of
unit radius, and we can plant an
apple tree at the center of this
circle—this (step-2) apple tree is
planted at the spot where a (step-1)
pear tree originally stood. In this way,
we have in fact 20 apple trees, rather
than 10, in the step-2 orchard.

We now take step 3 in exactly the
same way we took step 2. The step-
2 orchard can be viewed as ten deca-
gons of pear trees, the images of the
original (step-1) decagon—plus some
all-important apple trees, which we'll
ignore for the time being. We select
one decagon, draw ten unit vectors
along its sides, and translate the step-
2 orchard ten times. We then erase
the step-2 configuration. What re-
mains is ten copies of the 100 step-2

pear trees, making 1,000 step-3 pear
trees. Let’s count the apple trees in
step 3. Certainly there are 10 copies
of each of the 20 step-2 apple trees,
making 200 apples trees for step 3.
But we can look at the set of images
of each step-2 pear tree. These form
a decagon of ten pear trees, each one
unit from where the step-2 pear tree
stood. We can therefore replant this
spot with a (step-3) apple tree. Since
there were 100 step-2 pear trees, we
must plant 100 new (step-3) apple
trees, making 300 apple trees in all.

We continue deriving step 4 from
step 3, step 5 from step 4, and so on,
keeping track of the number of apple
trees and the number of pear trees at
each step:

Step Apple trees  Pear trees
1 1 10
2 20 100
3 300 1,000
4 4.10 10*
10 10-10¢° 1010
11 11-10% 101

At step 10 we have equal numbers of
apple and pear trees, while at step 11
the number of apple trees overtakes
the number of pear trees.

There’s one case that’s an excep-
tion to this process. It may happen
that at a given step, two of the new
pear trees accidentally coincide. Tt
would be very difficult to predict
this collision geometrically, but it
doesn’t matter. The construction
doesn’t depend on the exact direc-
tion of the translation vectors, only
on the fact that they are of unit
length and that there are ten images
for each pear tree. Thus, if any two
vectors take two pear trees from
step n onto the same spot in step n
+ 1, simply adjust the direction of
one of the vectors by a degree or two
so that the new pear trees don’t co-
incide. This is always possible,
since there are only a finite number
of ways two pear trees can coincide.
If we make one translated copy of
the step-n orchard through this new
direction, we can continue the con-



struction as described.

12. (a) Let’s label all the centers
of these squares and look at the ver-
tical lines on the chessboard. The
centers of the squares, being lattice
points, lie on these vertical lines.
Since there are 9 such lines and 55
centers, the pigeonhole principle
assures us that we can find 7 centers
on the same vertical line (since 55
>54 =9 x6).

So on this vertical line, 7 of the
9 lattice points are labeled. The
same pigeonhole principle shows us
that there must be three consecu-
tive labeled points on the line.

This means that we can delete
one of the three squares of which
these are the centers: the one in the
middle.

| B
Figure 14

(b) We mark 16 squares on the
board (12 white and 4 black) as in
figure 14. Because the white squares
are too far apart, no 2 x 2 square can
cover more than one of them, so
there are 12 squares covering the 12
white boxes, and it can be easily
checked that there are exactly 8
boxes on the border that are not
covered with these 12 squares. So
there must be 8 other squares con-
taining these remaining boxes on
the border. We now have 20 squares
covering the “border region,” form-
ing a frame with the width 2. In the
central 6 x 6 square we must simi-
larly have four different squares
containing the four black boxes.
These squares cover 16 of 36 central
boxes, and it’s now possible to pick
20 squares—one for each remaining
central box—to obtain 24 squares
covering the entire central 6 x 6
square. Because 20 + 24 = 44, we can
delete one of 45 given squares so

o /

that board remains covered.

(c) The exact answer is 38. We
can choose 38 lattice points for the
centers of the 2 x 2 squares (fig. 15)
so that if we delete any 2 x 2 square,
[ the board does not remain covered.
For more than 38 squares, one can
always be deleted, no matter how
they are arranged. The case-by-case
proof is too long to give here.

Figure 15
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TOY STORE

Further aaventures in Fiexiand

With our accommodating and tireless guide, Mr. Flexman

AST TIME MR. FLEXMAN ac-

quainted us with the hexa-

flexagon. Now we’ll meet other

kinds of flexagon. Mr. Flexman
assures me he has lots of interesting
things in store for us. He begins with
the simplest.

A two-way hinge

Take a piece of stiff paper and cut
out two rectangles measuring 2.5 cm
x 5 ¢cm and two strips measuring 1
cm X 7 em. Fold each of the narrow
strips at both ends to form square
flaps. Color each rectangle blue on
one side, red on the other; color the
flaps of the strips blue and the rest of
the strips red on both sides. Glue the
flaps at opposite corners of the bot-
tom side of one rectangle as in figure
1. Then wrap the strips around the
rectangle (fig. 2), put the second rect-

Figure 4
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by Alexey Panov

angle, blue surface up, on top of the
first one, and glue the free flaps to
this surface (fig. 3). And there you
have a “two-way hinge.” This might
be called the simplest flexagon, be-
cause it has only two stable states. To
change the state of the open flexagon,
you have to draw the far edges of the
rectangles together (fig. 4) and open it
from the other side. Mr. Flexman has
noticed that by assigning the value 0
to one state and the value 1 to the
other, you turn the flexagon into a
“bit” of computer memory. So, he
says, it’s only natural to join together
anumber of such bits to form a byte.
I think that’s pretty reasonable—let’s
follow his advice.

Flexchain

Prepare some more two-color rect-
angles and strips—half of the strips
red with blue flaps, the other half
blue with red flaps. Take the flexagon
you made (I'm assuming you fol-
lowed along with us and actually
made a two-way hinge), put it on a
table as shown in figure 3, and glue
two blue strips to the two free corners
of the bottom surface of the upper
rectangle. Wrap the strips around this
rectangle, put the next one (red side
up) on top, bend the strips, and paste
the flaps to the upper surface. You get
a chain of three rectangles. Then at-
tach another one to the upper rect-
angle of the chain with the red strips
such that the new upper surface is
blue, and continue in this way, alter-
nating the colors of the rectangles
and strips, until a long enough chain
appears (say, eight or nine “bits”).
When set on a table edgewise, the

chain whimsically curves and at the
slightest touch will change its shape
(fig. 5). If it’s made of n + 1 rectangles,
it has n joints and can exist in 27
states. For, say, n = 21, it has 2% =
1,048,576 different states. (You can
do the computation for n = 8.) Mr.
Flexman has informed me that he’s
now working on a flexcomputer with
a flexchain memory; he’s going to
supply all of Flexland with them
soon. But what’s more exciting for
me is another property of flexchains.

Figure 5




Flexons

Take a flexchain in any state and
stretch it by pulling it apart at its
ends. It will run through a series of
states, ending up in a certain stable
state—for instance, like the one in
figure 6. A stable state is a rectilinear
chain at some of
whose  joints
single rectangles
stick out. The
rectangles that
stick out like
that will be
called “flexons,”
and we'll call the
whole  stable
configuration a
“flexon state.”
These flexons
have two re-
markable fea-
tures:

1. They can
move along a
flexchain.

2. When the
flexons collide,
they’re annihi-
lated.

To make a
flexon move,
push its outer
edge toward the
flexchain (fig. 7),
activating the
hinge and caus-
ing the flexon to
join the chain
while the neigh-
boring rectangle
springs out. This
creates the im-
pression that
the “disturbed” link shifts along the
flexchain. As the flexon runs along,
it changes the flexchain’s color.
When two flexons collide, they van-
ish, but the flexchain becomes two
units (rectangles) longer.

Mr. Flexman is also a specialist in
flexphysics. He says that the flexon’s
length is the fundamental length in
the flexuniverse, and at present he is
exploring the behavior of closed
flexchains with flexon perturbations.

Figure 6

Figure 7

By the way, one kind of closed
flexchain can be made out of squares
(instead of rectangles). These chains
are much more diverse because, in
constructing such a chain, we can
join the next square to any of the
three free edges of the previous one.
The simplest closed flexchain is
made of four squares and eight strips.
Instead of detailed instructions on
how to assemble it, Mr. Flexman sup-

Figure 9

Figure 8

plied us only with figures 8 and 9. He
says it’s a special challenge for
Flexland visitors to restore the con-
struction and color scheme of this
flexagon using these figures. His only
hint is that figure 9 shows all four pos-
sible colorings of the surfaces of the
flexagon, and that the colorings of the
two surfaces are (A, B) in the first state,
(B, C)in the second, (C, D) in the third,
and (D, A) in the fourth. O]
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