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Beta Kappa (1961) by Morris Louis

HERE ARE SOME WORKS OF MODERN ART

with such improbable names you think: “Come on!
You're pulling my leg!” We can’t be certain Morris
Louis isn’t having a little fun with us when he calls
this chromatic collection of lines “Beta Kappa.”

Maybe Louis almost made it into a certain presti-
gious honor society. Then again, maybe he’s philo-
sophically opposed to such trappings.

Maybe he knows someone whose initials are B.K.
(Betty Kaplan?), and this work (o) is dedicated to B.K.,
(B) was inspired by B.K., (y) was painted at B.K.’s house
while Louis helped himself to whatever was in B.K.’s
refrigerator . . .

Maybe Louis was thinking back to his student days,
when Greek letters stood for unknown entities or
quantities, and used some of them in naming an at-
tempt at depicting an unknown, unknowable, but or-
dered, rhythmic thing.

When one is struggling to interpret a confusing ob-
ject, the most farfetched things can pop up, offering to
be of use. For instance, in The Vanished Library {on
the great library at Alexandria in ancient Egypt),

Luciano Canfora notes that “Greek beta and kappa are
almost inevitably confused with each other in the
small lettering of the ninth and tenth centuries.”

Would this painting be any different if it were called
“No. 37”1 Or “Love is a many splendored thing”? Or
“Untitled”? Where does the meaning of such a cre-
ation reside? While many artworks of the past seem
unambiguously decorative (pretty obvious and obvi-
ously pretty), works like “Beta Kappa” make great
demands on the viewer. They’re like an actor who
leans against a prop and says to the audience: “Well?
What are you looking at?” And nothing more!

The ultimate question in such a case used to be: It
it beautiful? But since beauty is in the eye of the be-
holder (and always has been, really), maybe we should
ask several smaller questions: Did it make me think
or remember? Was I charmed by its individual ele-
ments and overall structure? Did it help me discover
or create anything?

You'll have another brush with the Greek alphabet
if you turn to page 40. This time, an eminent physi-
cist will be your guide.
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The famed and feared general, the
overreaching emperor, Napoleon
Bonaparte, is being harassed by a fly-
ing triangle! Not just any triangle, but
a well-known Masonic symbol—you
can see it on the back of a US dollar
bill (maybe because George Washing-
ton himself was a Mason). Strange—
Napoleon and triangles had been on
such good terms (see the Kaleido-
scope in the September/October 1990
issue of Quantum) . . .

The pugnacious polygon seems to
have particular designs on
Napoleon’s hat (and on itself as
well—note the smart-looking bisec-
tors and fancy labeling). Apparently
there’s a price to be paid for abusing
this powerful symbol. But don’t let
this deter you from “Halving It All”
which begins on page 6. Perhaps
you're immune from the adverse ef-
fects of the Trilateral Avenger!
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Global change

And consequences on a human scale

OR OUR FRIENDS and col-
leagues in what was the USSR,
1991 was a tumultuous year.
The scope and pace of change
there was as painful as it was breath-
taking. I'm sure Quantum readers
have been following the course of
this “second Russian revolution.”
You and I have watched how, on
the societal level, old political struc-
tures crumbled and the map of the
region was redrawn. It was as if the
various states of the United States
had seceded from the Union and
formed separate, independent na-
tions. But the effects in the former
Soviet Union were even more devas-
tating. Compared to the US
economy, the Soviet economy was
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Quantum founding editor Yuri Ossipyan consults with Dr. Michael Debakey.

much more centralized. In the US
many suppliers can be found for most
essential products or services. They
compete with each other and, ideally,
this competition keeps quality up,
prices down, and demand satisfied. In
the USSR, there was often only one
huge supplier for any given item. As
various enterprises began to fail, they
sent ripples through the rigid, huge,
isolated Soviet economy that grew to
be a tidal wave.

There is another way in which the
former USSR was quite different from
the US. There are vast differences in
culture and language from one repub-
lic to another, and these differences
have led to serious and sometimes
bloody conflicts.

The young Commonwealth of In-
dependent States (CIS) faces a bewil-
dering array of challenges. It needs to
create a new financial structure and
integrate it into the global economy.
It must revamp its economic life so
as to provide an incentive for its citi-
zens to work again. Its infrastruc-
ture—transportation, communica-
tions, and so on—is comparable to
that of the US in the 1920s. There are
so many problems, and such a long
road to travel before the CIS becomes
viable in the international market
and the standard of living of its people
improves. What can we do to help?
Why should we help? What are our
interests, apart from compassion?

The CIS contains the greatest
store of natural resources in the
world. And its people are enormously
talented. They’re well educated, well
trained, and capable of surviving un-
der the most adverse conditions.
They will, in time, make the CIS one
of the two or three leading “nations”
in the world (although the CIS isn’t
actually a “country”). And this time,
its member states will be economic
powers. It’s my view that the US
must, for its own economic security,
become the leading friend and trading
partner of the CIS. Only then are we
likely to compete effectively with
the Pacific rim nations in the far east
and the European Community in the
west.

On the personal side, T have some
news to share with you. Academi-
cian Yuri Ossipyan, formerly vice
president of the Academy of Sciences
of the USSR, no longer serves in that



capacity. First, the academy no longer
exists under that name. It has merged
with the Russian Academy of Sci-
ences and now carries that name. But
also, for reasons of health, and out of
a desire to spend more time on his
research in physics, Yuri Ossipyan
was not a candidate for vice president
of the Russian Academy of Sciences
during their recent elections. He will
continue to work with Quantum as
one of its founding editors and will
serve as president of Quantum Bu-
reau, of which Sergey Krotov is ex-
ecutive director.

Yuri Ossipyan has for many years
suffered from a serious heart ailment.
He was to have been a speaker at the
NSTA convention in Houston in
March 1991, but because of compli-
cations from this chronic ailment he
was unable to attend. During a con-
versation with the renowned heart
surgeon Dr. Michael Debakey, who
spoke at the convention, I mentioned
Yuri’s problem. Dr. Debakey gener-
ously offered to treat Yuri at his heart
center.

On November 23, Yuri entered the
Houston Medical Center. While in
the hospital, he read the November/
December issue of Quantum with
great interest—especially the article
““Heart Waves,” which, as fate would
have it, dealt with his malady! He
was released on December 24, after
receiving the finest medical treat-
ment in the world. I am pleased to
note that he is recovering well and
has returned to his institute in Mos-
cow. We all owe Dr. Debakey, his
team of heart specialists, and the
Methodist Hospital of the Houston
Medical Center a huge debt of grati-
tude for this act of international good
will.

Thope you'll agree that the time to
help our friends in Russia and the
other states of the CIS is now. And
we expect Quantum to continue
forging links between aspiring young
mathematicians and scientists
throughout this dynamic new world.

—Bill G. Aldridge
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of Technology

earned its

academic reputation
by degrees.
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For example, we offer more than 121 degree programs, from
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of America’s fastest-growing business areas.

Now, add an annual average temperature of 75 degrees,
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Halving it all

Some curious results from planar bisection

by Mark E. Kidwell and Mark D. Meyerson

=
/

PLANAR REGION, WHICH

we can think of as a uniform

metal plate, has a special point

called the centroid. To balance
the region on a line (think “knife
edge” or “tight rope”), just make sure
the centroid is on the line, as in fig-
ure 1. Warning: these balancing lines
usually don’t bisect the area of the re-
gion. We can cut the area in half with
aline in any direction, as in figure 2,
but there usually is no “center point
of area-bisecting lines.” If we look at
the family of area-bisecting lines,
however, they often “form” (as enve-
lopes) interesting curves that we can
describe precisely.

In this article we'll take a look at
some of these curves. (Many of the
ideas that follow can also be found in
a 1980 article by Derek Bell, “Halv-
ing Envelopes,” in the Mathematical
Gazette.)

Balancing

Take a thin metal plate—say, in
the shape of a triangle. Can this plate
be balanced on a very thin, taut, hori-
zontal wire? In theory, yes. If the

~
Figure 2 \
Area-bisecting lines may fail to
concur.

Figure 1

Balancing lines “concur” at the centroid.

plate falls off to one side of the wire,
we can nudge the plate on that side
until we go too far and it falls off on
the other side (fig. 3). Like the horse
that starves to death between two
bales of hay, there must be one inter-
mediate position where the plate just
balances. Draw a line on the plate
where it’s resting along the wire.

Is there a point along this line such
that we can balance the plate on a
pin, using this point as the point of
contact? Again, yes. If the plate
doesn’t balance at a particular point
on this balance line, it won't fall per-
pendicular to the line, but it will tend
to fall “along the line,” backward or
forward. The points on the line

falls right balance falls left
line in
here

J(i—

Figure 3

SLICE-AND-DICE MATH |

where the plate “falls backward” or
“falls forward” must be separated by
one (theoretical) point (fig. 4). If the
density of the material in the plate
doesn’t vary from place to place, this
balance point is the centroid.

Notice that since the plate will
balance on a pin at its centroid, it will
surely balance on any wire that
passes through the centroid, not just
the wire we started with (see figure
5). There will be one such line in any
direction.

Recall the law of the lever: alever
will balance if the sum of the product
of the masses times the distances
from the fulecrum on one side of the
fulcrum equals the same sum of

falls forward for pins here /

balances for pin somewere between

falls backward for pins here /l
Figure 4

Finding a balance point along a
balance line.

QUANTUM/FEATURE 1



all these are
balance lines

balance pin
o

Figure 5

products on the other side of the ful-
crum. For plates of uniform density,
we can replace mass by area in this
computation. In cases where the
mass is spread out continuously, as
in the plates we've been considering,
calculus is generally needed to find
the position of fulcrums (balancing
lines). Nevertheless, we can give a
plausible geometric argument that
the medians of a triangle are balanc-
ing lines.

Consider triangle ABC with a
median AM. This means that M is
the midpoint of BC. Draw a line on
each side of AM, parallel to it and
equidistant from it, as in figure 6.

B
Figure 6

Say these lines meet the triangle
as drawn, so we have B,B, || AM ||
C,C,, Since these lines are parallel
and equidistant, any line through
them determines two congruent seg-
ments. So MB,, = MC,,, and so B, B =
C,,C. Also, we have two different
pairs of similar triangles: triangle
CAM ~ triangle CC,C,, and triangle
BAM ~ triangle BB, B, . So

_CC, BBy, BBy

CACM
AM  CM BM  AM

The middle equality holds because
both numerators and denominators
are equal and the other two equalities
hold by similar triangles. So we con-
clude that C,C,, = B,B,,.

8 MARCH/APRIL 1992

Now if we draw lines parallel to
AM at distance x and also at distance
y, we get figure 7. The two shaded
pieces are trapezoids with the same
area (their heights are each y - x, and
we just saw that their corresponding
bases are of equal length). They lie
about the same distance from AM
and so should just balance. Since we
can cut triangle ABC into skinny
pairs of such trapezoids (see figure 8),
the whole plate should balance on
the median.

B
Figure 7

Figure 8

Pairs of trapezoidal regions with the
same shading are the same distance
from the median and have the same
area, so they balance on the median.

On to area

Some of you may be under the
(false) impression that any of the bal-
ance lines must cut the area of the
plate in half. Indeed, the medians of
a triangle have this property. But con-
sider a line through the centroid that
is parallel to one of the sides of the
triangle. This creates a small triangle
that is similar to the whole plate and
also creates a trapezoid
(fig. 9). The median AM, to
the side of the small triangle
will also be (when extended)
the median AM to the paral-
lel side of the plate. By a
theorem of geometry, the
little median will have 2/3 of
the length of the big median.
All the other linear dimen-

Figure 9
The shaded region has 4/9 the total
area.

plate. If r is the ratio between linear
parts of similar triangles, then 7* is
the ratio between their areas. So the
little triangle will have 4/9 of the area
of the plate, and the remaining trap-
ezoid will have 5/9 of the area.

Conclusion: not every line
through the centroid bisects the area
of the plate. More is involved in bal-
ancing a plate than just area; distance
from the balancing line or point also
counts. This is the law of the lever
again.

If we slide the line we've just been
considering parallel to itself in the
direction that increases the area of
the little triangle and decreases the
area of the trapezoid, we must even-
tually reach a line that bisects the
area of the triangle. The same is true
of parallel lines going in any other
direction; there must be one line in
each direction that bisects the area of
the plate. The main question we’ll
explore is: if these lines don’t all pass
through one point, then what pattern
do they form?

Figure 10 gives a visual answer to
this question for a 30°-60°-90° right
triangle. (The exact shape of the tri-
angle isn’t significant, as it turns
out.) The picture presents an optical
illusion that curves were drawn near
the center; but nothing was drawn

sions of the little triangle
will then be 2/3 of the corre-
sponding dimensions of the

JTINN

Figure 10

Area-bisecting lines.



but straight lines! These lines can be
divided into three classes depending
on which pair of sides of the triangle
the line exits through. The three
medians, which exit through vertices
at one end, serve as boundaries be-
tween these three classes.

Here’s how we can find the area-
bisecting line in any direction. Given
a triangle with area A and a direction,
consider lines in that direction
through the three vertices. Exactly
one of these lines will meet the tri-
angle in more than one point. Find
the larger of the two triangular areas
this line determines in the triangle.
Move the line toward the larger trian-
gular region, keeping it parallel to the
original line, until the area of the tri-
angle cut off is half that of the origi-
nal. Doing this for a large number of
directions produces figure 10.

Finding the curves

What are these illusory curves that
appear in the midst of our area bisect-
inglines? Look at our right triangle as
superimposed on an x-y coordinate
system, with the right-angled vertex
at the origin and the two sides em-
bedded in the positive x- and y-axes.
Forget the hypotenuse for now; we’ll
determine the area-bisecting lines
that exit from the triangle through
the other two sides. Let A be the area
of the original triangle. Consider the
family F of all lines that intersect the
axes in points with positive coordi-
nates and that cut off area A/2 in a
triangle as shown in figure 11. Fwill
contain all the area-bisecting lines
that meet the legs of the triangle, to-
gether with some additional lines
that meet the hypotenuse. Now, con-
sider a given point in the first quad-
rant. There may be no lines from F
that pass through this point, or there

no lines through this point
)

. _hypotenuse

on\exline through this point
two lines through this point

-

Figure 11
Solid Iines form triangles in the first
quadrant with area A/2.

may be one such line, or there may be
two (or more?) such lines. Consider
all the lines passing through the
given point and having negative slope
so that they will cut the positive x-
and y-axes. Some of these lines—
namely, those that are nearly vertical
or horizontal—will cut off triangles
that have gigantic area (much bigger
than A/2). If even the smallest (in
area) of the triangles cut off by these
lines has area greater than A/2, there
will be no line in F through the point
we're considering.

How do we find the line through
the point (x, y) that cuts off the least
area? Start with any line through
(x, ¥) with negative slope. The point
(x, y) divides the segment in the first
quadrant into two segments of length
z, and z,, say. Suppose z, > z,. Rotate
this line through a small angle 8in a
direction that tends to make the
shorter segment longer and the
longer segment shorter. Call the
lengths of the corresponding seg-
ments on the new line z"and z,’ (see
figure 12). For small enough 6, we’ll
still have z,"> z". The areas of the two
obtuse triangles in figure 12 are

Figure 12

Y22,z sin 0 and Yoz z,” sin 6; the first
area is larger. This means that we
lose area in our right triangle as we
turn the line until we reach a line
where the two segments formed by
(x, y) are equal. After that the area
gets larger again. By an argument
based on congruent triangles, this
line with equal segments cuts the
two axes at (2x, 0) and (0, 2y), giving
a triangle of area 52x2y = 2xy (fig. 13).

I

Figure 14

(0,2y)

(xy)

(2x,0)
Figure 13

Now, if no line from our original
family F passes through the given
point, then even this triangle of
smallest area has too much area—
that is, 2xy > A/2. The set of all such
points in the first quadrant is the re-
gion above the hyperbola whose
equation is xy = A/4. There is one
line of F through each point of this
hyperbola (F consists of the lines tan-
gent to the hyperbola). It is this curve
that we seem to see when we stare at
our original family of lines. It’s called
the envelope of the family of lines.
A similar description holds for the
rest of the right triangle and, in fact,
for any triangle. The envelope of each
of the three families of area-bisecting
segments “between” the two medi-
ans to sides a and b is part of a hyper-
bola with asymptotes a and b. Of the
hyperbolas with these asymptotes,
the one to choose is the one that has
the medians as tangent lines, and the
part of this hyperbola to use is cut off
by their points of tangency (at the
midpoints of the medians).

Some other Sapes

Notice that if we have a uniform
plate with symmetry about a central
point—as with elliptical regions, or
rectangular regions, or other regions
as in figure 14—all lines through this
central point are both balancing lines
and area-bisecting lines. Given any
such line, the plate can be cut into
pairs of skinny balancing pieces of
the same area, as in figure 8.

It is, however, possible for a figure
that is not centrally symmetric, as in
figure 15, to have all the area-bisect-
ing lines concur at one central point.

ey Lo

Each of these regions is bisected by all lines through a single central point.

QUANTUM/FERTURE 9



Figure 15
Every line through C bisects the area;
C is not the centroid.

This region was created from three
120° pieces of equal area. To create
this figure, start with any r, > 0. Then
choose r, between 0 and r, and let 7,

= /1% +r} . Notice that 7, > r,. Simi-
larly, choose r, between r, and r,, and

letr, = \/#? + 77 . Then any two small

congruent central angles, each in one
of the three 120° pieces of the figure,
will cut off the same area, since

nr?=mn(r}?-rr =nr>-r2).

But by adding such angles together
we see that any two congruent cen-
tral angles at all will cut off the same
area. In particular, all lines through
the central point (straight lines) bi-
sect the area.

The region in figure 15 lacks one
important geometric property. A re-
gion R is starlike from a point X if, for
any point Y in R, the entire line seg-
ment XY lies in R (fig. 16).

Figure 16

Starlike from X, but not from Y or Z.

Suppose the region is starlike from
the point X and has a boundary loop
whose distance from X varies con-
tinuously as we turn. If the region is
not centrally symmetric about X,
then there is a line I through X cut-
ting off segments of length z, and z,
such that z, >z, as in figure 17. Now

10 MARCH/APRIL 1892

rotate the line about X to create two
congruent vertical angles 6, and 6,. If
this rotation angle is small enough,
then the shortest distance from X to
a point on the boundary loop inside
angle 6, will be longer than the long-
est distance from X to a point on the
boundary loop inside angle 6,, since
these distances vary continuously
and z, > z,. The area of the part of the
region inside angle 6, is thus smaller
than the area of a circular sector with
angle 6,, which in turn is smaller
than the area of a circular sector with
angle 6,, which is smaller than the
area of the part of the region inside 8,.

Conclusion: as we turn line I
about X, we gain area on one side of
Iand lose it on the other. So the lines
that bisect the area of the region are
not all concurrent at X. We can turn
this statement around through the
logical operation called “taking the
contrapositive”: if a region is starlike
from X, has continuous boundary dis-
tance from X, and all its area-bisect-
ing lines concur at X, then the region
must be symmetric about X.

Figure 17

Other fuestions

There are several similar ques-
tions that have related answers. For
example, suppose instead of halving
the area of a triangle we wish to cut
off one third of the area. In each direc-
tion, there will be two lines, with one

Figure 19 a
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Figure 18

These lines cut off 1/3 of the area. Can
you identify the six hyperbolic parts of
the envelope and their asymptotes?

third of the area between them and
one third of the area in each outside
region. An argument based on con-
stant area, similar to that in an ear-
lier section, shows that we still get
pieces of hyperbolas with the
triangle’s sides for asymptotes. But
instead of medians helping to deter-
mine the pieces, lines from the ver-
tices that cut off one third of the area
are needed. There are six such lines,
and we get six families of cutting
lines, each forming a piece of a hyper-
bola (fig. 18).

We can ask the same question for
other polygons. Figure 19 shows that
we can still get hyperbolic pieces for
the envelope.

What about nonpolygons? By sym-
metry, we can see that lines that cut
off, say, one fourth of a circular region
have a circle for an envelope. If we
“stretch” these circles in one direc-
tion by a factor of k, we multiply all
areas by k and get two ellipses as in
figure 20. It follows that for ellipses,
lines that cut off a fixed proportion
(other than half) of the area have el-

Lines near those in (a) that cut off 1/7 of the polygon correspond to lines in (b)
that cut off 2/3 of the triangle formed from the polygon.
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liptical envelopes. (If we exactly
halve the area, we get the family of
lines through the centroid.)

For regions with infinite area, we
can try to cut off pieces of various
constant areas. For example, in figure
21 we cut off a constant area from a
hyperbola. The envelope is another
hyperbola. Similarly, the envelope
formed by cutting off a constant area
from a parabola is a parabola.

We'll leave you with some prob-
lems to work through so that you,
too, can “halve it all!”

Problems

1. Make a careful sketch of an isosceles
right triangle and the hyperbolic envelopes of
the area-bisecting lines.

2. Make a careful sketch of a regular pen-
tagon and the hyperbolic envelopes of the
area-bisecting lines.

3. Make a careful sketch of a square and
the hyperbolic envelopes of the lines that cut
off 1/8 of the area. (Because of the parallel
sides, there will be corner points along the
envelope through which infinitely many cut-
ting lines pass.)

4. In order to construct the hyperbolic en-
velope curves in this article, one needs to con-
struct a hyperbola from its asymptotes and a
point on the curve. Show how to find a vertex
and a focus of a hyperbola with straightedge
and compass, given the asymptotes and one
point of the hyperbola.

5. Figure 19 shows a situation in which
cutting off 1/7 of the area of a hexagon is

>

/

equivalent to cutting off 2/3 of the area of a
triangle. Find the exact fraction of the area of
the triangle that must be cut off when the
hexagon is regular and we're trying to cut off
1/7 of its area.

6. Figure 20 shows a small circle whose
tangents cut off 1/4 of a larger circular region.
If the larger circle has radius 1, what is the
radius of the smaller circle? (Find an approxi-
mate value, using a calculator or computer.)

7. Using the ideas in the discussion of fig-
ure 20 and the formula for the area of a circle,
prove that an ellipse with semimajor axis a
and semiminor axis b has area nab.

The following problems may require calcu-
lus.

8. Show that the tangent line to the hyper-
bola with equation

v _x

P
at (x,, y,) is described by the equation

X
Z P
Find the coordinates of the intersection of the
tangent line with the asymptotes and show
that (x, y,) is the midpoint of the segment they
determine.

9. Show that the tangent lines to the hyper-
bola with equation xy = 2 cut off a constant
area from the hyperbola with equation xy = 1
(as illustrated in figure 21a) by finding that
area.

10. Show that the tangent lines to the pa-
rabola with equation y = —x? cut off a constant
area from the parabola with equation y =

1 - x*(see figure 21b) by finding that area. (@)

Figure 21

The two Marks who authored this ar-
ticle went to the same high school in
suburban Washington, D.C., and are
now professors at the US Naval Acad-
emy. Mark E. Kidwell got his doctorate
from Yale in 1976, and his main re-
search interest is the theory of knots,
links, and braids. Mark D. Meyerson got
his doctorate from Stanford in 1975, and
his main research interest is geometry
and topology.
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Baby, it' cold out there!

Or is it? On “cosmic cold” and thermal radiation

by Albert Stasenko

CIENCE FICTION WRITERS

and space engineers have a lot to

say about how cold it is in outer
space. An interesting question is

how people living on Earth could
have come up with the idea of “cos-
mic cold”—the cold of the universe.
Up to now mankind has worked
out a pattern, averaged over regions
and seasons, of how the temperature
changes with altitude (fig. 1). This
pattern is one of the most important
aspects of the description of the so-
called standard atmosphere. Figure 1
shows that, indeed, up to altitudes of
about 10 km the temperature mono-
tonically decreases. Since the highest
mountain doesn’t reach this high,
even the bravest mountain climber
would conclude that “the higher you
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go, the colder it gets.” Airline pilots
persuade their passengers of the same
thing when they inform them that
the temperature outside the aircraft
is =50°C or even —60°C. So, let’s con-
ditionally call the idea of a continu-
ous decrease in temperature with al-
titude the “extrapolation of mountain
climbers and airline pilots.”

Extrapolation, however, is a pretty
unreliable thing. For example, imag-
ine a conscientious student who
measures the temperature of water
heated in a kettle. Let’s assume that
the temperature of the water in the
kettle (initially at room temperature,
or 20°C) increases by 10°C in one
minute, 20°C in two minutes, and
30°C in three minutes (which already
makes 50°C). Now assume that the
student became bored with the ex-
periment and after quick calculations
drew the conclusion that in half an
hour the water will be heated to
320°C! This is an example of illegiti-
mate extrapolation: by continuing
the experiment, the student would
have seen (as we already know with-
out any experiments) that the water
in the kettle can’t be heated to more
than 100°C—at this point a new phe-
nomenon—boiling—comes to the
foreground.

Exactly the same thing happens
with the atmosphere: as you ascend
higher and higher, new processes
come into play. After falling initially,
the temperature increases, then falls
off again, then increases a final time,

SPACE PHYS LS

reaching (in accordance with figure 1)
the value of approximately 1,000 K at
an altitude of about 300 km. But this
is the altitude at which satellites or-
bit and astronauts take space walks.
So—is it hot or is it cold in outer
space?

Well, what do the words “hot” and
“cold” mean? Let’s first define these
concepts more accurately. We'll take
it that when it’s “cold” we give out
a lot of heat—say, Q joules per sec-
ond. And since some people are short
and others are absolute giants, it
would be more appropriate to con-
sider the amount of heat released by
a unit area per unit time. Let’s take
the amount of heat released by one
square meter of our skin per second
as a measure of “cold”:

-_Q ]
& 5 S [s-mz}

Here on Earth we’ve learned not to
think about why we're not too hot.
Living in a temperate climate, we
think more about how not to get too
cold (we worry about coats and hats
and so on). And if it gets too hot,
there’s always ice cream, a swim-
ming pool, and the wind in our faces.
The water and air ensure the required
value of ¢~ immediately without be-
ing very noticeable. The medium suzr-
rounding a heated body flows all over
its surface and removes the heat.
(With some ingenuity you can even
take a picture of the column of shim-

Art by Pavel Chernusky







mering air above your head that looks
like heat waves on a hot, sunny day.)
And what will you do if it gets too
* hot for you in outer space? In a
vacuum there is neither air nor wa-
ter, and it would be a shame to throw
anything overboard. There’s only one
thing to do: radiate the heat. This
process is also observed on Earth—
think of an electric stove or a fire (you
can feel this radiation if you screen
your face with your hand). On Earth,
however, other processes compete
with it. These are thermal conductiv-
ity (heat transfer arising from a differ-
ence in the temperatures of two ad-
joining bodies) and convection
(removal of heat by a moving me-
dium). In space the only way to cool
off is through radiation. It’s clear that
the higher the body’s temperature,
the more heat it radiates. This para-
dox—the fact that in order to cool off
faster you have to become over-
heated—is associated with the well-
known Stefan-Boltzmann law:

q,=6’1—“/ (1)

where ¢ is a physical constant that
you can find in any handbook: ¢ =
5.7 - 10 W/(m?- K*). The equal sign
in formula (1) refers only to so-called
black bodies; in practice one always
gets the inequality

q, <oT" (2)

Formula (2) shows how the rate at
which the heat is removed increases
as the temperature of the radiating
body increases. Given a threefold in-
crease in the body’s temperature, the
quantity g will increase by a factor of
3* = 81 (almost a hundredfold in-
crease!). We just have to remember
that the temperature T is measured
in kelvins.

In order to move on and arrive at
any conclusions, we have to do some
calculations.

We should note that cooling can
also be caused by the evaporation of
water in the human body through the
pores of the skin. We won’t discuss
this effect now—for the time being
we’ll assume that the body being
considered is placed in an absolutely
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transparent plastic bag (al-

_ 3-10° kcal /day-10° cal / kcal -4.2]/ cal

though sitting in a plastic | Q' =
bag isn’t exactly pleasant
for human beings). We'll

24 hours / day - 3,600 seconds / hour
=150 W.

return to this phenomenon
later, when we look at the example of
a “naked” evaporating drop.

Processes occur in a living organ-
ism that lead to the release of heat Q.
It’s an established fact that an office
worker needs about 3,000 kcal daily;
a manual laborer—about 5,000 kcal.
Since an astronaut in space will be
involved in both mental and physical
activities, let’s take 4,000 kcal/day to
be a rational diet, of which one quar-
ter is transformed into muscular en-
ergy and the remaining three quarters
are left over as heat Q' to be radiated.
Let’s express Q" in SI units (see box
at upper right).

Now let’s evaluate the area S of
our body’s surface. How can we do
this? Let’s imagine ourselves to be
cylinders (not so pleasant a thing ei-
ther) of height h (for a student let’s
take h = 1.5 m) and choose its radius
150 as to obtain the body’s volume V
(fig. 2). This volume, expressed in li-
ters, equals the mass m of the body,
expressed in kilograms. (You'll recall
that when you go swimming, you
float when you take a deep breath but
sink when you exhale; so the body’s
density must be close to that of wa-
ter.) Then for m = 50 kg we get r =
0.1 m and S=2rrh + 2nr* = 1 m2 (Of
course, a human being isn’t a cylin-
der—it’s a much more complex
shape; for physical estimates,
though, this model will do.)

Figure 2

Now let this model of a person—
a cylinder of water at a normal body
temperature T =37°C with a constant
heat release of Q' = 150 W—suddenly
find itself in outer space, and let’s
assume that no radiation from stars,
planets, or other celestial bodies
reaches the cylinder (this is obviously
the “coldest” case). How will the
cylinder cool off? Its surface radiates
the energy Q <oT"=525]/s. The in-
ternal heat release of Q’ partially
compensates for this loss of heat, so
the total heat loss is about Q- Q’
<(525-150)]/s =3757]/s. It would be
interesting to find the time it takes
for its temperature to decrease by,
say, AT = 2 K. The heat capacity of
the water cylinder mc = 50 kg -
1 kecal/(kg - K) = 200 kJ/K. Assuming
the heat loss to be constant, we get

mcAT
T2
Qr_Q’
~200-10°J/K - 2K
B 3757 /s
=18 min.

So this is the time needed to cool the
body from 37°C to just 35°C! Even in
this “coldest” case, we can hardly
speak of turning instantly into a
block of ice. (Try and calculate the
steady-state temperature as t — .}
By the way, what about the por-
tion of the power—one quarter—that
we excluded from our calculation?
We assumed it to be spent on some
useful work; in fact, this work is di-
rectly related to the efficiency coeffi-
cient n = 1/4. But if this work is ex-
pended by doing exercises in a plastic
bag, it will ultimately be expended on
heating the muscles, and this heat
has to be removed from the body.
How? Again, through radiation. And
what if the astronaut hammers on
the outside of the spacecraft (repair-
ing something or just knocking at the
door, asking to be let in)? In this case,
some of this power is spent on im-
parting kinetic energy to the ham-



mer, on deforming and heating the
spacecraft’s skin; and ultimately it
will also be partially radiated, but
this time outside the astronaut’s
body. All these considerations lead
us to the conclusion that we overes-
timated the rate of heat removal, con-
sequently, the body of an actively
engaged astronaut will cool off still
more slowly.

Now let’s imagine that we're trav-
eling along the Earth’s orbit around
the Sun. Let’s find the steady-state
temperature T of our body, assuming
that it radiates not only the inter-
nally released heat but also the heat
absorbed each second by the side of
our body turned to the Sun. The den-
sity g, of the flow of solar radiation
at the Earth’s orbit—the so-called
solar constant—is approximately
1,400 W/m?. We have the equation

qsS, + Q' =0oT*S

(S, = 2rh), which yields the estimate

T —d 1,400 W /m?. 0.3m?+150 W
* 5.7-10° w/K*
=317K =44°C.

This temperature is much higher
than what your physician will allow
you to maintain. Of course, you can
polish the side of your body turned to
the Sun (though in this case the pol-
ished side won't radiate either) and
make the other side of your body (the
side that will radiate your internal
heat Q') absolutely black (fig. 3). But
your motley, harlequin appearance

Do

B

5 dy

/

S1ds

/

<

/

shows that you’re more afraid of be-
ing fried than being frozen in the sup-
posed realm of terrible, eternal cold.

It’s appropriate to mention here
that a “bit of outer space” (but with
arather weak vacuum) is used as the
best possible insulation in flasks de-
signed to keep hot drinks hot and
cold drinks cold. Its walls are coated
with a reflective material that neither
absorbs nor radiates heat. So the al-
most complete absence of matter in
a vacuum is in itself the best “fur
coat.”

Well, what if you want to cool not
your own body, with its “little fur-
nace” inside (Q’ = 150 W), but a huge
spacecraft intended for flights all over
the solar system and equipped with
a nuclear reactor? Let’s assume that
the spacecraft is equipped with a re-
actor that releases thermal energy at
the rate of about ten million kilo-
watts (Q = 10° W). A fraction of this
energy (1 ~ 10%])is converted into the
kinetic energy propelling the space-
craft and expended on lighting the
ship, sending out radio waves, and
performing many other useful tasks.
Why not all the energy? This is for-
bidden by an important prohibition
known as Carnot’s law, which states:
if you want to do useful work at the
expense of chaotic thermal energy,
you should provide not only the “hot
end” T of a heating device (the tem-
perature of the power source—say, a
nuclear reactor) but also its “cold
end” T, (T, < T,). In the most favor-
able case the heat engine’s efficiency
will equal

_L-T
n—T<L (3)

A heating device can work (that is,
the condition 1 > 0 is satisfied) only
if the temperatures of the “heater”
and the “cooler” are different. To
ensure the maximum efficiency you
must either bring T, closer to zero or
raise T to infinity. In either case the
efficiency will be close to unity,
which is mankind’s eternal dream.
However, the reactor temperature T
can’t go too high—it’s limited by the
melting temperature of its materials,
for one thing. The temperature T, of

the cooler also can’t go too low—to
ensure the effective removal of use-
less heat from the spacecraft through
radiation, T, should be increased.
This compromise gives = 10%.

Let's take, for example, T, =
2,000 K (metals like tungsten can
withstand such temperatures).
Then, for 1 =10%, from formula (3)
we get T, = 1,800 K. Then, from for-
mula (1), we find the maximum
density of the radiation flow g, =
6T, = 6 - 10° W/m?.

So to effectively radiate the use-
less reactor energy Q' = (1 — n)Q,
we'll need an area of no less than

(1-n)Q"

qI
_0.9-10° W
C6-10° W/ m?
=1.5.10* m2.

G

One and a half hectares of surface
heated to 1,800 K and exposed to
meteors and molecular and corpuscu-
lar streams (fig. 4)! And all this sur-
face (this mass of pipes with molten
metal or gas heated to a high tem-
perature used as a heat-transfer me-
dium bathing the reactor) is needed
to prevent overheating and only be-

Figure 4

cause there is no such thing as “cos-
mic cold.”

But how can we protect the space-
craft from meteor damage? Keep in
mind that it will spend months or
even years on its trip to other planets
in the solar system.

Here’s one interesting solution.
Take a long, thin, closed band and
wind it around the cylinder you want
to cool (we want to keep it at the
“low” temperature T,). When a por-
tion of the band comes in contact
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Figure 5

with the cylinder, it heats up and re-
moves heat from the cylinder; later,
when it loses contact with the cylin-
der, it radiates the heat acquired into
outer space; when it comes into con-
tact again with the cylinder, it’s al-
ready cooled to the former tempera-
ture; and the whole cycle is repeated
(fig. 5).

What are the advantages of this
solution? First, meteors aren’t as
threatening to such a band—a hole in
it won’t cause any trouble, and the
area of the cylinder’s surface is much
smaller and can easily be protected
with small additional shields.

But how can we press the band
tightly against the cylinder? One pos-
sible solution is to rotate the band as
a whole so that all of it would be in
the field of centrifugal forces, just
like the hula hoop kids used to (and
maybe still) twirl around their waists
(fig. 6). In outer space the band will
meet no resistance!

4

centripetal forces

Figure 6

Or how about this: let’s not sim-
ply glue the band into a cylindrical
shape but twist one of its ends when
we glue it to obtain a very interesting
surface that has only one side—the
Moebius band (fig. 7). Why does this
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suit our purposes better? Portions of
this surface “radiate” directly into
outer space and not onto each other,
as is the case of a cylindrical band, so
it radiates and removes heat more
effectively.

Of course, this is easier said than
done. For a flight to Mars this band
would have to be about 10 meters
wide, 100 meters long (a football
field!), and thinner than a razor blade.
In addition, the band may become
fused to the surface of the cylinder to
be cooled. And there are other dan-
gers. But the main thing is that phys-
ics supplies designers and engineers
with ideas like this as possible solu-
tions.

Now let’s consider how the tem-
perature changes from the highest
temperature T, to the lowest T, over
the length of the band.

Let a band of width B and thick-
ness d move at a constant speed v, ra-
diating heat from both sides. Its tem-
perature will change over the band’s
length, and so it will be a function of
the distance I measured, say, from
the line where the band last touches
the cylinder to be cooled (fig. 5). Let’s
write the equation for the change in
the band’s heat content. We'll take a
small section of its length dI. The
mass of this section equals pdSd
(where dS = Bdl and p is the density).
Multiplying this mass by its specific

Figure 7

heat capacity ¢, we get the total heat
capacity of the section C = ¢cpdS8. The
temperature T(I) of this section is
taken to be constant throughout, so
the energy it radiates per unit time is

Q= oT(I2dS

(where 2dS is the total area of the two
sides of this section of the band). This
loss of radiated energy will decrease
the temperature of the section by a
small value dT, so the total heat con-
tent will decrease by CdT =-Qdt in
the time interval dt = dI/v.

Substituting the value of C into
this expression and canceling dS on
both sides, we get

cpd % =-00T*,

or, taking into account that in time
dt this section of the band covers the
distance dI = vdt, we get

cpSV% =—20T*.

This differential equation can be re-
written as

% =—odl,

where o.= 26/cpdv is a constant. Now
there’s nothing simpler (if you know
calculus) than to integrate both sides
of the equation. You may recall that,
ifn#-1,

n+1

JXndX=
n+1

If you don’t believe me, check it by
differentiating the right side of the
last equation:

Xn+1

n+1

=" _x"dx =x"dx.
n+1

We have n = -4, x =T, so after inte-
grating we'll get

3T




Here we allowed for the so-called
boundary condition: at I = O (the line
where the band leaves the cylinder)
we have the highest temperature T,
and then the temperature can only
decrease. So, substituting the limits
of integration, we get

g L
T

-3

or

So we’ve found the distribution of
temperature over the band’s length 1.
It looks like the distribution shown
in figure 8. The figure shows that the
temperature reaches its minimum
value T, at point ] = L - s (where s is
the length of arc where the band
touches the cylinder, L is the total
length of the band) and then, after the
band touches the cylinder the next
time, it’s again heated from T, to T
Each section of the band repeats this
cycle over and over with a period 1 =
Lfv.

0
Figure 8

Now we can raise this dependence
to the fourth power and integrate it
over the band’s length to find the
power radiated into space. Or, con-
versely, given the power to be radi-
ated, we can find the length of the
band and the temperatures T, and T,
that will ensure this heat removal.
And that’s exactly what spacecraft
designers did.

Notice that the obtained depen-
dence T{I) can easily be rewritten in
aform in which temperature is given
as a function of time T{t) by substitut-
ing the simple relation I = vt. Then
the band’s “boundary condition” can

be called the “initial conditions” for
the section considered. By the way, a
similar dependence is typical of the
filament of a vacuum tube when it’s
turned off at ¢t = 0. Try to think it
through by analogy: imagine this fila-
ment to be a cylinder and neglect
heat losses due to thermal conductiv-
ity through the filament supports.
Take only the radiative heat losses
into account.

A similar dependence will also be
observed for a solid particle that is
injected at ¢ = 0 into a vacuum and
begins to cool only through radiation,
starting from temperature T,. (Try to
verify this fact on your own.)

What if the particle also evapo-
rates? Let the particle be a drop of
water in a vacuum. It will cool prima-
rily because of evaporation rather
than radiation.

Let’s try to write down the follow-
ing idea: the change in the thermal
energy of the drop (mcdT, where m is
mass, cis specific heat, and T'is tem-
perature) is due to the latent heat of
vaporization of the mass dm that
evaporates. But if we merely multiply
this mass by the handbook value for
the latent heat of vaporization
£ (J/kg), we’'ll be wrong, because the
handbook value is obtained from a
simple experiment: a certain amount
of heat is added to a kettle, the mass
of the evaporated water is measured,
and then the former is divided by the
latter. But the experiment is per-
formed at atmospheric pressure,
while our drop is in a vacuum. This
means that the vapor leaving its sur-
face doesn’t have to do any work to
overcome atmospheric pressure. This
work, calculated per unit mass, is
p/p = R,T/u, where p is the pressure,
R, is the gas constant, and u is the
molar mass. (In obtaining this expres-
sion I have used the Clausius—
Clapeyron-Mendeleyev law.) So this
work must be subtracted from the
handbook value for the latent heat of
vaporization.

On the other hand, in a vacuum
the motion of the molecules leaving
the water surface through evapora-
tion is perpendicular to the surface,
and after leaving the surface the mol-
ecules don’t meet any resistance (in

contrast to evaporation in the atmo-
sphere). Since the flow of molecules
is perpendicular to the drop’s surface,
it’s said to possess “one degree of
freedom.” But each degree of free-
dom carries the thermal energy
(1/2)(R,T)u).

So, to determine the energy carried
away with an evaporated unit mass
in a vacuum, you have to subtract
the work of “counterpressure” p/p =
R,T/u that isn’t done in a vacuum
from the handbook evaporation heat
value and add the energy correspond-
ing to the selected direction along the
line perpendicular to the surface
(1/2)(R,T/u). As a result, we see that
a kilogram of evaporated mass carries
away the energy

BT 1RT__1KRT

L2 2 u

So let’s express the change in energy
of the evaporating drop as follows:

mcedT = dm(L _L M]
2 u

Here we have two variables: m and T.
The first mathematician you en-
counter will immediately perform a
simple operation with this equa-
tion—"separating the variables”—to
get

dmzc dT
m Rl (4)
2u

You can see why the operation is
named as it is: the left side of the
equation now contains only one vari-
able, m; the other variable, T, appears
only on the right side. The next thing
the mathematician will do is intro-
duce a new notation—say,

Rl _

2u R

"Youw'll recall that in an ideal gas
each molecule has three degrees of
freedom—up and down, forward
and back, and left and right—all
having equal rights, and it has an
average specific kinetic energy equal
to (3/2)(R,T/u).
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Then, differentiating both sides of the
last equation and taking into account
that differentiation “devours” soli-
tary constants (in our case, ) and has
mercy on constant factors, we write

dy = d(L—&sz—&dT.
210 21

From this we’ll derive

and substitute this entire expression
in equation (4):

dm_ _c dy
m Ry v

Now it’s time to integrate both sides.
Nothing could be simpler, if you re-
call the tabulated integral

é=1nX.
x

(This integral resembles the one we
encountered before with n = -1, but
this time the solution is different.)
Once again let’s allow for the ini-
tial condition: when the drop had
mass m,, its temperature was T;. So

T
1nm]§ =—62—“1n[L—Mj ,
0 RO 2“ I,
or
m c2u L—%
In| = |=-=E1In o
[mo] Ry | _RTp
2u
201
L—%T‘l R
=ln| —=H |
BT
2

Finally, taking antilogs of both sides
of the last equation to get rid of the
logarithms, we get
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This equation shows that even as the
temperature tends to zero, the drop’s
mass still doesn’t vanish, since its
internal thermal energy is insuffi-
cient to tear the drop completely into
separate molecules. The dependence
represented by the last equation is
qualitatively illustrated in figure 9.
And we mustn’t forget radiative heat
losses—although they continually
decrease as the temperature tends to
zero, they’ll also exhaust the energy
stored in the drop so that it will lose
an even smaller portion of its mass.

Not only that, as the drop moves
towards absolute zero, new phenom-
ena will appear: the drop may begin
to crystallize, and the evaporation
will be replaced by sublimation
(fig. 9). This is why we agreed to put
the astronaut in a plastic bag—so that
evaporation wouldn’t mask the only
process we wanted to study: cooling
by thermal radiation.

Let’s solve one more problem. It
has to do with the “Stinger” missile,
but we'll be using it for peaceful pur-
poses. Suppose a body was headed
toward the Earth—an asteroid, say, or
a decommissioned orbiting lab. If it
struck the Earth, it might cause a
great deal of damage. The Stinger
might come in handy here. Let the
temperature of the target body, which
is uniform all over its surface, be T
(we'll assume the body is rotating or
has a very large thermal conductivity,
which leads to equalization of tem-
perature at all points); the body itself
is a sphere of radius a (fig. 10). The
body will radiate the energy 4na*cT*
per unit time. At a distance r, where
the Stinger’s self-guidance mecha-
nism is situated at the moment,
the energy ¢q* = 4ma’cT/4nr?
= a*cT*/r* will fall per unit area of
its surface per unit time (this is the
density of the energy flow).

The Stinger will “notice” this
heated body if the density of the en-
ergy flow is no less than some mini-

initial
condition

evaporation

—1- __________________

. crystallization

m/m

sublimation

relict radiation
temperature

|
|
|

0 T /T, T#T

Figure 9

mum value g_._ that it can sense:
q 2 qmin' SO

o

& aT?
C.Zrn]'n

Let’s take advantage of the hand-
books, where we can find g_._ ~
5107 W/m?, and take a = 1 m and
T=1,000 K. We then get the estimate

r <300 km.

The time is now ripe to recall that the
thermal radiation of any body con-
tains electromagnetic waves of all
wavelengths A, but the Stinger “sees”
only those waves with wavelengths
ranging from 3 to 5 um. Analogously,
the human eye can see in the so-
called optical range—from 0.4 to
0.8 m (which constitutes the so-
called “window of transparency” of
the atmosphere). Figure 11 shows
Planck’s energy distribution as a
function of wavelength for the ther-
mal radiation of an absolutely black
body at the temperature T= 1,000 K,
and the two regions mentioned above




are highlighted in the figure. If you
take all the area below this curve as
a function of temperature, you'll get
the Stefan-Boltzmann law (1) that we
started with. So to determine more
accurately the range for detecting an
alien body, the quantity 6T* must be
multiplied by the fraction of the to-
tal area below the curve that is high-
lighted. You might try to do this on
your own.

1,000 K

W /(m® um )

0 3
1

Stinger
3K
1,000 A(um)
Figure 1

But what’s that little hump there
under the “tail” of Planck’s distribu-
tion, mnear the wavelength
1,000 um—that is, about 1 mm
(fig. 11)? This is the so-called relict
(or background) radiation, corre-
sponding to a temperature T, of about
3 K (2.7 K, to be precise). The uni-
verse is filled with this radiation left
over from the big bang that occurred
about 20 billion years ago.? So no
body, including the evaporating drop,
can cool below this temperature (this
fact is shown in figure 9 by the verti-
cal line at T = T.). So why, when we
calculated the radiation of heat from
the human-cylinder, didn’t we take
into account the fact that this cylin-
der is exposed to relict radiation from
all directions, which brings addi-
tional energy? Because the ratio of
this energy to the radiated energy is
of the order

(—3?12112]4 < (109" =10

—that is, one part per hundred bil-
lion.

Let’s take one last look at figure
11 and make an interesting observa-
tion. Multiply the wavelengths cor-

2See “A Universe of Questions” in
the last issue.—Ed.

responding to the maxima of
Planck’s distribution curves by the
temperatures these curves are plotted
for—3 um - 1,000 K and 1,000 um
-3 K. You'll get the same number.
The suspicion arises that some uni-
versal law is contained in this coin-
cidence. Wilhelm Wien (1864-1928)
was the first to suspect this, so the
law he discovered is known by his

with a thermometer on our summer
vacation. Since wise Nature has
made our eye sensitive to wave-
lengths of visible light (of the order of
half a micrometer), we get T, =
3,000 um - K/0.5 um = 6,000 K. And
now we can go back to the beginning
of this article and prove that the den-
sity of the energy flow from the Sun
onto the Earth's orbit g, has precisely

the value we used when calculating
the astronaut’s equilibrium tempera-
ture.

name.
With this law we can, for example,

estimate the temperature T, on the

Sun’s surface without flying there
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BRAINTEASERS

Just for the fun of itl

B46

Water fractions. A barrel was full of water. All the water was poured in
equal portions into three pails. It turned out that the water took up 1/2 of
the volume of the first pail, 2/3 of the volume of the second pail, and 3/4
of the volume of the third pail. The tank and all three pails hold integer
numbers of liters. What is the smallest possible volume of the tank?

(N. Antonovich)

B47

Morning meteors. Explain why we see more meteors from midnight to
dawn than from evening to midnight. (V. Surdin)

B48

Halving the pentagram. Prove that the area of the red portion of the star is
exactly half the area of the whole star. (N. Avilov)

B49

Vacuumed tubes. Air is pumped out of the tubes of some solar telescopes.
Why is that? (V. Surdin)

B50

English, Russian, and math. The accompanying number rebuses present
two instances of long division (the same letters in each rebus correspond
to the same digits, different letters correspond to different digits, and stars
stand for any digit). One of the rebuses is in Russian (the words are
OECATb =TEN, IBA = TWO, IIATb = FIVE) and written as they are in
Russian schools (so we have 10 + 2 = 5). But you don’t need to know
Russian (or even English) to restore all the digits in the rebuses.

(E. Rekstins)

AoJezepN plempd A Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 62

20 MARCH/APRIL 1892



HOW DO YOU
FIGURE?

Ghiallenges in physics and math

Math
M46

Unlucky series. A six-digit number
is called “lucky” if the sum of its first
three digits equals that of the last
three; numbers having less than six
digits are also included—zeroes are
added on the left until they have six
digits (for example, 1001 becomes
001001). (See the article “A Conver-
sation in a Streetcar” for an explana-
tion of the term “lucky.”)

(a) What is the longest series of
consecutive unlucky numbers? (b)
How many such longest series are
there? (S. Orevkov)

M47

Isosceles triangle on an integer
grid. All three vertices of an isosce-
les triangle have integer coordi-
nates. Prove that the square of the
length of its base is an even num-
ber. (V. Proizvolov)

MA48

X <> v, or x-changing variables. Prove
that if

X+y=ur+v=1, xu+yv=0,

then, exchanging the variables x and
v, we get the true equalities

V+y=ut+x2=1, vu+yx=0.

(S. Duzhin)

MA49

Halving still more. (a) A straight line
Idivides the area of a convex polygon
in half. Prove that the ratio in which
this line divides the projection of the
polygon onto the line perpendicular

toI(fig. 1) does not exceed 1 + /2. (b)
Each of three lines divides the area of

123
(<

Figure 2

Figure 1

some figure in half. Prove that the
part of the figure enclosed in the tri-
angle formed by these lines (fig. 2] has
an area not greater than 1/4 that of
the whole figure. (V. Prasolov)

M50

Moving at the movies. (a) A movie
theater has N + k seats; their num-
bers are indicated on the tickets. The
first N people (including Howard)
who come to a show take N seats
without paying attention to the seat
numbers. But the remaining k ticket
holders are sticklers. If any of them
finds her or his assigned seat occu-
pied, the person sitting there is
evicted; that person then looks for his
or her proper seat and evicts the
usurper; and so forth. This “migra-
tion” ends with the spectator whose
assigned seat is unoccupied. Find the
probability that Howard won’t have
to change his seat (in other words,
the ratio of the number of arrange-
ments of spectators favorable for
Howard to the total number of ar-
rangements) for (a) k = 1, (b) an arbi-
trary positive integer k. (I. Alexeyev-
Astafyev, V. Dubrovsky)

. PHYSicS

Uniform motion. A body moving in
a straight line covers exactly 1 meter
in any given second. Will its motion

necessarily be uniform? (A. Zil-
berman)

P47

Pincer pressure. Pincers consist of two
identical pieces fastened with a pivot at
point O (fig. 3). What is the force exerted
on the pivot if the handles of the pincers
are squeezed with a force F? Assume
that there is no friction in the pivot.
(L. Markovich)

Figure 3
P48

Bigger sphere. An uncharged metal
sphere is placed in a uniform electric
field. When the field is turned off, an
amount of heat Q is released inside
the sphere. How much heat would be
released inside the sphere if its radius
were three time greater? (S. Krotov)

P49

Infinite circuit. The circuit diagram
in figure 4 consists of a very large (in-
finite) number of elements. The

A R, c kR .
s — — Jo -
1
|
|
|
)]
1
|
|
o— a--
B D
Figure 4

CONTINUED ON PAGE 25
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INTERNATIONAL MATHEMATICS AND SCIENCE SUMMER INSTITUTE

A unique opportunity awaits high school teachers and advanced math and science
students who are interested in a summer institute in the United States and Russia. The
institute will feature advanced classes in mathematics, physics, and molecular biology
taught by American and Russian professors; trips to major scientific laboratories in the
U.S. and Russia; sports and recreational activities, and cultural programs in New York,
Washington, Moscow, and St. Petersburg.

From June 28 - July 19, 1992, 35 American students and teachers will study with 35
Russian, French, and Swiss students for three weeks at LaSalle Academy in Long Island
and at the Brookhaven National Laboratory. An optional six-day cultural program in
Washington D.C. area follows the institute’s academic study.

From July 26 - August 22, 1992, another 35 American students and teachers will study at
Moscow State University with 35 Russian students and teachers selected by the presti-
gious Academy of Science. A six-day cultural program in St. Petersburg follows the
Moscow institute.

Both sessions feature prominent scientists and mathematicians from the United States
and Russia.
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FOR MORE INFORMATION, PLEASE FILL OUT THE COUPON AND MAIL TO:
Dr. Edward Lozansky, International Educational Network, 3001 Veazey Terrace, NW,
Washington, DC 20008. FAX 202-364-0200; Phone: 202-364-7855.

Yes, send me information about the summer institute. Indicate if you are a student

or a teacher Please send me ___ brochures for circulation in my classes.
Last Name First
Home Address City

State Zip Phone




Art by Edward Nazarov

IN YOUR HEAD

A conversation in a streetcan

What are the chances of getting a “lucky ticket”?

WAS RIDING A STREETCAR in

Leningrad with my nephew

Misha. I dropped 6 kopecks into a

ticket machine and tore off two
tickets.

Misha grabbed one of the tickets.
“That one’s mine, okay?”

“Good grief! Take either one.
They’re all the same, aren’t they?
Good for a whole trip.”

“They’re the same, but not com-
pletely. This one’s just a regular
ticket—number 286 357. But the

by A. Savin and L. Fink

next one’s a ‘lucky’ ticket: the sum
of the first three digits equals the
sum of the last three.”

At this point I remembered a
popular superstition: that a ticket
with equal sums brings good luck.
Misha got ticket 286 358, 50 2 + 8 +
6=3+5+8.

“Do you get these ‘lucky tickets’
very often?”

“Oh, no, hardly ever. About once
amonth. And since I go to school and
back every day except on week-

‘Erm‘
4 ropkn

ends—that makes one lucky ticket
for every 50 regular tickets on aver-
age.”

“Nonsense,” one of our fellow
passengers interrupted. “I got on at
the last stop and drew a lucky ticket
from the same machine: 286 349. As
amatter of fact, right now someone’s
tearing off ticket 286 367, also a
lucky one, and soon 286 376 will ap-
pear, and then 286 385. So there’s one
lucky ticket in every 10, approxi-
mately.”

“Excuse me, that’s not quite
right,” another passenger piped up—
the one who got 286 367. “Your ex-
ample doesn’t prove anything.
There’s going to be one more lucky
ticket in the next ten: 286 394. But
then there’ll be none for a long
time—not until ticket 286 439. So
there we have an interval of 44 un-
lucky tickets in a row between the
two lucky ones. And you can find
plenty of examples like that. In this
roll of tickets, whose numbers all
begin with 286, there isn’t a single
lucky ticket between tickets 286 097
and 286 169, which is a run of 71
tickets.”

“That’s just what I was saying!”
Misha readily supported him. “On
average, one in fifty tickets is lucky.”

“That’s still a hasty claim,” I re-
marked. “To answer our question
correctly we need to study it. But first
we have to give it an exact formula-
tion. Something like this: How many
lucky numbers—that is, numbers
from 000 000 to 999 999 such that the
sum of the first three digits equals
the sum of the last three—are there!”

QUANTUM/IN YOUR HEAD 23




“Well, gosh,” Misha said after
thinking a bit, “I can’t give the exact
answer right away, but I can describe
a method for finding it, at least in
principle. We can simply write out
all the numbers from 000 000 to 999
999, check the equality of the two
sums for every one of them, and
count up the lucky ones.”

“Sure, that’s one way to tackle the
problem. It’s called an exhaustive
search. It can be applied to problems
in which some finite sets of numbers
or other objects are to be examined.
However, the search method has two
drawbacks. First and most important,
it’s too laborious and time consum-
ing. Just imagine, you have to check
one million numbers. Even at the
rate of one ticket per second, you'll
need . . . almost 278 hours, or about
35 eight-hour working days.”

“But you can get a computer to do
it.”

“QOf course you can, but it’s like
cracking a nut with a sledgehammer.
Besides, the exhaustive search has
another flaw, one that the computer
can’t avoid either: it gives a solution
to a single particular problem, a solu-
tion that usually doesn’t allow one to
generalize or discover unknown
laws. That’s why solutions obtained
by an exhaustive search are, in a cer-
tain sense, uninteresting.”

“Let me intervene again,” the
owner of lucky ticket 286 367 said.
“T've taken an interest in your prob-
lem, and I've found a solution. Not an
exact one, though, but an approxi-
mate one. Or rather, what we math-
ematicians call an ‘estimate.” Oh,
excuse me, I haven’t introduced my-
self. My name is Anatoly Pavlovich,
I'm a professor of mathematics.

“So, young man,” he turned to
Misha, “I propose that we come up
with a new definition of ‘lucky
ticket.” Better yet, let’s come up with
a new term—say, ‘pretty ticket.’
We'll call a ticket ‘pretty’ if the sums
of the first three and the last three
digits have the same remainders
when divided by 9. Are you with
me?”’

“Yes, I am,” Misha answered,
“but why 9?”

“Because in decimal notation ev-
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ery number gives the same remainder
when divided by 9 as the sum of its
digits does. This property makes it
very easy to find the number of pretty
tickets.

“Look, there are exactly 999 + 9 =
111 numbers from 0 to 999 that have
a remainder of 1 when divided by 9;
that many again with a remainder of
2; and so forth, except for the remain-
der of 0—that is, numbers exactly
divisible by 9: these include both 0
and 999, so there are 112 of them. So
how many pretty ticket numbers can
we compose using two three-digit
numbers that have a remainder of 12
Clearly, 111-111=12,321, since any
of the three-digit halves of the ‘pretty
number’ can be chosen indepen-
dently of the other one from the 111
numbers. And there are again as
many pretty tickets with remainders
of 2, 3, ..., 8. As for the remainder of
0, the number of pretty tickets is 112
- 112 = 12,544, All in all, we get 8 -
12,321 + 12,544 = 111,112 pretty tick-
ets.”

“But what does all this have to do
with Jucky tickets?” Misha asked.

“Well, it’s really quite simple: if
the sums of the digits are equal, so are
their remainders when divided by 9.
So every lucky ticket is pretty too!
Not every pretty ticket is lucky,
though; for instance 100 748 is pretty,
but not lucky. So we've proved that
the number of lucky tickets is less
than 111,112.”

“Still, that’s not a complete solu-
tion,” Misha said. “We can see that
there are less than 111,112 lucky
tickets, but we don’t know by how
much. Is it possible to show that
there are more lucky tickets than
some fixed number? I've heard that
this is called a ‘lower estimate.”

“I can give a lower estimate too,”
the professor answered, “but I'm
afraid it’s rather rough. If one half of
the ticket’s number is a precise copy
of the other, like 287 287, then such
a ticket—let’s call it ‘wonderful’—is
impeccably lucky. Since there are
exactly 1,000 wonderful tickets—
000 000, 001 001, ..., 999 999—we
have the following lower estimate:
the number of the lucky tickets is
greater than 1,000.

“The upper bound in my esti-
mates (111,112) is more than 100
times the lower bound (1,000), so this
estimate can hardly be regarded as a
real solution of the problem.”

“Maybe I can improve your esti-
mates a bit,” I broke in. “For the
lower bound we can count the num-
bers whose second half not only cop-
ies the first half but may consist of
the same digits in a different order:
they’re lucky as well. Three digits
can be rearranged in six different
ways, so we get six times as many of
these new ‘special’ lucky tickets, or
whatever you want to call them, as
there were ‘wonderful’ tickets. So the
new, and better, lower bound is
6,000.”

“Hold on,” the professor replied,
“you're slightly mistaken. Three dig-
its can vyield less than six different
rearrangements if some of the digits
are the same! For instance, the won-
derful number 222 222 can’t be modi-
fied by your method. Let me see.. . .
Yes! With this correction we get
4,600, not 6,000, guaranteed lucky
tickets. At any rate, it’s better than
1,000.”

“T'm lost,” Misha complained.

“It’s a good problem for you to
think over at home,” I said, “but now
I'd like to finish with the upper bound
before we get off. I'll make use of the
test for divisibility by 11.”

“What's that?” Misha asked. “T've
never heard of it—we haven’t studied
it at school.”

“That’s okay, I'll teach you—it’s
easy. You simply add up all the dig-
its of a number that are in the odd
decimal places, do the same for the
even places, and subtract one sum
from the other. If the difference is
divisible by 11, then the initial num-
ber is divisible by 11 too. Conversely,
any number divisible by 11 has this
property. You can prove this test
yourself—there’s another task for
you to do at home.”

“T'll try, but I still don’t see the
relationship between your test and
lucky tickets.”

“Don’t worry, you'll see it. There’s
a direct connection. But tell me, have
you ever heard about ‘Moscow lucky’
tickets?”



Leningrad lucky ticket 2 §
Moscow lucky ticket

Sum 27 ticket

“Right!” Misha ex-
claimed. “Terrific! So we've
proved that there are less
than 90,910 lucky tickets!”

“Thank you, professor,” I
said. “I couldn’t have ex-

“More riddles! Yes, I've heard that
Muscovites think a ticket is lucky if
the sums of its digits in even and odd
places are the same. What a bunch of
weirdos!”

“First of all, you're a weirdo if you
seriously believe that any ticket
whatsoever can bring you luck. Sec-
ond, Muscovites call ‘lucky’ the very
same tickets that Leningraders do,
and our ‘Moscow lucky’ tickets are
‘Leningrad lucky’ for them. Just as
‘American hills’ [the Russian name
for a roller coaster—Ed.] are called
‘Russian hills’ in America. But that’s
not the point. [Indeed!—Ed.] Accord-
ing to our divisibility test, Moscow
lucky numbers are divisible by 11,
right?”

“Right.”

“So the number of such tickets is
not greater than the number of mul-
tiples of 11 in the range 0 to 999,999

“You mean, not greater than
999,999 + 11 + 1 = 90,910,” the pro-
fessor interrupted. He couldn’t pass
up the chance to show off his calcu-
lating ability.

Misha lost all patience. “Will you
please tell me what you're driving
at?!”

“Tust a second. It’s easy to prove
that there are as many Moscow
lucky tickets as regular lucky ones.”

“Right, ‘easy,”  Misha grumbled.
“We don’t even know how many
tickets of each kind there are.”

“But we don’t need to know that,”
the professor interjected. “Put the
first three digits of a lucky number
into the even decimal places and the
last three into the odd places, and
you'll get a Moscow lucky number.
You can also reverse this transforma-
tion and turn a Moscow lucky ticket
into a regular lucky ticket. So we've
established a one-to-one correspon-
dence between the two kinds of tick-
ets. It follows, then, that they’re
equal in number. Right?”

plained it better. In the
meantime, I've figured out another
way of arriving at your initial upper
estimate. Let’s replace the last three
digits of a lucky ticket number with
the differences between these num-
bers and 9. Misha, what’s the sum of
the digits of the new number?”

“TJust a sec . ..” Misha concen-
trated on his computations.
“Hmmm . . . three times nine is 27
...minus...plus...It's27! And
we have another one-to-one corre-
spondence! This means that the
number of lucky tickets is equal to
the number of tickets whose digits
add up to 27.”

“Good job. Now, since 27 is divis-
ible by 9, all the numbers whose dig-
its add up to 27 are multiples of 9, so
there are not more than 999,999 + 9
+1=111,112 such numbers from 0 to
999,999. And this is precisely the
professor’s upper bound.”

“But, after all this, can you just tell
me how many lucky tickets there
are?” Misha asked hopefully.

“T'll give you the answer right
away: 55,252—that is, on average
every eighteenth ticket is lucky. But
where this number comes from, I'll
tell you some other time. Let’s say
good-bye to professor—it’s time to get
off.”
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