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Reptiles (1943) by M. C. Escher

AURITS CORNELIS ESCHER (1898-1972)is indeed
the “mathematicians’ favorite” and a natural to par-
ticipate in this issue devoted to group theory.
“Reptiles” is one of a number of works Escher char-
acterized as “an interplay between the stiff, crystallised
two-dimensional figures of a regular pattern and the in-
dividual freedom of three-dimensional creatures capable
of moving about in space without hindrance.” He goes
on in a curiously sociological vein: “On the one hand, the
members of planes of collectivity come to life in space;
on the other, the free individuals sink back and lose
themselves in the community.”
Here’s how Escher described “Reptiles”:

The life cycle of a little alligator. Amid all kinds
of objects, a drawing book lies open, and the draw-
ing on view is a mosaic of reptilian figures in three

contrasting shades. Evi

ently one of them has
tired of lying flat and rigid amongst his fellows, so

he puts one plastic-looking leg over the edge of the
book, wrenches himself free and launches out into
real life. He climbs up the back of a book on zool-
ogy and works his laborious way up the slippery
slope of a setsquare to the highest point of his
existence. Then after a quick snort, tired but ful-
filled, he goes downhill again, via an ashtray, to
the level surface, to that flat drawing paper, and
meekly rejoins his erstwhile friends, taking up
once more his function as an element of surface-
division. (The Graphic Work of M. C. Escher , New
York: Ballantine Books, 1971, p. 12)

In case you’re wondering: the “little book of Job,” as
Escher puts it, contains Belgian cigarette papers.

Turn to the Kaleidoscope for a fascinating look at
Escher through the prism of group theory.
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Cover art by Leonid Tishkov
The unfortunate gentleman on our
cover is having his face rearranged by
repeated application of a cyclic per-
mutation of his eyes, ears, nose, and
mouth. The fact that these six fea-
tures retain their shapes, even when
appearing in very odd positions, lends
a certain fearful symmetry to the re-
sulting series of portraits. Although
this particular sort of symmetry may
not improve our friend’s appearance,
various forms of symmetry are often
aesthetically pleasing. The study of
symmetry has led to one of the most
beautiful of mathematical theories:
the theory of groups.

The mathematical content of this
issue is devoted entirely to different
aspects of group theory. You may not
have encountered it in your high
school curriculum, so we hope
Quantum can help you get a grip on
groups.
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equation!

Have you written an article that
you think belongs in Quantum!?
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us and we’ll
send you the editorial guidelines
for prospective Quantum con-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a
level appropriate for Quantum’s
predominantly high school reader-
ship.

Send your inquiries to:

Managing Editor
Quantum
3140 N. Washington Boulevard

Arlington, VA 22201 }
Back issues of h

QUANTUM

are available

You may order the following cop-
ies of Quantum:

=%

January 1990 (premier)
May 1990
November/December 1990
January/February 1991
March/April 1991
September/October 1991
Single copies: $5
2-19 copies: $4/ea
20-49 copies: $3/ea
50 or more: $2/ea
Send your order to:

Quantum Back Issues
Springer-Verlag New York, Inc.
PO Box 2485
Secaucus, NJ 07096
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1991
U.S. TEAM—
WINNERS OF
GOLD AND
SILVER
MEDALS _

XXIII International Physics Olympiad
Helsinki, Finland
July 2-13, 1992

The American Association of Physics Teachers (AAPT) is looking for participants to represent the
United States at the 1992 International Physics Olympiad. The goals of the Olympiad are to encourage
excellence in physics education and to reward outstanding physics students. The Olympiadis a 10-day
international competition among pre-university students from more than 32 nations. At the Interna-
tional Physics Olympiad, the competitors are asked to solve challenging theoretical and experimental
physics problems. The 20 members of the U.S. Physics Team are selected through two competitive
examinations. Team members are invited to attend a nine-day training camp held in late May or early
June during which team members will refine their problem-solving and laboratory skills. The top five
members will represent the U.S. Physics Team at the competition in Finland. Team members’
expenses are paid by the contributors to the U.S. Physics Team.

Teachers who have students
interested in participating in the
1992 Olympiad are encouraged

to contact:

Bernard V. Khoury
U.S. Physics Team
AAPT
5112 Berwyn Road
College Park, MD 20740
(301)345-4200

The 1991 U.S. Physics Team, winners of a gold and silver medal, with Walter Massey,
Director of the National Science Foundation.

Deadline: January 13, 1992.

Contributors to the 1991 United States Physics Team

Acoustical Society of America Bellcore Optical Society of America
Addison-Wesley Publishing Company BP Research Phillips Petroleum Company
Allyn & Bacon, Inc. COMSAT Laboratories Prentice-Hall, Inc.

American Association of Ford Motor Company Princeton University Press

Physicists in Medicine
American Association of Physics Teachers
American Crystallographic Association
American Institute of Physics
American Physical Society
American Vacuum Society
AT&T
Beckman Instruments

General Electric Co.

GTE Laboratories, Inc.
Hughes Aircraft Company
IBM

Janis Research Company, Inc.

Lockheed Corporation
McGraw-Hill Book Company
W.W. Norton and Company

Saunders College Publishing
Schlumberger-Doll Research
The Society of Rheology
University of Maryland
Westinghouse Foundation
John Wiley & Sons, Inc.
Worth Publishing, Inc.
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Reaching back

L essons from the Black Hills

HAVE HEARD OF A NATIVE

American who leads hiking expe-

ditions for young people in the

Black Hills of South Dakota. Be-
fore stepping out into the exhilarat-
ing but rough terrain, the hikers must
agree to follow three simple rules: (1)
No whining (just say what you need
and we'll try to find a solution); (2)
Help the person behind you (we're all
in this together); (3) Have fun (fill
your mind with positive thoughts).

Now, I don’t suppose any Quan-
tum readers are whiners, and I'm
sure you have fun reading this beau-
tiful but rocky magazine. In fact, I'm
sure you enjoy learning in general. So
I'd like to focus on the second rule:
Help the person behind you.

No doubt you’ve heard that the
United States faces a major crisis in
science education. Maybe you're
tired of hearing it. After all, you're
doing just fine. You’re headed to a
good university and possibly a satis-
fying career in science or technology.
But what will your working environ-
ment be like in 10 or 20 years? What
will society be like then? Will there
be anyone outside your field who can
understand what you're engaged in?

Not many young people in this
country are like Quantum readers.
Only about 20% of high school
graduates in the US study physics
and the math required for physics.
Since only about 70% of students en-
tering 9th grade eventually graduate,
only about 14% of Americans ever
learn physics and the related math-
ematics. Those of you who also study
a second year of physics or advanced
math are members of an even
smaller population.

The sad truth is that far more of
your friends could learn physics and
mathematics than do so. In fact, al-
most everyone can learn these sub-
jects at rather high levels, but most
don’t because they’re led early on to
believe that they can’t handle them.
They’re made to feel that it takes
some special aptitude or talent. A
great body of evidence now shows
that this is simply not true. There
are, among you, individuals with ex-
traordinary talent in math and phys-
ics, but those persons are rare in-
deed—only about one in 10,000
students. The rest of you study hard
and take pleasure in learning math
and physics. That’s what keeps you
going.

Much of what I'm saying was
stimulated by a recent report of the
Carnegie Commission on Science,
Technology, and Government. The
report cites evidence to discredit four
fallacies: (1) “math and science abil-
ity is innate, and that many or most
young people cannot learn math-
ematics and science,” (2) “women
and minorities will not be in the
front ranks of technical achieve-
ment,” (3) “students disadvantaged
by poverty, race, or language in urban
and rural schools are not needed to
support the technical base of this
country,” and (4) “these subjects are
only important for the immediately
college bound.” The point, of course,
is that our nation needs all of its talent,
and we cannot afford to waste talent us-
ing these fallacies as excuses.

You know a lot of your friends
who don’t do well in school, and you
know that many of them are pretty
smart. You also know that, unlike

you, they’re unmotivated and unin-
terested. But I think “all human be-
ings by nature desire to know”
(Aristotle, slightly updated). Help
them if you can. Share your interest
and enthusiasm with them so that
they, too, gain some satisfaction in
learning something they thought
they couldn’t. Then they’ll learn
quite well on their own.

Many who don’t learn science and
math are from disadvantaged groups;
most of them are categorized as “mi-
norities.” Many sharp minds are al-
lowed to go to waste through our
neglect. You who read Quantum
regularly are mainly from among the
“advantaged,” and your advantage
continues to grow in the form of
awards, scholarships, and attention
in school. It’s very hard for your
equally able peers, who haven’t had
your good fortune, to compete. We
can’t help but admire their enormous
drive. But all of us are obliged to help
others, because none of us can say, “I
did it all by myself.”

One important way you can help
is to set aside some time in your life
to teach (or tutor). Spend two or three
years teaching. Maybe you'll like it
and keep doing it indefinitely. If
you've ever helped a younger sibling
learn to ride a bike or conquer a tough
equation, you have an inkling of the sat-
isfaction and enjoyment of teaching.

It’s good to set your sights high
and strive to achieve your goals. But
it’s also good to look back once in a
while and extend a hand to your
friends who started climbing after
you or who just need a little help and
encouragement.

—Bill G. Aldridge
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Marching orders

Atten-SHUN! The topic for today is: Finite Groups

by Alexey Sosinsky

HE NOTION OF A “GROUP,”

viewed only 30 years ago as the

epitome of sophistication, is to-

day one of the mathematical
concepts most widely used in phys-
ics, chemistry, biochemistry, and
mathematics itself. In 1956 James R.
Newman, editor of The World of
Mathematics, described group theory
as “the supreme example of the art of
mathematical abstraction.” Actu-
ally, though, groups—especially fi-
nite groups—are everyday things, on
apar, say, with counting numbers (in-
tegers); they’re more fundamental
and much simpler than lots of things
you’ve been taught in school, like
plane geometry or infinite decimal
fractions (real numbers).

Some illustrations: groups of actions

A family of actions that can be
performed one after the other is said
to be a group if for each action in this
family the inverse action (which “un-
does” the given one) also belongs to
the family and the result of succes-
sively performing two actions from
the family is also an action from the
family.

As our first illustration, consider
the actions performed by a soldier
standing at attention on the parade
grounds (see figure 1). These four ac-
tions constitute a group:

R(M) = {S,R,L,F;s}.

The result of successively performing
the commands R and F (“Right face!”

Rlt f! bt B!
Figure 1
and “about Face!”) is the same as
doing L (“Left face!”). This can be
written in the form of an equation:

FoR=L
Similarly we have

RoR=LoL=F,
LoR=RoL=FoF=S,

Other relations in our group can be
read from its multiplication table,
shown in figure 2. Notice that our
group contains the “doing nothing
action” S, expressed in military jar-
gon by the command “atten-Shun!”
and performed by “looking sharp and
not moving.” Such an action is con-
tained in any group, since it can be
obtained by performing an arbitrary
action and then its inverse. In our

GH LR T HECRY

F F L R S

Figure 2

case the actions R and L are inverse
to each other, the action F is inverse
to itself.

Now let’s consider another group,
also having to do with turning—
namely, the group of rotations R(%/)of
a five-pointed star about its center
(see figure 3). Let’s denote “doing
nothing” (in this case, rotation by 0°)

Figure 3
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Figure 4

by R, and the other rotations (by 72°,
144°,216°, 288°) by R , R, R,, R,, Te-
spectively. Here we have

R2°R1=R10R2=R3,
R30R3:R1,
Ri°R; =Ry.

The last relation means R, and R, are
inverse to each other. Other relations
may be read from the multiplication
table (fig. 4. It's easy to see that

R(*) =i {RO/RllRZ/RS/Rélic}

is a group.

As our last illustration, consider
the actions related to putting on a
sock (fig. 5):

N = “do Nothing” (leave the sock
as is),

S = “Switch feet” (take the sock off
and put it on the other foot),

[ Wy Suitdh foet

T

i A/to/ sz: MLS*’&””‘J b
Figure 5
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T = “Turn inside out” (take the
sock off, turn it inside out, and put it
on the same foot),

A = "turn inside out And switch
feet” (take the sock off, turn it inside
out, and put it on the other foot).

Here the “doing nothing” action is

N; each of the actions is inverse to
itself:

NoN=8Se8§=ToT=A-A=N;
and other relations (for example, the

obvious SeT=ToS= A) can be read
from the multiplication table (fig. 6).

0 N S T A

N N S T A

A A T S N

Figure 6
Here again we have a group
S= {N,S,T,A;O},

which, like R(M), consists of four ac-
tions. However, the groups R(M) and
S are different in principle: their mul-
tiplication tables differ not only in
the notation used for the actions but
in their structure. Thus, the main
diagonal of the multiplication table
for S contains only one action N (re-
peated four times), while different
actions appear on the main diagonal
for R(M).

I suspect that the serious reader is
starting to get annoyed at all this:
“What'’s going on here? Stupid sol-
diers doing their drills, ridiculous
actions with socks—that’s not math-
ematics, that’s not science!”

To prove to such a reader how sci-
entific all of this actually is, let me
just give the official, mathematical
names of the three groups that we've

looked at so far. The first one (about
the soldier) is known to mathemati-
cians as the cyclic group of order 4 (or
the group of residues modulo 4), and
the last (the one about the sock])is the
Klein group, also known as the sym-
metry group of the rectangle. As to
the group based on the star, it’s an
instance of a simple finite group, a
type of group about which thousands
of research articles have been writ-
ten, culminating in the discovery of
sporadic groups, such as the so-called
Big Monster and Baby Monster.

For the more pragmatic reader,
who is not impressed by fancy scien-
tific-sounding terms, let me say only
that groups are used with great suc-
cess in such disparate branches of
human activity as code theory (for
instance, by the CIA and KGB),
quantum physics, algebra, . . . and
puzzles (see Y. P. Solovyov’s article
and the Toy Store in this issue).

Symmetry groups of geometric figures

To each geometric figure Fwe can
assign a certain group, called the
symmetry group of the figure F, de-
noted by S(F); by definition, S(F) con-
sists of all the motions that take F
onto itself. For example, the symme-
try group of the square S(M) consists
of eight actions: four rotations (about
the square’s center by 0°, 90°, 180°,
270°) and four reflections (in the two
diagonals and in the two “midlines”
of the square).

The symmetry group of the equi-
lateral triangle S(A) has 6 elements;
that of the rectangle S(B) has 4. This
last group (with its multiplication
table) is shown in figure 7.

Take a good look at the multipli-
cation table of the group S(I). Doesn’t
it have a déja vu air about it? Sure
enough, it’s just like the multiplica-

- tion table for the “sock group” S ex-

cept that its actions are denoted by
other letters. If we rename the ac-
tions constituting S as follows—

N—->R),S—>R, T->S§,A->S,,

—the table for S becomes identical to
the table for S(h).



Figure 7

Groups that have identical multi-
plication tables (after an appropriate
renaming of their actions) are called
isomorphic. We've just shown that
the groups S and S(N) are isomorphic
(in honor of the great German math-
ematician Felix Klein they’re often
denoted by the letter K), while we
previously observed that K is not iso-
morphic to R(M), the soldier’s group.

You've probably guessed by now
why we use the notation R(H) for the
latter group—it’s isomorphic to the
rotation group of the square (with
respect to its center) by the angles
2kn/4,k=0,1,2,3.(Note: the author
didn’t intend to snub the military by
implying that the soldier is a square.)
This group R(M) is a particular case
(for nn = 4) of the rotation group of the
regular n-gon (with respect to its cen-
ter, by the angles 2kn/n, k=0, 1, ...,
n-1), also known as the cyclic group
of order n and usually denoted by Z .

In algebra, groups are ordinarily
studied “to the point of isomoz-
phism”—that is, algebraists don’t
distinguish isomorphic groups: they
don’t care what the groups and their
elements are called and how they are
denoted; they’re only concerned with
the structure of the groups’ multipli-
cation tables.

Permutation groups and their
subigroups

Consider a finite set of distinct
objects—say, five. Denote these ob-
jects by numbers and the whole set
by

N, -{1,2,3,4,5)

A permutation i € S; of these objects
is any one-to-one map 1: N; — Nj; or,
to put it more simply, a renumbering
of these objects. The new number 7(k)
of the kth object will be denoted by
1,. The permutation iis best displayed
by writing it as an array:

(1 2345
1= .
‘il 12 13 i4 is

This notation is convenient for find-
ing the product of two permutations
k=107 (the result of successively
performing the two permutations j
and 1). For example, if

(12345
1_(43512]’
(12345
7’(23541)’

then k(3] =(i<7)(3)=1(f3))=1(5)=2,

so that
(12345
153591 4f

(Notice that when we write k=107,
we mean that j is performed before
and this may be important: in our
case ioj#joi, as you can readily
check.) It’s also very easy to find the
permutation inverse to a given one
(by reading “backwards”—from the
second row up to the first); for ex-
ample,

. [1 2 34 5)‘1
1 —
43512
12345
4521 3]'

The set of all permutations S, of
five objects, as can be verified with-
out much trouble, is a group consist-
ingof 5! =1-2-3-4-5=120 ele-
ments, called the permutation group
of degree 5. The permutation group
of degree n for any natural number n
is defined in a similar way (take n
objects instead of five).

Permutation groups are particu-
larly interesting in that they contain
numerous subgroups (that is, parts
that are groups themselves). Permu-
tation groups contain subgroups iso-
morphic to all the groups we’ve con-
sidered up to now. The interested
reader can verify this by studying fig-
ure 8, which may also yield other sig-
nificant observations.

In particular, you may see that
certain numerical regularities appear
in this figure. For example, if we call
the number of elements in a group its
order, and define the order of an ele-
ment g as the least positive integer k
for which g* = ¢, where ¢ is the iden-
tical permutation

12 .. n
€= [1 2 ... n]
and g¥ is short for §°8°':cg (k
times), then the following theorem
can be stated.

LAGRANGE's THEOREM. The order of
any subgroup, as well as the order of
any element of a group, divides the
order of the group.

I'll omit the proof (which isn’t too
difficult).

Relationships between groups:
flomomorphisms

Groups are studied not only in and
of themselves but also as they relate
to each other. We say that a map
v:G— H is a homomorphism of a
group G into the group H if for all
elements £,8" € G we have
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n
The group Z,, = {R 12 = 7,72 73,211 212 = e}

6

1 element of order 2: 12°€;=2,

2 elements of order 3: | z*, 28,

2 elements of order 4: {23, 2 2% e =2

2 elements of order 6: :zz,_, 4 28,28, 710 e
4 elements of order 12: z,z°,z7 2!}

The group S, = {C 12 f 14) atotal of 4!=24 permutations}
1 42 “3 4
(12),(13),(14),(23), 24), (34),¢
(12),(34),(13),(24), [[14),(23), /¢ -
(123),(124),(134), (234),\¢/ = A,
(132),(142),(143), (243), /-
(23413412} 4123 -2
(2431),(4312),(3124), ¢ =

{(12),(34),(12),(34),¢} = K (the Klein group)

{[1 23 i):ine{l,z?)}};ssfsm

1y I3

9 elements of order 2: {

8 elements of order 3: {

6 elements of order 4: {

12345
The group S;=1<| . . | . . |1 5!/=120 elements
i Iy 15 14 1s
There are elements of orders 2,3,4,5,6;
12345
21453/

There are subgroups isomorphic to Z,,Z,,Z,,Z;,

example of an element of order 6: (

There are subgroups isomorphic to $;,5,, and K
There are subgroups isomorphic to 4, (of order 12).

There is a unique subgroup A; (of order 60).

Figure 8

Subgroups of the cyclic group Z

and of the permutation groups S, and S,. Cyclic

subgroups Z_are shown in red; Bhue distinguishes the so-called alternating

groups A, and A,. In our description of elements of the groups S, the numbers in

k

parentheses denote cycles (that is, permutations that interchange elements in
circular order)—for example:

10

1234
2314
1234
1432

(123)(4):( )(thatis,1%2—>3—>1,4—>4),

(24)(1)(s)=[ s a1

],(13)(24):(1 293 4].
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Yigog')=v(g)e(g)-

(Briefly, one can say that a homomor-
phism is a map preserving the com-
position operation o.)

The scatterbrained soldier who ig-
nores the commands “about Face!”
and “atten-Shun!” and reacts to both
commands “Right face!” and “Left
face!” by turning around thereby de-
fines the homomorphism

B:R(M)— Z, = {S, F;o}

according to the rule B(S) = B(F) = S,
B(R) = B(L) = F. The totally absent-
minded soldier who doesn’t react to
any command at all determines the
trivial homomorphism into the
trivial (one-element) group

o:R(M)— {S).

Nontrivial homomorphisms don’t
always exist. For example, any homo-
morphism o:Z; — Z, or :Z; > Z,
is trivial. (Why?)

Austract groups and Cayley's theorem

So far we've considered only con-
crete examples of groups, consisting
of specific actions: rotations, symme-
tries, renumberings, and other trans-
formations. But it’s possible to ap-
proach the notion of a group from a
more formal, abstract position. Then
groups are assumed to consist of ele-
ments of an arbitrary, unspecified
nature (not necessarily “actions”),
and the operation in the group is also
arbitrary (not necessarily the compo-
sition o of actions). The correspond-
ing definition is then expressed in
axiomatic form:

The set G of arbitrary elements,
supplied with the binary operation %
(which assigns to each pair of ele-
ments a,b e G their product a % b =
¢, also an element of G) is said to be
an (abstract) group if

(1) the operation % is associative—
that is, for all q,b,c e G we have

a% (b%c)=(a%b)%*c;



(2) G contains a unique neutral
element e € G, for which

a¥ke=eka=a
for any ae G;

(3) for each ae G there exists a

unique inverse element a”* € G such
that

a'ka=a%a'l=e.

This general definition yields
many new examples of groups (not
necessarily finite). Thus, the integers
Z form a group (for % take the opera-
tion +; then the neutral element is 0,
and the inverse to ae Z is —a); the
nonzero real numbers R - {0} consti-
tute a group with respect to multipli-
cation; and so on.

The abstract approach, however,
yields nothing fundamentally new: it
turns out that any abstract group is
isomorphic to a certain group of ac-
tions. We'll prove this here only for
finite groups.

Cavrey’s THEOREM. Any finite
group G 1is isomorphic to a certain
subgroup of one of the permutation
groups S .

Proor.Let G={e=g, g, ..., &} To
each element g, e G assign the array

1 2 3...n
g dg dg vee Iy

where i, is the number of the ele-
ment g, % g =g, ¥ efactually, 1, = k);
i, is the number of the element g, %
g,; - 1_is the number of the element
g, % g . Thenall the i are distinct (so
our array is indeed a permutation),
and the assignment

[1 2 ... nj

8k | . . .

1 Iy ... I
determines a homomorphism
h:G— S, (which follows from asso-
ciativity); h maps G one-to-one onto
a subgroup h(G) c S, (which follows
from axioms (2) and (3)). So G and
h(G) c S, are isomorphic.

This theorem means we now al-
ready know all the finite groups
that exist—they are (to the point of
isomorphism) the permutation
groups and their subgroups. This
doesn’t mean the topic is closed.
We still have a lot to learn about
them: what their main properties
are, where and how they are ap-
plied. But that’s another story—or
many other stories. (@]
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Heart waves

WARM-BODY PHYSICS

And the flutter that follows when they break down

by A. S. Mikhailov

PPROXIMATELY ONCE A

second an excitation signal trav-

els through the heart of a

healthy person. It causes the
heart muscle to contract, draw blood
from the veins into a collecting
chamber (the atrium), and then push
it into the arteries. The signal is gen-
erated by a pacemaker nerve (the si-
nus node) that fires periodically, after
being stimulated by the brain. Oscil-
lations that receive an external sup-
ply of energy are called auto-oscilla-
tions, so that we may say that the
sinus node works in an auto-oscilla-
tional mode.

The signal sent by the sinus node
can be visualized as a wave decreas-
ing the voltage between the outside
and inside of heart cell membranes.

Aorta

Lower

vein

Figure 1

Propagation of a wave of electrical
excitation through the right atrium of
a healthy, normally functioning heart.
The numbers give the time in milli-
seconds for successive positions of the
wavefront.
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This wave of electrical excitations
also results in minute alterations in
the electrical potential of various
parts of the body. By monitoring
them on an electrocardiogram, doc-
tors can determine whether the heart
is functioning properly.

Propagation of the wave of electri-
cal excitations in a healthy heart is
shown in figure 1. The wave pattern
is drastically different in an un-
healthy heart. Instead of infrequent
waves sent regularly by the sinus
node, waves rotate around certain
defects. On the other hand, in the
type of heart attack called paroxys-
mal tachycardia, the normal heart-
beat breaks down and the heart con-
tracts rapidly and irregularly. In fact,
contractions of the heart as a whole
may cease totally, so that only cha-
otic twitching of its various parts,
called fibrillation, is present. This
means the heart has stopped work-
ing. Paroxysmal tachycardia and fi-
brillation are the main causes of
death from a heart attack.

Why do tachycardia and fibrilla-
tion occur? What is the mechanism
for the breakdown of the normal
wave pattern in the heart? Answers
to these questions are found in the
mathematical theory of waves in ex-
citable media. In this article I'll just
try to give a qualitative explanation
of the phenomena causing dangerous
heart arrhythmia.

Excitation waves

Have you ever seen a detonation
fuse burning? The flame, confined at

every moment to a small region of
the fuse (the combustion zone), runs
along without going out, so that we
can imagine a solitary wave whose
shape gives us the dependence of
temperature on time at various
points on the fuse. A very thin re-
gion—the flame (or wave) front—
separates the combustion zone from
the unburnt fuse. When the flame
front reaches a given point, the tem-
perature suddenly soars; it returns to
the initial value when the combus-
tion material is used up. Obviously,
when two such waves meet, they
extinguish each other.

Waves in living organisms are
much like combustion waves. A
good example of a biological wave is
the excitation impulse traveling
along a nerve fiber. This is an electri-
cal impulse that runs along a fiber
(less than 0.025 mm in diameter and
up to 1.5 m long) at a constant speed
(generally several dozen meters per
second) without fading or becoming
distorted. The nerve fiber is a conduc-
tor, but a very poor one. Its electrical
resistance per unit length is approxi-
mately 10° to 10'° ohms/cm, which is
a hundred million times that of a
copper wire with the same diameter.
If the impulse had no external supply
of energy during its movement along
the nerve fiber, it would fade very
quickly. There are electromechanical
processes in living organisms that
ensure the supply of energy for stable
propagation of nerve impulses, but
they’re rather involved and we won’t
discuss them here.

Art by Yury Vashchenko
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Waves that propagate without fad-
ing, and whose features remain con-
stant because of a continuous infu-
sion of energy from without, are
called autowaves. The way a com-
bustion wave spreads in a medium
that can replenish itself would pro-
vide a good visual analogy. The sim-
plest example of this process would
be a prairie fire. Each time a combus-
tion wave passes through an area, all
the grass is burned; but then it slowly
grows back, only to be subjected to
another prairie fire. So the prairie, as
an “excitable medium,” is able to
regenerate itself—that is, restore its
initial state.

Individual muscle fibers in the
heart are similar to nerve fibers in
their electrical properties, but the
heart’s muscle tissue consists of
densely intertwined fibers that are
electrically connected to one another
at the points of contact. An excitation
impulse can go from one fiber to an-
other, and so excitation waves are
able to propagate through the heart in
any direction. In this the excitable
medium of heart tissue resembles
the grassy prairie, whose autowaves
of fire can travel in any direction.

Axiomatic model of an excitatile medium

In the summer of 1945 the Ameri-
can mathematician Norbert Wiener,
who is considered the father of cyber-
netics, was staying at the summer
home of his friend Arturo
Rosenblueth, director of the Mexican
Cardiology Institute. It had been
known for decades that electrical ex-
citations propagate through the heart
and that certain heart arrhythmias
are linked with the circulation of ex-
citation waves around anatomical
obstacles. Wiener became interested

:

Figure 2

Sequence of changes in an element’s
state in an excitable medium. White,
red, and blue indicate the rest,
excited, and refractory states, respec-
tively.
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Figure 3

Excitation wave in the Wiener-
Rosenblueth model of an excitable
medium.

in this phenomenon and together
with Rosenblueth constructed a
mathematical model that gives a
simplified picture of the processes
occurring in excitable media.

In their model Wiener and
Rosenblueth assume that the excit-
able medium is formed by a network
of elements, each of which can oc-
cupy one of three states: rest, excita-
tion, or refractoriness.! Transitions
between these states are discontinu-
ous and subject to certain rules.

How do these states arise? In the
absence of outside influences, an el-
ement remains in the state of rest for
an indefinite time. An outside influ-
ence can move it from this state to
that of excitation. After being in the
excited state for period of time t_,
the element moves into the refrac-
tory state, in which it remains
unexcitable for a period of time 7.
After the refractory period has passed,
the element recovers the ability to
become excited, and it returns to the
rest state. (These transitions are pre-
sented graphically in figure 2.) An-
other supposition of the model is that
an excitation can move from excited
elements to neighboring elements in
the rest state, so that excitation
waves can propagate through the
medium (fig. 3). The propagation ve-
locity ¢ of these waves is constant.

According to the Wiener—
Rosenblueth model, excitation
waves must obey the following rules.

1. There is a minimum time inter-
val between two successive excita-
tion waves, equal to the sum

Literally, the state of resisting
control or authority. In physiology, the
“refractory phase” is the brief period
immediately after the response of a
muscle or nerve before it’s able to
respond again.—FEd.

Figure 4
Sequence of closely spaced excitation
waves.

min Texc + Tref’

where 1 and t_, are the durations of
the excited and the refractory states,
respectively. If the waves follow each
other within the minimum time
span—that is, with maximum fre-
quency—all the elements of the me-
dium are either in the excited or the
refractory state (fig. 4). The mini-
mum distance between waves is

Lmin = CT‘min = C(Texc * Tref)/
where c is the velocity of the wave.

2. When waves collide, they extin-
guish each other. This isn’t hard to
picture: upon colliding, the excited
elements are “squeezed” between
two approaching areas in the refrac-
tory state.

3. Excitation waves aren’t re-
flected off the medium’s boundary;
they’re absorbed by it.

4. “Fast” and “slow” sources of
excitation waves coexist in the me-
dium. The fast sources generate
waves frequently, within short time
intervals, and suppress the slow
ones.

Let’s verify this. Suppose there are
two periodic sources generating
waves in the time intervals T} and T,.
Figure 5 presents a graph of the evo-
lution in time of waves sent by these
sources. The left source sends waves
more frequently than the right one
(that is, T| < T,). Over time the point
where the two wavefronts meet and
are extinguished shifts toward the
right (lower frequency) source, until
that source is suppressed completely.
So in the long run only the fastest
source “survives” in the medium.

5. An excitation wave can circu-
late along a ring or around a hole in




X

Figure 5
Effect of suppressing slow sources.
The development in time of the
wavefronts sent by two sources with
different periods is shown. The left,
high-frequency source suppresses the
right, low-frequency one. The time is
arrayed upward on the vertical axis;
the x-coordinate is arrayed horizon-
tally along the line connecting the
centers of the two sources.

the excitable medium for an indefi-
nite time.

This last supposition has impor-
tant consequences for the possible
shape of excitation waves. To see
this, let’s perform the following
imaginary experiment. Take a strip of
the excitable medium, which we’ll
consider two-dimensional (like a
sheet of paper) but having all the
properties (1-5) listed above, and roll
it into a ring. If the length I of the
strip is greater than L __ given above,
an excitation wave can circulate
along the ring for indefinite time (see
figure 6a). The period of circulation T
= I/c, where c is again the velocity of
the wave.

Now let’s enlarge the outer radius
of the ring so that it tends to infinity.
We get something that looks like an
infinite sheet of the excitable me-
dium with a hole in it. What happens
to the excitation wave in the ring
when we stretch the ring like this? It

will continue to rotate, but the
wavefront (the imaginary line sepa-
rating excited elements from those
still at rest) will bend.

In fact, the wave front can’t be a
radial line rotating around the hole at
an angular velocity ; if that were the
case, the velocity of the wavefront at
a distance r from the origin would be
equal to ¢ = or and would tend to in-
finity as r increases. But a require-
ment stated above calls for the veloc-
ity of excitation waves to be constant.
So distant portions of the wavefront
will start to lag behind those closer to
the origin, so that the wavefront will
take the form of a spiral.

Thus, a spiral wave can rotate
around a hole in an excitable me-
dium for an indefinite time without
fading. The period of rotation is the
time interval needed for an excitation
impulse to travel around the perim-
eter I of the hole—that is, T = I/c. If
the hole is circular with radius R,
then T = 2nR/c, and the rotation fre-
quency o = 2/T = ¢/R.

These are the main points of the
Wiener-Rosenblueth model. The
question is, how can we use the
model to explain the outbreak of
heart arrhythmia?

Spiral waves and heart arrhythmia

The walls of the atrium are thin
enough to allow us to look at heart
tissue as a two-dimensional excitable
medium. Because of the blood short-
age caused by a heart attack, small
areas of heart tissue may die, losing
the ability to conduct excitation
waves. These areas of dead tissue are,
in effect, holes in the excitable me-
dium, and according to the argu-
ments given above they will cause
the circulation of excitation waves

uuuuuuuuuuuuuuu

=

b)

Figure 6

Circulation of the excitation wave: (a) a solitary wave rotating in a ring; (b) a
spiral wave rotating around a hole in the excitable medium.

around them. What will the final
outcome of such circulation be?

The answer depends on the ratio of
the circulation period to the fre-
quency at which the sinus node
sends waves. If the rotation fre-
quency of the spiral wave is greater
than the impulse frequency of the
sinus node, the spiral wave turns out
to be a faster source and suppresses
the activity of the sinus node. And
that’s generally what happens, be-
cause the radii of the holes (the dam-
aged regions of the heart) are small,
and the circulation frequency of the
wave is inversely proportional to the
radius. Then the wave rotating
around the hole takes over the entire
atrium, and the normal functioning
of the heart breaks down. Instead, the
heart begins to “flutter”—that is,
arrhythmia sets in.

Excitation waves can also be gen-
erated by discontinuities in the fronts
of other excitation waves. To see
this, let’s suppose that the medium
contains a region D of elements with
a longer refractory period. Suppose
two successive excitation waves
travel through the medium within a
short span of time (fig. 7a). After the
first wave passes through region D,
elements located in D will remain in
the refractory state for along time. As
a result, the excitation from the sec-
ond wave can’t penetrate the re-
gion—the wave front tears (fig. 7b).
After a while the refractory state in
region D ends, and its elements re-
gain the ability to become excited. If
at this point the second wave has not
yet passed through region D, an exci-
tation from the front of this wave
will begin to propagate inside that
region (fig. 7¢). Then the wave will
begin to curl around the tear, and af-
ter a while a spiral wave is generated
(fig. 7d).

Heart tissue is not homogeneous,
especially with regard to the duration
of the refractory state. This
nonhomogeneity increases if the nor-
mal “feeding” of the cells is disrupted
by a heart attack. When the heart is
functioning normally, the time be-
tween two successive excitation
waves is usually 1 s, and the duration
of the refractory state is approxi-
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Figure 7

Generating a spiral wave (D is a
region with long refractory periods):
(a) the initial positions of the two
waves; (b) the second wave doesn’t
enter region D, discontinuities in the
front appear; (c) the excitation wave
begins to propagate in region D; (d)
the spiral wave appears; (e) the spiral
wave after a sufficiently long period of
time.

mately 0.1 s; so a small scattering in
the values of the refractory time,
which is natural in living tissue,
doesn’t cause tearing at the fronts of
excitation waves. If the heart tissue
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Figure 8
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Generating a spiral wave in a strip of heart tissue from a rabbit. The numbers

indicate the time in milliseconds.

Wave 2 is broken into regions with a long

refractory period. The spiral wave appears. Because of the small size of the strip,
only a small portion of the spiral actually forms.

is damaged, however, the sinus node
can generate an additional wave that
follows the previous one by a very
short time interval. If this interval is
short enough—less than the sum of
the maximum duration of the refrac-
tory state and the duration of the ex-
cited state—the front of such a wave
will be torn at the boundary of the
region with the longer refractory
state, and a spiral wave will be gen-
erated. Figure 8 shows the generation
of a spiral wave by a tear in the
wavefront in an experiment with a
tissue sample from a rabbit’s heart.

Understanding the dynamics of
spiral waves is important for the
study of serious heart illnesses. Let’s
make this point clear by the follow-
ing examples. We know that in
nonhomogeneous tissue the lifetime
of a spiral wave, which is the alleged
cause of tachycardia, is finite. Be-
cause of the excessively rapid action
of the heart, or the nonhomogeneous
structure of the tissue, the wave trav-
els randomly and its shape changes.
Sooner or later the wave arrives at the
boundary of the tissue and disap-
pears. So we have a happy ending:
when the rotating spiral wave disap-
pears, the tachycardia stops.

But another outcome is also pos-
sible. Secondary tears can appear at
the front of the excitation wave, in its
outlying region, when the wave
passes through a region with a long
refractory period, so that new spiral
waves can appear. If the number of
waves generated per second is greater
than that of the waves absorbed at
the boundary, the number of spiral
waves will grow in time until the
entire medium is filled with small

scraps of spiral waves. This chaotic
situation is observed when fibrilla-
tion occurs—that is, contractions of
the heart as a whole cease and only
various parts of it flutter chaotically.

The important point is that the
onset of fibrillation requires that the
heart’s tissue exceed some “critical
mass.” Until the tissue sample
reaches a certain size, self-supporting
fibrillation can’t be generated. For
example, the critical mass is approxi-
mately 20 mg for the atrium tissue of
a rabbit.

Within the framework of the
theory given above, this pheno-
menon isn’t hard to explain. Assum-
ing that the refractory states are ran-
domly distributed in the medium,
we see that the probability of gener-
ating a new spiral wave by a tear at
the front of a wave that already exists
is approximately the same at any
point in the medium. The total num-
ber n_ of new spiral waves generated
in the medium per unit of time is
proportional to the area occupied by
the medium, which we’ll consider
two-dimensional, and the number of
existing spiral waves N. So we can
write the equation

n = al’N,

where L is the linear size of the me-
dium and o is a constant coefficient.
The number of spiral waves that dis-
appear at the boundary per second is
given by

n =BNL

—that is, we assume it to be propor-
tional to the length of the boundary



(B is a constant coefficient). In the
chaotic mode observed during fibril-
lation, the rate at which spiral waves
are generated is greater than that of
their disappearance—that is, n_>n.
According to the arguments given
above, this requires that the linear
size of the medium be greater than
the critical value L_= /ot For smaller
samples, the generation of spiral
waves will be canceled by the bound-
ary.

An understanding of the mecha-
nisms leading to heart arrhythmia is,
of course, essential for finding effec-
tive methods of curing or preventing
it. The examples given above make it
clear that certain simple arguments
derived from the physics of vibra-
tions may provide a clue.

In this short article I've confined
myself to the simplest and most
“graphic” explanations. The Wiener—
Rosenblueth model played its role in
creating a theory of autowave phe-
nomena. In the 1960s a group of sci-
entists studied the model closely in
one of I. M. Gelfand’s seminars? and
made some important generaliza-
tions, so that new and more detailed
models are now available for waves
in excitable media such as heart tis-
sue. These more sophisticated mod-
els make use of the theory of partial
differential equations and can pro-
vide more precise answers to the
questions discussed in this article.
But the Wiener-Rosenblueth model
is still useful when we need to get a
qualitative picture of a phenomenon
by the simplest possible means.

@

2See “A Talk with Professor I. M.
Gelfand” (Jan./Feb. 1991).—Ed.
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Chaflenges in physics and math

Math
M36

Fifth follows four: right angles in a
square. Point L divides the diagonal
AC of a square ABCD in the ratio 3:1
(fig. 1), K is the midpoint of side AB.
Prove that angle KLD is a right angle.
(Y. Bogaturov)

A K B
L
D c
Figure 1

M37

Annihilating array. The numbers 1,
2, ..., 100 are arranged in a 10 x 10
square table in their natural order (1
in the top left corner, 100 in the bot-
tom right corner). The signs of 50 of
these numbers are changed in such a
way that exactly half of the numbers
in each line and each column get the
minus sign. Prove that the sum of all
the numbers in the table after this
change is zero. (S. Ageyev)

M38

Fifth follows four: parallel segments
in a pentagon. Bach of four sides of a
convex pentagon is parallel to one of
its diagonals (having no end points in
common with the side—see figure 2.
Prove that the same holds for the
fifth side, too. (E. Turkevich)

M39

Baker’s dozen cuts. Is it possible to
draw 13 straight lines across a chess-
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board such that, after cutting it along
the lines, each piece will contain at
most one center of a square? (The
lines must not pass through the cen-
ters.) (A. Pechkovsky)

M40

Fifth follows four: numbers in a se-
quence. In the sequence 1, 9, 9, 1, O,
9, ... each number, beginning with
the fifth one, is the last digit of the
sum of the preceding four. Will we
ever meet in this sequence the suc-
cession of numbers (a) 1,2, 3, 4; (b) 1,
9,9, 1asecond time; (c] 2, 1,9, 97 (G.
Gurevich)

- Physics

What will the speed be! A constant
force F starts to act on a body that is
moving with a constant velocity v.
After an interval of time 1 the body’s
speed becomes v/2. During the next
interval of the same duration the
speed is again halved. Figure out
what the body’s speed will be three
time intervals after the force begins
to act. (S. Krotov)

P37

Child on a hill. A child climbing
slowly up a snowy hill is pulling a
sled with a rope such that the rope is
always parallel to the hill’s surface.
The hilltop is at a height h and dis-

tance I from the foot of the hill. Find
the work the child does in lifting the
sled to the hilltop. (The sled’s mass
is m, the coefficient of friction is W.)
(A. Buzdin)

P38

Alpine helicopter. Helicopter pilots
in the mountains prefer to fly early in
the day, right after dawn. Fine morn-
ing weather (which might seem to be
the reason) doesn’t matter in this
case. What’s the real reason? (G.
Myakishev)

P39

What’s the resistance! The shape
shown in figure 3 is made of wire of
constant cross section. The side of
the bigger square is a, and a one-
meter length of the wire has a resis-
tance p. Determine the resistance be-
tween points A and B. (A. Zilberman)
A

>

Figure 3
P40

Semitransparent mirrors. Measure-
ments show that a semitransparent
mirror lets through about 1/5 of the
incident light; the rest is reflected. If
two identical mirrors of this kind are
set perpendicular to the incident light
beam, we might expect the pair to let
through 1/25 of the light. But actu-
ally about 1/10 of the incident light
passes through. What’s the reason?
(V. Golubev)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 58



Art by Edward Nazarov

BRAINTEASERS

Just for the fun of it

B36

Restore the sum. The figure at right shows a sum in which some
of the figures are rubbed out and replaced by asterisks. Restore the
absent figures. (L. Yakovleva)

B37

Jug, pot, and barrel. You have a four-liter jug, a six-liter pot (like in
the drawing at left), and a big barrel of water. Can you measure
exactly one liter of water? (G. Kushnirenko)

B38

Possibility of trisection. One of the three famous ancient geo-
metrical problems is the problem of trisecting an angle with ruler
and compass. It was proved long ago that this problem, along with
the other two, is in general unsolvable. But there are some excep-
tions to this rule. Trisect an angle of 54° using only a compass
(that is, construct points that lie on the rays dividing the angle
into three congruent parts). (A. Shvetsov)

B39

Turning seven by fives. Seven coins lie along a circle. Can you
turn them all upside down if you're only allowed to turn over any
five coins in succession at a time? Can you do it by turning over a
succession of four coins at a time? (A. Shvetsov).

B40

Traveling light. Dashing sea captains wouldn’t fill their holds
completely when they transported cotton from Australia to
England. It would have been to their advantage to take as much as
they could, but they didn’t. Why not? (L. Mochalov]

ANSWERS, HINTS & SOLUTIONS ON PAGE 60
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 with “polyominoes”

It all started with the humble domino . . .

JJ OU'VE PROBABLY PLAYED, ogy w1th dommoes they e ¢ lle

orat least heard of the excmng ]
' i allow the figures to be sh1fted~ and
rotated 90 degrees that’s why there
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peared. Its building blocks are a set of
wooden or plastic five-square tiles,
which can be not only moved but
turned over. The set comprises
twelve pieces—every possible shape
occurs once. You can use them to
tile, for instance, a checkerboard
with the central 4 x 4 square cut out.
(Try it yourself!) This problem was
published way back in 1907 by the
famous puzzle inventor Henry E.
Dudeney, but pentominoes and other
polyominoes owe their fame to pro-
tessor Solomon W. Golomb of the
University of Southern California.
The detailed story of this type of
puzzle, math problems connected
with it, and how they’re solved can
be found in his excellent book
Polyominoes (New York, Charles
Scribner’s Sons).

As for this article, we'll deal with
just one (though probably the most
numerous) class of polyomino prob-
lems, asking whether a given figure
on the checkered plane can be tiled
by polyominoes of some given type.
In order to give a positive answer to
such a problem, it’s sufficient simply
to produce the appropriate tiling
(which is usually found by some clev-
erly arranged search, often a very la-
borious one). But using the brute
force of a search method to prove that

| |
A Y

[
X

X I

#(XY) = AABBA"'BBAAA = A2B2A-1B2A3
Figure 2

the required tiling does not exist can
prove fruitless because of the astro-
nomical number of possibilities to be
checked. Instead, proofs of nonexist-
ence of the required tiling often em-
ploy a special coloring of the plane
(see Golomb’s book). I'll demonstrate
an approach to tiling problems that is
based on group theory. It was sug-
gested to me by the young Leningrad
mathematician Oleg Izhboldin in
1987. All the information you need
about groups can be found in Alexey
Sosinsky’s article on page 6.

From polyominoes to groups

Consider an infinite grid of unit
squares on the plane. A figure con-
sisting of a finite number of squares
is called a polyomino if any two of its
squares can be connected by a chain
of squares such that every subse-
quent square in the chain adjoins the
preceding one along a whole side. For
simplicity, we'll confine ourselves to
polyominoes bounded by one closed
non-self-intersecting polygonal
curve—that is, polyominoes without
holes.

Let XY be a directed polygonal
curve, originating at node X and end-
ing at node Y, formed by the lines of
our grid (unit segments). Let’s move
along it from its starting point to the
end point. Each segment between
adjoining nodes of the grid will pro-
ceed in one of four directions, so that
we can designate our curve as a se-
quence of directions of movement.

Now let’s take an arbitrary group
G and two elements A and B in it.
We'll label an element directed up-
ward A and one directed to the right
B; we'll label the inverse elements—
those directed downward and to the
left—A-'and B-!, respectively. We'll
consider this entire curve to be an
element of the group #XY), equal to
the product of these four elements
taken in the order in which the direc-
tions are encountered when we move
along the curve (fig. 2).

The same product can be written
for a polygon bounding some
polyomino P if we denote the starting
point (grid node O) and choose the
direction of travel (say, clockwise).
We'll denote it by t(P) (fig. 3).

to(P) = BA3B*A71B2A71BA"!
Figure 3

Try to work through the exercises
that follow—you’ll find them useful
later in the article.

Exercise 1. Prove that ¢(YX) =
t{XY)-!, where YX is the same po-
lygonal curve XY but traced in the
opposite direction, from Y to X.

Exercise 2. Let O and O, be two
nodes on the boundary of polyomino
P. Prove that

tq (P =t{O0)t o PIHOO,).

It follows from these exercises that
if the product ¢ (P) is the unit (or neu-
tral) element e of group G, then the
equality t_(P) = estill holds even if we
reverse our direction of travel on the
boundary or switch our starting point
(from O to O,), since in this case

tq(P) =tO0IHO0,)
=t{0,0)t{0,0) ! =e.

So we can simply write t(P) = e with-
out indicating either the origin or the
direction.

Now everything is ready, and we
can state and prove the

Basic THEOREM. If a polyomino P
can be cut into polyominoes P, P,
..., P, such that, for elements A and
B of some group G, t(P ) =t(P,) = ... =
t(P,) = e, then t(P) = e as well.

L

) dny
S |
X ’»\)_ ! l‘x “1
=T p
A < 2
L2
Figure 4
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Let’s begin by proving the theorem
for a polyomino P composed of just
two pieces, P, and P,, that border on
each other along the polygonal curve
XY. Starting from X, move along the
common section of the boundaries of
P, and P, complete a circuit around
P, and then make a full circuit
around P, (see figure 4), writing down
the product of the elements of G
traced by this path. We pass along
curve YX forward and backward, so
the corresponding factors in the prod-
uct cancel out, and two successive
circuits (around P, and P,) amount to
one circuit around P:

tdP )t P,) = (L, ) YX)H (XYL,
— L)L)
= tx(P)r

where L, is the common portion of
the boundaries of P, and P from X to
Y, and L, is the common portion of
the boundaries of P, and P from Y to
X. So t,(P)=t{P)t{P,) = e.

The thorough proof for the case of
an arbitrary number k of pieces into
which a polyomino P is cut proceeds
analogously, using induction over k.
We just need to notice that, out of all
the polyominoes P, ..., P, that con-
stitute P, one will always be found
that, combined with the rest, form
the same kind of pair as P, and P, in
the preceding argument.

Exercise 3. Prove that if AB = BA,
then ¢(P) = e for any polyomino P.

It's clear from the last exercise
that it’s pointless to use commuta-
tive groups in polyomino tiling prob-
lems: such groups would not give
any information. It’s also clear that
we can limit ourselves to groups
whose elements are all products of
some elements A and B and their in-
verses (any number of them in any
order). Such groups are said to be
groups generated by two elements,
and these two elements are called the
generators of the group. Here are two
examples (which also appeared in
Sosinsky’s article).

The first is the group S, of permu-
tations of the numbers 1, 2, 3. It is
generated by the permutations
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123 123
A= B=
(213) Al (132)’-

Exercise 4. Verify that the four
permutations of S, distinct from A
and B coincide with A% = ¢, AB, BA,
and ABA.

The second example is the so-
called dihedral group D _(n = 2,
3, ...)—that is, the symmetry group
of a regular n-gon (for n = 2, the
“n-gon” is considered a line seg-
ment). It consists of all the isometries
of the plane that map this n-gon onto
itself: these are n rotations about the
n-gon’s center through the angles O,
2m/n, 4n/n, ..., 2(n - 1)n/n, and n line
reflections in the midperpendiculars
to the sides (fig. 5). We can choose as
the generators of the group the rota-
tion R through angle 2n/n and any

line reflection r.

}’1 7

R

Figure 5

Exercise 5. Check that all rotations
in group D, can be written in the
form R, R*, R?, ..., R” = ¢, and all the
line reflections in the form r, R, rR?,
..., IR?-1, Later, though, another pair
of generators, r and r, = rR, will be
used. (They’re actually the genera-
tors, since R = rz,.) All dihedral groups
except D, are noncommutative:
m=R#R'=nr.

Now we can return to the prob-
lem of polyomino tiling. Usually a
certain set of standard polyominoes
is given (for example, the twelve
pentominoes) and various figures
are to be built from them. The stan-
dard polyominoes may be shifted,
rotated, and overturned at will.
Let’s reformulate the Basic Theo-
rem so it can be applied to this
problem more conveniently.

But first, one more definition.
We'll call a noncommutative group
with two generators A and B a null
group for polyomino P (with respect

to A and B) if, for any position of P on
the grid, t(P) = e.

The Basic Theorem directly re-
sults in the following

Tiing ConprTioN. If G is a null
group for each of the polyominoes P,

., P, then G is also a null group for
any polyomino that can be tiled by
polyominoes of these types.
Examples

1. Monomino. For a single unit
square P, regardless of its position on
the grid, {(P)= ABA-'B-! (fig. 6a). The
equality t(P) = e would mean that AB
= BA—that is, that G is commuta-
tive. But we've decided not to use any
commutative groups: they can’t help
us. So there is no null group for a
monomino. And this is quite natural,
since obviously any polyomino can
be tiled by monominoes.

2. Domino. Dominoes can be
placed on the grid in two different
ways, and the corresponding prod-
ucts are

t - ABA-1B-?
and

t, = A2BA-B"!

(fig. 6b). The group S,, with the
abovementioned generators

12 12
A= 3 and B= 3,
213 132

is a null group for dominoes. Indeed,
since A? = B? = ¢, we have

t,=AeAle=AA""=¢,
t,=BB~'=e.

Figure 6



Now we can solve the well-known
problem of whether it’s possible to
tile a chessboard with dominoes
when two opposite corner squares—
say, a8 and hl—are lopped off (fig.
6¢). Trace out the boundary of such
a chessboard, starting from one of the
corners that’s intact (as in figure 6c).
We get the product

t = A’BAB’AB'A'B7
=(AB*
=AB+#e,

since

12
aB=[1%3]
[312]

Consequently, the required tiling is
impossible. Here we might as well
use the symmetry group D, of a regu-
lar triangle (the generators would be
the reflections in two of the triangle’s
heights). You may find it easier to
deal with this second group. But S,
and D, are, in fact, two “incarna-
tions” of one and the same abstract
group (that is, they’re isomorphic);
you'll see this right away when you
number the triangle’s vertices and
follow the permutations of the num-
bers under the symmetries of the tri-
angle.

3. P x g-omino. Let P be a rect-
angle measuring p X ¢ (fig. 6d). Con-
sider the group G of permutations
generated by two cyclic permutations
of length p (p-cycles), which have ex-
actly one element in common (fig. 7):

A 12...p-1pp+l..2p-1
23... p 1 p+1..2p-1

and

B 12..p-1
12 ... p-1p+1 p+2 ... p

The two products t, = APBIA-*B~1
and t, = BPA7B-*A-7 correspond to the
two possible positions of P on the
plane. Since A? = B? = ¢, both prod-
ucts are equal to e, so G is a null
group for the rectangular polyomino

p p+l.. 2p—1]

P. The other null group for P is the
group G, generated by two g-cycles
A, and B, that have a single common
element.

Using this construction, let’s
prove that a rectangle Q measuring
m xn can be tiled by rectangles
measuring p X q only if each of the
numbers p and q is a factor of at
least one of the numbers m and n.

In this case the tiling condition
has the form ¢(Q) = A"B"A-"B-" =¢
or A"B™ = BmA", But for our cyclic
permutations A and B this equality is
possible only if A® = e and B™ = ¢
(watch the common element of the
cycles during permutations A*B* and
B= A7), But A" = e only if p divides n,
and B™ = ¢ only if p divides m. Replac-
ing cycles A and B by the similar g-
cycles A, and B, we find that either
n or m is divisible by q.

It’s clear that the required tiling is
possible only if both of the numbers
m and n has the form xp + yq, where
x and y are some nonnegative inte-
gers, since the side of the larger rect-
angle must be composed of the sides
of the smaller ones. Bringing together
all these conditions, we find that ei-
ther (a) one of the two numbers m
and n must be divisible by p and the
other one by q; or (b) one of these
numbers is divisible by both p and
q and the other one has the form xp
+yq (x,y 20).

Exercise 6. Prove that the last con-
dition is not only necessary but also
sufficient for tiling a m x n-omino
with p X g-ominoes.

Exercise 7. Prove that an m x n
rectangle can be tiled with p x p and
g X q squares if and only if either
(a) both m and n are divisible by p,
(b) both are divisible by g, or (c) one
is divisible by both p and g and the
other is of the form xp + yq, where x
and y are nonnegative integers. (Hint:
the group of permutations generated

p+2

Figure 8
by a p- or g-cycle having exactly one
common element is a null group for
both p x p and g x g squares.)

In these exercises it’s possible to
obtain necessary and sufficient tiling
conditions. But I must admit that
this is a rare case. Our theorem
yields only a necessary condition and
can be used, basically, when one
must prove that some tiling does not
exist.

A few probiems with null groups

1. Prove that the symmetry group
D, of a square with generators r and
r, (fig. 5) is a null group for the 7T-
tetromino (fig. 8a).

2.Is it true that the group D, (from
problem A)is a null group for any 4k-
omino (k=1,2,3,...) with respect to
generators r and r,?

3. Prove that (a) forn = 2, 3, 4, (b)
for any n > 2, there exists a common
null group for all n-ominoes.

4. Prove that D is a null group for
the polyomino in figure 8b.

5. Prove the

THEOREM ON CHESSBOARD COLORING.
Color the squares of polyomino P
black and white like a chessboard,
and denote the absolute value of the
difference between the number of
black and white squares by c(P). If
c(P)> 0, then the group D, , is a null
group for P; whereas for any n >
2¢(P), the group D, is not a null group
for P.

Now you try thinking up other
examples of null groups and use them
to solve some interesting problems of
polyomino tiling,

HINTS ON PAGE 61
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The wolt, the baron, and Isaac Newton

About a cartoon, a novel by Cyrano de Bergerac,

N THIS ARTICLE YOU'LL FIND

a discussion of a physical phenom-

enon that was shown in a popular

Soviet cartoon. A wolf in a sail
boat is trying to catch up to a hare
traveling by steamship. To increase
the speed of his sailboat, the wolf is
blowing into the sail. At first glance,
it may seem that this situation is
vaguely similar to the one described
by Baron Miinchhausen: when he
was sinking in a marsh he managed
to pull himself out by his own hair.
There is, however, a significant dis-
tinction between the two cases. The
wolf hasn’t broken that fundamental
law of mechanics, Newton’s third
law, while the baron has indeed bro-
ken it, which is, of course, impos-
sible.

Sir Isaac Newton, in his
Philosophiae Naturalis Principia
Mathematica' (" Principia” for short),
formulated the third law this way:
“To every action there is a reaction;
that is, the actions of two bodies on
one another are equal and opposite in
direction.” Newton explained: “If
something is pushing something
else, or pulling it, then the former is
itself pushed or pulled by the latter.
If someone pushed one’s finger
against a stone, the finger is also
pushed by the stone.” It follows from
Newton’s third law that no interac-
tion inside a closed system (from
which nothing escapes) can influence
the movement of the system as a

Mathematical principles of
natural philosophy” (Latin).

and laser nuclear fusion

by V. A. Fabrikant

whole. In particular, the interaction
of the parts of the Baron’s body
(hands and hair) could not have
caused a change in his rate of sinking,
let alone pull him out of the marsh.

To slow down his immersion, the
baron would have had to begin un-
dressing and throwing his clothes
down into the marsh—that is, he
needed to open up the system. His
heavy jackboots would have been
especially useful. Finally, the baron
could have stood on the saddle and
jumped from it to solid ground. But
in doing so he would have shoved his
horse down into the muck and has-
tened the poor animal’s doom.

But let’s get back to our cartoon.
We'll suppose that the sail is made of
a kind of material that absorbs the

stream of air produced by the wolf.
Then the sailboat and the wolf would
constitute a closed system, and with-
out wind the boat couldn’t budge no
matter how hard the wolf blew. The
wolf’s attempts to speed the boat up
would be equally fruitless (if the boat
is already moving at the same speed
as the wind): the pressure of the air
blown by the wolf would be balanced
by the action of his claws on the gun-
wale of the boat. The fact is, the wolf
experiences a recoil when he blows
torward—he’s forced back according
to the law of action and reaction.
This is similar to a gunshot: the
bullet or shell flies out in one direc-
tion and the gun begins to move in
the opposite direction. Every hunter
or gunner knows this. Still closer is
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the analogy of a missile, whose ex-
haust shoots out one end while it
takes off in the other direction.

In the cartoon, though, the boat
actually has a sail of ordinary mate-
rial, which naturally deflects the
stream of air rather than absorbing it.
So the air blown by the wolf comes
back after being deflected by the sail
and leaves the “sailboat-and-wolf sys-
tem.” In other words, the system
ceases to be closed as soon as the
wolf starts blowing. The phenom-
enon of recoil increases the sailboat’s
speed. (All jet planes exploit this phe-
nomenon: their engines send out gas
jets in back to propel the aircraft for-
ward.)

So it turns out the wolf was better
versed in mechanics than the baron.
We could suggest an improvement in
his mode of sailing, though. He
would have found it more efficient to
turn around and blow in the opposite
direction: the sail isn’t an ideal de-
flector, so the stream of air sent back
is weakened.

Gyrano de Bergerac

The recoil effect is used in space
rockets nowadays. But here we've
come to the French writer Cyrano de
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Bergerac (1619-1655). He is a very
curious figure in world literature.
Cyrano descended from a impover-
ished noble family and spent his en-
tire life in need. At that time only
poets serving rich aristocrats pros-
pered. Cyrano couldn’t serve anybody
because he was extremely indepen-
dent and hot-tempered. Cyrano
wrote leaflets of poems against the
all-powerful prime minister, cardinal
Masarini. He tried to strike it rich at
cards, but was unsuccessful. Cyrano
was endowed by nature with a gro-
tesque, huge nose, which was the
subject of jokes and taunts and the
cause of a great many duels. But this
gambler and duelist was a great
thinker, a follower of the philosopher
Gassendi,? and the creator of the sci-
ence fiction novel The Other World,
or the States and Empires of the
Moon (published in 1657 after the
author’s death).

What's interesting is that in the
novel Cyrano describes his flight to
the Moon . . . by means of rockets!

*Pierre Gassendi (1592-1655),
French philosopher and physicist, who
studied mechanics, acoustics, optics,
and heat.

There’s an old engraving of Cyrano
flying to the Moon in a basket with
rockets attached. The rockets send
out fiery jets that drive the basket
upward. So Cyrano foresaw the use of
rockets in space flight more than 300
years ago. It’s also curious that
Cyrano asserts in this book, written
some 30 years before Newton’s
Principia, that the Moon’s gravita-
tional attraction becomes greater
than the Earth’s at a point nearer the
Moon than the Earth because the
Moon’s mass is less than the Earth'’s.
He even calculates the ratio of these
distances (but, alas, got it wrong: 3
instead of about 9).

Cyrano ironically describes the
Moon as Eden. He allegedly meets
the prophet Elijah there and asks how
he had gotten to the Moon. The
prophet then describes his method of
travel, which contradicts Newton’s
third law. He had built an iron
chariot (it was believed that thunder
is the rumbling of Elijah’s chariot),
sat in it, and began to throw a mag-
netized iron ball upward. The ball
attracted the chariot, and each throw
pulled the chariot up until it reached
the Moon. The prophet failed to take
into account the recoil experienced
by the chariot when he throws the
ball, and so he became a predecessor
of the “truth-loving” Baron
Miinchhausen.

In the second half of the nine-
teenth century, the French dramatist
Edmond Rostand wrote the play
Cyrano de Bergerac, which contin-
ues to enjoy great success on stage
and screen.® The author called his
play a “heroic comedy,” which de-
scribes it perfectly—it’s funny and
profound at the same time. Rostand
ascribes to Cyrano a method of fly-
ing to the Moon “invented” by the
prophet Elijah, but doesn’t mention
rockets. Inexplicably, he also
changes the chariot to a piece of
sheet metal.

Not so long ago a lunar crater was
named Cyrano, which stands to rea-
son.

3The movie “Roxanne,” starring
Steve Martin, was based on this
play.—Ed.




A few words about Jules Verne

From Earth to Moon in 97 Hours,
20 Minutes is a science fiction novel
written by Jules Verne in 1865. Verne
describes a flight to the Moon in a
shell fired by a giant cannon. We
have to admit that this is a much less
rational way to fly than the rocket-
powered basket Cyrano dreamed up.

And this is 200 years later! True,
in another novel, Around the Moon,
one of the three travelers, Michel
Ardan, takes some rockets with him,
but only to soften the impact while
landing. In both novels, though,
Verne gives a more precise coordinate
for the point at which the Earth’s
gravitational pull equals that of the
Moon: 47/52 of the distance from the
Earth to the Moon. No wonder he got
it right—the relation of masses of the
Earth and Moon was already known,
as was Newton’s law of gravity.
Michel Ardan’s fellow travelers—the
president of the cannon club
Barbicain and Captain Nicol—used
algebra to perform the necessary cal-
culations.

By the way, the state of weight-
lessness, according to Jules Verne,
can be observed in a spaceship only
at the point of zero gravity—that is,
where the Earth’s gravity is balanced

by that of the
Moon. Verne
was wrong. For
the state of
weightlessness
to appear it’s
not necessary
that the gravi-
tational force
acting on the
spaceship be
zero. Leaving
aside the expe-
rience of astro-
nauts, who are
weightless as
soon as the en-
gines stop fir-
ing, we know
that pole-
vaulters, for
instance, ex-
_ perience
, et weightless-
ness (if we ignore air resistance).

Nuclear fusion and the recoil etfect

Now let’s return to our century
and even take a step into the next.
We're going to talk about the latest
technology, which is far from being
perfected. I'm talking about a form of
controlled thermonuclear fusion in
which inertia is used to keep a
plasma together.*

This type of fusion dates back to
1962, when the Soviet physicists

“Plasma is highly ionized gas, often
called a “fourth state of matter”
because it doesn't easily fit into the
categories of solid, liquid, or gas.—Ed.

N. G. Basov and O. N. Krokhin sug-
gested that lasers be used to trigger
thermonuclear fusion. The beams of
many high-powered lasers are fo-
cused on a small target from all direc-
tions. The intensity of the laser
beams is changed over time accord-
ing to a certain formula. At first the
beams cause quick evaporation of the
target’s surface layer. This results in
a violent compression of the inner
part of the target (by a factor of hun-
dreds or thousands) because of the
recoil of evaporated molecules. The
compression is needed to bring the
nuclei close enough together for a
thermonuclear reaction. Premature
heating of the inside of the target
would inhibit compression, so heat-
ing occurs after compression. For the
compression to be efficient the laser
beams must “illuminate” the target
from all sides uniformly, which is no
mean feat. Only then will the
“winds” arising from evaporation of
the surface material take on the
structure needed for extreme com-
pression. Otherwise parts of the tar-
get that are poorly illuminated will
bulge. The “Dolphin” laser device
creates 216 beams that strike a target
smaller than a pea.

High-speed computers and the lat-
est achievements in nonlinear optics
are used to provide automated con-
trol of the complex equipment used
in laser fusion. Laser fusion is not
without competitors—there are now
devices that use powerful electron or
ion beams. But they are all based on
compression from evaporation of the
surface layer and the accompanying
recoil effect.
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CONTEST

The leaky pendulum

“‘Would you like to swing on a star,
Carry moonbeams home in a jar . . .?"—dJohnny Burke'

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE MOTION OF SIMPLE

pendulums has played an inter-

esting role in physics and tech-

nology. Galileo is reported to
have made an important discovery
about the motion of a pendulum
while watching the swinging of a
chandelier during a church service.
He discovered that the period of a
simple pendulum is (almost) inde-
pendent of the amplitude of its
swing. This led to the use of pendu-
lums to measure time intervals and
the development of accurate clocks.

Any mass hanging from a pivot is
a pendulum. An orangutan swinging
by one arm from a branch is one ex-
ample. Your leg pivoting from your
hip as you walk is another. Both of
these examples are fairly complicated
because the objects aren’t rigid struc-
tures and the mass is distributed in
such a complicated fashion. As phys-
ics students, you should practice
looking at complicated situations
and finding ways to simplify them.
What do you imagine would be the
simplest pendulum? Certainly not
the chandelier that so intrigued
Galileo.

The simplest pendulum would
probably be a compact mass attached
to a long string. Physicists call this
“the simple pendulum.” If we let a
simple pendulum swing through
small angles, we find that its period

'From “Swinging on a Star,” music
by Jimmy Van Heusen, which was the
Academy Award-winning song in
1944 (sung by Bing Crosby in Going
My Way).

T (the time to complete one cycle) is

given by T = Zn\/L/_g , where L is the
length from the pivot to the center of
mass of the pendulum bob and g is
the acceleration due to gravity. This
is similar to the solution of many
other problems in physics where ob-
jects repeat their motion over and
over again. Notice that the period
doesn’t depend on the mass of the
bob. Does this surprise you? It
should! And we recommend that you
plan on devoting some quiet time to
wondering about the insignificance
of the mass of a pendulum.

In this month’s contest problem,
we’ll study the period of a simple
pendulum that is slowly losing
mass—the so-called leaky pendulum.
The pendulum bob is a cubical con-
tainer of negligible mass with an edge
length of 24. It is initially filled with
a fluid of mass M. The cube is tied
to a very light string to form a simple
pendulum of length L. The fluid
flows through a small hole in the
bottom of the cube at a constant rate
r. At any time t the level of the fluid
in the container is ] and the length L
of the pendulum is measured relative
to the instantaneous center of mass.

Part A: Find the period as a func-
tion of time for small angular dis-
placements.

Part B: Sketch a graph of the period
as a function of time, being sure to
label the endpoints of the graph.

Part C: How do your answers
change if the mass of the container is
also M, (the same as the initial mass

of the fluid) and the center of mass of
the container is located at its geo-
metrical center?

Please send your solutions to
Quantum, 3041 North Washington
Boulevard, Arlington, VA 22201. The
best solutions will be acknowledged
in Quantum and their creators will
receive free subscriptions for one
year.

How the ball bounces

In discussions with some of our
readers, we discovered that many of
you are successfully solving these
contest problems. We then discov-
ered that we haven’t been getting re-
sponses because the best problem
solvers aren’t necessarily the best let-
ter writers! Well, that’s fine. In order
to challenge all of our readers, we’ll
design our contest problems to cover
a range of skills. In other words,
watch out for future problems.

The best solutions to the Contest
problem in the March/April issue
were submitted by Joseph Burke
(Massena, NY), Kiran Kedlaya (Silver
Spring, MD), Sam Prytulak
(Vancouver, BC), and Noam
Shomron (Budd Lake, NY).

When the racquetball hits the
wall, it undergoes a totally elastic,
frictionless collision. This means
that the vertical component of its
velocity remains unchanged and its
horizontal component is reversed in
direction. Since this is just like view-
ing the motion in a vertical mirror,

CONTINUED ON PAGE 31
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INVESTIGATIONS

Differing ditierences

OME YEARS AGO BASIL

Rennie, the editor of JCMN

(James Cook Mathematical

Notes), sent me a collection of
problems he had compiled as the
Creator of Problems for the 1981
Australian Mathematics Olym-
piad. Among them I found the fol-
lowing problem, devised by C. J.
Smyth of James Cook University of
North Queensland, whom I also
met during my first visit to Austra-
lia: “How large a subset of the in-
tegers 1, 2, ..., 1981 can be chosen
so that no two in the subset differ
by either 2 or 3?” In my search for
problems to be proposed in the
AIME (American Invitational
Mathematics Examination), I man-
aged to update Smyth’s challenge
and posed the following problem as
Problem 13 in the 1989 AIME:
“Let S be a subset of {1, 2, 3, ...,
1989} such that no two members of
S differ by 4 or 7. What is the larg-
est number of elements S can
have?” 1 recommend that you

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and could
lead to independent research and/or
science projects in mathematics. Stu-
dents who succeed in unraveling the
phenomena presented are encouraged
to communicate their results to the au-
thor either directly or through Quan-
tum, which will distribute among
them valuable book prizes and/or free
subscriptions.
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And subsetted sets

by George Berzsenyi

solve these two problems before
attempting the more general prob-
lem: “Let k, m, and n be positive
integers, Sc{l,2,...,n}. What is
the largest number of elements S
can have if no two members of it
differ by m or k?”

I'll sketch the solution of yet an-
other special case, m = 6, k = 11,
and n = 1991 (what else?!) below—
thereby, perhaps, providing a mode
of attack on the general situation.

Partition T={1, 2, ..., 17} into the
subsets

{1, 7}, {2, 13}, {3, 9}, {4, 15}, {5, 11},
{6, 17}, {8, 14}, {10, 16}, {12},

and note that each of these can con-
tribute at most one element to S.
Moreover, in view of the chain of
implications,

12eS=1¢S8S=7€8=13¢S§
=2e8§=8¢85=14e$
=3¢5=9eS=15¢S
=4eS=10¢5=16€S
=5¢S=11eS=17¢S
=6eS5S=12¢S,

if T< S, then T can have at most 8
elements. Indeed, one can choose

T-1{1,3,5,8, 10,13, 15, 17},

and then one can show that T re-
tains its key property (of not having

elements differing by 6 or 11) if we
add to its elements multiples of 17.
Since 1989 = 117 - 17, it follows that
the largest subset of {1, 2, ..., 1989}
with the desired properties has
117 - 8 =936 elements. A bit more
effort will yield 937 as the answer
to our problem (that is, when n =
1991).

The successful reader may also
wish to generalize even further and
consider the folowing problem:
“Letn, k,and m, m,, ..., m, be posi-
tive integers, Sc{1,2,...,n}. What
is the largest number of elements S
can have if no two of its members
differ by m_ for 1 <i<k?”

Shapes and sizes

Two readers, Brian Platt from
Utah and Bodo Lass from Germany,
submitted wonderfully successful
investigations of the problems
posed in the November/December
1990 issue. Both showed that for
n > 2, there are infinitely many
polygons with n sides of integer
length that can be inscribed in a
circle of integer radius. Moreover,
one can specify positive integers n,,
n, .., n, such thatn +n,+.. +n
=n-1,andforeachi, 1 <i<k, n,
sides of the polygon are of equal
length.

The figure on the facing page
provides a scheme for constructing
a polygon with n rational sides in-



scribed in a unit circle; upon mul-
tiplying through with the least
common multiple of the denomi-
nators of the sides, one can obtain
from it the desired polygon. The
lengths r,, z,, ..., r, _, are arbitrary

positive rational numbers such that
tan~'f +tan ' p+o+tanlz,_ <X
an” 'z +tan" 1 a1, <7,

and for each i, 1 <1 <n - 1,
o =4 tan' r,.

I'll leave it to you to show that for
i=1,2,..,n-1, a =4r/(1 +1?),
sin (o/2) = 2z/(1 +1?), and cos (0,/2) =

(1-22)/(1 +r?); thatis, all these num-
bers are rational. Finally, one must
also verify that

a, =2sin(a., /2)
= ZSiné[Zn — (0ot + 0+ -+cxn_1)]

= 2sinf(01/2) + (0ty/2)+++(0t1/2)]

is a polynomial in sin (o, /2), sin (o,/2),
..., sin (o _ /2), cos (o, /2), cos (o, /2), ...,
cos (o, ,/2), and so is also rational.
Platt and Lass also noted that one
could replace the circle in the prob-
lem with a semicircle. Congratula-
tions to them for their excellent
work, for which they will receive an
interesting book prize. @

“LEAKY PENDULUM”
CONTINUED FROM PAGE 29

we can ignore the wall until the last
step.

For the vertical component of the
motion, we have

2

Y=Y+ Vo, t+3a,t%,
with the usual definitions for the
symbols and v, = v sin 6. For our

problem, we have

0=H+vy,t—1gt”,

We can solve this quadratic equation
to find the time for the ball to reach

During this time the ball travels
the horizontal distance

R=vt=vcos6=517m.
Since the ball must travel 2.25 m to

reach the wall, it will land 2.92 m
from the front wall. (0
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HIS DEPARTMENT, AS ITS

name implies, usually contains

a motley collection of facts

strung on the thread of some
math or physics idea. The approach
taken in this edition of the Kaleido-
scope will be less “kaleidoscopic,”
yet its topic has a lot to do with ka-
leidoscopes and with groups, so it fits
perfectly right here—the Kaleido-
scope pages in this “group issue” of
Quantum.

The beautiful plates that grace
these pages are the work of the fa-
mous Dutch artist—a favorite of
mathematicians  everywhere—
Maurits Cornelis Escher, whose
imagination was greatly stimulated
by kaleidoscope patterns.

© 1952 M. C. Escher/Cordon Art — Baarn - Holland

Figure 1

Figure 1 presents a picture very
similar to what a real kaleidoscope
might show (you must imagine all
the patterns here to be extended in-
finitely). It consists of repeated trian-
gular patterns, and we can regard any
one of them (say, the one in the box
I've drawn) as if created by pieces of
colored glass in a kaleidoscope tube
framed by three mirrors, making a
regular trihedral prism. When you
look into the prism, you see the main
triangular pattern—the motif—to-
gether with all its multiple reflec-
tions. Because the triangle is equilat-
eral, its images tile the whole plane
without gaps or overlaps. In much
the same way all of Escher’s pattern
is generated by reflections of any of
its triangular fragments, called unit

32 NOVEMBER/DECEMBER 1081

Figure 2

cells, or just cells, through its sides.
We can change the pattern in the
cell—like rearranging the glass pieces
by turning the kaleidoscope. Then
the entire picture will also change,
but its abstract structure—the order
and disposition of cell patterns, deter-
mined by laws of reflection—natu-
rally remains the same. But when the
mirrors are moved a little, separate
images of the motif shift, overlap
with each other, and the whole pic-
ture diffuses and gets blurred. There
are only a few positions of the mir-
rors that by multiple reflection pro-
duce a discernible pattern of recur-
rent motifs like in figure 1. Another
pattern of this sort is seen in figure 2:
here Escher made use of a “kaleido-
scope” with four mirrors forming a
square cell.

Exercise 1. Find two other essen-
tially different kaleidoscopes.

The next steps on the road to gen-
eralization are the periodic patterns
in which the unit cell is reproduced
by transformations other than line
reflections: translations, rotations,
and glide-reflections (which are re-

> [ - 2. by o
© 1962 M. C. Escher/Cordon Art — Baarn — Holland

Figure 3
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Figure 4

flections combined with translations
along the mirror axes). Inspecting fig-
ures 1 and 2, you’ll find that every
cell can be mapped onto many others
just by translation or, say, rotation
(see exercise 2 below). But here these
types of isometries (distance-preserv-
ing transformations) arise as a net
effect of a series of reflections. On the
other hand, in figures 3 through 7
there are no reflections at all. Each of
these patterns, however, is composed
of images of one cell undergoing ro-
tation and translation. In figure 7, for
example, the triangular cell is printed
more brightly. Applying all the differ-
ent kinds of 1/6 turns about its left
vertex and 1/3 turns about its upper
vertex, we'll tile the plane with its
images and get the entire pattern (dis-
regarding the colors). So this is a sort



)OSCOPE

fal group

lieri:

| tested
algebra.

<in, Mozart and Salieri

ir Dubrovsky

Figure 5

of “rotational kaleidoscope.” This
figure also shows that a unit cell isn't
defined uniquely; we could use, say,
the silhouette of a lizard.

Exercise 2. Choose some unit cell
in each of figures 1 through 7 and
describe the transformations that
take this cell into the others. Verify

| that these transformations can al-
ways be reduced to one of the three

] types of isometries listed above (line

: reflections are a particular case of
glide-reflections). Verify that the
transformations you’ve found map
the entire pattern onto itself—that is,
they’re the symmetries of the pat-
terns.

We can see at a glance that each of
our (or rather, Escher’s) patterns has
its own set of symmetries, differing
from those of the others. For ex-

42
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Figure 6

ample, the three patterns in figures 1,
5, and 7 can be fitted onto themselves
by 120° turns, but only the first has
line reflections, and only the last has
half-turns. It’s the set of symmetries
that determines the abstract struc-
ture of a pattern—that constitutes its
framework. And such structures are
quite numerous, as one can judge by
the designs on mosques, for example.
Intricate periodic patterns are espe-
cially frequent in the art of Muslim
countries because the Koran forbids
depictions of people and animals. My
goal here is to give, if not a complete,
then at least a partial description of
these structures. Why is it so impor-
tant to classify them? The reason is
more scientific than artistic: atoms
in a crystal form a pattern much like
those you see in the illustrations
here, though not as elaborate. Soin a
certain sense, the classification of
crystalline forms amounts to the
classification of regular periodic sys-
tems of points. (You can find out
more about crystals and regular sys-
tems in the article by R. Galiulin in
the January/February 1991 issue.)

And here groups enter the scene.
You may have already learned from
Alexey Sosinsky’s article “Marching
Orders” (see page 6)—which is very
helpful for what follows—that all the
symmetries of any figure constitute
its symmetry group. We're interested
in the symmetry groups of infinite
periodic patterns. Such groups must
satisfy two natural conditions:

P (periodicity). The group contains
two translations, t, and t,, in different

directions.

D (discreteness). The group con-
tains the shortest translation t,,
which is the nonidentical translation
by the vector whose length does not
exceed the length of the vector of any
other nonidentical translation of the
group.

Maybe the second condition needs
a little clarification. If it doesn’t hold,
and you can find an arbitrarily short
translation in the group, then how-
ever small your cell is its images will
overlap, so youwll be unable to distin-
guish them.

Exercise 3. Find the translations ¢,
t,, t, for the patterns in figures 1
through 7.

© 1942 M. C. Escher/Cordon Art — Baarn - Holland
Figure 7

The groups of isometries satisfy-
ing conditions P and D are called
crystallographic groups. They’ve
been actively investigated in the last
century. The prominent French
mathematician C. Jordan found 16
plane crystallographic groups (in
1869); L. Sohncke in Germany dis-
covered the missing one but missed
three others (1874). The first full list
of all 17 groups was given exactly 100
years ago by the outstanding Russian
crystallographer and geometer E. S.
Fyodorov. A year earlier, in 1890,
Fyodorov published a classic work in
which he listed all 230 spatial crystal-
lographic groups. The patterns pre-
sented here have seven of the 17
groups as their symmetry groups. (To
get the right groups in figures 6 and
7 disregard the coloring.) But five of
the seven (figures 3 through 7) consti-
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tute the complete list of those of the
17 groups that consist only of trans-
lations and rotations. (I'll sketch the
proof below.) These five groups form
the core, in a sense, of all the 17
groups, since any of the other 12 can
be obtained by adding to one of the
tive groups a proper (glide-)reflection
and the compositions of this reflec-
tion with all the translations and ro-
tations of the original group. For in-
stance, the symmetry group of the
pattern in figure 2 is obtained in this
way by adding to the group of fig-
ure 4 areflection in the line joining
any two neighboring centers of sym-
metry.

Iimagine many of you would like
to draw your own recurrent patterns.
To construct such a pattern, it suf-
fices to choose a unit cell and genera-
tors (transformations) that will repro-
duce it. Then draw whatever you like
inside the cell and tile the plane with
the images of your motif, applying
the chosen transformations. You can
try it yourself, but it’s far from easy.
The guidelines for your work are
given in the exercises at the end of
this article.

So, let’s try to sort the crystallo-
graphic groups consisting of transla-
tions and rotations. It will be conve-
nient, and quite legitimate, to think
of them as the symmetry groups of
some periodic patterns, although pat-
terns aren’t involved in the general
definition of crystallographic groups.
Also, we'll have to use some of the
simpler elements of transformational
geometry.

We'll begin with the groups com-
prising only translations. You'll re-
call that the inverse of a translation
by some vector is the translation by
the negative of this vector, and the
composition of two translations is
the translation by the sum of the vec-

INEFN

Figure 8
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tors. It follows that, together with
translations by vectors a and b, our
group must contain translations by
all vectors of the form ka + Ib, where
k and I are arbitrary integers. If we
represent these vectors by arrows ra-
diating from some origin O, then
their tips will make a grid like the
one in figure 8. Let’s show that vec-
tors a and b can always be chosen so
that the vector of every translation of
our group is of the form ka + Ib with
some integers k and 1.

Figure 8 illustrates the proof when
the group contains not just one (as
condition D requires) but two short-
est translations in different direc-
tions. Let a and b be their vectors.
The corresponding grid, shown in the
figure, consists of diamonds. If the
group contains a translation by vec-
tor OA, whose tip A doesn’t fall on a
node of the grid, then point A must
lie inside one of the diamonds, and
the distance from A to at least one of
the vertices B of this diamond must
be less than the length of its side.
Translations by OB, OA, and, there-
fore, BA = OA - OB belong to our
group. This leads to a contradiction,
because the length of BA is less than
that of the shortest vector a.

In the general case, we can take for
a the shortest vector and for b the
vector whose projection onto the axis
perpendicular to a has the smallest
nonzero length among all the vectors
of translations in our group. (I'll omit
the details.)

The next step is to find out what
the set V of the vectors of all the
shortest translations looks like. No-
tice that the negative of any vector a
from V also belongs to V (it has the
same length as a and corresponds to
the inverse translation). Also, the
angle between any two different vec-
tors from V is not less than 60° (oth-
erwise the group would contain a
translation—the one by the differ-
ence of these vectors—that is shorter
than the shortest possible). It follows
immediately that there are only four
possible cases for set V, shown in fig-
ure 9.

Now we're able to say what values
the angles of rotations belonging to
the crystallographic group can take.

e

o> 60°

S

Figure 9

Consider one of these rotations R. It
maps the corresponding pattern onto
itself. The translation by any vector
v of set V also takes the pattern onto
itself. Clearly the pattern rotated by
R is mapped onto itself by vector v
rotated by R—that is, R(v). But the
rotated pattern coincides with the
initial one! So the symmetry group of
the pattern contains R(v) whenever it
contains v. But the length of R(v)
equals that of v. Therefore, set V
stays invariant under any rotation
from the group. (When a vector is
rotated, only the angle of rotation
matters, not the center.) From this
we can infer, for example, that a crys-
tallographic group never contains a
rotation by 360°/5 = 72° or, say, by
15°, since neither of these rotations
keeps any of the sets Vin figure 9 in-
variant.

So what are the possible angles?
Taking into account that if there is a
rotation by angle o in a group, there
are also its square, cube, . . . (that is,
rotations by 20, 30, ..., we come up
with the following sets of rotation
angles:

(1)0°; (2) 0°, 180° (3) 0°, 120°, 240,
(4) 0°, 90°, 180°, 270°; (5 0°, 60°, 120°,
180°, 240°, 300°.

Sets (1) and (2) go with all four
cases of V in figure 9; (3) and (5) go
with the bottom right V; (4) goes with
the bottom left V. Sets (1) through (5)
correspond to the symmetry groups
of patterns in figures 3 through 7, re-
spectively. The standard notation for
these groups is p1, p2, p3, p4, p6 (the




number corresponds to the maximal
order of rotation centers for the re-
spective groups; for example, the cen-
ter of rotations by 360°k/n, k = 0, 1,
..., n =1, has the nth order).

To be fair, we must also prove that
a set of rotation angles determines
the group uniquely (or rather, to the
point of isomorphism, to use the
term explained in Sosinsky’s article).
The main step of the proof is to show
that every rotation from the group
can be represented as a composition
of the rotation by the same angle
about some fixed center and one of
the translations from the group. So
the entire group is completely deter-
mined by the basic translations (by a
and b), the maximal order of rotation
centers, and any of the centers of this
order.

Now we can extend the five
groups by reflections, as was ex-
plained above. You should keep in
mind, though, that in order to retain
the set of translations and rotations,
the added reflection must map the
grid of rotation centers onto itself, so
the image of any center must coin-
cide with another center of the same
order, and so on. The extensions of
groups pl and p2 are described in ex-
ercise 4 below (p1 has three exten-
sions and p2 has four; one of the lat-
ter is the “kaleidoscope” group of
figure 2). Groups p3 and p4 have two
extensions each; p6, only one. One of
the extensions of each of these three
groups is again “kaleidoscopic”: for
p3 it’s the group in figure 1; for p4
and p6 they are generated by reflec-
tions in the three sides of the right
isosceles triangle and the right tri-
angle with an angle of 60°, respec-
tively (and this is the answer to exer-
cise 1). Sowe have 17 -5-7-3 =2
groups left; they’re described in exer-
cise 5.

Exercise 4. Draw periodic patterns
based on a rectangular cell ABCD for
the following sets of generating trans-
formations (we’ll use the notation t,,,
1., and gr _ to signify translation by
XY, reflection in line XY, and glide-
reflection ¢, - 1, respectively; K, L,
M, N are the midpoints of sides AB,
CD, AD, BC of the rectangle): (1) ¢

AB/

Lypr Lopi (2) Lyor Tapi (3) 840 8 pri (4) Lyw
Ly 8Lapi (5) ST 8T yni (6) Tapr Lapy 8Tpe

Exercise 5. Find all the transforma-
tions generated by a line reflection
and a rotation (a) by 90°, (b) by 120°.
Choose a suitable cell and draw the
corresponding patterns.

Once you’ve done the exercises,
you’ll have discovered all the plane

crystallographic groups. To complete
the proof of Fyodorov’s theorem, you
just have to show that all the pos-
sible extensions of groups p1, p2, p3,
p4, and p6 have indeed been ex-
hausted. (@)
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ELECTRIC BNOTIQNS

VERYBODY HAS SOME

intuition about symmetry—so

many things in nature and art

are arranged symmetrically: the
petals of a flower, patterns in a piece
of jewelry, atoms in a lattice, and so
on. The very notion of beauty is con-
nected with symmetry. Symmetry is
inherent not only in art and architec-
ture but in mathematics and physics
as well. In fact, it plays an exceed-
ingly useful role in the last two areas
mentioned. Sometimes consider-
ations of symmetry are all it takes to
solve extremely difficult physics
problems. We'll try to convince you
of this by way of a few examples
from solid-state physics.

Imagine we face the task of deter-
mining the electrical conductivity' of
a crystal (whose properties are as yet
unknown). Let’s cut a rectangular
sample from this crystal and insert it
into a circuit as shown in figure 1.
Having measured the current across
the sample and the voltage in it, we’ll
use Ohm’s law to find the conductiv-
ity o:

cs—gi (1
Vs’ )

where I is current, L is length, V is
electrical potential difference (volt-
age), and S is cross-sectional area. It

!Electrical conductivity is the
inverse of the resistivity—that is, ¢ =
1/p. The resistance R of a rod of the
material is given by R = pL/S.

Patierns of predictaility

Symmetry, anisotropy, and Ohm's law

by S. N. Lykov and D. A. Parshin

doesn’t depend on the sample size, so
it would seem unambiguously to
characterize the sample’s ability to
conduct current. But why say “it
would seem”? Can a crystal really
have several values for its conductiv-
ity?

_ I
Figure 1

Yes, it can, as it turns out. And
there’s nothing surprising about that.
Imagine, for instance, that the sub-
stance was layered: conducting layers
alternate with nonconducting ones—
that is, with dielectric layers. Then
the measurements will depend on
how the sample is cut—along or
across the layers. It’s clear that the

(v)

-/

current can’t flow across the layers
but only along them. So measure-
ments in two directions (fig. 2) will
give two answers: the “transverse”
conductivity ¢, (fig. 2a) is equal to
zero, and the “longitudinal” conduc-
tivity o is not. (An example of such
a layered medium occurring in na-
ture is the graphite crystal. Its longi-
tudinal conductivity is 250 times
that of its transverse conductivity.)

But even without layers, the con-
ductivity of a medium can depend on
the direction of the current. Many
crystals possess this property. Here’s
why.

Figure 3 shows the arrangement of
atoms in a crystal. (Natural crystals
are three-dimensional, of course; but
our main points can be clearly illus-
trated in flat drawings.) Compare the
two directions shown with red and
blue lines: it’s obvious that they're
not equivalent. Why? We clearly see
that along the “red” lines the atoms
are much farther apart than they are
along the “blue” lines. Choose any
other direction and you'll see that it’s

(v)

o/
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not equivalent to the preceding one.
It’s natural to expect that the elec-
trons somehow “feel” this differ-
ence—it’s easier for them to move
among atoms in some directions
than in others. No wonder crystal
conductivity can depend on the direc-
tion of the current.

Media whose properties are not
equal in different directions are called
anisotropic. As we now see, the
cause of crystal anisotropy is the dif-
ference in directions that arises out of
the regular arrangement of the atoms.

Another important aspect of
anisotropy is the current’s ability to
flow in a direction that doesn’t coin-
cide with that of the electric field.
Let’s examine this more closely.
From formula (1) it’s clear that the
current density j = I/S is proportional
to the electric field E = V/L applied to
the sample:

j=oE. (2)

But the current and field in the me-
dium are characterized not only by
magnitude but by direction as well.

The field vector E gives the magni-

tude and direction of the force F = ¢E
acting upon each charge e. Under the
influence of this force the electrons

move with an average velocity V.

The current density vector j (we'll
call it the current vector for short) is
parallel to this average velocity v of
the electrons.? Ohm’s law, as it ap-
pears in equation (2), links only the
magnitude of the current j and the
field applied from outside, but it says
nothing about the mutual orienta-

tion of vectors j and E.
“But that’s obvious,” you say.

“The field E and force F are parallel.

’It’s easy to show that j = env,
where n is the number of electrons per
unit volume moving at a velocity v.

The electron charge e is negative, so ;

and Vv are oriented opposite each other.
(Vectors are normally designated
typographically by bold face; arrows
were used in this article for
emphasis.—Ed.)
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The average
velocity of the
electrons v is
parallel to the
effective force

F. And the
current j is
parallel to v.
So vectors

and E are also
parallel, and

we can write Figure 3

j =oE. (3)

instead of (2). It’s very simple!”

But is this reasoning correct? Yes,
if we're talking about an isotropic
medium—that is, one in which all
directions are equivalent. When all
directions are equivalent, the elec-
trons don’t care where they go, and as
soon as we apply an external field

they have no choice: vector E gives
the only direction that is different.
The current j will flow in that direc-
tion.

Whenever we talk about crystals,
we can’t lose sight of anisotropy! In
any crystal there’s a rich store of
unequivalent directions (recall figure

3). In this case the direction E is but
one of them, which stands out from
the point of view of electron move-
ment. So we can’t reason the same
way we did in the case of isotropy.
The weak link in our reasoning is

where the parallelism of vectors v

and F is mentioned. In an anisotro-
pic medium they may turn out to be

nonparallel, and then vectors ; and E
won’t be parallel either! The situa-
tion can be imagined rather vividly as
follows.

An external force F = eE drives the
electrons “through the structure” of
atoms, where there are “casy” and
“difficult” directions of travel. Col-
liding with the atoms, the electron
often changes its direction, and it’s
possible to speak of an electron mov-
ing along a straight line only on av-
erage. Passing through many inter-
atomic distances the electron
manages to move more in an “easy”

direction than in a “difficult” one,

and not necessarily along F. Every-
thing depends on the interactions of
the electrons with the atoms and on

the orientation of the field E with re-
gard to the crystal directions that
stand out the most.

The thoughtful reader is sure to
ask a sly question: in our experi-
ments (fig. 1) the field is always ap-
plied along the sample, and the cur-
rent undoubtedly also flows only
along the sample. How, then, could

vectors j and E not be parallel?

We admit that we’ve concealed an
important fact from you, one that
eliminates this misunderstanding.
We haven’t mentioned that (because
of anisotropy again) the field E,
which induces the current ; in the
crystal, isn’t necessarily the same as
the electrical field due to the voltage
per unit length V/L applied along the
sample. It doesn’t agree in magnitude
or direction. Figure 4 depicts the case
of an anisotropic medium, and you
can see the result of the chain of
events occurring after the voltage is
supplied to the sample. At this mo-
ment the field applied along the

sample—vector E” in figure 4—Dbe-
gins to act upon the electrons. The
current that arises, as was mentioned

E,=V/L
+ + ++ + + + +

—

E, 7




Figure 5

earlier, can be oriented differently
because of anisotropy—for instance,
to the right and up somewhat (in
which case the electrons move left
and down a bit). Transverse displace-
ment of the electrons will cause the
faces of the sample to become
charged (the upper face positively, the
bottom negatively), and the trans-

verse field ]:2L will appear in the
sample in addition to the applied

field. But at the same time E, pre-
vents the transverse movement of
electrons downward, and so it will
increase only until this movement
stops. All this occurs in the blink of
an eye (1013 s) and after that the pic-
ture doesn’t change: the current
continues to flow along the sample,

but the resulting ficld E= F, +E, is
directed at an angle to it. This is easy
to verify—there should be a differ-
ence of potentials between the upper
and lower faces, caused by the addi-

tional component E, of the field vec-

tor E. This is indeed what is detected
experimentally.

So our first acquaintance with
Ohm'’s law for anisotropic conduc-
tors shows that a crystal’s conductiv-
ity varies, generally speaking, in dif-
ferent directions, and that the current
7 can flow at an angle to the electri-

cal field E.

“We've got a hard nut to crack!”
some readers will think. “Do we re-
ally have to perform an infinite num-
ber of measurements for each imag-
inable direction?”

No, the situation is simpler than
that. It’ll become clear after we've put
Ohm’s law in concise mathematical

Figure 6

form. And it will be quite simple for
crystals with sufficient symmetry.
That’s what we'll talk about now.

Figure 3 shows a sample of a crys-
tal structure in which all directions
are different. Let’s use different ex-
amples now—three-dimensional
ones. If oneisn’t a talented artist, it’s
difficult to describe the picture that
a “sightseer” would encounter inside
a crystal, walking about and admiring
the perspective of the geometrically
arranged atoms. To make it easier,
only small fragments of three differ-
ent crystal structures are shown in
figures 5-7.

In figure 5 the atoms are arranged
at the comers of an ordinary oblique-
angled parallelepiped. This crystal (as
well as its two-dimensional analogue
in figure 3) doesn’t have any equiva-
lent directions. But the following ex-
amples are more interesting. In figure
6 atoms are at the corners of a rectan-
gular parallelepiped and lines, de-
noted by C,, are drawn through its
center perpendicular to the faces. In
figure 7 we see a cube instead of a par-
allelepiped and analogous lines are
marked C,; also, a spatial diagonal of
the cube (C,) has been drawn. What's
so remarkable about these lines?

The lines C,, C,, C, are the axes of
symmetry of the crystal structures
shown in figures 6 and 7. If the entire
crystal is rotated about any of these
axes, it’s possible to obtain an ar-
rangement of atoms that is indistin-
guishable from the original arrange-
ment. One must only maintain a
certain angle of rotation: 180° for axis
C,, 120° for axis C,, 90° for axis C,;
that is, 2n/n for axis C, . Integral mul-
tiples of these angles of rotation will

Figure 7

also work, since they serve as repeti-
tions of the rotations mentioned
above. By the way, C, is the com-
monly accepted way of designating
an axis of symmetry; the number n is
called its “order.”

From the point of view of symme-
try we can refine the notion of direc-
tional equivalency: any directions
that “pass into one another” during
rotation about the axes of symmetry
are equivalent.

The more high-order axes the crys-
tal possesses, the more equivalent
directions it has and the stronger
symmetry competes with anisot-
ropy. You'll soon see how this com-
petition affects conductivity, but first
we advise you to find on your own
some examples of equivalent and
unequivalent directions in the crys-
tal structures shown in figures 6 and
7.In particular, it’s important to note
that in a cubic crystal the axes C, are
themselves equivalent directions
(they pass into one another during
rotations about C,), while the analo-
gous axes C, in figure 6 are not
equivalent.

Well, how are we to apply consid-
erations of symmetry to the question
of conductivity in practice? Here are
a few examples. Let’s start with a
crystal with three mutually perpen-
dicular (unequivalent) axes of sym-
metry C, (as in figure 6). For conve-
nience we'll denote them 1, 2, 3 (see
figure 8). The question arises: where

will the current j flow if the field B
is directed along one of the second-
order axes—say, axis 1? The answer
is unexpectedly simple: the current
will flow along the same axis of sym-
metry, parallel to the field! We’ll
prove it by disproving the contrary.
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Figure 8

Suppose the current ; flows at an
angle to axis of symmetry 1. Rotate
the crystal together with the applied

field E 180° about the axis. It's pretty
clear that everything inside the crys-
tal—the “structure” of atoms and the
flow of electrons penetrating it—will
rotate too. And as the vector ; is sup-
posed to be not parallel to the axis of
rotation, its new orientation (the bro-
ken line in figure 8) will differ from
the initial one. Yet the microscopic
pattern defining the direction of the
current ; looks the same as before:
the new arrangement of the atoms
cannot be distinguished from the ini-

tial arrangement, and the field E was
and remains parallel to direction 1.
This means that the orientation of
current ; must be the same as it was
before.

So we've arrived at a contradiction,
and the only way to avoid it is to ac-
knowledge that vector j is oriented

in the same direction as vector F—
that is, along the axis 1 (fig. 9).

It’s worth noting that this conclu-
sion isn’t sensitive to the details of
the crystal’s macroscopic structure—
we didn’t have to explain how ex-
actly the atoms are arranged and

] o
L= 3
2 E
Figure 9
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which directions are the easiest for
electron movement. We also didn’t
use any other axes of symmetry. Even
the order of the axis of symmetry

along which field E is directed is of
no importance—the reasoning will
hold for any angle of rotation (not a
multiple of 360°) allowed by the sym-
metry.

So if the crystal has an axis of

symmetry and a field E is directed
along it, then the current 7 flows
along the field. Under these condi-

tions the relation between ; and Eis
given by equation (3), where the pro-
portionality coefficient ¢ is the con-
ductivity along this axis of symme-
try. Taking a measurement on a
sample cut along the crystal’s axis of
symmetry (fig. 1), we can find o ac-
cording to equation (1). Unlike the
situation described in figure 4, the
field will certainly not have compo-
nents transverse to the current; there-
fore E = V/L, and equation (1) follows
immediately from (3).

Consequently, three measure-
ments on samples oriented along the
axes of symmetry 1,2, 3 give us three
values of the conductivity: ¢, 6, ©,.
Generally speaking, we can say that
they’ll turn out to be different, since
the directions 1, 2, 3 are not equiva-
lent:

G, #0, #Cj. (4)

And what is the picture if field g
in our crystal is not directed along the
axis of symmetry? Where will the
current j flow? To answer this ques-
tion we’ll find the projection of the
vector E on the axes 1, 2, 3—that is,
imagine the field as the sum
E=E +E, +E; (fig. 10). Now we’ll
see the contribution of each of these
items to the current.

Field E, is directed along the axis
of symmetry 1 and so gives rise to a
current flowing in the same direc-
tion:

71 = GlEl-

Similarly, the two other components
of the field give rise to currents mov-

ing along the axes of symmetry 2 and
3:

;2 =0,b), 73 =0;3E;.

These expressions determine the re-
sulting current j =7, + 7, + /5

Because of inequality (4), the ratios
of the projections of the current and
field (j,/E, = 6,, and so on) in the di-
rections 1, 2, 3 are not equal. This
means that the vectors ; and E are
not parallel (fig. 11). This fact (not at
all new to us) is directly connected
with the difference in conductivity in
different directions.

Here’s what'’s so interesting. For-
mula (5) tells us that for any orienta-
tion of field F the magnitude and di-
rection of current ;j are completely
determined by the conductivity val-
ues along our crystal’s axes of sym-
metry. We don’t need innumerable
measurements; all we need is to find
o, ,, ©,. True, we first need to find
the directions of the axes of symme-
try themselves, but that’s a different
story.

Another example is a cubic crystal
(fig. 7). But this is a special case of the
preceding, isn’t it? And the most in-
teresting one to boot! First of all, cu-
bic symmetry is the highest possible
symmetry for crystals. Second, it oc-
curs in many semiconductors that
are of great practical use—Ge, Si, and
others. Third, it will be the best ex-
ample of the influence of symmetry
on crystal conductivity.

So there are three mutually per-
pendicular axes of symmetry C,. As
before, we'll designate the conductiv-

e



Figure 11

ity along them as 6, 6,, 6,. Then the
reasoning we’ve used before will
again lead us to equation (5), which
is valid for any orientation of vector
E. Now let’s recall that all three di-
rections C, in a cubic crystal are
equivalent. From this it follows, as
you may have guessed, that

=0. (6)

Yes, symmetry guarantees that the
conductivity in these three directions
is one and the same. But only in
these directions? Taking equation (6)
into account, we can turn equation
(5) into equation (3), known to us as
Ohm’s law for an isotropic medium:

GEI +GE2 +(5E3
0@1 + E@ + Ea)

oE

i

Il

—that is, (1) regardless of the direc-
tion of the applied field E the current

7 is always parallel to field E,and(2)
its magnitude is determined only by
one value of the conductivity 6. The
conductivity of a cubic crystal is
equal in all directions!

This result is unexpected and cer-
tainly beautiful, isn’t it? But not all
directions in a cubic crystal are
equivalent—compare, for example,
lines C, and C, in figure 7. Both are
axes of symmetry, and the current is

certain to be parallel to field E if it’s
applied along any of them. But why
should the magnitude of the current
be identical for both orientations of
E? The electrons “feel” the
unequivalence of the directions,
right? And this would have to be re-
flected in different values for the cor-

responding conductivities. But no! In
whatever orientation the sample is
cut off, measurements must give
only one value of c. This is what
we've just proved, using only consid-
erations of symmetry.

So in the given case symmetry has
the upper hand over anisotropy: with
respect to electrical conductivity, a
cubic crystal is similar to an isotro-
pic medium in which all directions
are equivalent, as we've already men-
tioned.

It’s interesting to compare the
microscopic structures of a crystal
and an isotropic medium. An ex-
ample of the latter is an amorphous
body, characterized by a random ar-
rangement of atoms. Such an ar-
rangement, you’ll say, isn’t sym-
metrical at all—any rotation (not a
multiple of 360°) will give different
patterns. But all the patterns will be
identically random and in this sense
can’t be distinguished from the origi-
nal pattern. Disorder equalizes (aver-
ages out) the properties of the me-
dium in all directions. It makes all
directions equivalent. Paradoxical as
it may be, directional symmetry is
higher in an amorphous body than in
a cubic crystal! Any direction is an
axis of symmetry. In light of this,
Ohm’s law—expressed in equation
(3}—would seem to be a truism for
isotropic media.

Yes, directional symmetry is a
good thing. But what if there is no
such symmetry at all (for example,
the crystal in figure 5)2 We're forced
to turn to Ohm’s law in its most gen-
eral form. Let’s try to define it.

We'll arbitrarily take three mutu-
ally perpendicular directions x, y, z
(the coordinate axes). Let’s break the
field E down into components E,, E,
E,. We'll also search for the current j
as three componentsj, j , v,.

What does j,_ consist of? The coor-
dinate axes aren’t the same thing as
the axes of symmetry! The three cur-
rents resulting from the three compo-
nents of the field don’t necessarily
flow along the axes x, y, z. This
means every current will have x-, y-,
and z-components—that is, not only
the x-component of the field but also

the y- and z-components of vector E
contribute proportionally to j . We'll
designate the corresponding coeffi-
cients of proportionality as6,, ©,, ©,..

And what do j, and j, consist of?
The answer is the same, almost word
for word—only the coefficients are
different.

Thus:

xz—z/

Jx =OxxEy 104, E, +0,,E

Jp =0y By + 04, E, +0,,E,, (

j,=0,E, + cszyEy

7)
+6,,E,.

These three equations represent
Ohm'’s law for a medium with an
arbitrary degree of anisotropy. It
states: the magnitude of the current

7 isproportional to the magnitude of

the field E, but their directions may
be different. Equations (7) establish a

linear relation between vectors j and

E. We see that in the given system of
coordinates this relation is written as

nine “coefficients of conductivity”
o, (wherei, k=x,y, z|.

All the examples considered ear-
lier are particular cases of (7). So if it’s
possible to choose axes x, y, z along
axes of symmetry 1, 2, 3, we must do
this. Then all the coefficients, except
6,_=0,0, =0, 6, =0, will be equal
to zero Y(no problem measuring
these!), and equations (7) will reduce
to equation (5). Also, if two of the
axes are equivalent—say, 1 and 2—
then o, = 0, (one measurement less!).
Finally, if all three axes are equivalent
(cubic symmetry), we refer to equa-
tion (3) (and one measurement gives
us all the information about the
crystal’s conductivity!). So it pays to
know symmetry.

And so ends our tale of conductiv-
ity and how it’s influenced by sym-
metry. Of course, this by no means
exhausts the problems that can be
solved through “considerations of
symmetry.” There are many other
physical phenomena in which sym-
metry plays a crucial role. But we’ll
have to return to this some other
time. O
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LOOKING BACK_

The Short, turbulent life of

Evariste Galois

A revolutionary in politics and mathematics

N THE SPRING OF 1832
Paris was boiling and ready
for a revolutionary explosion,
although for three months
without reprieve cholera had stulti-
fied the minds and cast a gloomy
calm over the agitated feelings of the
populace. The great city was like a
loaded cannon that lacked but a
single spark to set it off.” These lines
are from The Outcasts by Victor
Hugo, who was a witness to the shat-
tering events that followed. On Tues-
day, June 5, a great rebellion broke
out in Paris. Only a few people were
likely to pay attention to a short para-
graph in the Parisian newspapers on
those alarming days. On the morning
of May 30, the reports stated, Evariste
Galois, a young man of 20 years, fa-
mous for his political speeches and a
graduate of the College Royal de
Louis-le-Grand, was killed in a duel.
On Saturday, June 2, he was buried in
a common grave at Montparnasse
cemetery. Today there is no trace of
this burial place.

Sixty pages of an incomplete
mathematical manuscript were left
after his death. They fell into the
hands of Evariste’s friend Auguste
Chevalier, but he could find no one
who would agree to publish the pa-
per. It wasn’t until 1846 that the
manuscript was printed. The theory
expounded in the paper has influ-
enced not only mathematics but all
the natural sciences for 145 years
now . ..

|\
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by Y. P. Solovyov

This is the only existing portrait of
Evariste Galois drawn from life. He
was 15 or 16 years old at the time.

Life and death

“Nitens lux, horrenda procella,
tenebris aeternis involuta.”!

Evariste Galois was born on Octo-
ber 26, 1811, in the ancient town of
Bourg-la-Reine, about ten kilometers
from Paris. His father, Nicholas-
Gabriel, was the head of an educa-
tional institution for young men. In
1815 he was elected mayor of the
town and held that post until his
death. During the first twelve years of

l“Dazzling lights, a terrible storm
surrounded by eternal pitch-darkness”
(Latin). These were the words with
which Evariste Galois ended one of the
letters he wrote on the eve of his duel.

his life, Evariste was brought up and
educated by his mother. The boy
studied Greek and Latin and spent
much of his time reading the works
of Plutarch and Livy.

In October 1823 Evariste entered
the College Royal de Louis-le-Grand
(now the Lycée Louis-le-Grand), a
well-known educational institution
where Moliere, Victor Hugo,
Robespierre, and Delacroix were stu-
dents. Galois received a scholarship
and boarded at the College. For the
first three years he was regarded as
one of the best students; he studied
languages, literature, and history
with pleasure. In October 1825 Ga-
lois began attending the senior
course at the school—the rhetoric
class; but he began to show signs of
exhaustion, so at the director’s rec-
ommendation he repeated the course
in January 1827. Again he became
one of the best students without
great effort, and he received an award
for his Greek translations as well as
honors in four other subjects. These
years were a turning point for
Evariste: he had discovered and en-
tered the world of mathematics.

You see, before taking the rhetoric
class all the students of the College
were taught one and the same cur-
riculum, including mostly humani-
ties and only the rudimentary basics
of the exact sciences. But students
interested in the exact sciences could
attend a preparatory mathematics
class during the last two years of their



studies. Those who wanted to devote
themselves to mathematics then had
to attend a year-long basic math-
ematics class and spend another year
studying a mathematical specialty.
As a student repeating a year of stud-
ies, Galois took the opportunity to
enter the preparatory mathematics
class. His extraordinary mathemati-
cal abilities were revealed almost at
once: without any difficulty he com-
prehended the rather complicated
book The Principles of Geometry by
Adrien Marie Legendre and began
studying the works of Joseph Louis
Lagrange: The Solution of Numerical
Equations, The Theory of Analytic
Functions, and Lectures on Function
Theory.

In the autumn of 1827 Evariste
came back to the rhetoric class and
continued his studies in the prepara-
tory mathematics class. The school
routine was a burden to him; he was
fully absorbed in mathematics. One
of Galois’s teachers said, “A great
passion for mathematics possesses
him; I think it would be better for
him to study only this science, if his
parents agree: as a student in the
rhetoric class he is wasting his time,
annoys his teachers, and incurs anger
and punishment.”

At this time Evariste became ac-
quainted with the works of Gauss
and Abel and felt himself capable of
doing even more. He was only a stu-
dent in the preparatory class, but
without any help he was preparing
for the entrance exams of the
Polytechnical School—the best insti-
tution of higher learning in France at
the time. Evariste believed that all
the powers and energy of his mind
would be put to full use at this
school.

His attempt to enter the
Polytechnical School failed. The fail-
ure greatly distressed Galois, and ac-
cording to Paul Dupuy, a historian of
mathematics, it was “the first of the
injustices that eventually poisoned
Evariste’s life.” Evariste had to return
to the College he had grown sick and
tired of; and, skipping the basic
course, he took the specialized math-
ematics class. At that time the
course was taught by Louis-Paul Ri-

chard, a remarkable teacher who
loved his science with a passion. In
addition to Galois, the famous as-
tronomer Leverrier and the outstand-
ing mathematician Hermite studied
under him at various times.

Richard was very attentive to his
young student Galois, whom he con-
sidered the most gifted of all. His re-
marks about him were laconic: “Ga-
lois deals only with the highest
domains of mathematics,” “He is
much more talented than his fellow
students.” Under Richard’s supervi-
sion Evariste wrote his first scientific
work, “The Proof of a Theorem about
Periodic Continued Fractions,”
which was published in Les annales
de mathematiques pures et
appliquées in March 1829. At that
time, under the influence of Joseph
Lagrange, Galois began to seriously
study one of the most difficult math-
ematical problems of his time: solv-
ing algebraic equations in radicals.

This problem has a long history. It
was the Babylonians who discovered
the method of solving a second-de-
gree equation ax? + bx + ¢ = 0. In
modern notation, its roots can be ex-
pressed by the formula

-b+Vb* —4ac
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which entails four arithmetic opera-
tions on coefficients and also a square
radical. At the beginning of the 16th
century Scipione del Ferro and
Niccolo Fontana (known as
Tartaglia) obtained a formula for the
roots of a third-degree equation that
included four arithmetic operations
as well as square and cubic radicals.
Some time later Lodovico Ferrari dis-
covered a formula for the roots of a
fourth-degree equation that involves
radicals of not more than the fourth
degree. It was only natural to expect
that the roots of an algebraic equa-
tion of degree n

Gx" +ax" 1+ +a,=0 (a#0)
must be expressed in terms of radi-
cals of at most the nth degree. But
despite tremendous efforts by the
most prominent mathematicians
over the course of three centuries,
nobody succeeded in obtaining such
a formula even for fifth-degree equa-
tions. By the end of the 18th century
mathematicians began to suspect
that formulas in radicals for equa-
tions of degree n > 5 simply didn’t
exist, which is why no one ever
found any.

An important step in investigating
algebraic equations was made by
Lagrange, who discovered that the
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A fragment of a rough draft of one of Galois’s mathematical manuscripts.
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A portrait of Galois painted by his
brother Alfred from memory and
published in 1848 in Magasin
pittoresque. “This portrait,” says a
note in the magazine, “reproduces as
exactly as possible the expression of
Galois’s face. It was drawn by Alfred
Galois, who has been creating a
veritable cult in his unfortunate
brother’s memory for 16 years now.”

solution of equations in radicals was
closely connected with permutations
of their roots. Lagrange’s idea, which
he called “the true philosophy of
solving equations,” was substantially
developed by another genius of math-
ematics, the Norwegian Niels Henric
Abel. In 1824, at the age of 20, Abel
proved that there were no formulas
for solving algebraic equations of de-
gree n > 5 in general form by means
of radicals.

After Abel’s theorem appeared,
another problem emerged: to find the
necessary and sufficient condition for
the coefficients a, a,, ..., a, of any
equation that would allow it to be
solved in radicals.

Evariste completely solved this
extremely difficult problem in the
years 1829-31. Already in the spring
of 1829 he had obtained his first re-
sults in the theory of equations. Ga-
lois sent them to the Academy of
Sciences. One of the most distin-
guished French mathematicians,
Augustin Cauchy, was supposed to
examine Galois’s work, but he mis-
placed it!
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After finishing his specialized
mathematics class, Galois again tried
to enter the Polytechnical School,
and again he failed. What happened
at the exams nobody knows for sure.
Recalling that incident later, Galois
described the “insane laughter of the
examiners” that punctuated his per-
formance. His examiners were Binet
and Lefebure de Fourcy. We don’t
know how they graded Galois; in any
case, he didn’t get into the
Polytechnical School.

While Evariste was preparing for
his entrance exams, a great misfor-
tune befell him. On July 2, 1829, his
father, hounded by the local curé and
Jesuits, committed suicide. Evariste
spent those difficult days at home
with his mother and younger brother
Alfred.

Following Richard’s advice,
Evariste decided to enter the Prepara-
tory School, a pitiful vestige of the
formerly glorious Teachers School
(Ecole Normale), established during
the French revolution. In 1822 the
Bourbons closed the Teachers School;
it was reopened in 1826 and renamed
the Preparatory School as the con-
tinuation of the College Louis-le-
Grand. The three-year course of study
at the Preparatory School was meant
to train teachers and civil servants.
On February 20, 1830, Evariste Galois
became one of its students.

The first year at the Preparatory
School tured out to be the most suc-
cessful in Galois’s life. It was there
that he got acquainted with Auguste
Chevalier, and they soon became fast
friends. Galois studied mathematics
with enthusiasm. He wrote three
works and submitted them to the
Academy for a competition.

Another blow struck him quite
unexpectedly. Galois’s manuscript
fell into the hands of the secretary of
the Academy Fourier, who dropped
dead soon after. Galois’s work was
not found among Fourier’s papers—
like the first one it had disappeared,
and with it all hope of winning the
first prize in mathematics. True,
Evariste had kept copies of the works
he had sent and managed to publish
them in the Bulletin of Mathemati-
cal Sciences in May and June, but

that was a poor consolation. He
couldn’t believe his recurrent misfor-
tunes were mere accidents. He con-
cluded that they were the result of a
faulty organization of society, one
that doomed talent to endless hard-
ship while mediocrity prospered.
With all the ardor of youth, Evariste
entered into the struggle for the po-
litical reconstruction of society.

In July 1830 the dark clouds that
had been gathering over the Bourbon
regime burst in a revolutionary
storm—King Charles X was deposed.
Galois fully sympathized with the
republicans, taking an active part in
the work of revolutionary circles and
joining the People’s Friends Society.
But the expectations of the republi-
cans failed to materialize: a protégé of
big business, “the bourgeois king”
Louis-Philippe, came to power. The
unrest in Paris wasn’t over yet.

In the autumn of 1830 Evariste
published a sharp attack on the
double-dealing of Gineot, director of
the Preparatory School, during the
July events. He was expelled on De-
cember 9 as a result. His hopes of a
career in mathematics were dashed.
Evariste joined the artillery of the
National Guard, which consisted
mostly of members of the People’s
Friends Society. This was the army of
the revolution, and the Louis-
Philippe government moved quickly
to dissolve it. Evariste was left with-
out any means of subsistence—only
private lessons allowed him to make
ends meet.

At that time his mind was preoc-
cupied with revolutionary ideas—
mathematics took second place. Still
he managed to find the time and en-
ergy to send the manuscript that had
been lost the previous year to the
Academy. It was to be reviewed by
two academicians, Lacroix and Pois-
son. After dragging things out for a
long time they finally informed Ga-
lois that they couldn’t give the
manuscript a positive assessment.

In June 1831 Galois was brought to
trial for “provoking an attempt on the
life of the French king by a public state-
ment at a meeting.” The jury found
him not guilty, but he fell under the
surveillance of the secret police.



On July 14, 1831, Galois took part
in a demonstration. Its participants
were protesting the prohibition of
street demonstrations by the Louis-
Philippe government.

Evariste was in the front lines,
wearing his National Guard uniform
and carrying a rifle. As soon as the
demonstrators appeared in the center
of the city, on the Pont Neuf, they
were surrounded by the police. Ga-
lois was arrested along with the other
demonstrators and ended up in the
Sainte Pélagie prison in Paris. This
time he was sentenced to nine
months’ imprisonment for illegally
wearing a military uniform and car-
rying a weapon.

In the Sainte Pélagie prison Galois
turned 20, and it was there that he
finished writing his fundamental
mathematical treatise. On March 16,
1832, Galois was transferred to the
prison hospital—it was suspected
that he had cholera. In the hospital
he met a young woman who was to
play a fateful role in his life. She was
Stéphanie-Felicie Dumotel, the
daughter of the prison doctor.

On April 29, 1832, Galois’s term
was up. There is reason to believe he
stayed at the hospital a while longer.
No traces of his life during May 1832
have survived. Nothing is known of
his further relations with Stéphanie
Dumotel. All we know is that
Stéphanie was the cause of an argu-
ment between Galois and two of her
friends, and that it resulted in a duel.
Evariste wrote in one of his last let-
ters: “I am dying. I'm the victim of a
wicked coquette and two fools who
are devoted to her.” The conditions of
the duel are unclear; we don’t even
know for certain who his antagonist
was.

On the morning of May 30 a
passerby found him badly wounded
after a pistol duel near the bank of
Glassier pond in the Parisian sub-
urb of Gentilly. The wounded man
was taken to the Cochin Hospital,
where he died at 10 a.m. the next
day with his younger brother at his
bedside.

Before he died he wrote a letter to
his friend Auguste Chevalier, asking
him to show his manuscript to the

German mathematicians Jacobi and
Gauss. But it wasn’t published for
fourteen years, and even then it went
practically unnoticed. Galois’s ideas
weren’t fully appreciated until the
1870s, after the book Algebraic Equa-
tions and the Theory of Substitutions
by Camille Jordan appeared.

Immortality

“In the theory of equations I ex-
amined the cases in which equations
can be solved in radicals; it gave me
the opportunity of making the theory
more profound and of describing all
possible transformations of an equa-
tion that are admissible even when it
can’t be solved in radicals.”

This is a quotation from Galois’s
manuscript “A Treatise on Condi-
tions for Solving Equations in Radi-
cals.” The ideas in the treatise
weren’t understood by his contem-
poraries, and they’re still consid-
ered difficult. Nevertheless, the for-
mulation of Galois’s theorem isn’t
complicated. But it’s necessary to
understand some new concepts—
primarily, the notion of a permuta-
tion group. (By the way, the term
“group” was introduced by Galois,
but the notion itself had first ap-
peared in the works of Abel and
Ruffini.) All the basic definitions
can be found in “Marching Orders”
by Alexey Sosinsky in this issue of
Quantum, and you should look
through that article before reading
further. You’ll find various ex-
amples there, but the definitions
that are most important for us will
be illustrated here once more by
way of the group S, of permutations
of three objects. There are only six
such permutations:

(123)  (128) (123
P=l103) 7 312 ) 27231/

(123} (123) (123
Ps={130 P+ 013) 7\ 321/

And here is the multiplication table
for this group:

0 1 2 3 4 5
p|\p, P, P, P, P, P,
p|p, P, P, P, P, P,
p|\p, P, P, P, P, P,

PP p p p p p

5 5 4 3 2 1 0
Table 1

It’s clear now, for example, that if we
first perform p, and then p,, we'll get
p, as the result; performing these per-
mutations in reverse order, we’ll get
p,. So the commutative law isn't
valid in multiplying permutations:
we don’t alwayshavea-b=b-a. If
this equation holds for all pairs of el-
ements g, b of a certain group G, then
G is called a commutative or Abelian
group. You can verify on your own
that of all the groups S , n > 1, only
the group S, commutative.

A portion of the table, at the inter-
section of the rows and columns for
Py D,, and p,, is displayed in blue. All
the blue letters are p,, p,, or p, as well.
This means that these three permu-
tations themselves form a group, or,
to be more exact, a subgroup of the
group S,. We denote it by Z,. (In
Sosinsky’s article the same notation
was used for the rotation group of an
equilateral triangle. But if you relate
the permutation p, to the rotation by
the angle 120° - i, where i =0, 1, 2,
then you’ll see at once that these two
seemingly different groups have the
same structure—that is, they’re iso-
morphic.) Besides Z,, there are four
more subgroups in the group S.: one
subgroup consists of only one ele-
ment p,, and three other groups each
have two elements: {p,, p,}, {p, p.},
and {p,, p.}. All these subgroups are
commutative. You can check for
yourself that there are no other sub-
groups in S,. If H is a subgroup of G,
we write H < G.

Let G be a group and q, b be ele-
ments of G. The expression [a, b] =
aba~'b-!is called the commutator of
elements a and b: it can be used as a
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correcting term for a and b to change
places:

ab = [a, blba.

If ab = ba, then [a, b] = e. It's clear that
the more commutators there are in
group G that are not e, the greater the
deviation of group G from a commu-
tative one. Let’s call the subgroup &,
consisting of all possible products of
the form

la, b]-la,b,]-..-la, b,

2/

wherea,, ..., a, b, ..., b, come from
G, the derived subgroup of group G.
It’s clear that if group G is commuta-
tive, then G’ consists only of the
identical permutation e. Here’s a
simple exercise for you: verify that
the commutators of the group S are

given by the following table:

) p, P, P, P, P, P,

p b p p p p p

5 0 1 2 1 2 0

Table 2

For G’ we might also consider the
derived group (G') = G”, called the
second derived group of group G.
Continuing this process, we'll get the
kth derived group G¥ = (G*- V) It’s
evident that G < G* -1, This gives
rise to a nested chain of subgroups:

<GP <GF-1< L <G'<G <G

If this chain breaks at the subgroup
consisting only of the identity per-
mutation—that is, if G™ = ¢ for a
certain number m, then the group G
is called solvable.

It’s obvious that any commuta-
tive group is solvable. In particular,
the group S, is solvable. Let’s show
that the group S, is solvable too.
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Table 2 shows that all commutators
from S, areinZ,, s0 S,' = Z,. We can
see from table 1 that the group Z, is
commutative, s0 S,” =Z.' = e.

But many groups are not solvable.
For example, the groups S, are solv-
able only when n = 2, 3, 4. (This far
from simple statement first appeared
Galois’s treatise.)

Now we're ready to explain the
main point of Galois’s theory. Let

fix)=ax*+ax~'+ . +a =0

be an arbitrary equation of the nth
degree, where a,, a,, ..., a_ are given.
Already at the end of 18th century
Karl Friedrich Gauss proved that for
any a, a,, ..., a_ the given equation
has n complex roots o, ..., o, . We’d
like to find out whether there are for-
mulas that express the roots 0., ..., 0,
in terms of the coefficients a,, a,, ...,
a_ by means of the four arithmetic
operations and radicals. For simplic-
ity let’s suppose that a, a,, ..., a_ are
rational numbers and that all the
roots o, ..., o are different. We'll as-
sign to the system of roots a.,, ..., o
the set Q(f) consisting of all numbers
of the form

R((XI/OLZr #id -/(Xn ) '
where P and R are polynomials in n
variables with rational coefficients.
Let’s look at transformations of Q(f)
that take the sum of the numbers
into a sum and the product into a
product and leave the rational coeffi-
cients unchanged. If B is a root of our
equation—that is,

ap+ap-t+..+a =0

—and ¢ is such a transformation,
then

olapr+ap-'+..+a,
= a0 +a0Bl-t+.. +a
=0.

This means that ¢(f) is a root of the
same equation—that is, ¢ simply re-
arranges the roots o, ..., o and so de-
termines a certain permutation:

a a ... a,
a; a ... @ |
All such permutations form a certain
group contained in S . This group is
called the Galois group of the equa-
tion f{x) = 0 and is denoted by G|f).
As an example of calculating the

group G(f), let’s look at the sixth-de-
gree equation

fix)=(x2-x+ 1P -alx*-xP=0.

We'll rewrite it in two different
forms:

(x+1/x-1P-alx+1/x-2)=0; (a)
[x(1 -x)-1P +a[x(1 -x)]?=0. (b)

Form (a) shows that if x is a root of
our equation, then 1/xis also its root;
form (b) says that 1 — x will be its root
as well. So if one of the roots of our
equation is denoted by 6, then

1/6,1-6,1/(1-6),(6-1)/6,6/6-1)

will also be its roots. The number a
can be selected so that the equation
will be irreducible; then all these six
roots will be different. We see that
the Galois group consists of the trans-
formations

(po(u) =1, (Pl(u) = 1/u/ (Pz(u)= L~ u,
(pg(u) = U/(U - 1)/ (94(11) = (U - 1)/ul
¢;u) = 1/(1 -u),

which constitute a group with re-
spect to the composition operation

(9;°@; =0, if ¢ (u) = ¢[¢u))) that is
isomorphic to S, (¢, corresponds to p;
check it yourself!).

The fundamental theorem

The equation f = 0 is solvable in
radicals if and only if its Galois
group G(f) is solvable.

The value of Galois’s theorem lies
in the fact that the group G{f) can be
calculated, as a rule, without know-
ing the roots of equation f = 0 just by
looking at its coefficients. Consider,
for example, the equation

xX+bx+c=0

with rational coefficients but not ra-
tional roots. Let A = 4b3 - 272 If A



isn't a perfect square, then G(f) = S;;
otherwise G(f) = Z,. Both groups are
solvable, as is the equation. When
the coefficients a,, a,, ..., a, are cho-
sen more or less arbitrarily, the Ga-
lois group of equation f=0willbe S .
Since group S, is not solvable for n >
5, a general equation of degree n > 5
is not solvable in radicals.

The primary value of Galois’s
work didn’t lie in his exhaustive an-
swer to a question that had been a
challenge to every mathematician in
the world for three centuries. It was
his method, in which the notions of
group and symmetry are central, that
was truly significant. Galois’s ideas
proved fruitful in all branches of
mathematics and theoretical physics.
The range of applications of the gen-
eral idea of symmetry stretches from
abstract algebra to the theory of el-
ementary particles. In the history of
mathematics one cannot find an-
other example of a such a small work
having such a tremendous impact.

Galois’s contemporaries knew
him only as a passionate republican
revolutionary. Only after his death
was he publicly called “a good math-
ematician” for the first time. On June
7, 1832, the Gazette des Hopitaux
published a police notice: “Young
Evariste Galois, 20 years of age, a
good mathematician, famous for his
flaming imagination, died at 12 a.m.
of acute peritonitis from a bullet fired
at a distance of 25 paces.”

.. . The day was beginning to
dawn when Evariste Galois finished
the letter—the last he was ever to
write:

“My dear friends! I have been pro-
voked by two patriots . . . It is impos-
sible for me to refuse. I beg your for-
giveness for not having told you. But
T have given my adversaries my word
of honor not to inform any patriot.
Your task is simple: prove that I am
fighting against my will, having ex-
hausted all possible means of recon-
ciliation; say whether I am capable of
lying even in the most trivial mat-
ters. Please remember me, since fate
did not give me enough of a life to be
remembered by my country.”  [g]
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Learning about (not by) 0SmosiS

“‘Something there is that doesn't love a wall . . .”—Robert Frost

UT OFF A BRANCH OF A

plant and it begins to fade. Put it

in water and soon its leaves be-

come smooth again, resilient,
full of moisture.

Why does the branch come back
to life? What forces made the mois-
ture penetrate the plant and move
inside it? What keeps the water in the
cells and doesn'’t let it escape? Why
is a plant cell permeable to water in
only one direction—from the outside
in?

Scientists tried for a long time to
answer these questions, but a defi-
nite answer didn’t come until the end
of the 19th century. A short while
after that, scientists managed to
model (though roughly) these natural
phenomena. And nowadays these
phenomena are put to work in many
different areas of science and technol-

ogy.

Discovering of osmosis: who and how

In 1848, while studying how lig-
uids boil, the French physicist and
experimenter Jean-Antoine Nollet
came upon an unknown phenom-
enon. In one of his experiments he
hermetically sealed a glass of alcohol
with the bladder of an ox and put it
on the bottom of a large container
filled with water. Several hours later
the bladder was swollen—water had
gotten into the glass and increased
the pressure in it. Nollet explained
this surprising fact in this way: “The
bladder of an animal may be more
permeable for water than for alcohol;
in this case, the rate of penetration by
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by Alexander Borovoy

water is greater than the rate of pen-
etration by alcohol.”

Let’s repeat Nollet’s experiment
using more accessible materials:
we’ll substitute a piece of cellophane
for the ox bladder and sugar solution
for the alcohol.

Figure 1 depicts a simple experi-
mental setup. A wide glass tube, her-
metically sealed below with cello-
phane, is placed in a jar full of pure
water. The cellophane is attached so
as to keep water from seeping into
the tube. (To create a good seal you
can use a rubber band, waterproof
adhesive tape, modeling clay, or any
other appropriate substance.) A thin
glass tube enters the wide glass tube
through a rubber stopper.

At the beginning of the experi-
ment sugar solution is poured into
the tubes until the levels of liquid in
the tubes and in the jar coincide.
(This moment is shown in figure 1 by

thin tube

rubber
stopper

sugar
solution

wide
tube

glass
vessel

cellophane

Figure 1

the dotted line.) Soon you’ll notice
that the height of the solution in the
tubes has increased—just as in
Nollet’s experiment, water began
moving through the barrier (cello-
phane, in our case).

The phenomenon of one-way pen-
etration of a solvent through a semi-
permeable membrane separating a
solution and a pure solvent is called
osmosis. This term comes from a
Greek word that means “thrust” or
/Ipush‘ﬂ

Now that we’ve reproduced the
experiment of the French scientist
who discovered osmosis, let’s try to
understand this phenomenon.

Osmosis and one-way ditfusion

Let’s recall what happens when
some substance is dissolved in a sol-
vent. Molecules of the substance
penetrate the solvent, and molecules
of the solvent penetrate the region
occupied by the solution. This mu-
tual penetration leads to an equal
concentration of the dissolved sub-
stance throughout the solution.

Now let’s imagine that the solu-
tion and the pure solvent are sepa-
rated by a semipermeable mem-
brane—it allows molecules of the
solvent to pass but not molecules of
the dissolved substance. Clearly in
this case equalization of concentra-
tions can occur only by means of
one-way diffusion of solvent.

That’s what takes place in our ex-
periment. Cellophane is not “trans-
parent” for sugar molecules, but it is
“transparent” for molecules of water;
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Art by Leonid Tishkov

so at equal heights of liquid (equal
pressure on the membrane) in the jar
and the tubes at the beginning of the
experiment, more molecules of water
penetrate through the cellophane up-
ward than downward. As a result,
the level of liquid in the jar begins to
decrease, and it increases in the

tubes. We can express it differently:
water penetrates the solution because
of the force of “osmotic pressure.” As
soon as the hydrostatic pressure of the
water column balances the osmotic
pressure, the process stops. The height
of this column is the quantitative
measure of osmotic pressure.

Semipermeable membranes and the
“antificial cell”

After Nollet’s experiments many
scientists—botanists, chemists,
physicists—began to conduct experi-
ments and study the phenomenon of
osmosis. For semipermeable mem-
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Figure 2

branes they used a wide variety of
natural materials: the film from in-
side egg shells, ox and pig bladders
and diaphragms, and others.

In 1866 the German scientist M.
Traube invented the method of ob-
taining artificial semipermeable
films made of copper ferrocyanide
(Cu,Fe(CN),). They were permeable
for water but impermeable for most
other substances.

We can check that by performing
an elegant experiment that came to
be called the “artificial cell.” Don’t
be frightened by the film’s compli-
cated chemical formula. You can
whip some up at home using blue
vitriol (CuSO,) and potassium ferro-
cyanide (K, Fe(CN),), which are avail-
able at camera stores that sell dark-
room chemicals.

Pour a weak solution of blue vit-
riol (approximately 3%) into a test
tube and put in a small crystal of po-
tassium ferrocyanide. The crystal
must be clean, so it’s better to chop
it off a big crystal just before the ex-
periment. Because of the reaction

2CuSO, +K,Fe(CNJ,
— Cu,Fe(CN), +2K,S0O,,

the surface of the crystal is covered by
a semipermeable membrane. Water
penetrates it and makes the “cell”
grow. The cell “wall” expands, and at
the points where it bursts from the
internal pressure and some of the
solution pours outside, the semiper-
meable cell wall forms again. In this
way the cell starts branching out. So
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we might say that the “artificial cell”
behaves like a living organism.!

This classic experiment requires
patience and precision, and you may
not obtain beautiful “plants” in your
first try.

Nowadays you can perform a more
effective experiment with more ac-
cessible substances, growing artificial
plants in a water solution of liquid
glass {sodium silicate (Na,SiO,),
which is silicate office glue). Some
people manage to grow an entire “or-
chard” by throwing in crystals of co-
balt chloride, ferroferrous sulfate,
nickel chloride, manganese sulfate,
and many other substances. (See fig-
ure 2.)

Experiments with the osmometer and a
theory of osmosis

A decade after Traube obtained the
first artificial semipermeable mem-
brane, the German botanist Wilhelm
Pfeffer created an instrument for
measuring osmotic pressure—the
osmometer. The setup that we used
to reproduce Nollet’s experiment (fig.
1) follows Pfeffer’s idea in many re-
spects.

Using his osmometer Pfeffer
showed that osmotic pressure de-
pends only on the concentration and
not on the nature of the dissolved
substances (for dilute solutions) and
that it increases with temperature.

'The experiment described calls for
great care in handling the reagents.
They must not soil your hands, fall on
the floor, etc. If this happens, wash the
chemicals off with lots of water.

His measurements also showed that
osmotic pressure can be very high,
reaching several atmospheres (1 atm
= 10° Pa).

So quantitative data on osmosis
were obtained, and they helped the
outstanding Dutch chemist Jacobus
van’t Hoff formulate the theory un-
derlying this phenomenon. In 1887
he published a paper in which he
showed that molecules of a dissolved
substance in solution behave like
molecules of an ideal gas in a con-
tainer. And the solvent in this case
plays the part of . . . a vacuum!

In order to understand van’t Hoff’s
reasoning, let’s do a mental experi-
ment. Imagine a horizontal cylinder
filled with water, separated into two
equal parts by a cellophane mem-
brane that can be shifted without
breaking the seal (fig. 3). If we dis-
solve sugar in one part of the cylinder,
then, because of diffusion of pure
water through the cellophane to the
solution, the pressure on that side
will increase and the membrane will
begin to shift. The volume of the so-
lution will increase, and the volume
of pure water will correspondingly
decrease. But as far as the results are
concerned, this is equivalent to the
supposition that molecules of sugar
in the solution create a certain addi-
tional pressure on the membrane.
The dissolved substance seeks to ex-
pand and shift the cellophane, just as
a gas seeks to expand and shift a pis-
ton separating it from a vacuum.

On the basis of this supposition
van’t Hoff managed to explain all the
features of osmosis discovered by
Pfeffer. He obtained an equation com-
pletely analogous to the equation of
state of ideal gas:

nV =nRT,

where 7 is the osmotic pressure, V is

water

sugar solution

cellophane

Figure 3



glass tube

sugar solution
in carrot

rubber
stopper

carrot

water

Figure 4

the volume of the solution, n1 is the
number of moles of dissolved sub-
stance, R is the gas constant per
mole, and T is the temperature. It
was shown that the similarity in the
behavior of a dissolved substance and
a gas exists only for a very dilute so-
lution—one in which the interaction
among molecules of the dissolved
substance can be ignored.

Van’t Hoff’s theory was corrobo-
rated by many experiments. Its au-
thor received the first Nobel prize in
chemistry (1901) for “discovering the
laws of chemical dynamics and os-
motic pressure.”

Answering the questions we posed

We began this article with a ques-
tion: “What forces make moisture
penetrate the cells of a plant and
move inside it?” Now we can an-
swer: basically these are forces asso-
ciated with osmosis. The outer layer
of the cell’s protoplasm is a semiper-
meable membrane that allows the
cell to regulate the exchange of water
with the environment. If, for ex-
ample, it loses moisture and the con-
centration of salts in the cellular flu-
ids increases, penetration of water
into the cell increases until the force
of osmotic pressure is counterbal-
anced by the elastic forces of the
stretched membrane.

To convince yourself of the semi-
permeability of natural cells, you can
make an osmometer in which the
role of the membrane is played
by ... acarrot (fig. 4)! True, this in-

strument won’t be very precise, be-
cause the carrot’s cells are partially
permeable for sugar.

The evaporation of moisture from
trees occurs over the huge surface
area of its foliage. The concentration
of salts in tree sap increases, and os-
motic pressure (along with some
other factors) makes water rise tens
of meters. And it’s not an insignifi-
cant amount of water—we’re talking
about dozens of liters for deciduous
trees. No wonder tree branches and
grass stems “cry” when they’re cut.

0smosis today

The unique properties of living
organisms that allow their cells to
absorb and transport many sub-
stances selectively have been inves-
tigated by many scientists. They've
managed to create synthetic films, or
membranes, impermeable for some
substances and permeable for others.
Later, “perfect filters” (or even
“magic filters,” as they are some-
times called in popular literature)
found application in different spheres
of science and technology.

These filters purify gas and oil
products, freshen salt water, process
milk and fruit juices, produce medi-
cines, and do a lot more besides. Here
are a few examples.

Membrane technology seems to
be most widely applied in making
salt water drinkable. Here the
method of “reverse osmosis” is used:
salt water is pressed against a semi-
permeable membrane at great pres-
sure (greater than the osmotic pres-
sure); pure water passes through,
leaving behind the molecules of dis-
solved salts. The size and productiv-
ity of these devices vary widely, from
portable units that freshen several
dozen liters of water a day to the huge
plants supplying Riyadh, the capital
of Saudi Arabia, with fresh water
(their productivity is 120,000 m? a
day). Energy consumption with these
devices is one tenth that of distilla-
tion plants (or better).

One of the first and perhaps most
important applications of mem-
branes is in the medical field—the
semipermeable membrane for purify-
ing blood in kidney machines. Now

the membrane has “mastered” vari-
ous other medical specialties as well.
We can say that the time of the cap-
sule-patch has arrived. This is a
membrane system that introduces
strictly controlled quantities of medi-
cine to blood vessels through the
skin. Capsule-patches with nitro-
glycerine are already available for
heart patients.

Many large scientific and indus-
trial enterprises are at work perfect-
ing membrane technology. New
methods of producing semiperme-
able films continue to appear. In fact,
several years ago a method of produc-
ing them was developed that uses a
heavy-nuclei accelerator. Under a
beam of nuclei a synthetic film turns
into a “sieve” with precise holes one
thousandth of a millimeter in diam-
eter.

The task in the immediate future
is to devise a complete quantitative
theory of the processes occurring in
“magic filters” and, on that basis,
develop membranes with predeter-
mined properties. Q]
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HAPPENINGS

Glittering performances

USA garners gold and silver at the International Physics Olympiad

by Arthur Eisenkraft and Larry D. Kirkpatrick

HE UNITED STATES WAS
among six countries to win the
thirteen gold medals at the XXII
International Physics Olympiad
held in Havana, Cuba, on July 1-9,
1991. Thirty-one countries brought a
total of 149 competitors to the Olym-
piad to wind 13 gold, 10 silver, and 31
bronze medals. The competition was
highlighted by the outstanding per-
formance of the team from China, all
five of whom won gold medals—an
Olympiad first! The team from the
Soviet Union won three gold medals,
Hungary won two gold, and Canada,
Norway, and the US each won a
single gold medal.
The Olympiad exams consist of
two parts. Students were challenged
to solve three theoretical problems in

five hours and one experimental
problem in 4.25 hours. The first theo-
retical problem required the students
to calculate the rebound angle for a
spinning sphere that bounces to a
specified height after being dropped
onto a horizontal surface. The second
problem required calculations of the
properties of electrically charged balls
moving at relativistic speeds around
a square loop, which was also mov-
ing at a relativistic speed in the pres-
ence of a uniform electric field. In the
third problem, the students investi-
gated the possibility of cooling a gas
using a laser beam.

In the experimental problem the
students were told that a black box
contained any three of the following
four components: a battery, a diode,

£

US Physics Team and academic directors Arthur Eisenkraft, Larry Kirkpatrick,

and Avi Hauser.

aresistor, and a capacitor. They then
used various pieces of test equip-
ment and circuits of their own design
to determine which three compo-
nents were in the box, how they were
wired together, and the values for
each component.

Once again the US Physics Team
made a fine showing, winning one
gold medal, one silver medal, and an
honorable mention. Derrick Bass
(Florida) placed 13th overall in win-
ning a gold medal. He was closely fol-
lowed by R. Michael Jarvis (New
York) in 21st place for a silver medal.
Eric Miller (California), a junior,
placed 63rd and received an honor-
able mention. Jason Sachs (New Jer-
sey) and Theresa Lynn (North Caro-
lina) placed 80th and 95th,
respectively. Jason received a perfect
10 on the first theoretical question.

Cuban hospitality

The Cuban Ministry of Education
and the Cuban Olympiad Organizing
Committee were very successful in
hosting this year’s Olympiad. In ad-
dition to creating a successful and
challenging set of exam questions,
the Cubans treated the students and
coaches to trips to the beach, the bo-
tanical gardens, old Havana,
Hemingway’s house, and Expo Cuba,
as well as musical events. A high-
light of the trip to the beach was ob-
serving the sun pass directly over our
heads with our shadows at our feet.

Since no commercial flights exist
between the US and Cuba, the team
flew to Mexico City and stayed over-
night before catching a Mexicana
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Airlines flight to Havana. Derrick’s
flight from Miami to Mexico City to
Havana is certainly one of the skin-
niest terrestrial triangles that we've
ever dealt with. Try predicting and
then calculating the small angle in
Derrick’s flight. How did you do?
How does this compare with the
angles used to measure distances to
local stars when the Earth’s major
axis about the Sun is the baseline?

In contrast to the difficulties be-
tween our governments, the mem-
bers and coaches of the US Physics
Team were openly and warmly wel-
comed by the Cubans and were con-
gratulated on our Independence Day,
July 4th. In fact, there was some
friendly ribbing over the results of the
baseball games between the US and
Cuban teams in preparation for the
Pan American Games that were held
near Havana in August.

Selecting and training e ieam

The selection of the 1991 US Phys-
ics Team began in November when
invitations were sent to physics
teachers and selected students across
the United States. These teachers
were provided with a sample prelimi-
nary exam and were requested to
nominate their best student(s) who
might be able to compete on the na-
tional level. A national exam was
administered to these 450 candidates
in February. The exam consisted of
multiple-choice questions, selected
by Ed Gettys (Clemson University)
and the AAPT Exam Committee,
and four open-response problems.
The top 75 students were given a sec-
ond, harder exam in March. This
exam consisted of four open-response
problems to be completed in 75 min-
utes and two additional problems to
be completed in two hours. The top
20 students were then invited to a
training camp during the first week
in June, held on the campus of the
University of Maryland (UM) and
hosted by the Department of Physics
and Astronomy.

During the seven-day camp the
students enjoyed problem-solving
sessions, rapid-fire lectures, labora-
tory experiments, and lots of testing
on extremely difficult problems. The
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academic directors of the US Physics
Team are Arthur Eisenkraft (Fox
Lane High School in Bedford, New
York) and Larry D. Kirkpatrick (Mon-
tana State University in Bozeman).
They are assisted by coach Avi
Hauser (AT&T Labs), Tom Kniess,
and Chris Schafer (graduate students
at UM). The students also had the
chance to sample the frontiers of
physics through guest lectures by Jim
Gates, Jordan Goodman, and Ellen
Williams from the UM Physics De-
partment; take the physics IQ test a
la Dick Berg (also UM); and learn
some thermodynamics from Jack
Wilson (Rennselaer Polytechnic In-
stitute in Troy, New York).

A trip to Washington, D.C,, in-
cluded visits with Secretary of Educa-
tion Lamar Alexander and the direc-
tor of the National Science
Foundation Walter Massey. Quick
visits to the Einstein statue at the
National Academy of Sciences and
the Vietnam Veterans Memorial
were followed by some free time at
the National Air and Space Museum.
A highlight of the Washington trip
was a dinner hosted by IBM Watson
Research with a fascinating after-din-
ner talk by Richard A. Webb.

The 1991 U Physics Team

The 20 members of the 1991 US
Physics Team come from all over the
United States, as can be seen in the
following list (the members who rep-
resented the team in Cuba are
marked by an asterisk]:

Michael Agney, Melbourne High
School, Melbourne, Florida (teacher:
Carolyn Ronchetti)

*Derrick Bass, gold medal, North
Miami Beach Senior High School,
North Miami Beach, Florida (teacher:
Barbara Rothstein)

Chang Shih Chan, Northeast High
School, Philadelphia, Pennsylvania
(teacher: Raj G. Rajan)

Robert Hentzel, Ames High
School, Ames, Iowa (teacher: Charles
Windsor)

*R. Michael Jarvis, silver medal,
Fox Lane High School, Bedford, New
York (teacher: Arthur Eisenkraft)

*Saul Kato (alternate), Evanston
Township High School, Evanston,
llinois (teacher: Robert Horton)

Irwin Lee, Naperville North High
School, Naperville, Illinois (teacher:
Maxine Wilverding)

Irwin H. Lee, St. John’s School,
Houston, Texas (teacher: Mark

Kinsey)
Mark Liffmann, Phillips Acad-
emy, Andover, Massachusetts

(teacher: Robert Perrin)

Lee Loveridge, Long Beach Poly-
technic, Long Beach, California
(teacher: Jim Outwater)

*Theresa Lynn, NC School of Sci-
ence and Math, Durham, North
Carolina (teacher: H. B. Haskell)

Daniel Marks, Glenbrook South
High School, Glenview, Illinois
(teacher: John P. Lewis)

*Eric David Miller, honorable
mention, San Francisco University
High School, San Francisco, Califor-
nia (teacher: Tucker Hiatt)

Jacob A. Morzinski, Los Alamos
High School, Los Alamos, New
Mexico (teacher: Leaf Turner)

Keith R. Pflederer, Libertyville
High School, Libertyville, Illinois
(teacher: Theodore Vittitoe)

*Jason Sachs, Middletown High
School North, Middletown, New Jer-
sey (teacher: Edward Bechtel)

Eric Brian Shaw, Gaither High
School, Tampa, Florida (teacher:
Terry Adams)

Daniel Spirn, Cherry Hill High
School West, Cherry Hill, New Jer-
sey (teacher: H. K. Chatterjee)

Ryan Taliaferro, Highland Park
High School, Dallas, Texas (teacher:
Robert Roe)

Eric Tentarelli, Phillips Academy,
Andover, Massachusetts (teacher:
Robert Perrin)

All 20 team members returned
home with a library of physics clas-
sics valued at over $500.

The Olympiad in 1992

The XXIII International Physics
Olympiad will be held July 5-13,
1992, near Helsinki, Finland. Our
hosts have promised long days and
cool temperatures for the competi-
tion. Students who are interested in




competing for a position on the US
Physics Team and who have not re-
ceived an invitation by December 1
should request an application and
sample test from the US Physics
Team, AAPT, 5112 Berwyn Road,
College Park, MD 20740.

Sfonsons

The US Physics Team is organized
by the American Association of
Physics Teachers (AAPT). Funding is
organized by the American Institute
of Physics (AIP). Sponsors of the 1991
US Physics Team who contributed

$5,000 or more include AAPT, AIP,
the American Physical Society, the
American Vacuum Society, IBM, and
the Optical Society of America. Con-
tributors were the Acoustical Society
of America, Addison-Wesley Pub-
lishing, Allyn & Bacon, Inc., the
American Association of Physicists
in Medicine, the American Crystal-
lographic Association, AT&T,
Beckman Instruments, Bell Core, BP
Research, Inc.,, COMSAT Laborato-
ries, Ford Motor Company, General
Electric, GTE Laboratories, Hughes
Aircraft Company (Research Lab),

Janis Research Company, Inc.,
Lockheed Corporation, McGraw-Hill
Publishing, Inc., W. W. Norton &
Company, Phillips Petroleum Com-
pany, Prentice-Hall, Inc., Princeton
University Press, Saunders College
Publishing, Schlumberger-Doll Re-
search, the Society of Rheology, Uni-
versity of Maryland, Westinghouse
Foundation, John Wiley & Sons, and
Worth Publishing.

Adapted from a report appearing in
the AAPT Announcer (Sept. 1991).

International Space Year

Governments worldwide have des-
ignated 1992 as the International
Space Year. It was inspired in part by
two historic events commemorated
in 1992 whose themes have special
relevance for the space age: the 500th
anniversary of Columbus’s voyage to
the New World in 1492, with its
themes of exploration and discovery;
and the 35th anniversary of the 1957-
58 International Geophysical Year
(IGY), with its themes of scientific
inquiry and global cooperation. To-
gether, the universal perspectives of
scientists and explorers capture the
global outlook of the space age. The
ISY in 1992 will be the first year-long
worldwide celebration of humanity’s
future in this new, potentially trans-
forming Age of Space.

Space agencies and educational
organizations are coordinating efforts
and activities related to the ISY. The
January/February 1992 issue of
Quantum is an official publication of
the International Space Year and will
be devoted entirely to space science
and math. It will also contain infor-
mation on ISY events around the
country and around the world.

Space Science Ivolvement Program

The National Science Teachers
Association (NSTA) and NASA in-

Bulletin board

vite you to participate in the long-
running Space Science Student In-
volvement Program (SSIP). Since its
debut in 1980-81, SSIP has involved
nearly one million students in its
program annually. The interdiscipli-
nary design of the contests encour-
ages all students to work on a sci-
ence-related activity.

Students in grades 6-8 work in
teams to design a moon base for hu-
man habitation, while those in
grades 9-12 design and write up ex-
periments that theoretically could
be conducted on Space Station Free-
dom, in the wind tunnel facility at
NASA Langley in Virginia, at the
drop tower facility at NASA Lewis in
Ohio, or with the supercomputer at
NASA Ames in California. Students
in all grades can enter the journalism
and Mars settlement art contests.

All entrants receive a certificate of
participation. Winning students visit
a NASA center or attend the National
Space Science Symposium, have
their artwork seen in a national trav-
eling exhibit, or have their newspa-
per entry printed in an NSTA publi-
cation. The top winners in the Space
Station Proposal Contest compete at
the national level for scholarships
and other prizes.

Teachers can also participate.
They receive the same travel awards
as the student winners, as well as
certificates and plaques. First-time
winning teachers can compete for the
Teacher-Newcomer Award, a week-
long internship at a NASA center.

This year the National Space Sci-
ence Symposium will be held in
Washington, D.C., in September.
Winning students will present their
papers, meet with their representa-
tives on Capitol Hill, and be honored
at both an evening reception and
awards luncheon.

For an SSIP poster and entry guide-
lines, contact NSTA-SST, 1742 Con-
necticut Avenue NW, Washington,
DC 20009. The entry deadline is
March 15, 1992.

“Together to Mars” finalists

A panel of judges chosen by NSTA
has announced the three US finalists
in the H. Dudley Wright student
competition, “Together to Mars.”
NSTA is the US coordinator for this
international competition, which is
sponsored by The Planetary Society.

The competition was held to
spark students’ imagination and in-
terest in space travel. Entrants had to
state a problem that would be en-
countered on a mission to Mars, then
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write a research paper proposing
ways to solve the problem.

The three US finalists are Michael
Brush, Mission Hills, Kansas, for
“The Effects of Microgravity on Cy-
tochrome P-450”; George Zener,
McLean, Virginia, for “Microgravity:
Dealing with Weightlessness in a
Mission to Mars”; and Noam Fast,
Glen Head, New York, for “Combat-
ting the Negative Effects of Pro-
longed Space Flight on the Psyche.”

The finalists will proceed to the
international level of the competi-
tion, where they will compete
against national finalists from other
countries. International winners
each will receive $2,500 and an ex-
pense-paid trip to Washington, D.C,,
in August 1992 to accept their
awards at the World Space Congress,
part of the International Space Year
commemoration.

Student Alternative Fuef competitions

What has a motor, chassis, gears,
and tires, is guided by wires, and re-
quires no gas to go? The race cars in
the Junior Solar Sprint, the first na-
tional solar-powered model car race.
Said to be the “Soap Box Derby of the
1990s,” this year’s race was held in
Washington, DC, in July. Students
from junior high schools across the
country raced cars of their own de-
sign, powered entirely by solar pan-
els. Each car was judged in two cat-
egories: its overall design,
craftsmanship, and appearance and
its performance in a double-elimina-
tion 20-meter sprint. Travis
Talmadge, of Oakwood-Oster Junior
High School south of Chicago, won
this year’s event.

The Junior Solar Sprint is part of
the Student Alternative Fuel Compe-
tition program, designed to further
student interest in science and the
environment and encourage explora-
tion of alternative energy sources.
The program is operated by the US
Department of Energy and the
Argonne National Laboratory, a re-
search facility southwest of Chicago.
Other events planned for this pro-
gram include the National Gas Ve-
hicle Challenge, the Society of Auto-
motive Engineers Supermileage
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Competition, and the National Fuel
Economy Road Rally Championship.
For more information on the Student
Alternative Fuel competitions, call
Bob Larsen or Marti Hahn at
Argonne National Laboratory, 708
972-6489, or write to Argonne, Build-
ing 362-2B, 9700 South Cass Avenue,
Argonne, IL 60439.

X-ray telescope in solar Study

An X-ray telescope flown on a
NASA sounding rocket above New
Mexico at the time of totality of the
July eclipse has produced high-reso-
lution X-ray images of the uneclipsed
sun that promise to complement
other eclipse experiments performed
throughout the world. The telescope
was built by scientists at the IBM
Thomas J. Watson Research Center
in Yorktown Heights, New York and
at the Smithsonian Astrophysical
Observatory in Cambridge, Massa-
chusetts. The goal of the coordinated
data and image analysis is an im-
proved understanding of the solar
corona (the tenuous outer atmo-
sphere of the sun that begins approxi-
mately 2,000 miles above its surface).

At the heart of the X-ray telescope,
called NIXT (normal incidence X-ray
telescope), is a multilayer X-ray mir-
ror that overcomes the inability of
conventional lenses and mirrors to

work in the X-ray region of the spec-
trum. A multilayer mirror has the
ability to enhance the low X-ray
reflectivities of the materials of
which they are composed.

The mirror assembly in this X-ray
telescope consisted of 140 alternating
layers of carbon and cobalt, designed
to combine cumulatively the small
amounts of X-radiation reflected
from each of the interlayer bound-
aries. The thicknesses of those lay-
ers—only a few atoms each—were
chosen so that the layers would op-
timally reflect only X rays with spe-
cific wavelengths. Here they were
chosen so that optimal reflection
would occur for X rays emitted by
highly ionized atoms of iron and
magnesium. Such X rays are emitted
from the solar corona at a tempera-
ture of approximately 2 million de-
grees Celsius. The advantage of look-
ing at features recorded at a single
specific temperature is that the im-
ages are sharper—not blurred by X
rays emitted at other temperatures.
Researchers believe that normal inci-
dence multilayer X-ray optics provide
a valuable technique for observing
coronal structure without contami-
nation from radiation at other wave-
lengths produced by solar regions at
various temperatures.

—Compiled by Elisabeth Tobia

The dark silhouette of the approaching Moon can be seen on the right.

Photo courtesy of SAO/IBM Research
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Math
M36

Divide the given squareinto 4 -4 =16
congruent squares (fig. 1). Then
points L and K turn out to be nodes
of the grid obtained. The rotation of
the grid through 90° about point L
obviously takes triangle LMD into
triangle LNK. So angle DLK is equal
to the rotation angle—that is, to 90°
(and, in addition, LD = LK).

A K N B

¢

Figulr)e 1

M37

We can represent the given table A as
the sum of two tables B and C (fig. 2).
If we assign minuses to numbers in
all three tables in the same way ac-
cording to the statement of the prob-
lem, then the sum of the numbers in
every line of table B and in every col-
umn of table C will be zero. It follows
that the sum of all the numbers in
tables B and C, and so in table A also,
will be zero.

HINTS &
SOLUTIONS

M38

Let the condition of the problem hold
for all sides of a pentagon ABCDE
except for side AE (and the corre-
sponding diagonal BD—see figure 3).
Segments AE and BD are parallel if
and only if triangles ABE and ADE
have the same area (the triangles have
the common base AE, so the equal-
ity of their areas amounts to the
equality of their heights—that is, to
AE and BD being parallel). A similar
argument for sides AB, BC, CD, and

Figure 3

DE and the corresponding diagonals
parallel to them yields the successive
equalities of areas of triangles EAB
and ABC, ABC and BCD, BCD and
CDE, CDE and DEA. So the areas of
EAB and DEA are the same, and this
completes the proof.

M39

The answer is no. Figure 4 illustrates
the way to draw 14 lines separating
the centers of all the chessboard
squares. To prove that 13 lines won’t

1 2 3 10 0 0 O 0 1 2 3 10
11 12 13 20 10 10 10 10 1 2 3 10
21 22 23 30 20 20 20 20 . 1 2 3 10
91 92 93 100 90 90 90 90 1 2 3 10

A B C
Figure 2
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suffice, consider the centers of 28
border squares (fig. 5). They form a
square, and any 13 lines meet the
sides of this square in at most 26
points. Therefore, such lines divide
this square’s perimeter into at most
26 pieces, so at least one of the pieces
must contain two border centers.
This means that 13 lines can’t sepa-
rate even the border centers, to say
nothing of the others.
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The succession of numbers 1, 2, 3, 4
won’t occur in our sequence 1, 9, 9,
1, ..., since each even number in it
must be followed by four odd num-
bers.

Questions (b) and (c) require a
more thorough examination. The
answer to both of them is yes. By the
definition of the sequence, knowing
the preceding four numbers we can
find the next number. Let’s move
along the sequence in the opposite




direction and try to find the number
x preceding the given four successive
numbers g, b, ¢, d. Since d is the last
digit of x + a + b + ¢, we can write

x+a+b+c=10k+d,
or
x=10k + (d-a-b-¢),

where k is some integer. The number
xis a digit—thatis, 0 < x < 9;, so xis
the remainder of d - a - b — ¢ when
divided by 10. This allows us to
uniquely determine x. For instance,
the succession 1, 9, 9, 1 must be pre-
ceded by the remainderof 1-9-9 -
1 =-18 when divided by 10, which is
equal to 2 (not 8!).

Thus, the number preceding a
given succession of four digits is al-
ways the same, no matter where and
how many times this succession oc-
curs in our sequence.

Taking one more step back, we
find that the same statement is valid
for the number that stands two
places before the given succession;
and in general, given any four succes-
sive terms of the sequence, we can
uniquely restore the entire segment
preceding them.

Now we notice that at least one
four-digit succession shows up twice
in our infinite sequence, because the
number of such successions is finite
(it equals 10,000). Denote the re-
peated succession by g, b, ¢, d. Let its
first occurrence be n places away
from the origin of the sequence. This
means that stepping n places back
from the first g, b, ¢, d, we come to
the initial four numbers 1,9, 9, 1. But
we’ll also find the same numbers n
places before the second occurrence
of a, b, ¢, d. This means that the suc-
cession 1,9,9,1 is repeated in our se-
quence, giving the affirmative an-
swer to question (b).

Finally, as we’ve noticed above,
the digit preceding 1, 9, 9, 1 is 2, so
the succession 2, 1,9, 9 can be found
in our sequence. And this is the an-
swer to question (c).

Physics

From the statement of the problem it
follows that the force Fis directed at
some angle o = 0 with respect to the
initial velocity v of the body. (Other-
wise—that is, if o = 0—the change in
velocity for equal time intervals
would also be equal.)

Let OA be the vector of the initial
velocity, AB the vector of the change
in velocity for the time interval t af-
ter the force is “activated.” (See fig-
ure 6.) Then OB is a vector equal (in
its absolute value) to v, = v/2 (the
body’s speed after time 1). Now let’s
draw a vector BC that is equal to |AB|
and directed at an angle o relative to
OA. Then OC is equal in its absolute
value to v, = v/4 (the body’s speed at
the end of the time interval 27 after
the force was activated). Repeating
this same procedure, draw a vector
OD whose absolute value is equal to
v. (the body’s speed 3t after the force
was activated). Let the projections of
AB on the x- and y-axes be Av,_ and
Av, respectively.

Then

(v+ AV, ]+ Av 2 = v*/4,
(v+2Av ] + (2Av 2 = v?/16.

Taking into account that
V= (v+3Av )+ (3Av P,

we finally get

V3 =V\/7/4.
P37

The work done in lifting the sled is
the sum of two parts: the work done
against gravity W, = mgh and the
work done against friction W,. To

D

y 2°]

0 A

Figure 6

Figure 7

determine W, consider a small dis-
placement As along the hill’s surface.
Let the tangent at this point be at
some angle o relative to the horizon
(fig. 7).

Since the child is ascending slowly
and the rope tension T is directed
along the tangent (that is, along As),
we can assume the sled is in equilib-
rium, so that

F, = uN = umg cos o.

The work AW, done against the force
of friction in the displacement As is

AW, = umg cos o - As.

We can see from figure 7 that
As cos o equals Ax minus the hori-
zontal displacement of the sled; so
it’s clear that the total work done
against friction in lifting the sled to
the top is

Wl = mg]/

in that the total horizontal displace-
ment of the sled is L

So the total work W done by the
child is

W=W +W,
= mgh + umgl
= mglh + pl)

and doesn’t depend on the steepness
of the hill.

P38

A helicopter’s lift {and an airplane’s
as well) depends on the density of the
air. It’s cooler in the morning, and the
air is noticeably denser. That’s why
helicopters can carry greater loads in
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the morning. For airplanes, the in-
crease in lift in the morning only
matters during takeoff and landing;
for helicopters, this is significant for
the entire duration of the flight. In
the thin mountain air the difference
is substantial. So helicopter pilots in
the mountains prefer to fly “in the
thick morning air.”

P39

Connect points A and B to a battery
U, (fig. 8).It's clear that the potentials
at C and D are equal; the same is true
about the other pair of points E and
F. This means that no current flows
along the section of wire connecting
points C and D, nor along that con-
necting E and F (the broken lines in
figure 8). So we can get rid of these
sections without changing the total
resistance. The resistance of this sim-
plified circuit is quite easy to calcu-
late:

Figure 8
P40

When the light is reflected off the
second mirror, it returns to the first
mirror, is partially reflected, and, fall-
ing on the second, increases the total
intensity of the beam of light.

Let I be the intensity of the initial
light beam. (See figure 9—for illustra-
tive purposes the incident beam is
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1

Figure 9 ?
inclined.) The intensity of the light
that has passed through the first mir-
ror is i, = I/k (where k is the “extinc-
tion factor” and equals 5 according to
the statement of the problem). The
light “trapped” between the mirrors
is successively reflected by them and
gradually emerges (since the mirrors
are semitransparent); the amount of
light emerging to the right is approxi-
mately equal to that emerging from
the left.

So the total intensity of the light
passed is

The problem also has an exact so-
lution. For the change in the beam’s
intensity after successive reflections
we can write

2 4

Every time the light falls on the sec-
ond mirror, it partially emerges to the
right:

b/ 1 I
IIZEO/IZZ?l/I:&:EZ""'

The total intensity of the light passed
is

I'sh+I+1I3+--

SR CORCRS

which is the sum of a vanishing geo-
metric series with the factor g =
(1 -1/kP and so

1 i, K

p=lo 1 _%
kl-qg k- (k-1)
ik _ I
T 2k-1 2k-1
_1
-5

For k = 5 this differs only slightly
(10%) from the approximate solu-

Brainteasers

B36

Answer: 415 - 382 = 158,530.

B37

Fill the pot and tilt it as shown in fig-
ure 10. Because of the symmetry of
the cylinder, 3 liters of water will be
left. Now fill the jug and pour 3 liters
out of it into the pot (until the pot is
full). Then exactly 1 liter of water will
be left in the jug.

Figure 10
B38

Draw a circle whose center is at the
vertex O of the given angle; label the
points where it meets the arms of the

Figure 11




angle A and B (fig. 11). Using only a
compass we can successively mark
points C, D, E, and F on the circle
such that AC = AO, BD = BC, DE =
DC, and EF = EB. Then points E and
F lie on the trisectors of the angle,
since angle BOC = angle DOB = 60°
- 54° = 6°, angle BOE = angle EOF =
18° = 54°/3.

B39

Label the coins 1,2, 3, 4, 5, 6, 7 in
clockwise order. Turn over coins 1, 2,
3,4,5,then 2, 3, 4, 5, 6, and so on
seven times, each time shifting the
first coin of the succession one posi-
tion clockwise, so that the last group
is7,1,2,3, 4. Each time we turn over
five coins, so every coin will be
turned over five times and eventually
will stay upside down.

Turning four coins over at a time,
one can’t turn all seven of them over.
To see this, write +1 on the heads of
the coins and -1 on the tails. Then
turning a coin over amounts to
changing the sign on its upper side.
When we turn four coins over, four
signs are changed, so the product of
all +1’s and -1’s on the upper sides of
the coins always stays the same,
whereas after turning over all seven
coins it would have changed its sign.

Try to prove that with the “five-
fold moves” one can turn over any
given subset of the seven coins, and
with the “fourfold moves” any sub-
set having an even number of coins.

B40

While being transported overseas,
cotton absorbs moisture and so gets
heavier. The captains made allow-
ance for this increase in the cotton’s
weight.

Polyominoes

1. t{T) = (ABPA'BA'B3 = (AB)* =
e.

2. The answer is no. Every figure
made up of an even number of
squares can be cut into a domino (fig.
12a) or “diagonal domino” (fig.
12b)—figures composed of two
squares having a single common ver-

snlling

a b
Figure 12

tex. For both of these figures t = e
(with respect to D).

3. The desired group consists of all
expressions of the form

AkBh  A*v Bl

such that the corresponding polygo-
nal curve, which may have self-inter-
sections, is closed and bounds the fig-
ure whose “oriented area” can be
divided by n. (The oriented area in
this case can be calculated as follows.
Take any unit square of the grid in-
side the polygon and find the number
of full clockwise turns that are made
by the vector joining the center of the
square to a point on the line when
this point runs along the entire line.
This number can take any integer
value. Then add up these numbers for
all the squares.)

4. For the given polyomino P, t(P)
=(AB)® or (BA)®. If A and B are reflec-
tions in lines that meet at an angle of
7/18, then AB and BA are the rota-
tions by angles 1t/9 and —m/9, respec-
tively, so (AB)® = e.

5. Consider a group G generated by
two elements A and B satisfying only

_Bl

two relations A T:”. to
of squares in the polyormno P :h;:
t (P)=(ABJ*, where |kl = ¢[P) and the
sign of k depends on the choice of the
origin O, changing when O is shifted
to the neighboring point of P’s bound-

ary.
Corrections )

In the answer to Brainteaser
B32 (Sept./Oct.): for “shaded”
read “yellow”; for “AED" read
“BCF”; for “ABF" read “ABE.”
In the same issue, the first
displayed equation in column 2
on page 26 contains several er-
rors. The second instance of
“hv” in the first line should
read “hv'”; the numerator in
the last line should read
“2h*v?”; finally, what looks like
a prime on the “v” in the last
line is actually a comma setting
off the entire equation. The
equation should read:

AE=hv-hv'
ch ch
A A+AL
_ 2h*v?

" mc*+2hv’

\_
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TOY STORE

Portrait of threg puzzle graces

Against the background of group theory

by Will Oakley

OU DON'T HAVE TO BE A GROUP THEORIST

to see that the three popular puzzles in figure 1 have
something in common. Although they’re totally
different in design and appearance, all three pose

the same problem: to restore the randomly scrambled
puzzle to its pristine orderly state (the solid coloring of
the cube faces, natural order of numbers on the pieces of
the 15 puzzle, and 12 o’clock on all 18 dials of “Rubik’s
clock”). But the reader who’s learned some elements
of group theory—perhaps after reading the math articles
in this issue—will see a much more profound connection
between these puzzles and will appreciate them for the
unique opportunity to literally “touch” groups.
There are lots of group puzzles and puzzle groups. I'll just
give a few examples of how groups are applied to puzzles,
and how puzzles illustrate some notions of group theory.
So, what do groups have to do with puzzles? Let’s look

at puzzles as systems that can undergo certain manipu-
lations (actions or processes) taking them from one state
to another. Each action is a succession of elementary
moves, described by the rules of the game: sliding pieces
to a blank space in the 15 puzzle, turning the faces of
Rubik’s cube, or rotating cog wheels to make the hands
of Rubik’s clock go around. Two
successions performed one after
the other constitute a single one
and determine a composite ac-
tion; any succession can be
undone by undoing all

b1 34 ] moves in reverse or-
der. This means that

these actions make a

iq (see
911011}12 gotgliarticle
13[1415 by

Figure 1

Alexey Sosinsky at the beginning of this issue), while el-
ementary moves are the generators of this group. So the
basic problem— “find a chain of moves that produce the
required result”—can be reformulated as “express the
given element of the group in terms of the generators.”

“What do I need all this scientific stuff for?” you
may be saying. “I've never heard about groups, genera-
tors, or whatever else you want to foist off on me, but I've
been doing the 15 puzzle all my life without any prob-
lems!” And basically you'll be right. But let me remind
you of the craze that seized half of the world 100 years
before Rubik’s cube, when the ingenious inventor of the
15 puzzle, Sam Loyd, offered a $1,000 prize (in 1873!) for
the first correct method of restoring the numeric order in
the box when pieces 14 and 15 are initially reversed.
Henry E. Dudeney, another great puzzle inventor, said
that “it has been stated, though doubtless it was a
Yankee exaggeration, that some 1,500 weak-minded per-
sons in America alone were driven to insanity” by the
15 puzzle. But Loyd was risking nothing (which he knew
full well). And the proof of the unsolvability of Loyd’s
problem is based on group theory, or rather, on permu-
tation groups.

Each process permitted by the rules of the 15 puzzle
can be associated with the permutation p indicating how
the pieces are moved in this process. For instance, let the
regular position be transformed into the “magic square”
in figure 2a (where the red number 16 stands for the
blank space, and the sum of the other numbers in every
row, column, or diagonal is the same). The arrows in fig-
ure 2b show the displacements of all the pieces includ-
ing the blank space (“piece” 16). Following the arrows,
we find that piece 1 was carried to space number p(1) = 3
(that is, the space occupied by piece 3 in the regular po-
sition), piece 2 stayed where it was (so p(2) = 2), 3 went
to 16, and so on, resulting in the array

(12345678 910111213141516
2= 3216810115126 7 9 11514 4 13/
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Figure 2 a b

The permutation I that would solve Loyd’s problem is a
single pair exchange of two elements (14 and 15). Each
single move in the puzzle is also a pair exchange of two
elements—of “piece” 16 and one of the neighboring
pieces. Now, every process that brings the blank space
back to the right bottom corner of the box consists of an
even number of moves, since the number of up-moves in
it must be equal to the number of down-moves and the
numbers of right- and left-moves must also be the same.
So the single pair exchange I must be represented as a
sequence of an even number of pair exchanges. But it can
be proved that, although a permutation can be repre-
sented by sequences of pair exchanges in many different
ways, the parity of the number of exchanges will be the
same in all representations. The unsolvability of Loyd'’s
problem flows directly from this. Now try to figure out
whether the “magic square” in figure 2a is attainable
from the ordered position.

Sam Loyd had to come up with an unsolvable chal-
lenge to draw the attention of millions of people to his
puzzle: the problems in the 15 puzzle that can be solved
are too easy to excite people. Erno Rubik didn’t have to
resort to such underhanded means: it’s much more dif-
ficult to do the cube, and lots of wretches were driven to
despair by the thought that they’d overscrambled their
cubes so that no one would ever set the tricky thing to
rights. The solution always exists, of course, because
when you play the cube you always stay within its group,
and every process in the group is invertible—that is, un-
less you disassemble your cube. If you take it apart and
put back together at random, you’ll be able to restore the
colors by turning faces with a probability of only 1/12 (to
get the unsolvable position in the 15 puzzle, you also
have to take the pieces out of the box and put them back
in).

Rubik’s cube is an ideal aid for a student of group
theory, better than anything that ever was and, perhaps,
ever will be invented. One can hardly find a notion of this
theory that can’t be illustrated with the cube. Take, for
instance, commutators—elements of the form [A, B] =
ABA-'B!, mentioned in Y. P. Solovyov’s article. They
play the most important role in almost all algorithms for
solving the cube. In the simplest case, A and B are the
turns of two adjacent faces of the cube, as in figure 3,
showing the effect of C = [F, R], where F ' is the coun-
terclockwise 1/4 turn of the front face, and R is the clock-
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wise turn of the right face (these are the widely adopted
notations). This commutator permutes three edges in cy-
clic order and at the same time performs two pair ex-
changes of corners. In all, seven small cubes are moved,
which is not too practicable. But if we repeat process C
twice, the corners will obviously come back, though
twisted, so we'll get a single triple-cycle on the edges. The
triple iteration of C is even more useful: it brings all the
edges back to their initial positions, leaving just the two
pair exchanges of the corners. (The sixfold iteration re-
stores the initial position of all the cubes. A group-theo-
rist would say that C is an element of order 6.) So our
commutators generate two very useful processes. There
are algorithms based completely on the commutators of
two turns.

But the most impressive application of groups to
“cubology” was the record algorithm of the English
mathematician Morwen B. Thistlethwaite, which re-
stores the solid coloring of the faces in not more than 52
moves, whatever the initial state is. Most of the algo-
rithms consist of steps determined by the geometry of the
cube: some of them restore the cube layer by layer; oth-
ers put the corners in place first, then the edges; and so
on. Thistlethwaite found an apt succession of subgroups,
embedded one in the other, starting with the entire group
of the cube and ending in the trivial group (which con-
tains only the identity process, corresponding to the regu-
lar state of the cube). The subgroups are generated by
gradually reduced sets of turns—for example, the next-
to-last set comprises only the half-turns of all the faces.
So the goal of each step is to bring the cube into the state
that can be put in order by a process of the next sub-
group—that is, using only the turns of the next set of
generators. However strange it may seem, none of the
small cubes must be put in its place until the last step!
More details of this algorithm, and other remarkable ap-
plications of group theory to “cubology,” can be found in
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the Handbook of Cubik Math by Alexander H. Frey and
David Singmaster (Enslow Publishers).

A few words about the third puzzle, Rubik’s clock—
the youngest of the three (it’s just three years old). It dif-
fers from the other two in that it is commutative: the
effect of a series of moves doesn’t depend on their order,
s0 it’s completely determined by the number of iterations
of each elementary move in the sequence. That’s why
Rubik’s clock is much simpler than Rubik’s cube (al-
though, perhaps, more complicated than the 15 puzzle).
In order to comprehend how much commutativity sim-
plifies a puzzle, imagine for a moment that the cube has
turned commutative. In this case the order of face rota-
tions doesn’t matter at all: we just have to know the to-
tal angle of rotation of each face, which can take the val-
ues 90° - k, where k =0, 1, 2, 3. With just six faces, we’d
be able to obtain at most 4° = 4,096 different processes.
In fact, the number of cube processes (that is, the order
of the cube group) equals 8! - 12! -37.2°=4.3.10%, ap-
proximately 10' times more! What makes the clock not
S0 easy to solve is the greater number of elementary
moves (31 compared to 6 for the cube) and the tricky way
in which they are interlaced with each other. But ':L a
mathematician this puzzle is in a certain sense trivi
least theoretically. Given the readings of all the diz e
can find the angles by which the hands should be tumed
to indicate 12:00 o’clock. Each elementary move tums
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some of the hands through a certain angle x, depending
on what buttons are pushed; the other hands don’t move.
It’s convenient to measure this angle by points on the dial
orin “hours” (1 hour = 30 degrees). All the different ways
of choosing the “transmission” and the wheel that’s
turned yield 31 different ways of turning the hands. So we
candenote by x, (i=1, ..., 31) the total angle by which the
hands are turned with all the ith moves occurring in the
required process, and calculate the resulting turn of each
hand by summing up the turns produced by all moves.
Equating the linear expressions thus obtained to the de-
sired turn angles for each hand yields a system of linear
equations that can be solved by a routine procedure used
for similar (though somewhat simpler) systems in high
school algebra. One thing worth mentioning is that the
“numbers” x, involved in our equations should, in fact,

be treated like angles. For example, if x, = 7 and x, = 8,
thenx +x, =3 (=15-12). A mathemat1c1an would say
that our variables aren’t integers but elements of the cy-
clic group of order 12 (or the group of rotations of the regu-
lar 12-gon—again see Sosinsky’s article). However dull
and cumbersome, the algebraic solution of the clock
works all right, once again demonstrating the power of
group theory.

These are just three landmarks in the vast realm of
group puzzles; we'll continue to explore it in future issues
UI Ququ:_h 11.
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symbolic solutions, in addition to
approximate numerical solutions.
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Speed.

PC Magazine declared DERIVE
“faster, occasionally dramatically
faster” than its competitors. Goes from
0 to 600 decimal places in a fraction
of a second!

Powerful engine.

Part of the secret engine
powering DERIVE is
our muLISP™
Program.
But you

don't need
to understand
what's under the hood
to reach your destination.
Just grab your keyboard and go!

Long distance DERIVEability.

This year's model has been improved
to solve differential and recurrence
equations. Other new features include
least-square fits, partial fractions,
Fourier series, Laplace transforms,
and special functions from Bessel
through hypergeometric. And there'll
be more down the road.

No sticker shock.

DERIVE'’s suggested retail price is
$250. Most other scientific programs
for PC’s start at twice that price, yet
can't do symbolic math. And of course
DERIVE doesn’t require an expensive
computer, a math co-processor, or
even a hard disk drive.

Order DERIVE through your favorite
software dealer or mail-order house.
For a list of dealers, write Soft Ware-
house, Inc. at 3615 Harding Avenue,
Suite 505, Honolulu, HI 96816. Or call
(808) 734-5801 after 11 a.m. PST.

And happy DERIVEIng!
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