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March by Isaac Levitan

NE WAY TO APPROACH THE WORK of Isaac Ilyich

Levitan (1861-1900) is by way of his lifelong friend,
Anton Chekhov. The stories and plays of Chekhov de-
pict in words the wistful beauty seen in Levitan’s land-
scapes. But while Chekhov’s works are populated by
people caught between their comfortable old way of life
and a frighteningly unknown future, human beings are
eerily absent from Levitan’s paintings. In the last twenty-
five years of his life, he did not place a single human fig-
ure in any of his paintings.

In fact, it was Levitan who suggested the symbol of a
dead gull as the central image in Chekhov’s first great

play, The Sea Gull. As James Billington writes in The
Icon and the Axe, “through Chekhov’s plays the symbol
became equated with the slow and graceful sliding out
to sea of old aristocratic Russia.” Billington sees in
Levitan’s work “the afterglow of nature rather than day-
light or the promise of springtime.”

Perhaps “March” is an exception. At the cusp of win-
ter and spring, March is depicted by Levitan with bright
sun and sharply delineated shadows on a persistent blan-
ket of snow. But, psychological interpretation aside, do
you notice anything curious about those shadows? See
problem P35 on page 16.
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High-temperature superconductivity
is a hot topic (even though the “high
temperatures” hover around the
125K mark—about -148°C). In fact,

High-Temperature Superconductivity

Meeting no resistance

by Alexander Buzdin and Andrey Varlamov

the June issue of Physics Today was
devoted to this busy field. What ex-
actly is high-T superconductivity,
and what does it mean for physics,
other sciences, and everyday life? See
“Meeting No Resistance” on page 6
for some answers, and maybe more
questions. Among other things,
you'll read about “Cooper pairs,” de-
picted on our cover as two dancers in
a strangely cool dance—attraction
and interaction from a distance.
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Be a factor in the

Have you written an article that
you think belongs in Quantum?
Do you have an unusual topic that
students would find fun and chal-
lenging? Do you know of anyone
who would make a great Quan-
tum author? Write to us and we'll
send you the editorial guidelines
for prospective Quantum con-
tributors. Scientists and teachers
in any country are invited to sub-
mit material, but it must be writ-
ten in colloquial English and at a
level appropriate for Quantum’s
predominantly high school reader-

ship.
Send your inquiries to:
Managing Editor
Quantum
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Arlington, VA 22201
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Assistant program.

PC Magazine says it's
“a joy to use”and
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Choice.” PC Week calls
it “fast and capable.”
The DERIVE® program
is delivered with built-in
standard equipment that delights both
math lovers and math phobics. After
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performance.
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Big 3 symbolic math
programs, PC Week rated the
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in symbolic capabilities, and the
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equation solving, exact and approxi-
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Human engineering.

You don't have to
be fluent
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Fourier series, Laplace transforms,
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A megting of minds

The first US-Soviet Conference of Science Teachers

OSCOW (August 5)—This

editorial is being written on

the computer in Moscow that

our Soviet colleagues use to
prepare material for Quantum. When
I have finished the editorial, T will
dial a local telephone number here in
Moscow, make connections to a sat-
ellite, and the article will be sent to
a teleport in San Francisco. Tim
Weber, Managing Editor of Quan-
tum, will download the article from
the SOVAM Teleport, and he will
have the article printed in Quantum
before I return to the United States.

We're able to transmit either En-
glish or Russian by this teleport sys-
tem, which makes it easier to clear
up questions and verify translations.
While the Soviet Union is opening
up, communications are still quite
difficult. The teleport is essential to
our magazine.

I am in Moscow with 311 Ameri-
can science educators. We have held
a convention at Moscow State Uni-
versity with 600 Soviet teachers.

Some have traveled all the way from
Siberia. It has been very exciting and
interesting. Sessions were all pro-
vided with simultaneous translation,
using electronics and interpreters.
Many Americans have been visiting
Russian homes, and everyone has
found the joint meeting to be one of
the finest experiences of their lives.
Some 250 of these Americans have
just returned from two days in
Leningrad (or should we now call it
St. Petersburg?).

As you may know, the summit
meeting between presidents
Gorbachev and Bush occurred while
we were here. We were all most re-
gretful that President Bush could not
meet with the American teachers.

My most interesting visit here
was to Leo Tolstoy’s estate and
home, some 200 km south of Mos-
cow. It’s fascinating to see the very
desk at which he wrote War and
Peace and Anna Karenina. And to
walk along the lanes he describes in
his books is an awesome experience.
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Tolstoy’s grave is very simple. It's
nothing but a small mound of grass
in a beautiful wood, without any
monument or even marking. He tried
to live a simple life and insisted that
his place of burial be in the midst of
unadulterated nature.

The weather here has been ex-
traordinary. Each day has been clear
and warm, but never more than 75
degrees Fahrenheit. Nights have been
no colder than 60 or 65. There's very
little smog, and there has been no
rain. I don’t believe I've ever experi-
enced a time with more beautiful
weather anywhere in the world.

Our Soviet friends are going
through very difficult times. But in
spite of these difficulties, they are
enormously generous and friendly.
As in difficult times before, they're
able to survive. And one day they’ll
prosper, for this is a land of great
wealth in natural and human re-
sources.

One goal of our convention was to
make new friends and help our col-
leagues form a science teachers asso-
ciation here in the Soviet Union. We
also wanted to help encourage ex-
changes and other forms of coopera-
tion that would make the US and the
Soviet Union economic partners and
friends.

As the best of American minds,
you readers must help achieve these
improved relationships in the future.
I hope that you all will take advan-
tage of exchange opportunities. Also,
when we need a place for Russian or
Soviet students, I hope you'll offer
your homes and hospitality.

So this is my message from Mos-
cow: let’s keep working together!

—Bill G. Aldridge
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Meeting no resistance

“Science is always wrong: it never solves a problem without
creating ten more. —George Bernard Shaw

by Alexander Buzdin and Andrey Varlamov

HE GREATEST EVENT IN

physics in recent years undoubt-

edly was the discovery of high-

temperature superconductors,
whose resistance becomes zero at
temperatures above 100K. The prac-
tical significance of this discovery can
be compared to that of magnetic in-
duction at the beginning of the 19th
century. It ranks with the discovery
of uranium fission, the invention of
the laser, and the discovery of the un-
usual properties of semiconductors
in this century.

The beginning of this exciting new
stage in the development of super-
conductivity was the work by K. A.
Miiller and T. J. Bednorz at IBM’s lab
in Switzerland. In the winter of
1985-86 they managed to synthesize
a compound of barium, lanthanum,
copper, and oxygen—the so-called
metal oxide ceramic La-Ba-Cu-O, a
compound which had superconduct-
ing properties at the record tempera-
ture, at that (still recent) time, of 35K.
The article, cautiously titled “The
Possibility of High-Temperature Su-
perconductivity in the La-Ba—Cu-O
System,” was turned down by the
leading American journal Physical
Review Letters. The scientific asso-
ciation had gotten tired of receiving
sensational reports over the past 20
years about the discovery of high-
temperature superconductors that
turned out to be false, so it decided to
pass on this one. Miiller and Bednorz
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sent the article to the German jour-
nal Zeitschrift fiir Physik. After the
news about finally superconductivity
broke out and research on high-tem-
perature superconductors was being
done in hundreds of laboratories, ev-
ery article devoted to investigating
the new phenomenon would begin
with a reference to this article. But in
the fall of 1986 it went practically
unnoticed.!

Just one Japanese group checked
the result and verified it. Soon the
phenomenon of high-temperature
superconductivity was corroborated
by physicists in the United States,
China, and the Soviet Union. At the
beginning of 1987 the whole world
was in a fever, searching for new su-
perconductors and investigating the
properties of those already discov-
ered. The critical temperature T, in-
creased quickly: for La-Sr-Cu-O,
T_ =45K, and for La-Ba-Cu-O (under
pressure) it reached 52K. In February
1987 the critical temperature of the
compound YBa,Cu,O, broke the
fabled “nitrogen barrier,” having
reached 93K.2 We now know of com-

'The Nobel Prize for physics in 1987
was awarded to Miiller and Bednorz.
The importance of the discovery was
evident from the fact that the interval
between the publication of the famous
paper and the award was just a little
over a year.

This temperature could be achieved
by using liquid nitrogen, which was

HIGH-TEMPERATURE SLUPERCONDULTIYITY

pounds with T_> 100K—for example,
the critical temperature of
T1,Ca,Ba,Cu,0, is 125K.

Loners and low budgets

The discovery of high-temperature
superconductivity is unique in mod-
ern physics. It was discovered by just
two scientists with very modest
tools. What a contrast with discover-
ies in other areas of physics—for in-
stance, high-energy particle physics.
Here the investigations are con-
ducted by large teams of scientists
(the list of authors takes a whole page
in a journal article), and the equip-
ment costs millions of dollars. This
discovery was cause for optimism:
the time of the lone investigator in
physics hasn’t passed!

This discovery was also striking in
that these compounds include ele-
ments that are easily obtained—as a
matter of fact these superconductors
can be made in a high school chem-
istry lab in a day. And though the
discovery had been expected for 75
years, it caught everyone by surprise.
Theorists could just shrug their
shoulders, and as the critical tem-
perature went up, shrug them even
harder.

much cheaper than the methods used
to this point. (See the discussion below
about the use of liquid helium and
liquid hydrogen in cooling the
superconducting compounds.)

Art by Dmitry Krymov







So was the discovery by Bednorz
and Miiller a fluke or an inevitabil-
ity? Could the discovered compound,
with its unique properties, have been
synthesized earlier? How difficult it
is to answer these questions! We
have long been accustomed to the
fact that everything new is obtained
on the edge of the impossible by us-
ing unique equipment, superstrong
fields, ultralow temperatures, super-
high energies . . . There is nothing of
the kind here. It isn’t too difficult to
“bake” a high-temperature supercon-
ductor—a qualified alchemist of the
Middle Ages could have managed it.

It’s worth recalling that about 10
years ago many laboratories of the
world intensively investigated an
unusual superconducting compound,
Hg, AsF,. This substance was called
“alchemic gold” because of its yellow
luster and high density, which made
it resemble the noble metal. It was
synthesized by medieval alchemists,
passed off as true gold, and advertised
as the result of successfully using the
“philosopher’s stone.” Alchemic
gold is a complex compound, and
who knows, perhaps a high-tempera-
ture superconductor could have been
baked in the Middle Ages if it had
been blessed with a golden luster.

Now that the whole world is in-
tensively investigating the properties
of high-temperature superconduc-
tors, and instruments based on them
are being engineered, many aspects of
the history of superconductivity are
seen in a different light.

A baffling discovery

Superconductivity, one of the
most interesting and unusual phe-
nomena in solid-state physics, first
became known on April 28, 1911, at
a meeting of the Royal Academy of
Sciences in Amsterdam, when the
Dutch physicist Heike Kammerlingh
Onnes reported a recently discovered
effect: the complete disappearance of
electrical resistance of mercury
cooled by liquid helium to 4.15K.
Though no one expected this discov-
ery, and it contradicted the existing
classical electron theory of metals,
the fact that it was Kammerlingh
Onnes who discovered this supercon-
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ductivity was not accidental. The
fact is, he was the first scientist who
managed to solve the most compli-
cated scientific and technical prob-
lem of the time: obtaining liquid he-
lium (which boils at 4.16K). This
allowed scientists to peek into the
unknown world of temperatures
close to absolute zero.

We'd like to emphasize that the
resistance of a sample in the super-
conducting state is not approxi-
mately but exactly equal to zero.
That’s why electric current in the
closed circuit can circulate as long as
you like without damping. The long-
est duration of nondamping super-
conducting current of about two
years was recorded in England. (This
current would have circulated in the
ring right up until now but for a break
in the supply of liquid helium to the
laboratory, caused by a transport
workers’ strike.) Even after two years,
no damping of current was de-
tected.

Very soon superconductivity
was discovered not only in mer-
cury but in other metals as well.
The prospects for practical ap-
plications of the discovered
phenomenon seemed unlim-
ited: energy transmission over
power lines without waste,
superpowerful magnets, elec-
tric motors, new types of trans-
formers . .. But there were two
obstacles. First, the extremely
low temperatures at which su-
perconductivity was observed in
the materials known to elicit the
phenomenon. To cool supercon-
ductors to these temperatures,
scarce helium is used (its stocks
are limited, and helium is very
expensive to produce). This
makes many projects to apply
superconductivity simply un-
profitable. The second obstacle,
discovered by Kammerlingh
Onnes, is connected with the
fact that superconductivity
turned out to be rather sensitive
to magnetic fields (and also to the
maximum value of current). In
fact, it was destroyed in strong
fields.

It took nearly half a century to

understand the nature of this won-
derful phenomenon and to create a
consistent theory. This period can be
considered the first stage in the inves-
tigation of superconductivity: the
stage of gathering information about
this complicated effect.

The next fundamental property of
the superconducting state discovered,
in 1933, was the Meissner—
Ochsenfeld effect: the complete ex-
pulsion of the magnetic field from
the volume of the superconductor.
But again experimental investiga-
tions were complicated by the need
to work with scarce liquid helium—
before World War II it was produced
in about 10 laboratories throughout
the world.

The strange dance of Cooper pairs
The 1950s can be considered the

beginning of the second stage of
superconductivity research. By this

B @rOcu@o()

Structure of superconductive YBa,Cu, O,



time there was qualitative progress in
understanding the nature of the
phenomenon. Using experimental
data and theoretical notions of solid-
state physics, based on quantum
mechanics and statistical physics,
Ginzburg and Landau (USSR)
developed the phenomenological
theory in 1950, which was followed
by a consistent microscopic theory of
superconductivity, created by John
Bardeen, Leon Cooper, and J. Robert
Schrieffer (USA) in 1957. It was found
that superconductivity is linked with
the appearance of a peculiar
attraction of electrons in metals. This
phenomenon exhibits strong
quantum characteristics.

Here we might find an analogy
with two balls lying on a rubber rug.
If the balls are far from each other,
each of them deforms the rug, mak-
ing a little “valley.” But if we put one
ball on the rug and then another one
near the first, their holes will come
together and the balls will roll down
to the bottom of their combined val-
ley. If the temperature is low enough,
some electrons form pairs, called
“Cooper pairs.” The size of these
pairs on the atomic scale is really
quite large, reaching hundreds and
thousands of interatomic distances.
According to the strikingly visual
comparison suggested by Schrieffer,
they should be imagined not as two
electrons connected like a double star
but like two dancers in a discotheque
who come together but may dance in
different corners of the hall, sepa-
rated by dozens of other dancers.
Electrons bound in a Cooper pair
have a definite binding energy of 2A.
This is the energy needed to break
the pair into isolated particles. Its
order at T'= 0 determines the value of
the critical temperature.

According to the laws of the quan-
tum world, the behavior of Cooper
pairs completely differs from that of
electrons. It was discovered that they
are in the common lowest energy—
the “ground state.” The more par-
ticles there are in this state, the easier
it is to catch new members and the
harder it is for a separate pair to leave
this state. This pile is called the
“Bose condensate.” The concentra-

tion of Cooper pairs in the Bose con-
densate depends on temperature. The
fact of their appearance signifies the
metal’s transition to the supercon-
ducting state (which takes place at
the critical temperature). As the tem-
perature decreases further, the num-
ber of Cooper pairs increases, and at
absolute zero there are no free par-
ticles left in the system.

So at temperatures below critical,
two types of carriers can take part in
charge transfer: free electrons and
Cooper pairs. But the first may en-
counter all the usual dangers of life in
metal: impurities, lattice scattering,
and so on. (These processes deter-
mine the resistance in normal met-
als.) On the other hand, Cooper pairs
that stay in ground state can transfer
a charge without interacting with
impurities or any other defects. Inter-
action causing a change of energy
(which is what causes resistance)
means a change of energy in the Coo-
per pairs, and that is possible only
beyond the threshold of 2A. Free elec-
trons stay “idle,” so to speak—the
services of Cooper pairs in charge
transfer cost less. So moderately
strong current flows in a supercon-
ductor because of the condensate of
Cooper pairs without producing any
heat. Superconductivity turns out to
be the consequence of laws from the
quantum world on the macroscopic
scale. It is a “macroscopic quantum
phenomenon.”

Searching for new materials

The creation of a theory of super-
conductivity was a powerful impulse
to investigate it in earnest. Without
fear of overstatement, we can say
that great progress has been achieved
in producing new superconducting
materials in subsequent years. The
Soviet scientist A. A. Abrikosov’s
discovery of an unusual supercon-
ducting state in a magnetic field
played a significant role in this devel-
opment. Before this the magnetic
field was thought to be incapable of
penetrating the superconducting
phase and so was unable to destroy it
(which is actually true for most pure
metals). Abrikosov theoretically
proved that there was another possi-

bility: under certain conditions the
magnetic field could penetrate the
superconductor as current vortices
whose core turned into the normal
state but whose periphery remained
superconducting! Depending on their
behavior of in a magnetic field, super-
conductors were divided into two
groups: superconductors of the first
type (old) and those of the second
type (discovered by Abrikosov). It's
important that a superconductor of
the first type can be changed into one
of the second type if we “spoil” it by
adding impurities or other defects.

Among superconductors of the
second type, scientists managed to
find compounds capable of carrying a
high-density current and bearing gi-
gantic magnetic fields. And although
many problems remained to be
solved before they could find practi-
cal application (the compounds were
brittle, high currents were unstable),
the fact remained: one of the two
major obstacles to the widespread use
of superconductors in technology
was overcome.

But increasing the critical tem-
perature remained problematic. If the
critical magnetic fields were in-
creased thousands of times in com-
parison with Kammerlingh Onnes’s
first experiments, the changes in
critical temperature weren'’t very en-
couraging: it only managed to reach
20K. So for the normal operation of
superconducting instruments, expen-
sive liquid helium was still neces-
sary. This was particularly vexing be-
cause a fundamentally new quantum
effect, the “Josephson effect,” had
been discovered. This made it pos-
sible to use superconductors widely
in microelectronics, medicine, in-
strumentation, and computers.

The problem of increasing the
critical temperature was extremely
acute. Theoretical evaluations of its
peak value showed that within the
boundaries of normal phonon? super-
conductivity (that is, superconduc-
tivity determined by electron attrac-
tion caused by interaction with the
crystal lattice), this temperature

3A phonon is a quantum of
vibrational energy.
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could not exceed 40K. But
the discovery of a super-
conductor with such a
critical  temperature
would be a great achieve-
ment, since it could be
achieved with relatively
cheap and available liquid
hydrogen (which boils at
20K). It would open the
era of “mid-temperature
superconductivity” and
provide the impetus for
research to modify exist-
ing superconductors and
create new ones. But the
ultimate dream was to
create a superconductor
with a critical tempera-
ture of 100K (or, even bet-
ter, above room tempera-
ture), which could be
cooled by cheap and
widely used liquid nitro-
gen.

The best result of the
search was the alloy
Nb,Ge with a critical
temperature of 23.2K.
This record temperature
was achieved in 1973 and
stood for 13 years. Until
1986 the critical tempera-
ture couldn’t be raised by
even one degree. It
seemed that the possibili-
ties of the phonon mecha-
nism of superconductivity had been
exhausted.

In view of this, in 1964 an Ameri-
can scientist by the name of Little
and the Soviet scientist V. L.
Ginzburg proposed the following
idea: if the possibility of increasing
the critical temperature is limited by
the nature of the phonon mechanism
of superconductivity, this mecha-
nism of electron attraction should be
replaced by some other—that is, elec-
trons should form Cooper pairs by
means of some mechanism other
than phonon attraction.

During the last 20 years many
theories were offered, tens or
hundreds of thousands of new
substances were investigated in
detail. In his work Little found his
attention drawn to quasi-one-

10 SEPTEMBER/OCTOBER 1981

dimensional compounds—long
molecular conducting chains with
side branches. According to
theoretical evaluations, a noticeable
increase in the critical temperature
could be expected there. Despite
attempts by many laboratories
throughout the world, such
superconductors were not
synthesized. But in the process
physicist and chemists have made
many wonderful discoveries: they
obtained organic metals, and in 1980
crystals of organic superconductors
were synthesized (the current record
for the critical temperature of an
organic superconductor is over 10K).
They managed to obtain two-
dimensional metal-semiconductor
“sandwiches”—layered magnetic
superconductors where, at last,

A levitating magnet, which has become a symbol of high-T superconductivity. The current
in the superconductor is induced by the magnet. As long as the temperature is low enough,
the current flows continuously. It builds up an opposing field, causing the magnet to hover.

superconductivity and magnetism
coexist peacefully. But there were no
new prospects for high-temperature
superconductivity.

By this time superconductors had
extended their range of application,
but the need to cool them with liquid
helium remained their weak spot.

Modern alchemists

Let’s come back to the discovery
by Miiller and Bednorz. In the mid-
1970s strange ceramic compounds
appeared as candidates for high-tem-
perature superconductivity. In their
electrical properties at room tempera-
ture they were “poor metals,” but
they became superconducting not
too far from absolute zero. “Not too
far” means about 10 degrees below
the record value at the time. But the

From Hoechst High Chem Magazine



new compound could hardly be
called a metal. According to theory,
the value obtained for the critical
temperature wasn’t low but was ac-
tually very high for such substances.

We should honestly acknowledge
here that there was no serious theo-
retical support for experimental in-
terest in these compounds. Since
1983 Miiller and Bednorz worked like
alchemists with hundreds of differ-
ent oxides, varying their composi-
tion, quantity, and conditions of syn-
thesis. In this painstaking way they
stealthily approached a compound of
barium, lanthanum, copper, and oxy-
gen that showed superconducting
characteristics at 35K. This happened
at the end of 1985.

It isn’t easy to find the logic of dis-
covery in modern material science.
Until now the main role has been
played by intuition, experience, per-
severance, and, yes, sheer luck. We'd
like to borrow an example from the
Soviet scientist A. S. Borovik-
Romanov: “For a long time physicists
failed to sinter* francium on germa-
nium. Then the Dutch physicist H.
Kazimir suggested rhenium as an in-
terfacial layer. The rationale behind
his choice was that France and Ger-
many are fastened together by a natu-
ral element—the Rhine river. The
results exceeded all expectations.”

And here we'd like to draw an
important conclusion: the search for
technologically effective supercon-
ductors proved to be very unusual.
Scientists started with pure metals,
moved on to “dirty” alloys, and
ended up with metal oxides, which
hardly look like metals at all—they’re
really a kind of clay. Things generally
went from simple to complex. Some-
times theory lagged behind experi-
ment; sometimes it gave a powerful
impetus to further investigation. To-
day theory is again in debt to experi-
ment: scientists have created new
high-temperature superconductors

4“Sintering” means creating a
coherent mass out of components by
heating without melting them.
Superconducting compounds are
synthesized by pressing and sintering
finely ground oxides at high
temperatures.

by “feeling their way,” and a satisfac-
tory theoretical explanation for these
discoveries has yet to be found. Many
characteristics of these superconduc-
tors can’t be explained within the
framework of traditional approaches.

This certainly doesn’t mean that
theoreticians have been idle: we can
enumerate at least 50 new theories of
high-temperature superconductivity
that have been suggested in the last
few years. But we don’t need 50, we
need one, and that one true theory
hasn’t been found yet. Elucidating
the nature of high-temperature super-
conductivity remains the most im-
portant problem posed its discovery.

Dazling prospects

We'd like to say a few words about
practical applications based on the
superconductors discovered. The
prospects are truly fantastic. Many of
the global projects suggested earlier
have been put on the agenda in the
hopes that high-temperature super-
conductors will make them commer-
cially feasible. For example, at
present 20-30% of all electrical en-
ergy produced is wasted in power
transmission lines. Using high-tem-
perature superconductors for energy
transmission could eliminate these
losses. Scientists have already man-
aged to sinter high-temperature su-
perconducting films capable of trans-
mitting currents with a density of
106A/cm? at the temperature of lig-
uid nitrogen.

All projects involving thermo-
nuclear synthesis entail the use of
giant superconducting magnets to
keep high-temperature plasma away
from the walls of the chamber. To
maintain the superconducting state
streams, if not rivers, of liquid helium
are needed. The helium would be re-
placed by nitrogen at a tremendous
cost saving.

Gigantic superconducting coils
would serve as accumulators of elec-
trical power, which would be tapped
during peak periods.

Supersensitive equipment for
making magnetocardiograms and
magnetoencephalograms, based on
the use of superconducting Josephson

elements, would come to be used in
every hospital.

A new generation of super-
computers based on superconducting
elements and cooled by liquid nitro-
gen would be created.

Don’t think we’ve lost our heads
over superconductivity. Since its dis-
covery, the ardor of many investiga-
tors has cooled significantly. The
same thing happens when an Olym-
pic record stays out of reach for years.
But the record has been set, and now
it serves as a benchmark. The possi-
bility of producing materials with the
necessary unique characteristics has
been confirmed. Certainly many se-
rious problems connected with the
production of technologically effec-
tive high-temperature superconduc-
tors remain to be solved. Economic
considerations will affect how the
projects mentioned earlier are carried
to fruition. But what’s important is
that today we know the impossible
has become accessible. And this has
irreversibly changed the reference
point in our attitude toward super-
conductivity. (@
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Holes in grapns

Considerations of discontinuity

by Michael H. Brill and Michael Stueben

OLES IN GRAPHS ARE
surprisingly counterintuitive
and can give rise to functions
with astonishing properties.
Everybody knows that g[x) = x is a
continuous function and that h(x), as
given below, is a discontinuous

function:
x+1, ifx>2
h(x)=42, ifx=1
X, otherwise.
A ‘//7'
—+3
<20
4+
<A
fan
o
2t
\/

Technically h is described as an
“almost everywhere continuous
function” because it is discontinuous
only at a finite number of points. We
call these points “holes.” More inter-
esting is a function that has holes

everywhere:
, +1, if xis rational
jix) = e
-1, if xis irrational.
12 SEPTEMBER/OCTOBER 1881

Notice that the absolute value of j has
no holes.

Most people think of a continuous
function as being continuous on the
points of an interval, but a function
can be continuous at an isolated
point—for example,

x, if xisrational

MXW={

1, if xisirrational.

——3 //
42 /
2L <o e 1>
11Tt
-3 -2 -1, 1 2 3
s o]
/
L’ 24
¢
34

COUNTERINTUITIVE MATH

A slight modification gives us an-
other function that is continuous at
exactly two points:

X/
mx)={ 5

if x is rational

x*“, if x is irrational.
A
N
i A
i I /.
N L
<«+——+ —>
3 2 4, 1 2 3
PR
P
/, -2-—
2 A
\

Can a real function be discontinu-
ous everywhere except on the inte-
gers? Yes, it can.

Problem 1. Taking some hints
from the previous examples, see if
you can invent one yourself.

Consider the function k(x) = x*/x
defined on the positive and negative
numbers. Is this function continu-
ous? Clearly k is continuous in its
domain' but discontinuous over the
entire set of real numbers, because it

!A function is sometimes taken to
be a rule applied to the set of real
numbers. The largest subset of the real
numbers for which this rule gives a
result is called the “domain” of the
function.—Ed.



Art by Sergey Ivanov

is undefined at zero. The phrase “con-
tinuous function” is ambiguous
without a reference set. In some text-
books the function k is referred to as
having a “removable discontinuity”;
in other books it’s considered con-
tinuous. In this article we’ll use the
second definition of continuity and
call a real function continuous if and
only if it is continuous over its do-
main.

DerNttioN. (1) A function f is con-
tinuous at a number c in its domain
if and only if to each positive ¢ there
is a positive & such that If(x) - f(c)| < €
whenever x is in the domain of f and
lx—cl<8.

(2) A real function is a continuous
function if and only if it is continu-
ous at all points in its domain.

Now that we have defined conti-
nuity, two questions arise:

(1) Can the graph of a con-
tinuous function also be the
graph of a discontinuous func-
tion?

(2) Could a function be dis-
continuous and its inverse con-
tinuous?

Our intuition says “no” and “no.”

But, incredibly, the answer to both
questions is “yes.” Take a few min-
utes to try to construct such a func-
tion.

We'll offer a simple algebraic func-
tion (that is, something from high
school algebra) that has both proper-
ties. The function we have in mind
maps the positive x-axis onto a subset
of the y-axis.

The simplest example we know is
mapping the positive rational num-
bers onto the positive y-axis and the
positive irrational numbers onto the
negative y-axis. Some people call this
a “salt and pepper” function:

+x, if xisrational
Fx)= A e m o
-x, if xisirrational.

A

43 7

- 2 /’

__1//
< =t

-3 2 -1 1 2 3

11 s

24 \

e &

\/

The inverse of F can also be writ-
ten as

F-(x) = Ix],
A
V\ 43 /7
s 1, p
N /
N — 1’
<~ R
-3 2 1 1 2 3

where x is constrained to be positive
if xis rational, and x is constrained to
be negative if x is irrational. Clearly
F'is continuous even though Fis dis-
continuous. But the graph of F!is the
same as the graph of F except that it
is reflected about the line x = y. The
reflection should not disturb continu-
ity. It then appears that, depending on
your point of view, Fis continuous or
discontinuous.

How can the same function be
both continuous and discontinuous?
The answer is that the domain of F!
(the nonnegative rationals and nega-
tive irrationals) is different from the
domain of F(the nonnegative reals). So
F!is continuous on an emaciated
domain, but Fis discontinuous over a
robust domain. This is a striking re-
minder that any definition of a func-
tion must include its domain.
Change the domain and you'll change
the properties of the function.

We'll call discontinuous functions
with continuous inverses Thurston
functions.? Here’s a Thurston func-
tion that maps all the reals into a sub-
set of the reals:

’Hugh Thurston writes that “a
function can be continuous even
though its domain is, so to speak, full
of holes. Intuition really comes into
play for functions without this
property, such as functions with
compact domains.” (American
Mathematical Monthly, vol. 96 (1989),
p. 814) Thurston is speaking of
domain-continuity, not line-
continuity.
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+2%, if x is rational
T(x)=

-2%  if x is irrational.

This is a discontinuous function. The
continuous inverse function dovetails
two distinct sets into the real number
line:

T-'(x) =log,|xI,
A
<+
S o +2 P
N <1 /
<+ f—t—t
-3 2 1 1 2 3
\}-- /
il

where x is constrained to be positive
if log Ix| is rational, and x is con-
strained to be negative if log [xl is ir-
rational. (Question: Does there exist
a Thurston function that maps the
entire x-axis onto the entire y-axis?
We bet not.)

Regarding such curiosities as
Thurston functions, Felix Klein once
said, “Every person believes that he
knows what a curve is until he has
learned so much mathematics that
the countless possible mathematical
abnormalities confuse him. The fun-
damental idea is that we think of the
curve as the limit of an inscribed poly-
gon.”

Similarly, we all believe we know
what properties a continuous func-
tion can have until we encounter
“pathological” counterexamples.

14 SEPTEMBER/DCTOBER 1891

The fundamental
idea is that we
should think of a
domain-continu-
ous function in
terms of the func-
tion, not the graph.

Is it possible for a
real function to be
defined on the en-
tire x-axis so that it
is continuous on
all the rational
numbers and dis-
continuous on all
the irrational num- |
bers? No, but sur-
prisingly the re-
verse is possible: a
function can be de-
fined on the entire x-axis so that it is
continuous on the irrationals but dis-
continuous on the rationals.

The following ingenious example
of this assertion is sometimes called
Dirichlet’s function:

0, if xis irrational or zero
_J1/Q, wherex =P/Q and
B P/Q is reduced (that
is, GCEP, Q) =1).

D(x)

It’s not hard to show that this func-
tion is continuous on the
irrationals. For example, let’s show
that D(x) is discontinuous at the ir-
rational number &. Since D(r) = O,
we place an interval around 0. Say
the interval is (-0.1, 0.1). Can we find
an interval around 7 on the x-axis so
that all points in this x-interval are
mapped into the y-interval? Yes:
just plot all reduced fractions on the
x-axis that have a denominator Q,
where |Ql < 10. Then place a small
interval around = that doesn’t in-
clude one of these points. All points
in this interval must be mapped
into the y-axis so as to be in the in-
terval (0.1, 0.1). So Dirichlet’s func-
tion is continuous at 7.

Another continuity curiosity in-
volves the use of axes with different
properties. The word isotropic?® as ap-

3From the Greek isos (equal) and
tropikos (turn or change).

Timeout for terminology
A function y = f{x) is a mapping that takes any
element in its domain of possible x values to ex-
actly one value y. '
A function v = fix] is said to be one-to-one if,
when a particular x is mapped to a particular y
there is no other value of x that maps to that value
of y. Example: Whereas f{x) = x* is a one-to-one func-
tion, flx] = ¥ isnot.
With respect to a prespecified range of y values,
a function y = f{x) is said to be onto if, for any y in
the prespecified range, there is an x such that f{x)
= y. Examples: The function f{x] = x* maps the real
numbers onto the real numbers. The function f{x)
= x2 maps the real numbers into, but not onto, the
entire range of real numbers; however, f{x] = x* does
map the reals onto the nonnegative reals.

plied to the xy-axes means that the x-
axis and the y-axis have the same
properties. But suppose we allow the
metric (that is, the definition of dis-
tance) on the y-axis to be different
from the metric on the x-axis. Con-
sider any one-to-one function f and
an anisotropic xy-coordinate system
in which the distance between points
a and b on the x-axis is la - bl, as
usual, but the distance between
points fla) and f{b) on the y-axis is not
Ifla) - f(b)| but rather la — bl. This
means that all one-to-one functions
must be continuous regardless of
how violently they rip the domain
apart. Although rarely mentioned,
the property of continuity is depen-
dent on the metric(s) as well as the
function involved.

Many of the functions we’ve pre-
sented are easy to understand but psy-
chologically difficult to find. Our final
example is a striking instance of this
difficulty. Believe it or not, if you re-
move all the rational numbers from
the real number line, it’s possible to
rearrange the remaining irrationals to
fill the holes without creating any
new holes. In other words, there ex-
ists a one-to-one function from the
irrationals onto the real numbers. To
understand the trick involved, first
consider the function that maps the
half-open interval [0, +1) one-to-one
onto the closed interval [0, +1]. Each

CONTINUED ON PAGE 19
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HOW DO YOU
FIGURE?

Ghallenges in physics and math

o Physics

Two sacks. A sack whose mass is m,
slides along the horizontal surface of
a table. It is connected with another
sack whose mass is m, by a weight-
less string. This string goes through
a little hole in the table (fig. 1). The
string’s length is L, the table’s height
is H, and H < L. To what height will
the second sack be lifted after it
touches the floor if at first all the
string was on the table and the sacks
were at rest? (Omit the influence of
friction.) (G. Kotkin)

&mz

" %
AN ) L J
P 7
’ 7
H
/
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SN,

Figure 1
P32

Ice bucket. A bucket contains a mix-
ture of ice and water of mass m = 10
kg. The bucket is brought into a
room, after which the temperature of
the mixture is immediately mea-
sured. The dependence T|1) is plotted
in figure 2. The specific heat of wa-
teris ¢, = 4.2 J/(kg - K), and the latent
heat of fusion of ice is A = 340 kJ/kg.

7,°C
3k

e ___

|
|
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|
ﬁ

0 20 40 60 1, min
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Determine the mass m, of ice in the
bucket at the moment it is brought
into the room, ignoring the heat ca-
pacity of the bucket. (A. Buzdin)

P33

Bouncing molecule. A cubic vessel
whose volume is V = 1 liter contains
m = 0.01 g of helium at a tempera-
ture T = 300K. Let’s follow the mo-
tion of a molecule. How many times
will it hit the top of the vessel during
t = 1 min? (A. Zilberman)

P34

Alpha scattering. A point source of
alpha particles emits particles uni-
formly in all directions. A 20 cm X
20 cm photographic plate is set
10 cm from the source. After 10 sec-
onds of exposure it has 200 traces of
alpha particles. How many particles
does the source emit in an hour? (V.
Volkov)

P35

Snow shadows. Gallery Q in the
November/December 1990 issue of
Quantum contained a reproduction
of Franz Marc'’s “Siberian Dogs in the
Snow.” Curiously, the dogs’ shadows
are blue. Now take another look at
the inside front cover of this issue:
blue shadows again! Wouldn't it be
more correct (from a physicist’s point
of view) to paint the shadows as dark
and colorless (that is, black or gray)?
(A. Buzdin, S. Krotov)

Math
M31

Maximin and minimax. Some ink
was spilled on a sheet of paper. For
every point of the blot, the shortest
distance and the greatest distance to
the blot’s boundary were measured.

Let r be the greatest of the shortest
distances and R the shortest of the
greatest distances. What shape is the
blot if r = R? (A. Blokh)

M32

Inevitable divisibility. The set of all
positive integers 1, 2, 3, ... is parti-
tioned into several arithmetic se-
quences. Prove that the first term of
at least one of these sequences is di-
visible by its difference. (A. Kelarev)

M33

Four intersecting circles. Two con-
gruent circles intersect at points A
and B. Two more circles of the same
radius are drawn: one through A, the
other through B|(fig. 3). Prove that the
four points of the paired intersection
of all four circles (other than A and B)
are the vertices of a parallelogram. (V.
and I. Kapovich)

Figure 3
M34

Midpoint sums. Positive integers are
written at the points of a segment
according to the following rule: at the
first step two 1’s are written at the
ends of the segment; at the second
step their sum 2 is written in the
middle; at each subsequent step the
sum of every pair of neighboring
numbers (obtained from the previous
steps) is written in the middle of the

CONTINUED ON PAGE 27
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AT THE
BLACKBOARD

18 this what Fermat did?

An excursion into factorization

ANY MYSTERIES SURROUND
the name of the famous
French mathematician Pierre
Fermat (1601-1665). Once he
received a letter with the question: “Is
100,895,598,169 a prime number?”
Fermat answered without delay that
the twelve-digit number was the
product of two prime numbers:
898,423 and 112,303.
He didn’t say how he arrived at
that.

by B. A. Kordemsky

Finding prime factors for a natural
number is called “factorization.”
Even with the help of modern com-
puters, the factorization of a large
number is an exceptionally tedious
task, to say nothing of the “manual
approach.” Several of the first prime
numbers (2, 3,5, 7, 11, ...) can easily
be tested for their viability as possible
factors of a number in question—
there are well-known indications of
divisibility by these numbers. (See

exercise 1 at the end of this article.)
Knowing these tell-tale signs that
subsequent prime numbers are fac-
tors greatly simplifies calculations.
It’s also clear that in searching for
prospective factors of any given num-
ber N, it is sufficient to test prime

numbers smaller than /N . Indeed, if
a number N has a factor m > \/N,

then it also has a factor, obtained by
dividing N by m, that is less than

JN.

\C?n#c@/
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One of the ways of finding the
prime factors of N is to calculate the
greatest common divisor (GCD) of N
and another number having a known
factorization. This can be done by
using the well-known algorithm of
Euclid.

The underpinnings of Euclid’s al-
gorithm and examples of how to ap-
ply it are given in the article “Divi-
sive Devices” on page 36. Here’s a
brief reminder of how it works. First,
we find the remainder 7, from the di-
vision of the larger of two numbers
by the smaller; then we find the re-
mainder z, from dividing the previous
divisor by z,; then the remainder , of
r, divided by r,; and so on. The last
nonzero remainder (which must cer-
tainly exist, since each successive
number z, is less than the preceding
one) is the GCD of the given num-
bers. (If it’s equal to 1, the numbers
are coprime).

By way of example, let’s apply this
algorithm to the numbers 104 and
39:

104/39 = 2 (remainder 26);
39/26 = 1 (remainder 13);
26/13 = 2 (remainder 0).

Answer: GCD (104, 39) = 13.

How can we use Euclid’s algo-
rithm for factorization?

To find the prime factors of a num-
ber N let’s construct another number
P that is the product of all successive
prime numbers from the lowest “sus-
pected” factors of N to the largest of
all primes that are less than \/[N. N
and P are the numbers we'll plug into
Euclid’s algorithm.

For instance, let N = 851. Notice
that /N <31. Looking for signs of di-
visibility, we determine that N is not
divisible by 3, 7, 11, or 13. It’s also
obvious that 851 yields a remainder 1
when divided by 17 (notice that 85 =
5. 17). We are left to examine
whether Nis divisible by 19, 23, or 29.
For anumber as small as 851, this can
be done easily by a direct computa-
tion, dividing 851 by each of the pro-
spective factors. But to give you a bet-
ter grasp of the method, we'll proceed
in a way that can later be applied to
larger numbers.
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Let’s construct the number P =
19 .23 .29 =12,673 and run Euclid’s
algorithm: 12,673/851 = 14 (remain-
der 759); 851/759 = 1 (remainder 92);
759/92. = 8 (remainder 23); 92/23 = 4
(remainder 0). So 23 is the GCD of N
and P and, consequently, one of the
factors of 851. Dividing 851 by 23 we
get 37, which is also a prime number.

The factorization of 851 is now
complete: 851 = 23 - 37. For the num-
ber that was proposed to Fermat,
similar calculations would have
taken much longer. (Try it yourself!)
Fermat used a different approach, no
doubt. But what was it?

On the verge of discovery?

A modern book on mathematics
suggests that “certain mathemati-
cians of the 17th century who de-
voted a great deal of effort to develop-
ing number theory had ways,
unknown to us now, of recognizing
prime numbers.” But since these
computational wizards didn’t dis-
close their secrets of factorization to
their descendants, some methods in-
vented later might actually have re-
peated their discoveries.

Fermat, one of the creators of num-
ber theory, used many properties of
numbers in his calculations. In par-
ticular, he undoubtedly knew that
any odd number N (as well as any
even number divisible by 4) can be
represented as the difference of the
squares of two integers x and y:

N=ab

_(a+ b)Z_(a—b)z
L2 2
—x2_y?

where a and b (a > b) are any possible
odd factors of the odd number N (then
a+band a— b are even numbers, and
x and y are integers).

If Nis a prime number, then a= N,
b =1, and the factorization x* - y? =
(x + y)(x — y) is unique and yields no
other factors except Nand 1. Butif N
is a composite number, there is a fac-
torization (x + y)(x — y) that gives at
least one pair of factors different from
N and 1. For instance, the prime
number 17 has only one representa-

tion as a difference of squares: 17 = 92
- 82 =17 - 1; the composite number
203 has two such representations:

203 =102 -101*=203 -1
and
203 =182-112=29.7.

So the “factorization laboratory” is
equipped with yet another tool,
which we'll call “factorization by the
difference of squares.” To select the
required squares x? and y?, we can use
the following algorithm: (1) find the
least square x? exceeding the given
number N (for instance, using a table
of squares or taking the square root of
N and rounding up); (2) subtract N
from x2.

If the difference is a perfect square
(that is, if x> — N = y?), the selection
process is over: N = x> — y* =
(x + y)lx - y). If it isn’t, we keep
trying: we subtract N from the next
square, and repeat the procedure un-
til we get a difference that’s a perfect
square.

Let's see how this algorithm
works by looking for the factors of a
couple of numbers: say, N, = 153,583
and N, = 689.

For N, we have m = 392;
3922 = 153,664; 153,664 — 153,583
=81 = 92 So 153,583 = 3922 - 9? =
401 - 383, and both factors are prime
numbers. Notice that they’re quite
close to one another and, conse-
quently, to /N . That’s why we
found the answer so quickly.

For N, = 689, the nearest square in
excess of that is 729 = 272. So we get

27> - N, = 729 - 689 = 40;
28> - N, = 784 - 689 = 95;
29> - N, = 841 - 689 = 152;

33> - N, = 1,089 - 689 = 400 = 20°.

Consequently, 689 = 33% — 20% =
53 - 13.

It took us seven tries before we
succeeded! Comparing the factors of
689, we see that the difference be-
tween them is quite large. That’s
what lengthened our computation.



A neat trick

When we start factoring a compos-
ite number N, we don’t know in ad-
vance, of course, whether its factors
are close to each other. But if a num-
ber of consecutive steps of the algo-
rithm didn’t produce the desired per-
fect square, it’s clear that the factors
in question are far from \/N .

Here we can be a little tricky: we
start the procedure all over again af-
ter multiplying the given number N
by, say, 3 {to make sure that it stays
odd). This triples the smallest of the
two factors of N and makes the fac-
tors of 3N closer to one another and,

consequently, to /3N .

If there is reason to assume an
even greater difference between the
factors of N, we can immediately
multiply N by 5, 7, or 8 (in the last
case we get an even number, but it’s
of the sort that can be represented as
the difference of squares of integers).
Multiplying N by 2 would in any case
be useless, and multiplying by 4
would be pointless. (You can prove
this yourself.)

Let’s get back to N, = 689 and do
our trick, multiplying N, by 5. This

yields 5 - N, = 3,445; /3,445 = 59; 59
=3,481;3,481-3,445 =36 = 6>. So we
get 3,445 = 592 — 6% = 65 - 53; 5N, =
65 -53; N,=53-13.

We've succeeded on the first at-
tempt—Ilast time it took seven tries!

Maybe that's what Fermat did

We want to apply the technique of
factorization by the difference of
squares to N = 100,895,598,169, but
now we’ll be so bold as to introduce
an additional factor. Let our intuition
lead us to the factor 8 (we'll just say
the prospect of trying smaller factors
didn’t inspire us with confidence).

We get 8N = 807,164,785,352.
Then we find the smallest number
whose square is greater than 8N:

\/807,164,785,352 = 898,424
(rounded up).

Then: 898,424 — 8N = 898,424.

Although this difference isn’t a
square, there’s no point in applying

the algorithm further: our boldness
has been crowned with unexpected
success—the common divisor
898,424! Factorization of 8N is now
achieved by a simple calculation:

8. N =898,424 - (898,424 — 1)
-8.112,303 - 898,423.

Finally: N = 112,303 - 898,423.

We don’t know whether this was
what actually happened in Fermat’s
“laboratory.” The facts are lacking.
At any rate, I hope you took some
pleasure in our speculative excursion
into the past.

Exercises

1. Let a,a, |---aya, be the decimal nota-
tion of a number N. Prove that the remainders
of Nwhen divided by 7, 11, or 13 are the same

as the respective remainders of the number

4y — d5A,d3 + Agd,d, — -+ - In particular,
when N has no more than 3 digits, N= g,aya,,
the three remainders are equal to those of the
numbers 24, + 34, + a,, a, - a, + a,, and —4a, -
3a, + a,, respectively.

2. Find the GCD of 80,887 and 40,091.

3. Prove that N = 55,637 has only one
prime factor smaller than 30 (use the number
P=17-19-23-29 =215,441) and find all the
other factors of N.

4. Apply factorization by the difference of
squares to break 131,289 down into prime fac-
tors.

5. Factor 500,207 by the difference of
squares. (Apply the “trick” of multiplying by
3.

6. Applying factorization by the difference
of squares directly to the number N = 20,099,
verify that 20,099 = 199 - 101.

How many steps did it take? After you
know the result, explain why the best factor
for reducing the number of steps is 8. How
many steps are necessary to factor 8N? @

“HOLES IN GRAPHS” CONTINUED FROM PAGE 14

point maps to itself except f{1/2) =1,
fi1/4)=1/2,£1/8) = 1/4, and in general
iz =12

flx) =1

x, otherwise.

where x = J_rzlﬁ—

This clever function was shown to
us by David Rosen of Carnegie-
Mellon University. How clever is
this idea? Ask the next algebraist you
meet to find it in a day. And here’s a
challenge for you.

Problem 2. Extend Rosen’s idea by
tinding a one-to-one “onto” function
from the irrational numbers to the
set of real numbers.

There are many different solu-
tions, and you may be able to im-
prove and extend our answer.

If you work through the problems
presented here, we think you'll agree
with us that pathological functions
have a beauty all their own! (@]
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BRAINTEASERS

Just for the fun of it

B31

Prove that at least one of any 18 successive three-digit numbers is divisible
by the sum of its digits. (S. Yeliseyev)

B32

Which part of the square in the figure at left has the greater area: the red part
or the blue part? (V. Proizvolov)

B33 -4

In some antique clocks intended for operation in the open air, the pendulum
was a long tube with a container of mercury at the bottom. What was the
purpose of this design? (A. Buzdin)

Write the numbers 1 to 11 in the circles in the figure at left so that the sum
of the four numbers at the vertices of each of the five sectors of the star equals
25. (N. Avilov)

B35

Is it possible to wrap a cube in the stairlike piece of paper in the figure at right
so that its entire surface is covered without overlaps? (N. Dolbilin)
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ANSWERS ON PAGE 60
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The power of likeness

But analogy can take us only so far

by S. R. Filonovich

NALOGY” IS A WELL-
used word. We've gotten so
used to it that sometimes
we don’t pay much atten-
tion to its meaning. One of the
meanings we can find in Webster’s
Ninth New Collegiate Dictionary is
“resemblance in some particulars
between things otherwise unlike.”
Using analogies, we can acquire
knowledge about an object by study-
ing another, different object.

Analogies play an important role
in physics. Through analogy we can
come to significant conclusions
without strict and painstaking calcu-
lations. For instance, an analogy be-
tween sound and light was important
in developing the wave theory of
light in the beginning of the 20th
century. In the 1920s a famous opti-
cal-mechanical analogy greatly fa-
cilitated the creation of quantum
theory.

Analogies can help you when you
study physics in school. But every
analogy has its weaknesses: if we

W\

39
|
|
|

m vy

Figure 1 oy,

Diagram of momenta for a
noncentered collision of two balls.

2

push the analogy too far we can draw
the wrong conclusions. The intuition
we develop in solving physics prob-
lems can help us use the powerful
tool of analogy properly. In this ar-
ticle we’ll look at some examples
that will help us understand how to
use physical analogy.

A protilem for kids

In school textbooks you often
come across problems in which balls
collide. These problems are popular
because they are a relatively simple
manifestation of fundamental laws of
the conservation of energy and mo-
mentum.

To a certain extent the study of
collisions is a bow to tradition. The
problem was the focus of attention of
Descartes and Huygens in the 17th
century, and in the 19th century the
French physicist Gustave-Gaspard
Coriolis published his Mathematical
Theory of the Game of Billiards,
which became a classic. But we
mustn’t suppose that nowadays the
problem of the collision of balls can
be used only to illustrate physical
laws. It turns out that the model of
collision is closely related to modern
physics problems. To see how, let’s
look at a very simple problem.

Problem. A ball of mass m, mov-
ing with velocity v, strikes an im-
mobile ball of mass m,. After an
elastic impact, the balls move
apart. Determine the relative
change in the kinetic energy of ball
m, after the impact if we ignore ro-
tation of the balls.

TOOLS AND TRAPS

Solution. Let’s consider the gen-
eral case of a noncentered collision,
such that after the impact the veloci-
ties of the balls form angles 6 and B
with the original direction of v,. Fig-
ure 1 illustrates the law of conserva-
tion of linear momentum for the case
of elastic impact we're examining, It
follows that

(myv,) = (myv)+(myP
-2mp?v,v,cos 6. (1)

The law of conservation of energy
(since the collision is elastic!) gives

le(% _ lel2 sz%

2 2 2 2

From equations (1) and (2) we can
find v, for any fixed scattering
angle 6. We won'’t write the general
expression (you can do that your-
selves). Let’s write the answer for the
particular case of a head-on collision,
such that after the impact the balls
move along the line AC:

m — 1,
V] = ———=V.
m, +m,
For the same case we'll write the
relative change in the kinetic energy
of the approaching ball m :

AT _vg—vi _ 4m/m)
- 2 7 (3)
T Vo (1+ my /my)

There’s nothing particularly surpris-
ing about this expression. (Maybe
some of you have already found it on
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your own.) Nevertheless we’ll study
it in some detail. (This effort can be
taken as a verification of the solution
by means of “common sense.”)
When m, << m,, AT/AT, - 0; that
is, ball m, bounces off ball m, in the
direction opposite the velocity v,
but without change in the absolute
value of its velocity. When m, >>
m,, AT/AT, — 0 as well, since the
collision with the very light ball m,
doesn’t disturb the motion of ball
m,. Obviously at the intermediate
values of the ratio m,/m, the rela-
tive change in the kinetic energy
AT/T; # 0. We can easily see that the
maximum of AT/T, corresponds to
m,/m, =1 (fig. 2).

| m/m,

6

[
-

rTrrrertat
. 2 4
Figure 2

Relative change in the kinetic energy
of a moving ball in a head-on elastic
collision as a function of the mass
ratio.

Using strict scientific terminology
we can say that the moving ball scat-
ters its energy most efficiently when
it strikes an immobile ball of the
same mass. Since we ignored the ro-
tation of the balls and their internal
structure in our solution to the prob-
lem, we can try to apply this conclu-
sion to phenomena in other domains
of physics.

Useful logses

Physicists had reason to recall the
problem of colliding balls in the
1940s with regard to the chain reac-
tion of nuclear fission. We can de-
scribe the gist of the problem as fol-
lows.

When a uranium nucleus absorbs
a neutron, it splits into two almost
equal parts and an enormous amount
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of energy is released. New neutrons
are released as well. The mean num-
ber of these new neutrons is more
than one, so “multiplication” of neu-
trons occurs. The neutrons born in
the fission reaction may be absorbed
by uranium nuclei, which will cause
new fission reactions, and so on. The
number of neutrons will increase,
and more and more nuclei will split.
This process is called a chain reac-
tion, and the energy obtained can be
put to some use.

Unfortunately, this simple de-
scription doesn’t correspond to real-
ity. In the natural state there are
two kinds of uranium, called iso-
topes, with different mass numbers:
, U™ and U8, The nuclei of both
isotopes can be split, but for a fission
reaction with , U*® the captured neu-
tron must have kinetic energy of
more than 1 MeV. If the energy is less
than that but not too low, the ,U**
nucleus captures the neutron with-
out fission. On the other hand, ,,U**
nuclei capture only slow neutrons
with energy much less than 1 MeV—
from 70 to 200 eV. But after the ura-
nium nucleus splits, the emitted
neutrons have energy less than
1 MeV but much more than 200 eV.
As a result, they can’t cause fission
of ,U*® nuclei. In natural uranium
the ratio of ,,U** nuclei to ,U”* nu-
clei is about 140:1, which means that
in the natural mix of uranium iso-
topes a chain reaction will never hap-
pen: after rare instances of nuclei
splitting, the neutrons will most
probably be absorbed by ,,U*® nuclei
without any fission.!

It’s possible to overcome this un-
pleasant obstacle. First, we can in-
crease the number of ,,U** nuclei in
the mix of isotopes. But at the same
time we can try to make the neu-
trons slow down—that is, make their
energy so low that ,U** nuclei won't
absorb them and they’ll be captured
mainly by ,,U** nuclei. And so,
while we lose some of the kinetic en-

ITo simplify the picture we haven't
mentioned other processes that cause a
loss of neutrons. In constructing a
nuclear reactor these effects must be
taken into account.

ergy of the neutrons, we can gain a
great deal of the energy stored in the
uranium nuclei. A fruitful loss in-
deed!

But how can we slow neutrons
down? To find the answer, we’ll use
an analogy. Let’s consider the colli-
sion of a neutron with a nucleus (not
necessarily a uranium nucleus) as a
collision of two balls that have the
same ratio of masses as the neutron
and nucleus. The analogy will work
only if no nuclear reactions take
place during the collision. This
means that the neutron and nucleus
must move apart with changed ve-
locities. Then we can say immedi-
ately when the loss of neutron energy
is greatest: when the masses of the
neutron and nucleus are equal. As
the mass of the proton is almost
equal to that of the neutron, the most
efficient collisions might be colli-
sions of a neutron with the immobile
nucleus of a hydrogen atom—in such
a collision it will lose all its kinetic
energy. But in practice ordinary hy-
drogen can’t be used to slow neutrons
down.? For this purpose physicists
use other substances (called modera-
tors) such as heavy water or graphite
(pure carbon)—see figure 3.

Heavy water is a chemical sub-
stance like ordinary water but instead
of normal hydrogen, whose nucleus
consists of one proton, heavy water
includes deuterium. Deuterium is a
hydrogen isotope whose nucleus con-
sists of a proton and a neutron, soit’s
twice as heavy as normal hydrogen.

In a collision with an immobile
deuterium nucleus a neutron loses
8/9 of its kinetic energy, as we can
see from equation (3). So after one col-
lision it keeps only (1 —8/9) of its ini-
tial energy; after two collisions,
(1 - 8/9) and so on. To reduce the
neutron energy from T, = 1 MeV to
T, =100 eV, n collisions between the
neutron and deuterium nuclei must
occur; the value of nis determined by
the obvious relation T, = T}(1 - 8/9)".

*The hydrogen in ordinary water
can’t be used for this purpose because
the interaction of a molecule of water
with a neutron causes specific
processes in which the neutron is lost
for a chain reaction.



Scheme of a nuclear reactor with a graphite moderator: (1) control rods; (2)
shield; (3) reflector; (4) heat exchanger; (5) active zone; (6) turbine; (7) con-
denser; (8) generator; (9) moderator; (10) fuel; (11) coolant.

Calculations give n=4. When a neu-
tron scatters its energy in collisions
with an immobile nucleus of carbon
(C2, it loses 24/49 = 1/2 of its kinetic
energy. So we can find the number of
collisions necessary to make a slow
neutron: n = 13. For comparison, the
number n typical for collisions of a
neutron with heavy nuclei of mass
number A =90 is n = 210.

The reason why physicists try to
decrease the number n is that in the
interval between “good” collisions
(that is, good for slowing down neu-
trons) some neutrons may be cap-
tured by the nucleus of an impurity
and be lost for the production of a
chain reaction. If the number n of col-
lisions is too great, the neutron may
leave the reaction zone and again be
lost.

So a simple analogy between the
collision of balls and neutron scatter-
ing by atomic nuclei helped us under-
stand the basic idea of the moderated
reactor and even perform some calcu-
lations. But we must remember that
this analogy is valid only if no reac-
tion occurs in the collision of a neu-
tron with the moderator. In this case
the analogy makes no sense. Now
let’s look at a different sort of ex-
ample.

The Compton effect

In the first decades of the 20th cen-
tury physicists all over the world dis-
cussed the problem: what is light—
waves or particles? The great
Einstein first showed that not only is
light emitted in packets but that
these packets of radiation (quanta)

preserve their individuality during
the propagation of light. At the begin-
ning of the century this idea was met
by many physicists without enthusi-
asm, to put it mildly. Skepticism to-
ward the idea was still alive after
1914, when the American scientist
Robert A. Millikan confirmed experi-
mentally Einstein’s equation for the
photoelectric effect. That equation
was based on the notion that the en-
ergy of a quantum of light (or photon)
is determined by its frequency v and
is equal to E,, = hv (where h is
Planck’s constant equal to 6.63 -
10-%7.5).In 1916 Emsteln proposed
that the photon has not only energy
but momentum as well: P = hv/c
(where c is the speed of lighty. But the
value of the photon’s momentum in
the optical range is very small, and
for a long time there was no experi-
mental evidence that
every photon has a
momentum. It wasn'’t
until 1923 that the
young American
physicist Arthur Holly
Compton found such
evidence. This effect is

studied by a spectrometer (crystal
and ionization chamber).

According to classical theory the
process of X-ray scattering is as fol-
lows. Electrons in the substance
start to oscillate in the alternating
electric field of an electromagnetic
wave (it had been shown earlier
that X rays are a sort of electromag-
netic radiation). The frequency of
the oscillations is equal to the fre-
quency of the wave. As the oscillat-
ing electrons accelerate, they be-
come sources of radiation. So the
electrons in the substance become
sources of secondary waves, whose
direction cannot coincide with that
of the primary, excitational wave.
This is how scattering arises.

An important feature of the clas-
sical theory of scattering is the
equality of the frequencies (wave-
lengths) of the incident and scat-
tered radiation at any angle be-
tween the directions of the primary
and secondary waves. Only the in-
tensity of the scattered radiation
was thought to depend on the angle
of scattering. But Compton found
that in the scattered radiation there
is a component with a wavelength
V different from the wavelength A
of the primary radiation and that
A’ > A (see figure 5). This difference
between wavelengths AL = A’ — A
(called the Compton shift) depends
on the angle of scattering and in-
creases with the angle.

now called the
Compton effect.
Compton studied
the scattering of X rays
with the apparatus
shown schematically
in figure 4. A beam of
X rays coming from
the tube T was scat-
tered by an object R
and after passing a
number of slits was

@IIII

Figure 4

Scheme of Compton’s apparatus. The scattering angle
is the angle between two segments of the X-ray beam
at point R. The scheme corresponds to 0 = 90°: (1) X-
ray tube; (2) lead box; (3) shutter; (4) crystal; (5)
ionization chamber.
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Figure 5

Dependence of the Compton shift on
the scattering angle. A is the spectrum
of the incident radiation; B, C, and D
are the spectra of scattered radiation
at 8 = 45°, 90°, and 135°.

It’s remarkable that Compton, an
experimentalist, managed not only to
explain the effect qualitatively but to
provide its elementary theory. He
supposed that X rays are a beam of
quanta with large energy hv and rela-
tively large momentum hv/c. In the
scattering substance the quanta in-
teract with free “immobile” elec-
trons. Compton likened this interac-
tion to the noncentered elastic
impact of two particles. This case dif-
fers from our problem with two balls
only in that the photon is a particle
moving at the speed of light, and
writing the equations for the conser-
vation laws we must use the relativ-
istic formula for the energy and mo-
mentum of an electron. In general,
the diagram of momenta will be the
same: instead of Im, v, | we must write
hv/c; instead of Im v,|, hv’/c; and in-
stead of Im,v,|, p, (where v and v’ are
the frequencies of incident and scat-
tered radiation, p, is the momentum
of an electron).

I won’t write out the system of
equations, though it’s not very com-
plicated. This is the solution of the
system:

Alzi(l—cose). (4)
mc

This formula is interesting in that
the Compton shift doesn’t depend on
A but only on 6 and the fundamental
constants m, ¢, and h.> The correct-
ness of this conclusion is confirmed
by the fact that the experimental
value of A\ doesn’t depend on the na-
ture of the scattering substance,
since electrons are the same every-
where.

3Now it’s clear why it’s almost
impossible to detect the Compton
effect in the optical range. If for X rays
the maximum ratio (AA/A)_ is equal
to several percent (for A = 1610 m,
(AA/A)_ = 2.4 -1072), for visible light
(A=5-T0-7 m) (AM/A), =48 - 10—
that is, it’s very small.

At the same time, the results
Compton obtained for the depen-
dence of A\ on 0 are described pretty
well by equation (4): when we change
0 from 0 to &, A\ increases from O to
2h/mc.

So the analogy between photon
scattering on free electrons and the
collision of balls turned out to be
fruitful. But is it absolute? When a
photon interacts with an electron,
the electron acquires a recoiling mo-
mentum and kinetic energy, while
the photon loses energy and its wave-
length increases. But though there
are common features, there is an
important difference. To prove it,
let’s determine the amount of energy
a photon loses when it is scattered
backwards (0 = &) as a function of its
initial energy:

AE=hv- hv
_ch ch
A A+AL
_ g™
" mc*+2hv’

since at 8 = , AL = 2h/mc. The rela-
tive energy loss is

AE _ 2hv
hv  mc*+2hv’

Figure 6 shows this function. We
can see that the curve differs drasti-
cally from that in figure 2. It has no
peak. This means that more and
more of the photon’s energy is trans-
ferred to the electron as the energy of
the photon increases. But the curve
approaches the limit only when
hv —> oo- S0 a photon can’t pass all its
energy to the electron. And that's

AE
hv

1.0 o e e e e - ———

e T — =

hv
0|||;|||[||||6|||(|g|'n:;
Figure 6
Dependence of the relative loss of
photon energy on the energy of the
initial photon in the Compton effect.




how this case differs from that of the
collision of balls. What'’s the reason
for this difference? The answer is
very simple: the photon’s mass is
equal to zero. A photon doesn’t exist
at rest, so it can’t stop the way a ball
does. This is one of the restrictions
that prevents the analogy from being
absolute. We examined the ball’s col-
lision on the basis of classical me-
chanics, but the Compton effect is
relativistic by nature.

Another problem, another analogy

We’ve looked at two examples
that, on the one hand, are like the
case of the collision of balls and, on
the other hand, differ from it. Can we
consider the analogy exhausted? No,
not at all. We considered only elastic
collisions. Can we find anything in
modern physics that is analogous to
the inelastic collisions of balls?
There is such an analogy; it has to do
with elementary particle physics.
You’ll have an easier time under-
standing this analogy after we look at
another very simple problem.

Problem. Determine what portion
of the kinetic energy of a moving ball
of mass m is converted to heat in an
absolute inelastic collision* with an
immobile ball of the same mass.

Solution. Let the first ball move
with velocity v,. Its kinetic energy is
T,= mv?/2. When a collision is in-
elastic we can’t use the law of conser-
vation of mechanical energy. But the
law of momentum conservation is
still valid:

mv,=2mv’,

where v’ is the velocity of the body
2m formed after the collision. So the
kinetic energy after the collision is

_2mv? _ Ly

T/
2 2

This means that half of the kinetic
energy of the moving ball was con-
verted into heat.

Let’s change the problem a little.
Two balls of equal mass moving in

“After an inelastic collision of two
balls, they move together as one body.

‘i o l"fﬁi = g

the opposite direction at the same
velocity strike inelastically. In this
case the momentum of the system
before the collision is zero. After the
collision the balls will stop; so all the
kinetic energy will be converted to
heat.

These two very simple problems
are closely related to elementary par-
ticle physics. The most popular
method in experimental studies in
this field is the collision method. In
the collision of a fast particle with a
stationary target, a portion of the ki-
netic particle’s energy is used to form
new particles. This portion can be
considered a quantity analogous to
the amount of heat in the collision of
balls. All the kinetic energy can’t be
expended in giving birth to new par-
ticles since the momentum of the
system before the interaction was fi-
nite. Consequently, the products of
the reaction must have nonzero mo-
mentum and kinetic energy. This
means that, when immobile targets
are used, a portion of the kinetic en-
ergy given to the particle in the accel-
erator is wasted. If we continue the
analogy, we can draw the conclusion
that when the same particles collide
(when one of them is moving and the
other is immobile), one half of the
kinetic energy is always lost. Can
scientists build increasingly powerful
accelerators with stationary targets
and just accept an “efficiency” of
50%? The answer is no.

Why? Because the analogy is in-
valid. The fact is, the analogy can’t
help us find what portion of the en-
ergy is expended to form the new
particles. The collision of elementary
particles is a relativistic process, so in
studying it we have to use the formu-
las provided by the special theory of
relativity. Using these formulas,
physicists found that the proportion
of “useful” energy decreases as the
kinetic energy of the moving par-
ticles increases. So accelerators with
immobile targets become less and
less effective. What can be done
then? Analogy might provide an an-
swer.

Do you remember how all the ki-
netic energy in a collision of balls is
converted into heat? The same idea

is valid for elementary particles. A
new type of accelerator, the
“collider,” is based on this very no-
tion. Particles (protons) moving in
opposite directions at the same veloc-
ity collide. The hopes of particle
physicists are now pinned on this
type of accelerator. Analogy with a
classical and very simple problem
helped us understand why scientists
need such huge facilities as accelera-
tors that cost billions of dollars.

By now you'll probably agree that
analogies are useful in scientific re-
search as well as in studying physics
as an academic subject. Discovering
the common features in physical
phenomena and clarifying their dif-
ferences, we gain a better under-
standing of physical laws. Q)

“CHALLENGES”
CONTINUED FROM PAGE 16

segment between them, so thatn—1
numbers are added at the nth step.
How many 1991’s will be written af-
ter the 1991st step? (G. Galperin)

M35

Angry lion. A lion rushes about a cir-
cus ring with aradius of 10 m. It runs
30 km along a broken line. Prove that
the sum of the angles of all the turns
on its route is greater than 2,998 ra-
dians. (I. Bernstein)

ANSWERS, HINTS, AND
SOLUTIONS ON PAGE 58

)
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Art by Tomas Bunk

Light is bending the rules a bit

28

PHYSICS
CONTEST

A snail that moves like light

“The cause is hidden but the effect is known. "—Ovid, Metamorphoses

by Arthur Eisenkraft and Larry D. Kirkpatrick

OST Quantum READERS
know that light bouncing off
a mirror travels along a path
that can be adequately de-

SEPTEMBER/OCGTOBER 1881

here. (Can you see where?)

scribed as “the angle of incidence
equals the angle of reflection.” Light
traveling from a point in air to a point
in water is certainly more compli-

P!

;A

cated. In this case, the light bends (re-
fracts) at the boundary between the
two surfaces. The amount of bending
is a property of the water and the
color of the light. Light entering
other transparent substances, like
quartz or diamond, refract by differ-
ent amounts. Willebrord Snell in
1621 was able to give a mathemati-
cal description of the behavior of
light, which is now known as Snell’s
law:

nsin® =n,sin 6,

where n, and n, are the indices of re-
fraction. We can see that if the light
enters water (n = 1.33) from air (n =
1.00) at an angle of 30°, the angle in
water would be 22°:

n sin@, =n,sin6,,
1.00 sin 30° =1.33 sin B,
8, =22°.

Measuring the angle of refraction is
one way to tell whether that’s a dia-
mond or a piece of glass in that ring
you bought.

What fascinates many people
about the study of physics is the al-
ternative ways of explaining phe-
nomena. The great mathematician
Pierre de Fermat recognized (in 1657)
that the path of light is the path that
requires the least time.! If you try all
possible paths from the light source
A to the object B after they hit the

IThe “extremum path.”



mirror, youll find that the shortest
path, and so the quickest, is the path
through point D (fig. 1), where the
angle of incidence equals the angle of
reflection.

A

»&f T A Dﬁ* R
Figure 1

You can demonstrate this for
yourself by drawing lots of paths and
measuring them. You can also prove
it with some simple geometry or by
using some calculus.

Fermat'’s theorem is also valid for
refraction: the path light takes when
it passes from air to water must be
the path requiring the least time. In
this case least time is not identical to
least distance, since light travels
more slowly in water that in air. The
speed of light in a substance is equal
to the speed of light in a vacuum di-
vided by the substance’s index of re-
fraction n.

Proving that the path of the light
is the quickest one takes some inge-
nuity. You can draw lots of paths of
light traveling from point A in air to
point B in water (fig. 2). You can then
measure the lengths of the lines in
air and water. But Fermat’s theorem
states that the path should take the
least time, not the least distance. We
can multiply the lengths in water by
1.33, since the light takes longer to
travel in water by a factor of 1.33.
Then add this distance to the dis-
tance in air. The path that minimizes
this sum is the path the light takes.
And—guess what? It’s the same path
described by Snell’s law! Those of
you who have some calculus back-

A

Figure 2

ground can prove it mathematically.
(See the Kaleidoscope for more on
bouncing and bending light.)
Leaving light behind, we enter the
world of slow-moving mollusks to
find our contest problem. A snail
must get from one corner of a room
(dimensions 5 m x 10 m x 15m) to the
diagonally opposite corner in the
least time. The snail can walk on any
of the four walls but may not walk on
the floor or ceiling. What is the path
that the snail should take? In part B
of the contest problem, for our more
advanced readers, the snail finds that
the 15 meter wall that must be trav-
eled is sticky—that is, the snail can
only travel at a fraction of its normal
speed. If the snail on the sticky wall
travels at 1/3 of its normal speed,
what is the path that requires the
least time for the snail? Finally, in
part C, for our most advanced read-
ers, what happens if the snail finds
that the stickiness of the first wall is
not constant but increases linearly
along one dimension of the wall?
Specifically, the speed at one end of
the wall is the normal speed and the
speed at the far end of the wall is 1/3
the normal speed. What will be the
path of least time? You may need to
use graphical or computer techniques
to solve parts B and C. Our best stu-
dents are encouraged to see if they
can find general proofs for any room
(dimensions I x w x h) and a sticki-
ness factor of s. We are not sure our-
selves if such general proofs exist.

When you submit a solution,
please indicate your age, your school,
and your physics background. That
way, we can recognize beginning
physics students as well as our most
advanced readers.

What the seesaw taught

In a previous contest problem
(January/February), we asked you to
explain why two fingers supporting a
horizontal meterstick will wind up
under the center of mass if they are
brought together slowly. Excellent
proofs were supplied by Philip
Miloslavsky of Hunter College High
School in New York and Daniel
Louzonis of Worcester, Massachu-
setts. They will both receive a sub-
scription to Quantum.

The hand closer to the center of
mass will support more weight and
will necessarily have more frictional
force. So the other hand will slide
under the stick until its sliding fric-
tion is less than the static friction of
the stationary hand. At this moment
the other hand begins to slide. The
hands soon meet at the center of
mass. Philip pointed out that if you
move your hands too quickly, they
will not meet at the center of mass
unless they start at equal distances
from the center of mass. Philip won-
ders if it’s possible to calculate a
“critical velocity” (or critical velocity
and distance). This seems like a good
challenge for some of our readers.

In the second part of the problem,
we asked what would happen if the
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meter stick were supported by two
counter-rotating cylinders. Philip’s
solution follows (see figure 3).

center of mass

®

d ' d

Figure 3

Let x be the displacement of the
center of mass, d be 1/2 the distance
between the cylinders, N, and N, be
the force on the cylinders, p be the
coefficient of rolling friction. We
know that the net vertical force must
be zero:

N, + N, = Mg.
Since the meterstick has no rota-
tional acceleration, the net torque
must also be zero:

N,(d-x)=N,(d + x).

Solving for N, and N,, we get

w w
M= T A
d-Ax d+Ax

The total frictional force on the
meterstick is result of the rolling fric-
tion of the two cylinders:

w w
Fotal =W(N; = Ny)=p g " Tag
d-Ax d+Ax
oy Mex
d

This last equation is the standard
equation for simple harmonic mo-
tion, with

_ MW fug
O \Nmd ~Va’

or
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students solve problems? If they—
or you—need help with this
important approach to learning
science, it's here. Dr. Gabel has
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Art by Sergey Ivanov
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MATH
INVESTIGATIONS

ping around in circles

Wire structures, feeler gages, and circular racetracks

N PROBLEM 5 OF ROUND 2/

Year 2 of the USAMTS (USA

Mathematical Talent Search, con-

ducted via COMAP’s Consor-
tium), the participants were pre-
sented with the challenge of deter-
mining n for which one can con-
struct a wire structure by connecting
n wire triangles at their vertices so
that at each vertex exactly three wire
triangles meet. Many of the over 200
contestants succeeded in showing
that such structures exist for all
n > 7. The necessity of n > 7 is eas-
ily verified, while its sufficiency fol-
lows from observing thatif A, A, ...,
A_ are n points (in space) in general
position, then the triangles can be
chosen as

T1 = {A1/ Ay A4}/

T2 = {A2/ Ag/ As}/
Tn—3 = {An-s’ AH—Z’ An}’
Tn—2= {An—y Au—l’ Al}’
Tn— 1= {An— Iy Au’ AZ}’

n = {An’ AI’ As}‘

Noting the cyclic arrangement
above, in the “official” solutions I
commented on the fact that the prob-

The purpose of this column is to direct
the attention of Quantum’s readers to
interesting problems in the literature
that deserve to be generalized and could
lead to independent research and/or
science projects in mathematics. Stu-
dents who succeed in unraveling the
phenomena presented are encouraged
to communicate their results to the au-
thor either directly or through Quan-
tum, which will distribute among
them valuable book prizes and/or free
subscriptions.

by George Berzsenyi

lem is roughly equivalent to deter-
mining the location of three markers
on a circular path of integer length so
that the markers are of integer dis-
tance from one another and that the
clockwise distance between any two
pairs of them is different. The path
of minimal length is shown in figure
la, with the points A, A, ..., A, unit
distance apart. The placement of the
markersat A , A, and A, corresponds
to the construction of T,; the shifting
of themarkersto A,, A, |, A, . (with
the subscripts reduced modulo 7) cor-
responds to the construction of tri-
angle T,; while the fact that the
clockwise distances (A, A)), (A,, A,),
(A, A), (A, A), (A, A, and (4, A,
are all different assures that each pair
of triangles intersects in at most one
point.

A, A

a b
Figure 1

I also noted that in a similar fash-
ion one can construct wire structures
from n quadrilaterals with four of
them meeting at each vertex, when-
ever n > 13. The circular path of
length 13 with 4 markers is shown in
figure 1b. Moreover, I challenged the
students to find wire structures from
pentagons with five of them meeting
at each vertex.

The purpose of this column is to
further generalize these challenges

by asking for the minimum value of
n(k, m) that will ensure the construc-
tion of a wire structure from wire
polygons of k vertices with m of
them meeting at each vertex.

The special case of k = m was
treated earlier by T. H. O’Bierne in
his “Puzzles and Paradoxes” column
in New Scientist exactly 30 years ago,
where he connected the problem (for
k = m = 6) to an interesting finite geo-
metric structure. He also noted that
the gaps between the A/'s allow for
the construction of gages arranged on
a ring so as to allow for the measure-
ment of different thicknesses.! For
example, if gages of thickness 1, 5, 2,
10, and 3 are placed on a ring in that
order (fig. 2), then one can measure
with them thicknesses of 1, 2, ..., 21
units.

Figure 2 3

Some related problems are also
discussed by L. R. King and Harold B.
Reiter in an article entitled “Grace-
ful Graphs and Sparsely Marked Rul-
ers” in the May 1991 issue of The
College Mathematics Journal.

CONTINUED ON PAGE 40

1See New Scientist, nos. 261-64, or
chapter 6 and the accompanying
postcript in Puzzles and Paradoxes,
published by Dover.
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Divisive tevices

From Euclid’s algorithm to the fundamental theorem of arithmetic

by V. N. Vaguten

VERYBODY KNOWS THAT

any natural number—that is,

any positive integer—can be bro-

ken down into the product of
prime factors. For example,

400 = 2¢ - 52,
1001 =7-11-13,
290,981 = 43 - 67 - 101.

Why is such a “factorization”
unique? Or take a simpler fact: if the
product mn is divisible by 43, then at
least one of the numbers m or n is
divisible by 43. How can we prove
this?

These facts seem pretty obvious,
but it’s not so easy to prove them. The
proofs will come at the end of this
article. Let’s start with the simplest
statements about the divisibility of
integers and see how to find the great-
est common divisor (GCD) of two
numbers without breaking them
down into prime factors. I hope you
enjoy solving the problems that we'll
encounter along the way.

Throughout the text the letters a,
b, ¢, ... will denote integers.

Division with a remainder

There’s a well-known procedure
that divides a number a by a number

b b b b

r

N
|\ N T N N Y (N N N T M O O N T I I |

Figure 1
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b. Let’s take, for instance, a = 1991
and b = 31:

64
31) 1991
- 186
181
-124

7

The process of division is continued
until the remainder becomes smaller
than the divisor. In this example, the
remainder is 7. This means that 1991
=31 - 64 + 7. This may prompt us to
formulate the following statement
(see figure 1):

If a and b are integers and b is
greater than zero, then there is
a number q such that a = bq +
r, where the “remainder” r is an
integer satisfying the inequality
O<r<b.

Problem 1. Find the remainder when 1991
is divided by (a) 100; (b) 3; (c) 7; (d) 11.

Problem 2. There is an eight-story apart-
ment building with a number of separate,
numbered stairways. On one of the floors off
one of the staircases, the apartments are num-
bered from 97 to 102. On what floor, and off
which staircase, is apartment 2117 (There are
the same number of apartments on each floor,
and all the staircases are of the same design.)

Problem 3. Imagine 5 sheets of paper. Some
of the sheets are cut into 5 pieces. Then some
of the smaller pieces are cut into 5 pieces
again. This is done several times. Is it possible
to end up with 1991 pieces?

Problem 4. Find the smallest six-digit num-
ber divisible by 3, 7, and 13.

MATHEMATICAL BREAKDOWNS

Problem 5. What is the remainder when
98,765,432,123,456,789 is divided by (a) 4;
{b) 8; (c] 92

The greatest common divisor

Let a and b be nonzero integers.
Take all the common divisors of a
and b and choose the largest of them.
We'll denote this “greatest common
divisor” by GCD (a, b). For instance,
GCD (4, 12) = 4, GCD (21, 91) = 7;
GCD (15, 28) = 1.

If GCD (a, b) = 1, the numbers a
and b are said to be coprime.

Problem 6. Prove thatif d = GCD (a, b), a=
kd, b=1d,then GCD (k, I) = 1.

Problem 7. The product of two numbers is
equal to 600. What maximum value can their
GCD have?

Problem 8. What is the greatest number of
identical bouquets that can be made out of 264
white and 192 red tulips? (No flowers should
be left out.)

Problem 9. (a) A 10 x 15 rectangle is drawn
on a sheet of graph paper (fig. 2). It has 6 nodes
of the grid on its diagonal. Let there be an
m x n rectangle whose sides run along the
lines of the grid. How many nodes lie on this
rectangle’s diagonal? (b) Determine the num-
ber of solutions in natural numbers x, y of the
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equation mx + ny = mn, where m and n are
given natural numbers? (Just a reminder: posi-
tive integers are called natural numbers.)

Buclid's agorithm

To find the GCD of two numbers
you can, of course, write down all the
divisors of each of the numbers,
choose all the common divisors, and
then take the largest of them. This is
easy when you can factor both num-
bers into primes—for example,
600 = 23-.3.52,288=25-3% s0 GCD
(600, 288) = 23 - 3 = 24. (Some meth-
ods of factorization are explained in
the article “Is This What Fermat
Did?” on page 17.) There is, however,
a different approach to this problem,
one that doesn’t require that you
search for divisors of each of the
numbers separately.

Let’s prove the following impor-
tant lemma.

LemMA 1. Let a = bg + r. Then
GCD (a, b) = GCD (b, 1).

It’s enough to show that a pair of
numbers (g, b) has the same set of
common divisors as the pair of num-
bers (b, r): this will mean that the
GCDs of these pairs are also the same.
So we have to prove that each com-
mon divisor of a and b is also a divi-
sor of r and, conversely, that each
common divisor of b and r is a divi-
sor of a.

We'll start by proving the first
statement. Let a and b be divisible by
k. Then bq is divisible by k, and r =
a - bq is divisible by k.

Now for the second statement. If b
and r are divisible by m, then bq is
divisible by m, and a = bg + r is divis-
ible by m. The lemma provides a
quick and easy way of finding the
GCD of two numbers. Let’s have a
look at how this is done.

Example. Find GCD (943, 437).

Solution. We divide 943 by 437 and
get a remainder of 69, which we'll
rewrite

943 =437 -2 + 69.
According to the lemma,

GCD (943, 437) = GCD (437, 69).
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Now we have to find GCD (437, 69).
We divide 437 by 69:

437 =69 - 6 + 23.

Using the lemma again, we see that
GCD (437, 69) = GCD (69, 23). But 69
is divisible by 23 without a remain-
der:

69 =233,

so GCD (69,23) = 23, and conse-
quently

23 = GCD (69, 23)
- GCD (437, 69)
- GCD (943, 437).

Answer. GCD (943, 437) = 23.

The method of finding the greatest
common divisor by the consecutive
application of lemma 1 is called
Euclid’s algorithm. Try it yourself!
Take other pairs of numbers as large
as you want and find their GCD us-
ing this algorithm. By the way, the
probability that you’ll choose a pair of
coprimes has quite an unexpected
value: it's equal to 6/n?, where ris the
circumference of a circle with a diam-
eter of 1, which seems to have noth-
ing in common with the GCD!

Problem 10. Find the greatest common di-
visor of the following numbers: (a) 987,654,321
and 123,456,789; (b) 7,777,777,777 and
777,777.

Problem 11. A number of squares whose
sides are 141 cm long are cut from a 324 cm x
141 cm rectangle until a rectangle is left with
a side shorter than 141 cm. Squares with sides
equal to this second rectangle’s smaller side
are cut as long as it’s possible (fig. 3); and so
on. Into what kinds of squares will the origi-
nal rectangle be cut? (Give their sizes and
quantities.)

Euclid’s algorithm is a simple
method of finding the greatest com-
mon divisor of two numbers. Given
two numbers a and b such thata > b
> 0, we first divide a by b and get a
remainder r, which is smaller than
b. Then we divide b by r, and get a
remainder r,, which is smaller than r,.
Then we divide r, by z, and get a re-
mainder r, smaller than r,, and so on,
until some remainder r__ is divisible
by the remainder r, without a remain-
der (that is, until r_ = 0).

It’s clear that the process has to end
sooner or later, since each successive
remainder is smaller than the preced-
ing one and all the remainders are
nonnegative numbers. The last re-

mainder r, is in fact the GCD of a and

b:

r, =GCD(r,r,_|)
=GCD(r,_,r,_,)

= éCD (1, 1))
=GCD (r, b)
- GCD (g, b).

Problem 12. Prove that for an arbitrary pair
of integers (g, b), 0 < a < b < 1,000, the number
of steps in Euclid’s algorithm for finding GCD
(a, b)is not greater than that for the pair (610,
987). What is this number?

A geometrical illustration of
Euclid’s algorithm has been given in
problem 11. A better known and
more important geometrical formula-
tion of Euclid’s algorithm is the algo-
rithm of finding the greatest common
unit of measurement for two line seg-
ments (fig. 4).

Problem 13. Find the largest number a
such that 15/280 and 6/35a are integers. In
other words, find the length of the interval o

that is the greatest common unit of measure-
ment for intervals of lengths 15/28 and 6/35.

141

Figure 3
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—_— Let a and b be two segments, a > b. Let’s plot as many succes-
5 sive segments b on the segment a as possible; we’ll denote the re-

mainder by r,. Now we’ll plot r on b as many times as possible;
let the remainder be r,, We'll repeat the procedure for r, and 1, to

obtain the remainder r,, and so on.

If at some step, when trying to fit a segment r_inside r

(thatis, ifr_,

we get no remainder

n-1

= 0), then segment r, is the greatest common unit of measurement for

segments a and b. If the lengths of a and b are integers, then all the remainders r,,

Iy

. are also integers. The process ends, and the last nonzero r_ is the GCD of a and

b. If the process doesn’t end, the intervals are said to be incommensurable (and the

ratio a/b is an irrational number).

Linear equations

Finding the GCD is one of many
problems that can be solved by
Euclid’s algorithm. The proof of the
following important property of the
greatest common divisor involves the
numbers that arise in each step of the
algorithm.

Lemma 2. If GCD (a,b) = d, then
there exist integers x and y such

that d = ax + by.

Indeed, the remainder r, obtained
after the first division of a by b can be
written as ax, + by, sincer, = a-bq,
(thatis, x, = 1, y, = —q,). The next re-
mainder r, obtained when b is divided
by r, can also be written as ax, + by,,
since

r,=b-rgq,
=b-(ax, + by)q,
= a(_quz) + b(l ~qu2)
= ax, + by,.

Obviously the same reasoning is ap-
plicable to all the subsequent remain-
ders until we finally arrive at the
equality r_=ax+ by. Butr = GCD (g,
b). Lemma 2 is proved.

Let’s go back to the earlier example
in which we calculated GCD (943,
437) and try to find the numbers x and
y such that

23 = 943x + 437y. (1)

The greatest common divisor was
found from the chain of equalities

943 = 437 -2 + 69,
437 =69 - 6 + 23,
69=23-3.

The first equality yields
69 =943 — 437 - 2.
From the second equality we get

23 =437-69 -6
=437 - (943 - 437 - 2)6
=-943 -6 + 437 - 13.

So we’ve found the numbers x = -6

and y = 13 satisfying equation (1).
The following statement is an im-

portant particular case of lemma 2.

If numbers a and b are
coprime, then there exist inte-
gers x and y such that ax + by

=1.

We should note that lemma 2 fol-
lows from this statement. For in-
stance, instead of solving equation (1),
we can immediately cancel 23 out
and get an equivalent equation:

41x + 19y = 1. (2)

The numbers 41 and 19 are coprime.

The solution x = -6, y = 13 satisfies
both equations (1) and (2).

One more note. We've shown a
way to find only one solution of the
equation. In fact, if there is at least
one solution, there are infinitely
many of them. For instance, the
numbers

x =-6+ 19t
y =13-41t (3)

(t is an arbitrary integer) are also so-
lutions of equation (2):

41(=6 + 19t) + 19(13 - 41¢) = 1.

Actually, every integer solution of
equation (2) takes the form of that in
(3). To prove it, let’s take a solution
(x, y) of (2):

41x+ 19y = 1.

Subtracting from this equation the
equality

41.(=6)+19-13 =1,
we get
41(x+6)+ 19(y~13)=0
or
41(x + 6) = 19(13 - y).

Since the left side of the last equal-
ity is divisible by 19 and the numbetrs
41 and 19 are coprime, the number
X + 6 must be divisible by 19:
x + 6 = 19t, where t is an integer.
Then y = 13 — 41t. So we have dis-
covered how to find integer solutions
of any linear equation of the form ax
+ by = c. In the general case the result
reads as follows.

The necessary and sufficient
condition for equation ax + by
= ¢ to have integer solutions (x,
y) is that c is divisible by GCD
(a, b) = d. If this condition is
satisfied and (x, y,) is one of
the solutions of this equation,
then all the solutions of the
equation are given by the for-
mulas

x=x,-bit,
y=y0—a1t,

where
a b
q==, b=-=.
1= T 4

The formulas have a simple geomet-
ric interpretation: a straight line
meets integer points periodically (as
in figure 2.).
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Problem 14. Find integers x and y such that
85x + 204y = 17.

Problem 15. Do the following equations
have integer solutions: (a) 105x + 56y = 42;
(b) 104x + 65y = 43?2

Problem 16. (a) Is it possible to set up a
battery having a voltage of 220 V by serially
connecting cells of two types, 6 Vand 16 V? If
50, how many batteries of each type must be
used? (b) The same question, but the voltages
of the cells are 6 Vand 15 V.

The fundamental theorem of aritimetic

Before we prove the fundamental
theorem, let’s take one more step for-
ward and prove the following lemma.

Lemma 3. If the product ab is di-
visible by ¢ and the numbers b
and c are coprime, then a is di-

visible by c.

Indeed, since GCD (b, c¢) = 1, then,
according to lemma 2, there exist
integer numbers x and y such that 1
= bx + cy. Multiplying both sides of
the equation by a we get a = abx +
acy. According the condition, ab is
divisible by ¢, so both abx and, of
course, acy are divisible by ¢, which
means that their sum a is also divis-
ible by c.

Lemma 3 is used often in solving
various problems, although some-
times this use is pretty inconspicu-
ous. For example, we’ve already used
it in the preceding section while de-
riving formulas yielding all the solu-
tions of equation 41x + 19y = 1 (there
the corresponding phrase is in italics).

Problem 17. Prove that if a number a is
divisible by both the coprimes b and ¢, then a
is divisible by bc.

Problem 18. Which of the following state-
ments is true: (a) if ab is divisible by 15, then
at least one of the factors is divisible by 15;
(b) if ab is divisible by 17, then at least one of
the factors is divisible by 17; (c) if a is divis-
ible by 6 and b is divisible by 10, then ab is
divisible by 15; (d) if ab is divisible by 60 and
b is coprime with 10, then a is divisible by 20.

Here I'll remind you that a natu-
ral number p is called prime if it has
exactly two divisors: p and 1.

If p is a prime number, then for
any integer a one of the following two
statements is valid: either a is divis-
ible by p, or a and p are coprime
([since GCD (g, p) can be equal only to
por 1). A particular case of lemma 3
can now be formulated as follows.
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If a product ab is divisible by a
prime number p, then at least
one of the numbers a and b is

divisible by p.

The fundamental theorem of arith-
metic is an immediate consequence
of this statement.

Every natural number can be
uniquely factored into a prod-

uct of prime factors.

Indeed, let a number be factored
into several factors so that at least one
of them is not a prime number. Then
this factor itself can be factored; if any
of its factors isn’t prime, we can fac-
tor it again; and so on. Since each fac-
tor of any number is smaller than the
number itself, this process can’t go on
forever—at some point we’ll arrive at
a factorization of the number into
prime factors.

Now let’s prove that there can’t be
two different factorizations of a num-
ber into primes. Assume that there

are two factorizations of some num-
bera: a=pp,..p,=qq,..q,(r<k)
where p, and g, are prime numbers.
Since the left side of the equation is
divisible by p,, the right side should
also be divisible by p,, so that one of
the numbers ¢, has to be divisible by
p,- But ¢, is a prime number, so we
have g, = p,. Canceling out the com-
mon factor p, = g, we turn to the fac-
tor p,, and so on. Finally, all the fac-
tors will be canceled out and the left
side becomes equal to 1. Since g, are
positive integers, nothing but 1 will
be left on the right side as well. So the
factors in both factorizations are the
same (though their order may be dif-
ferent), which means that the factor-
izations are identical.

Problem 19. Factor the numbers 1990,
1991, and 1992.

Problem 20. (a) Prove that if m and n are
coprime and am = bn, then there exists an
integer k such that a = kn, b = km. (b) Prove
that if m and n are coprime and x™ = y7, then

there is an integer z such that x = z7, while
y = zm .4

ANSWERS ON PAGE 61

“GOING AROUND IN CIRCLES” CONTINUED FROM PAGE 35

A pigeontiole for every pigeon

Many thanks to James Quinn
(CA) and Brian Platt (UT) for their ex-
cellent responses to the problems
posed in the January/February issue.
Both of them answered the first ques-
tion by noting that for n = 85, the
Greedy Algorithm yields the set {85,
84, 83, 81, 78, 72, 61} with a sum of
544, while the sum of the elements
of {84, 83, 82, 80, 77, 71, 60, 40)
(which is the Greedy Algorithm so-
lution for n = 84) is 577. They also

observed a similar phenomenon for
n =162, and Platt went on to conjec-
ture a rule for obtaining all other in-
tegers for which a direct application
of the Greedy Algorithm does not
yield optimal answers. He also con-
structed a Greedy Sequence that is
conjectured to yield maximal S_ for
all other values of n.

Readers interested in Platt’s in-
sightful constructions should write
to me for a one-page summary. [6)
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he ritdle of the Etruscans

The beautiful legacy of a vanished race

HE ETRUSCANS, A

mysterious people about whom

archaeologists and historians

still patiently gather scraps of in-
formation, used to live in north cen-
tral Italy. By the middle of the first
millennium B.c., their civilization
had blossomed culturally and eco-
nomically. Their cities wielded for-
midable military power, and the
Tarquin dynasty ruled in Rome. But
after the Etruscan kings were ex-
pelled from the city in 510 B.c., the
Etruscans encountered dangerous ri-
vals in Italy—the Romans. Pro-
tracted wars over the course of sev-
eral centuries resulted in the total
subjugation of the Etruscans. By the
beginning of the Christian era they
were completely absorbed in the sun-
dry mass of peoples of the Roman
Empire. All that is left of them are a
few inscriptions in a language that
hasn’t been adequately deciphered,
individual examples of arts and crafts
of outstanding quality, and scanty
references to them by Roman au-
thors.

While excavating Etruscan cities,
archaeologists managed to find a va-
riety of objects indicating the high
level of development in this extinct
civilization. Etruscan jewelry is uni-

Au
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melting

by A. S. Alexandrov

versally admired, especially the so-
called granulated ornamentation.
These masterpieces created by un-
known craftsmen are copper plates
with elaborate tracery made up of
thousands of tiny gold spheres (about
0.2 mm in diameter). No other people
has attained such perfection in granu-
lated ornamentation.

By the end of the first millennium
A.D. the art of manufacturing such
ornamentation was completely for-
gotten. Only in the 19th century did
scientists try to rediscover the tech-
nical secrets involved, but to no avail:
for a long time nobody could explain
how it’s possible to attach a gold gran-
ule to a copper substrate without
melting the granule. If the granule
melts, the drop of liquid gold spreads
over the copper. Upon cooling, the
flattened drop would certainly be
fused to the substrate, but the elegant
look of the ornamentation would be
lost.

The secret was finally discovered
in 1933. The technology turned out to
be rather subtle—to understand it,
we need refresh our memory on the
subject of diffusion.

Diffusion is the process by which
atoms or molecules of one substance
penetrate another. This process is

easy to see in liquids. If we drip a drop
of ink into water, it keeps a sharply
defined outline for a while, but as
time goes on the outline will get
blurred, the two liquids will mix to-
gether, and the drop as such will dis-
appear. Why does that happen?

Before answering, let’s recall a cer-
tain very famous experiment. In 1827
the British botanist Robert Brown
was studying the chaotic movement
of pollen grains in water. The par-
ticles were quite small (generally
about 0.005 mm in diameter), so
Brown used a microscope to observe
them. He saw that their “routes” had
no system to them and were so
strange that, at first, he took this
movement for some special form of
life.

An adequate theory explaining this
phenomenon, which is now called
Brownian motion, was worked out
half a century later. The point is that
a pollen grain is huge in comparison
with a molecule of water but small
enough to feel the impact of a single
molecule. Molecules of water are con-
stantly in chaotic motion, “bombard-
ing” the pollen grain unequally from
various directions and forcing it to
move randomly. So Brownian motion
can serve as visible proof of molecu-
lar motion that can’t be observed even
under a microscope.’

IRecent research suggests that
Robert Brown may not have seen the
motion that now bears his name. In a
paper presented at a meeting of the
American Physical Society, chemist
Daniel H. Deutsch says that jiggling of
Brown’s microscope and evaporation

. ,‘ S
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Now let’s turn back to the drop of
ink in the glass of water. Molecules of
both water and ink move chaotically,
some of the water molecules pen-
etrating the ink, and some of the ink
molecules penetrating the water.
There is diffusion of both liquids,
which causes the drop of ink to blur.

Diffusion in gases is a common
phenomenon that we regularly ob-
serve when we smell substances at a
great distance from us. Processes of
diffusion may also take place in sol-
ids, but they are usually too slow to
be observed at room temperature. At
higher temperatures, though, the

of the water sample, among other
factors, led him to see what was, “in
effect, flotsam on the ocean, where
you have waves knocking things
about.” (See Science News, May 4,
1991, p. 287 )—Ed.

motion of molecules or atoms be-
comes more intense. For example, a
drop of ink is blurred in hot water
sooner than in cold water. By keeping
solid bodies at high temperatures long
enough, we can verify that there is
diffusion in them as well.

Diffusion in solids was first ob-
served by the British metallurgist
William Chandler Roberts-Austen in
1896. He pressed a gold disk and a
lead cylinder together and put them
in an oven for 10 days, keeping the
temperature at 200°C. When the
oven was opened, it was impossible
to separate the disk and the cylinder:
the gold and lead had literally “grown
into one another” as a result of diffu-
sion. By now this technology of join-
ing components is widely used and is
called diffusion welding. Could it be
that the Etruscans attached gold
granules in just this way?

7

We have to reject this supposition
outright. First, the process of diffu-
sion welding requires a vacuum—
otherwise the oxygen in the air will
oxidize the copper and the product
will be covered with a black scaly
layer; second, diffusion welding re-
quires a rather long exposure to high
temperatures.? The Etruscans
couldn’t have accommodated these
conditions.

A more likely version of the
Etruscan technology is this. First,
gold granules were glued in a design
on a sheet of papyrus, which was

2Roberts-Austen was lucky that the
objects in his experiments were lead
and gold. This pair of metals is one of
the “record holders” in the area of
diffusion times. At such a low
temperature as 200°C, diffusion
welding of other metallic pairs would
have taken longer than a month.
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papyrus
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Cu

placed on a copper plate, granules
downward. The precious “sandwich”
was then gradually heated. During
the heating a small amount of the
gold diffused into the copper, and
vice versa. The result was a copper—
gold alloy in the extremely thin area
of contact between the granule and
the plate.

The melting temperature of gold is
1,063°C; that of pure copper, 1,083°C.
But copper—gold alloys melt at lower
temperatures. For example, the alloy
consisting of equal quantities of gold
and copper melts at 910°C. This is the
key to unraveling the secret of the
Etruscan jewelers. They would in-
crease the temperature to the point at
which the gold—copper alloy created

alloy

Cuin Au
diffusion
during melting
heating Auin Cu
by diffusion melts, while the gold instance, it’s not clear how the

and copper themselves stay solid.
During subsequent cooling the alloy
would solidify, and a granule that
was still virtually round would be
fused to the copper substrate. This
process occurred in all the granules
simultaneously, so that the entire
design of gold spheres glued to the
papyrus would be transferred to the
copper. At such high temperatures
the papyrus would burn away, and
the item was finished. The copper
had no chance to oxidize because the
process was rapid enough and the
combustion of the papyrus used up a
considerable amount of oxygen.

But we still haven't figured all the
secrets of these ancient jewelers. For

Etruscans managed to make such
tiny, perfectly round gold granules.
But the most amazing thing of all is
how craftsmen in the distant past
could have developed such an elabo-
rate technology. What wonderful
combination of chance, experience,
and insight led the Etruscans to
their discovery? Maybe we’ll find
out some day, but for now we can
only pay tribute to this vanquished
and vanished people, repeating the
words of the Roman historian
Sallust (1st century B.c.): “What
people can achieve, in tilling the
land, melting metals, and erecting
buildings, depends on their spiri-
tual strength.”
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Griminal geometry, op
A matter of principle

A methodological handbook in one act

HE STAGE IS DARK. A QUIET

melody is heard (see drawing).

The lights are turned up. The

drawing room at 2218, Baker
Street. Sherlock Holmes is seated,
Iooking through the evening newspa-
per. Watson enters.

Holmes. Good evening, my dear
fellow. I see that you have decided to
deal with geometry instead of medi-
cine for a while.

Watson. How could you . . . ?

Holmes. Yesterday’s Daily Joke,
with the geometry contest, is sticking
out of your pocket. I can see right off
that you have wasted quite a lot of ink
trying to solve at least one of the prob-
lems.

Watson. But how did you know
that T have not solved any of them? To
tell the truth, you are absolutely right
. . . (Sitting down).

Holmes. Please do not take of-
fense, my dear Watson. By the way,
all these problems can be solved prac-
tically the same way—if, of course,
we find the right approach to them.
Frankly, I have not seen these contest
problems yet, but . .. Well, let us have
a look at them.

Problem 1. Point O is given inside
a square ABCD. Angles OCB and
OBC are both 15 degrees. Prove that
triangle OAD is equilateral.

Watson (spreading his arms in dis-
may). The mysteriousness of this
problem reminds me of the case of
the abducted shah. Do you remember
it, Holmes?

by D. V. Fomin

A b

Holmes. My dear fellow, whatever
are you talking about? I will give you
the answer straight away. We will
use the “begin-at-the-end principle”
here. T hope you will be able to ascet-
tain from the solution what the prin-
ciple is. Consider a point X that is the
third vertex of an equilateral triangle
whose other two vertices are A and

Watson. But there are two such
points.

Holmes. Of course. We choose the
one inside the square. Now we find
the angles XBC and XCB. Well,
Watson, as an adherent of the exact

sciences, you know the ropes here.
Have you done it?

Watson. Just a moment . . . We
must make use of the fact that BAX
and XCD are isosceles triangles. Oh!
They are 15 degrees each. Hum!
What then?

Holmes. This means that points O
and X coincide. But this is elemen-
tary, my dear fellow.

Watson. Excellent! But . . . this
principle of yours will not help us
with the second problem.

Holmes. Well then, we will use
another one. And so,

Problem 2. The lengths of the
sides of a convex quadrilateral ABCD
are equal to (clockwise) g, b, ¢, d.
Prove that the area of ABCD is not
greater than

%(a +b)(c+d).

Yes, this problem is of an entirely
different kind . . . inequality. Watson,
it suddenly reminds me of professor
Moriarty’s cipher.

Watson (dreamily). Yes, that was
a tricky business. He was, to give him
his due, a brilliant mathematician
... But you have digressed, Holmes.
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Holmes. It was you who was
dreaming, Watson. In the meantime
I have solved your problem. First, we
open the parentheses:

%(a+ blic+d)
= Xt b Slah b,
4 4

Keep the “simplification principle”
in mind, Watson: first try the sim-
plest and most natural ways of solv-
ing the problem.

Watson. Well, as for proving that
the sum ad + bc is not less than
twice the area of the quadrilateral, I
can do that myself: ad is not less
than twice the area of triangle ABD,
bc is not less than twice the area of
triangle BCD—we are done. But
what can we do with the expression
ac + bd?

Holmes. The “analogy principle”
will help us here. All we need to do,
my dear fellow, is think consistently
and logically—this is essential in
mathematics as well as in criminol-
ogy. To what did you owe your suc-
cess in the previous evaluation? You
were helped by the fact that sides a
and d are situated next to each other,
as are sides b and ¢, correct? So you
should do something to bring a next
to c.

Watson. What about b and d?

Holmes. Think it through,
Watson: if a is next to ¢, then of
course b will be next to d. Always
check for unnecessary conditions!
But that is by the bye. And so: what
will we do with our quadrilteral so
that its area remains the same while
side a ends up next to ¢? . . . My dear
fellow, what is the matter? . . . Do
you not have your scalpel with you?

Watson (not understanding). No,
I do not. Why do you . . . ? (Looking
at the diagram and suddenly under-
standing.) Brilliant! Why, we merely
cut ABCD along the diagonal BD
and . . . and turn over one of the
pieces. Then, of course, reasoning the
same way as before, we determine
that ac + bd is not less than twice the
area of the quadrilateral. Combining
that with the previous inequality, we
establish what we had set out to
prove. Marvelous!
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Holmes. Notice that we also used
the “dynamic principle” here when
we changed the data while solving
the problem. It really is quite a re-
markable principle. It reads: change
anything in the problem you feel like
changing—its formulation, the data,
the things you have to prove—as long
as the solution to the new problem
gives you a solution to the old one. In
particular, it says: do not take the
data of a problem as something chis-
eled in stone. Well, for example, if
you are to catch a criminal, do not
forget that he is a living being and can
move freely about your “theater of
operations.”

Watson. There is something T have
not quite caught here . . .

Holmes. Let us take a look at the
third contest problem, Watson.

Watson. I beg of you, Holmes, tell
me at once every step in your reason-
ing, not just the solution. I am al-
ready weary of wondering. (Gets up
from his chair and walks up to
Holmes.)

Holmes. I will try, my dear fellow.
And so,

Problem 3. Two circles S, and S,
intersect at right angles at points A
and B. Point X lies on the first circle
but inside the second one. Rays AX
and BX meet S, at points P and Q.
Prove that segment PQ is a diameter
of circle S,.

Watson. I simply have not under-
stood the statement of this problem.
What does that mean—the “circles
intersect at right angles”? Nonsense!

Holmes. Not at all, Watson, it
merely means that the tangent lines
at the intersection points are perpen-
dicular. Now, look how the dynamic
principle works here. Let us move
point X along arc AB of circle S —it
becomes point X’, and rays AX’ and
BX’ will intersect circle S, at points
P’ and Q'—look, I will draw it on a
sheet of paper.

Obviously, angles X’AX and X'BX
are equal. That is why the angle mea-
sures of arcs PP’ and QQ’ are equal.
But this means that the angle mea-
sure of arc P’Q’ is equal to that of arc
PQ.

Watson (interrupting). But
Holmes, where did you get the idea
of proving that?

Holmes. My dear fellow, think it
through yourself: if segment PQ is a
diameter for any position of point X
on arc AB, then however we move
point X, the angle measure of arc PQ
will not change. If what the problem
asks us to prove is true, then obvi-
ously this must be true as well. The
begin-at-the-end principle again.

And now, Watson, let us move our
point X all the way to point B. What
will we get? In this case, the angle
measure of arc PQ will be exactly 180
degrees.

Watson. Why on Earth is that? Ah,
yes . . . we use the fact that these
circles intersect at right angles. By
the way, Holmes, here is one more
principle: use all the problem’s data
and keep in mind that they must be
used somehow! What should we call
it? <
Holmes (coolly). I call it the “solu-
tion completeness principle.”



Watson. Well, I say! One would
think you have got a principle in ev-
ery pocket!

Holmes. No, my dear fellow, I
have them all in my head. But Imust
point out to you that the principle
that just occurred to you is some-
times inapplicable in real life. Some
facts that seem at first glance to be
suspicious or directly incriminating
turn out to be mere coincidences or
diversionary tactics by the real cul-
prit. Remember the case of the beryl
coronet? ... Well, at any rate, here is
the last problem.

Problem 4. ABC is an isosceles tri-
angle, and the angle at vertex C is 20
degrees. Points M and N are taken on
sides AC and BC such that angle
NAB is 50 degrees and angle MBA is
60 degress. Prove that angle NMB is
30 degrees.

Watson. I was trying to compute
that angle by using trigonometry . . .

Holmes. My dear fellow, pray save
your strength! Perhaps you could
read your newspaper while I spend a
few minutes on this problem.

During the next five or six min-
utes Watson reads the paper while
Holmes studies the diagram care-
fully. Soft music plays.

Holmes. There. Listen, Watson.
This problem is indeed rather a tough
nut. Let us look at a point P on side
BC such that angle PAB is 60 de-
grees. Clearly, line PM is parallel to
AB, and triangle PDM is equilateral
(D being the point, Watson, where
segments PA and BM intersect).
Since triangle BNA is isosceles, the
lengths of segments BN, BA, and BD
are equal and angles BND and BDN
are both 80 degrees. We can easily
deduce from this that angle NDP is
40 degrees. So triangle NDP is isosce-
les and, as a result, MN is the bisec-
tor of angle BMP. Therefore, angle
NMB is half of angle DMP and equal
to 30 degrees. We are finished.

Watson (astounded). But . . . but
... how? How did you think up
such a clever solution?

Holmes. Well, my dear Watson, I
suppose I could tell you an exciting
story of how I found the solution by
means of a dozen skilfully selected
principles . . . You are laughing,
Watson! Certain principles, of
course, came in handy. For example,
the remarkable “goal principle”: al-
ways keep in mind what remains to
be done to achieve your goal. And,
certainly, a few little things here and
there . . . At any rate, my friend, to
solve a problem you need a bit more
than just a set of standard rules of
thinking. You need such things as
experience and intuition. Do you re-
ally think that everything is so
simple—that all we need do is
memorize a lot of “principles” and
learn how to use them in some sort
of sequence? Fortunately, human
reason is something immeasurably
greater . . . though, of course, these
principles, which are in essence
nothing more than thought-clichés,
can still be of some use. One must
not ignore anything that is rational,
Watson!

Watson (sits down wearily in his
chair, picks up his newspaper). Oho!
Listen to this, Holmes: “Yesterday
night unknown malefactors, after
breaking into the offices of the Daily
Joke, cracked the editor’s safe and
stole the prize for the annual geom-
etry contest: a life-size gold Moebius
strip valued at . . .” and so forth,
nothing that interesting . . . Oh, wait!
“Inspector Robinson declared that
the police have no leads in the case.
The editor of the Daily Joke told re-
porters that, in order to increase the
number of subscribers and improve
its financial affairs, the paper will
announce a new, special contest of
problem solving in a future is-
sue . ..”

My dear fellow, after all T have
heard today, you simply must catch
these villains—it’s a matter of prin-
ciple!

As the final words are spoken, the
stage darkens and the final chords of
the accompanying melody are heard
in the darkness.

Here are the problems from the
special contest announced in the
newspaper. Keep in mind that each of
them has its own little twist, which
you can find more easily if you use
the principles expounded by the great
detective.

1. Prove that a five-point star can-
not be drawn so that the lengths of
segments AB, BC, CD, DE, EF, FG,
GH, HI, I], JA (see the figure) are
equal to 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, respectively.

2. Point B lies inside a right angle
with vertex O, points A and C lie on
its two sides. Prove that the perim-
eter of triangle ABC is not less than
twice the length of segment OB.

3. A quadrilateral ABCD is in-
scribed in a circle and the length of
segment AD is equal to the sum of
the lengths of segments AB and CD.
Prove that the bisectors of angles B
and C intersect on side AD.

4. An armless thief wants to steal
a coin from a moneychanger’s table,
pushing the coin with his nose off the
table without clinking it against any
other coins. Will he succeed? The
coins are round, they are of different
sizes (possibly), and they are not
touching one another.

5. A square is cut into several rect-
angles. For each of these rectangles,
the ratio of the smaller side to the
larger can be computed. Prove that
the sum of these ratios is not less

than 1.
ANSWERS ON PAGE 61
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Art by Sergey Ivanov

LOOKING BACK

The duke and his chicken incubator

The ups and downs of Florentine thermal research

OT, WARM, CHILLY,
frosty . . . These are the words
we use every day to describe the
degree of heat in various bodies.
The measure of heat is, of course,
temperature—the higher the tem-
perature, the more a body is heated.
We can distinguish a hot object
from a cold one just by touching it,
but a science begins only when there
are measured values. Today every
child knows that to measure tem-
perature you need a thermometer. It
was with the invention of the ther-
mometer that the study of heat phe-
nomena really began.
Most thermometers make
use of the way bodies ex-
pand when heated
(and contract
when
cooled).
The

and its applications

by Alexander Buzdin

first thermometer, invented by
Galileo at the beginning of the 17th
century, used water. Naturally, it was
useless for measuring temperatures
below the freezing point or above the
boiling point of water. Then the mer-
cury thermometer became very
popular. But when it’s bitterly cold
this thermometer also fails to yield
accurate readings since mercury
freezes at —38.8°C. Below that point
the alcohol thermometer can be
used—its operational range goes as
low as —-97°C (the freezing point of
alcohol).

Va

The credit for inventing the alco-
hol thermometer must be given to
Duke Ferdinand II, who ruled Flo-
rence in the middle of the 17th cen-
tury. In addition to his royal duties
the duke devoted much of his time to
the natural sciences. A pupil of
Galileo, he made a notable contribu-
tion to the development of tempera-
ture-measuring devices. Before ther-
mometers came into general use,
temperature was monitored by ther-
moscopes. A thermoscope is a device
that indicates whether the tempera-
ture is above or below a certain value,
but it’s incapable of actually measur-

ing it. Ferdinand was very skilled

at manufacturing thermo-

scopes of various de-
signs. He sent
one of his
thermo-
scopes
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to Athanasius Kircher, a German Je-
suit who was also known for his in-
terest in science. The device con-
sisted of an open glass tube almost
completely filled with water. It also
contained a number of small pear-
shaped vessels that opened down-
ward. Each of the vessels contained
an air bubble whose volume was cho-
sen in such a way that at a certain
temperature the vessels floated in the
water. When the temperature in-
creased, the air inside the vessels ex-
panded, pushing the water out. The
resulting increase in buoyancy made
the vessels float upward. Ferdinand'’s
description suggests that the tem-
perature at which the vessels were
suspended inside the tube was about
15°C. When the temperature dropped
below 15°C the volume of the air
bubbles decreased, water entered the
vessels, and they sank to the bottom.

Together with this device and de-
tailed operational instructions,
Ferdinand also sent Kircher another
thermoscope. It differed from the first
only in that it was completely filled
with water and sealed. This thermo-
scope, however, operated in the oppo-
site way—the vessels went down
when the temperature rose and up
when it fell. Ferdinand left Kircher to
figure out why. We don’t know
whether Kircher succeeded, but an
attentive reader will undoubtedly
solve the problem without great dif-
ficulty. (You can check your answer
by looking on page 63.)

Ferdinand had also devised many
kinds of thermometers that actively
applied his results in practice. One of
his projects dealt with large-scale
poultry breeding. He built one of the
first chicken incubators, using a ther-
mometer of his own design to moni-
tor the temperature. But even then
scientific results were not easy to
implement. Only three chicks
hatched out of 150 eggs. Why was the
yield so low? Maybe because a
worker didn’t take the thermometer
readings seriously enough and in-
stead relied on his own sense of
warm and cold. Or maybe Ferdinand
himself simply didn’t know enough
about biology. We are left to guess at
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the reasons for the experiment’s fail-
ure.

Ferdinand was more successful in
monitoring weather by means of a
thermometer. He carried out impor-
tant meteorological observations and
studied temperature in deep wells
and underground cavities in different

change of seasons takes place later
underground than on the surface
(since time is needed for the ground
to warm up or cool down).

For a more detailed treatment of
the question of temperature and its
measurement, see “Temperature,
Heat, and Thermometers” in the

seasons of the year. He found that the  May 1990 issue of Quantum.

Why There’s A Science

to the Liberal Arts
at Beloit College

but at Beloit she discovered that it also involved working with professors

on scientific research that students elsewhere might experience only in
graduate school. Based on research conducted in her first year, Rona and Professor
George Lisensky co-authored an article for Science Magazine. Like Rona, more
than 70 percent of our science majors have completed a summer of research in
an academic, industrial or government laboratory by their junior year. Beloit, a
member of the “Oberlin 50" Keck Geology Consortium, and Pew Mid-States
Science Consortium, provides science students with a 1:12 professor to student
ratio and access to first-rate scientific equipment—even office space! At Beloit,
where students and faculty work to-
gether in a cooperative community
of scientists, scientific discoveries
naturally occur.

Beloit

College

The Results Speak For Themselves.

R ona Penn knew that college would require a lot of reading and writing—

For more information about Beloit College, call or write:
1.800+356+0751 (in Wisconsin call collect 608+36322500)

Beloit, Wisconsin 53511

\

Circle No. 10 on Readers Service Card



Springer-Verlag has the answer...

Fractals for the Classroom Also by Peitgen, Jiirgens, Saupe,
Maletsky, P te, and Yunk

Part 1 — Introduction to Fractals and Chaos fl6taky, Parclaris, an Yankor

Part 2 — Mandelbrot Set and Complex Iterators Fractals for C’

Fractals for the Classroom Parts 7 and 2 bring an excitingand ~ the Classroom

often controversial) branch of mathematics into the classroom. Well Strategic Activities, "

illustrated and clearly written texts enable students to explore both Volume 1and 2

the history and the virtually unlimited potential of fractals. Indepen- Designed to develop, through a hands

dent chapters written with teachers and students in mind cover all on approach, a basic mathematical

the major mathematical and many scientific aspects of current fractal understanding and appreciation of

knowledge. Fractals for the Classroom fills the gap between fractals. Both volumes include a slide

package containing nine amazing
fractal images.

Volume 11991144 pp., 75 illus.,
9 color slides/Softcover $19.95/
ISBN 0-387-97346-X

Volume 21991/144 pp., 75 illus.,
9 color slides/Softcover $19.95/
ISBN 0-387-975543

qualitative and highly technical explanations. Computer programs
at the end of each chapter enable you to explore the exciting world
ractals on your PC.

. . j The Beauty of
Advised by leaders from the teaching community: FractalsLab *&
Evan Maletsky, Terry Perciante and Lee E. Yunker aclals’ r -~
(Published in cooperation with the National Council of Teachers of Mathematics) g’apvh’css’f"vgz?o’ : 1"5 ”'%_
Part 11991/app. 420 pp., 8 color pp. 125 illus./Hardcover/$29.00/ A e T A
ISBN 0-387-97041-X NEMFIHSH byT‘ Eberhardt and é
arme
Part 21991/app. 300 pp., 8 color pp., over 100 illus./Hardcover/$29.00/ <
ISBN 0-387-97722-8 “%nparalleied graphics package {v
that }ts you explore the potential of
. raltal images. A must for Macintosh

Three Easy Ways to Order: 3 Jéraphlcs onthisiasts, [N ¢
« Call: Toll-Free 1-800-SPRINGE(R). In NJ call 201-348-4033. (8:30 AM-4:30 PM EST). ey (

Your reference number is H33. T J1990/$49 00/ISBN 0-387-14205-3 T{
© Write: Send payment plus $2.50 for postage and handling to: & ;**%j V' ;’""”‘sf -\ {-V

Springer-Verlag New York, Inc. Dept. H33, PO. Box 2485, Secaucus, NJ 07096-2491. 4,,‘“,.\&,&& ;m_,ﬁ% o
o Visit: Your local technical bookstore w{v" \ -y

(& W, P Vi i
s wi‘%sz
Springer-Verlag

New York  Berlin  Heidelberg  Vienna  London  Paris  Tokyo  HongKong  Barcelona  Budapest




QUANTUM

THE STUDENT MAGAZINE OF MATH AND SCIENCE
(Title No. 583 ISSN 1048-8820)

Subscriptions are entered with prepayment only and filled as issues
are published. Prices are for one year (six issues) and include post-
age and handling. Bulk rates are available.

O  $28 Institutional rate
3  $18 Personal rate
O  $14 Full-time student/gift rate

O  Check enclosed (please make payable to Springer-Verlag)
Chargemy O Visa O MC O AmEx

Card No. Exp.

Signature

Name

Address

City State Zip
To order, call toll free 1-800-SPRINGER, or return this coupon to:

Quantum
Springer-Verlag Journal Fulfillment
44 Hartz Way
Secaucus, NJ 07096-2491

---------—-----_---------‘

~

QUANTUM

makes a perfect gift

Use the response card in this issue to order Quantum for
your child, grandchild, nephew, niece, mother, father,
friend ... Six colorful, challenging, entertaining issues for
only $14.00!

Factor x into the Quantum equation,
where x is any potential Quantum
reader you know!

N\ 24

54 SEPTEMBER/OCTOBER 1981

/

N

~

Index of
Advertisers
AAPT 57
Beloit College 52
Duracell 20
Embry-Riddle Aeronautics 34
Florida Institute of Technology 41
Independent Educational Services 40
Iona College 45
JETS 44
Kenyon College Back Cover
MicroMath Scientific Software 3
NCTM 57
NSTA Special Publications 5, 15, 30,50
Springer-Verlag Publications 11, 53
Stetson University 19
Wolfram Research, Inc. 31

J

Summer study ... competitions ... new
books ... ongoing activities ... clubs and

whatever it is, if you think it's of interest to
Quantum readers, let us know about it!
Help us fill Happenings and the Bulletin
Board with short news items, firsthand re-
ports, and announcements of upcoming
events.

What's on your mind?

Write to us! We want to know what you
think of Quanturn. What do you like the
most? What would you like to see more
of? And, yes—what don't you like about
Quanturm? We want to make it even bet-
ter, but we need your help.

Whats our address?

Quantum
National Science Teachers Assoc.
3140 N. Washington Boulevard
Arlington, VA 22201

Be a factor in the

QUANTUM

associations ... free samples ... contests ...

\ Ellllﬂlllllll/

q What's appening? A\




Quantum’s Twenty-Four Challenge . ..

In our March/April issue, we gave
you the opportunity to show off your
math skill and agility by playing
Twenty-Four® a game where teams of
players must add, subtract, multiply,
and/or divide to arrive at the solution
of 24. We received more than 70 en-
tries, from classes of all levels, and we
judged them in two categories: 8th
grade and below, and 9th grade and
above. Here are the results.

8th grade and below. Grand Prize
(tie): Evelyn Maxwell’s 8th grade at
Greenwood Laboratory School in
Springfield, Missouri, and Bernadette
Vachetto’s 8th grade at Churchville-
Chili Middle School in Churchville,
New York. First Runner-Up: David
Defendis’s 6th grade at Francis Parker
School in Rochester, New York. Sec-
ond Runner-Up: Kathi Lohrman’s 8th
grade at Jefferson Middle School in
Rochester, New York. Third Runner-
Up: Kathi Lohrman’s 7th grade, same
school. Fourth Runner-Up: Mr.
Strothmann’s 6th grade at J. L. Buford
Grade School in Mt. Vernon, Illinois.

9th grade and above. Grand Prize:
Jean Kahn’s 9th-12th grade at
Shoreham-Wading River High School
in Shoreham, New York. First Run-
ner-Up: Mrs. Schilstra’s 9th grade/
period 1 at Penfield High School in
Penfield, New York. Second Runner-
Up: Lois Beyer’s 10th-12th grade at
Valley Christian High School in
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Campbell, California. Third Runner-
Up: Mrs. Schilstra’s 9th grade/period
2 at Penfield High School. Fourth
Runner-Up: Mike Appelhans, a 12th-
grader at the Work Opportunity Cen-
ter in Minneapolis, Minnesota.

Prizes were generously donated by
the Eastman Kodak Company-21st
Century Learning Challenge. Con-
gratulations and thanks to all who
participated.

... HaCK again

Here’s another chance to team up
and win prizes for your mathematical
ingenuity. Take the second Quantum
Twenty-Four Challenge, sponsored
again by Kodak.

How to play. On this page, we've
printed four cards from the Twenty-
Four®game. Use the four numbers on
each card to compute 24 as many
ways as you can. Do the math step by
step. Use only the numbers on the
card and the answers from each step.
(Note: the 9’s on the cards are filled in
with red; the 6’s aren't.)

How to enter.

1. Send us a list of all the ways you
got 24 for each card. Show each stage
of your work.

2. Write on a sheet of paper

a) Your grade

b) The names of your school and

teacher

¢) Your school’s address and

phone number

d) The statement: “We pledge that
these answers were derived
without the help of any com-
puters or adults, except the
teacher.” Make sure all partici-
pants sign it.

3. Send us your entry no later than
November 15, 1991. Mail it to
Quantum’s Twenty-Four Challenge,
3140 North Washington Boulevard,
2nd Floor, Arlington, VA 22201.

The prizes. The class in each cat-
egory (8th grade and below, 9th grade
and above) that finds the highest to-
tal of correct and different ways to
make 24 will win the Grand Prize.
Each student will get a Twenty-Four
T-shirt and a standard edition of the
Twenty-Four game.

The class in each category with the
next highest total is first runner-up.
Each student in those classes will re-
ceive a Twenty-Four T-shirt and a
pocket edition of the Twenty-Four
game.

Each student in the second, third,
and fourth runner-up classes will re-
ceive a pocket edition of the Twenty-
Four game. :

Do’s and don’t’s. Make sure you
follow these rules when you enter:

Do use all four numbers on each
card.

Don’t use a number more than
once, unless it appears on the card
more than once.

Don’t use the commutative prop-
erty of addition or multiplication to

Copyright © 1991 by Suntex International, Inc. Twenty-Four and Twenty-Four Challenge are registered trademarks of Suntex International, Inc.
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make 24 in more than one way. (If
you do, we'll only count one of the
answers.)

Don’t use the number’s opposite;
3 is not the same as -3.

Don’t put two digits together to
make a larger one. You can’t make 23
from 2 and 3.

Don’t use exponents. You can’t
use 2 and 3 to make 23, or 8.

—Elisabeth Tobia

Trailblazing genetics

A special full-color report from the
Howard Hughes Medical Institute
tells what it means to find the ge-
netic flaw that causes a disease—for
example, cystic fibrosis—and how
such a discovery fits into the larger
picture of medical research and the
struggle to conquer genetic diseases.
Blazing a Genetic Trail takes you
down a path that begins with the
search for the genetic roots of a dis-
ease and then winds its way toward
the goal of a treatment or cure. An
illustrated fold-out guide shows a
map of the genetic trail, highlighting
key landmarks.

The second in a series that began
in 1990 with Finding the Critical
Shapes, this 56-page report describes
family studies of inheritance; scien-
tific approaches to identifying disease
genes; strategies for developing treat-
ments; the need for animal models of
disease; efforts to map the human
genome; genetic testing; and what
the future may hold.

For a free copy of Blazing a Ge-
netic Trail, write to the Howard
Hughes Medical Institute, Commu-
nications Office, 6701 Rockledge
Drive, Bethesda, MD 20817.

Soviet space exhibit

Between June 29, 1991, and Janu-
ary 1, 1992, a spectacular array of
Soviet space equipment will be on
display at the Fort Worth Museum of
Science and History. Sponsored by
the museum, in affiliation with the
Boston Museum of Science and the
Soviet Civil Space Agency
(Glavkosmos), “Soviet Space” is the
first comprehensive collection of So-
viet space materials ever to visit the
United States. The exhibit features a
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full-scale model of Sputnik 1, a four-
ton space telescope, rockets, inter-
planetary probes, a space motorcycle,
and a lunar rover. For more informa-
tion, call 817 347-4062.

Publish your researchl

Every February and September,
Michael Farmer publishes an assort-
ment of papers written by high
school students on the topics of
botany, chemistry, computers, earth
science, mathematics, physics, and
zoology, among other sciences. The
Journal of High School Science Re-
search was founded two years ago by
Farmer, a former chemist and teacher
who wants to provide young scien-
tists with a model outlet for future
research. If you would like to receive
the journal or are interested in the
submission requirements, write to
Michael Farmer, Editor, Applied Edu-
cational Technology, PO Box 193,
Tigerville, SC 29688.

—E.T.

Student supercomputing

The Cornell Theory Center is
again offering a summer program
called “SuperQuest.” Open to all of
the 23,000 high schools in the United
States, SuperQuest offers advanced
supercomputing specifically for high
schools. Teams consisting of 3—4
students and one teacher-coach will
be selected to come to Cornell for
three weeks in the summer of 1992
to learn about supercomputing
research and its applications. The
students will take classes in
supercomputing techniques, meet
with supercomputer researchers, and
work with Cornell’s technical staff
to develop their own programs.

Sponsored by IBM and the
National Science Foundation,
SuperQuest’s goal is to foster
creativity in devising computational
solutions to scientific problems, and
no area of scientific endeavor is out
of bounds. For an application booklet
and more information, write to
SuperQuest, Cornell Theory Center,
424 Engineering & Theory Center
Building, Ithaca, NY 14853-3801, or
call 607 255-4859.

Mattiematics and Informatics

The purpose of this Bulletin Board
item is to extend a warm welcome to
a new journal, which is soon to be-
come a quarterly publication with
the new title Mathematics and
Informatics Quarterly. You can ob-
tain a copy of the pilot issue by writ-
ing to me; subscription information
will be soon be distributed not only
nationally but in all English-speaking
countries as well as among students
and practitioners of mathematics
who recognize the importance of
English as the major language in
mathematical communications.

In addition to articles and notes
written for students and teachers at
the high school level, Mathematics
and Informatics features several
problem sections, including the prob-
lems and solutions of the Interna-
tional Mathematical Talent Search,
which is a take-off on the USA Math-
ematical Talent Search, presently fea-
tured in Consortium. Moreover,
there is a delightful section of “For-
gotten Theorems,” which should be
of special interest to lovers of math-
ematical gems.

Mathematics and Informatics is
edited by an international team of
mathematicians, including Petar
Kenderov and Jordan Tabov of Bul-
garia, Willie Yong of Singapore, and
Mark Saul (Quantum’s field editor
for mathematics) and myself in the
United States. It’s supported by the
Institute of Mathematics of the Bul-
garian Academy of Sciences and the
Union of Bulgarian Mathematicians,
and is published by Science, Culture
& Technology of Singapore. The
yearly subscription price is US$12 for
individuals and US$20 for libraries.
Checks should be made out to Math-
ematics and Informatics and sent to

Dr. George Berzsenyi
Department of Mathematics
Rose-Hulman Institute
of Technology
Terre Haute, IN 47803-4999
USA
—G.B.
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\\ You'll find that mathematics can
be funny and that mathematicians
\ can laugh at themselves.

Share a good laugh with your
friends! Order your copy now.
WK 58 pp., #266, $4.50.
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Physics

The velocities v of the sacks at the
moment the second sack touches the
floor can be determined by the law of
energy conservation:

1
E(ml +m,)v? = mygH.

After that the first sack will move
along the table until the string is
stretched tight. At this moment the
second sack accelerates with a jerk,
so the velocities of the sacks become
equal.

The changes in the sacks’ veloci-
ties have the same value, as if the sec-
ond sack were on the table (and not
on the floor). This is because the
sacks interact by means of the string,
and the force acting on the second
sack is the same (though not the di-
rection) as if this sack were lying on
the table. So we can find the sacks’
velocities u after the jerk by the law
of conservation of momentum:

myv = (m, + m,)u.

After that the sacks’ movement is
determined by the law of energy con-
servation, and the highest point of
the second sack can be determined by
the relation

mygH = %(m1 +my .

So taking all these equations into ac-
count, we have

2
h= L_ﬂ_] H.
my +my

P32

It follows from the graph (fig. 1) that
during the first 50 minutes the tem-
perature of the mixture doesn’t
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change and is equal to 0°C. The
amount of heat the mixture acquires
from the room during this time is
spent on melting the ice. In 50 min-
utes, the all the ice melts and the
temperature of the water begins to
rise. In 10 minutes (from 1, = 50 min
to T, = 60 min), the temperature in-
creases by AT = 2°C. The heat sup-
plied to the water from the room dur-
ing this time is g =c m_ - AT = 84 kJ.
Therefore, the amount of heat the
mixture acquires from the room dur-
ing the first 50 minutes is Q = 5q =
420 kJ. This amount of heat was
spent on melting ice of mass m;: Q =
A - m.. So the mass of the ice in the
bucket brought into the room is

Q
=—==12 kg.

P33

The gas is rarefied enough that a
molecule would pass through all
parts of the vessel during this
minute. (To prove this you can esti-
mate the average length of the
molecule’s mean free path under the
given conditions, and you can see
that it’s substantially greater than the
size of the vessel.) The pressure on a
side is determined by the blows of all
the molecules; if m is the mass of a
molecule (for helium, m=7 - 10 g)
and v_is the average velocity of a
molecule’s blow, then

_ PSAt
2mv, '

_2mv, Ny,

sat b

where N, is the number of blows of
all molecules on a side of area S dur-
ing the time At; so one molecule hits
the top of the vessel ~ N,/N times,
where N is the total number of mol-
ecules. We can estimate the velocity

Vx

=4 kT/m,
so that, finally,

_ N, _ PSAt
N 2mNv,

VKT/m 5 5105,

2a

No

where the gas law PV = NKT has
been used (V = a3, a = 10 cm).

P34

If we consider the photographic plate
as one side of a cube inside which the
source is located, then the source will
be at the cube’s center. So 1/6 of all
emitted particles reach the plate, and
the number of all particles emitted
during an hour can be determined as

N=6-200-3,600/10=4-10°.

There’s no need for more accurate
calculations because the emission is
a random process and the counted
number of traces (200) isn’t too large.

P35

The illumination of every part of the
Earth’s surface is determined by
straight solar rays and by sunlight
dispersed in the atmosphere. The
shadow delimits border of the region
into which the straight rays can’t
reach. If there were no light at all at
this spot, the shadow would be black
(colorless). But on a sunny day (when
there are no clouds in the sky), the
dispersed sunlight is blue (the color of
the sky). Falling on the shadow (that

R



is, the spot where the straight rays
can’t reach), this light is reflected
from the snow without substantial
absorption (this is a property of the
white snow), and so these rays give
the shadow a blue tint. The cleaner
the snow, the more clearly this effect
is seen.

So the painters were correct in ren-
dering the shadows blue.

Math
M31

The blot is a circle of radius r = R.

Figure 2

Let A be the point of the blot
whose shortest distance from the
blot’s boundary is r. Then the blot
contains the circle with center A and
radius r, since all the points of the
boundary lie outside this circle (fig.
2). Similarly, if B is the point of the
blot whose greatest distance from the
boundary is R, then the circle with
center B and radius R contains the
boundary, and so the blot itself. Since
circle B contains the blot, and the
blot in turn contains circle A of the
same radius, the circles must coin-
cide. So the blot coincides with both
circles.

M32

Leta, a,, .., a, be the first terms of
the sequences in question, and d , d,,
..., d_ their respective differences.
Since the product of all the differ-
ences belongs to one of the se-

quences, the equality

dd..d =a+kd

holds for some i, 1 <i < n, and some
integer k. It follows that a, =
did,..d,_.d,,..d, _Jisdivisiblebyd.

i-17i+1°""

M33

Here is one of many possible solu-
tions to this problem.

Denote the centers of the given
circles by O, O,, O,, O, and their
pairwise intersections by K, L, M, N
(fig. 3). Segment O, O, cuts the com-
mon chord AK of circles O, and O, at
its midpoint P, and since the circles
are congruent, P is also the midpoint
of O,0,. Similarly, segment O,0,
and the common chord AL of circles
O, and O, have the same midpoint
Q. It follows that PQ is a midline of
both triangles O,0,0, and AKL, so
CTO; =2PQ=KL. Replacing O, in
this reasoning with O,, we get the
equality 51_53? = NM. Thus KL = NM,
meaning that KLMN is a parallelo-
gram.

Figure 3

This problem is closely related to
problem M6 (May 1990}, in which
three congruent circles meeting at
one point were considered. In the
solution to M6 you can find some
beautiful properties of such circles
and the triangles associated with
them; these properties may prompt
you to find other solutions to M33.

M34

The answer is 1,800. We'll solve the
problem for an arbitrary n and then
substitute n = 1991.

Writing out the lines of numbers

QUANTUM/ANSWERS, HINTS & SOLUTIONS

resulting from successive steps of our
process, we obtain the table shown in
figure 4. Clearly all new numbers
that appear in the kth line of the
table—that is, at the kth step of the
process—are greater than the num-
bers that appeared in the (k — 1)th
step, which in turn are greater than
the new numbers from the (k — 2)th
step, and so on. So the numbers writ-
ten down at the kth step are all not
less than k. This means that the nth
line of our table contains all numbers
n that ever appear on the segment in
the course of our process. Let’s try to
find out how many of these n’s there
are.

Every time we write down a num-
ber n according to our rule, between
the neighboring numbers g and n - a
we create a pair of consecutive num-
bers a and n in that line of the table,
where a < n. Conversely, if a pair
(a, n), a <n, occurs in the table—that
is, n stands to the immediate right of
a in some line—then the number n of
this pair (and not a) appears for the
first time in this very line. So the
number of nn’s in the nth line is equal
to the number of pairs (g, n), a < n,
that occur in our table. We'll prove a
little later that every pair (a, b) of
coprime numbers a and b occurs in
the table exactly once, while every
other pair doesn’t occur at all.

So the number of pairs (g, n), a < n,
is equal to the number ¢(n) of num-
bers, a < n, that are coprime with n.
Forn =1991 =11 - 181, all the num-
bers less than n that have common
divisors (other than 1) with n are of
the form 181k, 1 <k <10,0r 11m, 1
< m < 180. There are 10 + 180 = 190
such numbers, so ¢(1991) = 1,990 —
190 = 1,800, and this is the answer to
the problem.

Now it remains to prove the above
statement. We'll do it by induction
over s = a + b. For s = 2 the statement
is obviously true—the only pair with
s=2is(1, 1). Let it be true for all pairs
{a, b), a + b < s, and let’s consider a
pair (g, b), a + b = s. We can assume
a < b, since the table is symmetrical
with respect to its vertical midline.
Pair (a, b) occurs in the table if and
only if pair (a, b — a) occurs in the
preceding line (fig. 5). But a + (b - a)

0
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= b < s, so by the inductive hypoth-
esis our statement is true for
(a, b - a), and common divisors of
numbers a and b — a are the same as
those of a and b. Therefore, the state-
ment is also true for (g, b), and we're
done.

b-a

a

b-a

a

[ JSH

Figure 5

By the way, our table has already
appeared in Quantum in another
form (see “Genealogical Threes” by
A. Panov, Nov./Dec. 1990), and the
above statement is equivalent to
problems 3 and 4 from that article.

M35

Denote the segments of the lion’s
route by x,, ..., x, and the angles of its
turns by a, ..., 0, _, (the number of

turns is 1 less than the number of
segments). Let’s straighten the route

Figure 6
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by turning it successively around the
ends of segments x, through angles
o, to make each x, | the extension of
x,, and rotating the ring together with
the segments (fig. 6). Instead of a bro-
ken line we get a straight segment
LL’ 30,000 m long consisting of the
smaller segments LL, =x, L L, = x,,
vy Ly _ L' = x,. Now let’s follow the
path of the ring’s center O during our
successive rotations. The first rota-
tion around L, takes O into the point
O, suchthat L, O, = L,0 < 10 (the lion
always stays inside the ring!) and
angle OL O, = o, Therefore,
OO, < 10a,. Similarly, the distance
from O, to the next position O, of the
center is less than 10a,, and so on. It
follows that the distance between the
first and the last positions of point O
can be estimated as

OO0’ < 10(at, + ... + 0 _ ).

On the other hand, the inequality LL’
<LO + OO’ + O'L’ (fig. 7) yields

OO0’ >LL'-LO-0'l’
>30,000-10-10
=29,980.

So o +...+0_, > 2,998 rad.

0'
o
® <
L L, Lz eoe L'
Figure 7

Brainteasers

B31

One of any 18 successive numbers is
divisible by 18; so the sum § of its
digits is divisible by 9, and the last
digit is even. Since the number has 3
digits, S is not greater than 9 + 9 + 8
=26;50 S =9 or § = 18. In both cases
S divides into the chosen number.

A7
Figure 8

B32

Adding the shaded area to the area of
the red part of the square (fig. 8), we
get the area of triangle AED, which is
half that of the whole square. Simi-
larly, the sum of the same shaded
area and the blue area is equal to the
area of the square minus the area of
triangle ABF, which is also half the
area of the square. So the areas in
question are equal.




B33

As the temperature increases, the
pendulum’s length also increases,
but the mercury, because its volume
increases, goes up the tube. A proper
selection of the volume of mercury
and the diameter of the tube makes
it possible to keep the distance from
the pendulum’s point of suspension
to its center of gravity constant. As a
result of this design the pendulum’s
period of oscillation doesn’t depend
on temperature and the clock’s accu-
racy is increased.

B34

See figure 9.

Figure 9
B35

See figure 10 (two opposite faces of
the cube are covered with four small
triangles each; a third face is covered
with the two bigger triangles; the
three other faces are covered with the
square portions of the given sheet).

Figure 10

Griminal geometry

1. Since AB must be shorter than
BC, angle BAC must be smaller than

angle BCA = angle DCE, or, in the
notation of figure 11, o < B. Similarly,
B <y<®8<e<aq,leading to a contra-
diction: o < a.

Figure 11

2. The reflections B, and B, of
point B in the sides of the given angle
(fig. 12) are symmetrical to each other
with respect to the vertex O of the
angle. It follows that BA + AC + AB
-BA+AC+ AB,>BB,=2BO =
20B (since the length of a broken
line is greater than the distance be-
tween its ends).

Figure 12 B;

3. Take point M of side AD such
that AM = AB (and, therefore, MD =
CD—fig. 13) and consider the point
N at which the circumcircle of tri-
angle BCM meets AD. It suffices to
prove that BN and CN are the bisec-
tors of angles ABC and BCD. If angle
AMB = o, then angle ABM = o (tri-
angle ABM is isosceles), angle BAD
=180° - 20, angle BCD = 180° - angle
BAD = 20. On the other hand, angle
BCN is subtended by the same arc of
circle BCMN as angle BMN, so it is
equal to o =% angle BCD. Therefore,
CN is the bisector of BCD. Similarly,

Figure 13

if angle CMD = B, then angle MDC =
180°-2p, angle ABC = 2, angle NBC
= 180° —angle NMC =B, so BN is also
the bisector of the corresponding
angle.

4. Yes, he’ll succeed. He must
choose the coin whose center is near-
est of all the coins’ centers to the edge
of the table (we’ll assume the table is
a rectangle) and move it to the edge
along the shortest path (fig. 14). If the
coin meets some other coin on its
way, then the center of that one is
closer to the edge than the center of
the chosen coin, which contradicts
the choice of the original coin.

C

e

Figure 14

5. We'll assume that the side of
the square is of unit length. Then
each ratio a/b in question is greater
than the product ab, since b < 1.
Therefore, the sum of all the ratios is
greater than the sum of the respec-
tive products—that is, the sum of the
areas of all the rectangles. But the
latter sum is the area of the square
and so equals 1.

Divisive devices

1. (a) 100; (b) 2; (c) 3; (d) O.

2. There are 6 apartments (from 97
to 102) on one of the floors and, there-
fore, on every floor off each staircase.
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So each staircase has 8 - 6 = 48 apart-
ments and, since 211 =48 - 4 + 19 =
48 -4 +6-3 + 1, apartment 211 is off
the 5th staircase (5 =4 + 1) on the 4th
floor (4 =3 + 1).

3. When one piece is cut into 5
parts, the number of pieces is in-
creased by 4. So the number of pieces
is always of the form 4k + 1—that is,
it yields a remainder of 1 when di-
vided by 4. Since 1991 =4 - 497 + 3,
the answer is negative.

4. The six-digit number must be
divisible by 3 - 7 - 13 = 273, and
100,000 = 366 - 273 + 82. Adding 191
we get 100,191 = 367 - 273.

5. (a) ].; (b) 5; (C) 8.

6.If GCD |k, I) = n, then a and b
have the common divisor nd > d. But
d is greater than any other common
divisor of a and b. Therefore, n = 1.

7. Let a and b be the given num-
bers, d = GCD (g, b). Then a = kd, b
= md, where k and m have no com-
mon divisors greater than 1 (that is,
k and m are coprime) and kmd? = ab
= 600. But the greatest square of an
integer that divides 600 is 100, so the
greatest value of d is 10. Example: a
=60, b = 10.

8. GCD (264, 192) = 24, so the an-
swer is 24 bouquets.

9. (a) GCD (m, n) + 1; (b) GCD (m,
1’1) = 1;

10. (a) 987,654,321 = 8
123,456,789 + 9; 123,456,789 is divis-
ible by 9, and GCD (987,654,321,
123,456,789) = 9; (b) 77.

11. Two 141 cm x 141 cm squares,
three 42 cm x 42 ¢cm squares, two
15 cm x 15 cm squares, one 12 cm X
12 c¢m square, and four 3 cm x 3 cm
squares. GCD (324, 141) = 3, so there
are no smaller squares.

12. Successive remainders given
by Euclid’s algorithm for (a, b) when
taken from the last one (equal to the
GCD of a and b) will be not less than
the so-called Fibonacci numbers 1, 2,
3,5=2+3,8=5+3,..,610, 987,
1,597.

13. o = 3/140.

14. After division by GCD (85,
204) = 17 we get 5x + 12y = 1. But 12
=2-5+2,5=2-2+1;801=5-2-2
=5-2(12-2-5)=5-5-2-12.0One
of the solutions is x = 5, y = -2. The
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general solution is x =5 + 12t, y = -2
— 5t, where t is any integer.

15. (a) yes; (b) no.

16. {a) We have to find integers x
and y that satisfy the following equal-
ity:

6x + 16y =220
or
3x + 8y =110.

One of the possible solutions is x, =
330, y, = -110. The general solution
can now be written in the form

x =330 - 8t,
y =-110 + 3¢, (1)

where t is any integer. It’s now natu-
ral to choose t in such a way that both
x and y are nonnegative. (Of course,
we can connect the batteries in the
opposite way—plus to plus—but
we'll try to avoid such a situation.)
Taking into account this condition
we have

330-8t>0,
that is,
t< add_ 41,
8
and
-110+3t <0,
that is,
t2 %: 36%.

Substituting t =37, 38, 39, 40, 41 into
equations (1) we get five solutions:

6_V. 34 26 18 10 D
batteries

16-V
batteries I % 7 10 15

(b) In this case we have to solve the
equation 6x + 15y = 220. But GCD (6,
15) =3, and 220 isn’t divisible by 3. So
the equation has no integer solution.

17. Since a = bd is divisible by c,
and GCD (b, c¢) = 1, then, by lemma
3, d is divisible by c.

18. Statements (b), (c), and (d) are
true; (a) is false.

19.1990=2-5-199; 1991 = 11 -
181; 1992 =23 .3 . 83.

20. (a) If am is divisible by n and
GCD (m, n) = 1, then a = kn, and so
b = km. (b) Suppose that the factoriza-
tion of x includes a prime number p
raised to the ath power, and the fac-
torization of y includes p raised to the
bth power. Then by the uniqueness
property of the factorization, am =
bn, while problem (a) gave us a = kn,
b = km. Include p* in the factoriza-
tion of z and repeat the procedure for
all the prime factors of x and y. The
resulting value of z is the answer.

1. The bubbles glitter because of
light reflection at the air-water
boundary.

2. Yes, you can light a fire by mak-
ing a convex lens out of the ice.

3. The light rays refract slightly at
the eye—water boundary and produce
a blurred image on the retina.

4. The light reflected at large
angles of incidence from the scuba
diver undergoes complete internal
reflection from the water-air bound-
ary. The light reflected at any angle
of incidence from the person fishing
onshore passes into the water.

5. All you need to know is the
substance’s refractive index.

6. He approaches his reflection at
4 mp/s.

7. The beam is easier to see in fog
because the light is scattered by wa-
ter droplets in the air.

8. Jewels glitter because of re-
peated internal reflection of the light
beams falling on them.

9. Sunlight
scattered by the
atmosphere is
much brighter
than the light
from the stars.

10. We can get
three images of
A (see figure 15).

11. By squint-
ing, people de-
crease the “aper-
ture” of the eye;
as with a cam-

Figure 15



era, the image becomes sharper be-
cause of the increased “depth of
field.”

Microexperiment. For example,
you can focus sunlight with glasses
for hyperopia but you can’t with
glasses for myopia.

1. First consider the rounding
function we all learned in school:
R(2.1) =2, R(2.5) = 3, R[2.7) = 3, and
so on. Then the following function is
continuous only on the integers:

x)= {X, if x is rational

2R(x)-x, if xisirrational.

. 34

Another possibility is a periodic
function:

x)= {1, if x is rational

cos(2mx),  if xisirrational.
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2. Let r # 0 be a rational number.
We note that nt'r is irrational and that
there are a countably infinite number
of numbers of the form n¥r, where N
is an integer. Simply shift them all,
by one jump, to fill the rational holes.
In other words, for each rational

number 7 # 0, map nr to r; map n’r to

nr; map m? to w’r; and so on. This
takes care of every rational number
except zero. We map e to zero, e* to
e, €3 to €2, and so on. The function we
desire is

x/m, wherex=n"r,
with rational,
nonnegative r

flx)= and integral N>1

0, wherex=e

x/e, where x = eN

x, otherwise.

Further questions that we

couldn’t answer: (1) Can our solution
be simplified? (2) Can the R® space be
filled with the irrational points on a
line segment? Can this be done el-
egantly?

L atin triangles

Here is the solution to the prob-
lem posed in the last Toy Store
(March/April).

Figures 16 and 17 illustrate one of
the ways to color the nodes of a tri-
angular grid so that the colors are all
different on every line parallel to a
side of the triangle. Let the number
n of nodes on a side of the grid, which
is equal to the number of colors, be
odd (see the part of figure 16 enclosed
in the frame for n = 5). Then we draw
2n - 1 vertical lines through the
nodes of the grid and paint the nodes
on each line the same color so that
moving from left to right we encoun-
ter the colors in the order 1, 2, ..., 1,
1,2, .., n-1(different numbers here

denote different colors). When n is
even, this method doesn’t work (try
it!), but a minor correction will fix
that. At first we ignore the bottom
line of the grid and paint the remain-
der (framed in figure 16) as above.
Then we extend the vertical lines
and the coloring onto the bottom
line. This leaves only the two bottom
vertices of the big triangle uncolored.
We color one of them (say, the left
one) the nth color, which hasn’t been
used so far (in our figures, it’s blue).
The other one is painted the color
that hasn’t been used in the bottom
line—that is, the top vertex color.
Now we have only one problem left:
the colors of the top and right verti-
ces are the same. To get rid of this
coincidence, swap the colors of the
right vertex and its left neighbor and
then replace the two new coincident
colors (marked with stars in figure
16) with the nth (blue) one. The re-
sult is shown in figure 17 (for n = 6).
After the swap we’ll always have
only two coincidences, so the
method works for all even n except 4.
When n = 4 the two starred nodes
show up on the same line of the grid;
but, searching through all the possi-
bilities, we can assure ourselves that
in this case the problem can’t be
solved at all.

Duke

In the second thermoscope the
crucial role is played by thermal ex-
pansion of water. Since this thermo-
scope is completely filled with water
and sealed, the water can only expand
by filling a portion of the space occu-
pied by air in the
vessels. The air can't
resist the water
since air’s resistance
to compression 1is
many times less
than that of water.
This results in a de-
crease in the buoy-
ancy of the vessels,
which then sink to
the bottom.

Figure 16 Figure 17
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TOYSTORE

The a-maze-ing Rubik's cune

Watch out for “tunnels” and “dead ends”
in this variation of the classic block

O GET YOUR RUBIK’S CUBE
(you must have one somewhere
among your old toys!) and a roll
of cellophane tape: in two min-
utes you can make a totally new, ex-
citing puzzle. This puzzle was origi-
nally created, in a slightly different
form, by the French inventor Raoul
Raba. Figure 1 shows Raba’s
“taquinoscope.” It looks like three
intersecting circles cut into 10 curvi-

Figure 1

linear triangles so that it’s possible to
rotate the circles. After several rota-
tions the triangles get scrambled and
(just as with the cube) you must try
to restore the pristine, regular state.
But what has the flat, round
taquinoscope to do with the three-
dimensional, rectangular cube? To
see what, look at figure 2, where a
modified Rubik’s cube called a
“bicube” is shown. The bicube is
obtained from an ordinary cube by
fastening in pairs 18 little “cubelets”
of three adjacent faces of Rubik’s
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cube. (This is why you need the tape.)
To make it easier to tell the double
blocks from the unit ones, you can
tape colored paper over the adjacent
cubelets that form a double block.
The cubelets on the other side of the
cube, which are not visible in figure
2, are left as they are. Comparing fig-
ures 1 and 2, we immediately see the
correspondence between the “vis-
ible” elements of the bicube and the

Figure 2

pieces of the taquinoscope. And it’s
not just a superficial likeness: each
transformation of the taquinoscope
caused by a series of rotations of its
circles corresponds to the transfor-
mation of the bicube resulting from
respective rotations of the three “vis-
ible” faces. So the puzzles turn out to
be absolutely equivalent. It’s this
three-faced version of the bicube that
we’re going to explore.

This recasting of Rubik’s cube dra-
matically alters its properties as
well as its solution. You notice at

W

once that every double block locks
one of the faces, so this face can’t be
turned. What faces are rotatable de-
pends on the configuration of the
bicube—that is, on the arrangement
of the blocks irrespective of their col-
ors. As opposed to this, an ordinary
Rubik’s cube has only one configura-
tion, and we can always rotate any of
its six faces. So the usual algorithms
for solving the cube don’t work with
the bicube, since standard sequences
of face turns used in them are imprac-
ticable for most configurations of the
bicube. So let’s first examine all pos-
sible configurations and their inter-
connections.

Most of the configurations have
only one unlocked face. We’ll call
them tunnels, since when we hit any
of them after some rotation we can’t
“turn off the road”: all we can do is
either return (rotating the same face
back) or move ahead (repeating the
previous turn of the same face). All
other configurations are represented
as nodes of the graph shown in figure
3. A colored arrow joining two nodes
of the graph means a clockwise quar-
ter turn of the face of the same color
in figure 2 (that is, blue arrows corre-
spond to top face turns, and so on).
Moving against an arrow means, of
course, a counterclockwise quarter
turn of the respective face. There are
only four junctions (configurations
with three free faces), and their dia-
grams are inserted directly into our
graph. One of them, in the center, is
the origin (the configuration of the



initial state of the bicube). Other con-
figurations represented in our graph
have two unlocked faces each, but
these are of two kinds. Those de-
noted by white circles with loops
might be called dead ends: for ex-
ample, the red loop at node a below
the origin means that rotation of the
red face in the corresponding dead-
end configuration leads us through a
series of tunnels back to a. Black
circles denote switches (configura-
tions that allow us to get to another
nontunnel configuration by switch-
ing the rotated face). The graph
shows that, starting from a switch,
we have only one way to turn each of
the two unlocked faces to get to the
next switch or junction. Turning the
faces through other angles, we’ll get
to tunnels that aren’t shown so as
not to overload the figure.

Now, playing with the bicube is
like wandering in a sort of maze. And
we can see from figure 3 that this
maze isn’t too intricate. The rule
that will always lead to the origin is
quite simple: keep moving forward,
avoiding tunnels, until you get to a
junction; then repeat the last move
(turn the same face) and make one

Figure 4

more move. The next
move is determined
uniquely every time.
But the cube you're
playing with is a
magic cube, so no
wonder the maze
you're wandering in is
magic, too: after wan-
dering and returning
to the origin several
times, you may find
that the coloration of
your Dbicube has
changed, even though
the configuration has
been restored. This
means the blocks
have been rearranged.

Here I'll stop and
leave you something
to solve: try to find all
the possible rear-
rangements of the
blocks for a given con-
figuration—say, the
origin. I'll just give
you a couple of hints,
If you start from the
origin and move along
the black arrow on the
graph, turning the cor-
responding  faces,
when you come back
you'll have five double
blocks rearranged in the cyclic order
shown in figure 4. You’ll get two
other five-cycle rearrangements mov-
ing along two other similar closed
routes on the graph. All possible re-
arrangements can be obtained by re-
peating these three in a different or-
der and a different number of times.
And I'll reveal one last secret: there
are only 60 rearrangements, though
one would expect 12 times as many,
since the total number of permuta-
tions of six blocks is 6! = 720.

It’s rather difficult to prove these
statements if you're not going to use
a computer (which makes it rather
dull). But even more difficult is an
investigation of the “superbicube,”
which is the same puzzle except that
all of its six faces can be rotated. In
this case, I don’t even know the num-
ber of possible rearrangements. [@]




“There are often darys when I go back
to the basics | lecrned at Kenyon.”

—Stephen Carmichael, Kenyon Class of 1967,
professor of anatomy, Mayo Medical School

or many science students, the small =

college’s emphasis on strong teacher- =
student relationships and opportunities to §
participate in — and be recognized for — =

solid research with faculty members are =
powerfully appealing. There is also the :
promise of access to sophisticated equipment and

instrumentation that the small college provides.

These qualities, as well as its renown as a
premier liberal arts and sciences institution, make
Kenyon College an ideal choice for students who
plan to pursue education and careers in the
sciences. From 1980 to 1990, an average of 24
percent of Kenyon seniors annually were awarded
degrees in the narural sciences — biology, chemis-
try, mathematics, physics, and psychology. That is
more than three times the national average of 7
percent. And fully 75 percent of the College’s
science graduates pursue advanced studies.

Such results would not be possible without
faculty members dedicared to teaching, and
Kenyon's are among the most able and committed
at any small college. But because they believe
learning is not confined to the classroom, they also
actively involve themselves and their students in
research projects. Currently, those projects are
sponsored by such prestigious organizations as the
National Institutes of Health and the National
Science Foundation.

Together, students and faculty members in the
sciences create an exciting atmosphere at Kenyon
for study in the natural sciences. Both find the
camaraderie and sense of shared purpose potent
stimuli for learning and working at the peak of their
capabilities.

For more information on science study at
Kenyon College, and on special scholarships for
science students, please write or call:

Office of Admissions
Ransom Hall
Kenyon College
Gambier, Ohio
43022-9623
800-848-2468

Kenyon physics major Aaron Glatzer (left) consults with Associate Professor of
Mathematics James White on his research, which involves building electronic circuits to el I OI I O e e
imitate neurons and newral networks.
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