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GALLERY O

I YONEL FEININGER ll87l-19561presents us with an-
L other case of a musician diverted into another field. The
great physicist Max Planck seriously considered music as

a careert as we learned in Quantum Smiles (Sept./Oct.
1990). Feininger was bom in New York City and went to
Germany in 1887 to study music, but ended up taking up
paintlng instead. He stufied in several European cities and
worked as a cartoonist for German humor magazines and
the Chicago Tribune. He came under the influence of the
Cubists, as did many artists of the time, and was particu-
larly affected by the work of Robert Delaunay (see Gallery
Q in the same issue). After the first world war Feininger

NotiontlGalleqof .,1rt, l\,ir.shrr.qtor/a,.rllectrtnof lttr. dndrl'1.! 11nrirllirl1onre \'(;l

Tlte Bicycle Race \I9l2l by Lyonel Ferninger

joined the Bauhaus, Genrrany's innovative qchool of de-
sign, whose aim was a synthesis of art, science, and
technology. He returned to the United States in 1936
when the Nazis came to power.

Feininger's style is generally not as distorted as that of
other Cubists. "The Bicycle Race" is characteristic of his
work, with its faceted ob jects and vibrant colors. In this
painting he also effectively transmits a sense of motion
and freshness. It seems to propel us into spring---or gives
us the energy to do the pedaling ourselvesl After all, what's
the point of all our mathematical training if not "problem
racing"? See Gary Sherman's article on page 50.
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The fellow doing a beautiful swan
five on the cover maybe surprised to
find out he's diving into a pool of
paint! He dove off a perfectly ordinary
infinite planar surface, but what a
mess he's headed for. It tums out that
the amount of paint in the pool is
enough to cover the infinite surface
that served as his diving platform.
What's goingonhere? It's the "paintels
paradox"-see if you can make heads
or tails of it. The article begins on
page 10.
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PUBLISHER'S PAGE

Thanks lor yotlt' sttpporl!

You helped us through our first year

rcceive four issues, rcgardless of when
you subscribed. If you paid fulJ pilce
($14 for students, $18 for nonstudents,
and so on), you will receive srx jssues.

So, for instance, if you subscribed at
full price in December and the |anu-
ary fFebrtary issue was the first you
received, your subscription will ex-
pire with the March/ApriJ 1992 issue.

In short: Quantum will be pub-
lished six times ayear, year-round,
beginning with Volume 2, Number 1

(Septembey'October 1991). There will
be no issues published during the
summer of '91.

year. We haven't been able to do all
that they've advised us to do, but
they've made Quantum a better
magazine, and their ideas may still
bear fruit in the months to come.
Whether reviewing potential articles
or contributing pieces themselves, our
advisory board members have helped
increase Quantum's American con-
tent and make it a true collaboration
with our sister magazine Kvant.

We're also grateful to the National
Science Foundation for their contin-
ued financial support. Without the
foundation's seed money/ Quantum
would never have seen the light of
day

LookinU ahead

To help make Quantummore re-
sponsive to the needs of our primary
audience of American students, we
plan to add associate editors whose
task will be to solicit appropriate ar-
ticles from their colleagues in the
academic community. Theywill also
help us adjust the translated Soviet
articles to the math and physics back-
ground of students in US high schools,
providing footnotes and explanatory
matenal as needed. We hope tomake
the excitement of Quantum acces-
sible to a broader range of students
without watering it down.

There's still plenty of room for
improvement, and you can help us by
dropping a line with your comments.
Let us know what you like, what you
don't like, and what you'd like to see
in Quantum.

See you in September!

-BillG. Aldridge

ITH THIS ISSUE OF Quan-
tum we come to the end of our
first publishing year. We'll
use the time between now and

the September/October issue to work
with our new copublisher, Springer-
Verlag, to make a smooth transition
to a new production alrangement. We'Il
also work with our Soviet colleagues
at Quantum Bureau to plan upcom-
ing issues and try to get the materials
ready for the printer (and mailed to
you) earlier. Speaking o{ the mail,
wetl be applying for second-class matfrng
privileges, which shouldresult in faster
and more consistent delivery.

Alonlyoun $tll$criiliolt . . .
Many aspects of Quantum evolved

rather rapidly during this first year.
For one thing we started out the year
as an academic-year quarterly and ended
up a bimonthly, year-round magezins
(with this catch: year-round publica-
tion will begin with the September/
October 1991 issue). This mayhave
created some confusion for our sub-
scribers. I'd like to clarify the situ-
ation.

For those of you who subscribed
early on, after receiving one of the
pilot issues, your subscription runs
out with this issue. We wil1be send-
ing you a renewal notice, although
you may certainly send in your re-
newal without waiting for the notice.

Our introductory rate of $9.95 (for
four issues) expired on October 31,
1990. But because the pilot issues
continued to circulate, we continued
to receive subscription orders at$l9.95,
rather than the new prices (for six
issues). If you paid $9.95, you will

Loo[inU haclr

It's been an exciting and instruc-
tive year for us, and for you as well, we
hope. We're gratifiedby the positive
response to Quantum by students
and teachers, and we take seriously
the comments, suggestions, and criti-
cisms we've received. We realize
we're trying to walk a fine line be-
ffMeen challenge and banality, encour-
agement and discouragement/ excite-
ment and boredom. We're still feeling
our way toward the proper balance. If
you're a student who's used to under-
standing everything in your school
work without too much effort, we
hope you've been interested by things
kt Quanrum that your textbooks may
not have prepared you {or, and even by
things that may be just out of your
reach. If you're a student who's at-
tracted to math and physics but who
has to work hard at it, we hope you've
found topics that gave you unexpected
insights and perhaps some new skills.

We'd like to thank our advisory
board for their help during the past
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Be a lactot' in llte

OUANTUM
Bqttaliott!

Have you written an article that you
think belongs tt Quantum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Quantum author? Write to us
and we'll send you the editorial guide-
lines for prospective Quantum con-
tributors. Scientists and teachers in
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Qunnfi.rm's predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum

17 42 Conne*ticut Avenue NW
Washington, DC 20009-117 |

Back hsues d

You may ordercopies ofthe
January (premier), May, and
November/December 1 990,
and January/February 199 1

issues of Quantum. (Sorry,
the September/October issue
is sold out.)

Single copies: $S
2-19 copies: $4lea
2049 copies: $3/ea
5Oormore: $Aea

Send your order to:

Quantum
17 42 Conrre*ticut Ave. NW

Washington, DC 20009

OUANTUM

Quanrum {ISSN 1048-8820) contains authorized EnglishJanguage translations {rom Kvant, a
physics and ma*lgrn4tics mqgezine published by the Academy of Sciences of the USSR and the
Academy of Pedagogical Sciences of the USSR, as well as original material in Engtish. Copy-
rightOl99lNationalScienceTeachersAssociation. Subscriptionpriceforoneyear(iix
issues): individuaf $18; student, $14; institution/library, $28; foreign subscribers, add $8. Bulk
subscriptions {or students: 20-49 copies, $12 each; 50 + copies, $10 each. Correspondence
about subscriptions, advertisi
and editorial matters should be This project was supported, in part,

by the

National Science l
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Florida Institute of Gchnology has everything you'd expect
from a universiry. Including a lot of degrees - both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D., specialuing in Science, Engineering,
Business, Psychology and Aviation. Our modem campus is

located on Floridds famous Space Coast, in the heart of one
of Americds fastest-growing business areas.

No*, add an annual average temperature o{ 7 5 degrees,

miles of clean, uncrowded beaches, and every water sport
you can think of, and you know why students prefer F.lI
For more facts about F.lT,, the University with all those
degrees, call TOLL FREE 1-800352-8324, IN FLORIDA
1-800-3484636.

Florida Institute of Technology
MELBOURNE
150 West University Blvd., Melbourne, FL 32901
Circle No.7 on Readers Service Card

Florida lnstitute
oJ Techno
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O YOU KNOW WHAT THE
area ola sphere is? You probably
do. If not, iust look in a textbook
and you'lliind the formula 4nR2,

where R is the radius of the sphere .

And now I'11 prove that this area actu-
ally equais nzR1. Pay attention, nowl

SeeiltU is [elieuirg

-. Take half of a sphere (let it be the
Northern Hemisphere). Divide the
equator into n equal parts by points
A1, A,, ..., An, artdjoin these Points to
the North Poie l/by the arcs of meridi-
ans. Irrragne now that polygon A4r-A,

starts to rise over the
equatonal p1ane, staylg
parallel to it and con-
tracting on its way so

that its vertices slide along
.- the meridians. Then its

'. sides will cover the sur-
face rnuch like a closed
bud (fig. 1a). If the bud
opens, we get n tnangles

1fig.lbl. Let a,, be the
base of any of the tri-
angles la,,: ArAr: A.A,
= ...), and let h,, denote
the herght of the triangles.
Then the total area of all
the triangles equals
na,!t,,12. It's clear that as

of a delinilisn ol $ttl'laue ilFBil

Now you see it, now you don't

by Vladimir Dubrovsky

n increases, the area of the bud tends
to the area of the herlisphcrc, while
the polygon's perimeter na,, tends to
dre equator's length 2nR and the height
tends to nR/2 {one quarter of a merid-
ian's lengthl. Thus, the area of the
hemisphere, rvhich is thc iimit of the
bud area, equals znR . lnRlLllz =

ilR) f 2, and so the surface area of the
sphere equals nrRr.

Something's wrong here. I rnean,
we can't disbelieve geomctry books
from all over the worldl We'll ap-
proach this paradox from far off and
bcgin with the deepest root of the
problem: what is the area of a sudace?

IhB lir$ attelnlt deusloflltg

Sir, I admit your general rule,
That every poet is a fool:
But you yottrself ma, t"*!il*rr,

rhat everv f oo"'"-o,ix{rfrll; 
orro,

The simplest task is to find thc
surface areas of a cylinder and a cone:
it's possible to cut them along a linear
ruling and unroll them-or, as mathe-
maticians prefer to say, "develop" them
(fig. 2). We get a rectangle and a

circular sector/ respectively. Their
areas can atsily be computed by means

u
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of thewell-known fomiulas foom plane
geometry. By the way, the area of the
petals of our bud have also been com-
puted by developing. It might be the
simplest way of determining the sur-
face atea, but, unfortunately, few sur-
faces are developable.r For example,
anyone who ever tried to wrap an
apple, an orange/ ort say, a water-
melon in a sheet of paper knows that
it's impossible to get rid of folds or
creases. So it's common knowledge
that in practice it's impossible to de-
velop even such a simple surface as a
sphere. But how can we prove it?

N

Figure 1a

Figure 2

segment. It follows by s1,rnmetry that
this circle is a locus of points for
which the distance dlx, A) to point A
measured along the sphere is con-
stant. (The distance along the sphere
is the mrmmal length of a curve on the
sphere joining the two points. It can
be proved that such a culve is an arc of
a " great circle"-that is, the intersec-
tion of the sphere and a plane through
its center, but we won't need to do it.)
Our spherical circle can also, of course/
be considered a planar one. Then its
center is the point O, the projection of
any point X of the circle onto the
diameter of the sphere passrng through
A (fig. 3), and its "planar" radius r
ecluals OX. So the length of the circle
equals 2nr. After being unrolled the
circle C transforms into the locus of
points whose (planar) distance from A
is R-that is, into an ordrnary circle of
radius R. The length of this circle
ecluals 2nR. But r = OX < AX < dlA, X)
= R, since the length of the line segment
AXis smaller than the iength of any
curve joining A and X. Thus, the
length of the circle increases after
developing which conffadicts the main
property of developing.

-->\\
/cAA'(6')
\ \1/ V-'-_---,',\,7\/
./

Figure 3

Exercise 1. Prove that despite the
fact that the sphere is undevelopable,
it's possible to construct (a) a mapping
of a hemisphere onto a
plane that transforms
the shortest paths on
the sphere into the
shortest paths on the

plane; (b) an area-preserving mapping
of a sphere onto aplane. (Hint: see ex-
ercise 6.)

To refute a general rule it's suffi-
cient to produce a single counterex-
ample (see the epigraph). So we have
proved that developing is of no use in
our search for a general definition of
the area of a surface.

T[e second attemil: apu'otlilnalim hy

IolyllEdra
Reruad the Prior quotation!
Nevertheless/ we have no prob-

lems with some types of surfaces. It's
especially easy to find the area of a
polyhedral surface-that is, a surface
consisting of planar polygons.

So it's natural to try to approxrmate
the area of a given surface S by the area
of a polyhedral surface P close to it.
The closer P is to S, the better the
approximation, and in the limit we
would get the precise value of the area
of S. The curve length is defined in a
similar way by broken-line approxi-
mations. But we can't afford to be
careless, because taking arbitrary bro-
ken lines close to a given curve may
result in an unpleasant surprise, as

the exercise below demonstrates.
Exetcise 2. Figure 4 shows a se-

quence of broken lines of Length2tlz
each converging to the line segment
of length t. The distance between
points of the nth broken line and the
line segment doesn't exceed 1f2". Give
examples of broken line sequences
converging to the unit segment/ whose
lengths (a) tend to an arbitrary given
number 1 > 1, (b) are unbounded; (c) are
bounded but don't converge anywhere.

Everything is okay, though, with
the length of the curve if we require
that the approximating broken lines
be inscribed in it-that is, that their
vertices Lie on the curve. Let's impose
a similar condition on polyhedra ap-
proximating a curved surface and try
to find the area of the cylinder.

Divide the height H of the cylinder
into k equalparts, draw circles througlr

ffi-ffi

&-'

A1AtA,-4,

I
Figure 4

MM[N
A" Al

Figure 1b

To start with, it's necessary to
understand what it means to develop.
What's the difference between a sheet
of rubber, which can wrap anything
without folds being created, and a
sheet of paper? We[ rubber can sffetch
and shrink, while paper can't. hr other
words, the length of a curve drawn on
paper is constant for all bendings. Pre-
serving the lengths of all curves is the
main property of the process of devel-
oping.

Now imagine that we've managed
to cut a sphere into segments that can
be flattened on the plane so that this
properry holds. Mark a point A inside
one of the segments and draw a circle
C with center A that lies inside this

IUnrollable sur{aces are examined in
the article "Bend This Sheet" by Dmitry
Fuchs in the the very first issue o{
Quantum, where they are called
"developable."

OlJAITIIUIIl/TIATURI

2trRH

,AAA



Figure 5

the dividing points (fig. 5), and in-
scribe regular n-gons in the circles so
that each of them is rotated by the
angLenf n with respect to the neigh-
boring ones. |oin the vertices of these
n-gons by their edges as shown in the
figure. We get a polyhedron Pln, k)
inscribed in a cylinder and consisting
of Znk congruent triangles. If this
construction is viewed from above
(fig. 6), we would see that the margin
do between our cylinder and the cylin-
der touching horizontal edges of the
polyhedron tends to 0 as n increases.
Thus, polyhedra P{n, k) "tends" to the
cylinder as r? -> o irrespective of
the number of layers k. But what hap-
pens to their areas Aln, kll

Let a,, be the base and h,, u the
altitude of an arbitrary triangle forming
Pln, k) (the base lengh doesn't depend
onk). Then

A(n.k) =Znk.u' )l

h

2
= P,' kh,,.t,

wherep,, is the base pe rimeter of our
polyhedron. Clearli as n increases,
the perimeters p, tend to the length
2nR of the base circle oi the cylinder
(where R is its radius). But the behav-
ior of the second term fth- depends
on k. If we fix k = 1, then the value

kh, o: h, , evidently tends to H as

, -, o, dnd, consequently, Aln,ll
-> ZvRH. This is the correct value of
the cylinder's side area. The same
happens for any fixed k. But if k
increases with n (the number of faces
in alayerl, then the limit of the areas
A(n, kl can be different. You'll know
the details from exercise 3, so now let
me give you only one example. Choose
a sequence of numbers k, such that
k d increases rndefinitely-for instance,
in such a way that k,> nf d,(recall that

d is the margin between the inscribed
and the circumscribed cylinders for
the polyhedron P(n, kl; it follows from
figure 6 that d,: R(l - cos n/n)). Then

h
A(n.k,) = pn'kndn 

t, 
p,'kndn

(evidently h,,t,, d,f.or any n andkl.
So the areaAln, k,)increases indefi-
nitely despite thefact that thepolyhedra
P(n, k,l converge to the surface of the
cylinder! The reason for this arnadng
phenomenon is that when n increases,
the faces of P{n, k,) make increasing
angles with the surface of the cylin-
der, and the area of the polyhedra
increases because of the multiple folds.

This construction was invented in
1890 by the German mathematician
H. A. Schwarz ll$43-I92ll. Lrmathe-
matical folklore it's called Schwarz's
boot.2 It shows that our new defini-
tion of surface area doesn't work. More
precisely, the definition needs refin-
ing: the notion of the "closeness" of a
polyhedron to a surface should take
into account not only the distance be-
tween their points but also the angles
between the faces of the polyhedron
and the surface. But this makes the
definition too complicated. In any
case/ to use it for calculating the area
of a sphere is unreasonable, to say the
least.

Exercise 3. Show that the areaof
Schwarz's boot is given by the for-
mula

A(n,k) = PnH,

2In the Quantum Toy Store at the
endof this issue, we showhowto make
a paper model of Schwarz's boot.

If you're familiar with the ecluality

lim sinr/x= 1 ,
x-+0

try to choose for any given number A
> 2nRH a sequence ko such that the
areas Aln, k,) tend to this number.

T]te tltlinfiowski delinition

The road length equals its area di-
vided by its width,

-Frcm 
a lecture for high school

students 
"

About a hundred years ago Her-
mann Minkowski (1864-19091, an
outstanfing German mathematician
and physicist, suggested a new ap-
proach to the definition of the area of
a surface. He devised a way of reduc-
rng the computation of the area to the
computation of the volume.

Imagine that you have to paint the
roof of ahousethathas averycompli-
cated shape. How much paint will
you need? The answer is evident: the
paint volume V approximately equals
Ah, where A equals the roof area and
ft is the thickness of the paint layer.
Thus, the roof's area approximately
equals V lh. And the thinnff the paint
layer, the more precise this equality.
Since not every surface has two sides,3

it's desirable to "paint" it all and to
divide the volume of the "paint" used
by twice the layer's thickness.

The mathematical equivalent of a
layer of constant thickness h is the h-
neighborhood S, of a surface S. It's the
set of points in space no more than h
units away from the surface. In other
words, the h-neighborhood of a figure
consists of points X such that any
sphere of radius greater than h with its
center at X intersects this figure. A
planar neighborhood is defined simi-
larh.

Exercise 4. Find the planar and
spatial h-neighborhoods of a line seg-

ment. Prove that the area of the
former and the volume of the latter
equal 2hd + nh) and nh) d + (4 I 3lnh3,
respectivel, where d is the length of
the segment.

3One-sided surfaces are discussed in
the article "Flexible in the Face of
Adversity" by A. Vesyolov in the
Sept./Oct. 1990 issue oI Quantum.

,.[ry')r'..in+1,a )
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Figure 7

Exercise 5. (a) Find the spatial h-
neighborhood of a regular hexagon.
Denote its volume bV Vlhl and prove
thatVlhllzh tends to the area of the
hexagon as.h -> 0.

(b) Prove that the volume of the .h-

neighborhood of a convex polygon
equals ZhA + nh'p * (4l3lnh3, where A
is its area and p is half of its perimeter.

Now we can get rigorous.
Dr,ErNrroN. Let V(So) be the vol-

ume of theh-neighborhood of a sur-
f ace S. The area of this surface is the
limit of the r atio V ( S ) / 2h as h -, 0,

Of course, a direct computation of
surface area with this definition is
possible only in the simplest cases.
And it rg<luires at least some familiar-
ity with calculus-narnely, the abil-
ity to calculate the simplest limits
(you'll see that these calculations are
almost self-evident). For more com-
plex cases, there are special integral
formulas that can be derived from the
Minkowski definition or other defini-
tions. Here are some examples.

Sphere (fig. 7). The points whose
distance from a sphere S of radius R
does not exceed h(h < Rl fill the space
between two spheres havingradii R - ft
and R + & and the same center. So the
volume of the l-neigfrborhood So equals
the difference between the volumes
of balls with radii R + h and R- h. (The

volume of a ball of radius r equals
a#13.1 So

'Gr) 4n(R+D3,-(R-h)3
2h32h

=fipn2+nz)3'

= 4nPz *4nh2
3

As h tends to zerot the second term
drops out and we get the answer 4nR2.
("And what about the formulan2R2,
which you tried to pass off as the right

Figure Ba Figure Bb
one? " a credulous reader is now ask-
ing. |ust hold on, I'11come back to it
before the article ends.)

Cylinder. On the right side of
figure Ba you see an axial section of
the h-neiglrborhood of the side surface
of a cylinder C, which has a radius R
and height H (more precisely, you see

half of the section). It's a rectangle
with curved angles. The curvatures
correspond to points whose distance
from the cylinder edges is less than h,
and they complicate the exact com-
putation of the volume of the .h-neigh-
borhood. But fortunately, as we'll
soon see/ the volume of these curva-
tures is so small that it doesn't affect
the answer, and so we can iust cut
them off (fig. 8b). Now we have to find
the volume of the body obtained by
rotating the rectangle of size 2h .H
about the axis whose distance from its
longer midline is R. This equals the
difference between the volumes of
two cylinders of height H and with
radii of R + h and R - h, respectively:

mH[(R *hl'-(R-ft)'] =ZtRH.2h. lrl

Dividing by 2hwe see that the area of
the side surface of a cylinder equals
2nRh.

Now about the curvatures. To
evaluate their volume let's replace
them with rings whose rectangular
section equals 2h . h (fig. Ba) and
compute the volume of the rings us-
ing formula (1). It turns out that the
total volume of the curvatures divid-
edby 2h does not exceed 4nRh and
tends to zero as fi -> 0.

Exercise 6. The volume of a ball
sector (that is, the body cut out of a
ball by a cone whose vertex is at the
ball's center) equals 2nR3 (l - cos o)/3,
where R is the ball's radius and cr is the
angle between the axis and the ruling
of the cone. Using this formula, show

ffi\
Figure 9
that the area o{ the part of a sphere
sandwiched between two parallel planes
intersecting this sphere depends only
on the distance Hbetween these planes

and equals 2nRH.
Exercise 7. Using figure 9, show

that the areaof the side surface of a
cone with base radius R and slant
height 7 ecluals nR/.

Now for one more example.

Figure 10

Circle. "But a circle isn't a sur-
face," you say. Of course not, but
Minkowski's idea can also be used to
compute lengths. To find the length
of a planar curve I, we should replace
the volume of the i-neighborhood of a
surface in this definition with the area
of the planar h-neighborhood of the
curve. In particular, the h-neighbor-
hood of a circle with radius R (for 7r < R)

is aringbetween fwo concentric circles
with radii R -h and R + h, respectively
(fig. 10). Its area equals nl(R + hlz -
(4 - fr)'l :2nR.2h. DividinsbyZh
we get the well-known formula for
the length of the circie ZrcR. Another
approach is to leave the numerator in
the Minkowski definition as it is and
replace the denominator with n-h2:

the spatial ft-neighborhood of a curve
is a thin curved pipe whose volume
approximately ecluals the product of

CONTINUED ON PAGE44
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The painlel'S paradox

ls this why some artists starve?

by A. A. Panov

volume equals the sum of the vol-
umes of all the cylinders:

V:Vr+Vr+Vr+ ....

We know that the volume of a cylin-
der with a base radius r and height h
ecluals nr2h. For the nth cylinder
(counting from the top in figure 2)we
have

1
f = 

-Cm.
2n-,

h=2"-l cm3 .

Thus

v- fr 
cm3n 2'-t

and, consequently,

In the parentheses we have the well-
known sum of a geometric sequence.
This sum equals 2, andso V= 2ncm3.

Imagine that our body of revolu-
tion is hollow. Fill it to the brim with
2rc cm3 of parnt, and then immerse our
plate in it. After you take it out it will
surely be painted---on both sides, even!

So we have two examples of impec-
cable reasoning that lead to contradic-
tory conclusions. Following the first
line of thought, we conclude that we
need an inlinite amount of paing while
the second one shows that a mere
2n grnB of paintissufficient. Thisis
the painter's paradox. I think you'll
enjoy pondering it! O

NYONE WHO I-IAS EVER HELD
a brush knows that the greater
the surface xea, the more paint
is used up. In other words, the

amount of paint needed is propor-
tional to the painted area. (One of the

definitions of surface area

is based on this observa-
tion-see Vladimir Dub-
rovsky's article in this
issue.)

1. Let's consider, by
way of example, a flat
plate composed of an
infinite number of rec-
tangles, as shown in fig-
ure 1. Here the first rec-
tangle is a square with
sidesof length 1cm. Each

subsecluent rectangle is
twice as long as the pre-
vious one, but its width
is one half that of the
previous one. Clearly

the area of each rec-
tangle equals I cm2.
Sotheareaof thewhole
figure S is in{inite:

S:(1+1+1...)cm2,

and requires an infi-
nite amount of paint.

2. Now let's think
about it another way.
Rotate theplate about
the line ray bounding
it. The resulting sur-
face ofrevolution con-
sists of an infinite
number of cylinders
(fig. 2). Its internal

v = n(r*]*{*22.
..).*3

Figure 1

Figure 2
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Sayings

"The law isnt written for fools,"
says a Russian proverb.r So is it woth-
while to improve your intellect?

Every action has an equal and op-
posite reaction. But what about inac-
tion? (O. Donskoy)

lCompare the English saying: "Fools
rush in where angels {ear to tread."

TWo people are traveling in a bal-
loon over unl<nown ter-ritory.

"Hey!" they call out to a passerby,

"where arewe?"
Helooks

carefully at
them and
yells back:

"You're
inaballoon!"

"Hemust
be a mathe-
rnaticran,"
says one of
the travelers
to the other.

answer is absolutely precise. And
third, it's utterly useless."

If the resistance measured in the
circuit

is less than expected, and in the cir-
cuit

it's more than expected, then meas-
ure it in the circuitw-L-;;x@
and it'll be right on. (G.Zadovl

Sslthh]th! 0uisl! tttamiltations ars ilt U'oUr'Bss. . .

. . . attheAutoRepairAcademy

. . . at the Mining Institute
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A look at the Earthb airy shell

byA. V. Byalko

OOK UP AT THE HEAVENLY
azure-this is the Earth's atmo-
sphere. Breathe in the air-this,
too, is the Earth's atmosphere.

lighter ones formed the Earth's crust;
and gases were separated from the
solid part to form the atmosphere.
Then the abundantwatervapor in the
EartJr's atmosphere condensed to form
the ocean.

Don't think that all this happened
once and for all in the Earth's remote
past. This process is going on even
now, although not so intensively as in
the beginning of evolution. At pres-
ent the Earth's c,rust is still being
renewed, and volcanoes are expelling
considerable quantities of water va-
por, carbondioxidg andnitrogen. Sulfur
dioxide, hydrogen chloride, and other
unpleasant gases are also being re-
leased into the atmosphere. But why
are they absent in the normal atmos-
phere?

The answer is pretty obvious. A11

the gases in the atmosphere mustbe
in chemical equilibrium with each
other, with the ocean/ and with the
material of terrestrial rocks. So acid
oxides thrown out by volcanoes dis-
solve rapidly in the ocean to form
acids. Interacting with the basic ox-
ides of the Earth's crust, these acids
form salts. Some of the salts are
dissolved in the ocean, while the in-
soluble salts form sedimentary rocks.

The attentive reader has probably
noticed a weak point in this theory.
Oxygen! There's no oxygen in vol-
canic gases, and there's no oxygen in
the atmospheres of odrer planets.

The main source of the Earth's
oxygen is vegetation. The chloro-
phyll of plants, under the action of the

Sun's rays, process carbon dioxide.
The carbon is absorbed in organic
compounds and the oxygen is released
into the atmosphere. There is, how-
ever, another source of oxygen on our
planet. To understand how it works,
we must first answer the following
questions: what restrains the atmos-
pheres of planets? Why don't the at-
mospheric gases fly off into outer space?

The atmospheric pressure at the
Earth's surface is known to equal po :
1.013 . 10s Pa. This means that the
force with which the atmosphere acts
on each square meter of the Earth's
surface equals 1.013 . 10s N. This
force comes from the Earth's gravity
and equals the weight of the air col-
umn over the Earth's surface with a
cross section of 1 m2. Since the herglrt
of the atmosphere is small in com-
parison with the Earth's radius, we
can consider that within the atmo-
sphere the free-fall acceleration is con-
stant and equal to g 

= 
9.8 m/s2. The

weight of an atrnospheric column with
a cross section of 1m2 is equal topo:
m,B, where m r(ksl m'lis the mass of
the air. So over the entire Earth's
surface, whose area is 4rcRu2, the mass
of the air is equal to m, . 4nRuz-that
is,

P"
*o=')+nn1"= 5.3. l0r8kg .

As you can seg the mass of the atmo-
sphere constitutes approximately one
millionth of the whole mass of the
Eatth mr=5. 10' kg. It's also interest-
ing to compare the mass of the atmo-
sphere with the mass of the water on
our planet: the mass of the water on
the Earth is 1.4 . 102' kg. So the
atmosphere's mass is ll2SSththat of
water.

The force of the Earth's gravitation
produces not only atmospheric pres-
sure near the surface, it also prevents
atmospheric gases from dissipating
into outer space. You know that gas
molecules are in random thermal motion
The root-mean-square velocity of
molecules at a temperature Tis equal
to

I znr
'=V u'

where R is the universal gas constant
and p is the gas's mass in mo1es. Let's

t2

Atmo$phEric$

But what is atmosphere {rom thepoint
of view of physics? What accounts for
its composition, pressure, and tem-
perature at different altitudes? Let's
try to answer these questions briefly.

Ilte comrusilion olfie atlno$l[Ers
You probably know that the Earth's

atmosphere consists of nitrogen (78"/"1,

oxygen l2l"/.1, and argon ( t %). There
are also small admixtures of carbon
dioxide and water vapor as well as
negligible quantities of neon, helium,
krypton, andhydrogen. Now let's try
to understand why our planet's di-
aphanous shell consists of these par-
ticular gases and water.

The composition of the atmosphere
is determined, first of all, by the geo-
logical history of the planet. The
Earth, alongwith the Moon and the
other planets of the solar system, is
thought to have been formed by the
collision and merging of small solid
celestial bodies. The primary sub-
stance of the planet was compressed
by the force of gravity-under its in-
fiuence the Earth took the form of a
sphere (flattened slightly at the poles
because of rotation). Compression
caused the center of the Earth to heat
up. Under the action of high tempera-
tures and pressure/ chemical reac-
tions took place in the primary sub-
stance. Heavier reaction products
descended to form the Earth's core;

I'llARCIt/APRil. r gg I



compare the velocities of various gas

molecules at a temperature of, say,
300 K with an escape velocity

u,= rflg4= 11.2kmls.

Forhydrogen, v*r= 1.3 krn/s; forhelium,
v*,. = 1 km/s; for oxygen and nitrogen,

the mean molecular velocity is about
0.5 km/s. At first glance everything is
fine. The velocities of the gases are
less than the escape velocity. This
means that the Earth can keep any of
these gases in its atmosphere. Never-
theless, atmospheric gases do volatil-

izevery slowly into outer space. This
is because the temperature in the
upper layers of the annosphere is much
higher than the temperature near the
Earth's surface (as we shall see), reach-
ing 1,000 K; so the velocities of the
molecules are about two times those
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near the surface. Not only that, we
evaluated the mean velocities of
molecules. In thermal ecluilibrium
the overwhelmrng majority of mole-
cules move with velocities close to
the mean velocity. But there is always
a smallportion of the molecules whose
velocities exceed the mean velocity
and reach the value of the escape
velocity. These fast molecules can
escape the Earth for good.

At a given temperature, hydrogen
and helium molecules have the great-
est mean velocities. It's easier for
them than for other gases to escape
into outer space/ and it's easier for
them to rise to great altitudes. One
would think that the quantity of these
gases in the atmosphere must con-
tinually decrease. But it doesn't. Why
not?

It tums out there are processes that
maintain the amount of the light gases

in the atmosphere. Helium is formed
in the Earth's crust by the decay of
heavy radioactive elements, andhy-
drogen in the upper atmosphere is
formed from water. At altitudes above
50 km, molecules of HrO break down
into hydrogen and oxygen under the
action of the Sun's ultraviolet radia-
tion. So hydrogen loss into outer
space results in a decrease in water on
the Earth and an increase in the at-
mosphere's oxygen content.

Every second about 1 kg of hydro-
gen escapes from the atmosphere. Is
that a lot or a little? Let's figure out
whether thewater in the oceans and
glaciers of the planet will be enough to
last a whi1e. (You'll recall that the
mass of the Earth's water is 1.4 .

10akg.) Nine kilograms of water contain
I kg of hydrogen. Consequently, the
Earth's water will suffice for 1.5 '

1020 s, which is 5,000 billion years.
The ocean can be considered inex-
haustible, since the Earth's age is " on1y"
4.5 billion years.

So the Earth's water is one more
source of atmospheric oxygen. Now
1et's estimate how much oxygen has
been generated over the time the Earth
has existed. This wil1be a very rough
estimate: in realiry we can't assume
that the Sun is shining the same way
now as it has all that time. But let's
try. Eight kilograms per second for 4

billion years gives us 1 018 kg of oxy-
gen-just the amount our atmosphere
contains: one fi{th of the mass of the
atmosphere.

Don't overestimate the coincidence.
After all, much more oxygen than is
now present in the atmosphere was
needed to establish the present chemi-
cal equilibrium of the Earth-to oxi-
dize methane and ammonia in the
primary atmosphere, to oxidize all the
rocks of the Earth's crust. This would
be impossible without vegeation. plants

produce on the order of 1014 kg of
oxygen per year-3 . 106 kg per second.
This is much more than that pro-
duced by the dissipation of hydrogen
into outer space. But atpresent the
oxygen content of the atmosphere
doesn't increase. A11 oxygen gener-
ated by vegetation is consumed by the
breathing of animals, oxidation of vol-
canic gases, mmbustion, arrd the decaying
of dead plants.

Near the Earth's surface, especially
at altitudes of 20 to 50 km, an oxygen

h,km

molecule can decompose into atoms:
q -, 20. This reaction is induced by
the Sun's ultraviolet radiatiorl light-
ning discharges, and certain atmo-
spheric impurities that act as catalysts.
Active monatomic oxygen rapidly reacts
with other gases, including oxygen/ to
form ozone: O + Or-> Or. Although
ozone is a strong oxidizer, it's rather
stable-near the Earth's surfacg there
is one ozone molecule on average for
every 107 oxygen molecules. This
relation, however, varies considera-
bly, depending on the time of the day,
the geographic latitude, and the pres-
ence of other impurities in the atmo-
sphere.

Ozone concenffation increases with
altitude-at a height of 30 km, there is
one molecule of O. for every 105 mole-
cules of Or; beyond that it falls off
sharply. The presence of the ozone
layer is of inestimable importance for
the very existence of life on Earth.

It must be obvious to you from
what's been said so far that the com-

4Pa

IO-8

to-r

n,cm-3

Figure 1

The change in concentration of n molecules of cefiain gases (cohorcd curves) and
the change in total concentration of molecules (the black curve) in the atmosphere
with altitude.

In the homosphere the concentration of most gases deueases equally. Above 90
km the gas content essentially depends on ahitude. [Jnder the influence of the
Sun's uluaviolet radiation, oxygen decomposes into atoms, and at altitudes of 200
to 600 km monatomic oxygen is the most abundant gas in the atmosphere. At
higher altitudes the Earth's atmospherc mainly consists of helium. Finally, at the
altitudes where gases escape into outer space, hydrogen is the most abundant gas
in the atmosphere.

Make note of the shape of the ozone (O ,) curve at altitudes of 20 to 50 km. Why
this is important fu us is explained later iit the article.
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position of the atmosphere depends
on altitude. In fact, the Earth's atmo-
sphere has a uniform composition
(that is, it's well mixed) only below 90
km. This paYt of the atmosphere is
called the homosphere. The hetero-
sphere is the portion of the Earth's
atmosphere whose composition varies
with altitude. In fact, above 700 km
the Earth's atmosphere consists only
of helium and hydrogen. It is basically
these gases that are dissipated into
outer space.

Figure I illustrates how the con-
centration of individual gases and the
total concentration of molecules in
the atmosphereyary with altitude.

T]te planet'$ lhermal equilihrium

We've seen that the flow of gases

that are lost into outer space depends
on temperature. But as inhabitants of
the Earth, atmospheric temperature
interests us primarily from the practi-
cal point of view: our living condi-
tions depend on it to such a gteat
extent.

The main source of the Earth's
thermal energy is the Sun. Human-
kind has always reahzed this. The
Russian poet Alexander Sumarokov
wrote in 1760:

O Sun, you are the life and beauty of Natwe,

The sowce of eternity, the image of divinity!
You give )ife to earth, afu, and water,

You are the sottl of Time and Matter!

Let's try to arrive at a cluantitative
evaluation of these etemal truths. The
Sun is a sphere of radius R, :
6.96 . 108 m that is heated by th-
ermonuclear reactionsi the tempera-
ture of the Sun's surface Ts: 5,800 K.

It's well known that hot bodies
shine and radiate energy. At the end of
the last century the Austrian physi-
cists Stefan and Boltzmann discov-
ered the law of radiation: the flow of
energy-that is, energy radiated per
unit of time from a unit surface areaof
a body in thermal equilibrium (having
a constant temperature)-is propor-
tional to the fourth power of the tem-
perature: e = 6Tt, where O =
5.57 . 10-8 W/(m2 . Ka) is the coeffi-
cient of proportionality, which is called
the Boltzmann constant.

The Sun isn't in full thermal equi-
librium, but the Stefan-Boltzmarrfl
law is approximately true for it. Ac-
cording to this law, the power emitted
by the Sun is equal to

P,:4nRr2oTra =3.8 ' 1026 W.

This power is emitted uniformly in all
directions. It isn't a difficult task to
calculate what portion of that power
reaches the Earth. At a distance R :
1.5 . 10tl m, which is the radius of the
Earth's orbit, the power reaching ev-
ery square meter of the surface per-
pendicular to the rays is equal to Pr/
4nR2. The surface areaof the Earth
that blocks these rays is equal to nR!.
So the power reaching the Earth from
the Sun is equal to

nR2
D-D E
r -1. ^'4nR'

= 1.75.1017w.

What is this power spent on? Some
is reflected by the Earth back into
outer space. As you well know, the
planets and the Moon are visible in
the starry sky precisely because of
reflected sunlight. In the same way
we can see the light reflected by the
Earth as we travel into outer space.
The portion of the reflected radiant
power is called the albedo (fromthe
Latin albus, "white"), which implies
a kind of whiteness factor. The accu-
racy with which we know the albedo
of ourplanet is quite small. The value
of the Earth's albedo A is taken to be
within the range of 28 to 35 percent.
What is the rest of the energy P(l - A)
expended on?

Clearly this portion of the energy is
responsible for the warm climate on
our planet. But the Earth is continu-
ally exposed to solar radiation, and i-f

no heat were removed, the Earth's
temperature would constantly increase.
So heat removal exists. It is performed
by the same physical process as the
solar radiation itself. |ust imagine,
the Earth and the other planets are
also sources of radiation. But the
spectrum of this radiation is in an area

that the eye can't see-the infrared
range.

Let's calculate the temperature of

the Earth's thermal radiation, taking
its albedo to be equal to 0.28 (in accor-
dance with the latest satellite meas-
urements). We should ecluate the
solar radiation power P(l - Al ab-
sorbed by the Earth with the power of
the Earth's thermal radiation. If the
Earth's temperature is taken to be l,
the power radiated from its surface is
equalto 4nRr2oTra. So

PIL - Al: 4nRloT,a,

from which we get

rrl
I P( l-A) I

u | +rn'z.o 
_l

=258K=-15oC.
Not a bad frostl But we know that the
average annual temperature of the
Earth's moderate latitudes is above
zero; andthe tropics occupy a consid-
erable portion of the Earth's surface,
where in both summer andwinter the
temperature seldom drops below +25C.
What's going on here? Maybe the
Earth has its own source of thermal
energy.

Well, such a source actually does
exist. It's the Earth's core. With every
kilometer of descent into the Earth's
crust, the temperature increases 30
degrees on average. This heating is
due to the energy released by the
decay of heavy radioactive elements.
Calculations show, however, that the
thermal flow reaching the atmosphere
from the core is less than that of solar
radiationby afactor of 6,000. So the
heat of the Earth's center doesn't in-
fluence the climate of our planet.

Why does the average temperature
of the Earth's surface remain con-
stant? Why doesn't it fall to -15oC,
which corresponds to the thermal equi-
librium?

IIE "laye]'GalG" olfie almosilel'e
It turns out that heat isn't radiated

into outer space by the surface of the
Earth itself but by the air enveloping
it-the atmosphere. At first glance
this seems strange-after alt the air is
transparent. But the radiation spec-
trum at a temperature of about 300 K
is in the far in{rared region. Depend-
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ing on our senses only, we can't say
anything about the ability of sub-
stances to transmit rafiation of such
wavelengths. Measurements made
by infrared s'pectrometers, however,
show that the main gases of the air-
nitrogen, o)rygeq and inert gases-are
also transparent in the in-frared range,
while carbon dioxide and water vapor,
present in the atmosphere in small
quantities, absorb infrared radiation
so strongly thatthey determine the ra-
diative properties of the Earth's at-
mosphere and the Earth as a whole.

The Earth's thermal radiation is
emitted in atmospheric iayers at alti-
tudes of 6 to 12 km. This is where the
average temperature is equal to ap-
proximately 258 K. Imagine a new-
comer to our solar system who can see

only infrared light. To this space
traveler the Earth would look like a
luminous sphere with a radius just a
bit larger than the true one. But only
seldom could the creature see the real
surface of the Earth: near the South
Pole during the polar night or in the
Northem Hemisphere (in eastem Siberia)

during the winter. This is because
only in a severe frost does the airbe-
comes so dry that the atmosphere is
transparent in infrared light also.

The part of the atmosphere that's
below the surface of the infrared radia-
tion is called the troposphere. The
troposphere contains about B0% of
the entire mass of the Earth's atmo-
sphere. You know that pressure de-
creases with altitude. At the height of
Mt. Everest, which is about as high as

the radiating surface, the air pressure
is only a fifth of normal pressure. This
means that one fifth of the atmo-
spheric mass is situated above this
peak. The troposphere is the part of
the atmosphere that has the most
practicalsignificance for us. Its mo-
tion determines all meteorological
phenomena. All the ordinary clouds
are also situated in the troposphere-
there is very little water vapor above
it. So the state of the troposphere
accounts for precipitation: rain, snow,
and hail.

Strictly speaking, the troposphere
extends into the region iocated 2 to 3
km above the surface of the infrared
radiation, where the air temperature

continues to decrease with height.
But above 15 km the atmospheric

temperature starts rising! And it in-
creases to 27O K-that is, it again
reaches approximately 0'C-at an al-
titude of 50 km. This atmospheric
layer is called the stratosphere. Why
does the temperatwe rise in the sffato-
sphere?

It tums out that the heat energy of
this layer results from chemicalreac-
tions taking place because of the ac-
tion of the Sun's ultraviolet radiation.
These reac.tions are the decomposi-
tion of oxygen into atoms and the
creation of ozone molecules (Or). The
layer of increased ozone concentra-
tion in the stratosphere (see figure 1 )

screens the Earth's surface from solar
ultraviolet radiation, which is harm-
ful to all living things.

The ozone layer is necessary for the
Earth, but it's unstable. Ozone is
partially broken down because of the
formation of nitrous oxides in the
stratospherg which end up there after
atrrospheric nuclear oplosions, powo{ul
volcanic eruptions, meteor showers,
and even rocket launches. Organic
gases containing chlorine and fluo-
rine, which areusedin aerosol spray
cans and refrigerator heat exchangers,
are also harmful to the ozonelayer.
Human activities account for some of
the destruction of the ozone layer, and

their negative consecluences arel un-
fortunately, hard to predict.

Since the temperature in the sffato-
sphere increases with altitude, this
portion of the atmosphere is extremely
resistant to mixing. Once chemical
impurities and fine dust reach the
stratospheric layer, they can remain
in it for several years, and above 20 km
they can stay for decades. As these
impurities slowly propagate upward,
they intensify the destruction of the
ozorre. But ozone is formed by the "

action of the Sun's rays, and so the
maximum ozone contentis ataheight
of 40 km above the tropics. The
distribution of the ozone layer across
latitudes is determined by these two
flows: (1) ozone from above and from
the tropics and (2) impurities from
below. But the time it takes the ozone
layertoreact to the new sources of im-
puriti.es is measured in decades.

hr the 1950s the average thickness
of the ozor;.e screen was decreasing.
From the middle of the seventies it
began increasing, which may have
been a result o{ the fact that most
atmospheric nuclear testing stopped
after an intemational treaty was signed
in 1953. Now the average ozone con-
centration throughout all the latitudes
causes no worries, but in the early
eighties a new phenomenon emerged:
a hole began to appear in the ozone

l6

Figure 2

lllIRClt/APBil. r 0gl



over Antarctica every year at the end
of the polar night. It's observed in the
Southem Hemisphere's qpring months-
September and October eyery year.
The total cohcentration of ozone in
the entire column of atmosphere is
minimal over the center of Antarctica
and is decreasing from year toyeat.

ICs awfi-rl to *rink what miglrt happen
. . . All the more so in that we still
don't know the culprit-theprocess
that is unambiguously, directly re-
sponsible for this phenomenon. But I
think we mustn't exaggerate the dan-
ger. The ozone hole will surely not
migrate from the region of polar night
to the lower latitudes. It's more diffi-
cult to say whether a similar phe-
nomenon will arise near the North
Pole.

Above 55 km the air temperature
falls. It drops to 187 K at aheight of
90 km above the Earth's surface. This
layer of the atmosphere is called the
mesosphere. The temperature falls in
the mesosphere because the air in it
absorbs sunlight weakly. The th-
ermosphere and exosphere are situ-
ated above the mesosphere. In the
thermosphere the temperature begins
to rise sharply and increases to 1,000 K
at altitudes of 350 to 400 km.t This
results from absorption of the solar
ultraviolet radiation by the main
atmospheric gases-oxygen and ni-
trogen. Above the thermosphere the
temperature doesn't change with alti-
tude. This is the exosphere, a transi-
tional region between the Earth's
atmosphere and outer space; it's the
part of the atmosphere where hydro-
gen, helium, and negligible quantities
of other gases escape from the Earth.

And that's how the "layer cake" of
the atmosphere is arranged (fig. 2).

hm[y slrsams in the almospltme
Solar energy falling on the Earth is

redistributed by the various layers of

lThis temperature can't be measured
with a thermometer-the gas density of
the thermosphere and exosphere is so
low that thermal equilibrium between
the gas and the thermometer is never
established. Here temperature is
measured by the average kinetic energy
of the gas molecules.

the Earth's atmosphere and by its
solid or liquid surface. How this hap-
pens is apparent from figure 3, which
follows thepaths of 100 arbitraryunits
of solar power falling on the Earth.

Notice that in this illustration the
heat flow coming from the Earth's
surface is equal to 145 units, whereas
the original flow of solar energy was
equal to only 100 units. This sche-
matically illustrates the fact that the
average temperature of the Earth's
surface is +15oC, or 288 K, and the heat
flow emitted by the Earth's surface is
1.45 times that of the original 100
units given to us by the Sun. But only
some of this radiation goes off into
outer space. The rest-97 units-

circulates continuously between the
Earth's surface and the ffoposphere.

This heating of the Earth's surface
and lower layers of the atmosphere is
sometimes called the greenhouse ef-
fect, and it's really an apt description.
The Sun's rays easily penetrate the
transparent roof of a geenlrouse, warming
up the soil and air. But the heat has a
hard time escaping-the glass or plas-
tic film of the greenhouse doesn't
allow either the warm air or the in{ra-
red radiation to get out. So the green- "

house cools rather slowly.
In closing I should point out that

our current knowledge of the heat
flows shown in figure 3 is not very
precise. O

I

Exosphere
and
Thermosphere

Mesosphere

t Stratosphere

Troposphere

Eorth's
surJfoce

Figure 3
Thermal equilibfium in the atmosphere. One percent of the solar power is

absorbad by molecules in the exosphere and thermospherc. Another 3'h is
absorbed by ozone in the sftatospherc. The upper layers of the troposphere, which
contain water vapor, absorb energy in the infrared range of the solar spectrum,
This leaves 92 units of the original power.

This power, the buk of which lies in the visible range, peneftates the dense
layers of afu near the Earth's surface. A considerable poftion of it-about 45
units-dissipates in the atu. Dtuect sunTight-the remaining 47 units of the original
stream of light-makes it all the way to the Earth's surface. About 7 units are
reflected upward. The remaining 40 units arc absorbed by the Earth's lwface,
heating up the land and seas.

The solar power dissipated in the atmosphere (48 units altogether) is partially
absorbed (L0 units); the rcst is distributed between the Earth's sudace and outer
space. The amount of this eneryy gotng off into space (30% of the original flow) is
greatu than that reaching the surface.

Therc are 65 units of power left, which arc absorbed and transformed into heat
in the atmospherc and on the Earth's surface: ozone accounts for 3 units; water
vapor in the upper troposphere accounts for 4; anothu 10 units are absorbed in the
main thick layer of the atmosphere; and, finally, 48 units are transformed into heat
in the soil and water. These 65 units of power arc ultimately tansformed into
heat and are rudiated into space, not in the visible or uhraviolet ranges but as
thermal rudiation.

1l
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latin l'eclanules

HAT ON EARTH IS THIS
article about?

A mathematical housing project

by V. Shevelyov

It's about rectangles "inhab-
ited" by various positive inte-f I 1ted" by varrous posltlYe lnte-

ger numbers. If you divide a rectangle
by lines parallel to its sides into m x n
squares and "populate" this m x n
"apartment house'l having m "{loors"
and n "entrances" by positive integers
l, ..., fi in such a way that the numbers
on each floor and in each entrance are
different, you get what mathemati-
cians call aLatinrectangle. Each of
the numbers l, 2, ..., n in it is repeated
rn times, and the "families" of ones,
twos, threes, and so on/ inhabit m
apartments situated on di{ferent floors
and in different entrances. In times
past this house used to be inhabited by
letters of the Latin alphabet, and this
is the reason for its name.

There is a branch of mathematics
that has to do with counting various
sets and configurations. It's called
combinatorics. The problem of enu-
merating Latin rectangles is a matter
for combinatorics. But in its general
form this problem is extremely diffi-
cult. Despite the efforts of some of the
world's very best mathematicians, more
than two hundred years passed be-
tween the enumeration of "tlvo-story"
and "three-story" rcctangles. The two-
story rectangles were enumerated by
P. R. de Monmort in France back in
17 13, andthe three-story rectangles
by the American mathematician W. I.
Riordan just 40 years ago. In addition
to the beautiful formulas of de Mon-
mort and Riordan, which we'll dis-
cuss be1ow, there are useful recuffent

formulas found by the great Euler
(we'll prove his formula) and Keravala
from India. It's curious that Keravala
had actually disproved the erroneous
recurent formulas for the number of
three-story Latin rectangles that were
proposed by the English mathemati-
cian |acob, which held for L2 years
(from 1930 to 1941). Well, this hap-
pens in mathematics when difficult
problems are being solved.

Hhlence ol lalin ]'eclaltulg$

TuronEm l. For any pair of num-
berc m < n there exists a Latin m x n
rectangle.

Pxoor. We'll populate our m-story
house by starting from the top floor.
On the mth floor the numbers l, ..., fr
are settled in their natural order. On
the (m - 1)th floor we begin with the
ttvo: 2,3, ..., fl, 1; on the (m - 2)th floor
we begin with the three: 3, 4, ..., n, l,
2; andso on. Finally, we populate the
first floor by starting with m: m, m +
l, ..., fi, 1,2, ..., m- l. Then the house
will be inhabited as shown in the
table. It's clear that this procedure
doesn't allow two identical "tenants"
to live on the samefloor orin the same

Table

entrance. So we've got an m-story
Latin rectangle o{ length n. Thus,
m xn Latinrectangles do exist.

Two stories
Now let's count Latin rectangles.

The problem of counting one-story
rectangles is solved very easily.

Turonrrw 2. The number of Latin
1 xnrectangJes equals n! : 1 . 2. ... .n.

Pnoor. A Latin I x n rectangle is
simply an arbitrary permutation of n
numbers. There are n! such permuta-
tions (the first position can be occu-
piedby any of the n numbers; for the
second position there are only n - I
numbers left; and so on).

Consider a2xnrectangle. The top
line of such a rectangle is an arbitrary
permutation. The lower line is a

permutation in which the number in
each position does not coincide with
the number in this position in the first
permutation. If we permute the col-
umns of our rectangle arbitrarily, it
will still be a Latin one, so the top
permutation can be made to coincide
with any given one. So for any given
permutation the number of Latin rec-
tangles coinciding with this permuta-
tion in their top line is the same. A

1 2 3 n1 n

2 3 4 n 1

m m+L *a m-2 m1

L atin} x nrectangle is said
tobe normalized if its top
line is 1,2, ..., n - l, n. It
follows from the reasoning
above t}at the number LlZ, n)

ofLatin2xnrectangles
equals the number D, of
normalized Latin2 x n rec-
tangles multiplied by the
number of permutations of
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n numbers-that is,

ril ..l -tLlLtttl-rr..D..

There are several elegant forrnulas
for the number D, of normali,ed Latin
2 x n rectangles.

TuroRru 3 (the Euler formula),
D,=(n-1)(D,,+Dn.r).

This is called a recurrent formula
.1

since, knowingD, andD, (evidently
D, = 0, Dr.: l), we can compute D,, for
aI[ n:

D,=2. 1l + 0l= 2,
D,=3.12+1)=9,
D.=1-19+2):44,
Dn= 5 .144 +9)=265,

and so on.
Pnoor. Each permutation can ['le

written as a system of cycles. Here's
how it's done. Let the lst position be
occupied by k,. Then we write
I -, k,. If the k,th position is occu-
pied by k, we write I -, k, -, kr.
Proceeding in the same way we write
I -, k, -, k. -, k,, and so on until
we come back to I {fig. I ). No other
number already written tums up again
before I. For instance, if we get
... -, k.,-, k,o-, k-, then k- occu-
pies both the k,nth position and the
k.,th positron, so d-rat k,o = kr. Similarly,
kr= kr,..., k,, = 1). Having constructed
the first cycle, we take the smallest of
the remaining numbers and construct
a cycle starting with that number.
Ultirnately all the n numbers will be
arranged in cycles (fig. 2).

. The number of

...-' \ cycles can take any

l' \ integer value be-
,ilI ;, tween I and n, and
kt- 7 the length of a cycle

\ / is any number kom\- k" -rl I to n. The condi-

FrOUfe 1 tion of "Latin rec-r rangularity" is that
no number stays in its position, so
this forbids cycles oi iength 1.

Nowlet'sgoback
to our permutation
and construct arL-

other permutation
oflengthn-lor
n-2thatalsodoes
not contain cycles
of length 1. Oneof

the cycles includes the number n
(fig.3). If the length of this cycle
exceeds 2, we just *row n out and ioin
p and q(fig. a). If n is part of a cycle of
length 2 {for instance, as shown in
figure 5), we throw this cycle out and
subtract I &om a1l the mmbers between

/---\
k + I and n - 1:
k+1->k,k+Z
*>k+1,...,n- l
-> n - 2. In the
first case we get a
permutation of n *
1 numbers, while
in the second case
we get a permuta-

Figure 4

\l
1...

/

tation of n - 1 numbers? Clearly n - 1:

if we want to reconstruct a perrnuta-
tion of n numbers, we must break an
arbiuary anow p-> q (of which there
are n - I ) and inser't n in between p and
q, Iike this: p->n -> q. How many
ways are there to obtain a permuta-
tronof n-2numbers? Again, n- l: we
adda cycle n .->k,where k is an ar-
bitrary numberbetween I and n - 1,

s ----J-.
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I
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\\/
P\----"

Figure 3

tionof n -2 num-
bers. Howmany
permutations of n
numbers can give
a certain permu-
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Iltrss slories

Attempts to find the mrmber Ll3, nl
of Latin 3 x n rectangles were crowned
with success nl944whenW. |. Rior-
dan, basing his effort on results of his
numerous predecessors, at last wrote
out the final formula. I won't glve you
its derivation (which falls well outside
any high school course), or even the
formula itself, which is rather cum-
bersome. I'11 just give you the recur-
rent Keravala-Riordan formula: if

K-=LL(3,D,
' nl.

then forn > 4

Kn= n2K, - ,* n(n - l) Kn -,
+2n(n-1)G-2)Kn_3

+(-l)'(r,+Zrr,_r).

where e, is found from its own recur-
rent formula (somewhat similar to
the formula for D,l:

ao: !,
an:17An_r+ l-zY.

Using these formulas and the fact
that K, : Kz: O, Kr: Z,we can easily
find K, for all n. For instance,

Ks:552,
K7: l'073'760.

It's clear from these formulas that the
numbers K, grow very rapidly. The
numbers L(3, nl, of course, grow even
more rapidly.

and increase the numbers k, k + 1,

n-2by 1. Thus

D,: {n- 1 )D,-, + ln - llD,-r,

and the nroor r. complete.
Here is another recurrent formula

for Dnthat is much simpler.
THEoneN{ 4. D,: fiDn t+ F1)".
Pnoor. LetD,-frDn r=E,. From

Euler's formula

E :D -nDn n n-l

= ln - llD,_r+ ln - llD, z- nD,_t

:-D,_t+ (n- llD, ,=-En_r.

Thus

E n= -E,_t: E,_z=... : (-1 )'Er.

But E, : | -2. 0 = 1, so E,: (-1)", and
Dn = nDn-r+ (-l)".

The last {ormula easily yields a
formula tor D,that is not a recuffent
but an explicit one.

TnEonlnr5 (the de Monmort for-
mula).

-l*"'+(-l)'-1--l5! nl -l

Pnoor. See the boxbelow.

The expression in brackets may
seem familiar to those of you who
know basic calculus. It does to me/
but I'11 postpone "unmasking" it un-
til the concluding section of the ar-
ticle.

As for the de Monmort formul4 it
was provedbefore
the two previous
f ormulas were
stated. Its direct
proof is based on
the inclusion-ex-
clusion formula,1
and readers famil-
iar with it can eas-

ily derive the de
Monmortformula.
Nowwe'lltumour
attention to three-
story Latin rec-
tangles.

D =rtD +( l)"ltnl

t 
,,, ll*,_1,,,=rtl(rt-l)D,,2'(-l I.

= n.(.n-1) D +(-1)"-1n+(-1)"
rt)

= n(n- l) (n-2) D,, .+(.'1)'' 
2 n( n-1)+(-1)"-lr+(-1)"

=n(.n-l) (n-2) . ....3.Dr-n(n-l). ...

. 4+n(n-l) ....5-...+(-l)' rn+(-1)"

.[r r ,,r-
=1!l - - -:1 ... r(-l )" -:L2l 3l tr'.-)

Proof of the de Monmort formula

A[uoximate fot'mulas

The expression

I - I +...+(-l)'12l 3! nt.

looks familiarbecause it reminds us
of the power series for e", the natural
logarithm:2

e,=7+**t*"*....21 3!

In particular,

l--l *...+(-ll,l2l 3l nt.

=l-1*l-1+...=e-: .2t 3!

where the absolute error doesn't ex-
ceed

1

(r+1)!

This means that

D'= nle-' =+'

where the error doesn't exceed

I

"+l
(Since D, is an integer, the two condi-
tions determine D, ,rniqeh .l In 1946,
generalizing this forrnula, P. Erdos
and I. Kaplansky derived an elegant
approximate formula for the number
of m-story Latin rectangles of length
n:

_<m- l)m
L(m,il=(nl)*e 2

The larger the n, the smaller the
relative error in this formula. (Such
formulas are called asymptotic.) Ac-
ually, Erdos and Kaplansky proved
this statement under the condition
that m< (ln n)1 5. But later itbecame
clear that it holds for larger m as well.
The |apanese mathematician K.
Yamamoto proved that it is sufficient

CONT/NUED ON PAGE 41

1A version of this formula for areas
was given in the solution to problem
M23 (fan./Feb.I99t[

2See the Getting to Know department
in the November/December issue.

D =trt[t - t * t

" L2t 31 4l
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INNOVATORS

A pol'lrail ol Poissolt

A fish out of water who found his calling

by B. Geller and Y. Bruk

leam how to do a venesection (blood-
letting), a basic form of treatment at
the time, one had to practice for long
hours, puncturing the veins in cab-
bage leaves with a needle. Later,
Poisson told his friends that even the
largest veins would elude his needle
at the last moment. These exercises,
which Poisson hated so much, took a
whole year, but his first attempt to
fteat a patient without supervision
resulted in the death of the patient.
The event so shattered the youth that
he quit medicine right then and there
and retumed home to Pitiviers.

and he especially liked to solve the
mathematical problems proposed in
it. Quite unexpectedly, solving the
problems turned out to be very easy
for the boy, who had never been taught
how to do it but cracked them never-
theless, one after another. We must
give credit where credit is due: Pois-
son's parents quickly changed their
mind about their son's intelligence
and sent him back to Fontainebleau,
but this time-to school.

T]te lamous Polyteclnhal School

Poisson was an excellent pupil.
His talent andhardwork enabledhim
to outpace the other students. Two
years later Simeon, who was seven-
teen by that time, entered the Polytech-
nical School in Paris.

This school, one of the oldest and
most unusual institutions of higher
learning in France, was created on
March ll, L794, during the French
revolutiory by a decree of the National
Assembly. Lritially, its name was the
Central School of PublicWorks; the
name was changed to Polytechnical
School ayearlater. Its purpose was to
advance scientific knowledge and train
engineers {or the army. The Polytech-
nical School has remained, up to the
present time, the school for military
and civil engineers in France, and its
graduates have been expected to oc-
cupy the highest govemmental posi-
tions. The period of study at the
Polytechnical S chool was relatively
short (only two years) but intense.
The outstanding role played by the
Polytechnical School in the advance-

IMEON DENIS POISSON,I
the eminent French scientist, is
one of the founders of modern
mathematical physics. In the

history of science he occupies a posi-
tion alongside his great contemporar-
ies Lagrange, Laplace, Fourier, and
Cauchy. His name is irequently
mentioned in textbooks on differen-
tial and integral calculus, probability
theory, electromagnetism, acoustics,
elasticity, and quantum mechanics.

Poisson was bom on |une 21, 1781.
There is scant information about his
parents. It's known that his father
first chose a military career and joined
the Hannoveriart army, but resenting
its strict discipline, he left the army
and finally settled in the small French
town of Pitiviers. By the time his son
was born, he had the modest but
respectable position of notary.

kr his eariy childhood Poisson was
a quite ordinary boy who didn't show
any promise of becoming a great man.
His parents even had some misgiv-
ings about his intellectual abilities.
His father, of course, wanted his son
to become a notary, but the " farnlly
council" decided he wasn't up to the
job and should become a doctor in-
stead. The decision of the family was
a kind of law unto itself, so they sent
Poisson to his uncle's place in the
town of Fontainebleau to study the
respectable and, in their judgment,
simple art of the sugeon. But master-
ing the profession turned out to be a
very difficult task; for instance, to

A great deal had changed while
Poisson was away. His father had be-
come a public figure, the mayor of
Pitiviers. He had bouglrt a new housg
appropriate for his new position in
society, and began to receive a lot of
guests. He aiso subscribed to various
periodicals, including th e lournal of
the Polytechnical School. Simeon
enjoyed reading this one very much,
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ment of education in physics and
mathematics is largely due to its ex-
cellent faculty, which included, in its
early y ears,such eminent scientists
as Monge, iaplace, Legendre, Fourier,
and Camot. Professors at the Polytech-
nical School created many courses
and textbooks on differential and in-
tegral calculus, geometry/ and ana-
lytical mechanics that shaped the
development of mathematical educa-
tion, and not only in France. Even
now the Polytechnical School remains
one of the leading French institutions
of higher leaming.

Poisson got a very good education
at the Polytechnical School. The
mathematicians Laplace and Lagrange
noted his exceptional talent and spent
a lot of tirne teaching him. Poisson
also mastered the work of the previ-
ous generation of mathematicians,
and studied the writings of Euler and
d'Alembert in particular detail. Later,
Poisson's friend and biographer, the
eminent French physicist Frangois Arago
(who was also a gaduate of the Polytech
nical School) wrote: "Poisson never
had to spend time and effort searching
for things that had already been dis-
covered." It's no accident, then, that
his first mathematical papers, which
he wrote in his early twenties, were
mature enough to bring him instant
fame. But it would be wrong to as-
sume that as a student, and later in
life, Poisson had no interests outside
of mathematics. He was a sociable
person who enjoyed the fine things in
life. He loved the theater and went
often-he knew the works of Molidrg
Comei11e, and Racine by heart.

Poisson held many honorable posi-
tions in the French scientific hierar-
chy, including membership in the
French Academy of Sciences, but his
life was mainly connected with the
Poiytechnical School. He was made
assistant professor at the school in
1802, and he became full professor at
the age of 25 in 1806, taking the
position vacated by the great Fourier.
One of his important duties was
administering examinations to pupils
who wanted to entff the school and to
students hoping to graduate from it.
The position of examiner was in a
sense somewhat higher than that of

professor-in the examinations he tested
both the students'knowledge and the
professors' teaching.

All the French govemments, which
frequendy changed during those troub-
led times, paid generous tribute to the
service done by Poisson to his coun-
try. He received the title of baron, was
awarded the order of the Legion of
Honor (the highest honor in France),
and became a peer of France. Pois-
son's achievements were recognized
abroad as well-he was a member of
all the scientific societies in Europe
and America, and was an honorary
member of the St. Petersburg Acad-
emy of Sciences (from 1826).

Frangois Arago wrote in his mem-
oirs that Poisson had another trait,
one often found lacking even in people
not so higtly placed in academic life:
he scrupulously fulfilled his obliga-
tions. For instance, eyery year he had
to spend four weeks, nine hours a day,
administering exalns at the Polytech-
nical School. Only once did he refuse
to participate in the examinations:
when his own son was taking the
tests. But the students at the school
sent a delegation to him, declaring
that they were sure of his impartiality
and asking him to proceed with the
examination. That Poisson liked teach-
ing can be seen from his own w.ords:
"Li{e is made beauti{trl by two things-
studying mathematics and teaching
it." His lectures were noted for their
clarity and depth.

During the last years of his life (he

died in Paris in 1840), Poisson had set
himself the task of writing a funda-
rnental teatise on mathematical physics.

Un{ortunately, he did not live to com-
plete the work.

trom calculu$ to H'ilniltal latll
The bulk of Poisson's scientific

work, which comprises 350 papers,
deals with problems in mathematical
physics, so we're not able to discuss
even his basic results in any great
detail. We can only mention his most
important and famous papers and also
examine afew questions that canbe
understood with high school mathe-
matics and physics.

The concept of electrical potential
is one of the most important notions

in physics. Potential always depends
on the magnitude and location of elec-
trical charges in spacg and finding the
potential is generally a difficult prob-
lem. In 1811 Poisson derived the
differential ecluation that relates the
potential to the distribution of charges.
Of course, the simplest problems in
electricity can be solved without the
use of Poisson's equation. But when
confronted with more complex prob-
lems in which there are many charges-

distributed randomly, we can calcu-
late the dependence of the potential
on the coordinates only with the aid of
this equation. In fact, Poisson's equa-
tion, along with results obtained by
Euler, Gauss, Laplace, Green, and
Ostrogradsky, forms the foundation
of the modem theory of potential, an
important branch of mathematical
physics.

The scope of Poisson's work is
quite impressive. He made important
contributions to theoretical and fluid
mechanics, elasticity, heat conduc-
tion, the physics of gases, atmospheric
electricity, geomagnetism, surface
tension, and waves in deep water. He
also investigated such practical prob-
lems as the deviation of an artillery
sheli from its intended trajectory. Lr
astronomy he studied the stability of
the solar system-a problem that
continues to attract considerable at-
tention even today. Lr the field of pure
mathematics he obtained important
results in differential and integral cal-
culus and in the theory of differential
equations.

Poissorr-s papers on probability theory
are among his best known. Like
Laplace, he paid considerable atten-
tion to the application ofprobability
theory to criminal jurisprudence. One
of his treatises is entitled "A Study of
Verdict Probability in Criminal and
Civil Cases. " Today this'approach is
considered unsatisfactory as far as the
legal aspect is concemed, but we must
allow for the lactthatPoisson solved a
number of interesting mathematical
problems while working in that field.
Again going beyond the classical the-
ory of probability, Poisson analy zed
some problems of card games/ and in
that he can be considered one of fore-
runners of modem game theory.
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The Pohson disll'ihution
To give you a sense of Poisson's

research and to illustrate how his
ideas worl1\ve'lllook at several specific
problems from probability theory and
mechanics.

Firsg let's consider three problems
that can be solved by using a formula
called the Poisson distribution, which
is encountered quite often in proba-
bility theory. We won't derive the for-
mula-we'lI just show how to use it.

The first problem has to do with
typographical errors in books. To find
some numerical characteristic of this
troublesome phenomenon, we'll as-

sume that the number of letters per
page and the number of pages are so
large that we can assume that there is
a constant probability of the typeset-
ter making a mistake, and that the
probability is equal to the ratio of the
number of typos to the total number
of letters set in type. We'll also as-
sume that all thepages in abook are
similar in that the number and loca-
tion of letters are approximately the
same-that is, we assume that the
conditions in which a typesetter works
don't change and that the probability
of making an elror doesn't depend on
the typesetter's previous work. Un-
der these conditions, the probability
of k misprints occurring on a page is
approximately equal to

,ll
P \ k. lt, = e-" 

l<t

The number )" in this formul4 which
is called Poisson's formula or Pois-
son's distributiory is a parameter char-
acteristic of a printer's work-it equals
the product of the probability of mak-
inga typo andthe averagenumber of
letters per page.

We can "experimentally" test the
result obtained with Poisson's for-
mula. Here's how. Wehave toread
carefully the pages set by the typeset-
ter-the more the better-and find
those pages that contain k misprints.
Next, we have to divide the number of
pages with k misprintsbythenumber
of pages read and compare the ratio
with the value obtained by using Pois-
son's formula with the same k.

Flere's the second problem. Let's
say we'd like to know the probability

thatinasmalitownwith nk np (k, 3.87)
a population of 1,991
citizens, k of them were
born on the same day of
the year as Poisson. The
problem can be solved 56p
this way. Since all the
days in the year are equal,
we can assume thatthe 4gg
probability of a person
being born on the same
day as Poisson equals about 369
1/365, so that the parameter

),= ltlsssl . t99t= 5.45

-that is, the product ,f ZOO
the probability of an in-
dividual's being bom on
a particular day and the ,
total number of people in -
the community. (The
situation is sirnilar to that
in the previous problem,
where instead of the t

tal number or p"opt" *o" Figure 1

had the average number of letters per
page.) Now we can find the probabil-
ity by using Poisson's equation with
),: 5.45 and the necessary k.

The third problem has to do with
physics. In their classical paper on
radioactive decay, Rutherford, Chad-
wick, and Ellis found that the proba-
biJity of a radioactive sample's emitting
k alpha particles in a unit of time is
given by Poisson's formula. The prob-
lem was to find the constant ), from

0 1 2 3 4 5 6 7 I 9 70 7772

the experimental data. To be more
specific, the paper dealt with radium.
According to the theory worked out in
the paper, the radioactive decay of
radium is the transformation of the
radium nucleus into a radon nucleus
with the emission of an alpha particle.
The transformation is a random proc-
ess, it is assumed that the probability
of a radium atom disintegrating per
unit of time is constant and independ-
ent of the state of the other atoms.

Rutherford and his coworkers used
a detector to count the alpha particles
emitted by a sample of radium during
n:2,508 intervals of time, each inter-
val equal to 7.5 s. They found the
number no of intervals during each of
which exactly k particles were de-
tected. The total number of particles
detected in the experiment was equal
toZknu:10,094. If we divide this
nurnberbythe number of time intervals
n : 2,608, we obtain the avbrage number
of alpha particles emitted per interval
(or the average number of alpha par-
ticles emitted in 7.5 s), which is equal
to Lknof n : 3.87 . Now we can com-
parethevalues of theratios no/n found
in the experiment with the numbers
plk, Xl : plk, 3.87 lgiven by Poisson's
formula for ), = 3.87 found above.
These values are given in the table at
lefg which we took from the paper by

k n. n . p(k, 3.87)

0

t

2

3

4

5

6

l

8

9

k > 10

57

243

383

525

532

448

213

139

45

27

I6

54.339

447 .35L

525 .495

508.418

393.515

253.8L7

L40.325

67 .882

29.L89

L1.015

Total 2 ,648 2, 508.000

O U A ItI I ll tll / I lll III O l,A T O R S 2!



t
it

ii

....,...., : rt t :t f;.!i,:.,!ii l)t i :.,: i;i :;,,.: : r,,''irl:f
3_,L.

a

A

B

Rutherford and Ellis, and graphically
presented in figure 1, in which the
black points correspond to the numbers
n.p(k,3.87) and the gray ones to nft.

We see that either set of points fits the
same smooth curve that illustrates
the Poisson distribution.2

I[e symmelt'y oluihna[ions . . .
From his earliest childhood Pois-

son was taken with the physics of
oscillations-1uite literally! It seems

his nanny wasn't all that conscien-
tious. Rather than be bogged down
with little Simeon Denis, she would
wrap a wide towel around his waist
and fasten it to a horizontal beam. So

the little boy spent many an hour
swinging like a pendulum, back and
forth, back and forth. Years later,
Poisson would joke that God Himsel{
ordered him to study the theory of
oscillations.

Poisson's results in this field are
both numerous and important. Here
we'll discuss only one of them, which
arose from evaluating the frequencies
of vibrations of small glass or metallic
plates. The German physicist Chladni
11756-18271was the first to work out
an experirnental method for studying
the physics of vibrating plates, as early
as 1787. In 1809 he presented
demonstrations with vibrating plates
to a {ascinated audience of members
of the French Academy of Sciences.

In Chladni's experiments a plate
supported at the center and covered
with a layer of fine sand is made to
vibrate by drawrng a violin bow across
its edge; at the same time a finger is

2For more on Rutherford and alpha
particles, see page 26.-Ed.

Figure 3

applied at another point on the edge
(fi1.2lr. The sand coilects aiong lines,
called nodal lines, where the plate
doesn't vibrate at all (fig.3). It's worth
noticing that the nodal lines pass througlr
the points where the finger touches
the plate. The btzarre but always
symmetric figures created by the par-
ticles of sand are called Chladni fig-
ures. You can use square/ rectangular/
or round plates when experimenting
with them. Designs that Chladni
himself obtained in experiments with
round plates are shown in figure 4.

Poisson's achievement in studying
Chladni figures was that he found the
dependence of the vibration frequency
on the number of nodal lines. For the
specific case of a square plate and
square Chladni figures (as in figure
3a), the square of the vibration {re-
quency is proportional to lm + l)z +

ln +ll2,wherem andn arethenum-
bers of perpendicular nodal lines that
partition the plate's surface.

Looking again at the simple nodal
lines in figure 3, we conclude that in
figure 3a a finger touched the plate at
a point in the middle of a side of the

seuare; in figure 3b, at a comeri and in
figure 3c two fingers touched the plate
at points A andB. The pitch of the
sound created in the second case is
higher than in the first, and higher in
the third case than in the second.

. . . altd solnsfiilt$ ahoulmnks
Finally, let's look at the problem,

solved by Poisson, of finding the rela-
tion between the longitudinal and
ffansverse deformations of a body under
stress. The essential point is thaq rt a
force acts on a body, its longitudinal
size-that is, in the direction parallel
to the force---changes differently foom
that in the transverse direction. (For

an example of this, watchwhat hap-
pens when you stretch a rubber band.)
Poisson found the coefficient, named
after him, that provides a quantitative
description of the phenomenon.

Let's look at a specific example.
Consider a cylindrical rod of length 1

and radius r subiected to a force di-
rected along the rod's axis, giving rise
to a tension o, and relative deforma-
tion g: N.1 > O. The ffansverse size of
the rod also changes, so that the radius

C

/i

_/)
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decreases by Ar. The ratlial relative de-

formation e,: Lrf r has the sign oppo-
site to that of er. The Poisson coeffi-
cient is defined by the equation

k=

Let's consider the limits within
which the Poisson coefficient might
change. We assume that the volume
of abody under deformation doesn't
change. Consecluently, wehave the
relation

nft+Arl2(1+Nl:nf,l.

Opening the parentheses and neglect-
ing the product of the small quantities
LrandN,weget

rN +21Lr =0,

or/ put another wa,

e,: N I 1 = -zlLr I rl : -2e,.

So the Poisson coefficient in this case
is equal to Il2. But in real life the

volume of a body changes under ten-
siorl so we have to write the inequal-
tty

(r + Arlz(1+ N)z > ?1,

from which we can inJer that k < I 12.
(The same inequality is also true for
noncylindrical bodies.) On the other
hand, from its definition it's evident
that the Poisson coefficient isn't nega-
tive, so wehave O < k < L 12.

For different materials the values
of the Poisson coefficient can vary
quite a bit, within the limits indicated
above. Cork, for instance, has a Pois-
son coefficient very close to zero-
that is, the ffansverse size of a piece of
cork changes very little when sub-
jected to stretching (or compression)-
as long as the deformation isn't roo se-

verel That's why bottles are usually
arked-a phrymade of rubber wouldn't
work as well. The Poisson coefficient
of rubber is close to If2, so that under
stress the transverse size of a rubber
plug changes considerably-the plug
puts up a fight when we try to shove it
in the neck of the bottle. To get

around this difficulty, rubber plugs
are usually made in a conical shape.

We'll leave you with the interest-
ing fact that the Poisson coefficient of
the most common building materi-
als-metal, stone, concrete-usually
falls between ll4 andllS. O;

Science and
Math Events:

Connecting
and
Competing

When you are trying to build student
interest and enthusiasm in math and

science, few resources can match the
excitement generated by science clubs

and competitions. But how do you get
your high-school students involved? And
how do you keep them involved? Wth
plans for successful fairs, details on 25

national and international contests, and

commentary by 89 prize-winning
scientists, this new publication prepares

you and your students for
connecting and competing in the 1990s.

#PB-47, 1990, 196 pp. $7.00

All orders of $25 or less must be prepaid.
Orders over $25 must include a purchase order.
All orders must include a postage and handling
lee of $2. No credib or refunds for returns.
Send order to, Publications Sales, NSTA, 1 742
Connecticut Ave. NW, Washington, D.C. 20009.

Col'l'eclions
Ted Rice, a ninth-grade geome-

try student in Davenport, Iowa,
pointed out an error in the Mathe-
matical Surprises article "Play It
Again. . ." (Nov./Dec. 1990). kr the
section "A Very Mysterious Se-
quence," the fifth line should read
"rrl22l."

Pro{essor Richard Askey of the
University of Wisconsin wrote to
remind us that several years ago
David and Gregory Chudnovsky
calculated fi to one billion digits
(see Kaleidoscope, lan, lFeb. l99l)
and that the mathematician men-
tioned in L M. Gelfand's talk in the
last issue is Hurwitz (not Gour-
vits).

Here is a book filled
with physics demonstrations
that are amazingly simple,
often playful, and always

instructive. Each of the
1 75 demonstrations uses

i nexpensive, everyday items-
rubber balls, a plastic ruler,
Styrofoam cups, string, etc.-
and each is very clearly
described. lntended for science

teachers, from middle school
to college level, this is also a
great book for students who
want to experiment (and learn)

on their own.
Paper: $14.95 tsgN o-egt-oi:gs-o
Shipping: $2.75 tor I st book;

50 cents each additional book.

VISA, Mastercard, and American
Express accepted by mail or phone.

OROER FROM YOUR EOOKSELLER OR FROM

Princeton University Press
ORDER DEPL, 3175 PRINCETON PIKE, . Ll$ TRENCEVILLE, Nl 08648
ORDERS: 800-PRIISBN (777 47 26\
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LOOKING BACK

Astraltue huxand a sluhhorlt Bl'il
Rutherfords experiments with alpha particles

I N THE AUTUMN OF I9O3 A
I thirty-two-year-old professor oi
I ohvsics named tmesi Rutherford
I rril"a from Europe to Canada. He
had a small metal box that contained
something very precious to him: 30
milligrams of radium salt.

The lead box caused some appre-
hension among the New York cus-
toms officials-there weren't any laws
yet mnceming the importation of radium.
Was it some kindof chemical orwas it
a precious metal? Was it subject to
taxation, and i'f so, how much should
the duty be? Govemment officials are
the same everywhere. The American
customs officials decided to send the
weird cargo to the higher-ups. But
researchers are also the same every-
where. So the report drawn up by the
officials on the scene in{ormed those
at the top that Dr. Rutherford flat-out
refused to part with his treasure. And
only the promise made by Dr. Ruther-
ford to ffansport thebox intact through
the tertitory of the United States (that
is, not to sell the substance)permitted
the Americans to shift the problem
onto the shoulders of their Canadian
colleagues. It's possible that these
few milligrams of radium were re-
sponsible for many remarkable scien-
ti{ic discoveries being made.

The name of Rutherford is men-
tioned in physics textbooks in con-
nection with the planetary model of
the atom. But Rutherford made many
other discoveries that were as valu-
able for physics. These include his
experiments investigating alpha rays,
and that's what we'Il be talking about
here.

As early as 1899, while working at

by M Digilov

the Cavendish Laboratory (at Cam-
bridge University), Rutherford found
that radiation from radioactive elements
is not homogeneous. Here's one of his
experiments.

Experiment 1. Two zincplates were
placedhonzontally one above the other.
The first plate was connected to the
pole of a grounded batteryt the second
to a grounded galvanometer. A thin
layer o{ radium salt was spread on the
lower plate. Radiation from the salt
formed ions in the air. The air be-
tween the plates ceased to act as an in-
sulator, and an electric current ap-
peared that was registered by a special
device.

If the layer of radium salt was cov-
ered by a thin sheet of metal, part of
the radiation was absorbed and the
current became weaker by a factor of
more than two. If the radiation was
screened by two sheets, the current
became weakerby afactor of almost
six, and if three sheets were used, its
value dropped off by a factor of I I.
According to the exponential law the
current flow should continue to de-
crease smoothly. But, surprisingly,
the experiments didn't corroborate
expectations-from the fifth sheet on,
therewas no appreciable decrease in
the value of the current.

It was only natural to assume that
ionization of the air is caused by at
least two things. Or, to put it differ-
ently, that the radiation consists of
two types: one that accounts for in-
tense ionization and is well absorbed
by the metal, and another whose ioni-
zation is weakerbut whose penetra-
bility is greater. Rutherford called the

first type of radiation alpha particles
and the second beta particles. Now
the problem for scientists was to study
the nature of these particles.

It didn't take much time or effort to
find out that beta radiation is a flow of
free electrons. At any ratet beta par-
ticles behaved exactly like electrons
in electric and magnetic fields.

As for alpha particles, their deflec-
tion in a magnetic field couldn't be
detected for a long time since even a
strong field caused only a small de-
flection. Finally, in 1903 Rutherford
achieved positive results and pioved
that alpha radiation must consist of
positively charged particles moving at
high speed.

The next task was to determine the
value of the alpha particle's charge.

Experiment 2. To determine the
charge of a single alpha particle, two
things were measured experimentally:
( 1 ) the overall quantity of electricity
carried by the total radiation of a gratn
of radium in a unit of time and (2) the
quantity of alpha particles emitted by

To the Pu

Figure 1
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that radium in the same time. Detect-
ing one particle was the most compli-
catedproblem. To this end, in 1908
Rutherford and Hans Geiger devel-
oped a special method of counting
alpha particles, based on their ioniz-
ing activity, and also created a special
insfument (the "Geiger munter" you've
heard about).

Abronze cylinder, 60 cm long wa's

filled with rarefied air. A thin wire
went down the center of the cylinder.
The wire was connected to one pole of
abattery, while the surface of the
cylinder was connected to the other
one, and the voltage applied-about
1,000 V-was just about enough to
cause an electric discharge. The alpha
particle passing through the cylinder
ionized the air inside; because of colli-
sions these ions increased the ioniza-
tion by afactor of about 2,000, which
resulted in a sharp increase in the
electric current passing through the
device.

In order to ensure that only individ-
ual particles penetrated the cy'inder,
the grain of radium was placed in the
far end of a narrow glass tube, about
4.5 m long, so that only a small por-
tion of the alpha particles emitted by
the radium invarious directions would
actually reach the cylinder.

Dividing the quantity of electricity
that passed through by the number of
particles registered by the counter,
Rutherford obtained the value of the
charge of one alpha particle.

At almost the same time, in 1909,
Rutherford proved experimenully that
alpha particles are by nature double-
ionized helium atoms. He conducted
this experiment jointly with his stu-
dent Thomas D. Royds.

Experiment 3. A sufficiently large
quantity of the radioactive gas radon
was injected into a glass tube A (fig. 1)

with walls so thin that most of the
alpha particles easily penetrated it.
This tube was put inside a wider tube
T, the top of which was joined to a
small vacuum tube Vwith electrodes
fused into it. Air was removed from
tube Tand mercury was introduced
into the bottom to fill the empty space
below tube A. The alpha particles ac-
cumulating in [ube ? formed gas.

Raising the mercury, this gas was
compressed, and some of it was trans-
ferred to tube V. By creating a dis-
charge in the gas there, the research-
ers could study its spectral composi-
tion. It's curious that the first results
were obtained in only two days-the
yellow line (the brightest in the he-
lium spectrum) became visible first.
In six days the whole helium spec-
trum could be observed.

Finally, it was possible to measure
the mass of alpha particles by study-
ing their deviation in a magnetic fie1d.

Experiment 4. A Wilson chamber
(a device for observing the tracks of
alpha particles by their scintillation)
was placed in a very strong magnetic
field. As the radius of the circular
orbit of an alpha particle was in direct
proportion to the particle's mass
multiplied by its speed and in inverse
proportion to its charge, the mass of
the alpha particle could be measured
according to known values. It proved
to be equal to 6.62. 10-24 g.

So thanks to the experiments car-
ried out by Rutherford and his col-
leagues, the nature, charge, and mass
of the alpha particle became known.
Not only that, physicists acquired a
powerful method of exploring the struc-
ture of the atom itseU. As Rutherford
began sounding the depths of atoms
in these experiments, here's how sci-
entists conceptuali zed the structure
of the atom.

The atomic model proposed by
Rutherford's teacher Sir |oseph fohn
Thomson in 1882 reminded one of
pudding with raisins in it, where the
raisins were electrons and the pud-
ding was atomic space itself. The
virtne of the model lay in the factthat
it permitted one to explain the atom's
neutrality and to determine its size
quite satisfactorily. At the same time
there was a theorem in physics (the
Eamshaw theorem) that said the sys-
tem of charges at rest was unstable. hr
addition, the nature of a positively
charged sphere that spread all over the
atomic volume wasn't understood at
all.

Bombarding atoms with alphapar-
ticles made it possible to determine
the structure of the atom.

Experiment 5. Thin plates of the
particular substance being examined
were subjected to alpha bombardmeng
and the deviation of the alpha par-
ticles was studied. Figure 2 presents a

sketch of the alpha-scattering experi-
ment. The bombarding partides, emitted
by a radioactive subsance, passed through
a collimator and fell as a narrow beam
onto a target made of very thin gold
foil. The alpha scattering was ob-
served by means of a screen coated
with a scintillating substance. Scat-
tering angles for most o{ the particles
were small-of the order of l'; yet a
sma1l number of particles scattered at
great angles, and some of them even
went in the opposite direction.

Analyzing the results obtained,
Rutherford came to the conclusion
that such a strong deviation ofalpha
particles could only be caused by an
extremely strong electric field inside
the atom that is caused by a charge
linked with a large mass (the nucleus
of the atom). Rutherford also worked
out the quantitative theory of alpha
scattering, which determines the dis-
tribution of particles according to the
scattering angles. The following fact
is of interest in this regard.

To gain a solid understanding of
the probabilistic processes occurring
when an alpha particle passes through
a substance, Rutherford-the worid-
famous scientist, the Nobel prize
winner-wished to becorne a student
for a while. He went to a well-known
mathematician named Lamb in
Manchester and asked his permission
to attend his course of lectures on
probability theory. He also wanted to
do all the homework involved in the
course. As his contemporaries wrote/
"It was not a trivial sight: a world

CONTINUED ON PAGE 55
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MATH EMATI CAL SU RPR I SES

$ome lnalhemalical mauiu
ldentical sums in squares, hexagons, and hypercubes

by John Conway

NE OF THE OLDEST AND
most familiar mathematical rec-
reations rs desigmng magic squares.

The problem is to arrange the
numbers from 1 to n2 in afl n x n array
so that all the rows and columns, as

wellas the two diagonals, have the
same sum (the magic sum).

First, let's ask: what is the magic
sum? The average of all the numbers
from 1 to 12 is the same as the average
of the fust and last of them-namely,
llllnz + 1). So the ayerage of the row-
sums is n times this-namely,

n(nz + t)
2

For n = 3, this is 15. There is really
only one order 3 magrc square/ discov-
eredby the Chinese many centuries
ago and traditionally called the Lo-
Shu. One story is that it was observed
written on the shell of an enormous
turtle that was found in the Yellow
River.

Here it is:

This is in fact one of eight squares:

ffiffi
ffiffi
ffiffi

But since these are obtained by rotat-
ing and reflecting the first one, we
usually count them as just one sqru[e.

I chose the starting orientation for
the Lo-Shu in order to illustrate de la
Loubere's rule for writing down magic
squarcs o{ any odd order at sig}rt. De la
Louberewas the first French ambas-
sador to Siam, and this rule was one of
many interesting things he learned
there.

It will be easier to understand this
nrle if we regard the square as "wrapped
around, " as in manyvideo games, so
that a step offits top edge takes us to
the bottom row, while a step from the
rightmost column takes us onto the
leftmost one. Then de la Loubere's
rule is that we write the numbers in
order, starting from the middle of the
top row and marching diagonally up
and right when this leads to an empty

square, otherwise dropping straight
down one cell.
Let's see how this leads to the Lo-Shu.
The first step upward from I takes us
off the top edge onto the bottom one
by the "wraparound rule":

t2)

and then the step upward from 2 to 3
takes us off the right edge and onto the
left one:

But now a step diagonally upward
from 3 leads us to 1, so instead we drop
straight down from 3 (not from 1!) and
continue:

and the square completes itself read-
ily a{ter the second drop ,'from 5 to 7 '.

With a little practice it becomes easy
to write these squares down. Here is
the de la Loubere square of order 5:

28

ffiffi
]IlIRilt/APRil.1001

(3 )



1f 1 3 15

23 14 1

4 l 1l 0

72 19

l 18 9

It's easy to give a general formula
for all order 3 magic squares/ even
when the numbers used may not be
just I to 9. The first step is to prove
that the magic sum S is just 3 times
the middle number m. Therc are 4
lines through the center, so i{ we add
them all up we get 45 for the sum of all
the numbers shown here:

We put a mark in each cell when we

counted the number in it-you see
that the middle cell is marked 4 times,
and so the sum we get is the sum of ail
entries-that is, 3S-plus three times
themiddleone. So

45=35+3m,

from which we get

S:3m.

Now the numbers on any line through
the center must have the form

m+x m

m+a m+l>

JN

m- j) m-a

and now, since each border line sums
to 3m, the square easily completes
itself:

fl+a mab m+b

m-a+b n m+a-l)

ilb m+a+b tn-a

The general order 3 magic
square

The proof that the Lo-Shu is unique
is now pretty easy. The magic sum
mustbe one thirdof L + 2 + 3 + 4 + 5 +

6 + 7 + B + 9, which is 15, and so the
middle number m must be 5. We are
discounting rotations and reflections,
so we can suppose that a and b are
positive, since changing the sign of
either iust reflects the square in a
diagonal, and that aislarger thanb,
since interchanglnC them reflects the
scluare left-to-right. Now the small-
est number that appears is m - a - b, n
this must be 1, and since m : 5, we
must have a + b : 4,from which we get
a : 3 and b = l, and everything is
known.

h 1593 Frenicle de Bessy wrote out
all the order 4 magic squares. He
found that, if rotations and reflections
are discounted, there are precisely 880
of them. Here's an easy way to get
most of them. There are lots of ways
to arange the numbers from i to 16 as

an addition table:

4+a A+l) A+d

-B +a B+b B+c B+d

+a +b C+c C+d

+a D+l) D+c D+d

and whenever we've done that we can
reaffange them to make a magic square

m-x

since they add up to 3m. So if we
suppose the top two comers ate m + a
and m + b, thebottom comers wi1l be
m-b andm-a:

thus:
a+.i D+ ]) B+c

+b A +., C+a

A+i.

Melenmlial ll5l4lbyAlbrechtD&u, Nationd Galery of Art, WohingtonDC (ONGd RmwaldCollection) CONTINUED ON PAGE 45
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HOW DO YOU FIGURE?

Challeltue$ in phy$ics and lnath

IUIflIh

M26
Accidenton alake. Boat I andboat

2 depart at the same time from docks
A xfi B, respectively, on the bank of a
round lake. If they made their way
straight to docks C and D, respec-
tively, they'd collide. Prove that if
boat I goes to D andboat 2 goes to C,
they'll arrive simultaneously. (N.
Vasilyev)

M27
Pfime factors and difference of

squarcs An odd number is a product
of a different primes. Prove that there
are exactly 2"-t distinct ways to repre-
sent this number as a difference of
squares of positive integers. (O. Gon-
charik, S. Sergey)

M28
Points thatpaint. A circle of cir-

cumference 1 rolls along the outside
o{ a fixed circle of circumference2llz.
krit'rally theirpoint of contact is marked
by a dot of sticky red paint. When the
circle rolls, new spots are painted on
both circles (fig. 1). How many red
points will be painted on the fixed
circle by the end of the 100th revolu-
tion of the rolling circle around the
fixed one? (D. Bernshtein)

Figure

30

Bulky polyhedron in a cube. A
cube contains a convex polyhedron
whose projection onto any of the cube's
faces covers the entire face. Show that
the volume of the poiyhedron is not
less than ll3 that of the cube. (V.
Prasolov)

M30
Tlavelingking. A chess king made

the rounds of all the squares on the
chessboard, visiting every square once.
(A king can move to any neighboring
square.) The c,enter of each square
was joined to the center of the next
square on the king's route (the last
center was joined to the first one). The
closed broken line thus created has no
self-intersections. What are the small-
est and the greatest lengths of this line
iI the side of a square is 1 unit long? (A.

I(imov)

Physics

P26
Thrown ball. A ball is thrown

upward. Which is longer: the time it
takes to go up or the time it takes to
come down?

P27
Weight on a spring. A weight of

mass m is placed on a weight of mass
M suspended on a spring (fig. 2). At
first, weight M is supported in its
original positiory then the weights are
released. Find the maximum force ex-
ertedbyweight IvI onweight m. (P. I.
Zubkov)

Figure 2

P28
Boilingwater. A

test tube filled with
wateris immersed
in a retort in which
waterisboiling. Will
the water in the test
tubeboil? Whatwill
we see if toluene is

t r poured on the wa-
tw ter, I I oluene rs a

lighter liquid that
doesn't mix with
waterandhas aboil-

ing temperature of 111"C.) (A. Buzdin)

P29
Lamp connections, A lamp de-

signed for voltage 2.5 V and current
0.2 Ais connectedbylongwires to a
battery. An ammeter, connectedin
series with the lamp, gives a reading of
It = 0.2 A. When the lamp is con-
nected in parallel with the arnmeter,
it burns exactly as in the first case.
What was the readingon the ammeter
then? The battery is assumed to be
ideal, and the resistance of the wires is
2 ohms. (A. R. Zilberman)

P30
Circular ligltt rays. The refractive

index of a certain planet's atmosphere
decreases with altitude over the planet's
surface according to the formula a =
n, -- cJh,where h is the altitude above
the planet's surface. The radius of the
planet is R. Find the altitude.h at
which light rays can circle the planeg
staying at a constant altitude. (N.
Sedov)

ANSWERS, HINTS, AND SOLUTIONS
ON PAGESB
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Learn Lead. Serve.
Over 70 undergraduate
and 60 graduate programs
of study. Our student-to-
teacher ratio is 17 to 1

and most classes have

fewer than 25 students
Excellence in science and

engineering is our tradition.

The Uniaersity of Dayton

A Marianist, CathoLic
tLttiuersity & Ohio's
largest pt'iuate
uttitersity

Office of Admission
300 College Park
Dayton, Ohio 15469-161 1

(513) 229-.141 1

Circle No. 11 on Readers Service Card

The nation's leading
Catholic university in

A university which challenges
its studentg faculty, and
alumni to make a difference.

Our teachers are respected
and committed to educa-

tion for more
than a

career.

federally sponsored
research in the scien-

ces and engineering.

Experimentation

Soor to New H ei hts wlth NSTA Publicotlons
Flights of Imagination:
An Introduction to Aerodynamics
Revised Edition
!(ayne Hoskings

Go fly a kite, and watch student involvement in science
soar! The clear instructions in these 1B projects transform
trash bags, dowels, and tape into high-flying lessons in

general science, math,
and science process
skills. Let Flights of
lmagination add a

springtime lift to your
middle- through high-
school science teaching
(grades 5-12)
#PB-61, 1990,56 pp.
$7.00

and Measurement
W. J. Youden

This text takes students
through the processes of
measuring' from taking
measurements and
recognizing possi ble sources
of error to learning Which
measurements are impoftant
and choosing proper
equipment. Experiments are

included so students can convince themselves of the
value of statistics and careful measurement.
(grades 9*college)

#PB-2, 1985, 98 pp. $6.00

All orders of $25 or less must be prepaid. Orders over S25 must include a postage and handling fee
of $2. No credits or refunds for returns. Send order to: Publication Sales, NSTA,
1742 ConnecticutAve. NW, Washington, DC2OOO9-1171, (202) 328-5800.
Quantity discounts are available.

\
"{

. Four-year academic scholarships

. Undergnaduate research opportunities

. Respected honors program

. Residential campus
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Wanted! Women in
science and moth
Clare Boothe Luce Scholarships for Women

at Marymount University
can help you pay the way.

Undergraduate study in:
Biology

Computer Science
Mathematics

Physical Science

For eligibility and application
(800) s48-7638 . (703)

information, call

284-1500

Marymount S University
2807 N. Glebe Road . Arlington, Ya. 222074299

Circle No. 13 on Readers Service Card

F.

E

llethods of lvlotion
An Introduction to
Mechonics, Book I

Isaac Newton really believed

that moving objects continue
at a constant speed in a
straight line? Do your
students? This manual was

created to help teachers
introduce the sometimes
daunting subject of Newtonian
mechanics to students in the
middle grades. The 27

activities presented here use

readily available materials to
give students visual, aural,
and tactile evidence to combat
their misconceptions. And the
teacher-created and tested

modules are fun: Marble races,

a tractor-pull using toy cars,

fettucini carpentry, and film
container cannons will make

teachers and students look
forward to class. Readings for
teachers, a guide for workshop
leaders, and a master
materials list follow the
activities, making this manual
useful for inservice
workshops. (grades 6-10)

#PB-39, 1989, 157 pp. $16.50

All orders of $25 or less must be

prepaid. Orders over $25 must include
a purchase order. All orders must
include a postage and handling fee of
$2. No credits or refunds for returns.
Send order to: Special Publications,

NSTA, 1742 ConnecticutAve. NW,

Washington, D.C. 20009.

Learning utith

NSTA

Htt,\SI[AlN tOlt5ffi
A World Conservation Atlas
Edited by MARK COLLINS
Foreword by DAVID ATTENBOROUCH

w:I5tH,3J:1i:"',:,H'f 5;:;:1,"'i:"".,
200 stunning full-color illustrations, The Last
Rain Forests provides an authoritative, compre-
hensive guide to the people, flora, and fauna of
the richest habitats on Earth.

Rain Forest Facts:
. Nearly two percent of the world's rain

forests are lost annually.
. One quarter of all drug store purchases -

contain compounds d-erived from rain A
. *;1; r;1.:;io.,tui., more than tr*Qft

percent of all species. South American @ "

rain forests support more than 30,000
species of higher plants.

. In 1987-88, 1.5 square miles of the
Amazon Basin were destroyed per hour.

$29.95, 2OO pp., 210 color photographs and maps

At better bookstores or call ToLL FREE I -800-451 -7555
OXFORD UNIVERSITY PRESS

200 Madison Avenue . New York, NY 1 001 6

Circle No.20 on Readers Service Card



IN THE LAB

Ttuo phy$ics lriclts
Reluctant water turns eager

byV. Mayerand E. Mamayeva

It's almost certain that no one will
be able to discover the secret of your
tricks. The explanation is really cluite
simple, though: the temperature of
the water in the glass is 80-90"C,
while the temperature of the water in
the tube is about 20"C (room tempera-
ture). Try to explain the first trick
yourself, and we'llhelp you under-
stand the second.

When the hot water from the glass

enters the tube, the air in the top part
of the tube stays practically at room
temperatue (because of the poor ther-
mal conductivity of air). After you
close the top end with your finger and
tum the tube over, the hot water starts
flowing down the walls, heating the
air in the tube very quickly. the
pressure inside increases and the ex-
panding air expels the water (which
hadno time to drop down) out of the
tube.

We recommend that you use a
glass tube about 8-12 mm in diameter

and3H0 cmlong narrowing to about
1 mm at the lower end. During the
time between the tricks, be sure to
cool the tube well (you might even
blow into it), because the height of the
fountain depends on the difference
between the temperatures of the air
and water. The optimal amount of
water taken into the tube ranges from
l l4toL l3 of its voiume-you'llhave
no trouble finding the best ratio by
trial and error.

Circle No. 23 on Headers Seruice Card

0IllitTll]Ill/lit TIt LAB

pick

AKE A GLASS TUBE THAT
tapers at the end (like a pipette)
and show it to your audience.
With your other hand, carefully
up a glass of water heated to

80-90"C and show it
to the spectators. Put
the end of the tube
into the gJass andwait
until some watergets
intothetube. Then
close the tube's other
end with your finger
and take it out of the
glass (fig. 1).

The qpectators now
see that thereare small
airbubbles near the
lower end of the tube.
They expand, sepa-

Figure 1

rate from the walls, and climb up the
tube. But the water doesn'tpour out

of the tube!
Opening the top

end of the tube, pour
the water back into
the glass, wave the
empty tube slowly
in front of your audi-
ence, andagaindraw
some water from the
glass into the tube.
Closing the top end
of the tube withyour
finger, quicklytake
the tube out of the
glass and tum it over
(frg. 2l-a forceful
fountain of water
more than a meter
higlr bursts out of the
tube.

Does vour librarv
have Quantum 2

I{ not, talk to your librarianl

Quantum is a resource that belongs
in every high school and college
library. "Highly recommended."-
Library fournal

See page 55 for subscription infor-
mation.

Share the

o

A Spncrer Precr ron
Narun^q.r ScmNcEs

O Small university setting with close
contact berween students and high
qualiry faculry.

O Excellent preparation for careers in
research science, medicine, and
teaching.

o Collaborative research ber'ween
faculry and undergraduates
encouraged.

o Strong liberal arts program for a

well.rounded education with
substantial focus on scientific study.

Fot information, contacti
Dean of Admissions
Campus Box 8378
Deland, Florida 327 20.37 7 I
or call (904) 822?l@

Underytdfunte Study in Biolop,
Chemistry, Physics, Mathematics,

and Cwtputer Science

Figure 2
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UR LIFE IS FULL OF EVALU-
ations and rouglr estimates of all
sorts. wi11I get there in time?
Do I have enough money with
Am I strong enough to carry this

In science the ability to make cor-
rect evaluations is a professional re-
quirement. They're indispensable in
planning new projects and programs.'
Arough estimate-an evaluation of
the order of magnitude-is a neces-
sary stage in designing an experimeng
building an installation, or working
something out theoretically. Some-
times an evaluation suggests a path to
an exact solution and gives the range
of values for which the solution may
be valid. You can also estimate how
the problem should be modified i{ a
solution is required that's outside dris
range.

Along with intuitioq the abfity to
make evaluations is quite important
in creative work.

The physical setting of a problem-
the choice and development of the
simplest physical model-is the most
important and most difficult stage.
You have to select the parameters that
are crucial to the problem and neglect
those of minor importance. The cor-
rect use of physical laws and defini-
tions is vital. Occasionally the rough
version of a definition or the qualita-
tive interpretation of a physical law is
sufficient.

Two comments beforewelook at
some problems. First, let's agree on
what we mean by "otder of magni-
tude." Two numerical values are said
to di{fer by an order of magnitude if
their ratio is approximately equal to
10; if it's approximately equal to 102,

the values are said to differ by two
orders of magnitude; and so on. From
this point of view the number 89 is
considered to be of the same order of
magnitude as 102, and the number 15
is of the order of 10. If the ratio of rwo
numbers is, for instance, equal to 1.3,
they are said to have the same order of
magnitude. The same is true when
this ratio is equal to2.3 or even 5. For
rough estimates these errors aret't
important.

Second, 1et's establish what the
notation means. The sign "=" means

Thinklasl!

The art of estimating

byG.V. Meledin

an exact equality, while "=" denotes
an approximate one. We'll also use
the slnnbol " -." Its traditional mean-
ing is that the vaiues on each side of it
are proportional. Here it will mean
that the values are equal by their order
of magnitude, whichunderlines the
fact that the dimensionless propor-
tionality factors in our formulas have
an order of magnitude of one. I'd like
to emphasize that if a "true" factor is
several times the "estimated" one (or
vice versa), the difference isn't consid-
ered important for our purposes.

Now let's look at a few relatively
simple problems. We'll start with
ones whose physics is absolutely clear
so we merelyhave to make a reason-
able choice of parameters.

Problem 1. Evaluate the pressure
of a ballpoint pen on paper when
someone writes with it.

To make this evaluation, we make
direct use of the definition of pressure:

p: FlS. What numerical values should
be substituted for the force and the
area? Aline drawn by a ballpoint pen
consists of a series of individual points.
A point can be considered a ring with
diameter d equalto the width of the
track made by the pen on the paper:
S : ndzl4. Letd - 0.2 mm (which is
likely enough). The force F applied to
the pen can also be roughly evaluated:
it does not exceed the weight of the
hand but is greater than the pen's
weight. LetF- 1N. Then

p=+-4-r.ro,-pa.
J nd'

To get a sense of whether this is a
lot or a little, let's make a comparison
with a I -kg weight sitting on top of a
table. Its diameter is about 4 cm, so
the pressrxe on the table is of the order
of B . Iff Pa. This means the pressure
of a ballpoint pen is several thousand
times that of a l-kg weight.

Problem2. Evalu-
ate the velocity of steam
mmingoutof thespout
o{ a kettle of boiling
water.

Denote the power
of the heatingelement
by I4z and the specific
latent heat of vapori-
zationo{ water by I.
Let t1 be the propor-
tion of power spent
on creating the vapor.
ThmnI4//I,isthemass
of steam created per

o

Uf

x
3o
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unitof time. Obviouslytheamount we obtain
of steam leaving the kettle is the same
as that produced by the heater:

t -,.:t',7*e __-

v-2mf s.

Problem 3. Evaluate how much it
is brighter on a sunny day than at
night with a full Moon shining.

The Moon doesn't emit any light
itself but oniy reflects that coming to
it from the Sun. We'llassume that the
illumination of the Earth and the Moon
by the Sun is approximately the same
and denote it by Er. The power o{ the
light falling on the Moon's surface is
ErnRz (where R is the radius of the
Moon). Some of the iight reflected by
the Moon falls on the Earth, creating
the following amount of illumina-
tion:

E ="no'o .-M 
ZnP

where k is the coefficient of reflection
of the lunar surface and l is the dis-
tance between the Earth and the Moon
(we'11 assume that the Moon reflects
theincidentligfrt within
the solid angle equal to half of the
maximum one). Now we can com-
pute the ratio

where 2Rl1is the angular size of the
Moon (of the order of 0.01 rad). Fi-
nally, takingk - 0.2, we get

E

-t-4.lot.E*

Problem 4. Evaluate how much
further a grenade travels if an athlete
throws it on the run.

Let's assume that during its flight
the grenade reaches the height H.
Then its flight time is

If the horizontal projection of the gre-
nade's velocity at the moment of re-
lease is increased by v and the vertical
projection remains practically the same/
the flight time doesn't change but the
distance to the landing point is in-
creased by

It's reasonable to assume that H - 5 m
and v * B m/s (you'Il recall that a good
athlete runs the 10O-meter dash in
about 10to l2seconds). Andso

l-20m.

This value seems reasonable enough.

1t /1*-*-

Problem 5. Estimate the discharge
time of a charged metal sphere con-
nected to the ground through a resis-
tor with a known resistance.

Denote the potential of the charged
sphere by g and its charge by Q : Crp,

where C :4reoa is the capacity of the
sphere (a is the sphere's radius). After
the sphere is connected to the ground,
a current 1 starts to pass through the
circuit until its potential and charge

Dgl=llt e.

pvs.

Here p is vapor density at the boil-
ing point, v is the velocity of outgoing
steam, and S is the cross section of the
kettle's spout. Accordingto Clapeyron's
law the vapor density p : Wl RT,where
p is the pressure/ m is the molar mass
of water, R is the universal gas con-
stant, and T is the temperature of the
steam. Finally, we get

, =\fu =r1wRT .rpS LpltS

If thepowerof theheater W- l kW
n-0.5, S- 1cm2, T-373 K,p- 105Pa
(since the pressue of saturated vapor
at the boiling point is equal to the
atmospheric pressure), and the con-
stants are eclual to R = 8.3llkg.Kl, L :
4.2k1 lkg, and p : 1B . 10 -3 kg/mole,

n!f=
L

t:.-s 2(lY 8/2R\ -

E [\R,/ k\t)
t\1

2H
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-become equal to zero. The current
depends on time/ but we'll ignore this.
We then get

t_elt_qlR,

where R is the resistance and ris the
discharge time. From this we get

t- QRI<p: CR: 4ntoaR.

For a - I m, R - 1 megohm, and€o :
8.85 . 10-12F/m, wehave

t- 10 as.

The book Amusing Physics by Y. I.
Perelman includes a story entitled
"Out of the Water Dry." It begins
with the following problem: "Place a
coin on a big dinner plate, cover it
with a thin layer of water, and ask
your friends to extract it from under
the water without getting their fin-
gers wet.

"This apparently insoluble prob-
lem can easilybesolvedbymeans of
an empty glass and a buming piece of
paper. Set fire to the paper, place it
inside the glass, and cluickly put the
glass upside down on the plate near
the coin. The paper stops buming the
glass fills with white smoke, and the
water gets sucked inside the glass.
The coin stays where it was, and after
it dries you can pick it up without get-
ting your fingers wet."

Let's look at a problem related to
this story.

Problem 6. Evaluate the mini-
mum temperature to which the glass

should be heated so that all the water

-

.I'IT

on the plate is sucked
into the glass.

Let's first solve the
problem exactly
(making certain as-

sumptions, of course,
which will be speci-
fied later on). Before
the glass comes in con-
tact with the water,
the pressure inside is
equal to the atmos-
pheric pressure pa.

Denote the unknown
temperature of the glass by f. After
the glass cools down and sucks in an
amount of water of mass m, the pres-

sure inside it willbe p, its temperature
will be equal to the room temperature

I and the volume of the air inside the
glass will decrease by the volume of
the water-that is, it becomes equal
to 51_ mf p, where S and I are the cross

section and height of the glass, respec-

tively, and p is the density of water. By
Clapeyron's ]aw we can write

,, .)
PuSt PS[' 

Ps /
T*T

The equfibrium condition for the uplifted
column of water yields pS + mg : p^5.

So

' 1-*8 l-L
P"S PIS

Now we can specify the indirect as-

sumptions used in solving the prob-
lem. We assumed that the tempera-
ture of the air inside the glass was the
same as that of the sides of the glass.
We also assumed that the glass was
being put into the water gradu-

ally, so that the initial inner
pressure immediately after
the contact was eclual to the
atmospheric pressure. We
also assumed we could ig-
nore the pressure of the water
vapor inside the glass and
that the capilary effects are
negligibly small.

It's interesting that the
expression for T, includes
the change in the pressure
(because of water flow inside
the glass)and the change in
the volume of air as inde-

pendent factors. In that case it's a

good idea to analyze their effects sepa-

rately,
The first term can be transformed

in the following way:

1 
= t-U.

| -*8 1 -P-'- 
- 

Pa
p"s P,

The atmospheric pressure corresponds
to the pressure of a column of water 10

meters high. The height of the water
inside the glass cannot exceed the size
of the glass-that is, about 10 cm. So

we can ignore the pressure of the
water and take this factor to be ap-
proximately equal to 1:

1 
= 1.

| -^8pJ

Thesemndterm describes the change

in the volume of air inside the glass.
The difference between the volume of
water and that of the glass isn't as
great as the pressure difference, which
mears that the volume of water mustr't
beneglected. Thus,

f--r- 
l-L

P1s

Taking the numerical parameters
7- 300 K, m - 30 g,J - 10 cm, and S -
20 crr.z (since the volume of the glass

is about 200 cm3 and its height J - 10

cm), we have

T. - 353 K,

, - 80'c.

OUA|llIUlt4/IIAIURI 3g



The correction needed to take the
pressure change into account is AT =
T,(orslp,Sl - 0.1 K which is tiny com-
pared to the value of 7 . It's funny that
we've virtually neglected the change
in air pressure during cooling-the
very phenomenon responsible for the
statement of the problem.

Sometimes a more complicated
situation calls for a more careful ap-
proach to the evaluation. Here's a
good example.

Problem 7. Evaluate the frecluency
of the sound generated by a flying
mosquito.

It's naflral to assume that the sound
is generated by the periodic flapping of
the mosquito's wings. In fact, the
physics of mosquito flight isn't so
simple. We will, however, use an
extremely crude modef assuming that
flapping generates lift that compen-
sates {or the pull of gravity. The lift is
provided by the change in momen-
tum transferred to the air under the
wings per unit of time:

AJDlLt: mg.

We'll denote the area of the wings by
S and their velocity by v. Moving
downward, the wings push down a
mass of alr Lm: p"yArs over the time
interval Ar. This is accompanied by
the momentum transfer A,P: Lmv:
p 

^\PLIS 
. The resulting upward lift F is

F -LPlLt - p^rPS,

where p" is the density of air. The
length of a mosquito is, say, 1- 4 mm.

The area of the pair of wings is S - 12

(we assume that the length of a mos-
quito's body is of the same order of
magnitude as its wingspan). It's rea-
sonable to take (1/10)13 as the mos-
quito's volume, since a mosquito's
width and height are considerably less
than its length. We'll take the density
of the insect's body to be eclual to the
density of water p*. Denoting the
flapping frequency by v, we have v -
Iv. The ecluilibrium condition gives
US

F -p^tP12 - p^v21a:mg- p*13gf ro,

which leads to

This result gives a reasonable order of
magnitude, although we can't be very
certain of the digit "4."

This formula predicts that the fre-
quency changes as the inverse square
root of /. In other words, the bigger the
insect, the lower the sound it gener-
ates. hrdeed, comparing thebtzz of a
bumblebee with the high pitch of a
mosquito shows that this prediction
is justified.

Quite often evaluations are made
by using the dimensionality technique.
This method is based on the assump-
tion that the parameters appearing in
a problem combine as factors in the
final result. Of course, this approach

can't give the numerical values of the
factors. Occasionally, they can be
estimated by considering a special
case, but more often they're assumed
to be equal to 1. This is reasonable if
we're interested only in the order of
magnitude of the result. Let's look at
an example.

Problem 8. Evaluate the time it
takes for the sound of thunder to reach
an observerwho saw a tree gethitby
hghtning 3 kilometers away.

The speed of light is approximately
3 . 10s km/s, so the observerwill see
the flash in - 10-s s. The speed of
sound in the air is much lower. Let's
try to estimate it by means of the
dimensionality technique.

The speed of sound v depends on
the parameters that characterize the
medium in which it propagates. For
air let them be pressure p and density
p. We'll assume that

, v - P*Pv,

wherexandyare as yet unknown. If
such a relation does indeed exists, the
dimensionalities of its left and right
sides must be the same.

Let's agree to denote the dimen-
sionality of A by [A]. Then

[v]: m. s-'

[p]=Pr=[g.6-t.s-2,
[p] : kg'mr,

and we can write

m. s-1: (kg.6-t . s-2)"(kg. m-.)r.
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This equality holds under the condi-
tion

x+Y=Ol
-x-3y = l,

a -. 1

-LA=_L.

From this we get

1

)

I
-1

which leads to

,'-,lT\o
The numerical {actor in this formula
can't be obtaired by the dimensional-
ity techniclue. We'1l assume that it's
of the order 1 (generally speaking this
would have to be verified somehow).

To estimate the speed of sound we
have to substitute numerical values
for the atmospheric pressure lp - lbar
- 10s Pa) and the density of the air (p -
1.3 kg/m3 under norrnal conditions).
Then the speed of sound is

io
I ^-\ ' -.100 lnrs,

Vo

so that the time it takes for the ob-
seruer to hear the thunder is

3. l03nrI *", '" "'- l0s.
300 rn/s

This is six orders of magnitude greater
than the time it took the light to reach
the observer, and our experience tells
us that it's quite reasonable.

I'll leave you with somc estilnation
problems to figure out on your own.
Try to resist the temptation to peek at
the answersl

Problems to ponder
1. Evaluate the change in the atmospheric

pressure ii all the water in the oceans evapo-
rated.

2. Estimate the rate of descer-rt of apara-
chutist with an open parachute.

3. Evaluate thc mean densit,v of the Sr-rn.

4. Estimate hou, man-v rcvolutions lson-r-
ersaults) an automobile rnakc as it plummets
freely at full speed into a precrpice i km deep.

5. Evaluate the pushrng iorce of an athlete
putting (throwing) the shot.

6. Evaluate thc tcnsion of a bicycle charn
during uphrll peddling.

7. Evaluate the velocity of a drop of water

iI, upon hitting a stationary wall, the pressure
of the drop on the wall at impact is about
10 Pa.

8. Estimate the tension of a car's safety
belt if the car crashes into a pillar at a speed of
30 kmih, producing a dent 30 cm deep.

9. Estimate the distance at which a person
wearing bright clothes vanishes from sight 14
a pine *oods. [There is no underbrush.) 0

ANSWERS, HINTS,
AND SOLUTIOIVS O/V PAGE 61

LATIN RECTANGLES
FROMPAGE20

to assume "only" that
m <'v/V.

I've put " only" in quotes because
mathematicians would much prefer
to find, if not exactt then at least
asymptotic formulas with no restric-
tions on the relation befiyeen the length
and width of the Latin rectangle in
order to approach Latin squares, which
are now used in the theory of experi-
ment planning. But a solution to this
problem remains a challenge for fu-
trlle mathematicians. O
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MATH BY MAIL

The [Uloscotnl Cul'respondencg School

in 0uanlum

Directed by Professor l. M Gelfand
with the assistance of M. Berkinblit, E Glagoleva,

N. Konstantinov, V. Minachin, and V. Retakh

A Word of lntroduction

by l. M. Gelfand

was given so that he or she could then
complete the work.

Of course, it wasn't our intention
that all the students who studied with
these books or even completed the
school should choose mathematics as

their future career. Nevertheless, no
matter what they later chose, the re-
sults of this training remainedwith
them. For many, this had been their
first experience in being able to do
something on their own----completely
independently.

The project proved so fruitful that
we extended it and opened the biology
and linguistics branches, since we do
not live by mathematics alone.

The Correspondence School is now
publishing its books in the United
States, and with this article we are
opening a new department in Quan-
tttm, Mathby Mail. Its aim is to give
you a feel for the things we do in the
school and to offer advice to those
who would want to study on their
own. We'll start by presenting some
material used in the school. These
columns are not directed only to those
students who will laterbecome mathe-
maticians or embark upon a related
career but to all who want to study
mathematics with the help of our
books, our advice, and our school.

They are in no way intended to pro-
vide special mathematical training
for its own sake. Rather, we consider
mathematics to be an important part
of human culture.

With this goal in mind we have
written several books and will con-
tinue writing them. Two books are
being translated into English and will
be publishedby the Birkhduser pub-
lishing house. No additional knowl-
edge is required, but sometimes fa-
miliarity with parts of the high school
math curriculum is necessary.

One more remark. How were these
books written? The things that are
now taught in high school mathemat-
ics courses were in their time great
achievements of the human mind,
and intellectuals of the Stone Age or
ancient Greece were undoubtedly very
enthusiastic about these discoveries.
Because of repetition in sbhool, these
things have lost their freshness, but
each student leams all this anew, just
as ancient mathematicians did. So in
writing our books we tried to forget
that we aheady knew all this and to
look at mathematics with fresh eyes.

Maybe this approach accounts for the
great popularity these books enjoy in
the Soviet Union.

rI WENTY-FIVE YEARS AGO I
I organzed an unusual mathemat-
I ics school by correspondence in
I th" Sovret Union, and I still con-

tinue to direct it.
I'dlike to tellyou a littlebit about

this school. The Soviet Union, as you
surely realize, is a large country, and
there are simply not enough good
teachers throughout the country who
can show all the students how won-
derful, how simple, and how beauti-
firl the subject of madrematics is. The
fact is that everywhere, in every coun-
try, and in each part of a country there
are students interested in mathemat-
ics. Realizing this, we organized the
Mathematics Correspondence School
so that students from 12 to lTyears of
age from any place could study. Since
the number of students we could take
in had to be restricted to about one
thousand, we chose to enroll those
who lived outside of such big cities as

Moscow, Leningrad, and Kiev, and
who resided in small cities and vil-
lages in remote areas. The books were
written expressly for them. They, in
tum, read them, did the problems, and
sent us their solutions. We never
graded theirwork-it was forbidden
by our rules. If anyone was unable to
solve a problem, some personal help
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Sample prolhms
The first homework given to a stu-

dent who wants to be enrolled in the
school is thei "entrance examination."
It is composed in such a fashion that
no prerequisite knowledge is expected,
but the results can show whether a
would-be student wants (and that
generally means is able) to study
mathematics.

Here's a set of problems you might
encounter in the entrance examina-
tion.

1. You have aglass of wine and a
glass of water. You take a spoonf'ul o{
the wine and pour it into the glass of
watert stir the mixture thoroughly,
then take a spoonlul of that and pour
it into the glass of wine. Is there now
more wine in the water or more water
in the wine?

2. Is it possible to wrap a cube with
sides of length 1 in a square sheet of
paper with sides of length 3?

3. Into how many parts can four
distinct straight lines divide a plane?
Draw an example for each case.

4. Find all three-digit numbers
suc,h that writing three digits before
each of them tums it into its square.

5. What is the maximum number
of Saturdays there can be in a year?

6. You have a chess knight on an
inlinite chessboard. What is the number
of squares it can reach in no more than
10 moves? (A knight must make L-
shaped moves: two squares horizon-
tally or vertically and then a right-
angle tum for one more square-see
figure 1.)

Figure 1

7. Thereare l0bagswith 10 coins
in each. In one bag all the coins are
counterfeit and each weighs 11 grams,
while in alt the remainingbags ali the

coins are genuine and weigh 10 grams
each. How can you decidg by a single
act of weighing which is thebagwith
the counterfeit coins? (Your scales are
acaJrate to the gram.)

8. Find all positive integers that
satisfy

xy:x+y+1990.
9. Decide which of these two numbss

is larger:

1315+ 1 1316+ I

1316+ I l3t7 +l
How do you know?

10. Can there be a triangle whose
area is greater than 100 square meters
and whose three heights are all shorter
than 1cm?

11. Is itpossible to draw acurve on
a Rubik's cube (fig. 2l thatbegins in
one square/ ends in another square/
and enters each sqture, excluding these
two, exactly once?

Figure 2

If you want to send us your solu-
tions to these problems, we'11 cer-
tainly read them and send you our
comments. We'il print the solutions
in the next issue of Quonturr (Sep-
ternber/October).

This year I'm staylng at Rutgers
University, so please send yor-rr letters
to this addrcss:

Professor I. M. Gcliand
Center for Mathematics, Science,

and Computer Education
Rutgers University
SERC Building, Room 239,

Busch Campus
Piscataway, NJ 08855

We welcome our new correspon-
dents in the US, and wc'll try to give
you useful advice. We plan to opcn a

similar school in America/ so any
contact with you, our first corespon-
dents, will be most valuable to us.

T[e Corms[oltdsttce Schml litral'y
Books written for the Correspon-

dence School are very popular in the
Soviet Union. Hundreds of thousands
of copies of each book have been so1d.

Their success is apparently due to the
factthat they were intended for stu-
dents in the most far-away places,"
where they often can't find a mathe-
matics teacher who can give them
good advice. So they tumed out to be
very suitable for independent study.

Now that we've begun publishing
a new series of books for students,
we've decided to reprint the best of the
Correspondence School books, those
that have stood the test of time. I
think even today we'd write them as
they are.

It seems like a very good idea to
combine these books with a com-
puter, so the second edition will in-
clude a software package so you'11be
able to work with a book and a PC
simultaneously. But please don't think
that now, in the computer age/ the
effort of studying mathematics can be
transferred to a computer. The com-
puter can help you solve a problem,
but it can neither think nor under-
stand for you.

I'd like to make a comment here.
Some of myAmerican colleagues have
explained to me that American stu-
dents aren't really accustomed to think-
ing and working hard, and that for this
reason we must make our materials
as atffactive as possible. Permit me to
not completely agree with this opin-
ion. From my long experience with
young students all over the world, I
know that they are curious and in-
quisitive, and I believe that if they
have some clear materiali presented
in a simple form, they'll prefer these
to all the artificial means of attracting
their attention-much as one buys
books for their content and not for
thelr dazdngjacket designs that engage
your mind only for the moment.

The most important thing a stu-
dent can get from studying mathe-
matics is the attainment of a higher
intellectual level. In this light I'd like
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to point out as an example the famous
American physicist and teacher Rich-
ard Felmman who succeeded in writ-
ing both his popular books and his sci-
entific worlis in a simple andattrac-
tive manner.

Unfortunately, most of our Corre-
spondence School publications are in
Russian. However, English transla-
tions of the first two books in the
series, Method of Coordinates and
Functions and Graphs, are about to be
published by the Birkhiuser publish-
ing house. Algebra, geometry/ calcu-

lus, and combinatorics will be treated
in subsequent books in the series. Of
course/ each of the books can be used
for independent study.

Wouldyou like a sample? Here's a
problem frolr, Geometry by T. Y.
Alexeyevsk ay a arrd I. M:Gelf and.

Straight lines in a plane are said to
be in general position if no two of
them are parallel and no three of them
have a commonpoint. We can con-
sider these lines infinitely long fences
dividing the plane into a number of

regiors. Some of the regions are lmunded

-we'11call 
them "cells." In each cell

a wol-{ can be placed (since it can't run
away from a bounded regron). If there
are 4lines in general positiorl what is
the maximum number of wolves we
can keep? (This case, alongwith the
case of lines that are not in general
position, is considered in problem 3
above.) What is the maximum num-
ber of wolves you can keep i{ you have
5 lines in general position? What is
the minimum number? O'

SURFACE AREA
FROM PAGE 9

its length and the area of its cross sec-
tion (a circle of radius .h-see exercises
4 and B). This version of the definition
also holds for curves that do not lie in
a plane.

Now you know three definitions
based on a common idea, and you
probably understand that this string
of definitions can be continued by
adapting them to the dimensionality
of the object we're going to measure
and the surrounding space. You'll
find two more examples in exercise 9,
but further geneulizations lie outside
the scope of this article.

Exercise 8. The body created by
rotating a circle around an axis that
does not intersect it is called a torus.
Its volume is computed by the for-
mtla2n2RP, whereris the radius of
the circle and R is the distance from
the center of the circle to the rotation
axis. Show that the spatial ft-neigh-
borhood of a circle is a torus (fig. 11)
and derive once again the formula for
the lengh of the circle.

Exercise 9. For what sets F is the
limit of the followingratios positive

Figure 11

and finite: (al vlF)lL; lb) VIF;lWr&3131?
What is the geometric meaning of
these limits?

Seeiltg is helieuing?

Now the time has come for me to
apologize for the little bit of cheating I
engaged in at the beginning of the
article. Have you discovered ityet?
The secret is very simple: after the
unrollingis done, thepetals of thebud

are curv'ilinear triangles, not the usual
ones. It's easyto see thatthe sum of
the angles at the vertices of the tri-
angles in figure lb is less than2n, arrd
so if we rolled them back into a bud,
we'd get a surface with holes in it.
Naturally, this leads to a value that is
smaller than the ffue area of the sphere.
If this trick has enticed you into read-
ing this article, it has played its role
well. o

OUANTUM
lnalte$ a [Brloct Uilt!

Use the response cardin this issue to
order Quantum for your child, grand-
child, nepheq niece, mother, father,
friend... Six colorful, challenging, en-
tertaining issues for only $14.00!

Factor x into fhe Quantum equation,
where x is any potential Quantum reader

you know!
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MATH MAGIC
FROMPAGE29

|ust how many squares does this
give? Here fre six additional tables:

each of which yields 24 x 24by per-
muting their rows and columns. So
the method gives 6 x24x24:3,456
maglc squares in all, or 3,45618:432
when we discount rotations and re-
flections.

One of these squares-namely,

obtained from

appears in Albrecht Dtirer's famous
self-portrait, Melencolia I, and the
middle two numbers in the bottom
row indicate the date of the work
(refer back topage2gl.

We can use the addition table idea
to give a simple formula for the gen-
eral order 4 square like the one we
gave for order 3 earlier. We just adjoin
two newparameters, xand y:

A+a+x C+d+:< D+lc+12 B+c+y

D+(]+x B+!c+y A+d+x C+a+y

B+d+y D+a+)< C+c+y A+1:+x

C +i:+y A+c+y B+a+x D+d+x

The general order 4 magic
square

The 10 parameters here are not a1l

independent, since we can decrease
eitherA,B, C, D or atb, c, dbysome
amount without changing the square,
provided we simultaneously increase
x and yby the same amount. So you
cantake D = d=Q i{youlikg andthen
the remaining B parameters A, B, C, a,
b, c, x, ywill be independent.

This raises the general question of
how many parameters are needed for
the general order n maglc square. The
answer is given onpage 6 l. And just
how many magic squares can be made
using the numbers from 1 to n2? You
won't find the answer on page 51,
since for n larger than 4 nobody lcrowsl

A particularly interesting kind of
square is the one called pandiagonal,
in which all the " wr ap around diago-
nals" such as

#

#

#

#

also have the magic sum. O{ course,
an order 3 scluare can be pandiagonal
only if all the mrmbers are equal, since
they must all be one third of the maglc
sum! Our general order 4 square is
pandiagonal only if

A+C : B+D,
a+c : b+d,

x:y.
There is a beautiful relationship be-
tlveen the order 4 pandiagonal squres
and the four-dimensional hypercube,
or tesseract. [r the figure, the vertices
of the tesseract are numbered from I
to 16. Each two-dimensional {ace
adds up to 34, so this is a magic
tesseract! If you start at any vertex and
read around aface, you get the first
row of a magic square whose other
rows are {ound by reading around the
parallel faces in the same order. We'll
leave it to you to work out the precise
rules.

Tlre nnagic tesseract

One scluare obtained like this is

I 13 2 11

10 3 15 5

6 9 4 15

1 72 1 L4

Can you see its rows and columns as

faces in the magic tesseract?
There are 384 orderings of the num-

bers that work, corresponding to the
384 ways of repositioning the tesser-
act so that it occupies the same por-
tion of four-dimensional space. They
give 384 pandiagonal order 4 squares
in all, or just 48 when we discount
rotations and reflections.

There are many other shapes to
make magic with. One of the most re-
markable is

I4
9

6

11

1

18

17

J

Adams's amazing magic
hexagon

in which all the lines parallel to the
sides have the same sum, 38. It is so
called because Clifford W. Adams became
so obsessed with the problem of redis-
covering it that he made 19 numbered
ceramic tiles and spent 4Tyears shuf-
fling them around at odd moments
until at last he did find the solution,
which Charles W. Trigg later proved
unique. In[act, theAdams hexagon
hadbeen dismvered several times beforg
in particular by WiIIiam Radcliffe,
who registered it in L896 at Stationers
Hall, London.
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BRAINTEASERS

Just lol' IhB lun ul il!
826

Mtx and match. There are three red and five blue sticks of different lenghs
lying on the table. The total length of the red sticks is the same as that of the
blue ones. Is it possible to cut up the sticks and pair the pieces such that the
pieces in each pair wiil be alike in length but different in color? (V. Proizvolov)

827
Comparingages. Now I'm four times older than my sister was when she

was half as young as I was. hr 15 years our combined age wi1l be 100. How old
are we now?

828
Go with the f1ow. Once I got lost in a forest. I was going to make a fire and

spend the night, but fortunately I found a water pipe. Obviously I should go
along the pipe, but in what direction? In the direction of the water flow, since
the water goes to people. But how could I determine in which direction the
water was flowing? (M. Lobak)

M*WRffi\*r'qy.ryrE\

wsffiK
ffiffiffiffiffi
830

The wisdom of old. King Arthur ordered a pattern for his quarter-circle
shield. He wanted it to be painted in three colors: yellow, the color of kindness;
red, the color of courage: and blug the color of wisdom. When the artist brought
in his work, the king's armor-bearer said there was more courage than wisdom
on the shield. But the artist managed to prove that the proportions of both
virtueswere equal. Canyoutellhow? (A. Savin)

829
The algebra of cooperation So1ve the number rebus USA + USSR = PEACE.

(The same letters stand for the same digits, different letters denote different
digits.) (B. Kruglikov)

o
mo{
D
o
z
o
Na
o
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HAPPENINGS

Thela$l Ualnelol' malh minds

Taki ng the Twenty-Fou r Chal len ge- 
*

INNEAPOLIS PI'BLIC H]GH
School students are manipu-
lating numbers to solve math
problems th:rt would short-

circuit the wodd's most elaborate pocket
calculator. They are practicing this
lightning-quick skill in a citywide
toumament in which they play Twenty-
Four,@ a new game that takes an inno-
vative approach to the world of num-
bers.

Colorful Twenty-Four game cards
containing four numbers from one
through nine were designed by Robert
Sun, an inventor and engineer who
has had a lifelong fascination with the
world of numbers. Using each num-
ber only once, players must add, sub-
tracq multiply, aurrdf or divide to arrive
at the solutionol24.

For example, a card has the numbers
3,4,5,5. Two possible solutions are:

3.5 = 15 5.5:25
15+5=20 4-3=l
20+4:24 25-L=24

And that's just an easy card. The
infamous 7,3,7,3 combination has
stumped some of the best math minds
in the country.

According to Sun, the game goes
right to the essence of what math is all
about. "students are lacedwith four
seemingly random numbers. They
must quickly try to sense the interre-

lationship between the four numbers
and the number 24." The Twenty-
Four game challenges students to build
a solid foundation of basic math skills
and to feel con-fident in manipulating
numbers. Says Sun, "Without this
f oundation,.students cannot experi-
ence the excitement of moving on in
the mathematical world."

To further encourage students'
fascination with numbers, Sun intro-
duced the Twenty-Four Challenge
Toumament to Minneapolis last fall.
With the support of the Minneapolis
Public Schools and a generous grant
from the TCF Bank, over 10,000 stu-
dents competed for the coveted title of
Minneapolis NumbersWhiz Kid. The
winner was Mike Appelhans of WOC
High School.

Similar Twenty-Four Challenge
toumaments are being held in chosen
cities nationwide, including Philadel-
phi4 Boston, St. Louis, San Francisco,
Chicago, Portland, and Tampa. This
widespread participation can be at-
tributed, in part, to the fact that the
toumaments are extremely simple to
administer, and there is no cost to the
school systems.

For information about stafiing a
Tw enty - F our Challenge toufi am ent
in y our community, cont act R ob er t
Sun or Nan Ronis of Suntex Int'l, Inc.,
118 NorthThtud Street, Easton, PA
18042, or call 215 253-5255.

0uantum3 Twenty-toun ChallerUe

Would your class like to try this
numbergame? Take the Quantum
Twenty-Four challenge, sponsored in
part by the Eastman Kodak Company-
21st Century Leaming Challenge.

How to play. On this page, we've
printed four cards from the Twenty-
Four game. Use the four numbers on
each card to compute 24 as rr'any
ways as you can. Do the math step by
step. Use only the numbers on the
card and the answers from each step.
(Note: the 9's on the cards are filled in
with red; the 6's aren't.)

How to enter.
1. Send us a list of all the ways you

gotZ4for each card. Show each stage
of your work-just like we did.

2. Write on a sheet of paper:
a) your gtade;
b) the names of your school and

teacher;
c)yow school's address andphone

numbet; and
d) the statement, "'We pledge

that these answers were deilved
without the help of any aduhs
except the teacher." Make swe all
participants sign it.

3. Send us your entry no later than
Api724,199f . Mail itto Quantum's
Twenty-Four Challenge , 1742Con-
necticut Avenue NW, Washington,
DC 20009.

Cop)rthtOl99lbySuntexlntematroniil,inc. TrventyFoLLrandTrvcnt_v-FourChallengearcregistcrcd tradcmarks oi Suntex Intcnutmnai. Inc
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The prizes. A11 grades K-12 are
eligible, and will be judged in two
categories: Sth grade and below, and
9th grade and above. Ilrizes have been
generously ilonated by Kodak.

The class in each category that
finds the highest total of correct and
differentways to make 24wi11winthe
Grand Prize. Each student will get.a
Twenty-Four T-shirt and a standard
edition of the Twenty-Four game.

The class in each category with the
next highest total is first runner-up,
Each student in those classes willre-
ceive a Twenty-Four T-shirt and a

pocket edition of the Twenty-Four
game.

The students in the second, third,
and fourth runner-up classes in each
category will each receive a pocket
edition of the Twenty-Four game.

Do's and don't's. Make sure you
follow these rules when you enter:

Do use all four numbers on each
card.

Don't use a number more than
once, unless it appears on the card
more than once.

Don't use the commutative prop-
erty of addition or multiplication to

make 24 in more than one way. (If you
do, we'll only count one of the an-
swers.) Here's an example using 1, 6,

8, and 9:

1.8:8 8.1:8
9-6:3 9-6=3
3.8:24 3.8:24

Only one of these combinations would
count.

Don't put two digits together to
make a larger one. You can't make 23
fuom}and3.

Don't use exponents. You can't
use 2 and 3 to make 23, or 8.

-Elisabeth 
Tobia

I[e mmluler rettoltllion
There can be little doubt that

computers have changed the face of
the world. Now "The Computer
Revolution," a fascinating six-part
documentary series, offers a look back
at the history and development of this
technological achievement and a look
forward to the computers of tomor-
row. From the earliest prototypes and
room-size machines of the past to
today's compact desktop workstations,
this new video series presents a his-
torical and analytical perspective on
the computer and its impact on mod-
em society.

Through interviews with top pro-
fessionals in the field and state-of-the-
art computer graphics, "The Com-
puter Revolution" not only expiains
the leaps and bounds in computer
technology but often demonstrates
them as we1l. The series explores
applications in agriculturq medicine,
communications, business/ space
exploration, and national defense. It
depicts the story the birth and growth
of an entire industry, from Silicon
Vailey to thepersonal computer. Voice
recognition software, machine vision
for the blind, natural language com-
prehension, and artificial intelligence
are only some of the new uses this
documentary examines.

"The Computer Revolution" is
available onVHS andBeta videocas-

Bullelin [oand
settg for prirchase or rental, from Films
for the Humanities & Sciences. For
more information, write to Dan Maureq,
FHS Lrc., PO Box 2053, Princetoq l\tr|
08543, or call 800257-5126.

-8.7.
Souieland Amel'iuan $[acs arl

[:r the movie "200I'. A Space Odys-
sey" one of the astronauts sketches
his hibemating colleagues aboard the
|upiter probe and later shows his work
to HAL the computer, who dutifully
admires them. This episode says

something about the human urge to
record reality through the eye and
hand as well as through lens and
chemical-coated paper/ spectrometer
and printout. In the St eam of Star s :

The Souiet/Amefican Space Art Book
is a collection of paintings by those
who have had theprivilege of travel-
ing in space and those who study it
and dream about it.

Some o{ the most interesting work
in the book was done by an astronaut
and a cosmonaut. Alexei Leonov (af-

ter whom the US spacecra{t in the
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sequel "2010" is named) took colored
pencils to space to sketch his ideas,
which he developed more fully on his
retum to Earth. Alan Bean's portraits
of fellow Apollo astronauts on the
Moon show traces of Moneg a painter
he greatly admires, and he offers us a
virtual dissertation on the perception
of color, texture/ and depth on the
lunar surface.

As one of the book's editors, Wil-
liam K. Hartmlnn, points ou! "space
art" lies somewherebetween "fine
art" arrd "illustration. " The examples
presented in this handsomely printed
book run the gamut between the two
extremes. Some are highly imagini-
tive and thought-provoking; others
are competent renderings of known
facts or speculations without much
emotional content. Together, though,
they represent a satisfactory mix of
the science and poetry that intermingle
in humankind's space yenture.

In the Stream of Stars presents the
work of more than 70 artists, most of
them from the US or USSR, the na-
tions at the forefront of large-scale
space exploration. It was edited by a
Soviet-American team of artists and
is graced by a rhapsodic introduction
by Ray Bradbury, dean of American
science-fiction writers. Lr addition to
the more than 200 full-color illustra-
tions, the book contains illuminating
essays on the history and role of space
art as well as first-person accounts of
space travelers. Cosmonaut Leonov
writes, "Probably my strongest im-
pression of the Earth was that it was
not so big! It was finite. . . . What
astonished me most of all was the
thinness of our atmosphere, which
seems so thick and full of power to the
observer on Earth. If a model were
made, the air would be no thicker
than a film of tracing paper/ covering
the Earth."

The timeworn phrase " Spaceship
Earth" takes on a new freshness and
immediacy in these vibrant paint-
ings, making this a book not only for
the armchair star voyager but for the
most entrenched homebody on this
remarkable planet. (183 pages, $19.95
paperback/$ 29.9 5 hardcover, Work-
man Publishing, New York)

-TimWeber
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T LOVE BIKE RACTNG AND I
I follow a rigorous training regimen

I that includes weight liftirg, plyom-
I etrics (iumping exercises), and stretch-
ing exercises to prepare for races. This
training regimen is time consuming
and laborious, but it is not an end in
itself. Lr fact, the only measure of its
value is how well I do in races. And to
take that measure I've got to race.

You're reading this magazine, so
I'm betting that you're pretty fond of
mathematics and that you're in ffain-
ing. Did you calculate, graph, factor,
differentiate, or integrate your way
through 1-27 (odd) on pages 254 and
255 last night? Why? To prepare to
race. So race! Try arealproblem!

What does "teal" rrreatr? The prob-
lem comes out of your worldly experi-
ence, somebody (if only you) cares

Y

a
.a
lo

o
a
Z
c

50

IN YOUR HEAD

Prohlem raciltu
That's what all your training is for!

by Gary Sherman

what the answer is, and nobody (as far
as you know) knows what the answer
is. Let me illustrate with four ex-
amples.

tndless "tllal"'

Didyou playthe card game"war"
when you were growing up? Here's
how it goes. After the deck is shuffled
and dealt to the two players, they
begin matching cards, and the higher
card captures the lower card. Staie-
mates (suits aren't ranked) are broken
according to local rules, and the game
is over when one player has all the
cards.

Back up for aminute-must a game
eventuallyb e " over" 7 Or could it go
on forever? This (very natural) clues-
tion was posed by a frustrated seven-
year-o1d-"Dad, does this game ever

KW
e@

have to end?"-not by me. A SZ-card
deck, the vagaries of breaking stale-
mates (at our house, usually a wres-
tling match), and the haphazardway
in which we returned cards to the
deck prompted the insight{ul reply,
"I-rhhhhh, gee, Mike, I'm clueless."

What about warwith the integers
l, 2, ...,n? For example, if we shuffle
and deal 1,2, ...,8, your initial hand
might be Yn: 1, 5,2,7 and my initial
hand might be Mo: B, 5, 3, 4. Tt's clear
that I'm not going to lose (it's my
article), but must I win? Let's play.

Yo:1,6,2,7 Mo:8,5,3,4
Yr:6,2,7 Mr:5,3,4,8,1
Yr:2,7,6,5 Mr:3,4,8,1

::
Y,.: 1 M,r:7,5,3,6,4,8,2

Iwinonthe l5thmatch:

The questions are endless. Must
any game with n : B end? If not, what
proportion of games must end? If
there is a game that doesn't end, it
must cycle, since there are only a

finite number of possibilities for your
hand and my hand. What can you say

about the number of matches that
occur before a cyclemust begin? How
many matches are there per cycle?
And the endless part: what if n is an
arbitr xy positive integer ?

Shtttllod sgalittg

The atmosphere in my calculus
class was getting stale, I was frus-
trated, and before I realized I was

llllARCfl/APRil. r 9gr
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saying it, I said it. "Okay,I want
everybody out of their seats . . . now
stretc[ wander around the room for a
couple of minutes, and sit back down.
But-have n6w neighbors when you
sit down!"

About haltway through the stretch-
and-wander phase, it occurred to me
that

1. Nobody, inclu'ding me,
knew what "neighbors" meant;

2. I didn't know if any such
seating reaffangement existed;

3. I had stumbled on a nice
problem.

Specifically, consider the follow-
ing4x5array:

The neighbors of F are A, G, K; the
neighbors of P are K Q; and the neigh-
bors of I are G, M, Q, K. Can you
rearrange the entries in this array so
that each entry gets all new neigh-
bors? What's the probability that a
random rearrangement provides all
new neighbors for each entry? How
many reanangements preserve only I
and M as neighbors? How many
rearangements preserve atotal of exacdy
| 12,3, ...1neighbor(s)? On the ayerage,
how many neighbors does a random
rearrangement preserYe? What hap-
pens in an mx n array?. An m x I xray?

An m x n x k arcay? In d (2al dimen-
sions? Maybe you prefer another defi-
nition of "neighbors"?

Sct'amlled ottalualiolts

During the time I was chair of the
mathematics department at Rose-
Hulman Institute of Technology/ one
o{ my jobs was to read student evalu-
ations of teaching. (Each instructor's
teaching is evaluated each quarter in
each course by each student.) A week
or so after the end of the quarter a
stack of m xn envelopes (m instruc-
tors and n courses per instructor), in
random order, would appear on my
desk. Mypreference was to read the
evaluations by instructor, so I had to
sort the envelopes accordingly. Now
my desk may have enough clear space
for two stacks, but certainly never rn
stacks. Let me take m:3 (say, in-
structors A, B, and C) and n : 3 to
illustrate what I did.

Stack I Stack 2

))
1-B

2-A
3-A
4_C
5-B
6-C
7-A
8-C
9-B

The first three envelopes are easy to
sort.

Stack I

1-B

Stack 2

2-A
3-A

What do I do with 4-C? I'rngoing to
put it on the bottom of the original
stack and think of it as the tenth
envelope.

Stack 1 Stack 2

1-B 2-A
3-A

5-B
5-C
7-A
B-C
9-B
10_c

Now 5-B goes to the top of Stack 1,

5-C goes to the bottom of the original
stack as 11-C, and 7-A goes to the top
of Stack 2.

Stack I Stack 2

5-B 7-A
1-B 2-A

3-A
8-C
9-B
10_c
11_C

Stack 2 is now available to accept en-
velopes for instructor C, so I can com-
plete the sort.

Stack I Stack 2

9-B 11-C
5-B 10-C
1-B 8-C

7-A
2-A
3-A

Notice that I had to handle k : 11

envelopes to complete the sort using
this algorithm. And what is the algo-
rithm? Suppose envelope i-Xis at the
top of the unsorted stack.

4-C
5-B
6-C
7-A
B-C
9-B

A B C? D?E?
FGHII
KLMNO
PARST
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1. If each sorted stack con-
sists of complete sets of enve-
lopes, then place i-X atthe top of
any sorted stack.

2. If i-X is at the top of a
sorted stack, then place i-X on
top of that stack.

3. Otherwise, place i-X at
the bottom of the unsorted stack .

and relabel it (s + 1)-X, where s-Y
is the envelope that was moved
from the last to the next-to-last
place in the unsorted stack.

Now for the cluestions. Suppose
there are m instructors, each teaching
r? courses/ and you have room for s

stacks. Wtrat's the minimum value of
k? What's the maximum value of k?
What's the average value of k? And
the I'm-a-glutton-for-punishment
question: what if the number of courses
per instructor isn't constant?

Shoillirsl. . .

A few years ago the Continental
Basketball Association (CBA) held a
shooting contest-the $ 1,000,000 CBA
Easy Street Shootout-in an attempt
to increase fan support of the league.
Each of the fourteen franchises held a

local version of the contest to deter-
mine its representative for the league
contest at the all-star game. Both the
local and league contests proceeded
according to the following rules:

1. Alotteryis heldto deter-
mine the order in which the
contestants will shoot. (At the
franchise level ten spectators were
selected, and ordered, by lottery
using numbers printed on their
programs.)

2. In turn, each contestant
shoots one shot from whatever
location on the court he or she
chooses.

3. At the completion of one
round of shots, the contestant
who made the longest shot is
declared the winner.

4.It all the contestants miss
their fust-round shog a sudden-
death round begins: the shoot-
ing order of the first round is
repeated, and the first contest-
ant to make a shot wins.

This contest was described in the
Scorecard section of Sports lllustrated
(November 18, 1985), and the editor
wondered just how important the
shooting order is in such a contest. I
doubt that the editor thought of this as

a mathematical question. But you
should. It's a natural: how important
is shooting order, and what is the best
shooting strategy for each of the con-
testants? Here are the assumptions I
would make to get started:

1. A11 shooters are of equal
ability.

2. The probability of miss-
ing a shot increases monotoni-
callyfrom0 (alayup)to I (a90-
foot bomb).

3. If two shooters hit shots
from the same di"t .r"", the second
shooter wins.

4. There are n shooters-
andn:2 for openers.

tt celsra
You can generate problems like

these. It's just a matter of developing

the mindset to question everything
and anything you experience. What's
the optimum? How many? What's
the minimum? What's the mad-
mum? What's the average? Before
long you'll accluire one of the distin-
guishing characteristics of a good
mathematician-more problems than
answers. View each of your problems
as a race. If you do we[ look for stiffer
competition. If you don't do so well,
adjust your training regimen accord-

If youwould like to know the status
of the four problems I've described,
send me a note that includes your
effort to solve at least one of them. My
address is Math Department, Rose-
Hulman hrstitute of Technology, 5500
Wabash Avenue, Terre Flaute, IN 47803.

Ih. Gary Shernan was the math deparunent
chafu and is now professor of mathematics
at Rose-Hulman, where he is dfuector of a
research program in group theory. Dr.
Sherman was drafted by an NFL team
but went to graduate school instead. He
has won several state championships in
bicycle rucing in Indiana.

20 yearc, so the son's age at the mo-
ment we're looking for will equal
2012:10 years, which will happen in
10-5: 4yearc.
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To calctllale or Uuo$$-
yoll decide!

A baker's dozen curious problems

by l. Akulich

ET'S GET RIGHT TO THE
problems.

Problem 1. A father is 26 years

oldandhis sonis 6 years old. In
how many years will the father be
three times older than his son?

This problem and others like it are
usually solved by one of two methods.

Arithmetic method: If the father
becomes three times older than his
son, the difference of their ages is two
times the son's age. But the difference
is constant and is equal to 26 - 5 :
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Algebr aic m etho d :'Let the f ather
be three times older than his son in x
years. Then 26 + x:3(5 + x), so x: 4.

Let's add one more method to these
two-the gu ess-and-choose method.
Let's try to guess the answer or/ more
exactly/ to choose it. Let's use our
experience in solving such problems
and remember that, as a rule, only
integers are used in them. The search'
area then becomes sharply delimited.
Lr addition, when the father becomes
three times older than his son, natu-
rally his age must be divisible by 3. At
first this situation will happen in a
year-th^tis, the father will be 27 and
his son will be 7 (which doesn't work);
then in 4 years-that is, the father will
be 30 and his son will be 10 (now it
doesworkl. That's it!

If any of you is thinking of indig-
nantly reiecting the thirdmethod in
favor of the first two, I strongly urge
you to hold off. It's true, a mathema-
tician (even an amateur) ought not
guess. But imagine the following
situation. A math competition is
taking place. One participant from
each team is called upon to solve the
above problem. The first to give the
corect answer is eonsidered the win-
ner. And so the clock starts ticking!
You can't help but agree that the third
method seems preferable to the first
two. Of course/ there's a chance of not
finding the answer at all, but the
greater speed and more limited num-
ber of calculations (and, consequently,
the gready reducedpossibiJity of making
arithmetical errors, which are quite
likely in the heat of competition) are
sure to outweigh that consideration.

Problem 2. According to legend
there was a tombstone with this in-
scription: "Ye Traveller, lyrng under
this tombstone are the remains of
Diophantos, who fied in extreme old
age. He was a childfor a sixth of his
long life, a youth for a twelfth, and
unmarried for a seventh. Five years
after he was married his wife had a
baby boy, who lived half as long as his
father. Four years after the son's death
Diophantos himself went to his eter-
nal rest, and his death was mourned
by his relatives. Tell me, if you can
count, how many years Diophantos

tbffi
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If you use the algebraic method,
youhave to solve a cumbersome equa-
tion, and the arithmetic method isn't
any simpler. And what about the
guessing method? Let's think about it
this way: since all the numbers used
must very likely be integers, the number
of years Diophantos lived must divide
evenlyby6, by 12, andby 7-thatrs,
by their least common multiple, which
equals 84. This means that the num-
ber of years lived by Diophantos is a
multiple of Bzt-infact, itrs 84. (Larger

numbers are unrealistic.) That's it! [r
this particular case the advantages of
the guessing method are really obvi-
ous.

Problem 3. One day the Devil
proposed to a certain goof-off that he
earn some money. "As soon as you
cross thebridge," he said, "yourmoney
will double. Youmay ffoss thebridge
as many times as you like, but every
time you do you must pay me 24
cents." The goof-off agreed . . . and
after the third crossing he was penni-
less. How much money did he start
off with?

Let's try to guess the answer, using
general reasoning. It's clear that the
goof-off had less than}4 cents, other-
wise he wouldn't have gone bank-
rupt. In other words, from the very
beginning there was a "budget defi-
cit." Money doubling was apparently
accompanied by deficit doubling and

after the third crossing the doubled
deficit amounted to exactly 24 cents.
This means that at fust the deficit was
equal to 24lB:3 cents-that is, the
goof-off had 2+ - 3 : 2l cents. Of
course/ we can't guarantee that the
answer is right, but it's certainly plau-
sible.

Problem 4 (proposed by Sam Loyd).
"Here are two turkeys," the butcher
says, "one tom and one hen. Together
they weigh 20 pounds. But the price
per pound of the hen is 2 cents higher
than the price per pound of the tom."
Mrs. Smith bought a turkey hen and
paid 82 cents for it, while Mrs. Brown
paid $2.96for a tom. What did each
turkey weigh?

Let's take some risks: suppose
each turkeyweigfred an integral number
ofpounds and the priceperpound is an
integral number of cents. The total
sum paid was 3 78 cents. If the extra
charge for the hen's meat is subtracted

:._. !;!.4 '
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from the total, the remainder must
divideby 20-the total weight of the
turkeys. The nearest least number
divisible by 20 is 360-that is, the
extra charge is equal to 1 8 cents, and
so the tom weighed 11 pounds.

We have the answer, but the hen
tumed out to be a litde hefty, didn't it?
The difference in weights is quite
small, but the price of the hen is one
fourth that of the tom, even though
the price per pound of the hen is
higher. Something's wrong!

Sure enough, this is a case where
the guessing method misfires. We
made a faulry assumption and so we're
doomed to failure. We had no way of
knowing this is a "historical" prob-
lem, though we might have suspected
from the total price--$3.78 for 2,0 pounds

of turkey-that this problem is set in
the not-so-recent past. As late as the
19509 many grocery items were priced

su,r\.-i' ),{ffiffi , -,\'
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to the half cent. (Nbw, armed with
this additional information, try to guess

the answer.)

Problem 5 (also proposedby Sam
Loyd). A certain lady offered one
dollar to a post office worker and said,

"Please give me some two-cent stamps/
ten times that many one-cent stamps,
and five-cent stamps with whatev'er
money is left." How did the post
office worker fulfill this rather mind-
wringing request?

,1
L- r,':l

(! !.
J.l

He could have proceeded this way:
let x denote the number of two-cent
stamps and y the number of five-cent
stamps; from the statement of the
problemwehave2x+ 10x+ 5y: 100,
orlZx+ 5y= 100.

Diophantos, the Greek mathema-
tician mentioned above, worked hard
at finding integral solutions of such
equations. lnfact, they're now named
after him-"Diophantine" equations.
So a1l that's left is to solve the Dio-
phantineequation lLx+5y= 100. But
we can get along just fine without it.
Notice that the total price of the two-
cent stamps and, consequently, their
number must divide by 5 (why?). The
number of one-cent stamps is ten
times that of the two-cent stamps/ so
their number divides by 50, which
comes to exactly 50 stamps for 50
cents. hr this case the number of two-
cent stamps is 5, which comes to 10
cents; the rest are five-cent stamps/
and their price is 40 cents for the eight
of them. Here our answer tumed out
to be absolutely correct, even though
we simply tried to guess it without
any $urantee it would be righg just as

in the previous problem. (By the way,
the problem has one more solution-
a "degenerate" one: the number of
one-cent stamps is 0, the number of
two-cent stamps is also 0, and the

A"

number of five-cent stamps is 20.)
Here's a more complex example.

Problem 6. Threebrothers received
24 apples. The youngest brother re-
ceived the least of a1t the eldest brother
received the most. Seeing this, the
youngest brother proposed the follow-
ing exchange: "I'll keep one hall of my
apples andwe'l1divide the rest equally
between you. Then let the middle
brother keep half of his apples and
we'll divide the rest equally between
me and the eldest brother. Finally, let
the eldest brother keep half of his
apples and we'I1 divide the rest eclually
between me and the middle brother."
The brothers didn't suspect the young-
est brother of deceit and agreed. As a
result, everybody ended up with the
same number of apples. How many
apples did each brother have at first?

Such problems are usually solved
backwards. But we'llgo straiglt ahead
and determine successively the num-
ber of apples the youngest brother
had, the number of apples the middle
brother had, and the number of apples
the eldest brother had. It's clear that
the youngest brother was given less
than 8 apples. On the other hand, the
number of his apples divides by 4
(since he managed to divide half of his
apples equally). This means that the
youngest brother was given 4 apples.
Notice that the middle brother was
given less than half of the remaining
apples-that is, less than 10 apples, so
he got from 5 to 9 apples. After adding
the apple he received from the young-
est brother, we again have to get a
number that divides by 4. This num-
ber must be within the range of 5 to
l0-it must be 8, then. So the middle
brother was given 8 - I : 7 apples and
the eldest brother was given all the

rest-that is, 13 apples. (It turns out
that only the eldest brother lost by the
redistribution. Maybe the middle brother
suspected the youngest brother of trick-
ery but he kept his mouth shut in his
own interests.)

As you can see/ guessing can be
pretty useful at times, and in any case
it shouldn't be dismissed out of hand.
hr facg the effectiveness of this method
increases as the statement of the prob-
lem becomes more complicated and
involved, since we don't have to go
into details when we're guessing.

And now it's your turn. To get a
better grip on this technique, try to
guess the answers to the following
problems.

Problem 7. Amerryhil<er set off on
a cross-country trek. On the first day
he covered 1/3 of the distance to his
destination, on the second day he
walked 1/3 of the rest of the distance,
and on the third day he traveled 1/3 of
the distance that remained. As a
result the hiker had 32 kilometers left
to walk. How faris it fromhis house
to his destination?

Problem 8. Upon being asked how
old he is, someone answered, "When
I live another one half plus one third
plus one quarter of my years, I will be
100 years old." How old is this per-
son?

Problem 9. "Will you tell me,
renowned Pythagoras, how many
students attend your school? "-"Cormt
them yourseT[," Pythagoras answered.
"One half are doing mathematics,
one quarter are learning music, one
seventh are keeping silent, and there
are three women besides." How many
followers fid Pythagoras have?

Problem 10. One fifth of the bee
swarrn is on the cherry blossoms/ one
third is on the apple blossoms; the
tripled difference of the two last numbers
flew to the pear blossoms; and one bee
is flying back and forth, attracted by
the fragrance of jasmine and rose.
How marrybees are there in the swarm?

Problem 11. Fourpeople donated
money to a cause. The second donor
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gave two times the coiirs given by the
first one, the third donor gave three
times the coins given by the second
one, the fourth donor gave four times
the coins gir,,en by the third one, and
altogether they gave 132 coins. How
many coins did the first donor give?

Problem 12. On being askedhow
many people there are in his crew, thei

captain answered, "Two fifths of my
crew are on guard duty, two sevenths
are at work, one fourth are in the sick

bay, and27 people are right here."
How many people are there in the
crew?

Problem 13 (and the most com-
plex,I daresay). At present you and I
together are 86 years old. The number
of my years is 15/15 of the age you'll be
when my ag e is 9 I 16 of the age you'd
be if you lived to the age two times the
number of my years when I'm twice
yourage. Howoldaml?

I certainly advise you to solve these
problerns by usrng the "normal " method,
too. Besides, in this way you can
check the correctness and unique-
ness of your answers. The problems
weren't created specially for this ar-
ticle but were taken from highly re-
spected books, including Mathemati-
calPuzzles by Sam Loyd (Dover Pub-
lications, New York, 19591 md More
Mathematical Puzzles by the same
author (Dover PubJicarions, New Yor!ts6o). o

RUTHERFORD
FROMPAGE 27

celebrity sitting down among young-
sters and bending over notebooks fr.rll
of assignments."

In 1913 scientists from Ruther-
ford's laboratory tested his formula for
alpha scattering by counting scintilla-
tions observed at various angles over
identical time intervals and f ound it
to be correct. This certainly showed
the truth of the nuclearmodel of the
atom. hrsofar as the system of charges
at rest couldn't be in a stable equilib-
rium, Rutherford gave up the static
model of the atom and suggested that

electrons in an atom move around the
nucleus along curved paths. But in
that case the electrons had to move
with acceleration and, according to
classical electrodl,namics, emit elec-
tromagnetic wzves; and this, in tum,
must be accompanied by energy loss.
hr the final analysis, the elecffon must
fall into the nucleus.

It was Nils Bohr who managed to
elirninate the contradiction. But that,
as they say, is another story. And
what about Rutherford's experiments?
Are they important now only as an
episode in the history of physics? No,
their effect is more far-ranging. A1-
most 50 years after his experiments,

in the l97Os, Rutherford's method of
probing substances with alpha par-
ticles became widely used in laborato-
ries to study crystalline structure, find
the positions of various impurities in
crystals, and deter:rnine their compo-
sitions. This is knownnowadays as
the method of Rutherfordbackscat-
tering. But, instead of grains of ra-
dium, powerful accelerators are used
as the source of large flows of high-
energy alpha particles. And to think
that theirprototype was a small1ead
box with grains of radium that Dr.
Rutherford, as you rccall, categod-
cally refused to relinquish on his way
through US customs. O
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CONTEST

H0ul lhe hall houncE$
"We should be careful as to the play, but indifferent to the ball."

-Epictefus, 
Discourses

by Arthur Eisenkraft and Larry D. Kirkpatrick

NE OF THE IOYS OF PHYSICS
is being able to apply our text-
book knowledge to everyday situ-
atiors, such as sports. Even thouglr

we often need to make simplifying as-
sumptions to obtain answers/ we can
often gain insight into the situation
and learn what variables are impor-
tant. As we gain more and more so-
phistication in physics, we can apply
these new tools to obtain better an-
swers.

The equations for kinematics that
we learn at the beginning of most
physics courses can be used to analyze
many games played with balls. We
usually begin by assuming that the
effects of air resistance and friction
can be neglected. A great simpiifica-
tion occurs because we can separate

two-dimensional motion into two one-
dimensional motions. We usually
analyzeprojectile motion in terms of
the vertical motion and the horizon-
tal motion, where the two motions
are connected by the time.

As an example, consider the fol-
lowing problem. Elisabeth hits a rac-
quetball toward the front wall with a
speed v at an angle 0 above the hori-
zontaL. She hits the ball at a height H
above the floor and a distance D from
the front wall. We simplify the real
situation by assuming that the colli-
sion is completely elastic (no kinetic
energy is lost) and frictionless (no
forces parallel to the wall). When and
where will the ball land? What are the
numerical values when y = 6.00 m/s,
0 = 36.9e, H = 1.80 m, D = 2.25 rri., and

Neulrinos and surul'nouas

the acceleta-
tion due to
gravityg=980
mfs2?

Pleasesend So
yoursolutiors
to Quantum, Tr:2Tr. (3)

1742 Con-
necticutAve- Let the arrival time of the 15-MeV
nue NW, neutrinos be t. Then the 7.5-MeV
Washington, neutrinos arrive att + LttwhereAt:
DC 2OOO9. 15 s. If the distance to supernova
The best so- lgBTAist,wehave
lutionswillbe
acknowl- $r=Lfct,
edged in Br= Llclt+ ttl.
Quantum
andtheircrea- We can use the binomial expansion
tors will re-
ceivefreesub- (1 * x)' - I * nx+n(n-l)xz *...
scriptions for 2l

one year. for lxl << I to find the value of B, to first
order in Ltf t, which is a very small

Lrteresting correct solutions to the
neutrino problem posed in the No-
vember/December issue were submit-
ted by W. Richard O'Connell |r. of
Rockvillg MD, andWalter Stockwell
of Berkeley, CA, with the assistance
of Mandeep Gil1. We follow Walter's
solution and begin by remembering
that the total energy of a relativistic
particle is given by

P:ymcz, (1)

wherey: (1-F)-'Pand B:vf c. We'lI
label the neutrinos that arrive first (15

MeV)with a subscript I and the later
ones by a subscript 2.

Since the neutrinos in the first
burst have twice the energy/ we have

Er: \rmc2 : 2Er: Zyrmcz. (21

o
=C

=6\.
6

a
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number:

0. =(r/ctl1t +lr/r)l
=lLlct) (1-^t/r)
:9,- Lttlctz '

Srnce AI << t, we now assufire that we
canset t:Llctoobtain

0, = 0' - cLt lL. (4)

We can now square equation (3)and
substitute for the y's from {1) to get

(1_8,.)=4(1_8,').

Substituting 0, from (4) and rearang-
ing tenns, we get a quadratrc equation
in B,:

CONTEST

9r2+(ZcLtl3I)Pr-1=0,

where we have ignored the term
lcLt I Ll . Taking the positive root so
that 0 < p < I and keeping terms to
lowest order in cLtf L, wehave

9r=l -cLtl3z.

Substituting this into (1), we get

mc2 = Erl^{,

= I -B:ltt2at
=lzc\tf 3LlttLEt,

also to lowest order in cLtlL. Using
the numerical values stated in the
problem, we obtain a rest energy for
the electron neutrinos of 20 eV.

Another approach to this problem
starts by approximating B:

F=ulc=tlft+ At|= 1 -Ltlt.

Denoting Ltltby 6, we get

Putting this
relationship

B'z=1-26

1M=-
' - 26'

into (3) we obtain the

6, =46r.

Since we know that

we can solve for the value of 5, and use
ittofindl andE'asabove. O

and

6,-5r=T

Adueltlurs$ alnoltg P,-$El$

Maybe you should take your PC along

by George Berzsenyi

ER]VIAT OBSERVED THAT FOR
the set {1, 3, 8, 120}, each of the six
numbers 1. 3 + 1, 1. 8 + 1, 1. 120
+ 1,3.8 + 1,3. 120+ 1,and8. 120

+ 1 is the square of an integer. Are
there other such remarkable sets of
integers?

The answer to this cluestion is yes.

In an article published tn The Fibon-
acci Quarterl1,, itwas shown by the
founder and present editor of the Quar-
terly that if F. denotes the nth Fibon-
acci number qthat is, F. : F. = 1 and F.

= Fn-r+F,- ior n > 2\.then the set oi
numbers

{F,., F,.,, F,. r,4F,,.,F,n.,F.,.,}

behaves similarly. Other such sets
were forurd earlier by Euler, who showed
that if m, n,a'nd k are integers such

that mn + | : kz,and if S : lm I nt m +
n + 2k, 4k(k + mllk + n)), then the
pairwise products of the elements of S

increased by 1 always yield perfect
squares. Our first challenge to you is
to verify the above claims.

More generally, a finite set S of
three or more nonzero integers wiil be
called a P,-set i{, for each pair of dis-
tinct members x and y of S, xy + t is a
per{ect square. To date, nobodyhas
managed to construct a P,-set of five
or more elements, and it was only
recently that Vamsi Mootha, a sopho-
more at Stanford University, found a

{-set of stze 5. It is {14, 22, 30, 42, 9Ol
with t : -299. Surely, with the clever
use of computers/ some of you will
challenge these records.

There are plenty of challenges even
il we restrict the size of P,-sets to 3. For

instance, it's not difficult to verify
that {3, 7 , 17} is not a P,-set {or arry t,
that [1, 3, B] is a P;set only i{ t : l, and
that { -5, 10, 23} is aP,-set forboth t :
131 and t: 1139. Is there asetla, b, cj
that is a {-set for three or more different
t's?

Vamsi and I wrote our first joint
article on the subject while he was
still a higlr school student in Beaumong
Texas. He also organized some of his
findings into winning projects in the
Intemational Science and Engineer-
ing Fak and in the Westinghouse Sci-
enee Talent Search. We'd be happy to
share with interested readers our find-
ings, the results of our literature search
(which resulted in about 30 articles on
the subject), and many more of the
unanswered questions still challeng-
ing us.

Correspondence conceming the
subject of Pr-sets should be sent to
Quantum, 1742 Connecticut Ave-
nue NW, Washington, DC 20009. In
addition to solutions/ you are invited
to share your own inquiries concem-
ing the subject. The best results will
be acknowledged and their authors
will receive free subscriptions to Quan-
tum andf orbook prizes. O
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ANSWERS, HINTS, & SOLUTIONS

tlllath

M26
Gi twbethe point where boat 1 and

boat} collide (fig. 1). By the statement
of the problem it would take the same
time t for boat 1 to cover the distance
AM md forboat 2 to cover BM. So the
time for boat 1 to travel {rom A to D is

\: IAD IAM)I, arra the time forboat2
to move from B to C is tz: BC lBMlt.
Butuiangles AMD mdBMC aresimilar
by the equality of corresponding angles
(angles AMD and BMC arevertical,
inscribed angles ADB = ADM and
BCA : BCM are subtended by the
same arc). Therefore, ADIAM :
BCIBM, so t,: fr.

Figure 1

M27
The equalities e : x + y, r : x -y, md

x : lq + rll2, y : lq - rllzestablish a one-

to-one correspondence between the
representation a= *-t' =@+ yl(x-yl
of a number a as a difference of squares

and the flactorizatiofis d = qr, where
q > r. (Since a is odd, the above for-
mulas for x and y yield integer num-
bers for any two factors q andr.l To
find the number of such {actoiza-
tions, we notice that each of the n
primes, whose product is equal to
given numbet at catt and must be a
factor of either q orr. This makes 2"

Figure 2

58

possibilities, but the condition q > r
holds for only half of them. Thus, we
get the needed number 2n f 2 : Ln-t .

M28
The answer is 142. First, let's find

the number of tracks left on the fixed
cicle f by the very first red point R of
the rolling circle z.

Roll circle z along the number axis,
starting from the origin 0. Then point
R will color ail the nonnegative inte-
ger points of the axis (fig. 2). Now
wind the axis around the circle /,
beginning from 0. Each line segment
of length 2rl2 wlllmake exactly one
winding and all the red points of the
axis will show up at different points of
the circle (the relation k-1= m .2'p I
0 is impossible for integers k, 7, m,
since 2u2 is an irrational number).
Thus, the number of red tracks on
circle /left by point R in n revolutions
equals the number of redpoints on the
segment lO, n.2tlzlof the axis-that is,

ln . Ttzl + 1 ([x] is the greatest integer
not exceeding x).

It may seem that/ taking into ac-
count allthe multiple tracks of sticky
points on both circles, we'd discover
that their number grows exponen-
tially, depending on the number of
revolutions: each revolution should
approximately double this number,
since all the painted points leave new
tracks. But this assumption is abso-
lutely wrong: all the rcd points emerg-

ing on circle f coincide with the tracks
of the first point R! To prove it,
suppose there are red points on / that
are not the tracks of R, and choose the
point A that was colored first among
them. Point A was coloredby some
point R' o{ crcler, and point R' itself is
a track of some point A' of circle f.
Since point A' was colored earlier
thanA,it must be a track of R. So all
the tracks of R' after it hit point A'
must follow the tracks of R after it hit
the same point A'. hr particular, point
A must coincidewith one of the ffacks
of R, which is a contradiction. (In the
same way one can prove that all the

redpoints of circle r are the tracks of
the first red point on cir:cle f , so the nth
revolution adds the (n + 1)th red point
on circle r.) Thus, the rate of growth of
the number of red points on f is not
o<ponential but linear: [n . 2tP] + 1. For
n : 100 ityields 142 points.

M29
Each edge of the cube must contain

at least one point of the givenpolyhedron
P; otherwise, the projection of P onto
a face perpendicular to this edge wont
cover the common vertex of this face
and the edge. So we can take one point
of P on each edge and consider the
convex huLL C of all these points-
that is, the smallest'convex polyhe-
dron containing all of them. Since
polyhedron P is also convex and con-
tains the chosen points, it contains C.

It's easy to see that polyhedron C is
obtained by truncating every vertex of
the cube along theplane drawn througlr
the points of P that were chosen on
the edges meeting at this vertex (fig.3).

...

Figure 3

Let's estimate the total volume of
the B triangular pyramids cut off the
cube (some of them may actually
degenerate into a point, a segment/ or
a triangle). Consider two pyramids
cut off at the ends of a vertical edge of
the cube. Let the edge length be 1

unit, the areas of the honzontal bases

of the pyramids be B, and B, and their
respective helghts be h and 1 - h
(fig. 3). Then the sum of their vol-
umes ecluals

t 
l s t, - B , t - 1, , 

'l 

= 
I 1 t l, * , | - h t t - ! ,

-tL"r' -: -.1 I 2 6

since, clearly, Br< I12, B, < l/2. Rc-
peating the same evaluation for the
other three vertical edges and sum-
rning the results, we derive a total
volume of the pyramids not greater

tllARCll/APRII- I ggl
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Figure 4

M30
The mirumulr rou.te is 64, and the

maximum one is 28 + 36 . 21.r units
1ong.

Examplcs of routes of these lengths
are shown in figures 5 and 6. Now we
must show that any closed and non-
self-intersccting chess king's route
has a length not lcss than 64 and not
greater than 28 + 36 . 2t') .

than4l6=2f 3,so

rolutne rP) 2 rolume rC, > t -l = l-.

-t -1

The tetrahedron in figure 4 satis-
iies the conditions of the problem and
has exactly the volurne 1/3.

Figure 5
The first (lower) estimate is self-

evident: dre total number of moves is
64, andevery move is either "straight"
(parallel to the chessboard's sides) and
has the length 1, or "diagonal" having
the length 2tl2.

T ,s\l d-.l'.i\\h.l\ \.,1

t\ \\\N \
( \N]\\ \t
t\ \NI\\ {
t \\N\ \.
N \N\.N nl,

L J r\ }+ \iJ

To prove the upper estimate, we
must show that any route in question
contains at least 28 "straight" moves.
Consider two successive border squares
A and B on the king's route. They
must be adjacent. Otherwise, the part
AB of the route would divide the

board into two non-empty sets

A
.o.

#
)
)

\

l

Figure 7

of squares (fig. 7l,so the king would
have to cross the broken line AB to get
from one set to the other; but self-
intersections are forbidden. The squares
A and B arc of different color, and
diagonal moves do not change the
colors of scluares, so there should be a
"straight" move between point A and
B on the king's route. All the routes
can be split into 28 segments connect-
ing neighboring border squares (28 is
the number of border squares); each of
the segments contains at least one
"straightl' move. So the number of
"straight" moves is not less than 28,
and we're done.

Physics

P26
The kinetic energy of the ball at

any altitude is ggeater when it is going
up than when it is falling down. In-
dee d, if there wcrc no air resrstance,
both energies would be equal. The
difference between the two kinetic
energies {on the way up and on the
way down) is equal to the work done
to overcome the resistance of the air.
So at any gvcn altitude the velocity of
the ball is greater when it's going up
than when it's coming down. It's
obvious that the average velocity oi
the ball on the way up is also greater
than on the way down. So the ball

takes less time to go up than it does to
come down.

P27
To find the force Nexerted by werght

M on weight m, we use Newton's
second law for weight m:

ma = mg- N.

After the weights are released, they
enter into harmonic oscillation (as a
single weight of mass M + m). This
means drat the acceleration a changes
its direction periodically. The force

N:m(g- al

reaches its maximum at the moment
when the acceleration has the maxi-
mum absolute value and is directed
upward-that is, at the moment of
the maximum stretching of the spring.
To find the value of the acceleration,
we use Newton's second law for the
weightM+m:

(M + mla: (M * m)g-kx. (1)

We can find the maximum value
X-,, by means of the 1aw of energy
conservation (taking into account that
at the moment of maximum stretch-
ing of the spring, the velocity of the
weight is zero):

t-

-tM+lllt!,r +1rl"0 I0

=_( M + lii),g.rn,".

where r,, is the stretchhg of the spring
when there is no weight m. Takrng
into account that kx., = M.g, from (2)

we get kn,,, = lM +2m)g. Substituting
this value in (1), we find the maxi-
mum acceleration

ilt nt
tl-"n.i,\ M+ttt^ - M+tttr.

Knowing d-,.,, we can get N.,,:

,, M + 2trr.\ = illp-'rr'r\ " Mlttt

P28
It's well known that thc process of

boiling requires an uninterrupted heat
supply. When the water in the test
tube heats to 100'C, the heat transfer

B

12)ft.+r'
2 ma\

-
I I

r .I l-l : l-I

L J L J L J L J

Figure 6
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from the retort stops. That's why the
water in the test tube won't boil.

A more interesting situation oc-
curs if toluene is poured over the
water in the test tube. Then you'llsee
the curious phenomenon of "inter-
face boiling." The boilingbegins on
the interface between the two liquids
when the sum of their partial pres-
sures of saturated vapor equals the
external atmospheric pressure. It's
clear that the pressure of saturated
water vapor is less than the atmo-
spheric pressure/ and so the tempera-
ture is less than 100"C. Thus, when
toluene is added to the test tube filled
with water, the boiling on the
toluene-water interface begins before
the water itself starts to boil. The
inter{ace boiling temperature is less
than the boiling temperature of either
liquid.

P29
An ammeter connected in series

with thelamp shows the curentflow-
ing through the lamp. According to
the statement of the problem, the
current 1, is equal to the nominal
current I,=O.2 A. So in the first casg
the voltage of the lamp is equal to the
nominal U,= 2.5V. The fact that the
lamp, when connected in parallel with
the ammeter, glows exactly as much
as in the first case means that the
current flowing through the lamp is
equal to 1" and that the voltage on the
lamp and on the ammeter is equal to
un

We'll write Ohm's law for both
cases. For the serial connection (fig. 8)

wehave
E = I,(R + rl + Un, (1)

where R is the resistance of the wires
and r is the resistance of the ammeter.

Figure B

For the parallel connection (fig. 9 )

we have
E = lI,+ I,l R + Un, Ql

Figure 9

where 1, is the current through the
ammeter. Taking into account that
rI*= Un we canrewrite (1)like this:

e = r,(n *!)* r, (1,1'[ I,)
Solving equations (1') and {2l,we$nd
the current 1" flowing through the
ammeter connected in parallel with
the lamp:

then willall the light wave fronts in
the channel be perpendicular to the
circle of radius R + hn): (/\

zrln+nn+ m) \
l-- v

1

n -u(nr+ tn)
=zn(n+ho+ ^h)! c

Taking into account that th << h*we
find that

r =1[1-n).o2\cr )

This phenomenon is called circular
rehaction. Observations show that
this situation is actually possible---for
examplg in the atmosphere of Venus.

Bnainlea$Et'$

826
Yes, it's possible cut and pair the

sticks in the manner proposed. Place /
the sticks so as to make two parallel 

\rows, red and blue, one below the
other (fig. 1 1), and cut each row right
at the gaps between sticks in the other
row.

['r

= 0.5A

P30
hr an atmosphere whose refuactive

index n decreases with altitude, light
rays dont travel along straight lines.
Each light wave front changes its di-
rection and gets deflected because the
speed of light v = cf n decreases when
the refractive index increases.

Figure

Denote by nh the width of the
optical channel through which the
light rays circle the planet at a con-
stant altitude (see figure l0). Consider
two extreme rays. The ray at the
constant altitude hu takes the time

Figure 11

827
I'm40 and my sister is 30. If my

sister was n yearsold when she was
half as old as I was, I was then 2n and
am now 4nyearsold. So now she is
n + (4n-2nl:34 and in 15 years we l1

be4n+ 15 and3n+ 15. Theequation
{4n + l5l + l3n + 151 = lOO.yields n : 10.

B28
Imade afire under thepipe, walked

a little ways along the pipe in both
directions, andput myhand on it to
find out where the pipe was walrner.
The water was flowing in this direc-
tion.

zn(n+no) rt^-ctlt^
= 2r(R+ftn)#

to circle the planet.
The other ray, traveling at a dis-

tance A,h << ho from the first, must
circle the planet at the altitude ho+ Lh
in the same amount of time (only

InU n

R
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829- 9{z + 9,338 = lo,27o. Evidendy the
sum is less than 1 1,000 but greater
than 10,0m, so P:1, E =Q U=9. Then
A + R: 10, 1 * S + S = C (It1 +25=
C + 10, then in the next decimal
place we'll have S = Al, and9 + S :
A + 10. Fina1ly, we get the system of
equationsA + R = 10, 25 + 1 : C, S=
A + l. The letter C denotes an odd
number (2S + 1), which is less than
9 (9 : U). On the other hand, C =
25 + i =2A+3>2.2+3=7,sinceA
>2 (l = P). Thus, C = 7. All that
remains is to calculate the other digits
and check the answer.

AB
Figure 12

830
Sector ABC in frgure 12 is 1/8 of the

circle with radius AB; semicircle AB
is 1/2 of the circle with r adits AB 12.
So these two figures are equal in area.

Subtracting the shaded area,4-BD from
both of them, we get the required
equality.

IUIath$unui$B$

The answer is 1 if n = I or 2i
otherwisen (n-Zl.

Thinlrlasl!

1. Ap - (2/3)p.,","9H - 3 . i0' Pa
(since two thirds o{ the Earth's sur{ace

is covered by water and the average
depth Hof the ocean is about 4 km).

2. p^,v25 -mg, fromwhichweget
v - ll:;.glrcR'p",.)t,' - 5 m/s lfor m *
100 kgandR-3m).

3. ps. : Ms,,,/Ys,, : (Mnl GT2llD rlTl
3 - 103 kg/-' - 1 g/cm3. (Here D ,lr -

0.01 is the angular size of the Sun and

T - 3 . 107 s is the period of the Earth's
revolution around the Sun.)

4. n - (2ghlttzlnv - 1.5 (for v -
30 m/s). Hint: when the automo-
bile's center of mass covers the dis-
tance of the automobile's length, its
vertical velocity attains the value v, -
gllv arldits angular velocity the value
a - vrlllL - Zgv. The number of
revolutions then equals n - taf2n -
(2ghlrtzlnv.

5. Fl - ruwL 12 - mgL fL,from which
we get F - mgLllzll - 800 N (form -
8 kg,I -20rn,1- 1m).

5. F. R - mg.2R, whereR is the
radius of the bicycle's cogwheef 2R is
the distance from its axis to the pedal.

SoF -Zmg- 1400N (torm- 70kg).
7. mv - Ft or p. l4lSlnf . v - p. nf

' rf vi thenv - (PPI't' - 30 m/s.
' 8. F: ma - mrPBS- 7. 103N(form

- 50kg).
9. Let d be the aYeragediameter of

a tree trunk. Suppose the trees are
shifted and placed along the circum-
ference of a circle that forms a con-
tinuous fence. If you are at the center
of the circle you can see nothing be-
hind the "fertce." Then the radius of
the circle is the desired distance x.
There are approximately Ztwf d trees
in a fence of lengh 2zrx. This number
of trees is "collected" from arr atea
r*. Iltheaverage density of the forest
is one tree per --12 square meters, then
we have r* f P trees in the area r*.

-Ilt:s,Zweld- r*l'. For 1-3 mand
d - 0.2m, we getx - 212 I d- 100 m.

ltuleido$coru

1. Move the magret inside the coil.
2. The direction of the induced cur-

rent is counterclockwise.
3. The induced electromotive force

is least when the frame lies in the
plane passing through the wire and
the rotation axis and is greatest when
the frame is perpendicular to it.

4. The motion of the magnet in the
tube causes the electromotive force of
induction. This generates a magnetic
field, which hinders the free fall of the
magnet.

5. The two halves of the wire pro-
duce equal but opposite electromo-

tive forces of induction, which counter-
act each other.

6. An alternating current in the
coin causes eddy currents, while a

direct current doesn't.
7. The resistance will increase.
8. The drop in potential between

wing tips is greatest for the aircraft
near the pole.

9. Along with the usual friction,
the rotor experiences abraking elec-
tric force generated by the stator's
magnetic field.

10. No, since the magnetic flux
through wire B doesn't f low through
wireA.

11. Since the ring's resistance is
equal to zero, the total electromotive
force in it must also equal zero. This
can happen only if the change in the
total magnetic flux through the ring
equals zero. So if you remove the
magnet, the magnetic flux generated
by the induced current will still equal
o.

Mictoexperiment. The variable
magnetic field of the rotating magnet
generates eddy currents in the disk, so

that the magnetic field induced by
them slows the magnet's motion. By
Newton's third law, an equal and
opposite {orce is applied to the disk,
causing it to rotate together with the
magnet.

Try $tonu

Answer: V = Bhlz + I I coslnlnllS.
Hint: thevolume of one layer of the
boot, a polyhedron called an antipr-
ism (fig. 13), aswell as thevolume of
anypolyhedron with two parallel faces
(bases) containing all its vertices, can
be calculated by Simpson's formula:
V =(Bo+ 48r,r+ Brlhl6, where Bo,81,
and B r,rare the areas of the bases and
of the section parallel to the bases and
equidistant from them, andft is the
heiglrt. You can make use of Simpson-s

formula, but to be honest, you ought
totrytoproveit.

Figure 13
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I N THIS ISSUE YOUI/E AIREADY
I read about "Latin rectangles"-tables

I of letters in which every line and
I 

"u"ru 
column consists of different

letters. Here's a similar problem for a
triangle table: put 15 chips of 5 colors
onto the nodes of the triangular grid
shown in figure 1 such that the colors
on every line patallel to a side of the
playing board are all different.

Figure 1

I'm sure this puzzle won't be a hard
nut for you to crack. So try to solve
these additional problems: (1) find atl
the solutions to the puzzle; (2) solve
theptzzlefor a triangular grld with n
nodes to a side andn colors of chips
ln=2,3,..,1.

It's not too difficult to find a general
solution to the second problem for
oddnumbers n. Also, you'll immedi-
ately see that the case n :2 is unsolv-
able. But investigation of the other
even values of n will perhaps be a
more challenging problem. In par-
ticular, you'llhave to prove that one
more of these values is also unsolv-
able. (In the case n :211, the number of
chipsis n(n+lll2=klzk + 1), andthey
can't be divided into n equal groups of

TOY STORE

lalin tl'ianule$
An d fash ionable footwear

by D. Bernshtein

uniform color: k groups must have k
chips each, and the other k groups
must have k - 1 chips each.) You'll
find the solutions in the next issue of
Quantum.

Schwanz's boot

The second toy presented here isn't
apttzzle, it's a model of the beautiful
polyhedral surface described in the
article that begins on page 6, "[r Search

of a Definition of Surface Area." Fig-
ure 5 on page 8 gives you an idea of
how it looks. This bootlike polyhe-
dron was invented by the German
mathematician H. A. Schwarz to dem-
onstrate difficulties that arise when
we try to define the area of a curved
surface as the limit of the areas of
polyhedrons converging to this sur-
face. To make a model of "Schwarz's
boog" take a rectangular sheet of sturdy
paper/ thin cardboard, or any similar

material nrle itwith agrid of diagonal
lines as in figure 2 on the front side and
horizontal lines on the bac( and score

it slightly with a knife or scissors
along the lines on both sides. Then
roll the sheet up into a tube, pressing
on the centers of the grid's rhombi to
help the sheet foid along the creases.

Glue or tape the opposite edges to-
gether at the flap, and the "boot" is
done!

This model was designed by the
Moscow architect and designer
V. Gamayunov, who is also the au-
thor of many other beautiful, and much
more complicated, polyhedral con-
structions. Hehas even developeda
general method of inventing them.

|ust to keep yourheadbusywhile
you're admiring your work, try to find
the boot's volume V, knowing the
areaof thebase B, heigfut.h, andnumber
n ofthebase's sides. O

ANSWER ON PAGE 61
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"Tlwre nre ofip dny : whenl go ?,en dtebascs I lefiTed otl{aq oru .
-Stephen 

Cmmichael, Keny on Ckss of 19 67,
professor of matoml, Mayo Medical School

or many science students, the small
college's emphasis on strong teacher-
student relationships and opportunities to
participate in - and be recognized for -solid research with faculty members are
powerfully appealing. There is also the

prornise of access to sophisticatecl cquipment irncl
instrLlmentation that tl-re sm:r1l college provicles.

Tl-rese qu;rLrties, as u'cll a-s its renon,n as it
plcrnier liberal arts ancl scicnces institutiu'r, rn:rkc
Kenr"on C.lrllege :in icleaL choice for str-t.lents whcr
pl,rn to prusue ecltrc:rtion and ciLrccrs in the
)cicnce:. Fr,rm 1980 to 1990, ar-r ar,eriLge of 24
perccnt trt Kcnt on seniors annu:r11v $,ere au,arclecl

.legrce s Lr-L the nattrr:rl scicnces biolog1,, chemrs-
trr', nrathemullg-s, physics, :rnd psvchologv. Th:rt is

nrt,rc than t1-rrce tirnes the nirtton:rl average of 7

percenr. -{n.1 fr-rllv 75 pelcent of the Collegc's
sc rcnce gf itrlllates pursue adVirnce.l stutlics.

Sucl'r resr-rLts u'ou1tl not he p655i1,1" u'ithotLt
iacultr- rnernbers ileclic:rte.l to teaching, anrl
Kcnr,,t't's rlre aln(lng the tlt,st able lnJ crnunlittccl
at an\-:n1.r11 cr,llcge. But because thel'bcLieve
lc-:ururg i\ llot confined to the clilsstoom, thev also
.rctivelr- ul-oivc themselves and tl-reir stnclents in
re.rlrrcl-r p.rtrjects. Currentlv, those projects are
sfonsoreJ bv such prestigious orgiLt'tizlttions as tl-Le

N.rti,rr-ra1 Institr-rtes of Health and the N:rtional
Sc ience F,run.latiot-r.

T.rgctl-icr, stuclent-. and fircultv rnembers in the
!cLe11ccs crerlte an erciting atmosphere at KetlYtlu
iirr sr,-r.lv in the natrrr:rl sciences. Both fincl thc
ciLmarirclerie anil ,.ensc ,rf sh:rred pul-pose potent
stunuli tor lean-ring a1ld \\,orking at the peak ot theLr
c.rp.rL. rlitres.

F.rr mr,re information on science stLrrly at
Kenr.or-r C-o1lcgc, lurcl on speciirl schol:rrsl-rips f.rr
screncc str-rilents, pLease r.r'ritc or c:r1l:

(Xice if A.Lnissior-rs
Rar-rsorn Hrrll
Kenvon C,.rllege
Cl:urrbier, O1-riir

43022.9623
800-84B-2468
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You may be surprised to leam that Thomas

R. Cech, the biochemist who shared the

1989 Nobel Prize in chemistry, is an honors
graduate of Grinnell College.

Robert Noyce, the co-inventor of the

integrated circuit and the father of the lnfor-
mation Age, also graduated with honors

from Grinnell College,

In fact, Grinnell College is one of 48

small liberal-arts colleges that historically
have produced the greatest number of sci-

entists in America. Grinnell and these other

small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The smallcolleges comprise

five of the top 10 and 13 of the top 20

baccalaureate institutions in the proportion

of graduates earning Ph.D,s.

1989 NobelLaureale in chemistryThomas R. Gech, recognizedlorhis BNAresearchwhich mayprovide
a new l00l l0r gene lechnology, with potential lo create a new delense against viral inlections.

Election to the National Academy of
Sciences is anhonor second only t0 receiving
the Nobel Prize. Six of the top 10 member-

producing institutions, I 1 of the top 20, and

15 ofthe top 25 come from that group of48
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college's open cuniculum encourages

science students t0 take courses in other

areas.

Students who wish to focus their study

may engage in scientific research, usually in
a one{o-one relationship, under the direc-
tion of a Grinnell College faculty member.

Undergraduate student researchers often be-

come the authors of scientific papers with
their professors at Grinnell College.
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