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The Bicycle Race (1912) by Lyonel Feininger

YONEL FEININGER (1871-1956) presents us with an-

other case of a musician diverted into another field. The
great physicist Max Planck seriously considered music as
a career, as we learned in Quantum Smiles (Sept./Oct.
1990). Feininger was born in New York City and went to
Germany in 1887 to study music, but ended up taking up
painting instead. He studied in several European cities and
worked as a cartoonist for German humor magazines and
the Chicago Tribune. He came under the influence of the
Cubists, as did many artists of the time, and was particu-
larly affected by the work of Robert Delaunay (see Gallery
Qinthesameissue). After the first world war Feininger

joined the Bauhaus, Germany’s innovative school of de-
sign, whose aim was a synthesis of art, science, and
technology. He returned to the United States in 1936
when the Nazis came to power.

Feininger’s style is generally not as distorted as that of
other Cubists. “The Bicycle Race” is characteristic of his
work, withitsfaceted objects and vibrant colors. In this
painting he also effectively transmits a sense of motion
and freshness. It seems to propel us into spring—or gives
us the energy to do the pedaling ourselves! After all, what's
the point of all our mathematical training if not “problem
racing”? See Gary Sherman’s article on page 50.
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Cover art by 'Sergey Ivanov

The fellow doing a beautiful swan
dive on the cover may be surprised to
find out he’s diving into a pool of
paint! He dove off a perfectly ordinary
infinite planar surface, but what a
mess he’s headed for. It turns out that
the amount of paint in the pool is
enough to cover the infinite surface
that served as his diving platform.
What's going on here? It's the “painter’s
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Thanks for your Suppont!

You helped us through our first year

ITH THIS ISSUE OF Quan-

tum we come to the end of our

first publishing year. We'll

use the time between now and
the September/October issue to work
with our new copublisher, Springer-
Verlag, to make a smooth transition
to a new production arrangement. We'll
also work with our Soviet colleagues
at Quantum Bureau to plan upcom-
ing issues and try to get the materials
ready for the printer (and mailed to
you) earlier. Speaking of the mail,
we'll be applying for second-class mailing
privileges, which should result in faster
and more consistent delivery.

Atout your subscription . . .

Many aspects of Quantum evolved
rather rapidly during this first year.
For one thing, we started out the year
as an academic-year quarterly and ended
up a bimonthly, year-round magazine
(with this catch: year-round publica-
tion will begin with the September/
October 1991 issue). Thismay have
created some confusion for our sub-
scribers. I'd like to clarify the situ-
ation.

For those of you who subscribed
early on, after receiving one of the
pilot issues, your subscription runs
out with this issue. We will be send-
ing you a renewal notice, although
you may certainly send in your re-
newal without waiting for the notice.

Our introductory rate of $9.95 (for
four issues) expired on October 31,
1990. But because the pilot issues
continued to circulate, we continued
to receive subscription orders at $9.95,
rather than the new prices (for six
issues). If you paid $9.95, you will

receive four issues, regardless of when
you subscribed. If you paid full price
($14 for students, $18 for nonstudents,
and so on), you will receive six issues.
So, for instance, if you subscribed at
full price in December and the Janu-
ary/February issue was the first you
received, your subscription will ex-
pire with the March/April 1992 issue.

In short: Quantum will be pub-
lished six times a year, year-round,
beginning with Volume 2, Number 1
(September/October 1991). There will
be no issues published during the
summer of '91.

Looking back

It’s been an exciting and instruc-
tive year for us, and for you as well, we
hope. We're gratified by the positive
response to Quantum by students
and teachers, and we take seriously
the comments, suggestions, and criti-
cisms we've received. We realize
we're trying to walk a fine line be-
tween challenge and banality, encour-
agement and discouragement, excite-
ment and boredom. We're still feeling
our way toward the proper balance. If
you're a student who's used to under-
standing everything in your school
work without too much effort, we
hope you've been interested by things
in Quantum that your textbooks may
not have prepared you for, and even by
things that may be just out of your
reach. If you’re a student who's at-
tracted to math and physics but who
has to work hard at it, we hope you've
found topics that gave you unexpected
insights and perhaps some new skills.

We'd like to thank our advisory
board for their help during the past

QUANTUM/PUBLISHER"S

year. We haven’t been able to do all
that they’ve advised us to do, but
they’'ve made Quantum a better
magazine, and their ideas may still
bear fruit in the months to come.
Whether reviewing potential articles
or contributing pieces themselves, our
advisory board members have helped
increase Quantum’s American con-
tent and make it a true collaboration
with our sister magazine Kvant.

We're also grateful to the National
Science Foundation for their contin-
ued financial support. Without the
foundation’s seed money, Quantum
would never have seen the light of
day.

L ooking ahead

To help make Quantum more re-
sponsive to the needs of our primary
audience of American students, we
plan to add associate editors whose
task will be to solicit appropriate ar-
ticles from their colleagues in the
academic community. They will also
help us adjust the translated Soviet
articles to the math and physics back-
ground of students in US high schools,
providing footnotes and explanatory
material as needed. We hope to make
the excitement of Quantum acces-
sible to a broader range of students
without watering it down.

There’s still plenty of room for
improvement, and you can help us by
dropping a line with your comments.
Let us know what you like, what you
don’tlike, and what you’dlike to see
in Quantum.

See you in September!

—Bill G. Aldridge
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Have you written an article that you
think belongs in Quantum? Do you
have an unusual topic that students
would find fun and challenging? Do
you know of anyone who would make
a great Quantum author? Write to us
and we’ll send you the editorial guide-
lines for prospective Quantum con-
tributors. Scientists and teachers in
any country are invited to submit ma-
terial, but it must be written in collo-
quial English and at a level appropri-
ate for Quantum’s predominantly high
school readership.

Send your inquiries to:

Managing Editor
Quantum
1742 Connecticut Avenue NW
Washington, DC 20009-1171

7 N
Back issues of

QUANTUM

arg available

Youmay order copies of the
January (premier), May, and
November/December 1990,
and January/February 1991
issues of Quantum. (Sorry,
the September/October issue
is sold out.)

Single copies:  $5

2-19 copies: $4/ea
2049 copies:  $3/ea
50 ormore: $2/ea

Send your order to:

Quantum
1742 Connecticut Ave. NW

Washington, DC 20009
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-of Technology

earned its

academic reputation
by degrees.

Florida Institute of Technology has everything youd expect
from a university. Including a lot of degrees — both in and
out of the classroom.

For example, we offer more than 121 degree programs, from
A.S. to Ph.D,, specializing in Science, Engineering,
Business, Psychology and Aviation. Our modern campus is
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NOW you see /z‘ now you don t

» O YOU KNOW WHAT THE
area of a sphere is? You probably

do. If not, just look in a textbook
and you’ll find the formula 47R?,

where R is the radius of the sphere. -

And now I'll prove that this area actu-

. dly equals R®. Pay attention, now!

- Seeing is hellewng

.. Take half of a sphere |let it be the

, Northem Hemisphere). Divide the

‘equator into n equal parts by points

A, A, .., A, andjoin these points to
the North Pole N by the arcs of meridi-

~ ans Imagine now thatpolygon A A,..A_

starts to rise over the

equatorial plane, staying

parallel to it and con-
tracting on its way SO

~ thatits vertices slide along

the meridians. Then its

. sides will cover the sur-

~ facemuchlikeaclosed
~ bud (fig. 1a). If the bud

opens, we get n triangles

{fig.1b Fet g be the
base of any of the tri-
- angles(a =AA-AA
|l and let h denote

the height of the mangles
Then the total area of all
the triangles equals
na h /2. It's clear that as

bog

e

, by \/lad ‘

| DEFINITIVE MATH [

:;H’ Dubrovsky .

nincreases, the area of the bud tends

to the area of the hemisphere, while

the polygon s perimeterna, tendsto
the equator’s length 2nR and the height
tends to TR/2 (one quarter of a merid-

ian’s length). Thus, the area of the

hemisphere, which is the limit of the k

bud area, equals 2R - (rR/2)/2 =

n°R?/2, and so the surface area of the .

sphere equals TR~
Something’s wrong here. Imean,

we can’t disbelieve geometry books

from all over the world! We'll ap-

begin with the deepest root of the
problem: what is the area of a surface?

The first atiempt: developing

Sir, I admit your general rule,
That every poet is a fool:
But you yourself may serve to

‘ show it,
That every foolisnot apoet.

proach this paradox from far off and

—Matthew Pflor ‘

The simplest task is to find the :

surface areas of a cylinder and a cone:

it’s possible to cut them along a linear

ruling and unroll them—or, as mathe-

We get a rectangle and a

‘maticians prefer to say, “develop” them
[fig. 2}
circular sector, respectively. Their

areas can easily be computed by means

_ Aouen| Aeblsg Ag uy




of the well-known formulas from plane
geometry. By the way, the area of the
petals of our bud have also been com-
puted by developing. It might be the
simplest way of determining the sur-
face area, but, unfortunately, few sur-
faces are developable.! For example,
anyone who ever tried to wrap an
apple, an orange, or, say, a water-
melon in a sheet of paper knows that
it’s impossible to get rid of folds or
creases. Soit’s common knowledge
that in practice it’s impossible to de-
velop even such a simple surface as a
sphere. Buthow can we proveit?

N

Figure 1b

To start with, it’s necessary to
understand what it means to develop.
What's the difference between a sheet
of rubber, which can wrap anything
without folds being created, and a
sheet of paper? Well, rubber can stretch
and shrink, while paper can’t. In other
words, the length of a curve drawn on
paper is constant for all bendings. Pre-
serving the lengths of all curves is the
main property of the process of devel-
oping.

Now imagine that we’ve managed
to cut a sphere into segments that can
be flattened on the plane so that this
property holds. Mark a point A inside
one of the segments and draw a circle
C with center A that lies inside this

"Unrollable surfaces are examined in
the article “Bend This Sheet” by Dmitry
Fuchs in the the very first issue of
Quantum, where they are called
“developable.”

Figure 2

segment. It follows by symmetry that
this circle is a locus of points for
which the distance d(X, A) to point A
measured along the sphere is con-
stant. (The distance along the sphere
is the minimal length of a curve on the
spherejoining the two points. It can
be proved that such a curve is an arc of
a “great circle”—that is, the intersec-
tion of the sphere and a plane through
its center, but we won’t need to do it.)
Our spherical circle can also, of course,
be considered a planar one. Thenits
center is the point O, the projection of
any point X of the circle onto the
diameter of the sphere passing through
A (fig. 3), and its “planar” radius r
equals OX. So the length of the circle
equals 2ntr. After being unrolled the
circle C transforms into the locus of
points whose (planar) distance from A
is R—that is, into an ordinary circle of
radius R. The length of this circle
equals 2nR. But r= OX < AX < d|A, X)
= R, since the length of the line segment
AXissmaller than the length of any
curve joining A and X. Thus, the
length of the circle increases after
developing, which contradicts the main
property of developing.

=

Figure 3

Exercise 1. Prove that despite the
fact that the sphere is undevelopable,
it's possible to construct (a) a mapping
of a hemisphere onto a
plane that transforms
the shortest paths on

|
/|

%

plane; (b) an area-preserving mapping
of a sphere onto a plane. (Hint: see ex-
ercise 6.)

To refute a general rule it’s suffi-
cient to produce a single counterex-
ample (see the epigraph). So we have
proved that developing is of no use in
our search for a general definition of
the area of a surface.

The second attempt: approximation by
polyhedra

Reread the Prior quotation!

Nevertheless, we have no prob-
lems with some types of surfaces. It’s
especially easy to find the area of a
polyhedral surface—that is, a surface
consisting of planar polygons.

So it’s natural to try to approximate
the area of a given surface S by the area
of a polyhedral surface P close to it.
The closer P is to S, the better the
approximation, and in the limit we
would get the precise value of the area
of S. The curvelengthisdefinedina
similar way by broken-line approxi-
mations. But we can’t afford to be
careless, because taking arbitrary bro-
ken lines close to a given curve may
result in an unpleasant surprise, as
the exercise below demonstrates.

Exercise 2. Figure 4 shows a se-
quence of broken lines of length 21/
each converging to the line segment
of length 1. The distance between
points of the nth brokenline and the
line segment doesn’t exceed 1/22 Give
examples of broken line sequences
converging to the unit segment, whose
lengths (a) tend to an arbitrary given
number > 1; (b) are unbounded; (c) are
bounded but don’t converge anywhere.

Everythingis okay, though, with
the length of the curve if we require
that the approximating broken lines
be inscribed in it—that is, that their
vertices lie on the curve. Let’s impose
asimilar condition on polyhedra ap-
proximating a curved surface and try
to find the area of the cylinder.

Divide the height H of the cylinder
into k equal parts, draw circles through

———— ———

the sphere into the y
Figure 4

shortest paths on the

QUANTUM/FEATURE 1
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Figure 5

the dividing points (fig. 5), and in-
scribe regular n-gons in the circles so
that each of them is rotated by the
angle n/n with respect to the neigh-
boring ones. Join the vertices of these
n-gons by their edges as shown in the
figure. We get a polyhedron P(n, k|
inscribed in a cylinder and consisting
of 2nk congruent triangles. If this
construction is viewed from above
(fig. 6), we would see that the margin
d, between our cylinder and the cylin-
der touching horizontal edges of the
polyhedron tends to O as n increases.
Thus, polyhedra P(n, k) “tends” to the
cylinder as n —> @ irrespective of
the number of layers k. But what hap-
pens to their areas A(n, k)?

the

Let a_ be the base and h
altitude of an arbitrary triangle forming
P|n, k) (the base length doesn’t depend
on k). Then

n, k

h
Aln,k) =2nk - a, - Lkzp,, - kh

b
nk

wherep_isthebase perimeter of our
polyhedron. Clearly, as nincreases,
the perimeters p_tend to the length
2nR of the base circle of the cylinder
(where R is its radius). But the behav-
ior of the second term kh_, depends
on k. If we fix k = 1, then the value
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kh, ,=h,  evidently tends to H as
n—> w, and, consequently, A(n, 1)
—> 2nRH. This is the correct value of
the cylinder’s side area. The same
happens for any fixed k. But if k
increases with n (the number of faces
in a layer), then the limit of the areas
A(n, k) can be different. You’ll know
the details from exercise 3, so now let
me give you only one example. Choose
a sequence of numbers k_such that
k d increases indefinitely—for instance,
in such a way that k_> n/d_(recall that
d_is the margin between the inscribed
and the circumscribed cylinders for
the polyhedron P(n, k); it follows from
figure 6 that d_= R(1 —cos n/n)). Then

n, k,

A(n,k)=p, kd,-—>p, kd

n-n d” hn

(evidently h_, > d_ for any n and k).
Sothearea A(n, k )increases indefi-
nitely despite the fact that the polyhedra
P(n, k) converge to the surface of the
cylinder! The reason for this amazing
phenomenon is that when n increases,
the faces of P(n, k ) make increasing
angles with the surface of the cylin-
der, and the area of the polyhedra
increases because of the multiple folds.

This construction was invented in
1890 by the German mathematician
H. A. Schwarz (1843-1921). In mathe-
matical folklore it’s called Schwarz’s
boot.? It shows that our new defini-
tion of surface area doesn’t work. More
precisely, the definition needs refin-
ing: the notion of the “closeness” of a
polyhedron to a surface should take
into account not only the distance be-
tween their points but also the angles
between the faces of the polyhedron
and the surface. But this makes the
definition too complicated. In any
case, to use it for calculating the area
of a sphere is unreasonable, to say the
least.

Exercise 3. Show that the area of
Schwarz’s boot is given by the for-
mula

2
A,k =anJ1+(f"-’i}k2sin4(l).
H> 2n

’In the Quantum Toy Store at the
end of thisissue, we show how tomake
a paper model of Schwarz’s boot.

If you're familiar with the equality
Iim sinx/x =1,
x—0
try to choose for any given number A
>2nRH asequence k_such that the
areas A(n, k ) tend to this number.

The Minkowski tefinition

The road length equals its area di-

vided by its width.
—From a lecture for high school
students

About a hundred years ago Her-
mann Minkowski (1864-1909), an
outstanding German mathematician
and physicist, suggested a new ap-
proach to the definition of the area of
a surface. He devised a way of reduc-
ing the computation of the area to the
computation of the volume.

Imagine that you have to paint the
roof of a house that has a very compli-
cated shape. How much paint will
you need? The answer is evident: the
paint volume V approximately equals
Ah, where A equals the roof area and
his the thickness of the paint layer.
Thus, the roof’s area approximately
equals V/h. And the thinner the paint
layer, the more precise this equality.
Since not every surface has two sides,?
it’s desirable to “paint” it all and to
divide the volume of the “paint” used
by twice the layer’s thickness.

The mathematical equivalent of a
layer of constant thickness h is the h-
neighborhood S, of a surface S. It's the
set of points in space no more than h
units away from the surface. In other
words, the h-neighborhood of a figure
consists of points X such that any
sphere of radius greater than h with its
center at X intersects this figure. A
planar neighborhood is defined simi-
larly.

Exercise 4. Find the planar and
spatial h-neighborhoods of a line seg-
ment. Prove that the area of the
former and the volume of the latter
equal 2hd + nh? and th?d + (4/3)rh3,
respectively, where d is the length of
the segment.

30ne-sided surfaces are discussed in
the article “Flexible in the Face of
Adversity” by A. Vesyolov in the
Sept./Oct. 1990 issue of Quantum.



Figure 7

Exercise 5. (a) Find the spatial h-
neighborhood of a regular hexagon.
Denote its volume by V|{h) and prove
that V(h)/2h tends to the area of the
hexagonash—> 0.

(b) Prove that the volume of the h-
neighborhood of a convex polygon
equals 2hA + nh’p + (4/3)nh®, where A
is its area and p is half of its perimeter.

Now we can get rigorous.

DernNiTiON. Let V(S,) be the vol-
ume of the h-neighborhood of a sur-
face S. The area of this surfaceisthe
Iimitof theratio V(S,)/2h as h—> 0.

Of course, a direct computation of
surface area with this definition is
possible only in the simplest cases.
And it requires at least some familiar-
ity with calculus—namely, the abil-
ity to calculate the simplest limits
(you'll see that these calculations are
almost self-evident). Formore com-
plex cases, there are special integral
formulas that can be derived from the
Minkowski definition or other defini-
tions. Here are some examples.

Sphere (fig. 7). The points whose
distance from a sphere S of radius R
does not exceed h (h < R) fill the space
between two spheres having radii R - h
and R + h and the same center. So the
volume of the h-neighborhood S, equals
the difference between the volumes
of balls with radii R+ hand R—h. (The
volume of a ball of radius r equals
4nr?/3.) So

V(S/z)_4_n(R+h)3—(R—h)3
2h 3 2h
_4n
3

3R + 1
(

= 4mR* + 47{—}'2 .
3
As h tends to zero, the second term
drops out and we get the answer 4nR>,
(“And what about the formula n2R?,
which you tried to pass off as the right

%
|
|

Figure 8a

one?” acredulousreaderis now ask-
ing. Just hold on, I'll come back to it
before the article ends.)

Figure 8b

Cylinder. On the right side of
figure 8a you see an axial section of
the h-neighborhood of the side surface
ofacylinder C, which has aradius R
and height H (more precisely, you see
half of the section). It’s a rectangle
with curved angles. The curvatures
correspond to points whose distance
from the cylinder edges is less than h,
and they complicate the exact com-
putation of the volume of the h-neigh-
borhood. But fortunately, as we'll
soon see, the volume of these curva-
tures is so small that it doesn’t affect
the answer, and so we can just cut
them off (fig. 8b). Now we have to find
the volume of the body obtained by
rotating the rectangle of size 2h - H
about the axis whose distance from its
longer midline is R. This equals the
difference between the volumes of
two cylinders of height H and with
radiiof R + hand R - h, respectively:

nHI[(R + hP - (R-hP] = 2rRH - 2h. (1)

Dividing by 2h we see that the area of
the side surface of a cylinder equals
2nRA.

Now about the curvatures. To
evaluate their volume let’s replace
them with rings whose rectangular
section equals 2h - h (fig. 8a) and
compute the volume of the rings us-
ingformula (1). It turns out that the
total volume of the curvatures divid-
edby 2h does not exceed 4nRh and
tends tozeroas h—:> 0.

Exercise 6. The volume of a ball
sector (that is, the body cut out of a
ball by a cone whose vertex is at the
ball’s center) equals 2R? (1 - cos a)/3,
where R is the ball’s radius and o is the
angle between the axis and the ruling
of the cone. Using this formula, show

h
Figure 9 ok
that the area of the part of a sphere
sandwiched between two parallel planes
intersecting this sphere depends only
on the distance H between these planes
and equals 2nRH.

Exercise 7. Using figure 9, show
that the area of the side surface of a
cone with base radius R and slant
height [ equals nRI.

Now for one more example.

.
J

Circle. “But a circle isn’t a sur-
face,” you say. Of course not, but
Minkowski’s idea can also be used to
compute lengths. To find the length
of a planar curve L, we should replace
the volume of the h-neighborhood of a
surface in this definition with the area
of the planar h-neighborhood of the
curve. In particular, the h-neighbor-
hood of a circle with radius R (for i < R)
is a ring between two concentric circles
with radii R - h and R + h, respectively
(fig. 10). Its area equals n[(R + h)* -
(R = h)*|=2nR -2h. Dividingby 2h
we get the well-known formula for
the length of the circle 2rR. Another
approach is to leave the numerator in
the Minkowski definition as it is and
replace the denominator with nh*:
the spatial h-neighborhood of a curve
is a thin curved pipe whose volume
approximately equals the product of

Figure 10

CONTINUED ONPAGE 44
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The fiainter's paradox

Is this why some artists starve?

NYONE WHO HAS EVER HELD

a brush knows that the greater

the surface area, the more paint

isused up. In other words, the
amount of paint needed is propor-
tional to the painted area. (One of the
definitions of surface area
is based on this observa-
tion—see Vladimir Dub-
rovsky’s article in this
issue.)

1. Let’s consider, by
way of example, a flat
plate composed of an
infinite number of rec-
tangles, as shown in fig-
ure 1. Here the first rec-
tangle is a square with
sides of length 1 cm. Each
subsequent rectangle is
twice as long as the pre-
vious one, but its width
is one half that of the
previous one. Clearly

the area of each rec-

tangle equals 1 cm?.

Figure 1

So the area of the whole
figure S is infinite:

S=(l+1+1..)cm?

and requires an infi-
nite amount of paint.

2. Now let’s think
about it another way.
Rotate the plate about
the line ray bounding
it. The resulting sur-
face of revolution con-
sists of an infinite
number of cylinders
(fig. 2). Its internal

[I

Figure 2
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by A. A. Panov

volume equals the sum of the vol-
umes of all the cylinders:

V=V +V,+V, +....

We know that the volume of a cylin-
der with a base radius rand height h
equals nrh. For the nth cylinder
(counting from the top in figure 2) we
have

1

r= Lcm,
271 bl
h=2""'cm3.
Thus
T
= cm?
n 211 —~1

and, consequently,

- 1.1 3
V—Tc(l+2+22+...)cm ;

In the parentheses we have the well-
known sum of a geometric sequence.
This sum equals 2, and so V =2n cm?.

Imagine that our body of revolu-
tion is hollow. Fill it to the brim with
271 cm?® of paint, and then immerse our
plate in it. After you take it out it will
surely be painted—on both sides, even!

So we have two examples of impec-
cable reasoning that lead to contradic-
tory conclusions. Following the first
line of thought, we conclude that we
need an infinite amount of paint, while
the second one shows that a mere
2n cm?of paintis sufficient. Thisis
the painter’s paradox. I think you’ll
enjoy pondering it! Q)
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Stiort takes

Sayings From the Scientific folklore Clever!

“The law isn't written for fools,” Two people are traveling in a bal- If the resistance measured in the

says a Russian proverb.! Sois it worth- loon over unknown territory. circuit

while to improve your intellect? “Hey!” they call out to a passerby,
Every action has an equal and op-  “where are we?”
/ v ’/ \
—

posite reaction. But what about inac- He looks
tion? (O. Donskoy) carefully at
them and
yells back:
“You're
inaballoon!”
"He must
be amathe-
matician,”
says one of
the travelers /
to the other. P A I it’s more than expected, then meas-
“Why is_ " & ure it in the circuit
that?”
“First, he

7 /g
thought éflll»m

awhile before answering. Second, his

'Compare the English saying: “Fools ~ answer is absolutely precise. And , .
rush in where angels fear to tread.” third, it’s utterly useless.” andit’'ll berighton. (G.Zadov)

Art by Pavel Chernusky

Sshhhhh! Quietl Examinations are in progress. . .

..atthe Auto Repair Academy

..atthe MiningInstitute

Art by A. |. Semyonov

.. in the Chemistry Department
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Atmospherics

THE PHYSICAL WORLD

A look at the Earth’s airy shell

by A.V.Byalko

OOK UP AT THE HEAVENLY
azure—this is the Earth’s atmo-
sphere. Breathe in the air—this,
too, is the Earth’s atmosphere.
But what is atmosphere from the point
of view of physics? What accounts for
its composition, pressure, and tem-
perature atdifferentaltitudes? Let’s
try to answer these questions briefly.

The composition of the atmosphere

You probably know that the Earth’s
atmosphere consists of nitrogen (78 %),
oxygen (21%), and argon (1%). There
are also small admixtures of carbon
dioxide and water vapor as well as
negligible quantities of neon, helium,
krypton, and hydrogen. Now let’s try
to understand why our planet’s di-
aphanous shell consists of these par-
" ticular gases and water.

The composition of the atmosphere
isdetermined, first of all, by the geo-
logical history of the planet. The
Earth, along with the Moon and the
other planets of the solar system, is
thought to have been formed by the
collision and merging of small solid
celestial bodies. The primary sub-
stance of the planet was compressed
by the force of gravity—underitsin-
fluence the Earth took the form of a
sphere (flattened slightly at the poles
because of rotation). Compression
caused the center of the Earth to heat
up. Under the action of high tempera-
tures and pressure, chemical reac-
tions took place in the primary sub-
stance. Heavier reaction products
descended to form the Earth’s core;
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lighter ones formed the Earth’s crust;
and gases were separated from the
solid part to form the atmosphere.
Then the abundant water vapor in the
Earth’s atmosphere condensed to form
the ocean.

Don’t think that all this happened
once and for all in the Earth’s remote
past. This process is going on even
now, although not so intensively as in
the beginning of evolution. At pres-
ent the Earth’s crust is still being
renewed, and volcanoes are expelling
considerable quantities of water va-
por, carbon dioxide, and nitrogen. Sulfur
dioxide, hydrogen chloride, and other
unpleasant gases are also being re-
leased into the atmosphere. But why
are they absent in the normal atmos-
phere?

The answeris pretty obvious. All
the gasesin the atmosphere mustbe
in chemical equilibrium with each
other, with the ocean, and with the
material of terrestrial rocks. Soacid
oxides thrown out by volcanoes dis-
solve rapidly in the ocean to form
acids. Interacting with the basic ox-
ides of the Earth’s crust, these acids
form salts. Some of the salts are
dissolvedin the ocean, while the in-
soluble salts form sedimentary rocks.

Theattentive reader has probably
noticed a weak point in this theory.
Oxygen! There’s no oxygen in vol-
canic gases, and there’s no oxygen in
the atmospheres of other planets.

The main source of the Earth’s
oxygen is vegetation. The chloro-
phyll of plants, under the action of the

Sun'’s rays, process carbon dioxide.
The carbon is absorbed in organic
compounds and the oxygen is released
into the atmosphere. Thereis, how-
ever, another source of oxygen on our
planet. To understand how it works,
we must first answer the following
questions: what restrains the atmos-
pheres of planets? Why don’t the at-
mospheric gases fly off into outer space?

The atmospheric pressure at the
Earth’s surface is known to equal p, =
1.013 - 10° Pa. This means that the
force with which the atmosphere acts
on each square meter of the Earth’s
surface equals 1.013 - 10° N. This
force comes from the Earth’s gravity
and equals the weight of the air col-
umn over the Earth’s surface with a
cross section of 1 m?. Since the height
of the atmosphere is small in com-
parison with the Earth’s radius, we
can consider that within the atmo-
sphere the free-fall acceleration is con-
stant and equal to g=9.8 m/s?. The
weight of an atmospheric column with
across section of Im*isequal top, =
m g, wherem, (kg/m?)is the mass of
the air. So over the entire Earth’s
surface, whose area is 4nR % the mass
of the airis equal tom, - 4nR >*—that
is,

Py o5 18
m, = AT =53-10"kg

As you can see, the mass of the atmo-
sphere constitutes approximately one
millionth of the whole mass of the
Earth m_ =6-10* kg. It’s also interest-
ing to compare the mass of the atmo-
sphere with the mass of the water on
our planet: the mass of the water on
the Earth is 1.4 - 10*! kg. So the
atmosphere’s mass is 1/266th that of
water.

The force of the Earth'’s gravitation
produces not only atmospheric pres-
sure near the surface, it also prevents
atmospheric gases from dissipating
into outer space. You know that gas
molecules are in random thermal motion.
The root-mean-square velocity of
molecules at a temperature T is equal

to
| 3RT
V=4 —,
n

where R is the universal gas constant
and p is the gas’s mass in moles. Let’s



Art by Leonid Tishkov

compare the velocities of various gas  the mean molecular velocity is about
molecules at a temperature of, say, 0.5 km/s. At first glance everything is

300 K with an escape velocity fine. The velocities of the gases are
v, = TgRE — 11.2km/s . less than the escape velocity. This

means that the Earth can keep any of
For hydrogen, v, = 1.3 km/s; for helium, these gases in its atmosphere. Never-
v, = 1 km/s; for oxygen and nitrogen, theless, atmospheric gases do volatil-

ize very slowly into outer space. This
is because the temperature in the
upper layers of the atmosphere is much
higher than the temperature near the
Earth’s surface (as we shall see|, reach-
ing 1,000 K; so the velocities of the
molecules are about two times those
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near the surface. Not only that, we
evaluated the mean velocities of
molecules. In thermal equilibrium
the overwhelming majority of mole-
cules move with velocities close to
the mean velocity. But there is always
a small portion of the molecules whose
velocities exceed the mean velocity
and reach the value of the escape
velocity. These fast molecules can
escape the Earth for good.

At a given temperature, hydrogen
and helium molecules have the great-
est mean velocities. It's easier for
them than for other gases to escape
into outer space, and it’s easier for
them to rise to great altitudes. One
would think that the quantity of these
gases in the atmosphere must con-
tinually decrease. But it doesn’t. Why
not?

It turns out there are processes that
maintain the amount of the light gases
in the atmosphere. Helium is formed
in the Earth’s crust by the decay of
heavyradioactive elements, and hy-
drogen in the upper atmosphere is
formed from water. At altitudes above
50 km, molecules of H,O break down
into hydrogen and oxygen under the
action of the Sun’s ultraviolet radia-
tion. So hydrogen loss into outer
space results in a decrease in water on
the Earth and an increase in the at-
mosphere’s oxygen content.

Every second about 1 kg of hydro-
gen escapes from the atmosphere. Is
thatalotoralittle? Let’s figure out
whether the waterin the oceans and
glaciers of the planet will be enough to
last a while. (You'll recall that the
mass of the Earth’s water is 1.4 .
10%kg.) Nine kilograms of water contain
1 kg of hydrogen. Consequently, the
Earth’s water will suffice for 1.5 -
10%° s, which is 5,000 billion years.
The ocean can be considered inex-
haustible, since the Earth’s age is “only”
4.5 billion years.

So the Earth’s water is one more
source of atmospheric oxygen. Now
let’s estimate how much oxygen has
been generated over the time the Earth
has existed. This will be a very rough
estimate: in reality, we can’t assume
that the Sun is shining the same way
now as it has all that time. Butlet’s
try. Eight kilograms persecondfor4
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billion years gives us 10'% kg of oxy-
gen—ijust the amount our atmosphere
contains: one fifth of the mass of the
atmosphere.

Don't overestimate the coincidence.
After all, much more oxygen than is
now present in the atmosphere was
needed to establish the present chemi-
cal equilibrium of the Earth—to oxi-
dize methane and ammonia in the
primary atmosphere, to oxidize all the
rocks of the Earth’s crust. This would
be impossible without vegetation. Plants
produce on the order of 10'* kg of
oxygen per year—3 - 10¢ kg per second.
This is much more than that pro-
duced by the dissipation of hydrogen
into outer space. But at present the
oxygen content of the atmosphere
doesn’t increase. All oxygen gener-
ated by vegetation is consumed by the
breathing of animals, oxidation of vol-
canic gases, combustion, and the decaying
of dead plants.

Near the Earth’s surface, especially
at altitudes of 20 to 50 km, an oxygen

molecule can decompose into atoms:
O,—>20. This reaction is induced by
the Sun’s ultraviolet radiation, light-
ning discharges, and certain atmo-
spheric impurities that act as catalysts.
Active monatomic oxygen rapidly reacts
with other gases, including oxygen, to
form ozone: O + O,—> O,. Although
ozoneis a strong oxidizer, it’s rather
stable—near the Earth’s surface, there
is one ozone molecule on average for
every 107 oxygen molecules. This
relation, however, varies considera-
bly, depending on the time of the day,
the geographic latitude, and the pres-
ence of other impurities in the atmo-
sphere.

Ozone concentration increases with
altitude—at a height of 30 km, there is
one molecule of O, for every 10° mole-
cules of O,; beyond that it falls off
sharply. The presence of the ozone
layer is of inestimable importance for
the very existence of life on Earth.

It must be obvious to you from
what’s been said so far that the com-
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Figure 1

The change in concentration of n molecules of certain gases (colored curves) and
the change in total concentration of molecules (the black curve) in the atmosphere

with altitude.

In the homosphere the concentration of most gases decreases equally. Above 90
km the gas content essentially depends on altitude. Under the influence of the
Sun’s ultraviolet radiation, oxygen decomposes into atoms, and at altitudes of 200
to 600 km monatomic oxygen is the most abundant gas in the atmosphere. At
higher altitudes the Earth’s atmosphere mainly consists of helium. Finally, at the
altitudes where gases escape into outer space, hydrogen is the most abundant gas

in the atmosphere.

Makenoteof theshape of the ozone (O,) curve at altitudes of 20to 50 km. Why
this is important for us is explained later in the article.



position of the atmosphere depends
on altitude. In fact, the Earth’s atmo-
sphere has a uniform composition
(that is, it’s well mixed) only below 90
km. This part of the atmosphere is
called the homosphere. The hetero-
sphere is the portion of the Earth’s
atmosphere whose composition varies
with altitude. Infact, above 700 km
the Earth’s atmosphere consists only
of helium and hydrogen. It is basically
these gases that are dissipated into
outer space.

Figure 1 illustrates how the con-
centration of individual gases and the
total concentration of molecules in
the atmosphere vary with altitude.

The planet's thermal equiliorium

We've seen that the flow of gases
that are lost into outer space depends
on temperature. But as inhabitants of
the Earth, atmospheric temperature
interests us primarily from the practi-
cal point of view: our living condi-
tions depend on it to such a great
extent.

The main source of the Earth’s
thermal energy is the Sun. Human-
kind has always realized this. The
Russian poet Alexander Sumarokov
wrote in 1760:

O Sun, you are the life and beauty of Nature,
The source of eternity, the image of divinity!
You give life to earth, air, and water,

You are the soul of Time and Matter!

Let’s try to arrive at a quantitative
evaluation of these eternal truths. The
Sun is a sphere of radius R, =
6.96 - 108 m that is heated by th-
ermonuclear reactions; the tempera-
ture of the Sun'’s surface T, = 5,800 K.

It's well known that hot bodies
shine and radiate energy. At the end of
the last century the Austrian physi-
cists Stefan and Boltzmann discov-
ered the law of radiation: the flow of
energy—thatis, energy radiated per
unit of time from a unit surface area of
a body in thermal equilibrium (having
a constant temperature)—is propor-
tional to the fourth power of the tem-
perature: €& = oT* where ¢ =
5.67 - 10°® W/(m?- K*)is the coeffi-
cient of proportionality, which is called
the Boltzmann constant.

The Sun isn’t in full thermal equi-
librium, but the Stefan-Boltzmann
law is approximately true forit. Ac-
cording to this law, the power emitted
by the Sunisequal to

P,=4nR 20T *=3.8- 10%W.

This power is emitted uniformly in all
directions. Itisn’t a difficult task to
calculate what portion of that power
reaches the Earth. AtadistanceR =
1.5 - 10" m, which is the radius of the
Earth’s orbit, the powerreachingev-
ery square meter of the surface per-
pendicular to the rays is equal to P,/
4nR2. The surface area of the Earth
that blocks these rays is equal to TR 2
So the power reaching the Earth from
the Sunisequal to

R’

P= P Ez

4nR
=1.75-10""wW.

What is this power spent on? Some
is reflected by the Earth back into
outer space. Asyou well know, the
planets and the Moon are visible in
the starry sky precisely because of
reflected sunlight. In the same way
we can see the light reflected by the
Earth as we travel into outer space.
The portion of the reflected radiant
power is called the albedo (from the
Latin albus, “white”), which implies
a kind of whiteness factor. The accu-
racy with which we know the albedo
of our planet is quite small. The value
of the Earth’s albedo A is taken to be
within the range of 2.8 to 36 percent.
What is the rest of the energy P(1 - A)
expended on?

Clearly this portion of the energy is
responsible for the warm climate on
ourplanet. But the Earthis continu-
ally exposed to solar radiation, and if
no heat were removed, the Earth’s
temperature would constantly increase.
So heat removal exists. It is performed
by the same physical process as the
solar radiation itself. Just imagine,
the Earth and the other planets are
also sources of radiation. But the
spectrum of this radiation is in an area
that the eye can’t see—the infrared
range.

Let’s calculate the temperature of

the Earth’s thermal radiation, taking
its albedo to be equal to 0.28 (in accor-
dance with the latest satellite meas-
urements). We should equate the
solar radiation power P(1 — A) ab-
sorbed by the Farth with the power of
the Earth’s thermal radiation. If the
Earth’s temperature is taken to be T},
the power radiated from its surface is
equal to 4nR *cT,*. So

P(1-A) = 4nR 20T,

from which we get

1

4
~A)
™ P4(71;1R22
E
= 258K =-15°C.

Not a bad frost! But we know that the
average annual temperature of the
Earth’s moderate latitudes is above
zero; and the tropics occupy a consid-
erable portion of the Earth’s surface,
where in both summer and winter the
temperature seldom drops below +25°C.
What's going on here? Maybe the
Earth has its own source of thermal
energy.

Well, such a source actually does
exist. It’s the Earth’s core. With every
kilometer of descent into the Earth’s
crust, the temperature increases 30
degrees on average. This heating is
due to the energy released by the
decay of heavy radioactive elements.
Calculations show, however, that the
thermal flow reaching the atmosphere
from the core is less than that of solar
radiation by a factor of 6,000. So the
heat of the Earth’s center doesn’t in-
fluence the climate of our planet.

Why does the average temperature
of the Earth’s surface remain con-
stant? Why doesn’t it fall to -15°C,
which corresponds to the thermal equi-
librium? .

The “layer cake” of the atmosphere

It turns out that heat isn’t radiated
into outer space by the surface of the
Earth itself but by the air enveloping
it—the atmosphere. At first glance
this seems strange—after all, the air is
transparent. But the radiation spec-
trum at a temperature of about 300 K
is in the far infrared region. Depend-
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ing on our senses only, we can’t say
anything about the ability of sub-
stances to transmit radiation of such
wavelengths. Measurements made
by infrared spectrometers, however,
show that the main gases of the air—
nitrogen, oxygen, and inert gases—are
also transparent in the infrared range,
while carbon dioxide and water vapor,
present in the atmosphere in small
quantities, absorb infrared radiation
so strongly that they determine the ra-
diative properties of the Earth’s at-
mosphere and the Earth as a whole.

The Earth’s thermal radiation is
emitted in atmospheric layers at alti-
tudes of 6 to 12 km. This is where the
average temperature is equal to ap-
proximately 258 K. Imagine a new-
comer to our solar system who can see
only infrared light. To this space
traveler the Earth would look like a
luminous sphere with aradiusjusta
bit larger than the true one. But only
seldom could the creature see the real
surface of the Earth: near the South
Pole during the polar night or in the
Northern Hemisphere (in eastem Siberia)
during the winter. This is because
onlyin a severe frost does the air be-
comes so dry that the atmosphere is
transparent in infrared light also.

The part of the atmosphere that’s
below the surface of the infrared radia-
tion is called the troposphere. The
troposphere contains about 80% of
the entire mass of the Earth’s atmo-
sphere. You know that pressure de-
creases with altitude. At the height of
Mt. Everest, which is about as high as
the radiating surface, the air pressure
is only a fifth of normal pressure. This
means that one fifth of the atmo-
spheric mass is situated above this
peak. The troposphere is the part of
the atmosphere that has the most
practical significance forus. Its mo-
tion determines all meteorological
phenomena. All the ordinary clouds
are also situated in the troposphere—
thereis verylittle water vapor above
it. So the state of the troposphere
accounts for precipitation: rain, snow,
and hail.

Strictly speaking, the troposphere
extends into the region located 2 to 3
km above the surface of the infrared
radiation, where the air temperature
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continues to decrease with height.

Butabove 15 km the atmospheric
temperature starts rising! Anditin-
creases to 270 K—that is, it again
reaches approximately 0°C—at an al-
titude of 50 km. This atmospheric
layer is called the stratosphere. Why
does the temperature rise in the strato-
sphere?

It turns out that the heat energy of
this layer results from chemical reac-
tions taking place because of the ac-
tion of the Sun’s ultraviolet radiation.
These reactions are the decomposi-
tion of oxygen into atoms and the
creation of ozone molecules (O,]. The
layer of increased ozone concentra-
tion in the stratosphere (see figure 1)
screens the Earth’s surface from solar
ultraviolet radiation, which is harm-
ful to all living things.

The ozone layer is necessary for the
Earth, but it’s unstable. Ozone is
partially broken down because of the
formation of nitrous oxides in the
stratosphere, which end up there after
atmospheric nuclear explosions, powerful
volcanic eruptions, meteor showers,
and even rocket launches. Organic
gases containing chlorine and fluo-
rine, which are used in aerosol spray
cans and refrigerator heat exchangers,
are also harmful to the ozone layer.
Human activities account for some of
the destruction of the ozone layer, and

their negative consequences are, un-
fortunately, hard to predict.

Since the temperature in the strato-
sphere increases with altitude, this
portion of the atmosphere is extremely
resistant to mixing. Once chemical
impurities and fine dust reach the
stratospheric layer, they can remain
in it for several years, and above 20 km
they can stay for decades. As these
impurities slowly propagate upward,
theyintensify the destruction of the
ozone. But ozone is formed by the
action of the Sun’s rays, and so the
maximum ozone content is at a height
of 40 km above the tropics. The
distribution of the ozone layer across
latitudes is determined by these two
flows: (1) ozone from above and from
the tropics and (2) impurities from
below. But the time it takes the ozone
layer to react to the new sources of im-
purities is measured in decades.

In the 1960s the average thickness
of the ozone screen was decreasing.
From the middle of the seventies it
began increasing, which may have
been a result of the fact that most
atmospheric nuclear testing stopped
after an international treaty was signed
in 1963. Now the average ozone con-
centration throughout all the latitudes
causes no worries, but in the early
eighties a new phenomenon emerged:
a hole began to appear in the ozone
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over Antarctica every year at the end
of the polar night. It’s observed in the
Southem Hemisphere’s spring months—
September and October every year.
The total concentration of ozone in
the entire column of atmosphere is
minimal over the center of Antarctica
and is decreasing from year to year.

It’s awtul to think what might happen
... All the more so in that we still
don’t know the culprit—the process
that is unambiguously, directly re-
sponsible for this phenomenon. But I
think we mustn’t exaggerate the dan-
ger. The ozone hole will surely not
migrate from the region of polar night
to the lower latitudes. It’s more diffi-
cult to say whether a similar phe-
nomenon will arise near the North
Pole.

Above 55 km the air temperature
falls. It drops to 187 K at a height of
90 km above the Earth’s surface. This
layer of the atmosphere is called the
mesosphere. The temperature falls in
the mesosphere because the air in it
absorbs sunlight weakly. The th-
ermosphere and exosphere are situ-
ated above the mesosphere. In the
thermosphere the temperature begins
to rise sharply and increases to 1,000 K
at altitudes of 350 to 400 km.! This
results from absorption of the solar
ultraviolet radiation by the main
atmospheric gases—oxygen and ni-
trogen. Above the thermosphere the
temperature doesn’t change with alti-
tude. This is the exosphere, a transi-
tional region between the Earth’s
atmosphere and outer space; it’s the
part of the atmosphere where hydro-
gen, helium, and negligible quantities
of other gases escape from the Earth.

And that’s how the “layer cake” of
the atmosphere is arranged (fig. 2).

Energy streams in the atmospere

Solar energy falling on the Earth is
redistributed by the various layers of

This temperature can’t be measured
with a thermometer—the gas density of
the thermosphere and exosphere is so
low that thermal equilibrium between
the gas and the thermometer is never
established. Here temperature is
measured by the average kinetic energy
of the gas molecules.

the Earth’s atmosphere and by its
solid or liquid surface. How this hap-
pens is apparent from figure 3, which
follows the paths of 100 arbitrary units
of solar power falling on the Earth.
Notice that in this illustration the
heat flow coming from the Earth’s
surface is equal to 145 units, whereas
the original flow of solar energy was
equal to only 100 units. This sche-
matically illustrates the fact that the
average temperature of the Earth’s
surface is +15°C, or 288 K, and the heat
flow emitted by the Earth’s surface is
1.45 times that of the original 100
units given to us by the Sun. But only
some of this radiation goes off into
outer space. The rest—97 units—
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circulates continuously between the
Earth’s surface and the troposphere.

This heating of the Earth’s surface
and lower layers of the atmosphere is
sometimes called the greenhouse ef-
fect, and it’s really an apt description.
The Sun’s rays easily penetrate the
transparent roof of a greenhouse, warming
up the soil and air. But the heat has a
hard time escaping—the glass or plas-
tic film of the greenhouse doesn’t
allow either the warm air or the infra-
red radiation to get out. So the green-
house cools rather slowly.

In closing I should point out that
our current knowledge of the heat
flows shown in figure 3 is not very
precise. (@]

Exosphere
and

Thermosphere

Mesosphere

4 Strarosphere

Troposphere

Earth’s

Surface

Figure 3

Thermal equilibrium in the atmosphere. One percent of the solar power is
absorbed by molecules in the exosphere and thermosphere. Another 3% is
absorbed by ozone in the stratosphere. The upper layers of the troposphere, which
contain water vapor, absorb energy in the infrared range of the solar spectrum.

This leaves 92 units of the original power.

This power, the bulk of which lies in the visible range, penetrates the dense
layers of air near the Earth’s surface. A considerable portion of it—about 45
units—dissipates in the air. Direct sunlight—the remaining 47 units of the original
stream of light—makes it all the way to the Earth’s surface. About 7 units are
reflected upward. The remaining 40 units are absorbed by the Earth’s surface,

heating up the land and seas.

The solar power dissipated in the atmosphere (48 units altogether) is partially
absorbed (10 units); the rest is distributed between the Earth’s surface and outer
space. The amount of this energy going off into space (30% of the original flow) is

greater than that reaching the surface.

There are 65 units of power left, which are absorbed and transformed into heat
in the atmosphere and on the Earth’s surface: ozone accounts for 3 units; water
vapor in the upper troposphere accounts for 4; another 10 units are absorbed in the
main thick layer of the atmosphere; and, finally, 48 units are transformed into heat
in the soil and water. These 65 units of power are ultimately transformed into
heat and are radiated into space, not in the visible or ultraviolet ranges but as

thermal radiation.
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Latin rectangles

A mathematical houS/'ng project

by V. Shevelyov

HAT ON EARTH IS THIS
article about?

It’s about rectangles “inhab-
ited” by various positive inte-
ger numbers. If you divide a rectangle
by lines parallel to its sides into m x n
squares and “populate” this m x n
“apartment house” having m “floors”
and n “entrances” by positive integers
1, .., nin such a way that the numbers
on each floor and in each entrance are
different, you get what mathemati-
cians call a Latin rectangle. Each of
the numbers 1, 2, ..., nin it is repeated
m times, and the “families” of ones,
twos, threes, and so on, inhabit m
apartments situated on different floors
and in different entrances. In times
past this house used to be inhabited by
letters of the Latin alphabet, and this

is the reason for its name.
Thereisabranch of mathematics
that has to do with counting various
sets and configurations. It’s called
combinatorics. The problem of enu-
merating Latin rectangles is a matter
for combinatorics. Butinits general
form this problem is extremely diffi-
cult. Despite the efforts of some of the
world’s very best mathematicians, more
than two hundred years passed be-
tween the enumeration of “two-story”
and “three-story” rectangles. The two-
story rectangles were enumerated by
P.R. de Monmort in France back in
1713, and the three-story rectangles
by the American mathematician W. J.
Riordan just 40 years ago. In addition
to the beautiful formulas of de Mon-
mort and Riordan, which we’ll dis-
cuss below, there are useful recurrent
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formulas found by the great Euler
(we'll prove his formula) and Keravala
from India. It’s curious that Keravala
had actually disproved the erroneous
recurrent formulas for the number of
three-story Latin rectangles that were
proposed by the English mathemati-
cian Jacob, which held for 12 years
(from 1930 to 1941). Well, this hap-
pens in mathematics when difficult
problems are being solved.

Existence of Latin rectangles

Tueorem 1. For any pair of num-
bersm<nthereexistsa Latinm xn
rectangle.

Proor. We'll populate our m-story
house by starting from the top floor.
On the mth floor the numbers 1, ..., n
are settledin theirnatural order. On
the (m - 1)th floor we begin with the
two: 2,3, ..., nn, 1; on the (m —2Jth floor
we begin with the three: 3,4, ..., n, 1,
2; and so on. Finally, we populate the
first floor by starting with m: m, m +
1,..,n1,2, ., m-1. Then the house
will be inhabited as shown in the
table. It’s clear that this procedure
doesn’t allow two identical “tenants”
to live on the same floor or in the same

COMBINATORICS

entrance. So we’ve got an m-story
Latin rectangle of length n. Thus,
m xn Latin rectangles do exist.

Two stories

Now let’s count Latin rectangles.
The problem of counting one-story
rectangles is solved very easily.

TueoreM 2. The number of Latin
1 xnrectangles equalsn!/=1-2-...-n.

Prook A Latin 1 X n1 rectangle is
simply an arbitrary permutation of n
numbers. There are n! such permuta-
tions (the first position can be occu-
pied by any of the n numbers; for the
second position there are only n - 1
numbers left; and so on).

Consider a 2 x n1 rectangle. The top
line of such a rectangle is an arbitrary
permutation. The lower line is a
permutation in which the number in
each position does not coincide with
the number in this position in the first
permutation. If we permute the col-
umns of our rectangle arbitrarily, it
will still be a Latin one, so the top
permutation can be made to coincide
with any given one. So for any given
permutation the number of Latin rec-
tangles coinciding with this permuta-
tion in their top line is the same. A

Latin2 xnrectangleissaid

to be normalized if its top
n lineis1,2,..,n-1,n. It

Table
\

1 | 2 3 n-1
| R

2 | 3 4 n

follows from the reasoning
1 above that the number L(2, n)
of Latin 2 x n rectangles

equals the number D of
normalized Latin2 x nrec-

m m+ 1 | m+ 2

tangles multiplied by the
number of permutations of







and increase the numbers kK, k + 1, ...,
n-2Dbyl. Thus

D -(n-1)D,  +(n-1D,

1 2

and the proof is complete.
Here is another recurrent formula
for D that is much simpler.
Theorem4. D _=nD,  +(-1)"

Proor. LetD —-nD,  =E. From
Euler’s formula
E =D -nD, ,
=(n-1)D__, +(n-1|D__,-nD, |
=-D_ + (n-1)D_,=-E__,.
Thus
E --E,_ -E_,=..=(-1]E,.

ButE,=1-2-0=1,s0E, =(-1)* and
D =nD_ +(-1)

The last formula easily yields a
formula for D_ that is not a recurrent
but an explicit one.

TrHeOREM 5 (the de Monmort for-

mula).
Cofro1
D=nl3 -3+
1

1
-t .- +(—1)”f}
5! n!

Proor. See the boxbelow.

The expression in brackets may
seem familiar to those of you who
know basic calculus. It does to me,
but I'll postpone “unmasking” it un-
til the concluding section of the ar-
ticle. :

As for the de Monmort formula, it

Threg stories

Attempts to find the number (3, n)
of Latin 3 x n1 rectangles were crowned
with success in 1944 when W. J. Rior-
dan, basing his effort on results of his
numerous predecessors, at last wrote
out the final formula. Iwon'’t give you
its derivation (which falls well outside
any high school course), or even the
formulaitself, which is rather cum-
bersome. I'll just give you the recur-
rent Keravala—Riordan formula: if

-1
n!

K

n

L(3,n),

thenforn>4

K”:nzK”_ | +nln— l)K”#2

+2n<n—1)(n—2)Kn7%
+ (=D (e,7+2ne”_ 1),

where e_is found from its own recur-
rent formula (somewhat similar to
the formula for D ):

e, =1,
e =ne_ +(-2).

Using these formulas and the fact
thatK, =K, =0, K, =2, we caneasily
findK_ foralln. Forinstance,

K =552,
K, =1,073,760.

It’s clear from these formulas that the
numbers K grow very rapidly. The
numbers L(3, n), of course, grow even
more rapidly.

was proved before
the two previous
formulas were
stated. Its direct
proof is based on
the inclusion—ex-
clusion formula,!
andreaders famil-
iar with it can eas-
ily derive the de

Dn:nD”_l+(*1)"

Monmort formula. d+nn-1- ...
Now we'll turn our :ng{L_iJr“
attention to three- 2t 3!

story Latin rec-
tangles.

n—1 n
f[tn-DD DD
ni-DD _+(=D"" T+ (D"

=n(n-D(=-DD _+D"n=D+D""nt (-1

n(n—l)(n—Z)~...-3~D2—n(n—1)'...
B, 6 15 i1 )
(=) i}

n!

Proof of the de Monmort formula
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Anproximate formulas

The expression

looks familiarbecauseitreminds us
of the power series for e*, the natural
logarithm:?

2 B
. i
= ltx+ g
2t 3!
In particular,

where the absolute error doesn’t ex-
ceed

S
n+D1

This means that

!
n
=ple-1 =122
D, =nle 2

¥
where the error doesn’t exceed

1
n+1

(Since D, is an integer, the two condi-
tions determine D_ uniquely.) In 1946,
generalizing this formula, P. Erdos
and I. Kaplansky derived an elegant
approximate formula for the number
of m-story Latin rectangles of length
n:
_m-Dm
Lim,n) =D"e 2

The larger the n, the smaller the
relative error in this formula. (Such
formulas are called asymptotic.) Ac-
tually, Erdos and Kaplansky proved
this statement under the condition
that m < (lnn)'°. Butlateritbecame
clear that it holds for larger m as well.
The Japanese mathematician K.
Yamamoto proved that it is sufficient

CONTINUED ON PAGE 41

1A version of this formula for areas
was given in the solution to problem
M23 (Jan./Feb. 1991).

2See the Getting to Know department
in the November/December issue.
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A portrait of Poisson

A fish out of water who found his calling

IMEON DENIS POISSON,!
the eminent French scientist, is
one of the founders of modern
mathematical physics. In the
history of science he occupies a posi-
tion alongside his great contemporar-
ies Lagrange, Laplace, Fourier, and
Cauchy. His name is frequently
mentioned in textbooks on differen-
tial and integral calculus, probability
theory, electromagnetism, acoustics,
elasticity, and quantum mechanics.
Poisson was born on June 21, 1781.
There is scant information about his
parents. It’s known that his father
first chose a military career and joined
the Hannoverian army, but resenting
its strict discipline, he left the army
and finally settled in the small French
town of Pitiviers. By the time his son
was born, he had the modest but
respectable position of notary.
In his early childhood Poisson was
a quite ordinary boy who didn’t show
any promise of becoming a great man.
His parents even had some misgiv-
ings about his intellectual abilities.
Hisfather, of course, wanted his son
to become a notary, but the “family
council” decided he wasn’t up to the
job and should become a doctor in-
stead. The decision of the family was
a kind of law unto itself, so they sent
Poisson to his uncle’s place in the
town of Fontainebleau to study the
respectable and, in their judgment,
simple art of the surgeon. But master-
ing the profession turned out tobe a
very difficult task; for instance, to

'Pronounced “pwah-SOHN.”

by B. Gellerand Y. Bruk

learn how to do a venesection (blood-
letting), a basic form of treatment at
the time, one had to practice for long
hours, puncturing the veins in cab-
bage leaves with a needle. Later,
Poisson told his friends that even the
largest veins would elude his needle
at the last moment. These exercises,
which Poisson hated so much, took a
whole year, but his first attempt to
treat a patient without supervision
resulted in the death of the patient.
The event so shattered the youth that
he quit medicine right then and there
and returned home to Pitiviers.

A great deal had changed while
Poisson was away. His father had be-
come a public figure, the mayor of
Pitiviers. He had bought a new house,
appropriate for his new position in
society, and began to receive a lot of
guests. He also subscribed to various
periodicals, including the Journal of
the Polytechnical School. Simeon
enjoyedreading this one very much,
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and he especially liked to solve the
mathematical problems proposed in
it. Quite unexpectedly, solving the
problems turned out to be very easy
for the boy, who had never been taught
how to do it but cracked them never-
theless, one after another. We must
give credit where creditis due: Pois-
son’s parents quickly changed their
mind about their son’s intelligence
and sent him back to Fontainebleau,
but this time—to school.

The famous Polytechnical School

Poisson was an excellent pupil.
His talent and hard work enabled him
to outpace the other students. Two
years later Simeon, who was seven-
teen by that time, entered the Polytech-
nical School in Paris.

This school, one of the oldest and
most unusual institutions of higher
learning in France, was created on
March 11, 1794, during the French
revolution, by a decree of the National
Assembly. Initially, its name was the
Central School of Public Works; the
name was changed to Polytechnical
School a year later. Its purpose was to
advance scientific knowledge and train
engineers for the army. The Polytech-
nical School hasremained, up to the
present time, the school for military
and civil engineers in France, and its
graduates have been expected to oc-
cupy the highest governmental posi-
tions. The period of study at the
Polytechnical School was relatively
short (only two years) but intense.
The outstanding role played by the
Polytechnical School in the advance-
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ment of education in physics and
mathematics islargely due toits ex-
cellent faculty, which included, in its
early years, such eminent scientists
as Monge, Laplace, Legendre, Fourier,
and Camnot. Professors at the Polytech-
nical School created many courses
and textbooks on differential and in-
tegral calculus, geometry, and ana-
lytical mechanics that shaped the
development of mathematical educa-
tion, and not only in France. Even
now the Polytechnical School remains
one of the leading French institutions
of higher learning.

Poisson gotavery good education
at the Polytechnical School. The
mathematicians Laplace and Lagrange
noted his exceptional talent and spent
alot of time teaching him. Poisson
also mastered the work of the previ-
ous generation of mathematicians,
and studied the writings of Euler and
d’Alembert in particular detail. Later,
Poisson’s friend and biographer, the
eminent French physicist Frangois Arago
(who was also a graduate of the Polytech-
nical School) wrote: “Poisson never
had to spend time and effort searching
for things that had already been dis-
covered.” It’s no accident, then, that
his first mathematical papers, which
he wrote in his early twenties, were
mature enough to bring him instant
fame. But it would be wrong to as-
sume that as a student, and later in
life, Poisson had no interests outside
of mathematics. He was a sociable
person who enjoyed the fine things in
life. He loved the theater and went
often—he knew the works of Moliere,
Corneille, and Racine by heart.

Poisson held many honorable posi-
tions in the French scientific hierar-
chy, including membership in the
French Academy of Sciences, but his
life was mainly connected with the
Polytechnical School. He wasmade
assistant professor at the school in
1802, and he became full professor at
the age of 25 in 1806, taking the
position vacated by the great Fourier.
One of his important duties was
administering examinations to pupils
who wanted to enter the school and to
students hoping to graduate from it.
The position of examiner was in a
sense somewhat higher than that of
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professor—in the examinations he tested
both the students’ knowledge and the
professors’ teaching.

All the French governments, which
frequently changed during those troub-
led times, paid generous tribute to the
service done by Poisson to his coun-
try. He received the title of baron, was
awarded the order of the Legion of
Honor (the highest honor in France),
and became a peer of France. Pois-
son’s achievements were recognized
abroad as well—he was a member of
all the scientific societies in Europe
and America, and was an honorary
member of the St. Petersburg Acad-
emy of Sciences (from 1826).

Francois Arago wrote in his mem-
oirs that Poisson had another trait,
one often found lacking even in people
not so highly placed in academic life:
he scrupulously fulfilled his obliga-
tions. For instance, every year he had
to spend four weeks, nine hours a day,
administering exams at the Polytech-
nical School. Only once did he refuse
to participate in the examinations:
when his own son was taking the
tests. But the students at the school
sent a delegation to him, declaring
that they were sure of his impartiality
and asking him to proceed with the
examination. That Poisson liked teach-
ing can be seen from his own words:
“Life is made beautiful by two things—
studying mathematics and teaching
it.” His lectures were noted for their
clarity and depth.

During the last years of his life (he
died in Paris in 1840), Poisson had set
himself the task of writing a funda-
mental treatise on mathematical physics.
Unfortunately, he did not live to com-
plete the work.

From caloulus to criminal law

The bulk of Poisson’s scientific
work, which comprises 350 papers,
deals with problems in mathematical
physics, so we're not able to discuss
even his basic results in any great
detail. We can only mention his most
important and famous papers and also
examine afew questions that can be
understood with high school mathe-
matics and physics.

The concept of electrical potential
is one of the most important notions

in physics. Potential always depends
on the magnitude and location of elec-
trical charges in space, and finding the
potential is generally a difficult prob-
lem. In 1811 Poisson derived the
differential equation that relates the
potential to the distribution of charges.
Of course, the simplest problems in
electricity can be solved without the
use of Poisson’s equation. But when
confronted with more complex prob-
lems in which there are many charges
distributed randomly, we can calcu-
late the dependence of the potential
on the coordinates only with the aid of
this equation. In fact, Poisson’s equa-
tion, along with results obtained by
Euler, Gauss, Laplace, Green, and
Ostrogradsky, forms the foundation
of the modern theory of potential, an
important branch of mathematical
physics.

The scope of Poisson’s work is
quite impressive. He made important
contributions to theoretical and fluid
mechanics, elasticity, heat conduc-
tion, the physics of gases, atmospheric
electricity, geomagnetism, surface
tension, and waves in deep water. He
also investigated such practical prob-
lems as the deviation of an artillery
shell from its intended trajectory. In
astronomy he studied the stability of
the solar system—a problem that
continues toattract considerable at-
tention even today. In the field of pure
mathematics he obtained important
results in differential and integral cal-
culus and in the theory of differential
equations.

Poisson’s papers on probability theory
are among his best known. Like
Laplace, he paid considerable atten-
tion to the application of probability
theory to criminal jurisprudence. One
of his treatises is entitled “A Study of
Verdict Probability in Criminal and
Civil Cases.” Today this approach is
considered unsatisfactory as far as the
legal aspect is concerned, but we must
allow for the fact that Poisson solved a
number of interesting mathematical
problems while working in that field.
Again going beyond the classical the-
ory of probability, Poisson analyzed
some problems of card games, and in
that he can be considered one of fore-
runners of modern game theory.



The Poisson distribution

To give you a sense of Poisson’s
research and to illustrate how his
ideas work, we'll look at several specific
problems from probability theory and
mechanics.

First, let’s consider three problems
that can be solved by using a formula
called the Poisson distribution, which
is encountered quite often in proba-
bility theory. We won't derive the for-
mula—we’'ll just show how to use it.

The first problem has to do with
typographical errors in books. To find
some numerical characteristic of this
troublesome phenomenon, we'll as-
sume that the number of letters per
page and the number of pages are so
large that we can assume that there is
a constant probability of the typeset-
ter making a mistake, and that the
probability is equal to the ratio of the
number of typos to the total number
of letters set in type. We'll also as-
sume that all the pages in abook are
similar in that the number and loca-
tion of letters are approximately the
same—that is, we assume that the
conditions in which a typesetter works
don’t change and that the probability
of making an error doesn’t depend on
the typesetter’s previous work. Un-
der these conditions, the probability
of k misprints occurring on a page is
approximately equal to

k

p kW) = e‘k%. ,
The number 2 in this formula, which
is called Poisson’s formula or Pois-
son’s distribution, is a parameter char-
acteristic of a printer’'s work—it equals
the product of the probability of mak-
ingatypoand the average number of
letters per page.

We can “experimentally” test the
result obtained with Poisson’s for-
mula. Here’s how. We have to read
carefully the pages set by the typeset-
ter—the more the better—and find
those pages that contain k misprints.
Next, we have to divide the number of
pages with k misprints by the number
of pages read and compare the ratio
with the value obtained by using Pois-
son’s formula with the same k.

Here’s the second problem. Let’s
say we'd like to know the probability

that in a small town with
a population of 1,991

n,‘np (k, 3.87)

citizens, k of them were g0

born on the same day of

the year as Poisson. The

problem can be solved 599

this way. Since all the

(/
7

days in the year are equal,

we can assume that the 499

e 28
& S

probability of a person ]

being born on the same

day as Poisson equals about

300

—

1/365, so that the parameter

A=(1/365)-1991=5.45 /

=

—thatis, the product of 54,

the probability of an in-

Tt

dividual’s being born on

aparticular day and the o

total number of people in b

the community. (The )

O

situation is similar to that

in the previous problem,
where instead of the to-
tal number of people we
had the average number of letters per
page.] Now we can find the probabil-
ity by using Poisson’s equation with
A = 5.45 and the necessary k.

The third problem has to do with
physics. In their classical paper on
radioactive decay, Rutherford, Chad-
wick, and Ellis found that the proba-
bility of a radioactive sample’s emitting
k alpha particles in a unit of time is
given by Poisson’s formula. The prob-
lem was to find the constant A from

Figure 1

k n, n - p(k, 3.87)
0 57 54.339
1 203 210.523
2 383 407.361
3 525 525.496
4 532 508.418
5 408 393.515
6 273 253.817
7 139 140.325
8 45 67.882
9 27 29.189
k=10 16 17.075
Total 2,608 2,608.000
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012 345 67 8 9101112 k

the experimental data. To be more
specific, the paper dealt with radium.
According to the theory worked out in
the paper, the radioactive decay of
radium is the transformation of the
radium nucleus into a radon nucleus
with the emission of an alpha particle.
The transformation is a random proc-
ess; it is assumed that the probability
of aradium atom disintegrating per
unit of time is constant and independ-
ent of the state of the other atoms.
Rutherford and his coworkers used
a detector to count the alpha particles
emitted by a sample of radium during
n = 2,608 intervals of time, each inter-
val equal to 7.5 s. They found the
number 1, of intervals during each of
which exactly k particles were de-
tected. The total number of particles
detected in the experiment was equal
to Zkn, = 10,094. If we divide this
number by the number of time intervals
n =2,608, we obtain the average number
of alpha particles emitted per interval
(or the average number of alpha par-
ticles emitted in 7.5 s}, which is equal
toXkn,/n=3.87. Now we can com-
pare the values of the ratios n,/n found
in the experiment with the numbers
plk, M) =plk, 3.87)given by Poisson’s
formula for A = 3.87 found above.
These values are given in the table at
left, which we took from the paper by
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Figure 2

Rutherford and Ellis, and graphically
presented in figure 1, in which the
black points correspond to the numbers
n-plk,3.87)and the gray ones ton,.
We see that either set of points fits the
same smooth curve that illustrates
the Poisson distribution.?

The symmery of vibrations . . .

From his earliest childhood Pois-
son was taken with the physics of
oscillations—quite literally! It seems
his nanny wasn’t all that conscien-
tious. Rather than be bogged down
with little Simeon Denis, she would
wrap a wide towel around his waist
and fasten it to a horizontal beam. So
the little boy spent many an hour
swinginglike a pendulum, back and
forth, back and forth. Years later,
Poisson would joke that God Himself
ordered him to study the theory of
oscillations.

Poisson’s results in this field are

" both numerous and important. Here
we'll discuss only one of them, which
arose from evaluating the frequencies
of vibrations of small glass or metallic
plates. The German physicist Chladni
(1756-1827) was the first to work out
an experimental method for studying
the physics of vibrating plates, as early
as 1787. In 1809 he presented
demonstrations with vibrating plates
to a fascinated audience of members
of the French Academy of Sciences.

In Chladni’s experiments a plate
supported at the center and covered
with a layer of fine sand is made to
vibrate by drawing a violin bow across
its edge; at the same time a finger is

2For more on Rutherford and alpha
particles, see page 26.—FEd.
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Figure 3

applied at another point on the edge
(fig. 2). The sand collects along lines,
called nodal lines, where the plate
doesn’t vibrate at all (fig. 3). It’s worth
noticing that the nodal lines pass through
the points where the finger touches
the plate. The bizarre but always
symmetric figures created by the par-
ticles of sand are called Chladni fig-
ures. You can use square, rectangular,
or round plates when experimenting
with them. Designs that Chladni
himself obtained in experiments with
round plates are shown in figure 4.

Poisson’s achievement in studying
Chladni figures was that he found the
dependence of the vibration frequency
on the number of nodal lines. For the
specific case of a square plate and
square Chladni figures (as in figure
3a), the square of the vibration fre-
quency is proportional to (m + 1)* +
(n +1)%, where m and n are the num-
bers of perpendicular nodal lines that
partition the plate’s surface.

Looking again at the simple nodal
linesin figure 3, we conclude thatin
figure 3a a finger touched the plate at
apoint in the middle of a side of the

Figure 4

square; in figure 3b, at a comer; and in
figure 3¢ two fingers touched the plate
at points A and B. The pitch of the
sound created in the second case is
higher than in the first, and higher in
the third case than in the second.

... and something about corks

Finally, let’s look at the problem,
solved by Poisson, of finding the rela-
tion between the longitudinal and
transverse deformations of a body under
stress. The essential point is that, if a
force acts onabody, its longitudinal
size—that is, in the direction parallel
to the force—changes differently from
that in the transverse direction. (For
an example of this, watch what hap-
pens when you stretch a rubber band. )
Poisson found the coefficient, named
after him, that provides a quantitative
description of the phenomenon.

Let’s look at a specific example.
Consider a cylindrical rod of length I
and radius r subjected to a force di-
rected along the rod’s axis, giving rise
to a tension 6,and relative deforma-
tion € = Al/I > 0. The transverse size of
the rod also changes, so that the radius




decreases by Ar. The radial relative de-
formation €, = Ar/r has the sign oppo-
site to that of e, The Poisson coeffi-
cient is defined by the equation

r

5

Let’s consider the limits within
which the Poisson coefficient might
change. We assume that the volume
of abody under deformation doesn’t
change. Consequently, we have the
relation

k:

mt(r+ Ar)H 1+ Al) = nr?l.
Opening the parentheses and neglect-
ing the product of the small quantities
Arand Al we get
rAl+2IAr=0,
or, put another way,

g,=Alfl=-2(Ar/r)=-2¢.

So the Poisson coefficient in this case
is equal to 1/2. But in real life the
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volume of a body changes under ten-
sion, so we have to write the inequal-

ity
(r+ArR{1+AIR > 2,

from which we can infer that k < 1/2.
(The same inequality is also true for
noncylindrical bodies.] On the other
hand, fromitsdefinitionit’s evident
that the Poisson coefficient isn’t nega-
tive,sowehaveO0<k <1/2.

For different materials the values
of the Poisson coefficient can vary
quite a bit, within the limits indicated
above. Cork, for instance, has a Pois-
son coefficient very close to zero—
that is, the transverse size of a piece of
cork changes very little when sub-
jected to stretching (or compression)—
as long as the deformation isn’t too se-
vere! That’s why bottles are usually
corked—a plug made of rubber wouldn’t
work as well. The Poisson coefficient
of rubber is close to 1/2, so that under
stress the transverse size of a rubber
plug changes considerably—the plug
puts up a fight when we try to shove it
in the neck of the bottle. To get
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around this difficulty, rubber plugs
are usually made in a conical shape.
We'll leave you with the interest-
ing fact that the Poisson coefficient of
the most common building materi-
als—metal, stone, concrete—usually
falls between 1/4 and 1/3. Q)

" Corrections

Ted Rice, a ninth-grade geome-
try student in Davenport, Iowa,
pointed out an error in the Mathe-
matical Surprises article “Play It
Again. . .” (Nov./Dec. 1990]. In the
section “A Very Mysterious Se-
quence,” the fifth line should read
“111221.”

Professor Richard Askey of the
University of Wisconsin wrote to
remind us that several years ago
David and Gregory Chudnovsky
calculated & to one billion digits
(see Kaleidoscope, Jan./Feb. 1991)
and that the mathematician men-
tioned in I. M. Gelfand’s talk in the
last issue is Hurwitz (not Gour-

@s).

Here is a book filled
with physics demonstrations
that are amazingly simple,
often playful, and always
instructive. Each of the
175 demonstrations uses
inexpensive, everyday items—
rubber balls, a plastic ruler,
Styrofoam cups, string, etc.—
and each is very clearly
described. Intended for science
teachers, from middle school
to college level, this is also a
great book for students who
want to experiment (and learn)
on their own.
Paper: $14.95 ISBN 0-691-02395-6
Shipping: $2.75 for 1st book;
50 cents each additional book.

VISA, Mastercard, and American
Express accepted by mail or phone.
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LOOKING BACK

A strange hox and a stubborn Bry

Rutherford’s experiments with aloha particles

N THE AUTUMN OF 1903 A

thirty-two-year-old professor of

physics named Ernest Rutherford

sailed from Europe to Canada. He
had a small metal box that contained
something very precious to him: 30
milligrams of radium salt.

The lead box caused some appre-
hension among the New York cus-
toms officials—there weren’t any laws
yet conceming the importation of radium.
Was it some kind of chemical or was it
a precious metal? Was it subject to
taxation, and if so, how much should
the duty be? Government officials are
the same everywhere. The American
customs officials decided to send the
weird cargo to the higher-ups. But
researchers are also the same every-
where. So the report drawn up by the
officials on the scene informed those
at the top that Dr. Rutherford flat-out
refused to part with his treasure. And
only the promise made by Dr. Ruther-
ford to transport the box intact through
the territory of the United States (that
is, not to sell the substance) permitted
the Americans to shift the problem
onto the shoulders of their Canadian
colleagues. It’s possible that these
few milligrams of radium were re-
sponsible for many remarkable scien-
tific discoveries being made.

The name of Rutherford is men-
tioned in physics textbooks in con-
nection with the planetary model of
the atom. But Rutherford made many
other discoveries that were as valu-
able for physics. These include his
experiments investigating alpha rays,
and that’s what we’ll be talking about
here.

As early as 1899, while working at
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by M. Digilov

the Cavendish Laboratory (at Cam-
bridge University), Rutherford found
that radiation from radioactive elements
is not homogeneous. Here’s one of his
experiments.

Experiment 1. Two zinc plates were
placed horizontally one above the other.
The first plate was connected to the
pole of a grounded battery, the second
to a grounded galvanometer. A thin
layer of radium salt was spread on the
lower plate. Radiation from the salt
formed ions in the air. The air be-
tween the plates ceased to act as an in-
sulator, and an electric current ap-
peared that was registered by a special
device.

If the layer of radium salt was cov-
ered by a thin sheet of metal, part of
the radiation was absorbed and the
current became weaker by a factor of
more than two. If the radiation was
screened by two sheets, the current
became weaker by afactor of almost
six, and if three sheets were used, its
value dropped off by a factor of 11.
According to the exponential law the
current flow should continue to de-
crease smoothly. But, surprisingly,
the experiments didn’t corroborate
expectations—from the fifth sheet on,
there wasno appreciable decrease in
the value of the current.

It was only natural to assume that
ionization of the air is caused by at
least two things. Or, to putit differ-
ently, that the radiation consists of
two types: one that accounts for in-
tense ionization and is well absorbed
by the metal, and another whose ioni-
zation is weaker but whose penetra-
bility is greater. Rutherford called the

first type of radiation alpha particles
and the second beta particles. Now
the problem for scientists was to study
the nature of these particles.

It didn’t take much time or effort to
find out that beta radiation is a flow of
free electrons. Atany rate, beta par-
ticles behaved exactly like electrons
in electric and magnetic fields.

As for alpha particles, their deflec-
tion in a magnetic field couldn’t be
detected for along time since even a
strong field caused only a small de-
flection. Finally, in 1903 Rutherford
achieved positive results and proved
that alpha radiation must consist of
positively charged particles moving at
high speed.

The next task was to determine the
value of the alpha particle’s charge.

Experiment 2. To determine the
charge of asingle alpha particle, two
things were measured experimentally:
(1)the overall quantity of electricity
carried by the total radiation of a grain
of radium in a unit of time and (2) the
quantity of alpha particles emitted by

Mercury

To the ump

Figure 1




that radium in the same time. Detect-
ing one particle was the most compli-
cated problem. To this end, in 1908
Rutherford and Hans Geiger devel-
oped a special method of counting
alphaparticles, based on theirioniz-
ing activity, and also created a special
instrument (the “Geiger counter” you've
heard about).

A bronze cylinder, 60 cm long, was
filled with rarefied air. A thin wire
went down the center of the cylinder.
The wire was connected to one pole of
a battery, while the surface of the
cylinder was connected to the other
one, and the voltage applied—about
1,000 V—was just about enough to
cause an electric discharge. The alpha
particle passing through the cylinder
ionized the air inside; because of colli-
sions these ions increased the ioniza-
tion by a factor of about 2,000, which
resulted in a sharp increase in the
electric current passing through the
device.

In order to ensure that only individ-
ual particles penetrated the cylinder,
the grain of radium was placed in the
far end of a narrow glass tube, about
4.5 m long, so that only a small por-
tion of the alpha particles emitted by
the radium in various directions would
actually reach the cylinder.

Dividing the quantity of electricity
that passed through by the number of
particles registered by the counter,
Rutherford obtained the value of the
charge of one alpha particle.

At almost the same time, in 1909,
Rutherford proved experimentally that
alphaparticles are by nature double-
ionized helium atoms. He conducted
this experiment jointly with his stu-
dent Thomas D. Royds.

Experiment 3. A sufficiently large
quantity of the radioactive gas radon
was injected into a glass tube A (fig. 1)
with walls so thin that most of the
alpha particles easily penetrated it.
This tube was put inside a wider tube
T, the top of which was joined to a
small vacuum tube V with electrodes
fused intoit. Air was removed from
tube T and mercury was introduced
into the bottom to fill the empty space
below tube A. The alpha particles ac-
cumulating in tube T formed gas.

Raising the mercury, this gas was
compressed, and some of it was trans-
ferred to tube V. By creating a dis-
charge in the gas there, the research-
ers could study its spectral composi-
tion. It’s curious that the first results
were obtained in only two days—the
yellow line (the brightest in the he-
lium spectrum) became visible first.
In six days the whole helium spec-
trum could be observed.

Finally, it was possible to measure
the mass of alpha particles by study-
ing their deviation in a magnetic field.

Experiment4. A Wilson chamber
(a device for observing the tracks of
alpha particles by their scintillation)
was placed in a very strong magnetic
field. As the radius of the circular
orbit of an alpha particle was in direct
proportion to the particle’s mass
multiplied by its speed and in inverse
proportion to its charge, the mass of
the alpha particle could be measured
according to known values. It proved
tobeequal to6.62-102*g,

So thanks to the experiments car-
ried out by Rutherford and his col-
leagues, the nature, charge, and mass
of the alpha particle became known.
Not only that, physicists acquired a
powerful method of exploring the struc-
ture of the atom itself. As Rutherford
began sounding the depths of atoms
in these experiments, here’s how sci-
entists conceptualized the structure
of the atom.

The atomic model proposed by
Rutherford’s teacher Sir Joseph John
Thomson in 1882 reminded one of
pudding with raisins in it, where the
raisins were electrons and the pud-
ding was atomic space itself. The
virtue of the model lay in the fact that
it permitted one to explain the atom’s
neutrality and to determine its size
quite satisfactorily. At the same time
there was a theorem in physics (the
Earnshaw theorem) that said the sys-
tem of charges at rest was unstable. In
addition, the nature of a positively
charged sphere that spread all over the
atomic volume wasn’t understood at
all.

Bombarding atoms with alpha par-
ticles made it possible to determine
the structure of the atom.

QUANTUM/LOOKING

Experiment 5. Thin plates of the
particular substance being examined
were subjected to alpha bombardment,
and the deviation of the alpha par-
ticles was studied. Figure 2 presents a
sketch of the alpha-scattering experi-
ment. The bombarding particles, emitted
by a radioactive substance, passed through
a collimator and fell as a narrow beam
onto a target made of very thin gold
foil. The alpha scattering was ob-
served by means of a screen coated
with a scintillating substance. Scat-
tering angles for most of the particles
were small—of the order of 1°; yet a
small number of particles scattered at
greatangles, and some of them even
went in the opposite direction.

Figure 2

Analyzing the results obtained,
Rutherford came to the conclusion
thatsuch astrongdeviation of alpha
particles could only be caused by an
extremely strong electric field inside
the atom that is caused by a charge
linked with a large mass (the nucleus
of the atom). Rutherford also worked
out the quantitative theory of alpha
scattering, which determines the dis-
tribution of particles according to the
scattering angles. The following fact
is of interest in this regard.

To gain a solid understanding of
the probabilistic processes occurring
when an alpha particle passes through
a substance, Rutherford—the world-
famous scientist, the Nobel prize
winner—wished to become a student
for a while. He went to a well-known
mathematician named Lamb in
Manchester and asked his permission
to attend his course of lectures on
probability theory. He also wanted to
doall thehomework involvedin the
course. As his contemporaries wrote,
“It was not a trivial sight: a world

CONTINUED ON PAGE 55
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MATHEMATICAL SURPRISES

Some mathematical magic

ldentical sums in squares, hexagons, and hypercubes

NE OF THE OLDEST AND

most familiar mathematical rec-

reations is designing magic squares.

The problem is to arrange the
numbers from 1 to n? in an n X n array
so that all the rows and columns, as
well as the two diagonals, have the
same sum (the magic sum).

First, let’s ask: what is the magic
sum? The average of all the numbers
from 1 to n? is the same as the average
of the first and last of them—namely,
1/2(n”+ 1). So the average of the row-
sums is n times this—namely,

n(n2+1)
s

For n = 3, this is 15. There is really
only one order 3 magic square, discov-
ered by the Chinese many centuries
ago and traditionally called the Lo-
Shu. One story is that it was observed
written on the shell of an enormous
turtle that was found in the Yellow
River.

Here it is:
8 1 6
3 5 7
4 9 2

s 1] s N A
3 s )7 15| o
N IEN E s [3] 4
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by John Conway

2 9 4 4 3 8
7 5 3 9 5 1
6 1 8 2 7 6
8 3 4 4 9 2
1 5 ) 3 5 7
6 7 2 8 1 6
2 . 6 6 ik 8
9 5 1 7 5 3
4 3 8 2 9 4

But since these are obtained by rotat-
ing and reflecting the first one, we
usually count them as just one square.

I chose the starting orientation for
the Lo-Shu in order to illustrate de la
Loubere’s rule for writing down magic
squares of any odd order at sight. De la
Loubere was the first French ambas-
sador to Siam, and this rule was one of
many interesting things he learned
there.

It will be easier to understand this
rule if we regard the square as “wrapped
around,” asin many video games, so
that astep off its top edge takes us to
the bottom row, while a step from the
rightmost column takes us onto the
leftmost one. Then de la Loubere’s
rule is that we write the numbers in
order, starting from the middle of the
top row and marching diagonally up
and right when this leads to an empty

square, otherwise dropping straight
down one cell.
Let’s see how this leads to the Lo-Shu.
The first step upward from 1 takes us
off the top edge onto the bottom one
by the “wraparound rule”:

(2)

2

and then the stepupward from2 to 3
takes us off the right edge and onto the
left one:

1

2

But now a step diagonally upward
from 3 leads us to 1, so instead we drop
straight down from 3 (not from 1!} and
continue:

and the square completes itself read-
ily after the second drop, from 6 to 7:

8 ol 6
3 5 7
4 g 2

With a little practice it becomes easy
to write these squares down. Here is
the de la Loubere square of order 5:
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It’s easy to give a general formula
for all order 3 magic squares, even
when the numbers used may not be
just 1 to 9. The first step is to prove
that the magic sum S is just 3 times
the middle number m. There are 4
lines through the center, so if we add
them all up we get 48 for the sum of all
the numbers shown here:

N7

711N

We put amark in each cell when we

counted the number in it—you see
that the middle cell is marked 4 times,
and so the sum we get is the sum of all
entries—that is, 3S—plus three times
the middle one. So

48=3S8+3m,
from which we get
S=3m.

Now the numbers on any line through
the center must have the form

m+Xx m m-x
since they add up to 3m. So if we
suppose the top two corners are m + a

and m + b, the bottom corners will be
m-bandm-a:

MelencoliaI{1514) by Albrecht Diirer, National Gallery of Art, Washington DC (@NGA, Rosenwald Callection)
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m+a 2 m+b

and now, since each border line sums
to 3m, the square easily completes
itself:

m+a m-a-b m+b
m-a+b m m+a-b
m-b m+a+b m-a

The general order 3 magic
square

The proof that the Lo-Shu is unique
is now pretty easy. The magic sum
mustbe one thirdof 1 +2+3+4+5+
6+7+8+9,whichis 15, and so the
middle number m must be 5. We are
discounting rotations and reflections,
so we can suppose that a and b are
positive, since changing the sign of
either just reflects the square in a
diagonal, and that a is larger than b,
since interchanging them reflects the
square left-to-right. Now the small-
est number that appears is m—-a— b, so
this must be 1, and since m = 5, we
must have a + b =4, from which we get
a=3and b = 1, and everything is
known.

In 1693 Frenicle de Bessy wrote out
all the order 4 magic squares. He
found that, if rotations and reflections
are discounted, there are precisely 880
of them. Here’s an easy way to get
most of them. There are lots of ways
to arrange the numbers from 1 to 16 as
an addition table:

l2+a | A+b A+d

B+b B+d

C+cj C+d

D+cl D+d

and whenever we’ve done that we can
rearrange them to make a magic square
thus:

A+a JC+d | D+b | B+c

D+C B+b | A+d | C+a

CONTINUED ON PAGE 45
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HOW DO YOU FIGURE?

Challenges in physics and mati

Math
M26

Accident on a lake. Boat 1 and boat
2 depart at the same time from docks
A and B, respectively, on the bank of a
round lake. If they made their way
straight to docks C and D, respec-
tively, they’d collide. Prove that if
boat 1 goes to D and boat2 goesto C,
they’ll arrive simultaneously. (N.
Vasilyev)

M27

Prime factors and difference of
squares. An odd number is a product
of n different primes. Prove that there
are exactly 27-! distinct ways to repre-
sent this number as a difference of
squares of positive integers. (O. Gon-
charik, S. Sergey)

Points that paint. A circle of cir-
cumference 1 rolls along the outside
of a fixed circle of circumference 212,
Initially their point of contact is marked
by a dot of sticky red paint. When the
circle rolls, new spots are painted on
both circles (fig. 1). How many red
points will be painted on the fixed
circle by the end of the 100th revolu-
tion of the rolling circle around the
fixed one? (D. Bernshtein)

Figure 1
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Bulky polyhedron in a cube. A
cube contains a convex polyhedron
whose projection onto any of the cube’s
faces covers the entire face. Show that
the volume of the polyhedron is not
less than 1/3 that of the cube. (V.
Prasolov)

Traveling king. A chess king made
the rounds of all the squares on the
chessboard, visiting every square once.
(A king can move to any neighboring
square.) The center of each square
was joined to the center of the next
square on the king’s route (the last
center was joined to the first one). The
closed broken line thus created has no
self-intersections. What are the small-
est and the greatest lengths of this line
if the side of a square is 1 unit long? (A.
Klimov)

Physics

Thrown ball. A ball is thrown
upward. Which is longer: the time it
takes to go up or the time it takes to
come down?

P27

Weight on a spring. A weight of
mass m is placed on a weight of mass
M suspended on a spring (fig. 2). At
first, weight M is supported in its
original position; then the weights are
released. Find the maximum force ex-
erted by weight M on weight m. (P. L
Zubkov)

P28

Boiling water. A
test tube filled with
waterisimmersed
in a retort in which
water is boiling, Will
the water in the test
tube boil? What will
we seeif tolueneis
poured on the wa-
ter? (Toluene is a
lighter liquid that
doesn’t mix with
water and has a boil-
ing temperature of 111°C.) (A. Buzdin)

P29

Lamp connections. A lamp de-
signed for voltage 2.5 V and current
0.2 Ais connected by long wirestoa
battery. An ammeter, connectedin
series with the lamp, gives a reading of
I, =0.2 A. When the lamp is con-
nected in parallel with the ammeter,
it burns exactly as in the first case.
What was the reading on the ammeter
then? The battery is assumed to be
ideal, and the resistance of the wires is
2 ohms. (A.R.Zilberman)

T

2
S
q

=

Figure 2

Circular light rays. The refractive
index of a certain planet’s atmosphere
decreases with altitude over the planet’s
surface according to the formulan =
n, -— oh, where h is the altitude above
the planet’s surface. The radius of the
planet is R. Find the altitude h at
which light rays can circle the planet,
staying at a constant altitude. (N.
Sedov)

ANSWERS, HINTS, AND SOLUTIONS
ONPAGE 58
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Art by Dmitry Krymov
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Wanted! Women in
science and math

Clare Boothe Luce Scholarships for Women
at Marymount University

can help you pay the way. Methods of Motion
An Introduction to
Undergraduate study in: Mechanics, Book 1

Biology _
Computer Science Isaac Ne\yton rgally belleyed
that moving objects continue

Mathematics at a constant speed in a
Physical Science straight line?. Do your
students? This manual was
created to help teachers
For eligibility and application information, call introduce the sometimes
(800) 548-7638 « (703) 284-1500 daunting subject of Newtonian
mechanics to students in the
Marymount g University i ot
activities presented here use
y readily available materials to
give students visual, aural,
Circle No. 13 on Readers Service Card and tactile evidence to combat
their misconceptions. And the
teacher-created and tested

modules are fun: Marble races,
.".IE I. ]. RAlN [ p a tractor-pull using toy cars,
fettucini carpentry, and film

2807 N. Glebe Road * Arlington, Va. 22207-4299

A World Conservation Atlas container cannons will make
Edited by MARK COLLINS teachers and students look
Foreword by DAVID ATTENBOROUGH forward to class. Readings for

teachers, a guide for workshop
leaders, and a master

Written by a team qf noted scient'ists materials list follow the
and conservationists and featuring over i s . .

200 stunning full-color illustrations, The Last activities, making this manual
Rain Forests provides an authoritative, compre- useful for inservice

hensive guide to the people, flora, and fauna of workshops. (grades 6-10)

the richest habitat Earth.
¢ richest Habitats on taf 4PB-39, 1989, 157 pp. $16.50

Rain Forest Facts:

e Nearly two percent of the world'’s rain
forests are lost annually.

¢ One quarter of all drug store purchases
contain compounds derived from rain
forest species.

All orders of $25 or less must be
prepaid. Orders over $25 must include
a purchase order. All orders must
include a postage and handling fee of
« Rain forests contain more than fifty s $2. No credits or refunds for returns.
percent of all species. South American 5 Send order to: Special Publications,
rain forests support more than 30,000 NSTA, 1742 Connecticut Ave. NW,

species of higher plants. Washington, D.C. 20009.
e In 1987-88, 1.5 square miles of the
Amazon Basin were destroyed per hour.

$29.95, 200 pp., 210 color photographs and maps Learning with

At better bookstores or call TOLL FREE 1-800-451-7556 NS’l‘A
OXFORD UNIVERSITY PRESS
200 Madison Avenue ® New York, NY 10016
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INTHELAB

TWo physics fricks

Reluctant water turns eager

AKE A GLASS TUBE THAT

tapers at the end (like a pipette)

and show it to your audience.

With your other hand, carefully
pick up a glass of water heated to
80-90°C and show it
to the spectators. Put
the end of the tube
into the glass and wait
until some water gets
into the tube. Then
close the tube’s other
end with your finger
and take it out of the
glass (fig. 1).

The spectators now
see that there are small
airbubbles near the
lower end of the tube. Figure 1
They expand, sepa-
rate from the walls, and climb up the
tube. But the water doesn’t pour out
of the tube!

Opening the top
end of the tube, pour
the water back into
the glass, wave the
empty tube slowly
in front of your audi-
ence, and again draw
some water from the
glass into the tube.
Closing the top end
of the tube with your
finger, quickly take
the tube out of the
glass and turn it over
(fig. 2)—a forceful
fountain of water
more than a meter
high bursts out of the
tube.

Figure 2

by V. Mayerand E. Mamayeva

It’s almost certain that no one will
be able to discover the secret of your
tricks. The explanation is really quite
simple, though: the temperature of
the water in the glass is 80-90°C,
while the temperature of the water in
the tube is about 20°C (room tempera-
ture). Try to explain the first trick
yourself, and we’ll help you under-
stand the second.

When the hot water from the glass
enters the tube, the air in the top part
of the tube stays practically at room
temperature (because of the poor ther-
mal conductivity of air]. After you
close the top end with your finger and
turn the tube over, the hot water starts
flowing down the walls, heating the
air in the tube very quickly. The
pressure inside increases and the ex-
panding air expels the water (which
hadno time to drop down) out of the
tube.

We recommend that you use a
glass tube about 8-12 mm in diameter

" Does your library
have Quantum?

If not, talk to your librarian!

Quantum is a resource that belongs
in every high school and college
library. “Highly recommended.”—
Library Journal

See page 55 for subscription infor-
mation.

Share the

experience!

QUANTUM
y

and 30-40 ecm long, narrowing to about
1 mm at the lower end. During the
time between the tricks, be sure to
cool the tube well (you might even
blow into it), because the height of the
fountain depends on the difference
between the temperatures of the air
and water. The optimal amount of
water taken into the tube ranges from
1/4to1/3 ofits volume—you’ll have
no trouble finding the best ratio by
trial and error. (@

A SpeCIAL PLACE FOR
NATURAL SCIENCES

¢ Small university setting with close
contact between students and high
quality faculty.

¢ Excellent preparation for careers in
research science, medicine, and
teaching.

¢ Collaborative research between
faculty and undergraduates
encouraged.

¢ Strong liberal arts program for a
well-rounded education with
substantial focus on scientific study.

For information, contact:
Dean of Admissions
Campus Box 8378
Deland, Florida 32720-3771
or call (904) 822 7100

Undergraduate Study in Biology,
Chemistry, Physics, Mathematics,
and Computer Science

SLELSQN:
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UR LIFE IS FULL OF EVALU-

ations and rough estimates of all

sorts. Will I get there in time?

Do I have enough money with
me? Am I strong enough to carry this
load?

In science the ability to make cor-
rect evaluations is a professional re-
quirement. They’re indispensable in
planning new projects and programs.
A rough estimate—an evaluation of
the order of magnitude—is a neces-
sary stage in designing an experiment,
building an installation, or working
something out theoretically. Some-
times an evaluation suggests a path to
an exact solution and gives the range
of values for which the solution may
be valid. You can also estimate how
the problem should be modified if a
solution is required that’s outside this
range.

Along with intuition, the ability to
make evaluations is quite important
in creative work.

The physical setting of a problem—
the choice and development of the
simplest physical model—is the most
important and most difficult stage.
You have to select the parameters that
are crucial to the problem and neglect
those of minor importance. The cor-
rect use of physical laws and defini-
tions is vital. Occasionally the rough
version of a definition or the qualita-
tive interpretation of a physical law is
sufficient.

Two comments before we look at
some problems. First, let’s agree on
what we mean by “order of magni-
tude.” Two numerical values are said
to differ by an order of magnitude if
their ratio is approximately equal to
10; if it’s approximately equal to 102,
the values are said to differ by two
orders of magnitude; and so on. From
this point of view the number 89 is
considered to be of the same order of
magnitude as 107 and the number 15
is of the order of 10. If the ratio of two
numbers is, for instance, equal to 1.3,
they are said to have the same order of
magnitude. The same is true when
this ratio is equal to 2.3 or even 5. For
rough estimates these errors aren’t
important.

Second, let’s establish what the
notation means. The sign “="” means

ORDER=CF -MAGHNITLBE ~ PHY 5 FeS

Think fast!

The art of estimating

by G. V. Meledin

an exact equality, while “=" denotes
an approximate one. We'll also use
the symbol “~.” Its traditional mean-
ing is that the values on each side of it
are proportional. Here it will mean
that the values are equal by their order
of magnitude, which underlines the
fact that the dimensionless propor-
tionality factors in our formulas have
an order of magnitude of one. I'd like
to emphasize that if a “true” factor is
several times the “estimated” one (or
vice versa), the difference isn’t consid-
ered important for our purposes.

Now let’s look at a few relatively
simple problems. We’ll start with
ones whose physics is absolutely clear
sowe merely have tomake areason-
able choice of parameters.

Problem 1. Evaluate the pressure
of a ballpoint pen on paper when
someone writes with it.

To make this evaluation, we make
direct use of the definition of pressure:

S

p=F/S. What numerical values should
be substituted for the force and the
area? A line drawn by a ballpoint pen
consists of a series of individual points.
A point can be considered a ring with
diameter d equal to the width of the
track made by the pen on the paper:
S = nd?/4. Letd ~0.2 mm (which is
likely enough). The force F applied to
the pen can also be roughly evaluated:
it does not exceed the weight of the
hand but is greater than the pen’s
weight. Let F~ 1 N. Then

p=L 4 3 107pa.

S nd

To get asense of whether thisisa
lot or a little, let’s make a comparison
witha1-kgweightsittingon topofa
table. Its diameter is about 4 ¢cm, so
the pressure on the table is of the order
of 8 - 10° Pa. This means the pressure
of a ballpoint pen is several thousand
times that of a 1-kg weight.

Problem 2. Evalu-
ate the velocity of steam
coming out of the spout
of a kettle of boiling
water.

Denote the power
of the heating element
by W and the specific
latent heat of vapori-
zation of water by L.
/ . Letnbe the propor-
 AZramet_tion of power spent
on creating the vapor.
Then nW/L is the mass
of steam created per
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unitof time. Obviously the amount
of steam leaving the kettle is the same
as that produced by the heater:

L =pvS.

Here p is vapor density at the boil-
ing point, v is the velocity of outgoing
steam, and S is the cross section of the
kettle’s spout. According to Clapeyron’s
law the vapor density p = pu/RT, where
p is the pressure, m is the molar mass
of water, R is the universal gas con-
stant, and T is the temperature of the
steam. Finally, we get

LW _nWRT
LpS  LpuS’

If the power of the heater W~ 1 kW,
n~0.5,S~1cm? T~373K,p~10°Pa
(since the pressure of saturated vapor
at the boiling point is equal to the
atmospheric pressure), and the con-
stants are equal to R =8.3J/|kg-K), L =
4.2 kJ/kg, andpu=18-10-3kg/mole,
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we obtain

v~2m/s.

Problem 3. Evaluate how much it
is brighter on a sunny day than at
night with a full Moon shining.

The Moon doesn’t emit any light
itself but only reflects that coming to
it from the Sun. We'll assume that the
illumination of the Earth and the Moon
by the Sun is approximately the same
and denote it by E. The power of the
light falling on the Moon’s surface is
EnR? (where R is the radius of the
Moon). Some of the light reflected by
the Moon falls on the Earth, creating
the following amount of illumina-
tion:

EgnRzk
EM =y
2nl”

where k is the coefficient of reflection
of the lunar surface and 1 is the dis-
tance between the Farth and the Moon
(we’ll assume that the Moon reflects
the incident light homogeneously within
the solid angle equal to half of the
maximum one). Now we can com-
pute the ratio

Es:z(ijzﬁ(zfe)z
EM k\R k\ [

where 2R/Iis the angular size of the
Moon (of the order of 0.01 rad). Fi-
nally, takingk ~0.2, we get

E
B« 1P,
EM

Problem 4. Evaluate how much
further a grenade travels if an athlete

" throws it on the run.

Let’s assume that during its flight
the grenade reaches the height H.
Then its flight time is

2H
N

If the horizontal projection of the gre-
nade’s velocity at the moment of re-
lease is increased by v and the vertical
projection remains practically the same,
the flight time doesn’t change but the
distance to the landing point is in-
creased by

_,, [2H
[=2y R

It’s reasonable to assume that H ~5m
and v ~ 8 m/s (you'll recall that a good
athlete runs the 100-meter dash in
about 10to 12 seconds|. Andso

1~20m.

This value seems reasonable enough.

Problem 5. FEstimate the discharge
time of a charged metal sphere con-
nected to the ground through a resis-
tor with a known resistance.

Denote the potential of the charged
sphere by pandits chargeby Q= Ce,
where C = 4ne a is the capacity of the
sphere (a is the sphere’s radius). After
the sphere is connected to the ground,
acurrent I starts to pass through the
circuituntilits potential and charge

£




become equal to zero. The current
depends on time, but we’ll ignore this.
We then get

1~ QJt~ /R,

where R is theresistance and tis the
discharge time. From this we get

t~QR/9=CR=4neaR.

Fora~1m, R~ 1 megohm, and e, =
8.85.102F/m, we have

t~10"*s.

The book Amusing Physics by Y. L
Perelman includes a story entitled
“Out of the Water Dry.” It begins
with the following problem: “Place a
coin on a big dinner plate, cover it
with a thin layer of water, and ask
your friends to extract it from under
the water without getting their fin-
gers wet.

“This apparently insoluble prob-
lem can easily be solved by means of
an empty glass and a burning piece of
paper. Set fire to the paper, place it
inside the glass, and quickly put the
glass upside down on the plate near
the coin. The paper stops burning, the
glass fills with white smoke, and the
water gets sucked inside the glass.
The coin stays where it was, and after
it dries you can pick it up without get-
ting your fingers wet.”

Let’s look at a problem related to
this story.

Problem 6. Evaluate the mini-
mum temperature to which the glass
should be heated so that all the water

on the plate is sucked
into the glass.

Let’s first solve the
problem exactly
(making certain as-
sumptions, of course,
which will be speci-
fied later on). Before
the glass comes in con-
tact with the water,
the pressureinsideis
equal to the atmos-
pheric pressure p,.
Denote the unknown
temperature of the glassby T' . After
the glass cools down and sucks in an
amount of water of mass m, the pres-
sure inside it will be p, its temperature
will be equal to the room temperature
T, and the volume of the air inside the
glass will decrease by the volume of
the water—thatis, itbecomes equal
to SI — m/p, where S and I are the cross
section and height of the glass, respec-
tively, and p is the density of water. By
Clapeyron’s law we can write

l—m
JJLSIZI’S(F)
T T '

X

The equilibrium condition for the uplifted
column of water yields pS + mg =p,S.
So

1 1
T,\':T mg.l_i'

.S pls

Now we can specify the indirect as-
sumptions used in solving the prob-
lem. We assumed that the tempera-
ture of the air inside the glass was the
same as that of the sides of the glass.
We also assumed that the glass was
being put into the water gradu-
ally, so that the initial inner
pressureimmediately after
the contact was equal to the
atmospheric pressure. We
also assumed we could ig-
nore the pressure of the water
vapor inside the glass and
that the capillary effects are
negligibly small.

It’s interesting that the
expression for T, includes
the change in the pressure
(because of water flow inside
the glass)and the change in
the volume of air as inde-

pendent factors. In that case it's a
good idea to analyze their effects sepa-
rately.

The first term can be transformed
in the following way:

L — = L = l+&.
1 - ms 1 _B Pa
pS P

The atmospheric pressure corresponds
to the pressure of a column of water 10
meters high. The height of the water
inside the glass cannot exceed the size
of the glass—that is, about 10 cm. So
we can ignore the pressure of the
water and take this factor to be ap-
proximately equal to 1:

1

mg
1=
p.S

I.

n

The second term describes the change
in the volume of air inside the glass.
The difference between the volume of
water and that of the glass isn't as
great as the pressure difference, which
means that the volume of water mustn't
be neglected. Thus,

T
Tz
pIS

n

Taking the numerical parameters
T~300K,m~30g,I~10cm,and S~
20 cm? (since the volume of the glass
isabout 200 cm?®andits height I~ 10
cm), we have

T ~353K,

or

t ~80°C.
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The correction needed to take the
pressure change into account is AT, =
T (mg/p,S) ~ 0.1 K, which is tiny com-
pared to the value of T'. It's funny that
we've virtually neglected the change
in air pressure during cooling—the
very phenomenon responsible for the
statement of the problem.

Sometimes a more complicated
situation calls for a more careful ap-
proach to the evaluation. Here's a
good example.

Problem 7. Evaluate the frequency
of the sound generated by a flying
mosquito.

It’s natural to assume that the sound
is generated by the periodic flapping of
the mosquito’s wings. In fact, the
physics of mosquito flight isn’t so
simple. We will, however, use an
extremely crude model, assuming that
flapping generates lift that compen-
sates for the pull of gravity. The lift is
provided by the change in momen-
tum transferred to the air under the
wings per unit of time:

AP/At = mg.

We'll denote the area of the wings by
S and their velocity by v. Moving
downward, the wings push down a
mass of air Am = p,vAtS over the time
interval At. Thisis accompanied by
the momentum transfer AP = Amv =
p,V’AtS. The resulting upward lift Fis

F~AP[At ~ p VS,

where p_ is the density of air. The
length of a mosquito is, say, I ~ 4 mm.
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The area of the pair of wings is § ~ >
(we assume that the length of a2 mos-
quito’s body is of the same order of
magnitude asits wingspan). It’srea-
sonable to take (1/10)P as the mos-
quito’s volume, since a mosquito’s
width and height are considerably less
than its length. We'll take the density
of the insect’s body to be equal to the
density of water p,. Denoting the
flapping frequency by v, we have v ~
Iv. The equilibrium condition gives
us

F~p,v*P~p vI*=mg~p Pg/10,

which leads to

V-V~ o o8 400 Hz.
' 10p, !

This result gives a reasonable order of
magnitude, although we can’t be very
certain of the digit “4.”

- This formula predicts that the fre-
quency changes as the inverse square
root of I. In other words, the bigger the
insect, the lower the sound it gener-
ates. Indeed, comparing the buzz of a
bumblebee with the high pitch of a
mosquito shows that this prediction
is justified.

Quite often evaluations are made
by using the dimensionality technique.
This method is based on the assump-
tion that the parameters appearing in
aproblem combine as factors in the
final result. Of course, this approach

can’t give the numerical values of the
factors. Occasionally, they can be
estimated by considering a special
case, but more often they’re assumed
tobeequal to 1. Thisisreasonable if
we're interested only in the order of
magnitude of the result. Let’s look at
an example.

Problem 8. Evaluate the time it
takes for the sound of thunder to reach
an observer whosaw a tree get hit by
lightning 3 kilometers away.

The speed of light is approximately
3-10° km/s, so the observer will see
the flash in ~ 10 s. The speed of
sound in the air is much lower. Let’s
try to estimate it by means of the
dimensionality technique.

The speed of sound v depends on
the parameters that characterize the
medium in which it propagates. For
air let them be pressure p and density
p. We'll assume that

v~ppY,

where xand y are asyetunknown. If
such a relation does indeed exists, the
dimensionalities of its left and right
sides must be the same.

Let’s agree to denote the dimen-
sionality of Aby[A]. Then

[v]=m-s!
[p]=Pa=kg-m' s?,
[p]=kg-m",

and we can write

m-st=(kg-m’- s kg - m3).




This equality holds under the condi-
tion

x+y=0,
—x-3y=1,
2x=-1.

From this we get

which leads to

v

The numerical factor in this formula
can’t be obtained by the dimensional-
ity technique. We'll assume that it’s
of the order 1 (generally speaking, this
would have to be verified somehow).

To estimate the speed of sound we
have to substitute numerical values
for the atmospheric pressure (p ~ 1 bar
~10° Pa) and the density of the air (p ~
1.3 kg/m? under normal conditions).
Then the speed of sound is

[p
v~ —~300m/s,
p

so that the time it takes for the ob-
server to hear the thunder is

3.10°m
300 m/s

This is six orders of magnitude greater
than the time it took the light to reach
the observer, and our experience tells
us that it’s quite reasonable.

I'll leave you with some estimation
problems to figure out on your own.
Try to resist the temptation to peek at
the answers!

Problems to ponder

1. Evaluate the change in the atmospheric
pressure if all the water in the oceans evapo-
rated.

2. Estimate the rate of descent of a para-
chutist with an open parachute.

3. Evaluate the mean density of the Sun.

4. Estimate how many revolutions (som-
ersaults) an automobile make as it plummets
freely at full speed into a precipice 1 km deep.

5. Evaluate the pushing force of an athlete
putting (throwing) the shot.

6. Evaluate the tension of a bicycle chain
during uphill peddling.

7. Evaluate the velocity of a drop of water

if, upon hitting a stationary wall, the pressure
of the drop on the wall at impact is about
10 Pa.

8. Estimate the tension of a car’s safety
belt if the car crashes into a pillar at a speed of
30 km/h, producing a dent 30 cm deep.

9. Estimate the distance at which a person
wearing bright clothes vanishes from sight in
a pine woods. (There is no underbrush.) [@)

ANSWERS, HINTS,
AND SOLUTIONS ON PAGE 61

LATIN RECTANGLES
FROMPAGEZ20

to assume “only” that
m<\Vn.

I've put “only” in quotes because
mathematicians would much prefer
to find, if not exact, then at least
asymptotic formulas with no restric-
tions on the relation between the length
and width of the Latin rectangle in
order to approach Latin squares, which
are now used in the theory of experi-
ment planning. But a solution to this
problem remains a challenge for fu-
ture mathematicians. @

in
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MATH BY MAIL

The Moscow Gorrespontdence School

in Quantum

Directed by Professor . M. Gelfand
with the assistance of M. Berkinblit, E. Glagoleva,
N. Konstantinov, V. Minachin, and V. Retakh

WENTY-FIVE YEARS AGO 1

organized an unusual mathemat-

ics school by correspondence in

the Soviet Union, and I still con-
tinue to direct it.

I'dliketotell youalittle bitabout
this school. The Soviet Union, as you
surelyrealize, isalarge country, and
there are simply not enough good
teachers throughout the country who
can show all the students how won-
derful, how simple, and how beauti-
ful the subject of mathematics is. The
fact is that everywhere, in every coun-
try, and in each part of a country there
are students interested in mathemat-
ics. Realizing this, we organized the
Mathematics Correspondence School
so that students from 12 to 17 years of
age from any place could study. Since
the number of students we could take
in had to be restricted to about one
thousand, we chose to enroll those
who lived outside of such big cities as
Moscow, Leningrad, and Kiev, and
who resided in small cities and vil-
lages in remote areas. The books were
written expressly for them. They, in
turn, read them, did the problems, and
sent us their solutions. We never
graded their work—it was forbidden
by our rules. If anyone was unable to
solve aproblem, some personal help

42 MARCH/APRIL 1881

A Word of Introduction

by .M. Gelfand

was given so that he or she could then
complete the work.

Of course, it wasn’t our intention
that all the students who studied with
these books or even completed the
school should choose mathematics as
their future career. Nevertheless, no
matter what they later chose, there-
sults of this training remained with
them. For many, this had been their
first experience in being able to do
something on their own—completely
independently.

The project proved so fruitful that
we extended it and opened the biology
and linguistics branches, since we do
not live by mathematics alone.

The Correspondence School is now
publishing its books in the United
States, and with this article we are
opening a new department in Quan-
tum, Math by Mail. Its aim is to give
you afeel for the things we do in the
school and to offer advice to those
who would want to study on their
own. We'll start by presenting some
material used in the school. These
columns are not directed only to those
students who will later become mathe-
maticians or embark upon a related
career but to all who want to study
mathematics with the help of our
books, our advice, and our school.

They are in no way intended to pro-
vide special mathematical training
for its own sake. Rather, we consider
mathematics to be an important part
of human culture.

With this goal in mind we have
written several books and will con-
tinue writing them. Two books are
being translated into English and will
be published by the Birkhiuser pub-
lishing house. No additional knowl-
edge is required, but sometimes fa-
miliarity with parts of the high school
math curriculum is necessary.

One more remark. How were these
books written? The things that are
now taught in high school mathemat-
ics courses were in their time great
achievements of the human mind,
andintellectuals of the Stone Age or
ancient Greece were undoubtedly very
enthusiastic about these discoveries.
Because of repetition in school, these
things have lost their freshness, but
each student learns all this anew, just
as ancient mathematicians did. So in
writing our books we tried to forget
that we already knew all this and to
look at mathematics with fresh eyes.
Maybe this approach accounts for the
great popularity these books enjoy in
the Soviet Union.



Sample problems

The first homework given to a stu-
dentwhowantstobeenrolledin the
school is the “entrance examination.”
Itis composedinsuch a fashion that
no prerequisite knowledge is expected,
but the results can show whether a
would-be student wants (and that
generally means is able) to study
mathematics.

Here’s a set of problems you might
encounter in the entrance examina-
tion.

1. You have a glass of wine and a
glass of water. You take a spoonful of
the wine and pouritinto the glass of
water, stir the mixture thoroughly,
then take a spoonful of that and pour
it into the glass of wine. Is there now
more wine in the water or more water
in the wine?

2. Isit possible to wrap a cube with
sides of length 1 in a square sheet of
paper with sides of length 3?

3. Into how many parts can four
distinct straight lines divide a plane?
Draw an example for each case.

4. Find all three-digit numbers
such that writing three digits before
each of them turns it into its square.

5. What is the maximum number
of Saturdays there can be in a year?

6. You have a chess knight on an
infinite chessboard. What is the number
of squares it can reach in no more than
10 moves? (A knight must make L-
shaped moves: two squares horizon-
tally or vertically and then a right-
angle turn for one more square—see
figure 1.)

N N

%

7. Thereare 10bags with 10 coins
in each. In one bag all the coins are
counterfeit and each weighs 11 grams,
while in all the remaining bags all the

coins are genuine and weigh 10 grams
each. How can you decide, by a single
act of weighing, which is the bag with
the counterfeit coins? (Your scales are
accurate to the gram.)

8. Find all positive integers that
satisfy

Xy=X+Yy+1990.

9. Decide which of these two numbers
is larger:
13941
13741

13541
13141

How do you know?

10. Can there be a triangle whose
area is greater than 100 square meters
and whose three heights are all shorter
than 1 cm?

11. Isit possible to draw a curve on
a Rubik’s cube (fig. 2) that begins in
one square, ends in another square,
and enters each square, excluding these
two, exactly once?

Figure 2

If you want to send us your solu-
tions to these problems, we’ll cer-
tainly read them and send you our
comments. We'll print the solutions
in the next issue of Quantum (Sep-
tember/October).

This year I'm staying at Rutgers
University, so please send your letters
to this address:

Professor I. M. Gelfand

Center for Mathematics, Science,
and Computer Education

Rutgers University

SERC Building, Room 239,
Busch Campus

Piscataway, NJ 08855

We welcome our new correspon-
dentsin the US, and we'll try to give
youuseful advice. We plantoopena
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similar school in America, so any
contact with you, our first correspon-
dents, will be most valuable to us.

The Correspondence School Library

Books written for the Correspon-
dence School are very popular in the
Soviet Union. Hundreds of thousands
of copies of each book have been sold.
Their success is apparently due to the
fact that they were intended for stu-
dents in the most far-away places,
where they often can’t find a mathe-
matics teacher who can give them
good advice. So they turmed out to be
very suitable for independent study.

Now that we’ve begun publishing
a new series of books for students,
we've decided to reprint the best of the
Correspondence School books, those
that have stood the test of time. I
think even today we’d write them as
they are.

It seems like a very good idea to
combine these books with a com-
puter, so the second edition will in-
clude a software package so you'll be
able to work with a book and a PC
simultaneously. But please don’t think
that now, in the computer age, the
effort of studying mathematics can be
transferred to a computer. The com-
puter can help you solve a problem,
but it can neither think nor under-
stand for you.

I'd like to make a comment here.
Some of my American colleagues have
explained to me that American stu-
dents aren’t really accustomed to think-
ing and working hard, and that for this
reason we must make our materials
as attractive as possible. Permit me to
not completely agree with this opin-
ion. From my long experience with
young students all over the world, I
know that they are curious and in-
quisitive, and I believe that if they
have some clear materials presented
inasimple form, they’ll prefer these
to all the artificial means of attracting
their attention—much as one buys
books for their content and not for
their dazzling jacket designs that engage
your mind only for the moment.

The most important thing a stu-
dent can get from studying mathe-
matics is the attainment of a higher
intellectual level. In this light I'd like
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to point out as an example the famous
American physicist and teacher Rich-
ard Feynman, who succeeded in writ-
ing both his popular books and his sci-
entific works in a simple and attrac-
tive manner.

Unfortunately, most of our Corre-
spondence School publications are in
Russian. However, English transla-
tions of the first two books in the
series, Method of Coordinates and
Functions and Graphs, are about to be
published by the Birkhiuser publish-
ing house. Algebra, geometry, calcu-

lus, and combinatorics will be treated
in subsequent books in the series. Of
course, each of the books can be used
for independent study.

Would you like a sample? Here'’s a
problem from Geometry by T. V.
Alexeyevskaya and I. M Gelfand.

Straight lines in a plane are said to
be in general position if no two of
them are parallel and no three of them
have a common point. We can con-
sider these lines infinitely long fences
dividing the plane into a number of

regions. Some of the regions are bounded
—we'll call them “cells.” In each cell
a wolf can be placed (since it can’t run
away from a bounded region). If there
are 4 lines in general position, what is
the maximum number of wolves we
cankeep? (This case, along with the
case of lines that are not in general
position, is considered in problem 3
above.)] What is the maximum num-
ber of wolves you can keep if you have
5 lines in general position? What is
the minimum number? (@)

SURFACE AREA
FROM PAGE 9

its length and the area of its cross sec-
tion (a circle of radius h—see exercises
4 and 8). This version of the definition
also holds for curves that do not lie in
aplane.

Now you know three definitions
based on a common idea, and you
probably understand that this string
of definitions can be continued by
adapting them to the dimensionality
of the object we’re going to measure
and the surrounding space. You'll
find two more examples in exercise 9,
but further generalizations lie outside
the scope of this article.

Exercise 8. The body created by
rotating a circle around an axis that
doesnotintersectitis called a torus.
Its volume is computed by the for-
mula 2m*Rr?, where ris the radius of
the circle and R is the distance from
the center of the circle to the rotation
axis. Show that the spatial h-neigh-
borhood of a circle is a torus (fig. 11)
and derive once again the formula for
the length of the circle.

Exercise 9. For what sets Fis the
limit of the followingratios positive

Figure 11
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and finite: (a) V(F,)/1; (b) VIE,)/(4nh?/3)?
What is the geometric meaning of
these limits?

Seeing is believing?

Now the time has come for me to
apologize for the little bit of cheating I
engaged in at the beginning of the
article. Have you discovered it yet?
The secret is very simple: after the
unrolling is done, the petals of the bud

are curvilinear triangles, not the usual
ones. It’s easy to see that the sum of
the angles at the vertices of the tri-
angles in figure 1b is less than 2x, and
soif we rolled them back into a bud,
we'd get a surface with holes in it.
Naturally, this leads to a value that is
smaller than the true area of the sphere.
If this trick has enticed you into read-
ing this article, it has played its role
well.

7
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MATH MAGIC
FROM PAGE 29

Just how many squares does this

give? Here are six additional tables:
1 2 3 4 1 2 5 3
K 5 7 8 3 4 7 8
i i1 | 12 9 Jio |1 14

5 ] 14 )15 ] 16 11 f 12 | 15| 1s
1 3 B 7 1 5 g ik
2 2 & 8 2 6 o1 14
9 11 13 15 3 7 11 15
10 |12 | 14| 15 s | s |12 16
1 9 11 1 2 9 10
2 4 10 12 3 4 iR E 12
s 7] 3] s s | s | 13| 14
6| s8] 1a] 16 7| 8] is] 1s

each of which yields 24 x 24 by per-
muting their rows and columns. So
the method gives 6 x 24 x 24 = 3,456
magic squares in all, or 3,456/8 = 432
when we discount rotations and re-
flections.

One of these squares—namely,

16 3 2 213

10 14 8

9 6 71 12

4 15 14 1

obtained from

16 12 15 11

14 10 13

8 4

2 5 1

appears in Albrecht Diirer’s famous
self-portrait, Melencolia I, and the
middle two numbers in the bottom
row indicate the date of the work
(refer back to page 29).

We can use the addition table idea
to give a simple formula for the gen-
eral order 4 square like the one we
gave for order 3 earlier. We just adjoin
two new parameters, x and y:

A+a+x | C+d+x | D+b+y | B+c+y
D+c+x | B+b+y | A+d+x | C+a+v
B+d+y | D+a+x | C+c+y A+b+x
C+b+y | A+c+y | B+ra+x | D+d+x

The general order 4 magic
square

The 10 parameters here are not all
independent, since we can decrease
eitherA, B, C,Dora, b, c,dbysome
amount without changing the square,
provided we simultaneously increase
x and y by the same amount. Soyou
can take D = d = 0, if you like, and then
the remaining 8 parameters A, B, C, q,
b, ¢, x, y will be independent.

This raises the general question of
how many parameters are needed for
the general order n magic square. The
answeris givenonpage61. Andjust
how many magic squares can be made
using the numbers from 1 to n*? You
won’t find the answer on page 61,
since for n larger than 4 nobody knows!

A particularly interesting kind of
square is the one called pandiagonal,
in which all the “wraparound diago-
nals” such as

#

alsohave the magic sum. Of course,
an order 3 square can be pandiagonal
only if all the numbers are equal, since
they must all be one third of the magic
sum! Our general order 4 square is
pandiagonal only if

A+C = B+D,
a+c = b+d,
X = y.

There is a beautiful relationship be-
tween the order 4 pandiagonal squares
and the four-dimensional hypercube,
or tesseract. In the figure, the vertices
of the tesseract are numbered from 1
to 16. Each two-dimensional face
adds up to 34, so this is a magic
tesseract! If you start at any vertex and
read around a face, you get the first
row of a magic square whose other
rows are found by reading around the
parallel faces in the same order. We'll
leave it to you to work out the precise
rules.
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10 14 6 g

1

Themagic teééeract

One square obtained like this is

8 13 2 11
10 3 16 5
6 9 4 15
1 12 7 14

Can you see its rows and columns as
faces in the magic tesseract?

There are 384 orderings of the num-
bers that work, corresponding to the
384 ways of repositioning the tesser-
act so that it occupies the same por-
tion of four-dimensional space. They
give 384 pandiagonal order 4 squares
in all, or just 48 when we discount
rotations and reflections.

There are many other shapes to
make magic with. One of the most re-
markable is

15

14 13

9 8 10
6 4

11 8 12
1 2

18 7 16
17 19

Adams’s amazing magic
hexagon

in which all the lines parallel to the
sideshave the same sum, 38. Itisso
called because Clifford W. Adams became
so obsessed with the problem of redis-
covering it that he made 19 numbered
ceramic tiles and spent 47 years shuf-
fling them around at odd moments
until at last he did find the solution,
which Charles W. Trigglater proved
unique. Infact, the Adams hexagon
had been discovered several times before,
in particular by William Radcliffe,
who registered it in 1896 at Stationers
Hall, London.
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BRAINTEASERS

Justfor tg funf

Mix and match. There are three red and five blue sticks of different lengths
lying on the table. The total length of the red sticks is the same as that of the
blue ones. Isitpossible to cut up the sticks and pair the pieces such that the
pieces in each pair will be alike in length but different in color? (V. Proizvolov)

B2r

Comparing ages. Now I'm four times older than my sister was when she
was half as young as I was. In 15 years our combined age will be 100. How old
are we now?

Go with the flow. Once I got lost in a forest. I was going to make a fire and
spend the night, but fortunately Ifound a water pipe. ObviouslyIshould go
along the pipe, but in what direction? In the direction of the water flow, since
the water goes to people. Buthow couldIdetermine in which direction the
water was flowing? (M. Lobak]

The algebra of cooperation. Solve the number rebus USA + USSR = PEACE.
(The same letters stand for the same digits, different letters denote different
digits.) (B. Kruglikov)

The wisdom of old. King Arthur ordered a pattern for his quarter-circle
shield. He wanted it to be painted in three colors: yellow, the color of kindness;
red, the color of courage: and blue, the color of wisdom. When the artist brought
in his work, the king’s armor-bearer said there was more courage than wisdom
on the shield. But the artist managed to prove that the proportions of both
virtues were equal. Canyoutellhow? (A. Savin)

ANSWERS, HINTS, AND SOLUTIONS ON PAGE 60
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46 MARCH/APRIL 1991



HAPPENINGS

The fast game for math minds

laking the Twenty-Four Challenge™

INNEAPOLIS PUBLIC HIGH

School students are manipu-

lating numbers to solve math

problems that would short-
circuit the world’s most elaborate pocket
calculator. They are practicing this
lightning-quick skill in a citywide
tournament in which they play Twenty-
Four,® a new game that takes an inno-
vative approach to the world of num-
bers.

Colorful Twenty-Four game cards
containing four numbers from one
through nine were designed by Robert
Sun, an inventor and engineer who
has had a lifelong fascination with the
world of numbers. Using each num-
ber only once, players must add, sub-
tract, multiply, and/or divide to arrive
at the solution of 24.

For example, a card has the numbers
3,4,5,5. Two possible solutions are:

3.5-15  5.5-25
15+5=20 4-3-=1
20+4=24 25-1=24

And that’s just an easy card. The
infamous 7, 3, 7, 3 combination has
stumped some of the best math minds
in the country.

According to Sun, the game goes
right to the essence of what math is all
about. “Students are faced with four
seemingly random numbers. They
must quickly try to sense the interre-

lationship between the four numbers
and the number 24.” The Twenty-
Four game challenges students to build
a solid foundation of basic math skills
and to feel confident in manipulating
numbers. Says Sun, “Without this
foundation, students cannot experi-
ence the excitement of moving on in
the mathematical world.”

To further encourage students’
fascination with numbers, Sun intro-
duced the Twenty-Four Challenge
Tournament to Minneapolis last fall.
With the support of the Minneapolis
Public Schools and a generous grant
from the TCF Bank, over 10,000 stu-
dents competed for the coveted title of
Minneapolis Numbers Whiz Kid. The
winner was Mike Appelhans of WOC
High School.

Similar Twenty-Four Challenge
tournaments are being held in chosen
cities nationwide, including Philadel-
phia, Boston, St. Louis, San Francisco,
Chicago, Portland, and Tampa. This
widespread participation can be at-
tributed, in part, to the fact that the
tournaments are extremely simple to
administer, and there is no cost to the
school systems.

For information about starting a
Twenty-Four Challenge tournament
in your community, contact Robert
Sun or Nan Ronis of Suntex Int'l, Inc.,
118 North Third Street, Easton, PA
18042, or call 215 253-5255.

Quantum’s Twenty-Four Challenge

Would your class like to try this
number game? Take the Quantum
Twenty-Four challenge, sponsored in
part by the Eastman Kodak Company-
21st Century Leaming Challenge.

How to play. On this page, we've
printed four cards from the Twenty-
Four game. Use the four numbers on
each card to compute 24 as many
ways as you can. Do the math step by
step. Use only the numbers on the
card and the answers from each step.
(Note: the 9’s on the cards are filled in
with red; the 6’s aren't.)

How to enter.

1. Send us a list of all the ways you
got 24 for each card. Show each stage
of your work—just like we did.

2. Write on a sheet of paper:

a) your grade;

b) the names of your school and
teacher;

¢) your school's address and phone
number; and

d) the statement, “We pledge
that these answers were derived
without the help of any adults
except the teacher.” Make sure all
participants sign it.

3. Send us your entry no later than
April 24,1991, Mail it to Quantum’s
Twenty-Four Challenge, 1742 Con-
necticut Avenue NW, Washington,
DC 20009.

Copyright © 1991 by Suntex International, Inc. Twenty-Four and Twenty-Four Challenge are registered trademarks of Suntex International, Inc.
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The prizes. All grades K-12 are
eligible, and will be judged in two
categories: 8th grade and below, and
9th grade and above. Prizes have been
generously donated by Kodak.

The class in each category that
finds the highest total of correct and
different ways to make 24 will win the
Grand Prize. Each student will geta
Twenty-Four T-shirt and a standard
edition of the Twenty-Four game.

The class in each category with the
next highest total is first runner-up.
Each student in those classes will re-
ceive a Twenty-Four T-shirt and a

pocket edition of the Twenty-Four
game.

The students in the second, third,
and fourth runner-up classes in each
category will each receive a pocket
edition of the Twenty-Four game.

Do’s and don’t’s. Make sure you
follow these rules when you enter:

Do use all four numbers on each
card.

Don’t use a number more than
once, unless it appears on the card
more than once.

Don’tuse the commutative prop-
erty of addition or multiplication to

make 24 in more than one way. (If you
do, we’ll only count one of the an-
swers.) Here’s an example using 1, 6,
8,and9:

1.8-8 8.1-8
9-6-3 9-6-3
3.8=24 B§.-8=024

Only one of these combinations would
count.

Don’t put two digits together to
make a larger one. You can’t make 23
from 2 and 3.

Don’t use exponents. You can’t
use 2 and 3 to make 23, or 8.

—Elisabeth Tobia

The computer revolution

There can be little doubt that
computers have changed the face of
the world. Now “The Computer
Revolution,” a fascinating six-part
documentary series, offers a look back
at the history and development of this
technological achievement and a look
forward to the computers of tomor-
row. From the earliest prototypes and
room-size machines of the past to
today’s compact desktop workstations,
this new video series presents a his-
torical and analytical perspective on
the computer and its impact on mod-
ern society.

Through interviews with top pro-
fessionals in the field and state-of-the-
art computer graphics, “The Com-
puter Revolution” not only explains
the leaps and bounds in computer
technology but often demonstrates
them as well. The series explores
applications in agriculture, medicine,
communications, business, space
exploration, and national defense. It
depicts the story the birth and growth
of an entire industry, from Silicon
Valley to the personal computer. Voice
recognition software, machine vision
for the blind, natural language com-
prehension, and artificial intelligence
are only some of the new uses this
documentary examines.

“The Computer Revolution” is
available on VHS and Beta videocas-

48 MARCH/APRIL 1891

Bulletin board

sette, for purchase or rental, from Films
for the Humanities & Sciences. For
more information, write to Dan Maurer,
FHS Inc., PO Box 2053, Princeton, NJ
08543, or call 800 257-5126.

—E. T

Soviet and American space art

In the movie “2001: A Space Odys-
sey” one of the astronauts sketches
his hibernating colleagues aboard the
Jupiter probe and later shows his work
to HAL the computer, who dutifully
admires them. This episode says

something about the human urge to
record reality through the eye and
hand as well as through lens and
chemical-coated paper, spectrometer
andprintout. Inthe Stream of Stars:
The Soviet/American Space Art Book
is a collection of paintings by those
whohave had the privilege of travel-
ing in space and those who study it
and dream about it.

Some of the most interesting work
in the book was done by an astronaut
and a cosmonaut. Alexei Leonov (af-
ter whom the US spacecraft in the

“Galactiscope” by Beth Avery, from In the Stream of Stars. Copyright © 1991 by William K. Hartmann, Andrei Sokolov, Ron
Miller, and Vitaly Myagkov. Workman Publishing Co., New York. Reprinted with permission of the publisher.



sequel “2010” is named) took colored
pencils to space to sketch his ideas,
which he developed more fully on his
return to Earth. Alan Bean’s portraits
of fellow Apollo astronauts on the
Moon show traces of Monet, a painter
he greatly admires, and he offers us a
virtual dissertation on the perception
of color, texture, and depth on the
lunar surface.

As one of the book’s editors, Wil-
liam K. Hartmann, points out, “space
art” lies somewhere between “fine
art” and “illustration.” The examples
presented in this handsomely printed
book run the gamut between the two
extremes. Some are highly imagini-
tive and thought-provoking; others

Why There's A Science

to the Liberal Arts
at Beloit College

but at Beloit she discovered that it also involved working with professors

on scientific research that students elsewhere might experience only in
graduate school. Based on research conducted in her first year, Rona and Professor
George Lisensky co-authored an article for Science Magazine. Like Rona, more
than 70 percent of our science majors have completed a summer of research in
an academic, industrial or government laboratory by their junior year. Beloit, a
member of the “Oberlin 50,” Keck Geology Consortium, and Pew Mid-States
Science Consortium, provides science students with a 1:12 professor to student
ratio and access to first-rate scientific equipment—even office space! At Beloit,

R ona Penn knew that college would require a lot of reading and writing—

are competent renderings of known
facts or speculations without much
emotional content. Together, though,
they represent a satisfactory mix of
the science and poetry that intermingle
in humankind’s space venture.

In the Stream of Stars presents the
work of more than 70 artists, most of
them from the US or USSR, the na-
tions at the forefront of large-scale
space exploration. It was edited by a
Soviet-American team of artists and
is graced by a rhapsodic introduction
by Ray Bradbury, dean of American
science-fiction writers. In addition to
the more than 200 full-color illustra-
tions, the book contains illuminating
essays on the history and role of space
art as well as first-person accounts of
space travelers. Cosmonaut Leonov
writes, “Probably my strongest im-
pression of the Earth was that it was
not so big! It was finite. ... What
astonished me most of all was the
thinness of our atmosphere, which
seems so thick and full of power to the

where students and faculty work to-
gether in a cooperative community
of scientists, scientific discoveries
naturally occur.
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IN YOUR HEAD

Prodiem racing

That's what all your training is for!

LOVE BIKE RACING AND I
follow a rigorous training regimen
that includes weight lifting, plyom-
etrics (jumping exercises), and stretch-
ing exercises to prepare for races. This
training regimen is time consuming
and laborious, butitisnotanendin
itself. In fact, the only measure of its
value is how well I do in races. And to
take that measure I've got to race.
You're reading this magazine, so
I'mbetting that you're pretty fond of
mathematics and that you're in train-
ing. Did you calculate, graph, factor,
differentiate, or integrate your way
through 1-27 (odd) on pages 254 and
255 last night? Why? To prepare to
race. Sorace! Try areal problem!
What does “real” mean? The prob-
lem comes out of your worldly experi-
ence, somebody (if only you) cares

Art by Nishan Akgulian
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by Gary Sherman

what the answer is, and nobody (as far
as you know| knows what the answer
is. Let me illustrate with four ex-
amples.

Endless “wan”

Didyouplay the card game “war”
when you were growing up? Here’s
how it goes. After the deck is shuffled
and dealt to the two players, they
begin matching cards, and the higher
card captures the lower card. Stale-
mates (suits aren’t ranked) are broken
according to local rules, and the game
is over when one player has all the
cards.

Back up for a minute—must a game
eventually be “over”? Orcoulditgo
on forever? This (very natural) ques-
tion was posed by a frustrated seven-
year-old—"Dad, does this game ever

have to end?”—not by me. A 52-card
deck, the vagaries of breaking stale-
mates (at our house, usually a wres-
tling match), and the haphazard way
in which we returned cards to the
deck prompted the insightful reply,
“Uhhhhh, gee, Mike, I'm clueless.”
What about war with the integers
1,2, ..., n? Forexample, if we shuffle
anddeal 1,2, ..., 8, yourinitial hand
mightbe Y: 1, 6,2, 7 and my initial
handmightbe M:8, 5,3, 4. It's clear
that I'm not going to lose (it’s my
article), but must I win? Let’s play.

Y,:1,6,2,7 M;:8,5,3,4
Y:6,2,7  M;:53,4,8,1
Y:2,7,6,5 M:3,4,8,1

Y15: 1 MIS: 7/5/3/ 6/ 4/ 8/2

Iwinonthe 16th match:

Y, M, :5,3,6,4,8,2,7,1

The questions are endless. Must
any game with n = 8 end? If not, what
proportion of games must end? If
there is a game that doesn’t end, it
must cycle, since there are only a
finite number of possibilities for your
hand and my hand. What can you say
about the number of matches that
occur before a cycle must begin? How
many matches are there per cycle?
And the endless part: whatifnisan
arbitrary positive integer?

Stufled seating

The atmosphere in my calculus
class was getting stale, I was frus-
trated, and before I realized I was



saying it, I said it. “Okay, I want
everybody out of their seats . .. now
stretch, wander around the room for a
couple of minutes, and sit back down.
But—have néw neighbors when you
sit down!”

About halfway through the stretch-
and-wander phase, it occurred tome
that

1. Nobody, including me,
knew what “neighbors” meant;

2.1didn’t know if any such
seating rearrangement existed;

3.Thad stumbled on anice
problem.

Specifically, consider the follow-
ing4 x5 array:

A B C D! E
F G H I ]
K L M N O
P Q R S T

The neighbors of F are A, G, K; the
neighbors of P are K, Q; and the neigh-
bors of J are G, M, Q, K. Can you
rearrange the entries in this array so
that each entry gets all new neigh-
bors? What's the probability that a
random rearrangement provides all
new neighbors for each entry? How
many rearrangements preserve only |
and M as neighbors? How many
rearrangements preserve a total of exactly
1(2, 3, ..)neighbor(s)? On the average,
how many neighbors does arandom
rearrangement preserve? What hap-
pensinan m x narray? An m X 1 array?

Anmxnxkarray? Ind (>4)dimen-
sions? Maybe you prefer another defi-
nition of “neighbors”?

Scrambled evaluations

During the timeIwas chairof the
mathematics department at Rose-
Hulman Institute of Technology, one
of my jobs was to read student evalu-
ations of teaching. (Each instructor’s
teaching is evaluated each quarter in
each course by each student.) A week
or so after the end of the quarter a
stack of m x n envelopes {m instruc-
tors and n courses per instructor), in
random order, would appear on my
desk. My preference was toread the
evaluations by instructor, so I had to
sort the envelopes accordingly. Now
my desk may have enough clear space
for two stacks, but certainly never m
stacks. Let me take m = 3 (say, in-
structors A, B, and C)and n = 3 to
illustrate what I did.

Stack 1 Stack 2

? ?
1-B
2-A
3-A
4-C
5-B
6-C
7-A
8-C
9-B

The first three envelopes are easy to
sort.

Stack 1 Stack 2

1-B 2-A
3-A

4-C

5-B

6-C

7-A

8-C

9-B

What doTdo with 4-C? I'm going to
put it on the bottom of the original
stack and think of it as the tenth
envelope.

Stack 1 Stack 2
1-B 2-A
3-A
5-B
6-C
7-A
8-C
9-B
10-C

Now 5-B goes to the top of Stack 1,
6-C goes to the bottom of the original
stack as 11-C, and 7-A goes to the top
of Stack 2.

Stack 1 Stack 2
5-B 7-A
1-B 2-A

3-A
8-C
9-B
10-C
11-C

Stack 2 is now available to accept en-
velopes for instructor C, so I can com-
plete the sort.

Stack 1 Stack 2
9-B 11-C
5-B 10-C
1-B 8-C

7-A
2-A
3-A

Notice thatThad tohandle k=11
envelopes to complete the sort using
this algorithm. And what is the algo-
rithm? Suppose envelope i-X is at the
top of the unsorted stack.
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1. If each sorted stack con-
sists of complete sets of enve-
lopes, then place i-X at the top of
any sorted stack.

2. If j-X is at the top of a
sorted stack, then place i-X on
top of that stack.

3. Otherwise, place i-X at
the bottom of the unsorted stack
and relabel it (s + 1)}-X, where s-Y
is the envelope that was moved
from the last to the next-to-last
place in the unsorted stack.

Now for the questions. Suppose
there are m instructors, each teaching
n courses, and you have room for s
stacks. What's the minimum value of
k? What’s the maximum value of k?
What's the average value of k? And
the I'm-a-glutton-for-punishment
question: what if the number of courses
per instructor isn’t constant?

Shootfirst. ..

A few years ago the Continental
Basketball Association (CBA)helda
shooting contest—the $1,000,000 CRA
Easy Street Shootout—in an attempt
to increase fan support of the league.
Each of the fourteen franchises held a
local version of the contest to deter-
mine its representative for the league
contest at the all-star game. Both the
local and league contests proceeded
according to the following rules:

1. Alotteryisheld todeter-
mine the order in which the
contestants will shoot. (Atthe
franchise level ten spectators were
selected, and ordered, by lottery
using numbers printed on their
programs.)

2.In turn, each contestant
shoots one shot from whatever
location on the court he or she
chooses.

3. At the completion of one
round of shots, the contestant
who made the longest shot is
declared the winner.

4. 1f all the contestants miss
their first-round shot, a sudden-
death round begins: the shoot-
ing order of the first round is
repeated, and the first contest-
ant to make a shot wins.

02 MARCH/APRIL 1991

This contest was described in the
Scorecard section of Sports Ilustrated
(November 18, 1985), and the editor
wondered just how important the
shootingorderisinsuch acontest. I
doubt that the editor thought of this as
a mathematical question. But you
should. It’s a natural: how important
is shooting order, and what is the best
shooting strategy for each of the con-
testants? Here are the assumptions I
would make to get started:

1. All shooters are of equal
ability.

2. The probability of miss-
ingashotincreases monotoni-
cally from 0 (alayup) to 1 (a 90-
foot bomb).

3.1If two shooters hit shots
from the same distance, the second
shooter wins.

4. There are n shooters—
and n =2 for openers.

Et cetera

You can generate problems like
these. It’s just a matter of developing

the mindset to question everything
and anything you experience. What's
the optimum? How many? What's
the minimum? What's the maxi-
mum? What's the average? Before
long yow'll acquire one of the distin-
guishing characteristics of a good
mathematician—more problems than
answers. View each of your problems
as arace. If you do well, look for stiffer
competition. If you don’t dosowell,
adjust your training regimen accord-
ingly and race again!

If you would like to know the status
of the four problems I've described,
send me a note that includes your
effort to solve at least one of them. My
address is Math Department, Rose-
Hulman Institute of Technology, 5500
Wabash Avenue, Terre Haute, IN 47803.

Dr. Gary Sherman was the math department
chair and is now professor of mathematics
at Rose-Hulman, where he is director of a
research program in group theory. Dr.
Sherman was drafted by an NFL teamn
but went to graduate school instead. He
has won several state championships in
bicycle racing in Indiana.

1o calculate or guess—
you decite!

A baker's dozen curious problems

by |. Akulich

ET'S GET RIGHT TO THE
problems.
Problem 1. A fatheris 26 years
old and his son is 6 years old. In
how many years will the father be
three times older than his son?
This problem and others like it are
usually solved by one of two methods.
Arithmetic method: If the father
becomes three times older than his
son, the difference of their ages is two
times the son’s age. But the difference
is constant and is equal to 26 - 6 =

20 years, so the son’s age at the mo-
ment we're looking for will equal
20/2 = 10 years, which will happen in
10-6=4years.
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Algebraicmethod: Let the father
be three times older than his son in x
years. Then26+x=3(6+x),s0x=4.

Let’s add one more method to these
two—the guess-and-choose method.
Let’s try to guess the answer or, more
exactly, to choose it. Let’s use our
experience in solving such problems
and remember that, as a rule, only

integers are used in them. The search’

area then becomes sharply delimited.
In addition, when the father becomes
three times older than his son, natu-
rally his age must be divisible by 3. At
first this situation will happen in a
year—that is, the father will be 27 and
his son will be 7 (which doesn’t work);
then in 4 years—that is, the father will
be 30 and his son will be 10 (now it
does work). That’s it!

If any of you is thinking of indig-
nantly rejecting the third method in
favor of the first two, I strongly urge
you to hold off. It’s true, a mathema-
tician (even an amateur) ought not
guess. But imagine the following
situation. A math competition is
taking place. One participant from
each team is called upon to solve the
above problem. The first to give the
correct answer is considered the win-
ner. Andso the clock starts ticking!
You can’t help but agree that the third
method seems preferable to the first
two. Of course, there’s a chance of not
finding the answer at all, but the
greater speed and more limited num-
ber of calculations (and, consequently,
the greatly reduced possibility of making
arithmetical errors, which are quite
likely in the heat of competition) are
sure to outweigh that consideration.

Problem 2. According to legend
there was a tombstone with this in-
scription: “Ye Traveller, lying under
this tombstone are the remains of
Diophantos, who died in extreme old
age. He was a child for a sixth of his
long life, a youth for a twelfth, and
unmarried for a seventh. Five years
after he was married his wife had a
baby boy, who lived half as long as his
father. Four years after the son’s death
Diophantos himself went to his eter-
nal rest, and his death was mourned
by his relatives. Tell me, if you can
count, how many years Diophantos

lived.”

If you use the algebraic method,
you have to solve a cumbersome equa-
tion, and the arithmetic method isn’t
any simpler. And what about the
guessing method? Let’s think about it
this way: since all the numbers used
must very likely be integers, the number
of years Diophantos lived must divide
evenly by 6, by 12, and by 7—that s,
by their least common multiple, which
equals 84. This means that the num-
ber of years lived by Diophantos is a
multiple of 84—in fact, it is 84. (Larger
numbers are unrealistic.) That’s it! In
this particular case the advantages of
the guessingmethod are really obvi-
ous.

Problem 3. One day the Devil
proposed toa certain goof-off thathe
earn some money. “Assoon asyou
cross the bridge,” he said, “your money
will double. You may cross the bridge
as many times as you like, but every
time you do you must pay me 24
cents.” The goof-off agreed . . . and
after the third crossing he was penni-
less. How much money did he start
off with?

Let’s try to guess the answer, using
general reasoning. It’s clear that the
goof-off had less than 24 cents; other-
wise he wouldn’t have gone bank-
rupt. In other words, from the very
beginning there was a “budget defi-
cit.” Money doubling was apparently
accompanied by deficit doubling, and

after the third crossing the doubled
deficit amounted to exactly 24 cents.
This means that at first the deficit was
equal to 24/8 = 3 cents—that is, the
goof-off had 24 — 3 = 21 cents. Of
course, we can’t guarantee that the
answer is right, but it’s certainly plau-

sible.

Problem 4 (proposed by Sam Loyd).
“Here are two turkeys,” the butcher
says, “one tom and one hen. Together
they weigh 20 pounds. But the price
per pound of the hen is 2 cents higher
than the price per pound of the tom.”
Mrs. Smith bought a turkey hen and
paid 82 cents for it, while Mrs. Brown
paid $2.96 for a tom. What did each
turkey weigh?

Let’s take some risks: suppose
each turkey weighed an integral number
of pounds and the price per pound is an
integral number of cents. The total
sum paid was 378 cents. If the extra
charge for the hen’s meat is subtracted

from the total, the remainder must
divide by 20—the total weight of the
turkeys. The nearest least number
divisible by 20 is 360—that is, the
extrachargeisequal to 18 cents, and
so the tom weighed 11 pounds.

We have the answer, but the hen
turmed out to be a little hefty, didn’t it?
The difference in weights is quite
small, but the price of the hen is one
fourth that of the tom, even though
the price per pound of the hen is
higher. Something’s wrong!

Sure enough, this is a case where
the guessing method misfires. We
made a faulty assumption and so we're
doomed to failure. We had no way of
knowing this is a “historical” prob-
lem, though we might have suspected
from the total price—$3.78 for 20 pounds
of turkey—that this problem is set in
the not-so-recent past. As late as the
1950s, many grocery items were priced

QUANTUM/IN YOUR HEAD 03




to the half cent. (Now, armed with
this additional information, try to guess
the answer.)

Problem 5 (also proposed by Sam
Loyd]. A certain lady offered one
dollar to a post office worker and said,
“Please give me some two-cent stamps,
ten times that many one-cent stamps,
and five-cent stamps with whatever
money is left.” How did the post
office worker fulfill this rather mind-
wringing request?

He could have proceeded this way:
let x denote the number of two-cent
stamps and y the number of five-cent
stamps; from the statement of the
problem wehave 2x+ 10x+ 5y =100,
or12x+5y=100.

Diophantos, the Greek mathema-
tician mentioned above, worked hard
at finding integral solutions of such
equations. In fact, they’re now named
after him—*“Diophantine” equations.
So all that’s left is to solve the Dio-
phantine equation 12x + 5y = 100. But
we can getalongjustfine withoutit.
Notice that the total price of the two-
cent stamps and, consequently, their
number must divide by 5 (why?). The
number of one-cent stamps is ten
times that of the two-cent stamps, so
their number divides by 50, which
comes to exactly 50 stamps for 50
cents. In this case the number of two-
cent stamps is 5, which comes to 10
cents; the rest are five-cent stamps,
and their price is 40 cents for the eight
of them. Here our answer turned out
to be absolutely correct, even though
we simply tried to guess it without
any guarantee it would be right, just as
in the previous problem. (By the way,
the problem has one more solution—
a “degenerate” one: the number of
one-cent stamps is 0, the number of
two-cent stamps is also 0, and the
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number of five-cent stamps is 20.)
Here’s a more complex example.

Problem 6. Three brothers received
24 apples. The youngest brother re-
ceived the least of all, the eldest brother
received the most. Seeing this, the
youngest brother proposed the follow-
ing exchange: “T'll keep one half of my
apples and we'll divide the rest equally
between you. Then let the middle
brother keep half of his apples and
we’ll divide the rest equally between
me and the eldest brother. Finally, let
the eldest brother keep half of his
apples and we'll divide the rest equally
between me and the middle brother.”
The brothers didn’t suspect the young-
est brother of deceit and agreed. Asa
result, everybody ended up with the
same number of apples. How many
apples did each brother have at first?

Such problems are usually solved
backwards. But we'll go straight ahead
and determine successively the num-
ber of apples the youngest brother
had, the number of apples the middle
brother had, and the number of apples
the eldest brother had. It’s clear that
the youngest brother was given less
than 8 apples. On the other hand, the
number of his apples divides by 4
(since he managed to divide half of his
apples equally). This means that the
youngest brother was given 4 apples.
Notice that the middle brother was
given less than half of the remaining
apples—that is, less than 10 apples, so
he got from 5 to 9 apples. After adding
the apple he received from the young-
est brother, we again have to get a
number that divides by 4. This num-
ber must be within the range of 6 to
10—it must be 8, then. So the middle
brother was given 8 — 1 = 7 apples and
the eldest brother was given all the

rest—thatis, 13 apples. (It turns out
that only the eldest brother lost by the
redistribution. Maybe the middle brother
suspected the youngest brother of trick-
ery, but he kept his mouth shut in his
own interests.)

As you can see, guessing can be
pretty useful at times, and in any case
it shouldn’t be dismissed out of hand.
In fact, the effectiveness of this method
increases as the statement of the prob-
lem becomes more complicated and
involved, since we don’t have to go
into details when we're guessing.

And now it’s your turn. To get a
better grip on this technique, try to
guess the answers to the following
problems.

Problem 7. A merry hiker set off on
a cross-country trek. On the first day
he covered 1/3 of the distance to his
destination, on the second day he
walked 1/3 of the rest of the distance,
and on the third day he traveled 1/3 of
the distance that remained. As a
result the hiker had 32 kilometers left
towalk. How farisitfromhishouse
to his destination?

Problem 8. Upon being asked how
old he is, someone answered, “When
Ilive another one half plus one third
plus one quarter of my years, I will be
100 years old.” How old is this per-
son?

Problem 9. “Will you tell me,
renowned Pythagoras, how many
students attend your school?”’—“Count
them yourself,” Pythagoras answered.
“One half are doing mathematics,
one quarter are learning music, one
seventh are keeping silent, and there
are three women besides.” How many
followers did Pythagoras have?

Problem 10. One fifth of the bee
swarm is on the cherry blossoms, one
third is on the apple blossoms; the
tripled difference of the two last numbers
flew to the pear blossoms; and one bee
is flying back and forth, attracted by
the fragrance of jasmine and rose.
How many bees are there in the swarm?

Problem 11. Four people donated
money to a cause. The second donor

R



gave two times the coins given by the
first one, the third donor gave three
times the coins given by the second
one, the fourth donor gave four times
the coins given by the third one, and
altogether they gave 132 coins. How
many coins did the first donor give?

Problem 12. On being asked how
many people there are in his crew, the
captain answered, “Two fifths of my
crew are on guard duty, two sevenths
are at work, one fourth are in the sick

bay, and 27 people are right here.”
How many people are there in the
crew?

Problem 13 (and the most com-
plex, I daresay). Atpresentyouandl
together are 86 years old. The number
of my years is 15/16 of the age you'll be
when my ageis 9/16 of the age you’d
be if you lived to the age two times the
number of my years whenI'm twice
your age. How old am I?

I certainly advise you to solve these
problems by using the “normal” method,
too. Besides, in this way you can
check the correctness and unique-
ness of your answers. The problems
weren’t created specially for this ar-
ticle but were taken from highly re-
spected books, including Mathemati-
cal Puzzles by Sam Loyd (Dover Pub-
lications, New York, 1959) and More
Mathematical Puzzles by the same
author (Dover Publications, New York
1960). Q

RUTHERFORD
FROM PAGE 27

celebrity sitting down among young-
sters and bending over notebooks full
of assignments.”

In 1913 scientists from Ruther-
ford’s laboratory tested his formula for
alpha scattering by counting scintilla-
tions observed at various angles over
identical timeintervals and found it
tobe correct. This certainly showed
the truth of the nuclear model of the
atom. Insofar as the system of charges
at rest couldn’t be in a stable equilib-
rium, Rutherford gave up the static
model of the atom and suggested that

electrons in an atom move around the
nucleus along curved paths. Butin
that case the electrons had to move
with acceleration and, according to
classical electrodynamics, emit elec-
tromagnetic waves; and this, in turn,
must be accompanied by energy loss.
In the final analysis, the electron must
fall into the nucleus.

It was Nils Bohr who managed to
eliminate the contradiction. But that,
as they say, is another story. And
what about Rutherford’s experiments?
Are they important now only as an
episode in the history of physics? No,
their effect is more far-ranging. Al-
most 60 years after his experiments,

in the 1970s, Rutherford’s method of
probing substances with alpha par-
ticles became widely used in laborato-
ries to study crystalline structure, find
the positions of various impurities in
crystals, and determine their compo-
sitions. Thisis known nowadays as
the method of Rutherford backscat-
tering. But, instead of grains of ra-
dium, powerful accelerators are used
as the source of large flows of high-
energy alphaparticles. Andtothink
that theirprototype was asmall lead
box with grains of radium that Dr.
Rutherford, as you recall, categori-
cally refused to relinquish on his way
through US customs. O]
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CONTEST

How the ball bounces

“We should be careful as to the play, but indifferent to the ball.”

—Epictetus, Discourses

by Arthur Eisenkraft and Larry D. Kirkpatrick

NE OF THE JOYS OF PHYSICS

is being able to apply our text-

book knowledge to everyday situ-

ations, such as sports. Even though
we often need to make simplifying as-
sumptions to obtain answers, we can
often gain insight into the situation
and learn what variables are impor-
tant. As we gain more and more so-
phistication in physics, we can apply
these new tools to obtain better an-
SWErS.

The equations for kinematics that
we learn at the beginning of most
physics courses can be used to analyze
many games played with balls. We
usually begin by assuming that the
effects of air resistance and friction
can be neglected. A great simplifica-
tion occurs because we can separate

two-dimensional motion into two one-
dimensional motions. We usually
analyze projectile motion in terms of
the vertical motion and the horizon-
tal motion, where the two motions
are connected by the time.

As an example, consider the fol-
lowing problem. Elisabeth hits a rac-
quetball toward the front wall with a
speed v at an angle 0 above the hori-
zontal. She hits the ball at a height H
above the floor and a distance D from
the front wall. We simplify the real
situation by assuming that the colli-
sion is completely elastic (no kiretic
energy is lost) and frictionless (no
forces parallel to the wall). When and
where will the ball land? What are the
numerical values when v = 6.00 m/s,
6=36.9°, H=1.80m,D=2.25m,and
the accelera-

tion due to

gravity g=9.80

m/s??

Please send
your solutions
to Quantum,
1742  Con-
necticut Ave-
nue NW,
Washington,
DC 20009.
The best so-

acknowl-
edged in
Quantum
and their crea-
tors will re-
ceive free sub-
Vi scriptions for
oo one year.
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lutions willbe .

Neutrinos and Supernovas

Interesting correct solutions to the
neutrino problem posed in the No-
vember/December issue were submit-
ted by W. Richard O’Connell Jr. of
Rockville, MD, and Walter Stockwell
of Berkeley, CA, with the assistance
of Mandeep Gill. We follow Walter’s
solution and begin by remembering
that the total energy of a relativistic
particle is given by

E= ymcz, (1)
wherey=(1-B)"?and p=v/c. We'll
label the neutrinos that arrive first (15
MeV) with a subscript 1 and the later
ones by a subscript 2.

Since the neutrinos in the first
burst have twice the energy, we have

E =ymc*=2E, =2ymc*. (2)

So

T = ZYQ (3)

Let the arrival time of the 15-MeV
neutrinos be t. Then the 7.5-MeV
neutrinos arrive at t + At, where At =
15 s. If the distance to supernova
1987Ais L, wehave

Bl :L/Ct/
B,=L/c(t+At).

We can use the binomial expansion

>
(1+0"=1 i-nx+n(n4;1)ii
for Ixl << 1 to find the value of B, to first

order in At/t, which is a very small



number:

B, =(L/ct)(1+At/t)!
" =(L/ct)(1-At/t)
=P, - LAt/ct™.

Since At << t, we now assume that we
cansett=L/ctoobtain

B,=PB,—cAt/L. (4)

We can now square equation (3) and
substitute for the y's from (1) to get

(1-B,%)=4{1-B?).

Substituting B, from (4) and rearrang-
ing terms, we get a quadratic equation

inp:

...CONTEST

B2+ (2cAt/3L)B,~1-0,
where we have ignored the term
(cAt/L)?. Taking the positive root so
that 0 < B < 1 and keeping terms to
lowest order in cAt/L, we have

B,=1-cAt/3L.

Substituting this into (1), we get

mc? =E [y,
= (1 - BIZ)I/ZEI
= (2cAt/3L)'PE,

also to lowest order in cAt/L. Using
the numerical values stated in the
problem, we obtain a rest energy for
the electron neutrinos of 20 eV.

Another approach to this problem
starts by approximating B:

B=v/c=t/(t+At)=1-At/t.
Denoting At/t by 6, we get
B2=1-28

and

n

ey
=25

Putting this into (3) we obtain the
relationship

Since we know that
_ 155
61 - 82 ==y

we can solve for the value of 8, and use
ittofindy andE , asabove. (@

Adventures among P -sefs

Maybe you should take your PC along

by George Berzsenyi

ERMAT OBSERVED THAT FOR
the set {1, 3, 8, 120}, each of the six
numbers1-3+1,1-8+1,1.120
+1,3-8+1,3.120+1,and8-120
+ 1 is the square of an integer. Are
there other such remarkable sets of
integers?
The answer to this question is yes.
In an article published in The Fibon-
acci Quarterly, it was shown by the
founder and present editor of the Quar-
terly that if F, denotes the nth Fibon-
acci number (that is, F, = F,= 1 and F_
=F | +F ,forn>2), then the set of
numbers

{F, ,F F

2n+2/ 7 2n+4/

4F, F__F,

2n’ 2n+1" 2n+2" 2n+3

behaves similarly. Other such sets
were found earlier by Euler, who showed
that if m, n, and k are integers such

thatmn+1=Kk% andif S={m,n, m+
n + 2k, 4k(k + m)(k + n)}, then the
pairwise products of the elements of S
increased by 1 always yield perfect
squares. Our first challenge to you is
to verify the above claims.

More generally, a finite set S of
three or more nonzero integers will be
called a P -set if, for each pair of dis-
tinct membersxandyof S, xy +tisa
perfect square. To date, nobody has
managed to constructa P -set of five
or more elements, and it was only
recently that Vamsi Mootha, a sopho-
more at Stanford University, found a
P-set of size 5. Itis {14, 22, 30, 42, 90}
with t =-299. Surely, with the clever
use of computers, some of you will
challenge these records.

There are plenty of challenges even
if we restrict the size of P-sets to 3. For

instance, it’s not difficult to verify
that{3,7, 17}isnota P-set for any ¢,
that (1,3, 8}isa P-setonlyif t = 1, and
that{-5,10,23}isaP-setforboth t=
131 and t = 1139. Is there aset{q, b, c}
that is a P-set for three or more different
t's?

Vamsi and I wrote our first joint
article on the subject while he was
still a high school student in Beaumont,
Texas. He also organized some of his
findings into winning projects in the
International Science and Engineer-
ing Fair and in the Westinghouse Sci-
ence Talent Search. We’d be happy to
share with interested readers our find-
ings, the results of our literature search
(which resulted in about 30 articles on
the subject), and many more of the
unanswered questions still challeng-
ing us. ;

Correspondence concerning the
subject of P-sets should be sent to
Quantum, 1742 Connecticut Ave-
nue NW, Washington, DC 20009. In
addition to solutions, you are invited
to share your own inquiries concern-
ing the subject. The best results will
be acknowledged and their authors
will receive free subscriptions to Quan-
tum and/or book prizes. Q)
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ANSWERS, HINTS, & SOLUTIONS

Math
M26

Let M be the point where boat 1 and
boat 2 collide (fig. 1). By the statement
of the problem it would take the same
time t for boat 1 to cover the distance
AM and for boat 2 to cover BM. So the
time for boat 1 to travel from A to D is
t, = (AD/AM)t, and the time for boat 2
to move from B to C is t, = (BC/BM]t.
But triangles AMD and BMC are similar
by the equality of corresponding angles
(angles AMD and BMC are vertical,
inscribed angles ADB = ADM and
BCA = BCM are subtended by the
same arc). Therefore, AD/AM =
BC/BM, sot, =t,.

D

A

Figure 1

The equalities g= x+y, r= x-y, and
x=(q+1)/2, y=(q-1)/2 establish a one-
to-one correspondence between the
representation a = x>— y* = (x + y|[x— y)
of a number a as a difference of squares
and the factorizations a = gr, where
q > r. (Since ais odd, the above for-
mulas for xand y yield integer num-
bers for any two factors g and r.) To
find the number of such factoriza-
tions, we notice that each of the n
primes, whose product is equal to
given number g, can and must be a
factor of either g orr. This makes 2*

R
)

_(lL 1 2 3

0 Vz 2% 3/Z
Figure 2
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possibilities, but the condition g > r
holds for only half of them. Thus, we
get the needed number 27/2 = 2771,

M28

The answeris 142.. First, let’s find
the number of tracks left on the fixed
circle f by the very first red point R of
the rolling circle r.

Roll circle r along the number axis,
starting from the origin 0. Then point
R will color all the nonnegative inte-
ger points of the axis (fig. 2). Now
wind the axis around the circle f,
beginning from 0. Each line segment
of length 2!2 will make exactly one
winding, and all the red points of the
axis will show up at different points of
the circle (the relation k—1=m - 22 #
0 is impossible for integers k, I, m,
since 2Y/? is an irrational number).
Thus, the number of red tracks on
circle f left by point R in n revolutions
equals the number of red points on the
segment [0, 11 - 2'?] of the axis—that is,
[n - 22 + 1 ([x] is the greatest integer
not exceeding xJ.

It may seem that, taking into ac-
count all the multiple tracks of sticky
points on both circles, we’d discover
that their number grows exponen-
tially, depending on the number of
revolutions: each revolution should
approximately double this number,
since all the painted points leave new
tracks. But this assumption is abso-
lutely wrong: all the red points emerg-
ing on circle f coincide with the tracks
of the first point R/ To prove it,
suppose there are red points on f that
are not the tracks of R, and choose the
point A that was colored first among
them. Point A was colored by some
point R’ of circle r, and point R’ itself is
a track of some point A’ of circle f.
Since point A’ was colored earlier
than A, itmustbeatrack of R. Soall
the tracks of R’ after it hit point A’
must follow the tracks of R after it hit
the same point A’. In particular, point
A must coincide with one of the tracks
of R, which is a contradiction. (In the
same way one can prove that all the

red points of circle r are the tracks of
the first red point on circle f, so the nth
revolution adds the (n + 1)th red point
on circle r.) Thus, the rate of growth of
the number of red points on fis not
exponential but linear: [n-2'2] + 1. For
n=100ityields 142 points.

Each edge of the cube must contain
at least one point of the given polyhedron
P; otherwise, the projection of P onto
a face perpendicular to this edge won't
cover the common vertex of this face
and the edge. So we can take one point
of P on each edge and consider the
convex hull C of all these points—
that is, the smallest convex polyhe-
dron containing all of them. Since
polyhedron P is also convex and con-
tains the chosen points, it contains C.
It’s easy to see that polyhedron C is
obtained by truncating every vertex of
the cube along the plane drawn through
the points of P that were chosen on
the edges meeting at this vertex (fig. 3).

Figure 3

Let’s estimate the total volume of
the 8 triangular pyramids cut off the
cube (some of them may actually
degenerate into a point, a segment, or
a triangle). Consider two pyramids
cut off at the ends of a vertical edge of
the cube. Let the edge length be 1
unit, the areas of the horizontal bases
of the pyramids be B, and B, and their
respective heights beh and 1 — h
(fig. 3). Then the sum of their vol-
umes equals

1
h+(1-mpl=1
! 6

%[BII7+B2(1—h)]S

B | —

1
3

since, clearly, B, <1/2, B,<1/2. Re-
peating the same evaluation for the
other three vertical edges and sum-
ming the results, we derive a total
volume of the pyramids not greater

L



than4/6=2/3, so

volume (P) > volume (C) > 1 —

ISR
W | —

The tetrahedron in figure 4 satis-
fies the conditions of the problem and
has exactly the volume 1/3.

nge48
M30

The minimum route is 64, and the
maximum one is 28 + 36 - 212 units
long.

Examples of routes of these lengths
are shown in figures 5 and 6. Now we
must show that any closed and non-
self-intersecting chess king’s route
hasalength notless than 64 and not
greater than 28 +36 -2/,

Figure 5

The first (lower) estimate is self-
evident: the total number of moves is
64, and every move is either “straight”
(parallel to the chessboard’s sides) and
has the length 1, or “diagonal” having
the length 212,

Figure 6

To prove the upper estimate, we
must show that any route in question
contains at least 28 “straight” moves.
Consider two successive border squares
A and B on the king’s route. They
must be adjacent. Otherwise, the part
AB of the route would divide the
chessboard into two non-empty sets

Figure 7

of squares (fig. 7), so the king would
have to cross the broken line AB to get
from one set to the other; but self-
intersections are forbidden. The squares
A and B are of different color, and
diagonal moves do not change the
colors of squares, so there should be a
“straight” move between point A and
Bon the king’s route. All the routes
can be split into 28 segments connect-
ing neighboring border squares (28 is
the number of border squares); each of
the segments contains at least one
“straight” move. So the number of
“straight” movesisnotless than 28,
and we're done.

Physics

P26

The kinetic energy of the ball at
any altitude is greater when it is going
up than when it is falling down. In-
deed, if there were no air resistance,
both energies would be equal. The
difference between the two kinetic
energies (on the way up and on the
way down)is equal to the work done
to overcome the resistance of the air.
So at any given altitude the velocity of
the ball is greater when it’s going up
than when it’s coming down. It’s
obvious that the average velocity of
the ball on the way up is also greater
than on the way down. So the ball

QUANTUM/ANSWERS,

takes less time to go up than it does to
come down.

/
To find the force N exerted by weight
M on weight m, we use Newton’s
second law for weight m:

ma=mg-N.

After the weights are released, they
enterinto harmonic oscillation (asa
single weight of mass M + m). This
means that the acceleration a changes
its direction periodically. The force

N-mig-a)

reaches its maximum at the moment
when the acceleration has the maxi-
mum absolute value and is directed
upward—that is, at the moment of
the maximum stretching of the spring.
To find the value of the acceleration,
we use Newton’s second law for the
weight M+ m:
(M +mla=(M+m)g-kx. (1)
We can find the maximum value
ae Dy means of the law of energy
conservation (taking into account that
at the moment of maximum stretch-
ing of the spring, the velocity of the
weight is zero):
M+ mogr + 2
—(M+m)gx +=x
5% T 90
LN
=—(M+m) gxmux + Exiwx 2
where x, is the stretching of the spring
when there is no weight m. Taking
into account that kx, = Mg, from (2}
we get kx_ =(M +2m)g. Substituting
this value in (1), we find the maxi-
mum acceleration

m ‘ m

‘am“‘ - ‘_M+mg :M+m o

Knowinga ,wecanget N_:
max max

M+2m
Nmax — Mgm .

It’s well known that the process of
boiling requires an uninterrupted heat
supply. When the water in the test
tube heats to 100°C, the heat transfer
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from the retort stops. That’s why the
water in the test tube won’t boil.

A more interesting situation oc-
curs if toluene is poured over the
water in the test tube. Then you'll see
the curious phenomenon of “inter-
face boiling.” The boiling begins on
the interface between the two liquids
when the sum of their partial pres-
sures of saturated vapor equals the
external atmospheric pressure. It's
clear that the pressure of saturated
water vapor is less than the atmo-
spheric pressure, and so the tempera-
tureis less than 100°C. Thus, when
toluene is added to the test tube filled
with water, the boiling on the
toluene-water interface begins before
the water itself starts to boil. The
interface boiling temperature is less
than the boiling temperature of either
liquid.

P29

An ammeter connected in series
with the lamp shows the current flow-
ing through the lamp. According to
the statement of the problem, the
current I, is equal to the nominal
current I =02 A. So in the first case,
the Voltage of the lamp is equal to the
nominal U_=2.5V. The fact that the
lamp, when connected in parallel with
the ammeter, glows exactly as much
as in the first case means that the
current flowing through the lamp s
equal to I and that the voltage on the
lamp and on theammeter is equal to
U.

"We'll write Ohm’s law for both
cases. For the serial connection (fig. 8)
we have

E=I [R+1)+U_, (1)

where R is the resistance of the wires
and r is the resistance of the ammeter.

=0
T O,
Figure 8

For the parallel connection (fig. 9)
we have
=({I_ +I)R+U,_, (2)
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Figure 9

where I is the current through the
ammeter. Taking into account that
rI =U_, we canrewrite (1)like this:

U,
E:I[R+[—j U,.

Solving equations (1) and (2}, we find
the current I flowing through the
ammeter connected in parallel with
the lamp:

I 5Oy 054
x_«/ 2 =054,

P30

In an atmosphere whose refractive
index n decreases with altitude, light
raysdon’t travel alongstraight lines.
Each light wave front changes its di-
rection and gets deflected because the
speed of light v = ¢/n decreases when
the refractive index increases.

(1)

Ah g,

Figure 10

Denote by Ah the width of the
optical channel through which the
light rays circle the planet at a con-
stant altitude (see figure 10). Consider
two extreme rays. The ray at the
constant altitude h takes the time

21t(R+h0) no—aho
=) (e, Yo
to circle the planet.

The other ray, traveling at a dis-
tance Ah << h, from the first, must
circle the planet at the altitude h, + Ah
in the same amount of time (only

then will all the light wave fronts in
the channel be perpendicular to the
circleofradius R+ h):

21t(R+h0+ Ah)

Y

I'=

oc(h0+ Ah)

Cc

= on(R+h + Ah)no_

Taking into account that Ah << b, we
find that

This phenomenon is called circular
refraction. Observations show that
this situation is actually possible—for
example, in the atmosphere of Venus.

Brainteasers

B26

Yes, it's possible cut and pair the
sticks in the manner proposed. Place
the sticks so as to make two parallel
rows, red and blue, one below the
other (fig. 11), and cut each row right
at the gaps between sticks in the other
row.

Figure 11

I'm 40 and my sister is 30. If my
sister was n years old when she was
halfasoldasIwas, Iwas then2nand
am now 4n years old. So now sheis
n+ (4n-2n)=3n, and in 15 years we'll
be4n+15and3n +15. Theequation
(4n+15)+(3n + 15) = 100-yields n = 10.

I made a fire under the pipe, walked
a little ways along the pipe in both
directions, and put my hand on it to
find out where the pipe was warmer.
The water was flowingin this direc-
tion.



29 ,

032 + 9,338 = 10,270. Evidently the
sum is less than 11,000 but greater
than 10,000,s0 P=1, E=0, U=9. Then
A+R=10,14+48+S=C(if1+2S=
C + 10, then in the next decimal
place we’ll have S = A), and 9 + S =
A + 10. Finally, we get the system of
equations A+ R=10,28+1=C, S=
A + 1. The letter C denotes an odd
number (28 + 1), which is less than
9 (9 = U). On the other hand, C =
28 +1=2A+3>2-2+3=7,since A
>2 (1 =P). Thus, C =7. All that
remains is to calculate the other digits
and check the answer.

A
Figure 12

Sector ABC in figure 12 is 1/8 of the
circle with radius AB; semicircle AB
is 1/2 of the circle with radius AB/2.
So these two figures are equal in area.
Subtracting the shaded area ABD from
both of them, we get the required
equality.

Math Surprises

The answer is 1 if n = 1 or 2;
otherwisen(n-2).

Think fastt

1. Ap~(2/3)p,,..8H ~3 - 10" Pa
(since two thirds of the Earth'’s surface
is covered by water and the average
depth H of the ocean is about 4 km).

2. p, v*S ~mg, from which we get
v ~ (mg/rtR2 )2 ~ 5 m/s (for m ~
100 kgand R~ 3 m).

3. Py, = M, [V, = 24n/GT*Dy/T)
-3~ 10°kg/m?®~ 1 g/cm?®. (Here D /r ~
0.01 is the angular size of the Sun and

T ~3 - 107 s is the period of the Earth'’s
revolution around the Sun.)

4. n ~ (2gh)'?/nv ~ 1.5 (for v ~
30 m/s). Hint: when the automo-
bile’s center of mass covers the dis-
tance of the automobile’s length, its
vertical velocity attains the value v, ~
¢l/v and its angular velocity the value
o ~ v/1/2 ~ 2gv. The number of
revolutions then equals n ~ t@/2w ~
(2gh)"?/rv.

5. Fl ~ mv?*/2 ~ mgL/2, from which
we get F~ mgL/(21) ~ 800 N (for m ~
8 kg, L~20m,]~1m).

6. F- R ~mg- 2R, where R is the
radius of the bicycle’s cogwheel, 2R is
the distance from its axis to the pedal.
SoF~2mg~ 1400 N (form ~ 70 kg).

7. mv~Ftorp-(4/3)nr® - v~p-nr
.r/v;thenv~(pp)'?~30m/s.

8. F=ma~mv*2S~7-103N (for m
~60kg).

9. Let d be the average diameter of
a tree trunk. Suppose the trees are
shifted and placed along the circum-
ference of a circle that forms a con-
tinuous fence. If you are at the center
of the circle you can see nothing be-
hind the “fence.” Then the radius of
the circle is the desired distance x.
There are approximately 2nx/d trees
in a fence of length 2rx. This number
of trees is “collected” from an area
m. If the average density of the forest
is one tree per ~I ? square meters, then
we have nx?/P trees in the area mx”.

Thus, 2x/d ~ /1% For 1 ~3 mand
d~0.2m,wegetx~21%/d~100m.

Kaleidoscope

1. Move the magnet inside the coil.

2. The direction of the induced cur-
rent is counterclockwise.

3. The induced electromotive force
is least when the frame lies in the
plane passing through the wire and
the rotation axis and is greatest when
the frame is perpendicular to it.

4. The motion of the magnet in the
tube causes the electromotive force of
induction. This generates a magnetic
field, which hinders the free fall of the
magnet.

5. The two halves of the wire pro-
duce equal but opposite electromo-
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tive forces of induction, which counter-
act each other.

6. An alternating current in the
coin causes eddy currents, while a
direct current doesn't.

7. The resistance will increase.

8. The drop in potential between
wing tips is greatest for the aircraft
near the pole.

9. Along with the usual friction,
the rotor experiences a brakingelec-
tric force generated by the stator’s
magnetic field.

10. No, since the magnetic flux
through wire Bdoesn’t flow through
wire A.

11. Since the ring’s resistance is
equal to zero, the total electromotive
force in it must also equal zero. This
can happen only if the change in the
total magnetic flux through the ring
equals zero. So if you remove the
magnet, the magnetic flux generated
by the induced current will still equal
O.

Microexperiment. The variable
magnetic field of the rotating magnet
generates eddy currents in the disk, so
that the magnetic field induced by
them slows the magnet’s motion. By
Newton’s third law, an equal and
opposite force is applied to the disk,
causing it to rotate together with the

' Toy Store

Answer: V =Bh(2 + 1/cos(rn/n)/3.
Hint: the volume of one layer of the
boot, a polyhedron called an antipr-
ism (fig. 13), as well as the volume of
any polyhedron with two parallel faces
(bases) containing all its vertices, can
be calculated by Simpson’s formula:

V=(B,+4B,, +B,)h/6, where B, B,
and B, are tﬁe areas of the baqes and
of the sectlon parallel to the bases and
equidistant from them, and h is the
height. You can make use of Simpson'’s
formula, but to be honest, you ought
to try to proveit.

Figure 13
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An Invitation to the Bathhouse (physics
in the Russian banya), I. 1. Mazin,
Sep/Oct90, p20 (Feature)

It’s Beautiful—But Is It Science? (waves
inaVikingpainting), Albert Stasenko,
Jan90, p8 (Feature)

Jules Verne’s Cryptogram (cracking a
code to save a life), G. A. Gurevich,
Sep/Oct90, p44 (Looking Back)

Kith and Kin (friendly numbers and twin
primes), Jan90, p28 (Kaleidoscope)

Latin Rectangles (exercise in combina-
torics), V. Shevelyov, Mar/Apr91, p18
(Feature)

Latin Triangles (a puzzle and a model of
Schwarz’s boot), D. Bernshtein,



Mar/Apr91, p64 (Toy Store)

Letters from the Editors (notes by the
editors in chief), Jan90, p6

Lightning in a Crystal (story of the LED),
Yury R. Nosov, Nov/Dec90, p12 (Fea-
ture)

Making the Crooked Straight (linear-
izing mechanism for the steam engine),
Yury Solovyov, Nov/Dec90, p20 (Fea-
ture)

The Modest Experimentalist, Henry Cav-
endish (scientist who didn’t publish re-
sults), S. Filonovich, Jan/Feb91, p41 (Look-
ing Back])

The Moscow Correspondence School in
Quantum (sample problems from a school
without walls), L. M. Gelfand, Mar/Apr91,
p42 (Math by Mail)

The Music of Physicists (amusing anec-
dotes about Einstein, Bunsen, Planck,
and Rutherford), Sep/Oct90, p54 (Quan-
tum Smiles)

The Natural Logarithm (derivation of
an unnatural-looking number), Bill G.
Aldridge, Nov/Dec90, p26 (Getting to
Know ...

Neutrinos and Supernovas (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, Nov/Dec90, p35 (Contest|
Notes of a Traveler (education in the US
and USSR), Bill G. Aldridge, Nov/Dec90,
p2 (Publisher’s Page)

Of Amoebas and Men (amoeba in a
dinner jacket), Alexey Sosinsky, Jan90,
p44 (Looking Back)

An Old Fact and Some New Ones (shape-
numbers and number-shapes), John Con-
way, Sep/Oct90, p24 (Mathematical Sur-
prises)

One Problem After Another (chain ques-
tions), B. M. Bolotovsky, Jan90, p13
(Quantum Smiles)

The Painter’s Paradox (covering an infi-
nitesurface), A. A. Panov, Mar/Apr91,
p10 (Quantum Smiles)

Physics forFools (hare-brained experi-
ments for crackpots), V. E. Yakovlev,
Nov/Dec90, p17 (Quantum Smiles)
Physics Limericks (finished and unfin-
ished rhymes), Robert Resnick, Sep/Oct90,
p52 (Quantum Smiles)

A Pigeonhole for Every Pigeon (math
challenge), George Berzsenyi, Sep/Oct90,
p40 (Contest]|

Pigeons in Every Pigeonhole (applica-
tion of the Dirichlet principle), Alexan-
der Soifer and Edward Lozansky, Jan90,
p24 (Feature)

Play It Again . . . (inducing strange repe-

titions), John Conway, Nov/Dec90, p30
(Mathematical Surprises)

A Portrait of Poisson (one of the found-
ers of modern mathematical physics),
B. Geller and Y. Bruk, Mar/Apr91, p21
(Innovators)

Problem Racing (formulating math prob-
lems out of everyday experiences), Gary
Sherman, Mar/Apr91, p50 (In Your Head)

Quantum in Outer Space and the Inner
Space of Art (International Space Year
and Kvant art), Bill G. Aldridge, May90,
p3 (Publisher’s Page)

Rearranging Sums (math challenge), George
Berzsenyi, Jan/Feb91, p18 (Contest)
Rook versus Knight (twists in a com-
mon endgame), Yevgeny Gik, Nov/Dec90,
p64 (Checkmate!)

Sally Ride (biographical sketch), Jan90,
p39 (Innovators)

The Secret of the Venerable Cooper
(Johannes Kepler and mysterious bar-
rels), M. B. Balk, May90, p36 (Looking
Back|

Shapes and Sizes (math challenge), George
Berzsenyi, Nov/Dec 90, p34 (Contest)
Short Takes (jokes, cartoons), Mar/Apr91,
pll (Quantum Smiles)

The Simplicity of Mathematics (com-
plications of life, Stone Age math),
Jan/Feb91, p48 (Quantum Smiles)
Some Mathematical Magic (“magic
squares” and a magic tesseract), John
Conway, Mar/Apr91, p28 (Mathemati-
cal Surprises)

A Strange Box and a Stubborn Brit
(Rutherford and alpha particles), M. Digilov,
Mar/Apr91, p26 (Looking Back)
Summer Study in New York and Tartu,
Maryland and Moscow (Science and Mathe-
matics International Institutes), May90,
p54 (Happenings)

The Superfluidity of Helium IT (loss of
viscosity at a low temperature), Alexan-
der Andreyev, Jan90, p34 (Feature)
Symmetry on the Chessboard (acciden-
tal and intentional symmetry), Yevgeny
Gik, May90, p64 (Checkmate!)

Taking a Flying Leap (Hooke’s law on a
South Seas island), A. A. Dozorov,
Sep/Oct90, p10 (At the Blackboard)

A Talk with Professor I. M. Gelfand
(reminiscences of a mathematical boy-
hood), recorded by V. S. Retakh and A. B.
Sosinsky, Jan/Feb91, p20 (Feature)
Temperature, Heat, and Thermometers
(overview of temperature and its meas-
urement), A. Kikoyin, May90, p16 (Fea-
ture)

Thanks for Your Support! (end-of-year
ruminations), Bill G. Aldridge,
Mar/Apr91, p3 (Publisher’s Page)
Think Fast! (order-of-magnitude esti-
mates in physics); G. V. Meledin,
Mar/Apr91, p36 (Feature)

This Just In. .. (exchange of scientific
views in the daily press), Jan/Feb91, p48
(Quantum Smiles)

Through a Glass Brightly (remarkable
properties of green glass), B. Fabrikant,
Sep/Oct90, p34 (In the Lab)

To Calculate or Guess—You Decide!
(the virtues of guessing), I. Akulich,
Mar/Apr91, p52 (In Your Head)
Tomahawk Throwing Made Easy (phys-
ics of getting the hatchet to stick), V. A.
Davydov, Nov/Dec90, p4 (Feature)
The Tournament of Towns (interna-
tional math competition), Nikolay Kon-
stantinov, Jan90, p50 (Happenings)
Two Physics Tricks (reluctant water be-
comes a fountain), V. Mayer and E. Ma-
mayeva, Mar/Apr91, p35 (In the Lab)

The USA Mathematical Talent Search
(competition without time pressure),
George Berzsenyi, Sep/Oct90, p56
(Happenings)

Van Rooman’s Challenge (solving a baf-
fling equation), Yury Solovyov, Jan90,
p42 (Looking Back)

Walkerin a Winter Wonderland (mus-
ings inspired by The Flying Circus of
Physics), Alexander Borovoy, May90,
p52 (In the Lab)

Walking on Water (physics of unusual
modes of locomotion), K. Bogdanov,
Jan/Feb91, p36 (Feature)

Wave Watching (investigation of a fun-
damental phenomenon), L. Aslamazov
and L. Kikoyin, Jan/Feb91, p12 (Feature)
Welcome to Quantum! (birth of Quan-
tum), Bill G. Aldridge, Jan90, p5 (Pub-
lisher’s Page)

What a Commotion! (molecular mo-
tion), May90, p32 (Kaleidoscope)
What’s New in the Solar System? (ap-
plying old laws of orbital motion),
Nov/Dec90, p32 (Kaleidoscope)

What the Seesaw Taught (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, Jan/Feb91, p19 (Contest)
When Days Are Months (physics chal-
lenge), Arthur Eisenkraft and Larry D.
Kirkpatrick, May90, p34 (Contest)
Why Are the Cheese Holes Round?
(transmission of pressure), Sergey Kro-
tov, Nov/Dec90, p46 (In Your Head)
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TOY STORE

Latin triangles

" And fashionable footwear

N THIS ISSUE YOU'VE ALREADY
read about “Latin rectangles”’—tables
of letters in which every line and
every column consists of different
letters. Here’s a similar problem for a
triangle table: put 15 chips of 5 colors
onto the nodes of the triangular grid
shown in figure 1 such that the colors
on every line parallel to a side of the
playing board are all different.

Figure 1

I'm sure this puzzle won't be a hard
nut for you to crack. So try to solve
these additional problems: (1) find all
the solutions to the puzzle; (2) solve
the puzzle for a triangular grid with n
nodes to a side and n colors of chips
(n=12,3,..)

It’s not too difficult to find a general
solution to the second problem for
odd numbers n. Also, you'll immedi-
ately see that the case n = 2 is unsolv-
able. But investigation of the other
even values of n will perhaps be a
more challenging problem. In par-
ticular, you’ll have to prove thatone
more of these values is also unsolv-
able. (In the case n = 2k, the number of
chipsis n{n + 1)/2 = k(2k + 1), and they
can’t be divided into n equal groups of
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by D. Bernshtein

uniform color: k groups must have k
chips each, and the other k groups
must have k — 1 chips each.) You'll
find the solutions in the next issue of
Quantum.

Schwarz's hoot

The second toy presented here isn't
a puzzle, it’s a model of the beautiful
polyhedral surface described in the
article that begins on page 6, “In Search
of a Definition of Surface Area.” Fig-
ure 5 on page 8 gives you an idea of
how it looks. This bootlike polyhe-
dron was invented by the German
mathematician H. A. Schwarz to dem-
onstrate difficulties that arise when
we try to define the area of a curved
surface as the limit of the areas of
polyhedrons converging to this sur-
face. To make a model of “Schwarz’s
boot,” take a rectangular sheet of sturdy
paper, thin cardboard, or any similar

material, rule it with a grid of diagonal
lines as in figure 2 on the front side and
horizontal lines on the back, and score
it slightly with a knife or scissors
along the lines on both sides. Then
roll the sheet up into a tube, pressing
on the centers of the grid’s rhombi to
help the sheet fold along the creases.
Glue or tape the opposite edges to-
gether at the flap, and the “boot” is
done!

This model was designed by the
Moscow architect and designer
V. Gamayunov, who is also the au-
thor of many other beautiful, and much
more complicated, polyhedral con-
structions. He has even developed a
general method of inventing them.

Just to keep your head busy while
you're admiring your work, try to find
the boot’s volume V, knowing the
area of the base B, height h, and number
n of the base’s sides. (o]
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“There are often days when I go back
to the basics [ learned at Kerryon”

—Stephen Carmichael, Kenyon Class of 1967,
professor of anatomy, Mayo Medical School

or many science students, the small
college’s emphasis on strong teacher-
student relationships and opportunities to
participate in — and be recognized for —
solid research with faculty members are
powerfully appealing. There is also the
promise of access to sophisticated equipment and
instrumentation that the small college provides.

These qualities, as well as its renown as a
premier liberal arts and sciences institution, make
Kenyon College an ideal choice for students who
plan to pursue education and careers in the
sciences. From 1980 to 1990, an average of 24
percent of Kenyon seniors annually were awarded
degrees in the natural sciences — biology, chemis-
try, mathematics, physics, and psychology. That is
more than three times the national average of 7
percent. And fully 75 percent of the College’s
science graduares pursue advanced studies.

Such results would not be possible without
faculty members dedicated to teaching, and
Kenyon’s are among the most able and committed
at any small college. But because they believe
learning is not confined to the classroom, they also
actively involve themselves and their students in
research projects. Currently, those projects are
sponsored by such prestigious organizations as the
National Institutes of Health and the National
Science Foundation.

Together, students and faculty members in the
sciences create an exciting atmosphere at Kenyon
for study in the natural sciences. Both find the
camaraderie and sense of shared purpose potent
stimuli for learning and working at the peak of their
capabilities.

For more information on science study at
Kenyon College, and on special scholarships for
science students, please write or call:

Office of Admissions
Ransom Hall
Kenyon College
Gambier, Ohio
43022-9623
800-848-2468

Kenyon physics major Aaron Glatzer (left) consults with Associate Professor of

Mathematics James White on his research, which involves building electronic circuits to I(e' I Ol I < Ol le e
imitate neurons and neural networks.
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You may be surprised to learn that Thomas
R. Cech, the biochemist who shared the
1989 Nobel Prize in chemistry, is an honors
graduate of Grinnell College.

Robert Noyce, the co-inventor of the
integrated circuit and the father of the Infor-
mation Age, also graduated with honors
from Grinnell College.

In fact, Grinnell College is one of 48
small liberal-arts colleges that historically
have produced the greatest number of sci-
entists in America. Grinnell and these other
small colleges compare favorably with ma-
jor research universities, showing a higher
per-capita production of graduates with
science degrees. The small colleges comprise
five of the top 10 and 13 of the top 20
baccalaureate institutions in the proportion
of graduates earning Ph.D.s.

&

1989 Nobel Laureateinchemistry ThomasR. Cech, recognizedfor his RNAresearchwhichmayprovide
a new tool for gene technology, with potential to create a new defense against viral infections.

Election to the National Academy of
Sciences is anhonor second only toreceiving
the Nobel Prize. Six of the top 10 member-
producing institutions, 11 of the top 20, and
15 of the top 25 come from that group of 48
small liberal-arts colleges.

The sciences do not exist in a vacuum in
the larger world. Nor do they at Grinnell.
The college’s open curriculum encourages
science students to take courses in other
areas.

Students who wish to focus their study
may engage inscientific research, usually in
a one-to-one relationship, under the direc-
tion of a Grinnell College faculty member.
Undergraduate student researchers often be-
come the authors of scientific papers with
their professors at Grinnell College.
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For more information,
please write or call:

Office of Admission
Grinnell College

P.O. Box 805

Grinnell, Iowa 50112-0807
(515)269-3600
FAX-(515) 269-4800




